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Bu çalıĢma dört bölümden oluĢmaktadır. 

Birinci bölümde, kısaca toplanabilme metodları ve Tauber teorisinin tarihsel 

geliĢiminden bahsedilmiĢtir. 

Ġkinci bölümde, tez boyunca kullanılacak olan tanım ve gösterimler verilmiĢ, klasik 

Tauber tipi teoremler incelenmiĢtir. 

Üçüncü bölümde, Cesàro toplanabilme metodu için Tauber tipi teoremler verilmiĢtir. 

Dördüncü bölümde, Abel toplanabilme metodu için Tauber tipi teoremler verilmiĢtir. 

 

Anahtar Kelimeler: Abel toplanabilme metodu, Cesàro toplanabilme metodu, 

Tauber tipi teoremler, klasik kontrol modülo, genel kontrol modülo, tek taraflı 

sınırlılık, yavaĢ salınımlı dizi, tek taraflı yavaĢ salınımlı dizi.  

2011, 52 sayfa 
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METHODS 

Ümit TOTUR 

Süleyman Demirel University 

Graduate School of Applied and Natural Sciences 

Department of Mathematics 

Supervisor: Prof. Dr. Bilender PAŞAOĞLU 

 

This thesis consists of four chapters. 

In the first chapter, historical development of classical Tauberian theory and 

summability theory are mentioned, shortly. 

In the second chapter, the definitions and notations, which are going to be used 

throughout the thesis, are given and classical Tauberian theorems are investigated. 

In the third chapter, Tauberian theorems for Cesàro summability method are given. 

In the fourth chapter, Tauberian theorems for Abel summability method are given. 

 

Key Words: Abel summability method, Cesàro summability method, Tauberian 

theorems, classical control modulo, general control modulo, one-sidedly 

boundedness, slowly oscillating sequence, one-sidedly slowly oscillating sequence. 

2011, 52 pages 
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1. GİRİŞ 

Toplanabilme teorisi XVIII. yüzyıldan günümüze kadar devam etmekte olan 

matematiksel analizin çok geniĢ bir çalıĢma alanıdır. Toplanabilme metodlarının 

genel amacı belli koĢullar altında ıraksak dizilerin yapıları hakkında bazı bilgiler elde 

edilmesini sağlamaktır. Her yakınsak dizi aynı noktaya regüler bir metod tarafından 

toplanabilirdir. Fakat bir metod tarafından toplanabilen her dizinin yakınsak olması 

gerekmez. Bunun sağlanabilmesi uygun koĢullar altında mümkündür. Bu türdeki 

çalıĢmalar A. Tauber (1897) in yapmıĢ olduğu çalıĢmayla baĢlayıp günümüze kadar 

devam eden bir araĢtırma konusu olmuĢtur. Tauber (1897), Abel toplanabilme 

metodu tarafından toplanabilen bir dizinin hangi koĢullar altında yakınsak olduğunu 

göstermiĢtir. Bu alanda ilk çalıĢmayı Tauber yaptığı için bir toplanabilme 

metodundan yakınsaklığın yeniden elde edilmesini sağlayan koĢullara Tauber koĢulu 

ve bu türdeki teoremlere Tauber tipi teorem adı verilmektedir. Bu tez boyunca sadece 

Abel ve Cesàro toplanabilme metodu ele alınacak ve bu metodlar için Tauber tipi 

teoremler verilecektir. 

Literatürdeki klasik çalıĢmalardaki amaç Tauber’in verdiği koĢulları zayıflatmak 

olmuĢtur. Bu alanda yapılan çalıĢmalardan baĢlıcaları, Littlewood (1910), Landau 

(1910), Hardy ve Littlewood (1914), Schmidt (1925) ve Karamata (1930) olarak 

sıralanabilir. 

Daha sonra Dik (2001a) ve Dik (2001b) çalıĢmalarında bir dizinin tamsayı mertebeli 

salınım davranıĢlarının genel kontrol modülosu kavramını kullanarak klasik Tauber 

tipi teoremlerdeki koĢulları genelleĢtirip Abel ve Cesàro toplanabilme metodu için 

yeni tipte teoremler elde etmiĢlerdir.  

Çanak ve Totur (2007), Dik (2001a) ve Dik (2001b)  tarafından kullanılan bir dizinin 

tamsayı mertebeli salınım davranıĢlarının genel kontrol modülosu tanımından daha 

iĢlevsel olarak yararlanabilmek için bu tanımın iki farklı yazılıĢını göstermiĢler ve bu 

farklı yazılıĢlar sayesinde Dik (2001a) ve Dik (2001b)’in verdikleri teoremleri 

genelleĢtirmiĢlerdir. Abel ve Cesàro toplanabilme metodu için bir dizinin tamsayı 

mertebeli salınım davranıĢlarının genel kontrol modülosu kavramının koĢul olarak 
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kullanıldığı Tauber tipi teoremlerin verildiği baĢlıca bazı çalıĢmalar Stanojević 

(1998), Stanojević (1999), Stanojević vd. (1999), Stanojević ve Stanojević (2002),  

Dik vd. (2004), Çanak vd. (2007), Çanak ve Totur (2008), Çanak (2008), Çanak 

(2010), Çanak vd. (2010) Ģeklinde sıralanabilir. 

Yüzyılı aĢkın bir süredir toplanabilme teorisinde yapılan bu alandaki çalıĢmalar 

günümüzde önemini hâlâ korumaya devam etmektedir.  

Hazırlanan bu doktora çalıĢmasında Abel ve Cesàro toplanabilme metodları için 

Tauber tipi yeni teoremler verilmesi amaçlanmıĢtır. Bu nedenle, tezde öncelikle Abel 

toplanabilme metodu ve Cesàro toplanabilme metodu tanıtılıp, gerekli tanımlar ve 

notasyonlar verilmiĢtir. Daha sonra Tauber teorisinin geliĢiminden ve yapılan bazı 

klasik çalıĢmalardan bahsedilmiĢtir. Son olarak da bu tipteki bazı klasik teoremler 

genelleĢtirilip Tauber tipi yeni teoremler verilmiĢtir. Ayrıca elde edilen bu 

teoremlerin önceki çalıĢmalarla karĢılaĢtırılması yapılmıĢtır. 
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2. TEMEL KAVRAMLAR 

Bu bölümde tez boyunca kullanacak olan tanım ve gösterimlere yer verilecek olup, 

klasik Tauber teorisi özetlenecektir. 

2.1. Tanımlar ve Gösterimler 

)(= nuu  reel sayıların bir dizisi olmak üzere, bu dizinin aritmetik ortalamaları  





n

k

kn u
n

u
0

)1(

1

1
)( ile gösterilsin. Sonlu bir s sayısı için   

 sun
n

)(lim )1(  (2.1) 

ise  )( nu  dizisine s ye Cesàro toplanabilirdir denir (Hardy, 1991). 

Ayrıca, 10  x
 
olmak üzere, 

 








0
1

)1(lim
n

n

n
x

sxux  (2.2) 

ise )( nu  dizisine s ye Abel toplanabilirdir denir (Hardy, 1991). 

Burada ilk akla gelen “Bu metodların sınıfı ile adi yakınsaklık sınıfı arasında nasıl bir 

iliĢki vardır?” sorusudur. Bu soruya Ģöyle cevap verilebilir: 

Her yakınsak dizi aynı noktaya Cesàro ve Abel toplanabilirdir.  Fakat Cesàro veya 

Abel toplanabilir olan her dizinin yakınsak olması gerekmez. AĢağıdaki örnekte bu 

incelenebilir. 

Örnek 2.1. 
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n
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ıraksak bir dizidir. Fakat hem Cesàro hem de 

Abel toplanabilirdir. Gerçekten  )( nu  dizisi   
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Yukarıdaki örnekten de görüleceği gibi (2.1) ve (2.2) limitini gerçekleyen dizilerin 

sınıfları yakınsak olan dizilerin sınıfından daha geniĢtir.  
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Buna ek olarak, her Cesàro toplanabilir olan dizi aynı noktaya Abel toplanabilirdir. 

Fakat tersi doğru değildir. AĢağıdaki örnek Abel toplanabilirdir olup Cesàro 

toplanabilir olmayan bir dizi örneği olarak verilebilir. 
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  e Abel toplanabilirdir. 

Yukarıdaki Örnek 2.2 den de görüleceği gibi (2.2) limitini gerçekleyen dizilerin sınıfı 

(2.1) i gerçekleyen dizilerin sınıfından daha geniĢtir.  

(2.1) veya (2.2) limitini gerçekleyen dizilerin sınıfından yakınsaklığa geçiĢ )( nu
 

dizisi üzerine konulan uygun koĢullar altında mümkündür. Bu türdeki ilk çalıĢma A. 

Tauber (1897) tarafından yapılmıĢtır. Bu yüzden genel olarak bir toplanabilme 

metodundan yakınsaklığın yeniden elde edilmesi için konulan koĢullara Tauber 

koşulları ve bu koĢulları içeren teoremlere de Tauber tipi teoremler denir. Bu 

çalıĢma alanı günümüze kadar devam eden bir araĢtırma konusu olmuĢtur. Tezin 

üçüncü ve dördüncü bölümlerinde sırasıyla Cesàro ve Abel toplanabilme metodları 

için Tauber tipi teoremler verilmiĢtir. 

Tez boyunca kullanacak olan tanım ve gösterimler aĢağıda verilmiĢtir.  

Negatif olmayan bir n tamsayısı için, )( nu  reel bir sayı dizisi olsun. Tez boyunca 

(1)= Oun  gösterimi )( nu  dizisinin sınırlılığını ve (1)= oun  gösterimi )( nu  dizisinin 

sıfıra yakınsamasını ifade edecektir.  Ayrıca negatif olmayan bir C sayısı için 

Cun  ise )( nu
 
dizisine tek taraflı sınırlı denir. 

 Bir  )( nv  reel sayı dizisi için  
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 0

1=

= u
k

v
vu k

n

k

nn   

ise )( nu  dizisine )( nv  tarafından düzenli olarak üretilen bir dizi ve )( nv  dizisine 

)( nu  dizisinin bir üreteci denir (Dik vd., 2004).  

