Tez No İndirme Tez Künye Durumu
534905
3D printed, cell carrying gelma hydrogels in corneal stroma engineering / 3B basılı hücre taşıyan gelma hidrojelleri ile kornea stroma mühendisliği
Yazar:CEMİLE BEKTAŞ
Danışman: PROF. DR. VASIF NEJAT HASIRCI ; PROF. DR. AYŞE BURCU
Yer Bilgisi: Orta Doğu Teknik Üniversitesi / Fen Bilimleri Enstitüsü / Biyoteknoloji Ana Bilim Dalı / Biyoteknoloji Bilim Dalı
Konu:Biyoteknoloji = Biotechnology
Dizin:Cerrahi-göz = Surgery-eye
Onaylandı
Doktora
İngilizce
2018
180 s.
Doku mühendisliği olmayan veya zarar görmüş organları değiştirerek fonksiyonlarını eski haline getirmeyi amaçlayan gelişmekte olan bir alandır. Üç boyutlu basım (3B) hastaya özel kontrol edilebilir boyutta, şekilde, ve gözeneklilikte hücre taşıyan iskelelerin üretimine olanak sağlayan son zamanlarda doku mühendisliği alanında çok yaygın kullanılmaya başlayan bir yöntemdir. Kornea'da meydana gelen hasarlar ve hastalıklar katarakt ve glokomdan sonra en yaygın üçüncü körlük sebebidir. Günümüzde transplantasyon ve yapay kornea (keratoprotez) kısıtlamalara karşın tek kabul edilen tedavi yöntemleridir. Bu çalışmada doğal korneanın mikro yapısınını taklit eden 3B biyobasım yöntemiyle basılan kornea stroma eşlenikleri tasarlanmıştır. Sketchup programı ile oluşturulan modele göre keratosit yüklenmiş GelMA çözeltisinden 3B basılmış hidrojeller oluşturulmuştur. Elde edilen kornea stroma eşleniği görevi görecek hücre taşıyan yapılar oldukça yüksek ışık geçirgenliğine sahip ve dayanıklıdır. Hidrojellerin karakterizasyonu ve in vitro ve in vivo performanslarının test edilmesi için 3B basılmış hidrojellerin eşleniği olarak "slab (desensiz plaklar)" hidrojeller kullanılmıştır. Farklı konsantrasyonlarda (%5, 8, 10, ve 15 w/v, PBS içinde) hazırlanan GelMA hidrojel slablarının su içerikleri artan GelMA konsantrasyonu ve UV süresi ile azalmıştır. Hidrojellerin dayanıklılığı fosfat tampon çözeltisi (PBS) ve kollajenaz tip II enzimi içerisinde bekletilerek test edilmiş ve artan GelMA konsantrasyonunun sağlamlığı da arttırdığı görülmüştür. Hidrojellerin ışık geçirgenliği 700 nm'de 90%'ın üzerindedir ve değerler doğal korneanın ışık geçirgenliği ile örtüşmektedir. Hidrojellerin ışık geçirgenlikleri enzimatik bozunma sırasında da değişmemiştir. İnsan keratosit hücreleri doğal kornea içinde uzamış ve birbirleriyle etkileşim içerisinde bulunurlar. Bu çalışmada hücrelerin hidrojel içinde birbirleri ile etkileşimlerini sağlayan en uygun konsantrasyon 1x106 hücre/mL olarak belirlenmiştir. Canlı-Ölü hücre canlılığı testi hidrojel içerisindeki hücrelerin %90'ından fazlasının canlı olduğunu ve hidrojel içinde homojen olarak dağıldığını göstermiştir. Alamar Mavisi hücre çoğalması testinde hücre sayılarının sürekli olarak arttığı gözlenmiş, Draq5-Falloidin (çekirdek ve sitoplazma boyaları) boyamaları hücrelerin ağ benzeri yapılar oluşturduğunu göstermiş ve immün boyamalar hidrojel içindeki hücrelerin kornea hücrelerine özel kollajenleri (Kollajen tip I ve V) ve proteoglikanları (decorin ve biglikan) sentezlendiğini göstermiştir. HEMA, diğer bir hidrojel oluşturan polimer, kontak lenslerin yapımında sıkça kullanılan bir biyomalzemedir ve bu çalışmada hidrojellerin mekanik sağlamlıklarını arttırmak amacıyla GelMA'nın yapısına katılmıştır. Hidrojellerin basma modülü HEMA varlığında önemli ölçüde artmış fakat hidrojel içindeki hücre sayısı düşmüştür. HEMA içeren hidrojellerin kollajen tip I ve V sentezlerinin de GelMA hidrojellerine kıyasla düşük olduğu görülmüştür. Bu sebeple, 3B biyobasım ve in vivo çalışmalar için sadece GelMA içeren hidrojeller kullanılmıştır. 3B basımda desenlerin düzgün bir şekilde elde edilebilmesi için basım koşulları iğnenin x-y yönündeki hızı (Fxy, mm/min) ve enjeksiyon hızı (R/S, Dots/min) değiştirilerek optimize edilmiştir. 3B basılan hidrojeller PBS içinde üç hafta inkübe edilmiş ve oldukça sağlam oldukları görülmüştür (21 gün sonunda %92'si kalmıştır). Canlı-Ölü hücre canlılığı testine göre 21. günde 3B basılan hidrojellerin içindeki hücrelerin %98'inin canlı olduğu görülmüş ve basım koşullarının hücrelere zarar vermediği sonucuna ulaşılmıştır. Hücre taşıyan 3B basılan hidrojellerin basma modülleri üç hafta içinde önemli ölçüde artmıştır. Hücre taşıyan ve hücresiz 3B basılan hidrojellerin ışık geçirgenlikleri 3 hafta boyunca incelenmiş ve 700 nm'de %80'in üzerinde olduğu görülmüştür. Bu değer doğal korneanın ışık geçirgenliği (700 nm'de %90) ile karşılaştırılabilecek düzeydedir. Optimizasyon sırasında seçilen üç 3B basılı hidrojelin in situ ve in vitro performansları benzerdir. GelMA15-Slab (hücresiz) hidrojel in vivo'da tavşanda denenmiştir. Hidrojel stromanın ortasına açılan cebe yerleştirilmiş ve 8 hafta boyunca slit lambası altında gözlenmiştir. Kontrol (sham) ve hidrojel yerleştirilen kornealarda herhangi bir ödem, ülser oluşumu, enfeksiyon ya da inflamasyon gözlenmemiştir. Üçüncü haftada meydana gelen hafif damarlaşma tek doz anti-VEGF uygulaması ile önlenmiştir. Hematoksilen-eozin boyaması hidrojelin ana doku ile birleştiğini göstermiş ve yalnızca minimal bir yabancı cisim reaksiyonu gözlenmiştir. Ayrıca implant edilen hidrojelin çapının 8 haftada 4 mm'den 2.6 mm'e düşmesi hidrojelin bozunduğunu da göstermektedir. Elde edilen sonuçlara göre, 3B basılı hücre taşıyan GelMA hidrojelleri oldukça yüksek ışık geçirgenliği, yeterli mekanik özellikleri, iyi düzeyde hücre canlılığı ve çoğalması sağlamasıyla doğal korneanın mikro yapısını taklit edebilir. Ayrıca hücresiz slabla yapılan in vivo çalışma da hidrojellerin kornea doku mühendisliği uygulamalarında kullanılabileceğini göstermektedir.
