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ÖZET 
 
 
İKİ KRİTERLİ PERMÜTASYONLU AKIŞ TİPİ ÜRETİM 

ÇİZELGELEMESİ PROBLEMİ İÇİN GENETİK ALGORİTMA 

VE PARÇACIK SÜRÜ OPTİMİZASYONU YÖNTEMLERİNİN 

KARŞILAŞTIRILMASI 
 
 Akış tipi üretim çizelgeleme problemi, üzerinde çok çalışılmış olan 

alanlardan biridir. Problemin çapı büyüdükçe, analitik çözüm bulmak imkansızlaşır 

ve burada sezgisel yaklaşımlar devreye girer. 

 Literatüre bakıldığında, bu problem için genelde tek kriterli yaklaşımlar 

geliştirildiği görülür; toplam yapım zamanı en çok kullanılmış olan kriterdir. Az 

sayıda makine için çok kriterli sezgisel yöntemler bulunsa da, ikiden fazla makine 

için genelde sadece tek kriter dikkate alınmıştır. 

 Bu tez çalışmasında, 50 iş – 20 makine gibi büyük çaplı problemler için, 

toplam yapım zamanı ve en büyük pozitif gecikme zamanı kriterleri birlikte dikkate 

alınmıştır. Bu amaçla, bir Parçacık Sürü Optimizasyonu (PSO), bir de Genetik 

Algoritma (GA) sezgisel yöntemi geliştirilmiş ve standart test problemlerine 

uygulanmıştır. PSO ve GA’nın sadece yalın şekilleri değil, aynı zamanda Değişken 

Komşuluk Arama isimli bir yerel arama yöntemiyle melezlenmiş olan şekilleri de 

denenmiş, ve iki algoritmanın performansları birbirleriyle karşılaştırılmıştır. 

Elde edilen sonuçlara göre, en büyük pozitif gecikme zamanı kriterinin 

ağırlıklı olduğu durumlarda PSO daha iyi sonuç vermiş; toplam yapım zamanı 

kriterinde ise GA daha başarılı olmuştur. İşlem sürelerinde ise, her durumda PSO 

daha çabuk sonuca ulaşmıştır. Yerel arama katılmış melez algoritmalar, yalın 

hallerine göre daha iyi sonuçlara ulaşmış; ancak, işlem süresi ciddi oranda artmıştır. 

 

Anahtar Kelimeler: Akış tipi üretim, sezgisel yaklaşımlar, PSO, GA, çift kriter  

 

Temmuz 2006       Özgür UYSAL 
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ABSTRACT 
 
 
COMPARISON OF GENETIC ALGORITHM AND PARTICLE 

SWARM OPTIMIZATION ALGORITHM FOR BICRITERIA 

PERMUTATION FLOWSHOP SCHEDULING PROBLEM 
 
 Flowshop scheduling problem is a well known research field for fifty years. 

As the problem size gets bigger, an analytical solution becomes impossible. Here, 

heuristic solutions come to the stage. 

 In the literature, generally solutions regarding a single criterion are 

developed; and makespan is the most common objective used. There are some multi 

objective solutions for one or two machines; but, only one criterion is generally used 

for more than two machines. 

 In this thesis, makespan and maximum tardiness criteria are used 

concurrently, for big problem sizes like 50 jobs-20 machines. For this purpose, a 

Particle Swarm Optimization (PSO), and a Genetic Algorithm (GA) is developed and 

applied to standard test problems. 

 Not only the pure versions of PSO and GA, but also their hybrid versions – 

i.e. with a local search called Variable Neighborhood Search (VNS) embedded - are 

tested; and the relative performances of the two algorithms are compared. 

As a result, PSO performed better for the situations where the weight of 

maximum tardiness criterion was greater, while GA surpassed PSO when the 

makespan objective was dominant. Regarding the CPU times, PSO found a solution 

more quickly, for all occasions. The with-VNS versions of the algorithms found 

better solutions compared to the pure versions; but, it took them much longer. 

 

Keywords: Flowshop scheduling, heuristic optimization, PSO, GA, bicriteria 
 
 
 
 
July 2006        Özgür UYSAL 
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CLAIM FOR ORIGINALITY 
 
 
COMPARISON OF GENETIC ALGORITHM AND PARTICLE 

SWARM OPTIMIZATION ALGORITHM FOR BICRITERIA 

PERMUTATION FLOWSHOP SCHEDULING PROBLEM 

 
 Flowshop is a well-known research field for a long time. Genetic Algorithms 

(GA) are used extensively for many years. Particle Swarm Optimization (PSO) is a 

relatively new concept, but the application areas are expanding rapidly. 

 This thesis is one of the few applications of PSO to scheduling. Also, research 

on multiobjective scheduling is very scarce, and this thesis is on bicriteria 

scheduling. 

 To the best of our knowledge, this thesis is the first application of PSO to 

bicriteria flowshop scheduling. Additionally, not only the pure algorithms, but also 

the hybrid versions (i.e. with a local search embedded) of PSO and GA are tested and 

compared. 

So, we hereby declare that this thesis is original, and makes a humble 

contribution to science and technology. 
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I. INTRODUCTION 
 
 

Flowshop scheduling is a well-known research field for many years. A large 

quantity of research has been carried out in this field considering many different 

objectives, “makespan“ being the most popular one. And, almost always a single 

objective has been taken into account; research regarding more than one criterion is 

very scarce. 

Also, as the size of the problem gets bigger, analytical solution becomes 

impossible, and heuristic solutions come into the field. Then, the objective is to find 

a “good” or “near optimal” solution; if the global optima has not been reached 

(Pinedo, 1995). 

In this thesis, the Permutation Flowshop Scheduling Problem (PFSP) is 

considered, where the objective is to minimize a weighted sum of makespan and 

maximum tardiness. The performance of two famous evolutionary algorithms, 

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are compared for 

many different variations, on a standard benchmark suite for PFSP. Finally, the 

results are reported, and compared. 

This first chapter is a general introduction, while the second one gives a 

complete literature review. Then two chapters on GA and PSO follows, where 

detailed information about the philosophy, structure and operation of the two 

algorithms is given.  

The fifth chapter is on the local search algorithm that’s extensively used 

within this study embedded to both GA and PSO, namely Variable Neigborhood 

Search (VNS). The sixth chapter is the experimentation chapter, and focuses on the 

details of my study. The model, parameters, computing environment are listed, and 

the overall results are given, in terms of both the solution quality and the computing 

time. 

The last chapter includes the concluding remarks for my study, and the 

interpretation of the comparison results of GA and PSO. References of the whole 
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material used in the study are listed; and, detailed tables about the computational 

results are placed in the Appendix. 

 
I.1. SCHEDULING 
 

Scheduling is a decision-making process that plays an important role in most 

manufacturing and service industries. It is used in procurement and production, in 

transportation and distribution, and in information processing and communication. 

The scheduling function in a company uses mathematical techniques or heuristic 

methods to allocate limited resources to the processing of tasks. A proper allocation 

of resources enables the company to optimize its objectives and achieve its goals.  

Scheduling is an important aspect of operational level shop floor decisions. 

Its importance and relevance to industry has prompted researchers to study it from 

different perspectives over the past three decades. Scheduling literature ranges from 

deterministic case to the stochastic case, from single machine problem to the multiple 

machine problem and from static to dynamic problem. Research on multiple and 

bicriteria scheduling has been scarce, especially when compared to research in single 

criterion scheduling (Nagar et al., 1995). 

 

I.2. FLOWSHOP 
 

A flowshop consists of n jobs that must be processed on m machines in the 

same machine order. The scheduling problem in flowshops is then finding a 

sequence of jobs for each machine according to certain performance measure(s).  

There are several assumptions that are commonly made regarding the 

flowshop scheduling problem (Baker, 1974): 

• Each job i can be processed at most on one machine j at the same time.  

• Each machine m can process only one job i at a time.  

• No preemption is allowed, i.e. the processing of a job i on a machine j cannot 

be interrupted.  

• All jobs are independent and are available for processing at time 0.  

• The set-up times of the jobs on machines are negligible and therefore can be 

ignored.  

• The machines are continuously available.  
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• In-process inventory is allowed. If the next machine on the sequence needed 

by a job is not available, the job can wait and joins the queue at that machine. 

 

There are (n!)m different alternatives for ordering jobs on machines. In most 

research, however, only a subset of these alternatives is considered under the 

assumption that the operating sequences of the jobs are the same on every machine. 

In this case, the number of alternatives reduces to n!, and the schedules that satisfy 

this assumption are called permutation schedules. 

Although permutation schedules do not always include an optimal schedule, 

the importance of permutation schedules cannot be underestimated. This is because 

only permutation schedules are feasible in many real situations and it is easier to 

devise a method to find a good permutation schedule, than a method to find a good 

schedule which is not a permutation schedule. 

Since it is unlikely that an efficient method can be found for solving the 

flowshop problem optimally, various heuristic methods have been developed for the 

problem (Kim, 1993). 

I.3. GENETIC ALGORITHMS 
 

Genetic algorithm (GA) is a well-known and mostly used evolutionary 

computation technique, which was developed by John Holland and his PhD students 

(Holland, 1975). The idea was inspired from Darwin’s natural selection theorem 

which is based on the idea of the survival of the fittest.  

Genetic algorithms have an initial population composed of randomly generated 

solutions. There are three stochastic operators such as selection, crossover and 

mutation which are applied to the set of solutions iteratively to produce hopefully 

better solutions. In selection, most fit members survive and the least fit are 

eliminated. Differentiation is attained through crossover and mutation. There is a 

probability for crossover and mutation. Beasley give detailed information about the 

fundamental and advanced aspects of GAs (Beasley et al., 1993). 

I.4. PARTICLE SWARM OPTIMIZATION 
 

Particle Swarm Optimization (PSO) is one of the latest evolutionary 

optimization methods. It is a population-based technique, which was originally 
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developed by Kennedy & Eberhart in 1995. PSO is based on the metaphor of social 

interaction and communication, such as bird flocking and fish schooling.  

Since it is population-based and evolutionary in nature, the members in a 

PSO algorithm tend to follow the leader of the group, i.e., the one with the best 

performance.   

PSO shares many common points with GA. Both algorithms start with a 

group of a randomly generated population, both have fitness values to evaluate the 

population. Both update the population and search for the optimium with random 

techniques. Both systems do not guarantee success.  

But, PSO is distinctly different from other evolutionary-type methods in a 

way that it does not use the filtering operation (such as crossover and/or mutation) 

and the members of the entire population are maintained through the search 

procedure so that information is socially shared among individuals to direct the 

search towards the best position in the search space.  

PSO can be easily implemented and it is computationally inexpensive, since 

its memory and CPU speed requirements are low (Eberhart et al., 1996). Moreover, it 

does not require gradient information of the objective function under consideration, 

but only its values, and it uses only primitive mathematical operators. PSO has been 

proved to be an efficient method for many global optimization problems and in some 

cases it does not suffer the difficulties encountered by other evolutionary 

computation techniques (Eberhart and Kennedy, 1995). 

In evolutionary computation techniques, three main operators are involved: 

the recombination, the mutation and the selection operators. 

PSO does not have a direct recombination operator. However, the stochastic 

acceleration of a particle towards its previous best position, as well as towards the 

best particle of the swarm (or towards the best in its neighborhood in the local 

version), resembles the recombination procedure in evolutionary computation 

(Eberhart and Shi, 1998; Rechenberg, 1994; Schwefel, 1995).  

