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ABSTRACT 
 

AN EXAMINATION OF SUPER RESOLUTION 

METHODS 

 

Sert, Yılca Barış 

             M.S., Department of Electric and Electronics Engineering  

             Supervisor: Asst Prof. Dr. Çağatay CANDAN 

             Co-Supervisor: Assoc. Prof. Dr. Gözde BOZDAĞI AKAR 

 

April 2006, 114 pages 

 

The resolution of the image is one of the main measures of image quality. Higher 

resolution is desired and often required in most of the applications, because higher 

resolution means more details in the image. The use of better image sensors and 

optics is an expensive and also limiting way of increasing pixel density within the 

image. The use of image processing methods, to obtain a high resolution image 

from low resolution images is a cheap and effective solution. This kind of image 

enhancement is called super resolution image reconstruction.  

 

This thesis focuses on the definition, implementation and analysis on well-known 

techniques of super resolution. The comparison and analysis are the main concerns 

to understand the improvements of the super resolution methods over single frame 

interpolation techniques. In addition, the comparison also gives us an insight to the 

practical uses of super resolution methods. As a result of the analysis, the critical 

examination of the techniques and their performance evaluation are achieved.  

 

Keywords: super resolution, image enhancement, image reconstruction 
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ÖZ 

 

SÜPER ÇÖZÜNÜRLÜK METODLARI ÜZERİNE BİR 

İNCELEME 

 

Sert, Yılca Barış 

             Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

             Tez Yöneticisi: Yard.Doç. Dr. Çağatay CANDAN 

             Ortak Tez Yöneticisi: Doç. Dr. Gözde BOZDAĞI AKAR 

 

Nisan 2006, 114 sayfa 

 

Çözünürlük, imge kalitesi için ana ölçütlerden biridir. Yüksek çözünürlük, daha çok 

ayrıntı demek olduğundan çoğu uygulamada istenmekte hatta gerekmektedir. Daha 

iyi imge algılayıcıları ve daha kaliteli optik teçhizatın kullanılması ise pahalı ve 

sınırlayıcı bir çözüm olarak karşımıza çıkmaktadır. Ucuz ve etkili bir çözüm olması 

açısından düşük çözünürlükteki imgelerden yüksek çözünürlükte imge elde edilmesi 

için görüntü işleme yöntemlerinin kullanılması önemlidir. Bu tür iyileştirme, süper 

çözünürlükte imge yapılandırılması olarak adlandırılmaktadır. 

Bu tez, iyi bilinen süper çözünürlük tekniklerinin tanım, uygulama ve 

değerlendirilmeleri üzerinde yoğunlaşmıştır. Süper çözünürlük yöntemlerinin 

karşılaştırılması ve analizi, bu yöntemlerin interpolasyona dayalı tek imgeli 

iyileştirme yöntemleri karşısındaki gelişmelerini anlamak açısından ön plandadır. 

Buna ek olarak, her yöntemin analizi ile kullanımsal yönden bir anlaşılırlık 

oluşmuştur. Bu karşılaştırmanın sonucunda teknikler üzerinde eleştirel bir inceleme 

yapılmış ve bir başarım incelemesi gerçekleştirilmiştir. 

 

Anahtar Kelimeler: süper çözünürlük, imge iyileştirme, imge yapılandırılması  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 
1.1. INTRODUCTION TO SUPER RESOLUTION  

 
Digital imaging is taking a great part in our life day by day and constantly we 

require better image quality, higher resolution and more functionality. In the scope 

of the high-resolution requirements, the imaging chips and optical components 

necessary to capture very high-resolution images become very expensive. On the 

other hand, the scientific research to build up better components is almost reached a 

limiting level, which encourages us to consider a cheaper and promising solution to 

the resolution problem. 

 

The wide range of capabilities through signal processing, specifically image 

processing solves this problem in a cheap but efficient way. The use of a series of 

low resolution frames captured by a moderate digital camera or a video recorder, to 

build up a high resolution image is a very interesting and useful way, which is 

called super resolution image enhancement. Thereby, this approach cost less and the 

existing low resolution imaging systems can be utilized. The basic idea behind 

Super-Resolution (SR) is the fusion of a sequence of low-resolution noisy blurred 

images to produce a higher resolution image. 

 

In super resolution the low resolved images represents different views at the same 

scene. The key idea is strongly related to the fact that every low-resolution image 

contains different information on the same scene and the fusion of this information 

pieces, makes it possible to extract the subpixel information on the low-resolution 
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image. The subpixel information means that new pixels are present among our 

existing pixel values that lead us to a higher resolved image. 

 

If the low-resolution images are shifted by integer values, then each image contains 

the same information and we would finally have a bunch of shifted versions of the 

same image not the same scene. This means that every image can be obtained from 

the other one, but we need more to achieve the goal of information synthesis. If 

only the low-resolution images have subpixel shifts, extra information of the scene 

is at hand. The new information within the low-resolution images can be exploited 

to get a higher resolution copy of the scene. 

 

As the image-capturing environment is not ideal, many distortions are also present 

in the low-resolution images. We may have blurred, noisy, aliased low resolution 

captures of the scene. Although the main concern of the super resolution methods is 

to obtain higher resolution images from the low-resolution image sequences, it also 

covers techniques of image restoration and image enhancement techniques [9].  

 

1.2. FIRST FORMULATION  

 
Tsai and Huang were the first to consider the problem of obtaining a high-quality 

image from several lower quality and translationally displaced images in 1984 [5]. 

Their data set consisted of terrestrial photographs taken by Landsat satellites. They 

modeled the photographs as aliased, translationally displaced versions of a constant 

scene. Their approach consisted in formulating a set of equations in the frequency 

domain, by using the shift property of the Fourier transform. Optical blur or noise 

was not considered. Tekalp, Ozkan and Sezan [11] extended Tsai-Huang 

formulation by including the point spread function of the imaging system and 

observation noise.   

 
Super-resolution techniques have found many other applications since the first 

formulation of the problem. Some of these applications are [12]:  

• Satellite imaging 

• Astronomical imaging  
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• Video enhancement and restoration 

• Video standards conversion 

• Confocal Microscopy 

• Digital mosaicing 

• Aperture displacement cameras 

• Medical computed tomographic imaging 

• Diffraction tomography 

• Video freeze frame and hard copy 

• Restoration of MPEG-coded video streams 

 

1.3. MAIN STUDIES ON SUPER-RESOLUTION 

 
The Super resolution algorithms can be categorized into two groups as Frequency 

Domain Methods and Spatial Domain Methods: 

 
Frequency-Domain Superresolution Restoration Methods: 

• Restoration via Alias Removal [5, 19] 

• Recursive Least Squares Methods [20, 21, 22] 

• Recursive Total Least Squares Methods [12] 

• Multichannel Sampling Theorem Methods [23, 24] 

 
Spatial-Domain Superresolution Restoration Methods: 

• Interpolation of Nonuniformly-Spaced Samples [25, 26, 27, 28, 29] 

• Algebraic Filtered Back-Projection Methods [30] 

• Iterative Back-Projection Methods [31, 32, 33, 34] 

• Stochastic Methods [35-48] 

• Set Theoretic Methods [11, 51, 52, 53]  

• Hybrid Methods [54, 55] 

• Optimal and Adaptive Filtering Methods [56, 57] 

 

A detailed exposition of major super resolution methods is given in Chapter 3..  
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1.4. SCOPE OF THE THESIS 

 
The scope of the thesis is on the implementation, comparison, of some of the well-

known super resolution techniques. This study examines the SR schemes as the 

cascade of two steps image registration and image fusion. The two steps will be 

covered in detail. Our goal is to understand and distinguish the advantages and 

disadvantages of major super resolution methods.  

 

A MATLAB GUI has been implemented to test the super resolution techniques. By 

the help of the implementation, methods have been critically examined and some 

additions have been made to improve the visual quality. Besides, the comparison 

and analysis of the super resolution methods the robustness of the methods under 

noisy conditions has also been examined. 

 

1.5. ORGANIZATION OF THE THESIS 

 
The thesis contains five chapters. A brief introduction to super resolution is given in 

Chapter 1. 

 

In Chapter 2, the super resolution algorithms are surveyed. Some image registration 

methods that will be useful in this study are also examined. Based on this 

examination the later steps of the method are shaped. The successful image 

registration methods are selected to be used in image fusion step of super resolution. 

In addition to these, we introduce the quality metrics used throughout the thesis in 

this chapter.  

 

In Chapter 3, the vital part of super resolution algorithms, that is image fusion, is 

surveyed. The advantages and disadvantages are briefly discussed for all of the 

methods. The single and multi frame methods are illustrated out by some exemplary 

examples. The analysis and comparison of super resolution algorithms are given. 

The methods are compared using both artificially generated and captured image and 

video sequences. 
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In Chapter 4, the discussions on the different approaches of super resolution are 

given.  

 

In Chapter 5, the conclusions on the experimental results and the related future 

work are presented. 
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CHAPTER 2 

 

 

 

SUPER RESOLUTION METHODOLOGY 

 

 
2.1. INTRODUCTION 

 
In this chapter, we will discuss the methodology of super-resolution. We start with 

the mathematical description of super-resolution concept to expand our 

understanding of the problem. The next step will be the capturing stage of real 

world images. The problems and difficulties of image acquisition are discussed. 

Super resolution techniques are qualitatively introduced to solve some practical 

high quality image acquisition problems.  

 

In this chapter, the image registration methods used throughout this thesis is 

described. A comparison of these methods under different motion types is given. 

Finally, the objective image quality metrics used for the comparison of super-

resolved images are introduced.  

 

2.2. THE FORMAL DEFINITION 

 
The super-resolution application suggests a method for reconstructing a high quality 

image from a sequence of lower -resolution images. The problem can be is defined 

as a construction of a Multi Input Single Output (MISO) system for resolution 

increment. The MISO system has an input of multiple frames, which can be taken 

by a video camera or still image camera. The output is a single image with higher 

resolution than the original frames. The MISO problem can be extrapolated to a 

Multi Input Multi Output (MIMO) problem such as super resolving a video 

sequence, in which the LR frames are put into consecutive windows of high-
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resolution frames of a HR video. During this study, we will discuss the MISO 

problem rather than the MIMO counterpart.  

 

Formally, the super-resolution image reconstruction can be represented as follows 

Let f denotes the time-varying virtual image of the scene in the image plane 

coordinate system [2.1]. Given a sequence g of P low-resolution, typically noisy 

and undersampled images, acquired by imaging of the scene ),,( 21 txxf  at 

times Pp tttt ′≤≤≤≤≤ ......21  [2.2]. 

 
 

,,,),,,( 2121 ℜ∈txxtxxf        [2.1] 

 

 

[ ] { } { }
pp MmMmpmmg 221121 ,...,2,1,,...,2,1;,, ∈∈  and { }Pp ,...,2,1∈  [2.2] 

 

 

The objective is to form S estimates [ ]snnf ,,ˆ
21  of ),,( 21 sxxf τ  on the discrete 

sampling grid at the arbitrary time instants PSs ττττ ≤≤≤≤≤ ......21 [2.3]. 

 

 

[ ],,,ˆ
21 snnf  { }Ss ,...,2,1∈ , { }sNn 11 ,...,2,1∈  and { }sNn 22 ,...,2,1∈   [2.3] 

 

 

spMNMN psps ,,, 2211 ∀>>  and PS > .     [2.4] 

 

 

Superresolution refers to the restoration of a sequence of images [ ]snnf ,,ˆ
21  that has 

information content beyond the spatial and/or temporal band limit of the imaging 

system [12].   
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The problem definition above summarizes the direct problem of imaging process. 

