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OZET

Doktora Tezi

ABEL VE CESARO TOPLANABILME METODLARI iCiN TAUBER TiPi
TEOREMLER

Umit TOTUR
Siileyman Demirel Universitesi
Fen Bilimleri Enstitiisii

Matematik Anabilim Dah

Damisman: Prof. Dr. Bilender PASAOGLU

Bu calisma dort boliimden olusmaktadir.

Birinci boliimde, kisaca toplanabilme metodlar1 ve Tauber teorisinin tarihsel

gelisiminden bahsedilmistir.

Ikinci bdliimde, tez boyunca kullanilacak olan tanim ve gdsterimler verilmis, klasik

Tauber tipi teoremler incelenmistir.
Ucgiincii bdliimde, Cesaro toplanabilme metodu igin Tauber tipi teoremler verilmistir.

Dordiincii boliimde, Abel toplanabilme metodu i¢in Tauber tipi teoremler verilmistir.

Anahtar Kelimeler: Abel toplanabilme metodu, Cesaro toplanabilme metodu,
Tauber tipi teoremler, klasik kontrol modiilo, genel kontrol modiilo, tek tarafli

smirlilik, yavas saliniml dizi, tek tarafli yavas saliniml dizi.

2011, 52 sayfa



ABSTRACT

Ph.D. Thesis

TAUBERIAN THEOREMS FOR ABEL AND CESARO SUMMABILITY
METHODS

Umit TOTUR
Siileyman Demirel University
Graduate School of Applied and Natural Sciences

Department of Mathematics

Supervisor: Prof. Dr. Bilender PASAOGLU

This thesis consists of four chapters.

In the first chapter, historical development of classical Tauberian theory and

summability theory are mentioned, shortly.

In the second chapter, the definitions and notations, which are going to be used

throughout the thesis, are given and classical Tauberian theorems are investigated.
In the third chapter, Tauberian theorems for Cesaro summability method are given.

In the fourth chapter, Tauberian theorems for Abel summability method are given.

Key Words: Abel summability method, Cesaro summability method, Tauberian
theorems, classical control modulo, general control modulo, one-sidedly

boundedness, slowly oscillating sequence, one-sidedly slowly oscillating sequence.

2011, 52 pages
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An sayisinin tam degeri

(u,) dizisinin De la Vallée Poussin ortalamasi



1. GIRIS

Toplanabilme teorisi XVIII. yiizyildan giiniimiize kadar devam etmekte olan
matematiksel analizin ¢ok genis bir ¢alisma alanidir. Toplanabilme metodlarinin
genel amaci belli kosullar altinda raksak dizilerin yapilar1 hakkinda bazi bilgiler elde
edilmesini saglamaktir. Her yakinsak dizi ayni1 noktaya regiiler bir metod tarafindan
toplanabilirdir. Fakat bir metod tarafindan toplanabilen her dizinin yakinsak olmasi
gerekmez. Bunun saglanabilmesi uygun kosullar altinda miimkiindiir. Bu tiirdeki
calismalar A. Tauber (1897) in yapmis oldugu caligmayla baslayip giinlimiize kadar
devam eden bir arastirma konusu olmustur. Tauber (1897), Abel toplanabilme
metodu tarafindan toplanabilen bir dizinin hangi kosullar altinda yakimsak oldugunu
gostermistir. Bu alanda ilk ¢alismayr Tauber yaptigi icin bir toplanabilme
metodundan yakinsakligin yeniden elde edilmesini saglayan kosullara Tauber kosulu
ve bu tiirdeki teoremlere Tauber tipi teorem adi verilmektedir. Bu tez boyunca sadece
Abel ve Cesaro toplanabilme metodu ele alinacak ve bu metodlar igin Tauber tipi

teoremler verilecektir.

Literatiirdeki klasik ¢alismalardaki amag¢ Tauber’in verdigi kosullari zayiflatmak
olmustur. Bu alanda yapilan ¢alismalardan baslicalari, Littlewood (1910), Landau
(1910), Hardy ve Littlewood (1914), Schmidt (1925) ve Karamata (1930) olarak

siralanabilir.

Daha sonra Dik (2001a) ve Dik (2001b) ¢alismalarinda bir dizinin tamsay1 mertebeli
salinim davranislarinin genel kontrol modiilosu kavramii kullanarak klasik Tauber
tipi teoremlerdeki kosullar1 genellestirip Abel ve Cesaro toplanabilme metodu i¢in

yeni tipte teoremler elde etmislerdir.

Canak ve Totur (2007), Dik (2001a) ve Dik (2001b) tarafindan kullanilan bir dizinin
tamsay1 mertebeli salmim davraniglarmm genel kontrol modiilosu tanimmdan daha
islevsel olarak yararlanabilmek i¢in bu tanimin iki farkli yazilisini géstermisler ve bu
farkli yaziliglar sayesinde Dik (2001a) ve Dik (2001b)’in verdikleri teoremleri
genellestirmislerdir. Abel ve Cesaro toplanabilme metodu i¢in bir dizinin tamsay1

mertebeli salinim davraniglarinin genel kontrol modiilosu kavraminin kosul olarak



kullanildig1 Tauber tipi teoremlerin verildigi baslica bazi1 ¢aligmalar Stanojevié
(1998), Stanojevi¢ (1999), Stanojevi¢ vd. (1999), Stanojevi¢ ve Stanojevi¢ (2002),
Dik vd. (2004), Canak vd. (2007), Canak ve Totur (2008), Canak (2008), Canak
(2010), Canak vd. (2010) seklinde siralanabilir.

Yizyilh askin bir siiredir toplanabilme teorisinde yapilan bu alandaki c¢alismalar

gliniimiizde 6nemini hala korumaya devam etmektedir.

Hazirlanan bu doktora ¢alismasinda Abel ve Cesaro toplanabilme metodlar1 igin
Tauber tipi yeni teoremler verilmesi amaglanmustir. Bu nedenle, tezde oncelikle Abel
toplanabilme metodu ve Cesaro toplanabilme metodu tanitilip, gerekli tanimlar ve
notasyonlar verilmistir. Daha Sonra Tauber teorisinin gelisiminden ve yapilan bazi
Klasik ¢aligmalardan bahsedilmistir. Son olarak da bu tipteki baz1 klasik teoremler
genellestirilip Tauber tipi yeni teoremler verilmistir. Ayrica elde edilen bu

teoremlerin 6nceki ¢alismalarla karsilastirilmasi yapilmistir.



2. TEMEL KAVRAMLAR

Bu boliimde tez boyunca kullanacak olan tanim ve gosterimlere yer verilecek olup,

klasik Tauber teorisi 0zetlenecektir.
2.1. Tammlar ve Gosterimler

u=(u,) reel sayilarin bir dizisi olmak iizere, bu dizinin aritmetik ortalamalar1

1 S . . .
o (u) =——=> u, ile gdsterilsin. Sonlu bir s sayis1 igin
k=0

limo®u)=s (2.1)
ise (u,) dizisine s ye Cesaro toplanabilirdir denir (Hardy, 1991).

ise (u,) dizisine s ye Abel toplanabilirdir denir (Hardy, 1991).

Burada ilk akla gelen “Bu metodlarin sinifi ile adi yakinsaklik sinifi arasinda nasil bir

iliski vardir?” sorusudur. Bu soruya soyle cevap verilebilir:

Her yakinsak dizi ayn1 noktaya Cesaro ve Abel toplanabilirdir. Fakat Cesaro veya
Abel toplanabilir olan her dizinin yakinsak olmasi gerekmez. Asagidaki 6rnekte bu

incelenebilir.

Ornek 2.1. (u.) =(Z (—1)kj dizisi wraksak bir dizidir. Fakat hem Cesaro hem de
k=0

Abel toplanabilirdir. Gergekten (u,) dizisi



(un)=(i(—1)kj={t’ o e

n tek ise

seklinde yazilabilir ve (u,) dizisinin aritmetik ortalamasi alinirsa,

n+2 en
L o 2(n+1)’ n cift ise
(051)(U)):(n—1 UKJ: 1
+ —
k=0 > n tek ise

olur. Buradan lim c® (u) :% elde edilir. Yani (u,) =(Z(—1)kj dizisi % ye Cesaro

k=0

toplanabilirdir. Diger taraftan, 0< x <1 igin,
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elde edilir. Buradan,

jim >° (Zn:(—l)" —nzl(—l)ij" = lim Y (-1)"x" =lim L =%

-1 = = x->1" 14+ X

. = 1 n
o v eeqee . N n_ - HH : — _1\K
oldugu goriliir. Boylece, )l(TlW(l X)Zunx 5 elde edilir. Yani (u,) (Z( 1) j

n=0 k=0

dizisi % ye Abel toplanabilirdir.

Yukaridaki drnekten de goriilecegi gibi (2.1) ve (2.2) limitini gergekleyen dizilerin

siniflar1 yakinsak olan dizilerin simifindan daha genistir.



Buna ek olarak, her Cesaro toplanabilir olan dizi ayn1 noktaya Abel toplanabilirdir.
Fakat tersi dogru degildir. Asagidaki ornek Abel toplanabilirdir olup Cesaro

toplanabilir olmayan bir dizi 6rnegi olarak verilebilir.

