MOTION CAPTURE FROM SINGLE VIDEO
SEQUENCE

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

By
Ibrahim Demir

August, 2006

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ugur Giidiikbay(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Enis Cetin

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Selim Aksoy

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray
Director of the Institute

i

ABSTRACT

MOTION CAPTURE FROM SINCLE VIDEO
SEQUENCE

Ibrahim Demir
M.S. in Computer Engineering
Supervisor: Assoc. Prof. Dr. Ugur Giidiikbay
August, 2006

3D human pose reconstruction is a popular research area since it can be used
in various applications. Currently most of the methods work for constrained en-
vironments, where multi camera views are available and camera calibration is
known, or a single camera view is available, which requires intensive user effort.
However most of the currently available data do not satisfy these constraints,
thus they cannot be processed by these algorithms. In this thesis a framework
is proposed to reconstruct 3D pose of a human for animation from a sequence of
single view video frames. The framework for pose construction starts with back-
ground estimation. Once the image background is estimated, the body silhouette
is extracted by using image subtraction for each frame. Then the body silhou-
ettes are automatically labeled by using a model-based approach. Finally, the 3D
pose is constructed from the labeled human silhouette by assuming orthographic
projection. The proposed approach does not require camera calibration. The
proposed framework assumes that the input video has a static background and
it has no significant perspective effects and the performer is in upright position.

Keywords: motion capture, framework, single camera, uncalibrated camera,

vision-based, animation.

il

OZET
TEK VIDEO DIZISINDEN HAREKET YAKALANMASI

Ibrahim Demir
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Yoneticisi: Assoc. Prof. Dr. Ugur Gidiikkbay
Agustos, 2006

Uc¢ boyutlu insan pozunun elde edilmesi cesitli uygulama alanlarmm ol-
masindan dolay1 popiler bir konudur. Su anda var olan yontemlerin ¢ogunun
cesitli kisitlamalara dayanmasi uygulamada bazi zorluklar dogurmaktadir. Bu
yontemlerin getirmis oldugu kisitlamalar birden fazla kamera gortintiisiine ve
kamera ayarlarimin bilinmesine ihtiya¢ duyulmasi veya tek kamera goriintiisi
nedeniyle kullanicinin yogun cabasina ihtiya¢ duyulmasidir. Cogu zaman bu
kisitlamalardan dolayr mevcut veriler iizerinde bu yontemler uygulanamamak-
tadir. Bu tezde bu kisitlamalara baglhh olmadan tek kameradan elde edilen
videodan 1i¢ boyutlu animasyonda kullanilacak insan pozunun elde edilmesi i¢in
bir gerceve caligma onerilmektedir. Buna gore video karelerindeki arka plan
hesaplanmakta, daha sonra goriintii ¢gikarma yontemi ile her bir video karesin-
deki insan silueti bulunmaktadir. Daha sonra viicudun pargalar1 iki boyutlu
resim iizerinde otomatik olarak tamimlanmaktadir. Son adim olarak da viicut
parcalar: tanmimlanmig olan siluetten dikey izdiigim kullanilarak ti¢ boyutlu poz
olusturulmaktadir. Bu tezde sunulan yontem coklu video zorunlulugu veya kam-
era kalibrasyonu gerektirmemektedir. Bu tezde anlatilan gerceve ¢aligma video-
nun degismeyen bir arka planin olmasi, videonun dikey izdiigiimiini etkileye-
cek perspektif etkisinin fazla olmamasi ve goriintiideki kiginin ayakta olmasi

varsayimlarina dayanmaktadir.

Anahtar sozciikler: hareket yakalanmasi, cerceve, tek kamera, gorme temelli,

animasyon.

v

Acknowledgement

I would like to express my thanks and gratitude to Assoc. Prof. Dr. Ugur
Giidiikbay for giving me the opportunity to do a graduate study with him.

Special thanks to my family and my friends for their endless support.

Contents

1 Introduction 1
1.1 Organization of the Thesis 2

2 Background and Related Work 3
2.1 Human Motion Control Techniques 3
2.1.1 Kinematicso o 3

2.1.2 Dynamics 4

2.2 Motion Capture 4
2.2.1 Non-vision Based Motion Capture 5

2.2.2 Vision-Based Motion Capture with Markers 6

2.2.3 Vision-Based Motion Capture without Markers 8

2.3 Single Image Processing 9

3 Motion Capture and Animation System 13
3.1 Proposed Framework 15
3.1.1 Human Modeling 15

vi

CONTENTS

3.1.2 Background Estimation.
3.1.3 Silhouette Extraction
3.1.4 2D Pose Extractor

3.1.5 3D Pose Estimation.

4 Experimental Results
4.1 Visual Results
4.2 Performance Analysis

4.3 Effectiveness of the Proposed Framework

5 Conclusions and Future Work

Bibliography

Vil

20

21

21

37

38

38

39

39

51

53

List of Figures

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Projection of a line (adapted from [16]).

The ambiguity under orthographic projection (adapted from [12]).

Proposed framework for human motion capture from single video

sequence and animation using the motion capture data.
Human model tree.o
The human model used in our implementation.
The iterative estimation of the torso angle.
The iterative estimation of the upper left leg angle.
The iterative estimation of the upper right leg angle.
The crossed left and right lower legs.
The iterative estimation of the foreshortening ratio of the torso.

The iterative estimation of the foreshortening ratio of the upper

£) 1

viil

LIST OF FIGURES

4.1

4.1

4.1

4.1

4.1

4.2

4.2

4.2

4.2

4.2

The results obtained by applying the proposed framework to the
frames of a public walking video. The input frame (top), the ex-
tracted silhouette (middle), and the reconstructed 3D pose of the

human in the video (bottom).
(continued).
(continued).
(continued).
(continued).

The results obtained by applying the proposed framework to the
frames of a public dancing video. The input frame (top), the ex-
tracted silhouette (middle), and the reconstructed 3D pose of the

human in the video (bottom).
(continued).
(continued).
(continued).

(continued).

1X

42

43

44

45

47

48

49

20

List of Tables

3.1

3.2

3.3

The ratios of the lengths of different parts of the human model to
the length of the human model. 17

The ratios of the radii of different parts of the human model to the
length of the human model. 19

The joint limits in the human model. 19

List of Algorithms

S Ot e W

The algorithm to find how much the given segment(s) rotated
around the normal axis of the image.
The algorithm to find the limb angles.
The algorithm to find the arm angle.
The algorithm to find the elbow corner.
The algorithm to detect whether the lower legs cross each other.

The algorithm to find the absolute foreshortening.