We need to reverse this task to obtain a high-resolution view of the real-world 

scene, which is an inverse problem with ill-posed properties. It is an inverse 

problem because SR process is aimed to invert the image-capturing task, which is 

the acquisition of images of real world by using a limited and non-linear imaging 

environment. SR approach is also an ill-posed problem because the number of low-

resolution images is limited and since we cannot see every point on the scene 

through these images; this is a direct reason of information loss.  

 

2.3. IMAGE ACQUISITION MODEL 

 
The SR image enhancement is an ill posed inverse problem. The solution to the 

problem is not unique. We need to understand the imaging process, before 

attempting to invert it. This inverting process requires a modeling of the relation 

between the high and the low-resolution images, at its first step. 

 

The acquisition of an image has many details to consider. For example, optical 

distortions through the optics of the camera, aliasing effect inside the sensor, 

blurring caused by the unwanted camera shaking and scene motion, additional noise 

through every part of the pipeline plus the undersampling of the camera make the 

captured images suffer from spatial resolution loss.  

 

We will refer yk, where k=1...p as the p low-resolution images and x as the real 

world high-resolution observation that we try to reach as close as possible at the end 

of the process. During the observation of the scene, assume that x remains constant. 

By this way, all of the p observations are of the same scene. All of the differences 

between low-resolution images are due to varying imaging conditions of the 

camera. In addition, the unknown noise is always present on all of the LR images. 

As a result, we will have p different observations of x. This model of observation 

can be represented as: 

 

 

yk=D Bk Mk  x + nk       for     k=1,2…,p    [2.5] 
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Where Mk is a transformation matrix, which transforms x in vertical and horizontal 

shifts and scale variances as well as rotational motions in all 3D coordinate axes. Bk 

is the blur matrix that can be a result of optical disorder, fast motion, point spread 

function (PSF) of the sensor etc. D is the subsampling matrix that is the cause of the 

loss in spatial resolution. In addition, nk represents the noise, which is present at all, 

times. (Figure 2.1)   

 

 

 

 

 

Alternatively, the observation model can be simplified to sum up all the effects in a 

single operator to make it easier to visualize the concept. This is possible if these 

models are unified in a simple matrix-vector form since the LR pixels are defined as 

a weighted sum of the related HR pixels with additive noise. As a result, equation 

[2.6] can be expressed as follows. 

 

 

yk=Wk x + nk       for      k=1,2…,p    [2.6] 

 

 

Where Wk is the effects of the blurring, subsampling and transformations takes 

place on the original high-resolution pixels of x. Again, nk is the additive noise 

coming from the environment. 

 
 

Figure 2.1 The observation model relating LR images to HR counterparts [16] 
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2.4. SUPER-RESOLUTION APPROACH 

 
Image restoration is a well-defined concept of visually improving the quality of a 

single image. It focuses on the cancellation of the effects, which take place during 

the image acquisition process. For instance, deblurring operations can overcome 

blurring caused by an optical system, relative motion between the imaging 

environment and the scene and the PSF of the sensor. As well as deblurring, the 

denoising methods are used to cancel or at least minimize the effects of unwanted 

noise as much possible. However, neither of these image restoration methods is able 

to increase the spatial resolution of the images.  

 

For increasing the size of the image, many interpolation techniques are extensively 

researched and there are a number of well-defined interpolation methods; but in 

fact, the information loss is unrecoverable and there is no way to find out the lost 

pixel values. One can have some estimates of the lost values through a distribution 

function on the image but single frame interpolation techniques are not enough to 

recover the lost high frequency terms that are lost during the downsampling 

operation. As the aim is to recover the details of the original scene successfully, 

there is the need of acquiring and fusing different information of the same scene. 

Nevertheless, without the application of the image restoration and interpolation 

methods, the methods of superresolution are broadly understood to mean bandwidth 

extrapolation beyond the diffraction limit of the optical system [12]. It is possible to 

say that SR image fusion can be considered as a second-generation technique of 

image restoration. 

 



 11 

 

 

 

Super-resolution methods have two main parts to recover the lost terms of an image. 

First, the images at hand should be aligned to register every pixel value to the 

position of reference and then these information bits about the original pixel value 

are combined to recover the lost parts of the image. Formally, most of the super 

resolution methods consist of three basic steps to obtain the high-resolution image. 

As in Figure 2.2, these steps are registration of low-resolution images to a reference 

grid, fusion of the LR images to a HR image and the restoration of images in which 

deblurring and denoising methods are used; this is a conceptual classification only, 

as sometimes some steps are performed simultaneously.  

 

In this thesis, we aim to examine the image registration techniques and major image 

fusion techniques in detail, so we will examine the results of the registration-fusion 

scheme prior to the application of a suitable image restoration technique. 

 

Lastly, super-resolution methods critically depend on the accuracy of image 

registration. The only way to improve the resolution is the correct utilization of 

subpixel shifts between images. Without subpixel accuracy, we only have shifted 

copies of the same image, which gives no extra information to recover the lost 

information. For the experimentation purposes, some artificial images are generated 

by sub-pixel shifts. In addition we have used  a video camera to capture  a series of 

pictures, giving  us a sufficiently  rich sets of sub-pixel shifts between images  The 

x 

Figure 2.2. Scheme for super resolution 
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Image 
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camera should not be static during the image acquisition or at least the shots of the 

scene should be taken from different locations. If these conditions are satisfied, at 

the end of the image registration step, we will have sub-pixel shifted images of the 

same scene as in Figure 2.3 to be used in fusion algorithms. 

 

 

 

 

 

During the study, we need to undo the effects of the spatial transformations 

occurring on the LR images, either to compensate the motion between frames, or to 

align some features. For this purpose, we discuss the planar motion of camera or 

imaging plane in the next section.  

 

2.5. PLANAR TRANSFORMATIONS 

 
Spatial transformation is the process of transforming an image into another image in 

the spatial domain by using a mapping function. Before the application of image 

registration, images captured by different sensors from different viewpoints at 

different instants are distorted with respect to each other. Image registration is 

concerned with the alignment of the image over the same grid. The images to be 

registered have a mapping function to the reference image. Spatial transformations 

are applied to the images using these mapping functions to align the images to a 

reference.  

Figure 2.3. Subpixel shifts are vital [16] 
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Throughout the image registration process, spatial transformations are extensively 

used. First, if there is a search for the distortion of the image, possible 

transformations are applied to the image and compared to the reference, by 

minimizing the spatial error iteratively, the distortion is found. In addition, after 

finding the distortion, to compensate its effects we apply the mapping by spatial 

transformations. This mapping is the transformation matrix and its matrix is called 

the homography matrix. The term homography is used for the planar transformation 

matrices of the images, which is in fact our main point of interest. 

 

Homography matrix is a two-way guide for both the reference image and the input 

images. By applying the homography to the input image, the input image is 

transformed into the reference image space and by applying the homography 

inversely to the reference image, reference image is aligned to the input image 

space (Figure 2.4). 

 

 

 

 

 

 

Homography matrices include the transformations in eight degrees of freedom at 

most to represent spatial transformation in 2D space. 

 

 

Figure 2.4 The forward and backward homography 

homography 

Reference Image Input Image 

Forward Homography 

Backward Homography 
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where x’ and y’ represents the transformed coordinates and x, y are the original 

coordinates of the pixels. 

 

 

 

 

For four degrees of freedom in the homography, the transformation is called 

similarity transform that contains the rotation (θ), translation (dx, dy) and scaling 

(S). 
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With six degrees of freedom in the homography, the transformation is affine 

transform, which is still linear and preserves straight lines in the image with 

shearing angle (ø) and aspect ratio (A) (No similarity transform in the formulation 

below). 
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and for a full homography, the transformation is perspective transform in which the 

flat scene is deformed (No similarity or affine transform in the formulation below). 
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The captured or created frames that we are considering here are mostly the still 

scenes with no projective distortion and with minimal local motion in it. Therefore, 

we will discuss mostly the planar global similarity transforms though this study. 

 

2.6. IMAGE REGISTRATION 

 
Image registration is the method of aligning   multiple images on the same grid. 

Registering frames of a video or images from a sequence is mainly about solving 

the problem of geometric relation with the reference image and finding the right 

way to put them on the same geometrical grid. It is the key step in all image 

analysis tasks in which the desired information is related to some motion in the 

picture or the camera. Image registration is extremely important in super-resolution 
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scheme since the artifacts caused by an incorrectly aligned image are more 

disturbing than the blurring effect caused by interpolation of only one image. 

 

Image Registration Algorithms considered in this thesis classified in two main 

groups as follows: 

 

1. Spatial Domain Image Registration Techniques 

• Random Sample Consensus (RANSAC) Algorithm discussed by Capel 

and Zisserman [3] and by Fischler and Bolles [9] that focuses on feature 

matching 

• Taylor series expansions method discussed by Keren et al [4]. 

 

2. Frequency Domain Image Registration Techniques 

• Low frequency image matching method by Vandewalle et al.[1,2]. 

• A log-polar based phase correlation method discussed by Marcel et al. 

[7] [1]. 

• A noise-robust Cartesian coordinate frequency domain technique 

discussed by Luchesse et al.[8] which describes the rotation in a 

different manner than the other frequency domain methods.[1]. 

 

We have implemented all of the mentioned methods. All these methods are 

implemented and used. The aim is to generate a result that finds out a fast, robust 

and competent method to register images precisely. At the end of the image 

registration procedure, a homography matrix will be at hand for each input image 

that aligns them into the reference image. This homography matrix will be used in 

subsequent steps of super resolution. Following the registration discussion, we give 

the image registration algorithms used in this thesis. Then we compare the 

registration methods by experiments on artificially generated images. During the 

generation of these synthetic images, we implement different the transformation 

parameters (rotation, translation and scaling) so that we can understand 

shortcomings of different methods.  
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2.6.1. RANDOM SAMPLE CONSENSUS ALGORITHM  

 
Spatial domain image algorithms rely on the fact that images to be aligned have 

some common points to pair. Some of the methods of spatial domain use direct 

relations between images such as intensity values of a block of pixels and seeking 

these blocks on both images to find correspondences. On the other hand, some 

algorithms are based on some interest points to match between images.  

 

As discussed by Capel and Zisserman [3] and by Fischler and Bolles [9] using 

RANSAC methodology, one can find correspondences by automatic detection and 

analyze these features among the images (Figure 2.6). Typically, in each image 

several hundred “interest points” are automatically detected with sub-pixel accuracy 

using an algorithm such as the Harris feature detector[6]. Putative correspondences 

are identified by comparing the image neighborhoods around the features (Figure 

2.7). 

 

A robust search algorithm such as RANSAC extracts a consistent homography of 

these correspondences. Finally, these correspondences are optimized and a very 

accurate estimate of the homography is found (Figure 2.6). 

 

 

 

 

Detect features of 
interest  

using Harris 
corner detector. 

Compute  
a set of putative 
correspondences 
between images. 

 
Using RANSAC, to 

estimate homography. 

Optimize the 
homography matrix 
by including all the 

inliers. 

Use the optimized 
homography to 
search further 
interest points. 

After the results 
are stable 

Homography is 
finalized. 