In a PSO algorithm, each member is called “particle”, and each particle flies 

around in the multi-dimensional search space with a velocity, which is constantly 

updated by the particle’s own experience and the experience of the particle’s 

neighbors or the experience of the whole swarm, instead of being carried from fitness 

dependent selected “parents” to descendants as in GAs. 
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Moreover, PSO’s directional position updating operation resembles mutation 

of GA, with a kind of memory built in. This mutation-like procedure is 

multidirectional both in PSO and GA, and it includes control of the mutation’s 

severity, utilizing factors such as Vmax and κ.  

PSO is actually the only evolutionary algorithm that does not use the 

“survival of the fittest” concept. It does not utilize a direct selection function. Thus, 

particles with lower fitness can survive during the optimization and potentially visit 

any point of the search space (Eberhart and Shi, 1998). 

 

The original PSO algorithm is described as below: 
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where c1 and c2 are positive constants, and r1 and r2 are two random 

functions in the range [0,1];  

Equation (1) is the equation describing the flying trajectory of a population of 

particles. Equation (1a) describes how the velocity is dynamically updated and 

Equation (1b) the position update of the “flying” particles.  

Equation (1a) consists of three parts. The first part is the “momentum” part. 

The velocity can’t be changed abruptly. It is changed from the current velocity. The 

second part is the “cognitive” part which represents private thinking of itself - 

learning from its own flying experience. The third part is the “social” part which 

represents the collaboration among particles - learning from group flying experience 

(Shi and Eberhart, 1998b). 

Two variants of the PSO algorithm are developed, namely PSO with a local 

neighborhood, and PSO with a global neighborhood. According to the global 

neighborhood, each particle moves towards its best previous position and towards the 

best particle in the whole swarm, called gbest model. On the other hand, according to 

the local variant so called lbest, each particle moves towards its best previous 

position and towards the best particle in its restricted neighborhood (Kennedy et al., 

2001). Kennedy and Eberhart also developed the discrete binary version of the PSO 

(Kennedy and Eberhart, 1997). 
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Although the applications of PSO on combinatorial optimization problems 

are still limited, PSO has its merit in its simple concept and low computational cost.  

Finally, we can say that PSO is a powerful method for optimizing continuous 

functions. However, it is not sufficient for solving discrete cases. (Deroussi et al., 

2004) showed the Discrete Particle Swarm Optimizer (DPSO) to solve the 

combinatorial optimization problems. He combines local search and path relinking to 

DPSO and applies it to the well-known Traveling Salesman Problem. The proposed 

algorithm competes with the best iterated local search methods.  
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II. LITERATURE SURVEY 
 

 
Since Johnson’s pioneering work (Johnson, 1954) on the two machine regular 

permutation flowshop, a wealth of research has been conducted in both exact and 

heuristic methods for the PFSP. Due to the NP-completeness of the PFSP (Garey et 

al., 1976), researchers have mainly focused on the development of effective 

heuristics and metaheuristics (Ruiz et al, 2004). 

The majority of research on scheduling problems addresses only a single 

criterion while the majority of real-life problems require the decision maker to 

consider more than a single criterion before arriving at a decision. In practice, 

however, quality is a multidimensional notion.  

A firm, for instance, judges a production scheme on the basis of a number of 

criteria, for example, work-in-process inventories and observance of due dates. If 

only one criterion is taken into account, then the outcome is likely to be unbalanced, 

no matter what criterion is considered. 

If everything is set on keeping work-in-process inventories low, then some 

products are likely to be completed far beyond their due dates, whereas, if the main 

goal is to keep the customers satisfied by observing due dates, then the work-in 

process inventories are likely to be large.  

In order to reach an acceptable compromise, one has to measure the quality of 

a solution on all important criteria. This notice has led to the development of the area 

of multicriteria scheduling (Hoogeveen, 2005). 

Makespan (maximum completion time) and maximum tardiness are among 

the most commonly used criteria in the flowshop scheduling research. Makespan is a 

measure of system utilization while maximum tardiness is a measure of performance 

in meeting customer due dates.  

Therefore, it is not surprising that both objectives, particularly makespan, 

have been subject of research during the last decades. Since both problems 

(minimizing makespan as well as minimising tardiness in permutation flowshop 

scheduling) are NP-hard (see e.g. (T’kindt and Billaut, 2002) for a formal proof), 
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most of the research effort concentrates on finding heuristics that allow obtaining 

good solutions in a relatively short period of time. 

With respect to makespan minimisation, the NEH heuristic (Nawaz et al., 

1983) is perhaps the most significant contribution, as it is considered to be the most 

efficient constructive heuristic for the problem (see e.g. the experimental results of 

(Taillard, 1990) or (Framinan et al., 2003)). NEH heuristic is based on the idea that 

jobs with high processing times on all the machines should be scheduled as early in 

the sequence as possible (Ruiz and Maroto, 2005). 

The makespan criterion for m-machine flowshop has been addressed in the 

literature by many other researchers including (Chu et al., 1995), (Zegordi et al., 

1995), and (Riane et al., 1998). Ruiz and Maroto present a review and evaluation of 

heuristics for the PFS problem with the makespan criterion. They propose a 

comparison of 25 methods, ranging from the classical Johnson’s algorithm or 

dispatching rules to the most recent metaheuristics, including tabu search, simulated 

annealing, genetic algorithms, iterated local search and hybrid techniques (Ruiz and 

Maroto, 2005). 

The tardiness criterion has also been addressed in the literature by many 

researchers, e.g. (Townsend, 1977), (Kim, 1993), (Kim, 1995), (Srinivasaraghavan 

and Rajendran, 1998) and Armentano and Ronconi (1999). 

With respect to minimisation of maximum tardiness in flowshops, some 

research focused on finding exact solutions for the problem (e.g. (Townsend, 1977)). 

The research on multiple criteria is mainly focused on the single machine 

scheduling problem, see (Nagar et al., 1995). The reason for this is that the 

scheduling problem with multiple-machine is difficult even with a single criterion. 

Therefore, considering more than a single criterion makes the multiple-machine 

problem even more difficult to solve. 

To name a few papers on bicriteria scheduling, Serifoglu and Ulusoy handle a 

two machine PFS Problem and compare the relative performances of three Branch & 

Bound approaches and two flowshop heuristics (Serifoglu and Ulusoy, 1998); while 

Köksalan and Keha use GA for single machine scheduling and consider two 

bicriteria scheduling problems: minimizing flowtime and number of tardy jobs, and 

minimizing flowtime and maximum earliness (Köksalan and Keha, 2003). T’kindt et 

al. consider the 2-machine flowshop scheduling problem with the objective of 
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minimizing both the total completion time and makespan criteria. They propose an 

Ant Colony Optimization approach to solve the problem (T’kindt et al., 2002). 

A survey of the literature has revealed that the m-machine problem with the 

objectives of Cmax and Tmax is addressed only by (Daniels and Chambers, 1990), 

(Chakravarthy and Rajendran, 1999), (Allahverdi, 2004) and (Arroyo and 

Armentano, 2005).  

First, I’ll review the Nawaz, Enscore and Ham (NEH) heuristic for the 

makespan minimization, without considering due dates. NEH heuristic is included in 

the review, since it is employed in most of the main heuristics for the problem under 

consideration. 

The heuristic by (Nawaz et al., 1983) consists of two phases: First the jobs are 

ranked according to the descending sum of their processing times. In a second phase, 

a solution is constructed in the following manner: Starting from a partial sequence 

constructed by taking the first job of the rank, then, for k = 2, ..., n, k partial 

sequences are constructed by inserting the kth job of the rank in all k slots of the 

partial sequence. These k partial sequences are evaluated with respect to  makespan 

and the one obtaining the lowest value is retained as partial sequence for step k+1. 

(Daniels and Chambers, 1990) suggest a constructive heuristic in order to find 

a set of heuristically efficient solutions to the bi-criteria problem of minimising Cmax 

and Tmax. The heuristic, in loop k, is based on considering the set of so far non-

scheduled jobs that may occupy a certain position in the final schedule without 

violating a given maximum allowed tardiness. This maximum tardiness allowed is 

initially set to the tardiness of the sequence resulting from applying the NEH 

heuristic to the problem, and then it is gradually decreased until a feasible solution is 

found.  

(Chakravarthy and Rajendran, 1999) address the same problem to minimize 

the objective function value subject to the constraint that maximum tardiness is not 

greater than a given value. Obviously, the problem under consideration is a special 

case; and for that problem, the authors propose a fast local search algorithm based on 

the SA algorithm (Kirkpatrick et al., 1983).  

Allahverdi is another researcher who takes into account the NEH heuristic, 

which was originally developed for the objective of makespan. It is modified for the 

two objectives considered, which he calles modified NEH or MNEH in his paper. 

Allahverdi considers the same problem addressed by Daniels and Chambers, and 
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Chakravarthy and Rajendran. But, he also considers the problem without the 

constraint on the maximum tardiness and addresses the m-machine flowshop 

problem with the objective of minimizing a weighted sum of the two criteria 

(Allahverdi, 2004). 

Arroyo and Armentano propose a genetic local search algorithm with features 

such as preservation of dispersion in the population, elitism, and use of a parallel 

multi-objective local search so as to intensify the search in distinct regions. The 

algorithm is applied to the flowshop scheduling problem for the following two pairs 

of objectives: (i) makespan and maximum tardiness; (ii) makespan and total tardiness 

(Arroyo and Armentano, 2005). 

Metaheuristics, such as simulated annealing, genetic algorithms, tabu search, 

ant colony optimization, scatter search, iterated local search, and particle swarm 

optimization have received considerable interest in the fields of applied artificial 

intelligence and combinatorial optimization. Plenty of hard problems in a huge 

variety of areas, including bioinformatics, logistics, engineering, business, etc., have 

been tackled successfully with metaheuristic approaches. For many problems, the 

resulting algorithms are considered to be the state-of-the-art methods. 

The heuristic optimization algorithms presented in the literature can be 

classifies as constructive methods or neighborhood search methods based on local 

search. Some applications of constructive algorithms are presented in (Campbell et 

al, 1970), (Dannenbring, 1977), (Nawaz et al., 1983), (Koulamas, 1998), (Framinan 

et al., 2002) and (Framinan and Leisten, 2003). To achieve a better solution quality, 

modern heuristics based on the neighborhood search has been presented for the PFSP 

such as Simulated Annealing in (Osman and Potts, 1989) and (Ogbu and Smith, 

1990), Tabu Search in (Nowicki and Smutnicki, 1996), (Reeves, 1993) and (Taillard, 

1990), Genetic Algorithms in (Reeves, 1995) and (Reeves and Yamada, 1998), and 

Ant Colony Optimization in (Stutzle, 1998). 

Starkweather et al. compared six crossover operators over Traveling Salesman 

Problem and a warehouse scheduling problem found that the effectiveness of the 

sequencing operators changes depending on the problem domain (Starkweather, 

1991).  

Whitley presents the strengths and weaknesses of evolutionary algorithms 

covering genetic algorithms, evolution strategies, genetic programming and 

evolutionary programming. He gives more experimental forms of GAs including the 
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parallel island models and parallel cellular genetic algorithms in his articles. He 

reviews the theoretical foundations of GA (Whitley, 2002). 

Genetic algorithms have a wide range of applications ranging from 

optimization, design and machine learning problems to scheduling problems and etc.  

The success in solving scheduling applications mostly depends on the choice of 

the search algorithm. Choosing an appropriate technique can be possible in two 

ways: the generality of the algorithm can be examined or a comparison can be done 

after applying many algorithms to the scheduling problem.  

