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ABSTRACT

INTEGRATION OF THE DETERMINISTIC FUNCTIONS
WITH RESPECT TO FRACTIONAL BROWNIAN
MOTION

In this thesis, definition and the characteristic properties of fractional Brownian
motion are presented and the general idea for the integration of deterministic functions

is discussed with a specific class of integrands.

First, some notions and facts from probability theory are introduced. The defi-
nition and basic properties of Gaussian random variables and processes are discussed
and their relation with the self similar, stationary processes is given. Moreover, co-
variance function of the self similar Gaussian processes with stationary increments is

characterized as in Embrechts and Maejima’s book.

Next, we give two representations of fractional Brownian motion. One is defined
as a stochastic integral with respect to Brownian motion as in Embrechts and Maejima’s
book and the other with the fractional integral as Pipiras and Taqqu do. Then we
consider a class of deterministic integrands for the case H > 1/2 which is given by

Kleptsyna, LeBreton and Roubaud, and we discuss its completeness.

Finally, an example of a complete class of integrands for the case H < 1/2 is

introduced as Pipiras and Taqqu do.



OZET

DETERMINISTIK FONKSIYONLARIN KESIRLI BROWN
HAREKETINE GORE INTEGRALLERINI ALMA

Bu tezde kesirli Brown hareketinin tanimi ve karakteristik ozellikleri sunulduktan
sonra deterministik fonksiyonlarin kesirli Brown hareketine gore integrallerini almada

uygulanan bir yontem tartisildi.

Oncelikle, olasilik teorisinden bazi tanim ve teoremler verildi. Normal dagilima
sahip rastgele degiskenler ve stokastik siireclerin tanimi ve temel oOzellikleri verilerek
kendine benzer ve duragan stireclerle iligkileri belirtildi. Ayrica, kendine benzer duragan

normal dagiliml stireclerin kovaryans fonksiyonu karakterize edildi.

Daha sonra, kesirli Brown hareketinin iki temsil edilisi verildi. Biri Embrechts ve
Maejima’nin kitabinda verildigi gibi Brown hareketine gore stokastik integralle olan bir
temsildir, digeri ise Pipiras ve Taqqu tarafindan verilen kesirli integrale gore olandir.
Bundan sonra, H > 1/2 i¢in Kleptyna, LeBreton ve Roubaud tarafindan verilen deter-

ministik integrand kiimesi ve kiimenin tamlik problemi incelendi.

Son olarak, H < 1/2 i¢in tam olan bir integrand kiimesinin varhigi Pipiras ve

Taqqu’ nun ¢alismasinda ki gibi gosterildi.
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1. INTRODUCTION

The fractional Brownian motion is a generalization of the well-known process
Brownian motion. The fractional Brownian motion was originally introduced by Kol-
mogorov[1], in 1940 when he was interested in modelling turbulence. Kolmogorov
did not used the name ‘fractional Brownian motion’. He called the process ‘Wiener
spiral’. Kolmogorov studied the fractional Brownian motion within a Hilbert space
framework and deduce its covariance function from a scaling property that we now
call self-similarity.[2]. This process firstly was called ‘fractional Brownian motion’ by
Mandelbrot and Van Ness.[3]. They defined the fractional Brownian motion by using
a fractional integral of Weyl type.

Since any Gaussian process is characterized by its covariance function, we can
easily deduce its basic properties such as being self similar, Markovian, etc., from this
function. The covariance function of fractional Brownian motion includes a parameter
H. The notion for the index H and current parametrization with range (0,1) are due
to Mandelbrot and Van Ness also[3]. The parameter H is called the Hurst index after
an English hydrologist who studied the memory of Nile River maxima in connection

of designing water reservoirs.|2].

The fBm model is widely applied in telecommunications and is also of interest
in finance via the stochastic differential equations driven by fractional Brownian mo-
tion.[4]. Integration with respect to fBm has many potential applications.[5]. However,
there are two important difficulties on the integration theory which differs from the
classical stochastic integration theory. On one hand, the paths of fBm are of unbounded
variation and hence the usual Lebesque-Stieljets integration cannot be applied. One
cannot use the usual Itd’s stochastic calculus because fBm is not a semimartingale.
The most important constructions, for general H, to be found in literature either use
a specific class of integrands, use path wise integration or base the definition on Malli-
avin calculus[6]. In each of these approaches, a version of the Itd formula is deduced

which allows for a calculus of stochastic differentials[7]. As far as we know, no general



consensus on the best approach exists.

Brownian motion has been well established in finance. Indeed, introduction of the
Brownian motion based Black-Scholes formulation of vanilla options by Black, Scholes
and Merton marked the advent of mathematical finance. Nevertheless, classical math-
ematical models of financial assets are far from perfect. Two apparent problem exist in
the Black-Scholes formulation, namely financial processes are not wholly Gaussian and
Markovian in distribution.[8]. After the 1987 market crash, industry and researchers
began to take note of the heavy-tail distribution of financial assets and a series of

models has been developed using more general and heavy-tailed processes.[9].

The second problem leads to long-range dependence. For a couple of decades,
the general consensus is to assume that all information is contained within current
asset price and hence it is reasonable to assume a Markovian process. However, tech-
nical traders have consistently beaten the market using long-term memory strategies.
This motivated a series of academic studies further purporting the existence of a non-
Markovian market.[10]. To compensate, stochastic volatility models have been devel-
oped that can produce quasi long-range dependence . However, these models are highly
intractable both analytically and numerically as they lead to high dimensional PDE’s
with variable coefficients. Fractional Brownian motion deals with the second problem
while still assuming a Gaussian process. Nevertheless, it offers the promise of giving
simple, tractable solutions to pricing financial options and presents a natural way of

modeling long-range dependence.

The numerous properties of fBm easily illuminate both benefits and shortcomings
of using fBm in modeling financial instruments. H-ss, where H can be between 0 and 1,
makes fBm more flexible as a modeling tool than standard Brownian motion that only
allows 1/2-ss. The existence of long-range dependence and positive correlation of future
and past increments makes fBm especially an attractive pricing tool. Statistical anal-
ysis has indicated that most markets are monofractal have Hurst parameter between
0.5 and 1.[11]. Thus, for financial purposes, Hurst parameters are usually assumed

in (1/2,1). However, if H # 1/2, we can not use semimartingale and non-Markovian



properties to construct an integration theory. This makes the task infinitely harder

since few results from classical stochastic calculus can be directly used.

A myriad of methods have been developed for integrating fBm. Two systems
bear the most important in finance: The fractional pathwise integral and the fractional
Wick-Ito integral. In the second integration method Wick product is used and H is
assumed between 1/2 and 1.[12].

In relations to Brownian motion calculus, fractional pathwise integral mirrors a
Stratonovich integral[13], whereas fractional Wick -Ito integral emulates an Ito type
calculus. Fractional pathwise integral was developed by Lin[14] during 1995 and found
to produce an arbitrage market by Rogers[15] in 1997 due to misbehavior of Gaussian
kernel near 0. Apparently, pricing in an arbitrageable system is undesirable. And
the use of fBm has been deterred till only recently in 2000 when Duncan and Hu[12]
and Oksendal[16] utilized the Wick-Ito integral. Wick introduced the Wick product in
1950.[17]. Hida and Ikeda introduced Wick product in analyzing stochastic processes
in 1965.[18]. This new type of integration suprisingly produced a no-arbitrage market.
Cheridito also constructed arbitrage strategies for a financial market that consist of a
money market account and a stock whose discounted price follows a fractional Brownian
motion with drift or an exponential fractional Brownian motion with drift. Then he
showed how arbitrage can be exluded from these models by restricting the class of

trading strategies.[19].

