ISTANBUL TECHNICAL UNIVERSITY * INSTITUTE OF SCIENCE AND TECHNOLOGY

DESIGN OF ALGEBRAIC AND DYNAMICAL PWL AND PWC
NEURAL NETWORKS FOR CLASSIFICATION

Ph.D. Thesis by,

Ibrahim GENC, MSE

Department : Electronics and Communication Engineering

Programme : Electronics and Communication Engineering

SEPTEMBER 2007

ISTANBUL TECHNICAL UNIVERSITY * INSTITUTE OF SCIENCE AND TECHNOLOGY

DESIGN OF ALGEBRAIC AND DYNAMICAL PWL AND PWC
NEURAL NETWORKS FOR CLASSIFICATION

Ph.D. Thesis by,
Ibrahim GENC, MSE
504962004

Date of submission : April 09, 2007

Date of defense examination : September 10, 2007
Supervisor (Chairman) : Prof. Dr. Ciineyt GUZELIS
Members of the Examining Committee Prof.Dr. inci CILESIZ
Assoc.Prof.Dr. H. Ozcan GULCUR (BU)

Prof.Dr. Fikret GURGEN (BU)
Asst.Prof.Dr. Neslihan S. SENGOR

SEPTEMBER 2007

ISTANBUL TEKNIK UNIVERSITESI * FEN BILIMLERI ENSTITUSU

SINIFLANDIRMA PROBLEMLERI ICIN CEBRIK VE DINAMIK
PPD VE PPS YAPAY SINIR AGLARININ TASARIMI

DOKTORA TEZi
Y. Miih. Ibrahim GENC
504962004

Tezin Enstitiiyye Verildigi Tarih : 09 Nisan 2007
Tezin Savunuldugu Tarih : 10 Eylil 2007

Tez Danismani : Prof. Dr. Ciineyt G["JZELiS
Diger Jiiri Uyeleri Prof.Dr. inci CILESiZ
Do¢.Dr. H. Ozcan GULCUR (BU)

Prof.Dr. Fikret GURGEN (BU)
Yard.Do¢.Dr. Neslihan S. SENGOR

EYLUL 2007

PREFACE

I would like to thank my advisor, Prof. Dr. Ciineyt Giizelis. Without his help,
this thesis would never be completed. His corrections, motivations, guidance and
predictions have always been just in time. I also thank to my parents, they have
ever been compassionate to me, and they have an important role in my academic
career.

I acknowledge TUBITAK Miinir Birsel Foundation for its partly support for my
works toward a Ph.D. degree.

With the hope that this thesis improves the humanity, and goodness over the
world —no matter it is even small.

SEPTEMBER. 2007 Ibrahim GENC

il

ABBREVIATIONS

ANN
BSB
CNN
CPWL
D-HN
DMLP
DT-CNN
GCNN
FPGA
MLP

NN
PWC
PWL
PWL-NN
RBFN
RTL

SP

TSDP
VHDL
VHSIC

. Artificial Neural Network

: Brain State in a Box

: Cellular Neural Network

: Canonical Piecewise Linear

: Discrete Hopfield Network

: Discrete Multilayer Perceptron

: Discrete Time Cellular Neural Network
: Generalized Cellular Neural Network

: Field Programmable Gate Array

: Multilayer Perceptron

: Neural Network

: Piecewise Constant

: Piecewise Linear

: Piecewise Linear Neural Network

: Radial Basis Functions Network

: Register Transfer Level

: Signal Processing

: Two Stage Discrete Perceptron

: VHSIC Hardware Description Language,
: Very-High-Speed Integrated Circuit

iv

CONTENTS

PREFACE
ABBREVIATIONS
CONTENTS

LIST OF TABLES
LIST OF FIGURES
SUMMARY

OZET

1. INTRODUCTION

2. NEURAL NETWORK MODELS
2.1. General Taxonomy
2.2. Selected NN Models
2.2.1. Perceptron
2.2.2. Discrete Multilayer Perceptron
2.2.3. Hopfield Network
2.2.4. Discrete Hopfield Network
2.2.5. Generalized Cellular Neural Networks
2.3. Learning Algorithms
2.3.1. Perceptron Learning Rule
2.3.2. Backpropogation algorithm

3. ALGEBRAIC PWC and PWL NEURAL NETWORKS
3.1. Perceptron with Input Dependent Threshold Value
3.1.1. Three-Step Perceptron Learning Algorithm
3.1.2. Binary Edge Detection as a Linearly Nonseparable
Threshold Function
3.2. Design and Learning of a Multiplexed Dual Output Discrete
Perceptron
3.2.1. Model
3.2.2. Algorithm
3.2.3. Convergence of the algorithm
3.2.4. Experimental Results
3.2.4.1. Parity
3.2.4.2. Random Boolean Functions
3.2.4.3. Two Spirals
3.3. Learning in Discrete Weight Space

iii
iv
vi
vii

1x

xi1

—

—t
(v iNo BIVTIEN TN

11
12
12
14
14
15

17
17
20

21

25
27
32
34
38
39
41
42
42

3.3.1. Experimental Results 45

3.3.1.1. Parity 45
3.3.1.2. Random Boolean Functions 45
3.3.1.3. Two Spirals Function 46
3.4. Hardware Implementation 46
3.4.1. System Architecture 47
3.4.1.1. Data Representation 48
3.4.2. Implementing 4-bit parity problem 49
3.4.2.1. Counter 51
3.4.2.2. Controller 51
3.4.2.3. Other components 54
3.4.2.4. Verification of the implementation and Results 56
3.4.3. A Comparison 57
3.4.4. Discussion 59
4. DYNAMICAL PWC AND PWL NEURAL NETWORKS 60
4.1. Recurrent Perceptron Learning Algorithm for CNNs 60
4.1.1. CNNs 63
4.1.2. Supervised Learning of Completely Stable CNNs 64
4.1.3. Recurrent Perceptron Learning Algorithm 68
4.1.3.1. Description of the Algorithm 68
4.1.3.2. Neurophilosophical Properties of RPLA 70
4.1.3.3. Relation between Fixed Points and Zero Error 72
4.1.3.4. How to Start and Restart the RPLA 73
4.1.3.5. Sufficient Conditions for Convergence to Fixed Points 74
4.1.4. Learning Image Processing Using RPLA 76
4.1.4.1. Corner Detection 78
4.1.4.2. Discussion 80
4.2. Threshold Class CNNs with Input-Dependent Initial State 80
4.2.1. Linear Threshold Class CNN Cells as Perceptron 81
4.2.2. Linearly Nonseparable Functions and Modified Perceptron 83
4.2.3. Binary Edge Detection as a Linearly Nonseparable Threshold
Function 86
5. CONCLUSION 90
5.1. Recommendations for Future Work 91
BIBLIOGRAPHY 92
CURRICULUM VITAE 100

vi

LIST OF TABLES

Table 3.1.
Table 3.2.
Table 3.3.

Table 3.4.

Table 3.5.

Table 3.6.
Table 3.7.

Table 3.8.
Table 3.9.

Table 3.10.
Table 4.1.

Page No
Three step design algorithm 20
Some examples for pixel values in a 3 x 3 window. 22
The learning algorithm for a cascade network of multiplexed
dual output discrete perceptron. 33
Complexity at each layer of the algorithm for the example
shown in Figure 3.6 40
Complexity at each layer of the algorithm for the first
example shown in Figure 3.7 40
Random Boolean functions network sizes 41
Random Boolean functions network sizes in a discrete weight
space learning. n is the input space dimension. 45
VHDL design file of the generic counter 53
Weights recorded in ROM for the first neuron of four
neurons parity network.o 56
The resource usage of neurons in FPGA implementation. 58
Three step learning algorithm for Threshold class CNNs
with Input dependent initial state [1]. 85

vii

LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8
Figure 3.8

: Some examples for pixel values in a 3 x 3 window.

: The images on the left side are the input images.

Page No
: NNs functional taxonomy 9
: Perceptron (For z, = —1, w, input corresponds to §). . . 10
: Multilayer Perceptron 11
: A model of continuous time Hopfield network cell 12
: Discrete-time Hopfield network 12
: Block diagram of a GCNN cell. 14

: Discrete perceptron with input-dependent threshold value [2]. 18

: Piecewise linear discriminant hyperplane in 2-dimensional

space. (a) Linearly nonseparable vectors which are in
the same class can be linearly separated from the vectors
belonging to a linearly separable subset. (b) Linearly
nonseparable vectors which are in the same class cannot
be linearly separated from linearly separable ones.

The
images in the middle are outputs of discrete perceptron with
weight w; and threshold ;. The images on the right side
are the outputs of our modified perceptron. (a) A 16x16
binary example. (b) binary lenna image (¢) A 128x128 noisy
chessboard.

: A cascade network of multiplexed dual output discrete

perceptron [3]

: An example for learning steps of the algorithm for the

cascaded network of multiplexed dual output discrete
perceptron. Here ‘x’ denotes desired output value of ‘1’
and ‘o’ denotes ‘0’. Line corresponds to the separating
hyperplane and arrow shows the positive side of the
hyperplane. Therefore, for all vectors belong to the positive
side of the hyperplane, output will be ‘1°. 39

: Another example for learning steps of the algorithm for

the cascaded network of multiplexed dual output discrete
perceptron. Lo oL 40

: Some example epochs from two-spirals solution. (a) and (b). 43

: Some example epochs from two-spirals solution (c) and (d)

(cont.)

Figure 3.9

Figure 3.10:
Figure 3.11:
Figure 3.12:

Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 3.16:
Figure 3.17:
: CNN cell circuit

: Learning corner detection. (a) The initial images. (b) The

Figure 4.1
Figure 4.2

Figure 4.3

: Hardware Architecture for fully parallel method.

Hardware Architecture for multiply-add method.
Proposed model oL

Internal structure of 'neuron’ block in Figure 3.11. In fact,
this is an implementation of discrete perceptron neuron. . .

RTL view of an FPGA Implementation of mode 5 counter.

RTL view of an FPGA Implementation of the controller. . .
State diagram of the controller.
4-bit parity FPGA Implementation output timing signals. .
4-bit parity FPGA Implementation output timing signals. .

input images. (c—f) The actual output images at some
intermediate steps. (g) The desired output images [4]. . . .

: The images on the left side are the input images. The images

in the middle are the steady-state outputs of the CNN in [5].
The images on the right side are the steady-state outputs of
our CNN. (a) A 16x16 binary example. (b) 256x256 7-bit
binary Lenna. (¢) A 128x128 noisy chessboard. (d) 256x256
gray level Lenna. o oo

ix

92
54
54
35
a7
o8
64

79

DESIGN OF ALGEBRAIC AND DYNAMICAL PWL AND PWC
NEURAL NETWORKS FOR CLASSIFICATION

SUMMARY

Piecewise Linear (PWL) and Piecewise Constant (PWC) structures are commonly
used in the field of Neural Networks (NNs), even it is not declared that they have
such structures. In fact, very known models realize PWL or PWC functions. It
is also possible that some complex models could be simplified considering their
PWL or PWC counterparts. Despite the fact that PWL and PWC structures
are simple, fast and able to approximate to any function, there is not enough
emphasis on these subjects on the NNs literature.

This thesis is mainly concerned on PWL and PWC models of NNs to enable
profiting the full advantages of PWL/PWC structures by proposing new NN
models and developing learning algorithms for both new and existing NNs.

Perceptron with input dependent threshold value is introduced as a new NN
structure. It is well known that discrete perceptron cannot classify linearly
nonseparable sets. To overcome this problem, perceptron can be modified as
its threshold depends on its input. The model brings a solution for a subset
of linearly nonseparable classification problems. This is obtained by making the
threshold value as a function of input in a PWC manner. What is more important
with this model is that all connection weights can be learned using the perceptron
learning rule. For the training of the model, an algorithm, three-step perceptron
learning algorithm, is proposed. Demonstration of the method is done by edge
detection task on black and white images which is indeed a linearly nonseparable
task.

Another novelty in the thesis is a new discrete perceptron model forming a
cascade structure and being capable of realizing an arbitrary classification task
designed by a constructive learning algorithm proposed for this model. The main
idea of the model is to copy of a discrete perceptron neuron’s output to have a
complementary dual output for the neuron, then to select, by using a multiplexer,
the true output which might be 0 or 1 depending on the given input. Hence, the
problem of realization of the desired output is transformed into the realization of
selector signal of the multiplexer. In the next step, the selector signal is taken
as the desired output signal of the remaining part of the network. The repeated
applications of the procedure renders the problem into a linearly separable one,
thus eliminates the necessity of using the selector signal in the last step of the

algorithm. The algorithm completes the construction of the network in a finite
number of steps. The convergence theorem for the algorithm associated to the
proposed model is introduced and proved in the thesis.

The proposed modification on discrete perceptron brings the universality with the
expense of getting just a slight complication in hardware implementation. This is
shown in the thesis with an FPGA (Field Programmable Gate Array) hardware
implementation of a discrete-weight version of the model.

Cellular Neural Network (CNN) is a dynamical model with a PWL output
function and has many applications especially in image processing. However,
design or training of CNNs is a great deal and there is not a well defined and
good-working learning algorithm for this type of NNs. A Recurrent Perceptron
Learning Algorithm for CNNs is analysed and its convergence properties are
thoroughly investigated.

In this work, it is also proposed a new class of CNN, in which the initial state of
the network are input-dependent. Initial conditions of the network is computed
by a piecewise constant function in terms of the external inputs and this function
can be learned also by a proposed three-stage Perceptron learning rule.

xi

SINIFLANDIRMA PROBLEMLERI ICIN CEBRIK VE DINAMIK
PPD VE PPS YAPAY SINIR AGLARININ TASARIMI

OZET

Parca Parga Dogrusal (PPD) ve Parga Parca Sabit (PPS) ozellikte modeller,
cogunlukla bu tiirde yapilar oldugu agikga belirtilmese de Yapay Sinir Aglari
(YSA) alaninda siklikla kullanilmaktadir. Gergekten de gayet iyi bilinen
bir ¢ok model PPS veya PPD islevler gerceklerler. Ayrica, bazi karmagik
modeller, PPS/PPD kargiliklar olugturularak basitlegtirilebilir. PPS ve PPD
modeller basitlik, hizlilik ve verilen herhangi bir fonksiyona istenen duyarlilikla
yaklagabilme 6zelliklerine ragmen YSA literatiiriinde yeterli ilgiyi gormemis veya
degerleri acikca vurgulanmamigtir.

Bu tezde, temel olarak PPS ve PPD YSA modelleri ele alinmig olup, bu alanlarda
PPS/PPD yapilarin stiinliiklerinden yararlanilmaya caligilmistir. Bu amagla
yeni YSA modelleri 6nerilirken, halihazirda mevcut olan ve bu tezde onerilen
PPS/PPD YSA modelleri igin 6grenme algoritmalar: da geligtirilmigtir.

Girige bagh egikli algilayict yeni bir YSA yapisi olarak onerilmektedir. Ayrik
algilayicinin dogrusal olarak ayrigtirilamaz kiimeleri siniflandiramadigr gayet
iyi bilinmektedir. ~ Bu sorunun asilmasi igin, algilayic1 esik degeri girigin
PPS bir fonksiyonu olarak degisecek sekilde yeniden diizenlenebilir. Boylece
ortaya cikan model, dogrusal ayrigtirilamayan problemlerin bir alt kiimesi
igin ¢ozlim {iiretebilir. Buradaki asil 6nemli nokta tiim baglanti agirhiklarinin
algilayict 6grenme algoritmasi ile Ogrenilebiliyor olmasidir. Modelin egitimi
icin algilayict 6grenme kuralinin ii¢ agamali olarak uygulanmasini iceren bir
algoritma onerilmigtir. Modelin ve yontemin isleyisi, dogrusal ayrigtirilamayan
bir siniflandirma problemi olan siyah beyaz goriintiiler iizerinde kenar belirleme
ile aciklanmigtir.

Tezdeki yeniliklerden birisi de, herhangi bir smmiflandirma problemini
gergeklegtirebilen ve bu model icin onerilen yapilandirmact (constructive) bir
ogrenme algoritmasi ile tasarlanabilen yeni bir kaskad ayrik algilayict modelidir.
Modelin gelistirilmesindeki ana fikir, ayrik algilayicinin ¢ikigini digeri birincisinin
tiimleyeni olacak sekilde ciftlemek, ardindan da bir ¢oklayici ve bir segici sinyal
ile verilen girig i¢in istenen cikisi saglayan hangisi ise onu se¢mek {izerine
kuruludur. Béylece ¢oziilecek problem istenen cikigin gerceklenmesinden secici
sinyalin gerceklenmesine dontigtiiriilmiiy olur. Bir sonraki adimda her girig
icin belirlenen segici sinyal, agin geri kalan kismi icin istenen cikig degerleri

xii

olarak alinir. Yontemin ardigil uygulanmasi ile baglangicta verilen siniflandirma
problemi dogrusal ayrigtirilabilir bir hale doniigtiiriiliir ve son adimda segcici
sinyale olan ihtiyac ortadan kalkar. Ve bu yolla algoritma agin kurulumunu sonlu
bir adimda tamamlar. Algoritmanin yakinsaklik analizi tezde verilmig ve ispati
yapilmigtir.

Ayrik algilayict lizerinde 6nerilen degisiklikler her tiirlii simflandirma problemi
icin genelligi getirirken agin donanim gergeklemesi agisindan bakildiginda ise
onemsenmeyecek diizeyde bir fazlalk getirmektedir. Bu da, 6nerilen modelin
ayrik agirlik uzayinda galigan bir tiriiniin FPGA (Field Programmable Gate
Array) ile gergeklenmesiyle gosterilmigtir.

Hiicresel Yapay Sinir Aglarn (HYSA), PPD ¢ikig fonksiyonuna sahip dinamik
bir model olup 6zellikle goriintii isleme bagta olmak {izere bir ¢cok uygulamada
kullanilabilmektedir. Fakat HYSA’nin egitim ya da tasarimi iyi tanimlanmig
ve sonu¢ veren bir ogrenme algoritmasinin bulunmamasi neeniyle biiyiik bir
sorun olusturmaktadir. HYSA icin énerilmis olan Yinelenen Algilayici Ogrenme
Algoritmast (RPLA) bu caligmada ¢dzlimlenmis ve yakisaklik 6zellikleri ayrintili
olarak aragtirilmigtir.

Bu caligmada ayrica, baglangic degerlerinin girise bagh olarak degistigi yeni bir
HYSA sinifi 6nerilmigtir. Agin baglangi¢ degerleri HYSA'nin dig giriglerinin bir
PPD fonksiyonu ile hesaplanir ve bu fonksiyon oOnerilen ii¢ agamali algilayici
ogrenme kurali uygulamasiyla 6grenilebilir.

xiil

1. INTRODUCTION

In the society of circuit theory, as a thoroughly investigated branch of
electrical engineering, Piecewise Linear (PWL) approximation methods and PWL
structures are commonly used. In one of the bible books of circuit theory, it is
stated that “PWL approximation is useful in dealing with both simple and general
circuits made up of nonlinear resistors. Furthermore, like many graphics methods,
the PWL method helps us in understanding qualitatively the nonlinear behaviour
of circuits. In addition, its straightforward and effective.” [6, p.81] Beside the
statement of this book, many publications are released on PWL methods, by

many researchers [7-9].

Moreover, PWL and Piecewise Constant (PWC), which is a special case of PWL,
structures are commonly used in the field of neural networks, even it is not
declared that they have such structures. At a first glance, discrete Multilayer
Perceptron (MLP), Cellular Neural Networks (CNNs), Discrete Hopfield Network
(D-HN), Discrete Time CNNs (DT-CNNs), Brain State in a Box (BSB) are in
fact PWL or PWC models. It is also possible to simplify some other complex
models, considering their PWL or PWC counterparts.

