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Prof. Ahmet Feyzioğlu . . . . . . . . . . . . . . . . . . .

DATE OF APPROVAL: 14. 06. 2006



iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis supervisor, Prof. Alp

Eden, for his endless support and guidance during my M.S. education. It would not be

possible for me to continue a Ph.D. education in mathematics without his motivation

and support. I totally believe the following words : “The greatest small miracle in the

world is to come across a good teacher when very young. Speaking of greater miracles,

they can only be found in holy books.”*

I would like to thank Prof. Ahmet Feyzioğlu for his participation in my thesis

committee. He will be one of the my mentors for his mathematics knowledge through-

out my career.

I would like to thank Prof. Vedat Akgiray for his participation in my thesis

committee.

I am deeply thankful to my teaching assistant friends in Boḡaziçi University. I
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ABSTRACT

INTEGRATION OF THE DETERMINISTIC FUNCTIONS

WITH RESPECT TO FRACTIONAL BROWNIAN

MOTION

In this thesis, definition and the characteristic properties of fractional Brownian

motion are presented and the general idea for the integration of deterministic functions

is discussed with a specific class of integrands.

First, some notions and facts from probability theory are introduced. The defi-

nition and basic properties of Gaussian random variables and processes are discussed

and their relation with the self similar, stationary processes is given. Moreover, co-

variance function of the self similar Gaussian processes with stationary increments is

characterized as in Embrechts and Maejima’s book.

Next, we give two representations of fractional Brownian motion. One is defined

as a stochastic integral with respect to Brownian motion as in Embrechts and Maejima’s

book and the other with the fractional integral as Pipiras and Taqqu do. Then we

consider a class of deterministic integrands for the case H > 1/2 which is given by

Kleptsyna, LeBreton and Roubaud, and we discuss its completeness.

Finally, an example of a complete class of integrands for the case H < 1/2 is

introduced as Pipiras and Taqqu do.
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ÖZET

DETERMİNİSTİK FONKSİYONLARIN KESİRLİ BROWN

HAREKETİNE GÖRE İNTEGRALLERİNİ ALMA

Bu tezde kesirli Brown hareketinin tanımı ve karakteristik özellikleri sunulduktan

sonra deterministik fonksiyonların kesirli Brown hareketine göre integrallerini almada

uygulanan bir yöntem tartışıldı.

Öncelikle, olasılık teorisinden bazı tanım ve teoremler verildi. Normal dağılıma

sahip rastgele değişkenler ve stokastik süreçlerin tanımı ve temel özellikleri verilerek

kendine benzer ve durağan süreçlerle ilişkileri belirtildi. Ayrıca, kendine benzer durağan

normal dağılımlı süreçlerin kovaryans fonksiyonu karakterize edildi.

Daha sonra, kesirli Brown hareketinin iki temsil edilişi verildi. Biri Embrechts ve

Maejima’nın kitabında verildiği gibi Brown hareketine göre stokastik integralle olan bir

temsildir, diğeri ise Pipiras ve Taqqu tarafından verilen kesirli integrale göre olandır.

Bundan sonra, H > 1/2 için Kleptyna, LeBreton ve Roubaud tarafından verilen deter-

ministik integrand kümesi ve kümenin tamlık problemi incelendi.

Son olarak, H < 1/2 için tam olan bir integrand kümesinin varlığı Pipiras ve

Taqqu’ nun çalısmasında ki gibi gösterildi.
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1. INTRODUCTION

The fractional Brownian motion is a generalization of the well-known process

Brownian motion. The fractional Brownian motion was originally introduced by Kol-

mogorov[1], in 1940 when he was interested in modelling turbulence. Kolmogorov

did not used the name ‘fractional Brownian motion’. He called the process ‘Wiener

spiral’. Kolmogorov studied the fractional Brownian motion within a Hilbert space

framework and deduce its covariance function from a scaling property that we now

call self-similarity.[2]. This process firstly was called ‘fractional Brownian motion’ by

Mandelbrot and Van Ness.[3]. They defined the fractional Brownian motion by using

a fractional integral of Weyl type.

Since any Gaussian process is characterized by its covariance function, we can

easily deduce its basic properties such as being self similar, Markovian, etc., from this

function. The covariance function of fractional Brownian motion includes a parameter

H. The notion for the index H and current parametrization with range (0, 1) are due

to Mandelbrot and Van Ness also[3]. The parameter H is called the Hurst index after

an English hydrologist who studied the memory of Nile River maxima in connection

of designing water reservoirs.[2].

The fBm model is widely applied in telecommunications and is also of interest

in finance via the stochastic differential equations driven by fractional Brownian mo-

tion.[4]. Integration with respect to fBm has many potential applications.[5]. However,

there are two important difficulties on the integration theory which differs from the

classical stochastic integration theory. On one hand, the paths of fBm are of unbounded

variation and hence the usual Lebesque-Stieljets integration cannot be applied. One

cannot use the usual Itô’s stochastic calculus because fBm is not a semimartingale.

The most important constructions, for general H, to be found in literature either use

a specific class of integrands, use path wise integration or base the definition on Malli-

avin calculus[6]. In each of these approaches, a version of the Itô formula is deduced

which allows for a calculus of stochastic differentials[7]. As far as we know, no general
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consensus on the best approach exists.

Brownian motion has been well established in finance. Indeed, introduction of the

Brownian motion based Black-Scholes formulation of vanilla options by Black, Scholes

and Merton marked the advent of mathematical finance. Nevertheless, classical math-

ematical models of financial assets are far from perfect. Two apparent problem exist in

the Black-Scholes formulation, namely financial processes are not wholly Gaussian and

Markovian in distribution.[8]. After the 1987 market crash, industry and researchers

began to take note of the heavy-tail distribution of financial assets and a series of

models has been developed using more general and heavy-tailed processes.[9].

The second problem leads to long-range dependence. For a couple of decades,

the general consensus is to assume that all information is contained within current

asset price and hence it is reasonable to assume a Markovian process. However, tech-

nical traders have consistently beaten the market using long-term memory strategies.

This motivated a series of academic studies further purporting the existence of a non-

Markovian market.[10]. To compensate, stochastic volatility models have been devel-

oped that can produce quasi long-range dependence . However, these models are highly

intractable both analytically and numerically as they lead to high dimensional PDE’s

with variable coefficients. Fractional Brownian motion deals with the second problem

while still assuming a Gaussian process. Nevertheless, it offers the promise of giving

simple, tractable solutions to pricing financial options and presents a natural way of

modeling long-range dependence.

The numerous properties of fBm easily illuminate both benefits and shortcomings

of using fBm in modeling financial instruments. H-ss, where H can be between 0 and 1,

makes fBm more flexible as a modeling tool than standard Brownian motion that only

allows 1/2-ss. The existence of long-range dependence and positive correlation of future

and past increments makes fBm especially an attractive pricing tool. Statistical anal-

ysis has indicated that most markets are monofractal have Hurst parameter between

0.5 and 1.[11]. Thus, for financial purposes, Hurst parameters are usually assumed

in (1/2, 1). However, if H 6= 1/2, we can not use semimartingale and non-Markovian
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properties to construct an integration theory. This makes the task infinitely harder

since few results from classical stochastic calculus can be directly used.

A myriad of methods have been developed for integrating fBm. Two systems

bear the most important in finance: The fractional pathwise integral and the fractional

Wick-Ito integral. In the second integration method Wick product is used and H is

assumed between 1/2 and 1.[12].

In relations to Brownian motion calculus, fractional pathwise integral mirrors a

Stratonovich integral[13], whereas fractional Wick -Ito integral emulates an Ito type

calculus. Fractional pathwise integral was developed by Lin[14] during 1995 and found

to produce an arbitrage market by Rogers[15] in 1997 due to misbehavior of Gaussian

kernel near 0. Apparently, pricing in an arbitrageable system is undesirable. And

the use of fBm has been deterred till only recently in 2000 when Duncan and Hu[12]

and Øksendal[16] utilized the Wick-Ito integral. Wick introduced the Wick product in

1950.[17]. Hida and Ikeda introduced Wick product in analyzing stochastic processes

in 1965.[18]. This new type of integration suprisingly produced a no-arbitrage market.

Cheridito also constructed arbitrage strategies for a financial market that consist of a

money market account and a stock whose discounted price follows a fractional Brownian

motion with drift or an exponential fractional Brownian motion with drift. Then he

showed how arbitrage can be exluded from these models by restricting the class of

trading strategies.[19].

The history of the stochastic integration and the modelling of a risky asset prices

both begin with Brownian motion, so let us briefly remind them. The earliest attempt

to model Brownian motion mathematically in finance was made by Bachelier who cre-

ated a model while deriving the dynamic behavior of the Paris stock market in 1990[6].

This date is considered as the beginning of mathematical finance. The pioneering

analysis of the stock and option markets contains several ideas of enormous value in

both finance and probability. In particular, the theory of Brownian motion, one of

the most important mathematical discoveries of the twentieth century, was initiated

and used for mathematical modeling of price movements and evaluation of contingent
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claims in financial markets. Following from the Jarrow and Protter’s article[20] “The

thesis of Louis Bachelier, together with his subsequent works, deeply influenced the

whole development of stochastic calculus and mathematical finance. The first part of

the Bachelier’s thesis contains a detailed description of products available at that time

in French stock market, such as forward contract and options. After the financial pre-

liminaries, Bachelier begins the mathematical modeling of stock price movements and

formulates the principle that ”the expectation of the speculator is zero.” Obviously, he

understands here by expectation the conditional expectation given the past information.

In other words, he implicitly accepts as an axiom that the market evaluates assets using

a martingale measure. The further hypothesis is that the price evolves as a continuous

Markov process, homogeneous in time and space. Exploiting the ideas of Central Limit

Theorem, and realizing that market noise should be without memory, he reasoned that

increments of stock prices should be independent and normally distributed. He com-

bined his reasoning with Markov property and semigroups, and connected Brownian

motion with heat equation, using that the Gaussian kernel is the fundamental solution

of the heat equation. The thesis can be viewed as the origin of mathematical finance

and of several important branches of stochastic calculus such as the theory of Brownian

motion, Markov processes, diffusion processes, and even weak convergence in in func-

tional space. Of course, the reasoning was not rigorous but it was, on the intuitive level,

basically correct. This is really astonishing, because at the beginning of the century the

mathematical foundations of probability did not exist. A. Markov started his studies

on what are now called Markov chains only in 1906, and the concept of conditional

expectations with respect to an arbitrary random variable or σ-algebra was developed

only in 1930s.”