In this century, industrial robots perform many tasks. The aim of using them is 

to reduce the cycle time and to obtain high productivity. An industrial robot has 

constant finishing time for each operation, but it is possible to reduce the makespan 

with an optimal sequence of tasks. Zacharia and Aspragathos applied GA to cope 

with this problem (Zacharia and Aspragathos, 2005). 

It is significant to arrange an optimal curriculum schedule for every school. 

This is not only required for educational goals, but also for effectively utilizing the 

faculty resources. This is a rather difficult task and GA has a great reputation in 

solving this problem. There are many articles written on this topic (Wang, 2005). 

Chan and Chung emphasizes the trade-off between the earliness on time and 

the tardiness situations for a distribution network. They develop a multi-criterion 

genetic optimization methodology.  The proposed algorithm combines analytical 

hierarchy process, a multi-criterion decision making tool, with GAs (Chan and 

Chung, 2004). 

Whitley used GAs for setting weights in neural networks (NN). The training 

data were used to estimate the output behavior of NN. It is understood that 

combining GA with NN gives promising results (Whitley, 1995).  

GA has a wide usage in scheduling job shops and flowshops and they give 

rather good results for both kinds of problems. There are many articles available in 

literature. Generally objective function is set to minimize the make span or minimize 

the earliness/tardiness in these articles. In Leu and Hwang, a resource constrained 

flowshop scheduling model is used to solve a mixed precast production problem. 

Since precast production has many tasks which are done in the same order through 

all tasks, it is as flowshop process (Leu and Hwang, 2002). 

Good properties of search methods are generally integrated to the algorithms, 

so as to find better solutions in a reasonable amount of time. This kind of algorithms 
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are called as hybrid algorithms. In Kim, a hybrid GA was combined with fuzzy logic 

for solving resource-constrained project scheduling (Kim et al, 2003). Nearchou 

added some features of GA and local search to his Simulated Annealing (SA) 

algorithm for finding an optimal scheduling for a flowshop problem with the 

makespan criterion (Nearchou, 2004). The hybrid GA was successfully applied to 

permutation flowshops for solving sequence-dependent set-up times (Ruiz et al., 

2004). The parameters were fine tuned by using design of experiments approach. 

Hino et al. combined the best characteristics of genetic algorithms and tabu search to 

solve the earliness/tardiness problem in a single machine environment (Hino et al., 

2005).  

Since PSO was first introduced by Kennedy and Eberhart in 1995, it has been 

successfully applied to optimize various continuous nonlinear functions. Some of the 

wide application areas of PSO are, power and voltage control (Yoshida et al., 2000), 

neural network training (Van den Bergh and Engelbecht, 2000), mass-spring system 

(Brandstatter and Baumgartner, 2002), and supplier selection and ordering problem 

(Yeh, 2003). More literature can be found in (Kennedy et al., 2001). 

PSO has some tuning parameters which influence the performance of the 

algorithm; the exploration and exploitation tradeoff. In the work of Eberhart, 

Simpson & Dobbins, it was realized that some of the parameters were redundant, and 

they were removed from the original algorithm (Eberhart et al., 1996).  

Trelea gives some insights about parameter selection in PSO. According to the 

article, some parameters can be discarded; since they add no value to the algorithm. 

Trelea analyzes the deterministic PSO algorithm for its dynamic behavior and 

convergence property (Trelea, 2003).  

The velocities of particles’ on each dimension are restricted to Vmax. A larger 

Vmax facilitates global exploration, while smaller Vmax facilitates local exploitation. 

Shi and Eberhart added the inertia weight as a constant to the velocity in order to 

control the exploration and exploitation (Shi and Eberhart, 1998a). The use of inertia 

weight improved the performance of the algorithm in many applications.  

Chatterjee & Siarry proposed a new variation of PSO which introduced a 

nonlinear inertia weight for the particle’s old velocity in PSO equations and it 

improved the convergence as well. It also presented a way for parameter selection 

and compared the results with other parameter selection methods (Chatterjee and 

Siarry, 2006). 
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Clerc introduced the constriction factor (K) to PSO (Clerc, 1999). It controls, 

constrains velocities and thus insures convergence. The constriction factor negated 

the need for Vmax. 

Eberhart and Shi demonstrated that although previous evolutionary paradigms 

can generally solve static problems, PSO can successfully optimize dynamic systems 

(Eberhart and Shi, 2001). It can not be known when a larger or a smaller inertia 

weight is needed. Therefore, that value is set to a dynamic value which starts from 

0.9 and descends linearly till 0.4.  

We can see many applications of PSO algorithm in the literature. The first 

application was about the network architecture and is available in the article of 

(Kennedy et al., 2001). Eberhart & Hu evolved the neural network with PSO in order 

to diagnose the human tremor (Eberhart & Hu, 1999). 

When numerically controlled machines emerged, the productivity was far from 

being optimal. As an example to optimize these systems, the metal removal operation 

was investigated by Tandon (Tandon et al, 2002). 

(Pavlidis et al., 2005) compared PSO with other computational intelligence 

methods in finding the Nash equilibrium in game theory.  

(Chang et al., 2001) research constitutes an alternative solution solving scheme 

for resource-constrained project scheduling problem.  

(Ghoshal, 2004) compared some metaheuristic techniques such as PSO, a 

hybrid PSO and a hybrid GA-SA to optimize the proportional-integral derivative 

gains, which are used in multi-area thermal generating plants. He found PSO to be 

more optimal and it is achieved in least time.  

Other applications include, power and voltage control, ingredient mix 

optimization, system design, multi-objective optimization, pattern recognition, 

biological system modeling, signal processing, robotic applications, decision-

making, simulation,…etc.  

The evolutionary computation paradigms and PSO algorithm were compared in 

many articles (Eberhart and Shi, 2001), (Angeline, 1998) and (Kennedy and Spears, 

1998). In the study of Eberhart and Shi, the operators of each paradigm are reviewed. 

The objective of comparison is not to determine which algorithm is better; but to 

demonstrate how each of them works, and how can they be combined to improve the 

performance. Some of the features of GA were incorporated to PSO.  
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(Carlisle & Dozier, 2000) wanted to define a general purpose PSO swarm, to 

be used as a base swarm description. In another study, they showed a method for 

adapting the particle swarm optimizer to dynamic environments. The particle resets 

its previous best record whenever the environment changes and forgets about its 

experience to that point. The type of resetting changes based on the iteration count or 

the magnitude of change in the environment. It is concluded that a more gradual reset 

throughout the population might provide better convergence.  

(Løvbjerg et al., 2001) combined PSO with genetic algorithm concepts and 

evaluated if it was competitive on function optimization.  They employed the 

concepts of breeding and subpopulation for velocity and position updates. The 

method was heavy computationally due to the additional burden of breeding and 

subpopulation.  

Like many other evolutionary and classical minimization methods, PSO suffers 

from being trapped at local optima. Another new technique to alleviate the local 

optima problem was introduced by (Parsopoulos and Vrahatis, 2002). The method is 

called Stretching Technique. It consists of two-stage objective function. The method 

is applied after a local minimum has been found. The local minima were eliminated 

while the global minimum is preserved in the method.  

Very recently, (Ruiz and Stutzle, 2006) developed an iterative greedy 

algorithm with and without a local search. To compare the performance of the IG 

algorithms to well-known techniques from the literature, Ruiz and Stutzle re-

implemented 12 classical or recent, well performing algorithms: NEH heuristic of 

(Nawaz et. al., 1983) with the improvements of (Taillard, 1990), the simulated 

annealing algorithm of (Osman and Potts, 1989), the tabu search algorithm of 

(Widmer and Hertz, 1989), the pure genetic algorithm of (Chen et. al. , 1995) and 

(Reeves et al., 1998), the hybrid genetic algorithm with local search of (Murata et al., 

1996), two recent genetic algorithms of (Ruiz et. al., 2006), the genetic algorithm of 

(Aldowasian and Allahverdi, 2003), the iterated local search of (Stutzle, 1998); and 

two recent ant colony algorithms of (Rajendran and Ziegler, 2004).  

(Liao et al. 2006) present a discrete version of PSO and apply it to the same 

benchmark suite that I used in my thesis by (Demirkol et al, 1998) for the total flow 

time criterion. 
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III. GENETIC ALGORITHMS 
 
 

III.1. AN OVERVIEW 
 

Genetic algorithms (GA) belong to the class of metaheuristics. It was firstly 

introduced by John Holland in 1960. The idea was inspired from a biological issue 

which is known to be Darwin’s evolution theorem. The evolutionary ideas of the 

natural selection and genetics constitute the basics of GA. The concepts used in the 

algorithm are same as the ones which are used in biology, e.g., the genes on each 

chromosome correspond to variables of each solution. In the algorithm, the survival 

of the fittest among individuals over consecutive generations is simulated when a 

problem is being solved.  

GAs are good at solving continuous and discrete combinatorial problems. The 

probability of getting 'stuck' at local optima is less than the gradient search methods. 

But GAs are computationally expensive. It is simple to deal with them; since very 

good results can be obtained for different kind of problems, even when a little change 

is done on the existing algorithm.  

Whereas most stochastic search methods start with a single solution, genetic 

algorithms start with a population of solutions. An initial population is formed 

randomly or by means of a heuristic algorithm. Solutions are encoded in a form, 

which are called chromosomes. Each chromosome shows a complete solution to a 

problem. They are each assigned to a fitness score which represents the ability of 

chromosomes to compete for mating and staying alive.  

Parents are picked up to mate according to their fitness values. The fitter 

chromosomes produce more offspring than the less fit chromosomes. The solution 

set is then imposed to crossover, mutation and inversion. These stochastic operators 

are required for diversifying the solution pool and especially getting better solutions. 

Since the size of the population should be maintained statically, some weak 

individuals in the population die, and better solutions thrive to stay alive. The cycle 
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continues until some certain number of iterations is executed or once the population 

converges. Convergence is defined as the progression of solutions towards 

uniformity. Similarity among fitness values increases as the population converges to 

the best fitness value obtained so far (Uçar, 2005). 

 

 

Figure III-1 Change in the distribution of individuals with no. of generations (Uçar, 2005) 

 

III.2. THE PSEUDOCODE OF THE ALGORITHM 
 
Genetic Algorithm ( ) 

{ 

Initialize population P of size λ  /* a randomly generated population*/ 

Evaluate λ individuals in P   /*check the fitness of each 

chromosome*/ 

While termination criteria not satisfied do 

{ Select 2* µ individuals from P 

Crossover individuals to produce µ offspring 

Mutate some individuals in µ 

Add µ offspring to λ individuals in P 

Evaluate (λ + µ) individuals in P 

Distribution of Individuals in Generation 0 

Distribution of Individuals in Generation N 
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Select λ individuals from (λ + µ) individuals in P } 

End Genetic Algorithm ( )} 

III.3. REPRESENTATION 
 

Any representation can be used for chromosomes such as; strings of bits, 

arrays, trees, lists, or any other object. Mutation and crossover operators are defined 

according to the representation used. For example, for permutation flow shop 

sequencing problem, each gene on a chromosome is represented as a list of the job 

numbers; e.g., in chromosome {9,2,4,1,5,7,3,6,10,8}, the numbers indicate the 

operating sequence of jobs on each n machines from 1 to n. In many application, 

string representation is used; e.g., {0,1,0,0,1,1,1} 

A schema helps determining the similarities among chromosomes. The similar 

section of the chromosome is written neatly and the rest part is denoted with *. e.g., 

the sequences of genes on those two chromosomes are similar, which are to be {1, 4, 

6, 3, 2, 5} and {5, 1, 6, 3, 2, 4} 

In these two chromosomes, it is obviously seen that there is a similarity of genes 

at certain locations. The schema of can be represented as {*,*, 6, 3, 2, *} 

As the number of schemas increases, the solution pool moves to uniformity; 

namely it converges. This means that the fitness of the chromosomes begins to 

stabilize, which helps the algorithm stop running.  