The history of the stochastic integration and the modelling of a risky asset prices
both begin with Brownian motion, so let us briefly remind them. The earliest attempt
to model Brownian motion mathematically in finance was made by Bachelier who cre-
ated a model while deriving the dynamic behavior of the Paris stock market in 1990[6].
This date is considered as the beginning of mathematical finance. The pioneering
analysis of the stock and option markets contains several ideas of enormous value in
both finance and probability. In particular, the theory of Brownian motion, one of
the most important mathematical discoveries of the twentieth century, was initiated

and used for mathematical modeling of price movements and evaluation of contingent



claims in financial markets. Following from the Jarrow and Protter’s article[20] “The
thesis of Louis Bachelier, together with his subsequent works, deeply influenced the
whole development of stochastic calculus and mathematical finance. The first part of
the Bachelier’s thesis contains a detailed description of products available at that time
in French stock market, such as forward contract and options. After the financial pre-
liminaries, Bachelier begins the mathematical modeling of stock price movements and
formulates the principle that “the expectation of the speculator is zero.” Obuviously, he
understands here by expectation the conditional expectation given the past information.
In other words, he implicitly accepts as an axiom that the market evaluates assets using
a martingale measure. The further hypothesis is that the price evolves as a continuous
Markov process, homogeneous in time and space. Ezploiting the ideas of Central Limait
Theorem, and realizing that market noise should be without memory, he reasoned that
increments of stock prices should be independent and normally distributed. He com-
bined his reasoning with Markov property and semigroups, and connected Brownian
motion with heat equation, using that the Gaussian kernel is the fundamental solution
of the heat equation. The thesis can be viewed as the origin of mathematical finance
and of several important branches of stochastic calculus such as the theory of Brownian
motion, Markov processes, diffusion processes, and even weak convergence in in func-
tional space. Of course, the reasoning was not rigorous but it was, on the intuitive level,
basically correct. This is really astonishing, because at the beginning of the century the
mathematical foundations of probability did not exist. A. Markov started his studies
on what are now called Markov chains only in 1906, and the concept of conditional

expectations with respect to an arbitrary random varitable or o-algebra was developed

only in 1930s.”

In 1913 Daniell’s approach to measure theory appeared, and it was these ideas,
combined with Fourier series, that N. Wiener used in 1923 to construct Brownian
motion.[21]. Then Wiener and others others proved many properties of the paths of
the Brownian motion. Two key properties relating to stochastic integration are that
(1) the paths of Brownian motion have a non zero finite quadratic variation, such that
on an interval (s,t), the quadratic variation is (¢ — s).

(2) the paths of Brownian motion have infinite variation on compact intervals.[20].



The next step in the ground work for stochastic integration lay with A. N. Kol-
mogorov. The beginnings of the theory of stochastic integration, from the non-finance
perspective were motivated by the theory of Markov processes in which Kolmogorov
played a fundamental role. Indeed, in 1931 two years before his famous book es-
tablishing a rigorous mathematical basis for probability theory using measure theory,
Kolmogorov refers to and briefly explains Bachelier’s construction of Brownian mo-

tion.[22].

As for the contributions of Kiyosi It0, when he studied to model Markov processes,

It6 constructed a stochastic differential equation of the form[23]:
dXt = O'(Xt)th + [L(Xt)dt,

where W, represents a standard Wiener process. He had two problems: one was to make
sense of the stochastic differential o(X;)dW; and the other was to connect Kolmogorov’s
work on Markov processes with his interpretation. His efforts resulted in his paper|[24]

in 1935, where he stated an proved what is known as as Itd’s formula:

FX0) = FXAX, + 37" (X[, X,

Since Brownian motion has paths of unbounded variation almost surely on any
finite time interval, Itd6 knew that it was not possible to integrate all continuous stochas-
tic processes. One of his key insights was to to limit his space of integrands to those
that were, as he called it, non-anticipating. That is, he only allows integrands that are
adapted to the underlying filtration of o-algebras generated by the Brownian motion.
This allows him to make use of the independence of the increments of Brownian motion

to establish the L? isometry

E( /O t H,dW,)*] = E| /0 t HZds]

Then J. L. Doob extended Ito’s stochastic integral for Brownain motion to martin-



gales.[25]. One of the aims the ongoing research on fBm is to obtain the theory of
integration with respect to fBm that has similar power to the standard Brownian mo-

tion.

In this thesis, we start with some basic definitions and theorems from probability
theory. Since fractional Brownian motion is also a Gaussian process, we discuss the
basic properties of Gaussian processes. Following[7], we characterize the covariance
function of a H-self similar(H-ss) Gaussian process with stationary increments. We
call these special class of Gaussian processes as the ‘fractional Brownian motion’ as
in [7]. After that we introduce the basic properties of fBm such as being H-ss with
stationary increments and being non-Markovian. In the next chapter, we introduce
the fractional integrals and derivatives of Riemann-Lioville type and give the relation
between these two operators as in [26]. Then we relate them with the representation of
fBm as Pipiras and Taqqu do in [5]. After that we consider the class of deterministic
functions with an inner product which is defined in [27] and stochastic integral definition
for this class. At the end of the thesis, we give the Pipiras and Taqqu’s proof[5] of the
incompleteness of this class of functions. We also give a complete class of functions for

the case H < 1/2 as in [5].



2. PRELIMINARIES

2.1. Basic Definitions and Notations

To fix our notation, we begin with some elementary notions from measure theory.
Let €2 be an abstract set. A o-algebra or o-field in € is defined as a nonempty collection
F of subsets of 2 such that JF is closed under the countable unions and intersections
as well as complementation. A measurable space is a pair (2,F), where ) is a set
and is F a o-field in €. Given two measurable spaces (£21,F) and (€22, 7T), a mapping
£:Qy — Qs is said to be F/T-measurable or simply measurable if E1B € F for every
BeT.

A measure on (2, F) is defined as a countably additive set function p: F — R,

with p(0) = 0. The triple (2, F, ) is called a measure space.

Throughout the thesis, (2, F, P) will denote a given probability space that means
(Q, F) is a measurable space and P is a probability measure, has total mass 1, on (€2, F).
A measurable mapping & of € into some measurable space (5, 8) is called a random
element in S. A random element is called a random variable when S = R, a random
vector when S = R", a random sequence when S = R*. A metric or topological space
S will be endowed with its Borel o-field B(S), generated by its open sets, unless a

o-field is otherwise specified .

If B €S§, then 1B € F, we may consider the associated probabilities

P 'B)=PotY(B), BES.

The set function P o £~! is again a probability measure, defined on the range space S

and called the (probability) distribution of . For any random vector £ = (&, ..., &) in



R™, we define the associated joint distribution function F by

F(xy,...,z,) =P m{&k < ap}, T1,., 1, € R

k<n

Fix any measurable function f > 0 on some measure space (£2, F, 1), and define

a set function f - on F by

(f - 1)(B) = /deu, Bed.

where the last relation defines the integral over a set B. Then v = f -y is again a

measure on (2, F). Here f is referred to as the u-density of v.

Definition 2.1.1. The characteristic function of a random vector X : 0 — R" is the

function ¢x : R™ — C(where C denotes the complex numbers) defined by

Ox (Ury ooy tn) = Elexp(i(us X1+...+u, Xp))] = / exp(i < u,x >)PoX 'dridw,...dz,

n

where < u,r >= u1x1 + - - + UpXp. In other words, ¢x is the Fourier transform of X.

The characteristic function has the following important property :

Theorem 2.1.2. [28] The characteristic function of X determines the distribution of

X uniquely.

Definition 2.1.3. A stochastic process X = { X }iet is a collection of random variables
defined on (), called the sample space, and taking values in another measurable space
(S,T), here S is called the state space. Throughout this thesis, state space will be the
R equipped with the Borel o-algebra and T will denote the interval [0,T] for some fixed
T > 0.



For each w € 2, the function
t— Xy(w),teT,
is called a path of the process X associated with w.
The process { X, her is left/right continuous if for each fixed w € Q, the function,
t— Xt (C&)), teT
is left/right continuous on T.

For any random elements ¢ and ¢ in a common measurable space, the equality
¢ = ( means that ¢ and ¢ have the same distribution, or Po ¢! = Po (7' If X is
a random process on some index set T, the associated finite-dimensional distributions
are given by

Po (X4, s Xe) ', Vi1, nt, € T,V n €N

The following result shows that the distribution of a process is determined by the

set of its finite-dimensional distributions.

Proposition 2.1.4. [29] Let X and Y be two processes with the same index set T.
Then X =Y iff

(X s X0 ) 2 (Y, Yy ), Vb, et €T, Y eN.

The expected value, expectation, or mean of a random variable ¢ is defined as

E[€] :/QfdP:/RxPof_l(x)dx
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whenever

/Q|§|dP < .