In 1913 Daniell’s approach to measure theory appeared, and it was these ideas,

combined with Fourier series, that N. Wiener used in 1923 to construct Brownian

motion.[21]. Then Wiener and others others proved many properties of the paths of

the Brownian motion. Two key properties relating to stochastic integration are that

(1) the paths of Brownian motion have a non zero finite quadratic variation, such that

on an interval (s, t), the quadratic variation is (t− s).

(2) the paths of Brownian motion have infinite variation on compact intervals.[20].
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The next step in the ground work for stochastic integration lay with A. N. Kol-

mogorov. The beginnings of the theory of stochastic integration, from the non-finance

perspective were motivated by the theory of Markov processes in which Kolmogorov

played a fundamental role. Indeed, in 1931 two years before his famous book es-

tablishing a rigorous mathematical basis for probability theory using measure theory,

Kolmogorov refers to and briefly explains Bachelier’s construction of Brownian mo-

tion.[22].

As for the contributions of Kiyosi Itô, when he studied to model Markov processes,

Itô constructed a stochastic differential equation of the form[23]:

dXt = σ(Xt)dWt + µ(Xt)dt,

whereWt represents a standard Wiener process. He had two problems: one was to make

sense of the stochastic differential σ(Xt)dWt and the other was to connect Kolmogorov’s

work on Markov processes with his interpretation. His efforts resulted in his paper[24]

in 1935, where he stated an proved what is known as as Itô’s formula:

f(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d[X,X]t,

Since Brownian motion has paths of unbounded variation almost surely on any

finite time interval, Itô knew that it was not possible to integrate all continuous stochas-

tic processes. One of his key insights was to to limit his space of integrands to those

that were, as he called it, non-anticipating. That is, he only allows integrands that are

adapted to the underlying filtration of σ-algebras generated by the Brownian motion.

This allows him to make use of the independence of the increments of Brownian motion

to establish the L2 isometry

E[(

∫ t

0

HsdWs)
2] = E[

∫ t

0

H2
sds]

Then J. L. Doob extended Itô’s stochastic integral for Brownain motion to martin-
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gales.[25]. One of the aims the ongoing research on fBm is to obtain the theory of

integration with respect to fBm that has similar power to the standard Brownian mo-

tion.

In this thesis, we start with some basic definitions and theorems from probability

theory. Since fractional Brownian motion is also a Gaussian process, we discuss the

basic properties of Gaussian processes. Following[7], we characterize the covariance

function of a H-self similar(H-ss) Gaussian process with stationary increments. We

call these special class of Gaussian processes as the ‘fractional Brownian motion’ as

in [7]. After that we introduce the basic properties of fBm such as being H-ss with

stationary increments and being non-Markovian. In the next chapter, we introduce

the fractional integrals and derivatives of Riemann-Lioville type and give the relation

between these two operators as in [26]. Then we relate them with the representation of

fBm as Pipiras and Taqqu do in [5]. After that we consider the class of deterministic

functions with an inner product which is defined in [27] and stochastic integral definition

for this class. At the end of the thesis, we give the Pipiras and Taqqu’s proof[5] of the

incompleteness of this class of functions. We also give a complete class of functions for

the case H < 1/2 as in [5].
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2. PRELIMINARIES

2.1. Basic Definitions and Notations

To fix our notation, we begin with some elementary notions from measure theory.

Let Ω be an abstract set. A σ-algebra or σ-field in Ω is defined as a nonempty collection

F of subsets of Ω such that F is closed under the countable unions and intersections

as well as complementation. A measurable space is a pair (Ω,F), where Ω is a set

and is F a σ-field in Ω. Given two measurable spaces (Ω1,F) and (Ω2,T), a mapping

ξ : Ω1 → Ω2 is said to be F/T-measurable or simply measurable if ξ−1B ∈ F for every

B ∈ T.

A measure on (Ω,F) is defined as a countably additive set function µ : F → R+

with µ(∅) = 0. The triple (Ω,F, µ) is called a measure space.

Throughout the thesis, (Ω,F, P ) will denote a given probability space that means

(Ω,F) is a measurable space and P is a probability measure, has total mass 1, on (Ω,F).

A measurable mapping ξ of Ω into some measurable space (S, S) is called a random

element in S. A random element is called a random variable when S = R, a random

vector when S = Rn, a random sequence when S = R∞. A metric or topological space

S will be endowed with its Borel σ-field B(S), generated by its open sets, unless a

σ-field is otherwise specified .

If B ∈ S, then ξ−1B ∈ F, we may consider the associated probabilities

P (ξ−1B) = P ◦ ξ−1(B), B ∈ S.

The set function P ◦ ξ−1 is again a probability measure, defined on the range space S

and called the (probability) distribution of ξ. For any random vector ξ = (ξt1 , ..., ξtn) in
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Rn, we define the associated joint distribution function F by

F(x1, ..., xn) = P
⋂
k≤n

{ξtk ≤ xk}, x1, ..., xn ∈ R.

Fix any measurable function f ≥ 0 on some measure space (Ω,F, µ), and define

a set function f · µ on F by

(f · µ)(B) =

∫
B

fdµ, B ∈ F,

where the last relation defines the integral over a set B. Then ν = f · µ is again a

measure on (Ω,F). Here f is referred to as the µ-density of ν.

Definition 2.1.1. The characteristic function of a random vector X : Ω → Rn is the

function φX : Rn → C(where C denotes the complex numbers) defined by

φX(u1, ..., un) = E[exp(i(u1X1+...+unXn))] =

∫
Rn

exp(i < u, x >)P ◦X−1dx1dx2...dxn

where < u, x >= u1x1 + · · ·+ unxn. In other words, φX is the Fourier transform of X.

The characteristic function has the following important property :

Theorem 2.1.2. [28] The characteristic function of X determines the distribution of

X uniquely.

Definition 2.1.3. A stochastic process X = {Xt}t∈T is a collection of random variables

defined on Ω, called the sample space, and taking values in another measurable space

(S,T), here S is called the state space. Throughout this thesis, state space will be the

R equipped with the Borel σ-algebra and T will denote the interval [0, T ] for some fixed

T > 0.
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For each ω ∈ Ω, the function

t→ Xt(ω), t ∈ T,

is called a path of the process X associated with ω.

The process {Xt}t∈T is left/right continuous if for each fixed ω ∈ Ω, the function,

t→ Xt(ω), t ∈ T

is left/right continuous on T.

For any random elements ξ and ζ in a common measurable space, the equality

ξ ∼= ζ means that ξ and ζ have the same distribution, or P ◦ ξ−1 = P ◦ ζ−1. If X is

a random process on some index set T, the associated finite-dimensional distributions

are given by

P ◦ (Xt1 , ..., Xtn)−1, ∀ t1, ..., tn ∈ T,∀ n ∈ N.

The following result shows that the distribution of a process is determined by the

set of its finite-dimensional distributions.

Proposition 2.1.4. [29] Let X and Y be two processes with the same index set T.

Then X ∼= Y iff

(Xt1 , ..., Xtn) ∼= (Yt1 , ..., Ytn), ∀ t1, ..., tn ∈ T, ∀ n ∈ N.

The expected value, expectation, or mean of a random variable ξ is defined as

E[ξ] =

∫
Ω

ξdP =

∫
R
xP ◦ ξ−1(x)dx
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whenever

∫
Ω

|ξ|dP <∞.

Given a measure space (Ω,F, P ) and some p > 0, we write Lp = Lp(Ω,F, µ) for the

class of all measurable functions ξ : Ω → R with

||ξ||p ≡ (

∫
Ω

|ξ|pdP )1/p <∞.

The covariance of two random variables ξ, ζ ∈ L2 is given by

cov(ξ, ζ) = E[(ξ − E[ξ])(ζ − E[ζ])] = E[ξζ]− E[ξ]E[ζ].

We may further define the variance of a random variable ξ ∈ L2 by

var[ξ] = cov(ξ, ξ) = E[ξ2]− E[ξ]2.

Two random variables are said to be uncorrelated if cov(ξ, ζ) = 0.

For a given collection of random variables ξt ∈ L2, t ∈ T, we note that the

associated covariance function R(s, t) = cov(ξt, ξs), s, t ∈ T, is nonnegative definite,

in the sense that

∑
i,j

R(ti, tj)λiλj ≥ 0

for any n ∈ N, ∀ t1, ..., tn ∈ T, ∀ λi, ..., λn ∈ R. This is clear if we write

∑
i,j

R(ti, tj)λiλj =
∑
i,j

cov(ξti , ξtj)λiλj = var[
∑
i

ξtiλi] ≥ 0.
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The last inequality follows from the Jensen’s inequality. Recall that a function

f : Rn → R is said to be convex if

f(px+ (1− p)y) ≤ pf(x) + (1− p)f(y), x, y ∈ Rn, p ∈ [0, 1].

Lemma 2.1.5. [29] (Jensen)Let ξ be an integrable random vector in Rn, and fix any

convex function f : Rn → R. Then

E[f(ξ)] ≥ f(E[ξ]).

Therefore, by the above lemma, for any random variable ξ, var[ξ] ≥ 0; since

f(x) = x2 is a convex function.

A filtration F = {Ft}t∈T is defined as a nondecreasing family of σ-algebras

Ft, t ∈ T. One says that a process {Xt}t∈T is adapted to the filtration F if Xt is Ft

-measurable for every t ∈ T. The smallest filtration with this property is the induced

or generated filtration given by Ft = σ(Xs; 0 ≤ s ≤ t), s, t ∈ T.