Schema theorem has some formulations. With the calculation of the formulas, it 

helps to provide information about how GA works and to calculate the effect of 

selection, crossover and mutation.  

III.4. SELECTION 
 

Selection method is used for two objectives; for determining the mates to 

reproduce and for determining the fitter chromosomes which will be maintained in 

the next generation.  

This method has a magnificent effect on the results. If the selector picks only 

the best individual, then the population will quickly converge to that best value. The 

selector should also pick individuals that are not so good, but have hopefully good 

genetic material to avoid from early convergence.  
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Selection is done according to the fitness scores. By using fitness scores, fitter 

chromosomes are chosen to reproduce and weaker ones are eliminated and hence the 

population is differentiated and diversified.  There are many selection methods 

available. 

III.4.1. Roulette Wheel Selection 
 

Individuals have 
∑

i

if
if

)(
)(  probability to be chosen whereas f(i) denotes the 

fitness of that certain chromosome and ∑f(i) denotes the sum of the fitness of each 

chromosome in the population. The proportion is compared with a randomly 

generated number and the chromosomes are selected, whose fitness proportion is 

close to the generated value.  

III.4.2. Ranking Selection 
The fitness of the chromosomes is calculated and the values are sorted in 

descending ordered. Then, the selection is done downward. 

III.4.3. Elitist Selection 
Few of the best individuals are directly inserted to the mating pool. Another 

selection method is used for the rest of the pool.  

III.4.4. Tournament Selection 
In this selection method, the best being solution is picked up among k number 

of selected individuals and it is inserted to the mating pool. The best results are 

attained when k equals 2.  

III.4.5. Steady-State Selection  
Different selection strategies can be followed for both mating and replacement. 

e.g., Fitness of parents can be taken into account during mating whereas replacement 

can be done randomly or the selection can be done according to fitness for both 

stages, etc.  

III.4.6. Stochastic Universal Selection 
All individuals have the same probability to be selected.  
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III.5. CROSSOVER 
 

In crossover, two individuals, called parents combine to produce two more 

individuals which are called the children. One chromosome exchanges its subpart 

with the latter, which is a mimicking of a biological recombination. But there are 

also asexual and single-child type crossovers. Crossover enables to move to 

promising regions of the solution space.  

The main objective of crossover is to transfer the good characteristics of 

previous generation to the subsequent generation. Therefore, it matches generally 

good parents to produce better solutions.  

III.5.1. Single Point Crossover 
Parent chromosomes are broken from the same point and the alleles after that 

point are swapped between parents, e.g., let’s say parent {a1,a2,a3,a4,a5,a6,a7} and 

{b1,b2,b3,b4,b5,b6,b7} chromosomes are broken after the third point. Then the 

produced chromosomes will be {a1,a2,a3,b4,b5,b6,b7} and {b1,b2,b3,a4,a5,a6,a7} 

Goldberg [103] describes another single point crossover which performs well 

in flow shop sequencing problems. Both parents are broken randomly at a point. 

 
As seen in the first offspring, the alleles 2 and 1 are erased from the second 

parent and the rest are directly replaced beyond the breaking point of the first parent 

without changing the sequence the second parent. The second offspring is 

reproduced in the same way.  

2-point, 3- point and multi-point crossover have been developed from 1-point 

crossover. 

III.5.2. Cycle Crossover (CX) 
A single crossover point is selected. From starting at this point, elements from 

one parent is inherited to the offspring, as soon as the cycle is completed, the values 

are inherited from the other parent. Let’s explain it on the example, 

P1     2 1 3 4 5 6 7 
* 

P2     4 3 6 2 7 1 5 

O1   2 1 4 3 6 7 5 
      

O2   4 3 2 1 5 6 7 
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Third point is selected as the crossover point. 4 is inherited from parent 1. We 

move on the second parent until we see 4, and inherit the across value to the 

offspring. This continues until a cycle is completed. The cycle is completed at 

location 3. After than the remaining loci is filled with the elements from the second 

parent. 

III.5.3. Order Crossover (OX) 
This is a 2-point crossover operator. The points are randomly selected. The 

offspring inherits the alleles between the selected points from one of the parents. The 

remaining locations are filled with the alleles from the alternate parent. The alleles 

are inherited from the beginning allele to the end if they don’t appear in the offspring 

so far. Filling of offspring loci begins beyond the second crossover point. 

 

III.5.4. Partially Mapped Crossover (PMX) 
Two points are selected randomly. The elements among the points are inherited 

from one of the parents. Other unfilled loci are inherited from the alternate parent.  

 
At this moment, if we met in the alternate parent the previously inherited 

elements, they are replaced with the other elements from the previous parent across 

them.  

In the example, 4 duplicates; so the offspring is mutated and the second locus 

of the child chromosome is changed with 5; since 5 hasn’t appeared in the sequence. 

So the new sequence is:  

Parent 1  7 3 4 2 1 5 6 
Crossover points       *       * 
Parent 2  3 1 5 2 4 7 6 
Offspring  3 4 4 2 1 7 6 

Parent 1  7 3  4 2 1  5 6 
Crossover points        *        * 
Parent 2  3 1  5 2 4  7 6 
Offspring  1 6  5 2 4  7 3  

Mutated offspring      3 5 4 2 1 7 6 

 Parent 1  7 3 4 2 1 5 6 
Crossover points       *        
Parent 2  3 1 5 2 4 7 6 
Offspring  7 3 4 2 1 5 6   
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III.5.5. Position-Based Crossover (PBX) 
Some points are selected randomly and the alleles at these points are inherited 

from one of the parents to the offspring. The remaining gene loci are inherited from 

the latter parent. To avoid from the duplication of alleles, the gene values aligned 

with the crossover points should be replaced with the alleles across the points.  

 
As seen in the representation above, the allele 5 duplicates and 3, is not 

available in the offspring sequence. Let’s do a mutation on the reproduced 

chromosome:  

 

III.6. MUTATION 
 

Mutation changes the values of genes at some locations in the chromosome. It 

helps randomizing the search with a very low probability and finds solutions that 

cannot be encountered by crossover. It enables movement in the search space and 

restores lost information to the population.  

Mutation has less impact near the beginning of a run, and more near the end 

while the crossover is more effective at the beginning and less at the end.  

Min types of mutation operators are listed below: 

III.6.1. Inversion 
The genes in a randomly selected part of a chromosome is written in inverse 

sequence: 

Chromosome 1 2 3 4 5 6 7 8 9 
          
After Mutation  1 2 6 5 4 3 7 8 9 

Figure III-2 Inversion mutation scheme (Şevkli, 2005) 

 

Parent 1  7 3 4 2 1 5 6 
Crossover points   *    *       * 
Parent 2  3 1 5 2 4 7 6 
Offspring  7 1 4 2 5 5 6  

Mutated offspring 7 1 4 2 3 5 6  
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III.6.2. Insertion 
The gene in a randomly chosen position of a chromosome is inserted into another 

randomly selected position within the chromosome: 

Chromosome 1 2 3 4 5 6 7 8 9 
          
After Mutation 1 2 6 3 4 5 7 8 9 

Figure III-3 Insertion mutation scheme (Şevkli, 2005) 

 
III.6.3. Exchange 
Two randomly selected genes in a chromosome are exchanged: 

Chromosome 1 2 3 4 5 6 7 8 9 
          
After Mutation 1 2 6 4 5 3 7 8 9 

Figure III-4 Exchange mutation scheme (Şevkli, 2005) 

 

III.7. TERMINATION CRITERIA 
 

The algorithm is terminated whenever a certain number of iterations are 

reached or the population converges. Each iteration is called a generation. Typically 

a GA can be iterated from 50 to 500 or more generations.  
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IV. PARTICLE SWARM OPTIMIZATION 
 

IV.1. AN OVERVIEW 
 

Particle Swarm Optimization (PSO) is a population based metaheuristic which 

was developed by Eberhart and Kennedy in 1995 and introduced as an alternative to 

Genetic Algorithms (GA). It was inspired by the social behavior of flocking 

organisms such as bird swarms and fish shoals, which benefit from their previous 

experience or from the experience of the previous generation while they are 

searching for food and mate.  

PSO is a rather successful method for the continuous optimization problems; 

however it is very difficult to adapt it for the discrete case. Researches were already 

done for the adaptation of the algorithm for the discrete case. These approaches can 

solve the combinatorial problems to some extent.  

The PSO paradigm resembles to GA at some points. The initialization of the 

algorithm is done with a population of random solutions. It searches the optimal 

value by updating generations. Solutions are not generated by the crossover and 

mutation operators as in GAs. Instead, in PSO new generations are formed by means 

of velocity updates. The potential solutions, called particles, fly through the multi-

dimensional search space, and follow the current optimum particles. Execution of the 

algorithm is terminated as soon as the maximum number of iteration is or maximum 

CPU time exceeded.  

There is no replacement in PSO, all particles are kept in the population during 

the whole run. PSO does not incorporate the survival of the fittest, whereas all other 

evolutionary algorithms do. 

Each particle has a velocity. Particles are carried to new positions with this 

velocity. The fitness values of particles are evaluated according to their positions at 

each iteration. The velocity, position and fitness of a particle are stored in a short 

term memory. The best position and fitness values of the particle are stored in the 

long term memory; which is named by Kennedy & Eberhart as autobiographical 

memory. The best experience stored in this memory is named as personal best; pbest. 
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The particle with the best fitness in the neighborhood is named as the local best; lbest 

and the best particle in the whole swarm is called as the global best; gbest.  

PSO has two versions; the local version and the global version. According to 

the local neighborhood, each particle moves towards its best previous position, pbest 

and towards the best particle in its restricted neighborhood, lbest; rather than moving 

towards the best of the entire group, gbest. In the global neighborhood, each particle 

moves towards its best previous position, pbest and towards the best particle in the 

whole swarm, gbest. 

There is a communication between particles, each particle shares its 

information with others. A particle exchanges its information with the particles in the 

neighborhood or a predetermined set of particles in the search space. Therefore; after 

some number of iterations the swarm loses its diversity and solutions progress to 

uniformity. If the convergence occurs too early, the probability of being stuck in 

local minima increases.  

In recent years, PSO has been successfully applied in many areas. It solves a 

variety of optimization problems in a faster and cheaper way than the evolutionary 

algorithms in the early iterations, but its computational efficiency may reduce as the 

number of generations increases. In addition to this, PSO has few parameters to 

adjust. It works well for different kind of problems when the algorithm is slightly 

modified.  