Ornek 2.2. (u,) :(Z (—1)kkj dizisi raksak bir dizidir ve ayn1 zamanda Cesaro

k=0

toplanabilir degildir. Fakat Abel toplanabilirdir. Ciinki (u,) dizisi

- n cift ise

(un):(i(—l)kk} 2

n—, n tek ise
2

seklinde yazilabilir ve (u,) dizisinin aritmetik ortalamasi alinirsa,

1 @ 0, ngift ise
oW =—"—->u, =
() n+lkzz(; “ —%, n tek ise

elde edilir. Buradan (o (u)) dizisinin raksak oldugu goriiliir. Diger bir taraftan,

0<x<1 icin,

(i(_l)kijn ] m{i( n (’1)kij” —i( n (—1)kij”+1}

k=0

im -9y

n=0

= lim ; (-1)"nx

elde edilir. Ayrica, 0<x<1 i¢in,



Z (-D"x" =L oldugundan, terim terime tiirevlenirse,
o 1+x

z (-D)"nx"* =— ! > bulunur. Esitligin her iki tarafi x ile carpilirsa,
p—ry @+x)

3 (<1)"mx" =——> elde edilir. O halde,

e @+ x)

|@a—@i

n=0

o k TN o R n_ml X =_1
(Z(—l) k)x _XILTHZ:(;( 1)" nx Ilm( (1+x)2J 1

k=0 x—1"

bulunur. Yani (u,) =(Z(—1)kkj dizisi —% e Abel toplanabilirdir.

k=0

Yukaridaki Ornek 2.2 den de goriilecegi gibi (2.2) limitini gercekleyen dizilerin smifi

(2.1) i gergekleyen dizilerin sinifindan daha genistir.

(2.1) veya (2.2) limitini gergekleyen dizilerin sinifindan yakinsakhiga gecis (u,)

dizisi iizerine konulan uygun kosullar altinda miimkiindiir. Bu tiirdeki ilk ¢alisma A.
Tauber (1897) tarafindan yapilmistir. Bu yiizden genel olarak bir toplanabilme
metodundan yakinsakligin yeniden elde edilmesi i¢in konulan kosullara Tauber
kosullart ve bu kosullar1 iceren teoremlere de Tauber tipi teoremler denir. Bu
caligma alani giiniimiize kadar devam eden bir arastirma konusu olmustur. Tezin
ticlincii ve dordiincii boliimlerinde sirasiyla Cesaro ve Abel toplanabilme metodlar1

icin Tauber tipi teoremler verilmistir.
Tez boyunca kullanacak olan tanim ve gosterimler asagida verilmistir.

Negatif olmayan bir n tamsayisi i¢in, (u,) reel bir sayr dizisi olsun. Tez boyunca
u, =0(1) gosterimi (u,) dizisinin smirhiligini ve u, = 0(1) gosterimi (u,) dizisinin
sifira yakmsamasmi ifade edecektir. Ayrica negatif olmayan bir C sayisi igin

u, =—Cise (u,) dizisine tek tarafli sinirl denir.

Bir (v,) reel say1 dizisi i¢in



ise (u,) dizisine (v,) tarafindan diizenli olarak iiretilen bir dizi ve (v,) dizisine

(u,) dizisinin bir direteci denir (Dik vd., 2004).

Bir (u,) dizisi ve her negatif olmayan n tamsayst i¢in V,”(Au) =L12kAuk
k=1

olmak tizere,
u, o’ (u) =V,” (Au) (2.3)
dir. Burada Au,=u,—u,,, u, =0 seklinde tanimlanmistir. Literatiirde Kronecker

esitligi olarak da bilinen (2.3) esitligi ispatlarda sik¢a kullanilacaktir.  Ayrica

n )
o (u) =u, + ZW oldugundan (2.3) esitligi

k=1

n VO (A
u =vo® (Au)+2&+u

k=1

0 (2.4)

seklinde yeniden yazilabilir. (2.4) esitliginden (V.© (Au)) dizisinin (u,) dizisinin bir

ireteci oldugu kolayca goriiliir.

Negatif olmayan bir m tamsayist i¢in, (u,) dizisinin m. mertebeden aritmetik

ortalamalarinin dizisi

1 & o
O_(m)(u) - mZO'lE 1)(u)7 m>1
n k=0

u m=0

n?

seklinde, (V.©(Au)) dizisinin m. mertebeden aritmetik ortalamalar:

Vi (a0) = =3 Y (a0) = o0 P )
+

k=0



seklinde tanimlanir.

Bir (u,) dizisinin salimm davraniglarinin klasik kontrol modiilosu @' (u)=nAu,
seklinde; pozitif bir m tamsayis1 igin, salinim davraniglarinin m. mertebeden genel
kontrol modiilosu o™ (U) = @™ (U) - P (0™ (u)) seklinde tammlanmistir (Dik,

2001a; Dik, 2001b).

Ayrica bir  (u,) dizisi ig¢in, m pozitif bir tamsayis1 olmak {izere,
(nA),u, =(A), ,((nA)u,) =nA((nA), ,u,)  seklinde ifade edilir. Burada

(nA),u, =u, ve (nA),u, =nAu, dir.

Canak ve Totur (2007), salimim davraniglarmin m. mertebeden genel kontrol
modiilosunu ispatlarda daha islevsel olarak kullanabilmek i¢in farkli iki yaziligmi

gostermiglerdir.

Lemma 2.3. Her m>1 tamsayist icin (™ (u) = (nA), V™™ (Au) dir.

Ispat. Ispatta matematiksel tiimevarim yontemi kullanilacaktir. Salnim

davraniglarmin m. mertebeden genel kontrol modiilosunun tanimindan, m =1 igin
o (U) = & (U) — 6P (0" (u)) = nAu, -V, (Au, ) = nAV, ) (Au)
elde edilir. m =k i¢in esitligin dogru oldugu, yani
o (u) =(na), v, (Au) (2.5)

oldugu kabul edilsin. Timevarim geregi m=k+1 icin dogru oldugunu

ispatlanmalidir. Yani o™ (u) = (nA),,,V.% (Au) esitligini gosterilmelidir. Tanimdan

o () = 0% (U) - 0 (0 (u)) bulunur. (2.5) esitliginden,
O W) = (), V1 (8u)= (1), v, ()= (), 2 () -V, (o)

= (na), (A, (au))



=(n4).V," (au)

elde edilir. Bdylece, her pozitif m tamsayisi i¢in Lemma 2.3 iin dogru oldugu

sonucuna varilmais olur.

Lemma 2.4. Her m>1 tamsayisi igin, (m__]j=(m_1)(m__'2)'"(m_j) olmak
J )

m-1 _ _ _
tizere ™ (u) = Z:(—l)J (mj ]jnAVn“)(Au) dir.
=0

Ispat Ispatta matematiksel tiimevarim yontemi kullanilacaktr. m=1 icin,

0
o (u) = nAu, =V (Au,) = nAV,?(Au)=>"(-1 [ jnAVn(k)(Au) elde edilir. m=k

k=0

i¢in esitligin dogru oldugu kabul edilsin. Bu
o (u) = z ( _ jnAV“)(Au) (2.6)

ile gosterilir. Tiimevarim geregi m =k +1 i¢in dogru oldugunu ispatlanmalidir. Yani

oV (u) = Z ( JnAV(”(Au) esitligini gosterilmelidir. Tanimdan
2% () = 0 (U) - o® (™ (u)) bulunur. (2.6) esitliginden,

k-1

(k+l)(u) z ( _ ]nA\/(J) Au z (kj_lJnAVn(jﬂ)(Au)

j=0
elde edilir. Ikinci toplamda j+1=i olarak almirsa,

k

(k+l)(U) z ( _ jnAv(J) AU +z (__ JnAV(')(AU) 2.7)

i=1

bulunur. (2.7) esitliginin ikinci toplaminda j indisine gore yeniden yazip, birinci

toplamin ilk terimi ve ikinci toplamin son terimi ayri olarak yazilirsa,



elde edilir. (2.8) esitligi yeniden diizenlenirse,

k-1 S oy [}k |
a)r(]m) () = (_1)0 AV (o) Au + . nAVn(J)(AU)
O J=1 -l J _1

+(—1)k(k _ﬂnAV ©(Au)

k
j oldugu

k-1) (k-1
oldugu kolayca goriiliir. Kombinasyon 6zelliginden ( i J+( ) ] = (
J ]

]-1

hatirlanarak,

k-1

o ) = (-1)0(‘( : 1jnAV 0 (su)+ S (1) @nAvnm(Au)

j=1

2 i)

S

seklinde yazilir. Boylece her pozitif m tamsayisi igin Lemma 2.4 iin dogru oldugu

sonucuna varilmis olur.

Schmidt (1925), bir (u,) dizisinin yavas salimmli olmasmi asagidaki gibi
tanimlamustir (Hardy, 1991; Boos, 2000; Korevaar, 2004).

10



... N
Tanim 2.5. n>m— o igin — —1 olmak iizere u, —u,, =0(1) saglaniyorsa (u,)
m

dizisine yavas saltmimli dizi denir.

Stanojevi¢ (1998) yavas salmimli dizi tanimmi daha islevsel olarak kullanabilmek

icin yavas salinimli diziyi asagidaki gibi yeniden tanimlamuistur.