 Figure 2.6 Pipeline of the RANSAC algorithm 
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2.6.2. KEREN ALGORITHM 

 
Keren et al algorithm is a very efficient and straightforward image registration 

method. It simply uses the Taylor series expansion of the spatial transformation. For 

the two images f1 and f2, there exists a horizontal shift “a” and vertical shift “b” and 

the rotation angle around the origin θ: 

 

 

))sin(.)cos(.,)sin(.)cos(.(),( bxyayxfyxg +−+−= θθθθ    [2.11] 

 

 

Figure 2.7 The working principle of RANSAC algorithm: (a) corners in the 1st 

frame, (b) corners in the 2nd frame, (c) match the corresponding interest points 

(a) (b) 

(c) 
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As we expand sin(θ) and cos(θ) to the first two terms in their Taylor series, we will 

get: 

 

 

)2/..,2/..(),( 22 θθθθ yxbyxyaxfyxg −−+−−+≈    [2.12] 

 

 

Expanding f to the first term of its own Taylor series gives the first order equation: 

 

 

y
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The error function is then: 
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where the summation is in the overlapping part of the images f and g. 

 

If we look for the minimum of E by computing its derivatives by a,b and θ and 

comparing them to zero, then after neglecting the non-linear terms and some small 

coefficients we get the following system of linear equations, where the summation 

is over the overlapping area: 

 

To estimate a,b and θ precisely we need to apply the iterative process of updating g 

with the accumulated values of rotational and translational parameters where the 

reference frame is f and always the same. 
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2.6.3. VANDEWALLE ALGORITHM 

 

Frequency Domain methods of image registration are mainly based on three 

principles: 

• Shifting property of the Fourier transform (FT) 

• Aliasing relationship between continuous FT of HR image and the DFT of 

LR images 

• Band limited HR images 

 

Vandewalle et al. looks from a different perspective to the problem. The algorithm 

prefers to use not only the whole frequency spectrum of the image but the low 

frequency region of the spectra, where the signal to noise ratio is highest and 

aliasing is minimal. The four low-resolution images are necessarily undersampled. 

Otherwise, our algorithm is not able to reconstruct a better image as it uses exactly 

this undersampled information [2]. 

 

The motion estimation is done in two steps. First, the rotation is recovered and then 

the translations between images are found. This process is accomplished due to 

some properties of Fourier transform. These properties are as follows: 
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 The Translation Property: Shifts in spatial domain cause a linear shift in the phase 

component. That is, the magnitude components of Fourier transformation do not 

affected by linear shifts in spatial domain. 
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Rotation Property: Rotating the image through an angle θ in the spatial domain 

causes the Fourier representation to be rotated through the same angle. 
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According to the pipeline, after getting the Fourier Transform of the image f(x) we 

have, F(u), and when F(u) is transformed into polar coordinates we will have F(r; θ) 

at hand, the frequency content h is computed as a function of the angle by 

integrating over radial lines: 
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In practice, |F(r; θ)| is a discrete signal. Therefore, we compute the discrete function 

h(α) as the average of the values on the rectangular grid that have an angle: 
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As we want to compute the rotation angle with a precision of 0.1 degrees, h(α) is 

computed every 0.1 degrees. To get a similar number of signal values, |F(r; θ)| at 

every angle, the average is only evaluated on a circular disc of values for which r < 

ρ (where ρ is the image radius, or half the image size). Finally, as the values for low 

frequencies are very large compared to the other values and are very coarsely 

sampled as a function of the angle, we discard the values for which r < ε. ρ, with ε = 

0:1. Thus, h(α) is computed as the average of the frequency values on a discrete grid 

with 
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This results in a function h(α) for both |F1(u)| and |F2(u)|. The exact rotation angle 

can then be computed as the value for which their correlation reaches a maximum 

[2]. Just as we recover rotation and cancel its effect by rotating the image in the 

reverse direction, we will find the vertical and horizontal shifts of the images. This 

is in practice rather simple and by using the translation property of Fourier 

Transform. It is well known that the shift parameters ∆x can thus be computed as 

the slope of the phase difference ))(/)(( 12 uFuF∠ . 

 

After applying these terms to the images, we will have the rotation angle and 

vertical, horizontal shifts at hand. To use these values in our later work we will have 

to transform them into the homography matrix, which is in fact quite simple.  

 

2.6.4. LUCHESSE ALGORITHM 

 
Lucchese and Cortelazzo [8] developed a rotation estimation algorithm based on the 

property that the magnitude of the Fourier transform of an image and the mirrored 

version of the magnitude of the Fourier transform of a rotated image has a pair of 

orthogonal zero-crossing lines. The angle that these lines make with the axes is 
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equal to half the rotation angle between the two images. The horizontal and vertical 

shifts are estimated afterwards using a standard phase correlation method. 

 

2.6.5. MARCEL ALGORITHM 

 
Most of the frequency domain registration methods are based on the fact that two 

shifted images differ in frequency domain by a phase shift only, which can be found 

from their correlation. Using a log-polar transform of the magnitude of the 

frequency spectra, image rotation and scale can be converted into horizontal and 

vertical shifts. These can therefore also be estimated using a phase correlation 

method. Reddy and Chatterji [19] and Marcel et al. [7] describe such planar motion 

estimation algorithms. 

 

2.6.6. COMPARISON OF REGISTRATION METHODS 

 
All of the image registration methods mentioned in the previous section is the 

results of some prior studies. All of them have their own impregnability and 

frailties. Throughout this section, we will compare the results of some experiments 

on the image registration methods. First, the test methodology will be examined, 

and then the test results will be considered. 

 

2.6.6.1. TEST METHODOLOGY 

 

The best way of surveying a number of methods is to carry out some experiments 

on them. In this study, we use synthetic images with known transformation 

parameters. As the motion parameters are fixed throughout the image, we expect the 

image registration methods estimate these parameters as close as possible to the real 

values. Two images are used to generate synthetic LR images during this study. 

These are the famous “Lena” image (Figure 2.8(a)) and a test pattern (Figure 2.8(b)) 

for resolution assessment [2]. 
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The following transformations are applied to the images (Figure 2.9): 

• Pure Rotation 

• Pure Pixel  

• Sub-pixel Translation 

• Transrotations 

• Transrotations with scaling 

• Transrotations with additive noise (20dB) 

 

Every condition is evaluated for the maximum number of the methods explained in 

the previous sections. Scaling transformation is only assessed for RANSAC 

algorithm since other methods can only deal with rotation and translation 

(transrotation) by design. Noisy transrotation examination is applied to multi 

parameter variance case (only to transrotations), but not to pure rotation or pure 

translation. 

 

 

 

 

 

(b) (a) 

Figure 2.8 Lena (a) and Reschart (b) are used in examples of methods 
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2.6.6.2. TESTS OF IMAGE REGISTRATION 

 
At the end of the tests, the ultimate goal is to identify the best image registration 

algorithm among these five algorithms explained in this thesis. This identification 

will lead us to the use of the “best” method in our image reconstruction algorithms 

in the super-resolution stage. Throughout the tests, all algorithms except RANSAC 

are deterministic. RANSAC may find close but different motion estimates since the 

algorithm is probabilistic, so the first trial for RANSAC is saved for the analysis. As 

a result, it is advantageous to run the RANSAC algorithm with noisy data and 

average out the effects of noise on motion estimation. 

 

(d) 

(a) (b) (c) 

(e) (f) 

Figure 2.9 (a) pure rotation, (b) pure translation (c) pure translation with subpixel 
shifts, (d) transrotation, (e) scaling with transrotation (f) transrotations with noise 
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2.6.6.2.1. PURE ROTATION 

 
For the pure rotational transformation test, the test patterns are created by rotating 

the HR image at 0˚, 2˚, 5˚ and 10˚ about the middle of the image and downsampling 

it (i.e. Figure 2.9(a)). The figures shows the rotational errors for all methods, where 

the real rotation angles are shown in the horizontal axis of the figures. 
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Pure Rotation - Rotation (Reschart.tif)

-1.000

-0.500

0.000

0.500

1.000

1.500

2.000

2.500

0.0 2.0 5.0 10.0

Rotation

RANSAC Keren Vandewalle Luchesse M arcel

 

 
Figure 2.10 Pure rotational motion is tested for both images 
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Most of the methods, besides Luchesse et al, are able to find a close estimate. As 

Marcel et al has a greater error value than the remaining three methods (RANSAC, 

Keren and Vandewalle) which perform satisfactorily. As a result of the test, 

RANSAC based algorithm has estimated the pure rotation perfectly (Figure 2.10). 

 

2.6.6.2.2. TRANSLATION WITH NO SUBPIXEL SHIFTS 

 
For the pure translational motion, LR images are created by shifting the 

downsampled images in vertical and horizontal directions by 0, 5 and 20 pixels (i.e. 

Figure 2.9(b)). The distance between the estimated and actual places of the pixels 

represents the error value of the results: 

 

 

( ) ( )[ ]22
yyxxerror ′−+′−=     [2.22] 

 

 

where x, y are the actual values of vertical and horizontal shifts and x’, y’ are the 

shift values that are estimated by the corresponding image registration method 

(Figure 2.11). 
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Pure Translation - Distance (lena.jpg)
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Pure Translation - Distance (reschart.tif)
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For all of the methods, the algorithms are able to find a close solution. Lucchese et 

al. is an unstable method for the Lena image. As Marcel et al has a greater error 

value in reschart image, it performs impressively in Lena image in which the high 

and low frequency components are both present; the remaining three methods 

(RANSAC, Keren and Vandewalle) perform very well in this test.  

Figure 2.11 Pure translational motion is tested for both images 
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2.6.6.2.3. TRANSLATION WITH SUBPIXEL SHIFTS 

 
 The digital image acquisition is the sampling of the energy reflected by the real 

world scenes with the imaging sensors. The light coming into the sensor creates an 

intensity value on every cell of the sensor. When the sensor and the scene moves 

with respect to each other, the intensity value on every cell changes. If the 

magnitude of the motion is exactly an integer value then the image taken will shift 

in integer pixel values as in the previous test. However, if the motion occurs in a 

decimal level, the imaging cells will share the total energy reflected by the scene in 

a different dispersion. As a result, the intensity values of the actual LR image and 

the sub-pixel shifted version of it has a different distribution of the intensities. After 

direct downsampling of the HR image the LR pixel values are 

4/)( 2221121111 hhhhL +++= .If a sub-pixel shift is applied, the LR pixel values 

become (Figure 2.12): 

 

 

4

)]1).(1.()1.()1.(.[)]1.(.[]).1.(...[ 333231232221131211

11

yxyyxxxyxyyx ddhdhddhdhhdhddhdhddh
L

−−+−+−+−+++−++
=  [2.23] 

 

 

The rest of the LR pixels L12, L13… L21, L22… are calculated as the shifted versions 

of L11. 



 30 

 

 

 

 

 

 

The figure above shows the case with the downsampling level two for both 

horizontal and the vertical axes.  

 

During this test, 0.3, 0.6 and 0.9 pixel shifts are applied to the images in both 

horizontal and vertical axes. According to the sub-pixel registration test, with the 

exception of Luchesse and Marcel algorithms, the remaining methods perform quite 

impressively to find the sub-pixel shifts. Especially, Vandewalle Algorithm submits 

outstanding results for sub-pixel level translations (Figure 2.13). 

Figure 2.12 Sub-pixel translation, test image forming 
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                                                                              dx 

                                                         dy 
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Pure Translation - Subpixel Distance (reschart.tif)
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Pure Translation - Subpixel Distance (reschart.tif)
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2.6.6.2.4. TRANSROTATIONS 

 
The combination of a series of rotational and translational parameters is called as 

the transrotational experiments on registration algorithms. Both the rotation and the 

translational distance errors are compared here. The translational parameters include 

both integer and decimal level shifts at once. Rotational translations are the cases 

where our hand-held camera is taking a series of pictures or a video. Thus, the 

Figure 2.13 Pure sub-pixel translational motion is tested for both images 
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results of this test are important for our evaluation of which algorithm to use for 

super-resolution. 