Given a measure space (2,F, P) and some p > 0, we write LP = LP(Q,F, ) for the

class of all measurable functions ¢ : 2 — R with

el = ( / EPAPY < oo

The covariance of two random variables &, ¢ € L? is given by

cov(§,¢) = E[(§ — El¢])(¢ — E[C])] = E[§C] — EE]E[C]-

We may further define the variance of a random variable £ € L? by

var(g] = cov(§,§) = E[&°] — El¢]*.
Two random variables are said to be uncorrelated if cov(&, () = 0.

For a given collection of random variables & € L? t € T, we note that the
associated covariance function R(s,t) = cov(&,&s), s,t € T, is nonnegative definite,

in the sense that

> R(ti, tj)Aid; > 0

/[:7j

forany n € N, V t1,....,t, € T, V \;, ..., A\, € R. This is clear if we write

Z R(tz, t])/\z)\j = Z COU(gti, gtj))\i/\j = UCLT[Z 5151)‘1] Z 0

1,J
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The last inequality follows from the Jensen’s inequality. Recall that a function

f:R™ — R is said to be convex if

flpr+ (1 —=p)y) <pf(x) + (1 —-p)fly), v,y €R", p€[0,1].

Lemma 2.1.5. [29] (Jensen)Let & be an integrable random vector in R™, and fix any

convex function f : R™ — R. Then

E[f(§)] = f(E[E]).

Therefore, by the above lemma, for any random variable &, var[{] > 0; since

f(x) = 2? is a convex function.

A filtration F = {F;}er is defined as a nondecreasing family of o-algebras
F;, t € T. One says that a process {X;}ier is adapted to the filtration F if X is F;
-measurable for every ¢ € T. The smallest filtration with this property is the induced

or generated filtration given by &, = 0(X;0 < s <t), s, t € T.

Given an arbitrary filtration F = {JF, },er, we may define a new filtration FT by

F =Nyst Fust > 0, and we say that F is right continuous if F* =F

By a random time we shall mean a random element in T = T U supT. Such a

time is said to be F- optional or an F- stopping time if {1 <t} € F, for every t € T.

Suppose & € L' and let § C F be a sub-o-field. Then there exists a random

variable E[£|9], called the conditional expectation of £ with respect to G, such that

(1) E[£|G] is G — measurable and integrable.
(i) Forall G €9, we have/ €dpP = / E[¢|G)dP.
G a

To motivate the introduction of martingales, we may fix a random variable £ € L' and
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a filtration F on the index set T, and put

M, = E[¢)F], teT.

The process M is clearly integrable (for each t) and adapted, and chain rule for condi-

tional expectations we note that

M, = E[M|F] a.s., s<t, s,teT.

Any integrable and adapted process M satisfying

M, = E[M|F] a.s., s <t.

is called a martingale with respect to F.

For a right-continuous filtration {F,;}er, a process { M, }er is said to be a local
martingale if it is adapted to filtration {JF,; };er and such that the stopped and shifted

processes M™ — M, are martingales for suitable optional times 7, T co.

Definition 2.1.6. [7] A stochastic process {Xi}ier is Holder continuous of order v €
(0,1) if

PlweQ: sup [Xo(w) = X,(w)]

0<t—s<h(w) |t - S|’y

<5 =1

where h is an almost surely positive random variable and 6 > 0 is an appropriate

constant.

Lemma 2.1.7. [13] (A general version of Kolmogorov’s criterion): If a stochastic

process { X hier satisfies

B[|X, — X,|°] < C|t — s|'T*, W, s,
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for some § > 0,e > 0 and C > 0,then { X, }ier has a modification whose sample paths

of are Holder continuous of order vy € [0,€/J).

The Markov property of a process states that if we know the present state of the
process, then the future behavior of the process is independent of its past.The process
{X¢}ier has the Markov property if the conditional distribution of X, given X; = z,
does not depend on the past values(but it may depend on the present value x).The

process "does not remember” how it got to the present state x.

Definition 2.1.8. {X;}er is a Markov process if for any t and s > 0, the conditional
distribution of X1 s given 3 is the same as the conditional distribution of X;ys given

Xy, that s,

P(Xers S y|F) = P(Xpws < ylXy), acs.

Proposition 2.1.9. [29] Let {X;}ier be a Gaussian process, and define R(s,t) =
cov(Xs, Xy). Then {X; her is Markov iff

where 0/0 = 0.

Definition 2.1.10. A process {X;}ier is said to be a continuous semimartingale if it
can be written as a sum X; = M, + A; for t € T, where {M,},cr is a continuous local

martingale and { A; her s a continuous, adapted process of locally finite variation with

AOIO.

2.2. Brownian Motion

The methodology used here are related to chapter 4 of [30].
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Definition 2.2.1. A Brownian motion which is also called a Weiner process is a
continuous process W = {W;,;t > 0} defined on a probability space (0, F, P) with the
properties that Wy = 0 a.s., and for 0 < s < t, the increment Wy — Wy is independent

of Wy and is normally distributed with mean zero and variance t — s.

Now we state some some basic properties of Brownian motion:

(i) W is a zero-mean Gaussian process.

Its covariance function Cov(Wy, Wy) = s, for s < ¢.[13].
(ii) W has independent increments, i.e.
Wiy Wiy, =Wy, o Wy, = W,
are independent for all 0 < t; < to... < ;. [13].

(iii) Since E[W}] = 3t* and E[|W; — W,|*] = 3|t — s|?, It has a continuous version
by the Lemma 2.1.7.[13].

(iv) Almost every path of W = {W,,t > 0} is nowhere differentiable.[13].
(v) Almost every path has infinite total variation on [0, 7].[13].

Stochastic integration with respect to Brownian motion can be considered as an
extension of Stieltjes integration. In this section, the stochastic integrals of the form
b . b . .
[, f(t,w)dW (t,w) or in a short form [ f(t)dW; will be defined for an appropriate
class of integrands. First, the integral is defined for simple integrands and then it is

extended to more general functions by limiting process.

Definition 2.2.2. A real valued function f on [a,b] x Q is said to be in the class
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v =v(a,b) if it satisfies:

(i) [ is nonanticipating, that is, f is Bla,b] x F — measurable
and adapted to {F;},

b
(ii) f(t) € L*(Q,F,P) and / E[f(®)|?]dt < oo.

Definition 2.2.3. A function f € v is called elementary if there exist a partition
a=to<t1 < - - <thb1<t,=0>

with associated random variables fo, fi1, ..., fn such that

8 = 8(a,b) will denote the space of these elementary functions. Then the integral of

f € 8 is a random variable defined by

[ 560w = Y AW .0 — W)l

=0

Lemma 2.2.4. [30] If f and g are elementary functions, then E[fff(t)th] =0 and

b b b
ﬂ/ﬂWM/ﬂWWb/Ewmwﬁ

Corollary 2.2.5. [30] If f is bounded and elementary, then

/ftdetw /thwdt

In [30], it is shown that the set v is a closed and dense subspace of the Hilbert
space L?([a,b] x Q).



16

Therefore if f € v, then there exist elementary functions f,, € v such that
/|fn (£)2dt] — 0, n — 50.[30].
Then define
b b
— [ fwpimiio) = lm [ )i

in L%-sense.[30]. This limit exists since { fab fo(t,w)dWy(w)} forms a Cauchy sequence
in L2.[30].

Corollary 2.2.6. [30](The Ité Isometry)

/ftdet /f (t,w)dl]

for all f € v(a,b).
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3. GAUSSIAN PROCESSES AND FRACTIONAL
BROWNIAN MOTION

3.1. Definition and the Characteristic Properties of Fractional Brownian

Motion

Definition 3.1.1. Let (2, F, P) be a given probability space. A random variable
X : Q — R is Gaussian or normal if the distribution of X has a density of the form
1 (x —m)?

px(z) = . 27T.exp(— 52

where o > 0 and m are constants. In other words,

PX €G] = /pr(a:)dx,

for all Borel sets G C R.

If this is the case, then
E[X] :/XdP:/pr(x)dx:m,
Q R
and
Var[X] = E[(X —m)?] = /(x —m)?px(v)dr = 0%
R

Hence the probability distribution of this random variable X is completely determined

by its mean value m and its variance o2.