Tanim 2.6. Bir (u,) dizisi i¢in, [An], An nin tam degeri olmak iizere,

lim limsup =0

max
— n n+1<k<[An]

Zk: Au;
j=n+l

ise (u,)dizisine yavas salvmimli dizi denir. Yavas salinimli dizilerin sinifi yakinsak

olan dizilerin smifin1 kapsar. Yani her yakinsak dizi yavas salinimhdir. Fakat tersi

her zaman dogru degildir. Ornegin, (u )= (logn) dizisi yavas salimmmlidir fakat

yakinsak degildir. Gergekten,

k k - Kk -
: i i N+l n+2 k j
EAIO = E log] — |=1lo Il =lo .
° g[]—l} J 1 g( n n+l k-1

j=n+1 j=n+1 j=ni1) —

[4n]

k
olur. Buradan tanim uygulanirsa, max Iog(—jz Iog(—
n

n+1<k<[An] n

j elde edilir. Once

n — oo igin Gst limit alip ardindan 4 —1" i¢in limit alindiginda tanimin saglandig1

goriilir. Ayrica yavag salinimhligin tanimmdan, bir (u,) dizisi yavas saliniml ise

Au, =0(1), n— oo oldugu kolayca goriilebilir.

Dik (2001b), bir (u,) dizisinin yavas salinimli olmasi i¢in gerek ve yeter kosulun

(\/n(o) (Au)) dizisinin yavag salmimli ve smirli olmasi gerektigini gostermistir.

Boylece yavas salimimli bir dizinin aritmetik ortalamalarinin dizisinin de yavas

salinimli oldugu (2.4) ten soylenebilir.

Simdi verilecek tanim, yavas salinimli dizi taniminin bir genellestirilmesidir. Bu

tanim Dik (2001a) ve Dik (2001Db) tarafindan verilmistir.

11



Tanim 2.7. Bir (u,) dizisive A >1 i¢in [An], An nin tam degeri olmak iizere,

limsup max
n+Lk<[ﬂn]

ZAU

<0

ise (u,) dizisine limh salimiml dizi denir. Tanimdan yavas salinimli her dizinin

tliml salmimli oldugu kolayca goriiliir. Fakat tersi her zaman dogru degildir.

Ornegin,

1, k=2", n=12,.
u,=4-1, k=2"+1 n=12,..
0, diger

dizisi iliml salimimhdir fakat yavas salmimli degildir.

Dik (2001b), bir (u,) dizisi thmh salnmh ise (V@ (Au)) dizisinin smirlt oldugunu

gostermistir. Dik tarafindan verilen bu sonug ile ilimli salinimli olan bir dizinin

aritmetik ortalamalar1 dizisinin yavas salinimli oldugu goriiliir.

Asagidaki tanmim, yavas salmimli dizi tanimmin baska bir genellestirilmesidir. Bu

tanim Szasz (1952) tarafindan verilmistir.
Tanmm 2.8. Bir u = (u,) dizisi i¢in [An], An nin tam degeri olmak iizere,

0]
lim IlmsupZ(|Au |-Au;)=0

j=n+l

ise (u,)dizisine tek tarafli yavas salimimli dizi denir.

Tanimdan kolayca goriilecegi gibi her yavas salinimhi dizi tek tarafli yavas

salmimlidir (Szasz, 1952). Fakat tersi her zaman dogru degildir. Ornegin, (u,) = (n)

dizisi tek tarafli yavas salinimlidir ama yavas salinimli degildir.

12



Szész (1952), bir (u,) dizisi tek tarafli yavas salmmli ise (v,* (Au)) dizisinin tek

tarafli siirlt oldugunu gostermistir.

Yavas salinimli bir dizinin baska bir genellestirilmesi Schmidt (1925) tarafindan
verilmistir (Bingham vd., 1989).

Tanim 2.9. Bir (u,) dizisi i¢in, [An], An nin tam degeri olmak {izere,

Kk
lim liminf min >, Au; >0

a1t n n<k<[An] j=n+1
ise (u,)dizisine yavas azalan dizi denir.

Salinim davraniglariyla ilgili verilen tanimlardan asagidaki sonuglar elde edilebilir.

Eger o®(u)=0(1) ise (u,) dizisi yavas salimimhdir. Ayrica eger bir C >0 igin

o®(u) >-C ise (u,) dizisi yavas azalandir (Boos, 2000).

Tek tarafli yavas salinim dizi ile yavas azalan dizi arasindaki iliski Szasz (1952)’1in
sonucundan elde edilebilir 6yle ki; bir (u,) dizisi tek tarafli yavas saliniml ise

aritmetik ortalamalarinin dizisi olan (c"(u)) dizisi yavas azalandur.

Bu kisimda bir reel say1 dizisinin farkl tiir ortalamalarindan bahsedilecektir.

Bir (u,) dizisinin De la Vallée Poussin ortalamasi, n yeterince bilyiik olmak iizere,
A>1i¢in

1 [4n]

DU
[ﬂn] — Nz

2'rT,un] (u)=

ve 0<A<1igin

n

< 1
u)=———— u
2'n,[,m]( ) n—[An], Z K

=[An]+1

seklinde tanimlanir.

13



Ayrica Agnew (1932), yukaridaki tammmi genellestirerek (u,) dizisinin D, ile

gosterilen ertelenmis Cesaro ortalamasint,

1 &
(Dp,qu)n = Z uk

qn - pn k=p,+1

seklinde tanimlamistir. Burada negatif olmayan tamsayilarin dizileri olan (p,) ve

(a,), p,<q, Ve g, > o, Nn— oo kosullarini saglamaktadirlar.

9 5imak tizere, ( i
n P -1

Bu tez boyunca P, =P ye Q, = ) ve (%) dizilerinin
n —

n

sinirli oldugu kabul edilecektir ve (u,) dizisinin ertelenmis Cesaro ortalamalarinin
dizisi p, >n icin

Pn

1
(Dn,pu)n = p Zuk

n~ MWk=nt1

ve n>(, i¢in

1 n
(Dq,nu)n = z uk

n-— n k:qn+1
seklinde alinacaktir.

2.2. Klasik Tauber Teorisine Kisa Bir Bakis

Klasik Tauber teoremlerinde, dizinin kendisini ya da salinim davraniglarinin klasik
kontrol modiilosunu kisitlayan bazi araglardan yararlanarak (2.1) veya (2.2)
limitlerinden birini gercekleyen dizilerin sinifindan yakmsak dizilerin sinifi elde

edilmektedir. 1Ik olarak Tauber (1897), (u,) dizisi igin (2.2) limiti mevcut ve

o, (u) = o(2) (2.9)
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ise (u,)dizisinin yakinsak oldugunu gostermistir (Hardy, 1991; Boos, 2000;

Korevaar, 2004). Bu teoreme literatiirde Tauber in Birinci Teoremi denir.

Tauber (1897), (2.9) kosulunu daha zayif bir kosul olan (V.?(Au))dizisinin sifira

yakinsamasiyla degistirilebilecegini gostermistir (Peyerimhoff, 1969; Powell ve
Shah, 1972; Hardy, 1991; Korevaar, 2004). Bu teorem literatiirde Tauber’in Ikinci

Teoremi olarak adlandirilir.

Teorem 2.10. (Tauber’in Ikinci Teoremi) (u,) dizisi igin (2.2) limiti mevcut ve
VO(Au) = o (0 (U)) = 0(2) (2.10)
ise (u,) dizisi yakimnsaktir.

Bundan sonra yapilan ¢alismalarda (2.1) veya (2.2) limitinin varligindan yakinsaklig1

daha zayif araglarla elde edilebilmesi amaglanmustir.

Littlewood (1910), (2.9) kosulunun 6nemli bir genellestirilmesi olan
o (u) = 0@ (2.11)

kosulu ile (2.2) limitinin varhigmndan yakmnsakligin elde edilebildigini gostermistir

(Peyerimhoff, 1969; Powell ve Shah, 1972; Hardy, 1991; Korevaar, 2004).

Fakat Rényi (1946), (2.11) kosulu yerine V.?(Au) =o® (0® (u)) =0(1) kosulu
alindigindan (2.2) limitinin varligindan (u,) dizisinin yakmsakliginin elde
edilemedigi kanitlamistir. Buna ek olarak, bir (u,) dizisi i¢in (2.2) limiti mevcut ve
VO(Au)=0() ise (u,) dizisinin yakinsakligi yerine (o’(u)) dizisinin

yakinsakligimin elde edilebilecegi goriiliir.

Landau (1910), (u,) dizisiigin (2.1) limiti mevcut ve bir C >0 igin,

0 (u) > -C (2.12)
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ise (u,) dizisinin yakinsakligimni elde etmistir (Hardy, 1991; Korevaar, 2004).

Daha sonra, Hardy ve Littlewood (1914), Landau’nun verdigi kosul ile Abel
toplanabilir bir dizinin yakinsak olabildigini gostermislerdir. Bu teoreme de
literatiirde Hardy-Littlewood Teoremi adi verilir (Hardy, 1991; Korevaar, 2004).

Teorem 2.11. (Hardy-Littlewood Teoremi ) (u,) dizisi i¢in (2.2) limiti mevcut ve

(2.12) kosulu saglaniyorsa (u,) dizisi yakinsaktir.

Klasik Tauber teorisinin temelini olusturan bu g¢alismalarin ardindan yakisakligin
yeniden elde edilebilmesi i¢in yeni araglara ihtiya¢ duyulmustur. Ilk kisimda verilen
yavag salmimlilik tanimi bu araglardan biridir. Schmidt (1925), Littlewood’un

verdigi (2.11) kosulunun (u,) dizisinin yavas salimmli olmasi kosulu ile yer

degistirebilecegini gostermistir. Bu teoreme literatiirde Genellestirilmis Littlewood

Teoremi denir (Hardy, 1991; Korevaar, 2004).

mevcut ve (u,) dizisi yavas salimmliise (u,) yakinsaktir.