Given an arbitrary filtration F = {Ft}t∈T , we may define a new filtration F+ by

F+
t =

⋂
u>t Fu, t ≥ 0, and we say that F is right continuous if F+ = F

By a random time we shall mean a random element in T = T ∪ supT. Such a

time is said to be F- optional or an F- stopping time if {τ ≤ t} ∈ Ft for every t ∈ T.

Suppose ξ ∈ L1 and let G ⊂ F be a sub-σ-field. Then there exists a random

variable E[ξ|G], called the conditional expectation of ξ with respect to G, such that

(i) E[ξ|G] is G−measurable and integrable.

(ii) For all G ∈ G, we have

∫
G

ξdP =

∫
G

E[ξ|G]dP.

To motivate the introduction of martingales, we may fix a random variable ξ ∈ L1 and
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a filtration F on the index set T, and put

Mt = E[ξ|Ft], t ∈ T.

The process M is clearly integrable (for each t) and adapted, and chain rule for condi-

tional expectations we note that

Ms = E[Mt|Fs] a.s., s ≤ t, s, t ∈ T.

Any integrable and adapted process M satisfying

Ms = E[Mt|Fs] a.s., s ≤ t.

is called a martingale with respect to F.

For a right-continuous filtration {Ft}t∈T, a process {Mt}t∈T is said to be a local

martingale if it is adapted to filtration {Ft}t∈T and such that the stopped and shifted

processes M τn −M0 are martingales for suitable optional times τn ↑ ∞.

Definition 2.1.6. [7] A stochastic process {Xt}t∈T is Hölder continuous of order γ ∈

(0, 1) if

P{ω ∈ Ω : sup
0<t−s<h(ω)

|Xt(w)−Xs(w)|
|t− s|γ

≤ δ} = 1

where h is an almost surely positive random variable and δ > 0 is an appropriate

constant.

Lemma 2.1.7. [13] (A general version of Kolmogorov’s criterion): If a stochastic

process {Xt}t∈T satisfies

E[|Xt −Xs|δ] ≤ C|t− s|1+ε,∀t, s,
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for some δ > 0, ε > 0 and C > 0,then {Xt}t∈T has a modification whose sample paths

of are Hölder continuous of order γ ∈ [0, ε/δ).

The Markov property of a process states that if we know the present state of the

process, then the future behavior of the process is independent of its past.The process

{Xt}t∈T has the Markov property if the conditional distribution of Xt+s given Xt = x,

does not depend on the past values(but it may depend on the present value x).The

process ”does not remember” how it got to the present state x.

Definition 2.1.8. {Xt}t∈T is a Markov process if for any t and s > 0, the conditional

distribution of Xt+s given Ft is the same as the conditional distribution of Xt+s given

Xt, that is,

P (Xt+s ≤ y|Ft) = P (Xt+s ≤ y|Xt), a.s.

Proposition 2.1.9. [29] Let {Xt}t∈T be a Gaussian process, and define R(s, t) =

cov(Xs, Xt). Then {Xt}t∈T is Markov iff

R(s, u) =
R(s, t)R(t, u)

R(t, t)
, s ≤ t ≤ u,

where 0/0 = 0.

Definition 2.1.10. A process {Xt}t∈T is said to be a continuous semimartingale if it

can be written as a sum Xt = Mt + At for t ∈ T, where {Mt}t∈T is a continuous local

martingale and {At}t∈T is a continuous, adapted process of locally finite variation with

A0 = 0.

2.2. Brownian Motion

The methodology used here are related to chapter 4 of [30].
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Definition 2.2.1. A Brownian motion which is also called a Weiner process is a

continuous process W = {Wt, t ≥ 0} defined on a probability space (Ω,F, P ) with the

properties that W0 = 0 a.s., and for 0 ≤ s < t, the increment Wt −Ws is independent

of Ws and is normally distributed with mean zero and variance t− s.

Now we state some some basic properties of Brownian motion:

(i) W is a zero-mean Gaussian process.

Its covariance function Cov(Wt,Ws) = s, for s < t.[13].

(ii) W has independent increments, i.e.

Wt1 ,Wt2 −Wt1 , ...,Wtk −Wtk−1

are independent for all 0 ≤ t1 < t2... < tk. [13].

(iii) Since E[W 4
t ] = 3t2 and E[|Wt−Ws|4] = 3|t−s|2, It has a continuous version

by the Lemma 2.1.7.[13].

(iv) Almost every path of W = {Wt, t ≥ 0} is nowhere differentiable.[13].

(v) Almost every path has infinite total variation on [0, T ].[13].

Stochastic integration with respect to Brownian motion can be considered as an

extension of Stieltjes integration. In this section, the stochastic integrals of the form∫ b

a
f(t, ω)dW (t, ω) or in a short form

∫ b

a
f(t)dWt will be defined for an appropriate

class of integrands. First, the integral is defined for simple integrands and then it is

extended to more general functions by limiting process.

Definition 2.2.2. A real valued function f on [a, b] × Ω is said to be in the class



15

ν = ν(a, b) if it satisfies:

(i) f is nonanticipating, that is, f is B[a, b]× F −measurable

and adapted to {Ft},

(ii) f(t) ∈ L2(Ω,F, P ) and

∫ b

a

E[|f(t)|2]dt <∞.

Definition 2.2.3. A function f ∈ ν is called elementary if there exist a partition

a = t0 < t1 < · · · < tn−1 < tn = b

with associated random variables f0, f1, ..., fn such that

f(t, ω) =
n−1∑
i=0

fi(ω)I[ti,ti+1)(t),

S = S(a, b) will denote the space of these elementary functions. Then the integral of

f ∈ S is a random variable defined by

∫ b

a

f(t, ω)dW (t, ω) =
n−1∑
i=0

fi(ω)[W (ti+1, ω)−W (ti, ω)].

Lemma 2.2.4. [30] If f and g are elementary functions, then E[
∫ b

a
f(t)dWt] = 0 and

E[

∫ b

a

f(t)dWt

∫ b

a

g(t)dWt] =

∫ b

a

E[f(t)g(t)]dt

Corollary 2.2.5. [30] If f is bounded and elementary, then

E[(

∫ b

a

f(t, ω)dW (t, ω))2] = E[

∫ b

a

f 2(t, ω)dt]

In [30], it is shown that the set ν is a closed and dense subspace of the Hilbert

space L2([a, b]× Ω).
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Therefore if f ∈ ν, then there exist elementary functions fn ∈ ν such that

E[

∫ b

a

|fn(t)− f(t)|2dt] → 0, n→∞.[30].

Then define

Φ[f ](ω) =

∫ b

a

f(t, ω)dWt(ω) = lim
n→∞

∫ b

a

fn(t, ω)dWt(ω)

in L2-sense.[30]. This limit exists since {
∫ b

a
fn(t, ω)dWt(ω)} forms a Cauchy sequence

in L2.[30].

Corollary 2.2.6. [30](The Itô Isometry)

E[(

∫ b

a

f(t, ω)dWt(ω))2] = E[

∫ b

a

f 2(t, ω)dt]

for all f ∈ ν(a, b).
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3. GAUSSIAN PROCESSES AND FRACTIONAL

BROWNIAN MOTION

3.1. Definition and the Characteristic Properties of Fractional Brownian

Motion

Definition 3.1.1. Let (Ω,F, P ) be a given probability space. A random variable

X : Ω → R is Gaussian or normal if the distribution of X has a density of the form

pX(x) =
1

σ
√

2π
. exp(−(x−m)2

2σ2
),

where σ > 0 and m are constants. In other words,

P [X ∈ G] =

∫
G

pX(x)dx,

for all Borel sets G ⊂ R.

If this is the case, then

E[X] =

∫
Ω

XdP =

∫
R
xpX(x)dx = m,

and

V ar[X] = E[(X −m)2] =

∫
R
(x−m)2pX(x)dx = σ2.

Hence the probability distribution of this random variable X is completely determined

by its mean value m and its variance σ2.

A random vector X : Ω → Rn is called (multi) Gaussian if the distribution of X
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has a density of the form

pX(x1, · · · , xn) =

√
|A|

(2π)n/2
. exp(−1

2
.
∑
i,j

(xi −mi)aij(xj −mj))

where m = (m1, · · · ,mn) ∈ Rn and C−1 = A = [aij] ∈ Rn×n is a positive definite

matrix.

If this is the case then

E[X] = m

and

A−1 = C = [cij]

is the covariance matrix of X.

The covariance matrix of X is the n× n matrix C = [cij], where

cij = E[(Xj −mj)(Xi −mi)]

and

mi = E[Xi].

It is clear that C is symmetric. Moreover, it is non-negative definite, i.e.

n∑
i,j=1

cijλiλj ≥ 0
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for all λi ∈ R, i = 1, · · · , n, since

n∑
i,j=1

cijλiλj = E[
n∑
i=1

(Xi − E[Xi])λi]
2 ≥ 0.

The following lemma shows that the converse is also true.

Lemma 3.1.2. [31] A necessary and sufficient condition that an nxn matrix C is the

covariance matrix of a vector X = (X1, · · · , Xn) is that the matrix is symmetric and

non-negative definite, or, equivalently that there is a an nxk matrix A, (1 ≤ k ≤ n)

such that

C = AAT

where T denotes the transpose.

Proof. Let C be a symmetric and non-negative definite matrix. We know from the

matrix theory that corresponding to every symmetric, non-negative definite matrix C

there is an orthogonal matrix Θ(i.e., ΘΘT = I) such that

ΘTCΘ = D where D =

 d1 . 0

0 . dn


is a diagonal matrix with nonnegative elements di, i = 1, ..., n.

It follows that

C = ΘDΘT = (ΘB)(BTΘT),

where B is the diagonal matrix with elements bi = +
√
di, i = 1, ..., n. Consequently, if

we put A = ΘB we have the required representation C = AAT for C.

It is clear that every matrix AAT is symmetric and nonnegative definite. Consequently

we have only to show that C is the covariance matrix of some random vector.

Let η1, η2, ..., ηn be a sequence of independent normally distributed random variables.
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Then the random vector X = Aη has the required properties. In fact,

E[XXT] = E[(Aη)(Aη)T] = A · E[ηηT] · AT = AAT

This completes the proof of the lemma.