A random vector X : Q — R" is called (multi) Gaussian if the distribution of X
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has a density of the form

A 1
px(Ty, - ) = (27T>n/2-eXP(—§- ;(l‘z —m;)aii(z; —my))
where m = (mq, -+ ,m,) € R" and C™' = A = [a;;] € R™" is a positive definite
matrix.
If this is the case then
E[X]=m
and
ATl =C = ey

is the covariance matrix of X.
The covariance matriz of X is the n x n matrix C' = [¢;;], where
cij = BI(Xj —my)(Xi —m)]
and
m; = E[X;].

It is clear that C'is symmetric. Moreover, it is non-negative definite, i.e.

zn: Cﬁ)\i)\j Z 0

,j=1
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forall \; e R,o=1,--- ,n, since

n n

> eididi = ED _(X; — E[X;)A)* > 0.

ij=1 i=1
The following lemma shows that the converse is also true.

Lemma 3.1.2. [31] A necessary and sufficient condition that an nxn matriz C is the
covariance matriz of a vector X = (Xq,---,X,) is that the matriz is symmetric and
non-negative definite, or, equivalently that there is a an nxk matriz A, (1 < k < n)

such that
C =AAT

where T denotes the transpose.

Proof. Let C be a symmetric and non-negative definite matrix. We know from the
matrix theory that corresponding to every symmetric, non-negative definite matrix C'

there is an orthogonal matrix ©(i.e., ©OT = I) such that

dy . 0
0 . dy

OTCO =D where D =

is a diagonal matrix with nonnegative elements d;, i =1, ..., n.

It follows that

C =0DeT = (eB)(BTe™),

where B is the diagonal matrix with elements b; = ++/d;, i = 1, ..., n. Consequently, if
we put A = ©B we have the required representation C' = AAT for C.

It is clear that every matrix AAT is symmetric and nonnegative definite. Consequently
we have only to show that C'is the covariance matrix of some random vector.

Let 1,79, ...,m, be a sequence of independent normally distributed random variables.
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Then the random vector X = An has the required properties. In fact,
BE[XXT] = E[(An)(An)*] = A- E[m*] - AT = AAT

This completes the proof of the lemma. n

Definition 3.1.3. A process { X; her is Gaussian if the random variable ¢y Xy, +co X, +

40, Xy, 15 Gaussian for any choice ofn € Nty ty, ..., t, € T and cy,ca,...,c, € R.

Theorem 3.1.4. 28] Let X; : Q2 — R be random variables; 1 < i < n. Then
X =(Xy,--,X,)
is Gaussian if and only if
Y= Xi+eXo+ -+, X,

is Gaussian for any ci,cs, ..., c, € R.

Proof. If X is normal, then

1
Elexp(iu(c1 X1 4+ o Xo + - + ¢, X)) = exp(—§ Z UCjAjpuck + 1 Z uc;m;)
gk J

1 )
= exp(—§u2 Z CiNjrCr + U Z cjm;)
7.k J
so Y is Gaussian with E[Y] =Y ¢;m;, var[Y] =) ¢ jick.
Conversely, if Y = ¢; X1+ Xo+- - +¢, X, is Gaussian with E[Y] = m and var[Y] = o2,
then

1
Elexp(iu(c1 X1 + coXo + - + ¢, X,))] = exp(—§u2a2 + dum),
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where m = > ¢; E[X;], and

o’ = E[(ZCij—ZCjE[Xj])2]

J

= E[(Z ¢j(Xj —my))?]
Z CjCkE[(Xj — m])(Xk - mk)]7

where m; = E[X;]. Hence X is Gaussian. O

A function R(s,t) : R x R — R is called nonnegative definite if
> R(ti,tj) i) > 0
ij=1

forallt;, ; e R,i=1,--- , nand n € N.

By the Lemma 3.1.2, any non-negative definite function defines a unique zero

mean Gaussian process.

Lemma 3.1.5. [32] The function Ry(t,s) = 3(t*# + s*" — |t — s|*) is non-negative

definite if H € (0, 1].

Proof. We want to show that

n n

Z Z Ry (t;, tj)uiuj > ()

i=1 j=1

for ty,...,t, > 0 and uq, ...,u, € R.
Set ¢y := 0 and add a value uy := — > w;. Then ) " ju; =0 and

Z Z RH(tz, tj)u,-uj = — Z Z |tl — tj‘2HUi'LLj.

i=1 j=1 i=0 j=0
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Since for any € > 0 we have

i ie—dti—tﬂ?HUin _ i i(e—dti_tj?H . 1)Uiuj _ _gi i |tz‘ o tj‘2HU¢Uj + 0(8)

i=0 j=0 i=0 j=0 i=0 j=0

as € — 0 it is sufficient to show that

n n
_ ._ 4. |2H
E E et g > 0.

i=0 j=0

€|9|2H

But this follows from the fact that the mapping 8 — e~ is a characteristic function

for H € (0,1]. It is known that a real-valued random variable £ is symmetric a-

stable,0 < a < 2, if and only if its characteristic function satisfies
Elexp(ib€)] = exp(—c|0]*), 0 € R,
for some ¢ > 0.[7].
Now, we will show that
exp(—[t]*), 0<a<2,

is a characteristic function. Here we will use the exercise 4 of section 6.5 of [33]. Firstly,
let us show that
a

p(r) = m(l A=) (3.1)



is a probability density function. It is clear that p(z) > 0. Now,

/_ Z p(x)dz

Then let us show that a random variable £ with the probability density function

o —1 . 1 [e'e) .
- —a=1y4 d —a-1g
2<a+1>[/_oo"”' +/ x+/1 2| ~da]

mp + 2/1 |z| = da]
o} 2
2+ 1) 12 E]

p@) = g A

23

(3.2)

has a characteristic function ¢(t) of the form 1 — C,|t|* + O(¢*) in the neighborhood

of t = 0.

Elexp(it¢)]

Natl) /Oo exp(it€) (1 A o]~ 1)dx

Aa+ 1) /_Oo[cos(m) + isin(tz)](1 A o)~ ) da

«

5 /000 cos(tz) (1 A |z| 2~V da

«

CE) /01 cos(tx)dx + (ai 1 /loo cos(tx)z ™ tdw

a sint+ o
(a+1) t (a4 1)

1



where

Il—/ cos(tx)r* 'da.
1
We have

[ee] 1 _
/ Locoslta) g — g
0

xa—&-l

If we apply the Fubini’s theorem, we will get (3.3)

* 1 — cos(tz) <1 v
/0 de = /0 pes) [/0 tsin(tu)du]dx
B * tsin( tu
= — +1

= Ot

We can write integral (3.3) in the following way :

l.a—l—l Ia—l—l xcx+1

00 1 141 0 1
/ 1 — cos(tx) s :/ 1 cos(tx)dx+/ 1 COS(m)dm
0 0 1

we denote

I — /°° 1-— COS(tm)dx.
1

xa—i—l

Let us consider the order of

1 J—
]3:/ 1 COS(m)dx.
0

xa—i—l

24

(3.3)



Since cos(z) has a Taylor expansion, we have

oo
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1 —cos(te) 1 Z (—1)ng2nan

I.a-‘rl - xcx—i—l

[e.9]

(2n)!

1 n 2n 1
1 — cos(tx) t J—

n=1

e nt2n

1

- nz (2n)! 2n

—

e (_1)nt2n—2 1

= ') (2n)!

— 2n — «
If we can show that
e nt2n 2 1
HZ::I 2n — «
is bounded for small ¢, then we can conclude that
1
1-— t
/ cos(tx) I
0 xoz—‘rl
is O(t?). Since 0 < a < 2, we have
2 2 <2 <2 ! < ! < !
n— n—a n — )
" 2n 2n—a 2n—2

Hence for ¢ is in the neighborhood of 0,

nth 2 1 t2n72 1

Z n)l  2n-—« = Z (2n)!12n — 2

n=1 n, even

= Z 2n'2n—2

n, even

Z t2n72 1
it (2n)!2n

<M
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for some M, 0 < M < oo. Therefore I3 is O(t?).

Thus,

Calfl*—0(#) = ~ -1

1
I, = E—Ca|t|°‘+0(t2).

Therefore for the neighborhood of t = 0,

Blep(itg)] = g5+ gy (G = Gl + 0)

p(t) = 1 —cult|* + O(t?).