 

Transrotation Distance (lena.jpg)
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Transrotation Distance (reschart.tif)
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Figure 2.14 Translation Errors in transrotational motion 
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First, the distance error increases as the translation parameter increases. Once again, 

the Luchesse performs really badly in most of the cases (especially for the Lena 

image). As the Marcel’s algorithm is not very competitive with respect to the other 

three methods which perform quite well (Figure 2.14). 

 

Transrotation - Rotation (lena.jpg)
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Transrotation - Rotation (Reschart.tif)

-1.0000

-0.5000

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

10.00 5.00 2.00

Rotation

RANSAC Keren Vandewalle Luchesse Marcel

 

 
Figure 2.15 Rotation Errors in transrotational motion  
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Additionally, the rotation estimation error has a parallel nature with the distance 

error behavior of the methods. Again, the RANSAC, Keren and Vandewalle 

algorithms prove themselves very competent in the area of image registration as the 

transrotational effects are applied or present on the image series at hand.  

 

2.6.6.2.5. EFFECTS OF NOISE IN REGISTRATION 

 
The image acquisition is subject to many unwanted effects as it was stated in the 

previous chapters. The experiments should objectively treat the methods. Therefore, 

we should also use noise added test patterns of artificial images, to correctly 

examine the registration methods. The way of adding noise to the test images is 

applying random noise to decimate the quality of image to a targeted level. The 

noise is added to the image in a simple way (2.24, 2.25) . 
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 [2.24] 

 

Noisy Image = Zero Noise LR Image + Noise   [2.25] 

 

 

RandomNoise is a pattern with random numbers between 0.0 and 1.0 at the size of 

the low-resolution image grid in which the noise is going to be applied. 

NoiseLevelIndB is the desired noise level of the image at the end (20dB, 10dB etc.). 

LRPixels are the intensity values for the LR image.  
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Transrotation with Noise - Rotation (lena.jpg)
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Transrotation with Noise - Rotation (Reschart.tif)
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The results for the rotational errors are in an acceptable level. The values estimated 

by the RANSAC, Keren and Vandewalle methods are close to the real values. 

However, for the “Lena image” Luchesse and Marcel methods perform quiet badly. 

The two methods give good results in the reschart image (Figure 2.16). 

Figure 2.16 Rotation Errors in transrotational motion with noise 
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Transrotation with Noise - Distance (lena.jpg)
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Transro tation with Noise - Distance (Reschart.tif)
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The distance errors are very different for the two test images at hand. The only 

method remains unaffected is the spatial domain based algorithm Keren. The other 

methods end with random results changing from run to run. For the “Lena image”, 

the frequency-based methods end up with incorrect results, but the RANSAC 

method performs better. In the contrary, the frequency domain methods 

(Vandewalle, Marcel, and Luchesse) perform better, but the RANSAC method 

Figure 2.17 Distance Errors in transrotational motion with noise 
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totally fails with the reschart image. The reason of the failure of the RANSAC is its 

failure in the failed detection of the interest points. The reschart image is 

unpopulated besides the numbers and letters on it and the noise components blocks 

the detection of image features (Figure 2.17). 

 

2.6.6.2.6. ZOOM (SCALING) 

 
Zoom detection of is beyond the capabilities of the all algorithms except RANSAC. 

It is because that those algorithms can only cope with planar translation and rotation 

but not the scaling. Therefore, we will examine the RANSAC algorithm only for 

scaling estimation, where a maximum of the transrotation parameters applied in the 

previous tests are also present. 

 

For the reschart image the features present in the image almost vanishes in double 

scaling so the scaling levels for reschart image is 1.1x, 1.2x, 1.3x, 1.4x where the 

scaling for Lena image are 1.1x, 1.3x, 1.5x, 1.7x and 2x. The figures below show 

the rate of the error with respect to the scale level. (Perfect estimation means “1” in 

the figure 2.18) 

 

The RANSAC algorithm can estimate scale factor successfully. The other 

registration methods can handle the scaling transformation either, but algorithms 

need some further study. Beyond some level of scaling, the number of interest 

points that are used for registering the images, decreases dramatically. Therefore, 

the registration errors increase proportionally with the increasing level of scaling. 

The rotational and distance errors of the scaled image are as follows. 
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Zoomed Transrotation Scaling (lena.jpg)
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Zoomed Transrotation Scaling (reschart.tif)
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Figure 2.18 Scale Factor Errors in transrotational motion for RANSAC. 
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Scaling 
Rotation 

(10 degrees) 

Horizontal Shift Error 

(10.5 pixels) 

Vertical Shift Error 

(10.5 pixels) 

1.1x 0,9360 -0,7090 -0,5220 

1.2x 1,7000 -0,7840 -1,1810 

1.3x 2,3800 -1,0330 -1,1930 

1.4x 2,8610 0,2840 -0,4770 

1.5x 100.0000 -82.2090 164.4300 

1.1x with 

20dB noise 
-0.4190 -2.0750 -7.8540 

 

 

 

Scaling 
Rotation 

(10 degrees) 

Horizontal Shift Error 

(10.5 pixels) 

Vertical Shift Error 

(10.5 pixels) 

1.1x 1,0740 -0,7650 -0,5310 

1.3x 2,7940 -1,1130 0,2160 

1.5x 3,4960 -0,6590 -2,5620 

1.7x 4,2980 -1,2180 1,0400 

2.0x -13,0010 42,1410 -26,4020 

1.1x with 

20dB noise 
0.8700 -2.4830 -3.7090 

 

 

As it appears in the previous figures of tables on the scaling, the rotational and 

translational errors are strictly related to the scaling factor estimation. (Table 2.1; 

1.5 x case & Table 2.2; 2.0 x cases). Even if the RANSAC scaling estimation 

gathers incorrect results from some level of zooming, the algorithm copes with most 

of the cases quite well. In addition, to see the noise’s effect on the scaling concept; a 

20dB noise is applied, and the scale factor is 1.1x simultaneously. The results of the 

Table 2.2 Rotational and Translational Errors for the scaled Lena image  

Table 2.1 Rotational and Translational Errors for the scaled reschart image 
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trial are affected severely from the noise. For both images, the degradation of 

performance with respect to noiseless case is obvious. 

 

2.6.7. DISCUSSIONS ON REGISTRATION METHODS 

 
The image registration techniques discussed here are only a part of the available 

techniques. The spatial domain and frequency domain methods both have some 

drawbacks. In the light of the tests we have completed, we can identify which 

techniques works and which do not. If pure rotational motions are present, on the 

scenes, we are investigating the use of Marcel and Luchesse seems to be 

problematic while the other three methods (RANSAC, Keren & Vandewalle) can be 

used. If a translational motion dominant scene is at hand all of the five methods 

shall work quiet well. However if the aim of the study is the estimating the sub-

pixel motions as well as the other translational shifts, the use of RANSAC, 

Vandewalle and Keren is recommended. 

 

The combination of rotational and translation motion is possible during image 

acquisition. The transrotational motion tests give us clue for such situations. Based 

on the findings of the transrotational transformation tests, Luchesse and Marcel 

methods cannot cope with this type of motion. However, RANSAC, Keren and 

Vandewalle methods survive for both test images in this experiment.  

 

In addition to motion, the acquisition device suffers from the ambient noise in the 

environment. A noise robust method successful with the transrotational 

transformations can be used reliably in the super resolution studies. Under noisy 

conditions, Marcel and Luchesse methods are not reliable; the other methods can 

cope with noise levels implemented in the experiments.  

 

Finally, we have examined the scaling transformation. Scaling occurs when the 

motion of the camera is away from the imaging plane. Only the RANSAC method 

has the capacity to identify the scaling parameter therefore the test is only limited to 

one method. The scaling results show that until some point of scaling RANSAC can 

identify the scale factor as well as the transrotational parameters successfully. 
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Because of the fact that after some level of zooming, the interest points get out of 

the viewpoint; the estimates become completely wrong. 

 

Throughout the tests, the only algorithm that succeeded is the Keren. Nonetheless, 

The Vandewalle and RANSAC are both useful in most of the cases. Even more, 

since the RANSAC has the ability of detecting scaling, it may be preferable to use 

it. 

 

One of the important points is the execution time of the algorithms. The Table 2.3 

indicates the execution time of algorithms. This test is completed for one image 

only with the same transformation parameters.  

 

 

 

 RANSAC Keren Vandewalle Luchesse Marcel 

Elapsed Time (lena) 0.666 s 3.057 s 88.351 s 3.995 s 5.011 s 

 

 

The results of the execution time test show that the RANSAC or Keren algorithm 

gives us the results fast. Finally, the use of Keren or RANSAC in our further 

discussions and tests will be appropriate. 

 

2.7. IMAGE FUSION 

 
Multi frame Image reconstruction image fusion is the integration of the sorted, 

aligned images into one common high-resolution grid. The information bits inside 

the images are fused to form a complete picture of the whole data set. Since every 

single pixel on the newly formed high-resolution image is a combination of the 

corresponding low-resolution pixels, the misalignment of these LR images will 

result in false convergences in data fusion step, which are obviously very disturbing 

(like ghosting). As a result, only the results of the best image registration method 

available should be used in the image reconstruction step. If the results of the 

current image registration algorithms are not precise enough, the known parameters 

Table 2.3 Execution times of the methods  



 42 

of the synthetic images will be used. In this chapter, the operational stages of the 

super-resolution techniques are examined. The description of image fusion 

methods, their comparison and experimentation results are reported in the next 

chapter.  

 

2.8. QUALITY METRICS 

 

There are two classes of objective quality or distortion assessment approaches. The 

first are mathematically defined measures such as the widely used mean square 

error (MSE) and peak signal to noise ratio (PSNR) which is a derivation of MSE. 

The formulations for these are: 
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where M, N stands for the size of the image in both horizontal and vertical axes, Im 

is the original HR image and Im’ is the reconstructed HR image that is to be 

examined. MSE stands for error between two images, PSNR stands for error 

variance against the maximum possible image variance.  

 

The second class of measurement methods considers human visual system (HVS) 

characteristics in an attempt to incorporate perceptual quality measures. 

Unfortunately, these complex metrics do not show any clear advantage over 

algebraic metrics such as MSE and PSNR under strict testing conditions and 

different image distortion environments. 
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The main function of the human visual system is to extract structural information 

from the viewing field, and the human visual system is highly adapted for this 

purpose. Therefore, a measurement of structural information loss can provide a 

good approximation to perceived image distortion [18]. Wang et al. regard the 

structural information in an image as those attributes that reflect the structure of 

objects in the scene, independent of the average luminance and contrast [17]. 

Structural Similarity (SSIM) index is an improved version of the method that Wang 

et al. [13] proposed before as a mathematically defined universal image quality 

index. The quality measurement approach does not depend on the images being 

tested, the viewing conditions or the individual observers. To find the quality index 

(Eqn. 2.21), first, the original ( { }Nixx i ,...,2,1| == ) and the test 

( { }Niyy i ,...,2,1| == ) images are subjected to a 8×8 sliding window and for each 

position of the window, the formula below is calculated, where bars over letters 

designate average and σ stands for the variance of the pixel values within the 

window. 

 

The sliding window calculations results in a quality map of the image where the 

dynamic range of the map is [-1, 1]. The best value 1 is achieved if and only if  

ii
xy =  for all i. The overall quality index value is the average of the quality map. 