The so-called canonical representation plays an important role in the PWL
representation theory. Canonical PWL (CPWL) functions are orginally
introduced by Chua and Kang [10]. CPWL functions have a very simple structure
and they approximate to continuous functions [11] with a relatively small number
of parameters [12]. Another important feature of the CPWL functions that any
continuous function defined on a compact domain D C R™ can be approximated

to an arbitrary precision through the CPWL function [11].

Despite the fact that PWL and PWC stuctures are simple, fast and able to
approximate to any function, there is not enough emphasis on these subjects
on the Artificial Neural Networks (ANN, or simply Neural Networks — NN
henceforth) literature. One of the most important works in PWL literature
is by Lin and Unbehauen [8]. The paper [8] presents some modifications and
applications of classical CPWL functions to supply mathematical background for
mapping networks. It also studies the CPWL feature of the popular Multilayer
Perceptron-Like (MLPL) networks. It is shown that generalized CPWL is suitable

for neural network applications.

On the PWC approximation, as a special case of PWL approximation, Blum
and Li provided a view of PWC approximation for the MLPL networks with a
hardlimiter output function in the hidden layer [13].

Another PWL-NN is proposed by Batruni [14] which is a cascaded structure with
an absolute-value function as an output function of the computation units in the

hidden layers.

The objectives of this thesis are, while investigating existing PWL-PWC
stuructures in NN models, to propose new models and methods, and to develop
new algorithms for both new and existing structures. This thesis is just mainly
concerned on PWL and PWC models of NNs. The main motivations behind this
idea is to make use of the PWL representation theory into the NN area and to
get the full advantage of PWL/PWC structures, such as simplicity, effectiveness

and approximation capability.

Before proposing some novelties, it is necessary to present existing models: in
chapter 2, NN models are explained. General taxonomy of neural networks,
fundamental NN models and learning algorithms to adapt them are all given in

the sections of this chapter.

Chapter 3 proposes two new algebraic PWL/PWC models, namely; Two Stage

Discrete Perceptron (TSDP) and a cascade multilayer discrete perceptron. Two

learning algorithms for both models are also proposed in this chapter. The one
is 3-step perceptron learning algorithm for TSDP and the other is sequential
learning algorithm for the cascade discrete multilayer perceptron. Convergence

theorem of this sequential learning algorithm is given and proved here.

Beside Chapter 2 explaining existing dynamical PWL/PWC NN models and
CNN that is one of them, Chapter 4 introduces Recurrent Perceptron Learning
Algorithm (RPLA), an original learning algorithm for completely stable CNN,
which is a major example of dynamical PWL NNs. In Chapter 4, furthermore,
Threshold class CNNs with input-dependent initial state is proposed as an

improvement over the plain CNN model.

2. NEURAL NETWORK MODELS

In this chapter, an insight on Artificial Neural Networks (ANNs) is given. Their

history, classification, models, design and learning concepts are all considered.

Artificial Neural Networks (or shortly Neural Networks (NNs) henceforth) with
a lot of models, their interdisciplinary nature, design and learning algorithms
associated ro them and with their widespread applications, are among the most
popular research subjects today. The first NN model is proposed by McCulloch
and Pitts [15]. However serious improvements are realized after the proposal of a
learning algorithm by Rosenblatt in 1962 [16]. The works of Hebb, Widrow and
Hoff, Minsky and Papert, Amari, Kohonen, Grossberg, Hopfield, Rumelhart are
milestones on the NN field.

The first examples of neural computers are capable of logical operations and
are mainly inspired from biological counterparts. Moreover, with the book of
Hebb [17], large scale theory of psychology is introduced into neural networks
terminology. This is also the first proposal of a learning scheme for updating
neurons’ connections toward values that network realizes a desired function. This

scheme is called as Hebbian Learning Rule.

In the early 50’s, with the concept of cybernetics, an attempt to combine many
disciplines such as biology, psychology, engineering and mathematics, the goal
was to make machines that could learn. The first neurocomputer were built and
tested in 1954 [18] and a couple of years later, in 1958, Perceptron, a trainable
machine capable of learning to classify certain patterns by modifying connections

to the threshold elements, was invented by Frank Rosenblatt [19]

In the 60’s, great improvements on neural networks are realized. With the book of
Rosenblatt [20], perceptron is defined and many theorems about it were proved,
and also The Perceptron Learning Rule (PLR), one of the most powerful learning
algorithms, is proposed. It ensures finding appropriate weights ensuring that
perceptron perform a desired function correctly if there is a possibility to do

that.

Other important works done in this decade are the introduction of ADALINE
(ADAptive LINEar combiner) by Widrow and Hoff and Widrow-Hoff learning
rule associated to it [21]. The idea behind the rule is the minimization of summed

square error during training.

During the classical period of Perceptron, it seems as if NNs and Perceptrons
could do anything. But in 1969 Minsky and Papert publishes the famous book
“Perceptrons” in which limitations of perceptron are mathematically proved.
Moreover, it is also stated in the book that there is no reason to assume that any
of the limitations of single layer perceptrons could be overcome in the multilayer

version |22, Sec.13.2].

Minsky and Papert, in the second edition of their books, state that a little of
significance had changed since 1969. They reason why progress has been so
slow in this field is that researchers unfamiliar with its history have continued
to make many of the same mistakes that others have made before them. It may
possibly be a connectionist revolution in the sense that there is a great deal of
interest and discussion and discoveries have been made that may turn out to be
fundamental importance, but certainly no inthat there has been little clear-cut
change in the conceptual basis of the field [23, p.vii]. This sentences can be true
for the perceptron case, during the 70’s and afterwards important improvements

occurs in the NNs field.

Self organizing networks and competitive learning algorithms are first proposed
in the 70’s [24] and Grossberg’s work ripens toward 80’s and Adaptive Resonance

Theory is proposed [25]. Basically, the theory involves a bottom-up recognition

5

layer and a top-down generative layer. If the input pattern and learned feedback

pattern match, a dynamical state called “adaptive resonance” takes places.

In 1982, Hopfield uses the idea of an energy function to formulate a new way of
understanding the computation performed by recurrent networks with symmetric

synaptic connections. This class of NNs with feedback attracted a great attention

in the 80’s, and it is known as Hopfield Networks (HNs) [26].

An other important development in 1982 is the publication on self-organizing

maps by Kohonen [27] and receives great attention from NNs society.

In 1986, Rumelhart et. al. reports the famous back-propagation algorithm [28]. 2
years later, Radial Basis Functions Network(RBFN) is introduced [29]. This is a
layered feedforward network utilizing radial basis functions and being a powerful

alternative to MLPs.

Cellular Neural Networks (CNNs) are introduced by Lin and Chua in 1988 and
attracts the attention of circuits and systems society together with NNs’ [5].
CNNs consist of dynamical and locally connected circuits —or cells— and,
are found useful especially for image processing because of their 2-dimensional
structure. Giizelig publishes an article [30] which proposes generalized CNNs as

a general model not only a generalization of CNN but also some other models,

such as HN and MLP.

In the early 90’s, Vapnik and colleagues invents a computationally powerful class
of supervised learning networks, called Support Vector Machines (SVMs), for
solving patten recognition, regression and density estimation problems [31]. This

new method is based on results in the theory of learning with finite sample sizes.

During 90’s, efforts are mainly interested in learning algorithms and applications
of NNs into very different disciplines. In fact, there are too many articles are

published to mention them here.

2.1. General Taxonomy

NNs have a lot of different models. To understand what is a neural network, it is
better to group the known models based on their structures and to list common
properties of these models. First, some common properties of existing NNs are

briefly itemized below and then a taxonomy of NNs is explained.

Common properties of different NN models are as follows.

1. Anatomy of the networks forms a directed graph.

2. Every node is a cell (see items 5, 6).

3. Directed branches of graph correspond to network connections.

4. Network consists of structural units so called cells (see items 5, 6), and these

cells are connected within a given geometry (see items 14, 15).

5. Cells are usually multi-input single-output, high-order nonlinear dynamical

sub-circuits.

6. Cells consist of three units; (i) —usually linear— algebraic summing unit
calculates weighted summation of inputs. (ii) single-input, single-output

n'*-order dynamical circuit, and (iii) nonlinear algebraic map.

7. Output of the cell can be duplicated and can feed several outputs and inputs

of other cells.

8. A cell can be fed by external inputs, neighbouring cell outputs and threshold

values.
9. Linear dynamical unit of the cell can be of any-order.

10. Nonlinear algebraic function at the cell output is single-input single-output

and can be linear in particular.

11. Connection weights, network geometry and/or internal structures of cells

can be changed by a defined learning rule, or they can be held fixed.

12. Cell parameters may be different from cell to cell.

7

13.

14.

15.

16.

Every layer in a network is a multidimensional array of cells.

All cells in a layer obey the same connection geometry. So intra-layer

connection geometry is regular.

Inter-layer connection geometry is well-defined, regular and can be

feeforward and/or with feedback.

Network is composed of layers which are hierarchically connected to each

other.

Although almost all NN models share some common properties, NNs models can

be classified into several classes based on structures, functions, learning systems

etc.

A functional taxonomy of NNs are depicted in Figure 2.1, and examples for each

class is given below.

Stochastic

Amari 1972 [32], Gelenbe 1989 [33]

Deterministic

Distributed parameter NN
Hodgkin and Huxley 1952 [34]

Lumped parameter NN

Algebraic
McCulloch-Pits 1943 [15], Adaline: Widrow 1960 [21], Cognitron:
Fukushima 1975 [35]
Dynamical
Discrete Time
McCulloch-Pits 1943 [15], Hopfield 1982 [26]
Continuous Time

First order
Grossberg 1967 [36], Hopfield 1982 [26], CNN: Chua-Yang
1988 [5]

Higher order
Freeman 1987 [37], G-CNN: Giizelig 1993 [30]

Artificial Neural Network

{

Deterministic

v

V

Stochastic

Distributed

Lumped

{

v

Algebraic

Dynamical

{

V

Continuous Time Discrete Time

v

I

First Order

Higher order

Figure 2.1: NNs functional taxonomy

2.2. Selected NN

2.2.1. Perceptron

Perceptron as one of the simplest forms among artificial neural network models
consists of only a weighted summation unit and a nonlinear output unit as shown

in Figure 2.2. Generally, sigmoid function is used as ouput function and as seen

Models

9

from the definitions (2.1) and (2.2), perceptron realizes a nonlinear function from

p-dimensional real space into the set of [—1,1] C R.

p
y*f(Zwi-a:i—9>—f(w-x—9) (2.1)
i1
where w € RP are weights, x € R? is input vector and § € R is the threshold
value.

Sigmoid function as common output function is defined as follows for bipolar and

unipolar cases:

1
=2 -1 2.2
flo) = 20— 22)
fla) = — (23)
) = .
14 e«
Figure 2.2: Perceptron (For x, = —1, w, input corresponds to)

2.2.2. Discrete Multilayer Perceptron

Discrete MLP is a connection of Perceptrons in a multilayered manner where
output function f(-) is either sgn(-) or stp(-) function. Structure of a MLP is

shown in Figure 2.3 for the 3-layer case.

10

R e

N %v@\ 6

»

2\ DIRVARY by

NN X
) 3l N/ ey

Figure 2.3: Multilayer Perceptron

#q

2.2.3. Hopfield Network

A cell of continuous time Hopfield network consists of a summing input unit,
an integral unit and a sigmoid output function unit as depicted in Figure 2.4.

Integral unit of the cell can be of higher order as well as 1% order.

Mathematical definition of HN is as follows for ¢ € 1,2,...,n where n is the

number of cells in the network:

yi = f(z;) = sgm(z;) (2.5)

11

I; : External input

Figure 2.4: A model of continuous time Hopfield network cell

2.2.4. Discrete Hopfield Network
DT-HN is very similar to HN and defined as in (2.6).

1 >0

$1(/{} —+ 1) = $z(k/’) , Z’wij$]’ T, =0
j=1

-1 , <0

il T T,

sen))\ sanl) w

z1(k+1) za(k + 1) Tn(k+1)

Figure 2.5: Discrete-time Hopfield network

2.2.5. Generalized Cellular Neural Networks

(2.6)

GCNN; is an interconnection of many subcircuits, called cells, each of which is an

arbitrary order dynamical circuit and is connected only to its nearest neighbours.

12

A 2-D special case of Generalized CNN model [30] that covers most of the
known neural network architectures including CNNs, HNs and MLPs. While
a memoryless NN defines a nonlinear transformation from the input signals space
into the output signals space; dynamical NNs such as HN and CNN, have usually
been designed as dynamical systems whose trajectories approach to one of the

stable equilibrium points depending upon the initial state and input value.

Each cell of the generalized CNN consists of three basic units.(See Fig. 2.6)
The first unit which is a multi input, single output, linear, resistive circuit forms
a weighted sum of external inputs and the outputs of neighbouring cells. The
output of the first unit, e;, is fed into the second unit. The second unit is a
single input (e;), single output (&;), high order linear dynamical circuit. The
only nonlinear part of the cell is the third unit which receives &; and passes it
through a nonlinearity f;(-). Such a cell of 2-D generalized CNN is described by

the following system of equations:

w(l) = Axi() + beld) (2.7)
&) = o xit) + hes(t) (2.8)
wt) = fi(&@) (2.9)
eft) = gwi,iyi(t —7i4) + iez;/zi,iui(t — o) + I (2.10)

where A; € RE*H: by o € RY; by, wis, 213, Tis, 0ig, i € R are all constants;
xi(1) : R — R4 (), &), w(-) : B — R are functions of time ¢; x; = dx;/d¢t,
f() : R — R is a nonlinear function; Y is the set of integers indexing the
neighbour cells, and i = (i1,i2), 1 = (11,12) with i;, ; € {1,2,...,N;} for all
j € {1,2}. Each cell has two different kinds of external inputs: u;(t) and I;. The
controlling input associated with cell Cj is also applied through the weights z;
to the neighbour cells, while the constant input [; is fed only into cell C5. The
delay times 735 and 033 in Eqn. 2.10 are introduced here to obtain a more realistic
model: 73; and o35, respectively, reflects the propagation time needed for cell Cj to
receive the feedback signals 4;(£)’s and the controlling input signals u;(t)’s. The
13

coeflicients w;; and z; in Eqn. 2.10 weight the delayed signals w(t — 7ni;3) and
us(t — 013), respectively.

Thresholds
‘ L}

I

Neighbours’ { —=>
outputs
{yst — 1)} (—=] Z e X = Aix; + bies & L) A
External I &= c;rxi + hie;
inputs |
{ui(t - O'i,i)} |
UNIT I UNIT II UNIT IIT
WEIGHTED SUMMING LINEAR DYNAMICAL NONLINEARITY
SUBCIRCUIT SUBCIRCUIT

Figure 2.6: Block diagram of a GCNN cell.

CNNs and HNs are special cases of generalized CNNs so that they are 2-D, single
layer and first order dynamical networks. MLP is also a special generalized CNN

where the network is 1-D, multi-layer and algebraic.
2.3. Learning Algorithms

In the neural network literature, there exists a lot of learning algorithms. Here,
only very basic learning algorithms are mentioned. These are Perceptron Learning

Rule (PLR), gradient algorithm and backpropogation algorithm.

2.3.1. Perceptron Learning Rule

PLR is simply stated in Eqn. 2.11

wn+ 1) =wn)—n (—ys(”) + sgn(w*(n) - xs(”))> Al (2.11)

Some properties of the algorithm is given by the theorems below.

14

Definition 2.1 Linear separability:
For a given {x},...,x} and {x1,... X"} two set of elements are linearly
separable & Ja € R*, € R D> H = {x € R*aTx — 3 = 0} (n-1) dimensional

hyperplane separates into two sets given below:
al'x—p>0 vxe Xt
a’'x—-B<0 Vxe X™.

Theorem 2.1 X' and X~ are linearly separable & Iw* > e(w*) =0

=> (y — sgn(WTa:S)>2 :

s=1

Theorem 2.2 w(n+ 1) = w(n) —n (—ys(”) + sgn(w? (n) - xs(”))> o)

For a sufficiently small n > 0 PLR finds w* in finite step, if such a w* exists.

2.3.2. Backpropogation algorithm

Before given backpropogation algorithm, Kqn 2.12 formulates the Gradient
Algorithm.

w(n+1) = w(n) — nV,e(w) (2.12)

Backpropogation algorithm is an extension of gradient algorithm, because
gradients are calculated at the output of the network and are propogated
backwards to the inputs. A case example of backpropogation algorithm is given

below for a 3-layer MLLP below.

wij(n+1) = wij(n) =203 (@ —) (=1) (1=) ()95 (2.13)

s=1

15

t(n+1) = tu(n —27722 (y; —97) (1) (1 —97) (45)

s=11i=1

wa) (1= 85) Bz (1 — aip) (i) &5

(2.14)

(2.15)

where, t, z;, and w;; are connection weights for the 1%, 2" and 37 layer of the

MLP, respectively.

16

3. ALGEBRAIC PWC and PWL NEURAL NETWORKS

Chapter 3 proposes two new algebraic PWC models, namely, “perceptron
with input dependent threshold value” (PwIDTV) and “a cascaded network
of multiplexed dual output discrete perceptron” (MDODP). Two learning
algorithms for both models are also proposed in this chapter. The one is 3-
step perceptron learning algorithm for PwIDTV and the other is a sequential
learning algorithm for the MDODP. Convergence theorem of this sequential

learning algorithm is proposed and proved here.

3.1. Perceptron with Input Dependent Threshold Value

In this section, a special discrete perceptron whose threshold is a function of
input patterns is considered [2]. It is well known that discrete perceptron cannot
classify linearly nonseparable sets. To overcome this problem, perceptron can be
modified as its threshold depends on its input. Proposed structure can be used
to classify some kind of linearly nonseparable sets. What is more important is
that all connection weights can be learned using the perceptron learning rule.
Demonstration of the method is done by edge detection task on black and
white images —it is indeed a linearly nonseparable task formulated as a pixel

classification problem.

Multilayer perceptron model can give a solution for the problem of classification
of linearly nonseparable sets. However learning of the weights which solve the
problem is not so straigthforward for the discrete case and backpropogation
algorithm cannot be applied here. Generally heuristic methods are employed

instead and it is not possible to employ PLR in finding the weights of these

17

structures, either. So, some dedicated models and learning algorithms brings
efficiency for a subset of linearly nonseparable problems brings efficiency. This
approach does not lead to generalized methods, models or algorithms, i.e., all
may have some restrictions, constraints and assumptions. On the contrary they
may have advantages of simplicity, ease of design/learning and straightforward
solutions to some kind of problems. When the problem does not fit to the
restriction of the method, one then may use the method proposed in Section

3.2., which is an universal model and algorithm for the all classification tasks.

A method proposed here is to use perceptron with nonconstant threshold together
with a two-stage PLR. Threshold value of the modified perceptron defined in
(3.1)-(3.2) is taken as piecewise constant (See Fig. 3.1.)

y = sgn(wl-x10) (3.1)
0 = 01+ 0s-stp(wi -x+ 0y) (3.2)

where stp(-) is unit step function, 6; € ® Vi € {1,2,3} and wy, wy € R? are
weight vectors. Instead of unit step function, sign function can also be used. In

this case only #; and 63 changes.

sgn(.)|—=Y

W

Figure 3.1: Discrete perceptron with input-dependent threshold value [2].

18

Perceptron with nonconstant threshold, defined in (3.1)-(3.2), can be employed
for the classification of some kind of linearly nonseparable input sets described
below. Also, all of the parameters, wy, we, 6;, i € {1,2,3}, can be learned by an

algorithm consisting of PLR’s 3-staged application, given in the Section 3.1.1.