Bir )( nu  dizisi ve her negatif olmayan n tamsayısı için   



n

k

kn uk
n

uV
=1

(0)

1

1
=)(  

olmak üzere, 

 )(=)( (0))1( uVuu nnn    (2.3) 

dir. Burada 1n n nu u u    , 1 0u   Ģeklinde tanımlanmıĢtır. Literatürde Kronecker 

eşitliği olarak da bilinen (2.3) eĢitliği ispatlarda sıkça kullanılacaktır.  Ayrıca 







n

k

k
n

k

uV
uu

1

(0)

0

)1( )(
=)(  olduğundan (2.3) eĢitliği   

 0

(0)

1=

(0) )(
)(= u

k

uV
uVu k

n

k

nn 


   (2.4) 

Ģeklinde yeniden yazılabilir. (2.4) eĢitliğinden  )((0) uVn   dizisinin )( nu
 
 dizisinin bir 

üreteci olduğu kolayca görülür.  

Negatif olmayan bir m tamsayısı için, )( nu  dizisinin m. mertebeden aritmetik 

ortalamalarının dizisi  

 











0=,

1,)(
1

1

=)(
1)(

0=

)(

mu

mu
nu

n

m

k

n

k

m

n


   

Ģeklinde,   )((0) uVn   dizisinin m. mertebeden aritmetik ortalamaları 

))(()(
1

1
)( )1()1(

0

)1()( uVuV
n

uV m

n

n

k

m

k

m

n 


 



   
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Ģeklinde tanımlanır.  

Bir )( nu  dizisinin salınım davranıĢlarının klasik kontrol modülosu n

o

n unu )()(  

Ģeklinde; pozitif bir m tamsayısı için, salınım davranıĢlarının m. mertebeden genel 

kontrol modülosu ))(()()( )1()1()1()( uuu m

n

m

n

m

n

    Ģeklinde tanımlanmıĢtır (Dik, 

2001a; Dik, 2001b). 

Ayrıca bir )( nu  dizisi için, m pozitif bir tamsayısı olmak üzere, 

))((=))(()(=)( 11 nmnmnm unnunnun    Ģeklinde ifade edilir. Burada 

nn uun =)( 0  ve nn unun  =)( 1  dir.  

Çanak ve Totur (2007), salınım davranıĢlarının m. mertebeden genel kontrol 

modülosunu ispatlarda daha iĢlevsel olarak kullanabilmek için farklı iki yazılıĢını
 

göstermiĢlerdir. 

Lemma 2.3. Her 1m  tamsayısı için     uVnu m

nm

m

n   )1()( )(  dir. 

İspat. Ġspatta matematiksel tümevarım yöntemi kullanılacaktır. Salınım 

davranıĢlarının m. mertebeden genel kontrol modülosunun tanımından, 1m  için 

   ))(()()( )()1()()1( uuu o

n

o

nn     uVnuVun o

nn

o

nn  )()(   

elde edilir. km   için eĢitliğin doğru olduğu, yani  

    uVnu k

nk

k

n   )1()( )(   (2.5) 

olduğu kabul edilsin. Tümevarım gereği 1 km  için doğru olduğunu 

ispatlanmalıdır. Yani    uVnu k

nk

k

n  

 )(

1

)1( )(  eĢitliğini gösterilmelidir. Tanımdan 

 )()()( )()1()()1( uuu k

n

k

n

k

n    bulunur. (2.5) eĢitliğinden,  

  )()1( uk

n        uVnuVn k

nk

k

nk   )()1( =       uVuVn k

n

k

nk   )()1(  

              uVnn k

nk  )(
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           uVn k

nk  

)(

1
 

elde edilir. Böylece, her pozitif m tamsayısı için Lemma 2.3 ün doğru olduğu 

sonucuna varılmıĢ olur. 

Lemma 2.4. Her 1m  tamsayısı için, 
    

!

...211

j

jmmm

j

m 








 
  olmak 

üzere    uVn
j

m
u j

n

m

j

jm

n 






 






)(
1

0

)(
1

1)(  dir.  

İspat Ġspatta matematiksel tümevarım yöntemi kullanılacaktır. 1m  için,  

)()1( un    uVnuVun o

nn

o

nn  )()( =    uVn
k

k

n

k

k













)(
0

0

0
1   elde edilir. km   

için eĢitliğin doğru olduğu kabul edilsin. Bu  

    uVn
j

k
u j

n

k

j

jk

n 






 






)(
1

0

)(
1

1)(   (2.6) 

ile gösterilir. Tümevarım gereği 1 km  için doğru olduğunu ispatlanmalıdır. Yani 

   uVn
j

k
u j

n

k

j

jk

n 











 )(

0

)1( 1)(  eĢitliğini gösterilmelidir. Tanımdan 

 )()()( )()1()()1( uuu k

n

k

n

k

n    bulunur. (2.6) eĢitliğinden,  

   )()1( uk

n    






 






uVn
j

k
j

n

k

j

j )(
1

0

1
1    uVn

j

k
j

n

k

j

j








 
 





 )1(
1

0

1
1   

elde edilir.  Ġkinci toplamda ij 1  olarak alınırsa, 

  )()1( uk

n    uVn
j

k
j

n

k

j

j








 






)(
1

0

1
1 +    uVn

i

k
i

n

k

i

i

















)(

1 1

1
1   (2.7) 

bulunur. (2.7) eĢitliğinin ikinci toplamında j indisine göre yeniden yazıp, birinci 

toplamın ilk terimi ve ikinci toplamın son terimi ayrı olarak yazılırsa, 
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  )()1( uk

n    






 
 uVn

k
o

n

)(0

0

1
1    uVn

j

k
j

n

k

j

j








 






)(
1

1

1
1  

    +    uVn
j

k
j

n

k

j

j



















)(
1

1 1

1
1 +    uVn

k

k
k

n

k













 )(

1

1
1        (2.8) 

elde edilir. (2.8) eĢitliği yeniden düzenlenirse,  

  )()1( uk

n    






 
 uVn

k
o

n

)(0

0

1
1    uVn

j

k

j

k
j

n

k

j

j





























 






)(
1

1 1

11
1  

          +    uVn
k

k
k

n

k













 )(

1

1
1  

olduğu kolayca görülür. Kombinasyon özelliğinden 




























 

j

k

j

k

j

k

1

11
 olduğu 

hatırlanarak, 

  )()1( uk

n    






 
 uVn

k
o

n

)(0

0

1
1    uVn

j

k
j

n

k

j

j















)(
1

1

1   

 +    uVn
k

k
k

n

k













 )(

1

1
1  

 =    uVn
j

k
j

n

k

j

j













)(

0

1  

Ģeklinde yazılır. Böylece her pozitif m tamsayısı için Lemma 2.4 ün doğru olduğu 

sonucuna varılmıĢ olur. 

Schmidt (1925), bir )( nu  dizisinin yavaĢ salınımlı olmasını aĢağıdaki gibi 

tanımlamıĢtır (Hardy, 1991; Boos, 2000; Korevaar, 2004). 
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 Tanım 2.5. 1için 
m

n
mn  olmak üzere )1(ouu mn   sağlanıyorsa )( nu

 

dizisine yavaş salınımlı dizi denir. 

Stanojević (1998) yavaĢ salınımlı dizi tanımını daha iĢlevsel olarak kullanabilmek 

için yavaĢ salınımlı diziyi aĢağıdaki gibi yeniden tanımlamıĢtır.
 

Tanım 2.6. Bir )( nu  dizisi için, nn  ],[
 
nin tam değeri olmak üzere,  

 0=maxsuplimlim
1=

][11
j

k

nj
nknn

u


  
  

ise  )( nu dizisine yavaş salınımlı dizi denir. YavaĢ salınımlı dizilerin sınıfı yakınsak 

olan dizilerin sınıfını kapsar. Yani her yakınsak dizi yavaĢ salınımlıdır. Fakat tersi 

her zaman doğru değildir. Örneğin, )(log)( nun   dizisi yavaĢ salınımlıdır fakat 

yakınsak değildir. Gerçekten,  

 




































k

nj

k

nj

k

nj k

k

n

n

n

n

j

j

j

j
j

111 11

21
log

1
log

1
loglog  

olur. Buradan tanım uygulanırsa, 

















 n

n

n

k

nkn

][
loglogmax

][1



  
elde edilir.  Önce 

n
 
için üst limit alıp ardından 1

 
için limit alındığında tanımın sağlandığı 

görülür.
 
Ayrıca

 
yavaĢ salınımlılığın tanımından, bir )( nu

 
dizisi yavaĢ salınımlı ise

 

(1)nu o  , n  olduğu kolayca görülebilir.   

 

Dik (2001b), bir )( nu
 
dizisinin yavaĢ salınımlı olması için gerek ve yeter koĢulun 

 )((0) uVn   dizisinin yavaĢ salınımlı ve sınırlı olması gerektiğini göstermiĢtir. 

Böylece yavaĢ salınımlı bir dizinin aritmetik ortalamalarının dizisinin de yavaĢ 

salınımlı olduğu (2.4) ten söylenebilir.  

ġimdi verilecek tanım,  yavaĢ salınımlı dizi tanımının bir genelleĢtirilmesidir. Bu 

tanım Dik (2001a) ve Dik (2001b) tarafından verilmiĢtir. 
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Tanım 2.7. Bir )( nu  dizisi ve 1
 
için nn  ],[

 
nin tam değeri olmak üzere,  

 



j

k

nj
nknn

u
1=

][1
maxsuplim


  

 ise )( nu  dizisine ılımlı salınımlı dizi denir. Tanımdan yavaĢ salınımlı her dizinin 

ılımlı salınımlı olduğu kolayca görülür. Fakat tersi her zaman doğru değildir. 

Örneğin,  

 















diğiğ

nk

nk

u n

n

n

,0

,...2,1,12,1

,...2,1,2,1

  

dizisi ılımlı salınımlıdır fakat yavaĢ
 
salınımlı değildir. 

Dik (2001b), bir )( nu
 
dizisi ılımlı salınımlı  ise  )((0) uVn   dizisinin sınırlı olduğunu 

göstermiĢtir. Dik tarafından verilen bu sonuç ile ılımlı salınımlı olan bir dizinin 

aritmetik ortalamaları dizisinin yavaĢ salınımlı olduğu görülür.
 

