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YUVARLANAN KURESEL ROBOT MODELLENMESi VE KONTROLU
OZET

Bu tezde, yuvarlanarak hareket edebilecek kiiresel mobil robot modellenmesi ve
kontrolii konu alinmistir. Caligsma kapsaminda ¢ift serbestlik derecesine sahip sarkag
ile hareketi saglanan yuvarlanan kiiresel robotun modellenmesi, hareket analizi ve
dinamik benzetimlerle kontrolii gerceklestirilmistir. Yuvarlanan kiiresel robotu
olusturan sistem bilesenleri iizerindeki eksen takimlarinin birbirlerine gére donme
hareketi yapmasi nedeniyle Euler acilari gibi ardisik donme diizeni yaklagimlari
kullanilarak kinematik model elde edilmistir. Kiiresel yuvarlanma hareketi, nonlineer
ve  holonomik  olmayan, oldukca  karmasik  dinamik  denklemlerle
modellenebilmektedir. Dinamik modelin sistemin kontroliinde kullanilabilmesi i¢in
ayristirllmis dinamik yontemi uygulanmistir. Donme yarigapi tayini, egik diizlemde
hareket, tirmanma agisi1 tayini ve engel gecme yiikseklik tayini gibi hareket analizleri
gergeklestirilmistir.

Sistemin kontrolii i¢in hesaplanmis tork kontrol, bulanik hesaplanmis tork kontrol ve
gri bulanik hesaplanmis tork kontrol yontemleri dnerilmistir. Gri 6ngdrii kontrolii ve
bulanik kontrol birbirlerinden farkli matematik temellere sahiptir. Bu iki kontrol
yonteminin ortak noktasi ise her ikisinin de sistemdeki belirsizliklere karsi
calismasidir. Onerilen gri bulanik hesaplanmis tork kontrol ydntemi sistemin
kontroliinii kalict hal hatasi olmaksizin saglamaktadir. Gri 6ngérii kontroliiniin en
bliyiik avantaji PID kontrolorlere gore sistemi c¢ok kiigiik bir asimla kontrol
edebilmesidir. Tasarlanan kontrolorler dinamik model iizerinde dinamik benzetimler
yoluyla uygulanmis ve performanslari karsilastirilmistir.
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MODELING AND CONTROL OF SPHERICAL ROLLING ROBOT

SUMMARY

This study deals with spherical rolling robot, a kind of mobile robot. Modeling,
motion analysis and control of the spherical rolling robot driven through a pendulum
with two degrees of freedom have been investigated. Since the reference frames
attached to the rigid bodies rotate with respect to each other, the kinematic model has
been obtained by using the the Euler angles. Decoupled dynamic approach is applied
in order to obtain simplified dynamics of the spherical rolling robot whose original
dynamics is highly non-linear and non-holonomic. Analysis of uphill motion
(climbing angle), motion over curvilinear trajectories (radius of curvature) and
obstacle crossing have been achieved.

Various control approaches including computed torque control, fuzzy computed
torque control and grey prediction based fuzzy computed torque control methods
have been studied. Grey prediction control and fuzzy control have different
mathematical basis with respect to each other. Both methods aim to deal with
uncertainties. Proposed grey fuzzy computed torque control method eliminate the
steady-state error. The most important advantage of the grey prediction control with
respect to PID controllers is that it controls the system with a little amount of
overshoot. The proposed controllers have been applied in dynamic simulations and
performances have been compared.
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1. GIRIS

Mobil robotlar endiistriyel uygulamalardan giivenlik ve eglence sektorlerine kadar
cok ¢esitli alanlarda sagladiklar1 esnek ¢oziimler ile genis bir kullanim potansiyeline
sahiptir. Hareket ettikleri ortama veya hareketi saglayan eyleyicilerin yapisina gore
siniflandirilabilirler. Kiiresel robotlar, tiim bilesenleri dis kabuk gorevi de yapan bir
kiire icerisine yerlestirilmis ve bu kiireye ait ylizeyin yer lizerinde yuvarlanarak
hareketin gerceklestirildigi mobil robotlardir. Ayrica, dinamik sistemler holonomik
olmayan kisitlar bulundurup bulundurmadiklarina gore sirasiyla, holonomik olmayan
sistemler ve holonomik sistemler olarak siniflandirilirlar. Bir yilizey {izerinde
kaymadan yuvarlanan bir kiire holonomik olmayan kisitlarla modellenebildiginden,
kiiresel robotlar holonomik olmayan dinamik sistemler sinifinda yer alir. Kiiresel
robotlarin, ylizey iizerinde hareket eden diger tekerlekli, ayakli ve ayaksiz robotlara
gore bazi avantajlari bulunmaktadir. Bunlar diisiik yarigaplar donerek yon
degistirebilme, elektronik ve mekanik bilesenlerin dis kabuk igerisinde saklanmasi,
devrilme gibi sorunlarin yasanmamasi gibi avantajlardir. islevsel avantajlarinin yam
sira dogrusal ve holonomik olmama gibi dezavantajlar1 bulunmaktadir. Bu
sebeplerden dolay1 gercek zamanli uygulamasi zordur ve etkili dogrusallagtirma

yaklagimlar1 kiiresel robotlara uygulanamaz.

Son yillarda, pek cok kiiresel robot prototipi gergeklestirilmistir. Bu ¢alismalardan
bazilarinda kiirenin igine alti ile temas halde bulunan bir tekerlikli araba
yerlestirilerek mekanik yap1 olusturulmustur. Bu diizende hareket araba tekerlekleri
ile kiire arasindaki etkilesim sonucu saglanmaktadir. Hem arabanin tekerlekleri ile
kiirenin i¢ ylizeyi arasindaki temas hem de kiirenin dis yiizeyi ile yer arasindaki
temas kaymadan yuvarlanma sartina gére modellendiginde bu iki temas i¢in yazilan
matematiksel ifadeler non-holonomik denklemlerdir. Dolayisiyla, toplam sistem iki
non-holonomik sistemin birlesimi olmustur [1,2]. Daha sonra sadece arabanin
boylamasina dinamigini hesaba katilarak sistem icin dogrusal bir model 6nerildi [3].

Fakat bu ¢alismada dogrusallastirma yaklasimlarinin bu sistem i¢in uygulanabilir



olmadig1 goriilmistiir. Kiire ile tekerlekli arabanin sematik gosterimi Sekil 1.1'de

gosterilmektedir.

Sekil 1.1 : Sphericle [1,3].