X1

Chapter 1

Introduction

Human pose reconstruction is a popular research area since it can be used in
various applications. Motion capture and motion synthesis are expensive and
time consuming tasks for articulated figures, such as humans. Human pose esti-
mation based on computer vision principles is inexpensive and widely applicable
approach. In computer vision literature the term human motion capture is usu-
ally used in connection with large scale body analysis ignoring the fingers, hands

and the facial muscles, which is the case in our work.

The motion capture problem we try to solve can be defined as follows: given a
single stream of video frames of a performer, compute a 3D skeletal representation
of the motion of sufficient quality to be useful for animation. The animation
generation is an application of motion capture where the required accuracy is not

as high as in some other applications, such as medicine [8].

In this thesis, a model-based framework is proposed to reconstruct the 3D pose
of a human for animation from a sequence of video frames obtained from a single
view. The proposed framework for pose reconstruction starts with background
estimation. Once the background is estimated, the body silhouette is extracted
for each frame by using image subtraction. Then, the 2D body segments are
automatically labeled on the human body silhouette by using a model-based

approach. Finally, the 3D pose is constructed from the labeled human silhouette

CHAPTER 1. INTRODUCTION 2

by assuming orthographic projection. The approach proposed in this thesis does
not require camera calibration and it uses a video sequence obtained from a
single camera. The proposed framework assumes that the input video has a
static background and it has no significant perspective effects and the performer

is in upright position.

Our approach for constructing the 3D pose is close to the approach defined in
[16], but in our approach the necessary user interaction is significantly reduced.
In order to construct the 3D pose, the joint coordinates of the human figure are
needed. Unlike the other approach [16] which gets the corresponding points from

the user input, our approach computes these points automatically.

We tested the proposed framework on various video sequences and obtained

reasonable constructions of the human figure motion.

1.1 Organization of the Thesis

This thesis is organized as follows: Chapter 2 introduces human motion capture
techniques and gives a summary of the related work in this area. In Chapter 3,
we propose our framework for human motion capture from a video sequence
obtained from a single camera and animation by using the captured motion data.
In Chapter 4, we give visual results for different videos produced by the proposed
framework. We also interpret the results and comment on the performance of the

proposed framework. Finally, Chapter 5 gives conclusions.

Chapter 2

Background and Related Work

This chapter discusses human motion control techniques, motion capture tech-
niques in general, non-vision based motion capture techniques, vision-based mo-
tion capture techniques with and without markers and single image processing

techniques to find correspondence points in an image.

2.1 Human Motion Control Techniques

There are mainly two motion control techniques for animating articulated figures:
kinematics and dynamics. Kinematics methods use time-based joint rotation val-
ues to control the animation while dynamics methods use force-based simulation
of movements [11]. Creating data for these techniques can be done manually by
talented animators or can be captured automatically by different types of devices

[17, 18]. Motion control techniques are summarized in the following sections.

2.1.1 Kinematics

Kinematics approaches obtain the motion parameters by considering position,

velocity, and acceleration without being concerned with the forces that cause the

CHAPTER 2. BACKGROUND AND RELATED WORK 4

motion. Kinematics methods can be classified into two parts: Forward Kine-
matics and Inverse Kinematics. Forward Kinematics directly sets the motion
parameters like the position, the orientation of joints at specific times for each
joint, whereas Inverse Kinematics uses nonlinear programming techniques and
the positions of the end-effectors to determine the position and the orientation of

the joints in the hierarchy.

2.1.2 Dynamics

Dynamics approaches obtain the motion parameters by using dynamic motion
equations considering the forces, the torques, and the physical properties of the
objects. The dynamic methods can be classified into two parts: Forward Dynam-
1cs and Inverse Dynamics. Forward Dynamics computes the motion parameters
by applying forces on the objects, whereas Inverse Dynamics computes the nec-

essary forces for a specific motion.

2.2 Motion Capture

Motion capture is an attractive way of creating the motion parameters for com-
puter animation. It can provide the realistic motion parameters. It permits an
actor and a director to work together to create a desired pose, that may be dif-
ficult to describe with enough specificity to have an animator recreate manually

[8]. The application areas of motion capture techniques can be summarized as
follows [15]:

Vartual reality: interactive virtual environments, games, virtual studios, char-

acter animation, film, advertising

Smart surveillance systems: access control, parking lots, supermarkets,

vending machines, traffic.

Advanced user interfaces: advanced user interfaces.

CHAPTER 2. BACKGROUND AND RELATED WORK 5

Motion analysis and synthesis: annotations of videos, personalized train-

ing , clinical studies of medicine.

Motion capture is an effective way of creating the motion data for an ani-
mation [8]. Quality for animations caused challenging requirements on capture
systems. To date, capture systems that meet these requirements have required
specialized equipment that is expensive. Computer vision can make animation

data easier to obtain.

Ideally, the capture of motion data should be easily available, inexpensive.
Using standard video cameras is an attractive way of providing these features.
The use of a single camera is a particularly attractive way. It offers the lowest

cost, simplified setup, and the potential use of legacy sources such as films [8].

Human motion capture systems generate data that represents measured hu-
man movement, based on different technologies. According to used technology,
human motion capture systems can be classified as non-vision based, vision based

with markers, vision based without markers.

2.2.1 Non-vision Based Motion Capture

In non-vision based systems, sensors are attached to the human body to collect
movement information. Some of them have a small sensing footprint that they
can detect small changes such as finger or toe movement [19]. Each kind of sensor

has advantages and limitations [15].

Advantages of magnetic trackers:

real-time data output can provide immediate feedback,

no post processing is required,

they are less expensive than optical systems,

e no occlusion problem is observed,

CHAPTER 2. BACKGROUND AND RELATED WORK 6

e multiple performers are possible.

Disadvantages of magnetic trackers:

the trackers are sensitivity to metal objects,

cables restricts the performers,

they provide lower sampling rate than some optical systems,

the marker configurations are difficult to change.

Advantages of electromechanical body suits:

they are less expensive than optical and magnetic systems,

real-time data is possible,

e no occlusion problem is observed,

multiple performers are possible.

Disadvantages of electromechanical body suits:

e they provide lower sampling rate,
e they are difficult to use due to the amount of hardware,

e configuration of sensors is fixed.

2.2.2 Vision-Based Motion Capture with Markers

In 1973, Johansson explored his famous Moving Light Display (MLD) psycho-
logical experiment to perceive biological motion [10]. In the experiment, small

reflective markers are attached to the joints of the human performers. When the

CHAPTER 2. BACKGROUND AND RELATED WORK 7

patterns of the movements are observed, the integration of the signals coming
from the markers resulted in recognition of actions. Although the method faces
the challenges such as errors, non-robustness and expensive computation due to
environmental constraints, mutual occlusion and complicated processing, many

marker based tracking systems are available in the market.