AĢağıdaki tanım,  yavaĢ salınımlı dizi tanımının baĢka bir genelleĢtirilmesidir. Bu 

tanım Szász (1952) tarafından verilmiĢtir. 

Tanım 2.8. Bir )(= nuu  dizisi için nn  ],[
 
nin tam değeri olmak üzere,  

 0=)|(|suplimlim
][

1=
1

jj

n

njn

uu 


 




  

ise  )( nu dizisine tek taraflı  yavaş salınımlı dizi denir.  

Tanımdan kolayca görüleceği gibi her yavaĢ salınımlı dizi tek taraflı yavaĢ 

salınımlıdır (Szász, 1952). Fakat tersi her zaman doğru değildir. Örneğin, )()( nun   

dizisi tek taraflı yavaĢ salınımlıdır ama yavaĢ salınımlı değildir.  

diğer 
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Szász (1952), bir )( nu
 
dizisi tek taraflı yavaĢ salınımlı ise  )((0) uVn   dizisinin tek 

taraflı sınırlı olduğunu göstermiĢtir.  

YavaĢ salınımlı bir dizinin baĢka bir genelleĢtirilmesi Schmidt (1925) tarafından 

verilmiĢtir (Bingham vd., 1989). 

Tanım 2.9. Bir )( nu  dizisi için, nn  ],[
 
nin tam değeri olmak üzere,  

 0minliminflim
1=][1




j

k

njnknn

u


 

ise  )( nu dizisine yavaş azalan dizi denir. 

Salınım davranıĢlarıyla ilgili verilen tanımlardan aĢağıdaki sonuçlar elde edilebilir. 

Eğer (1)=)((0) Oun  ise )( nu  dizisi yavaĢ salınımlıdır. Ayrıca eğer bir 0C  için 

Cun )((0)  ise  )( nu  dizisi yavaĢ azalandır (Boos, 2000). 

Tek taraflı yavaĢ salınım dizi ile yavaĢ azalan dizi arasındaki iliĢki Szász (1952)’ın 

sonucundan elde edilebilir öyle ki; bir )( nu  dizisi tek taraflı yavaĢ salınımlı ise 

aritmetik ortalamalarının dizisi olan ))(( (1) un  dizisi yavaĢ azalandır. 

Bu kısımda bir reel sayı dizisinin farklı tür ortalamalarından bahsedilecektir. 

Bir )( nu  dizisinin
 
De la Vallée Poussin ortalaması, n  yeterince büyük olmak üzere, 

1>  için  

 k

n

nk

nn u
nn

u 


][

1=

>

][,
][

1
=)(






  

 ve 1<<0   için 

 k

n

nk

nn u
nn

u 
 1][=

<

][,
][

1
=)(






  

Ģeklinde tanımlanır.  
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Ayrıca Agnew (1932), yukarıdaki tanımı genelleĢtirerek )( nu  dizisinin qpD ,
 ile 

gösterilen ertelenmiş Cesàro ortalamasını, 

 k

n
q

n
pknn

nqp u
pq

uD 
 1=

,

1
=)(  

Ģeklinde tanımlamıĢtır. Burada  negatif olmayan tamsayıların dizileri olan )( np  ve 

)( nq ,
 nn qp <  ve nq , n  koĢullarını sağlamaktadırlar.  

Bu tez boyunca 
n

p
P n

n :=  ve 
n

q
Q n

n :=  olmak üzere, )
1

(
n

n

P

P
 ve )

1
(

n

n

Q

Q


 dizilerinin 

sınırlı olduğu kabul edilecektir ve )( nu  dizisinin ertelenmiş Cesàro ortalamalarının 

dizisi npn   
için 

 
k

n
p

nkn

npn u
np

uD 
 1=

,

1
=)(

 

ve nqn   için 

 

k

n

n
qkn

nnq u
qn

uD 
 1=

,

1
=)(

 

Ģeklinde alınacaktır. 

2.2. Klasik Tauber Teorisine Kısa Bir Bakış 

Klasik Tauber teoremlerinde, dizinin kendisini ya da salınım davranıĢlarının klasik 

kontrol modülosunu kısıtlayan bazı araçlardan yararlanarak (2.1) veya (2.2) 

limitlerinden birini gerçekleyen dizilerin sınıfından yakınsak dizilerin sınıfı elde 

edilmektedir. Ġlk olarak Tauber (1897), )( nu  dizisi için (2.2) limiti mevcut ve 

 )1()()( ouo

n   (2.9) 
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ise )( nu dizisinin yakınsak olduğunu göstermiĢtir (Hardy, 1991; Boos, 2000; 

Korevaar, 2004). Bu teoreme literatürde Tauber’in Birinci Teoremi denir. 

Tauber (1897), (2.9) koĢulunu daha zayıf bir koĢul olan ))(( (0) uVn  dizisinin sıfıra 

yakınsamasıyla değiĢtirilebileceğini göstermiĢtir (Peyerimhoff, 1969; Powell ve 

Shah, 1972; Hardy, 1991; Korevaar, 2004). Bu teorem literatürde Tauber’in İkinci 

Teoremi olarak adlandırılır.  

Teorem 2.10. (Tauber’in İkinci Teoremi ) )( nu  dizisi için (2.2) limiti mevcut ve 

 )1())(()( )0()1((0) ouuV nn    (2.10) 

ise )( nu
 
dizisi yakınsaktır. 

Bundan sonra yapılan çalıĢmalarda (2.1) veya (2.2) limitinin varlığından yakınsaklığı 

daha zayıf araçlarla elde edilebilmesi amaçlanmıĢtır. 

Littlewood (1910), (2.9) koĢulunun önemli bir genelleĢtirilmesi olan  

 )1()()( Ouo

n   (2.11) 

koĢulu ile (2.2) limitinin varlığından yakınsaklığın elde edilebildiğini göstermiĢtir 

(Peyerimhoff, 1969; Powell ve Shah, 1972; Hardy, 1991; Korevaar, 2004). 

Fakat Rényi (1946), (2.11) koĢulu yerine )1())(()( )0()1((0) OuuV nn    koĢulu 

alındığından (2.2) limitinin varlığından )( nu  dizisinin yakınsaklığının elde 

edilemediği kanıtlamıĢtır. Buna ek olarak, bir )( nu
 
dizisi için (2.2) limiti mevcut ve 

)1()((0) OuVn   ise )( nu
 

dizisinin yakınsaklığı yerine ))(( )1( un  dizisinin 

yakınsaklığının elde edilebileceği görülür. 

Landau (1910), )( nu  dizisi için (2.1) limiti mevcut ve bir 0C
 
için, 

 Cuo

n )()(  (2.12) 
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ise )( nu
 
dizisinin yakınsaklığını elde etmiĢtir (Hardy, 1991; Korevaar, 2004). 

Daha sonra, Hardy ve Littlewood (1914), Landau’nun verdiği koĢul ile Abel 

toplanabilir bir dizinin yakınsak olabildiğini göstermiĢlerdir. Bu teoreme de 

literatürde  Hardy-Littlewood Teoremi adı verilir (Hardy, 1991; Korevaar, 2004). 

Teorem 2.11. (Hardy-Littlewood Teoremi ) )( nu  dizisi için (2.2) limiti mevcut ve 

(2.12) koĢulu sağlanıyorsa )( nu
 
dizisi yakınsaktır. 

Klasik Tauber teorisinin temelini oluĢturan bu çalıĢmaların ardından yakınsaklığın 

yeniden elde edilebilmesi için yeni araçlara ihtiyaç duyulmuĢtur. Ġlk kısımda verilen 

yavaĢ salınımlılık tanımı bu araçlardan biridir. Schmidt (1925), Littlewood’un 

verdiği (2.11) koĢulunun )( nu  dizisinin yavaĢ salınımlı olması koĢulu ile yer 

değiĢtirebileceğini göstermiĢtir. Bu teoreme literatürde Genelleştirilmiş Littlewood 

Teoremi denir (Hardy, 1991; Korevaar, 2004). 

Teorem 2.12. (Genelleştirilmiş Littlewood Teoremi )
 

)( nu  dizisi için (2.2) limiti 

mevcut ve )( nu  dizisi yavaĢ salınımlı ise )( nu  yakınsaktır.  

Ayrıca Schmidt (1925), )( nu  dizisinin yavaĢ azalan olmasıyla da Abel toplanabilme 

metodundan yakınsaklığa geçiĢ yapılabildiğini göstermiĢtir (Hardy, 1991; Korevaar, 

2004). 

Teorem 2.13. )( nu  dizisi için (2.2) limiti mevcut ve )( nu  dizisi yavaĢ azalan ise 

)( nu  yakınsaktır. 

Benzer olarak Stanojević (1999), bir )( nu  dizisi (2.1) limitini sağlıyorsa ve 

Stanojević anlamında yavaĢ salınımlı ise )( nu
 

dizinin yakınsak olduğunu 

göstermiĢtir. 

Karamata (1930) yaptığı çalıĢmasında Abel  toplanabilme metodu ile Cesàro 

toplanabilme metodu arasındaki iliĢkiyi incelemiĢ ve Abel toplanabilir bir dizinin 
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kendisi üzerine koĢul koyarak dizinin Cesàro toplanabilir olduğunu elde etmiĢtir. Bu 

sonuç aĢağıdaki gibi ifade edilebilir. Bu teoreme literatürde Karamata’nın Temel 

Teoreminin Sonucu denir. 

Teorem 2.14. (Karamata’nın Temel Teoreminin Sonucu) )( nu  dizisi için (2.2) 

limiti mevcut ve negatif olmayan bir C  sayısı için Cun   ise  sun
n

)(lim (1)  dir. 
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3. CESÀRO TOPLANABİLME METODU İÇİN TAUBER TİPİ 

TEOREMLER 

Bu bölümde Cesàro toplanabilme metodu için Tauber tipi teoremler hakkında 

literatürde yapılan çalıĢmalardan söz edilmiĢtir. Ayrıca bu çalıĢmalardaki koĢulların 

ıĢığında bir dizinin ya da üretecinin Cesàro toplanabilir olmasından yakınsaklığın 

veya daha genel sonuçların elde edilmesini sağlayan koĢullar verilmiĢtir. Bu 

koĢulların önceki yapılan çalıĢmalardaki koĢulların genelleĢtirilmesi olduğu 

gösterilmiĢtir.  