The perceptron with varying threshold, given in (3.1) and (3.2), defines a
piecewise linear discriminant function so that it assigns inputs belonging to a
piecewise linear half space to a class and the others to the second class. To
illustrate such a separation of the space, two examples are shown in Figure 3.2.
Here, squares and circles represent input vectors belonging to X, and X_ in

2-dimensional input space, respectively.

separable vectors separable vectors

nonseparable vectors nonseparable vectors
(a) (b)

Figure 3.2: Piecewise linear discriminant hyperplane in 2-dimensional
space. (a) Linearly nonseparable vectors which are in the same
class can be linearly separated from the vectors belonging to
a linearly separable subset. (b) Linearly nonseparable vectors
which are in the same class cannot be linearly separated from
linearly separable ones.

Piecewise linear separation surface contains the points which satisty the equation
wl x40 + 05 - stp(wlx + 6,) = 0. Both of the two examples in Figure 3.2
are linearly nonseparable but can be solved by varying threshold perceptron.

However, since linearly nonseparable patterns of the set shown in Figure 3.2.a

19

are linearly separable from the other patterns of the input set, only this set can

be learned by three-step algorithm.

3.1.1. Three-Step Perceptron Learning Algorithm

Proposed learning algorithm, given in Table 3.1 can be applied to the linearly
nonseparable set X if the complement of the largest linearly separable subset
Xs, Xns = X\ Xg contains elements from only either X, or X_ and this linearly
separable with Xg. By explaining verbally, linearly nonseparable vectors are all

from the same class and these are linearly separable from the rest of the set.

To give an example, the problem considered in the Section (3.1.2.), edge detection

is a linearly nonseparable problem but obeys these restrictions.

Table 3.1: Three step design algorithm

Step 1: Perceptron is trained by PLR for a given input patterns set X and the
parameters wi and 6, defining hyperplane which separates the largest

linearly subset, Xg, of X are obtained.

Step 2: Another perceptron is trained by PLR again and weight vector wy
and threshold 62, both define the hyperplane which leaves linearly
nonseparable patterns, Xyg, in its positive half-space and linearly

separable patterns, Xg, in its negative half-space are obtained.

Step 3: 63 can be obtained easily so that its amplitude |f5| should be strictly
greater than |wlx + 0| for all inputs. 03 is taken greater than zero if

03, Xnys C X, and less than zero, otherwise.

20

3.1.2. Binary Edge Detection as a Linearly Nonseparable
Threshold Function

We will justify our design method by computer simulations done on a specific
example, namely the edge detection. First, we pose the binary edge detection task
as a linearly nonseparable but piecewise-linearly separable threshold function of
the type depicted in Figure 3.2.a. Second, we will train the modified perceptron
to learn this task. Then we will examine the performance of this perceptron on

the edge detection of some binary images.

Binary edge detection can be considered as a pixel classification problem. To
prevent the enormous growth of input set, patterns are constructed from 3 x 3
window. For each pixel, it can be decided whether it is an edge pixel or
not, by investigating the pixel’s and its neighboring pixels’ values. The input
vector to the network is constructed by the values of these pixels. For the
example pixel combinations in 1-neighbourhood window depicted in Figure 3.3

the corresponding input vectors and desired outputs are given in Table 3.2.

B H B I@

o

(a) (b) (c) (d)

Figure 3.3: Some examples for pixel values in a 3 x 3 window.

The definition of the ideal edge class stated as “The pixel belongs to edge class if it
is black and at least one of its east, west, south and north neighbours is white but
not all of its 8 neighbours are white” results in that we identify 239 input patterns

of 512 belonging to the edge class. With this definition, a classification problem

21

Table 3.2: Some examples for pixel values in a 3 x 3 window.

Figure No | Input vector Desired outputy
3.3(a) 011011001 1
3.3(a) 000010000 0
3.3(a) 101000100 0
3.3(a) 101010000 1

1 The desired output ‘1’ is used to define the center

pixel as an edge pixel and ‘0’ otherwise.

set is obtained containing 512 binary 9-dimensional vectors and corresponding

desired outputs.

The set of input — desired output vectors of edge detection problem is investigated
and concluded that (1) the set is linearly nonseparable and (2) the set is piecewise

linearly separable. The explanations about the investigations are as follows.

A discrete perceptron is trained by PLR for the problem and every attempts to
find a separating hyperplane fails with an error. This concludes that the set is
linearly nonseparable. Because, according to the PLR convergence theorem if the
sets are linearly separable then the algorithm will result in a perceptron separating
them [23, p.164| and PLR can be used to test whether such an hyperplane exists

or not, considering the perceptron cycling theorem (23, p.182].

The problem is piecewise linearly separable since the nonseparable vectors are
linearly separable from the other input vectors. Obviously we can test this case
by PLR. The key point here is to find the linearly nonseparable vectors which
can be found by employing the PLR [38]. The pocket algorithm, which runs
PLR long enough and at the end specifies the weight vector giving the smallest
misclassification error, can be used to capture a minimal set of nonseparable

vectors.

22

Since the input space is 9-dimensional we cannot illustrate the status of the set as
seen in Figure 3.2 but we could find by experiments that it is linearly nonseparable
but piecewise linearly separable. Only one linearly nonseparable vector is found
for the problem considered and corresponding pixel structure to this vector is

shown in Figure 3.3(b).

The 3-stage algorithm given above does, in fact, test of the input set for
linear separability, define nonseparable vectors and test the linear separability
of nonseparable vectors from other vectors of the set. Meanwhile, it finds the
following weight vectors and thresholds if the cases are admissible with the

prerequisites of the method.

For the defined edge detection problem the following weights are found by the
algorithm.

w; = [—0.013 —0.406 —0.024 —0.74 +2.55 —0.485 —0.21 —0.88 —0.13(3.3)

wy = [—-128 —128 —128 —128 +1.28 —1.28 —1.28 —1.28 —1.28](3.4)

6, = [—0.427] 0, = [—10.53) 05 = [—42.5] (3.5)

The results obtained by the modified perceptron with the weights above, edge
detector on some binary images are presented in Figure 3.4. For these images
the modified perceptron finds the edge images which are ideal in the above sense.
Note that the images obtained do not contain any isolated pixel and the edges in

the resulting images are of one pixel width.

The proposed method could also be applied on learning edges for gray level
images. However, to define ideal edges in an exact manner for gray level images
seems very difficult (may be impossible) considering the following facts. We will
have 256° training pairs for 256 gray-level images processed by perceptron in a

3 x 3 input window. In order to define ideal edges, one can try to use an available
23

edge detection method but it might yield an inconsistent training set for the

considered 3x3 neighborhood.

Figure 3.4: The images on the left side are the input images. The images
in the middle are outputs of discrete perceptron with weight wy
and threshold ;. The images on the right side are the outputs
of our modified perceptron. (a) A 16x16 binary example. (b)
binary lenna image (¢) A 128x128 noisy chessboard.

24

3.2. Design and Learning of a Multiplexed Dual Output Discrete

Perceptron

In this section a new discrete perceptron model is introduced. The model forms
a cascade structure and it is capable of realizing an arbitrary classification task
designed by a constructive learning algorithm [3]. The main idea is to copy a
discrete perceptron neuron’s output to have a complementary dual ouptut for
the neuron, then to select, by using a multiplexer, the true output which might
be 0 or 1 depending on the given input. Hence, the problem of realization of
the desired output is transformed into the realization of selector signal of the
multiplexer. In the next step, the selector signal is taken as the desired output
signal for the remaining part of the network. The repeated applications of the
procedure renders the problem into a linearly separable one and eliminates the
necessity of using the selector signal in the last step of the algorithm. The
proposed modification on discrete perceptron brings the universality with the
expense of getting just a slight complication in hardware implementation. This is
shown in the thesis with an FPGA (Field Programmable Gate Array) hardware

implementation of a discrete-weight version of the model.

A discrete perceptron whose output becomes 1 if the weighted sum of inputs
exceeds a threshold and 0 otherwise, is known to be capable of realizing any
linearly separable threshold function. A set of connection weights achieving the
desired linear separation can be found by Perceptron Learning Rule (PLR) which
ensures the convergence in a finite step when providing a proper learning rate.
PLR can be run to find the optimal separating hyperplane which maximizes
the margin to the class samples [39]. Furthermore, PLR can also be used to
find the largest linearly separable subset of a given linearly nonseparable set of

samples [38].

There are many attempts to extend the discrete perceptron model to realize

any kind of threshold functions. Sequential Learning Algorithm (SLA) [40], as

25

stated in the name, consists of sequential applications of Perceptron Learning
Rule (PLR) and at every step only one type of inputs (whose desired outputs
are the same) are realized and those input vectors are removed from the learning
set. It is proved in [40] that all samples can correctly be classified by SLA in a
two-layer structure where the outputs of the first layer become linearly separable,
and the second layer consists of just one neuron. However the work in [40] deals
with Boolean inputs only. Another algorithm, based on SLA, is the Constructive
Algorithm for Real-Valued Examples (CARVE) [41] which extends the SLA from
Boolean inputs to the real-valued inputs case and it uses a convex hull method for
the determination of the network weights instead of PLR. This algorithm gives
a near-optimal solution since the task of finding the largest appropriate set is of

NP-hard and the algorithm only finds good-sized appropriate sets.

Beside multilayer structures, cascade models are also investigated |2, 42, 43].
These models form a cascade structure where the inputs [42,43| or the bias-
inputs [2] of higher layers’ neurons are fed by the outputs of the lower layers’
neurons. These models propose structural and algorithmic solutions to linearly
nonseparable classification problems against the ones [40,41] which propose only

algorithmic solutions.

There is still a demand for developing efficient learning algorithms for multilayer
discrete perceptrons to realize arbitrary threshold functions. The novel discrete
perceptron model introduced in this paper is a cascade structure accompanied
by a kind of sequential learning algorithm and it is capable of realizing any given
classification task. It is shown by the experiments that it is very convenient to
run the algorithm in a discrete weight space so that calculation speed is increased
and implementation complexity is also decreased. In the discrete case, the size
of the network may increase since a suboptimal solution could be found as a
consequence of the limitness of the number of possible weights. However, no
increment greater than 5% has been observed in the experiments presented in

Section 3.3.

26

The proposed modification of multiplexed dual output perceptron provides
an advantage from hardware implementation viewpoint while complicating the
implementation slightly as tested on a Field Programmable Gate Array (FPGA)
simulation. As compared to the classical perceptron, new model adds only a few

gate level logic operations which are the simplest devices to be used in FPGA.

The implementation differences between classical perceptron neuron and the

proposed model are shown on FPGA.

As a method for implementation, FPGA approach which uses reprogrammable
digital ICs, is chosen since the usage of FPGA for neural network implementation
provides a flexibility as programmable systems along with the power and speed

of parallel hardware architectures [44-50].

In Section 3.2.1., the proposed multiplexed dual output NN model is defined.
Section 3.2.2. describes the proposed learning algorithm for that model. Some
example problems are shown in Section 3.2.4. Section 3.4. investigates the model
in terms of hardware implementation and an implementation example is given.

Finally, Section 3.4.4. concludes the work presented here in Section 3.2. — 3.4.

3.2.1. Model

A function, f : R? — {0, 1} separates the elements of a given input set, X =

{x',x%,...,xN} C R? into two disjoint sets, X} and X7, as

XP={x' e W|f(x") = 1} (3.6)

X7 = {x' e ®*|f(x") =0} (3.7)

For binary valued functions f(x)’s, there can always associate a function g(x) such

that f(x) = stp(g(x)) with stp(:) is the unit step function. Such g(-) functions

27

are called as separator. If g(-) is a linear function, it is said as a linear separator,

so it defines a linear separation in the input space, R?

A supervised classification task for a finite set of samples X = {x!,x2,...,x"}
can be defined by a function F(-) : ® — {0, 1} which is given with its input—

desired output pairs, i.e., the domain-range values:

Sp={(x*,d)|x" € X,d" € {0,1},d" = F(x'),i € {1,2,...,N}} (3.8)

SF can be decomposed into the two disjoint sets:

SEo={(x',d")|x* € X}t with d* = F(x"),i € {1,2,...,N}} (3.9)

Sy = {(x", dY)|x" € Xp with d* = F(x"),i € {1,2,...,N}} (3.10)

Any realized function f(-): ® — {0, 1} partitions the above given input—desired
output pairs into the following four sets. It should be mentioned that T+ and 7~
sets represent the correct classified pairs while the other two sets represent the

missclassified pairs:

T = {(x",d') | (x",d") € S} and x* € X }'} (3.11)
T—={(x"d)| (x',d) €Sy and x' € X;} (3.12)
Fr={(x,d) | (x',d') € S} and x' € X[} (3.13)
F~ = {(x',d) | (x',d') € S5 and x' € X[} (3.14)

Definition 3.1 (Correct separation) For a given set Sg, if it can be found a

linear separator f(-) : R — {0,1} yielding F* U F~ = (), then the set Sp is
28

set to be linearly separable. Such separators are said to be (completely) correct

separalors.

Definition 3.2 (Semi correct separation) A separator realized by f(-)
R? — {0,1} is said to be semi correct separator if it yields either ™ = 0 or

F==0

The proposed model realizes a correct separator for any given classification task
of finite number of real sample vectors. The main idea behind the structure of
the model is derived from the fact that the output of a perceptron is either true
or false according to a desired output. To realize a given function, the model is
designed to have neurons whose outputs are copied so that the copied one is the
complement of the other and a selector signal is produced to choose one of them.
Now, the problem is transferred from the realization of desired outputs to the
realization of the selector signals for given input vectors. In the next step of the
design, the selector signal is taken as the desired output of the remaining part of

the network .

The proposed network is depicted in Figure 3.5.

Wy Wy

X1
X2

Xn

Figure 3.5: A cascade network of multiplexed dual output discrete
perceptron [3]

29

The network of Figure 3.5 is constructed as starting from the left part of the
illustration. The first attempt tries to realize Sp. Set Sp, = Sp and then define

in a recursive way, the input—desired (selector) output pair sets as:

Sp, = {(xul) |x e X, ul €{0,1},ie{1,2,...,N}} (3.15)

Sk, is the set of input—desired (selector) output pairs which, indeed, defines the
function u; = Fj(x) to be realized in the j™ stage. The function u; = Fj(x)
is attempted to be realized by a selector network y; = f;(x) which, in fact,

partitions the S, into the 4 sets again:

Th = {(x"u}) | (x',u) € S;Ej and x* € X;;} (3.16)
Tr = {(x"uh) | (x'ul) € Sp, and x' € X;} (3.17)
= {(x",u) | (X', uj) € i, and X' € X5} (3.18)
Fro={(x4dh) | (x5, u) € Sy, and x' € X;;} (3.19)

The realization of desired function d = F(x) by the networks’s input—output

function y = f(z) follows from the below derivation:

Y= Uz T U 212 (3.20)
211 = stp (WlT : X) (3.21)
z12 = stp (—WlT . X) (3.22)
Uj = UGy - 21 E UG) ¢ 242 (3.23)

30

Zj1 = stp (W;F : X) (3.24)
Zj2 = stp (—WjT : X) (3.25)
Um, = 0 (3.26)

(3.20) and (3.23) are realized by the multiplexers shown in Figure 3.5. Herein, m
stands for the last stage.

Calculation of the selector signal u;’s is very straightforward. Selector signal is
defined as ‘0’ when the output of the neuron, z;1, is equal to the desired output,

4

and it is defined as ‘1’ otherwise. Therefore, the selector signal is just a logical

ex-or operation of actual output of the neuron,z;;, and the desired output, d, as

shown in (3.27) — (3.28).

Uy = d R z11 (327)
Uj = Uj—1 O Zj1 (3.28)
where the symbol & represents logical ex-or operator, d could also be notated as
ug, and u; is the desired value for the j+1" stage of the network.

Along the design procedure, not only the connection weights but also the structure

of the model is learned.

Property 3.1 From one stage to the next, training set changes as follows;

- if (X' ub) € Sy and x' € T}, then (x',u},,) € Sp,, ; we can say that

realized ‘1’s are changed to ‘0.

- if (xhuh) € Sy and x* € T;, then (X',ul,) € Sg, ,; we can say that
realized ‘0°s remain ‘0.
31

- if (xFut) € ST oand xt € FiY, then (xP,ui, ;) € St ; we can say that non
» Yy J J 7+1 Fiq Y

realized ‘1’s remain ‘1.

- if (x4 uf) € S7 and X € Ff, then (X, ul) € Sp. | ; we can say that non

realized ‘0’s are changed to ‘1.

It is obvious from (3.8) — (3.14), (3.25). 0

Since the structure of the network is built up by the procedure given above, the
weights are the only parameters to be learned. The learning algorithm presented

in the next section is employed to calculate weights of each layer of the network .

3.2.2. Algorithm

In the model, the number of layers of the network, m, is left undefined because
it is not known at the beginning. It is determined along the learning process

defined by the algorithm. A pseudocode for the algorithm is given in Table 3.3.

The proposed model and the accompanying algorithm assure that any given
classification problem is solved by a finite number of layers. Convergence

properties of the algorithm is given and proven in Section 3.2.3..

The critical stage of the algorithm is Step 2 where the weights of neurons are
determined by using PLR. When the problem set is linearly separable, it is well
known that PLR is capable of finding the solution very fast and algorithm stops
at Step 2. For linearly nonseparable sets, it is known that PLR can provide very
valuable information about the given sets. For instance, it can find input vectors
violating the linear separability. Thus it can find the largest linearly separable
subset of a given set [38]. On the other hand, the pocket algorithm [51], which uses
PLR, can find weights providing minimum output error for linearly nonseparable

problems.

32

Table 3.3: The learning algorithm for a cascade network of multiplexed dual
output discrete perceptron.

lla|j=1

b | d”’s are desired outputs. Set u} = d' Vi

2 | a | If the set is linearly separable, then the
neuron of the j% layer realizes the desired

linear separation so Stop here.

b | If the set is linearly nonseparable, a semi
correct, separation with a minimal output
error could be find by CPA, and w; is

obtained.

3 | Calculate
Zi1 = f (W;F . X)
Zj2 = f (—W;F . X)

i i i i
4 | Define u; as uj; = z3; Q@ u’_4

5 | Take u; as the desired output for the

remaining part of the network

6 | Increase j by 1

7 | Go to step 2 for the realization of u}

A heuristic approach which is based on consecutive applications of Perceptron
Learning Rule (PLR) for output error minimization is used in the design of
the proposed cascade network of multiplexed dual output discrete perceptrons.
The algorithm used to find the minimum output error for each layer might be
called as Constrained Pocket Algorithm (CPA) since it is a pocket algorithm, and
some constraints are added on it to ensure the convergence of the whole learning
process. The weights giving minimum output error under the constraint that
only one type of inputs (whose desired ouputs are the same) exist at the one side

of the hyperplane are saved in the pocket.

33

Moreover, it should be noted that the algorithm is very convenient to add
some other constraints. To get control of possible misclassifications due to
the quantization of learned weights in an implementation and to make the
implementation easier, training of the network would be better done in a discrete
weight space. It is shown in [52] for perceptrons trained in discrete weight space
that if the weights’s depth is very large, i.e., there are many possible values for
each weight, the learning behaviour of the discrete weights will be exactly same
as those of a continuous weight. Furthermore, (i) the learning in the case of
finite depth is possible by using a continuous precursor, (ii) in the case of binary
output and on-line learning —this is exactly the case used in our algorithm— the
generalization error decays superexponantially, (iii) perfect learning is obtained
when N, the cardinality of the input set, is very large but finite. It seems to be
the only disadvantage of the discrete weight case, the size of the network may
increase since a suboptimal solution could be found because of limited weight

space at some stages.