Definition 3.1.3. A process {Xt}t∈T is Gaussian if the random variable c1Xt1+c2Xt2+

· · ·+cnXtn is Gaussian for any choice of n ∈ N, t1, t2, . . . , tn ∈ T and c1, c2, . . . , cn ∈ R.

Theorem 3.1.4. [28] Let Xi : Ω → R be random variables; 1 ≤ i ≤ n. Then

X = (X1, · · · , Xn)

is Gaussian if and only if

Y = c1X1 + c2X2 + · · ·+ cnXn

is Gaussian for any c1, c2, . . . , cn ∈ R.

Proof. If X is normal, then

E[exp(iu(c1X1 + c2X2 + · · ·+ cnXn))] = exp(−1

2

∑
j,k

ucjλjkuck + i
∑
j

ucjmj)

= exp(−1

2
u2

∑
j,k

cjλjkck + iu
∑
j

cjmj)

so Y is Gaussian with E[Y ] =
∑
cjmj, var[Y ] =

∑
cjλjkck.

Conversely, if Y = c1X1+c2X2+· · ·+cnXn is Gaussian with E[Y ] = m and var[Y ] = σ2,

then

E[exp(iu(c1X1 + c2X2 + · · ·+ cnXn))] = exp(−1

2
u2σ2 + ium),
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where m =
∑

j cjE[Xj], and

σ2 = E[(
∑
j

cjXj −
∑
j

cjE[Xj])
2]

= E[(
∑
j

cj(Xj −mj))
2]

=
∑
j,k

cjckE[(Xj −mj)(Xk −mk)],

where mj = E[Xj]. Hence X is Gaussian.

A function R(s, t) : R× R 7→ R is called nonnegative definite if

n∑
i,j=1

R(ti, tj)λiλj ≥ 0

for all ti, λi ∈ R, i = 1, · · · , n and n ∈ N.

By the Lemma 3.1.2, any non-negative definite function defines a unique zero

mean Gaussian process.

Lemma 3.1.5. [32] The function RH(t, s) = 1
2
(t2H + s2H − |t − s|2H) is non-negative

definite if H ∈ (0, 1].

Proof. We want to show that

n∑
i=1

n∑
j=1

RH(ti, tj)uiuj ≥ 0

for t1, ..., tn ≥ 0 and u1, ..., un ∈ R.

Set t0 := 0 and add a value u0 := −
∑n

i=1 ui. Then
∑n

i=0 ui = 0 and

n∑
i=1

n∑
j=1

RH(ti, tj)uiuj = −
n∑
i=0

n∑
j=0

|ti − tj|2Huiuj.
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Since for any ε ≥ 0 we have

n∑
i=0

n∑
j=0

e−ε|ti−tj |
2H

uiuj =
n∑
i=0

n∑
j=0

(e−ε|ti−tj |
2H − 1)uiuj = −ε

n∑
i=0

n∑
j=0

|ti− tj|2Huiuj + o(ε)

as ε→ 0 it is sufficient to show that

n∑
i=0

n∑
j=0

e−ε|ti−tj |
2H

uiuj ≥ 0.

But this follows from the fact that the mapping θ → e−ε|θ|
2H

is a characteristic function

for H ∈ (0, 1]. It is known that a real-valued random variable ξ is symmetric α-

stable,0 < α < 2, if and only if its characteristic function satisfies

E[exp(iθξ)] = exp(−c|θ|α), θ ∈ R,

for some c > 0.[7].

Now, we will show that

exp(−|t|α), 0 < α < 2,

is a characteristic function. Here we will use the exercise 4 of section 6.5 of [33]. Firstly,

let us show that

p(x) =
α

2(α+ 1)
(1 ∧ |x|−α−1) (3.1)
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is a probability density function. It is clear that p(x) ≥ 0. Now,

∫ ∞

−∞
p(x)dx =

α

2(α+ 1)
[

∫ −1

−∞
|x|−α−1dx+

∫ 1

−1

dx+

∫ ∞

1

|x|−α−1dx]

=
α

2(α+ 1)
[2 + 2

∫ ∞

1

|x|−α−1dx]

=
α

2(α+ 1)
[2 +

2

α
]

= 1.

Then let us show that a random variable ξ with the probability density function

p(x) =
α

2(α+ 1)
(1 ∧ |x|−α−1) (3.2)

has a characteristic function φ(t) of the form 1 − Cα|t|α + O(t2) in the neighborhood

of t = 0.

E[exp(itξ)] =
α

2(α+ 1)

∫ ∞

−∞
exp(itξ)(1 ∧ |x|−α−1)dx

=
α

2(α+ 1)

∫ ∞

−∞
[cos(tx) + i sin(tx)](1 ∧ |x|−α−1)dx

=
α

(α+ 1)

∫ ∞

0

cos(tx)(1 ∧ |x|−α−1)dx

=
α

(α+ 1)

∫ 1

0

cos(tx)dx+
α

(α+ 1)

∫ ∞

1

cos(tx)x−α−1dx

=
α

(α+ 1)

sin t

t
+

α

(α+ 1)
I1
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where

I1 =

∫ ∞

1

cos(tx)x−α−1dx.

We have

∫ ∞

0

1− cos(tx)

xα+1
dx = Cα|t|α. (3.3)

If we apply the Fubini’s theorem, we will get (3.3)

∫ ∞

0

1− cos(tx)

xα+1
dx =

∫ ∞

0

1

xα+1
[

∫ x

0

t sin(tu)du]dx

=

∫ ∞

0

∫ ∞

u

t sin(tu)

xα+1
dxdu

= Cα|t|α.

We can write integral (3.3) in the following way :

∫ ∞

0

1− cos(tx)

xα+1
dx =

∫ 1

0

1− cos(tx)

xα+1
dx+

∫ ∞

1

1− cos(tx)

xα+1
dx

we denote

I2 =

∫ ∞

1

1− cos(tx)

xα+1
dx.

Let us consider the order of

I3 =

∫ 1

0

1− cos(tx)

xα+1
dx.
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Since cos(x) has a Taylor expansion, we have

1− cos(tx)

xα+1
= − 1

xα+1

∞∑
n=1

(−1)nt2nx2n

(2n)!
⇒

∫ 1

0

1− cos(tx)

xα+1
dx = −

∞∑
n=1

(−1)nt2n

(2n)!

∫ 1

0

x2n−α−1dx

= −
∞∑
n=1

(−1)nt2n

(2n)!

1

2n− α

= −t2
∞∑
n=1

(−1)nt2n−2

(2n)!

1

2n− α

If we can show that

∞∑
n=1

(−1)nt2n−2

(2n)!

1

2n− α

is bounded for small t, then we can conclude that

∫ 1

0

1− cos(tx)

xα+1
dx

is O(t2). Since 0 < α < 2, we have

2n− 2 < 2n− α < 2n,
1

2n
<

1

2n− α
<

1

2n− 2
.

Hence for t is in the neighborhood of 0,

∞∑
n=1

(−1)nt2n−2

(2n)!

1

2n− α
≤

∑
n, even

t2n−2

(2n)!

1

2n− 2
−

∑
n, odd

t2n−2

(2n)!

1

2n

<
∑

n, even

1

(2n)!

1

2n− 2
< M
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for some M, 0 < M <∞. Therefore I3 is O(t2).

Thus,

I2 =

∫ ∞

1

dx

xα+1
− I1

Cα|t|α −O(t2) =
1

α
− I1

I1 =
1

α
− Cα|t|α +O(t2).

Therefore for the neighborhood of t = 0,

E[exp(itξ)] =
α

(α+ 1)
+

α

(α+ 1)
(
1

α
− Cα|t|α +O(t2))

φ(t) = 1− cα|t|α +O(t2).

Now, let ξ1, ξ2, ... be independent identically distributed random variables with the

above density function and Sn =
∑n

i=1 ξi.

Let ψn(t) be the characteristic function of Sn

n1/α . Then

ψn(t) = E[exp(it
Sn
n1/α

)]

= φ(
t

n1/α
)n = (1− cα

|t|α

n
+O(

t2

n2/α
))n

−→ exp(−cα|t|α), n −→∞.

This completes the proof of the Lemma 3.1.5.
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The stable distributions with characteristic functions of the form

exp(−λ|t|α)

were called Cauchy laws. The tradition later died out and distribution of this type

became known as symmetric stable distributions. In our times there has been a sharp

increase in the interest in stable laws, due to their appearance in certain socio-economic

models.[34].

Definition 3.1.6. An R-valued stochastic process X = {Xt}t∈T is said to be self similar

if for any a > 0, there exists b > 0 such that {Xat}t∈T
∼= {bXt}t∈T

Definition 3.1.7. An R-valued stochastic process X = {Xt}t∈T is said to be H-self

similar(H-ss) if

{Xat}t∈T
∼= {aHXt}t∈T

for all a > 0. The parameter H > 0 is called the Hurst index.

Definition 3.1.8. An R-valued stochastic process {Xt}t∈T is said to have independent

increments, if for any m ≥ 1 and for any partition 0 ≤ t0 < t1 < ... < tm,

Xt1 − Xt0 , Xt2 − Xt1 , ..., Xtm − Xtm−1 are independent and is said to have stationary

increments, if any joint distribution of {Xt+h − Xt, t ≥ 0}is independent of t. This

means that Xt−Xs has the same distribution as Xt+h−Xs+h for all s, t, h ≥ 0, s < t.

Theorem 3.1.9. [7] Let {Xt}t∈T be real-valued H-self similar process with stationary

increments and suppose that E[X2
1 ] <∞. Then

E[XtXs] =
1

2
(t2H + s2H − |t− s|2H)E[X2

1 ].
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Proof. By selfsimilarity and stationarity of the increments,

E[XtXs] =
1

2
{E[X2

t ] + E[X2
s ]− E[(Xt −Xs)

2]}

=
1

2
{E[X2

t ] + E[X2
s ]− E[X2

|t−s|]}

=
1

2
{t2H + s2H − |t− s|2H}E[X2

1 ]

Combining the Lemma 3.1.2. and Lemma 3.1.5. we arrive at a definition of

“fractional Brownian motion”.

