
1 

1. ÜÇGENLEŞTİRME 

Basit geometrik şekilleri ifade etmek için kullanılan en ilkel geometrik 

nesneler nokta, doğru, üçgen ve poligonlardır. 

Tezimizde kullanacağımız temel geometrik kavramlar köşe, kenar, üçgen ve 

poligondur. Köşe, nokta ile aynı anlama gelmektedir. Kenar ise iki köşe noktasını 

birleştiren doğru parçasıdır ve kenar iki köşe noktası ile ifade edilir. Birden fazla 

kenardan oluşan geometrik nesneye ise çok kenarlı denir (Bkz. Şekil 1.1.). Çok 

kenarlıda n adet kenar için (n+1) adet köşe noktası mevcuttur. Çok kenarlının ilk 

köşe ile son köşe kenar çizgisi ile birleştirilirse oluşacak nesneye poligon denir. 

Poligonda ise n adet kenar için n adet köşe noktası mevcuttur. Poligon, noktaların 

birleştirilmesi sonucunda ortaya çıkan kapalı yüzeylere verilen addır (Bkz. Şekil 

1.2.). Poligonun komşu olmayan kenarlar birbirlerini kesmiyor ise poligona basit 

poligon denir. Tezimizde poligonlar olarak basit poligonlar kullanılacaktır.  

 
 

Şekil 1.1. Çok kenarlı Şekil 1.2. Poligon 

Noktayı ifade etmek için iki boyutlu düzlemde (xi,yi) ifadesi, üç boyutlu 

düzlemde ise (xi,yi,zi) ifadesi kullanılacaktır. Noktalar kümesini ise 

P={pi=(xi,yi), xi,yi ∈  R ve i=1,2,..,N} ile göstereceğiz. Bütün P 

noktalarını içine alan bölgeyi ifade etmek için bölge ifadesi kullanılacak olup bölge 

D ile gösterilecektir. D bölgesi kapalı çokgendir. D’nin sınır çizgileri birbirini 

kesmez. Genel olarak D bölgesi P noktalarının dış bükey bileşenidir, fakat D’nin 

her zaman dış bükey olması da gerekmemektedir. 

Eğer, bir D bölgesinde alınan herhangi iki nokta bir eğri ile birleştirile- 

biliniyorsa D bölgesi bağlantılıdır denir.  

Bir D bölgesinin üçgenlere bölünmesine üçgenleştirme denir ve üçgenlerin 

köşe noktalarını P kümesinin noktaları ile ifade ederiz. 



2 

Bir bölgenin üçgenlere bölünmesiyle üçgenlerin bütün belirsizlikleri ortadan 

kaldıracağı beklenmemelidir. Amaç, üçgenler yardımıyla bölge üzerindeki işlemleri 

daha kolay ve anlaşılır yapmaktır. 

Artık, D bölgesinde üçgenler topluluğunu kullanacağımıza için üçgenlerle 

alakalı bazı formül, gösterim ve kriterleri belirteceğiz. 

Pi, Pj ve Pk (Pi=(xi,yi) noktası ) köşelerinden oluşan basit üçgeni bundan 

sonra “Tijk” şeklinde ifade edeceğiz (Bkz. Şekil 1.3.). Yani, bir üçgeni üç köşe 

noktası ile ifade edeceğiz ve noktalar saat yönü sırası ile damgalanacaktır. Üç 

noktanın oluşturduğu küme ise “It” ile gösterilecektir. Tijk üçgeninin iç bölgesini 

“Int(Tijk)” ile göstereceğiz. İki boyutlu düzlemde “Tijk” kapalı, “Int(Tijk)” ise açıktır. Pi 

ve Pj köşelerini birleştiren çizginin gösterimi ise “eij” kenarı şeklinde olacaktır. 

 

Şekil 1.3. Üçgen 

1.1.  Üçgenleştirme Şartları 

i. Her i,j,k ∈ It ve her Tijk üçgeni için pi, pj, pk köşeleri aynı doğrultu üzerinde 

değildir. 

ii. Her hangi iki üçgenin iç bölgelerinin kesişimi boş kümedir. Yani, i,j,k ∈ It ve 

α,β,γ ∈ It ise Int(Tijk) ∩ Int(Tαβγ) = ∅ dir. 

iii. Her hangi iki üçgenin sınır bölgesinin kesişimi sadece bir kenar çizgisi 

olabilir. 



3 

iv. Bütün üçgenlerin bileşimi D bölgesini meydana getirir. Yani, U
tIijk

ijkTD
∈

=  

Üçgenleştirme algoritmalarının daha iyi anlaşılabilmesi için önce poligonları 

ve dış bükey kabuk kavramını inceleyelim. 

1.2.  Poligonlar 

Düzlemde bulunan n adet noktanın oluşturduğu küme P={p0, p1, .. , pn-1} 

olsun. Noktaların damga sırası dairesel sıralı olsun, yani pn-1 noktasından sonra p0 

gelsin [yani, ( ) ( )nnn mod011 ≡≡+−  olsun]. Ayrıca, e0=p0p1, e1=p1p2, .. , en-1=pn-1p0 

noktaları birbirine bağlayan n adet doğru parçası olsun. Eğer 

i) jji pee =I   , j = I+1 (mod n) 1,..,0, −=∀ nji  

ii) φ=ji ee I  , j ≠ I+1 (mod n) 

şartları sağlanıyor ise P={p0, p1, .. , pn-1} noktalar kümesi bir poligon tanımlar 

(O’Rourke, Sf:1). 

Açıkça poligonlar kapalı bölgelerdir.  

Eğer her hangi iki kenar bir birini köşe noktaları haricinde bir noktada 

kesiyorsa bu şekil basit poligon değildir (Bkz. Şekil 1.4.). 

 

Şekil 1.4. Basit poligon değil 

Bir poligonda bütün köşelerinin iç açıları 1800 den küçük ise bu poligona dış 

bükey poligon denir. En az bir köşenin iç açısı 1800 den büyük poligona ise iç 

bükey poligon denir (Bkz. Şekil 1.5.). 



4 

 

Şekil 1.5. Dış bükey, iç bükey 

Poligonun köşe damga numaraları saat yönünün tersi yönde sıralı olsun. 

Poligonun sınırını ∂P ile gösterilir. Poligonun sınır çizgileri üzerinde saat yönünün 

tersi yönde bütün noktalara da uğrayarak yürüdüğümüzü varsayarsak, bu 

yürüyüşte poligonun iç bölgesinin hep sol tarafımızda kaldığı gözden 

kaçırılmamalıdır (O’Rourke, sf:2). 

Komşu olmayan iki köşeyi birleştiren ve kenar doğrularını kesmeyen doğru 

parçasına köşegen denir. Köşegenin tamamı poligonun iç bölgesinde kalıyor ise 

köşegene kiriş denir (Bkz. Şekil 1.6.). Tezimizde kullanılacak köşegen ifadesi ile 

kiriş kastedilecektir. 

 

Şekil 1.6. Köşegen, kiriş  

Şimdi, doğruların düzlemde kesişimleri ile ilgili bazı ön teoremleri 

inceleyelim. 

Ön teorem: Düzlemde üçü aynı doğrultuda olmayan n adet noktadan 

geçen doğru sayısı en çok C(n,2) sayısı ile verilir. Burada,  

( )
( )

( ) ( )
( )( ) ( )

( ) ( )
( )( )

2

1

2!2

!21

!2!2

!
2,

−
=

−

−−
=

−
=

nn

nC

nCnn

CnC

n
nC  dır. 



5 

Kanıt : Düzlemdeki n noktadan biri sabit kabul edilip geri kalan (n – 1) 

nokta ile birleştirilmesi ile (n – 1) adet doğru elde edilebilir. Kalan (n – 1) nokta 

için aynı işlem uygulanıp yine bir nokta sabit tutularak geri kalan (n – 2) nokta ile 

birleştirilmesinden (n – 2) adet doğru elde edilir. İşlem bu şekilde devam 

ettirilerek iki adet nokta kalıncaya kadar devam ettirilir. Kalan son iki nokta ile de 

bir adet doğru elde edilir. Sonuçta, oluşabilecek doğruların sayısı; 

=+++−+− 12..)2()1( nn  
2

)1.( −nn
 ile verilir. Buradan da C(n,2) elde edilir. ♦ 

Ön teorem : Kenar sayısı n olan dış bükey poligonun köşegen sayısı 

2

)3.( −nn
 ile verilir.  

Kanıt : Varsalım ki, düzlemde üçü aynı doğrultuda olmayan n adet nokta 

alalım. Noktalardan geçen doğru sayısının C(n,2) olacağını biliyoruz. Kenar 

doğruları hariç tutulursa elde edilecek sayı köşegen sayısını verecektir. Yani, n 

adet kenar sayısı hariç tutulur ise, 

C(n,2) – n = 
2

)1.( −nn
 – n = 

2

)3.( −nn
 elde edilir. Bulunan değer köşegen 

sayısını ifade eder.♦ 

1.3.  Dış Bükey Kabuk 

Düzlemdeki S bölgesi içinde alınacak p1 ve p2 gibi her hangi iki noktayı 

birleştiren doğru parçası tamamen S bölgesi içinde kalıyorsa S bölgesi dış 

bükeydir (Bkz. Şekil 1.7.).  

 

Şekil 1.7. Dış bükey, iç bükey bölge 

Bütün poligonlar dış bükey değildir. İç bükey olan poligonun köşe 

noktalarını kullanarak yeni bir dış bükey poligon elde edebiliriz. Elde edilecek dış 



6 

bükey poligona dış bükey kabuk denmektedir. Aslında, dış bükey kabuğu düz bir 

zemine çakılı olan çivilerin etrafını sarmalayan lastik bir ipliğe de benzetebiliriz 

(Bkz. Şekil 1.8.) (Rasit). 

 

Şekil 1.8. Çivilerin etrafını sarmalayan lastik ip 

Düzlemdeki P poligonunu kapsayan dış bükey poligonların en küçüğüne P 

poligonunun dış bükey kabuğu denir ve CH(P) ile gösterilir.  

Başka bir ifade ile, düzlemde sınırlı sayıda noktadan oluşan P poligonunu 

kapsayan en küçük dış bükey Q poligonu dış bükey kabuktur. Burada en küçük ile 

kastedilen şey Q’dan farklı ve Q tarafından kapsanan Q` gibi Q ⊃ Q` ⊃ P şartını 

sağlayacak şekilde ikinci bir dış bükey poligon var olmamasıdır (O’Rourke, sf:65). 

Tanımdan da anlaşılacağı üzere dış bükey kabuk bir tekdir. Ayrıca, bir dış 

bükey poligonun dış bükey kabuğu yine kendisidir (Bkz. Şekil 1.9.). 

 

Şekil 1.9. Dış bükey kabuk 

Dış bükey kabuk bulma algoritmalarını incelemeye başlamadan önce 

düzlemdeki sınırlı sayıda noktadan oluşan S poligonunun uç noktalarını 

inceleyelim. Uç noktalar poligonun en sağ ve en soldaki noktaları ile en üst ve en 



7 

alttaki noktalarıdır. Poligonun noktalarının y değeri en küçük olan noktası, en alt 

noktadır. En küçük y değerli nokta sayısı birden fazla da olabilir. Uç noktaların dış 

bükey kabukta olacağı açıktır. 

Şimdi, dış bükey kabuk bulma algoritmalarını inceleyelim. 

1.3.1. Dış bükey kabuk bulma algoritmaları 

Dış bükey kabuk bulmak amacıyla en çok kullanılan algoritmalar Paket 

Sarma (Gift Wrap) Algoritması, Graham’ın Tarama (Graham’s Scan) Algoritması 

ve Hızlı Kabuk (Quick Hull) Algoritmalarıdır (Sunday)(Lambert). Çizelge 1.1. de 

algoritmaların çalıma hızları verilmiştir. n nokta sayısını, h dış bükey kabuk 

üzerindeki nokta sayısını ifade etmektedir. 

Çizelge 1.1. : Dış bükey kabuk bulma algoritmalarının çalışma hızları. 

Algoritma Çalışma Hızı En Kötü Durum 

Paket Sarma Algoritması O(n h) O(n2) 

Graham’ın Tarama Algoritması O(n.log n) O(n.log n) 

Hızlı Kabuk Algoritması O(n.log n) O(n2) 

Önce, dış bükey kabuk bulma algoritmalarından Paket Sarma Algoritmasını 

inceleyelim. 

1.3.1.1. Paket Sarma Algoritması 

Jarvis March algoritması olarak ta bilinir. Paket Sarma Algoritması bir adet 

uç nokta bulunduktan sonra en solda ya da en dışta kalan noktayı bulacak şekilde 

noktaların bulunduğu bölge etrafında dolaşma mantığına dayanmaktadır.  

Algoritmanın çalışma mantığını Şekil 1.10 üzerinden ifade edelim. Köşe 

noktalarının uç noktalarından x-düzlemine göre en küçük x değerli köşe noktası 

belirlenip dış bükey kabuğun başlangıç noktası olarak kabul edilir (Bkz. Şekil 

1.10.a). Sonra, damga sırasına göre poligonun ilk köşesi hedef nokta olarak 

belirlenir. Hedef nokta ile başlangıç noktası bir doğru ile birleştirilir. Kullanılan 

noktalar hariç bütün noktaların, oluşturulan doğruya göre konumları incelenir. Eğer 



8 

kontrol edilen nokta elde edilen doğrunun sağ tarafında ya da arka tarafında ya da 

doğru üzerinde ise, damga sırasına göre bir sonraki köşe kontrol edilir. Eğer 

kontrol edilen nokta doğrunun sol ya da ön tarafında bulunuyor ise, kontrol edilen 

nokta hedef nokta olarak atanır ve yeni hedef noktaya göre tekrar doğru 

oluşturulur. Kalan noktalar aynı şekilde kontrol edilir. Bütün noktalar incelendiğinde 

en son kalan hedef nokta dış bükey kabuğun elemanı olarak listeye eklenir (Bkz. 

Şekil 1.10.b). Sonra, yeni eklenen nokta başlangıç noktası ve damga sırasına göre 

kalan noktalardan ilk nokta hedef nokta olarak belirlenir ve süreç bu şekilde devam 

ettirilir (Bkz. Şekil 1.10.c, d, e, f ve g). Hedef nokta bulunan dış bükey kabuğun ilk 

köşe noktası olduğunda süreç tamamlanmış olur (Bkz. Şekil 1.10.g ve h) (Smid). 

Dış bükey kabuk bulunacak poligona ait köşe noktalarının 1 den n’e kadar 

damgalanmış olduğunu varsayarsak Paket Sarma Algoritmasının sözde kodları 

şöyledir:  

 

Şekil 1.10. Paket Sarma Algoritması 



9 

Algoritma 

Paket Sarma Algoritması 

Girdi : Poligonun bütün noktalarını içeren noktalar küme listesi  

Çıktı : Poligonun dış bükey kabuğunda bulunan noktalarının küme listesi 

   min. x değerli köşeyi bul ve hedef köşe olarak ata 

   for  w1=1 � n  { 

w1 deki köşe ile hedef köşeyi yer değiştir 

w1 deki köşeyi dış bükey poligona ekle 

w1+1 deki köşeyi yeni hedef köşe olarak ata 

for w2=w1+2 � n  { 

w1 ile hedefteki köşeyi bir doğru ile birleştir 

w2 deki köşenin doğruya göre durumu bul 

if solda ya da  önde ise 

w2 deki köşeyi yeni hedef köşe olarak ata 

}  // Döngü sonu ( w2=w1+2 � n için ) 

if hedef köşe  w1 ise işleme son ver  //ilk köşe mi? 

   } // Döngü sonu ( w1=1 � n  için ) 

Algoritmada i'inci köşe ile pwi köşesi ifade edilmektedir.  

Algoritmanın çalışma hızını bulmak istersek; min. x değerin bulunması için 

gerekli zaman miktarı O(n) türündendir. İkinci köşenin bulunması için gerekli 

zaman miktarı da O(n) türündendir ve aynı şekilde üçüncü köşenin bulunması için 

gerekli zaman miktarı da O(n) türündendir. Süreç bu şekilde devam eder. İlk köşe 

aranan köşe olduğunda süreç biteceği için dış bükey kabuk köşe sayısını h adet 

kabul edersek gerekli zaman miktarı  

( )( ) ( )nhOhnOnO
h

k

=+=







∑

+

=

1
1

1

 

ile verilir. 



10 

Bu arada h değerinin 3 ile n arası olduğu unutulmamalıdır. Noktaların 

konumu nedeni ile en kötü durum için h=n olabilir ki bu durumda algoritma hızı 

( )2
nO  olur. Örneğin, noktalar daire şeklinde sıralanmış ise ( )2

nO  hızı geçerli olur 

(Bkz. Şekil 1.11.).  

 

Şekil 1.11. Paket Sarma Algoritması için en kötü durum 

Dış bükey kabuk bulma algoritmalarından biri diğeri de Graham’ın Tarama 

Algoritmasıdır. 