 

IV.2. THE PSEUDOCODE OF THE ALGORITHM  
 
Initialize parameters 
Initialize population 
Find permutation 
Evaluate  
Do  
{  

Find the personal best  
Find the global best 
Update velocity 
Update position 
Find permutation 
Evaluate 
           Apply local search (optional) 
 } 
While (Termination) 
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NOTATION 
t
iX : ith particle in the swarm at iteration t; [ ]t

in
t
i

t
i

t
i xxxX ,..,, 21=  

t
ijx : Position value of the ith particle with respect to the jth dimension ( nj ,...,2,1= ).  

tpop : Set of ρ  particles in the swarm at iteration t, i.e., [ ]tt
2

t
1

t X,...,X,Xpop ρ=  

t
iπ : Permutation of jobs implied by the particle t

iX ; [ ]t
in

t
i

t
i

t
i ππππ ,..,, 21=  

t
ijπ : Assignment of job j of the particle i in the permutation at iteration t. 

t
iV : Velocity of particle i at iteration t; [ ]t

in
t
i

t
i

t
i vvvV ,...,, 21=  

t
ijv : Velocity of particle i at iteration t with respect to the jth dimension. 

tw : Inertia weight; a parameter to control the impact of the previous velocities on the            

current velocity.  
t

iP : The best position of the particle i with the best fitness until iteration t, personal   

best; [ ]t
in

t
i

t
i

t
i pppP ,...,, 21=  

t
ijp : Position value of the ith personal best with respect to the jth dimension 

( nj ,...,2,1= ). 
tG : The best position of the globally best particle achieved so far, global best; 

[ ]t
n

ttt gggG ,...,, 21=  

t
jg : Position value of the global best with respect to the jth dimension ( nj ,...,2,1= ) 

 

IV.3. ORIGINAL PSO ALGORITHM 
 

Each particle updates its velocity and position according to its previous 

velocity and the distances of its current position from its own best experience and the 

group’s best experience according to the equation 4.1.a given below: 

  )()( 11
22

11
11

1 −−−−− −+−+= k
ij

k
j

k
ij

k
ij

k
ij

k
ij xgbrcxpbrcvv     (4.1.a) 

                                                                  1 k
ij

k
ij

k
ij vxx += −    (4.1.b) 

Here, c1 and c2 are cognitive and social components respectively. These terms 

pull each particle to pbest and gbest locations. They are both set to 2 for almost all 
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applications; which is obtained from earlier experience. High or low values of these 

terms may hinder particles to reach the target.  

r1, r2 are random numbers uniformly distributed in the interval [0,1]. Particles 

fly to new position with this velocity and their new position is calculated by the 

equation 4.1.b. 

IV.4. SOLUTION REPRESENTATION 
 

  Solution representation is a very important issue in PSO algorithm. The 

representation changes depending on the type of the problem. For the PFSP, we 

present n number of dimensions for n number of jobs ( nj ,..,1= ). Each dimension in 

the sequence corresponds to a certain job. In addition, the particle 

[ ]k
in

k
i

k
i xxX ,..,1=  corresponds to the position values for n number of jobs in 

the PFSP problem. The position values of particles are in fact continuous. To 

discretize the positions, I use the SPV rule and by this way, determine processing 

sequence of jobs in the flow shop.  

Table IV.1 illustrates the solution representation of particle t
iX  for the PSO 

algorithm for the PFSP together with its corresponding velocity and permutation. 

According to the proposed SPV rule, the smallest position value is 20.15 −=t
ix , so 

the dimension j=5 is assigned to be the first job 51 =
t
iπ  in the permutation t

iπ ; the 

second smallest position value is 99.02 −=t
ix , so the dimension j=2 is assigned to be 

the second job 22 =
t
iπ  in the permutation t

iπ , and so on. In other words, dimensions 

are sorted according to the SPV rule.  

This representation is unique in terms of finding new solutions since positions 

of each particle are updated at each iteration k in the PSO algorithm, thus resulting in 

different sequences at each iteration k. 

 

Table IV.1 Solution Representation of a Particle 
 
 

 
 
 
 

j 1 2 3 4 5 6 
k
ijx  1.80 -0.99 3.01 -0.72 -1.20 2.15 

k
ijv  3.89 2.94 3.08 -0.87 -0.20 3.16 
k
ijs  5 2 4 1 6 3 
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IV.5. INITIAL POPULATION 
 

In PSO, the population is initialized randomly and the initial continuous 

position values are generated randomly using the following formula: 

( ) )1,0(*minmaxmin
0 Uxxxxij −+=  where 0.1,0.1 maxmin =−= xx . Initial continuous 

velocities are generated by similar formula as follows: 

( ) )1,0(*minmaxmin
0 Uvvvvij −+=  where 0.1,0.1 maxmin =−= vv . )1,0(U  is a uniform 

random number between 0 and 1.  

The complete computational procedure of the PSO algorithm for the PFSP 

can be summarized as follows: 

Step 1: Initialization 

 Set k=0, m=twice the number of dimensions. 

 Generate m particles randomly as explained before, { }miX i ,..,1,0 =         

where [ ]00
1

0 ,.., inii xxX = . 

 Generate initial velocities of particles randomly{ }miVi ,..,1,0 = where 

[ ]00
1

0 ,.., inii vvV =  

 Apply the SPV rule to find the sequence [ ]00
1

0 ,.., inii ssS =  of particle 0
iX  for 

mi ,..,1= . 

 Evaluate each particle i in the swarm using the objective function 0
if  for 

mi ,..,1= . 

 For each particle i in the swarm, set 00
ii XPB = , where 

[ ]000
1

0
1

0 ,.., ininiii xpbxpbPB ===  along with its best fitness value, 0
i

pb
i ff =  for 

mi ,..,1= . 

 Find the best fitness value { }00 min il ff =  for mi ,..,1=  with its 

corresponding position 0
lX  .  

 Set global best to 00
lXGB =  where [ ]nlnl xgbxgbGB ,1,1

0 ,.., ===  with its 

fitness value 0
l

gb ff =  
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Step 2: Update iteration counter 

 1+= kk  

Step3: Update inertia weight 

 α*1−= kk ww  where α is decrement factor. 

Step 4: Update velocity 

( ) ( )11
22

11
11

11 −−−−−− −+−+= k
ij

k
j

k
ij

k
ij

k
ij

kk
ij xgbrcxpbrcvwv   

Step 5: Update position 

 k
ij

k
ij

k
ij vxx += −1  

Step 6: Find Sequence 

 Apply the SPV rule to find the sequence [ ]k
in

k
i

k
i ssS ,..,1=  for mi ,..,1= . 

Step 7: Update personal best 

 Each particle is evaluated by using its sequence to see if personal best will 

improve. That is, if pb
i

k
i ff <  for mi ,..,1= , then personal best is updated as 

k
i

k
i XPB = and k

i
pb

i ff =  for  mi ,..,1= . 

Step 8: Update global best 

 Find the minimum value of personal best. 

{ } { }miilmiforff pb
i

k
l ,..,1;,,..,1min =∈==  

 If gbk
l ff < , then the global best is updated as k

l
k XGB = and k

l
gb ff =  

Step 9: Stopping criterion 

 If the number of iteration exceeds the maximum number of iteration, or 

maximum CPU time, then stop, otherwise go to step 2. 

IV.6. MAXIMUM VELOCITY 
 

The velocities of particles are constrained to a maximum velocity, Vmax. If a 

velocity on a dimension of a particle exceeds Vmax, then it is limited to Vmax. Vmax 

controls the exploration and exploitation ability of a particle. It helps to search the 

regions between the current position and the target position.  

Fine-tuning Vmax is so important that a large value of Vmax facilitates global 

exploration, while a smaller Vmax encourages local exploitation. If Vmax is set too high 

or too small, the particles can’t explore the search space sufficiently and they could 

stuck at local optima. 
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IV.7. INERTIA WEIGHT 
 

Eberhart & Shi introduced a new concept to PSO in 1998; the inertia weight, w 

which highly increased the performance of PSO in a number of applications. Before, 

PSO was not searching neighbors sufficiently. Dynamically adjusting the velocity by 

means of w provided the local search.  

The inertia weight controls the effect of previous velocity of the particle to its 

current velocity as seen in the formulas below: 

 (4.3.a) 

  1 k
ij

k
ij

k
ij vxx += −          (4.3.b) 

where r1, r2 ∼ Uniform (0,1),   w: inertia weight  

and 

    , where α is the decrement factor 

Setting high values to w at the beginning and small values at the end of the 

search is found to be better. It is generally reduced linearly from 1.2 to 0.4 during a 

run, but these values may change from application to application.  

When suitably set, the inertia weight helps to balance the local and global 

exploration, thus the optimal value can be obtained in a few iterations. High values 

encourage global exploration, while low values facilitate local exploitation.  

IV.8. CONSTRICTION FACTOR 
 

Maurice Clerc has introduced in 1999 the constriction factor, K, which highly 

increases the performance of the algorithm by constraining and controlling the 

velocity of the particles. Shi and Eberhart found that when the constriction factor is 

used with Vmax constraint, the performance PSO improves.  

The velocity formula using K is stated in equation 4.4.a. Clerc used K as 0.729 

in his calculations. 

( ) ( )[ ]11
22

11
11

1 −−−−− −+−+= k
ij

k
j

k
ij

k
ij

k
ij

k
id xgbrcxpbrcvv κ    (4.4.a) 

4   where,
42

2
21

2
>+=

−−−
= ϕϕ

ϕϕϕ
κ ,   cc    (4.4.b) 

Both the constriction factor, K, and the inertia weight, w, are used to control the 

velocities of particles. Therefore, they both prevent the particles from explosion.  

 

( ) ( )11
22

11
11

11 −−−−−− −+−+= k
ij

k
j

k
ij

k
ij

k
ij

kk
ij xgbrcxpbrcvwv

α*1−= kk ww



 30

 
 

V. VARIABLE NEIGHBORHOOD SEARCH 
 

V.1. AN OVERVIEW 
 

In recent years, several general heuristics (or metaheuristics) have been 

proposed which extend local search in various ways and avoid being trapped in local 

optima with a poor value. A simple and effective metaheuristic may be obtained by 

proceeding to a systematic change of neighborhood within a local search algorithm. 

Mladenovic and Hansen call this approach the Variable Neighborhood Search (VNS) 

(Mladenovic and Hansen, 1997). The difference of VNS from most other local 

search methods is that VNS does not follow a trajectory, but explores increasingly 

distant neighborhoods of the current solution, and jumps from there to a new one if 

and only if a better solution is obtained.  

The Variable Neighborhood Search (VNS) is rapidly becoming a well-

established method in metaheuristics (see for instance (Framinan et al., 2002)). VNS 

is based on a simple and effective idea: a systematic change of neighborhood within 

a local search algorithm. To apply the method we first need to define different 

neighborhoods for our problem. 

As is stated by Hansen and Mladenovic,VNS is based on three principles: 

1. A local minimum with respect to one neighborhood is not necessarily so 

with another. 

2. A global minimum is a local minimum with respect to all possible 

neighborhood structures. 

3. For many problems, local minima with respect to one or several 

neighborhoods are relatively close to each other.  

Principle 2 is true for all the optimization problems. However, principles 1 

and 3 may or may not hold depending on the problem at hand (Garcia et al., 2006). 
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V.2. NEIGHBOURHOOD STRUCTURES 
 

The performance of a metaheuristic algorithm significantly depends on the 

efficiency of the neighbourhood structure. The solutions are determined to move 

with the neighbourhood structure. In this study, the following two neighbourhood 

structures are employed: 

Exchange is a function used to move around in which any two randomly 

selected operations are simply swapped. In Figure V-1, B and E are selected 

randomly and swapped. 

 
Figure V-1 Exchange function (Uysal, 2006)  

 

Insert is another fine-tuning function that inserts a randomly chosen gene in 

front or back of another randomly chosen gene. In Figure V-2, B and E are selected 

randomly. B is inserted in front of E. 