3.1. Kaynak Özeti 

Landau (1910)’nun Cesàro toplanabilme metodu için verdiği (2.12) koĢulundan bir 

önceki bölümde bahsedilmiĢti. Dik (2001b), Landau’nun teoremindeki bir dizinin 

salınım davranıĢlarının klasik kontrol modülosunun tek taraflı sınırlı olması koĢulu 

yerine 1. mertebeden genel kontrol modülosunun tek taraflı sınırlı olmasının yeterli 

olduğunu göstermiĢtir. Yani, bir )( nu  dizisi için (2.1) limiti mevcut ve bir 0C
 

için 

 Cun )((1)  (3.1) 

ise )(= nuu
 
dizisi yakınsaktır.  

Çanak ve Totur (2007),  Dik(2001b)'in teoremini geliĢtirerek aĢağıdaki teoremi 

vermiĢtir.  

Teorem 3.1. Bir )(= nuu  dizisi için (2.1) limiti mevcut olsun. Negatif olmayan bir 

)( nMM   dizisi için  

 ))(( )1( Mn yavaş salınımlı (1)=)()1( OMve n  (3.2) 

olmak üzere 

 nn Mu )((2)  (3.3) 
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ise )( nu  dizisi s  ye yakınsaktır. 

Bir )( nu  dizisinin Cesàro toplanabilmesinden yakınsaklığının elde edilmesi yerine 

bazı koĢullar altında )( nu  dizisinin üretecinin Cesàro toplanabilmesinden dizi 

hakkında daha genel bilgiler elde edilebilir. Bu amaç doğrultusunda Stanojević ve 

Stanojević (2002) aĢağıdaki teoremi ispatlamıĢlardır. 

Teorem 3.2. Bir )( nu  dizisinin üreteci sonlu bir s sayısına Cesàro toplanabilir olsun. 

Negatif olmayan bir )( nMM   dizisi için (3.2) koĢulu sağlansın. O halde (3.3) 

sağlanıyorsa )( nu  dizisi yavaĢ salınımlıdır. 

Çanak (2008), aĢağıda verilen teoremde, (3.2)  koĢulu yerine daha genel koĢullar 

koyarak )( nu  dizisinin üretecinin Cesàro toplanabilmesinden )( nu
 

nin yavaĢ 

salınımlılığını elde etmiĢtir. 

Teorem 3.2. Bir )( nu  dizisinin üreteci sonlu bir s sayısına Cesàro toplanabilir olsun. 

Negatif olmayan bir )( nMM   dizisi için  

 



 1(1),=)(limsup1)( >

][,   oMnn
n

 (3.4) 

 



 1(1),=)(limsup1)( <

][,   oMnn
n

 (3.5) 

olmak üzere 

 nn Mu )((2)  

ise )( nu  dizisi yavaĢ salınımlıdır. 

Tezin bu bölümünde, Çanak (2008)'ın teoremi genelleĢtilerek daha zayıf koĢullar 

altında bir dizinin üretecinin Cesàro toplanabilmesinden dizinin yavaĢ salınımlılığı 

elde edilmiĢtir.  
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Teorem 3.4. )(= nuu  dizisi reel sayıların bir dizisi olsun. Negatif olmayan bir 

)(= nMM  dizisi için  

 0=)(limsup , npn
n

n

MD
n

np







 



 (3.6) 

 ve  

 0=)(limsup , nnq

n

n

n

MD
q

qn









 



 (3.7) 

olmak üzere 

 n

m

n Mu )()(  (3.8) 

 koĢulu sağlansın.   

 Eğer ))((=)( (0)(0) uVuV n   dizisi sonlu bir s sayısına Cesàro toplanabilir ise  

)(= nuu  yavaĢ salınımlıdır.  

Örnek 3.5. )( nu  dizisi 




diğiğ

jn
u

j

n
,0

1,2,3,...=,2=,1
=    Ģeklinde tanımlansın. 

)( nu  dizisinin iki  alt dizisi farklı değerlere yakınsadığından )( nu  dizisinin yakınsak 

olmadığı açıktır. Fakat ))(( (1) un  dizisinin yavaĢ salınımlı olduğu Teorem 3.4 

yardımıyla gösterilebilir. Gerçekten, 

 )( nu  dizisinin klasik kontrol modülosu yazıldığında 

 










diger

jnj

jnj

unu j

j

nn

,0

1,2,3,...=,12=,

1,2,3,...=,2=,

=)()0(  

, diğer 

, diğer 
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elde edilir. Buradan ))(( (0) uVn 
 
dizisinin  sınırlı olduğu kolayca görülür.  

 

))(( (1) un  dizisi için  (3.8) koĢulu )()( CMn   ve m = 1 alındığında sağlanır.  Ayrıca 

1 için ][ npn   alındığında (3.6) koĢulu ve 10    için ][ nqn   alındığında 

(3.7) koĢulu sağlanır. 

Bunlara ek olarak, 



1=n

n

nxu  serisi düĢünülsün. Bu seri bir fonksiyon 

olarak 





1

122 )(=),(
n

nn

xxxuf  ile ifade edilebilir. Burada 1<0 x  ise 

0),(  xuf  olduğuna dikkat edilmelidir.  Böylece  

 0),(liminf
1




xuf
x

 (3.9) 

 elde edilir. Bununla birlikte 

 

































1

8422

1=

)
1

(ln)(1)(1=),(
x

Cxxxxxxxuf
n

n

 

 olduğu görülür. 1x  için üst limit alındığında   

 0),(limsup
1




xuf
x

 (3.10) 

 elde edilir.  (3.9) ve (3.10) dan )( nu  dizisi sıfıra Abel toplanabilir olur. (2.3) 

eĢitliğinden ))(( (1) uVn 
 
dizisi de sıfıra Abel toplanabilir olur. Teorem 2.11 den dolayı 

))(( (1) uVn   sıfıra yakınsaktır.  

O halde Teorem 3.4 ün tüm koĢulları ))(( (1) un  dizisi için sağlanmıĢtır. Böylece 

))(( (1) un  dizisi yavaĢ salınımlı olur. 

Teorem 3.4 ü ispatlayabilmek için aĢağıdaki lemmalara ihtiyaç duyulacaktır. 
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3.2. Lemmalar 

Lemma 3.6. )(= nuu
 
dizisi verilsin. npn   

için, 

(i)  )()(
1

=)()( )1()1()1(

, uu
np

p
uuD np

n

n
nnpn n

 



  

ve nqn   için 

(ii)   )()(
1

=)()( )1()1()1(

, uu
qn

q
uuD

nqn

n

n
nnnq  




  

 dir. 

İspat. (i) Bir )( nu  dizisinin ertelenmiĢ Cesàro ortalaması tanımından  npn   
için, 

 




















k

n

k

k

n
p

kn

k

n
p

nkn

npn uu
np

u
np

uD
0=0=1=

,

1
=

1
=)(  (3.11) 

Aritmetik ortalama tanımından  

 )(1)(= )1(

0

upu
npn

n
p

k

k 


 ve )(1)(= )1(

0=

unu n

n

k

k    

olduğundan (3.11) eĢitliğinde yerlerine yazılırsa, 

 )(
1

)(
1

=)( )1()1(

, u
np

n
u

np

p
uD n

n

p

n

n
npn n










 

eĢitliği elde edilir. Son eĢitliğin her iki tarafından )()1( un  çıkarılırsa  

  )()(
1

=)()( )1()1()1(

, uu
np

p
uuD np

n

n
nnpn n

 



   

elde edilir. Böylece ispat tamamlanmıĢ olur. □ 



 23 

 (ii) Bir )( nu  dizisinin ertelenmiĢ Cesàro ortalaması tanımından  nqn   için,  

 























k

n
q

k

k

n

kn

k

n

n
qkn

nnq uu
qn

u
qn

uD
0=0=1=

,

11
=)(  (3.12) 

dir. Aritmetik ortalama tanımından   

 )(1)(= )1(

0=

unu n

n

k

k   ve )(1)(= )1(

0=

uqu
n

n

qn

q

k

k 
  

olduğundan bu ifadeler (3.12) eĢitliğinde yerine yazılırsa, 

 )(
1

)(
1

=)( )1()1(

, u
qn

q
u

qn

n
uD

nq

n

n
n

n

nnq 








 

eĢitliği elde edilir. Son eĢitliğin her iki tarafından )()1( un  çıkarılırsa  

  )()(
1

=)()( )1()1()1(

, uu
qn

q
uuD

nqn

n

n
nnnq  






  

elde edilir. Böylece ispat tamamlanmıĢ olur. □ 

Lemma 3.6 dan )( nu  dizisi s ye Cesàro toplanabilir ise, )( nu  dizisinin ertelenmiĢ 

Cesàro ortalamasının da s ye yakınsak olduğu kolayca görülür. 

Lemma 3.7. )(= nuu  dizisi verilsin. npn   
için  

(i)   )(
1

)()(
1

=)(
1=

)1()1()1(

nk

n
p

nkn

np

n

n
nn uu

np
uu

np

p
uu

n








 



  

ve  nqn   için 

(ii)   )(
1

)()(
1

=)(
1=

)1()1()1(

nk

n

n
qkn

qn

n

n
nn uu

qn
uu

qn

q
uu

n








 



  
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eĢitlikleri sağlanır. 