Now, let &1,&s, ... be independent identically distributed random variables with the
above density function and S, = Y"1 &;.

Let 1,,(t) be the characteristic function of S2.. Then

nl/a

Sn
Yalt) = Blexp(it—32)]
t o £° o
- ¢(n1/a) _(1_ 047—’_0(”2/&))
— exp(—c.|t]¥), n— 0.

This completes the proof of the Lemma 3.1.5.
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The stable distributions with characteristic functions of the form
exp(—A[t])

were called Cauchy laws. The tradition later died out and distribution of this type
became known as symmetric stable distributions. In our times there has been a sharp

increase in the interest in stable laws, due to their appearance in certain socio-economic

models.[34]. O

Definition 3.1.6. An R-valued stochastic process X = { X }er is said to be self similar
if for any a > 0, there exists b > 0 such that {Xg}ier = {0Xi bier

Definition 3.1.7. An R-valued stochastic process X = {X; et is said to be H-self
similar(H-ss) if

{Xahier = {a X, } et

for all a > 0. The parameter H > 0 is called the Hurst index.

Definition 3.1.8. An R-valued stochastic process { X} et is said to have independent
increments, if for any m > 1 and for any partition 0 <ty < t; < ... < ty,
Xy — Xy, Xoy — Xtyy ooy X4, — X4, are independent and is said to have stationary

increments, if any joint distribution of {Xin — Xi,t > 0}is independent of t. This

means that Xy — X has the same distribution as Xy p — Xsip for all s,t,h >0, s < t.

Theorem 3.1.9. [7] Let {X;}er be real-valued H-self similar process with stationary

increments and suppose that E[X?] < oo. Then

1
E[X,X,] = 5(ﬁH + s — |t — PP E[X?).
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Proof. By selfsimilarity and stationarity of the increments,

EX X, = %{E[Xf] + E[X2 - E[(X; — X,)°]}
= L{BIX?)+ BIX?) - BIX,))

1
= SR s

Combining the Lemma 3.1.2. and Lemma 3.1.5. we arrive at a definition of

“fractional Brownian motion”.

Definition 3.1.10. Let 0 < H < 1. A real-valued Gaussian process { B }ict is called

fractional Brownian motion if E[BF] =0 and

1
BIBIBI) = S(* + 2 — |t — sP7) B[(BI1)?,

For the special case H = %, the process is the the well-known process ‘Brownian
motion’. It has independent and stationary increments. Fractional Brownian motion
has a stochastic integral representation with respect to Brownian motion. For this

result we will use the Corollary 2.2.6:

Theorem 3.1.11. [7] A fractional Brownian motion { B }icr is H-ss with stationary

increments. When 0 < H < 1, it has a stochastic integral representation
0 t
Cl [ (¢ = )" = (c0) B + [ (- )" dB(w),
—o0 0
where
0
1
Cuu = BB [ (6= )2 = (a4 )

If H =1, then B} = tBl almost surely. Fractional Brownian motion is unique in
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the sense that the class of all fractional Brownian motions coincides with that of all

Gaussian selfsimilar processes with stationary increments. {BH},cr has independent

increments if and only if H = 1/2.

Proof. (i) Selfsimilarity

E[B,B,) = %((at}m +(as)*™ — (alt — s)*) E[(By')?]

~ BB B

= E[(a"B")(a" B)].

Since all processes here are mean zero Gaussian, this equality in covariance implies

(ii) Stationary increments. Again, it is enough to consider only covariances.

We have

E((Bf{y — B ) By — By)]

concluding that

{Biin

E[B/,BL,] — BIB, By

FIBL, B + BBV

SR (s P — (sl
((t+ h)*" + B2 — 21

((s + h)*" + p* — 21y 1 2p%"} B[(B)?)
SO+ (57— (|t — s BBV

E[B/B],

- Bilzq}teT = {Bfl}teT-

(iii) We need to show that the Wiener integral in the theorem is well-defined.
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Let v =—u,and a = H — % then we will show that

112/ [(t +v)* —v°]Pdv < 00, 0<a<1/2
0

and
1
I = / [(t+v)* —v*dv < 00, —1/2<a <0
0
and
I = / (t+0)" — 0°2dv < 00, —1/2<a <0
1
and
0
Iy = / [(t+v)*dv <o —1/2<a<1/2.
—t
For I, I3 and g;(v) = a®v?*72, since
W) =
,}EEO 2p2a—2 =1
and
I 2
llirglo i 0?2 dy = 50— 1 llircr)lo(lza’I) =0, —-1/2<a<1/2

then I; and I3 are convergent.
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For I, and go(v) = (v + t)?“, since

a a2 [
hm [('U + t) v ] —1; o v ]2
TR N CEE

and

1
/ (v +1)**dv < o0,
0
then I is convergent.

For 1, since

[(t+ ) = — =l = < oo,

0 (t + U)QOHrl t2a+1
I, =
: /_ . 200+ 1 200+ 1

then I, is convergent.
Therefore the Wiener integral is well-defined. Denote the integral by X;.

We then have that

PIX = Cil[ (=" = ()" du+ [

—0o0

— E[(BI))".



Moreover,

B[(Xern — X)) = CIQ-IEK/_ ((t+h=w" 2 = (h— )2 dB(u)

o0

+ /hHh(t + h—w) " V2dB(u))

= C’?.,[/_h ((t+h—u)B7V2 — (h—u)E712) 2

o0

t+h
+/ (t + h —u)* " du
h

= Gl (=0 = "+ [0

—0o0

= BB,

Hence,

EXX)] = %{E[Xf] + E[X?] - E[(X; — X,)*]}
= (P (5P~ (|t — s BBV

Therefore, { X} }er is fractional Brownian motion for 0 < H < 1.

(iv) For the case H = 1, first note that E[B}B}| = ttE[(B1)?].
Then

E((B; —tB))’] = E[(B;)’] — 2tE[B, By] + " E[(B;)’]

= (2202 + ) E[(B})*] =0,

so that B} = tB] almost surely.

32

(v) For the uniqueness, first note that once {X;}ier is H-ss and has station-

ary increments, then by the theorem above, it has the same covariance structure as

{B}}ct. Since {X;}ser is mean zero Gaussian, it is the same as { BY },c7 in terms of

their distribution.
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Proposition 3.1.12. The fractional Brownian motion {BE }icr with Hurst index H

is Markov process if and only if H = %

Proof. Assume H = 1 and s <t < wu. Then Rys(s,u) = s, Rija(s,t) = s, Ripa(t,u) =

t, Rijo(t,t) = t. Therefore by proposition 2.1.9, {Btl/z}teT is a Markov process.

Now, assume that { B };cr is a Markov process. Again by proposition 2.1.9, the

covariance function Ry (s,t) of fBm must satisfy the following condition:

RH(S, t)RH(t, u)

R, u) = Rut,t)

s<t<u

Y

Hence the above equality must be satisfied by s = m, t = 2m, u = 3m. If we put these

values in the above equality, we get

[mQH + (3m>2H _ (Qm)QH] .9. <2m)2H — (2m)2H . [<2m)2H 4 (3m)2H _ m2H

3 = 3.2 31

and therefore H = 1/2. O

3.2. Sample Path Properties of Fractional Brownian Motion

The notation and methodology used here are related to [2].

Theorem 3.2.1. [2] Fractional Brownian motion {BH }ier, 0 < H < 1 has a modifi-

cation, the sample paths of which are Holder continuous of order 3 € [0, H).

Proof. Choose 0 < v < H. Then we have by selfsimilarity and stationary increments

of {B'}ier

E[|B{" = BI|'"] = ElIBf ']

= [t — s/ E[|B{']
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Then Kolmogorv’s criterion is satisfied with 6 = 1/v and € = H/v — 1. Thus there
exists a modification which is Hélder continuous of order § < (H/~ — 1). Since 7 can

be arbitrarily, the result follows. m

Now, we shall introduce another notion, the so-called p-variation which is related

to the stochastic integration.

Consider partitions 7 :={ty : 0 =ty < t; < ... < t, =T} of [0,T]. Denote by ||

the mesh of 7, i.e. |7| := mawy, e Aty where Aty :=tx — t;—1. Then for p € [1, 00)

v(fim) =Y AP

trem
where Af(tx) := f(tx) — f(tx—1) is the p- variation of f along the partition m.