Ayrica Schmidt (1925), (u,) dizisinin yavas azalan olmasiyla da Abel toplanabilme

metodundan yakmsakliga gegis yapilabildigini géstermistir (Hardy, 1991; Korevaar,
2004).

(u,) yakmsaktir.

Benzer olarak Stanojevi¢ (1999), bir (u,) dizisi (2.1) limitini sagliyorsa ve
Stanojevi¢ anlaminda yavag salimimli ise (u,) dizinin yakmsak oldugunu

gostermistir.

Karamata (1930) yaptig1 calismasinda Abel toplanabilme metodu ile Cesaro

toplanabilme metodu arasindaki iliskiyi incelemis ve Abel toplanabilir bir dizinin
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kendisi iizerine kosul koyarak dizinin Cesaro toplanabilir oldugunu elde etmistir. Bu
sonu¢ asagidaki gibi ifade edilebilir. Bu teoreme literatiirde Karamata’nin Temel

Teoreminin Sonucu denir.

limiti mevcut ve negatif olmayan bir C sayisi i¢in u, >—C ise limo ™ (u) =s dir.
n
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3. CESARO TOPLANABILME METODU IiCiN TAUBER TiPi
TEOREMLER

Bu bolimde Cesaro toplanabilme metodu igin Tauber tipi teoremler hakkinda
literatlirde yapilan ¢aligmalardan sz edilmistir. Ayrica bu ¢aligmalardaki kosullarin
1s1¢inda bir dizinin ya da {iretecinin Cesaro toplanabilir olmasindan yakinsakligin
veya daha genel sonuglarin elde edilmesini saglayan kosullar verilmistir. Bu
kosullarin 6nceki yapilan ¢alismalardaki kosullarin  genellestirilmesi oldugu

gosterilmistir.
3.1. Kaynak Ozeti

Landau (1910)’nun Cesaro toplanabilme metodu i¢in verdigi (2.12) kosulundan bir
onceki bolimde bahsedilmisti. Dik (2001b), Landau’nun teoremindeki bir dizinin
salinim davraniglarmin klasik kontrol modiilosunun tek tarafli smirli olmasi kosulu

yerine 1. mertebeden genel kontrol modiilosunun tek tarafli sinirli olmasmin yeterli

i¢in
o (u) = -C (3.2)
ise u=(u,) dizisi yakinsaktir.

Canak ve Totur (2007), Dik(2001b)'in teoremini gelistirerek asagidaki teoremi

vermistir.

Teorem 3.1. Bir u=(u,) dizisi i¢in (2.1) limiti mevcut olsun. Negatif olmayan bir

M =(M,) dizisi i¢in

(aﬁ” (M)) yavas salimmli ve Grfl) (M)=0(2) (3.2)
olmak tizere
0P (u)=-M, (33)
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ise (u,) dizisi s ye yakinsaktr.

Bir (u,) dizisinin Cesaro toplanabilmesinden yakinsakhigmimn elde edilmesi yerine
bazi kosullar altinda (u,) dizisinin iiretecinin Cesaro toplanabilmesinden dizi

hakkinda daha genel bilgiler elde edilebilir. Bu ama¢ dogrultusunda Stanojevi¢ ve

Stanojevi¢ (2002) asagidaki teoremi ispatlamislardir.

Teorem 3.2. Bir (u,) dizisinin iireteci sonlu bir s sayisina Cesaro toplanabilir olsun.
Negatif olmayan bir M =(M,) dizisi i¢in (3.2) kosulu saglansin. O halde (3.3)

saglaniyorsa (u,) dizisi yavas salinimlidur.

Canak (2008), asagida verilen teoremde, (3.2) kosulu yerine daha genel kosullar

koyarak (u,) dizisinin iretecinin Cesaro toplanabilmesinden (u,) nin yavas

salmimliligini elde etmistir.

Teorem 3.2. Bir (u,) dizisinin iireteci sonlu bir S sayisina Cesaro toplanabilir olsun.

Negatif olmayan bir M = (M) dizisi i¢gin

(A-1)limsup 7, ,;(M)=0(1), A > 1 (3.4)

N—o0

(A-Dlimsupz,;,,,(M)=0(1), A >1° (3.5)

n—o0

olmak iizere
o? Uu)=-M,
ise (u,) dizisi yavas salinimlidur.

Tezin bu boliimiinde, Canak (2008)'in teoremi genellestilerek daha zayif kosullar
altinda bir dizinin iiretecinin Cesaro toplanabilmesinden dizinin yavas saliimlilig1

elde edilmistir.
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Teorem 3.4. u=(u,) dizisi reel sayilarin bir dizisi olsun. Negatif olmayan bir

M =(M,) dizisi i¢in

nTgp(Wé”qa%ﬁM)n=o (3.6)
ve
Iirnriljp[ngq“ J(Dq]nM)n =0 (3.7)
olmak tizere
o™ (U)>-M, (3.8)

kosulu saglansin.

Eger V@ (Au) = (V.9 (Au)) dizisi sonlu bir s sayisma Cesaro toplanabilir ise

u = (u,) yavas salmimlidir.

n=2j=123,..

. seklinde tanimlansin.
, diger

Ornek 3.5. (u,) dizisi u, = {l

(u,) dizisinin iki alt dizisi farkli degerlere yakmsadigindan (u,) dizisinin yakinsak
olmadig1 agiktrr. Fakat (o”(u)) dizisinin yavas salinmli oldugu Teorem 3.4

yardimiyla gosterilebilir. Gergekten,

(u,) dizisinin klasik kontrol modiilosu yazildiginda
j n=2j=123,.

oPU)=nAu, ={—j n=21+1j=1,23..
0 ,diger
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elde edilir. Buradan (V. (Au)) dizisinin smirli oldugu kolayca goriiliir.

(o (u)) dizisi igin (3.8) kosulu (M, )=(C) ve m = 1 alindiginda saglanir. Ayrica
A >1i¢in p, =[4An] alindiginda (3.6) kosulu ve 0< A <1 i¢in q, =[An] alindiginda

(3.7) kosulu saglanir.

Bunlara ek olarak, ZAunX” serisi  diisiiniilstin. Bu seri bir fonksiyon
n=1

olarak f(Au,x) = (x* —x**) ile ifade edilebilir Burada 0<x<1 ise

n=1

f (Au, X) >0 olduguna dikkat edilmelidir. Boylece

liminf f(Au, x)=0 (3.9)

x—1"

elde edilir. Bununla birlikte

n=1

f(Au,x):(1X)iX2”<(1x)[X2+X4+X8+C[ |n(§)J }

oldugu goriilir. X -1 i¢in iist limit alindiginda

limsup f(Au,x) <0 (3.10)

x—1

elde edilir. (3.9) ve (3.10) dan (u,) dizisi sifira Abel toplanabilir olur. (2.3)
esitliginden (V% (Au)) dizisi de sifira Abel toplanabilir olur. Teorem 2.11 den dolay1

(VP (Au)) sifira yakmsaktir.

O halde Teorem 3.4 iin tiim kosullar1 (c®”(u)) dizisi icin saglanmustir. Bdylece

(o (u)) dizisi yavas saliniml olur.

Teorem 3.4 ii ispatlayabilmek i¢in asagidaki lemmalara ihtiya¢ duyulacaktir.
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3.2.  Lemmalar

Lemma 3.6. u = (u,) dizisi verilsin. p, >n igin,

() (D), ~o )= 2" (o) ~o ()

n =

ve n>(q, i¢in

(i) (D), ~o )= 2 o ) -0l )

dir.

Ispat. (i) Bir (u,) dizisinin ertelenmis Cesaro ortalamasi tanimindan p, > n igin,

nkn+l n k=0 k=0

(Dn,pu)n:p1 'y, = (Zuk ZukJ (3.11)

Aritmetik ortalama tanimindan

Pn N
Zuk = (pn +1)O'E,ln)(u) ve zuk = (n+1)0r(]1)(u)
k=0 k=0

oldugundan (3.11) esitliginde yerlerine yazilirsa,

n+1

(D, ), == “)( w-—"o W)

esitligi elde edilir. Son esitligin her iki tarafindan o (u) ¢ikarilirsa

+1
(@, -0 )= (o) 1) -0 W)

n

elde edilir. Boylece ispat tamamlanmis olur. O
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(i) Bir (u,) dizisinin ertelenmis Cesaro ortalamasi tanimindan n > q, i¢in,

(Dq,nu)n =

Zuk—

nkq+l

n qn
DU = DU, (3.12)
=0, k=0 k=0
dir. Aritmetik ortalama tanimindan

D ou, =(n+1)o(u) ve iuk = (g, +1) o (u)

k=0 k=0

oldugundan bu ifadeler (3.12) esitliginde yerine yazilirsa,

O ), = ot W) — o)

n " MYn

esitligi elde edilir. Son esitligin her iki tarafindan o (u) ¢ikarilirsa

+1
(D), — o (u) = 22 (50 () - 60 (u)
n-q

elde edilir. Boylece ispat tamamlanmis olur. O

Lemma 3.6 dan (u,) dizisi s ye Cesaro toplanabilir ise, (u,) dizisinin ertelenmis

Cesaro ortalamasinin da s ye yakimsak oldugu kolayca goriiliir.