This is a technique that uses optical sensors, e.g. cameras, to track human
movements, which are captured by placing markers upon the human body. Hu-
man skeleton is a highly articulated structure and moves in three-dimension. For
this reason, each body part continuously moves in and out of occlusion from the
view of the cameras, resulting in inconsistent and unreliable motion data of the

human body.

One major drawback of using optical sensors and markers, they cannot sense
joint rotation accurately. This is a major drawback in representing a real 3D

model [20]. Optical systems has advantages and limitations [15].

Advantages of optical systems are as follows:

they are more accurate,

larger number of markers are possible,

e 1o cables restricts the performers,

they produces more samples per second,

Disadvantages of optical systems :

they require post-processing,

they are expensive (between 100,000 and 250, 000),
e occlusion is a problem in these systems.

e environment of the capturing must be away from yellow light and reflective

noise,

CHAPTER 2. BACKGROUND AND RELATED WORK 8

2.2.3 Vision-Based Motion Capture without Markers

The marker-based tracking systems are restrictive to some extent due to the
mounted markers as discussed in the previous Section 2.2.2. As a less restrictive
motion capture technique, markerless-based systems are capable of overcoming
the mutual occlusion problem as they are only concerned about boundaries or
features on human bodies. This is an active and promising but also challenging
research area in the last decade. The research with respect to this area is still

ongoing [19].

The markerless-based motion capture technique exploits external sensors like
cameras to track the movement of the human body. A camera can be of a res-
olution of a million pixels. This is one of the main reasons that optical sensors
attracted people’s attention. However, such vision-based techniques require in-

tensive computational power [5].

As a commonly used framework, 2D motion tracking only concerns the human
movement in an image plane, although sometimes people intend to project a 3D
structure into its image plane for processing purposes. This approach can be

catalogued with and without explicit shape models [19].

The creation of motion capture data from a single video stream seems like a
plausible idea. People are able to watch a video and understand the motion, but
clearly, the computing the human motion parameters from a video stream is a

challenging task [8].

Vision-based motion capture techniques usually include nitialization and

tracking steps.

2.2.3.1 Initialization

A system starts its operation with correct interpretation of the current scene.
The initialization requires camera calibration, adaptation to scene characteristics

and model initialization. Camera calibration is defined as parameters that are

CHAPTER 2. BACKGROUND AND RELATED WORK 9

required for translating a point in a 3D scene to its position in the image. Some
systems find initial pose and increment it from frame to frame whereas in other
systems the user specifies the pose in every single frame. Some systems have
special initialization phase where the start pose is found automatically whereas in

others the same algorithm is used both for initialization and pose estimation [14].

2.2.3.2 Tracking

Tracking phase extracts specific information, either low level, such as edges, or

high level, such as head and hands. Tracking consists of three parts [14]:

1. Figure-ground segmentation: the human figure is extracted from the rest of

the image.

2. Representation: segmented images are converted to another presentation to

reduce the amount of information.

3. Tracking over time: how the subject should be tracked from frame to frame.

2.3 Single Image Processing
In this section, we explain how to find a corresponding point in an image according
to orthographic projection as explained in [16].

A point in 3D when projected to orthographic scene can be represented by 2D
coordinates. Let (X,Y, Z) be a point in the 3D world and (u,v) be its projection
on the 2D plane.

1 00 *
BEERIE o
A

CHAPTER 2. BACKGROUND AND RELATED WORK 10

These two points can be expressed with Equation 2.1 [16] under scaled ortho-
graphic projection. Figure 2.1 shows the projection of a line with length [onto
the image under scaled orthographic projection. The projection of the two end
points (X1, Y1, Z1) and (X7, Y, Zs) are represented by (ug,v1) and (ug, vs) on the
image respectively. If the scale factor s of the projection model is known, we can
calculate the relative depth of the line denoted by 0Z as shown in Equation 2.2
[16].

/ (Xl:l"l, 21) ;

LU
X

(X2 Y4 Z3)

P

Figure 2.1: Projection of a line (adapted from [16]).

CHAPTER 2. BACKGROUND AND RELATED WORK 11

2 = (Xl _X2)2—|—(}/1 _3/2>2+(Zl —Z2)2
(u; — ug) = 5 (X1 — Xo)
(v —v2) = 5 (Y] — Y3)
0Z = (Z1 — Z»)
07 = \/12— ((u1 _u2>2+(v1—1}2)2)

s2

(2.2)

Image
Plane

Haar Front

Figure 2.2: The ambiguity under orthographic projection (adapted from [12]).

CHAPTER 2. BACKGROUND AND RELATED WORK 12

These analysis shows us how to compute the 3D corresponding of a point on
the image as a function of the scale parameter s. In this thesis we use the height
of human observed on the image to compute scale parameter s. We use the s
parameter found from the height to all body parts to find 3D joint coordinates.
For the computed value of s two distinct solutions are possible. We do not know
whether the each segment on the image is at rear or at front. This ambiguity is

shown in Figure 2.2.

Chapter 3

Motion Capture and Animation

System

Capturing the human motion parameters has various challenging problems. Thus,
the solution for such a problem requires various methods and algorithms. In this

section we give an overview of our framework, and the details of each stage.

The proposed framework finds the posture of a human if the joint corre-
spondences on the image and the depth direction of the each body segment are
provided. The user specifies the joint correspondences on the image and the
depth direction of body segments by using the mouse. In [16], including the joint
correspondences, are provided by the user. Our aim is to use image processing
algorithms and computer graphics and computer vision techniques to extract the
human motion parameters (namely body postures) with minimal user efforts.
When the joint angles are calculated, remaining information needed to construct
3D pose is the depth information (inward or outward) of each body part, which
rarely changes during a video frame sequence. The user only has to interact

whenever a body segment changes its depth direction.

13

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 14

Begin
Image
Sequence
Frame
Background Extractor —_— Efficient Graph Based
—_—— Image Segmentation

Estimated E Segmented Frame
Background

Background Frame and Curment Frame

.
_

Human Silhouette

Silhouette Extractor

Image Subtraction

Silhouette

20 Posze Extractor

20 Poze

20 Posze Extractor

30 Poze

Forward
kinernatics

A nimmation

Figure 3.1: Proposed framework for human motion capture from single video
sequence and animation using the motion capture data.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 15

3.1 Proposed Framework

The proposed framework for human motion capture and animation is shown in
Figure 3.1. For capturing the 3D pose from the given image sequence the first
stage estimates the background of the video to find the silhouette of the performer
on each frame of the video. Then, we find the silhouette of the performer by
subtracting the estimated background from each frame. The extracted silhouette
of the performer is given as input to the 2D pose extractor. The 2D pose extractor
finds the joint coordinates of the performer on the image by using a model-
based approach. A 2D stick human model (see Figure 3.3) is fitted onto the
silhouette. In this way, the joint coordinates of the performer are matched to
the joint coordinates of the 2D stick human model. The joint coordinates of the
2D stick model will be given as input to the 3D pose estimator. The 3D pose
estimator computes the 3D joint configurations from the 2D joint coordinates and
the depth information of the human model for each body part. Finally, the 3D
human model is animated based on the 3D joint configurations computed from

the video sequence.