1.3.1.2. Graham’ın Tarama Algoritması 

Köşe noktalarının y-düzlemine göre en küçük y değerli uç köşe noktası 

belirlenip bir numaralı damga olarak atanır (Bkz. Şekil 1.12.a). Belirlenen köşe ile 

diğer köşelere doğrular çizilir ve x-eksenine yaptığı açıları bulunur ve en küçük 

açılı noktadan büyüğe doğru damga numaraları tekrar düzenlenir (Bkz. Şekil 

1.12.b). İlk üç nokta dış bükey kabuk olacak şekilde belirlenir. Sonra, damga 

sırasına göre sırası ile birer nokta alınır, dış bükey kabuktaki son iki nokta ile 

aralarındaki açı kontrol edilir. Açı 180° den büyük ise dış bükey kabuktaki son 

nokta çıkartılarak yeni nokta kabuğa eklenir (Bkz. Şekil 1.12.c ve d). Bu süreç 

bütün noktalar incelenene kadar devam ettirilir. 

Graham’ın Tarama Algoritmasının sözde kodları şöyledir: 

Algoritma 

Graham’ın Tarama Algoritması 



11 

Girdi : Poligonun bütün noktalarını içeren noktalar küme listesi  

Çıktı : Poligonun dış bükey kabuğunda bulunan noktalarının küme listesi 

   min. y değerli köşeyi bul ve ilk köşe ile yer değiştir 

   Köşelerin damgası numaraları açılarına göre sıralanır 

   İlk üç köşeyi listeye ekle 

   for  w1=3 � n  { 

 Listedeki son 2 köşe ile w1 arasındaki açıyı bul 

 if açı 1800 büyük ise { 

  Listeden son köşeyi sil 

  w1 deki köşeyi listeye ekle 

 }   // if  sonu  (  açı > 1800   için ) 

   }   // Döngü  sonu  (  w1=3 � n   için)  

 

Şekil 1.12. Graham’ın Tarama Algoritması 



12 

Algoritmanın çalışma hızını bulmak istersek; min. y değerli köşenin 

bulunması için gerekli zaman miktarı O(n) türündendir. Ayrıca, köşelerin damga 

sıra numaranın min. y değerli köşe ile köşelerin açılarının küçükten büyüğe 

sıralanma hızı O(n.log n) dir. Çünkü, sıralama algoritmalarının en hızlısının hızı 

O(n.log n) dir. Köşeler sırası ile kullanılacağı için her bir köşe bir kere kullanılır. 

Dolayısı ile algoritmanın çalışma hızı O(n.log n) türündendir. 

1.3.1.3. Hızlı Kabuk Algoritması 

İlk önce düzlemdeki sınırlı sayıdaki noktalar kümesinin en küçük x değerli 

ve en büyük x değerli Pa, Pb gibi iki noktası bulunur. Bulunan Pa, Pb noktaları dış 

bükey kabuğun birer elemanı olarak kümeye eklenir. Bulunan Pa, Pb doğrularını 

birleştiren doğrunun sağ ve solunda bulunan noktalardan en uzak olan iki nokta 

daha bulunur ve kümeye eklenir. Bulunan dört nokta ile saat yönünün tersi yönde 

hareket ederek her doğrunun sağında kalan en uzak nokta bulunarak dış bükey 

kümeye eklenerek işleme devam edilir. Dış bölgede nokta kalmayacak şekilde 

işleme devam edilir ise elde edilen küme ile dış bükey kabuk bulunmuş olur 

(O’Rourke, sf:71) (Skiena). 

Hızlı Kabuk Algoritmasının sözde kodları şöyledir. 

Algoritma 

Hızlı Kabuk Algoritması 

Girdi : Poligonun bütün noktalarını içeren noktalar küme listesi ve doğruyu 

tanımlayan 2 adet nokta 

Çıktı : Poligonun dış bükey kabuğunda bulunan noktalarının küme listesi 

   function hizliKabuk(a, b, S) { 

if S boş küme  

return boş  

 else if S boş küme değil { 

  c = ab ye en uzak nokta 

  A kümesi = (a,c) doğrusunun sağında kalan noktalar  



13 

  B kümesi = (c,b) doğrusunun sağında kalan noktalar  

  return hizliKabuk(a,c,A) + c + hizliKabuk(c,b,B) 

 }  // else if sonu 

   }  // fonksiyon sonu 

Bu algoritma öz yinelemelidir.  

Eleman sayısı n olan S kümesi için algoritmanın çalışma hızını bulmak 

istersek; Kümenin uç noktaları olan x ve y uç noktalarının bulunması ve S 

kümesinin S1 ve S2 alt kümelerine ayrılması için gerekli zaman O(n) türündendir. x 

ve y noktalarını birleştiren doğru parçasına en uzak nokta c olsun. S1 kümesinin 

eleman sayısı α ve S2 kümesinin eleman sayısı β olsun. Bulunan c noktası S1 ve 

S2 alt kümelerine dahil olmadığı için α + β <= n – 1 dir, Bu arada c noktasının 

bulunması için gereken zaman miktarı O(n) türündendir. Kümenin tamamı için 

programın çalışma hızını T(n) ile tanımlarsak alt kümeler için hızı T(α ) ve T(β ) 

olarak tanımlayabiliriz. Bu durumda programın çalışma hızı T(n) =T(α)+O(n)+T(β) 

olur. Program öz yinelemeli çalıştığı için iki alt kümenin çalışması için T(α)+T(β) = 

O(log n) türündendir. Bu durumda T(n)=O(n.log n) olur. Yani, algoritmanın çalışma 

hızı O(n.log n) dir.  

Programın öz yinelemeli çalışmasından dolayı en kötü durumda n adet 

nokta için n adet yineleme çalışacağından programın çalışma hızı O(n2) bulunur 

(Bkz. Şekil 1.11.) (O’Rourke, sf:71). ■ 

1.3.2. Dış bükey kabuk ağ uygulaması 

Algoritmaların anlaşılabilir olması için Java applet hazırlanmıştır (Bkz. Şekil 

1.13.). Hazırlanan Java uygulamasında girişi yapılan noktaların dış bükey 

kabuğunun bulunması görselleştirilmiştir. Dış bükey kabuk bulma 

algoritmalarından Graham’ın Tarama Algoritması ve Paket Sarma Algoritmaları 

kullanılmıştır. Algoritmaların daha iyi kavranabilmesi amacıyla algoritmaları adım 

adım çalıştıran “Adım adım” düğmesi Java uygulamasına eklenmiştir. Ayrıca, 

“Canlandır” düğmesiyle de algoritmanın adım adım çalıştırılması sağlanmış ve her 

adımın daha iyi gözlemlenebilmesi için algoritmanın çalışması belli bir süre için 

durdurulmakta, süre bitiminde bir sonraki adıma otomatik geçilmektedir. Dış bükey 

kabuk bulunması ile canlandırma sona erdirilmektedir.  



14 

 

Şekil 1.13. Dış bükey kabuk bulma algoritmaları Java uygulaması 

Poligonları ve dış bükey kabuk bulma algoritmalarını inceledik. Şimdi, 

poligonların üçgenleştirilmesini inceleyeceğiz. 

1.4.  Üçgenleştirmeye Giriş 

Poligonlar bölünerek alt poligonlar elde edilebilir. Elde edilebilecek alt 

poligonların en küçüğü üçgendir. Başka biri ifade ile, poligon basitleştirmesi 

işleminde kullanılabilecek en küçük poligon üçgendir. Bu nedenle yapılan 

basitleştirme işlemine üçgenleştirme de denmektedir. Kare ya da dikdörtgen 

kullanılabilir, fakat bu nesnelerde köşegenleri yardımı ile iki adet üçgene 

bölünebilecektir. Daire kullanılmamasının sebebi ise çizimlerde daireler arasında 

kalacak boşlukların sebep olabileceği görüntüdeki kayıpları neden olarak 

gösterebiliriz. 

Öncelikler poligonlar ve köşegenleri ile ilgili bazı ön teoremleri inceleyip, 

üçgenleştirme kavramının nasıl ortaya çıktığını göreceğiz. 

Ön teorem : Bütün poligonlar en az bir adet dış bükey köşeye sahiptir 

(O’Rourke, sf:11). 



15 

Kanıt : Poligona ait noktalar kümesi P={P0, P1, .., Pn-1} olsun. 

Kümedeki noktalardan en küçük x değere sahip olan köşelerden her hangi bir 

köşesi Pi olsun. Seçilen Pi köşesine komşu köşeler Pa ve Pb olsun. Komşu 

köşelerinin x değerleri Pi nin x değerlerine eşit dahi olsa [PaPi] ile [PiPb] doğru 

parçalarının arasındaki açı 1800 den küçük ya da eşit olacaktır. Dolayısı ile, Pi 

köşesi dış bükeydir (Bkz. Şekil 1.14.) ((Bkz. Şekil 1.15.).♦ 

Ön teorem : Köşe sayısı dört ve dörtten fazla olan bütün poligonlar en az 

bir adet köşegene sahiptir (Meisters Lemma) (O’Rourke, sf:12). 

Kanıt : Poligona ait noktalar kümesi {P0, P1, .., Pn-1} olsun. Poligonun en 

küçük x değerine sahip dış bükey köşe Pi olsun. Seçilen Pi köşesine komşu 

köşeler Pa ve Pb olsun. [PaPb] doğru parçası eğer köşegen ise kanıt biter (Bkz. 

Şekil 1.14.). Eğer, çizilen [PaPb] doğrusu köşegen değil ise; PaPiPb üçgensel bölge 

içinde en az bir Pc gibi bir köşe noktası mevcuttur (Bkz. Şekil 1.15.). Bulunan Pc 

köşesi ile Pi köşesini birleştiren doğru köşegense kanıt biter. Çizilen [PcPi] doğrusu 

köşegen değilse PaPiPc üçgensel bölgesinde en az bir Pc1 gibi bir köşe ile PbPiPc 

üçgensel bölgesinde de aynı şekilde en az bir Pc2 gibi bir köşe bulunacaktır. 

Bulunan her bir köşeyle Pi köşesi birleştirilir ve köşegen olup olmadığı kontrol 

edilir. Süreç bu şekilde devam ettirilirse üçgensel bölgede kalan noktalardan biri 

mutlaka köşegen olacaktır. ♦ 

 

Şekil 1.14. Dış bükey köşe 

 



16 

 

Şekil 1.15. Dış bükey köşe 

Dikkat edilecek olunursa çizilen her bir köşegenle, poligonun iki alt poligona 

bölündüğü görülecektir. Elde edilen her alt poligon için benzer süreç 

uygulandığında yeni alt poligonlar elde edilecektir. Poligonların alt poligonları 

üretildikçe her bölünmede alt poligonların köşe sayısı daha da azalmaktadır. 

Oluşan alt poligonların köşe sayısı üç ise üçgen elde edilmiş olur ve daha fazla 

bölünme gerçekleşemez. 

1.4.1. Üçgenleştirme tanımı 

Düzlemde bütün poligonlar köşegenleri yardımıyla üçgenlere bölünebilir ve 

bu işleme poligon üçgenleştirmesi denir.  

Ön teorem : Kenar sayısı n adet olan dış bükey poligonlar her hangi bir 

köşesinden çizilecek köşegenleri yardımıyla (n – 2) adet üçgene bölünebilir 

(Vlasic, Sf:4)(Suri). 

Kanıt : Dış bükey poligonun her hangi bir köşesi seçilir ve seçilen köşeyle 

kalan (n – 1) köşeye (n – 1) adet doğru çizilir (Bkz. Şekil 1.16.). Doğrulardan iki 

adedi seçili noktaya komşu olan iki nokta ile çizildiği için kenar doğrusudur ve iki 

adet kenar doğrusu hariç tutulursa (n – 3) adet köşegen elde edilmiş olur. 

Köşegen sayısından bir fazla üçgen oluşacağı için (n–2) adet üçgen elde edilir. ♦ 

Dış bükey poligonun üçgenleştirmesinin çok kolay olduğu açıktır. Dış bükey 

olmayan poligonların üçgenleştirilmesi içinde benzer kurallar kullanılacak olup, 

çizilen köşegenlerin kenarları kesmemesi ya da köşegenin poligonun dış 

bölgesinde kalıp kalmadığına dikkat edilmelidir. 



17 

 

Şekil 1.16. Dış bükey poligonun köşegenleri 

1.4.2. Üçgenleştirme teoremi 

Bütün poligonlar köşegenleri sayesinde üçgenlerine ayrılabilirdir (O’Rourke, 

sf:12). 

Kanıt: Poligona ait noktalar kümesi {P0, P1, .., Pn-1} olsun. Köşe sayısı 

üç ise kanıt aşikardır. Köşe sayısı dört ise karşılıklı iki köşeden çizilebilecek iki 

doğrudan en az bir tanesi köşegendir ve dörtgeni iki üçgene böler. Köşe sayısı 

dörtten fazla ise; en az bir köşegene sahip olduğunu kanıtlanmıştı. Çizilen 

köşegen ile poligon iki alt poligona bölünür. Oluşan her alt poligonun da en az bir 

köşegene sahip olduğu dikkate alınırsa alt poligonlara ait yeni köşegenler ve yeni 

alt poligonlar elde edileceği görülecektir. Oluşan her bir alt poligonun köşe sayısı 

üç adet oluncaya dek bölünme işlemine devam edilirse köşe sayısı üçten büyük 

olan poligon kalmayacaktır. Sonuç olarak, poligon üçgenlerine bölünmüş 

olacaktır.♦ 

Ön Teorem : Köşe sayısı n ≥ 4 olan bir poligon (n – 3) köşegen ile (n – 

2) üçgene bölünür (O’Rourke, sf:12). 

Kanıt : Poligona ait noktalar kümesi {P0, P1, .., Pk-1} olsun. Bütün 

poligonların en az bir adet köşegene sahip olduğunu biliyoruz. Çizilen köşegen ile 

poligon, köşe sayıları k1≥3 ve k2≥3 olmak üzere iki alt poligona bölünmüş olur. 

Çizilen köşegenin iki köşe noktasının her iki poligonda da olacağı dikkate 

alınmalıdır. Bu durumda k1 + k2 = k + 2 olacaktır. 

Kanıtı poligonun köşe sayısı üzerinden tümevarım yöntemiyle yapalım. 



18 

Eğer, n=4 için köşegen sayısı n–3=1 ve üçgen sayısı n–2=2 olacağından 

önerme doğrudur. Varsayalım ki, eğer n=k1 ve n=k2 için Ön teorem doğru olsun. 

Bu durumda n=k için doğru olup olmadığını kontrol etmemiz yeterli olacaktır. 

Varsayımımıza göre n=k1 için alt poligon (k1 – 3) köşegen ile (k1 – 2) 

üçgene bölünür ve n=k2 için alt poligon (k2 – 3) köşegen ile (k2 – 2) üçgene 

bölünür. 

İşlem n=k için doğru olup olmadığını kontrol edelim. Poligonun çizilen bir 

köşegen yardımıyla iki alt poligonun bölündüğünü ve iki köşenin her iki alt 

poligonda da ortak köşeler olduğunu ve dolayısıyla iki köşeyi birleştiren doğru 

parçası da ortak kenar olduğunu belirtmiştik. Şimdi, iki alt poligonun birleşiminden 

oluşacak poligonun köşe sayılarını inceleyelim. Ortak kenarın yeni poligonda 

köşegen olacağını da göz önüne alırsak elde edilecek köşegen sayısı şu şekilde 

bulunur: 

 (k1 – 3) + (k2 – 3) + 1  = (k1 + k2) – 5  

= ( k + 2 ) – 5  

= k – 3  

= n – 3 adet köşegen bulunur. 

Yine aynı şekilde, iki poligonun birleşiminden meydana gelen yeni 

poligonun oluşan üçgen sayısı ise; 

 (k1 – 2) + (k2 – 2) = (k1 + k2) – 4  

= ( k + 2 ) – 4  

= k – 2  

= n – 2 adet üçgendir (Kreveld, sf:47). ♦ 

Sonuç : Nokta sayısı n olan poligonun iç açılarının toplamı ( )π2−n  dir. 



19 

Kanıt : Son ifade edilen Ön Teorem’e göre n adet köşeden oluşan poligon 

( )2−n  adet üçgene bölünebilir. Her üçgenin iç açısı π  olduğuna göre ( )π2−n  

sonucu elde edilir (O’Rourke, sf:14). ♦ 

Kullanılacak köşegen hem poligona ait kenar doğrularını kesmemeli hem de 

tamamen poligonun iç bölgesinde kalmalıdır. Şekil 1.17’de görüleceği üzere çizilen 

[ac] köşegeni ile Tabc üçgeni oluşturulmakta, fakat Tabc üçgeni poligonun iç 

bölgesinde kalmamaktadır. Dolayısı ile [ac] köşegeni geçersiz köşegendir. 