Definition 3.2.2. Let f be function over the interval [0,T)]. If

vp(f) = lim v, (f;m)

|7w|—=0

exists we say that f has a finite p-variation. If

Up(f) = supv,(f;m)

is finite then f has a bounded p-variation. The variation index of f is

o(f) =inf{p>0:0v,(f) < oo}

where the infimum of the empty set is oo.

Proposition 3.2.3. [2] Let { B },cr be a fractional Brownian motion with Hurst index
H. Then v)(B/') = 0 almost all surely if p> 1/H. For p < 1/H we have v,(B{") = 0o

and vy (B[") does not eist.
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Proof. Let K be the Holder constant of the fractional Brownian motion. Let p > 1/H
and 7 be the partition of [0, 1]. Then by the Theorem 3.2.1

DIAB P < Y K|ALP

tpET™ tpET

- KP Z |Atk|ﬁp

trem

< KP|n| ) |An)P

tyem

almost surely for any 3 < H. Letting |7| tend to zero we see that v)(B/") = 0 almost
surely.

Now, suppose that p < 1/H. Then we can choose a subsequence (ﬂ;)neN of the sequence
of equidistant partitions (m,)nen such that vy /H(BtH ;71';) converges almost surely to
Y11 Consequently along this subsequence we have lim,, . v,(B/ ;) = oo almost
surely. Since |, | tends to zero as n increases vp(B[") can not exist. This also shows

that v,(Bf') = oo almost surely for p < 1/H. O

Now we are ready to prove the fact that makes stochastic integration with respect

to the fractional Brownian motion a challenging task.

Corollary 3.2.4. [2] The fractional Brownian motion with Hurst index H # % s not

a semimartingale.

Proof. For H < 5 we know that the fractional Brownian motion has no quadratic

1
2

variation.So it can not be a semimartingale.

Suppose that H > % and the fractional Brownian motion is a semimartingale
with decomposition Bff = M, + A;. Now, Proposition 3.2.3 states that B¥ has zero
quadratic variation. So the martingale M; = B — A; has zero quadratic variation.
Since B is continuous we know by the properties of semimartingale decomposition,
definition 2.1.10, that M is also continuous. But a continuous martingale with zero
quadratic variation is a constant[3]. So B = M; + A; and B¥ must have bounded

variation. This is a contradiction since vy (Bf) > v,(Bff) = oo for all p < 1/H. O
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4. INTEGRATION OF THE DETERMINISTIC
FUNCTIONS WITH RESPECT TO FRACTIONAL
BROWNIAN MOTION

The notation and methodology used in this chapter are related to [5] of Pipiras
and Taqqu.

4.1. The Standard Approach to The Integration of Deterministic

Functions

In this chapter we deal with questions related to the L?- integration of determin-
istic functions with respect to fBm when H € (1/2,1). As it is done in [5], we will use

in the sequel another parametrization of fBm. Let
1
k=H——,
2

so that the range H € (0,1) now correspond to the range x € (—1/2,1/2). We will
denote the fBm B = {B}icjo7) in terms of the parameter k as B* = {Bf }ep.1-
We will also assume that fBm is standard, i.e. E[(B%)? = 1. In terms of &, covariance

function of B* will be given in this form:
1
R(s,t) = E(BBf) = 5{52“1 2 s — Y st € [0, 7).
When x = 0, fBm B* = B? is the usual Brownian motion. [5].

To define integral for deterministic functions, one typically starts with an in-
ner product space (€, (+,-)e) of functions on a region of integration R(R = R, R =
[0,T],T > 0) such that (1jg, 4, 1o, 5))e = E(ByBy) for all s,t € R. Let 5pr(B") be the
closure in L?(€2) of all possible linear combination of the increments of fBm on R. If the

map extends to the isometry between this class of functions € and the space spz(B"),
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then the resulting isometry map is called the integral in the L?(€2)-sense with respect

to fBm of functions from C.

The function f is called an elementary function(simple) if it is given by

f(u) = Z fk[[“kaukJrl)(u)’ u € [0>T]'
k=1

An integral for simple functions will be defined as

J(f) = / B =" fABE =S f(Br — BL),
R k=1 k=1

which is a Gaussian random variable with zero mean and variance that can be calculated
by using covariance function of B*. Since B" has stationary increments, the expected
value and the variance of the defined Gaussian random variable is independent of the

choice of representation of f.

We recall, in the proposition below, how to construct classes of integrands C.

Proposition 4.1.1. [35] Let & be the set of elementary functions on [0,T], J(f) be
an integral of f € & with respect to fBm B" and —1/2 < k < 1/2. Suppose that C is

a set of deterministic functions on the [0,T] such that

(1) C has an inner product (f,g)e, f,g € C.

(2) &r C C and (f, g)e = E(J(f)J(9)) for f,g € &r,
(3) the set &r is dense in C.

Then

(a) there is an isometry J between the space C and a linear subspace of Spg(B"*) which
is an extension of the map f — J(f), for f € &p.

(b) C is isometric to Spg(B*) itself if and only if C is complete.

Proof. (a) Let f € C. By (3), there is a sequence (f,) C & such that f,, — f in C.
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In particular (f,,) is Cauchy in € and hence, by (2), (J(f,)) is a Cauchy sequence in

L?[0,T]. Since the space L*[0,T] is complete, there is J(f) € L?[0,T] such that

J(f) =lim J(£,),

in the L?-sense. Let us show that J(f) does not depend on the sequence (f,,). Let (g,)

be also a sequence in &p such that g, — f in €. Since

[ fn = gnlle = |fo = f + f = gnlle < |Ifu = flle + llgn — flle — 0

Hence by (2),

lim J(f, —g,) =0

in L([0,T]). Thus J(f) = lim, J(f,) = lim, J(g,).

Moreover, since (J(f,)) C 5pr(B") and spp(B*) is a closed subset of L2[0, T, we
obtain that j(f) € 5pr(B*). We can thus define the map J from the space C into the

space Spp(B*). This construction of J and (2) imply that, for f,g € C,

(f,9)e = E(J(f)I(9)),

and, since the map is linear, we conclude that J is an isometry between the space €
and a linear subspace of spz(B").

(b) If C is isometric to spy(B*) itself, then € is complete because the space Spy(B")
is complete(it is a closed subset of a complete space L2[0,T].)

Conversely, If C is complete, then the map J is onto because &1 is dense in € and hence

C is isometric to spy(B*) itself. O
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4.2. Fractional Integrals, Derivatives and a Representation of Fractional

Brownian Motion on [0,T]

For completeness, we provide below definitions of those fractional operators that

are used throughout this thesis.

Consider the interval [0,7] and let s € [0,7]. An integral over [0,s] is called
left-sided and one over [s, T is called right-sided. The right sided fractional integral of
order a > 0 on an interval [0, 7] of a function f € L'[0,T] is defined by

(I%—f)(S)Zﬁ / f(u)(u—s)ﬁi-lduzﬁ / F(w)(u — $)*du, s € (0,T).

The right sided fractional derivative of order 0 < o < 1 on interval [0, T of a function

¢ is defined by

(D-0)(0) = ~Fr g |, 99 —u)ds,u € (0.7)

The integral equation

1

(o) /033 ot)(x —t)*tdt = f(x), x>0

where 0 < a < 1, is called Abel’s equation. [26].

Let a > —oo and suppose that equation is considered on a finite interval [a, T.

Equation may be solved in the following way which is done in [26]: Changing x

to t and t to s respectively in the equation, multiplying both sides of the equation by



40
(r —t)~* and integrating we have

o [ - aras = s,

1 1 ¢ o1 B
Wu—t)a/ﬁ(s)“‘s) S P

/a (o= et / ")t — s lds = T(a) / QO

Interchanging the order of integration on the left hand side by Fubini’s theorem we

arrive at

/jgo(s)ds/:(x—t)a(t—s)“_ldt _ r(a)/: 1O g

(x =)

Let t = s+ 7(x —s). Then 7 = (t — s)/(x — s) and dt = (x — s)dr. Therefore
x 1
/ (x—t)"%(t—s)*'dt = / N1 — 1) dr
s 0

= B(au 1 - Oé)
— T(a)T(1—a),

and hence

/x@(s)dsr(a)r(l_a> _ P(a)/x f(t) "

(z =)

‘ _ 1 v
/a@(s)ds - F(l—a)/a TR

o) = rr— [ L

x (x —t)>

—
=
|
2
U
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fO0<a<1and

¢(s) = (I7-f)(s),s € (0,T)

then by the argument above

f(u) = (D?‘—gb)(u)?u S (O’T) (41)

Hence D7 can be viewed as an inverse of I_. For this reason, we will often denote
in the sequel the fractional derivative D$_ with o € (0,1) by I.% and also use the
notation I f = f.