In the CPA, the error can be taken as absolute error (number of erroneous
outputs) or alternatively as relative error. Some open points of the CPA are
that there is no analytical stopping criteria also shared with the original Pocket
algorithm and it may need too much time to find the optimal weights especially

when the training set is large, which may be due to the constraint.

3.2.3. Convergence of the algorithm

The convergence of the algorithm will be proved based on a complexity definition
such that as the algorithm runs the complexity decreases or remains the same
and in a finite number of steps the complexity becomes zero which corresponds
to zero misclassification error. The definition of the complexity and a proof for

the convergence of the algorithm are given below.

For a given set, S, consisting of input-desired output pairs, a semi correct

separation which minimizes the output error under the constraint can always

34

exist and can be found by CPA with repeated trials. This is also true for
the training sets Sp, constructed for the subnetworks used for the realization
of selector signals. The complexity of any such set of inputs — desired outputs
which is defined below is a measure of divergence away from the linear separability
and it gives the minimum number of samples that the exclusion of them yields

the linear separability.

Definition 3.3 (Complexity) The complezity c(Sr,) of an input-desired output
sel Sg; is the cardinality of the set F(Sp,) which is oblained by using (3.16) -
(5.19) as in the following way:

Fj"»’ Zf |F]+| < |CTJ_| and FJ_ — @
T, of T < Y oand Fr =10
E(SFj) - ! f | J | | J | J (3‘29)
Fr, df |Fyl<|T| and Fjf =10
T, if [T <|F;| and Fj =0
C(SF].) — |E'(Sp])| (3.30)

The complexity defined above relies on the following observations. The separating
hyperplane separates the input set into two subsets: T} and F, j+ are in one side of
the hyperplane and Tt and F'~ are in the other side. Considering the constraint
that either I, or F;" is empty, to obtain a linearly separable set from the original
one, there are some possibilities depending on the sets, T, Tj+, F; and FjJ“.
Assuming that F;r is the empty set, the sets TjJr and F; are on one side and
T is on the other side of the hyperplane. If the elements of F7~ are excluded
from the training set, the remaining elements, TjJr and T} are separated by the
hyperplane, so the problem becomes linearly separable. The other option, which

is the exclusion of the set T} results that only F;” and T, remains in the training

set. Since the desired outputs for the elements of both sets are all zero, and there
35

is no element with a desired output is one, the exclusion concludes that there is

no need for a separation. This considerations are stated in Theorem 3.1.

Theorem 3.1 For a semi correct separation which minimizes the output error
under the exclusion of the elements of E(SF,), the remaining set is either linearly

separable or needs no separation since all samples are of the same kind.

Proof: There are four cases: (i) ;- = () and the erroneous elements x’s which
are n F;r are excluded, then the elements yielding correct outputs remain only,
i.e., the element x’s are either in T;" orT; . (ii) F; = (0 and the correct elements
x’s which are in T; are excluded, then the elements whose desired oulpuls are
all the same remain only, i.e., X € TjJr or x € FjJ“. There is no need for
separation. (i) and (i) can be proven by considering ;" = O and following
the same approach as in the cases (i) and (ii). In all of the four possible options,

it leads that remaining set is linearly separable. O

Theorem 3.2 The algorithm defined in Table 3.3 converges to zero output error

n a finite number of steps.

Proof: At each stage of the algorithm which corresponds to the design of a layer
of the network, a correct separation or a semi correct separation occurs. For a

semi correct separation which gives a minimal output error, there are two cases :

1. Case 1: F} =0

(a) Ifvx' €T}, ie,x' € X} and (x/,d) € Sf.,, then x* € Sg_ .

(b) As the worst case, assume that the same separator is used for the

(7 -+ 1) layer as with j* layer but in the opposite direction, so T =

TjJ“, =1 Tjtrl = F;r and FJTH = (). In this case the complexity
does not change since the complezities, ¢(Sg,) = min{|F;"],|T; |} and

c(Sp,,,) = min{|TH |, [F5 11}, are equal to each other.

36

(c) At each j* step, the algorithm finds either a correct separation (see
2.a of Table 3.3) or semi correct separation with minimum output error
(see 2.b of Table 3.3). In either case, the vectors in T} defines a convex
hull whose intersection with the convex hull of the vectors in F;“UY}_ 18
empty and the vertices of the convex hull of F;r UT;" that are the closest
vertices to the convex hull of TjJr are necessarily in T, . Because, any
vertex of F;r with the minimum distance to TjJr could be included by
TjJr without violating the linear separability of TjJr and T . This can be
seen as follows; (i) the extension of a convex set via including a point
from its outside, possesses that point as a vertex, (ii) the convex hull
of a set constructed by excluding a vertex of a considered set does not
include that excluded vertex as one of its points and (iii) two convex
hulls are linearly separable iff their intersection is empty. The vertices
of the convex hull of F;L U T, which are the closest to the convez hull
of T;" become at the (j + 1)™ stage the vertices of T, U F;,, which

are now in I 4.

(d) From (Ic), considering Sg,., in the new separation for the (j+1)"
layer, |Fii1| < |T7| and |T1| = |E|. Therefore the complexity
Jrom layer j to layer j + 1 decreases or remains constant: c(Sp,,,) =

min{| Fj |, (T3 [} < e(Sk,) = min{[£5°], |75}

(e) FEwven for the cases of complexity remaining constant, the total
cardinality |T;| + |F;| decreases at each step which can cause a
decrease of a certain amount in the complexity after a certain number
of steps. When I}, is empty which can be analysed (see Case 2) in
a similar way to the analysis of F; is empty, the complerity decreases

or remains constant also.

(f) 1If at each stage F; is empty then it can be concluded that the

complexity decreases to zero within a finite number of steps.

2. Case 2: Ff =0

The analysis of this case is the same with the Case 1 but with;
37

a) Same separator function with the same direction is used from 5" layer
J Y

to the j + 1 layer instead of opposite direction in (b) of Case 1,
(b) From j™ layer to (j + 1) layer, sets change as follows T}, = F,
i =1 Ty =17 and I, =0,
(¢c) The complesities as c(Sr,) = min{|T;"|,|F;|} and ¢(SF,.,)
min{|Fi4|, |TJ+|}

Combining two cases, the complexity is seen to decrease to zero in a finite number

of steps. O

To demonstrate how the algorithm works, next section gives some example

applications of the algorithm and experimental results.
3.2.4. Experimental Results

In this section, experimental results of the work are presented.

The proposed algorithm uses pocket algorithm at each step to find a largest
separable subset. Because of the stochastic nature of the pocket algorithm, and
also because of the constraints added to the original pocket algorithm, sometimes
it is not possible to find the hyperplane which gives minimum constrained output
error in finite number of steps. However, it may find the hyperplane which gives a
minimal constrained output error. On the other hand, two different hyperplanes
giving the same error may lead to the networks of different sizes. So, multiple
trials for each specific classification problem were made in the experiments. The
resulting networks for the considered problems are compared to the networks

obtained with the other techniques available in the literature.

For the sake of clarity and a better understanding of the algorithm, synthetic
example problems illustrated in Figure 3.6 and Figure 3.7 are constructed as the

4x5 grid where the desired output values for input samples are assigned randomly.

38

In each subfigure of Figure 3.6 and Figure 3.7, ‘x’s and ‘0’s represent, input vectors
whose desired outputs are ‘1’ and ‘07, respectively. Lines in the figures correspond
to the separating hyperplanes constructed by w; and arrows show the positive
sides of those hyperplanes. Therefore, for all vectors belonging to the positive
side of an hyperplane, the output of the network realized a 7% step will be ‘1.
Please note that at every subfigure, either side of the hyperplane contains only

one type of vectors, i.e., ‘x” or ‘0’.

Error logs of the algorithm for two examples depicted in Figure 3.6 and Figure

3.7 are listed in Table 3.4 and Table 3.5 respectively.

O 0O 0 o O O X X X %oo 7@@@
) X O O X O O X X O 0 0 O 00
X X O X 0 O O O 0 0 O 0 0

M O O O O 00 O 00

F\w

(a) (b) () (d) ()

Figure 3.6: An example for learning steps of the algorithm for the cascaded
network of multiplexed dual output discrete perceptron. Here
‘x” denotes desired output value of ‘1’ and ‘0’ denotes ‘0’. Line
corresponds to the separating hyperplane and arrow shows the
positive side of the hyperplane. Therefore, for all vectors belong
to the positive side of the hyperplane, output will be ‘1.

3.2.4.1. Parity

The parity problem is a common test to measure the performance of NN
classificaiton algorithms. The problem is to classify binary input vectors into
two sets in terms of the number of elements with value one of the input vector,

i.e. the number is odd or even.

39

X O O © O QO (/y/g

O X X () (ORNG)) (ORNG)

X X X A O O O ¢ O OO

X X ¢ O OO0 ¢ O OO0

T U\ O—O—6——0© O—O—6——0©

(a) (b) () (d)

Figure 3.7: Another example for learning steps of the algorithm for
the cascaded network of multiplexed dual output discrete
perceptron.

Table 3.4: Complexity at each layer of the algorithm for the example shown
in Figure 3.6

s(Ty) | s(Fp) | s(T1) | s(F1) | Complexity
1 12 0) 3 3
2 9 8 3 0 3
3| 12 0 7 1 1
41 18 1 1 0 1
5| 19 0 1 0 0

Table 3.5: Complexity at each layer of the algorithm for the first example
shown in Figure 3.7

s(Ty) | s(Fo) | s(T1) | s(F1) | Complexity
1) 3 12 0 3
2 17 0 2 1 1
3| 15 4 1 0 1
41 18 0 4 0 0

The parity problem requires, when using MLP, as many hidden neurons in the
first layer [53]. Consequently, in case of four dimensional input space, network

should contain at least five neurons.
40

Table 3.6: Random Boolean functions network sizes

n | This model | CARVE [41] | Sequential [40| | Tiling [54] | Regular [55]
41244 £0.50 | 2.40 £+ 0.69 3.9

5| 444 £1.00 | 3.73 £ 0.58

6 | 8.40 £ 1.27 | 5.88 £ 0.67 7.28 + 0.82 16.99 15.8£2.2
711933+ 2.08 | 9.47 £ 0.74

8 | 35.75+ 0.95 | 16.23 £ 0.86 18.3 £+ 0.69 56.98

The experiments with the proposed model and the algorithm shows that only n
neurons are enough to solve the problem. However, when the input dimension
increases, the training set becomes larger and to find the optimal hyperplane
for each layer becomes difficult. Therefore, training time will increase otherwise
suboptimal hyperplanes at some layers leads to grow in network size. In the
experiments, for n = 1...5 network size with n neuron are obtained fastly for
all trials. However, for n = 6...8 either long training periods are needed or
sometimes network is constructed with neurons more than n. This is because of
the inadequacey of CPA. In one layer CPA fails to find the optimal solution this
affects also the subsequent layers and network size grows more than the minimum

size of that model is capable to realize the given task. This CPA’s inadequecy is

appearent also on the other experiments.

3.2.4.2. Random Boolean Functions

A random n-bit Boolean function is a training problem consisting of all 2™ Boolean
vectors. Every vector is randomly assigned to one of the classes with equal
probability. For each dimension, n = 4...8, 10 different test sets are produced
and every test set is tested several times. The results of the experiments are given

in Table 3.6.

41

3.2.4.3. Two Spirals

The two spirals problem [56] is a classification task which is highly nonlinearly
separable. Single hidden layer networks trained by backpropagation generally fail
to produce solutions to this problem and constructive algorithms have been more
successful [57]. The model applied to the two spirals task generates a network
solution. Some steps of the solution are given in Figure 3.8(a) through Figure

3.8(d).

The average network size obtained over 8 trials is 57.37 F 2.56, with a minimum

network size of 56 layers and maximum size of 62 layers.

3.3. Learning in Discrete Weight Space

The learning algorithm is very convenient to add some other constraints. In
CPA, the method for finding the optimal hyperplane of the algorithm, seeks for
the weights which give the minimum error under prespecified constraints. So some
extra constrains can be added to the algorithm, easily, so providing learning in
discrete weight space with finite number of weights is achieved by considering the

discreteness of the weights as a constraint.

To prevent quantization effects and to make the implementation easier, training
could be done in a discrete weight space. It is shown in [52] that if the weights’s
depth is very large, i.e., there are many possible values for each weight, the
learning behaviour of the discrete weights will be exactly same as those of a
continuous weight. Furthermore, (i) the learning in the case of finite depth is
possible by using a continuous precursor, (ii) in the case of binary output and on-
line learning —this is exactly the case used in our algorithm— the generalization
error decays superexponantially, (iii) perfect learning is obtained when N, the

cardinality of the input set, is very large but finite. It seems that the only

42

disadvantage of the discrete weight case, the size of the network may increase
since a suboptimal solution could be find because of limited weight space at some

stages.

Considering the convergence of the algorithm, the added constraint should not

obstruct PLR to find the solution for linear separable sets. We can monitor by

><
6 . i
o
o © © x
o
o
X < < * © x
4k o < x i
o
x
o X o o o o x
o © x
° o
* o x X
x X x
o 5 x « o x
2k x o B
: o % 5 000g . °© x
e} (o] x e}
°© x * o % o
© x ° w30 0 N "
o Mokt 2
% o}
ob x fe) x e} X o] x Q X Q -1
o o x
x © % Qoo o
O o] x x x 5
" x o * P <] x
o) o X x ox ox X o x
2L x o] o » o} _
(e} O x
o o * o o
y o o N 5
x
o M x .
o x x o
B 5 x x
4r o © X A
o x o o o ©
x
x
x
o . B .
6 o i
o
1 1 1 1 1
6 —4 2 0 2 4 6
(a) Layer 1
o
6 o =
o o
o © o
o
o
o o o ° o o
4k o 5 o § i
o
° o o 2 2 o o
o =] o .
o o *
o
o o o © o * o °
2+ 5 o o . x g
s} ° o0 0 O o o
o
°© o o © o . OO * o x
o x .
© o OOOOOC% X o
0¢- o o o < 9 5 o x o x 4
x a PO o
o o x X x
o x % o)
o o s} x *
o « o o
x x Cooo0© x o
ey o © x x 5 * 4
o x o < « x x = e}
o ° o x
x 5 ° .
x o " o] o o o} x
4 x x o -
x o * x x N
o
© o
x
o ° 5
B * —
x
1 1 1 1 1
6 —4 2 2 4 6

(b) Layer 20

Figure 3.8: Some example epochs from two-spirals solution. (a) and (b).

43

L4

L2

o]

Q
o]
9]

Re

0000,
X

S
s x %

[s]
o
OCoopo0©

2

.

-6

Figure 3.8: Some example epochs from two-spirals solution (c¢) and (d)
(cont.)

observing the network output error for constraint and unconstraint algorithms

(d) Layer 60

together, in case of such a situation exists.

To show the results of learning in discrete weight space, training is run for random

Boolean functions, parity functions and two-spirals function in a discrete weight

44

Table 3.7: Random Boolean functions network sizes in a discrete weight
space learning. n is the input space dimension.

Reel numbers | 16bit Integers

2.44 £ 0.50 2.60 = 0.70

4.44 £ 1.00 4.60 £ 1.17

8.40 £ 1.27 8.70 £ 1.70

N | O ot |3

19.33 £ 2.08 | 19.80 £ 2.10

space. As can be seen from the results that the produced network sizes are similar

without any considerable difference where even some increase is already expected.

3.3.1. Experimental Results

3.3.1.1. Parity

The experiments of the proposed model in a discrete weight space are done for
parity problems in four, five and six dimensional input spaces. They results that
only n neurons are enough to solve the problem with discrete weights too, similar
to examples mentioned in Section 3.2.4.1.. The discrete weight space is taken as

16-bit signed integers.

3.3.1.2. Random Boolean Functions

To show the results of learning in discrete weight space, training is run for random
boolean functions in a discrete weight space and results are listed in Table 3.7.
The same functions as the ones used in the examples in Section 3.2.4.2. are chosen
and weight space is taken as 16-bit signed integers. As be seen from the results
that the produced network sizes are similar without any considerable difference

where some increase is expected.

45

3.3.1.3. Two Spirals Function

To show the results of learning in discrete weight space, training is also run
for two-spirals function in a discrete weight space and results that the average
network size obtained over 6 trials is 60.17F 3.81. Weight space is taken as 16-bit
fixed point real values with 12 bit fraction length.

3.4. Hardware Implementation

A hardware implementation of the proposed model is presented here. For the
implementation, FPGA (Field Programmable Gate Arrays), as reprogrammable
digital 1Cs, is selected since the usage of the FPGA (Field Programmable Gate
Array) for neural network implementation provides flexibility of programmable

systems and has an increasing trend in the neural networks literature [44-47).

FPGAs are 1Cs containing programmable logic components and programmable
interconnects including tens of thousands up to few millions gates, dedicated
memory blocks, multiplier circuits, PLLs etc. Moreover, new models of FPGA
chips are produced with microprocessors embedded in it. The programmability
of reconfigurable FPGAs yields the availability of fast special purpose hardware
for wide applications, so FPGA based Artificial Neural Networks (ANN) is
now becoming a focus of ANN reserch [50]. The hardware implementation of
NNs is superior comparing with software approach because FPGA supports the

advantage of parallel processes that is the key feature of NN structures.

A lot of powerful design, programming, syntheses and simulation tools provided
by FPGA manufacturing and software development companies along with
reprogramming capability of the chips brings short design cycle reduced design

and development phase.

46

In this section, while the implementation of the proposed model in FPGA
is done, it is also compared to the classical perceptron neuron in terms of
hardware implementation, i.e., the resource usage. The proposed modification
of multiplexed dual output perceptron provides an advantage from hardware
implementation viewpoint while complicating the implemantation slightly.
Because, new implementation trend of NNs goes to FPGA in which gates are the
simplest devices to use and new model adds only a few gate level logic operations

to the classical perceptron.

The implementation differences between classical perceptron neuron and the

proposed model are shown on FPGA (Field Programmable Gate Arrays).

FPGA approach in implementation as a method which uses reprogrammable
digital 1Cs, is chosen since the usage of the FPGA for neural network
implementation provides the flexibility of programmable systems along with
power and speed of parallel hardware architectures so it has an increasing trend

in the neural networks literature [44-50].

3.4.1. System Architecture

By using of the FPGA, hardware implementation of ANN’s could be done in
two main architectures. The first one is the fully parallel architecture so that
the number of multipliers and the number of full adders per neuron are equal
to the number of inputs of the neuron. The main advantage of this architecture
is to be fast as it directly realizes the parallelism of the NNs. However, this
approach increases the usage of the resource in FPGA and may lead to select
bigger and more expensive chip models especially for huge NNs with higher input
space dimensions. The other architecture saves the resource usage but works a
bit slower. In this architecture only one multiplier and one accumulator are used
per neuron and at each step, one input is multiplied by the corresponding weight
and added to the accumulator. The calculation of the output is done in n steps,

where n is the number of inputs of the neuron. Please note that, the second

47

architecture has still the advantages of parallel processing in the network level,

i.e. all neurons have their own multipliers/adders and work parallel in the neural

network.

These two FPGA design architectures of NNs are depicted in Figure 3.9 and

Figure 3.10 in a block scheme level.

INPUT

ROM
(WEIGHTS
&

BIAS)

CONTROL
LOGIC

=
o

[

| HARDLIMITER
(COMPARATOR)

QUTPUT
—

Figure 3.9: Hardware Architecture for fully parallel method.