Lemma 3.7. u = (u,) dizisi verilsin. p, >n igin

O <1>(u)-p o0 w)- é”(u)) ~u,)

n k n+1

ve n>(q, i¢in

@) v W= oo ) Y m-u)

n n k=qn+l

23



esitlikleri saglanir.

Ispat. (i) Tanimlarmdan hareketle (D, ,u), —u, farki yazilirsa

(D, u), —u, = -u,)
k n+l k n+l
elde edilir. Buradan, yukaridaki esitlik yeniden diizenlenirse,
u, = (D, ,u), ~ ~U,)
k n+l
oldugu goriiliir. Son esitligin her iki tarafindan o (u) ¢ikarilirsa
O-r(11) (U) = ((Dn,pu)n — 0Oy —u )

k n+l

bulunur. Lemma 3.6 (i) den (D, ,u), —o{ (u) esitligi yerine konursa,

u, %)—p o - é”(u)) -u,)

n k n+1
elde edilir.o
(ii) Tammlarindan hareketle (D, u), —u, farki yazilirsa

n

(Dq,nu)n_un:n L zuk_un: Z(uk_u )

—UYn k:qn+l qn k= a, +1

elde edilir. Buradan, yukaridaki esitlik yeniden diizenlenirse,

u, =(D,,u), - n—l Zn: (u,—u,)

n k:qn+1

oldugu goriiliir. Son esitligin her iki tarafindan o (u) ¢ikarilirsa
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0, (U) = ((Dg u), — o3’ (u)) -

>, -u,)

n k=q,+1

bulunur. Lemma 3.6 (ii) den (D, ,u), —o” (u) esitligi yerine konursa,

oW = o) o) Y )

n n k= qn+l
elde edilir.o

Lemma 3.8. Negatif olmayan bir M =(M,) dizisi
o®Uu)=-M,

kosulunu gergeklerse,

M -(D,,u),-u,)< p“ (D, M),

(i) u,—(D,,u),> —%(DQHM)”

n

esitsizlikleri saglanir.

n

Ispat. (i) Hipotez geregi »®(u)>-M, oldugundan —Au, < M oldugu kolayca
n

goriiliir. Bu esitsizlikte her iki taraf j =n+1,...,K i¢in toplanirsa

k kK M.
D —Au; =—(u, —u)< > —+ (3.13)
j=n+l j=n+l .l

olur. (3.13) esitsizligi k =n+1,...,p, i¢cin toplanp daha sonra bulunan esitsizligin

her iki tarafi (

1 ) ile carpilirsa
n

n_
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k n+l —-nN k=n+1lj=n+1

elde edilir. Esitsizligin sag tarafi p, —n ile ¢arpilip boliiniirse,

n_ 1 &
~ (D ), —u,) S P ”(pn_n _ZM,}

bulunur. Burada, M =(M,) dizisi i¢in ertelenmis Cesaro ortalamasi tanimindan

yararlanarak,

P, —nN
_((Dn,pu)n _un)S n (Dn,pM)n
oldugu goriiliir. Boylece ispat tamamlanmis olur.o

(ii) Hipotez geregi o® (u)>—M oldugundan Au, > - M, oldugu kolayca goriiliir.

n
Bu esitsizlikte her iki taraf j =k +1,...,n igin toplanirsa
M.
ZAu =u, —u, > Z — (3.14)
j=k+L j=k )

olur. (3.14) esitsizligi k =q, +1,...,n i¢cin toplanip daha sonra bulunan esitsizligin

her iki tarafi ( ) ile ¢arpilirsa

n

1 n n M.
u,—u)>-— —1
n d, k%ﬂ( ) n-q, k:qznﬂj;-l J
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elde edilir. Ertelenmis Cesaro ortalamasi tanim1 geregi son esitsizlikten

un_(Dq,nu)n 2 - i &2_i i Mj

=+ J d, j=a,+1

elde edilir. Esitsizligin sag tarafi n—q, ile carpilip boliiniirse,

s n-q, j=a,+1

un_(Dq,nu)nZ_n_qn( ! iMJj

bulunur. Burada, M =(M,) dizisi i¢in ertelenmis Cesaro ortalamasi tanimindan

yararlanarak,

un _(Dq,nu)n Z_n;qn (Dq,nM)n

oldugu goriiliir. Boylece ispat tamamlanmais olur. O
3.3. Teorem 3.4 iin Ispati

Bu bolimde Teorem 3.4 iin ispati verilip teoremden elde edilen sonuglar

gosterilecektir.

Ispat.  Hipotezden ™ (u)>-M,  oldugundan Lemma 23 ten
(nA), V"M (Au) > -M . elde edilir. Bu esitsizlik diizenlenerek yeniden yazilirsa
nA((nA),, V. " (Au)) > —M_ bulunur. Islemler daha kolay yiiriitiilebilsin diye bir
y=(y,) dizisi y, =(A) V" (Au)=0P (0™ () seklinde tanimlansin.
Hipotez geregi V@ (Au) = (V.2 (Au)) dizisi s sayisina Cesaro toplanabilir
oldugundan V®(Au) >s, n—>o oldugu kolayca goriilir. Buradan (2.3)
esitliginden yararlanarak  nAV @ (Au) =V.® (Au) -V @ (Au) =o(1) elde edilir.

Boylece Lemma 2.4 ten,
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o ()= iz(—l) J (mj_ 2) nAV U+ (Au) = o(1) (3.15)

olur. Ispatin bu adiminda gosterilmesi gereken y . = 0(1) olmasidir. O halde (y,)

dizisi Lemma 3.7 (i) e uygulanir ve Lemma 3.6 (i) ile Lemma 3.8 (i) kullanilirsa
—N
7-02() < (Dy7), ~o )+ (D, , M), (3.16)

elde edilir. (3.16) esitsizliginin her iki tarafinin st limiti alnirsa, st limit

ozelliklerinden yararlanarak

limsup (, — o ()< limsup (D, ,7), & ()

n

+ Iimsup( p"n‘” (Dn,pM)nJ (3.17)
elde edilir.

Lemma 3.6 (i) den, (3.17) esitsizliginin sag tarafi sifira gider. Boylece

Iimsup(yn —o® (y))so (3.18)

elde edilmis olur.

Benzer olarak, (y,) dizisi Lemma 3.7 (ii) ye uygulanir ve Lemma 3.6 (ii) ile

Lemma 3.8 (ii) kullanilirsa,

n—
7n _O-rgl) (7/) 2 (Dq,nj/)n _O-r(11) (7/) _q—qn(Dq,nM)n (319)

n

elde edilir. (3.19) esitsizliginin her iki tarafinin alt limiti alnirsa, alt limit

ozelliklerinden yararlanarak
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imint (7, ()= limin (Dg,7), ~ ()

n

+liminf (— naq“ (Dq,nM)nJ (3.20)

elde edilir. Lemma 3.6 (ii) den, (3.20) esitsizliginin sag tarafi sifira gider. Boylece

lminf (v, —o® ()20 (3.21)

elde edilmis olur.
Son olarak, (3.18) ve (3.21) esitsizlikleri kullanilarak

7, =0(1) (3.22)
bulunur. Lemma 2.4, (y,) dizisine uygulanirsa,

m-2

Vo = Z(—l)‘(m J_ Z)HAV#H) (Au) =0o(1) (3.23)

j=0
elde edilir.

(3.23) esitliginden nAV @ (Au) =0(1) olmasmi kullanarak, nAV ® (Au)=o0(1)

oldugu goriiliir. Son olarak, (2.3) esitliginden yararlanarak elde edilen
nAV," (Au) =V,? (Au) -V, (Au)
esitliginden hipotez geregi V@ (Au) = o(1) bulunur.

©
u. =V.9(Au) + ZLW +U,

gosteriminden (u,) dizisinin yavas salmimli oldugu goriiliir. o
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Teoremin bir sonucu olarak Cesaro toplanabilme metodu i¢in Tauber tipi teorem

verilebilir.

Sonug 3.9. (u,) dizisi reel sayilarin bir dizisi olsun. Negatif olmayan bir M = (M)
dizisi i¢in (3.6), (3.7) ve (3.8) kosullar1 saglansin. Eger (u,)dizisi sonlu bir s

sayisina Cesaro toplanabilir ise (u,) dizisi s ye yakinsaktir.

Ispat. (u,)dizisi sonlu bir s sayisina Cesaro toplanabilir ise (2.3) esitliginde
(V@ (Au)) dizisi sifira Cesaro toplanabilirdir. Dolayisiyla teoremin ifadesi
gerceklemis olur. Ispatin son adimda V.©(Au)=o0(1) bulunur. (u,)dizisi s ye
Cesaro toplanabilir oldugundan (o (u)) s ye yakmsaktir. O halde, (2.3) esitliginden

ispat tamamlanmis olur.o
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4. ABEL TOPLANABILME METODU ICIN TAUBER TiPi TEOREMLER

Bu boliimde Abel toplanabilme metodu i¢in bilinen klasik bazi Tauber tipi
teoremlerin bir tiir genellestirilmesi verilmistir. Yapilan ¢alismanin bir sonucu olarak
Genellestirilmis Littlewood Teoremi elde edilmistir. Ayrica verilen kosullarin

genellestirilmis Abel toplanabilme metodu i¢in de gergeklendigi gosterilmistir.
Asagida elde edilecek yeni sonuglarin ispatlarinda kullanilacak lemmalar verilmistir.
41. Lemmalar

Lemma 4.1. (Szasz; 1952) Bir (u,) dizisi tek tarafli yavas salinimli ise negatif

olmayan bir C says1 i¢in V. (Au) > —C dir.
Daha 6nce de (u,) dizisi yavas salmmmli ise V? (Au) = O(1) oldugu verilmisti.