 

Şekil 1.17.Geçerli ve geçersiz köşegenler 

Benzer şekilde, Şekil 1.18.’de görülebileceği gibi altıncı ve sekizinci köşeleri 

birleştiren köşegen yedinci köşe hariç tutularak oluşturulan poligonun içinde 

kalırken Şekil 1.19.’de altıncı ve sekizinci köşeleri birleştiren köşegen yedinci köşe 

hariç tutularak oluşturulan poligonun dışında kalmaktadır. Uygulamaları kodlarken 

önce köşegenin poligon içinde kalıp kalmadığı kontrol edilmeli ve sonra kenar 

doğrularını kesip kesmediği kontrol edilmelidir. Köşegenin poligona göre 

durumunu analiz etmek için şu kontrol yapılabilir: köşegen çizildiğinde oluşacak 

üçgenin üçüncü köşe noktası poligondan hariç tutularak oluşturulacak yeni 

poligonun üçüncü köşeyi kapsayıp kapsamadığı kontrol edilebilir. Yeni poligon 

üçüncü noktayı kapsamıyorsa üçüncü köşe dış bükey köşedir ve köşegen 

poligonun iç bölgesinde kalıyordur (Bkz. Şekil 1.18.). Eğer, yeni poligon üçüncü 

noktayı kapsıyorsa üçüncü köşe iç bükey köşedir ve köşegen poligonun dış 

bölgesinde kalıyordur (Bkz. Şekil 1.19.). Yapılacak bu kontroller, köşegenin diğer 

kenar çizgilerinin kesip kesmediğinin kontrolü ile tamamlanır. 



20 

 

Şekil 1.18. Geçerli köşegen 

 

 

Şekil 1.19. Geçersiz köşegen 

Ayrıca, Şekil 1.18.’de görüleceği üzere, bir birine komşu üç köşeden 

ortadaki köşe dış bükey ise köşegen çizilerek poligon iki alt poligona bölünür. Köşe 

sayısı üç olan alt poligonun üçgen olacağına dikkat edilecek olunursa, poligonda 

her üç sıralı köşe için orta köşe dış bükey olmak ve iki köşeyi birleştiren köşegen 

kenar doğrularını kesmemek şartı ile biri üçgen olmak üzere poligon iki alt 

poligona bölünür. Süreç en son kalan alt poligonun köşe sayısı üç kalıncaya kadar 

devam ettirilirse poligon üçgenleştirilmiş olur. 

Köşegenler atılarak yapılacak üçgenleştirme yönteminin inceleyelim. 

1.5. Üçgenleştirme Algoritmaları 

1.5.1. Sınırları Bölme Algoritması 

Bütün poligonlar köşegenleri aracılığı ile üçgenler kopartılarak 

üçgenleştirilebilir (Mukherjee, sf:12).  



21 

Köşe sayısı N olan bir poligonun damga sırası ile komşu üç nokta orta 

nokta dış bükey olmak şartı ile köşegen kopartılabiliniyorsa poligondan üç 

noktanın oluşturduğu üçgen kopartılır. Şekil 1.20’de görüleceği üzere [p1p3] 

köşegeni ve T123 üçgeni poligon dışında kaldığı için p2, p3 ve p4 köşeleri incelenir. 

[p2p4] köşegeni geçerli olduğu için T234 üçgeni atılabilir. T234 üçgeni atılınca p1, p2 

ve p4 köşelerine ait [p1p4] köşegeni geçerli hale gelir ve [p1p4] köşegeni ikinci 

köşegen olarak atılabilir. Yani, T124 üçgeni atılmış olur. Şekil 1.20’de köşegenlere 

verilen damga numarası köşegenlerin poligondan atılış sırasını ifade etmektedir 

(Stewart). 

 

Şekil 1.20. Sınırları Bölme Algoritması 

Aslında, dikkat edilecek olunur ise, T234 üçgeni poligondan atılırken 

poligondan sadece p3 köşesi atılmış gibi olmaktadır. Aynı şekilde T124 üçgeni 

atılırken poligondan sadece p2 köşesi atılmış olmaktadır. 

Köşegenleri atma yöntemi ile yapılan üçgenleştirmenin sözde kodlaması 

şöyledir. 



22 

Algoritma 

Sınırları Bölme Algoritması 

Girdi : Damga sıralı poligon listesi  

Çıktı : Üç noktalı üçgenler listesi  

   if ( n > 3 ) { 

p1, p2, kuyruğa ekle 

while |P|≥3 do { 

   pj kuyruğa ekle  // sıradaki noktayı ekle (j≥3) 

   while kosegenmi (P, pi-2 pi ) ise {  

  (pi-2 , pi-1 , pi ) üçgeni oluştur 

  pi-1 köşesini kuyruktan çıkart 

  pi-1 köşesini poligondan çıkart 

   } // while döngü sonu ( kosegenMi (P, pi-2 pi ) ) 

} // while döngü sonu ( |P|≥3 ) 

(pi, p2, p3) üçgeni oluştur // kuyrukta kalan son 3 köşe 

   } // if sonu 

Sınırları Bölme Algoritması için bir uygulama örneği Şekil 1.20’de 

görülmektedir.  

Köşe sayısı n olan bir poligonda noktaların kontrol edilmesi için gerekli 

zaman miktarı O(n) türündendir. Ayrıca, seçilen köşegenin poligonun kenarlarını 

kesip kesmediğinin kontrol edilmesi için gerekli zaman miktarı da O(n) türündendir. 

Noktaların kuyruğa atılması, kuyruktan alınması için gerekli zaman miktarı da O(n) 

türündendir. Sonuç olarak, programın çalışması için gerekli zaman miktarı O(n3) 

türündendir.  

Köşegenlerin poligonun kenar çizgilerini kesip kesmediğinin kontrol edilmesi 

gerektiği belirtilmiştir. Bu kontrolün yapılması için gerekli algoritma şu şekilde 

kodlanır. 



23 

Algoritma 

Girdi: P poligon listesi ile iki adet poligon noktası 

Çıktı: yanlış/doğru 

kosegenmi (P, pi-2 , pi ) { 

    for j = 1 �  N  { 

        if ( pj ≠ pi ve pj ≠ pi-2 )  

           if kesiyor((pj, pj-1 ), (pi-2 , pi )) 

         köşegen değil 

    }  // for döngü sonu 

}   

Basit poligon için üçgenleştirme, poligonu maksimum sayıda birbirini 

kesişmeyen köşegenler ile bölünmesidir. Genel olarak üçgenleştirme bir tek 

değildir. 

1.5.2. Sınırları Bölme Algoritması ağ uygulaması 

Hazırlanmış olan ağ uygulamasında nokta giriş işlemi ilk girilen noktanın 

farenin imleci vasıtasıyla tekrar tıklanması ile sona erer. “Üçgenleri Göster” 

seçeneği ile üçgenleştirme sonucu görselleştirilir (Bkz. Şekil 1.21.). “Köşegen 

Göster” seçeneğiyle ise köşegenlerin atılış sırasını gösterir. Ayrıca, uygulamaya 

eklenen “Adım adım” ve “Canlandır” düğmeleri ile algoritmanın çalışma aşamaları 

adım adım görselleştirilmiş, bu sayede algoritmanın çalışma mantığının daha iyi 

kavranması hedeflenmiştir.  

Teorem : Tüm basit poligonlar üçgenleştirilebilir ve her hangi bir n adet 

köşeden oluşan basit poligon üçgenleştirilmesinden (n – 2) adet üçgen elde 

edilir. 

Kanıt : Bir üçgen üç adet köşeden oluştuğu için n>3 olduğunu kabul 

edebiliriz. Varsayalım ki P poligonu n adet köşe noktasından meydana gelsin. v 

köşesi en küçük x değerli nokta olsun. w ve u köşeleri de v köşesine komşu 

köşeler olsun. uw doğru parçası poligon içinde kalıyorsa uw köşegeni poligonun 



24 

bir köşegenidir (Bkz. Şekil 1.22.). uw doğru parçası poligon içinde kalmıyorsa v, w, 

u üçgen bölgesi içerisinde en az bir köşe vardır. v' köşesi v, w, u üçgen bölgesinde 

kalan ve uw köşegenine en uzak köşe nokta olsun. vv' doğru parçası poligonu 

kesmez. Sonuç olarak vv' doğru parçası köşegendir (Bkz. Şekil 1.23.). 

 

Şekil 1.21. Sınırları Bölme Algoritması ağ uygulaması 

Her poligon en az bir adet köşegene sahiptir ve her bir köşegen poligonu iki 

alt poligona böler. Yeni oluşan alt poligonlara P1 ve P2 ve köşe sayılarına m1 ve m2 

dersek, m1<n ve m2<n olur ve köşegene ait köşeler her iki alt poligonda da var 

olduğu için (iki köşe tekrarlandığı için ) m1+ m2 = n + 2 elde edilir. 

Ayrıca, varsayıma göre P1
 poligonu (m1 – 2) ve P2

 poligonu (m2 – 2) 

üçgenden meydan gelir.  

Alt poligonları meydana getiren üçgenlerin sayısı  

(m1
 – 2) + (m2

 – 2) = (m1+m2
 – 4) = (n+2 – 4) = (n – 2) olarak 

bulunur. ♦ (Ottmann, Sf:9,10,11) 



25 

Poligondan atılacak köşenin dış bükey olması gerekmektedir. Şekil 1.23’te 

görüleceği üzere damga numarası p2 olan köşe iç bükeydir. Bir sonraki köşe olan 

p3 damga numaralı köşe ise dış bükeydir. [p2p4] köşegeni geçerli köşegen olup 

T234 üçgeni atılabilir. T234 üçgenini atmak için p3 köşesinin atılmasının yeterli 

olduğunu belirtmiştik. Atılan p3 köşesi ile p2  köşesinin dış bükey olacağı 

görülecektir. Yani, dış bükey köşeler atıldıkça iç bükey köşeler de dış bükey 

köşeye dönüşebilmektedir.  Özetle, poligonun damga sırasına göre dış bükey olan 

köşeleri atılarak üçgenleştirilebilir İç bükey olduğu için atılamayan köşeler, atılan 

köşeler ile dış bükey olup olmadıkları kontrol edilip, dış bükeye dönüşen köşeler 

de atılır. Bu yöntemle bütün köşeler atılabilir (Jia).  

 

Şekil 1.22. Uç noktaya göre geçerli köşegen 

 

 

Şekil 1.23. Uç noktaya göre geçersiz köşegen 



26 

Aynı şekilde, poligon dış bükeyse üçgenleştirme daha kolay ve hızlı 

olacaktır. Çünkü, dış bükey poligonda her hangi bir köşeden komşu köşelere 

çizilecek köşegenlerle kolayca üçgenleştirme elde edileceğinden dış bükey 

poligonlar için üçgenleştirme daha hızlıdır. Aynı şekilde, monoton poligonların da 

üçgenleştirilmesi monoton olmayan poligonlara göre daha kolay ve hızlı olacaktır. 

Bir L doğrusu poligonu iki alt poligona bölsün. L doğrusuna dik olacak 

şekilde çizilecek L` gibi doğrular alt poligonları sadece tek bir noktada kesiyorsa P 

poligonu L çizgisine göre monotondur ya da L-monotondur denir (Bkz. Şekil 1.24.). 

 

Şekil 1.24. l-Monoton 

Aynı şekilde, y eksenine paralel olacak şekilde bir d doğrusuyla poligon iki 

zincire parçalansın. Her bir zincir d doğrusuna dik çizilecek bir başka doğruyla tek 

bir noktada kesişiyorsa poligon d doğrusuna göre y-monotondur ya da monotondur 

denir (Bkz. Şekil 1.25.) (Shewchuk, sf:9)(D'Hondt).  

 

Şekil 1.25. y-Monoton 



27 

Ayrıca, poligonu hiçbir doğruya göre monoton yapılamıyorsa poligon 

monoton değildir (Bkz. Şekil 1.26.).  

 

Şekil 1.26. Hiçbir doğruya göre monoton olmayan poligon 

1.5.3. Süpürme yöntemi ile monoton poligon üçgenleştirmesi 

Monoton poligonları dış bükey poligonlar kadar kolay olmasa da şekil itibari 

ile düzgün ya da sade oldukları için üçgenleştirilmeleri karmaşık poligonlara göre 

daha kolaydır. Burada uygulanan üçgenleştirme mantığı şöyledir: Poligon y-

monotonsa y değeri büyük olan iki köşe kuyruğa atılır. Sonra, y değeri büyük 

olandan y değeri küçük olana doğru poligonun iki zinciri üzerinde ilerlenir. Her bir 

nokta için kuyruğa son konmuş olan nokta ile üzerinde bulunan noktanın aynı 

zincir üzerinde olup olmadığı kontrol edilir (Bkz. Şekil 1.27.a).(Quadros)  

i. Noktalar aynı zincir üzerindeyseler kuyruktaki sondan ikinci nokta ile 

üzerinde bulunulan noktanın birleştirilmesiyle çizilecek köşegenin geçerli 

olup olmadığı kontrol edilir. Köşegen poligon dışında kalıyorsa geçersizdir. 

Köşegen geçersizse üzerinde bulunulan nokta kuyruğa son nokta olarak 

atılır ve bir sonraki noktaya geçilir. Köşegen geçerliyse kuyruktaki son nokta 

kopartılarak ve üzerinde bulunulan nokta, kopartılan nokta ve kuyruktaki 

son nokta ile üçgenleştirilir. Kuyruktaki nokta sayısı birden fazla ve üzerinde 

bulunulan nokta ile kuyruktaki son noktayı birleştiren köşegen geçerli 

olduğu sürece süreç tekrarlanır (Bkz Şekil 1.27.h). Süreç bittiğinde üzerinde 

bulunulan nokta kuyruğa son nokta olarak atılır ve bir sonraki noktaya 

geçilir. 

ii. Noktalar farklı zincir üzerindeyseler üzerinde bulunulan nokta ile kuyruktaki 

son noktadan bir önceki noktayı birleştiren köşegen geçerli ise üzerinde 



28 

bulunulan nokta, kuyruktaki son nokta ve kuyruktaki son noktadan bir 

önceki nokta birleştirilerek üçgenleştirilir, kuyruktaki son noktadan bir önceki 

nokta kuyruktan atılır. Kuyrukta bir nokta kalıncaya kadar süreç bu şekilde 

devam ettirilir (Bkz. Şekil 1.27.c ve d). Süreç sonunda üzerinde bulunulan 

nokta kuyruğa son nokta olacak şekilde atılır. 

Son aşamada kuyrukta kalacak iki nokta ile en küçük y değerli son nokta 

birleştirilerek üçgenleştirilir.  

 

Şekil 1.27. Süpürme yöntemi ile üçgenleştirme 

Benzer şekilde, poligon x-monotonsa x değeri küçük olan köşeden 

başlanarak x değeri büyük olan köşeye doğru ilerlenir. Noktaların ilk ikisi kuyruğa 

atılır. Sonra, gelecek noktaların aynı zincir üzerinde olup olmadığı kontrol edilir. 

Aynı zincir üzerinde ise köşegenin geçerli olup olmadığı kontrol edilir. Her işlemde 

kullanılmayan noktalar kuyruğa atılıp, üçgenleştirilirken alınarak süreç devam 

ettirilir. Poligon boyunca bir kere gidilip, kalan poligon üzerinden işlem yapıldığı 

için algoritmanın çalışması hızlıdır (Shewchuk) (Mukherjee) (Ottmann)(Garey). 



29 

Algoritma 

Süpürme Yöntemi ile Üçgenleştirme Algoritması 

Girdi : Damga sıralı P poligon listesi 

Çıktı : Üç noktalı üçgenler listesi 

   Liste y değerine göre azalan sıra sıralanır. 

   En büyük y değerli köşe kuyruğa at//S.push(u1);S.push(u2); 

   for j = 3 � n-1 

     uj köşesini işleme koy 

     if (uj S kuyruğundaki 2 köşe ile farklı zincirde ise){ 

       S teki köşeleri çıkart  

       Çıkan 2 köşe ile uj köşesi birleştirilir  

  //{ Yani, v=S.pop(); diagonal(v,uj); } 

       uj-1 ve uj köşelerini S kuyruğuna koy  

       //{ Yani, S.push(uj-1 ); ve S.push(uj ); } 

     } else { // aynı zincirde ise  

        while (S’ten üsten koparın ile uj köşegeni  

     P de kalıyor ise ) { 

               //{Yani, while kosegenmi (P, S.top, uj) in P}   

             kosegenmi (P, S.top, uj);  

             S.pop();  // en üst köşe kopartılır 

        }  // while döngü sonu 

     } // else if sonu 

     S.push(sonraki köşe); // S kuyruğuna eklenir 

     S.push(uj ); // S kuyruğuna eklenir 

     Son kalan üç noktayı al 

   } // for döngü sonu 



30 

Algoritmanın çalışma hızını inceleyelim. 

Köşelerin sıralanması O(n) zamanda yapılır. Sıralanmış liste üzerinde 

hareket ederken her bir köşe kuyruğa bir kere atılmakta ve kuyruktaki noktalara 

kuyruktan bir kere koparılmakta ve bir daha kuyruğa geri konmamaktadır. 

Dolayısıyla algoritmanın çalışma hızı O(n) türündendir (Jia). 

Ayrıca, en büyük y değerli köşe bulunurken en büyük y değerine sahip köşe 

sayısı bir den fazla olabilir. Bu durumda y değeri en büyük olan köşeler arasında x 

değeri en büyük olan seçilir. 