  
Figure V-2 Insert function (Uysal, 2006) 

 
There are many neighbourhood structures reported in the literature, but I 

preferred these two, due to their simplicity, ease of use and reasonable efficiency. 

V.3. THE VNS ALGORITHM 
 

VNS is a simple and effective search procedure that proceeds to a systematic 

change of neighbourhood.  

The local search for the PFS problem is applied to the job repetition tπ of the 

global best solution at each iteration t. The performance of the local search algorithm 

depends on the choice of the neighborhood structure.  
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Local search in this hesis is based on the interchange+insert variant of the 

Variable Neighborhood Search (VNS) method. For the PFS problem, following two 

neighborhood structures are employed: 

 Interchange two jobs between thη and thκ dimensions, κη ≠    (Interchange) 

 Remove the job at the thη  dimension and insert it in the thκ  dimension κη ≠    

(Insert) 

Pseudo code of the local search is given in Figure V-3 where η  and κ  are the 

random integer numbers between 1 and n. For convenience, ( )κη,,0sinserts =  

means removing the job from thη  dimension in the job repetition 0s and inserting it in 

the thκ  dimension in the job repetition 0s , thus resulting in a job repetition s . In 

case of modifying the job repetition 0s , two swap and two interchange operations are 

used, to diversify the global best solution before applying the local search.  

This modification is significantly important to direct the search towards the 

global optima by modifying the global best solution, since otherwise the global best 

solution remains the same after some iterations.  

s0= tπ , job repetition  of global best tG ; 
do{  
    u=rnd(1,nm); v=rnd(1,nm) κη ≠   
   s=modify(s0, u, v) 
    inloop=0; 
    do{  

 kcount=0; max_method=2; 
        do{ 
            u=rnd(1,n); v=rnd(1,n) κη ≠  
           if (kcount=0) then s1=interchange(s, u, v)   
           if (kcount=1) then s1=insert(s, u, v)   
        ( ) ( )( ) thensfsfif ≤1 { 

kcount=0;  
s= s1;} 

         else { kcount++;} 
         while (kcount<max_method) 
      inloop++; 
      while (inloop<n*(n-1) 
      outloop++; 
     ( ) ( )( ) thenfsfif tπ≤1 { 

tπ  =s;  
                            repair( tG );} 

Figure V-3 Pseudo code of VNS local search employed 
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VI. EXPERIMENTATION 
 

In this study, PSO and GA algorithms are applied to the Permutation 

Flowshop Scheduling Problem with the bicriteria of minimizing makespan(Cmax) and 

maximum tardiness(Tmax). That is, in my study, the objective function is: 

 

Minimize  f = λ Cmax + (1- λ) Tmax  , where λ is between 0 and 1. 

 
For this model, I performed successive computer runs. Computer codes for 

different versions of the algorithms are run on PCs with Intel Pentium IV 2.66 GHz 

processors and 512 MB memory. 

In GA, population size is taken as twice the number of jobs, crossover 

probability is taken as 1.0. For the mate selection, one individual is selected 

randomly and the other is selected by using the tournament selection method with 

size of 2. Again the tournament selection with size of 2 is employed for constructing 

the next generation.  

In line with the PSO algorithm, GA that employed the simple exchange 

operator as a mutation scheme is denoted by GApure , while the GA that employed the 

VNS local search is denoted by GAvns . The performance of the GA and PSO 

algorithms is evaluated by using the benchmark suite of (Demirkol et al., 1998). 

Demirkol et al. have provided an extensive set of randomly generated test 

problems for minimizing makespan and maximum lateness in flowshops and job 

shops. The total number of problems they generated is 600 including three different 

types of routings, four different due date configurations and a variety of problem 

sizes ranging from 20 to 50 jobs with 15 and 20 machines. They have only provided 

40 problem instances for makespan criterion and 160 problem instances for 

maximum lateness criterion for the flowshop problems.  

They used five dispatching rules and three shifting bottleneck methods to 

solve the makespan problems and eleven dispatching rules and three shifting 

bottleneck methods to solve the maximum lateness problems.  
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They have reported only the best solution provided by any of these methods, 

which can be found in  

 http://palette.ecn.purdue.edu/~uzsoy2/benchmark/problems.html  

The PSO algorithm for the PFSP is coded in C programming language. In 

addition, a traditional genetic algorithm (GA) with tournament selection is also 

coded in C to compare the performances of the two population based methods. The C 

codes of the algorithms can be found in the Appendix 

I carried out parametric analysis for the probability of mutation (Pmutation) 

parametre of the proposed GA algorithm. I tested the Pmutation values of 0.1, 0.2 

and 0.3, for 1000, 1500 and 2000 number of generations and for five different 

lambda(λ ) values (namely, 0.00, 0.25, 0.50, 0.75 and 1.00). So, I made 

experimentation for all combinations of these values, namely 1000&0.1, 1000&0.2, 

1000&0.3, 1500&0.1, 1500&0.2, 1500&0.3, 2000&0.1, 2000&0.2 and 2000&0.3. 

As a result, I found out that the Pmutation value of 0.3 provided the best 

fitness values for all generation numbers. So I used this Pmutation parameter for GA 

throughout my study. Detailed information about the parametric analysis for GA can 

be found in the Appendix. 

The “pure” versions of the PSO and GA algorithms are run for five different 

generation numbers (namely maxgen values of 1000, 1500, 2000, 2500 and 3000) 

and for the five different lambda(λ ) values (namely, 0.00, 0.25, 0.50, 0.75 and 1.00).  

As the second step, both GA and PSO algorithms are also run by embedding 

a simple but very efficient local search by Mladenovic and Hansen(42), so called 

Variable Neighborhood Search (VNS). Then, these hybrid versions of the PSO and 

GA are also applied to the test problems in the benchmark suite of (Demirkol et al., 

1998). These runs lasted too long compared to the pure versions and the computers 

were kept busy for days, since I performed parallel runs on a sufficient number of 

computers. So, I selected the smallest and biggest generation numbers only (namely, 

maxgen values of 1000 and 3000), for the complete set of lambda values (0.00, 0.25, 

0.50, 0.75 and 1.00). 10 replications were made for each of the 160 problem 

instances. 

As the last step, the performances of the “pure” and “hybrid (with VNS)” 

versions of the PSO and GA algorithms were compared respectively. The two 

algorithms were compared in terms of not only the solution quality(e.g. the fitness 

values), but also the CPU times (that is, how long it took for them to find a solution).  

http://palette.ecn.purdue.edu/~uzsoy2/benchmark/problems.html
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Besides comparing the algorithms for their overall performance on the 160 

problem instances taken from the benchmark suite, I also made detailed comparisons 

for problem sets with diferent sizes. The total of 160 problems consists of 8 different 

problem sets, the smallest being the 20x15 (that is, 20 jobs & 5 machines), ending up 

with the largest set of 50x20. Detailed Excel sheets for all of these comparisons can 

be found in the Appendix. 

I performed statistical T-tests, to find out if one of the algorithms performed 

significantly better for a certain instance. Confidence intervals of 90%, 95% and 

99.5% were used.  

Summary tables for all these result are given below. 

Note: 

≈ : Two algorithms are not significantly different 

NA: Not Available. 

 

 
 
 
 
 
 
 
 
 
 



 36

FITNESS COMPARISON RESULTS 
 
 
For the “pure” versions of the algorithms: 
 
 
 

 
Table VI-01 Pure Versions-Overall Fitness Results 

 

 
 
 

For the pure versions of the algorithms, as seen in Table VI-01 and VI-02, PSO outperforms GA for lambda=0.00, 0.25 and 0.50, but for 

lambda=0.75 and 1.00, GA finds better results. But there is no big difference; the average difference between the two algorithms is always lower 

than 3 %. It should be noted here that, a minus(-) sign in a table means that PSO performs better (i.e. finds a smaller value) for that occasion. 

 

 

lambda 0.00 0.25 0.50 0.75 1.00 

maxgen 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 

PSO better 109 103 96 92 87 116 110 107 101 97 114 111 101 91 91 76 68 63 52 50 49 36 33 24 20 

GA better 51 57 64 68 73 44 50 53 59 63 46 49 59 69 69 84 92 97 108 110 110 124 127 136 140 

PSO=GA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Best PSO (%) 21.86 21.54 21.03 19.43 18.64 15.13 14.10 14.20 14.19 14.19 9.32 9.08 8.93 8.58 8.58 3.71 3.69 3.33 3.32 3.14 1.30 1.20 1.08 1.06 0.97 

Best GA (%) 4.71 6.07 6.34 6.35 6.62 2.02 2.06 2.36 2.38 2.48 2.59 2.74 2.80 2.87 2.89 2.11 2.16 2.19 2.28 2.36 2.15 2.11 2.11 2.20 2.32 

Average (%) -2.76 -2.15 -1.77 -1.48 -1.21 -2.86 -2.61 -2.43 -2.24 -2.13 -1.63 -1.48 -1.34 -1.22 -1.14 -0.06 0.04 0.14 0.21 0.27 0.33 0.44 0.53 0.59 0.65 
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Average percent deviation fitness results for different problem sizes: 
 
Table VI-02 Pure Versions-Average Percent Deviation 

lambda 0.00 0.25 0.50 0.75 1.00 

maxgen 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 

20x15 0.06 0.44 0.66 0.86 1.12 -0.67 -0.28 0.07 0.24 0.42 -0.80 -0.58 -0.49 -0.36 -0.28 -0.13 0.02 0.13 0.23 0.29 0.39 0.56 0.61 0.68 0.74 

20x20 -0.71 -0.27 -0.05 0.21 0.47 -1.11 -0.79 -0.60 -0.50 -0.38 -0.38 -0.22 -0.07 -0.01 0.03 -0.11 0.10 0.21 0.30 0.35 0.02 0.17 0.27 0.40 0.46 

30x15 -3.12 -2.63 -2.32 -1.97 -1.76 -2.67 -2.44 -2.26 -1.92 -1.78 -1.54 -1.28 -1.01 -0.93 -0.82 -0.18 -0.06 0.12 0.20 0.24 0.12 0.28 0.42 0.53 0.61 

30x20 -1.60 -1.07 -0.63 -0.35 -0.19 -2.21 -1.93 -1.76 -1.54 -1.47 -1.05 -0.93 -0.79 -0.63 -0.51 0.05 0.19 0.30 0.35 0.40 0.13 0.23 0.35 0.41 0.49 

40x15 -4.48 -3.74 -3.16 -2.81 -2.47 -3.55 -3.32 -3.21 -2.94 -2.79 -2.25 -2.10 -1.97 -1.83 -1.70 -0.26 -0.17 -0.11 -0.04 0.01 0.54 0.63 0.70 0.71 0.76 

40x20 -2.82 -2.28 -2.01 -1.78 -1.46 -3.06 -2.86 -2.71 -2.58 -2.46 -2.24 -2.08 -1.93 -1.76 -1.68 0.07 0.13 0.23 0.26 0.30 0.39 0.48 0.56 0.64 0.71 

50x15 -4.79 -4.07 -3.47 -3.18 -2.87 -4.78 -4.65 -4.51 -4.38 -4.33 -2.20 -2.19 -2.11 -1.99 -1.91 0.11 0.14 0.20 0.30 0.40 0.60 0.70 0.72 0.76 0.82 

50x20 -4.62 -3.58 -3.16 -2.79 -2.54 -4.80 -4.57 -4.46 -4.33 -4.25 -2.59 -2.50 -2.40 -2.29 -2.22 -0.06 -0.06 0.03 0.09 0.13 0.46 0.51 0.56 0.60 0.63 