The quality index can be stated as:  
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The first component is the correlation coefficient between x and y, which measures 

the degree of linear correlation between x and y, and its dynamic range is [-1, 1]. 

Even is x and y are linearly related, there still be relative distortions between them, 

which is evaluated in the second and third components. The second component, 

with a value range of [0, 1], measures how close the mean luminance is between x 
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and y. It equals one if and only if yx = . 
x

σ  and yσ  can be viewed as estimate of 

the contrast of x and y, so the third component measures how similar the contrasts 

of the images are. Its range lies between 0 and 1, where the best value 1 is achieved 

if and only if yx σσ = [18]. 
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CHAPTER 3 

 

 

 

SUPER RESOLUTION METHODS 

 

 
3.1 INTRODUCTION  

 
The resolution improvement is the process of magnifying the image into a larger 

size. In the process of resolution enhancement, we have a number of pixels at hand. 

We create an empty grid of the targeted high-resolution image, depending on these 

pixels. According to the available low-resolution pixel intensities, we fill the entire 

image pixel by pixel. At the end, we have a higher resolution image, which has 

pixel values based on the available pixels. The filling process is the key point here. 

Depending on how we fill the empty grid, the resolution enhancement is classified.  

 

For the single frame resolution enhancement, we have a single image and the 

available pixels on this image are placed on the high-resolution grid. While 

transferring the LR pixels to the HR grid, empty pixels between the existing pixels 

are left. After then, these empty pixels are filled up by a function of choice. 

However, suppose that we have a number of images to utilize, to create a high-

resolution image. The images have different functions to show the same scene. As 

the functions are different, the intensities of corresponding pixels include different 

information for each point on the scene. Therefore, we fill whole high-resolution 

grid using a particular method of combining the distinct information of the available 

images. The general name of that particular method is the multi-frame resolution 

enhancement.  

 

 



 46 

The main difference of multi frame and single frame methods is the number of 

images that they use. Throughout this chapter, we will discuss the two classes of the 

resolution enhancement techniques, systematically. First, the single frame methods 

are reviewed and then the multi-frame based techniques are discussed. As we 

understand the methods, the tests will take place, the discussions on the tests and 

comparison of the methods will be the subject of the next chapter. During the tests, 

we use synthetically transformed images to generate a high-resolution image 

(Figure 3.1). 

 

 

 

 
 

3.2. SINGLE FRAME RESOLUTION ENHANCEMENT 

 
Single frame resolution enhancement is equivalent to image interpolation. 

Interpolation of an image is enlarging its size by estimating the unknown pixels of 

larger image from their neighboring pixels. We examine some interpolation 

techniques next. These results of these techniques will be used at benchmarks for 

super resolution methods.  

Figure 3.1 The Transformed lena images with scaling (a) downsampled, 
no transformation (b) 3.32˚, (2.13, 3.92) pix, 1.02 x(c) 2.67˚, (4.67, 6.71) 
pix, 1.10 x (d) 6.76˚, (9.87, 1.39) pix, 1.08 x (e) 4.88˚, (6.59, 8.83) pix, 1 x 
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3.2.1. NEAREST NEIGHBOUR INTERPOLATION 

 
Nearest Neighbor Interpolation is the most straightforward solution to the 

interpolation problem. As it is obvious from the name of the method, the subject of 

this technique is finding the nearest pixel value to the missing image value at a 

location then, assigning that nearest pixel values to the missing image value as in 

Eqn.3.1. In this method, the areas of pixels are enlarged by the targeted level of 

interpolation so the image quality is negatively affected. Mostly the image is in a 

shape of mosaics that disturbs the visual quality (Figure 3.2). 
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Figure 3.2 The nearest neighbour interpolation scheme, (A) fill empty 
cells in the grid, (B) the original size lena image, (C) nearest neighbour 
interpolated lena image 
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3.2.2. BILINEAR INTERPOLATION 

 
Bilinear Interpolation is a simple but efficient way of enlarging images. The main 

concern of this method is to fit a bilinear surface through existing data points. The 

resultant image will be a smoother than the nearest neighbor interpolation. In this 

method, the available pixels are placed into a HR grid, leaving zeros between them. 

In both vertical and horizontal directions, empty pixels are filled with the linear 

function values between the existing pixels. This process is done for the rest of the 

empty cells including the newly found pixel values into the process. By using this 

method, every empty pixel is filled with a value affected by the nearest four existing 

pixels depending on the distance to them (Figure 3.3). 
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Figure 3.3 The bilinear interpolation scheme, (A) fill empty cells in the 
grid, (B) the original size lena image, (C) bilinear interpolated lena 
image 
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3.2.3. BICUBIC INTERPOLATION 

 

Bicubic Interpolation is an advanced version of the bilinear interpolation. Bicubic 

interpolation uses a 4 by 4 neighborhood to find the missing pixels in the high-

resolution grid. Bicubic interpolation uses a polynomial passing through four pixels 

to make a decision. Therefore, bicubic interpolation creates enlarged images that are 

smoother and higher quality (Figure 3.4). The following equation [3.3] is the 

continuous time convolution kernel of the cubic interpolation. When the 

interpolation is separately applied to rows and columns of an image, we have the 

bicubic interpolation [15]. 

 

 

 

 

(A) 

(B) 

Figure 3.4 The bicubic interpolation scheme, (A) the original size lena 
image, (B) bicubic interpolated lena image 
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Throughout the thesis, the bicubic interpolation will be used as a reference to the 

quality, because it has a proven degree of quality and ease of use.  

 

3.3. MULTI-FRAME RESOLUTION ENHANCEMENT 

 

As we have mentioned in the previous chapter, the super-resolution methodology 

consists of two main phases. One of these phases is the image registration phase, 

which was discussed in a detailed manner. The other phase is the image fusion. 

After the LR images are registered, they should be combined in a suitable way. The 

image fusion allows us to combine these details into one high-resolution image of 

the scene. The name multi-frame resolution enhancement is used for the image 

fusion step since the resultant image is a higher resolution image than the input 

images that are low resolution. The two phrases will be used interchangeably 

throughout this thesis. 

 

 For the registration, we have selected the Keren and the RANSAC algorithm. As 

noted before, the noise components affect the RANSAC algorithm negatively, we 

will use Keren based registration for noisy images. However, the noiseless images 

are registered with RANSAC better than the others are. 

 

3.3.1. DIRECT ADDITION 

 

After the input images are registered, the most basic method to fuse these images is 

to get mean or median of the images. These two methods are extremely basic and 

easy to implement. Inevitably, they have some drawbacks such as blurring, and 

degradation of details that are not present in every image. As an advantage, these 

methods can reduce the effects of misregistrations and noise successfully, because 

of the low pass filtering nature of the mean and median operations. As compared to 

the single-frame methods, these methods are quite discouraging in consideration of 

being multi-frame methods. However, the noise suppression capability and the 

opportunity of adding the image restoration methods to the algorithm, make these 
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methods considerable. In addition to these, the two variants of direct addition 

methods are single-run methods and have a very low computational complexity. 

 

The direct addition methods have a few steps, which do not alter as the image 

filtering scheme changes. First, we have the registered images at hand. These 

images are upsampled by using bilinear or bicubic interpolation as the first step to 

the resolution enhancement. As we have the upsampled and aligned pictures of the 

scene, we can add them to form the final image. The type of addition determines the 

filtering type as median or mean. The mean filtering of upsampled-registered 

images takes the mean of all overlapping pixel values, whereas the median filtering 

takes the median value of each overlapping pixel set (Figure3.5). 
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Where HR is the targeted high-resolution image, LR is the available low-resolution 

images, ↑ is the upsampling operator, x, y is the pixels of the high-resolution grid 

and n is the number of available LR images. 
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The tests takes place for the direct addition with median filtering only, because the 

mean and median operation give similar results and most of the time median 

filtering operates more accurately. The fusion tests show that major draw back of 

the addition method is the blurring effect. This blurring reduces the SSIM index and 

PSNR values negatively. The scaling is a corruption that is hard to recover. Even 

the RANSAC cannot register perfectly. Since the RANSAC algorithm registers the 

scaled images with some error, Figure 3.6 (A) (C) has some artifacts along the 

edges. Although the blurring is a drawback; as noise increases on the images, the 

cause of this effect suppresses noise. Even if the information is unrecoverably 

corrupted in one image due to noise, the application of direct addition to the noisy 

LR images, recovers some information and the quality increases slightly than any of 

the single frame methods (Figure 3.6(B) (D)). Despite adding whole image set as in 

the previous section, seems to be appropriate; the effect of subpixel information is 

reduced or ignored while mean or median filtering. 

Registered Images Upsample the Registered 
Images 

Take Mean or Median of 
each pixel of upsampled 

images 

Figure 3.5 Pipeline of Direct Addition with Median Filtering Algorithm  
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Figure 3.6 Direct Addition with Median Filtering on (A)(C) RANSAC 
registered images (rotation+translation+scaling applied); (B)(D) Keren 

registered images (rotation+translation+noise applied) 

(A) 

SSIM 0.851 

PSNR 28.805 

MSE 9.253 

 

SSIM 0.803 

PSNR 28.123 

MSE 10.009 

 
(B) 

(C) 

SSIM 0.781 

PSNR 17.056 

MSE 35.789 

 

SSIM 0.721 

PSNR 21.434 

MSE 21.62 

 (D) 
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The direct addition methods suffer from their negligence of motion information. 

The motion information is discarded after image registration and disregarding the 

information fusion leads to noise removal or enhancement of signal quality but not 

to resolution improvement. Other methods such as non-uniform interpolation make 

use of information on sub-pixel motion to construct super resolution images.  

 

3.3.2. NON-UNIFORM INTERPOLATION 

 
The super resolution methods are based on the fact that, even if the images are of 

the same scene, the sub pixel shifts between them makes them distinct. All of the 

super-resolution algorithms, specifically the image fusion methods, intend to 

recover this subpixel information. In the direct addition method in the previous 

section, the effect of subpixel information is reduced or ignored while mean or 

median filtering. Therefore, the blurring occurs and the information hidden between 

the pixels cannot be recovered as desired. In the method of nonuniform 

interpolation, we consider every image, pixel by pixel to overcome the high 

frequency information suppression,  

 

The non-uniform interpolation method aims to fuse all these information as 

affectively as possible. Since the images are shifted in integer pixels and fractional 

pixels together and when we register them in integer pixel level, the subpixel shifts 

left unregistered. As the pre-registered images put together, the pixel values of all 

images are scattered surrounding the reference frame pixels (Figure 3.7). If the 

registration is perfect, the scattered pixels show the exact values of the 

corresponding points in the scene. However, we have some registration and 

calculation errors present. Since the high-resolution grid does not hold the pixels of 

each scattered pixel at exact place, the best we can do is to calculate the effects of 

the scattered pixels on high-resolution grid’s cells and assigning these values as the 

high-resolution pixels. According to this method, the high-resolution pixels are 

composed of the combination of the pixels surrounding them [3.7]. 
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After the integer level translations and rotations, scaling are compensated: 
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Where D is the total distances for that individual HR pixel, x, y∈HR and a, b∈LR 

and a, b includes fractional sub-pixel information.  

 

 

 

 

 

Figure 3.7 Four LR images are preregistered and aligned without 
compensating subpixel shifts. Their individual pixel values create the HR 

image on the HR grid.[16] 
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The procedure is very easy to understand but the implementation is a bit 

problematic since the pixels are computed one by one and the surrounding pixel 

values and distances of the LR pixels to the HR pixel are calculated for each pixel. 