İspat. (i) Tanımlarından hareketle nnpn uuD )( ,  
farkı yazılırsa  

 )(
1

=
1

=)(
1=1=

, nk

n
p

nkn

nk

n
p

nkn

nnpn uu
np

uu
np

uuD 





 


 

 elde edilir. Buradan,  yukarıdaki eĢitlik yeniden düzenlenirse, 

 )(
1

)(=
1=

, nk

n
p

nkn

npnn uu
np

uDu 


 


 

olduğu görülür. Son eĢitliğin her iki tarafından )()1( un  çıkarılırsa  

 )(
1

))()((=)(
1=

)1(

,

)1(

nk

n
p

nkn

nnpnnn uu
np

uuDuu 


 


  

bulunur. Lemma 3.6 (i) den  )()( )1(

, uuD nnpn   eĢitliği yerine konursa, 

   )(
1

)()(
1

=)(
1=

)1()1()1(

nk

n
p

nkn

np

n

n
nn uu

np
uu

np

p
uu

n








 



  

elde edilir.□ 

(ii)  Tanımlarından hareketle nnnq uuD )( ,  
farkı yazılırsa  

 )(
11

=)(
1=1=

, nk

n

n
qkn

nk

n

n
qkn

nnnq uu
qn

uu
qn

uuD 





 


 

 elde edilir. Buradan,  yukarıdaki eĢitlik yeniden düzenlenirse, 

 )(
1

)(=
1=

, nk

n

n
qkn

nnqn uu
qn

uDu 


 


 

olduğu görülür. Son eĢitliğin her iki tarafından )()1( un  çıkarılırsa  
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 )(
1

))()((=)(
1=

)1(

,

)1(

nk

n

n
qkn

nnnqnn uu
qn

uuDuu 


 


  

bulunur. Lemma 3.6 (ii) den  )()( )1(

, uuD nnpn   eĢitliği yerine konursa, 

   )(
1

)()(
1

=)(
1=

)1()1()1(

nk

n

n
qkn

qn

n

n
nn uu

qn
uu

qn

q
uu

n








 



  

elde edilir.□ 

Lemma 3.8.  Negatif olmayan bir  )(= nMM  dizisi  

 nn Mu )((0)  

koĢulunu gerçeklerse, 

(i)  
npn

n
nnpn MD

n

np
uuD )()( ,,


  

(ii)     nnq

n

n
nnqn MD

q

qn
uDu )()( ,,


   

eĢitsizlikleri sağlanır. 

  İspat. (i) Hipotez gereği nn Mu )((0)  olduğundan 
n

M
u n

n   olduğu kolayca 

görülür. Bu eĢitsizlikte her iki taraf knj 1,...,=   için toplanırsa  

 
j

M
uuu

j
k

nj

nkj

k

nj





1=1=

)(=  (3.13) 

 olur. (3.13) eĢitsizliği npnk 1,...,=   için toplanıp daha sonra bulunan eĢitsizliğin 

her iki tarafı )
1

(
npn 

 ile çarpılırsa   
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j

M

np
uu

np

j
k

nj

n
p

nkn

nk

n
p

nkn


 





1=1=1=

1
)(

1
 

elde edilir.  ErtelenmiĢ Cesàro ortalaması tanımı gereği son eĢitsizlikten 

 
j

n
p

nj

j
n

p

nj

nnpn M
nj

M
uuD 




1=1=

,

1
))((  

elde edilir. EĢitsizliğin sağ tarafı npn   ile çarpılıp bölünürse, 

 

















 



j

n
p

njn

n

nnpn M
npn

np
uuD

1=

,

1
))((  

bulunur. Burada, )(= nMM
 
dizisi için

 
ertelenmiĢ Cesàro ortalaması tanımından 

yararlanarak, 

 npn
n

nnpn MD
n

np
uuD )())(( ,,


  

 olduğu görülür. Böylece ispat tamamlanmıĢ olur.□ 

 (ii) Hipotez gereği nn Mu )((0)  olduğundan 
n

M
u n

n   olduğu kolayca görülür. 

Bu eĢitsizlikte her iki taraf nkj 1,...,=   için toplanırsa  

 
j

M
uuu

j
n

kj

knj

n

kj





1=1=

=  (3.14) 

olur. (3.14) eĢitsizliği nqk n 1,...,=   için toplanıp daha sonra bulunan eĢitsizliğin 

her iki tarafı )
1

(
nqn 

 ile çarpılırsa   

 
j

M

qn
uu

qn

j
n

kj

n

n
qkn

kn

n

n
qkn


 





1=1=1=

1
)(

1
 



 27 

 elde edilir.  ErtelenmiĢ Cesàro ortalaması tanımı gereği son eĢitsizlikten 

 j

n

n
qjn

j
n

n
qj

nnqn M
qj

M
uDu 




1=1=

,

1
)(  

elde edilir.  EĢitsizliğin sağ tarafı nqn   ile çarpılıp bölünürse, 

 

















 



j

n

n
qjnn

n
nnqn M

qnq

qn
uDu

1=

,

1
)(  

bulunur. Burada, )(= nMM
 
dizisi için

 
ertelenmiĢ Cesàro ortalaması tanımından 

yararlanarak, 

 
nnq

n

n
nnqn MD

q

qn
uDu )()( ,,


  

olduğu görülür. Böylece ispat tamamlanmıĢ olur. □ 

3.3. Teorem 3.4 ün İspatı 

Bu bölümde Teorem 3.4 ün ispatı verilip teoremden elde edilen sonuçlar 

gösterilecektir.  

İspat. Hipotezden n

m

n Mu )()(  olduğundan Lemma 2.3 ten 

n

m

nm MuVn   )()( 1)(  elde edilir. Bu eĢitsizlik düzenlenerek yeniden yazılırsa 

n

m

nm MuVnn  

 ))()(( 1)(

1  bulunur.  ĠĢlemler daha kolay yürütülebilsin diye bir 

)(= n  dizisi ))((=)()(: 1)()1(1)(

1 uuVn m

n

m

nmn



    Ģeklinde tanımlansın. 

Hipotez gereği ))((=)( (0)(0) uVuV n   dizisi  s sayısına Cesàro toplanabilir 

olduğundan suVn  )((1) , n  olduğu kolayca görülür. Buradan (2.3) 

eĢitliğinden yararlanarak (1)=)()(=)( (2)(1)(2) ouVuVuVn nnn   elde edilir. 

Böylece Lemma 2.4 ten,  
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 (1)=)(
2

1)(=)( 2)(
2

0=

)1( ouVn
j

m
j

n

j
m

j

n 






 
 



  (3.15) 

 olur. Ġspatın bu adımında gösterilmesi gereken (1)= on  olmasıdır. O halde )( n  

dizisi Lemma 3.7 (i) e uygulanır ve Lemma 3.6 (i) ile Lemma 3.8 (i) kullanılırsa  

 npn
n

nnpnnn MD
n

np
D )()()()( ,

)1(

,

)1( 
   (3.16) 

elde edilir. (3.16) eĢitsizliğinin her iki tarafının üst limiti alınırsa, üst limit 

özelliklerinden yararlanarak 

    )()(limsup)(limsup
)1(

,

)1(  nnpn
n

nn
n

D   

 






 
 npn

n

n

MD
n

np
)(limsup ,  (3.17) 

 elde edilir. 

Lemma 3.6 (i) den, (3.17) eĢitsizliğinin sağ tarafı sıfıra gider. Böylece 

   0)(limsup
)1(   nn

n

 (3.18) 

elde edilmiĢ olur. 

Benzer olarak,  )( n  dizisi Lemma 3.7 (ii) ye uygulanır ve Lemma 3.6 (ii) ile 

Lemma 3.8 (ii) kullanılırsa,  

 nnq

n

n
nnnqnn MD

q

qn
D )()()()( ,

)1(

,

)1( 
   (3.19) 

 elde edilir. (3.19) eĢitsizliğinin her iki tarafının alt limiti alınırsa, alt limit 

özelliklerinden yararlanarak 
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    )()(liminf)(liminf
)1(

,

)1(  nnnq
n

nn
n

D   

 






 
 nnq

n

n

n

MD
q

qn
)(liminf ,

 (3.20) 

 elde edilir. Lemma 3.6 (ii) den, (3.20) eĢitsizliğinin sağ tarafı sıfıra gider. Böylece 

   0)(liminf
)1(   nn

n

 (3.21) 

elde edilmiĢ olur. 

 Son olarak, (3.18) ve (3.21) eĢitsizlikleri kullanılarak 

 (1)= on  (3.22) 

 bulunur. Lemma 2.4,  )( n  dizisine uygulanırsa,   

 (1)=)(
2

1)(= 1)(
2

0=

ouVn
j

m
j

n

j
m

j

n 






 
 



  (3.23) 

elde edilir.  

(3.23) eĢitliğinden (1)=)((2) ouVn n   olmasını kullanarak, (1)=)((1) ouVn n   

olduğu görülür. Son olarak, (2.3) eĢitliğinden yararlanarak elde edilen  

 )()(=)( (1)(0)(1) uVuVuVn nnn    

eĢitliğinden hipotez gereği (1)=)((0) ouVn   bulunur.  

 0

(0)

1=

(0) )(
)(= u

k

uV
uVu kn

knn 


   

 gösteriminden  )( nu  dizisinin yavaĢ salınımlı olduğu görülür. □ 
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Teoremin bir sonucu olarak Cesàro toplanabilme metodu için Tauber tipi teorem 

verilebilir. 

Sonuç 3.9. )( nu  dizisi reel sayıların bir dizisi olsun. Negatif olmayan bir )(= nMM  

dizisi için (3.6), (3.7) ve (3.8) koĢulları sağlansın. Eğer )( nu dizisi sonlu bir s 

sayısına Cesàro toplanabilir ise )( nu dizisi s ye yakınsaktır. 

İspat. )( nu dizisi sonlu bir s sayısına Cesàro toplanabilir ise (2.3) eĢitliğinde 

))(( (0) uVn   dizisi sıfıra Cesàro toplanabilirdir. Dolayısıyla teoremin ifadesi 

gerçeklemiĢ olur. Ġspatın son adımda (1)=)((0) ouVn   bulunur. )( nu dizisi s ye 

Cesàro toplanabilir olduğundan ))(( )1( un  s ye yakınsaktır. O halde, (2.3) eĢitliğinden 

ispat tamamlanmıĢ olur.□ 
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4. ABEL TOPLANABİLME METODU İÇİN TAUBER TİPİ TEOREMLER 

Bu bölümde Abel toplanabilme metodu için bilinen klasik bazı Tauber tipi 

teoremlerin bir tür genelleĢtirilmesi verilmiĢtir. Yapılan çalıĢmanın bir sonucu olarak 

GenelleĢtirilmiĢ Littlewood Teoremi elde edilmiĢtir. Ayrıca verilen koĢulların 

genelleĢtirilmiĢ Abel toplanabilme metodu için de gerçeklendiği gösterilmiĢtir. 