Definition 3.1.10. Let 0 < H ≤ 1. A real-valued Gaussian process {BH
t }t∈T is called

fractional Brownian motion if E[BH
t ] = 0 and

E[BH
t B

H
s ] =

1

2
(t2H + s2H − |t− s|2H)E[(BH

1 )2].

For the special case H = 1
2
, the process is the the well-known process ‘Brownian

motion’. It has independent and stationary increments. Fractional Brownian motion

has a stochastic integral representation with respect to Brownian motion. For this

result we will use the Corollary 2.2.6:

Theorem 3.1.11. [7] A fractional Brownian motion {BH
t }t∈T is H-ss with stationary

increments. When 0 < H < 1, it has a stochastic integral representation

CH{
∫ 0

−∞
((t− u)H−1/2 − (−u)H−1/2)dB(u) +

∫ t

0

(t− u)H−1/2dB(u)},

where

CH = E[(BH
1 )2]1/2{

∫ 0

−∞
((t− u)H−1/2 − (−u)H−1/2)2du+

1

2H
}−1/2.

If H = 1, then B1
t = tB1

1 almost surely. Fractional Brownian motion is unique in
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the sense that the class of all fractional Brownian motions coincides with that of all

Gaussian selfsimilar processes with stationary increments. {BH
t }t∈T has independent

increments if and only if H = 1/2.

Proof. (i) Selfsimilarity

E[BH
atB

H
as] =

1

2
((at)2H + (as)2H − (a|t− s|)2H)E[(BH

1 )2]

= a2HE[BH
t B

H
s ]

= E[(aHBH
t )(aHBH

s )].

Since all processes here are mean zero Gaussian, this equality in covariance implies

that {BH
at}t∈T

∼= {aHBH
at}t∈T.

(ii) Stationary increments. Again, it is enough to consider only covariances.

We have

E[(BH
t+h −BH

h )(BH
s+h −BH

h )] = E[BH
t+hB

H
s+h]− E[BH

t+hB
H
h ]

− E[BH
s+hB

H
h ] + E[(BH

h )2]

=
1

2
{(t+ h)2H + (s+ h)2H − (|t− s|)2H

− ((t+ h)2H + h2H − t2H)

− ((s+ h)2H + h2H − s2H) + 2h2H}.E[(BH
1 )2]

=
1

2
((t)2H + (s)2H − (|t− s|)2H)E[(BH

1 )2]

= E[BH
t B

H
s ],

concluding that

{BH
t+h −BH

h }t∈T
∼= {BH

t }t∈T.

(iii) We need to show that the Wiener integral in the theorem is well-defined.
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Let v = −u, and α = H − 1
2

then we will show that

I1 =

∫ ∞

0

[(t+ v)α − vα]2dv <∞, 0 ≤ α < 1/2,

and

I2 =

∫ 1

0

[(t+ v)α − vα]2dv <∞, −1/2 < α < 0

and

I3 =

∫ ∞

1

[(t+ v)α − vα]2dv <∞, −1/2 < α < 0

and

I4 =

∫ 0

−t
[(t+ v)2αdv <∞ − 1/2 < α < 1/2.

For I1, I3 and g1(v) = α2v2α−2, since

lim
v→∞

[(v + t)α − vα]2

α2v2α−2
= t2,

and

lim
l→∞

∫ l

0

α2v2α−2dv =
α2

2α− 1
lim
l→∞

(l2α−1) = 0, −1/2 ≤ α < 1/2,

then I1 and I3 are convergent.
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For I2 and g2(v) = (v + t)2α, since

lim
v→0

[(v + t)α − vα]2

(v + t)2α
= lim

v→0
[1− vα

(v + t)α
]2 = 1,

and

∫ 1

0

(v + t)2αdv <∞,

then I2 is convergent.

For I4, since

I4 =

∫ 0

−t
[(t+ v)2α =

(t+ v)2α+1

2α+ 1
|0v=−t =

t2α+1

2α+ 1
<∞,

then I4 is convergent.

Therefore the Wiener integral is well-defined. Denote the integral by Xt.

We then have that

E[X2
t ] = C2

H [

∫ 0

−∞
((t− u)H−1/2 − (−u)H−1/2)2du+

∫ t

0

(t− u)2H−1du]

= E[(BH
1 )2]t2H .
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Moreover,

E[(Xt+h −Xh)
2] = C2

HE[(

∫ h

−∞
((t+ h− u)H−1/2 − (h− u)H−1/2)dB(u)

+

∫ t+h

h

(t+ h− u)H−1/2dB(u))2]

= C2
H [

∫ h

−∞
((t+ h− u)H−1/2 − (h− u)H−1/2)2du

+

∫ t+h

h

(t+ h− u)2H−1du]

= C2
H [

∫ 0

−∞
((t− u)H−1/2 − (−u)H−1/2)2du+

∫ t

0

(t− u)2H−1du]

= E[(BH
1 )2]t2H .

Hence,

E[XtXs] =
1

2
{E[X2

t ] + E[X2
s ]− E[(Xt −Xs)

2]}

=
1

2
((t)2H + (s)2H − (|t− s|)2H)E[(BH

1 )2]

Therefore, {Xt}t∈T is fractional Brownian motion for 0 < H < 1 .

(iv) For the case H = 1, first note that E[B1
tB

1
t ] = ttE[(B1

1)
2].

Then

E[(B1
t − tB1

1)
2] = E[(B1

t )
2]− 2tE[B1

tB
1
1 ] + t2E[(B1

t )
2]

= (t2 − 2t2 + t2)E[(B1
1)

2] = 0,

so that B1
t = tB1

1 almost surely.

(v) For the uniqueness, first note that once {Xt}t∈T is H-ss and has station-

ary increments, then by the theorem above, it has the same covariance structure as

{BH
t }t∈T. Since {Xt}t∈T is mean zero Gaussian, it is the same as {BH

t }t∈T in terms of

their distribution.
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Proposition 3.1.12. The fractional Brownian motion {BH
t }t∈T with Hurst index H

is Markov process if and only if H = 1
2
.

Proof. Assume H = 1
2

and s ≤ t ≤ u. Then R1/2(s, u) = s, R1/2(s, t) = s, R1/2(t, u) =

t, R1/2(t, t) = t. Therefore by proposition 2.1.9, {B1/2
t }t∈T is a Markov process.

Now, assume that {BH
t }t∈T is a Markov process. Again by proposition 2.1.9, the

covariance function RH(s, t) of fBm must satisfy the following condition:

RH(s, u) =
RH(s, t)RH(t, u)

RH(t, t)
, s ≤ t ≤ u,

Hence the above equality must be satisfied by s = m, t = 2m, u = 3m. If we put these

values in the above equality, we get

[m2H + (3m)2H − (2m)2H ] · 2 · (2m)2H = (2m)2H · [(2m)2H + (3m)2H −m2H ]

3 = 3 · 22H − 32H

and therefore H = 1/2.

3.2. Sample Path Properties of Fractional Brownian Motion

The notation and methodology used here are related to [2].

Theorem 3.2.1. [2] Fractional Brownian motion {BH
t }t∈T, 0 < H < 1 has a modifi-

cation, the sample paths of which are Hölder continuous of order β ∈ [0, H).

Proof. Choose 0 < γ < H. Then we have by selfsimilarity and stationary increments

of {BH
t }t∈T

E[|BH
t −BH

s |1/γ] = E[|BH
|t−s||1/γ]

= |t− s|H/γE[|BH
1 |1/γ]
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Then Kolmogorv’s criterion is satisfied with δ = 1/γ and ε = H/γ − 1. Thus there

exists a modification which is Hölder continuous of order β < (H/γ − 1)γ. Since γ can

be arbitrarily, the result follows.

Now, we shall introduce another notion, the so-called p-variation which is related

to the stochastic integration.

Consider partitions π := {tk : 0 = t0 < t1 < ... < tn = T} of [0, T ]. Denote by |π|

the mesh of π, i.e. |π| := maxtk∈π∆tk where ∆tk := tk − tk−1. Then for p ∈ [1,∞)

vp(f ; π) :=
∑
tk∈π

|∆f(tk)|p

where ∆f(tk) := f(tk)− f(tk−1) is the p- variation of f along the partition π.

Definition 3.2.2. Let f be function over the interval [0, T ]. If

v0
p(f) := lim

|π|→0
vp(f ; π)

exists we say that f has a finite p-variation. If

vp(f) := supπvp(f ; π)

is finite then f has a bounded p-variation. The variation index of f is

v(f) := inf{p > 0 : vp(f) <∞}

where the infimum of the empty set is ∞.

Proposition 3.2.3. [2] Let {BH
t }t∈T be a fractional Brownian motion with Hurst index

H. Then v0
p(B

H
t ) = 0 almost all surely if p > 1/H. For p < 1/H we have vp(B

H
t ) = ∞

and v0
p(B

H
t ) does not exist.
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Proof. Let K be the Hölder constant of the fractional Brownian motion. Let p > 1/H

and π be the partition of [0, 1]. Then by the Theorem 3.2.1

∑
tk∈π

|∆Btk |p ≤
∑
tk∈π

|K|∆tk|β|p

= Kp
∑
tk∈π

|∆tk|βp

≤ Kp|π|
∑
tk∈π

|∆tk|βp−1

almost surely for any β < H. Letting |π| tend to zero we see that v0
p(B

H
t ) = 0 almost

surely.

Now, suppose that p < 1/H. Then we can choose a subsequence (π
′
n)n∈N of the sequence

of equidistant partitions (πn)n∈N such that v1/H(BH
t ; π

′
n) converges almost surely to

γ1/H . Consequently along this subsequence we have limn→∞ vp(B
H
t ; π

′
n) = ∞ almost

surely. Since |π′
n| tends to zero as n increases v0

p(B
H
t ) can not exist. This also shows

that vp(B
H
t ) = ∞ almost surely for p < 1/H.

Now we are ready to prove the fact that makes stochastic integration with respect

to the fractional Brownian motion a challenging task.