 
 
 

 

In Table VI-03, you can see the t-values calculated for different problem sets and generation numbers. As known, t values are calculated 

as: [ (Average of the differences of the two algorithms) / [ (standart deviation of the differences of the two algorithms) / (square root of the 

problem size (n=20 in our case))].  
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Table VI-03 Pure Versions - t Values 

Lambda 0.00 0.25 0.50 0.75 1.00 

Maxgen 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 

20x15 0.01 1.11 1.87 2.54 3.18 -1.42 -0.74 0.16 0.61 1.17 -2.38 -1.85 -1.54 -1.16 -0.93 -0.98 0.09 0.95 1.66 2.13 2.31 3.55 3.96 4.43 4.78

20x20 -1.47 -0.61 -0.08 0.74 1.68 -2.91 -2.18 -1.64 -1.38 -1.01 -2.04 -1.08 -0.36 -0.05 0.16 -0.62 0.64 1.38 2.02 2.38 0.15 1.35 2.29 3.55 4.29

30x15 -3.32 -3.15 -2.84 -2.48 -2.29 -3.59 -3.28 -3.09 -2.72 -2.54 -2.85 -2.43 -1.94 -1.78 -1.60 -0.69 -0.31 0.32 0.65 0.81 0.76 1.69 2.65 3.24 3.59

30x20 -2.05 -1.44 -1.02 -0.63 -0.41 -3.22 -2.81 -2.56 -2.28 -2.20 -2.61 -2.37 -2.08 -1.67 -1.39 0.25 0.92 1.45 1.73 2.00 1.05 1.80 2.85 3.19 3.76

40x15 -3.50 -3.24 -2.95 -2.73 -2.52 -3.34 -3.18 -3.03 -2.93 -2.84 -3.44 -3.24 -3.11 -2.92 -2.74 -0.89 -0.61 -0.41 -0.17 -0.02 4.36 5.38 6.12 6.07 6.63

40x20 -3.28 -2.77 -2.55 -2.29 -2.05 -3.39 -3.30 -3.15 -3.00 -2.85 -3.31 -3.08 -2.84 -2.68 -2.57 0.14 0.39 0.79 0.89 1.01 2.65 3.12 3.74 4.48 5.03

50x15 -2.81 -2.48 -2.20 -2.13 -1.98 -4.03 -3.93 -3.82 -3.72 -3.67 -2.89 -2.91 -2.79 -2.67 -2.57 0.44 0.54 0.78 1.22 1.65 5.00 5.50 5.73 6.03 6.45

50x20 -4.16 -3.74 -3.38 -3.18 -2.88 -4.23 -4.13 -4.07 -3.98 -3.92 -4.07 -4.10 -4.02 -3.83 -3.73 -0.31 -0.29 0.02 0.26 0.39 2.86 3.15 3.67 3.95 4.48

 
 
Hypothesis Testing: 
Ho: Two algorithms are not significantly different 
H1: One algorithm performs significantly better 
 

t-test critical values for 
n=20 

0.1 
(90%) 

0.05 
(95%) 

0.005 
(99.5%) 

1.3277 1.7291 2.8609 
 
In the following five tables (Table VI-04 to Table VI-08) , you can see the results of the hypothesis testing, that is if one algorithm performs 

significantly better or not. It can be easily noticed how the dominance of PSO shades away as lambda increases.  
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Table VI-04 Pure Versions, t-Test Results, lambda=0.00 

lambda 0.00 

maxgen 1000 1500 2000 2500 3000 

CI 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 

20x15 ≈ ≈ ≈ ≈ ≈ ≈ GA GA ≈ GA GA ≈ GA GA GA 

20x20 PSO ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ PSO ≈ ≈ 
30x15 PSO PSO PSO PSO PSO PSO PSO PSO ≈ PSO PSO ≈ PSO PSO ≈ 
30x20 PSO PSO ≈ PSO ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ 
40x15 PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO ≈ PSO PSO ≈ 
40x20 PSO PSO PSO PSO PSO ≈ PSO PSO ≈ PSO PSO ≈ PSO PSO ≈ 
50x15 PSO PSO ≈ PSO PSO ≈ PSO PSO ≈ PSO PSO ≈ PSO PSO ≈ 
50x20 PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO 

 
Table VI-05 Pure Versions, t-Test Results, lambda=0.25 

lambda 0.25 

maxgen 1000 1500 2000 2500 3000 

CI 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 

20x15 PSO ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ 
20x20 PSO PSO PSO PSO PSO ≈ PSO ≈ ≈ PSO ≈ ≈ ≈ ≈ ≈ 
30x15 PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO ≈ PSO PSO ≈ 
30x20 PSO PSO PSO PSO PSO ≈ PSO PSO ≈ PSO PSO ≈ PSO PSO ≈ 
40x15 PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO ≈ 
40x20 PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO ≈ 
50x15 PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO 

50x20 PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO 
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Table VI-06 Pure Versions, t-Test Results, lambda=0.50 

lambda 0.50 

maxgen 1000 1500 2000 2500 3000 

CI 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 

20x15 PSO PSO ≈ GA GA ≈ GA ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ 
20x20 PSO PSO ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ 
30x15 PSO PSO ≈ PSO PSO ≈ GA GA ≈ GA GA ≈ GA ≈ ≈ 
30x20 GA GA ≈ GA GA ≈ GA GA ≈ GA ≈ ≈ GA ≈ ≈ 
40x15 PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO GA GA ≈ 
40x20 GA GA GA GA GA GA GA GA ≈ GA GA ≈ GA GA ≈ 
50x15 GA GA GA GA GA GA GA GA ≈ GA GA ≈ GA GA ≈ 
50x20 PSO PSO PSO PSO PSO PSO GA GA GA GA GA GA GA GA GA 

 
 
Table VI-07 Pure Versions, t-Test Results, lambda=0.75 

Lambda 0.75 

maxgen 1000 1500 2000 2500 3000 

CI 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 

20x15 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ GA ≈ ≈ GA GA ≈ 
20x20 ≈ ≈ ≈ ≈ ≈ ≈ GA ≈ ≈ GA GA ≈ GA GA ≈ 
30x15 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ 
30x20 ≈ ≈ ≈ ≈ ≈ ≈ GA ≈ ≈ GA ≈ ≈ GA GA ≈ 

40x15 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ 
40x20 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ 
50x15 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ GA ≈ ≈ 
50x20 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ 
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Table VI-08 Pure Versions, t-Test Results, lambda=1.00 

lambda 1.00 

maxgen 1000 1500 2000 2500 3000 

CI 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 90% 95% 99.5% 

20x15 GA GA ≈ GA GA GA GA GA GA GA GA GA GA GA GA 

20x20 ≈ ≈ ≈ GA ≈ ≈ GA GA ≈ GA GA GA GA GA GA 

30x15 ≈ ≈ ≈ GA ≈ ≈ GA GA ≈ GA GA GA GA GA GA 

30x20 ≈ ≈ ≈ GA GA ≈ GA GA ≈ GA GA GA GA GA GA 

40x15 GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA 

40x20 GA GA ≈ GA GA GA GA GA GA GA GA GA GA GA GA 

50x15 GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA 

50x20 GA GA ≈ GA GA GA GA GA GA GA GA GA GA GA GA 
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For the hybrid (with VNS) versions of the algorithms: 
 
 

Table VI-09 Hybrid Versions, Overall Fitness Results 

lambda 0.00 0.25 0.50 0.75 1.00 
maxgen 1000 3000 1000 3000 1000 3000 1000 3000 1000 3000 

PSO better 112 105 131 122 138 137 136 132 151 151
GA better  15 14 21 21 16 13 23 22 7 7
PSO=GA 33 41 8 17 6 10 1 6 2 2

Best PSO (%) -1.97 -1.69 -2.05 -1.56 -1.14 -0.86 -1.00 -0.88 -1.46 -1.54
Best GA (%) 0.51 0.21 0.22 0.23 0.42 0.31 0.60 0.48 0.18 0.16
Average (%) -0.32 -0.27 -0.27 -0.20 -0.23 -0.19 -0.23 -0.19 -0.31 -0.30

 
 
 

As seen in Table VI-09 and VI-10, for the hybrid versions PSO outperforms GA for all lambda values. But the differenre here is much 

smaller than the pure versions, the average difference between the two algorithms is always lower than 0.5%.  
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Average percent deviation fitness results for different problem sizes: 
 
Table VI-10 Hybrid Versions-Average Percent Deviation 

lambda 0.00 0.25 0.50 0.75 1.00 
maxgen 1000 3000 1000 3000 1000 3000 1000 3000 1000 3000 

20x15 -0.009 -0.008 -0.077 -0.037 -0.122 -0.069 -0.050 -0.054 -0.057 -0.074
20X20 -0.009 -0.045 -0.066 -0.045 -0.160 -0.103 -0.092 -0.032 -0.127 -0.078
30x15 -0.389 -0.257 -0.242 -0.152 -0.204 -0.167 -0.265 -0.198 -0.325 -0.262
30x20 -0.161 -0.138 -0.161 -0.131 -0.119 -0.084 -0.163 -0.147 -0.206 -0.205
40x15 -0.454 -0.387 -0.363 -0.289 -0.386 -0.275 -0.325 -0.233 -0.451 -0.512
40x20 -0.350 -0.326 -0.317 -0.232 -0.216 -0.218 -0.230 -0.255 -0.341 -0.319
50x15 -0.553 -0.508 -0.519 -0.333 -0.320 -0.312 -0.364 -0.347 -0.537 -0.543
50x20 -0.608 -0.489 -0.391 -0.354 -0.313 -0.303 -0.356 -0.279 -0.422 -0.374

 
 
 
 
In Table VI-11, you can see the t-values calculated for different problem sets and generation numbers.  
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Table VI-11 Hybrid Versions - t Values 

lambda 0.00 0.25 0.50 0.75 1.00 
maxgen 1000 3000 1000 3000 1000 3000 1000 3000 1000 3000 

20x15 -0.503 -0.644 -2.717 -2.114 -3.349 -2.782 -1.087 -2.375 -2.159 -4.321
20X20 -1.126 -2.029 -2.639 -3.851 -2.579 -2.391 -3.021 -1.304 -3.758 -3.592
30x15 -3.805 -3.747 -4.387 -3.821 -5.183 -5.181 -4.586 -4.036 -6.767 -6.472
30x20 -3.752 -3.148 -3.912 -3.475 -3.559 -3.001 -4.727 -4.965 -6.648 -6.854
40x15 -3.601 -4.920 -6.072 -5.074 -6.673 -4.701 -5.126 -4.623 -8.499 -5.852
40x20 -4.914 -5.466 -4.583 -3.861 -6.341 -4.845 -7.077 -8.647 -9.873 -12.227
50x15 -4.812 -4.429 -5.024 -3.621 -5.364 -6.390 -6.603 -5.365 -7.380 -7.200
50x20 -6.112 -6.152 -4.946 -6.253 -4.709 -5.310 -6.974 -6.475 -8.783 -7.772

 
In the following five tables (Table VI-12 to Table VI-16) , you can see the results of the hypothesis testing, that is if one algorithm performs 

significantly better or not. It can be easily noticed how PSO remains significantly better for all lambda values. 

