Tez No |
İndirme |
Tez Künye |
Durumu |
603670
|
|
A generalization of Arnold's CAT map and fraction based embedding in image steganography / Arnold CAT dönüsümünün genelleştirilmesi ve görüntü steganografisinde kesir tabanlı gömme
Yazar:MOHAMED M.M. BUKER
Danışman: YRD. DOÇ. DR. HAKAN TORA ; YRD. DOÇ. DR. ERHAN GÖKÇAY
Yer Bilgisi: Atılım Üniversitesi / Fen Bilimleri Enstitüsü / Mühendislik Sistemlerinin Modellenmesi ve Tasarımı Ana Bilim Dalı / Bilgisayar Mühendisliği Bilim Dalı
Konu:Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol = Computer Engineering and Computer Science and Control
Dizin:
|
Onaylandı
Doktora
İngilizce
2019
107 s.
|
|
Veri iletişiminin hızlı gelişimi ve ağlar aracılığıyla iletilen bilgilerin artması, değiş tokuş edilen bilgileri korumanın yeni yollarını bulmayı çok önemli kılmaktadır. Şifreleme günümüzde bu alanda en yaygın kullanılan yöntemlerden biridir. Steganografi, iletilen bilgilerin yalnızca şifrelenmekten ziyade herkes tarafından görünmez olduğu araştırma alanıdır. Steganografinin arkasındaki fikir bilginin varlığını gizlemektir.
Bir üçüncü taraf bilgi olduğunu bildiği sürece, şifreli olsun ya da olmasın, bilgi risk altında olacaktır. Bu tezde, iki güvenlik seviyeli bir steganografik model sunuyoruz. İlk olarak, gizli görüntü Genelleştirilmiş Arnold CAT Haritamız (ACM) kullanılarak karıştırılmıştır. Daha sonra, karıştırılmış görüntü, dönüşüm bölgesinde hem Ayrık Dalgacık Dönüşümü (DWT) hem de Kaldırılmış Dalgacık Dönüşümü (LWT) ile Kesir Tabanlı Gömme Tekniğimizi (FBE) kullanarak başka bir görüntünün içine gömülür. Modelimizin verimliliği, referans renkli görüntüler üzerinde test edildi. Tepe Sinyal Gürültü Oranı (PSNR), Ortalama Kare Hatası (MSE), Yapısal Benzerlik (SSIM) ve Korelasyon değerleri hesaplandı. Sonuçlar, Genelleştirilmiş ACM'mizin, ACM'nin standart ve değiştirilmiş versiyonlarına kıyasla daha sağlam olduğunu göstermektedir. Aynı zamanda, yeni FBE tekniğimizin sonuçları, PSNR ve MSE değerleri ile ilgili diğer tekniklerden daha iyi performans göstermektedir.
|
|
The rapid development of data communication, and the increased amount of information that are communicated via networks, make it very important to find new ways to protect exchanged information. Encryption is one of the most widely used methods nowadays in this area. Steganography is a recent field of research in which the communicated information is being invisible to anyone rather than being only encrypted. The idea behind steganography is to hide the existence of information itself.
As long as a third party knew there were information, whether encrypted or not encrypted, the information will be at risk. In this thesis, we present a steganographic model with two levels of security. First, the secret image is scrambled using our Generalized Arnold Cat Map (ACM). Then, the scrambled image is embedded into another image using our Fraction Based Embedding Technique (FBE) in the transform domain using both Discrete Wavelet Transform (DWT) and Lifted Wavelet Transform (LWT). The efficiency of our model was tested on benchmark color images. Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), Structural Similarity (SSIM) and correlation values are calculated. Results show that our Generalized ACM is more robust compared to standard and modified versions of ACM. At the same time, results of our new FBE technique performs better than those of other techniques regarding to PSNR and MSE values. |