Corollary 3.2.4. [2] The fractional Brownian motion with Hurst index H 6= 1
2

is not

a semimartingale.

Proof. For H < 1
2

we know that the fractional Brownian motion has no quadratic

variation.So it can not be a semimartingale.

Suppose that H > 1
2

and the fractional Brownian motion is a semimartingale

with decomposition BH
t = Mt + At. Now, Proposition 3.2.3 states that BH has zero

quadratic variation. So the martingale Mt = BH
t − At has zero quadratic variation.

Since BH is continuous we know by the properties of semimartingale decomposition,

definition 2.1.10, that M is also continuous. But a continuous martingale with zero

quadratic variation is a constant[3]. So BH
t = Mt + At and BH must have bounded

variation. This is a contradiction since v1(B
H
t ) ≥ vp(B

H
t ) = ∞ for all p < 1/H.
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4. INTEGRATION OF THE DETERMINISTIC

FUNCTIONS WITH RESPECT TO FRACTIONAL

BROWNIAN MOTION

The notation and methodology used in this chapter are related to [5] of Pipiras

and Taqqu.

4.1. The Standard Approach to The Integration of Deterministic

Functions

In this chapter we deal with questions related to the L2- integration of determin-

istic functions with respect to fBm when H ∈ (1/2, 1). As it is done in [5], we will use

in the sequel another parametrization of fBm. Let

κ = H − 1

2
,

so that the range H ∈ (0, 1) now correspond to the range κ ∈ (−1/2, 1/2). We will

denote the fBm BH = {BH
t }t∈[0,T ] in terms of the parameter κ as Bκ = {Bκ

t }t∈[0,T ].

We will also assume that fBm is standard, i.e. E[(Bκ
1 )2] = 1. In terms of κ, covariance

function of Bκ will be given in this form:

R(s, t) = E(Bκ
sB

κ
t ) =

1

2
{s2κ+1 + t2κ+1 − |s− t|2κ+1}, s, t ∈ [0, T ].

When κ = 0, fBm Bκ = B0 is the usual Brownian motion. [5].

To define integral for deterministic functions, one typically starts with an in-

ner product space (C, (·, ·)C) of functions on a region of integration R(R = R, R =

[0, T ], T > 0) such that (1[0, t), 1[0, s))C = E(Bκ
sB

κ
t ) for all s, t ∈ R. Let spR(Bκ) be the

closure in L2(Ω) of all possible linear combination of the increments of fBm on R. If the

map extends to the isometry between this class of functions C and the space spR(Bκ),
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then the resulting isometry map is called the integral in the L2(Ω)-sense with respect

to fBm of functions from C.

The function f is called an elementary function(simple) if it is given by

f(u) =
n∑
k=1

fkI[uk,uk+1)(u), u ∈ [0, T ].

An integral for simple functions will be defined as

J(f) =

∫
R

fdBκ =
n∑
k=1

fk∆B
κ
uk

=
n∑
k=1

fk(B
κ
uk+1

−Bκ
uk

),

which is a Gaussian random variable with zero mean and variance that can be calculated

by using covariance function of Bκ. Since Bκ has stationary increments, the expected

value and the variance of the defined Gaussian random variable is independent of the

choice of representation of f.

We recall, in the proposition below, how to construct classes of integrands C.

Proposition 4.1.1. [35] Let ξT be the set of elementary functions on [0, T ], J(f) be

an integral of f ∈ ξT with respect to fBm Bκ and −1/2 < κ < 1/2. Suppose that C is

a set of deterministic functions on the [0, T ] such that

(1) C has an inner product (f, g)C, f, g ∈ C.

(2) ξT ⊂ C and (f, g)C = E(J(f)J(g)) for f, g ∈ ξT ,

(3) the set ξT is dense in C.

Then

(a) there is an isometry J̃ between the space C and a linear subspace of spR(Bκ) which

is an extension of the map f 7→ J(f), for f ∈ ξT .

(b) C is isometric to spR(Bκ) itself if and only if C is complete.

Proof. (a) Let f ∈ C. By (3), there is a sequence (fn) ⊂ ξT such that fn → f in C.
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In particular (fn) is Cauchy in C and hence, by (2), (J(fn)) is a Cauchy sequence in

L2[0, T ]. Since the space L2[0, T ] is complete, there is J̃(f) ∈ L2[0, T ] such that

J̃(f) = lim
n
J(fn),

in the L2-sense. Let us show that J̃(f) does not depend on the sequence (fn). Let (gn)

be also a sequence in ξT such that gn → f in C. Since

||fn − gn||C = ||fn − f + f − gn||C ≤ ||fn − f ||C + ||gn − f ||C → 0

Hence by (2),

lim
n
J(fn − gn) = 0

in L2([0, T ]). Thus J̃(f) = limn J(fn) = limn J(gn).

Moreover, since (J(fn)) ⊂ spR(Bκ) and spR(Bκ) is a closed subset of L2[0, T ], we

obtain that J̃(f) ∈ spR(Bκ). We can thus define the map J̃ from the space C into the

space spR(Bκ). This construction of J̃ and (2) imply that, for f, g ∈ C,

(f, g)C = E(J̃(f)J̃(g)),

and, since the map is linear, we conclude that J̃ is an isometry between the space C

and a linear subspace of spR(Bκ).

(b) If C is isometric to spR(Bκ) itself, then C is complete because the space spR(Bκ)

is complete(it is a closed subset of a complete space L2[0, T ].)

Conversely, If C is complete, then the map J̃ is onto because ξT is dense in C and hence

C is isometric to spR(Bκ) itself.
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4.2. Fractional Integrals, Derivatives and a Representation of Fractional

Brownian Motion on [0,T]

For completeness, we provide below definitions of those fractional operators that

are used throughout this thesis.

Consider the interval [0, T ] and let s ∈ [0, T ]. An integral over [0, s] is called

left-sided and one over [s, T ] is called right-sided. The right sided fractional integral of

order α > 0 on an interval [0, T ] of a function f ∈ L1[0, T ] is defined by

(IαT−f)(s) =
1

Γ(α)

∫ T

0

f(u)(u− s)α−1
+ du =

1

Γ(α)

∫ T

s

f(u)(u− s)α−1du, s ∈ (0, T ).

The right sided fractional derivative of order 0 < α < 1 on interval [0, T ] of a function

φ is defined by

(Dα
T−φ)(u) = − 1

Γ(1− α)

d

du

∫ T

0

φ(s)(s− u)−α+ ds, u ∈ (0, T ).

The integral equation

1

Γ(α)

∫ x

0

ϕ(t)(x− t)α−1dt = f(x), x > 0

where 0 < α < 1, is called Abel’s equation. [26].

Let a > −∞ and suppose that equation is considered on a finite interval [a, T ].

Equation may be solved in the following way which is done in [26]: Changing x

to t and t to s respectively in the equation, multiplying both sides of the equation by
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(x− t)−α and integrating we have

1

Γ(α)

∫ t

a

ϕ(s)(t− s)α−1ds = f(t),

1

Γ(α)

1

(x− t)α

∫ t

a

ϕ(s)(t− s)α−1ds =
f(t)

(x− t)α
,

∫ x

a

(x− t)−αdt

∫ t

a

ϕ(s)(t− s)α−1ds = Γ(α)

∫ x

a

f(t)

(x− t)α
dt.

Interchanging the order of integration on the left hand side by Fubini’s theorem we

arrive at

∫ x

a

ϕ(s)ds

∫ x

s

(x− t)α(t− s)α−1dt = Γ(α)

∫ x

a

f(t)

(x− t)α
dt.

Let t = s+ τ(x− s). Then τ = (t− s)/(x− s) and dt = (x− s)dτ. Therefore

∫ x

s

(x− t)−α(t− s)α−1dt =

∫ 1

0

τα−1(1− τ)−αdτ

= β(α, 1− α)

= Γ(α)Γ(1− α),

and hence

∫ x

a

ϕ(s)dsΓ(α)Γ(1− α) = Γ(α)

∫ x

a

f(t)

(x− t)α
dt

∫ x

a

ϕ(s)ds =
1

Γ(1− α)

∫ x

a

f(t)

(x− t)α
dt.

After differentiation we have :

ϕ(x) =
1

Γ(1− α)

d

dx

∫ x

a

f(t)

(x− t)α
dt.
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If 0 < α < 1 and

φ(s) = (IαT−f)(s), s ∈ (0, T )

then by the argument above

f(u) = (Dα
T−φ)(u), u ∈ (0, T ). (4.1)

Hence Dα
T− can be viewed as an inverse of IαT− . For this reason, we will often denote

in the sequel the fractional derivative Dα
T− with α ∈ (0, 1) by I−αT− and also use the

notation I0
T−f = f.

The following proposition relates fractional Brownian motion and the fractional

integral and derivative operators on an interval [0, T ]. It will be used in this chapter to

construct classes of integrands for fBm on an interval [0, T ].

Proposition 4.2.1. [5] Let T > 0 and Bκ be a standard fBm with the parameter

κ ∈ (−1/2, 1/2). Then

{Bκ
t }t∈[0,T ]

∼= {σ1(κ)

∫ T

0

s−κ(IκT−u
κ1[0,t)(u))(s)dB

0(s)}t∈[0,T ],

where

σ1(κ)
2 =

Γ(κ)κ(2κ+ 1)

β(κ, 1− 2κ)
=

πκ(2κ+ 1)

Γ(1− 2κ) sin(πκ)
,

and β(p, q) is the Beta function.

Proof.

R(s, t) = E(Bκ
sB

κ
t ) =

1

2
{s2κ+1 + t2κ+1 − |s− t|2κ+1}.
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Then

R(s, t) = κ(2κ+ 1)

∫ ∞

0

∫ ∞

0

I[0, s)(u)I[0, t)(v)|u− v|2κ−1dudv.

= κ(2κ+ 1)

∫ s

0

∫ t

0

|u− v|2κ−1dudv

for s > t.