3.1.1 Human Modeling

The computer generated human model should make simple the accurate position-
ing of the segments during motion, deform the skin where the muscles and tissue
are taken into account realistically during the movement, generate realistic facial
expressions, realistic modeling of hair, etc. All of these issues are research topics
in their own right [13]. There are standardization efforts to address these issues,
such as MPEG-4 [1] or Humanoid Animation (H-Anim) standard [2] developed by
The Humanoid Animation Working Group of Web3D Consortium. Since the aim
of our work is to extract the posture of a human in an image sequence, we do not
go into details of human body modeling and animation. But human body model
used to find human pose must be explained before going further. We describe

the human model used for finding the human pose below.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 16

Human model is represented as a collection of simple rigid objects connected
by joints in a hierarchical manner. These models, called articulated bodies, can
have various degrees of articulation. The number and the hierarchy of joints and
limbs and the degrees of freedom (DOF) of the joints determine the complexity of
model. The DOF of a joint is the independent position variable that is necessary
to specify the state of a joint. The joints can rotate in one, two, or three or-
thogonal directions. The number of these orthogonal directions determines DOF
of a joint. A human skeleton may have many DOFs. However, when the num-
ber of DOF's increases, the methodology, which is used for controlling the joints,

becomes more complex.

For the sake of our model-based framework, we have to think about tradeoff
between the accuracy of the representation and the number of parameters for the
model that needs to be estimated. In our work, we are interested in large body
movements of human motion. Hands or facial expressions are not considered. To
reduce the computational complexity of the model we use a simple 3D articulated
human model to capture the motion. Our articulated human model consists of
10 cylindrical parts representing head, torso, right upper leg, right lower leg, left
upper leg, left lower leg, right upper arm, right lower arm, left upper arm, and
left lower arm (see Figure 3.2). Each cylindrical part has two parameters: radius
and length. For each cylindrical part there are up to three rotation parameters:
Ox, Oy, and 6. Totally, there are 23 DOFs for the human model: 3 DOFs for
the global positioning of the human body, 1 DOF for the head, 3 DOFs for the
torso, 2 DOFs for the right upper leg, 2 DOF's for the right lower leg, 2 DOF's for
the left upper leg, 2 DOF's for the left lower leg, 2 DOFs for the right upper arm,
2 DOFs for the right lower arm, 2 DOF's for the left upper arm, 2 DOF's for the

left lower arm (see Figure 3.3).

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 17

. |
Rt
N
!
I Tarsa I
B P '\ i R g R
Laft Latt Right Right
Upper Upper :I: Upper Upper
Lig A A Leg
" L A e - . J
I Head I
5 s , A i ™y - R
Left Left Righit Right
Lower Lower Lawer Lamer
Leg A A Leg
A b A . -~ . A

Figure 3.2: Human model tree.

Table 3.1: The ratios of the lengths of different parts of the human model to the
length of the human model.

’ Length \ Ratio ‘
Height 175/175
Head 25/175
Torso 52/175

Upper arm | 25/175
Lower arm | 35/175
Upper leg | 46/175
Lower leg | 52/175

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 18

I z
| o
s
A
H b
I Head
O-———0--——0 (x,¥JLeft.upperarm
(=, Y JIRIght.upperarm | | |
| |
0 o (x,viLeft. Towerarm
(<, vJRight. Towerarm | |
]]

| (=,v,Z)Humanoidroot
(»,¥JRIght.upperleg o-o-o0 (x,¥)Left.upperleq

(x,¥JRight. Towerleg o o (x,viLeft. Tawerleqg

Figure 3.3: The human model used in our implementation.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 19

Table 3.2: The ratios of the radii of different parts of the human model to the
length of the human model.

’ Radius \ Ratio ‘
Head 20/175
Torso 40/175

Upper arm | 10/175
Lower arm | 10/175
Upper leg | 20/175
Lower leg | 20/175

Table 3.3: The joint limits in the human model.

| Body part | Start limit (degrees) | End limit (degrees) |

Neck 45 135
Waist 45 135
Right hip 240 300
Left hip 240 300

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 20

3.1.2 Background Estimation

We need to estimate background to extract the silhouette of the performer on
the video. If the single video is prepared by the user then we can get exact
background of video easily. If the video we are working is taken from a public
resource we have to estimate the background. We do that by finding the regions
on video frames that do not change. We label these regions as background. By
analyzing a few frames, the background is estimated. We use an efficient graph-
based image segmentation algorithm to decrease the lighting effect when deciding
whether a region is changing or not [7]. Pixels that are inside the same segment

are set to the same color.

3.1.2.1 Efficient Graph Based Image Segmentation

We use the graph-theoretic approach proposed by Felzenszwalb and Huttenlocher
for image segmentation [7]. In this approach, they define a predicate for measur-
ing the evidence for a boundary between two regions using a graph-based repre-
sentation of the image. They measure the evidence for a boundary by comparing
intensity differences across the boundary and the intensity differences between
the neighboring pixels within each region. This segmentation algorithm produces

segmentations that satisfy global properties.

An undirected graph G = (V| E) is constructed for the image. Each vertex
v; € V corresponds to a pixel in the image and each edge (v;,v;) € E corresponds
to the pairs of neighboring pixels. Each edge (v;,v;) € E has a weight w(v;, v;),
which is a non-negative measure of dissimilarity between the two pixels of the
edge. A segmentation S is a partition of the vertex set V' into components such
that each component C' € S corresponds to a connected component in a graph
G = (V, El) where E' C E.

In other words, any segmentation is a subset of the edges in E. In general,
we want the elements in a component to be similar and the elements in different

components to be dissimilar. This means that the edges between two vertices in

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 21

the same component should have relatively low weights, and the edges between

vertices in different components should have higher weights.

The algorithm is computationally efficient, running in O (nlogn) time for n
image pixels and with low constant factors, which makes it suitable for video

applications.

3.1.3 Silhouette Extraction

Silhouette is the main feature extracted from the video frames and used in our
framework. Our 2D pose extractor takes the silhouette of performer on the frame

as input and process the silhouette to find 2D joint coordinates of the performer.

We use the background estimation method explained in the previous section to
detect the silhouette on a frame. We use simple thresholding image subtraction to
detect the body silhouette on the image. The main goal of the image subtraction
algorithms is to detect foreground objects. In our case, the foreground object
is the silhouette of the performer. We detect the silhouette on a frame as the
difference between the frame and the background. We apply the threshold value
to decide whether pixel of the frame belongs to the silhouette or the background.
If the absolute value of the difference between the pixel of the frame with the
background pixel is greater than the specified threshold, then the pixel is taken

as a silhouette pixel, otherwise the pixel is regarded as a background pixel.