INFUT

=

ROM
(WEIGHTS
a
BIAS)

HARDLIMITER
(COMPARATCR)

OUTPUT
——>

[-HEGISTEH

CONTROL

LOGIC

Figure 3.10: Hardware Architecture for multiply-add method.

3.4.1.1.

Data Representation

To implement neural networks in FPGA, the input data and the weights of the

neuron should be well handled to present them to the hardware. First of all,

48

since FPGA is a digital environment, the data should also be digital!. Then, a
decision is needed in design phase of the FPGA, about the precision (number of
bits) and number format (signed/unsigned integer, floating/fix point real value,
etc). Here it is very obvious that, more data precision (the number of bits in
representation) more resource usage in FPGA, on the contrary less quantization

error for output.

In the hardware implementation of NNs data representation is an inportant
design parameter. Floating point representations supply more accuracy while
the speed reduces and resource usage increases [58]. Instead of fixed point or
floating point representations, a special data representation method is proposed
for NN implementations so that the data precision changes adaptively according
to the weights’s histogram. In this method, the precision is higher where the
weights are very close to each other and the precision is lower where the weights
are dispersed [59]. Error rate is very low in this representation system but it
has a serious disadvantage so that different designs and representation sets are

needed for each problem.

3.4.2. Implementing 4-bit parity problem

It is shown in Section 3.2.4.1. that using the proposed model and the algorithm,
only n neurons are enough to solve the n-bit parity problem. Running of the

algorithm ends up to a 4-neuron network and a set of weights for these neurons.

As explained in Section 3.4.1.1. data representation is another important aspect.
Altough the input values are binary for the parity case, i.e., we can represent
them as only one bit, the weights obtained by the algorithm is double precision

real values. So it should be decided about the number format without causing

'The new generation mixed-signal FPGAs are recently introduced. These chips integrates
configurable analog, large Flash memory blocks, comprehensive clock generation and
management circuitry, and high performance programmable logic in a monolithic device.
These chips have embedded ADC(s) and also in-system configurable analog supports for some
applications. However analog functions are still very limited and in our case we have to be in
the digital side for now.

49

error on the working of the network. The most FPGA design tools and chips
supports IEEE double precision floating point number format, but in this case

the complexity of the implementation increase.

On the other hand, the proposed algorithm is very suitable to work in discrete
weight space, so during the learning phase it is known the effects of the number
format whether it causes an error or not. The example runs given in Section
3.3.1.1. gives a set of weight vectors in 16 bit signed integer number format, and

implementing arithmetic operations in integers is much easier than floating point.

In this work, the model is implemented with one multiplier and one accumulator
per neuron. The inputs enter the neuron parallel and multiplied serially by their
corresponding weights stored in a ROM. The results of multiplication are saved in
an accumulator. At the otput, there is a comparator functioning as hardlimiting.
To organize the data flow, timing and serial processes, a control unit is added to
the neuron design. Digital system architecture is modeled using Very High Speed
Integrated Circuits Hardware Description Language (VHDL) and is implemented
in FPGA chip. The top-level schematic of the implemantation is depicted in
Figure 3.11 and implementaition details are shown in following Figures (See Fig.

3.12 - Fig. 3.15).

u
neuron
master_clk
a clr master rst
Y
| en en out_ready
[3:0]
x[3:0] b x[3:0] v
out readi >
cl

Figure 3.11: Proposed model

20

Details of the main functional blocks of the design, namely counter, controller,
multiplexer, multiplier, ROM, accumulator and comparator, are given in the

following sections.

3.4.2.1. Counter

The counter function could be considered in the controller block in spite of that
it is shown out of it since the counter is used to address the weights in the ROM
and load the appropriate input vector to the multiplier. At every clock, an input

and corresponding weight is fed to the multiplier according to the counter output.

The counter is designed as a generic counter whose number of bits and modulo
value can be set as a parameter in design phase. Asynchron clear input and clock
enable input are also defined. The VHDL design file is listed in Table 3.8 and
corresponding RTL (Register Transfer Level) ? schematic view is shown in Figure

3.13.

3.4.2.2. Controller

The controller block coordinates all other parts; input signals, the counter, ROM,

multiplier, multiplexer, accumulator, comparator and output signals.

The neuron unit starts working when the enable signal is activated. After it is
enabled, controller loads x; and w,, multiplies them and load to the accumulator,
then enabling the counter it continues with zq, 23 ... x,. At the end, when the

output ready, it enables the output and asserts the output_ready signal. All

?In integrated circuit design, RTL description is a way of describing the operation of a
synchronous digital circuit. In RTL design, a circuit’s behavior is defined in terms of the flow of
signals (or transfer of data) between hardware registers, and the logical operations performed
on those signals.

Register transfer level abstraction is used in hardware description languages (HDLs) like
Verilog and VHDL to create high-level representations of a circuit, from which lower-level
representations and ultimately actual wiring can be derived.

51

<o
o 710
? [0:7]ssarppe 4 o%m
[o:¢T]ur erep [o:¢t]p
1 Jindino 00[0
e [0:6Th0ch — o
_ : ouror uidy
1 orjmur
mo s
&0 e
A « [0:T]S |
a £ 381 e / [0€]
ot 0P ol T00o
[Dla |_ 1oo1p (B [gxmw
< &pear jmo
o
[oi1€] [0:2] _ ¢ [o:€]x
5 [0 L]0)E)S)
82 [o:cT]emep iy (oepumosTiay S.ﬂ_ &
L go8y o<1l [0:£][eA™ 1ounos [0:2Imozo o ®
[0:1 € leerep [o:1ghmsa1 oo Apeor jno [e:£] BB
dutoswd uay[o us nooe us ua Junod
O9IBCIIo0 Wid Ioe 38T I9)UNOD)81 a5
U IoMNUoD g junoo ue
(9)B[NUINOOR)EB
IOT[ONU0D

18T I2)$BUT i

o Ioysew |

[o€]x |

ﬁoi

Figure 3.12: Internal structure of neuron’ block in Figure 3.11. In fact, this

is an implementation of discrete perceptron neuron.

52

Table 3.8: VHDL design file of the generic counter

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- count value cannot be 0 (zero)
-- 1f it is needed that counter working without restarting
-- take count as 27 (width+1l) - 1

entity gen_count is

generic (width : integer := 8; count : integer := 255);

Port (

clk : in std_logic;

a_clr : in std_logic;

c2_out : out std_logic_vector (width-1 downto 0);
count_en: in std_logic

);

end gen_count;

architecture archl of gen_count is

signal out_buf : std_logic_vector(width-1 downto 0);

begin

c2_out <= out_buf;

process(clk, a_clr, count_en)

begin

if (a_clr = ’1’) then
out_buf <= (others => ’0’);

elsif (count_en
if (out_buf
out_buf
else
out_buf
end if;
end if;
end process;

end archi;

’1’ and clk’event and clk = ’1’) then
count) then

<= (others => ’0’);

<= out_buf + 1;

33

Ly

S EEEEEER

— ' D[7:0] Q[7:0] Lo out[7:0] =
1 7 E 1
0

0g 2.1]

R
un10_count_en out_buf_3[2:1] |

out_buf[7:0]
)
-DQD‘T
un3_out_buf[7:0]

Figure 3.13: RTL view of an FPGA Implementation of mode 5 counter.

a_clr_—

[count_en
B

this process is done by using a state machine along with some simple logic. The
RTL view of the design is shown in Figure 3.14 and the state diagram of the state

machine used in controller is depicted in Figure 3.15.

’f
3]
|

[} :‘lﬂ/_
il
K
m

’,

il

i
W

|
nlju
|

i
ﬁﬁ
1]
u

Figure 3.14: RTL view of an FPGA Implementation of the controller.

3.4.2.3. Other components

The multiplier for the 4-bit parity implementation is relatively simple since the
input x is only one bit. Multiplication result is either all zero or equal to the

weight so the operation could be realized by a multiplexer only.

54

Figure 3.15: State diagram of the controller.

ROM and comparator blocks are used as core blocks supplied in FPGA IDE by
the vendor. Here ROM is selected with 16 bit data bus, 32 bit depth, i.e., 5
bits address bus. Weights learned by the algorithm are recorded in the ROM by
using a memory initializatin file. The mif file used for the first neuron of the four

neurons realizing the parity problem is listed in Table 3.9.

Weight values are represented and recorded as 16 bit signed integers.

Corresponding weight vector is given in Eqn 3.31-3.32.

w; = [355 —253 16 — 221] (3.31)
by = [471] (3.32)

Comparator is also used as core block. It is preferred to make the design
some more general. In fact, for the 4-bit parity problem, the sign bit of the
accumulator is also be used as the output value since the output nonlinearity
is just a sign function. More generally speaking, output nonlinearities such as

sigmoid functions are implemented as look-up-tables.

35

Table 3.9: Weights recorded in ROM for the first neuron of four neurons
parity network.

—-— Memory Initialization File (.mif)

WIDTH=16;
DEPTH=32;

ADDRESS_RADIX=UNS;
DATA_RADIX=UNS;

CONTENT BEGIN

0 : 355;

1 : 65283;
2 16;

3 : 65315;
4 : 471;
[6..31] : 0;

END;

3.4.2.4. Verification of the implementation and Results

The designed and implemented model is verified by using as FPGA simulation
tool [60].

In verification phase all internal signal timings are observed and verified. The

internal hardware signalling is shown in Figure 3.16.

After the input data are fed to the network and the enable signal is asserted,
network computes the output and when ready, it loads output data to the output
pins and asserts out_ready signal. As seen from the timing diagrams the parity
network gives correct outputs, for instance, ‘1’ for ‘0001’, ‘0’ for ‘0110” and so on.

For a summary, functional input - output signal relations are shown in Figure

3.17.

26

ST
~ ©
=2 [
— = el (9] ||
@ — = SEEE el S = E] o =] =
g = = a
- = &1
% =]
E a -
= = Y
C C =il
g =t =
il A o
- 2
= e
= 8 o 5
) 1= [— — —
S =
P
- =
g |8
i =
- = -
: 2]
& e - o s
I
: 5 ol | -
=~ g < [[sr 1 -
@
g =
@
= =
= = L |
~ [aE e (e
% =1 == =]
i = ey
s =
& = . - - - -
=
= 5 =
5 Ej
2 |s = = = =
o
‘“ iy
ol e [
= [-t =
% :), " apt (2 [
i = i
g |%- = - - reed
5|6 i =
5 = IS >
b o
3 B | g B o
32 C SIS
o = = —
~
- 7 el (32]
=
S o || 5 s ¥
g
~ |3 s k3 & = < <
3 | @ = 5 — -
2 | s =
5 |w
£ |2
=
g = - - !
i G
= o & e
— (= — | fea
=i = @ — [N
==
2 = g L - SINIE >
= [E] =
S | &
= |=
= L
= L
= -
& i [~ e &
= ~
I = e =
~ = [
=
I = - - -
=
=
[3 =i &l
= s =
- @ _
s o
w =1, I g -
2 =
corl | e |
g | = e [
-
= e
5 -
Bola 2| | E =
L ¥ | == | 1 =
=
=1 '_"j;,'f @ m R R R R R R R = T I B T R, B T I T O N T N A R N N
=2 ;;
X 1 EEE i I R
o o ; I N I
« R | 1 1 1 B M J8 dw
N YT o mmmmv—wm~:|§§§§ggggaaaa
[4 AEEE T Y a g a8 5888
o B 7 fF f k) A o o o g EI I‘_’I E‘ EI © omomom
5 5 g R A I T T T CHC 5
e § |5 1 5553 e C 2 EBo—cyeomw 5 EEE 5 3 El
@ 2 |9 o5 3 2 3 8 = = = 55 E - wNWWees s EEETETETETETETETETETEEEEE
o MO w @ B > .] ::] ool g e (es: et i 0 R Qe IS s il T G e ‘s s N QR s I o e s o ol (s e BT BT |
2 B
=
5
=
] i 2 2 P ’
2 alajalalalalelalalalalalalalalala[AR]BlRRlR(A AR GG R E[A ARG ERE(R A a]ala]

Figure 3.16: 4-bit parity FPGA Implementation output timing signals.

3.4.3. A Comparison

In the previous paragraph, the hardware implementation of the proposed NN

model for 4-bit parity problem is explained and as seen from the Figure 3.11 that
57

0 ps 4D.E{E us

81 .ErZ us 122.535 us 183.|S4 us

ZDd-i Bus 245.?5 us

ZSB.I?Z us

307.583774 us

6[6]8[819]8[|@[8]8]

Figure 3.17: 4-bit parity FPGA Implementation output timing signals.

the proposed model’s neuron is very similar to the perceptron neuron. When

the proposed modifications on the perceptron neuron are considered from the

hardware implementation viewpoint, it can be concluded that these modifications

do not result any significant increase neither in complexity nor in resource usage.

A comparison in terms of resource usage between perceptron neuron and proposed

model neuron is given in Table 3.10 in terms of ALUTs 3, registers, total pins,

memory bits and maximum

clock frequency.

Table 3.10: The resource usage of neurons in FPGA implementation.

Perceptron Neuron | Proposed Neuron
ALUTs 99 100
Registers 63 63
Total Pins 9 10
Memory Bits 128 128
Max Clock Freq 213.45 MHz 207.21 MHz

As a result, it can be seen from the resource usages of two different neuron models

that the increase in resurce usage is less than 0.7% per neuron, including the pin

SALUT, Adaptive Look-Up Table, is the cell in FPGA chip that is used as the output of
logic synthesis. A single ALUT contains a register and a combinational pair.

o8

number. Please note that, the number of pins used will be remain constant
independent from number of neurons in the network. Considering the max
clock frequency values, the max frequencies listed in Table 3.10 are obtained
without any special optimization or setting any constraint set. By applying
some appropriate constraints on FPGA compiler software, one may force it to
synthesize more efficiently, and fit into chip to work faster. In many cases, setting
a constraint which declares a need for a max clock frequency even impossbily
higher, results higher max clock frequencies higher than the ferquencies obtained

without any constraint.

3.4.4. Discussion

A new cascaded NN model and a learning algorithm associated with it is proposed
for linearly nonseparable classification problems. Any given function from the set
of R™ to the set of {0, 1} can be realized by the model in a finite number of
steps, resulting in a network of finite number of neurons. Because of the heuristic

nature of the algorithm, the minimum network size is not always guaranteed.

The algorithm seeks for the weights which give the minimum error under
prespecified constraints. There is a possibility of adding extra constraints to the
algorithm, so providing learning in discrete weight space with finite number of

weights is achieved by considering the discreteness of the weights as a constraint.

The proposed modification on discrete perceptron brings the universality with
the expense of getting just a slight complication in hardware implementation.
This is shown by comparing FPGA implementation of the model and discrete

perceptron where the increase in the FPGA resource usage is only about 0.3%.

The proposed model for two-class classification problems can be extended to

multiple class separation problems by assigning one output neuron for each class.

29

4. DYNAMICAL PWC AND PWL NEURAL NETWORKS

Cellular Neural Network (CNN) is a dynamical model with a PWL output
function. CNN has many applications especially in image processing. However
design or training of CNNs is a great deal and there is not a well defined and

good-working learning algorithm for this type of NNs.

In this chapter, the convergence properties of a learning algorithm for CNNs,
Recurrent Perceptron Learning Algorithm which is firstly introduced in [61] is
analysed thoroughly [62]. This chapter also proposes a new class of CNN in which
the initial state of the network are input-dependent so that the piecewise constant
function determining the initial conditions in terms of the external inputs can be

learned also by a three-stage Perceptron learning rule [1].

4.1. Recurrent Perceptron Learning Algorithm for CNNs

A Cellular Neural Network (CNN) is a 2-dimensional array of cells [5]. Each cell
is made up of a linear resistive summing input unit, an R-C linear dynamical unit,
and a 3-region, symmetrical, piecewise-linear resistive output unit. The cells in
a CNN are connected only to the cells in their nearest neighborhood through a
set of templates, i.e., some parameters as connection weights for external inputs,

initial states and neighboring cells’ outputs.

Several design methods and supervised learning algorithms for determining
templates coefficients of CNNs are proposed in the literature [5, 61, 63-76].
As template design methods, well-known relaxation methods for solving linear
inequalities are used in [63,64] for finding one of the connection weights providing

that desired outputs are in the equilibrium set of a considered CNN. However, for

60

the methods in [63,64], there is not a general procedure on how to specify initial
state vector yielding the desired output for the given external inputs and the
found weight vector. A trivial solution in determination of such a proper initial
state vector is to take the desired output as the initial state; but this requires the
knowledge of desired output which is not available for external inputs outside the
training set. On the other hand, a number of supervised learning algorithms to
find connection weights of CNNs which yield desired outputs for the given external
inputs and the predetermined initial states are developed in the past [61,69-73,76]
(see [66] for a review). The backpropagation through time algorithm is applied
in [70] for learning desired trajectories in continuous-time CNNs. A modified
alternating variable method is used in [77] for learning steady-state outputs in
discrete-time CNNs. Both of these algorithms are proposed to be used for any
kind of CNNs since they do not impose any constraint needed to be imposed
on connection weights for ensuring the complete stability and the bipolarity
of steady-state outputs. It is described in [71] that the supervised learning of
steady-state outputs in completely stable generalized CNNs [30] is a constrained
optimization problem, where objective function is the output error function and
constraints are due to some qualitative and quantitative design requirements such
as the bipolarity of steady-state outputs and complete stability. The recurrent
backpropagation algorithm [78] is applied in [72,79] to a modified version of CNN
differing from the original CNN model in the following respects: i) Cells are fully-
connected, ii) Output function is a differentiable sigmoidal one, and iii) Network
is designed as a globally asymptotically stable network. In (73], the modified
versions of the backpropagation through time and the recurrent backpropagation
algorithms are used for finding a minimum point of an error measure of the states

instead of the output.

The lack of the derivative of error function prevents to use gradient-based methods
for finding templates minimizing the error. In order to overcome this problem, the
output function can be replaced [61] with a continuously differentiable one which

is close to the original piecewise-linear function in (4.3). Whereas the gradient

61

methods are now applicable, the error surfaces have almost flat regions resulting
in extremely slow convergence [61]. An alternative solution to this problem is
to use methods not requiring the derivative of error. Such a method is given
in [69] by introducing genetic optimization algorithms for supervised learning
of the optimal template coefficients. The learning algorithm analyzed in this
work, RPLA, constitutes another solution in this direction. RPLA is, indeed,
a reinforcement type learning algorithm: It terminates if output mismatching
error is zero, otherwise it penalizes connection weights in a manner similar to the

perceptron learning rule.

RPLA is firstly presented in [61] for finding template coefficients of a completely-
stable CNN to realize an input-(steady-state)output map which is pointwise
defined, i.e., described by a set of training samples. Here, the input consists
of two parts: The first part is the external input and the second is the initial
state. RPLA is a global learning type algorithm in the sense of [66]. This
means that it aims to learn not only equilibrium outputs but also their basins of
attraction. RPLA has been applied to nonlinear B-template CNNs [80] as well
as linear B-template CNNs. A modified version of it has been used for learning
regularization parameters in CNN-based early vision models [81,82]. After the
introduction of RPLA, research on designing CNN templates are continued by

some other researchers [83-86].

This section is concerned with the convergence properties of RPLA. At first, an
introductory information about CNNs and RPLA is given. Then, it is shown
here that RPLA with a sufficiently small constant learning rate converges, in
finite number steps, to a solution weight vector if such a solution exits and
if the conditions of Theorem 4.3 are satisfied. RPLA is indeed reduced to
perceptron learning rule [16] if feedback template coefficients except for self-
feedback one are set to zero, i.e., the corresponding CNN is in the linear
threshold class [67]. This means that a CNN trained with RPLA for a sufficiently
small constant learning rate is capable of learning any locally defined function

Frocar() : [-1,1]° — {—1,1} of the external input whenever its domain space

62

specified by 3x3 nearest neighborhood is linearly separable. The performance of

the algorithm is also demonstrated in learning image processing tasks .