The following proposition relates fractional Brownian motion and the fractional
integral and derivative operators on an interval [0, 7. It will be used in this chapter to

construct classes of integrands for fBm on an interval [0, 7.
Proposition 4.2.1. [5] Let T > 0 and B" be a standard fBm with the parameter

k€ (—1/2,1/2). Then

(B e = {on() / SR (5 1 L0 () (5)dB() b

where

o1 (R)? = L(k)r(2e+1) 7r(2k+1)
! Bk, 1—2K)  T(1—2k)sin(rk)’

and ((p,q) is the Beta function.

Proof.

1
R(s,t) = E(BBr) = §{szmtl R g g[2eY,
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Then

R(s,t) k(2K + 1)/ / Iio, sy(w) 1o, (v)|u — v[** ' dudv.
o Jo

s t
= K(2k+1) / / lu — v|**dudv
0o Jo

for s > t.

Let’s show that

L 26—2 (wv)” g 2k, Nk—1( k-1
a0 [ - 0

We will use a similar argument in [36]. Without loss of generality, assume u > v, then

we will show that

Q-2 _ (uv)" Yok k—1 k—1
(u—w) —m/()q (v—q)" (u—q)" dg.

Let

u—q ZU0 — U u—v

So

= / g (v —q)"(u—q)* dg
0

RV = U g U=V o U=V g g (V=)
= —_— ——d
/u/v(z—l) (2—1) (2—1) : u—v :

= (u— v)2”_2/ (zv —u) 22" ldz

Jv
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Now, let
u u
x=—, then dr=——dz.
vz vz
Since
u u
vz =—, we have dz=——7;dz.
x vx
Hence

/OU ¢ w—q)" (u—q) dg = (u-—

Then

(uv)"

Bl /O ¢ —q)" Hu—q)"ldg =

Therefore we get the result.

_ (w—wp2 )2 gy
- Sy A
_ e o).
(uv)" ’
(uw)*  (u—v)*2 Y
Bk, 1—2K) (uv)" Bl 1 —2x)
= (u—v)* 2
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Let V = k(26 + 1)/8(k, 1 — 2k), then we have:

R(s,t) = k(2k+1) / / lu — v dudv

T
= k(2k+1) / / Blm 1 —2n) 1 o) / g (v — @) (u— q) 'dgdudv

T s t
= V/ q2”/ u(u — q)”ldu/ v (v — q)" tdvdg
0 0 0

~ v / ( / G T, () — ¢ du) / 40 T, o (0) (v — )% dv)]dg

— V() / (I T, () (@))lg " (T v T, o(v))(@)]da.

So they have the same covariance structure. O]

4.3. A Class of Integrands for Fractional Brownian Motion on [0,T]

Let { Bf }icjo,1] be a standard fBm with parameter x € (0,1/2). Let also & denote
the set of all elementary functions on an interval [0, 7).
For an elementary function f € &7, define the integral with respect to fBm B* in a

natural way by

/ FdB (@) = 3 Al B, — B

When « € (0,1/2) and the region of integration R is [0, 7] with 7" > 0 defined

the class of integrants for fBm

Ar ={f:10,T]—R I/0 [s7"(I7-u" f (u))(s)]*ds < oo}
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are assumed to be inner product space with the inner product

k(25 + 1)

(f;9)az = I'(1 — 2k)sin(r

p / (572 (T f () () (- g () ()]s

where

I'(p), p>0

is the gamma function. [5]. (See appendix)

It follows by the Proposition 4.2.1 that, for f € &,
1) = [ s Z B, ~ BY)

= kam(/f)[/o s IE-uF T, uy 1y (w))(s)dB(s)

- / STR(IE T, () (5)dB°(5)]
= 3 Sl / SR T,y (0))(8) — (ot T, sy () ()} AB(s)]

— Z fron (s / / . — 5)" " Ydu]dB°(s)

- ﬁal(@ /OT [ka/u:k“ u(u — )" 'du]dB°(s)

— o) / SR (I f () (5)dB%(s)

and hence for all f, g € &rp,
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Theorem 4.3.1. [5] For xk € (0,1/2), the class of functions A% is a linear space with
the inner product (f, g)A;. Moreover, the set of elementary functions & is dense in the

space A

Proof. To show that the map (f, g)as defines an inner product, we have to show that

(f,9) Az satisfies the following conditions:

(1) (f+9, )z = (f,h)as + (9, P)as frg,h € A
(2) (af,g)ax =a(f,9)as f,g €A}, a€R.

(3)  (fi9)as = (9, flar f,9 € A7

4) (i) 20, (fiflag=0&f=0 ae

The first three conditions are obvious since the integral operator is linear. We check

the least obvious condition (4): (f, f)ax >0 since
(I7-u" f(w)) ()] 2 0,  sin(mr) >0
when x € (0,1/2). If (f, f)azr = 0 and & € (0,1/2), then (I7_u"f(u))(s) = 0 a.e.
s € [0,T]. Since the homogeneous Abel integral equation (I%_¢(u))(s) = 0 has only
the trivial solution ¢(z) = 0 a.e.[26], it follows that u*f(u) = 0 a.e. v € [0,7] and
hence that f(u) =0 a.e. u € [0,T].
Let us show that the set of elementary functions &7 is dense in A%.. Assume without

loss of generality that 7' > 1. Since any function ¢ € L?[0,T] can be approximated in

L?[0,T] by the elementary functions, we may also approximate by functions

sk Zbkl[ak’ dk)(s) =g F Z bk(I[O, dk)(S) - ][07 ck)(3>>
k=1 k=1

with by € Rand 0 < ¢, < dp < T, k =1,...,n. It is enough to show that there is a
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sequence of elementary functions f,, € {7 C A% such that

T
2oy = fallAs = /0 s~ Tjo,1)(8) — (I7-u" fu(w))(s)]*ds — 0,

as n — 00. Let us define the functions

[\

R
fn(u) = m ; f(l/n>][%,%)v u € [07 1]'

||
N

By using the inequality 2| f(u)||f(v)| < |f(w)>+]|f(v)]* and symmetry below, we
get

[ [ 1o = < [ [ ot

a2l’i a
< = [P

Hence

/0 s~ o) (s) — (7" fu(w))(s)]ds < /0 s (I u| f (u) — fu(w)])(s))ds
c(R)If = full T2, — 0,

IN

as n — oo. O

Now, we will give the proof of Pipiras and Taqqu in [5] which shows that the
space A% is not a complete inner product space. They give a proof by first providing
an equivalent criteria for the completeness and then showing that it does not hold. We

begin with a number of lemmas which will be used in the sequel.

Lemma 4.3.2. [5] Let 0 < ¢ < b < T and k € (0,1/2). Then there is a function f.,
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such that

s (Up-u” fep(w))(s) = Lepy(s), 0<s<T.

Proof. Let us define a function

Jep(u) = u™ (L5 ey (1) (w) = u™ " (Dp-t"Iiep) () ().

Since 1. is an inverse operator of I7_

s (Ip-u” fep(u))(s) = s (Lp-uu (L5t i) (1)) (u))(s)
= s (Ip-t"Tepy (1)) (s)
= 5 "s"Iiep)(s)

= [[va) (S) *

We need to check whether f., € Af.

N

| U pa@)@Pds = [ S T @) @) ()P

s (I (15 ey (8)) (u)) (5)] s

!

I
C\\ﬂ\

TS ey (s 5)]2ds < oo.