3.1.4 2D Pose Extractor

The aim of this part to find the joint coordinates of the performer by using the
human silhouette. We extract the joint coordinates of human actor by using a
model-based technique. We model the human as an assembly of cylinders. We
match the silhouette with the human model iteratively. After fitting the human
model onto the silhouette, we can use the joint coordinates of the human model

as the joint coordinates of the performer.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 22

During the 2D pose extraction, we do not know whether a leg is a left leg
(arm) or right leg (arm). When we talk about the 2D pose extraction we use left
leg to mean the leg that is on the left of image. The distinction of left and right
is actually done during the 3D pose estimation. For the 2D pose extraction we
have to be sure that the segments on the left of image are identified as left and

the segments on the right of the image are identified as right.

The process of finding the 2D pose starts by detecting the torso location. We
locate the y coordinate of the torso from the relative ratios shown in Table 3.1.
We take the horizontal middle point of the silhouette as x coordinate of the torso.
Then by using Algorithm 1, we find how much the torso is rotated around the
normal axis of image plane, as shown in Figure 3.4. Then by using Algorithm 1,
we detect the head rotation. We analyze the contour of the silhouette by using
Algorithm 2 to find how much the lower left leg angle, lower right leg angle, upper
left arm angle, upper right arm angle, lower left arm angle, lower right arm angle
rotated around the normal axis of the image plane. Then, we find the rotation
angle of the upper left leg and the upper right leg by Algorithm 1, as shown in
Figures 3.5 and 3.6. After finding each rotation angle we find the foreshortening
of each segment by using Algorithm 6. Finding foreshortening of the upper arm

and the torso is shown in Figures 3.9 and 3.8, respectively.

3.1.4.1 Finding Orientation of Body Parts

Algorithm 1 finds how much one or more body segments rotated around the
normal axis of the image. The technique used in Algorithm 1 is close to the
method used in [9]. Before going further we have to define the similarity between

to images.

3.1.4.2 Measuring Similarity

We measure similarity between two images I; and I, by an operator S (I, I5)

as described in [9]. The similarity operator only considers the area difference

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 23

between the two shapes; i.e, the ratio of the positive error p (represents the ratio
of the number of pixels in the silhouette but not in the human model to the total
number of pixels of the human model and the silhouette) and the negative error
n (represents the ratio of the number of pixels in the human model but not in the
silhouette to the total number of pixels of the human model and the silhouette)

which are calculated as

_ (hnIg)

P= oty &1)
B (Ig N IIC)

"= Ul 32

where I¢ denotes the complement of I. The similarity between the two shapes

I, and I is calculated as

S(Ib)=e " (1-p) (3.3)

Algorithm 1 takes the fragment of the human silhouette that contains the
body segments to be searched as input. The algorithm also takes the lower and
upper joint angle limits. The lower and upper joint angle limits used in our

implementation are listed in Table 3.3.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM

24

S « Partial SilhouetteContainingSegmentsToBeSearched;
startAngle < startAngle;

endAngle < endAngle;

numberO f Division < §;

minimumdStepAngle «— 1°;

searchAnglelInterval < (endAngle — startAngle);
stepAngle «— (searchAngleInterval /numberO f Division);
angleThatMaximizes < (endAngle + startAngle)/2;
maximumSimilarity < 0;

while searchAngleInterval > minimumStepAngle do

if angForBegin < startAngle then
‘ angForBegin «— startAngle;
end
angFor End «— angleThatMaximizes + searchAngleInterval /2;
if angForEnd > endAngle then
‘ angForEnd <« endAngle;

end
if stepAngle is 0 then
‘ stepAngle «— minimumdStepAngle;

end

angleFor BodyPart < angForBegin;

while angleFor BodyPart < angForEnd do

currentModel Pose < DrawBodyPart ();

stmilarity Result «—

MeasureSimilarity(S,currentModelPose);

if similarityResult > maximumSimilarity then
mazximumSimailarity «— similarity Result,
angleThatMaximizes < angleFor BodyPart;

end
angleFor BodyPart « angleFor BodyPart + StepAngle;

end

searchAngleInterval «—

2 x (searchAnglelInterval /numberO f Division);
stepAngle «— 2 x (stepAngle/numberO f Division);

end
return angle ThatMaximizes

angForBegin < angleThatMaximizes — searchAngleInterval /2;

Algorithm 1: The algorithm to find how much the given segment(s) ro-

tated around the normal axis of the image.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM

VYT
FREEE
' IYYY
RTINS

Figure 3.4: The iterative estimation of the torso angle.

25

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 26

Figure 3.5: The iterative estimation of the upper left leg angle.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 27

Figure 3.6: The iterative estimation of the upper right leg angle.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 28

We divide the angle range specified by the lower and upper limits to a number
of intervals and we measure how well the silhouette is covered by the segments
for each interval. We find the division (angle) that covers the silhouette best.
We narrow the search interval at each iteration by selecting the next search in-
terval for the joint angle as the division that gives best covering result merged
with its neighbor divisions since there is a possibility the best angle can be in
these divisions. We recursively continue to narrow the search interval and when
the search interval is smaller than a threshold value the algorithm returns the
angle that corresponds to the best fitting. Examples of the application of this
algorithm for the torso, the upper left leg, and the upper right leg are shown in
Figures 3.4, 3.5, and 3.6, respectively.

3.1.4.3 Contour Analyzing Method

This method is used to find how much the segments of the body (lower left leg,
upper right leg, upper left arm, lower left arm, upper right arm, and lower right
arm) rotated around the normal axis of the image plane. We use contour analysis
to find angles. We do not use Algorithm 1 for the arm segments because of
the high possibility of occlusion with other parts. For lower legs, we cannot use
Algorithm 1 because we have to first find the upper legs. This is because we do
not know the end points of the upper legs. Trying to find the upper leg angle by
using Algorithm 1 is also not appropriate. Since the upper legs occluded by cloths
or being adjacent to each other that makes it difficult to find the joint angles for
them. For this reason, we use Algorithm 2 that is based on contour analysis on
the lower legs. After finding the angle of the lower legs by using Algorithm 2 we
find upper leg angles by using Algorithm 1. While finding the upper leg angle
with Algorithm 1 we combine the upper leg and the lower leg into a single unit,
as shown in Figures 3.5 and 3.6. For some segments, Algorithm 1 gives better
results if the segment is combined with other segments. For example, while we
are determining the torso angle, the torso and the head are also taken together
as shown in Figure 3.4. The head helps to find the torso angle easily. By the
same logic, since the lower leg angles are found with the contour analysis method,

knowing the lower leg angle helps to find the upper leg angles easily as shown in

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 29

Figures 3.5 and 3.6.