Bazi1 arastirmalarda ise robotun donme hareketi diisiiniilmeden sadece ilerleme
hareketi hesaba katilmis kiirenin alt1 ile temas halde bulunan bir tekerlek
yerlestirilerek tasarim gerceklestirilmistir [4]. Sekil 1.2'min sol tarafinda sistemin
basitlestirilmis mekanik yapis1 gosterilmektedir. Sek. 1.2°nin sag tarafinda
gosterildigi gibi biitlin sistem tek bir kiitlesel nokta olarak diislinlilmiis ve bu
varsayima gore Newton hareket kanunlar1 kullanilarak sistemin dinamik modeli elde

edilmistir.

Sekil 1.2 : Halme'nin Tasarimi [4].

Baska bir mekanik tasarimda ise kiirenin i¢ yiizeyine temas halde birbirine bagli {i¢
adet cubuk yerlestirilip bu ¢cubuklarin {izerindeki kiitlelerin radyal yonde dagitilmasi
sonucu robotun hareketi saglanmistir [5-7]. Sekil 1.3’iin sol tarafinda sistemin

goriiniisii, sag tarafinda ise ¢ubuklarin tasarimi gosterilmektedir.
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Sekil 1.3 : Javadi'nin Tasarimi [5,6].

Joshi ise kiirenin ig¢ine herbiri bir rotora bagli iki adet dogru akim motorunu
baglayarak bir tasarim gergeklestirmistir [8,9]. Acisal momentumun korunumu
geregi rotorlar bir yonde donme hareketi gerceklestirdiginde kiiresel robot rotorlarin
gergeklestirdigi donme yoniine ters yonde yol almaktadir. Sistem egrisel yoriingeyi
takip edememekte, dogrusal yoriingeyi takip etmektedir. Sistem belirli bir dogrusal
yoriingeyi takip ederken yoniinii degistirmesi gerektiginde dnce durup, daha sonra da
diisey z ekseni etrafinda donerek yoniinii degistirmektedir. Sekil 1.4'de sistemin

tasarimi gosterilmektedir.

Sekil 1.4 : Joshi'nin Tasarimi [8,9].

Arastirmacilar tarafindan otonom kiiresel yuvarlanan robotlar tasarlanmistir. Bu
robotlarinda hareketi saglayan mekanizmalar kiirenin i¢ine monte edilen rotorlardir.

Bu robotlarin hareketi i¢in kaymadan yuvarlanma kisiti ve agisal momentumun



korunumu kullanilarak birinci derece matematiksel model onerilmistir [10,11]. Sekil

1.5'de prototipi gergeklestirilen robotun ortadan ikiye ayrilmis hali gosterilmektedir.

e s at o et
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Sekil 1.5 : Bhattacharya'nin Tasarimi [10].

Bir kiirenin yiizey iizerindeki hareketi Euler-Lagrange metodu ve Euler agilar
kullanilarak tanimlanmisti [12,13]. Bu tanimlama sonucunda elde edilen denklemler
kaymadan yuvarlanma sartin1 saglamaktadir. Buna ek olarak ilerleme hareketinin tek
serbestlik dereceli sarkac ile siirekli saglandigi kiiresel robot tasarlanmistir [14].
Donme hareketi ise sistem durduktan sonra sarkacin bagli oldugu yap1 dondiiriilerek
saglanmaktadir. Joshi'nin tasarimindaki gibi sistem gene egrisel yoriingeyi takip
edememekte dogrusal yoriinge takibi yapmaktadir. Sekil 1.6'da sistemin tasarimi
gosterilmektedir. Ayrica, Qiang sistemin dinamigi i¢in basitlestirilmis Boltzmann-

Hamel denklemlerini yaymlamistir [15].
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Sekil 1.6 : Ming'in Tasarimi [14].



Diger taraftan sistemi modellemek i¢in Euler-Lagrange metodu yerine Kane

metodunun kullanildig1 6rnekler de olmustur [16].

Bu calismada ¢ift serbestlik dereceli sarka¢ kullanilarak sistem harekete
gecirilmektedir. Sarka¢ egrisel yoriinge iizerinde yuvarlanma hareketini saglamak
icin kullanilmistir. Sistem elemanlar1 birbirlerine gore ve yere gére donme hareketi
gerceklestirdiginden agisal hareketleri tanimlamak i¢in Euler agilart kullanilmastir.

Sistemin hareket denklemleri, Euler-Lagrange denklemleri yazilarak elde edilmistir.






2. KURESEL YUVARLANMA HAREKETINIiN MODELLENMESI

Cesitli serbestlik derecelerine sahip sarkag¢ ile hareketi saglanan kiiresel robotun
kinematik ve dinamik denklemlerinin elde edilmesi i¢in asagidaki varsayimlar

yapilmustir:
1. Kiire hareket diizlemi {izerinde kaymadan yuvarlanmaktadir.
2. Kiiresel robotun agirlik merkezi kiirenin geometrik merkezindedir.
3. Kiire statik dengede iken sarkag hareket diizlemine dik konumdadir.

4. Kiiresel robotun hareketi bir O-xyz koordinat sistemine gore tanimlanmistir.

O-xy diizlemi hareket diizlemine paraleldir.

1011

Sekil 2.1 : Eksen Takimlari.

O-XYZ yere sabit referans eksen takimidir. O— X, Y,Z,, O-XYZ eksen takimina
gbre yalnizca Gteleme hareketi yapan ve orjini kiire merkezinde bulunan eksen
takimidir. O — X,Y,Z,, O-XYZ eksen takimina gore 6teleme ve donme, O — XY, Z,
eksen takimina gore ise yalnizca donme hareketi yapan, orjini kiire merkezinde olan

eksen takimidir. O — X|Y,Z, eksen takiminin O — X Y,Z, eksen takimina gore agisal



konumu Euler agilari, yalpa-dalma-yuvarlanma agilari, Tait-Bryan agilar1 gibi gesitli
yaklagimlarla ifade edilebilir. Kullanilan eksen takimlari  Sekil 2.1'de

gosterilmektedir.

2.1 Kiiresel Yuvarlanma

Bos bir kiirenin bir yiizey iizerinde yuvarlanmasini ifade eden kinematik ve dinamik
esitlikler [17,18]'de ifade edilmektedir. Bu bdéliimde [17,18]'deki esitlikler baz

aliarak kiiresel yuvarlanma hareketi tanimlanacaktir.