The structure of the section is as follows. In Section 4.1.1., the model and
definition of cellular neural networks is given. Section 4.1.2. formulates supervised
learning of completely stable CNNs as the minimization of an error function. The
dynamics of the difference equations defining the proposed learning algorithm
RPLA is analyzed in Section 4.1.3.. Some simulation results on the image

processing applications of RPLA are reported in Section 4.1.4.

4.1.1. CNNs

A Cellular Neural Network (CNN) is a 2-dimensional array of cells [5]. Fach cell
is made up of a linear resistive summing input unit, an R-C linear dynamical unit,
and a 3-region, symmetrical, piecewise-linear resistive output unit. The schematic
of a cell model is depicted in Figure 4.1. The cells in a CNN are connected only
to the cells in their nearest neighborhood defined by the following metric:

d(i,5;1,3) = maz{li —1if,15 — jl} (4.1)
where (i,7) is the vector of integers indexing the cell C(4,7) in the it* row j

column of the 2-dimensional array. The system of equations describing a CNN

with the neigborhood size of one is given in (4.2)-(4.3).

x‘i:j = —A- Ly + Z Wil * Yitk,j+l + Z 2l Uitk j41 +1 (42)
kle{—1,0,1} kilc{—1,0,1}
1

Yij — fl@ig) = R {lmeg + 1] — |ze; — 1]} (4.3)

Where, A, I, wg; and zx; € R are constant parameters. z;;(t) € R,
yi,;(t) € [—1,1], and u;; € [—1,1] respectively denotes the state, output, and

(time-invariant) external input associated to a cell C'(4, 7).

63

C R, Iof1,7;k,0) Io(i,7;k,0) Iy A{1,7;k,0) R,

® O 4w e

Figure 4.1: CNN cell circuit

It is known in [5] that a CNN is completely stable if the feedback connection
weights wy; are symmetric. Hereafter, the input connection weights zj; are
chosen symmetric for reducing computational costs while the feedback connection

weights wy; are chosen symmetric for ensuring the complete stability, i.e.,

w-1,-1 = W11:=01, W10 = W1,0-=02, W-1,1 — W1,-1:—0a3, Wo,—1 — Wo,1-—04,

Wo,0:—0s5;
Z-1,-1 = 2’1,13:51, Z-1,0 — 2’1,03:52, Z-11— 2’1,—13:53, 20,-1 — Zo,13:b4, Zo,oizbs-

Hence, the number of connection weights to be adapted is a small number,
11, for the chosen neighborhood size of one. So, the learning is accomplished
through modification of the following weight vector w € R! whose entries are
the feedback template coefficients a;’s, the input template coefficients b,’s, and

the threshold 1.
W= [aT bT I}T = [a1 Ao a3z Q4 as bl b2 b3 b4 b5 I]T (44)

4.1.2. Supervised Learning of Completely Stable CNNs
The input vector, for the sake of generality, can be defined as v= [vi vI]T.
Where, v,= [...,u;;,...] € R™ , and respectively v, = [...,z;;(0),...]7 € R™

denotes the vector of external inputs, and respectively the vector of initial states.
64

For a given input vector v, a completely stable CNN with a chosen weight vector
w in (4.4) will produce an output vector y(¢)=[...,4;;(t),...]7 € R™ tending
to a constant vector y(oo), called the steady-state output vector. Such CNNs
define an algebraic mapping between the input and the (steady-state) output
vector spaces. Where, the existence and uniqueness of y(oo) for each v which is
needed for defining the mapping is a consequence of the fact that equations in
(4.2) together with the piecewise linearity of the function in (4.3) define a state

equation system having Lipschitz continuous right hand side.

The supervised learning of steady-state outputs in a CNN can be described as an
attempt to approximate an unknown map d= H(v) which is defined in a pointwise
manner from the input space to the (steady-state) output space by minimizing
an output error function & [w]|. The network is trained with the following set of

pairs which are samples of the map d = H(v) :
{(vh,dh), (v*,d%),.... (vF,d")} . (4.5)

Where v® and d® represents the input and desired (steady-state) output for the
st® sample, respectively. The error function c‘f[w] to be minimized is a measure
of the difference between the desired and actual (steady-state) output sets. &[w]
is defined as the following summation of the instantaneous errors £*[w] each of

which is the square of the Kuclidean distance between the desired and actual

output vectors corresponding to the s input vector v*.

Elwli= 2 Ew] - >3 (ul00) — i) (4.6)

Now, the supervised learning of the steady-state outputs in a completely stable
CNN which operates in the bipolar binary steady-state output mode can be
formulated as a constrained optimization problem where the objective function
is £[w] and the constraints are i) The bipolarity assumption as > A [5], ii) Any

y* (00) should satisfy the state equation system in (4.2)-(4.3) as its steady-state
65

solution for given v; and v;. The symmetry conditions imposed on the feedback
connection weights are not mentioned here as constraints since these weights were

already chosen symmetric in the definition of weight vector w.

Discarding the constant terms from & (w) and dividing it by 4, we can obtain a
new error function £[w| as in (4.7) under the bipolarity assumption of the steady-
state outputs. The bipolarity can be ensured as choosing a5 > A and choosing
initial state vectors different from the equilibrium points in the center or partial

saturation regions in the state space.

1 S S S S S
Elwl=5 - > ui;(00) - (yisl00) —dij) = 30 wislo0) = X0 yis(e0)- (47)
1,,8 (2,5,s)eDt (2,5,8)eD~
Where, DJF::{(ivjv S) | yi](OO) - _df,j - 1} and D_::{(ivjv S) | yi](OO) -
—d; ; = —1}. In the sequel, the cells indexed by D™ are called as +1 mismatching
cells and the cells indexed by D~ are called as -1 mismatching cells. £[w] is a

sum of the actual steady-state outputs y; ;(co) mismatching the desired outputs

and called as Output Mismatching ERror (OMER) function.

The relation in (4.8) helps us to see how OMER depends on the connection weight
vector w. The relation (4.8) describes a cell in the steady-state and it is obtained

by setting the left-hand side &; ; of the equation (4.2) to zero.

A- $f,j(oo) = Z Wg,1 - yf+k,j+l(oo) + Z “k,l uf+k,j+l +1
k,ilc{—1,0,1} k,ic{-1,0,1}
T
= Y] w (4.8)
where

66

and

[yf](oo)] = [yf—l,j—l(oo) + yf+1,j+1(oo) yf—l,j(oo) + yfﬂ,j(oo)
yf—l,jﬂ(oo) + yfﬂ,j—l(oo) yf,j—l(oo) + yf,jJrl(OO) yfj(oo)]T(4-10)
[u;,] =1 uf—l,j—l + uerl,j—l uf—l,j + ufﬂ,j

s s s s s T
Uiy T U o1 Ui Ui U (4.11)

With the above definitions and with the bipolarity assumption, the steady-state
output of a cell in a completely stable CNN can be given as the following implicit
relation of connection weights, external inputs and also steady-state outputs of

neighboring cells.
s _ vs 1l wl = s 1T s 1T by [4.12
y; j(00) = sgn [u} W= Sgn“yi,j] at [uj] - } (4.12)

For linear threshold class of CNNs, (4.12) is reduced to (4.13) which also does
not explicitly describe the steady-state output y;7;(o0) in terms of external inputs,

connection weights and initial states.
y25(00) = sgn [woo - f(00) + [uf,|" b+ 1] (4.13)

The dependence of Y7, and OMER on initial states and connection weights is, in
general, quite complicated which makes design and learning problems in CNNs

so difficult.

67

4.1.3. Recurrent Perceptron Learning Algorithm

4.1.3.1. Description of the Algorithm

The algorithm is inspired by the similarity between the input-output relation of
a perceptron and the relation (4.12) which describes steady-state behaviour of a

cell of completely stable CNNs operating in bipolar mode.

The connection weights characterizing these functions can be found by the

following perceptron learning rule.

b(n b(n us.
DR e e o0 (4.14)
I(n+1) I(n) 1

Where, I := (woo— +)-y;;(0)+I defines the perceptron threshold for a fixed wo
with wo, > % and for an y3;(0) chosen identical for all cells and samples, learning
rate 7 is a small constant, and there exists a unique n := n(i, j, s) corresponding
to each (i,j,s) for each cycle meaning that the algorithm runs in a data-adaptive

mode over training samples and cells until convergence.

Each cell of the linear threshold class CNNs trained by the above algorithm
can perform the same local function on its 3x3 external input neighborhood.
However, choosing initial conditions z;;(0)’s different from one cell to another,
one can obtain a CNN where its cells, each of which now has own threshold,

realize different but still linearly seperable local functions on external inputs.

The algorithm, RPLA, which is defined by the difference equations in (4.15)
is an attempt to generalize the simple perceptron rule into the whole class of
completely stable CNNs operating in bipolar mode. CNNs which are not in the
linear threshold class can realize some linearly nonseperable local functions of
external inputs. This comes from the nonlinear dependence on external inputs of

the first part y7; of the input of the perceptron-like transfer function in (4.12).

68

RPLA is introduced as considering the perceptron-like relation in (4.12)
describing the steady-state behaviour of cells. RPLA updates connection weight
vector w as the same as in perceptron learning rule treating Y7 .’s as constant
inputs to the cells. Due to this nonvalid assumption of Y7 .’s being constant,
the convergence properties of RPLA are different from those of perceptron
learning rule. (See Section 2.3.1.) RPLA searches for a solution weight vector
providing a set of desired outputs as actual equilibrium outputs for a set of
initial states and external inputs. If such a weight vector is found, then RPLA
terminates. Otherwise, it updates the weight vector towards annihilating these

actual equilibrium outputs.
w(n +1) = [w(n) —n(n) - Y[w(n)]". (4.15)

Where, the vector Y|[w(n)|, which is defined in (4.16), can be viewed as the
normal vector of an hyperplane to be crossed while w tends to a solution weight

vector in the w-space.

Yiw(n) (Y YL - Y Yzj<n>) (4.16)
(z,3,5)eDT (¢,4,s)eD~

n(n) is the learning-rate which might be a time varying function but usually

chosen as a small positive constant. [W]' denotes the projection of the vector

W onto the convex set A = {w € RM"|as > A}. The projection [-]" is used

for ensuring the bipolarity of the steady-state outputs and is defined as follows.

[w(n)" = w(n) if w(n) € A [wn)" = K, w(n) if w(n) ¢ A. Here,

Kn::u-ﬁgn) with ¢ > 1 is a constant usually chosen as 1.5.

The steps of RPLA are as follows.

L
s=1"

Given: A set of training pairs {v® d°} state feedback coefficient A,

magnification rate K, of the projection, learning rate n(n).

Step 1: Choose an initial weight vector w(0) satisfying the bipolarity constraint

as > A. Set n — 0.
69

Step 2: For the present weight vector w(n), compute all steady-state outputs
y; ;(00)’s by solving the differential equations in (4.2)-(4.3) for each initial
state v and input v; vectors belonging to the given training set. Then,
construct Y[w(n)| in (4.16) and find the next weight vector w(n + 1)

according to the difference equation in (4.15).

Step 3: If the updated weight vector w(n + 1) is the same with the previous
weight vector w(n), then terminates the iteration. Otherwise, set n =n+1

and go to step 2.

RPLA has the following features first two of them distinguish it from perceptron

learning rule:

i : RPLA is block-adaptive since, at each step, it updates the weight vector

taking into account the contributions of all the training samples and cells.
ii : The vector Y|w(n)| changes while weight vector w(n) is updated.

iii : If actual steady-state outputs y;;(o0)’s are replaced with desired steady-
state outputs d;,’s in the definition of Y7, then RPLA becomes to an
algorithm which learns equilibrium outputs for the given external inputs

but can not learn their basins of attraction.

4.1.3.2. Neurophilosophical Properties of RPLA

The following properties are very useful for understanding the behaviour of
RPLA. Property 4.1 is quite meaningfull from the neurophilosophical point of
view: The self-feedback template coefficient should be decreased to soften the

positive feedback causing output value mismatch.

Property 4.1 The 5" element Ys|w(n)| of the vector Y[w(n)| is equivalent to

the OMER E|w(n)|; and consequently, for learning ratesn(n) > 0, the 5™ element

70

as(n) of w(n) is always nonincreasing unless as(n) — n(n) - Elw(n)] < 1 and

remains constant if the OMER 1s zero.

Proof : The equivalence of Ys|w(n)| to E[w(n)| follows from the definitions in
(4.7), (4.9), (4.10) and (4.16). If as(n) — n(n) - Ew(n)] > 1, then as(n + 1) =
as(n) — n(n) - Ys[w(n)]. The proof is concluded by the observations of n(n) > 0
and Ys[w(n)] = E[w(n)] > 0. O

Property 4.2 The 11%* element Y11|w(n)] of Y|w(n)| is equal to the number
#(DTw(n)]) — #(D~[w(n)]). Where, ##(D"[w(n)]) and #(D~[w(n)]) denotes
the cardinality of the set of +1 mismatching cells and the set of -1 mismatching

cells, respectively.

Proof : The proof is immediate by the definitions in (4.9), (4.10) and (4.16). O

Ignoring the effects of initial value 7(0) and of the magnification by factor K in
the steps requiring the projection, the final I obtained can be considered as a
cummulative sum of past differences between the numbers of +1 mismatching

cells and -1 mismatching cells.

Property 4.3 Assume that the actual (steady-state) output of any boundary cell
in a CNN matches the desired value. Then, the 1t element Yi|w| of Y[w]| is
equal to 2+ [#(ULLR)s — ##/(ULLR),|. (ULLR)s denotes the set of mismatching
cells each of which has the (steady-state) output value same with its Upper
Left neighbor’s output as well as same with its Lower Right neighbor’s output.
(ULLR), denotes the set of mismatching cells each of which has the (steady-state)
output value opposite to its Upper Left neighbor’s output as well as opposite to its

Lower Right neighbor’s output.

Proof : Note that the cell C(i—1,5—1) and C(i+ 1,7+ 1) is the upper left and
the lower right neighbor of the cell C'(4, 7). The proof follows from the definition

of Y[w| in (4.16) and the definitions in (4.9)-(4.10). O
71

4.1.3.3. Relation between Fixed Points and Zero Error

The next two properties describes the correspondence of the fixed points of RPLA
to the minimum points of OMER. It will be shown by the Properties 4.4 and 4.5
that the problem of finding a weight vector w* providing the desired outputs
d®’s as the actual outputs y*’s for the chosen initial states v;’s and for the given
inputs vi’s is equivalent to the problem of finding one of the nonpathological

fixed points of the RPLA.

Property 4.4 Any weight vector w* yielding a zero OMER is a fized point of
RPLA defined by the set of difference equations in (4.15).

Proof : Observe that E[w*| = 0 if and only if #(D*[w|) = #(D~[w])= 0. The
equality #(D*[w|) = #(D~|w])= 0 implies that Y[w*] = 0 € R and then w*
is a fixed point of RPLA. O

Property 5 explains if there is a fixed point w* of RPLA which gives a nonzero

OMER.

Property 4.5 Fxcept for the pathological weight vectors w'’s satisfying the set

of equations Y|w| = Elw] w, each fixed point of the RPLA with a learning rate

) —a5

n(n) # 0 for all n yields a zero OMER.

glw]

Proof : If a weight vector w satisfies Y|w| = - w, then w* satisfies the

set of equations w* = [w* — ¢ - Y[w*]|T= K*. [W* — - (W*)rL for K* =

as

as

e On the contrary, if such a weight vector does not exist, then the only

possibility for a weight vector w to be a fixed point of RPLA is that w satisfies
Y|w*| = 0 which implies £|w*] = 0. O

72

4.1.3.4. How to Start and Restart the RPLA

A necessary condition for the existence of a nonpathological fixed point is that
each saturation region B; whose associated output y; coincides with one of the

desired outputs d*’s contains an equilibrium point. The saturation region By is

defined as

By={xeR"|x;>1 forieJ;x;<—1 forieJ}

where, x= [...,z;;,...]7 € R™, J C {1,2,...,m}, and (y;);i= 1 fori € J,
(vs)i= —1 fori € J. Theorem 4.1 gives a condition ensuring that each
saturation region B; has an equilibrium point, and hence it provides a set of
template coefficients for which any desired output can be reached with a suitably

chosen initial condition.

Theorem 4.1 Assume that the connection weights satisfy the inequality
as > A+ T. Here, T:= 2 - {2 (lag| + b))} + |bs| + I. Then, there exists a

unique equilibrium point in each of 2™ saturation regions By 's.

Any weight vector w satisfying the condition stated in Theorem 4.1 is a solution
to the linear inequality system considered in [63,64]|. For such a weight vector,
the initial state v2 chosen properly, i.e. chosen in the basin of attraction of the
equilibrium point in the saturation region whose associated output coincides the
desired output d*, yields the desired output. The proposed learning algorithm
RPLA is usually started at an initial weight vector w(0) satisfying the condition
in Theorem 4.1. The initial states which are not chosen properly give a
nonzero OMER. Then, the weight vector should be changed for suppressing
the equilibrium points yielding undesired outputs by violating the condition in
Theorem 4.1. The RPLA stops at the weight vectors providing that, for all s, the

chosen initial state v; is in the basin of attraction of the equilibrium point whose
73

associated output is d®. Since as is always decreasing for an arbitrary learning
rate n(n) > 0 and for nonzero OMER, then the algorithm RPLA may need a
projection before terminating. One can think that the magnification by factor
K used for projecting the updated weight vector onto the bipolarity constraint
set may destroy the learned outputs and create new equilibrium points giving

undesired outputs. However, this is not the case as explained in Theorem 4.2.

Theorem 4.2 Assume that there exists an equilibrium point X in the saturation
region By for the given external input v, and for the weight vector w. Then, the
saturation region By contains an equilibrium point X; = K - x; for the external

mput v, and for the weight vector w = K - w with K > 1.

Whereas the magnification by factor K does not destroy any existing equilibrium
point, it may create a new equilibrium point in a saturation region. Moreover,
the actual steady-state outputs y(oo)’s which are obtained for the same external
input v, but for different weight vectors K -w and w, may differ from each other
depending on the magnification factor K. The OMER may therefore increase
at the steps requiring the projection. Inspite of the mentioned facts, the weight
vector obtained after the magnification is a good initial vector for restarting the

RPLA.

4.1.3.5. Sufficient Conditions for Convergence to Fixed Points

The Properties and Theorems in Subsections 4.1.3.1. - 4.1.3.4. describe several
aspects of the learning process ruled by the RPLA. The main concern in any
iterative algorithm is the convergence of the sequence produced by the algorithm
to a desired pattern usually a fixed point. Theorem 4.3 presents a sufficient
condition for ensuring the convergence of the sequence of weight vectors to one

of the nonpathalogical fixed points of the RPLA.

Theorem 4.3 is based on the following three assumptions.

74

Assumption 1 There exists a solution weight vector w* so that it satisfies the

bipolarity constraint and yields the zero OMER.

Assumption 2 For a chosen initial vector w(0) and learning rate j(n), w(n) :=

w(n) —n(n) - Y|w(n)| satisfies the bipolarity condition for each n.

Assumption 3 There exists a solution weight vector w* satisfying the inequality

in (4.17) for each n.

A-(> |a¢f,j(00)(n)l) > W YIw(n)]. (4.17)

(3,3,)e{DTUD—}

Theorem 4.3 Under the Assumptions 1-3, the RPLA with a sufficiently small
constant learning rate converges, in finite iteration steps, to a weight vector
yielding the desired outputs as the actual outputs for the given initial states and

external inputs.