The contours of the left arm, the right arm and the lower left leg and the lower
right leg are extracted from the silhouette by traversing horizontal scan lines over
the silhouette. For this purpose, a curve is extracted for each part. For the lower
left leg and the lower right leg we compute the joint angle from the curves as

shown in Algorithm 2.

S « Silhouette;

Left ArmPoints <+ GetLeftArmCurve(S);

Right ArmPoints < GetRightArmCurve(S);

Le ft Lower KneePoints < GetLeftLowerKneeCurve(S);
Right Lower KneePoints <« GetRightLowerKneeCurve(S);
/*LLA stands for LeftLowerArm */

/*LUA stands for LeftUpperArm */

/*RLA stands for RightLowerArm */

/*RUA stands for RightUpperArm */

/*LLK stands for LeftLowerKnee */

/*RLK stands for RightLowerKnee */

Le ftArmAngles < FindArmAngles (Left ArmPoints);
LLAANngle < LeftArmAngles. Lower;

LUAAnNgle < LeftArmAngles.Upper;

Right ArmAngles <« FindArmAngles (Right ArmPoints);
RLAAngle < Right ArmAngles.Lower;

RUAAngle « Right ArmAngles.Upper;

LLKAngle < FindAngle (Le ft Lower KneePoints);
RLKAngle < FindAngle (RightLower KneePoints);

LLK LineList < KneeScanLinesLeft (S);

RLK LineList «+ KneeScanLinesRight (S);

if

KneeCrossed(Le ft Lower KneeLineList,Right Lower KneeLinelList)
then

‘ Swap (LLKAngle,RLKAngle);
end
return LLAAngle, LUAAngle, RLAAngle, RUAAngle, LLKAngle,
RLKAngle

Algorithm 2: The algorithm to find the limb angles.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM

30

armPointList «— armpointlist;

lowerArmAngle « 0;

upperArmAngle < 0;

elbowCornerlndex <+ FindElbowCorner (armPointList);
if elbowCornerindex is —1 then

angle <+ FindAngle (armPointList);
lowerArmAngle <+ angle ;

upperArmAngle < angle ;

else

startIndexUpper «— 0;

endIndexUpper «— elbowCornerlndex ;

startIndex Lower «— elbowCornerlndex ;

endIndexLower < ArmPointList.Length — 1;

Upper ArmPoints «—

GetPoints (armPointList,startIndexU pper,endIndexUpper);
Lower ArmPoints

GetPoints (armPointList,startIndex Lower,endIndex Lower);
lowerArmAngle <« FindAngle (Lower ArmPoints);
upperArmAngle < FindAngle (Upper ArmPoints);

end
return lowerArmAngle,upperArmAngle

Algorithm 3: The algorithm to find the arm angle.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 31

armPointList «— ArmPointList;
manimumCorner Distance «— 4;
minimumCorner AngleDi f ference < 10;
listO f PossibleCorners «— CreateEmptyList();
for i «— minimumCornerDistance to armPointList.Length — 1 do
startIndexUpper «— 0;
endIndexUpper « i;
startIndex Lower « i;
endIndex Lower «— armPointList.Length — 1;
upper ArmPoints «—
GetPoints (armPointList,startIndexUpper,endIndexUpper);
lower ArmPoints «—
GetPoints (armPointList,startIndexLower,endIndexLower);
ArmAngles. Lower «— FindAngle (lowerArmpPoints);
ArmAngles.Upper < FindAngle (upperArmPoints);
corner AngleDi f ference «—
Absolute (ArmAngles. Upper-ArmAngles. Lower);
if
corner AngleDif ference > minimumCorner AngleDif ference
then
‘ Add (listOf Possible Corners,i,cornerAngleDifference)

end
end
cornerIndexr «— —1;
if listO f PossibleCorners.Length > 0 then

cornerIndex «—

FindIndex0fMaxDifference (listOfPossibleCorners);

end
return cornerindex

Algorithm 4: The algorithm to find the elbow corner.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 32

For the arms, we have to find two angles: one for the lower arm and one
for the upper arm. We extract the two angles from the arm curves by trying to
find potential elbow corners on their point lists. We use Algorithm 4 to find the
elbows. Algorithm 4 tries some points as if they are elbow corners and checks
whether enough angle difference exists for the upper and lower segments. If there
are more than one candidate point to be the elbow, Algorithm 4 selects the elbow
point that gives the largest angle difference between the upper arm and the lower
arm. If an elbow is found, the arm curve is divided into two pieces from the
elbow and the corresponding angle is computed for each segment like in lower
leg segments. If there is no elbow detected then the angle is computed from the
whole arm curve and the lower and upper arm are assigned the same angle value

that is computed from the whole arm curve.

Figure 3.7: The crossed left and right lower legs.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 33

If the legs cross each other, as in Figure 3.7, we cannot determine which one
is left and which one is right. We use Algorithm 5 to detect whether the lower
legs cross each other. If Algorithm 5 decides that the legs cross each other, then

we swap the left and right lower leg in 2D pose extraction process.

/*LLL stands for LeftLowerLeg */
/*RLL stands for RightLowerLeg */
LLLLineList < LeftLowerLegLineList;
RLLLinelist < RightLowerLegLineList;
OneKneeStarted «— false;
TwoKneeStarted «— false;
TwoKneeCrossed « true;
for : <— 0 to LLL.Length — 1 do
if LLLLineList[i] intersects RLLLineList[i| then
if TwoKneeStarted then
TwoKneeCrossed < false;
break;

end
OneKneeStarted «— true;

else
if OneKneeStarted then
‘ TwoKneeStarted < true;

else
TwoKneeCrossed < false;
break;

end

end

end

if TwoKneeStarted is false then
TwoKneeCrossed «— false;

end
return TwoKneeCrossed

Algorithm 5: The algorithm to detect whether the lower legs cross each
other.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 34

Algorithm 5 goes over the lower parts of the silhouette by following the scan
lines and produces a line segment list for the parts inside the silhouette. Then
it analyzes the list of lines to decide whether lower legs cross each other. If we
observe that the line lists at the beginning of lower silhouette parts start with one
line and becomes two lines for the remaining scan lines then we conclude that the
legs cross each other. In such a case, we swap the angle values of the left lower

leg with that of the right lower leg.

3.1.4.4 Finding Foreshortening Angle of a Body Part

We can find how much a segment is foreshortened based on the orthographic
projection. However, we cannot detect the direction of the foreshortening. We
get foreshortening direction from the user. Algorithm 6 finds how much one or
more body segments foreshortened. The algorithm does not care the direction
of the foreshortening. The algorithm finds the relative ratio that is a measure of

the foreshortening angle.