2.1.1 Kinematik Model

Kiiresel yuvarlanma hereketini tanimlamak i¢in Euler agilar1 kullanilir. Euler agilari

kullanilarak rotasyon matrisi asagidaki gibi elde edilir:

Cl//cqﬁ - Sy/CHS¢ CV/ S¢ + SWCHC¢ S‘/’sg
Rot = -s,C; —C,Ch,S, —S,S,+C,ChC, C,S, 2.1)
S4S, —S,C, Co

@, O-XYZ koordinat sistemine gore kiirenin agisal hiz vektorii:

@, = (écos¢+y)sin€sin¢)f +(¢§?sin¢—l/'/sinﬁcos¢)j

+ (¢ + 7 cos G)IZ (2.2)
V, O-XYZ koordinat sistemine gore kiirenin ¢izgisel hiz vektorii:
V. =Xi+V.] 2.3)

olarak elde edilir.

2.1.2 Dinamik Model

Bu bolimde oncelikle sisteme ait non-holonomik kisitlar verilecek daha sonra ise

sistemin hareket denklemleri Euler-Lagrange methodu kullanilarak elde edilecektir.

2.1.2.1 Non-Holonomik Kisitlar

Bir kiirenin hareketi O-xy diizleminde iki eksende de ger¢eklesiyorsa x ve y ekseni

i¢in iki kisit yazilarak ifade edilir. Ancak, bu kisitlar holonomik olmayan kisitlardir



ve integre edilemezler. Bu sebeple, bir kiirenin bir diizlem iizerinde hareket etmesini
ifade eden kisitlar holonomik olmayan kisitlardir. Bu holonomik olmayan kisitlar
ayni zamanda kiire ile yer arasindaki kaymadan yuvarlanma sartin1 ifade eden
esitliklerdir. Bu sart R kiire yaricap1, Xve Yy kiirenin ¢izgisel hizlari, 8, ¢, v euler

agilan, @, kiirenin x ekseni etrafindaki agisal hizi, @, kiirenin y ekseni etrafindaki

acisal hiz1 olmak tlizere asagidaki gibi ifade edilir [17,18]:

F, =Ro, = X=R(0sin g -y sin Ocos g
F, =R, = -y = R(@cos g+ sin Osin ¢ (24)
y X

Bazi arastirmacilar madeni bir paranin yuvarlanmasi 6rneginde oldugu gibi non-
holonomik kisitlar1 direk Lagrange fonksiyonunun igine yazarak sistemin
denklemlerini elde etmislerdir. Fakat bu yaklasim dogru sonu¢ vermemektedir [19].
Non-holonomik kisitlar Lagrange fonksiyonu olusturulurken hesaba katilmamali,
Euler-Lagrange metodu ile elde edilen hareket denklemlerine ek denklem takimi

olarak yazilmalidir [18].

2.1.2.2 Euler-Lagrange Denklemleri

E, sistemin toplam kinetik enerjisi, E_ sistemin toplam potansiyel enerjisi olmak

p

tizere Lagrange fonksiyonu asagidaki gibi yazilir:

L = Ek - Ep (2.5)

Toplam kinetik enerji kiirenin kiitlesi, atalet momenti, ¢izgisel hiz1 ve agisal hiziyla

ifade edilir. M, kiiresel kabugun kiitlesi, I kiiresel kabugun atalet momenti, V,

kiirenin ¢izgisel hizi, @, kiirenin agisal hizidir. Toplam kinetik enerji ifadesi

asagidaki gibi yazilir:
1 T SR U
Ey, = ng||Vs|| +§'s||Ws|| (2.6)

Sistemin toplam potensiyel enerjisi kiirenin merkezine gore asagidaki gibi yazilir:

E, =0 Q2.7



Euler-Lagrange denklemleri asagidaki gibi yazilabilir:

i a_L _i—Q + 8&4_ ai
oq, o Mg T g, (2.8)

Yukaridaki denklemde Q, sistemi harekete gecirmek ic¢in uygulanacak girisi, z, ve

4, ise Lagrange ¢arpanlarini temsil etmektedir.

Genellestirilmis koordinatlar agagidaki gibidir:

q:(ql 4, 0d; 04 qs)T:(X y ¢ 0 V/)T 2.9)

X ekseni lizerinde sisteme etki eden torku u, girisi, y ekseni iizerinde sisteme etki

eden torku u, girisi temsil etmektedir. Denklem (2.8) hesaplandiktan sonra ifadeler

diizenlendiginde;
M sx =—H, +U;
M S y = /uy + u2

Is(tﬁ+é5c050—9¢5sin9): RsinH(—,ux cosg+ i, sin¢)
Is(é+y}¢sin0)= R(,uX sing + cos¢)
IS(;Z +tﬁcos€—9y)sin9)= 0 (2.10)

elde edilir. Yukaridaki denklem takimi matris formunda yazilirsa;

M, 0 0 0 0 0
0 M, 0 0 0 0
M@= 0 0 1, 0 lcosq,, V(g,6)=| - 1,6,d,sinq, |,
0 0 0 I 0 1.G;q5sinq,
0 0 lgcosq, O (_— | —1,0,4, sinq, |
[u, | [ -1 0 0 0 O] |
u, 0 1 0 00 Hy
u=|0 |, H(g)= 0 0 0 0 0|, ulq)=
0 Rsinq;, Rcosq, 0 00
| 0] | —Rcosq;sing, Rsing;sing, 0 0 0] | 0 |

olmak iizere, sistemin hareket denklemleri asagidaki genel formda yazilir:

10



M (a(t))ai(t) +V (a(t).4(t)) = u(t) + H(a(t))u(a(t) @.11)

Yukaridaki denklem takimina ek olarak non-holonomik kisitlar1 ifade eden (2.4)

numarali denklem de hesaba katilarak bos kiirenin hareket denklemleri elde edilir.

2.2 Kiiresel Robot Mekanizmalari

Bu boliimde tek ve ¢ift serbestlik dereceli sarkaclara sahip kiiresel robot

mekanizmalarinin modellenme calismalar1 gerceklestirilecektir.

2.2.1 Tek Serbestlik Dereceli Sarkag ile Dogrusal Yoriingede Yuvarlanma

Tek serbestlik dereceli sarkaca sahip kiiresel yuvarlanan robotun sirasiyla kinematik

ve dinamik modeli ele alinacaktir.

2.2.1.1 Kinematik Model

Kiiresel robotun dogrusal hareketinin sematik gosterimi  Sekil 2.2'de

gosterilmektedir.