(Figure 3.8) 

 

 

 

 

 

During the tests, the nonuniform interpolation performs quite well (Figure 3.9). 

With some attention to the code efficiency, real-time applications are possible. 

However, the most important disadvantage of non-uniform interpolation is its 

sensitivity to noise and misregistrations. The algorithm ignores these errors and all 

the errors become artifacts at the end. If the blurring and noise characteristics of the 

LR images differ, the algorithm also fails to end up with a successful result. The 

algorithm almost overcome the noise present on the image and gives one of the best 

results among other methods. Nevertheless, the results of the scaled image fusion 

test are not very good. This is because the registration errors are present in that case. 

Non-uniform interpolation is a promising method, but the need of using image 

restoration methods for both the LR images and resultant HR image is undeniable. 

As the last word, we can say that the non-uniform interpolation is as close as we can 

get to the ideal of reconstruction of a continuous image form its non-uniformly 

sampled pixels gathered from multiple LR observations.  

The HR pixels are built 
from the surrounding LR 

pixels  

Figure 3.8 Pipeline of Nonuniform Interpolation Algorithm  

Unregistered LR Images 
are aligned without 

subpixel accuracy 

 + H(n) 
 LR(n) 

Preregistered images are 
fitted to HR grid by leaving 

empty pixels inbetween 
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Figure 3.9 Nonuniform Interpolation on (A)(C) RANSAC registered 
images (rotation+translation+scaling applied); (B)(D) Keren registered 

images (rotation+translation+noise applied) 

(A) 

SSIM 0.877 

PSNR 25.660 

MSE 13.290 

 

SSIM 0.847 

PSNR 27.347 

MSE 10.944 

 
(B) 

(C) 

SSIM 0.832 

PSNR 18.799 

MSE 29.283 

 

SSIM 0.804 

PSNR 21.437 

MSE 21.612 

 (D) 
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3.3.3. ITERATIVE BACKPROJECTION 

 

The previous tests show that the performances of the single-run methods are not 

satisfactory. The expected performance should at least as the same as the single 

frame methods. One of the ideas to increase the performance is using an iterative 

methodology. Iterative methods use prior information of the previous results to get 

a better outcome. Many iterative multiframe superresolution restoration methods 

have in common a simple but powerful simulate-and-correct approach to 

restoration. The iterative backprojection method is one of them, which is very easy 

to understand in application. The IBP method provides a useful framework for 

solving the super resolution problem by providing a mechanism for constraining the 

super resolution restoration to conform to the observed data [12]. The algorithm 

needs a priori image to start the process. As the priori image, this method uses the 

mean of the registered images. By this way before beginning the iterations, we have 

a base image to build up our outcome. The basic motive in our algorithm is to 

generate a simulation image, generate LR images from the simulation image to 

compare them with the observed counterparts and using the error between them to 

generate a better quality simulation (Figure 3.10). As long as the ending rule is not 

satisfied, the iterations will continue. The ending rule may be a threshold value, the 

point where the quality stop increasing, or simply a predefined number of iterations. 

 

The aim of the IBP method is to minimize the error between simulated LR images 

and the observed LR images iteratively. All corrections on the simulated HR image 

generated by the various LR pixels are combined by taking their weighted average, 

using the back projection kernel [14]. 

 

There is the ease of understanding of the scheme. However, the solution is not 

unique due to the ill-posed characteristic of the problem and choice of the priori 

image is vital, where the solution may not converge or the solution converges too 

slowly. In fact, many solutions that satisfy the constraints given by the observed 

low-resolution frames exist [12]. 
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 Therefore, the choice of the priori constraint should be carefully selected. As taking 

the mean of all registered images and then upsampling the result is a basic and easy 

to implement, in this study we use the mean operation as the priori constraint 

finding way [3.6]. Certainly, different methods of finding priori constraints may be 

used.  
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Where n is the iteration number, x is the simulated HR image, N is the number of 

images, yk is the observed LR images and yk
n is the final simulation of LR images 

after n iterations and n1,n2 are the HR space and m1,m2 is the LR space. Finally, 

hBP is the backprojection kernel where the LR image is mapped into HR grid, which 

is the mean and upsampled operation, in our study. However, hBP may be utilized as 

an additional constraint, which represents the desired property of the solution [16]. 

  

Obviously, the RANSAC registered scaled images will contain some registration 

errors. The effects are clear from the previous tests. The IBP method successfully 

overcomes this kind of corruption (Figure 3.11 (A) (C)). In addition to this, the 

noise suppression capability of the IBP method is not very competent as the quality 

metrics are considered. This is because the priori image suffers from the noise and 

the noise present on all of the observed LR images exaggerates the error. 
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Get mean and upsample 
the registered images as 

the simulated HR image 

Figure 3.10 Pipeline of Iterative Backprojection Algorithm  

Unregistered LR Images, Registered 

LR Images and Homographies 

Downsample simulated HR Image 
and apply inverse Homographies to 

get simulated LR images 

 + H(n) + 
 LR(n) 

 LR’(n) 

 LR’(n) – LR(n) 

e(n) 

Get the difference of the simulated 

and observed LR images 

Apply Homographies and 

get the registered residues 

Get mean and upsample 
the registered residues, 

apply the back-projection 
Apply the  

Add the upsampled gross 
residue to the simulated 

HR Image 

e’(n) 

 
E’(n) 

HR’(n) 

HR’(n)+E’(n) 
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Figure 3.11 Iterative Backprojection (10 iterations) on, (A)(C) RANSAC 
registered images (rotation+translation+scaling applied); (B)(D) Keren 

registered images (rotation+translation+noise applied) 

(A) 

SSIM 0.9 

PSNR 30.531 

MSE 7.586 

 

SSIM 0.868 

PSNR 28.804 

MSE 9.254 

 
(B) 

(C) 

SSIM 0.925 

PSNR 24.835 

MSE 14.614 

 

SSIM 0.669 

PSNR 23.119 

MSE 17.807 

 
(D) 
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3.3.4. IBP WITH NONUNIFORM INTERPOLATION 

 

The IBP with Nonuniform Interpolation method is a variant of the IBP. It also 

contains the non-uniform methodology. The main difference is the backprojection 

kernel used. Instead of using the upsampled mean of the registered input images as 

initial constraint in IBP, nonuniform interpolation is used in IBP with nonuniform 

interpolation. The main formulation is the same as the IBP [3.6] but the IBP 

changes. The method has both the nonuniform interpolation method’s and IBP 

method’s disadvantages. The noise suppression capability is not very promising 

also the registration errors affects the results negatively. Therefore, the use of 

additional methods is necessary. One of the powerful ideas in IBP is the error 

suppression by mean filtering. Since in IBP with non-uniform interpolation method 

does not have such steps, the addition of low-pass filters will be effective. The 

addition of filters in fact does not violate he rule of not using image restoration 

throughout the thesis, because we do not change the final image but the 

backprojection kernel IBP. 

 

Throughout the IBP with nonuniform interpolation tests, the results show that 

without applying a proper back-projection kernel this method does not perform well 

(Figure 3.13). However, as soon as the kernel is fixed, the effect of misregistrations 

and errors are decimated on the initial estimate image and the simulated LR images 

(Table 3.1). 

 

 

 

Reschart.jpg  SSIM(scaling) PSNR(scaling) SSIM(noise PSNR(noise) 

Without filters 0.804 20.163 0.399 21.147 

With filters 0.859 21.991 0.569 22.635 

Table 3.1 The effect of back-projection kernel choice in IBP algorithms  
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Apply non uniform 
interpolation and get the 

simulated HR image 

Figure 3.12 Pipeline of Iterative Backprojection with Nonuniform  

Interpolation Algorithm 

Unregistered LR Images, Registered 
LR Images and Homographies 

Downsample simulated HR Image 
and apply inverse Homographies to 

get simulated LR images 

 + H(n) + 
 LR(n) 

 LR’(n) 

 LR’(n) – LR(n) 

e(n) 

Get the difference of the simulated 
and observed LR images 

Apply Homographies and 
get the registered residues 

Apply non uniform 
interpolation and get the 

HR gross residue 

Add the gross residue to 

the simulated HR Image 

e’(n) 
E’(n) 

HR’(n) 

HR’(n)+E’(n) 
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Figure 3.13 Iterative Backprojection with Nonuniform Interpolation on 
(A)(C) RANSAC registered images (rotation+translation+scaling applied); 

(B)(D) Keren registered images (rotation+translation+noise applied) 

(A) 

SSIM 0.811 

PSNR 24.780 

MSE 15.682 

 

SSIM 0.599 

PSNR 25.658 

MSE 13.294 

 
(B) 

(C) 

SSIM 0.804 

PSNR 20.163 

MSE 25.024 

 

SSIM 0.399 

PSNR 21.147 

MSE 22.347 

 (D) 
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The pipeline of the IBP with nonuniform interpolation algorithm is shown in figure 

3.13; the updated IBP methodology will be injected to the algorithm in the first 

estimate and for every difference operation of the simulated and observed LR 

images. 

 

3.3.5. PROJECTION ONTO CONVEX SETS (POCS) 

 

The iterative solutions to the image fusion problem aim to minimize the error as the 

process passes over the same procedures. The IBP algorithms above scan the whole 

image at once and correct the error to converge to any solution that satisfies the 

error minimalization, within the whole solution space. The set theoretic methods, by 

the most known variant Projection onto Convex Sets (POCS) method in this study, 

solve the restoration problem by defining sets of constraints which must be satisfied 

by candidate solutions [16]. The definition convex sets is very wide and special to 

the image processing, specifically our problem; image fusion, these sets are the 

observed data. POCS aims to converge to a solution, which does not violate the 

borders of the observed LR images (Figure 3.14). POCS method finds alternative 

solutions for every pixel value, which satisfies both convex sets, namely the 

observed LR images, simultaneously. Stark and Oskoui [10] did an early work on 

the subject. They use closeness and convexity of the constraint sets to ensure 

convergence of iteratively projecting the images onto the sets. Tekalp, Ozkan, and 

Sezan [11] propose a more robust POCS formulation. 

 

The POCS method is a simple but powerful operation (Figure 3.15). The process 

begins with the determination of the priori constraint, which is the reference frame 

that is within the solution space. The reference frame interpolated to the HR copy 

and the first estimate is at hand. The iterative process starts here and passes over 

every frame and every pixel to locate the solution. 
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First, the images are registered, and we get the motion compensated coordinates of 

every pixel. These pixel values must be projected to the HR space and this is done 

by applying a Gaussian PSF for every pixel. For every image in our set, we have a 

solution then. Unifying these solutions into the intersection of these sets is the next 

step. Every pixel value has the prior information and the found value specific to that 

set. The next thing is to stretch the available estimate to satisfy the solution set we 

are working on. The pixel value is updated at the level of the threshold to match the 

projected value as close as possible without disturbing the continuity of the 

solution. After the prior estimate is stretched to every frame of the input set, first 

iteration is completed. The solutions are normalized to the intensity space [0,255] 

and the next simulated HR image is ready. 
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Figure 3.14 In the POCS technique the initial estimate is projected to the 

convex sets iteratively. 
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where x0 is an arbitrary starting point, and Pi is the projection operator which 

projects an arbitrary signal x onto the closed, convex sets, Ci. For each pixel within 

the LR images yk[m1, m2] 
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The projection of an arbitrary x[n1 ,n2 ] onto CD
k[m1,m2] can be defined as: 
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Additional constraints after [3.11] can be utilized to improve the results [10]. 