AĢağıda elde edilecek yeni sonuçların ispatlarında kullanılacak lemmalar verilmiĢtir. 

4.1. Lemmalar 

Lemma 4.1. (Szász; 1952) Bir )( nu  dizisi tek taraflı yavaĢ salınımlı ise negatif 

olmayan bir C sayısı için CuVn  )()0(  dir. 

Daha önce de )( nu  dizisi yavaĢ salınımlı ise )1()()0( OuVn   olduğu verilmiĢti. 

Lemma 4.2 de )((1) uu nn 
 
farkı iki farklı Ģekilde yazacaktır. Hatırlanacağı gibi bir 

önceki bölümde Lemma 3.7 de )((1) uu nn 
 

farkının iki yazılıĢı gösterilmiĢti. 

Verilecek olan Lemma 4.2, Lemma 3.7 nin özel bir durumudur.  

Lemma 4.2. (Stanojević;1998) )(= nuu  reel sayı dizisi için, 

(i) 1>  ve yeterince büyük n  tamsayısı için,  

   )(
][

1
)()(

][

1][
=)(

][

1=

(1)(1)

][

(1)

nk

n

nk

nnnn uu
nn

uu
nn

n
uu 







 












  (4.1) 

 dir.  

(ii) 2<<1   ve yeterince büyük n  tamsayısı için, 

 ))()((
1]1)[(

1
=)( (1)(1)

1]1)[(

(1)

1]1)[( uu
n

n
uu nnnnnn 


  




   
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   j

n

kj

n

nnk

u
n




 
 1=]1)[(=1]1)[(

1


 

(4.2) 

 dir.  

İspat. 

(i) Lemma 3.7 (i) de ][ npn   alındığında 1>  için npn >  Ģartı sağlanır. 

(ii) Lemma 3.7 (ii) de ][ nqn   alındığında 2<<1   için nqn >  Ģartı 

sağlanır. 

4.2. Teoremler ve İspatlar 

Teorem 4.3. Bir )( nu  dizisi sonlu bir s sayısına  Abel toplanabilir ve )( nu  tek taraflı 

yavaĢ salınımlı ise sun
n

=lim
 
dir. 

İspat. )( nu  dizisi s ye Abel toplanabilir olduğundan ))(( (1) un  dizisi de s ye Abel 

toplanabilirdir. Böylece (2.3) eĢitliğinden ))(( (0) uVn   dizisi sıfıra Abel 

toplanabilirdir. Diğer taraftan Lemma 4.1 den negatif olmayan bir C  sayısı için  

 CuVn  )()0(  (4.3) 

 olur. Teorem 2.14 kullanarak (4.3) eĢitsizliği ve ))(( (0) uVn   dizisinin sıfıra Abel 

toplanabilir olmasından,  

 )1()()1( ouVn    

elde edilir. Lemma 4.2 (i), ))(( (0) uVn   dizisine uygulanırsa, 

  )()(
][

1][
)()( )0()1(

][

)1()0( uVuV
nn

n
uVuV nnnn 




 




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 )(
][

1 )0(

1=

][

1=

uV
nn

j

k

nj

n

nk




 





 

  )()(
][

1][ )0()1(

][ uVuV
nn

n
nn 




 





 ))(|)((|
][

1 )0()0(

1=

][

1=

uVuV
nn

jj

k

nj

n

nk




 





 

  )()(
][

1][ )1()1(

][ uVuV
nn

n
nn 




 




 

 ))(|)(|( )0()0(
][

1=

uVuV jj

n

nj

 




 

elde edilir. 

Yukarıdaki eĢitsizliğin her iki tarafının üst limiti alınırsa, 

 

 

 )(|)(|limsup

)()(limsup
1

))()((limsup

)0()0(
][

1=

)1()1(

][

)1()0(

uVuV

uVuVuVuV

jj

n

njn

nn
n

nn
n


















 

elde edilir. ))(( )1( uVn   dizisi yakınsak olduğundan yukarıdaki son eĢitsizliğinin sağ 

tarafındaki ilk terim sıfıra gider ve 

  )(|)(|limsup))()((limsup
)0()0(

][

1=

)1()0( uVuVuVuV jj

n

njn
nn

n

 




 (4.4) 

olur. (4.4) eĢitsizliğinde her iki tarafın 1  için limiti aldığında 

 0))()((limsup
)1()0(  uVuV nn

n

 (4.5) 

 elde edilir. Benzer Ģekilde,  Lemma 4.2 (ii), ))(( (0) uVn   dizisine uygulanırsa, 
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))()((
1]1)[(

1
=)()( )1()1(

1]1)[(

)1(

1]1)[(

)0( uVuV
n

n
uVuV nnnnnn 




  


 

 )(
1]1)[(

1 )0(

1=]1)[(=

uV
n

j

n

kj

n

nnk




 
 

 

 ))()((
1]1)[(

1 )1()1(

1]1)[( uVuV
n

n
nnn 




  


 

 )|)(|)((
1]1)[(

1 )0()0(

1=]1)[(=

uVuV
n

jj

n

kj

n

nnk




 
 

 

 ))()((
1]1)[(

1 )1()1(

1]1)[( uVuV
n

n
nnn 




  


 

  ))(|)((| )0()0(

]1)[(=

uVuV jj

n

nnj

 
 

 

elde edilir. 

Yukarıdaki eĢitsizliğin her iki tarafının alt limiti alınırsa, 

 


























))(|)(|(liminf

)()(liminf
1

1
))()((liminf

)0()0(

]1)[(=

)1()1(

1]1)[(

)1(

1]1)[(

)0(

uVuV

uVuVuVuV

jj

n

nnjn

nnn
n

nnn
n






 

elde edilir. ))(( )1( uVn   dizisi yakınsak olduğundan yukarıdaki son eĢitsizliğinin sağ 

tarafındaki ilk terim sıfıra gider ve  

 )()(limsup

))()((liminf

)0()0(

]1)[(=

)1(

1]1)[(

)0(

uVuV

uVuV

jj

n

nnjn

nnn
n














 (4.6) 

olur. (4.6) eĢitsizliğinde her iki tarafın 1  için limit alındığında 
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 0))()((liminf
)1()0(  uVuV nn

n

 (4.7) 

bulunur. 

 (4.5) ve (4.7) eĢitsizliklerinden  

 0=))()((lim
)1()0( uVuV nn

n

  (4.8) 

 elde edilir. Bu durumda )1()()1( ouVn   olduğundan )1()()0( ouVn  olduğu kolayca 

görülür. )( nu  dizisi s ye Abel toplanabilir olduğundan )1()()0( ouVn   olduğundan 

Tauber’in ikinci teoremi gereği, sun
n

=lim  elde edilmiĢ olur. Böylece ispat 

tamamlanır.□ 

AĢağıdaki teorem Szász (1951) tarafından verilen teoremin geliĢmiĢ halidir. Teorem 

4.4 te aynı koĢullar altında Szász’ın teoremindeki ))(( )0( uVn 
 
dizisinin tek taraflı 

sınırlı olması koĢuluna gerek olmadığı görülür. 

Teorem 4.4. )( nu  dizisi sonlu bir s sayısına  Abel toplanabilir ve ))(( )0( uVn   tek 

taraflı yavaĢ salınımlı ise sun
n

=lim
 
dir. 

İspat. )( nu  dizisi s ye Abel toplanabilir olduğundan ))(( (1) un  dizisi de s ye Abel 

toplanabilirdir. Böylece (2.3) eĢitliğinden ))(( (0) uVn   dizisi sıfıra Abel 

toplanabilirdir. Diğer bir taraftan ))(( )0( uVn   tek taraflı yavaĢ salınımlı olduğundan  

 )())(( )1()0()0( uVnuVV nn    

eĢitliğinden yararlanarak, Lemma 4.1 den negatif olmayan bir C  sayısı için  

 CuVn n  )()1(  (4.9) 

 olur. ))(( (0) uVn   dizisinin sıfıra Abel toplanabilir olmasından ve  
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 )()()( )1()1()0( uVnuVuV nnn    

eĢitliğinden ))(( )1( uVn n   dizisi de sıfıra Abel toplanabilirdir. Teorem 2.14 

))(( )1( uVn n   dizisi için kullanarak (4.9) eĢitsizliği ve ))(( )1( uVn n   dizisinin sıfıra 

Abel toplanabilir olmasından  

 )1()()2( ouVn n    

elde edilir. Ayrıca 

 ))(()( )1()0()2( uVVuVn nn    

eĢitliğinden ve ))(( (1) uVn   dizisinin sıfıra Abel toplanabilir olmasından, Tauber’in 

ikinci teoremi gereği,  

 )1()()1( ouVn    

elde edilir. Ġspatın geri kalan kısmı Teorem 4.3 ün ispatı gibi yapılabilir.□ 

Teorem 4.4 teki koĢul dizinin klasik kontrol modülosunun aritmetik ortalamasının 

tek taraflı yavaĢ salınımlı olmasıydı. Teorem 4.5 te bu koĢul genelleĢtirilerek salınım 

davranıĢlarının m. mertebeden genel kontrol modülosunun aritmetik ortalamasının 

tek taraflı yavaĢ salınımlı olmasının da Abel toplanabilme metodu için bir Tauber 

koĢulu olduğu  verilmiĢtir. 

Teorem 4.5. )( nu  dizisi sonlu bir s sayısına Abel toplanabilir ve )))((( )((1) um

n 
 

dizisi
 
tek taraflı yavaĢ salınımlı ise sun

n
=lim

 
dir. 