FPozitif

Sekil 2.2 : Tek Serbestlik Derecesine Sahip Sarkag ile Modellenen Sistemin
Serbestlik Dereceleri.
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Kiiresel robot sadece x ekseni etrafinda dondiigiinden dolay1 Euler agilar1 ¢ ve y 'de

degisim gézlenmez. Dolayisiyla, rotasyon matrisi asagidaki gibi yazilir:

1 0 0
Rot=|0 cos@ sinf 2.12)
0 —sind@ cosé

@, O-XYZ koordinat sistemine gore kiirenin agisal hiz vektorii:

V, O-XYZ koordinat sistemine gore kiirenin ¢izgisel hiz vektorii:

v, =R0.j 2.14)

r, O—X)Y,Z, koordinat sistemine gore sarkacin kiitle merkezi ile kiirenin kiitle

merkezi arasindaki konum vektori:

fpl =lsin a.f —lcosak (2.15)

—

Foo O—X,Y,Z, koordinat sistemine gore sarkacin kiitle merkezi ile kiirenin kiitle

merkezi arasindaki konum vektoru:

oo = Rotrpl

F, =—Isin(0—a)j—lcos(@- a)k (2.16)

r, O-XYZ koordinat sistemine gore sarkacin kiitle merkezi ile kiirenin kiitle merkezi

arasindaki konum vektoridir ve 1, ile aymdir.

@, sarkacin O — X,Y,Z, koordinat sistemine gore agisal hiz vektoridiir.

@y = al 2.17)

12



@,, sarkacin O — X Y,Z, koordinat sistemine gore agisal hiz vektoriidiir.

@,, = Rota,
By =0+ a)i (2.18)

@, sarkacin O-XYZ koordinat sistemine gore agisal hiz vektoridir ve o, ile

aynidir.

V, O-XYZ koordinat sistemine gore sarkacin kiitle merkezinin ¢izgisel hiz vektorii:

V, =V, +@, xT,

¥, =[Ré+1cos(0—a)d+a)lj-Isin(0-a)d+a)k 2.19)

olarak yazilir.

2.2.1.2 Euler-Lagrange Denklemleri

Sistemin Lagrange fonksiyonu (\ref{lagrangefonksiyonu}) numarali denklemde
oldugu gibi yazilir. Toplam kinetik enerji sistemin kiitlesi, atalet momenti, ¢izgisel

hiz1 ve agisal hiziyla ifade edilir. M kiiresel kabugun kiitlesi, I, kiiresel kabugun
atalet momenti, V, kiirenin ¢izgisel hizi, @, kiirenin agilsal hizi, m, sarkacin kiitlesi,

I, sarkacin atalet momenti, V, sarkacin gizgisel hizi, @, sarkacin agilsal hizidir.

p p

Toplam kinetik enerji ifadesi asagidaki gibi yazilir:

1

Ek :5

ML+ 21 om0 | 2.20)

r,., sarkacin z ekseni lizerindeki konum bilesenidir. Sistemin toplam potensiyel

enerjisi kiirenin merkezine gore asagidaki gibi yazilir:

E, =m,or,, (2.21)

Euler-Lagrange denklemleri asagidaki gibi yazilabilir:

dfoL) o,
dt\ag, | oq, (2.22)
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Yukaridaki denklemde Q; sistemi harekete gecirmek i¢in uygulanacak girisi temsil

etmektedir. Ileri yonde kiiresel robotun yuvarlanma hareketini saglayacak tahrik

torku sarkacin donme agist1 « etrafinda olacaktir. Buna karsin mil iizerinde ise
sarkaca etki eden tahrik torkuna karst yonde bir tepki torku olusacaktir [14]. Bu
olusan tepki torkuda & etrafinda olacaktir. Sistemi harekete geciren giris torku 6 ve

a etrafinda asagidaki gibi tanimlanur:

Q, =1 (2.23)
Genellestirilmis koordinatlar agagidaki gibidir:

a=(a, g,) =@ o) (2.24)
Denklem (2.22) hesaplandiktan sonra ifadeler diizenlendiginde;

7. =(M,R*+m R>+m I> +1 +1 +2m Rlcos(6 - a)p
+(mpl2 +1, +mpRIcos(@—a))o'i—mpRlsin(e—a)éz
+m,Rlsin(6 - a)a’ +2m Rlsin(0 — a)de + m,glsin(6 - )
T, = (mpl2 +1, +mpRlcos(¢9—05))é+(mp|2 +1 p)c'i
—2m Rlsin(0 - a)d* —m glsin(60 - ) (2.25)

elde edilir. Genel olarak mekanik sistemlerin hareket denklemleri asagidaki formda

yazilir:
M ((t))a(t)+V (a(t).a(t) = u(t) (2.26)

M, =M R’ +m,R*+m,I” +1 +1,+2m Rlcos(q, —d,)
My, =m]I*+1 +mpR|cos(q1 -q,)
M, =m,I* + 1, +m Rlcos(q, —d,)
My =m]I*+I,
V,, =-mRI sin(q1 —qz)qf +mRI sin(q1 -q, )q§
+2m,Risin(q, -, )d,g, +m,glsin(q, - q,)
Vy, =-2m,Rlsin(g, -, )d7 —m,glsin(q, -q,) 2.27)
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olmak iizere,

M, My |4 + Vi | %x
M, My |4, Va Tx (2.28)
olarak yazilir. Genel olarak robotlarin hareket denklemleri agsagidaki formda yazilir:

A, =MR>+mR>+m > +1 +1,+2m Rlcos(6 - )

A, =mI” +1,+mRlcos(d - &)
A, =mI* +1, +m_Rlcos(d-a)
Ay, =mI®+1,

B,, =-m,RI sin(6 - «)

B,, =m,RIsin(0 - )

B,, =—2m_Rlsin(0 - )

B, =0

C,, =2m RIsin(0 - a)

C, =0

D, :mpglsin(ﬁ—a)

D,, =-m,glsin(6 - ) (2.29)

olmak iizere,

{A” Alz}[é]{e’n Blz}[éz}_{cu}[édh[[)u}:{Tx}
A, Ala B, B, G’ C21 D,, 7, (2.30)

olarak yazilir.

2.2.2 Ciift Serbestlik Dereceli Sarkag ile Egrisel Yoriingede Hareket

Cift serbestlik dereceli sarkaca sahip kiiresel yuvarlanan robotun sirastyla kinematik

ve dinamik modeli ele alinacaktir.