Proof : By the Assumption 2, the magnification by factor K is not needed to be
applied in any iteration step, i.e. w(n-+1) = w(n)—7(n)-Y[w(n)]. Hence, using
the properties of the Euclidean norm || - ||2, the equation in (4.18) is obtained for

any solution weight vector w™*.

Iwn+1) = w3 = [w(n) — w3 +5%(n) | YIw(n)] 3
=2-ij(n) - [w(n) — w*Ylw(n)| . (4.18)
Assumption 3 implies that there exists a positive number 7 satisfying (4.19).

1

TP lE (w(n) — w*]" Y[w(n)] > n(n) > 0. (4.19)

75

This fact can be seen from that i) the lefthand side of the inequality in (4.19) is
equal to [w(n)]TY[w(n)], ii) the equations in (4.8) and the definition of Y|w(n)]
in (4.16).

Under the assumption of the nonviolation of the bipolarity condition, the equation

(4.20) is obtained.

Iw(n+1) w3 = w(n)—w5+n(n) | YIw@)]

~2-1(n) - [w(n) — w'" Ylw(n)]. (4.20)

The inequality in (4.19) implies that the third term in the righthand side of
(4.20) dominates the second term and hence the distance between the weight

vector w(n) and the solution weight vector w* is reduced by a positive amount:

w(n+1) = wi|l; = [[w(n) — w3 < —ij(n) - [w(n) — w*["Y[w(n)] .(4.21)

The equation (4.21) completes the proof. O

Unfortunately, Theorem 4.3 does not give a constructive way for obtaining a
positive constant learning rate which ensures the convergence of the RPLA to a
solution weight vector. Instead, it describes a condition forwhich the RPLA with
a positive learning rate chosen sufficiently small converges to a solution weight

vector satisfying the condition.

4.1.4. Learning Image Processing Using RPLA

The CNN with its 2-dimensional array architecture is a natural candidate for
image processing. On the other hand, any input-output function to be realized
by CNNs can be visualised as an image processing task where the external input,
the initial condition and the output vector arranged as a 2-dimensional array is
the external input image, the initial image and the output image, respectively.

The external input image together with the initial image constitutes the input
76

image of the CNN. In the applications, either one of the external input image
and the initial image is used as the image to be processed while the other is set
to a suitable constant image or both of them are used as the input image to be

processed.

The supervised learning algorithm, RPLA, can be considered as a tool for finding
a feasible weight vector providing that the actual output images match the desired

images for the given input image.

An image processing application, corner detection, of the RPLA is shown here as
an example. 16 x 16 images are used in the training phase of the applications.
In the example of corner detection, the initial image were chosen equal to the
external input image and the image to be processed were taken as the external
image. the initial images and the external input images were chosen bipolar, i.e.
each pixel is either +1 (black) or else —1 (white). In the simulation example, the
same external input images were used as the input parts of the training pairs.
For the same external input image, the solution weight vectors obtained perform
different tasks. This shows that the success of the RPLA does not, at least for the
three image processing problems considered in this paper, come from the suitable

choice of the input images.

In the sequel, the following matrix notations standard in CNN literature will be

used for presenting the connection weights.

a1 Q2 ag by by b3
A=la a5 a |» B=|0b bs b |, [(4.22)
az Qx4 by by by

where, A, B and I denotes the feedback template, the input template and the

threshold template, respectively.

In the application given below, the initial value ¢(0) of the learning rate is chosen
as 0.0004. The learning rate ¢(n) is remained constant if the OMER, changes in 10
77

iteration steps and magnified by 2 if the OMER, does not change in 10 iteration
steps.

4.1.4.1. Corner Detection

The initial templates were chosen as in (4.23) which are the initial templates used
also in the edge detection aplication. Figure 4.a shows the initial images which are
identical to the external images in Figure 4.b. The desired steady-state outputs
are given in Figure 4.g. The RPLA was run by the positive constant learning
rate e = 0.0002. The actual steady-state outputs at the first through third steps
are obtained with the OMER equal to 544 given in Figure 4.b. Figure 4.c, Figure
4.d, Figure 4.e, Figure 4.f and Figure 4.g shows the actual steady-state outputs
at the 4" 10-15% 19", 28-29" and 48" steps, respectively. The final templates
found at the end of the 48 iterations yield zero OMER for the 5 training samples

used. These solution templates are given in (4.24).

0 0 0 0 0 0
Af=10 4 0 |, Bi=j0 0 0 |, =0 (4.23)
0 0 0 0 0 0

—0.210844 —0.153426 —0.198075
Aj = —0.084514 3.331127 —0.084514 |,
—0.198075 —0.153426 —0.210844

—0.345449 —0.450396 —0.349939

B, = —0.510285 —0.583862 —0.510285 |, (4.24)
—0.349939 —0.450396 —0.345449
5 = —0.621101 .

78

I
=
H:

-
.
:HHH
.

1
e
:H

(2)

Figure 4.2: Learning corner detection. (a) The initial images. (b) The input
images. (c—f) The actual output images at some intermediate
steps. (g) The desired output images [4].

79

4.1.4.2. Discussion

We can conclude that some sufficient conditions for the recurrent perceptron
learning algorithm for CNNs have been given. Also, the performance of the
developed algorithm has been tested on learning an image processing task, corner
detection. The algorithm can be used for learning algebraic mappings from
[—1,+1]™ to {—1,+1}"™; but it has been observed that it is succesfull in learning

binary mappings.

4.2. Threshold Class CNNs with Input-Dependent Initial State

CNNs are made up of R-C flip-flop like cells arranged as a 2-dimensional grid
with a space invariant connection weight pattern [5]. They are usually operated
in a completely stable mode with bipolar steady-state output property. Such
CNNs with the neighborhood size of one perform an algebraic (local) mapping
frocar(*) + [-1,1]° — {—1,1}, here any point belongs to the domain [—1,1]° is

associated with a 3 x 3 window on the external input grid.

Many design methods and learning algorithms [65], [61] have been proposed for
determining feedback (A), input (B), and threshold (/) templates to perform a
given task. The design and training of CNNs are, in general, very complex and
problematic. In most of the applications, researchers use the linear threshold
class CNNs since they can accomplish a lot of tasks and they are simple to
design as a consequence of the structure of their A template having a center as
the unique nonzero element. As will be cleared by this paper, threshold class
CNNs can be trained by Perceptron learning rule to perform linearly separable
(local) threshold functions and furthermore this training approach can be applied
also to linearly nonseparable function cases by using the input-dependent initial
conditions providing nonconstant thresholds for our Perceptron like CNN cells.
The advantage of using the introduced class of CNNs over the multilayer linear

threshold class CNNs lies on the fact that the piecewise constant function
80

determining the initial conditions in terms of the external inputs can be learned
also by a three-stage Perceptron learning rule. By no means, the developed
learning procedure can be applied also for designing a nonconstant-threshold
Perceptron to perform linearly nonseparable threshold functions. Hence, the
design of discrete Perceptron (thereafter will be called as Perceptron) networks
in performing linearly nonseparable functions can be accomplished by a three-
stage Perceptron learning rule applied on a layer of input-dependent threshold

Perceptron.

Here the equivalence of the cells of the linear threshold class CNNs and the
Perceptrons is described. The proposed three-stage learning procedure for
learning the template coefficients of the considered CNNs and the coefficients
defining the initial states in terms of the external inputs are presented and for
the edge detection task as a special linearly nonseparable threshold function the

proposed learning procedure is applied on the design of the considered CNNs.
4.2.1. Linear Threshold Class CNN Cells as Perceptron

A CNN with the neighborhood size of one is a 2-dimensional array of cells

described by the equations given in Equations 4.25-4.26.

x‘i,j = =5 Tij + Z Okl Yitk, i+ T Z bk,l “ Uitk T I (425)
kilc{—1,0,1} kle{—1,0,1}

1
Yij = f(@ij) = §{|ﬂ7i,j + 1] = |zi; — 1]} (4.26)

Where S, I, ai,;’s and by ;’s are real constants called as state feedback, threshold,
feedback template, and input template coeflicients, respectively. z;;(t) € R,
y;.;(t) € [-1,1] and u;; € [—1,1] denotes the state, output and external input

associated to a cell C(4, j), respectively.

81

By setting the left-hand side &; ; of the equation (4.25) to zero, the relation (4.27)

describing a cell in the steady-state is obtained.

S xi5(00) = Z Ak, * Yitk,j+1 T Z big - Witk jr1 + 1 (4.27)
kilc{—1,0,1} kle{—1,0,1}

Equation (4.27) together with y; ;(0c0) = sgn|z; j(0o)] which is valid under the
bipolar steady-state output assumption yields the implicit relation in (4.28) [61].
The relation (4.28) gives the steady-state output of a cell in a completely stable
CNN having bipolar output property. It resembles the input-output relation of a
discrete Perceptron [16].

yii(00) = sgn |[yii(00)]" - a+ [uy|" b+ 1| (4.28)
where,

[yii(00)] =1 #ic1-1(00) + ¥iy1,j-1(00) i1,5(00) + Yit1,5(00)

yi—l,j+1(oo) + yi+1,j—1(00) yi,j—l(oo) + yi,j+1(oo) %J(OO)]T

[ui,j] :[Ui-1,5—1 Ui—1,5 Ui—1,541 Ui5—1

T
Ui, j Uijp1 Wirlj—1 Uirl; Uitlg41 |

a:[a—l,—l a_10 G-11 Qaop-1 ao,o]

b=[b_1-1 b_10 b1 bo—1 boo bo1 b1 bio b1

Note that the feedback template coefficients ay;’s are chosen symmetric for
ensuring the completely stability: a_1_1 = a11, a_10 = @10, 62110 = a1,-1,

Qp,—1 — Ag,1-
82

For a linear threshold class CNN; (4.28) reduced to (4.29) since, except for the
center element, all elements of the A template are zero: ay; = 0 for all (k,l) #

(0,0) and ago # 0.
Yi,3(00) = sgn [a00 - 9s,5(00) + [ui]" - b+ 1] (4.29)

Both of (4.28) and (4.29) do not explicitly describe the steady state output y; ;(00)
in terms of external inputs, connection weights and initial states. However, for

the linear threshold class CNNs, y; ;(00) can be obtained in the following explicit
form [67].

<a0,0 - %) 43 (0) + [ugy]" b+ 1 (4.30)

yz‘,j(OO) = sgn

Equation 4.30 exactly corresponds to the Perceptron’s input-output relation given

below.
y = sgn[w’ - u 1+ 0] (4.31)

Where w, u and @ stands for b, [u; ;] and (ao,o = é) y:,;(0) + I , respectively.

We can draw the conclusion that any cell of a linear threshold class CNN behaves
exactly in the same manner with a modified Perceptron where the threshold is
determined by the initial state. So any learning algorithm and design method

developed for Perceptrons can be applied also to the linear threshold class CNNs.
4.2.2. Linearly Nonseparable Functions and Modified Perceptron

The problem of learning in a Perceptron can be stated as follows: given a set U =

Ut U U™ ={u,uy,...,u,} C R?of m input vectors, determine a hyperplane

such that the vectors u; € U™ lay on the positive halfplane of the hyperplane
83

while the vectors u; € U™ lay on the negative halfplane. If such a hyperplane
exists for the given set U, then it is called as linearly separable and if not then

linearly nonseparable.

It is well-known that a Perceptron trained by Perceptron learning rule can learn
a linearly separable input vector set in finite time steps for a sufficiently small
learning factor. Furthermore, the behaviour of Perceptron learning rule, when the
input patterns are linearly nonseparable, provides the possibility of learning one
of the largest linearly separable subsets Us’s of the given linearly nonseparable
training set [38]; here, a Ug is defined as a linearly separable subset of U
with maximum cardinality. Although this possibility, which we will exploit in
our three-stage learning procedure, is quite usefull to identify such a separable
subset, some structural modifications are still be needed for solving the problem of
performing nonseparable threshold functions by Perceptron networks. Multilayer
networks of Perceptrons offer such a solution but with lacking the possibility of
using Perceptron learning algorithm to find their connection weights. Another
solution that we are proposing here together with a three-stage Perceptron
learning procedure is to use a single nonconstant-threshold Perceptron whose

threshold value is a piecewise constant function of the inputs:

y = sgn(wipquH) (4.32)

0 = 01+ 0s;- stp(wiut 6y) (4.33)

Where stp(-) is the step function, 6; € R for all 7 € {1,2,3} and wy, wy are
weight vectors. Instead of the step function, signum function also could be used

affecting the values of 6; and 63 only.

The nonconstant-threshold of the modified Perceptron defined by (4.32)-(4.33)
enables us to classify some linearly nonseparable input sets explained below.

Furthermore, all parameters w1, wo, 6;, 7 € {1, 2,3} can be learned by Perceptron

84

Table 4.1: Three step learning algorithm for Threshold class CNNs with
Input dependent initial state [1].

Step 1: Train a Perceptron by Perceptron learning rule for a given input
vector set UU. Hence, obtain the weight vector w and the threshold
which define a hyperplane separating a largest linearly separable

subset Ug of U.

Step 2: Train another Perceptron again by Perceptron learning rule to
determine the weight vector ws and the threshold #; which define
a hyperplane such that the nonseparable vectors in Uyg lay on
its positive halfplane while the separable vectors in Ug lay on its
negative halfplane.

Step 3: Determine f3 is a real number such that its amplitude |f3| is
strictly greater than the maximum of |w?u + 6;| over all inputs,

and 03 is positive if Uyg C U and is negative if Uyg C U_.

learning rule applied within a three-stage procedure given in Table 1. The
proposed learning procedure can be applied on a linearly nonseparable set U if
the complement Uygs = U\ Us of a largest linearly separable subset Us of the set
U consists of vectors all of which belongs either to U™ or to U~ and furthermore
they are linearly separable from the vectors in Ugs. The binary edge detection
task which we will consider in Section 4.2.3. can be defined as the classification

of such a nonseparable input vector set.

The nonconstant-threshold Perceptron given by (4.32)-(4.33) defines a piecewise-
linear discriminant function which assigns the inputs belonging to a piecewise-
linear halfplane into one class and assigns the others into a second class. To
illustrate such kind of partitions of the space, two specific examples are given in
Figure 3.2. Where, the circles and squares correspond to the vectors belonging to
the sets U, and U_, respectively. The piecewise-linear discriminator represents
the set of points satisfying the equation wiu + 6; + 03 - stp(wiu + 6,) = 0.

Both examples of Figure 3.2 show linearly nonseparable input sets which can

85

be realized by a single nonconstant-threshold Perceptron of (4.32)-(4.33). But,
only the set illustrated in Figure 3.2.a can be learned by the given three-stage

procedure since the nonseparable vectors are linearly separable from the others.

It is obvious by Section 4.2.2. and by (4.32)-(4.33) that linear threshold class
CNNs can perform certain linearly nonseparable (local) threshold functions and
furthermore their template coefficients and initial conditions can be learned by

the above three-stage learning procedure.

4.2.3. Binary Edge Detection as a Linearly Nonseparable Threshold

Function

We will justify our design method by computer experiments done on a specific
example, namely the edge detection. First, we pose the binary edge detection task
as a linearly nonseparable but piecewise-linearly separable threshold function of
the type depicted in Figure 3.2.a. Second, we will train a threshold class CNN
with input-dependent initial state to learn this task. Then, we will examine the
performance of this CNN trained with binary input vectors on the edge detection

of some binary and gray level images.

Since the neighborhood size is chosen one, a CNN cell is fed by external inputs
in its 3x3 neighborhood. Therefore, there are 2° — 512 possible input patterns
for binary images. Edge detection task can be viewed as a pixel classification
problem such that a part of the pixels is assigned to edge class and the other
part to nonedge class. The pixels in the edge class are represented by black
(+1) while the others by white (—1). We define the edges as at least two-pixel
lenght continuous lines with one-pixel width. As a consequence of this definition,
we identify 239 input patterns belonging to the edge class and 273 ones to the
nonedge class. We examined whether the set of input vectors each of which
corresponds to one of the 512 possible 3x3 window patterns in the input image
space is linearly separable or not. Then, we found the set is linearly nonseparable

but the complement of a largest linearly separable subset is included by the

86

nonedge class and the nonseparable vector can be linearly separated from the
others. This gives us the possibility of using the three-stage learning procedure
of Section 4.2.2. to train the introduced piecewise-constant threshold Perceptron
for performing the ideal edge detection problem. The solution weight vectors and

thresholds found are as follows.

w, = [-0.013 —0.406 —0.024 —0.74

12.55 —0.485 —0.21 —0.88 —0.13 |7 (4.34)
wy, = [-128 —1.28 —1.28 —1.28

1+1.28 —128 —128 —1.28 —1.287 (4.35)
0, = [—0.427) 0, = [—10.53] 05 = [—42.5] (4.36)

The above parameters yield a threshold class CNN with input-dependent initial
conditions having the following template values and the piecewise constant

function defining the initial conditions in terms of the inputs.

0 00 —0.013 —-0.406 —0.024

A=1020 B—| 074 +255 —0.485 I = —-0.427 (4.37)
0 00 —-0.21 -0.88 —0.13

x(0) = 05 - stp (wg : u) —10.53 (4.38)

We apply the found edge detection CNN having the above parameters on some
images. The results are presented in Figure 4.3. The performance of our CNN
is compared with the one of the constant initial condition CNN given in [5].
For binary edge images, our CNN finds the edge images which are ideal in the

above sense. Note that the edge image obtained by our CNN does not contain
87

an isolated pixel and its edges are of one pixel width. The 7-bit Lenna image
was obtained from 256 gray level image by thresholding with the threshold level
of 128. It could be obtained also by a linear threshold class CNN. As compared
to the CNN in [1], the performance of our CNN is much better for gray level
images. The proposed three-stage learning procedure could be applied also on
learning edges for gray level images. However, for gray level images, it seems
very difficult (may be impossible) to define ideal edges in an exact manner. If
it would be possible for considering 3x3 windows only, then we will have 256°
training pairs for 256 gray level images. On the other hand, the usage of an edge
image obtained by an available efficient algorithms might cause inconsistency
of the training set. Such a possible ill-defined training set gives a multi-valued
threshold function which can not be learned by any network defining an algebraic

input-output function.

88

Figure 4.3: The images on the left side are the input images. The images
in the middle are the steady-state outputs of the CNN in [5].
The images on the right side are the steady-state outputs of our
CNN. (a) A 16x16 binary example. (b) 256x256 7-bit binary
Lenna. (¢) A 128x128 noisy chessboard. (d) 256x256 gray level
Lenna.

89

5. CONCLUSION

In this thesis, it is shown that PWL and PWC structures are very useful in the
solution of classification problems. In fact PWL and PWC models are already
used especially in the NNs society however it is not emphasized enough. The
simplicity, and the speed of such models do not mean that they are incapable or

inefficient.

With a small modification on discrete perceptron, perceptron with input
dependent threshold value is introduced. This is one solution step towards the
classification of linearly nonseparable sets. The model brings a solution for
a subset of linearly nonseparable classification problems. This is obtained by
making the threshold value as a function of input in a PWC manner. It is very
useful since perceptron learning rule is very fast and efficient learning algorithm

which can be used in the design of this NN model.

A new discrete perceptron model forming a cascade structure and being capable
of realizing an arbitrary classification task designed by a constructive learning
algorithm proposed also in the thesis. It is shown that the proposed cascaded
network of multiplexed dual output discrete multilayer perceptron with a new
sequential learning algorithm is capable of realizing any given classification task.

Convergence of the algorithm is analyzed and the related facts are proved.