Let’s show that

|u− v|2κ−2 =
(uv)κ

β(κ, 1− 2κ)

∫ T

0

q−2κ(v − q)κ−1
+ (u− q)κ−1

+ dq

We will use a similar argument in [36]. Without loss of generality, assume u > v, then

we will show that

(u− v)2κ−2 =
(uv)κ

β(κ, 1− 2κ)

∫ v

0

q−2κ(v − q)κ−1(u− q)κ−1dq.

Let

z =
u− q

v − q
, then q =

zv − u

z − 1
and dz =

u− v

(v − q)2
dq.

So

=

∫ v

0

q−2κ(v − q)κ−1(u− q)κ−1dq

=

∫ ∞

u/v

(
zv − u

z − 1
)−2κ(

u− v

z − 1
)κ−1(

u− v

z − 1
)κ−1zκ−1 (v − q)2

u− v
dz

= (u− v)2κ−2

∫ ∞

u/v

(zv − u)−2κzκ−1dz
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Now, let

x =
u

vz
, then dx = − u

vz2
dz.

Since

vz =
u

x
, we have dz = − u

vx2
dx.

Hence

∫ v

0

q−2κ(v − q)κ−1(u− q)κ−1dq = (u− v)2κ−2

∫ 1

0

(
u

x
− u)−2κ(

u

vx
)κ−1 u

vx2
dx.

= (u− v)2κ−2

∫ 1

0

u−2κ(1− x)−2κ(
u

v
)κxκ−1dx.

=
(u− v)2κ−2

(uv)κ

∫ 1

0

(1− x)−2κxκ−1dx

=
(u− v)2κ−2

(uv)κ
β(κ, 1− 2κ).

Then

(uv)κ

β(κ, 1− 2κ)

∫ v

0

q−2κ(v − q)κ−1(u− q)κ−1dq =
(uv)κ

β(κ, 1− 2κ)

(u− v)2κ−2

(uv)κ
β(κ, 1− 2κ)

= (u− v)2κ−2.

Therefore we get the result.
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Let V = κ(2κ+ 1)/β(κ, 1− 2κ), then we have:

R(s, t) = κ(2κ+ 1)

∫ s

0

∫ t

0

|u− v|2κ−1dudv

= κ(2κ+ 1)

∫ s

0

∫ t

0

(uv)κ

β(κ, 1− 2κ)

∫ T

0

q−2κ(v − q)κ−1
+ (u− q)κ−1

+ dqdudv

= V

∫ T

0

q−2κ

∫ s

0

uκ(u− q)κ−1du

∫ t

0

vκ(v − q)κ−1dvdq

= V

∫ T

0

[(

∫ T

0

q−κuκI[0, s)(u)(u− q)κ−1
+ du)(

∫ T

0

q−κvκI[0, t)(v)(v − q)κ−1
+ dv)]dq

= VΓ(κ)2

∫ T

0

[q−κ(IκT−u
κI[0, s)(u))(q)][q

−κ(IκT−v
κI[0, t)(v))(q)]dq.

So they have the same covariance structure.

4.3. A Class of Integrands for Fractional Brownian Motion on [0,T]

Let {Bκ
t }t∈[0,T ] be a standard fBm with parameter κ ∈ (0, 1/2). Let also ξT denote

the set of all elementary functions on an interval [0, T ].

For an elementary function f ∈ ξT , define the integral with respect to fBm Bκ in a

natural way by

J(f) =

∫ T

0

f(u)dBκ(u) =
n∑
k=1

fk(B
κ
uk+1

−Bκ
uk

)

When κ ∈ (0, 1/2) and the region of integration R is [0, T ] with T > 0 defined

the class of integrants for fBm

Λκ
T = {f : [0, T ] 7→ R |

∫ T

0

[s−κ(IκT−u
κf(u))(s)]2ds <∞}
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are assumed to be inner product space with the inner product

(f, g)Λκ
T

=
πκ(2κ+ 1)

Γ(1− 2κ) sin(πκ)

∫ T

0

[s−2κ(IκT−u
κf(u))(s)(IκT−u

κg(u))(s)]ds

where

Γ(p), p > 0

is the gamma function. [5]. (See appendix)

It follows by the Proposition 4.2.1 that, for f ∈ ξT ,

J(f) =

∫ T

0

f(u)dBκ(u) =
n∑
k=1

fk(B
κ
uk+1

−Bκ
uk

)

∼=
n∑
k=1

fkσ1(κ)[

∫ T

0

s−κ(IκT−u
κI[0, uk+1)(u))(s)dB

0(s)

−
∫ T

0

s−κ(IκT−u
κI[0, uk)(u))(s)dB

0(s)]

=
n∑
k=1

fkσ1(κ)[

∫ T

0

s−κ[(IκT−u
κI[0, uk+1)(u))(s)− (IκT−u

κI[0, uk)(u))(s)]dB
0(s)]

=
1

Γ(α)

n∑
k=1

fkσ1(κ)

∫ T

0

[s−κ
∫ uk+1

uk

uκ(u− s)κ−1du]dB0(s)

=
1

Γ(α)
σ1(κ)

∫ T

0

s−κ[
n∑
k=1

fk

∫ uk+1

uk

uκ(u− s)κ−1du]dB0(s)

= σ1(κ)

∫ T

0

s−κ(IκT−u
κf(u))(s)dB0(s)

and hence for all f, g ∈ ξT ,

E[J(f)J(g)] = σ1(κ)
2

∫ T

0

s−2κ(IκT−u
κf(u))(s)(IκT−u

κg(u))(s)ds



46

Theorem 4.3.1. [5] For κ ∈ (0, 1/2), the class of functions Λκ
T is a linear space with

the inner product (f, g)Λκ
T
. Moreover, the set of elementary functions ξT is dense in the

space Λκ
T .

Proof. To show that the map (f, g)Λκ
T

defines an inner product, we have to show that

(f, g)Λκ
T

satisfies the following conditions:

(1) (f + g, h)Λκ
T

= (f, h)Λκ
T

+ (g, h)Λκ
T
f, g, h ∈ Λκ

T .

(2) (αf, g)Λκ
T

= α(f, g)Λκ
T
f, g ∈ Λκ

T , α ∈ R.

(3) (f, g)Λκ
T

= (g, f)Λκ
T
f, g ∈ Λκ

T .

(4) (f, f)Λκ
T
≥ 0, (f, f)Λκ

T
= 0 ⇔ f = 0 a.e.

The first three conditions are obvious since the integral operator is linear. We check

the least obvious condition (4): (f, f)Λκ
T
≥ 0 since

[(IκT−u
κf(u))(s)]2 ≥ 0, sin(πκ) ≥ 0

when κ ∈ (0, 1/2). If (f, f)Λκ
T

= 0 and κ ∈ (0, 1/2), then (IκT−u
κf(u))(s) = 0 a.e.

s ∈ [0, T ]. Since the homogeneous Abel integral equation (IκT−φ(u))(s) = 0 has only

the trivial solution φ(x) ≡ 0 a.e.[26], it follows that uκf(u) = 0 a.e. u ∈ [0, T ] and

hence that f(u) = 0 a.e. u ∈ [0, T ].

Let us show that the set of elementary functions ξT is dense in Λκ
T .Assume without

loss of generality that T > 1. Since any function φ ∈ L2[0, T ] can be approximated in

L2[0, T ] by the elementary functions, we may also approximate by functions

s−κ
n∑
k=1

bkI[ck, dk)(s) = s−κ
n∑
k=1

bk(I[0, dk)(s)− I[0, ck)(s))

with bk ∈ R and 0 < ck < dk < T, k = 1, ..., n. It is enough to show that there is a
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sequence of elementary functions fn ∈ ξT ⊂ Λκ
T such that

||I[0,1) − fn||2Λκ
T

=

∫ T

0

s−2κ|I[0,1)(s)− (IκT−u
κfn(u))(s)|2ds→ 0,

as n→∞. Let us define the functions

fn(u) =
1

Γ(1− κ)

n−2∑
l=2

f(l/n)I[ l
n
, l+1

n
), u ∈ [0, 1].

By using the inequality 2|f(u)||f(v)| ≤ |f(u)|2 + |f(v)|2 and symmetry below, we

get

∫ a

0

∫ a

0

|f(u)||f(v)||u− v|2κ−1dudv ≤
∫ a

0

∫ a

0

|f(u)|2|u− v|2κ−1dudv

≤ a2κ

κ

∫ a

0

|f(u)|2du

Hence

∫ T

0

s−2κ|I[0,1)(s)− (IκT−u
κfn(u))(s)|2ds ≤

∫ 1

0

s−2κ[(Iκ1−u
κ|f(u)− fn(u)|)(s)]2ds

≤ c(κ)||f − fn||2L2[0,1] → 0,

as n→∞.

Now, we will give the proof of Pipiras and Taqqu in [5] which shows that the

space Λκ
T is not a complete inner product space. They give a proof by first providing

an equivalent criteria for the completeness and then showing that it does not hold. We

begin with a number of lemmas which will be used in the sequel.

Lemma 4.3.2. [5] Let 0 ≤ c < b ≤ T and κ ∈ (0, 1/2). Then there is a function fc,b
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such that

s−κ(IκT−u
κfc,b(u))(s) = 1[c,b)(s), 0 ≤ s ≤ T.

Proof. Let us define a function

fc,b(u) = u−κ(I−κT−t
κI[c,b)(t))(u) = u−κ(Dκ

T−t
κI[c,b)(t))(u).

Since I−κT− is an inverse operator of IκT−

s−κ(IκT−u
κfc,b(u))(s) = s−κ(IκT−u

κu−κ(I−κT−t
κI[c,b)(t))(u))(s)

= s−κ(I0
T−t

κI[c,b)(t))(s)

= s−κsκI[c,b)(s)

= I[c,b)(s).

We need to check whether fc,b ∈ Λκ
T .

∫ T

0

[s−κ(IκT−u
κfc,b(u))(s)]

2ds =

∫ T

0

[s−κ(IκT−u
κu−κ(I−κT−t

κI[c,b)(t))(u))(s)]
2ds

=

∫ T

0

[s−κ(IκT−(I−κT−t
κI[c,b)(t))(u))(s)]

2ds

=

∫ T

0

[s−κsκI[c,b)(s)]
2ds <∞.