1.5.4. Süpürme yöntemi ile üçgenleştirme ağ uygulaması 

Hazırlanmış olan ağ uygulamasında nokta giriş işlemi ilk girilen noktanın 

farenin imleci vasıtasıyla tekrar tıklanması ile sona erer. “Üçgen” seçeneği ile 

süpürme yöntemi ile monoton üçgenleştirme algoritması çalıştırılır ve 

üçgenleştirme sonucu oluşan üçgenler görüntülenir (Bkz. Şekil 1.28.). Bu Java 

applet’i x-monoton ve y-monoton poligonların üçgenleştirilmesi amacıyla 

hazırlanmıştır. 



31 

 

Şekil 1.28. Süpürme yöntemi ile üçgenleştirme ağ uygulaması 



32 

2. VORONOI ÇİZGELERİ VE DELAUNAY ÜÇGENLEŞTİRMESİ 

Bir şehirde, bir bölgede hizmet verecek personel için görev dağılımı 

yapıldığını kabul edelim. Bir örnek ile ifade etmek istersek, Ankara’da su 

sayaçlarını okuyan şirket, okuma memurlarının hangi adreslere gideceğinin planını 

yapıp personele bildirir. Su sayaçları okunacağı zaman her bir personel sadece 

kendisine ait bölge içerisindeki adreslere, binalara uğrar ve okuma işini yapar. 

Hiçbir personel kendi bölgesi dışında bir bölgeye geçmez. Bölgenin 

belirlenmesinde iş performansın en iyi olması hedeflenir. Ayrıca, görev karmaşası 

olmaması için her bir alt bölgede ya da hücrede sadece ve sadece bir personel 

istihdam edilmektedir.  

Şehirlerde elektrik dağıtımını yapacak trafoların şehir bölgesinde 

yerleştirilmesi ve her bir trafonun içinde bulunduğu hücre ya da alt bölgede hizmet 

vermesi, su pompalarının şehir üzerinde dağılımları, itfaiye hizmetlerinin 

dağılımları, .. gibi. Bu türden örnekleri geliştirebiliriz ( D'Hondt2). Dikkat edilecek 

olunursa, bölge hücrelere bölünmekte ve her bir hücreye sadece bir eleman 

yerleştirilmektedir.  

 

Şekil 2.1. Voronoi çizgeleri 

Düzlemde yer alan sonlu nokta kümesine ait herhangi bir noktaya, 

kümedeki diğer noktalardan daha yakın konumda bulunan düzlem noktalarının 

geometrik yerine, o noktanın Voronoi Poligonu denilmektedir. Kümedeki tüm 

noktaların Voronoi Poligonların birleşimi, o kümenin Voronoi çizgesini oluşturur. 

(Yanalak,1997). 

Ayrıca, üçgenleştirmeden elde edilen üçgenlerin üç köşesinden geçecek 

şekilde çizilecek çevrimsel çemberlerin içerisinde hiçbir köşe kalmayacak şekilde 



33 

tanımlanmış ise bu üçgenleştirmeye Delaunay üçgenleştirmesi denir (Bkz. Şekil 

2.2.).  

 

Şekil 2.2. Voronoi çizgeleri ve Delaunay üçgenleştirmesi 

Matematiksel olarak Voronoi çizgeleri ve Delaunay üçgenleştirmesi 

birbirlerini tamamlar. Yani, Voronoi çizgelerinden Delaunay üçgenleştirmesi elde 

edilebileceği gibi Delaunay üçgenleştirmesinde de Voronoi çizgeleri elde edilebilir. 

Herhangi bir T Delaunay üçgeninin üç köşesi üç farklı Voronoi bölgesi içinde 

kalmaktadır. Aynı zamanda, T Delaunay üçgeninin çevrimsel çemberinin merkezi 

Voronoi çizgelerinin köşe noktalarını tanımlar (Bildirici).  

Voronoi düzleminde pi noktasını kapsayan hücreyi ifade etmek için Vor(pi) 

gösterimi kullanılacaktır. Düzlemi kaplayan Vor(pi)’lerin birleşimi ise Vor(P) ile 

gösterilir. 

Noktaları kapsayan hücrelerin hepsi dış bükey poligonlardır. 

Basit bir örnek olarak iki noktanın Voronoi çizgisini inceleyelim (Bkz. Şekil 

2.3.). İki noktayı birleştiren doğru parçasının orta noktasından geçen doğru 

Voronoi çizgisini verir. Hücrelerden p noktasını kapsayan hücre Vor(p) ve q 

noktasını kapsayan hücre ise Vor(q) ile ifade edilir. Üçüncü nokta eklendiğinde üç 

noktayı birleştiren doğru parçalarının orta noktasından geçen doğruların kesişimi 

ile orta noktalara çizilen doğrularla üç noktanın Voronoi çizgesi elde edilir (Bkz. 

Şekil 2.4.).  



34 

 

Şekil 2.3. İki Noktanın Voronoi Çizgesi 

 

 

Şekil 2.4. Üç Noktanın Voronoi Çizgesi 

Hücrelerin her hangi biri içerisinde alınacak q gibi bir noktaya en yakın 

nokta, hücreye adını veren noktadır. Başka bir ifade, Vor(pi) hücresinin iç 

bölgesinde alınacak her hangi bir q noktasına düzlemde en yakın nokta pi 

noktasıdır (Bkz. Şekil 2.5.). (UCSB_Web, sf:5,6) Başka bir ifade ile, her hangi bir q 

noktası Vor(pi) hücresi içende olması için gerekli ve yeterli koşul her pj ∈ P için 

|q-pi| < |q-pj| ve i ≠ j olmasıdır. (Kreveld, sf:147) (Miu) 



35 

 

Şekil 2.5. Voronoi Çizgeleri 

Voronoi hücrelerini daha ayrıntı inceleyelim. Düzlemdeki p ve q gibi iki 

noktayı birleştiren doğrunun orta noktasından geçen dik doğru bölgeyi iki yarı 

bölgeye böler (Bkz. Şekil 2.6.a). Bu yarı bölgeleri p noktasını kapsayan bölge için 

h(p,q) ile ve q noktasını kapsayan bölge için h(q,p) ile gösterelim. Voronoi 

tanımdaki gibi h(p,q) bölgesinde alınan r gibi bir noktanın p noktasına olan uzaklığı 

q noktasına olan uzaklığından daha azdır. Üçüncü nokta ile oluşan yarı bölgeler ve 

kesişimleri Şekil 2.6.b’de görülmektedir. Dört noktanın yarı bölgelerinin kesişimi ise 

Şekil 2.6.c’de görülmektedir. Dikkat edilirse, h(q,p) ifadesi p noktasına komşu olan 

q noktasının içinde bulunduğu yarı bölge ifade edilmektedir. İfadeyi genellersek, 

h(pi,pj) ifadesi ile pi yarı bölgedeki noktayı ve pj komşu noktaları ifade edilir Her pi 

noktasının pj noktası gibi komşu nokta sayısı kadar yarı bölgesi mevcuttur ve bu 

bölgelerin kesişimi pi voronoi hücresini verir (Bkz. Şekil 2.6.c). Özetle, 

I
ijnj

jii pphpVor
≠≤≤

=
,1

)()(  dir (Mount). 

   
- a - - b - - c - 

Şekil 2.6. Voronoi hücre 



36 

Görüleceği üzere, n adet noktadan oluşan bir bölgede Vor(pi) hücresi için i≠j 

olduğu için en fazla (n – 1) adet yarı bölgenin kesişiminden oluşabilir. 

Teorem : P düzlemi n farklı noktadan oluşan bir düzlem olsun. Eğer, 

düzlemdeki bütün noktalar aynı doğrultu üzerindeyse Vor(P) çizgesi (n – 1) adet 

paralel doğru ve n adet hücreden oluşur. Düzlemdeki noktalar aynı doğrultu 

üzerinde değilse Vor(P) bağlantılıdır ve kenar çizgileri doğru parçaları ya da bir 

ucu sonsuza giden yarı doğrulardan oluşur (Kreveld, sf:147). 

Kanıt : Bütün noktalar aynı doğrultu üzerindeyse komşu noktaları birleştiren 

doğruların orta noktalarından geçen dik doğrular Vor(P)’yi meydana getir. 

Vor(p)’nin (n – 1) adet paralel doğrudan oluşacağı aşikardır (Bkz. Şekil 2.7.). 

 

Şekil 2.7. Aynı doğrultudaki noktaların Voronoi Çizgeleri 

Varsayalım ki, bütün noktalar aynı doğrultu üzerinde olmasın. Önce kenar 

çizgilerinin doğru parçaları ya da bir ucu sonsuza giden yarı doğrulardan 

oluştuğunu gösterelim. P düzlemini kesen her iki ucu sonsuza giden bir doğru 

alalım ve bu e doğrusu Vor(pi) ve Vor(pj) Voronoi hücrelerinin ortak kenar çizgisi 

üzerinden geçsin (Bkz. Şekil 2.8.). Ayrıca, düzlemdeki noktalardan pi ve pj ile aynı 

doğrultu da olmayan komşu noktalardan bir nokta pk alalım. pj ile pk noktalarını 

birleştirecek doğru parçasının ortasından ve doğru parçasına dik geçen doğru e 

doğrusuna paralel olamayacağından e doğrusu ile bir noktada kesişecektir. 

Kesişim noktası e doğrusunu iki yarı doğruya böler ve bu parçalardan biri h(pk,pj) 

yarı bölgesi içerisinde, diğeri ise h(pj,pk) yarı bölgesi içerisinde kalacaktır. h(pk,pj) 

yarı bölgesinde kalan doğru Vor(pj) hücresinin sınır çizgisi olamayacağı anlamına 

gelmektedir (Bkz. Şekil 2.8.). Yani, e doğrunun tamamı değil, sadece h(pj,pk) yarı 



37 

bölgesinde kalan e yarı doğrusu hücrenin kenar çizgisi olabilmektedir. Eğer, e yarı 

doğrusunu kesecek şekilde ikinci bir yarı doğru yoksa e doğrusunun tamamı 

Voronoi hücrenin kenar çizgisi olabilecektir. Eğer, e yarı doğrusunu kesecek 

şekilde pm gibi dördüncü bir nokta ile pj noktalarını ayıran ikinci bir yarı doğru varsa 

e doğrusuyla arada kalan doğru parçası pj’nin bir kenarını oluşturacaktır. 

 

Şekil 2.8. Voronoi hücre 

Vor(P) bağlantılı olduğunu gösterirsek kanıt biter. Vor(pi)’lerin birleşimi 

Vor(P)’yi oluşturmaktadır ve Vor(pi) hücreleri dış bükey poligonlardır. Eğer, Vor(pi) 

iki paralel kenardan oluşsa idi sorun olabilirdi. Fakat, biz aynı doğrultuda olmayan 

noktaların yarı doğrularının birbirini kestiğini ve bu durumda tam doğrunun Voronoi 

hücrelerinin kenar çizgisi olamayacağını gösterdik. ♦ 

Voronoi çizgelerini komşu noktaları birleştiren doğru parçasına dik ve 

doğrunun orta noktasından geçen doğru olarak belirmiştik. Şekil 2.6.-c’de 

görüleceği üzere, hücreye ait noktanın sadece üç adet komşu noktası vardır. Bu 

noktaları birleştiren doğrulara dik ve orta noktalarından geçen çizgilerin kesişimi ile 

hücrenin kenar çizgileri oluşur. Kesişim noktaları ise Voronoi hücresinin Voronoi 

köşelerini oluşturur. Düzlemdeki n adet noktanın Şekil 2.9’deki gibi düzlemde 

bulunduğunu varsayalım. Görüleceği üzere, orta bölgedeki nokta gibi bir noktanın 

çevresi (n – 1) adet nokta çevrili olabilir. Bu durumda noktaları birleştiren 

doğrulara alınacak orta dik doğruların sayısı en fazla (n – 1) adet olabilir. 

Teorem : Düzlemde bulunan n adet noktanın Voronoi çizgelerinin kenar 

sayısı en fazla (3n-6) ve köşe sayısı en fazla (2n-5) olabilir (Kreveld, sf:146). 



38 

Kanıt : Eğer düzlemdeki noktalar aynı doğrultu üzerinde ise; n adet 

noktanın Voronoi çizgeleri birbirlerine paralel olacak şekildedir ve kenar sayısı (n – 

1) adettir ve köşe mevcut değildir (Bkz. Şekil 2.7.).Dolayısıyla, n>3 olmak şartı ile 

(n - 1) ≤ (3n - 6) olacağı açıktır.  

 

Şekil 2.9. Voronoi Çizgeleri 

Varsayalım ki, düzlemdeki noktalar aynı doğrultu üzerinde olmasın. Kanıt 

için Euler formülünü kullanacağız. Yüzey sayısı mf, eğri sayısı me ve nokta sayısı 

mv olan bağlantı düzlemsel çizgesi için Euler formülü ile mv – me + mf = 2 elde 

edilir. Bu formülü Voronoi çizgelerine direkt uygulayamayız. Çünkü, Voronoi 

çizgelerinde doğru parçalarının yanında ucu sonsuza giden yarı doğrular da 

mevcuttur. Bu durumu ortadan kaldırmak için düzleme ekstra bir Voronoi köşe 

ekleyip ucu sonsuza giden yarı doğruların sonsuza giden uçlarını eklenen köşeye 

bağlanır. Bu durumda Voronoi çizgeleri bağlantılı düzlemsel çizge özelliğine 

kavuşacak olup artık Euler formülünü kullanabiliriz. Vor(P)’deki köşe sayısına v ve 

kenar sayısına e diyelim. Düzleme eklenen ekstra köşe ile köşe sayısı v + 1 

olacağına da dikkat edersek Euler formülünü (v + 1) – e + n = 2 olacak 

şekilde uyarlayabiliriz. Köşeye değen doğru parçasının sayısını ifade etmek için 

deg(v) ifadesini kullanırsak her köşe en az üç kenarın kesişiminden oluştuğu için 

deg(v)≥3 tür. Ayrıca, her kenar iki adet köşeden oluştuğu için bütün köşelerin 

derecelerinin toplamı kenar sayısının iki katı kadardır. Yani,  

2)deg(
)(

=∑
∈ pVorv

v e dir. deg(v)≥3 olduğu için 2e ≥ 3(v+1) elde edilir. 



39 

(v+1) – e + n = 2 den elde edilen  (v + 1) = e - n + 2 eşitsizlik 2e ≥ 3(v+1) de yerine 

konulursa e  ≤  3n-6 elde edilir. Aynı şekilde, (v + 1) – e + n = 2 den elde edilen  

e=(v +1) + n – 2 eşitsizlik 2e ≥ 3(v+1) de yerine konulursa v  ≤  2n-5  elde edilir.♦ 

Teorem : Düzlemdeki noktalar kümesi P olsun. P kümesinin oluşturduğu 

Voronoi çizgesini Vor(P) ile gösterelim. 

i) Vor(P) çizgesinde alınan bir v noktasının köşe nokta olması için gerek ve 

yeter şart v merkezli çizilebilecek en büyük boş çember P kümesine ait 

noktalarından en az üç ya da daha fazla sayıda noktası üzerinden 

geçmesidir.   

ii) Düzlemdeki pi ve pj gibi iki komşu noktayı birleştiren doğrunun orta 

noktasına çizilen dik doğru Vor(P)’de bir kenar çizgisini tanımlaması için 

gerek ve yeter şart evrensel kümede alınacak q gibi bir nokta ile q merkezli 

çemberin sadece pi ve pj noktalarında geçmesi ve çemberin iç bölgesinde P 

kümesine ait hiç bir nokta bulunmasıdır. 

Kanıt : i) Varsayalım ki, Vor(P) bölgesinde alınacak v gibi bir nokta merkezli 

çizilecek bir çember P kümesine ait en az üç noktadan geçsin. Bu noktalar p, q ve 

r noktaları olsun. Her bir Vor(p), Vor(q) ve Vor(r) hücresinin sadece kendisine adını 

veren noktayı içerdiğini, başka bir nokta içermediğini belirtmiştik. Dolayısıyla v 

noktası yalnızca hücrelerin sınır çizgisi üzerinde olabilir. Üç adet sınır çizgisi 

paralel olmadığı için v noktası üç noktanın kesişimindedir. Bu durum v noktasının 

Vor(P)’de bir köşe olduğunu gösterir (Bkz. Şekil 2.10.). Varsayalım ki, Vor(P) 

bölgesinde alınan v noktası Vor(P)’de bir köşe nokta olsun. Voronoi çizgelerinde 

her bir köşe en az üç adet kenar doğrusunun kesişiminden oluşmaktadır. 

Dolayısıyla kenar çizgilerine sahip olan Vor(p), Vor(q) ve Vor(r) gibi en az üç adet 

Voronoi hücreleri mevcuttur. Kenar çizgisi üzerinde alınacak v gibi bir nokta 

hücrelere adını veren p, q ve r noktalarına eşit uzaklıktadır (Bkz. Şekil 2.10.). 