2.2.2.1 Kinematik Model

Cift serbestlik derecesine sahip sarkac¢ ile modellenen kiiresel robotun serbestlik

dereceleri Sekil 2.3 'de gdsterilmektedir.
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Sekil 2.3 : Cift Serbestlik Derecesine Sahip Sarkag ile Modellenen Sistemin
Serbestlik Dereceleri.

Rotasyon matrisi (2.1) numarali denklemde olusturuldugu gibidir.

@, O-XYZ koordinat sistemine gore kiirenin agisal hiz vektorii:

o, = (9cos¢+ 1/'/sin(9sin¢)r + (9sin¢—l/'/sin0cos¢)]

+ (¢ + 7 cos H)IZ (2.31)
V, O-XYZ koordinat sistemine gore kiirenin ¢izgisel hiz vektorii:
V, = Xi +V.] (2.32)

F,, O—X)Y,Z, koordinat sistemine gore sarkacin kiitle merkezi ile kiirenin kiitle

merkezi arasindaki konum vektorii:
r, =lcosasin B.i +Isinacos B.] —Icosa.cos Bk (2.33)

Foo O—X,Y,Z, koordinat sistemine gore sarkacin kiitle merkezi ile kiirenin kiitle

merkezi arasindaki konum vektoru:
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,
I

Rotr,

po
c,C,—5S,CsS, C,S,+S,C,C, S,S,|Ic,s,
Fo=|-5,C—C,CS, —5,S,+C,CiC; C,S, | Is,C,
S6S, —S,C, ¢y |lc.c,

(2.34)

= I(casﬁ(cwc¢ — swcgs¢)+ sacﬁ(cv,s¢ +5,,C,)+¢,C,8, 8, )i
+ I(casﬁ(— s, C, —cwcgs¢)+ sacﬁ(— S8, +C,C,C, )+ cacﬁcwse)i

+ I(casﬂsgs¢ —5,C48,C, + cacﬁcg)k

F, O-XYZ koordinat sistemine gore sarkacin kiitle merkezi ile kiirenin kiitle merkezi

arasindaki konum vektoridir ve F), ile aymdir.

w,, sarkacin O — X,Y,Z, koordinat sistemine gore agisal hiz vektortdiir.

B, =ai+p.] (2.35)

S

o0 sarkacin O — XY, Z; koordinat sistemine gore agisal hiz vektoridiir.

@, =0, + Roto,
§b¢ + 58,8, C,Cy =S,CoS;  ©C,S,+S,CiC 5,8, |
@y = Gsé—wsgcqj +|-s,c, —C,C,S, —S,S,+C,C,C, C,S, | f
$+yrc, S5, —5,C, c, |0

= (6'c¢ + 45,5, + a‘g(cv,c(é - swcgs¢)+ ,B(cv,s¢ +5,C4C, ))f
+ (@j —S,C, + d(— s, C, —cwcgs¢)+ ﬂ(— S, Sy +C,CCy ))]

+(p+ye, +as,5, - fs,c, K (2.36)

w, sarkacin O-XYZ koordinat sistemine gore agisal hiz vektoridir ve o, ile

aynmdir.

V, O-XYZ koordinat sistemine gore sarkacin kiitle merkezinin ¢izgisel hiz vektorii:

V, =V, + @, xT, 2.37)

olarak yazilir.
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2.2.2.2 Euler-Lagrange Denklemleri

Lagrange fonksiyonu (2.5) ve langrange denklemi (2.8) numarali denklemlerde

oldugu gibi yazilir.

Genellestirilmis koordinatlar agagidaki gibidir:

q:(ql 4 4; 4, Qs Qs q7)T:(X y ¢ 0 v «a /B)T (2.38)

Euler-Lagrange denklemlerinden yedi adet hareket denklemi ve (2.4) numarali
denklemde ifade edilen iki adet non-holonomik kisit denklemi hesaba katilarak

sistemin hareketini ifade toplam dokuz adet denklem takimi elde edilir.

Elde edilen hareket denklemlerinde ¢ok sayida terim bulunmasi nedeniyle olusan
agir hesap yiikii, tiim terimlerin dikkate alindigr bu modelin sayisal ¢oziimlemesinin

yapilamamasina neden olmustur.

2.3 Aynistirilmis Dinamik ile Egrisel Yoriingede Hareket

Karmagik sistemlerin basit dinamik denklemlerini elde etmek igin serbestlik
derecelerinin birbirlerinden ayristirilmasi yoluna gidilir. Bu varsayimda sistemin bir
serbestlik derecesinin diger bir serbestlik derecesine etki etmedigi varsayimi yapilir
[20]. Bu varsayimin en yaygin kulanildigi uygulama alani su alt1 araglaridir. Otonom
su alt1 araclariin karmasik yapilari dolayisiyla dinamik denklemlerini elde etmek
cok giictiir. Bu sebeple, sistemin denklemlerini elde etmek i¢in sapma, yalpalama,
dalgalanma ve yukariya yonde kalkma hareketleri birbirlerinden ayristirilarak

incelenir [20,21].

Ayristirtlmig dinamik yaklagiminin uygulandig: diger bir alan ise ara¢ dinamigidir.
Araba dinamigi ©on aks dinamigi ile sapma dinamiginin Dbirbirlerinden
ayristirtlmasiyla incelenir. Bu ayristirma aktif yonlendirilen araclarin yonlendirme

transfer fonksiyonlarinin sade ifadeler olarak elde edilmesini saglar [22,23].

Bagka bir uygulama alani ise otonom bisikletlerdir. Otonom tek ve gift tekerlekli
bisikletlerin dinamigi ve kontrolii hakkinda c¢alismalar yapilmistir [24,25].
Schoonwinkel tek tekerlekli bisikleti insan ile birlikte modellemistir. Bu model ii¢
ana parcadan olugmaktadir. Sistemin dinamigi boylamasina ve yanlamasina

ayristirilarak dinamik model elde edilmistir.
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Yukaridaki uygulama alanlarina ek olarak turbofan motoru modelinin elde edilmesini
de ekleyebiliriz. Turbofan motorunda sistem bilesenleri arasindaki etkilesim
belirsizlik icerdiginden sistemin modeli elde edilirken ayristirilmis dinamik

yaklagimi kullanilir [26].

Ayristirllmis dinamik yaklasimi sadece karmasik sistemlerin dinamik modellerini
elde etmek icin kullanilmamistir. Tekerlek robotlarda kontrol girislerine gore

dinamik model ayristiritlmistir [27].