Lemma 4.3.3. [5] Let κ ∈ (0, 1/2). The inner product space Λκ
T is complete if and

only if, for every φ ∈ L2[0, T ], there is a function fφ ∈ Λκ
T such that

s−κ(IκT−u
κfφ(u))(s) = φ(s) a.e. (4.2)

Proof. Suppose that the inner product space Λκ
T is complete and let φ ∈ L2[0, T ]. There

is a sequence of elementary functions φn such that φn → φ in L2[0, T ]. By the above
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lemma, we can express the elementary functions φn as φn = s−κ(IκT−u
κfn(u))(s), for

some fn ∈ Λκ
T . Then, let hnm(u) = fn(u)− fm(u),

||fn − fm||2Λκ
T

= σ1(κ)

∫ T

0

[s−2κ(IκT−u
κhnm(u)))(s)(IκT−u

κhnm(u)))(s)]ds

= σ1(κ)

∫ T

0

[s−κ(IκT−u
κhnm(u))(s)][s−κ(IκT−u

κhnm(u))(s)]ds

= σ1(κ)

∫ T

0

(φn − φm)2ds

→ 0

as m,n → ∞ since {φn}n≥1 is Cauchy in L2[0, T ]. Thus {fn}n≥1 is Cauchy in Λκ
T .

Then, the completeness of Λκ
T implies that there is a function f ∈ Λκ

T such that

φn = s−κ(IκT−u
κfn(u))(s) → s−κ(IκT−u

κf(u))(s)

in L2[0, T ]. Defining φ(s) as the limit, then the relation

s−κ(IκT−u
κfφ(u))(s) = φ(s)

holds for fφ = f.

Conversely, suppose that (4.2) holds and let {fn}n≥1 be a Cauchy sequence in

Λκ
T . Then the sequence φn = s−κ(IκT−u

κfn(u))(s) is Cauchy in L2[0, T ]. Since L2[0, T ]

is complete, there is a φ ∈ L2[0, T ] such that φn → φ in L2[0, T ]. By the assumption,

there is fφ ∈ Λκ
T such that (4.2) holds. Since φn → φ in L2[0, T ] implies fn → fφ in

Λκ
T , the space Λκ

T is complete.

Lemma 4.3.4. [5] Let κ ∈ (0, 1/2). There are continuous functions ψ on [0, T ] such

that the equation

(IκT−g)(s) = ψ(s) a.e. on [0, T ] (4.3)
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has no solution in g ∈ L1[0, T ].

Proof. (Sketch) The proof is by contradiction. Suppose that the equation (4.3) has a

solution gψ ∈ L1[0, T ] for any ψ ∈ L2[0, T ]. By (4.1)

gψ(u) = − 1

Γ(1− α)

d

du

∫ T

0

ψ(s)(s− u)−κ+ ds, u ∈ (0, T ).

Since gψ(u) is expressed as a derivative, the function

Uψ(u) =

∫ T

0

ψ(s)(s− u)−κ+ ds

is differentiable almost everywhere on [0, T ]. However, as shown in [35], there are

functions ψ ∈ L2[0, T ] such that Uψ is not differentiable on a set of positive Lebesque

measure. So we obtain the result.

Theorem 4.3.5. [5] Let κ ∈ (0, 1/2). The inner product space Λκ
T is not complete.

Proof. By the lemma, there is a continuous function function ψ such that the equation

(IκT−g)(s) = ψ(s) has no solution in g. Then the function φ(s) = s−κψ(s) is in L2[0, T ],

since κ < 1/2, and the the equation

s−κ(IκT−u
κfφ(u))(s) = φ(s)

has no solution in f. Thus, by the lemma 4.3.3., the inner product space Λκ
T is not

complete.
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5. CONCLUSIONS

In this thesis, we have studied the general idea of the integration of the deter-

ministic functions with respect to the fractional Brownian motion. This idea is also

used for general Gaussian processes.[37] As mentioned in [5], to define such integrals,

one generally starts with an inner product space (C, (·, ·)C) of functions on a region

of integration, R. Then one defines a map between spR(Bκ), the closure of all linear

combinations of the increments of fBm in L2(Ω), and the specified inner product space

of functions on a region of integration such that 1[0,t) 7→ Bκ
t under this map. If the

map 1[0,t) 7→ Bκ
t extends to the isometry between these two spaces, then the resulting

isometry map is called the integral in the L2(Ω)-sense with respect to fBm of the func-

tions from our inner product space. The extension step is usually assumed correct but

not proved in the studies on this subject. For example, when κ ∈ (0, 1/2) and region of

integration R is [0, T ] with T > 0, Carmona et al.[38] and Kleptsyna et al.[27], defined

the class of integrands for fBm which we studied on our thesis

Λκ
T = {f : [0, T ] 7→ R |

∫ T

0

[s−κ(IκT−u
κf(u))(s)]2ds <∞}

with the inner product

(f, g)Λκ
T

=
πκ(2κ+ 1)

Γ(1− 2κ) sin(πκ)

∫ T

0

[s−2κ(IκT−u
κf(u))(s)(IκT−u

κg(u))(s)]ds.

Another class of integrands, considered by Duncan et al. [12], Kleptsyna et al.

[27] and Norros et al. [39], is given by

|Λ|κT = {f : [0, T ] 7→ R |
∫ T

0

∫ T

0

|f(u)||f(v)||u− v|2κ−1dudv <∞}
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with the inner product

(f, g)|Λ|κT = κ(2κ− 1)

∫ T

0

∫ T

0

f(u)g(v)|u− v|2κ−1dudv.

All the authors claimed that both Λκ
T and |Λ|κT are isometric to the Gaussian space

spR(Bκ). However, Pipiras and Taqqu showed that this assumption is not correct.[5].

They argued that since spR(Bκ) is a complete inner product space, both Λκ
T and |Λ|κT

have necessarily to be complete inner product spaces as well. On the other hand, they

showed that, when κ ∈ (0, 1/2), neither the space of functions Λκ
T nor the space of

functions |Λ|κT is a complete inner product spaces. Thus, these two spaces cannot be

isometric to spR(Bκ) itself. However this result does not affect the integration idea,

because they are isometric only to proper linear subspaces of spR(Bκ). Consequently,

there are random elements in spR(Bκ) which can not be represented by functions f

belonging to either Λκ
T or |Λ|κT . [5].

An application of integrals, where completeness of the function spaces is relevant,

involves prediction problems. Consider, for example, the problem of prediction the

value of fBm at some future time t > 0 given its past from time 0 to a (with a < t), or

mathematically, to compute the conditional expectation X = E[Bκ
t |Bκ

s , s ∈ [0, a]]. It

is known that X ∈ spR(Bκ). One would expect that X =
∫ T

0
fdBκ. But, when κ > 0,

as we mentioned above, there may be no f ∈ Λκ
T or |Λ|κT such that X =

∫ T

0
fdBκ. [5].

Is there a class of integrands for fBm with κ ∈ (0, 1/2) on an interval [0, T ]

which is a complete inner product space? However, we do not know the answer to this

question.

It is natural to ask whether there is a class of integrands for fBm with κ ∈

(−1/2, 0) on an interval [0, T ] which is a complete inner product space. It turns out

that such a class of integrands exists. It is an inner product space

Λκ
T = {f : [0, T ] 7→ R | ∃φf ∈ L2[0, T ] s.t. f(u) = u−κ(I−κT−s

κφf (s))(u)}
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with the inner product

(f, g)Λκ
T

=
πκ(2κ+ 1

Γ(1− 2κ) sin(πκ)

∫ T

0

[s−2κ(IκT−u
κf(u))(s)(IκT−u

κg(u))(s)]ds.

We want to emphasize that the inner product space Λκ
T is complete when κ ∈

(−1/2, 0) and incomplete when κ ∈ (0, 1/2). This difference in incompleteness is ex-

plained by Pipiras and Taqqu in their article [5] as the consequence of the following

two facts:

(i) If κ ∈ (−1/2, 0), then the equation

s−κ(IκT−u
κf(u))(s) = φ(s)

has a solution f(u) = u−κ(I−κT−s
κφ(s))(u) for every φ ∈ L2[0, T ],

(ii) If κ ∈ (0, 1/2), there are functions φ ∈ L2[0, T ] for which the equation

s−κ(IκT−u
κf(u))(s) = φ(s)

is not solvable. The idea here is that, since I−κT− is the integral operator, the left hand

side of (5.1) most satisfy some smoothness conditions whereas such conditions need

not hold for a general φ ∈ L2[0, T ].
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APPENDIX A: GAMMA AND BETA FUNCTIONS

A.1. Gamma Function

The gamma function denoted by Γ(n) is defined by

Γ(n) =

∫ ∞

0

e−xxn−1dx

which is convergent for n > 0.

A recurrence formula for the gamma function is

Γ(n+ 1) = nΓ(n)

where Γ(1) = 1. Therefore Γ(n) can be determined for all n > 0 when the values for

1 ≤ n < 2 (or any other interval of unit length) are known. In particular, if n is a

positive integer, then

Γ(n+ 1) = n!.

We also have another important formula which involves the Gamma function:

Γ(x)Γ(1− x) =
π

sin(πx)
0 < x < 1.

In particular, if x = 1
2
, Γ(1/2) =

√
π.

For the proof of the above formulas see [40].
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A.2. Beta Function

The beta function denoted by β(m,n) is defined by

β(m,n) =

∫ 1

0

xm−1(1− x)n−1dx

which is convergent for m > 0, n > 0.

The Beta function is connected with the Gamma function according to the rela-

tion

β(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
,m, n > 0.

Many integrals can be evaluated in terms of Beta and Gamma functions. Two useful

results are

∫ π/2

0

sin2m−1 θ cos2n−1 θdθ =
1

2
β(m,n) =

Γ(m)Γ(n)

2Γ(m+ n)

valid for m > 0 and n > 0 and

∫ ∞

0

xp−1

1 + x
dx = Γ(p)Γ(1− p) =

π

sin(pπ)
0 < p < 1.

For the proof of the above formulas [40].
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