Lemma 4.2 de u, —c®(u) farki iki farkh sekilde yazacaktir. Hatirlanacag: gibi bir

onceki bolimde Lemma 3.7 de u,—o®(u) farkinin iki yazilist gosterilmisti.

Verilecek olan Lemma 4.2, Lemma 3.7 nin 6zel bir durumudur.
Lemma 4.2. (Stanojevi¢;1998) u = (u,) reel say1 dizisi i¢in,

(1) A >1 ve yeterince biiyllk N tamsayisi i¢in,

[4n]

2. (U -uy) (4.1)

0, —oOuy = o 1y o0 w)-

[An]-n [An]-n S
dir.
(i) 1< A< 2 ve yeterince biiyiik n tamsayisi igin,
n+1
u,-o rgl—)[(i—l)n]—l (u)= m (o r(11_)[(/1—1)n]—1 u)-oP ()
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L n Zn: Au. (4.2)

+ -
[(A-1)n]+1 k:n—[(z/l—l)n] =kl :
dir.
Ispat.

(i) Lemma3.7 (i) de p, =[An] alindiginda A >1 i¢in p, > n sart1 saglanir.

(i) Lemma 3.7 (ii) de q,=[An] alindiginda 1<A<2 igin n>q, sartt

saglanir.
4.2.  Teoremler ve ispatlar

Teorem 4.3. Bir (u,) dizisi sonlu bir s sayisma Abel toplanabilir ve (u,) tek tarafli

yavas salmimli ise limu, = s dir.
n

Ispat. (u,) dizisi s ye Abel toplanabilir oldugundan (o (u)) dizisi de s ye Abel
toplanabilirdir. Bdylece (2.3) esitliginden (V.© (Au)) dizisi sifira Abel

toplanabilirdir. Diger taraftan Lemma 4.1 den negatif olmayan bir C sayis1 i¢in
V@ (Au)>-C (4.3

olur. Teorem 2.14 kullanarak (4.3) esitsizligi ve (V.?(Au)) dizisinin sifira Abel

toplanabilir olmasindan,
V,? (Au) =o(1)
elde edilir. Lemma 4.2 (i), (V% (Au)) dizisine uygulanirsa,

[An]+1

G U (40) v, aw)

VO (Au) -V.P (Au) =

32



[an] &k

>, > AV (Au)

[/’tn] n k=n+1j=n+1

) [[if]] ) -, (s)

[An] kK

> 1AV (au) [-AV© (Aw))

[ﬂ“n] rlk =n+lj=n+1

< sl v )
+ [i (n\% @ (Au)| —AV; @ (Au))

elde edilir.

Yukaridaki esitsizligin her iki tarafinin st limiti alinirsa,

limsup (V,® (Au) -V, (Au)) < %1 limsup (V&) (Au) -V, (Au))

[An]
+limsup > (|AV® (Au)|-AV @ (Au))
n j=n+1

elde edilir. (V" (Au)) dizisi yakinsak oldugundan yukaridaki son esitsizliginin sag

tarafindaki ilk terim sifira gider ve

Ilmsup(\/(o’(Au) ~V. 9 (Au)) < limsup z(|Av<°>(Au)| —AVO(AU))  (4.4)

n j=n+1
olur. (4.4) esitsizliginde her iki tarafin A —1" i¢in limiti aldiginda

limsup (V. (Au) -V (Au)) <0 (4.5)

elde edilir. Benzer sekilde, Lemma 4.2 (ii), (V% (Au)) dizisine uygulanirsa,
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n+1

© Tl
V.7 (Au) - Vn - (AU) = [(A-1)n]+1

Voo (Au) =V, 2 (Au))

1 . (©)
D
k=n—{(A-1)n]j=k+1

n+1

- WT)n]l(V Ta-nm (AU) = —V,” (Au))

L 2 X AV -1 AV ()
k=n-[(A-1)n]j=k+1

n+1

- m— (V n-[(2-1)n]-L (Au) _Vn(l) (Au))

~ Y (AVO(Au) | -AV O (Au)

j=n-[(A-1)n]
elde edilir.

Yukaridaki esitsizligin her iki tarafinin alt limiti alinirsa,
1
liminf VO (AU -V g (Au)) > mhmlnf (V O e (Au) =V, (Au))
+ liminf (— > (1av(au) [-Av® (AU))J
" j=n-{(2-1)n]
elde edilir. (V" (Au)) dizisi yakinsak oldugundan yukaridaki son esitsizliginin sag

tarafindaki ilk terim sifira gider ve

Iimninf (\/n(O) (Au) _Vn(iLE(ﬂ—l)n]—l (Au))

i 4.6
>—limsup ). (‘AV,-(O)(AU)‘—AV,-(O)(AU)) o

N j=n{(4-1)n]

olur. (4.6) esitsizliginde her iki tarafin A —1" i¢in limit alindiginda
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Iimninf v (Au) -V (Au)) >0 (4.7)

bulunur.
(4.5) ve (4.7) esitsizliklerinden

lim (v, (Au) -V, (Au)) = 0 (4.8)
elde edilir. Bu durumda V.® (Au) = 0(1) oldugundan V? (Au) = o(l) oldugu kolayca
goriiliir. (u.) dizisi s ye Abel toplanabilir oldugundan V© (Au) =0(1) oldugundan

Tauber’in ikinci teoremi geregi, limu, =s elde edilmis olur. Bdylece ispat
n

tamamlanir.o

Asagidaki teorem Szasz (1951) tarafindan verilen teoremin gelismis halidir. Teorem

4.4 te aym kosullar altinda Szisz’mn teoremindeki (V. (Au)) dizisinin tek tarafli

smirlt olmasi kosuluna gerek olmadig1 goriiliir.

Teorem 4.4. (u,) dizisi sonlu bir s sayisma Abel toplanabilir ve (V. (Au)) tek

tarafli yavag salmimli ise limu, = s dir.
n

Ispat. (u,) dizisi s ye Abel toplanabilir oldugundan (o (u)) dizisi de s ye Abel
toplanabilirdir. Boylece (2.3) esitliginden (V.© (Au)) dizisi sifira Abel

toplanabilirdir. Diger bir taraftan (V” (Au)) tek tarafl1 yavas salinimli oldugundan
V@AV @ (Au)) = nAV ® (Au)
esitliginden yararlanarak, Lemma 4.1 den negatif olmayan bir C sayis1 i¢in
nAvV @ (Au) > -C (4.9)

olur. (V.?(Au)) dizisinin sifira Abel toplanabilir olmasmdan ve
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V@ (Au) -V ® (Au) = nAV.® (Au)

esitliginden (nAV. " (Au)) dizisi de sifira Abel toplanabilirdir. Teorem 2.14
(nAV P (Au)) dizisi igin kullanarak (4.9) esitsizligi ve (nAV ® (Au)) dizisinin sifira

Abel toplanabilir olmasindan
nAV @ (Au) = o(1)
elde edilir. Ayrica

nAV @ (Au) =V @ (AV @ (Au))

esitliginden ve (V. (Au)) dizisinin sifira Abel toplanabilir olmasindan, Tauber’in

ikinci teoremi geregi,
v, (Au) = o)
elde edilir. Ispatin geri kalan kism1 Teorem 4.3 iin ispat1 gibi yapilabilir.o

Teorem 4.4 teki kosul dizinin klasik kontrol modiilosunun aritmetik ortalamasinin
tek tarafli yavas salinimli olmasiydi. Teorem 4.5 te bu kosul genellestirilerek salinim
davraniglarmin m. mertebeden genel kontrol modiilosunun aritmetik ortalamasinin
tek tarafli yavas salinimli olmasmin da Abel toplanabilme metodu i¢in bir Tauber

kosulu oldugu verilmistir.

Teorem 4.5. (u,) dizisi sonlu bir s sayisina Abel toplanabilir ve (™ (0™ (u)))

dizisi tek tarafli yavas salimimli ise limu, =s dir.
n

Ispat. (u,) dizisi s ye Abel toplanabilir oldugundan (c”(u)) dizisi de s ye Abel
toplanabilirdir. Boylece (2.3) esitliginden (V.© (Au)) dizisi sifira Abel
toplanabilirdir. Ayrica (V.2 (Au)) dizisinin aritmetik ortalamalar1 dizisi olan

(V®(Au)) dizisi de sifira Abel toplanabilirdir. (2.3) esitliginden (V.©(AV© (Au)))
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dizisi de sifira Abel toplanabilirdir.  Islemler benzer sekilde siirdiiriiliirse
(6@ (@™ (u)) dizisinin sifira Abel toplanabilir oldugu gériiliir. Diger bir

taraftan, (o ('™ (u))) dizisi tek tarafli yavas salmimli oldugundan
V(A (0™ u)))) = nAc® (0™ (u))

esitliginden bir C >0 sayis1 igin nAc® (0™ (u))>—-C elde edilir. Teorem 2.11

(6@ (0™ (u))) dizisine uygulanirsa
o (0™ (u)) = 0(2) (4.10)
elde edilir.