İspat. )( nu  dizisi s ye Abel toplanabilir olduğundan ))(( (1) un  dizisi de s ye Abel 

toplanabilirdir. Böylece (2.3) eĢitliğinden ))(( (0) uVn   dizisi sıfıra Abel 

toplanabilirdir. Ayrıca ))(( (0) uVn   dizisinin aritmetik ortalamaları dizisi olan  

))(( (1) uVn   dizisi de sıfıra Abel toplanabilirdir. (2.3) eĢitliğinden )))((( )0((0) uVVn   
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dizisi de sıfıra Abel toplanabilirdir.  ĠĢlemler benzer Ģekilde sürdürülürse 

))((( )((2) um

n   dizisinin sıfıra Abel toplanabilir olduğu görülür. Diğer bir 

taraftan, )))((( )((1) um

n 
 
dizisi

 
tek taraflı yavaĢ salınımlı olduğundan  

 ))((=))))(((( )((2))((1)(0) unuV m

n

m

n    

eĢitliğinden bir 0>C  sayısı için Cun m

n  ))(( )((2)   elde edilir. Teorem 2.11  

)))((( )((2) um

n   dizisine uygulanırsa 

 (1)=))(( )((2) oum

n   (4.10) 

elde edilir.  

)))((( )((1) um

n 
 
dizisi Lemma 4.2 (i) e uygulanırsa  

 

 





 

)))((|))(((|

))(())((
][

1][

))((

|))((|
][

1

))(())((
][

1][

))((
][

1

))(())((
][

1][
=))(())((

)((1))((1)
][

1=

)((2))((2)

][

)((1)

)((1)

1=

][

1=

)((2))((2)

][

)((1)

1=

][

1=

)((2))((2)

][

)((2))((1)

uu

uu
nn

n

u

u
nn

uu
nn

n

u
nn

uu
nn

n
uu

m

j

m

j

n

nj

m

n

m

n

m

j

m

j

k

nj

n

nk

m

n

m

n

m

j

k

nj

n

nk

m

n

m

n

m

n

m

n



















































































 

elde edilir. Yukarıdaki eĢitsizliğin her iki tarafının üst limiti alındığında   
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 bulunur. O halde (4.10) eĢitliğinden  yukarıdaki son eĢitsizliğin sağ tarafındaki ilk 

terim sıfıra gider ve  

)))((|))(((|limsup
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

 (4.11) 

olur. (4.11) eĢitsizliğinde her iki tarafın 1  için limiti alınırsa, 

 0)))(())(((limsup
)((2))((1)  uu m

n

m

n
n

  (4.12) 

elde edilir. Benzer Ģekilde )))((( )((1) um

n 
 
dizisi Lemma 4.2 (ii) ye uygulanırsa 

 

 elde edilir. Yukarıdaki eĢitsizliği her iki tarafının alt limiti alınırsa,  
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bulunur. (4.10) eĢitliğinden  yukarıdaki son eĢitsizliğin sağındaki ilk terim sıfıra 

gider ve 
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(4.13)

 

  elde edilir. (4.13) eĢitsizliğinde her iki tarafın 1  için limiti alınırsa,   

 0)))(())(((liminf
)((2)

1]1)[(

)((1)   uu m

nn

m

n
n

   (4.14) 

olur.  (4.12) ve  (4.14) eĢitsizliklerinden   

 0=))(()(((lim
)((2))((1) uu m

n

m

n
n

   (4.15) 

 elde edilir. O halde buradan (4.10) ifadesinden dolayı  

 
(1)=))(( )((1) oum

n 
  (4.16) 

bulunur. )( nu  dizisi s  ye Abel toplanabilir olduğundan,  )))((( 1)((1) um

n

  de sıfıra 

Abel toplanabilirdir. Ayrıca 

 (1)=)))(((=))(( 1)((1)(0))((1) ouVu m

n

m

n

   

 olduğundan Teorem 2.10 a  )))((( 1)((1) um

n

  uygulanırsa 

 (1)=))(( 1)((1) oum

n

  (4.17) 
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elde edilir. (4.16) ve (4.17) den dolayı iĢlemler benzer Ģekilde devam ettirilirse,  

 (1)=)(=))(( (0)(0)(1) ouVu nn   

 bulunur. Sonuç olarak Teorem 2.10 ve hipotezden sun
n

=lim elde edilir. □ 

Teorem 4.5 te m=0 alınırsa Teorem 4.4 ün elde edileceğine dikkat edilmelidir.  

Teorem 4.6. )( nu  dizisi sonlu bir s sayısına  Abel toplanabilir ve )))((( )((1) um

n 
 

dizisi
 
yavaĢ azalan ise sun

n
=lim

 
dir. 

İspat. )( nu  dizisi s ye Abel toplanabilir olduğundan ))(( (1) un  dizisi de s ye Abel 

toplanabilirdir. Böylece (2.3) eĢitliğinden ))(( (0) uVn   dizisi sıfıra Abel 

toplanabilirdir. Ayrıca ))(( (0) uVn   dizisinin aritmetik ortalamaları dizisi olan  

))(( (1) uVn   dizisi de sıfıra Abel toplanabilirdir. (2.3) eĢitliğinden )))((( )0((0) uVVn   

dizisi de sıfıra Abel toplanabilirdir. ĠĢlemler benzer Ģekilde sürdürülürse 

))((( )((1) um

n   dizisinin sıfıra Abel toplanabilir olduğu görülür. Diğer taraftan, 

)))((( )((1) um

n 
 
dizisi

 
yavaĢ azalan olduğundan Teorem 2.13, )))((( )((1) um

n  dizisine 

uygulanırsa 

 (1)=))(( )((1) oum

n   (4.18) 

 elde edilir. (4.18) eĢitliğinden  negatif olmayan bir C sayısı için 

 Cunu mm

n   )))(((=))(( 1)((2))((1)   (4.19) 

bulunur. (4.19) eĢitsizliğinden )))((( 1)((2) um

n

  dizisinin yavaĢ azalan olduğu 

görülür. )( nu  dizisi s ye Abel toplanabilir olduğundan )))((( 1)((1) um

n

  dizisi sıfıra 

Abel toplanabilir olur. Teorem 2.13 )))((( 1)((2) um

n

  dizisine uygulanırsa 

 (1)=))(( 1)((2) oum

n

  (4.20) 
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elde edilir. (2.3) eĢitliğinde )( nu
 
yerine )))((( 1)((1) um

n

  yazılırsa  (4.18) ve (4.20) 

ifadelerinden  

 (1)=))(( 1)((1) oum

n

  (4.21) 

 bulunur. (4.18) ve (4.21) den dolayı iĢlemler benzer Ģekilde devam ettirilirse, 

 (1)=)(=))(( (0)(0)(1) ouVu nn   

 olur. Sonuç olarak Teorem 2.10 ve hipotezden sun
n

=lim  elde edilir.  

Sonuç 4.7. )( nu  dizisi sonlu bir s sayısına  Abel toplanabilir ve ))(( )( um

n  
dizisi tek 

taraflı yavaĢ salınımlı ise sun
n

=lim
 
dir. 

İspat. ))(( )( um

n  dizisi tek taraflı yavaĢ salınımlı olduğundan )))((( )((1) um

n   dizisi 

yavaĢ azalandır. Bu durumda Teorem 4.6 nın ifadesi elde edilir. 

Sonuç 4.8. )( nu  dizisi sonlu bir s sayısına Abel toplanabilir ve ))(( )( um

n  
dizisi yavaĢ 

salınımlı ise sun
n

=lim
 
dir. 

İspat. Her yavaĢ salınımlı dizi yavaĢ azalan olduğundan Sonuç 4.7 nin ifadesine 

kolayca ulaĢılır. 

Sonuç 4.9. )( nu  dizisi sonlu bir s sayısına  Abel toplanabilir ve )))((( (0)(1) un 
 
dizisi 

yavaĢ azalan ise sun
n

=lim
 
dir. 

Sonuç 4.9, Jakimovski (1954) tarafından yapılan çalıĢmada elde edilmiĢtir. 

Sonuç 4.10. )( nu  dizisi sonlu bir s sayısına  Abel toplanabilir ve )))((( (0)(1) un 
 

dizisi yavaĢ salınımlı ise sun
n

=lim
 
dir. 

Sonuç 4.10, Dik (2001b) tarafından yapılan çalıĢmada elde edilmiĢtir. 
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Sonuç 4.11  )( nu  dizisi sonlu bir s sayısına  Abel toplanabilir ve )( nu yavaĢ salınımlı 

ise sun
n

=lim
 
dir. 

Sonuç 4.11, daha önceki bölümlerde de bahsedilen GenelleĢtirilmiĢ Littlewood 

Teoremi’dir. 

4.3. Genelleştirilmiş Abel Toplanabilme Metodu İçin Tauber Tipi Teoremler 

GenelleĢtirilmiĢ Abel toplanabilme metodu aĢağıdaki gibi tanımlanır. 

Tanım 4.12. ))(( )( um

n  dizisi bir s sayısına Abel toplanabilir ise )( nu  dizisine s ye
 

(A,m)  toplanabilir  denir (Stanojević, Çanak ve Stanojević; 1999). 

Yukarıdaki tanımdan kolayca görüleceği gibi özel olarak 0=m  alınırsa (A,m)  

toplanabilme metodu Abel toplanabilme metoduna indirgenmiĢ olur.  

Ayrıca bir )( nu
 
dizisi  Abel toplanabilir ise (A,m) toplanabilirdir. Fakat tersi genelde 

doğru değildir. Örneğin, 1<<0 x  aralığında tanımlı bir f  fonksiyonu 










 x
xf

1

1
sin=)(  Ģeklinde tanımlansın. )( nu

 
dizisi

 
 bu fonksiyonun Taylor 

katsayılarının dizisi olarak seçildiğinde )( nu  dizisinin (A, m) toplanabilirdir  olduğu 

fakat Abel toplanabilir olmadığı görülür. 

Abel toplanabilme metoduyla Cesàro  toplanabilme metodu arasındaki iliĢki ikinci 

bölümde verilmiĢti. Bu bilgilere ek olarak bir dizinin m. mertebeden aritmetik 

ortalamalarının dizisi olan ))(( )( um

n  yakınsak ise bu dizi Abel toplanabilirdir. 

Buradan tüm mertebeden aritmetik ortalamalar dizilerinin sınıfının Abel toplanabilen 

dizilerin sınıfının içinde olduğunu görülür (Hardy, 1991). 