Algorithm 6 takes the fragment of the human silhouette that contains the body
segment to be searched as input. The algorithm tries to find the best ratio that
covers the segment being searched. The algorithm starts with an initial target
ratio interval (0,1). Then, it iteratively narrows the target interval and finds the
best ratio that covers the segment. At each iteration, ratio interval is divided to a
number of intervals we specified and for each ratio value that corresponds to each
division, we measure how well the silhouette is covered by the segment. We find
the division (ratio) that covers the silhouette best. We recursively continue to
narrow the search interval and when the search interval is smaller than a threshold
ratio, the algorithm returns the ratio that maximizes the fitting. Examples of the

application of this algorithm are shown in Figures 3.8and 3.9.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM

S «— Partial SilhouetteContainingSegmentsToBeSearched;
beginPoint «— beginPoint;
endPoint « beginPoint;
length < DistanceOf (beginPoint,endPoint);
start Ratio < O;
endRatio «— 1;
numberO f Division < 5;
minimumStepRatio «— 1/length;
searchRatiolnterval <« (endRatio — startRatio);
StepRatio «— (searchRatiolnterval /numberO f Division);
RatioThatMaximizes < (endRatio + startRatio)/2;
maximumSimilarity < 0;
while searchRatiolnterval > minimumStepRatio do
ratioFor Begin < RatioThatMaximizes — searchRatiolnterval /2;
if ratioForBegin < startRatio then

‘ ratioFor Begin «— startRatio;

end
ratioFor End <« RatioThatMaximizes + searchRatiolnterval /2;
if ratioFor End > endRatio then

‘ ratioFor End «— endRatio;

end

ratioFor BodyPart < ratioFor Begin;

while ratioFor BodyPart < ratioForEnd do

currentModel Pose < DrawBodyPart ();

stmilarity Result «—

MeasureSimilarity(S,currentModelPose);

if similarityResult > maximumSimilarity then
maximumSimilarity «— similarity Result;
RatioThatMaximizes < ratioFor BodyPart,;

end

ratioFor BodyPart < ratioFor BodyPart + StepRatio;

end

searchRatiolnterval «—

2 x (searchRatiolnterval /numberO f Division);
StepRatio «— 2 x (StepRatio/numberO f Division);

end
return RatioThatMaximizes

Algorithm 6: The algorithm to find the absolute foreshortening.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 36

Figure 3.8: The iterative estimation of the foreshortening ratio of the torso.

Ly

Figure 3.9: The iterative estimation of the foreshortening ratio of the upper arm.

CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 37

3.1.5 3D Pose Estimation

This stage estimates the 3D pose of the performer on the video. Given 2D joint
coordinates and foreshortening direction of each body segment, 3D pose can be

constructed under orthographic projection.

For the whole body, we take the orientation of the body as input from the
user. The body can be in one of the six orientations: left, right, backward left,
backward right, forward left, forward right. We also use horizontal foreshortening
of the torso with the orientation of the body taken from the user to find how much
the performer is rotated around the y-axis of the image. From the orientation,
we also determine the left leg (arm) and the right leg (arm). Finally, we use
the 3D pose found for each key frame to animate the character. We use linear

interpolation to calculate the intermediate poses of the human body.

Chapter 4

Experimental Results

4.1 Visual Results

We tried our method on two videos that we got from public resources. The first
one is a walking video [3] and the second one is a dancing video [4]. The walking
sequence consists of 82 frames and it is illustrated in Figures 4.1. The dancing
sequence consists of 200 frames and it is illustrated in Figures 4.2. The video
frame, which our method is applied on, and the extracted silhouette from the
video frame and the pose we constructed is depicted in each figure. We created
an animation for each video by using key-framing technique. For dancing video,
we applied our method to 33 key-frames. For the walking video, we applied our
method to 17 key-frames. While selecting the key-frames, we preferred the ones
with low occlusion in order to get better results. We used linear interpolation
technique to create intermediate frames. In dancing and walking videos we needed
user interaction in a few frames to find the 2D joint coordinates because of high

occlusion.

38

CHAPTER 4. EXPERIMENTAL RESULTS 39

4.2 Performance Analysis

We implemented the proposed system on a PC platform with Intel Celeron 2.70
GHz processor, 512 MB Main Memory and Intel(R) 82852/82855 GM/GME
graphics card. We implemented the proposed system by using Microsoft C#
NET platform.

It takes nearly one second to find the 2D joint coordinates of a human body
from a single video frame. The video frame size does not affect the performance

significantly since we normalize the silhouette to a fixed size.

4.3 Effectiveness of the Proposed Framework

In previous works using the orthographic projection, the user specifies the joint
coordinates for each video frame and the foreshortening direction of each segment.
In our proposed framework we find the 2D joint coordinates from image auto-
matically and only take the foreshortening direction and the body orientation.
Our proposed framework only needs the user input that rarely changes during a

motion, which requires minimal user intervention.

In the walking video we experimented, the orientation of the body does not
change during the whole video (82 frames). In the dancing video we experimented,
the orientation of the body changes 7 times along the 200 frames. For the interac-
tions required to specify the foreshortening direction, 52 changes occurred along
the 82 frames in the walking video , 44 changes occurred along the 200 frames
in the dancing video. In the dancing video, 8 user inputs are needed, and in the
walking video, 7 user inputs needed for the highly occluded parts in a few frames.
14 user inputs (coordinates of joints) are needed for each video frame in previous

methods [16], which are determined automatically in our implementation.

For the walking video, if we use the approach presented in [16] we need 17 x
14 + 52 = 290 user inputs, where 17 is the number of key frames used to prepare

the animation, 14 is the number of joint coordinates specified for each frame,

CHAPTER 4. EXPERIMENTAL RESULTS 40

52 is the number of user interactions needed for specifying the foreshortening
directions. But with our proposed work 52 + 1 + 7 = 60 user inputs are needed.
52 is the number of user interactions needed for the foreshortening directions, 1
is the number of the user interactions needed for the orientation of the body and

7 is the number of user interactions needed for highly occluded parts.

For the dancing video, if we use the approach presented in [16], we need 33 x
14 + 44 = 506 user inputs, where 33 is the number of frames used to prepare the
animation, 14 is the number of user interactions necessary for specifying the joint
coordinates and 44 is the number of user interactions needed for specifying the
foreshortening directions. But with our proposed work 444748 = 59 user inputs
needed, where 44 is the number of user interactions needed for specifying the
foreshortening directions, 7 the number of user interactions needed for specifying
the orientation of the body and 7 the number of user interactions needed for

specifying the joint angles of the highly occluded segments.