Yukaridaki o6rneklerde goriildiigii gibi karmasik sistemlerin modelleri elde edilirken
ayristirilmis  dinamik yaklasimi ¢ok yaygin bir sekilde kullanilmaktadir. Bu
yaklagimin en son 6rnegi bir yuvarlanan kiiresel robot 6rneginde gorilmiistiir [28].
Sistemin hareketi hareket dogrultularinda ayristirilarak sistemin dinamik modeli elde
edilmigtir. Bu calismada sistemin hareket denklemleri x ve y eksenleri
dogrultularinda ayristirilarak elde edilecek. Ilerleme hareketi igin y ekseni iizerindeki
hareketi tanimlayan boliim 2.2.1'deki denklemler kulanilacaktir. Donme hareketi igin
x ekseni iizerindeki hareketi tanimlayan denklemler kullanilacaktir. X ekseni

tizerindeki hareketi tanimlayan denklemler asagida elde edilecektir.

2.3.1 X Ekseni Uzerindeki Hareket

Y ekseni lizerindeki hareketi tanimlayan hareket denklemleri boliim 2.2.1°de elde
edilmisti. Bu bolimde de X ekseni tlizerindeki hareketi tanimlayan hareket

denklemleri elde edilecektir.

Sekil 2.4 : Sistemin Serbestlik Dereceleri
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2.3.1.1 Kinematik Model

Kiiresel robotun donme hareketinin sematik gosterimi Sekil 2.4'de gosterilmektedir.

Kiiresel robot sadece y ekseni etrafinda dondiiglinden dolayr rotasyon matrisi

asagidaki gibi yazilir:
cosp 0 sing

Rot=| 0 1 0 (2.39)
—sing 0 cosg

@, O-XYZ koordinat sistemine gore kiirenin agisal hiz vektori:

@, =¢] (2.40)

V, O-XYZ koordinat sistemine gore kiirenin ¢izgisel hiz vektorii:

V. =-Rol (2.41)

r, O—X,Y,Z, koordinat sistemine gore sarkacin kiitle merkezi ile kiirenin kiitle

merkezi arasindaki konum vektori:

F,, =lsin 81 -1 cos Bk (2.42)

Foo O—X,Y,Z, koordinat sistemine gére sarkacin kiitle merkezi ile kiirenin kiitle

merkezi arasindaki konum vektori:

r,, = Rotr,

r, =-Isin(p— A —lcos(p - B)k (2.43)

F, O-XYZ koordinat sistemine gore sarkacin kiitle merkezi ile kiirenin kiitle merkezi

arasindaki konum vektoridir ve F, ile aymdir.

@, sarkacin O — X,Y,Z, koordinat sistemine gore agisal hiz vektoridiir.

Oy =] (2.44)
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@, sarkacin O — XY, Z, koordinat sistemine gore agisal hiz vektoriidir.

®,, = Rotw,

=) @9

w, sarkacin O-XYZ koordinat sistemine gore agisal hiz vektoridir ve o, ile

aynidir.

v, O-XYZ koordinat sistemine gore sarkacin kiitle merkezinin ¢izgisel iz vektori:

(2.46)

olarak yazilir.

2.3.1.2 Euler-Lagrange Denklemleri

Sistemin Lagrange fonksiyonu (2.5), kinetik enerji ifadesi (2.20), potansiyel enerji
ifadesi (2.21), Euler-Lagrange denklemleri (2.22) numarali denklemlerde olduklar

gibi yazilirlar.

(2.22) numarali denklemde @, sistemi harekete gecirmek i¢in uygulanacak girisi

temsil etmektedir. ileri yonde kiiresel robotun yuvarlanma hareketini saglayacak

tahrik torku sarkacin donme agis1 S etrafinda olacaktir. Buna karsin mil tizerinde ise

sarkaca etki eden tahrik torkuna karst yonde bir tepki torku olusacaktir [14]. Bu

olusan tepki torkuda ¢ etrafinda olacaktir. Sistemi harekete geciren giris torku ¢ ve

p etrafinda asagidaki gibi tanimlanur:

0, =1,

0,=1, (2.47)
Genellestirilmis koordinatlar agagidaki gibidir:

g=(a, @) =l B) (2.48)

Denklem (2.22) hesaplandiktan sonra ifadeler diizenlendiginde;
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T, = (MSR2 +m, R +m, > +1 +1, +2mpRlcos((p—,B))¢
+(mp12 +1, +mpRlcos(go—,6’))B—mpRlsin((p—ﬂ)(p2
+mpRlsin(¢—,B),32 +2mpRlsin((p—ﬂ)(p,6’+mpglsin((p—ﬂ)

T, = (mpl2 +1, +mpRlcos((z)—,B))gbjL(mpl2 +Ip),8
—2m,Risin(p - B)p° —m,glsin(p - B) (2.49)

elde edilir. Genel olarak mekanik sistemlerin hareket denklemleri asagidaki formda

yazilir:

(q(@))i(e)+ 7 (qt).4(t)) = ulr) (2.50)

<

M, =MR*+m,R>+m,*> +1 +1, +2mpRlCOS(q1 ~q,)
M, =m,*+I +m,Ricos(q, —q,)
M, :mpl2 +1, erpRlcos(q1 -q,)
My =m,)*+1,
V, = —mPRlsin(ql ~q,)q; +mPRZSin(ql ~4,)d>
+2mpRlsin(ql —qz)q'lqz +mpngin(ql _Qz)
Vy ==2m,Risin(g, - q, ) —m,glsin(g, —q,) 2.51)

olmak iizere,

M 11 M 12 ql + I/1 1 — T}’
M21 M22 éjZ V21 T}’ (2.52)
olarak yazilir. Genel olarak robotlarin hareket denklemleri asagidaki formda yazilir:

A, =M R +m, R +m*+1 +1,+2m Rlcos(p—B)
p=m,l*+I, +m Rlcos(p—p)

w=m,>+I +m Rlcos(p-p)

Ay =m, I’ +1,

B, =-m,RI sin(p — )

B, =m,RI sin(p — )

2 =—2m,RI sin(p — )

» =0
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C,, =2m,RI sin(p — )

C, =0
D,, =m,glsin(p— )
D, =-m,glsin(p— f3) (2.53)

olmak iizere,

Ay Ay | o B, B, ¢2 Ci.; D, Nz
{Aﬂ Azj{ﬁ}{Bm BJ{W}LJ[{M]{DJ‘[J (2.54)

olarak yazilir.