(6P (0™ (u))) dizisi Lemma 4.2 (i) e uygulanirsa

[ﬂ.n] +1 ( @

o (@ @)-oP @ W) = ZElof @ W) - (0 W)

[An]

S S A0 (0™ (u))

[ﬁ“n] n k=n+1j=n+1

IA

[[j:]]fi( o (@ W) - (0" W)

ST (a0 (0™ @))|

[ﬂ*n] r]k n+lj=n+1
— AW (@™ (u)))

IA

[[j:]] f (620" @) - 02 (0™ )

v S (1869 @ W) | -A0® (@™ (W)

j=n+l

elde edilir. Yukaridaki esitsizligin her iki tarafinin iist limiti alindiginda

37



imsup (o (@™ (@) -0 (@™ @) < limsup (o2 (0 (1) - o (0 )

n

+limsup [f (A (@™ U)) [-Ac® (0™ (u)))

n j=n+1

bulunur. O halde (4.10) esitliginden yukaridaki son esitsizligin sag tarafindaki ilk

terim sifira gider ve

limsup (o (0™ (u)) - 0 (0™ (u))) <

[n] (4.12)
limsup 3, (| Ac® (™ ()| -Ac® (0™ (u)
n j=n+l
olur. (4.11) esitsizliginde her iki tarafin 4 —1" igin limiti alinirsa,
limsup (¢ (@™ (u)) — @ (0™ (u))) <0 (4.12)

elde edilir. Benzer sekilde (o ('™ (u))) dizisi Lemma 4.2 (ii) ye uygulanirsa

n+1

@/ (m) ) (m) -
o (@ @) =0 @ W) = T n

(@0 (@™ W) = o7 (0™ (u))

1 n n
+ AP (0™ (u)
[(A-1) n]+1k:n—[(zl—l)n]j:k+l !

[(/1—nl—;rll]+1 (@ (@™ (W) = (@™ (u)))

\%

1 n n
— (Ao (@™ (u)
[(A-1) n]+1k:n—[(zl—1)n] j:zk-d :

~[Aa P (0™ (u))

\%

1 ) i 2 )
D1 O (@ @) =0 (@ W)

n

- Y (40P @ @)]-oP (@™ W)

j=n-{(2-1)n]

elde edilir. Yukaridaki esitsizligi her iki tarafinin alt limiti alinirsa,
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Iimninf (o (0™ (u)) - O-rgz—)[(/l—l)n]—l (@™ (u))) >

1 . m m
ﬂ ||mn|ﬂf (0,52,)[(1,1)”],1 (a)( ) (U)) - O-IEZ) (CO( ) (U)))

+limin (— Z (Ao (@™ (u)|-Ac® (0™ (U))))j

j=n-{(2-1)n]

bulunur. (4.10) esitliginden yukaridaki son esitsizligin sagindaki ilk terim sifira

gider ve

liminf (" (@™ (U)) =04, sy 2 (@ (U))) 2

(4.13)
Llimin Y (1A0®(@™ ()| -Ac® (@™ W)))
" jEn(a-n]
elde edilir. (4.13) esitsizliginde her iki tarafin A — 1" i¢in limiti alinirsa,
liminf (07" (@™ (U)) = 0 1y 2 (@™ (1)) 2 0 (4.14)
olur. (4.12) ve (4.14) esitsizliklerinden
lim (o3 (@™ (u) - o (@™ () =0 (4.15)
elde edilir. O halde buradan (4.10) ifadesinden dolay1
o (@™ (u)) = (1) (4.16)

bulunur. (u,) dizisi s ye Abel toplanabilir oldugundan, (o (0™ (u))) de sifira

Abel toplanabilirdir. Ayrica
o (@™ (W) =V (A0 (@ (W) = o)
oldugundan Teorem 2.10 a (" (0™ ™ (u))) uygulanirsa

o (@™ (u)) = 0(2) (4.17)
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elde edilir. (4.16) ve (4.17) den dolay1 islemler benzer sekilde devam ettirilirse,
oy (@ (u)) =V,” (Au) = o(2)

bulunur. Sonug olarak Teorem 2.10 ve hipotezden limu, = selde edilir. o

Teorem 4.5 te m=0 alinirsa Teorem 4.4 iin elde edilecegine dikkat edilmelidir.

Teorem 4.6. (u,) dizisi sonlu bir s sayisma Abel toplanabilir ve (™ (0™ (u)))

dizisi yavas azalan ise limu, = s dir.
n

Ispat. (u,) dizisi s ye Abel toplanabilir oldugundan (c”(u)) dizisi de s ye Abel
toplanabilirdir. Boylece (2.3) esitliginden (V.©(Au)) dizisi sifira Abel
toplanabilirdir. Ayrica (V% (Au)) dizisinin aritmetik ortalamalar1 dizisi olan
(v®(Au)) dizisi de sifira Abel toplanabilirdir. (2.3) esitliginden (V.©(AV© (Au)))
dizisi de sifira Abel toplanabilirdir. Islemler benzer sekilde siirdiiriiliirse

(6P (0™ (u)) dizisinin sifira Abel toplanabilir oldugu goriiliir. Diger taraftan,
(6P (0™ (u))) dizisi yavas azalan oldugundan Teorem 2.13, (o (0™ (u))) dizisine

uygulanirsa
oy (@™ (u)) = 0(2) (4.18)
elde edilir. (4.18) esitliginden negatif olmayan bir C sayisi igin
oy (@™ () = nA(c® (@™ P (u))) > -C (4.19)

bulunur. (4.19) esitsizliginden (o (0™ (u))) dizisinin yavas azalan oldugu
goriiliir. (u,) dizisi s ye Abel toplanabilir oldugundan (¢ (™" (u))) dizisi sifira

Abel toplanabilir olur. Teorem 2.13 (¢® (0™ (u))) dizisine uygulanirsa

o (0" (u)) =0(2) (4.20)
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elde edilir. (2.3) esitliginde (u,) yerine (c” (0™ (u))) yazilirsa (4.18) ve (4.20)

ifadelerinden
o (@™ (u)) =0(1) (4.21)
bulunur. (4.18) ve (4.21) den dolay:1 islemler benzer sekilde devam ettirilirse,
o) (@ () =V,” (Au) = o(1)

olur. Sonug olarak Teorem 2.10 ve hipotezden limu, = s elde edilir.

Sonug 4.7. (u,) dizisi sonlu bir s sayisma Abel toplanabilir ve ({™ (u)) dizisi tek

tarafli yavas salimimli ise limu, = s dir.
n

Ispat. ({™ (u)) dizisi tek tarafli yavas salmimli oldugundan (o (0™ (u))) dizisi

yavas azalandir. Bu durumda Teorem 4.6 nin ifadesi elde edilir.

Sonug 4.8. (u,) dizisi sonlu bir s sayisina Abel toplanabilir ve ({™ (u)) dizisi yavas

salmimliise limu, = s dir.
n

Ispat. Her yavas salimimli dizi yavas azalan oldugundan Sonug 4.7 nin ifadesine

kolayca ulagilir.

Sonug 4.9. (u,) dizisi sonlu bir s sayisina Abel toplanabilir ve (c"(0® (u))) dizisi

yavas azalan ise limu, = s dir.
n

Sonug 4.9, Jakimovski (1954) tarafindan yapilan ¢alismada elde edilmistir.

Sonu¢ 4.10. (u,) dizisi sonlu bir s sayisina Abel toplanabilir ve (o (0@ (u)))

dizisi yavag salnimli ise limu, =s dir.
n

Sonug 4.10, Dik (2001b) tarafindan yapilan ¢alismada elde edilmistir.
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Sonug 4.11 (u,) dizisi sonlu bir s sayisina Abel toplanabilir ve (u,) yavas salinimli

ise limu, =s dir.
n

Sonu¢ 4.11, daha Onceki boliimlerde de bahsedilen Genellestirilmis Littlewood

Teoremi’dir.
4.3.  Genellestirilmis Abel Toplanabilme Metodu i¢cin Tauber Tipi Teoremler

Genellestirilmis Abel toplanabilme metodu asagidaki gibi tanimlanir.

Tamm 4.12. (™ (u)) dizisi bir s sayisma Abel toplanabilir ise (u,) dizisine s ye

(A,m) toplanabilir denir (Stanojevi¢, Canak ve Stanojevic¢; 1999).

Yukaridaki tanimdan kolayca goriilecegi gibi 6zel olarak m=0 alnirsa (A,m)

toplanabilme metodu Abel toplanabilme metoduna indirgenmis olur.

Ayrica bir (u,) dizisi Abel toplanabilir ise (A,m) toplanabilirdir. Fakat tersi genelde

dogru degildir. Ornegin, 0<x<1 araligmda tanimhi bir f fonksiyonu

f(x):sin[liJ seklinde tanimlansin. (u,) dizisi  bu fonksiyonun Taylor
X

katsayilarinin dizisi olarak segildiginde (u,) dizisinin (A, m) toplanabilirdir oldugu

fakat Abel toplanabilir olmadigi goriiliir.

Abel toplanabilme metoduyla Cesaro toplanabilme metodu arasindaki iliski ikinci

bolimde verilmisti. Bu bilgilere ek olarak bir dizinin m. mertebeden aritmetik

ortalamalarmm dizisi olan (o™ (u)) yakinsak ise bu dizi Abel toplanabilirdir.