Tissue engineering is an emerging field which aims to replace missing or damaged tissues and restore their functions. Three dimensional (3D) printing has recently been in the heart of tissue engineering which enables design and production cell loaded or cell carrying scaffolds with shapes, sizes, and porosities specific for the patients. Corneal damages and diseases are the third major cause for blindness after cataract and glaucoma. Transplantation and keratoprostheses are the only acceptable treatments for severe corneal damages despite their limitations. In the current study a 3D bioprinted stromal equivalent was designed to mimic the ultrastructure of the native tissue. The construct was produced by bioprinting a keratocyte loaded GelMA solution, using a model created by Sketchup program resulting in a stable, highly transparent, cell loaded hydrogels to serve as a corneal stroma. In order to carry on physical characterization and study the in vitro and in vivo performance of the constructs "slab" equivalents of the 3D printed constructs were used. GelMA slabs prepared from solutions with different concentrations (5, 8, 10 and 15%, w/v in PBS) showed that water content of the hydrogels decreased with increasing concentration and UV duration. Stability of the hydrogels studied by incubation in PBS and collagenase type II was also enhanced with increased hydrogel concentration. Transparency of the hydrogels was over 90% at 700 nm and comparable with the native cornea. Transparency of the constructs did not change during enzymatic degradation tests. Human keratocytes in the native stroma are elongated and interact with each other. Optimum concentration of the cells in the hydrogels was 1x106 cells/mL enabled interactions between the cells. Live-Dead cell viability assay showed that over 90% of the cells were alive and homogenously distributed in the hydrogels. Alamar Blue cell proliferation assay showed continuous cell proliferation, Draq5 Phalloidin stained cells illustrated network like structures, and immunofluorescence studies showed synthesis of representative collagens (Collagen types I and V) and proteoglycans (decorin and biglycan) of the cells in the hydrogels. HEMA, another hydrogel forming polymer widely used as a biomaterial in contact lenses, was incorporated into the GelMA structure to enhance the mechanical properties of the constructs. Compressive modulus of the constructs significantly increased in the presence of HEMA but number of cells loaded in the hydrogels decreased. Collagen types I and V synthesis by the cells in GelMA-HEMA hydrogels were also lower than in GelMA hydrogels. Pure GelMA hydrogels, therefore, were used in 3D bioprinting and in vivo studies. In order to have pattern reproducibility in 3D printing, the printing conditions were optimized by changing movement speed of the nozzle in x-y direction (Fxy, mm/min) and the spindle speed (R/S, Dots/min). 3D printed hydrogels were very stable in PBS during three weeks of incubation (92% remained). Live-Dead cell viability assay showed 98% cell viability on Day 21 indicating that printing conditions did not harm the cells. Mechanical properties of the cell loaded 3D printed hydrogel increased significantly during three weeks of incubation. Transparency of cell loaded and cell free hydrogels was studied for three weeks and was over 80% (at 700 nm) at all time points which is comparable to that of the native cornea (90% at 700 nm). The in situ and in vitro performances of the three selected 3D printed hydrogels were similar. In vivo performance of the GelMA15-Slab (Cell free) hydrogel was tested on rabbits. It was implanted into a mid-stromal pocket without suture fixation and observed for 8 weeks under slit lamp. No edema, ulcer formation, inflammation or infection was detected in both control (sham) and hydrogel implanted corneas. Slight vascularization on week 3 was treated with one dose of anti-VEGF application. Hematoxylin and Eosin staining showed that the hydrogel was integrated with the host tissue and there was only a minimal foreign body reaction. Moreover, results demonstrated some degradation of the construct in 8 weeks as evidenced by the decrease of its diameter from 4 mm to 2.6 mm. Thus, the 3D printed cell loaded GelMA hydrogels could mimick the native ultrastructure of the corneal stroma with excellent transparency, adequate mechanical strength, high cell viability and proliferation. In vivo studies with cell-free slabs further demonstrated that the hydrogels could be used in corneal tissue engineering applications.