2.3.2 Egrisel Yoriingede Yuvarlanma

Y ekseni tizerindeki hareket bolim (2.2.1)'de, x ekseni lizerindeki hareket ise boliim
(2.31})'de tanimlanmigtir. Egrisel yoriingede hareketi tanimlayan denklemler

asagidaki gibi yazilir.

Genellestirilmis koordinatlar agagidaki gibidir:

9= ¢, ¢ a.) =3 a ¢ B) (2.55)

Genel olarak mekanik sistemlerin hareket denklemleri agagidaki formda yazilir:
M (q(0))ii(t)+ 7 (g(0).4(r)) = u) (2.56)

M, :MSRz +mpR2 +m,,12 +1, +]p +2mpRlCOS(q1 —qz)

M, =m,*>+1,+m,Rlcos(q, —q,)

M;=M,=0

M, =m,*>+1,+m,Rlcos(q, —q,)

M, :mp12 +1,

M23 :M24 :M31 :M320

My, =MR>+m R*+m* +1, +1 +2m Rlcos(q; —q,)
M,, :mpl2 +1, +mpRICOS(Q3 _Q4)

My=M;,=0

M, =m,,12 +1, +mpRlcos(q3 —q4)

M, :mpl2 +1,
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V,, =-m,RIsin(q, — q,)g; +m Risin(g, —q,)q;
+2m Rl sin(q1 -q, )q'lq'z + mpngin(ql - %)
Vyy ==2m,Risin(g, —q, )i - m,glsin(g, - q,)
Vi =-m,RI sin(q3 -q, )q32 + mpRlSin(% — 4, )qf
+2m Rl sin(q3 -q, )q'3q'4 +m,gl sin(q3 - 94)
Vo ==2m,Risin(g, - q, )33 —m,glsing, - q,) 37

olmak iizere,

M, M, M, M,]|q Vi Ty
M, M, My M,|q, + Vi _| %
My My, My M, |4, Vi Ty
My, M, M; M,|dq, Vi Ty (2.58)

olarak yazilir. Genel olarak robotlarin hareket denklemleri agagidaki formda yazilir:

A, =M R +m, R +m I’ +1 +1,+2m Rlcos(9-c)
Ay =m, > +1,+m, Rlcos($-a)

A;=4,=0

4, =mpl2 +1, +mpRlcos(19—a)

Ay =m, I’ +1,

Ay =4, =4, =4, =0

Ay =M R*+m,R* +m,I> +1 +1,+2m Rlcos(p— )
4, = mpl2 +1, +mpRlcos((p—ﬂ)

A, =4,=0

Ay =m, > +1,+m, Rlcos(p— )

Ay, :mp12 +1,

. =—mpRlsin(8—a)

. =mpRlsin(9—a)

s =B,=0

. :—2mpRlsin(19—a)

»=B,,=B,,=B;, =B, =0

B, =—mpRlsin((p—,B)

B, :mpRlsin((o—,B)

B
B
B
B

=]
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B41 = B42 =0

B, = —2mpRlsin(go—ﬂ)
B,=0

C,, =2m,RI sin(9—a)
C, =0

Cy, =2m Risin(p— )
C, =0

D, =m,glsin(9-a)
D, =-m,gl sin(9 - a)
D, = mpngin(¢_ﬂ)
D,, =-m,glsin(p - f) (2.59)

olmak tizere,

All A12 A13 A14 19 Bll BIZ BIB Bl4 192
A21 Azz A23 A24 a n Bm Bzz Bz3 B24 a’
A31 A32 A33 A34 ¢ BSI B32 B33 B34 ¢2
A41 A42 A43 A44 ﬂ B 41 B 42 B 43 B 44 ﬂ 2
Cl 1 ‘90{ Dl 1 Tx
+ C21 ‘90{ + D21 — |\Tx
C31 (Dﬂ D31 Ty
CulleB| [Du] |7, (2.60)

olarak yazilir.

2.4 Hareket Analizi

Bu boliimde oncelikle egrisel bir yiizey lizerinde hareket eden kiiresel yuvarlanan

robotun donme yarigapi tayini gerceklestirilecektir. Daha sonra egik diizlem iizerinde

hareket eden kiiresel yuvarlanan robotun hareket denklemleri ve maksimum

tirmanma agis1 elde edilecektir. Son olarakta maksimum engel gegme yiiksekligi

bulunacaktir.

2.4.1 Donme Yaricap:r Tayini

Kiiresel robotun serbest cisim diyagrami ve bir nokta etrafinda kiiresel robotun agisal

hareketi Sekil 2.5 ve Sekil 2.6'da gosterilmektedir.
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Mil Dikey ¢izgi Dénme varigap e Donme merkezi
normali

Sekil 2.5 : Bir Nokta Etrafinda Kiiresel Robotun Doniisiiniin Modellenmesi.

K
rF 3
i
7
. g
f-‘cl d
F, "
M.g By
—s > 7 .
‘r
m,g
N _

Sekil 2.6 : Bir Nokta Etrafinda Dénen Kiiresel Robotun Uzerine Etkiyen Kuvvetler.

Donme yar1 ¢ap1 hesaplanirken hem merkezka¢ kuvvetleri hem de jiroskopik

kuvvetler hesaba katilmalidir.

Agisal donme hizi ve ilerleme hareketinin agisal hizi arasindaki iliski asagidaki gibi

tanimlanir:
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(2.61)

Kiire ile yiizey arasindaki temas noktasindaki siirtinme kuvveti sistema etkiyen

toplam merkezkag kuvvetine esittir. Bu esitlik asagidaki gibi yazilir:

Ff =F,+F,

=M eQ’ + m, (e—Isin(B- @)’
(1, +m e (2.62)

Kiiresel robotun merkezi etrafindaki toplam tork asagida gosterildigi gibi yazilir:

1, = mglsin(f )+ Flcos(f—p) F,
~m glsin(B—p)+m eQ*lcos(B—p)— R(M, +m, e (2.63)

Donme hareketi boyunca kiiresel robotun agisal hiz1 asagida gosterildigi gibi yazilir:

&=QK-¢J-9i
=QK - gbj — 9cos gof — 9sin (o.lz
=—9cosp —¢.J + (Q — 9sin (p)K (2.64)

Donme hareketi boyunca kiiresel robotun agisal momentumu asagida gosterildigi gibi

yazilir:

L=1I&

=—I,9cosp] — I ¢.J +1,(Q- Jsinp)K (2.65)

Kiiresel robota etkiyen tork agisal momentumun tiirevi alinarak bulunabilinir.