Buradan tiim mertebeden aritmetik ortalamalar dizilerinin sinifinin Abel toplanabilen

dizilerin smifinin i¢inde oldugunu goriiliir (Hardy, 1991).

Teorem 4.3, Teorem 4.4 ve Teorem 4.5 kullanilarak, Boliim 4.2 de verilen teoremler

genellestirilerek (u,) dizisi veya onun tarafindan iretilen belli dizilerin tek tarafli
yavag salmmmli olmasi kosulunun (A,m) toplanabilme metodu i¢in de bir Tauber

kosulu oldugu asagidaki teoremlerde gosterilecektir.

42



Teorem 4.13. Bir (u,) dizisi sonlu bir s sayisma (A,m) toplanabilir ve (u,) tek

tarafli yavas salmimli ise limu, = s dir.
n

Ispat. (u,) dizisi s ye (A ,m) toplanabilir oldugundan, tanim geregi (c{™ (u)) dizisi
s ye Abel toplanabilirdir. Boylece (2.3) esitliginde (u ) yerine (o™ (u)) dizisi
yazilirsa (V™ (Au)) dizisinin sifira Abel toplanabilir oldugu goriiliir. Hipotez geregi
(u,) tek tarafli yavas salimimli oldugundan dolay:r Lemma 4.1 den negatif olmayan

bir C sayist igin
V@ (Au)>-C

olur. Buradan, her iki tarafin m kez aritmetik ortalamasi alindiginda negatif olmayan

bir C sayis1 ve negatif olmayan m tamsaysisi igin,
V™ (Au) > -C (4.22)

elde edilir. Teorem 2.14, (V™ (Au)) dizisine uygulanirsa (4.22) esitsizliginden ve

(V™ (Au)) dizisinin sifira Abel toplanabilir olmasindan
V™ (Au) = o(1)

oldugu goriiliir. Ayrica (o™ (u)) dizisi s ye Abel toplanabilir oldugundan

(o™ (u)) dizisi de s ye Abel toplanabilirdir. O halde
V"D (Au) =V,” (A ™ (u))
esitliginden yararlanarak Tauber’in ikinci teoremi geregi

limo ™ (u) =s
n
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elde edilir. Buradan (u,) dizisinin s ye Abel toplanabilir oldugu goriiliir. Boylece

Teorem 4.3 {in kosullar1 saglanmis olur. Ispatin geri kalan kismu Teorem 4.3 iin

ispatina benzer sekilde yapilabilir. o

Teorem 4.14. (u,) dizisi sonlu bir s sayisma (A,m) toplanabilir ve (V. * (Au)) tek

tarafli yavas salmimli ise limu, =s dir.
n

Ispat. (u ) dizisi s ye (A,m) toplanabilir oldugundan, tanim geregi (o™ (u)) dizisi
s ye Abel toplanabilirdir. Boylece (2.3) esitliginde (u ) yerine (o™ (u)) dizisi
yazilirsa (V™ (Au)) dizisinin sifira Abel toplanabilir oldugu gdriiliir. Diger bir

taraftan hipotez geregi (V% (Au)) tek tarafli yavas salinimh oldugundan
V O(AV @ (Au)) = nAV ® (Au)
esitliginden yararlanarak, Lemma 4.1 den negatif olmayan bir C sayisi i¢in
nAvV @ (Au) > -C

olur. Buradan, her iki tarafin m kez aritmetik ortalamasi alindiginda negatif olmayan

bir C sayis1 ve negatif olmayan m tamsayisi i¢in,

nAv (™ (Au) > -C (4.23)

elde edilir. (V™ (Au)) dizisinin sifira Abel toplanabilir olmasindan, ve
V™ (Au) -V ™ (Au) = nAV. ™V (Au) esitliginden (nAV ™ (Au)) dizisi sifira Abel
toplanabilirdir. Teorem 2.14, (nAV. ™ (Au)) dizisine uygulanirsa (4.23) esitsizligi

ve (NAV™P(Au)) dizisinin sifira Abel toplanabilirdir olmasindan

nAV (™2 (Au) = o(1)
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oldugu goriilir. Ayrica (V™ (Au)) dizisinin sifira Abel toplanabilir olmasindan,

(V™Y (Au)) dizisi de sifira Abel toplanabilirdir. O halde

nAV ™2 (Au) =V @ (AV ™ (Au))
esitliginden yararlanarak, Teorem 2.10, (V™ (Au)) dizisine uygulanirsa
V™ (Au) = o(2)

elde edilir. Buna ek olarak (o™ (u)) dizisi s ye Abel toplanabilir oldugundan

(o™ (Au)) dizisi de s ye Abel toplanabilirdir. O halde
V" (Au) =V, (Ac ™ (u))

esitliginden yararlanarak yine Teorem 2.10, (o™ (Au)) dizisine uygulanirsa

limo™®(u) =s elde edilir. Buradan (u,) dizisinin s ye Abel toplanabilir oldugu

goriiliir. Boylece Teorem 4.4 {in kosullar1 saglanmis olur. Ispatm geri kalan kismi

Teorem 4.4 {in ispat1 gibi yapilabilir. o

Teorem 4.15. (u,) dizisi sonlu bir s sayisina (A,m) toplanabilir ve (¢ (0™ (u)))

tek tarafli yavag salinimli ise limu_, =s dir.
n

Ispat. (u,) dizisi s ye (A,m) toplanabilir oldugundan, tanim geregi (‘™ (u)) dizisi
s ye Abel toplanabilirdir. Boylece (2.3) esitliginde (u ) yerine (o™ (u)) dizisi
yazilirsa (V™ (Au)) dizisinin sifira Abel toplanabilir oldugu goriiliir. Buna ek olarak
(V™ (Au)) dizisinin aritmetik ortalamalar1 olan (V™" (Au)) dizisinin de sifira Abel
toplanabilir olmasmdan (nAV ™V (Au))dizisi de sifira Abel toplanabilirdir. Yani
(™D (™ (u))) dizisi sifira Abel toplanabilirdir. Islemler benzer sekilde devam
ettirilirse (c™? (™" (u))) dizisinin de sifira Abel toplanabilir oldugu gériiliir.

Diger taraftan (™" (0™ (u))) tek tarafli yavas salmimli oldugundan
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V.2 (a0 (@™ ) = 0, (@™ (u))

esitliginden yararlanarak, Lemma 4.1 den negatif olmayan bir C sayis1 ve negatif

olmayan m tamsayisi i¢in
oM™ (u)) > -C

olur. Buradan, her iki tarafin m kez aritmetik ortalamasi alindiginda negatif olmayan

bir C sayis1 ve negatif olmayan m tamsaysisi igin,
o™ (@™ (u)) = -C (4.24)

elde edilir. Ayrica (V™ (Au)) dizisinin sifira Abel toplanabilir olmasindan
(6™ (0™ (u))) dizisinin sifira Abel toplanabilir oldugu yukaridaki islemler ile
goriilir. Teorem 2.14 (o™ (0™" (u))) dizisine uygulanirsa (4.24) esitsizligi ve

(o™ (0™ (u))) dizisinin sifira Abel toplanabilirdir olmasmndan
o™ (@™ (u)) = o(1) (4.25)

elde edilir. Ayrica (V™ (Au)) dizisinin sifira Abel toplanabilir olmasindan,

(o™ (™ (u))) dizisi de sifira Abel toplanabilirdir. O halde

O_r(]m+1)(a)(m+1) (U)) =Vn(0) (Ao.(m+1)(a)(m) (U)))

esitliginden yararlanarak, Teorem 2.10, (™" (»™ (u))) dizisine uygulanirsa

oy (0™ () =o(1) (4.26)

elde edilir. (4.25) ve (4.26) ifadelerinden dolay1 islemler benzer sekilde m kez

devam ettirilirse

o, (@ () =V, (Au) =o(2)
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oldugu goriiliir. Buna ek olarak (o™ (u)) dizisi s ye Abel toplanabilir oldugundan

(o™ (Au)) dizisi de s ye Abel toplanabilirdir. O halde
VP (Au) =V, (Ac ™ (u))

esitliginden yararlanarak yine Teorem 2.10 (o™ (Au)) dizisine uygulanirsa

limo™®(u) =s elde edilir. Buradan (u,) dizisinin s ye Abel toplanabilir oldugu

goriiliir. Boylece Teorem 4.5 in kosullar1 saglanmis olur. Ispatmn geri kalan kismi1

Teorem 4.5 in ispatina benzersekilde yapilabilir. o
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5. SONUCLAR

Tezin 3. boliimiinde, yeni sonug olarak elde edilen Teorem 3.4 de, Canak (2008)
tarafindan verilen teorem genellestirilmistir. Bu teoremde bir dizinin {retecinin
Cesaro toplanabilmesinden dizinin yavas salinimliliginin daha zayif kosullar altinda
elde edildigi goriilmiistiir. Teorem 3.4 {in ispatmi yaparken kullanilan Lemma 3.6,

Lemma 3.7, Lemma 3.8 yine bu ¢alismada elde edilmistir.

Tezin 4. bolimiinde, yeni sonug¢ olarak Teorem 4.3, Teorem 4.4, Teorem 4.5,
Teorem 4.13, Teorem 4.14, Teorem 4.15 elde edilmistir. Bu teoremler

Genellestirilmis Littlewood Teoremi olarak bilinen teoremin bir genellestirilmesidir.
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