Dolayısıyla, v merkezli çizilecek bir çember p, q ve r noktaları olmak üzere en az 

üç noktadan geçecektir. 

ii) Varsayalım ki düzlemde alınacak her hangi bir q noktası hipotezi 

sağlayan bir nokta olsun. Yani, q nokta merkezli çizilecek çemberin iç bölgesinde 

hiç bir nokta bulunmasın ve çember sadece pi ve pj noktalarında geçsin. Bu 



40 

durumda q noktasının pi ve pj noktalarına olan uzaklığı eşit mesafededir. Ayrıca, P 

kümesinden alınacak her hangi bir pk gibi bir noktanın q noktasına olan uzaklığı pi 

ve pj noktalarının q noktasına olan uzaklığından büyük ya da eşittir. Eşit olması q 

merkezli çemberin pk noktasını da kestiğini gösterir ki, varsayımda çemberin 

sadece pi ve pj noktalarını kestiğini kabul etmiştir. Çember üç noktayı aynı anda 

kesmediğine göre q noktası Vor(P)’de köşe olamaz. Bu durumda, q noktası Vor(P) 

hücrelerinin iç bölgesinde olamayacağı ve aynı zamanda köşe de olamayacağına 

göre q notası Vor(P)’nin sınır çizgileri üzerindedir. Sınır çizgisi üzerindeki q 

noktasının pi ve pj noktalarına olan eşit mesafede olması, sınır çizgisinin pi ve pj 

noktalarının orta dikmesi olduğunu gösterir, yani iki noktayı birleştiren doğru 

parçasının orta noktasından geçen dik doğru parçasıdır.  Yani, kenar çizgisidir. 

Varsayalım ki, P’de alınan pi ve pj gibi iki komşu noktayı birleştiren doğrunun orta 

noktasına çizilen dik doğru Vor(P)’de bir kenar çizgisi olsun. Kenar çizgisi üzerinde 

alınacak q gibi bir nokta pi ve pj noktalarına eşit uzaklıkta olacaktır ki, q merkezli 

çizilecek çember pi ve pj noktalarından geçer. q noktasına en yakın noktalar pi ve 

pj noktaları olduğu için daha yakın mesafede üçüncü bir nokta mevcut değildir. 

Dolayısı ile q merkezli çizilecek çemberin üstünde ve içerisinde üçüncü bir nokta 

mevcut değildir. ♦ 

 

Şekil 2.10. Voronoi Çizgeleri ve üç noktadan geçen çevrimsel çember 

Teorem : Düzlemdeki hepsi aynı doğrultuda olmayan n adet noktadan 

oluşan P noktalar kümesinin dış bükey kabuğu içerisinde kalan noktalarının sayısı 

i olsun. P kümesinin üçgenleştirilmesinden (n+i–2) adet üçgen elde edilir (n≥3 ve 

n,i ∈ Ζ).  



41 

Kanıt : Düzlemdeki P noktalar kümesinin dış bükey kabuğunda olmayan, 

yani dış bükey poligonun iç bölgesinde kalan noktalarının sayısına i dersek dış 

bükey kabuk üzerindeki noktalarının sayısı (n – i) adettir. Dış bükey poligonun iç 

bölgesinde kalan noktalar dikkate alınmayarak sadece dış bükey kabuk üzerindeki 

noktaların üçgenleştirilmesinden ((n – i) – 2) adet üçgene elde edilir. 

Üçgenleştirilmiş bölgeye eklenecek noktalar ile yapılacak yeni üçgenleştirme ile 

elde edilecek üçgenlerin sayısı eklenen nokta sayının iki katı oranında daha fazla 

üçgen elde edilmesini sağlar. (Bkz. Şekil 2.11.). Dolayısıyla iç bölgeye eklenen i 

adet nokta için 2i adet fazla üçgen elde edilir. Dış bükey üçgen sayısı ile iç 

noktalardan dolayı oluşan fazla üçgenleri toplamı üçgen sayısını verecektir. Yani, 

düzlemin üçgenleştirme sayısı  

(n–i–2) + (2i) = n+i–2 ile verilir. ♦  

 

Şekil 2.11. Üçgenin iç bölgesine nokta ekleme 

Şu ana kadar Voronoi çizgeleri ve üçgenleştirme ile ilgili bazı teoremleri 

inceledik. Şimdi Voronoi çizgelerinin güncel hayat dönük kullanımını bir örnek ile 

inceleyelim. 

2.1. Voronoi Çizgelerinin Uygulama Alanı 

Gerçek hayattaki kullanım alanı genel olarak analizlerdir. Toprak analizi, 

kirlilik analizi, nüfus yoğunluğu gibi analizler örnek olarak verilebilir.  

Arazi üzerinde değişik noktalardan toprak örnekleri (kum/sand, kil/clay, 

alüvyonlu/humuslu/aluvial toprak) alınmış olsun. Örneklerin alındığı koordinatlar 

bölge üzerinde işaretlensin (Bkz. Şekil 2.12.). 



42 

 

Şekil 2.12. Toprak analizi alınmış bölge 

Örneklerin alındığı noktalara göre Voronoi çizgeleri oluşturulup hücreler 

boyanacak olursa (Bkz. Şekil 2.13.).  

 

Şekil 2.13. Arazi üzerinde Voronoi çizgelerinin oluşturulması 



43 

Aynı renkteki hücreler boyanarak birleştirilirse modellenen toprak yapısı 

elde edilmiş olur (Bkz. Şekil 2.14.). Oluşan modele göre ekim alanları belirlenebilir  

 

Şekil 2.14. Arazi üzerinde verimlilik bölgeleri oluşturma 

Voronoi çizgelerinin özelliklerini ve uygulama alanını gördük. Şimdi, Voronoi 

çizgeleri ve onla bağlantılı olarak Delaunay üçgenleştirmesi aşamalarını 

inceleyelim. 

Düzlemde bulunan nokta sayı n olsun. Noktalara damga numarası vererek 

birden n’e kadar damgalayalım. Damgalanmış noktalar kümesi için aşağıdaki 

aşamalar uygulanır. 

2.2. Delaunay Üçgenleştirme Aşamaları 

Üçgenleştirilecek bölgedeki nokta sayısı n olsun. Nokta sayısına göre 

aşağıdaki işlemler uygulanır. 

I. n = 1 için; hiçbir işlem yapılmaz. 

II. n = 2 için; 

İki noktayı birleştiren doğru parçasının orta dikmesi Voronoi çizgesini verir 

(Bkz. Şekil 2.3.). 



44 

III. n = 3 için; 

Üç noktanın üç doğru parçası ile birleştirilmesi ile bir adet üçgen elde edilir 

(Bkz. Şekil 2.4.). Üç noktayı birleştiren üç doğrunun alınacak orta 

dikmelerinin kesişim noktası Voronoi köşesini verir. Ayrıca, üç noktadan 

geçen çevrimsel çemberin merkezi de Voronoi köşesini verir. Bulunan köşe 

noktasından üç noktayı birleştiren üç doğru parçasının orta noktasında 

geçecek şekilde çizilecek dik doğrular Voronoi çizgelerini verir (Bkz. Şekil 

2.4.). 

IV. n ≥ 4 için; 

Damga sırasına göre ilk üç nokta alınır ve bir üçgen çizilir. Sonra, damga 

sırasına göre yeni bir nokta alınır ve üçgenleştirilen bölgeye eklenir. 

Eklenen yeni nokta ya üçgen bölge içerisindedir ya da üçgenlerin dışında 

bir bölgededir. Eklenen nokta iç bölgede ise yeni eklenen nokta ile üçgenin 

üç köşesine çizilen üç doğru ile noktanın iç bölgesine eklendiği üçgen üç 

adet üçgene bölünmüş olur (Bkz. Şekil 2.15.) (Bourke). Eklenen nokta dış 

bölgede ise yeni eklenen nokta ile üçgen bölgenin sınır çizgilerini oluşturan 

kenarlarından görüş alanında kalan kenar köşe noktaları ile yeni eklenen 

nokta çizgilerle birleştirilir (Bkz. Şekil 2.16.). Üçgenleştirilmiş bölgenin dış 

bükey kabuk üzerinde kalan sınır çizgilerinden eklenen noktanın görebildiği 

kenar adeti kadar üçgen eklenmiş olur. Voronoi çizgeleri kenar orta 

dikmelerinin kesişimleri ile Voronoi köşeler bulunur ve Voronoi köşeler ile 

kenar orta noktalarından geçecek şekilde doğrular çizilerek Voronoi 

çizgeleri çizilir. Süreç bütün noktalar kullanılacak şekilde devam ettirilir. Bu 

arada, çevrimsel çember içerisinde başka noktalar kalmaması 

gerekmektedir. Çevrimsel çemberlerin iç bölgelerinde başka noktaların 

kalması gibi bir durumda Voronoi çizgelerinin özelliğini bozacağından 

üçgenleştirmede hata yapılmış olur. Hatanın giderilmesi için üçgenler tekrar 

düzenlenmelidir. Hatalı üçgenlerin düzenlenmesi için kenar dönüşümü 

işlemi uygulanır. Kenar dönüşümünü ise şu şekilde tanımlayabiliriz; birer 

kenar ve ikişer köşeleri ortak iki üçgenin ortak kenarı kaldırılıp ortak 

olmayan köşeleri bir köşegen yardımıyla birleştirilerek yeni iki üçgen elde 

edilmesi işlemine kenar dönüşümü denir (Bkz. Şekil 2.20.).  



45 

Şekil 2.15. İç bölgeye nokta ekleme 

 

Şekil 2.16. Dış bölgeye nokta ekleme 

Şimdi, Delaunay üçgenleştirmesindeki geçersiz işlemleri ve nasıl 

düzeltileceğini inceleyelim. Bu çerçevede kenar dönüşüm yöntemlerini de 

inceleyeceğiz. 

2.3. Delaunay Üçgenleştirmesi Ağ Uygulaması 

Hazırlanmış olan bu ağ uygulamasında öncelikler üçgenlerin köşe 

noktalarının girişinin yapılması gerekmektedir. Her eklenen nokta ile delaunay 

üçgenleştir algoritması çalıştırılır ve üçgenleştirmeler sonucu elde edilen üçgenler 

çizdirilir. “Üçgen” seçeneği ile üçgenler, “Voronoi Ç.” seçeneği ile voronoi çizgeleri 

çizdirilir (Bkz. Şekil 2.17.). “Ç.Çember” seçeneği seçilerek üçgenlerin üç köşe 

noktasından geçen çevrimsel çemberler çizdirilir.  

Ayrıca, algoritmanın çalışma mantığı daha kolay anlaşılabilmesi amacıyla 

ağ uygulamasına “Adım adım” tuşu eklenmiştir. Bu tuşu ile algoritmanın çalışma 

aşamaları adım adım görselleştirilmektedir. “Adım adım” tuşuna basıldıkça bir 

sonraki adım görüntülenmektedir. “Canlandırma” tuşu ise “Adım adım” tuşu gibi 

çalışmakta olup “Canlandırma” tuşu ile her bir adımda görüntü belli bir süre 



46 

durdurulup bir sonraki adıma geçilir. Süreç son adıma gelinceye ve üçgenleştirme 

tamamlanacağı ana kadar devam ettirilir. 

 

Şekil 2.17. Delaunay Üçgenleştirmesi ağ uygulaması 

2.4. Hatalı Üçgenleştirmeler ve Kontrolü 

Üçgenleştirme sonucunda Voronoi köşelerden çizilecek çevrimsel 

çemberlerin iç bölgesinde düzlemdeki noktalardan her hangi birinin kalması gibi bir 

durum Voronoi çizgelerinin özelliğini bozacağından üçgenleştirmede hata yapılmış 

olur. Üçgenleştirmede hata varsa hatalı üçgenler için kenar dönüşümü yapılır. 

Üzerinde kenar dönüşümü yapılacak kenara geçersiz kenar da denmektedir.  

Hata tespitinin nasıl yapılacağını incelemeden öncelikle düzlemdeki 

noktalar ile çevrimsel çemberler arasındaki açı ilişkisini inceleyelim.  

Her hangi bir çember ve çemberi kesen l doğrusunun kesen noktaları a ve b 

olsun. Çember üzerinde herhangi bir yerde q ve p noktalarını, çember iç 

bölgesinde r ve çember dış bölgesinde s noktalarını alalım (Bkz. Şekil 2.18.). 

Çember üzerindeki p ve q noktalarının a ve b noktaları ile yaptığı açılar çember 

üzerinde aynı yayı gören açılar oldukları için eşittir. İç bölgedeki r noktasının a ve b 



47 

noktaları ile yaptığı açı çember üzerindeki p noktasının a ve b noktaları ile yaptığı 

açıdan daha büyüktür. Aynı şekilde, dış bölgedeki s noktasının a ve b noktaları ile 

yaptığı açı çember üzerindeki p noktasının a ve b noktaları ile yaptığı açıdan daha 

küçüktür. Ayrıca, Şekil 2.19’da olduğu gibi aynı kirişi gören merkez nokta pl‘nin açı 

pi ve pj ile yaptığı açı çember üzerindeki pk’nın pi ve pj ile yaptığı açıdan daha 

büyüktür.  

 

Şekil 2.18. Çember 

Yapılan üçgenleştirmede pi, pj, pk gibi üç noktanın oluşturduğu pi, pj ¸ pk 

üçgenin çevrimsel çemberi içinde pl gibi bir nokta kalıyor ise üçgen hatalıdır ve pipj 

kenarı için kenar dönüşümü yapılmalıdır (Bkz. Şekil 2.19.). 

Sorunu daha iyi kavrayabilmek için Şekil 2.20’de inceleyelim. Şekil 2.20-i de 

D köşesinin TABC üçgeninin çevrimsel çemberi içinde kaldığı görülmektedir. D 

köşesinin çevrimsel çember içerisinde kalmaması için e kenarı kaldırılır ve e´ 

kenarı yeni kenar olarak atanırsa TADB ve TBDC üçgenleri elde edilmiş olur. TADD ve 

TBDC üçgenleri ile sorunun giderilmiş olduğu görülecektir (Bkz. Şekil 2.22.i).  

 

Şekil 2.19. Geçersiz kenar 

 



48 

 

Şekil 2.20. Kenar dönüşümü 

Şimdi, kenar dönüşümü nasıl yapılır, inceleyelim. 

2.5. Üçgenleştirmede Kenar Dönüşümü 

Üçgenleştirmede hedef üçgenlerin eş kenarlı üçgene en yakın üçgenler 

olacak şekilde elde edilmesidir. Yani, bütün iç açıların 600’ye yakın olmasına 

çalışılmasıdır. 

Geçersiz kenarın bulunmasında üçgenlerin iç açılarından faydalanılır. 

Örneğin, düzlemde bulunan dört nokta ile Şekil 2.21’de görüleceği üzere iki farklı 

üçgenleştirme yapılabilir. Biri [AC] köşegeni ile elde edilen TACB ve TCAD 

üçgenleştirmesi, diğeri ise [BD] köşegeni ile TBDA ve TBDC üçgenleştirmesidir. TACB 

ve TCAD üçgenlerine ait altı adet iç açının en küçük açı değeri m olsun. TBDA ve 

TBDC üçgenlerine ait altı adet iç açının en küçük açı değeri ise m´olsun. Yapılan 

üçgenleşmelerden geçerli olanı bulmak için bulunan iki açı karşılaştırılır. Bulunan 

değerlerden  m < m´ ise [AC] köşegeni geçersiz kenardır, m > m´ise [BD] köşegeni 

geçersiz kenardır. Başka bir ifadeyle, Şekil 2.21’de üçgenler üzerinde yapılacak iç 

açı incelemesi sonucunda: (Eguchi)(Ostrovsky)(Çetin) 

61

'

61

minmin
≤≤≤≤

<
i

i
i

i αα ⇒ [AC] geçersiz kenardır,  

61

'

61

minmin
≤≤≤≤

>
i

i
i

i αα ⇒ [BD] geçersiz kenardır. 



49 

 

Şekil 2.21. Kenar dönüşümünde iç açıların kullanılması 

Üçgenleştirme aşamasında [AC] köşegeni ile TACB ve TCAD üçgenleştirmesi 

yapılmış ve yapılan kontrolde [AC] köşegeninin geçersiz olduğu ve kaldırılması 

gerektiği tespit edilmiş olsun. Şekil 2.21’deki [AC] köşegeni kaldırılmaz, başka bir 

ifade ile kenar dönüşümü yapılmaz ise Şekil 2.20-i’ye benzer bir şekilde TABC 

çevrimsel çemberi içerisinde D noktası kalacaktır. 

Kenar dönüşümü için önce [AC] köşegeninin kenarını oluşturduğu, başka 

bir ifade ile A ve C noktalarını köşe noktası kabul eden iki üçgen bulunur. Bulunan 

üçgenler geçersiz oldukları için kaldırılacaklardır. İki üçgene ait A ve C köşeleri 

dışında olan üçüncü köşeleri olan B ve D noktaları tespit edilir. [AC] köşegeni 

kaldırılıp [BD] köşegeni çizilerek TBDA ve TBDC üçgenleri oluşturulur, kenar 

dönüşümü tamamlanır.  

Dikkat edilmesi gerekli bir durum, bir kenar dönüşümünün yeni kenar 

dönüşümlerini gerektirip gerektirmediğinin de kontrol edilmesi gerekmektedir (Bkz. 