Another context of NNs is the design and learning of NNs. Some NN models
are obstructed just because there is not any good learning algorithm for those.
Discrete Multilayer Perceptron and Cellular Neural Networks can be considered
among these. In this study, successful and effective learning algorithms are
introduced and analyzed thoroughly. Two of them are mentioned in the previous

paragraphs. The third one is the recurrent perceptron learning algorithm which

90

is an important achievement for the CNNs and its convergence properties are
investigated and proven in the thesis. Moreover, it is shown here that the three
step learning algorithm can be applied to the threshold class CNNs with input

dependent initial states.

Threshold class CNNs with input dependent initial state is another improvement
on the plain CNN model. Thus, some linearly nonseparable problems can be

solved by using this model while they cannot be solved by regular CNN structure.

All proposed models and learning algorithms are verified by hardware
implementations and computer simulations. The results of the examples are
given in the thesis. The example applications are just for demonstrative. The
applicability and the efficiency of the PWL and PWC NN models and the
associated algorithms prove that the proposed models can be used as tools for a
wide variety of classification applications where the tasks are inherently linearly

nonseparable.

This thesis extend the literature in some directions: i) The discrete perceptron
with input-dependent threshold is introduced and is shown to be trained by
well known perceptron learning rule to learn some piecewise linearly separable
threshold functions such as edge detection in black-white images, ii) It is shown
that any kind of linearly nonseparable threshold function can be realized by a
cascaded network of multiplexed dual output discrete perceptrons which are also
introduced in the thesis and for which a convergent (design) algorithm is proposed
in the thesis, iii) an analysis of the recurrent perceptron learning rule for designing
cellular neural networks which are a kind of piecewise linear dynamical neural

networks is given.

5.1. Recommendations for Future Work

Piecewise linear systems are quite simple models, employing absolution as the

unique nonlinear operation in addition to linear ones. They are also powerful
91

since they can model even the most complicated nonlinear dynamical behaviours
such as chaos. Piecewise linear systems are universal systems that can perform
any kind of algebraic and dynamical task. It can be argued that piecewise linear

systems will be always of interest for their simplicity and universality.

On the other hand, piecewise linear systems has some drawbacks: i) Lacking of
differentiability which constitutes an obstacle not only in the numerical and but
in the analytical analysis but also in the design of piecewise linear systems. ii)
Lacking of efficient methods for constructing piecewise linear models for a given

system.

Research on piecewise linear systems continues in the two main streams: One is
to show the modeling abilities and usefulness of the piecewise linear systems as
implied by their simplicity and universality. Circuits, systems, signal processing,
pattern recognition, control and neural networks are some areas which can be
given as examples for such type of research areas. The other is to introduce new
methods for finding piecewise linear models for a system. Developing compact
piecewise linear representations which are more general and/or easier to obtain
from a given system and introducing piecewise linear approximation methods

more efficient than the available ones.

The piecewise linear models which will be developed in the neural networks
domain might be a solution to the parallel hardware realization problem of neural
networks. It is a need for developing new piecewise linear models such that they
are capable of representing larger classes of functions with greater generalization
abilities, having efficient representation, constituting robust approximators
rejecting noise and outliers, easy implementation ability in both hardware and
software. It is also a need to demonstrate the abilities of piecewise linear models
in the new application areas of circuits, systems, signal processing, pattern

recognition, control and neural networks.

92

REFERENCES

1]

[10]

11

Geng, 1. and Giizelis, C., 1998. Threshold class cellular neural networks
with input-dependent initial state, in 5th. IFEE Int. Workshop
on Cellular Neural Networks and their Appl., London—-UK, pp.
130-135.

Geng, I. and Giizelig, C., 1998. Discrete perceptron with input dependent
threshold value, in Conference on Signal Processing and its Appl.,
vol. 1, Ankara—Turkey, pp. 36—41, (In Turkish).

Geng, I. and Giizelis, C., 2003. A new discrete perceptron model and a
learning algorithm, in Proc. of the Int. Twelfth Turkish Symposium
on Artificial Intelligence and Neural Networks — TAINN-03, vol.
E-1, pp. 132-134.

Karamahmut, S., 1994. Two learning algorithms for cellular neural networks
and their image processing applications, Master’s Thesis, Istanbul
Technical Unversity, In Turkish.

Chua, L.O. and Yang, L., 1988. Cellular neural networks: Theory and
Applications, IFEFE Trans. on Circuits and Syst., 35, 1257-1290.

Chua, L.O., Desoer, C.A. and Kuh, E.S., 1987. Linear and Nonlinear
Circuits, McGraw Hill.

Giizelis, C. and Goknar, I.C., 1991. A canonical representation for
piecewise-affine maps and its applications to circuit analysis, IEEFE
Trans. Chircuits Syst, 1342-1354.

Lin, J.N. and Unbehauen, R., 1995. Canonical piecewise-linear networks,
IEEFE Trans. on Neural Networks, 6, 43-50.

Julian, P., Jorddn, M. and Desages, A., 1998. Canonical piecewise-linear

approximation of smooth functions, IEEFE Trans. on Circuits and
Systems-1, 45, 567-571.

Chua, L.O. and Kang, S.M., 1977. Section-wise piecewise-linear functions:

Canonical representation, properties, and applications, Proc.
IEEE, 65, 915-929.

Lin, J.N. and Unbehauen, R., 1992. Canonical piecewise-linear
approximations, IEEFE Trans. on Circuts Syst., 39, 697-699.

93

22]

23]

[24]

Chua, L.O. and Ying, R., 1983. Canonical piecewise-linear analysis, IFEE
Trans. Chircuits Syst., 30, 125-140.

Blum, E.K. and Li, L.K., 1991. Approximation theory and feedforward
networks, Neural Networks, 4, 511-515.

Batruni, R., 1991. Multilayer neural network with piecewise-linear structure
and back-propogation learning, IEEFE Trans. on Neural Networks,
2, 395-403.

McCulloch, W.S. and Pitts, W., 1943. A logical calculus of
ideas immanent in nervous activity, Bulletin of Mathematical
Biophysics, 5, 115-133.

Rosenblatt, F., 1962. Principles of Neurodynamics, Spartan Books, New
York.

Hebb, D.O., 1949. The Organization Of Behaviour, Wiley.

Minsky, M.L., 1954. Theory of neural-analog reinforcement systems and
its application to the brain-model problem, PhD Thesis, Princton
University.

Rosenblatt, F., 1958. The perceptron: A probabilistic model for information
storage and organization in the brain, Psycological Review, 58,
386-408.

Rosenblatt, F., 1962. Principles of Neurodynamics, Spartan Books, New
York.

Widrow, B., 1962. Generalization and information storage in networks of
adeline ‘neurons’, in Self-Organizing Systems, Fds. Yowitz, M.,
Jacobi, G. and Goldstein, G., pp. 435-461.

Minsky, M. and Papert, S., 1969. Perceptrons, An Introduction to
Computational Geometry, MIT, 1st edn.

Minsky, M. and Papert, S., 1990. Perceptrons, An Introduction to
Computational Geometry, MIT, 2nd edn.

Grossberg, S., 1972. Neural expectation: Cerebellar and retinal analogs of
cells fired by learnable or unlearned pattern classes, Kybernetik,
10, 49-57.

Grossberg, S., 1980. How does a brain build a cognitive code?, Psychological
Review, 87, 1-51.

Hopfield, J., 1982. Neural networks and physical systems with emergent
collective computational abilities, Proc. of the National Academy
of Sciences, USA, 79, 2554-2558.

94

28]

[29]

[30]

[31]

[32]

Kohonen, T., 1990. The self organizing map, Proc. of the IEEFE, T8, 1464—
1480.

Rumelhart, D., Hinton, G. and Williams, R., 1986. Learning
representations of back-propagation errors, Nature, 323, 533-536.

Broomhead, D. and Lowe, D., 1988. Multivariable functional interpolation
and adaptive networks, Complex Systems, 2, 321-355.

Giizelig, C. and Chua, L.O., 1993. Stability analysis of generalized cellular
neural networks, Int. J. Circuit Theory and Appl., 21, 1-33.

Cortes, C. and Vapnik, V., 1995. Support vector networks, Machine
Learning, 20, 273-297.

Amari, S.I., 1972. Characteristics of random nets of analog neuron-like
elements, IEEE T. on Systems Man. and Cybernetics, SMC-2,
643-657.

Gelenbe, E., 1989. Random neural networks with positive and negative
signals and product form solution, Neural Computation, 1, 502—
510.

Hodgkin, A. and Huxley, A., 1952. A quantitative description of
membrane current and its application to conduction and exitation
in nerve, J. Physiol., 117, 500-544.

Fukushima, K., Miyake, S. and Ito, T., 1975. Cognitron: A self
organizing multi-layered neural network, Biological Cybernetics,
20, 11-136.

Grossberg, S., 1967. Nonlinear difference —differential equations in
prediction and learning theory, Proceedings of the National
Academy of Sciences, 58, 1329-1334.

Freeman, W., 1987. Simulation of chaotic eeg patterns with a dynamic model
of the olfactory system, Biological Cybernetics, 56, 139-150.

Roychowdhury, V.P., Siu, K.Y. and Kailath, T., 1995. Classification of
linearly nonseparable patterns by linear threshold elements, IEEFE
Trans. on Neural Networks, 6, 318-331.

Anlauf, J. and Biehl, M., 1989. The AdaTron: An adaptive perceptron
algorithm, Furophysics Letters, 10, 687-692.

Marchand, M., Golea, M. and Rujan, P., 1990. A convergence theorem
for sequential learning in two-layer perceptrons, Europhys. Lett.,
11, 487-492.

95

[41]

[42]

[43]

[44]

[46]

[51]

[52]

Young, S. and Downs, T., 1998. CARVE—a constructive algorithm for
real-valued examples, IEEFE Trans. on Neural Networks, 9, 1180—
1190.

Martinelli, G., Mascioli, F.M. and Bei, G., 1993. Cascade neural
network for binary mapping, IFEE Trans. on Neural Networks,
4, 148-150.

Martinelli, G. and Mascioli, F.M., 1992. Cascade perceptron, Electronics
Letters, 28, 947-949.

Qinruo, W., Bo, Y., Yun, X. and Bingru, L., 2003. The hardware
structure design of perceptron with FPGA implementation, in
IEEE Int. Conf on Systems, Man and Cybernetics, vol. 1, pp.
762-767.

Sahin, S., Becerikli, Y. and Yazici, S., 2006. Learning internal
representations by error propagation, in Neural Information
Processing: 13th Int. Conf. ICONIP’06, FKds. King, 1., Wang, J.,
Chan, L.W. and Wang, D., pp. 1105 — 1112, Springer-Verlag.

Ferrer, D., Gonzalez, R., Fleitas, R., Acle, J.P. and Canetti,
R., 2004. NeuroFPGA — Implementing artificial neural networks
on programmable logic devices, in Proceedings of the Design,

Automation and Test in Furope Conference and Fxhibition
Designers Forum (DATEO0Y).

Maeda, Y. and Wakamura, M., 2005. Simultaneous perturbation learning
rule for recurrent neural networks and its FPGA implementation,
IEEE Trans. on Neural Networks, 16, 1664—1672.

Cadenas, O., Megson, G. and Jones, D., 2005. A new organization for a
perceptron-based branch predictor and its FPGA implementation,
in Proceedings of the IEEE Computer Society Annual Symposium
on VLSI: New Frontiers in VLSI Design.

Vitabile, S., Conti, V., Gennaro, F. and Sorbello, F., 2005. Efficient
MLP digital implementation on FPGA, in Proceedings of the 2005
8th Furomicro conference on Digital System Design (DSDO05).

Liu, J. and Liang, D., 2005. A survey of FPGA-based hardware im-
plementation of ANNs, in Proceedings of ICNNEB International
Conference on Neural Networks and Brain, pp. 915-918.

Muselli, M., 1997. On convergence properties of pocket algorithm, IEEE
Trans. on Neural Networks, 8, 623—629.

Rosen-Zvi, M. and Kanter, 1., 2001. Training a perceptron in a discrete
weight space, Physical Review F, 64, 046109-1-9.

96

[59]

[60]

[61]

62]

[63]

[64]

Rumelhart, D., Hinton, G. and Williams, R., 1986. Learning internal
representations by error propagation, in Parallel Distributer

Processing: Exploration in the Microstructure of Cognition, Eds.
Rumelhart, D. and McClelland, J., Chap. 3.

Mézard, M. and Nadal, J.P., 1989. Learning in feedforward layered
networks: The tiling algorithm, J. Phys. A: Math. Gen., 22, 2191—
2203.

Rujan, P. and Marchand, M., 1989. Learning by minimizing resources in
neural networks, Complex Syst., 3, 229-241.

Wieland, A. Two spirals, http://www-2.cs.cmu.edu/afs/cs/project/ai-
repository/ai/areas/ neural/bench/cmu/0.html, Current as of
September 2004.

Fahlman, S. and Lebiere, C., 1990. The cascade-correlation learning
architecture, in Advances Neural Inform. Processing Syst. (NIPS),
vol. 2, San Mateo, CA, pp. 524-532.

Shirazi, N., Walters, A. and Athanas, P., 1995. Quantitative analysis
of floating point arithmetic on fpga based custom computing
machines, in In Proceedings of IEEE Symposium on FPGAs for
Custom Computing Machines, pp. 155-162.

Wust, H., Kasper, K. and Reininger, H., 1998. Hybrid number
representation for the fpga-realization of a versatile neuro-

processor, in Proceedings of 24th Euromicro Conference, vol. 2,
pp- 694-701.

Altera Corp., 2007. Quartus II Development Software Handbook, vol. 1-5,
California.

Giizelig, C. and Karamahmut, S., 1994. Recurrent perceptron learning
algorithm for completely stable cellular neural networks, in rd.
IEEE Int. Workshop on Cellular Neural Networks and their Appl.,
pp. 177-182.

Giizelig, C., Karamahmut, S. and Geng, i., 1999. A recurrent perceptron
learning algorithm for cellular neural networks, ARI, 51, 296-3009.

Vanderberghe, L. and Vandewalle, J., 1989. Application of relaxation

methods to the adaptive training of neural networks, in Proc.
Math. Theory of Networks and Systems, MTNS’89, Amsterdam.

Zou, F., Schwartz, S. and Nossek, J.A., 1990. Cellular neural network
design using a learning algorithm, in 1st. IEEE Int. Workshop on
Cellular Neural Networks and their Appl., Amsterdam, pp. 73-81.

97

[66]

67]

68

[69]

[70]

Nossek, J.A., Seiler, G., Roska, T. and o. Chua, L., 1992. Cellular
neural networks: Theory and circuit design, Int. J. of Circuit
Theory and Appl., 20, 533-553.

Nossek, J.A., 1996. Design and learning with cellular neural networks, Int.
J. of Circuit Theory and Appl., 24, 15-24.

Chua, L.O. and Shi, B.E., 1991. Multiple layer cellular neural networks:
A tutorial, in Algorithms and Parallel VLSI Architecture, Eds.
Deprette, F. and der Veen, A.V., vol. A, pp. 137-168, Elsevier.

Chua, L.O. and Thiran, P., 1991. An analytical method for designing
simple cellular neural networks, IFEE Trans. on Circuits and
Syst., 38, 1332-1341.

Kozek, T., Roska, T. and Chua, L.O., 1993. Genetic algorithm for CNN
template learning, IFEE Trans. on Chircuits and Syst., 40, 392—
402.

Schuler, A.J., Nachbar, P., Nossek, J.A. and Chua, L.O., 1992.
Learning state space trajectories in cellular neural networks, in
2nd. IEEE Int. Workshop on Cellular Neural networks and their
Appl., pp. 68-73.

Gizelig, C., 1992. Supervised learning of the steady-state outputs in
generalized cellular neural networks, in 2nd. IEFE Int. Workshop
on Cellular Neural Networks and their Appl., pp. 74-79.

Balsi, M., 1993. Recurrent back-propagation for cellular neural networks,
in Furopean Conf. on Circuit Theory and Design, Losanne-Swiss,
pp. 677-682.

Schuler, A.J., Nachbar, P. and Nossek, J.A., 1993. State-based
backpropagation-through-time for CNNs, in Furopean Conf. on
Circuit Theory and Design, pp. 33-38.

Lu, Z. and Liu, D., 1998. A new synthesis approach for a class of cellular
neural networks based with space-invariant cloning template,
IEEE Trans. on Chircuits and Systems-11, 45, 1601-1605.

Zarandy, A., 1999. The art of CNN template design, Int. J. of Circuit Theory
and Appl., 27, 5-23.

de Souza, S.X., Yalcin, ML.E., Suykens, J.A. and Vandewalle, J., 2004.
Toward CNN chip-specific robustness, IEEE Trans. on Clircuits
and Systems-1, 51, 892-902.

Magnussen, H. and Nossek, J.A., 1992. Towards a learning algorithm
for discrete-time cellular neural networks, in 2nd. IEFE Int.
Workshop on Cellular Neural Networks and their Appl., pp. 80-85.

98

|78] Pineda, F.J., 1988. Generalization of backpropagation to recurrent and
higher order neural networks, in Neural Information Processing
Systems, KEd. Anderson, D.Z., pp. 602611, American Inst. of
Phys., New York.

[79] Balsi, M., 1992. Generalized CNN: Potentials of a CNN with non-uniform
weights, in 2nd IEEFE Int. Workshop on Cellular Neural Networks
and their Appl., pp. 129-134.

[80] Yalgin, M.E. and Giizelis, C., 1996. CNNs with radial basis input function,
in 4th. Int. Workshop on Cellular Neural Networks and their Appl.,
Seville-Spain, pp. 231-236.

[81] Giizelis, C. and Giinsel, B., 1995. Cellular neural networks for early vision,
in European Conf. on Chircuit Theory and Design, pp. 7T85-788.

[82] Giuinsel, B. and Giizelis, C., 1995. Supervised learning of smoothing
parameters in image restoration by regularization under cellular
neural networks framework, in IEEFE Int. Conf. Image Processing,
pp- 470-473.

[83] Hanggi, M. and Moschytz, G., 1999. An exact and direct analytical
method for the design of optimally robust CNN templates, IFEE
Transactions on Circuits and Systems—1I: Fundamental Theory and
Applications, 46.

[84] Hanggi, M. and Moschytz, G., 1999. Analytic and VLSI specific design
of robust CNN templates, Journal of VLSI Signal Processing, 23,
415-427.

[85] Mirzai, B., Reutemann, R., Riiegg, M. and Moschytz, G.S., 1997.
Isolated word recognition utilizing a CNN encoder, in Furopean

Conf. on Circuit Theory and Design, Budapest—Hungary, pp. 615
620.

[86] Shou, Y. and Lin, C., 2004. Image descreening by GA-CNN-based texture
classification, IEEFE Transactions on Circuits and Systems—I:
Fundamental Theory and Applications, 51.

99

CURRICULUM VITAE

Ibrahim Geng was born on 1971 in Hereke. He received the high school diploma
from Ankara Science Lycée in 1988. He graduated from Istanbul Technical
University Electronics and Communicaiton Engineering Department in 1992.
He has the Master of Science Degree on Biomedical Engineering from Istanbul
Technical University. He worked as a research and teaching assistant at Ondokuz
May1s University Electrical and Electronics Engineering Department between
1994 and 2000. He worked as a senior researcher at TUBITAK Marmara Research
Center, Information Technologies Research Institute between 2000 and 2005. He
works as Software Projects Director at C Tech Bil. Tek. San. ve Tic. A.S. since
2005 and currently he is a member of the Executive Board. He has been honoured
by TUBITAK Minir Birsel Foundation with doctoral scholarship.

100

