Tez No |
İndirme |
Tez Künye |
Durumu |
450754
|
|
Sayısal görüntülerde piksel yolu çıkarma esaslı boyut değişikliği tespiti / Detection of seam carving based size modification in digital images
Yazar:ZEHRA KARAPINAR ŞENTÜRK
Danışman: YRD. DOÇ. DR. DEVRİM AKGÜN
Yer Bilgisi: Sakarya Üniversitesi / Fen Bilimleri Enstitüsü / Bilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı
Konu:Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol = Computer Engineering and Computer Science and Control
Dizin:
|
Onaylandı
Doktora
Türkçe
2016
102 s.
|
|
Piksel yolu çıkarma (seam carving), günümüzde en çok uygulanan içeriğe duyarlı görüntü boyutlandırma yöntemlerinden biridir. Piksel yolu çıkarmanın sebep olduğu bozukluklar çok yüksek oranlarda ölçekleme yapılmadıkça insan gözü tarafından algılanamaz. Bu görsel başarının sebebi görüntüdeki piksellerin önem değerlerine göre değerlendiriliyor olmasıdır. Görüntünün optimal seam'i, görüntü genelinde toplamda en az enerji (önem) değerine sahip piksel yoludur. Tek piksel genişliğindeki önemsiz bu piksel yolları birer azaltılarak her iterasyonda görüntünün genişliği ya da yüksekliği bir azaltılır. Anlamsal olarak önemli olan ön plan nesnelerine mümkün olduğunca dokunulmaz. Görüntünün içeriğinin bu denli korunduğu bir ölçekleme yaklaşımı kötü niyetli olarak da kullanılabileceğinden, bu şekilde ölçeklenmiş görüntülerin tespiti büyük önem arz etmektedir. Piksel yolu çıkarma tabanlı ölçeklemenin tespiti diğer ölçekleme yöntemlerine göre oldukça zordur; çünkü görüntülerin geometrik açıdan ele alınması yetmez, anlamsal bir değerlendirme içeren detaylı bir analiz yapılması gerekmektedir.
Bu çalışmada, piksel yolu çıkarılarak boyutları değiştirilmiş görüntülerin tespiti, görüntülerden özellik çıkarılması ve çıkarılan özelliklerle Destek Vektör Makinesi'nin eğitilmesi şeklinde gerçekleştirilmektedir. Çıkarılan özellikler piksel yolu çıkarma algoritmasının uygulanışı ile alakalı özelliklerdir. Ayrıca, yöntemin başarımını artırmak amacıyla, özellik çıkarımı öncesinde görüntülere Yerel İkili Örüntüler dönüşümü uygulanmış ve piksel yolu çıkarmanın sebep olabileceği yerel bozukluklar belirginleştirilmiştir. Tüm bunlara ek olarak, piksel yolu çıkarmanın görüntülerin farklı parçalarındaki etkileri de incelenmiştir. Bu amaçla görüntüler şeritlere ayrılarak her bir şerit seam özellikleri bakımından değerlendirilmiş ve tespit doğrulukları bu şekilde oldukça artırılmıştır.
Geliştirilen yöntem ile piksel yolu çıkarma tabanlı ölçekleme %30 ölçeklenmiş görüntülerde %99,9'lara kadar tespit edilebilmiştir. Performans literatürdeki diğer yöntemlere göre ortalamada %20'den fazla artırılmıştır. Tespit performansı özellikle tespit edilmesi daha zor olan %3, %6 gibi küçük ölçekleme oranlarında %26 geliştirilmiştir.
|
|
Seam carving is one of the mostly applied content-aware image resizing methods today. The deteriorations caused by seam carving are mostly unnoticeable for human eyes unless the scaling ratio is very high. The reason of this visual success comes from evaluating the pixels according to their importance values. Optimal seam of an image is a pixel path which contains the least energy (importance) throughout the image. Image width or height is decreased by one in each iteration by removing those unimportant, one-pixel width pixel paths. The semantically important foreground objects remain untouched as far as possible. Since such a scaling approach which perfectly preserves the image content can be used malevolently, the detection of the images that are scaled in this manner becomes more of an issue. The detection of seam carving is more difficult than the other scaling methods since evaluating the images geometrically is not sufficient, but a detailed analysis investigating the semantical concept is required.
In this study, the detection of the images scaled by seam carving is realized by feature extraction and training a Support Vector Machine with those features. The extracted features are related to the seam carving process. In addition, Local Binary Patterns transform is applied to the images before feature extraction to reveal the local artifacts caused by seam carving. Besides, the effect of seam carving in sub parts of the images is investigated. For this purpose, the images are divided into several stripes and each and every stripe is evaluated in terms of seam features. This evaluation has been improved the detection accuracies.
Seam carving based resizing has been detected up to 99,9% in 30%scaled images by the developed method. The detection performance has been improved 20% on the average when compared with other methods in the literature. The detection performance is improved 26% in low scaling ratios like 3% and 6% which are harder to detect. |