Şekil 2.22.). Şekil 2.22.a’ da görüleceği üzere a, b, p köşe noktalarından geçen 

çevrimsel çemberin iç bölgesine d noktası da dahil olmak üzere en az bir adet 

nokta girmektedir. Bu durum, Tabp üçgeninin hatalı olduğunu ve tekrar 

düzenlenmesi gerektiğini göstermektedir. Tabp üçgeni ile Tadb üçgeninin ortak kenar 

olan [ab] kenarı geçersiz kenardır. Başka bir ifade ile, Tabp ve Tadb üçgenlerinin iç 

açılarının en küçük değeri x ve Tadp ve Tdbp üçgenlerinin iç açılarının en küçük açı 

değere y ise x < y olacaktır. [ab] köşegeni kaldırılarak [pd] köşegeni eklenir. 

Üçgenleştirmede Tabp ve Tadb üçgenleri kaldırılmış,  Tadp ve Tdbp üçgenleri yeni 

üçgenler olacak şekilde eklenmiş olur. Yapılan bu düzenleme yeni bir geçersiz 

kenar oluşmasına sebep olmuş mu, kontrol edilmeli. Önce, Tadp üçgenine ait üç 

kenar olan [ad], [dp] ve [pa] kenarları üçgenleştirme iç bölgesinde ise mutlaka iki 

üçgene ait kenarlar olmaları gerekmektedir. Yapılan incelemede sorun olmadığı 



50 

anlaşılmış (Bkz. Şekil 2.22.b). Sonra, Önce, Tdbp üçgenine ait üç kenar olan [db], 

[bp] ve [pd] kenarları incelenir. Yapılan inceleme sonucunda tanımlı Tdbp ve Tbpe 

üçgenlerine ait iç açılar ile sanal tanımlı Tpde ve Tpeb üçgenlerine ait iç açılar 

karşılaştırılır. Karşılaştırma sonucunda [bd] kenarının geçersiz olduğu tespit edilir 

(Bkz. Şekil 2.22.c). Sonuçta, Tdbp ve Tbpe üçgenleri ve dolayısıyla [bd] köşegeni 

kenarı kaldırılır, [pe] köşegeni ile Tpde ve Tpeb üçgenleri üçgenleştirmeye dahil 

edilir. Üçgenleştirmeye eklenen her yeni üçgen, kenarları tek tek incelenerek 

geçersiz kenar varsa tekrar üçgenleştirilerek süreç devam ettirilir. Yeni eklenen 

üçgenlerin incelemesi bittiğinde geçersiz kenar kalmayacaktır (Bkz Şekil 2.22.i). 

(Mount) 

 

Şekil 2.22. Geçersiz kenarların geçerli hale dönüştürülmesi 

 



51 

3. POLİGONAL BASİTLEŞTİRME 

Bilgisayar grafiğinde nesneleri ifade etmek için nokta, doğru, poligon ve yay 

parçaları gibi geometrik ilkeller sık sık kullanılır. Bazen bir nesneyi ifade etmek için 

çok sayıda poligon kullanılır. Poligon basitleştirilmesi işlemini, kullanılan poligon 

sayısının nesnenin orijinal görünümü bozulmayacak şekilde azaltılması şeklinde 

özetleyebiliriz (Bkz. Şekil 3.1.). 

Bilgisayarla canlandırmalar hazırlanırken  görüntü kalitesine göre saniyede 

24 ile 30 adet kare kullanılmaktadır. Her bir karede ise binlerce poligon 

kullanılmakta ve boyanmaktadır. Poligon sayısı artıkça bilgisayarlara düşen yük o 

oranda artmakta ve aynı oranda performans düşüklüğü görülmektedir. Poligonal 

basitleştirme, model karmaşıklığı (poligon sayısı) ile donanım performansı 

arasındaki bu farklılığı azaltmayı amaçlamaktadır. Böylece, modeller daha çabuk 

çizilebilecek, değişik gereksinimlere göre modellerin değişik detaylardaki 

çalışmaları kalite ve zaman kıstasları göz önüne alınarak kullanılabilecektir. 

(Güdükbay, Sf:1,2) 

 
(a) 5804 Üçgen (b) 1000 Üçgen (c) 500 Üçgen (d) 100 Üçgen 

Şekil 3.1. Farklı sayıda üçgenleştirilmiş inek nesnesi 

Poligon basitleştirmesinin getirdiği en büyük yarar, görüntüleme 

performansının artmasıdır. Bu, özellikle dinamik ortamlarda görüntü boyama 

işleminin hızlandırılması açısından önemlidir. Ayrıca, bilgisayar destekli tasarım, 

reklamcılık ve tıp alanlarında faydalanılabilecektir. Tıp alanında bilgisayarlı 

tomografi (CT) araçları ile alınan görüntülerden elde edilen üç boyutlu modellerin 

basitleştirilmesi, bu modellerin hızlı bir şekilde gösterilebilmeleri açısından çok 



52 

önemlidir. Ayrıca, basitleştirme işlemi bir modelin saklanması için gerekli bellek 

miktarını da azaltmaktadır. Böylece bu modellerin bilgisayar ağları üzerinde bir 

noktadan başka bir noktaya transferi de çabuklaştırılmaktadır. Ayrıca, poligon 

basitleştirme bilgisayar grafiğinin yoğun hesaplamalar gerektiren (ışın izleme, 

çarpışma tespiti gibi poligon sayısı ile verimliliği doğrudan ilişkili) problemlerinin 

çözümlerinde de verimlilik sağlamaktadır. Sonuç olarak bu yöntemlerden iletişim, 

tıp, bilgisayar destekli tasarım, reklamcılık, canlandırma ve bilimsel gösterim 

alanlarında yararlanılabilecektir (Güdükbay, Sf:1,2). 

Poligon basitleştirme işlemi poligon sayısının azaltması şeklinde de 

özetlenebilir. Poligon sayısı azaltılırken görüntü kalitesinde düşme olacaktır. Şekil 

3.1’de de görüleceği gibi aynı nesne 5804, 1000, 500 ve 100 adet üçgenle de 

görüntülenebilir. Üçgen sayısı 5804 olan görüntüdeki kalite ile üçgen sayısı 100 

olan görüntü kalitesi bir olmadığı, üçgen sayısı azaltıldıkça görüntü kalitesinde de 

düşme olduğu açıkça görülmektedir (Bkz. Şekil 3.1.d).  

Görüntüleme de nesnenin bulunduğu konum da bizim için önemlidir. 

Görüntülenecek olan nesnenin yakın ya da uzak olması görüntüdeki ayrıntı 

açısından önemlidir (Bkz. Şekil 3.2.) (Garland2). Göz ile nesne arasındaki mesafe 

arttıkça nesne üzerindeki ayrıntılar daha az önemli hale gelecektir (Bkz. Şekil 

3.3.). 

 
(a) Yakın Görünüm (b) Normal Görünüm (c) Uzak Görünüm 

Şekil 3.2. Görüntü kalitesi ile uzaklık ilişkisi 

Görüntü kalitesi için poligon sayısı ile nesnenin uzaklık-yakınlık durumunu 

ilişkilendirebiliriz.  

Nesnenin göze olan uzaklığı ile elde edilen görüntü kalitesi arasındaki 

ilişkiyi daha iyi kavramak için bir örnek daha inceleyelim. Şekil 3.4’de aynı tavşan 



53 

nesnesini görüntülemek için değişik sayıda üçgen kullanılmış. Görüntü kalitesi en 

iyi olan nesnenin 69451 adet üçgenin kullanıldığı nesne olduğu açıktır. Üçgen 

sayısı azaltıldıkça görüntü kalitesinde bozulma olduğu da gözlemlenmektedir. Dört 

farklı görüntü kalitesindeki dört adet tavşan nesnesi Şekil 3.5’te üçgen sayısı en 

fazla olan en yakında olacak şekilde üçgen sayılarıyla orantılı bir şekilde 

uzaklıkları ayarlanmıştır. 

 

Şekil 3.3. Göz ile nesne arası mesafe 

 

 
(a) 69451 Üçgen (b) 2502 Üçgen (c) 251 Üçgen (d) 76 Üçgen 

Şekil 3.4. Dört farklı görüntü kalitesi 

 

 

Şekil 3.5. Uzaklık ile görüntü kalitesi arasındaki ilişki 



54 

Sonuç olarak, Nesneler uzaklaştıkça üçgen sayısından kaynaklanan 

görüntü kalitesindeki düşüklük önemsenmeyecek derecede azalmaktadır. Şekil 

3.4’deki tavşan nesnelerinin Şekil 3.5’teki uzaklıklarına göre üçgen sayısı 

ayarlanabilir. Yani, Şekil 3.2.c de olduğu gibi nesne uzak bir görünüm gerektiriyor 

ise nesneyi fazla sayıda üçgenle ifade etmek anlamsız olacaktır, uzaklıkla orantılı 

olarak daha az üçgenle de nesne görüntülenebilir. 

Şimdi, poligonal basitleştirme algoritmalarını ve aralarındaki farklılıkları 

inceleyelim. 

3.1. Poligonal Basitleştirme Algoritmaları 

Poligonal basitleştirme, iki ya da üç boyutlu poligonal modellerin daha basit 

bir hale dönüştürülmesi işlemidir. Bu işlem modelin orijinal şekil ve görüntüsüne 

sadık kalarak modeli tanımlamak için gerekli poligon sayısını azaltır. Poligonal 

basitleştirme algoritmalarını köşe kaldırma (vertex decimation), kenar büzme 

(edge contraction), üçgen büzme (triangle collapse), kenar kaldırma, köşelerin 

birleştirilmesi (vertex clustering) ve örnekleme olmak üzere dört ana başlıkta 

inceleyebiliriz. (Güdükbay, sf:3) 

3.1.1. Köşe kaldırma algoritması 

Poligonal modelde kaldırılmak üzere bir köşe seçilir ve köşe kaldırılır. 

Köşenin kaldırılması ile kaldırılan köşeye ait üçgenlerde kaldırılır. Üçgenlerin 

kalkması ile bir boşluk oluşur (Bkz. Şekil 3.6.). Oluşan boşluk tekrar 

üçgenleştirilerek boşluk kaldırılır. Bu işlem nesne üzerinde yinelemeli bir şekilde 

uygulanırsa nesneyi oluşturan üçgen sayısı azaltılmış olacaktır (Güdükbay, sf:3) 

(HECKBERT, Sf:13).  

 

Şekil 3.6. Köşe kaldırma 



55 

Algoritma: 

Köşe kaldırma algoritması 

Girdi: Üçgenler kümesi, köşe noktalar kümesi, kaldırılacak köşe 

Çıktı: Yeni üçgenler kümesi, yeni köşe noktalar kümesi 

KoseKaldırma 

  boş bir P´ noktalar kümesi tanımlanır 

  while (v köşesini içeren üçgen varsa) { 

     üçgenin v köşesi hariç köşelerini P´ kümesine at 

     üçgeni üçgenler kümesinden sil 

  }  // döngü sonu 

  v köşesini gelen noktalar kümesinden sil 

  P´ kümesini üçgenleştir 

  yeni üçgenler kümesini gelen üçgenler kümesine ekle  

Algoritmanın çalışma hızını artırmak için noktalar kümesinin hata oranına 

göre artan sırada olması faydalı olacaktır (Puppo). 

3.1.2. Kenar büzme algoritması 

Kaldırılmak üzere seçilen kenar kaldırılır. Kaldırılan kenara sahip olan iki 

üçgende kaldırılır. Sonra, kaldırılan kenara ait iki uç noktası, sanki bir ip büzülerek 

iki ucu birleştiriliyormuş gibi bir noktada birleştirilir (Turk). Bu işlem için iki yöntem 

uygulanır. İki köşeden biri yeni köşe olarak kullanılırsa bu yönteme yarı kenar 

büzme (Bkz. Şekil 3.7.a), iki köşe arasında uygun yeni bir köşe bulunursa tam 

kenar büzme denir (Şekil 3.7.b). Elde edilen yeni nokta, kaldırılan noktalara sahip 

üçgenlerin yeni köşe değeri olacak şekilde atanarak kenar büzme işlemi 

tamamlanır (Heckbert, sf:17) (Hadwiger) (Luebke, sf:21) (GREİNER, Sf:11). 



56 

Bu yöntemi kullanan pek çok algoritma geliştirilmiştir. Bu algoritmaları 

birbirinden ayıran en önemli özellik, yok edilecek poligon kenarının nasıl 

seçildiğidir.  

Kenar büzme işleminin ters işlemine de köşe bölme denilmektedir. Kenar 

bölme ile seçilen nokta iki noktaya dönüştürülür. Bu işlem ile iki üçgen eklenmiş 

olur. 

 
 a - Yarı kenar büzme b - Tam kenar büzme  

Şekil 3.7. Kenar büzme 

3.1.2.1. Yarı kenar büzme 

Büzülecek kenara ait iki köşeden biri sabit tutularak diğer köşenin sabit 

tutulan köşeye doğru kaydırılması işlemine yarı kenar büzme denir. Şimdi 

algoritmanın nasıl çalıştığını inceleyelim. 

Büzülecek kenar e kenarı olsun. P ve P’ köşeleri e kenarının uç noktaları 

olsun. P köşesinin P’ köşesine doğru kaydırılması ile e kanarını içeren t1 ve t2 

üçgenleri büzme işlemiyle birlikte e1 ve e2 kenarlarına dönüşürler (Bkz. Şekil 3.8.). 

Başka bir ifadeyle t1 ve t2 üçgenleri kaldırılmış olur. Ayrıca, P’ köşesini içeren diğer 

üçgenler büzme işlemi ile P köşesini içerir hale de gelmektedirler. 

Algoritmanın işleyişini daha iyi kavrayabilmek için algoritmanın sözde 

kodlarını inceleyelim (Melax). 



57 

Algoritma : 

Yarı kenar büzme algoritması 

Girdi : Köşe noktalar kümesi, üçgenler kümesi, büzülecek kenar 

Çıktı : Yeni köşe noktalar kümesi, yeni üçgenler kümesi 

  e kenarını içeren t1 ve t2 üçgenlerini kaldır 

  while (P’ köşesini içeren üçgen varsa) 

     P’ köşesini P olacak şekilde düzelt 

  P’ köşesinin sil 

 

Şekil 3.8. Yarı kenar büzme 

Dikkat edilecek olunursa, yarı kenar büzme işlemi uygulama olarak köşe 

kaldırma işlemine benzemektedir. Büzülecek e kenarına ait iki noktadan v noktası 

`v noktası üzerine doğru kaydırılır. Bu kaydırma işlemi ile birlikte v köşesini içeren 

üçgenlerin v köşelerinin değerleri `v olacak şekilde düzenlenir (Bkz. Şekil 3.9.). 

Aslında, v köşesi kaldırılmış ve bölge tekrar üçgenleştirilmiştir. Köşe kaldırma 

işleminde de benzer durum söz konusudur (Bkz. Şekil 3.6.) (De Floriani, sf:25). 



58 

 

Şekil 3.9. Yarı kenar büzme 

3.1.2.2. Tam kenar büzme 

Büzülecek kenara ait iki köşe arasında yeni bir köşe bulunarak iki köşenin 

yeni köşeye doğru kaydırılması işlemine tam kenar büzme denir. Şimdi 

algoritmanın nasıl çalıştığını inceleyelim 

Büzülecek kenar e kenarı olsun. P’ ve P” köşeleri e kenarının uç noktaları 

olsun (Bkz. Şekil 3.10.). P’ ve P” köşeleri arasında bulunan yeni köşe Q köşesi 

olsun. P’ ve P” köşeleri Q köşesine doğru kaydırıldığında t1 ve t2 üçgenleri 

kaldırılmış olur. Ayrıca, P’ ve P” köşelerini içeren diğer üçgenler büzme işlemi ile Q 

köşesini içerir hale geleceklerdir. 

Şimdi, kenar büzme algoritmalarından tam kenar büzme algoritmasının 

sözde kodlarını inceleyelim (Bkz. Şekil 3.10.) (Garland, sf.47) (Hoppe). 

Algoritma : 

Tam kenar büzme algoritması 

Girdi : Köşe noktalar kümesi, üçgenler kümesi, büzülecek kenar 

Çıktı : Yeni köşe noktalar kümesi, yeni üçgenler kümesi 

  e kenarını içeren t1 ve t2 üçgenlerini kaldır 

  e kenarı üzerinde uygun bir Q noktası bulunur 

  while (P’ köşesini içeren üçgen varsa) 

     P’ köşesini Q olacak şekilde düzelt 



59 

  P’ köşesinin sil 

  while (P” köşesini içeren üçgen varsa) 

     P” köşesini Q olacak şekilde düzelt 

  P” köşesinin sil 

 

Şekil 3.10. Tam kenar büzme 

Tam kenar büzme işlemiyle büzülecek kenara ait köşeleri içeren bütün 

üçgenlerin şekilleri de değişmektedir. (Bkz. Şekil 3.11.) 