Table VI-12 Hybrid Versions, t-Test Results, lambda=0.00 

lambda 0.00 
maxgen 1000 3000 

CI 90% 95% 99.5% 90% 95% 99.5% 
20x15 ≈ ≈ ≈ ≈ ≈ ≈ 
20x20 ≈ ≈ ≈ PSO PSO ≈ 
30x15 PSO PSO PSO PSO PSO PSO 
30x20 PSO PSO PSO PSO PSO PSO 
40x15 PSO PSO PSO PSO PSO PSO 
40x20 PSO PSO PSO PSO PSO PSO 
50x15 PSO PSO PSO PSO PSO PSO 
50x20 PSO PSO PSO PSO PSO PSO 
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Table VI-13 Hybrid Versions, t-Test Results, lambda=0.25 

lambda 0.25 
maxgen 1000 3000 

CI 90% 95% 99.5% 90% 95% 99.5% 
20x15 PSO PSO ≈ PSO PSO ≈ 
20x20 PSO PSO ≈ PSO PSO PSO 
30x15 PSO PSO PSO PSO PSO PSO 
30x20 PSO PSO PSO PSO PSO PSO 
40x15 PSO PSO PSO PSO PSO PSO 
40x20 PSO PSO PSO PSO PSO PSO 
50x15 PSO PSO PSO PSO PSO PSO 
50x20 PSO PSO PSO PSO PSO PSO 

 

Table VI-14 Hybrid Versions, t-Test Results, lambda=0.50 

lambda 0.50 
maxgen 1000 3000 

CI 90% 95% 99.5% 90% 95% 99.5% 
20x15 PSO PSO PSO PSO PSO ≈ 
20x20 PSO PSO ≈ PSO PSO ≈ 
30x15 PSO PSO PSO PSO PSO PSO 
30x20 PSO PSO PSO PSO PSO PSO 
40x15 PSO PSO PSO PSO PSO PSO 
40x20 PSO PSO PSO PSO PSO PSO 
50x15 PSO PSO PSO PSO PSO PSO 
50x20 PSO PSO PSO PSO PSO PSO 
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Table VI-15 Hybrid Versions, t-Test Results, lambda=0.75 

lambda 0.75 
maxgen 1000 3000 

CI 90% 95% 99.5% 90% 95% 99.5% 
20x15 ≈ ≈ ≈ PSO PSO ≈ 
20x20 PSO PSO PSO ≈ ≈ ≈ 
30x15 PSO PSO PSO PSO PSO PSO 
30x20 PSO PSO PSO PSO PSO PSO 
40x15 PSO PSO PSO PSO PSO PSO 
40x20 PSO PSO PSO PSO PSO PSO 
50x15 PSO PSO PSO PSO PSO PSO 
50x20 PSO PSO PSO PSO PSO PSO 

 
Table VI-16 Hybrid Versions, t-Test Results, lambda=1.00 

lambda 1.00 
maxgen 1000 3000 

CI 90% 95% 99.5% 90% 95% 99.5% 
20x15 PSO PSO ≈ PSO PSO PSO 
20x20 PSO PSO PSO PSO PSO PSO 
30x15 PSO PSO PSO PSO PSO PSO 
30x20 PSO PSO PSO PSO PSO PSO 
40x15 PSO PSO PSO PSO PSO PSO 
40x20 PSO PSO PSO PSO PSO PSO 
50x15 PSO PSO PSO PSO PSO PSO 
50x20 PSO PSO PSO PSO PSO PSO 
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CPU-TIME COMPARISON RESULTS 
 

For the “pure” versions of the algorithms: 
Table VI-17 Pure Versions, Overall CPU-Time Results 

lambda 0.00 0.25 0.50 0.75 1.00 

maxgen 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 

PSO better 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 

GA better 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

PSO=GA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Best PSO (%) 44.88 41.86 40.44 40.07 40.20 75.51 37.20 40.99 38.63 41.39 42.11 42.86 40.18 43.36 43.26 38.53 38.50 37.27 38.77 37.56 40.18 37.95 38.16 37.72 40.12 

Best GA (%) NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

Average (%) 28.83 28.82 28.61 28.27 28.23 35.77 26.58 26.27 26.36 26.19 31.40 31.06 29.62 30.11 30.14 27.01 26.92 25.83 25.99 25.77 27.41 26.59 26.33 26.40 27.86 

 
 
 
In the tables VI-17 to VI-20, CPU-time comparisons are given for the pure and hybrid versions of the algorithms. As seen, for nearly all of the 

instances, PSO finds a solution in a shorter time. The average difference is about 30% for the pure versions, and about 15% for the hybrid 

versions. 
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Average percent deviation CPU time results for different problem sizes: 
 
Table VI-18 Pure Versions, Average Percent Deviation for CPU-times 

lambda 0.00 0.25 0.50 0.75 1.00 

maxgen 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 

20x15 38.09 38.95 39.41 38.73 38.31 58.83 35.64 36.97 36.76 35.88 40.53 40.39 38.35 40.85 40.28 35.64 36.53 35.46 36.77 35.56 36.34 36.41 36.38 36.27 38.65 

20x20 37.20 37.82 37.72 36.91 37.08 50.41 34.78 34.06 34.93 35.20 40.40 39.37 37.55 37.69 39.29 35.42 35.54 33.98 34.22 34.65 36.18 35.39 35.07 34.95 37.26 

30x15 30.06 31.05 31.42 31.17 31.27 41.63 27.88 28.22 28.59 28.47 32.67 34.08 31.67 33.00 33.23 27.54 28.85 27.63 27.96 27.78 28.25 27.66 27.93 28.03 30.52 

30x20 30.20 30.77 30.90 30.78 30.82 40.03 28.34 28.80 29.10 29.02 34.48 32.54 32.53 32.69 32.90 28.37 29.68 28.50 28.85 28.62 29.11 28.58 28.92 28.98 30.92 

40x15 24.52 24.48 24.33 24.18 24.16 24.92 22.23 21.61 21.82 21.85 26.45 26.84 25.62 25.66 25.50 22.76 22.40 21.41 21.37 21.27 23.04 22.21 21.97 22.31 23.50 

40x20 26.90 26.08 25.80 25.56 25.62 26.50 24.83 23.98 24.01 23.84 28.02 28.31 27.26 27.14 27.02 25.78 25.11 24.31 24.08 23.93 25.52 24.42 24.15 24.46 25.37 

50x15 20.75 19.72 18.74 18.63 18.50 20.80 18.24 16.90 16.45 16.29 23.89 23.11 21.41 21.50 20.82 18.45 16.66 15.65 15.44 15.32 18.41 17.12 16.27 16.27 16.54 

50x20 22.92 21.70 20.55 20.22 20.10 23.07 20.71 19.62 19.26 18.94 24.78 23.81 22.56 22.34 22.08 22.10 20.61 19.67 19.28 19.05 22.45 20.89 19.96 19.90 20.14 
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For the hybrid (with VNS) versions of the algorithms: 
 

Table VI-19 Hybrid Versions, Overall CPU-Time Results 

lambda 0.00 0.25 0.50 0.75 1.00 
maxgen 1000 3000 1000 3000 1000 3000 1000 3000 1000 3000 

PSO better 159 160 157 160 160 160 158 160 158 160
GA better 1 0 3 0 0 0 2 0 2 0
PSO=GA 0 0 0 0 0 0 0 0 0 0

Best PSO (%) 22.35 22.90 33.24 31.25 23.21 24.22 21.16 21.24 20.39 22.50
Best GA (%) 27.18 NA 2.99 NA NA NA 39.21 NA 39.34 NA 
Average (%) -14.67 -17.54 -13.52 -18.12 -17.48 -16.55 -13.72 -15.99 -13.25 -16.29

 
 
 

Average percent deviation CPU time results for different problem sizes: 
 

Table VI-20 Hybrid Versions, Average Percent Deviation for CPU-times 

lambda 0.00 0.25 0.50 0.75 1.00 
maxgen 1000 3000 1000 3000 1000 3000 1000 3000 1000 3000 
20x15 -13.12 -19.96 -11.75 -26.42 -19.99 -10.49 -4.59 -18.01 -4.12 -17.50
20X20 -13.12 -18.50 -7.21 -20.17 -18.72 -18.58 -8.16 -17.25 -8.08 -16.70
30x15 -15.28 -18.05 -11.63 -16.65 -18.15 -18.00 -16.13 -16.79 -15.76 -16.38
30x20 -16.12 -16.82 -14.92 -15.40 -16.27 -16.28 -15.25 -15.39 -15.11 -15.23
40x15 -17.27 -17.57 -16.11 -17.46 -17.64 -18.14 -16.41 -15.53 -15.67 -16.28
40x20 -17.04 -15.89 -16.83 -15.42 -16.71 -16.25 -16.31 -14.49 -16.12 -15.30
50x15 -16.09 -17.54 -15.59 -17.81 -16.91 -18.64 -15.32 -16.08 -13.90 -16.77
50x20 -15.46 -15.98 -14.27 -15.61 -15.71 -15.99 -14.50 -14.35 -14.02 -16.19
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VII. RESULTS AND CONCLUSION 
 
 

In this thesis, I compared the performances of GA and PSO algorithms, on the 

Permutation Flowshop Scheduling Problem. I tested the performance of the algorithms for 

minimizing multi objectives, namely makespan and maximum tardiness, concurrently. 

The objective function I used was:  Min f = λCmax + (1- λ)Tmax 

Using five different lambda values, I found out the relative performances of the two 

algorithms for different combinations of makespan and tardiness, including the single 

objective cases; that is, makespan only (for λ=1), and maximum tardiness only (for λ=0). 

Also, I performed computer runs by using different generation numbers to see how the 

algorithms behave as the number of generations increases. 

In addition to the standard versions of the algorithms, I tested the hybrid versions of 

them too. GA and PSO was hybridized by an efficient local search, namely VNS. The relative 

performance of the hybrid algorithms were tested and compared as well. 

For the pure versions of the algorithms, it is observed that the solution quality of PSO 

is generally superior to GA. But, the difference decreases as lambda increases. For lambda = 

0.00, 0.25 and 0.50, PSO performs better; for lambda=0.75 GA takes over, and finally, for 

lambda=1.00 (e.g. when only makespan is considered) GA certainly outperforms PSO. But 

the average difference between the algorithms is less than 3%, for all different occasions. 

So, we can conclude that PSO algorithm is more suitable for the due-date based 

objectives (e.g. maximum tardiness). 

For the, hybrid (e.g with VNS) versions of the algorithms, PSO outperforms GA for 

all lambda values. For all lambda values, either PSO performs strictly better, or there appears 

to be no significant  difference between the performance of the two algorithms. 

But, the difference between the performances of the algorithms is much lower, 

compared to the pure versions. The average difference between the two algorithms is less than 

0.5% for all different combinations. 

So, we can say that VNS local search works very efficiently and similar results are 

obtained for both of the algorithms. 
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When we consider the CPU times, for both pure and hybrid versions, PSO obviously 

outperforms GA. For the pure versions, PSO runs last about 30% shorter than the GA runs, 

and for the hybrid versions, the average difference is about 15%. 

But of course, compared to pure versions, the with-VNS versions run much longer to 

reach a solution, because of the local search. But, the solution quality of the hybrid versions is 

better. 

There are some newly developed “discrete PSO” algorithms that were nor present 

when I started my thesis. As I mentioned throughout the thesis, I made the continuous PSO 

algorithm discrete, by applying a special rule called SPV.  

As a furtherwork, these new discrete PSO algotihms can be compared with the “old” 

version that I used. Also a GA, and maybe some other heuristics can be added, run on the 

same benchmark problems and compared. 

Also, VNS or another local search can be run on the same problem sets seperately, and 

the results may be compared with the results of both versions of PSO and GA, pure and 

hybrid. 
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