 

The drawbacks of the POCS method are mainly the nonuniqueness of the solution 

since the solution may converge to any member in the intersection set. The 

computational cost is high due to the pixelwise recovery of the values, rather than 

the scanning of the whole frame. Additionally, the method converges very slowly or 

even may not converge at all. 
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Upsample the reference LR 
image as the simulated HR 

image 

Figure 3.15 Pipeline of Projection onto Convex Sets Algorithm  

Unregistered LR Images, 
and Homography 

Matrices 

To the found motion compansated 
coordinates apply the gaussian PSF for 

each pixel  

 + H(n) 
 LR(n) 

If diff > δ , subtract δ weight from that pixel, 
If diff < δ , add δ weight to that pixel, 
If diff = δ , leave as it is. 

 

Normalize 

HR(x,y) 

between  

0 and 255 

HR’(n) 

For all LR images, apply 
the Homographies to find 
the motion compansated 

pixel coordinates 

 +δ   0  -δ 

 -δ  +δ  +δ 

 -δ  +δ   0 

After this procedure applied to all 
pixels we have updated the 

simulated HR image 

For every pixel in the image, find the 
difference between the simulated HR image 

pixels and gaussian PSF applied pixels. 
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Figure 3.16 Projection onto Convex Sets on (A) (C) RANSAC registered 
images (rotation+translation+scaling applied); (B) (D) Keren registered 

images (rotation+translation+noise applied) 

(A) 

SSIM 0.922 

PSNR 18.553 

MSE 30.122 

 

SSIM 0.663 

PSNR 21.224 

MSE 22.148 

 
(B) 

(C) 

SSIM 0.911 

PSNR 17.056 

MSE 35.789 

 

SSIM 0.679 

PSNR 20.702 

MSE 23.520 

 (D) 
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The tests on POCS algorithm show that the method is extremely sensitive to noise 

and registration errors. As appears in figure 3.16 (A) (C) the registration errors 

causes too many artifacts and these results in poor scores in both PSNR and SSIM 

index. Also as seen in figure 3.15 (B) (D) since the noise is not filtered a cumulative 

noise of all images appears in the final HR image, which also causes the 

degradation of quality. However, the good results in registration and with lower 

noise present on input images, the POCS is a promising method. 

 

3.3.6. COMPARISON OF FUSION METHODS 

 

Thus far, we have covered the definitions of image fusion algorithms, the 

flowcharts of them and their some sample applications. As we have done for the 

image registration algorithms in the previous chapter, the next step will be the 

comparison of these methods. Throughout the comparison, the methods will be 

tested for several images, several cases.  

 

3.3.6.1. TEST METHODOLOGY 

 

The tests are all done by using the Super Resolution GUI build specifically for this 

purpose. The use of image quality metrics that was discussed in the previous 

chapter is only possible by the presence of the original high-resolution image. By 

the absence of this reference frame, only visual assessment is possible. Therefore, 

we get an image as the reference image and then we tried to form some transformed 

synthetic low-resolution variants of this reference image. The results of the SR 

methods are compared to the reference frame and the success of the methods is 

analyzed based on a numerical background. Even for this case, visual assessment 

should be done, because of the fact that both SSIM and PSNR values depend on the 

image differences and in some cases, the indexes might differ from what we see 

visually. 

 

During the tests, we use the image registration algorithms, Keren and RANSAC. 

The success of RANSAC algorithm in recovering every kind of spatial 
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transformation and Keren’s durability in noisy conditions, make us to use them in 

various cases. The synthetic image tests are done for the two images as we use in 

image registration section. We use the bicubic interpolation as the control variable. 

The use of bicubic interpolation is because this kind of single-frame resolution 

enhancer gives very reliable and successful results and as we use multi-frame 

methods and use a lot of computational power, we should at least reach the 

performance of this method. Otherwise, we already have the working bicubic 

interpolation at hand, with less computational cost and more reliability.  

 

 

  

 

 

 

 

First, the images have no noise or scaling on them, but only the transrotational 

transformations. After registering the images with Keren algorithm, we fuse the 

images by using several algorithms one by one. Next, the scaling is applied to the 

images and RANSAC is used to recover this type of corruption. Once again, all 

methods are used to fuse RANSAC registered images. Finally, some noise is added 

and Keren is used to recover the transformations. Certainly, we repeat the fusion 

step once again. During these tests, we gather the SSIM index and PSNR values, as 

well as some visual patterns to compare the methods. As another step of 

performance evaluation, we registered the video frames by RANSAC algorithm and 

fuse the registered images by using whole set of methods. The visual patterns are 

Figure 3.17 Images (Test1.bmp and Test2.bmp) that are used in the tests. 
with transformations        :          (A) 1.08 degrees (5.77, 7.24) pixels;  
(B) 0.51degrees (1.33, 1.89) pixels; (C) 1.22 degrees (5.59, 7.09) pixels; 

(D) 1.81 degrees (0.12,6.69) pixels;    (E) 0.29 degrees (4.91, 2.41) pixels. 
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gathered for comparison, either. At the end of the tests, we collect some data to 

evaluate the effects of image number and iteration number to the success of the 

methods. During the tests, five LR synthetic images and seven video frames are 

used to evaluate the performance of the methods. 

 

3.3.6.2. QUALITY METRIC BASED COMPARISON 

 

The evaluation of some methods using a numerical constraint is relatively easy and 

preferred. The image quality is one of the though areas for assigning numerical 

values to the samples. The basic idea is to get the difference of the images and find 

the value as in PSNR, which may suffer from the fact that slight intensity 

differences or slight shifts may cause terrible outcomes, even if that is not the case. 

In addition more trustworthy methods based on HVS (human visual system) are 

also used, in which the assessment is structural and immune to slight variances. We 

use both for our comparison. 

 

For the first test pattern, the the image of the writing have no noise or scaling and 

they are perfectly registered (Table 3.3). The results show that the POCS and IBP 

methods perform very well. POCS can even get more points than the bicubic 

interpolation. As taking the bicubic method as the reference to our test the POCS, 

IBP and Nonuniform Interpolation methods performs better, while IBP with 

nonuniform Interpolation and direct addition methods performs worse. Similar to 

this; the test2 image also gives similar results. 

 

The registration errors increase slightly, when we register the images using the 

Keren algorithm instead of directly using known trans-rotational values. 

Misregistrations cause all methods to degrade in performance. Therefore, all of the 

methods looses SSIM and PSNR values similarly (~0.5 dB – 1 dB in PSNR and 

<0.04 pts in SSIM index), but nonuniform interpolation looses much more quality 

(~2dB in PSNR and >0.2pts in SSIM index). (Table 3.2) 
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  Test1.bmp Test2.bmp 

Method Metric 
Perfect 

Registered 

Keren 

Registered 

Perfect 

Registered 

Keren 

Registered 

SSIM 0.459 0.449 0.767 0.767 Direct 

Addition with 

Median 

Filtering 
PSNR 10.227 10.176 18.793 18.766 

SSIM 0.685 0.458 0.822 0.748 
Nonuniform 

Interpolation 
PSNR 12.007 10.522 20.708 18.547 

SSIM 0.725 0.695 0.798 0.788 
Iterative 

Backprojection 

(IBP) PSNR 12.392 12.118 20.733 20.616 

SSIM 0.483 0.433 0.716 0.675 IBP w 

Nonuniform. 

Interpolation 

 
PSNR 10.374 10.063 19.293 19.064 

SSIM 0.799 0.750 0.854 0.871 Projection onto 

Convex Sets 

(POCS) 

 
PSNR 13.492 12.762 21.586 21.924 

SSIM 0.671 0.671 0.819 0.819 
Bicubic 

Interpolation 
PSNR 11.993 11.994 20.504 20.508 

Table 3.2 Comparison of methods based on the quality metrics 
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Figure 3.18 Test1 & Test2 images QMs 

Image Quality vs SR Methods (Perfect 
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As a result, as long as the LR images preserves original outline, the single frame 

methods performs better since we downsample the HR image and then upsample it. 

As soon as the noise present in the LR images, the single frame methods need hard 

core image restoration, whereas the multi frame  methods can cope with noise by 

their information fusion and noise suppressive capabilities. However if the 

registration is perfect and noise does not very effective, POCS performs very well 

as well as IBP and nonuniform interpolation (Table 3.2). 

 

To have a better understanding on the methods and their individual performances, 

we need to give our attention to the visual assessment in the next chapter.  

 

3.3.6.3. VISUAL ASSESSMENT OF THE METHODS 

 
The evaluation of the SR methods is not only based on quality metrics. The use of 

quality metrics is possible if only we get a control image of the scene or the LR 

images are synthetically acquired, since we need a reference frame to compare the 

results of the algorithms. For this reason, if we have a video sequence or a sequence 

of images visual assessment is essential.  

 

For the synthetic images, Table 3.3 and Table 3.4 contain some details of the super-

resolved images. According to the Table 3.3 and 3.4 direct addition methods and 

IBP with nonuniform interpolation suffers from the blurring. On the other hand, the 

other three methods are subject to degradation of quality caused by noise. The IBP, 

nonuniform interpolation and POCS methods produce better results than others do.  
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Method 
Perfect Registration Keren Registration 

Direct Addition 

with Median 

Filtering 

  

Nonuniform 

Interpolation 

 

Iterative 

Backprojection 

(IBP) 

  

IBP with 

Nonuniform 

Interpolation 

  

Projection onto 

Convex Sets 

(POCS) 

  

Bicubic 

Interpolation 

  

Table 3.3 Comparison table for synthetic images for different methods Test1 
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Method 
Perfect Registration Keren Registration 

Direct Addition 

with Median 

Filtering 

  

Nonuniform 

Interpolation 

  

Iterative 

Backprojection 

(IBP) 

  

IBP with 

Nonuniform 

Interpolation 

  

Projection onto 

Convex Sets 

(POCS) 

  

Bicubic 

Interpolation 

 
 

Table 3.4 Comparison table for synthetic images for different methods Test2 
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In table 3.5 four patterns of three videos are subject to evaluation. First, one is the 

ventilation fan of a window, second is a structure’s reflection on the window, and 

third is a detail of a building and the last one is the backside of a bus.  

 

According to the patterns on table 3.5, the sharpness is only present in IBP and 

POCS results. Especially, IBP performs very well and gives clear images of the 

subjects. However POCS results are seem to be unclean, which is expected, due to 

the registration errors present on registered images. On the other hand, POCS 

results contain sharper edges of the subjects. Finally, the performance of the single 

frame, bicubic interpolation method is not very well with respect to IBP and POCS. 

The reason to this is the fact that in single frame methods in the presence of noise 

the contents of those particular pixels where noise is present looses information. As 

a result, the information loss also defects the neighboring pixels due to the 

interpolation structure told before. Therefore, the lost pixel both corrupts its 

belonging place and the pixels surrounding it. However, multi-frame methods have 

lots of information on particular places of the image. As long as the image 

registration is perfect, the lost pixels can be recovered by using the other frames in 

which the noise may not corrupted the data contents on that pixel.  
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Method 
 

Pattern 1 

 

Pattern 2 

 

Pattern3 

 

Pattern4 

Direct 

Addition 

with Median 

Filtering 

  

Nonuniform 

Interpolation 

 
 

 

Iterative 

Backprojecti

on 

(IBP) 

 
 

 

IBP with 

Nonuniform 

Interpolation 

  

Projection 

onto Convex 

Sets (POCS) 

  

Bicubic 

Interpolation 

  

Table 3.5 Comparison table for video frames for different methods 
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3.3.6.4. NOISE vs. IMAGE QUALITY 

 
Noise on the image has many negative effects on the image quality. As for the 

image registration, the noise also attenuates the image reconstruction performance. 