]

Lemma 4.3.3. [5] Let k € (0,1/2). The inner product space N is complete if and
only if, for every ¢ € L?[0,T], there is a function fs € A% such that

ST (I fo(w))(s) = O(s) ace. (4.2)

Proof. Suppose that the inner product space A% is complete and let ¢ € L?[0, T']. There

is a sequence of elementary functions ¢, such that ¢, — ¢ in L?[0,T]. By the above
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lemma, we can express the elementary functions ¢, as ¢, = s™*(I5_u"f,(u))(s), for

some f, € Af. Then, let hypm(u) = fro(u) — fin(u),
1o = fullay = Ul(ﬁ)/o (572 (I " B (0)) ) (8) (I " P (1)) (5) s
= 01(*6)/0 (s (L7- " B () ) ($)] 5™ (I7— " P () ) () ds

- o | (6 — O )ds

— 0

as m,n — oo since {¢, }n>1 is Cauchy in L2[0,7]. Thus {f,},>1 is Cauchy in A%.

Then, the completeness of A% implies that there is a function f € A% such that

P = 8" (Ip-u" fu(u))(s) — s™"(Ip-u"f(u))(s)

in L2[0,T]. Defining ¢(s) as the limit, then the relation

s "(Ip-u"fg(u))(s) = ¢(s)
holds for f4 = f.

Conversely, suppose that (4.2) holds and let {f,},>1 be a Cauchy sequence in
A% Then the sequence ¢, = s *(If_u" f,(u))(s) is Cauchy in L?[0,T)]. Since L?[0,T]
is complete, there is a ¢ € L?[0,T] such that ¢, — ¢ in L?[0,T]. By the assumption,
there is f, € A% such that (4.2) holds. Since ¢, — ¢ in L?*[0,T] implies f, — fs in

A%, the space A% is complete. n

Lemma 4.3.4. [5] Let k € (0,1/2). There are continuous functions ¢ on [0,T] such

that the equation

(I5-9)(s) =¥(s) a.e. on [0,T] (4.3)
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has no solution in g € L'(0,T].
Proof. (Sketch) The proof is by contradiction. Suppose that the equation (4.3) has a
solution g, € L'[0,T] for any ¢ € L?*[0,T]. By (4.1)

0(0) = —Fr—ayae || Vs —uds e (O.7)

Since gy (u) is expressed as a derivative, the function

Uy() = / (s)(s — u)7~ds

is differentiable almost everywhere on [0,7]. However, as shown in [35], there are
functions ¢ € L?[0,T)] such that Uy is not differentiable on a set of positive Lebesque

measure. So we obtain the result. O

Theorem 4.3.5. [5] Let k € (0,1/2). The inner product space A is not complete.

Proof. By the lemma, there is a continuous function function v such that the equation
(I%-g)(s) = 1(s) has no solution in g. Then the function ¢(s) = s~*¢(s) is in L?[0, 7Y,

since k < 1/2, and the the equation

s~ "(Ip-u" fo(u))(s) = ¢(s)

has no solution in f. Thus, by the lemma 4.3.3., the inner product space A% is not

complete. n
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5. CONCLUSIONS

In this thesis, we have studied the general idea of the integration of the deter-
ministic functions with respect to the fractional Brownian motion. This idea is also
used for general Gaussian processes.[37] As mentioned in [5], to define such integrals,
one generally starts with an inner product space (C, (-,)e) of functions on a region
of integration, R. Then one defines a map between spy(B"*), the closure of all linear
combinations of the increments of fBm in L?(€2), and the specified inner product space
of functions on a region of integration such that 1, +— B; under this map. If the
map 1l +— B extends to the isometry between these two spaces, then the resulting
isometry map is called the integral in the L?(f2)-sense with respect to fBm of the func-
tions from our inner product space. The extension step is usually assumed correct but
not proved in the studies on this subject. For example, when x € (0,1/2) and region of
integration R is [0, 7] with 7" > 0, Carmona et al.[38] and Kleptsyna et al.[27], defined

the class of integrands for fBm which we studied on our thesis

A%zUWWJ%%R[Ab*U%MﬂwXM%s<w}

with the inner product

k(25 + 1)

(f:9)ay = ['(1 — 2k)sin(r

’%)/0 [s72(Lh-u” f (u)) (s)(IF-u"g(u))(s)]ds.

Another class of integrands, considered by Duncan et al. [12], Kleptsyna et al.
[27] and Norros et al. [39], is given by

IAW={f%QTM*R|A A @)1 (0)][u — o Vdudv < 00}
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with the inner product

(fs @) aln = k(2K — 1)/0 /0 f(u)g()u — v|**dudv.

All the authors claimed that both A% and |A |4 are isometric to the Gaussian space
S$pr(B"). However, Pipiras and Taqqu showed that this assumption is not correct.[5].
They argued that since 5py(B*) is a complete inner product space, both A% and |A|4.
have necessarily to be complete inner product spaces as well. On the other hand, they
showed that, when k € (0,1/2), neither the space of functions A% nor the space of
functions |Al4. is a complete inner product spaces. Thus, these two spaces cannot be
isometric to Spy(B*) itself. However this result does not affect the integration idea,
because they are isometric only to proper linear subspaces of spy(B"). Consequently,
there are random elements in Spz(B") which can not be represented by functions f

belonging to either A% or |Al%. [5].

An application of integrals, where completeness of the function spaces is relevant,
involves prediction problems. Consider, for example, the problem of prediction the
value of fBm at some future time ¢ > 0 given its past from time 0 to a (with a < t), or
mathematically, to compute the conditional expectation X = FE[Bj|BY, s € [0,a]]. It
is known that X € spp(B*). One would expect that X = fOT fdB*. But, when x > 0,
as we mentioned above, there may be no f € A% or |Al4§ such that X = fOT faB*. [5].

Is there a class of integrands for fBm with x € (0,1/2) on an interval [0,7]
which is a complete inner product space? However, we do not know the answer to this

question.

It is natural to ask whether there is a class of integrands for fBm with x €
(—1/2,0) on an interval [0, 7] which is a complete inner product space. It turns out

that such a class of integrands exists. It is an inner product space

f= {2 [0.T) > R | 365 € 2207 sit. f(u) = u(I;%"6(s)) ()



23

with the inner product

(25 + 1
(1 — 2k) sin(

(.90 = — | ) 6) g ) 5.

We want to emphasize that the inner product space A%, is complete when k €
(—1/2,0) and incomplete when x € (0,1/2). This difference in incompleteness is ex-
plained by Pipiras and Taqqu in their article [5] as the consequence of the following

two facts:
(i) If k € (—1/2,0), then the equation

s "(Ip-u"f(u))(s) = ¢(s)

has a solution f(u) = u"(I."s"¢(s))(u) for every ¢ € L?[0,T],

T—

(i) If k € (0,1/2), there are functions ¢ € L?[0,T] for which the equation

s~ (I7-u" f(u))(s) = o(s)
is not solvable. The idea here is that, since I.” is the integral operator, the left hand

side of (5.1) most satisfy some smoothness conditions whereas such conditions need

not hold for a general ¢ € L?[0,T].
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APPENDIX A: GAMMA AND BETA FUNCTIONS

A.1. Gamma Function
The gamma function denoted by I'(n) is defined by
['(n) = / e 2" tdx
0

which is convergent for n > 0.

A recurrence formula for the gamma function is

['(n+1) =nl(n)

where I'(1) = 1. Therefore I'(n) can be determined for all n > 0 when the values for
1 < n < 2 (or any other interval of unit length) are known. In particular, if n is a

positive integer, then

I'(n+1)=nl

We also have another important formula which involves the Gamma function:

D(2)D(1 — z) = Sin?m) 0<x<l.

In particular, if z = 1, I'(1/2) = /7.

For the proof of the above formulas see [40].
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A.2. Beta Function
The beta function denoted by ((m,n) is defined by
1
B(m,n) = / "1 —2)" e
0
which is convergent for m > 0, n > 0.

The Beta function is connected with the Gamma function according to the rela-

tion

Many integrals can be evaluated in terms of Beta and Gamma functions. Two useful

results are

/2 1 L(m)T
/ sin®™~! 0 cos® 1 0df = —3(m,n) = —(m) (n)
0 2 2I'(m + n)
valid for m > 0 and n > 0 and
Y e~ T T 1
/0 1+x v (P)T(1 = p) sin(pm) <P

For the proof of the above formulas [40].
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