 

Şekil 3.11. Tam kenar büzme 



60 

3.1.3. Köşe çifti büzme algoritması 

Mantık olarak kenar büzme işlemine benzer. Kenar büzme işleminde iki 

köşe yeni köşeye dönüştürülerek iki köşeyi birleştiren kenar ve kenarı içeren iki 

üçgenin kaldırıldığını belirtmiştir (Bkz. Şekil 3.7.). Fakat, birbirlerine çok yakın 

köşeler aralarında bir poligon kenarı olmasa dahi birleştirilebilir ki bu yönteme köşe 

çifti büzme denir. Böylece birbirlerine bağlı olmayan bölgeler birleştirilmiş olacaktır. 

Bu işlem modelin topolojisini değiştirmekte ancak bu durum çok çözünürlüklü çizim 

için gerek duyulan bir özellik olmaktadır (Güdükbay, sf:3). 

Köşe çifti büzme algoritmasında iki köşeyi birleştiren kenar olmadığı için 

kenar kaldırma işlemi olmadığı gibi üçgen kaldırma işlemi de yapılamaz (Bkz. Şekil 

3.12.). Sadece, iki noktayı içeren üçgenler yeni noktaya göre tekrar güncellenir. 

Kenar büzme işlemine benzemesi, fakat arada kenar olmaması nedeni ile köşe 

çifti büzme işlemine hayali kenar büzme de denir (Luebke, sf:23) (Varshney, 

sf:11). 

Şimdi köşe çifti büzme algoritmasının sözde kodlarını inceleyelim (Bkz. 

Şekil 3.12.). 

Algoritma : 

Köşe çifti büzme algoritması 

Girdi : Köşe noktalar kümesi, üçgenler kümesi, büzülecek iki köşe 

Çıktı : Yeni köşe noktalar kümesi, yeni üçgenler kümesi 

  while (Va köşesini içeren üçgen varsa) 

     Va köşesini V olacak şekilde düzelt 

  Va köşesinin sil 

  while (Vb köşesini içeren üçgen varsa) 

     Vb köşesini V olacak şekilde düzelt 

  Vb köşesinin sil 



61 

 

Şekil 3.12. Köşe çifti büzme 

3.1.4. Üçgen büzme algoritması 

Kenar büzme işlemine benzer. Üçgen büzme işleminde üçgene ait üç köşe 

noktası yeni bir noktaya dönüştürülür. Kaldırılan üç kenarla birlikte kaldırılan üç 

kenara sahip üçgenler de kaldırılır. Yeni noktaya dönüştürülen üç noktaya sahip 

kaldırılmamış üçgenler yeni noktaya göre tekrar güncellenir (Bkz. Şekil 3.13.) 

(Luebke, sf:24) (Varshney, sf:12). 

Şimdi, üçgen büzme algoritmasının sözde kodlarını inceleyelim (Bkz. Şekil 

3.13.). 

Algoritma : 

Üçgen büzme algoritması 

Girdi : Köşe noktalar kümesi, üçgenler kümesi, kaldırılacak üçgen 

Çıktı : Yeni köşe noktalar kümesi, yeni üçgenler kümesi 

  Büzülecek üçgen bulunur 

  [VaVb] kenarını içeren üçgenleri kaldır 

  [VbVc] kenarını içeren üçgenleri kaldır 

  [VcVa] kenarını içeren üçgenleri kaldır 

  while (Va köşesini içeren üçgen varsa) 



62 

     Va köşesini V olacak şekilde düzelt 

  Va köşesinin sil 

  while (Vb köşesini içeren üçgen varsa) 

     Vb köşesini V olacak şekilde düzelt 

  Vb köşesinin sil 

  while (Vc köşesini içeren üçgen varsa) 

     Vc köşesini V olacak şekilde düzelt 

  Vc köşesinin sil 

 

Şekil 3.13. Üçgen büzme 

3.1.5. Köşelerin birleştirilmesi 

Bir grup poligon köşesinin birleştirilmesine dayalı bir algoritmadır. 

Basitleştirilecek modelin etrafına bir kutu yerleştirilir ve kutu paralel ve dikey 

doğrularla hücrelere bölünür (Bkz. Şekil 3.16.a). Her bir hücrenin içinde yer alan 

poligon köşeleri tek bir poligon köşesi olacak şekilde birleştirilir (Bkz. Şekil 3.16.b). 

Yapılan birleştirme ile modele ait üçgenler tekrar düzenlenir Uygulama için üç 

farklı seçenek mevcuttur. Seçenekler: 



63 

i. Üçgene ait üç köşe aynı hücre içerisinde kalıyorsa bir köşeye dönüştürülür. 

Üçgen kaldırılır ve hücrede yeni üretilen noktaya dönüştürülür (Bkz. Şekil 

3.14.a). 

ii. Üçgene ait üç köşenin iki köşesi aynı, bir köşesi ise diğer iki köşe ile farklı 

hücrede kalıyorsa üçgen doğruya dönüştürülür Üçgen kaldırılır, iki hücredeki 

yeni köşe noktaları doğru olacak şekilde birleştirilir (Bkz. Şekil 3.14.b). 

iii. Üçgene ait üç köşenin üçü de farklı hücrelerde kalıyorsa üçgen özelliği 

korunmaktadır. Yapılacak işlem sadece üç köşenin içerinde bulundukları üç 

hücre içerisinde oluşturulan yeni köşe noktalarına göre üçgen köşe noktaları 

tekrar güncellenir (Bkz. Şekil 3.14.c) (Bkz. Şekil 3.16.c, 3.16.d) (Bkz. Şekil 

3.15.) (Güdükbay, sf:3) (Vigrnond sf:10). 

 

Şekil 3.14. Köşe birleştirme 



64 

Bu işlem çok hızlı ve model üzerinde istenilen bütün topolojik değişiklikleri 

yapabilmektedir. Fakat küçük parçaların büyüklükleri yapılan basitleştirme için 

geometrik bir hata payı tanımlanabilmesine olanak sağlamaktaysa da elde edilen 

basitleştirilmiş modelin kalitesi genellikle düşük olmaktadır (Güdükbay, sf:3). 

 

Şekil 3.15. Köşe birleştirme 

 

Şekil 3.16. Köşe birleştirme 



65 

3.2. JTS Test 

Üçgen sayısının azaltılmasıyla ilgili algoritmaların daha iyi anlaşılabilmesi 

için Java applet hazırlanmıştır (Bkz. Şekil 3.17.). Uygulama hazırlanırken JTS 

Java paketindeki sınıflar ile JTS paketi için hazırlamış olduğumuz ek yama sınıflar 

kullanılmıştır (Bkz. EK.1). Hazırlanan bu Java uygulamasında girişi yapılan 

noktaların üçgenleştirilmesi hemen yapılmaktadır. Üçgenleştirme algoritması 

olarak Delaunay üçgenleştirme algoritması kullanılmaktadır.  

Üçgenleştirilmiş bölge üzerinde seçilen köşe ya da köşelerin yardımı ile 

poligonal basitleştirme algoritmalarının test edilmesi sağlanmıştır (Bkz. Şekil 

3.17.).  

 

Şekil 3.17. Poligonal basitleştirme algoritmaları ağ uygulaması 



66 

Üçgenleştirilmiş bölge, fare imleci yardımı ile nokta ekleme şeklinde elde 

edilebileceği gibi “Dosyadan Oku” düğmesi ile seçilen dosyanın okunması 

yöntemiyle de elde edilebilir. Okunan noktalar üçgenleştirilip görüntülenir. 

Üçgenlerin görüntülenmesi için “Üçgenleri Göster” seçeneğinin seçili olması 

gerekmektedir. 

Üçgenleştirilmiş bölge elde edildikten sonra poligonal basitleştirme 

algoritmalarından test edilmesi istenen algoritma seçilir. “Köşe Kaldır” algoritması 

için bir adet köşe seçilir ve “Köşe Kaldır” düğmesine basılır. “Yarı Kenar Büzme”, 

“Tam Kenar Büzme” ve “Köşe Çifti Büzme” algoritmalarından biri seçilirse iki adet 

köşe seçilir ve ilgili düğmeye basılır. “Üçgen Kaldır” algoritması seçildiğinde ise 

aynı şekilde kaldırılması istenen üçgene ait üç adet köşe seçilir ve ilgili düğmeye 

basılır. Düğmeye basılmasıyla seçili algoritmaya bağlı olarak üçgen sayısı 

azaltılarak üçgenleştirilmiş bölgenin son hali tekrar görüntülenir. 

Uygulamayı hazırlarken JTS Java paketindeki sınıfları kullandığımızı 

belirtmiştik. JTS paketiyle birlikte JTS Test Builder uygulama programı da 

gelmektedir. Uygulama programı ile uygulama ekranından fare imleci ile veri girişi 

yapılabildiği gibi XML dosya türünden veriler okunabilmektedir. Uygulamada A ve 

B gibi iki farklı nesne verisi değişken olarak hafızada tutulabilmekte, tutulan 

verilerin üzerinde geometrik fonksiyonların uygulaması yapılabilmektedir. 

Uygulamadaki verilerin xml ve html dosya türünden kayıt edilmesine de imkan 

verilmektedir. 

Hazırlamış olduğumuz Java applet’inde hafızada tutulan verilerin kayıt 

edilebilmesi için “Dosyaya Yaz” düğmesi uygulamaya eklenmiştir. “XML” seçeneği 

seçili ise kaydedilen dosya xml dosya türünden, “XML” seçeneği seçili değil ise txt 

dosya türünden kayıt işlemi yapılır. Uygulamaya eklenen dosyaya yazma 

özelliğiyle, verilerin hem txt hem de xml dosya türünden saklanmasına imkan 

sağlanmıştır. Ayrıca, Java uygulamasındaki verilerin JTS Test Builder 

uygulamasına aktarılması da sağlanmaktadır. Örneğin, Şekil 3.17’de hafızadaki 

nesne dizisinin “Dosyaya Yaz” düğmesine basılarak bir xml dosyası 

oluşturulmuştur. Oluşturulan bu xml dosyası JTS Test Builder’in xml okuma özelliği 

kullanılarak JTS Test Builder’a aktarılması sağlanmıştır (Bkz. Şekil 3.18.). 



67 

 

Şekil 3.18. JTS Test Builder 

 



68 

4. SONUÇLAR 

Bu tezde iki boyutlu üçgenleştirme algoritmaları ile üçgen sayısının 

azaltılması ile ilgili yapılmış çalışmalar derlenip özet şeklinde okuyucuya 

sunulmuştur. Algoritmaların sözde kodları verilerek algoritmaların çalışma 

mantığının daha iyi anlaşılması hedeflenmiştir. Bu çerçevede, Java applet’leri ile 

uygulamaları geliştirilmiş ve sunulmuştur. 

Ayrıca, dünya çapında kabul görmüş, coğrafi bilgi sistemleri konusunda kaynak 

olan Java Topology Suite paketi incelenmiş, üçgenleştirme ve üçgen sayısının 

azaltılması ile ilgili ek yama kodlar JTS Java paketine eklenmeye müsait bir 

şekilde kodlanmıştır. 

 



69 

KAYNAKLAR 

Bildirici, İ.Öztuğ ve Selvi, H.Zahit ,2005, Model Genelleştirmesinde Geometri 
Değişimlerinde Alan Çizgi Dönüşüm Yöntemleri, TMMOB Harita ve 
Kadastro Mühendisleri Odası 10.Türkiye Harita Bilimsel ve Teknik 
Kurultayı Mart 2005,Ankara.  

Bourke, Paul ,1989, Efficient Triangulation Algorithm Suitable for Terrain 
Modelling, Pan Pacific Computer Conference, Beijing, China.  

Çetin, Nurhan, 2000, Mesh Generation. Computer Based Learning Unit, University 
of Leeds  

De Floriani, Leila ,2005, Mesh simplification. http://www.cs.umd.edu/class/fall2005/ 
cmsc741/simplification-741.pdf. (Erişim tarihi: 16.08.2006) 

D'Hondt, Theo, 1997, Computer Graphics. ftp://prog.vub.ac.be/pub/Courses/CGR/ 
PDF.dir/4_PT.pdf (Erişim tarihi: 24.02.2006) 

D'Hondt, Theo, 1997, Computer Graphics. ftp://prog.vub.ac.be/pub/Courses/CGR/ 
PDF.dir/5_VD.pdf (Erişim tarihi: 24.02.2006) 

Eguchi, Glenn, 2003, Delaunay Triangulations. http://theory.lcs.mit.edu/~indyk/ 
6.838-old/handouts/lec9.pdf. (Erişim tarihi: 27.01.2006) 

Garland, Michael ,1999, Quadric-Based Polygonal Surface Simplification, School 
of Computer Science Carnegie Mellon University.  

Garland, Michael, 1999, Multiresolution Modeling: Survey & Future Opportunities, 
Eurographics’99, State of The Art Reports.  

Garey, Johnson, 1996, Triangulation of Monotone Polygon. 
http://www.cs.ucf.edu/courses/cot5520/lectures.html. (Erişim tarihi: 
21.02.2006) 

Greiner, Gunther & Girod, B,2004, Principles Of 3d Image Analysis And Synthesis, 
Kluwer Academic Publishers, Boston-Dodrecht-London  

Güdükbay, Ugur ,1998, Çok Çözünürlüklü Modelleme İçin Poligonal Basitleştirme, 
Sinyal İşleme ve Uygulamaları Kurultayı (SIU'98), Kızılcahamam, Ankara 

Hadwiger, Markus ,1999, Geometry over Network Techniques: Mesh Simplification 
and Multiresolution Data Structures, 4th Research Seminar on 
Visualization: "Volume Visualization and Interactive Visualization" Winter 
Semester 1998/1999  

Heckbert, Paul S. and Garland, Michael, 1997, Survey of Polygonal Surface 
Simplification Algorithms, School of Computer Science Carnegie Mellon 
University Pittsburgh, PA 15213, Tech. Rep. CMU-CS-95-194  

Heckbert, Paul & Garland, Michael ,1996, Surface Simplification Using Quadric 
Error Metrics, Computer Graphics (SIGGRAPH '97 Proceedings) 



70 

Hoppe, Hugues ,1996, Progressive Meshes, ACM SIGGRAPH 1996.  

Jia, Yan-Bin ,2006, Computational Geometry. http://www.cs.iastate.edu/~cs518/ 
handouts/.(Erişim tarihi: 26.01.2006)  

Kreveld, Marc Van and De Berg, Mark and Overmars, Mark and Schwarzkopf, 
Otfried, 2000, Computational Geometry: Algorithm and Applications 

Lambert, Tim, 1998, Experiment with convex hull algorithms. 
http://www.cse.unsw.edu.au/~lambert/java/3d/index.html.(Erişim tarihi: 
16.01.2006)  

Luebke, David & Reddy, Martin & Cohen, Jonathan & Varshney, Amitabh & 
Watson, Benjamin and Huebner,2002, Level of Detail For 3D Graphics3D, 
Morgan Kaufmann 

Melax, Stan, 1998, A Simple, Fast and Effective Polygon Reduction Algoritm, 
Game Developer Magazine, University of Alberta 

Miu, Allen ,2003, Voronoi Diagrams. http://theory.lcs.mit.edu/~indyk/6.838-
old/handouts/lec8.pdf. (Erişim tarihi: 27.01.2006) 

Mount, Dave ,2005, Delaunay Triangulations: Incremental Construction. 
http://www.cs.umd.edu/class/fall2005/cmsc754/Lects/lect14.pdf. (Erişim 
tarihi: 14.02.2006) 

Mukherjee, Amar ,2003, Computational Geometry, Triangulation of Monotone 
Polygon. http://www.cs.ucf.edu/courses/cot5520/lectures.html. (Erişim 
tarihi: 21.02.2006) 

O’Rourke, Joseph, 1998, Computational Geometry In C Second Edition, 
Cambridge University Press, Cambridge. 