CHAPTER 4. EXPERIMENTAL RESULTS 41

00-00-00 1 00-00-08 (8%

o o

Figure 4.1: The results obtained by applying the proposed framework to the
frames of a public walking video. The input frame (top), the extracted silhouette
(middle), and the reconstructed 3D pose of the human in the video (bottom).

CHAPTER 4. EXPERIMENTAL RESULTS 42

00-00-04 1 00-00:09 (42%)

Figure 4.1: (continued).

CHAPTER 4. EXPERIMENTAL RESULTS 43

00'00-08100.00-08 82%) ' 0000-08100-00:08 E¥%)

Figure 4.1: (continued).

CHAPTER 4. EXPERIMENTAL RESULTS 44

Figure 4.1: (continued).

CHAPTER 4. EXPERIMENTAL RESULTS

00-00-07 1 00-00:08 B2%)

Figure 4.1: (continued).

45

(10)

CHAPTER 4. EXPERIMENTAL RESULTS 46

00 0003 1 00-00-25 [14%:) 00:00:03 I 00:00:26 [13%%)

o

(1) (2)

Figure 4.2: The results obtained by applying the proposed framework to the
frames of a public dancing video. The input frame (top), the extracted silhouette
(middle), and the reconstructed 3D pose of the human in the video (bottom).

CHAPTER 4. EXPERIMENTAL RESULTS

00:00:16 I 00:00-256 [§196)

47

00:00-17 | 00:00-28 [707%)

Figure 4.2: (continued).

CHAPTER 4. EXPERIMENTAL RESULTS

00:00-18 | 00:00-28 [T8%)

48

00:30:20 1 00:00-26 [BX9%)

Figure 4.2: (continued).

CHAPTER 4. EXPERIMENTAL RESULTS

005021 | 00:00-28 [85%)

49

00:00:22 I 00:00:256 [906)

Figure 4.2: (continued).

CHAPTER 4. EXPERIMENTAL RESULTS

00:00-24 | 00:00-26 (98%)

Figure 4.2: (continued).

50

Chapter 5

Conclusions and Future Work

This thesis proposes a framework for constructing the 3D human pose from a video
sequence obtained from a single view. The proposed framework does not require
camera calibration and requires minimal user intervention. Videos taken from
public resources can be processed by the proposed framework. The framework
assumes the input video has a static background and the video has no significant

perspective effects.

We model the human body as an assembly of cylinders and we assume that

the lengths of these cylinders are known at least relative to one another.

The proposed framework uses orthographic projection. By considering the
foreshortening of the segments, the 3D pose of the human in the video can be re-
constructed under orthographic projection. However, the method proposed in [16]
requires intensive user interaction; the user has to specify the joint coordinates on
the images and the foreshortening direction for each segment. We calculate the
joint coordinates automatically from the video images and succeeded to reduce
the user interaction to 12-21% during the pose construction. By using the 3D

poses constructed, we produced animations of the human walking and dancing.

An animator has to control both the appearance and the movement of the

characters. Since there are many degrees of freedom to be controlled, controlling

51

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 52

the movement of characters is a difficult task that requires skill and labor. For this
reason, the animators usually begin their work by sketching the coarse version of
the movements on key poses. They rework and refine the key poses to produce the
final animation [6]. Our proposed framework can help the professional animators

an initial version of the motion that can be refined.

One of the apparent results of our human pose estimation framework is to en-
able non-skilled computer users to use computer animation. The main advantage
of our approach over the other approaches is to be able to create the 3D pose that
can be easily mapped onto different characters, or modified to fit the needs of a
specific animation. Since our approach requires less user interaction and has less

constraints, it can be used to construct motion libraries from public resources.

Bibliography

Overview of the MPEG-4 Standard, @ Moving Picture Ex-
perts Group (MPEG). A Working Group of ISO/IEC,
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm/.

H_Anim: Specification for a Standard VRML Humanoid version 1.1., Hu-
manoid Animation Working Group, Web3D Consortium, http://www.h-
anim.org/Specifications/H-Anim1.1/.

The Walking Video,

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html.

The Dancing Video, An American Ballroom Companion,

http://rs6.loc.gov/ammem /dihtml/divideos.html.

S. Bryson. Virtual reality hardware. ACM Computer Graphics
SIGGRAPH’93 Course, pages 1.3.16-1.3.24, 1993.

J. Davis, M. Agrawala, E. Chuang, Z. Popovi¢, and D. Salesin. A sketching
interface for articulated figure animation. In Proceedings of the 2003 ACM
SIGGRAPH /Eurographics Symposium on Computer Animation, pages 320—
328, July 2003.

P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image
segmentation. [International Journal of Computer Vision, 59(2):167-181,
September 2004.

M. Gleicher and N. Ferrier. FEvaluating video-based motion capture. In

Proceedings of Computer Animation 2002, pages 75-80, June 2002.
53

BIBLIOGRAPHY o4

[9]

[16]

[17]

[18]

[19]

C.-L. Huang and C.-Y. Chung. A real-time model-based human motion
tracking and analysis for human-computer interface systems. EURASIP
Journal on Applied Signal Processing, 11:1648-1662, 2004.

G. Johansson. Visual motion perception. Scientific American, 232(6):75-80,
85-88, June 1975.

S. Kiss. Computer Animation for Articulated 3D Characters. Technical
Report 2002-45, CTIT Technical Report Series, November 2002.

V. Mamania, A. Shaji, and S. Chandran. Markerless motion capture from
monocular videos. In Proceedings of Indian Conference on Computer Vision,
Graphics and Image Processing (ICVGIP’2004), pages 126-132, 2004.

A. Memigoglu. Human motion control using inverse kinematics. Master’s
thesis, Bilkent University, Turkey, 2003.

T. B. Moeslund and E. Granum. A survey of computer vision-based human
motion capture. Computer Vision and Image Understanding, 81(3):231-268,
2001.

F. Perales. Human motion analysis and synthesis using computer vision
and graphics techniques: state of art and applications. In 5th World Multi-

Conference on Systemics, Cybernetics and Informatics, 2001.

C. J. Taylor. Reconstruction of articulated objects from point correspon-
dences in a single uncalibrated image. Computer Vision and Image Under-
standing, 80(3):349-363.

D. Thalmann. Physical, behavioral, and sensor-based animation. In Proc.
of Graphicon’96, pages 214-221, 1996.

N. M. Thalmann and D. Thalmann. Computer animation. ACM Computing
Surveys, 28(1):161-163, 1996.

H. Zhou and H. Hu. A survey - human movement tracking and stroke reha-
bilitation. Technical Report 1744 - 8050, CSM-420 Department of Computer
Sciences, University of Essex, United Kingdom, December 1996.

BIBLIOGRAPHY 95

[20] H. Zhou and H. Hu. A survey - human movement tracking and stroke reha-
bilitation. Technical Report TR97-045, 16, 1997.