Teorem 4.3, Teorem 4.4 ve Teorem 4.5 kullanılarak, Bölüm 4.2 de verilen teoremler 

genelleĢtirilerek )( nu  dizisi veya onun tarafından üretilen belli dizilerin tek taraflı 

yavaĢ salınımlı olması koĢulunun ),( mA  toplanabilme metodu için de bir Tauber 

koĢulu olduğu aĢağıdaki teoremlerde gösterilecektir.  
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Teorem 4.13. Bir )( nu  dizisi sonlu bir s sayısına ),( mA  toplanabilir ve )( nu  tek 

taraflı yavaĢ salınımlı ise sun
n

=lim
 
dir. 

İspat.  )( nu  dizisi s ye ),( mA  toplanabilir olduğundan, tanım gereği ))(( )( um

n  dizisi  

s ye Abel toplanabilirdir. Böylece (2.3) eĢitliğinde )( nu
 
yerine  ))(( )( um

n  
dizisi 

yazılırsa ))(( )( uV m

n   dizisinin sıfıra Abel toplanabilir olduğu görülür. Hipotez gereği 

)( nu  tek taraflı yavaĢ salınımlı olduğundan dolayı Lemma 4.1 den negatif olmayan 

bir C  sayısı için  

 CuVn  )()0(  

olur. Buradan, her iki tarafın m kez aritmetik ortalaması alındığında negatif olmayan 

bir C  sayısı ve negatif olmayan m tamsayısı için, 

 CuV m

n  )()(   (4.22) 

elde edilir. Teorem 2.14, ))(( )( uV m

n   dizisine uygulanırsa (4.22) eĢitsizliğinden ve 

))(( )( uV m

n   dizisinin sıfıra Abel toplanabilir olmasından  

 )1()(1)( ouV m

n    

olduğu görülür. Ayrıca ))(( )( um

n  dizisi s ye Abel toplanabilir olduğundan 

))(( 1)( um

n


 
dizisi de

 
s ye Abel toplanabilirdir. O halde  

 ))(()( )1((0)1)( uVuV m

n

m

n

     

eĢitliğinden yararlanarak Tauber’in ikinci teoremi gereği  

 sum

n
n

=)(lim 1)(    
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elde edilir. Buradan )( nu  dizisinin s ye Abel toplanabilir olduğu görülür. Böylece 

Teorem 4.3 ün koĢulları sağlanmıĢ olur. Ġspatın geri kalan kısmı Teorem 4.3 ün 

ispatına benzer Ģekilde yapılabilir. □ 

Teorem 4.14. )( nu  dizisi sonlu bir s sayısına ),( mA  toplanabilir ve ))(( )0( uVn   tek 

taraflı yavaĢ salınımlı ise sun
n

=lim
 
dir. 

İspat. )( nu  dizisi s ye ),( mA  toplanabilir olduğundan, tanım gereği ))(( )( um

n  dizisi  

s ye Abel toplanabilirdir. Böylece (2.3) eĢitliğinde )( nu
 
yerine  ))(( )( um

n  
dizisi 

yazılırsa ))(( )( uV m

n   dizisinin sıfıra Abel toplanabilir olduğu görülür. Diğer bir 

taraftan hipotez gereği ))(( )0( uVn   tek taraflı yavaĢ salınımlı olduğundan  

 )())(( )1()0()0( uVnuVV nn    

eĢitliğinden yararlanarak, Lemma 4.1 den negatif olmayan bir C  sayısı için  

 CuVn n  )()1(   

olur. Buradan, her iki tarafın m kez aritmetik ortalaması alındığında negatif olmayan 

bir C  sayısı ve negatif olmayan m tamsayısı için, 

 CuVn m

n   )(1)(   (4.23) 

elde edilir. ))(( )( uV m

n   dizisinin sıfıra Abel toplanabilir olmasından, ve 

)()()( )1()1()( uVnuVuV m

n

m

n

m

n    eĢitliğinden ))(( )1( uVn m

n    dizisi sıfıra Abel 

toplanabilirdir. Teorem 2.14, ))(( )1( uVn m

n    dizisine uygulanırsa (4.23) eĢitsizliği 

ve ))(( )1( uVn m

n    dizisinin sıfıra Abel toplanabilirdir olmasından  

 )1()()2( ouVn m

n     
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olduğu görülür. Ayrıca ))(( )( uV m

n   dizisinin sıfıra Abel toplanabilir olmasından, 

))(( 1)( uV m

n   dizisi de sıfıra Abel toplanabilirdir. O halde 

 ))(()( )1()0()2( uVVuVn m

n

m

n     

eĢitliğinden yararlanarak, Teorem 2.10, ))(( )( uV m

n   dizisine uygulanırsa 

  )1()()1( ouV m

n    

elde edilir. Buna ek olarak ))(( )( um

n  dizisi s ye Abel toplanabilir olduğundan 

))(( 1)( um

n   dizisi de s ye Abel toplanabilirdir. O halde  

 ))(()( )1((0)1)( uVuV m

n

m

n

     

eĢitliğinden yararlanarak yine Teorem 2.10, ))(( 1)( um

n   dizisine uygulanırsa 

sum

n
n

=)(lim 1)( 
 
elde edilir. Buradan )( nu  dizisinin s ye Abel toplanabilir olduğu 

görülür. Böylece Teorem 4.4 ün koĢulları sağlanmıĢ olur. Ġspatın geri kalan kısmı 

Teorem 4.4 ün ispatı gibi yapılabilir. □ 

Teorem 4.15. )( nu  dizisi sonlu bir s sayısına ),( mA  toplanabilir ve )))((( )((1) um

n   

tek taraflı yavaĢ salınımlı ise sun
n

=lim
 
dir. 

İspat. )( nu  dizisi s ye ),( mA  toplanabilir olduğundan, tanım gereği ))(( )( um

n  dizisi  

s ye Abel toplanabilirdir. Böylece (2.3) eĢitliğinde )( nu
 
yerine  ))(( )( um

n  
dizisi 

yazılırsa ))(( )( uV m

n   dizisinin sıfıra Abel toplanabilir olduğu görülür. Buna ek olarak 

))(( )( uV m

n   dizisinin aritmetik ortalamaları olan ))(( 1)( uV m

n   dizisinin de sıfıra Abel 

toplanabilir olmasından ))(( 1)( uVn m

n   dizisi de sıfıra Abel toplanabilirdir. Yani 

)))((( )1(1)( um

n    dizisi sıfıra Abel toplanabilirdir. ĠĢlemler benzer Ģekilde devam 

ettirilirse )))((( )1(1)( umm

n

 
 

dizisinin de sıfıra Abel toplanabilir olduğu görülür. 

Diğer taraftan )))((( )((1) um

n   tek taraflı yavaĢ salınımlı olduğundan 
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 ))(()))((( 1)((1))((1))0( uuV m

n

m

n

    

eĢitliğinden yararlanarak, Lemma 4.1 den negatif olmayan bir C  sayısı ve negatif 

olmayan m tamsayısı için  

 Cum

n  ))(( 1)((1)    

olur. Buradan, her iki tarafın m kez aritmetik ortalaması alındığında negatif olmayan 

bir C  sayısı ve negatif olmayan m tamsayısı için, 

 Cumm

n  ))(( 1)(1)(    (4.24) 

elde edilir. Ayrıca ))(( )( uV m

n   dizisinin sıfıra Abel toplanabilir olmasından 

)))((( )1()( umm

n

  dizisinin sıfıra Abel toplanabilir olduğu yukarıdaki iĢlemler ile 

görülür. Teorem 2.14 )))((( )1()( umm

n

  dizisine uygulanırsa (4.24) eĢitsizliği ve 

)))((( )1()( umm

n

  dizisinin sıfıra Abel toplanabilirdir olmasından  

 )1())(( )1(1)( oumm

n     (4.25) 

elde edilir. Ayrıca ))(( )( uV m

n   dizisinin sıfıra Abel toplanabilir olmasından, 

)))((( )(1)( umm

n    dizisi de sıfıra Abel toplanabilirdir. O halde 

 )))((())(( )(1)()0()1(1)( uVu mm

n

mm

n      

eĢitliğinden yararlanarak, Teorem 2.10, )))((( )(1)( umm

n    dizisine uygulanırsa 

  )1())(( )(1)( oumm

n     (4.26) 

elde edilir.  (4.25) ve (4.26) ifadelerinden dolayı iĢlemler benzer Ģekilde m kez 

devam ettirilirse 

 )1()())(( )0()0(1)( ouVu n

m

n    
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olduğu görülür. Buna ek olarak ))(( )( um

n  dizisi s ye Abel toplanabilir olduğundan 

))(( 1)( um

n   dizisi de s ye Abel toplanabilirdir. O halde  

 ))(()( )1((0)1)( uVuV m

n

m

n

     

eĢitliğinden yararlanarak yine Teorem 2.10 ))(( 1)( um

n   dizisine uygulanırsa 

sum

n
n

=)(lim 1)( 
 
elde edilir. Buradan )( nu  dizisinin s ye Abel toplanabilir olduğu 

görülür. Böylece Teorem 4.5 in koĢulları sağlanmıĢ olur. Ġspatın geri kalan kısmı 

Teorem 4.5 in ispatına benzerĢekilde yapılabilir. □ 
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5. SONUÇLAR 

Tezin 3. bölümünde, yeni sonuç olarak elde edilen Teorem 3.4 de, Çanak (2008) 

tarafından verilen teorem genelleĢtirilmiĢtir. Bu teoremde bir dizinin üretecinin 

Cesàro toplanabilmesinden dizinin yavaĢ salınımlılığının daha zayıf koĢullar altında 

elde edildiği görülmüĢtür. Teorem 3.4 ün ispatını yaparken kullanılan Lemma 3.6, 

Lemma 3.7, Lemma 3.8 yine bu çalıĢmada elde edilmiĢtir. 

Tezin 4. bölümünde, yeni sonuç olarak Teorem 4.3, Teorem 4.4, Teorem 4.5, 

Teorem 4.13, Teorem 4.14, Teorem 4.15 elde edilmiĢtir. Bu teoremler 

GenelleĢtirilmiĢ Littlewood Teoremi olarak bilinen teoremin bir genelleĢtirilmesidir.  
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