In addition to the image characteristics, the random noise present on the image and 

the level of noise affects the performance of every method in a different manner. 

Table 3.6 shows the performance of the methods with respect to noise, for the 

test1.bmp image; POCS performs better than any other algorithm including IBP. 

However, as in the Figure 3.19 that the test2 image is used, the POCS algorithm 

performs very well for the first iteration and then the noise corrupts image and 

many artifacts appears, so the performance slightly decreases. But the IBP method 

has a better performance in case of test2.bmp image is used. 

 

 

 

 

 

Nevertheless, the LPF affect of the IBP and high correction capability of POCS 

performs better than any other method for the noisy image sequences. Just like 

video frames that have no fixed behaviour of corruptive effects on them, the noise is 

random at the synthetic images. Therefore, the noise recovery accomplished and the 

results are similar for the video and the synthetic images. As a result, noise corrupts 

the results but still SR methods are more durable than the single frame methods, 

which looses all available information as the noise exists. Consequently, methods 

using error correction such as IBP and noise suppression such as direct addition 

with median filtering are able to construct successful HR estimates. 

 

  Median 

Filtering 

Non-uni. 

Interp. 

Iterative 

Backproj. 

IBP with 

 NUI 

POCS Bicubic 

Interp. 

0 noise 0.449 0.358 0.695 0.433 0.750 0.671 SSIM 

20db Noise 0.451 0.399 0.677 0.486 0.724 0.645 

0 noise 10.174 9.522 12.114 10.664 12.762 11.992 PSNR 

20db Noise 10.218 9.793 11.938 10.392 12.364 11.738 

Table 3.6 Comparison table for noisy and zero noise image SR(test1) 
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Figure 3.19 PSNR and SSIM values, as the noise present, first two graphs are 
for POCS and the other two are for IBP (test2.bmp) 
 



 
 

 82 

3.3.6.5. IMAGE QUANTITY vs. IMAGE QUALITY 

 
Every method uses the source frames in a different way. Therefore, the results of 

increasing the number of images may differ from method to method. The 

examinations are completed with reschart image, by increasing the synthetic image 

quantity.  

 

 
Addition of the images by median filtering the data set is the most basic form of the 

SR methodology. As it is seen in Figure 3.20, the quality slightly decreases. This 

Figure 3.20 Effect of the image quantity on median filtered SR   
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may be caused by the fact that as we add more images, if the image does not contain 

new information, the previous images positive effects on the result decreases.  

 

 

 
 

Nonuniform Interpolation Algorithm looses details in some extent but by addition 

of new high frequency terms, it gains some quality after the second image. 

 

 

Figure 3.21 Effect of the image quantity on nonuniform interpolation   
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As long as the new coming images contain false, inaccurate or similar data to the 

present values there will not be a drastic improvement in the resultant image quality 

for all of the methods including IBP. 

 

Figure 3.22 Effect of the image quantity on IBP method 
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The IBP with nonuniform Interpolation result improves as the added images 

increases, this is because, the first iteration of the algorithm is rather low quality, 

every added image improves the quality by transferring new details to the result. 

After some extent, the improvement will slow down and stops due to the lack of 

new information addition to the image, since every image we add, will have a 

higher possibility of being similar to the existing ones. 

 

Figure 3.23 Effect of the image quantity on IBP with nonuniform interpolation   
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As in the previous cases, POCS algorithm also does not show an improvement with 

new images. 

 

Almost all of the methods remain similar as new images added. This may be a result 

of the synthetic image production. Theoretically, the new images will have new 

details and information on them and as the image quantity increases, the image 

quality must be improved, similarly. 
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Figure 3.24 Effect of the image quantity on POCS 
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3.3.6.6. ITERATION NUMBER vs. IMAGE QUALITY 

 
As the final test the effect of the order of iterations, will be examined. The images 

used are test1.bmp images and they are registered by Keren algorithm.  

 

 

  

 

 

 

Figure 3.25 Iteration vs Image Quality graph for POCS 

Figure 3.26   Iteration vs Image Quality graph for IBP 
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The increasing number of iterations improves POCS and IBP methods. 

Nevertheless, the improvement stops at the end of the second run for the POCS 

algorithm. This is because the algorithm converges rapidly. Moreover, just after the 

convergence, the artifacts are present and the artifacts cannot be distinguished from 

the fine details so the algorithm seems to disturb the image quality as the iterations 

grows, but visually the details are more visible. For the IBP method, the algorithm 

converges more slowly as every run reduces the error level slightly. However, for 

the IBP with Nonuniform Method the error rapidly increases as both SSIM and 

PSNR indexes are decreased in a few runs. Therefore, the nature of this method 

seems to multiply the misregistrations and noise instead of minimizing. As a result, 

for both IBP and POCS methods, we may increase the number of iterations but as 

the information available is used completely the images may begin to loose quality 

instead of preserving or increasing the quality level. 

Figure 3.27 Iteration vs Image Quality graph IBP with 

Nonuniform Interpolation 
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CHAPTER 4 

 

 

 

DISCUSSIONS 

 
 

The super resolution is the name of a methodology that contains a wide range of 

image processing tools in it. Registration algorithms, fusion methodologies, 

restoration techniques are all the subjects of super resolution. This study especially 

focuses on the effects of registration and fusion techniques on resolution 

enhancement by implementing some well-known algorithms in the literature and 

experimenting on them. 

 

Image registration is a crucial step of SR methodology and it is a well-known state 

of art. During the study, five registration methods are examined. Three of them are 

the frequency domain methods, and the other two are spatial domain techniques. 

The stability of the spatial domain techniques makes us to prefer them instead of the 

frequency domain counterparts. The main reasons to this preference are the fact that 

the spatial domain techniques are computationally efficient and give us very reliable 

results. However, the frequency domain techniques are unstable and may converge 

to a false value. Since the registration is the key point in SR, we usually choose the 

RANSAC for the video frames and the algorithm of Keren et al for synthetic 

images. Since the video frames may contain many kinds of transformations, thet are 

not only planar but also in three-dimesional (zooming, shearing etc.). Keren method 

cannot handle these motions and does not give us a useful result. Therefore we 

preferred to use RANSAC method. On the other hand, synthetic images may be too 

small sized to find enough corners for RANSAC algorithm to have a correct 

solution; as a result, we prefered to use method of Keren et al. in synthetic images.  
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In addition, examinations show that the RANSAC methodology can give results 

covering whole bunch of transformation probabilities, but the noise present on the 

image may make the algorithm fail. At that point, the use of Keren will find the 

transformations effectively if there is no scaling present on the images. As a result, 

the use of both methods and then deciding to use one of them may be solution 

depending on the visual assessment of the video or the image sequence. 

 

Secondly, the image fusion techniques are of our interest. The techniques of 

covering all information available and combine them into a HR image are 

examined. In the meantime, the single frame interpolation techniques are also 

considered since they work very effectively and give good results without any 

concern about the weight of the computational load. The results of the examinations 

on the techniques show that, three important factors are affecting the performance 

of multiframe superresolution restoration methods. These are: 

 

1. Accurate and precise subpixel-resolution motion information is required. 

2. The model must contain the knowledge of imaging system degradations 

to overcome the possible problems occurs during image acquisition. 

3. The fusion method must include well-defined priori information. 

 

The effectiveness of the registration techniques is vital for the sake of the SR 

product. Especially set theoretic POCS method and the nonuniform interpolation 

method use the information of the all images very effectively and even a slight 

registration error causes the product to loose efficiency. POCS forces the HR image 

to be bounded by a range of pixels determined from LR images. If there are 

registration errors, this causes the bounds to be placed at false pixel locations, 

leading to ghosting and ringing effects on the image. As well as POCS, nonuniform 

interpolation also uses the false pixels without any error correction, which leads us 

to poor quality in the product. 

 

The Iterative Back Projection method turned out to be one of the most successful 

methods in our study. The reason to this is its effectiveness in elimination of the 

various errors at the backprojection stage. IBP process can be equated to solution of 
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a jigsaw puzzle. Each puzzle piece is gathered from different LR observations. 

These pieces are superposed first and glued to each other to remove the edge 

inconsistencies. The back projection kernel smooths the reconstruction error.  

 

Generally, the multi-frame methods perform very well in video frames. The 

improvement of images is clear especially for the IBP and POCS methods. The 

number of images does not strongly affect the solution in case of using synthetic 

images. The quality saturates eventually. Visual quality improvement with higher 

number of images is more evident in video frames. 

 

Additionally, noise is another problem for all methods. We may attempt to remove 

the noise before the application of super resolution. Nevertheless, this may cause 

the loss of detail that we need for the super-resolution reconstruction. A second 

approach is applying noise-filtering algorithms after the super-resolution stage. This 

can be more suitable if the reconstructed details can be preserved after filtering. The 

Addition methods, and IBP with non-uniform interpolation are effective in noise 

removal; but cannot produce details as good as POCS, nonuniform interpolation and 

IBP. This leads them to the lack of performance in QM. On the other hand, even 

IBP and especially POCS is also noise prone, they are able to come over the noise 

better than any other algorithm. 

 

As the result of the experiments, the combination of image registration methods; 

Keren or RANSAC, and the image fusion methods; IBP or POCS, will leads us to 

quite satisfactory results compared to other multi-frame and single-frame methods. 
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CHAPTER 5 

 

 

 

CONCLUSIONS 

 
 

In this thesis, we have examined methods of image reconstruction from multiple 

images. Our goal is combining multiple low-resolution images to construct a single 

high-resolution image. The problem is complicated by nature due to the unknown 

point spread function of imaging sensors, varying imaging conditions and due to the 

need of sub-pixel level relative motion estimation. All these factors make super-

resolution problem a difficult inverse problem with a non-unique solution.   

 

We have observed that image registration or the estimation of the motion 

parameters is the performance-determining step of super-resolution. Misaligned 

images may cause loss of detail or ghosts instead of improving the resolution. 

Therefore, one may prefer single frame interpolation methods when the image set 

cannot be properly registered.  

 

Under tolerable noise conditions as long as a good registration can be established, 

POCS and iterative back projection (IBP) methods provide better results than 

interpolation based single frame methods. The gains are marginal according to 

PSNR or SSIM metric; but quality improvement is visually distinguishable. The 

gains are especially evident for video sequences.   

 

We have noted that POCS is more suitable for synthetic data or for images with 

strong edge content, while the iterative back projection (IBP) method is suitable for 

real world sequences such as the ones captured by an ordinary video camera.  
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In the presence of noise and misregistrations, the performance of POCS and 

iterative back projection degrades. The degradation of POCS is more severe than 

iterative back projection. This is due to inherent pixel bounding operation of POCS 

and its critical dependence of motion estimation. Therefore, addition of noise results 

in double threat to POCS. The iterative back projection is also affected by the 

registration errors, but due to its back projection operation the error is smoothed at 

every iteration leading to less obtrusive results.  

 

Qualitatively speaking, the super resolution methods combine the details of low 

quality images to extract information on unknown pixels of high quality image. The 

signal detail is sensitive to the noise level in the system. If the noise in the system is 

above a certain threshold, it can be better to use single frame methods with low-pass 

filtering to have better quality images. It is not clear where this threshold is for the 

super-resolution algorithms present in the literature. An interesting study can be the 

determination of the breakpoint or point of no-gain for the super-resolution 

methods. A second interesting study can be the joint denoising and super-resolution 

of images. This can be valuable if the detail and noise can separated during the 

super-resolution process. However, before such a study, the effectiveness of super 

resolution should be clearly illustrated under noiseless conditions.  
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