Ostrovsky, Yaron & Berman, 2005, Computational Geometry. 
http://www.cs.huji.ac.il/~compgeom/slides/CG-tirgul07-2spp.pdf.(Erişim 
tarihi: 21.02.2006)  

Ottmann, Thomas, 2003, Computational Geometry. http://download.informatik.uni-
freiburg.de/lectures/GeometrischeAlgorithmen/2005-2006WS/Slides/ 
lecture_poly_triangulation_changed.pdf. (Erişim tarihi: 21.03.2006) 

Quadros, William ,2003, Scientific Computing. http://www.cs.cmu.edu/ 
afs/cs/user/glmiller/public/computational-geometry/15-859J-F03/Notes/ 
Sept-22/notes12.pdf. (Erişim tarihi: 21.02.2006) 

Puppo, E. and De Floriani L. ,2004, Mesh simplification (part three): simplification 
algorithms. http://www.aimatshape.net/resources/v-lectures/ 
meshsimplification/DISI-simplification-part3.pdf. (Erişim tarihi: 16.08.2006) 

Rasit Bin Muhammed. ,1993, Computational Geometry Lecture Notes. 
http://www.personal.kent.edu/~rmuhamma/Compgeometry/compgeom.ht
ml.(Erişim tarihi: 14.02.2006) 



71 

Shewchuk, Jonathan ,1999, Meshing and Triangulation in Graphics, Engineering, 
and Modeling. http://www.cs.berkeley.edu/~jrs/mesh/1/lecture.html.(Erişim 
tarihi: 18.01.2006)  

Skiena, Steven S. & Revilla, Miguel, 2003, Programming Challenges, Springer 
Verlag 

Smid, Michiel ,2003, Computing the convex hull of a planar point set. 
http://www.scs.carleton.ca/~michiel/lecturenotes/ALGGEOM/convexhull.pd
f. (Erişim tarihi: 01.09.2006) 

Stewart, Colin ,2003, Polygon Triangulation. http://www.sfu.ca/~cjs/triangulation. 
(Erişim tarihi: 14.02.2006)  

Sunday, Dan, 2004, Convex Hull of a 2D Simple Polyline. 
http://softsurfer.com/Archive/algorithm_0203/algorithm_0203.htm. (Erişim 
tarihi: 06.06.2006) 

Suri, Subhash, 2002, Polygon Triangulation. http://www.cs.ucsb.edu/ 
~suri/cs235/Triangulation.pdf. (Erişim tarihi: 27.01.2006) 

Turk, Greg & Lindstrom, Peter,2003, Image Driven Simplification. 
http://www.cs.ualberta.ca/~anup/Courses/604/Presentation_files/P3.pdf. 
(Erişim tarihi: 24.07.2006) 

Varshney, Amitabh ,2003, Level Of Detail Management for 3D Games. 
http://lodbook.com/course/2003/Varshney_GeneratingLOD.ppt. (Erişim 
tarihi: 04.08.2006) 

Vigrnond, Edward Joseph ,1997, Electrical Coupling Mechanisms of Excitable 
Cells. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ28309.pdf. 
(Erişim tarihi: 24.07.2006) 

Vlasic, Daniel ,2003, Polygon Triangulation. http://theory.lcs.mit.edu/~indyk/6.838-
old/handouts/lec4.pdf. (Erişim tarihi: 27.01.2006) 

Yanalak,M., 1997, Sayısal Arazi Modellerinden Hacim Hesaplarında En Uygun 
Enterpolasyon Yönteminin Araştırılması ,Doktora Tezi ,İTÜ Fen Bilimleri 
Enstitüsü, İstanbul. 



72 

EK 1.JAVA TOPOLOGY SUITE 

Java Topology Suite (JTS) coğrafi bilgi sistemleri alanında kabul görmüş bir 

Java paketidir. JTS paketi, Open GIS Konsorsiyum tarafından 1999 tarihinde 

belirlenmiş olan standartlarla tamamen uyumlu bir pakettir. JTS Java paketi, iki 

boyutlu düzlemde doğrusal geometrik modellemelerin tanımlanmasında, konumsal 

veri işlemlerinde ve algoritmalar üzerinde tam ve sağlam bir destek sunmaktadır. 

Ayrıca, konumsal veritabanları için sorgulama imkanları da sunmaktadır. 

JTS Java paketi ilk kez 30 Mayıs 2001 tarihinde ortaya çıkmış olup, 2004 

yılına kadar altı kez sürüm güncellemesi yapılmıştır. 22 Eylül 2004 tarihinde JTS 

sürüm 1.5 kullanıcıya sunulmuştur. En son sürüm değişikliği ise 22 Haziran 2006 

tarihinde yapılmış ve 1.7.2 sürümü kullanıma sunulmuştur. Web adresi olarak 

http://www.vividsolutions.com/jts/JTSHome.html adresi kullanılmaktadır. Vivid 

Solutions, Inc. firmasının sorumluluğunda çalışmalarına devam edilen JTS Java 

paketinin geliştirme grubunda Martin Davis, Jonathan Aquino, David Skea gibi 

isimler mevcuttur. 

JTS Java paketi veri giriş ve veri çıkışlarında bilinen bütün giriş/çıkış text 

türlerini desteklemektedir. Ayrıca, bilgisayar grafiği işlemlerinde çok sağlam ve 

sıhhatli sonuçlar vermektedir. Modellemeler üzerindeki kontrollerde rahat bir 

kullanım kolaylığı sunmaktadır. İki boyutlu düzlemde konumsal veri işlemlerinde 

(üzerinde, kesişiyor, .. gibi) ve konumsal analiz metotlarında (kesişim, birleşim, .. 

gibi) tam, eksiksiz ve birbiri ile tutarlı işlemler gerçekleştirmektedir (Bkz. Şekil 1.). 

JTS paketinde, her türden geometrik nesnenin tanımlanabilmesine imkan 

veren sınıflar tanımlanmış ve kullanıma sunulmuştur. Ayrıca, bütün veri türlerini 

kapsayacak şekilde Geometry sınıfı adında bir üst sınıf tanımlanmıştır. JTS 

paketindeki hiyerarşide Geometry sınıfı en üst seviyeyi tutmaktadır (Bkz. Şekil 2.). 

Bütün nesneler Geometry sınıfı ile de ifade edilebilmekte ve kullanılabilmektedir. 

Geometry nesnesi ile tanımlanan veri kümeleri üzerinde birleşim, kesişim, fark,.. 

gibi küme işlemleri uygulanabilmektedir. 



73 

 
Kesişim Birleşim Fark 

Şekil 1. Veri işlemleri 

 

 

Şekil 2. Geometrik sınıf hiyerarşisi 

Bilgisayar grafiğinde ve grafik uygulamalarında nesneleri ifade etmek için 

kullanılabilecek en küçük nesne noktadır. JTS Java paketinde (x, y) noktasını ifade 

etmek için Coordinate sınıfı tanımlanmıştır. Paket içerisinde Coordinate sınıfı 

kullanılarak yeni sınıflar üretilmiştir. Tanımlanan sınıflardan bazıları Point, 



74 

MultiPoint, Line, LineString, Polygon, MultiPolygon, Geometry, .. sınıflarıdır (Bkz. 

Şekil 3.).  

 

Şekil 3. Geometrik sınıflar 

Tezimizde JTS Java paketinin 1.7.2 sürümü kullanılmıştır. Uygulama 

geliştirilirken JTS Java paketi içinde eksik olan üçgenleştirme ile ilgili yardımcı 

sınıflar tanımlanmıştır. Tanımlanan sınıflar coordinateNode, coordinateNodeList, 

triTriangle, triTriangleNode ve triTriangleNodeList sınıflarıdır.  

JTS Java paketiyle nokta verisinin tanımlanması için Coordinate sınıfı 

kullanılmaktadır. Birden fazla aynı türden veriyi bilgisayar hafızasında tutmak için 

ya dizi kullanılmalı ya da gösterge zincirleri kullanılmalıdır. Gösterge zincirleri 

poligonal basitleştirme işlemlerinde daha kullanışlı olacağından Coordinate zinciri 

için coordinateNodeList  ve üçgenler zinciri için ise triTriangleNodeList  sınıfları 

hazırlanmıştır.  



75 

JTS paketi için tanımlanan coordinateNode sınıfı, noktalar dizisi 

oluşturabilmek için tanımlanmış bir sınıftır. Girişi yapılan her nokta için önce 

coordinateNode nesnesi tanımlanıp, önceki ve  sonraki göstergeler ile birbirlerine 

bağlayarak uç uca bir liste oluşturulur (Bkz. Şekil 4.) (Bkz. Şekil 5.). Bu türden 

gösterge zincirlerinin özelliklerinden biri eleman sayısının önceden belirlenmemesi 

ve dolayısıyla eklenecek eleman sayısının önceden sınırlandırılmasının önüne 

geçilmiş olmasıdır. coordinateNode sınıfının tanımlaması şu şekildedir; 

 

Şekil 4. Gösterge yapısı 

 

 

Şekil 5. Gösterge yapısı 

public class coordinateNode extends Object   

public coordinateNode prior;  // önceki nesne 

public coordinateNode next;   // sonraki nesne 

public Coordinate coordinate; // Coordinate sıfını değeri 

  // Argümansız yapılandırıcı 

public coordinateNode() 

  // Coordinate nokta sınıfı değer alan yapılandırıcı. 

public coordinateNode(Coordinate P) 

} 



76 

coordinateNodeList sınıfı, noktalar kümesi oluşturmak için kullanılır. 

coordinateNodeList nesnesi noktalar kümesinin ilk ve son elemanı ile eleman 

sayısını tutabilen bir nesnedir (Bkz. Şekil 6.). coordinateNodeList nesnesinin 

tanımlaması ise şu şekildedir; 

public class CoordinateNodeList extends Object  

public coordinateNode first; //Listenin ilk değerini tutar. 

public coordinateNode  last; //Listenin son değerini tutar. 

public int       noOfPoints; //Listedeki eleman sayısı  

  //Argümansız yapılandırıcı 

public coordinateNodeList(). 

  //Argümanlı yapılandırıcı. 

public coordinateNodeList(Coordinate[] coorL, int countT)  

} 

Coordinate nokta nesnelerini bir küme oluşturacak şekilde kullanmak 

istersek şu adımları izlemek yeterli olacaktır (Bkz. Şekil 6.3.). Öncelikle, bellekte ilk 

ve son işaretçileri boş ve eleman sayısı sıfır olan bir coordinateNodeList nesnesi 

oluşturulmalıdır. Bu işlem için; 

coordinateNodeList coordinates = new coordinateNodeList (); 

kodlanır. 

 

Şekil 6. Pointer yapısı 

Verilen (x1,y1) noktasını listeye eklemek için; 

coordinates.addLast(new Coordinate(x1,y1)); 

kodlanır (BKz. Şekil 7.). 



77 

 

Şekil 7. Listeye ilk noktayı ekleme 

Verilen (x2,y2) noktasını listeye eklemek için (Bkz. Şekil 8.); 

coordinates.addLast(new Coordinate(x2,y2)); 

kodlanır. 

 

Şekil 8. Listeye ikinci  noktayı ekleme 

Verilen (x3,y3) noktasını listeye ekleme işlemini biraz daha görselleştirecek 

olursak. İşlem için; 

coordinates.addLast(new Coordinate(x3,y3)); 

kodlanır. Ekleme işlemi bittiğinde eleman sayısı 2 den 3 e dönüştürülecektir (Bkz. 

Şekli 9). 

 

Şekil 9. Listeye üçüncü  noktayı ekleme 

Java appletleri için kullanılacak nokta dizileri için kullanılacak gerekli 

fonksiyonlarda bu sınıf içerisinde tanımlanmıştır.  



78 

Pakete eklenen sınıflardan coordinateNodeList sınıfı nokta değerlerinin 

gösterge listeleri olup, üçgenleştirme için gerekli yardımcı fonksiyonlar 

tanımlanmıştır. Sınıf içerisinde tanımlanmış fonksiyonlardan bazılarını şunlardır; 

//Gelen Coordinate P nesnesini liste sonuna ekler. 
public void addLast(Coordinate P)  

//Gelen Coordinate P nesnesini tekrar etmemek koşulu ile 
//liste sonuna ekler. 
public void addLastUnique(Coordinate P)  

//Listeyi boşaltır. 
public void delAll()  

//Listedeki Coordinate P verisini siler. 
public void delOneCoordinate(Coordinate P)  

//Gelen Coordinate P verisini istenen damgadaki yere atar. 
public void updateIndexValue(int index, Coordinate P)  

//Bir Coordinate P nesnesinin listedeki damgasının değerini 
//geri döndürür. 
public int getCoordinatePos(Coordinate P)  

//Bir Coordinate P nesnesinin listedeki damgasının değerini 
//epsilon hata payı ile bulup geri döndürür. 
public int getNearestPtsPos(Coordinate P, int epsilon)  

//Listeden istenen damgada yer alan Coordinate nesnesini geri 
//döndürür 
public Coordinate getIndexValue(int index)  

//Listenin kopyasını çıkartır 
public coordinateNodeList copyPolygon()  

//Göstergedeki noktaları çizer. 
public void drawPolygon(Graphics gg, boolean showPtsTitle 

, boolean showPtsValue, Color pointColor 
, Color lineColor, Color textColor 
, boolean joinFirstLast, boolean drawLines 
, boolean drawPoints, boolean fillPoints 
, int xSize, int ySize, int xGolge, int yGolge )  

//Listedeki noktaların arasındaki bölgeyi boyar. 
public void fillPolygon(Graphics gg, Color fillColor )  

//Noktanın konveks çok kenarlının içinde olup olmadığını 
//kontrol eder. 
public boolean pointInConvexPolygon(Coordinate P) 



79 

//Göstergedeki noktaların istenen damgaya kadar ki kısmını 
//Coordinate dizisini olarak geri döndürür 
public Coordinate[] toCoordinateArray(int aktifPtsId) 

//Göstergedeki noktaların Delaunay üçgenleştirmesi ile elde 
//edilen üçgenler dizini geri döndürür  
public triTriangleNodeList getDelaunayTriangles()  

//Konveks kabuğu geri döndürür 
public coordinateNodeList getConvexHull()  

//Poligon’nun basit poligon olup olmadığı kontrol edilir 
public boolean isSimplePolygon(Coordinate newPts 

, Coordinate chkPts, int chkLineIndx, int chkFrk) 

JTS paketine eklenen coordinateNodeList sınıfını inceledik. JTS Java 

paketine eklenen diğer bir sınıf ise triTriangleNodeList sınıfıdır. Bu sınıfta 

üçgenler listesi tutulması, tutulan üçgenler üzerinde üçgenleştirme ve üçgen 

sayısının azaltılması ile ilgili fonksiyonlar tanımlanmış olup, sınıf içerisinde 

tanımlanmış fonksiyonlardan bazılarını şunlardır; 

//Gelen T nesnesini liste sonuna ekler. 
public void addLast(triTriangle T)  

//Listeyi boşaltır. 
public void delAll()  

//Listedeki son elemanı siler. 
public void delLast()  

//Listedeki belli bir damgadaki elemanı siler. 
public void delOneTriangle(int index)  

//T değerini istenen damgadaki yere atar. 
public void updateTriangleIndexValue(int index,triTriangle T) 

//Listeden istenen damgadaki nesnesini geri döndürür. 
public triTriangle getIndexValue(int index)  

//Listenin kopyasını çıkartır. 
public triTriangleNodeList copyTriangleList()  

//Yeni liste aktif liste üzerine eklenir 
public void addOverList(triTriangleNodeList eklenenList)  

//P köşesini içeren üçgenler kümesini döndürür 
public triTriangleNodeList getTrianglesForOnePts 

(Coordinate P) 

//Listeyi çok kenarlı olarak çizer. 



80 

public void drawTriangles(Graphics gg, boolean drawTriangle 
, boolean drawCircle, boolean drawLines 
, Color pointColor, Color lineColor 
, Color textColor, Color originColor 
, boolean drawPoints, boolean fillPoints 
, int xSize, int ySize, int sizeO 
, int golgeX, int golgeY)  

//P1 ve P2 köşelerini kapsayan üçgen damgası geri döner. 
//hariciIndex = 0 ise ilk bulunan damga, hariciIndex > 0 ise 
//hariciIndex ile farklı damga dondurulu 
public int getIndexValueForTwoPts(int hariciIndex 

, Coordinate P1, Coordinate P2)  

//Yeni eklenen nokta üçgenleştirilmiş bölgenin dışında ise 
//kullanılacak Delaunay üçgenleştirmesi algoritması 
public void addOneCoordinateOutDelaunayTriangle( 

  Coordinate nwPts, coordinateNodeList liste 
, int aktifPtsId, coordinateNodeList flipClm01 
, coordinateNodeList flipClm02)  

//Yeni eklenen nokta üçgenleştirilmiş bölgenin içinde ise 
//kullanılacak Delaunay üçgenleştirmesi algoritması 
public void addOneCoordinateInDelaunayTriangle( 

  Coordinate nwPts, coordinateNodeList liste 
, int aktifPtsId)  

//Delaunay üçgenleştirmesi için kenar dönüşümü 
public void flipEdgeFor2Pts(Coordinate nwPts 

, Coordinate edgeA, Coordinate edgeB)  

//Gelen noktanın üçgenlerin içindemi dışında mı olduğu 
//kontrol edilir. Nokta üçgen içerisinde ise damgası, 
//dışarıda ise 0 döner 
public int getCoordinatePosition(Coordinate nwPts)  

//Üçgenlerin Coordinate kümesini döndürürü 
public coordinateNodeList getCoordinateList()  

//Yarı kenar büzme  
public void meshYariKoseBuzme(Coordinate ptrP1 

, Coordinate ptrP2, coordinateNodeList coorList)  

//Tam kenar büzme  
public void meshTamKoseBuzme(Coordinate ptrP1 

, Coordinate ptrP2, coordinateNodeList coorList)  

//Üçgen büzme  
public void meshUcgenBuzme(triTriangle triGel 

, coordinateNodeList coorList )  



81 

Hazırlamış olan bu Java sınıfları ile üçgenleştirme ve üçgen sayısının 

azaltılması ile ilgili uygulama geliştirmek çok daha kolay olmaktadır. Uygulama 

hazırlanırken üçgenleştirilecek bölgedeki nokta değerlerinin girilmesi, girilen 

değerlerin gösterge listesine eklenmesi ve ilgili fonksiyonların çağrılması yeterli 

olacaktır. 

 