=% _Gxi

- (2.66)
=1Q@l -1Q%cosp.J

(2.63) ve (2.66) numarali denklemler J birim vektorii, I ve J birim vektdrleri

etrafindaki tork degerlerini tanimlamaktadir. (2.63) numarali denklemde birim vektor

J etrafindaki tork degeri, (2.66) numarali denklemdeki tork degerine esittir.
Esitlikleri basitlestirmek icin ¢'min ¢ok kiiciik a¢1 degerlerine sahip oldugu
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varsayimi yapilir. Donme yarigapt (2.61) numarali denklem ve ¢ =0 kabuli

cercevesinde asagidaki gibi elde edilir:

I =T,
—1,Q9cosp ~m, glsin(B)+ mpeﬁzlcos(ﬂ)—R(MS +m, e
RS |1, - m,Ricos(B)+ R* (M, +m, )

er (2.67)
m gl sin(3)

(2.67) numarali denklemden goriilebilecegi gibi, eger sarkacin serbestlik derecesi
degisirse donme yar1 cap1 e'de ilerleme hareketinin agisal hizina bagli olarak
degisecektir. Sekil 2.7 bu iliskiyi ilerleme hareketinin agisal hizinin 1'den 8 rad/s
kadar her 1 rad/s artis1 i¢in gostermektedir. Bu egriler dnerilen bir sistemde referans

donme yar1 ¢ap1 degeri olarak kullanilabilinir.

B F'nin tirevi = 8 [rad/s] 7

Fnin tirevi = 1 [radfs]

Donme yangap [m]
m
1

1] 0.1 nz 03 0.4 045 06 0.7
Sarkacin serbestlik derecesi [rad]

Sekil 2.7 : Sarkacin Serbestlik Derecesine Karsilik Dénme Yaricapi.
2.4.2 Egik Diizlemde Hareket

Sarkacin yer vektori sistem egik diizlemde oldugundan degisecektir.

7 o=-Isin($—a-y)j—lcos($—a—-y)k (2.68)
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Sekil 2.8 : Kiiresel Robotun Egik Diizlemde Serbestlik Dereceleri.

Yatay ve egik diizlem iizerindeki harekette tek fark yer ¢ekiminin yoniidiir. Bu
sebeple yatay diizlem tlizerindeki hareketteki kinetik enerji ifadesi egik diizlem
tizerindeki hareket i¢inde gecerlidir. Sadece potansiyel enerji farklilik gostericektir.

y diizlemin egim acist olmak {izere:

Ep :(MS +mp)gR19$in7/+mpgrpfz
i 2.
Ep=(MS+mp)gR851n7—mpglcos(3—a—;/) (2.69)

olarak tanimlanir. Sonug olarak egik yiizeyde hareket denklemleri

2 2 2
Ay =M R +m R +m, " +1 +1,—-2m Rlcos($- )

—_
—_

'

p=ml*+I, —m Rlcos(I—a)

LN

w=m,>+I1 —m Rlcos(9-c)

N

” :mpl2 +1,
" :mpRlsin(S—a)
= :—mpRlsin(S—a)

> ™

B, = ZmpRlsin(S ~a)

B, =0

C, =-2m,RI sin(9-a)

C, =0

D, = mpglsin(él—a—y)+(MS +mp)gRsin}/

D, =-m, glsin(9-a~y) (2.70)
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olmak iizere,

{AH Alz}[lﬂ+{3u Blz}[gz}+{clli|[gd]+|:Dll}:{Txi|
Azl Azz a 321 322 d2 C21 D21 T, (2.71)

olarak yazilir.

2.4.3 Tirmanma Acisi Tayini

Sistem yokus yukar1 tirmanirken sistem momentlerinin esitligi asagidaki gibi yazilir:
M gRsiny +m,gsin 7(R —lcosa) =m,glcosysina @2.72)

Sistem sarkacin hareketi ile belli miktarda bir tork iiretebilecektir. Sarkac egik

diizlem yiizeyi ile paralel oldugunda sistem maksimum torku saglayacaktir. (2.72)

o= % radyan alinarak tekrar yazilirsa:

(MS +m, )gR siny =m,glcosy @2.73)

esitligi elde edilecektir. Buradan da maksimum tirmanma acis1 tayini (2.73) tekrar

diizenlenirse:

m,gl

tany =
4 (M ,tm, igR
m [
= tan_l d (274)
7 max (m}

olarak elde edilir. Boylece, parametreleri belli bir sistemin maksimum kag¢ derecelik

egik bir diizlemi tirmanabilecegi bulunur.

2.4.4 Engel Gecme Yiikseklik Tayini

Robotun engeli gegme hareketi boyunca herhangi bir kayma meydana gelmedigi
veya baslangi¢ hiz1 olmadigi varsayilarak analiz gergeklestirilmistir. Kiiresel robotun

engel ile karsilasmasi Sekil 2.9'da gosterilmistir.
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Sekil 2.9 : Kiiresel Robotun Engel ile Karsilagsmasi.

Sistem karsisina ¢ikan bir engeli asmak i¢in hareketsiz durumda karsisindaki engelin
tirettigi kars1 torkdan daha fazla tork iiretmek zorundadir. Kiiresel robotun karsisina h

kadar yiikselige sahip bir engelin ¢iktigin1 varsayarsak:

IlerlemeTorku) KarsiTork

m glsina)M g\ R* —(R—h) +mpg( R —(R-hY _lsina] @.75)

denklemlerini elde ederiz. Bu denklemlerden h i¢in

5 2mplsina ?
h(R\/R —[—J (2.76)

M +m,

bagintis1 elde edilir. Maksimum h yiiksekligini belirlemek i¢in sina =1 olarak

alinir,

2
B (R— R - et 2.77
max MS +mp ( . )

elde edilir. Boylece, ilk hiz1 bulunmayan parametreleri belli bir sistemin maksimum

gecebilecegi engel yiiksekligi bulunur.
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3. KONTROL

Bu boliimde yuvarlanan kiiresel robota uygulanacak kontrolor yapilar: sirasiyla PID

kontroldrler, bulanik kontrolorler ve gri 6ngoriisel kontrolorler tanitilacaktir.

3.1 PID Kontrolorler

PID kontrol en eski kontrol yontemlerinden bir tanesidir. Buglinkii mikroislemci
uygulamalarina gelmeden once ilk uygulamalar1 pnomatik sistemleri takiben analog
elektronik devrelerde gerceklestirilmistir [29]. PID kontrolériin herhangi bir fabrika
operatdriiniin anlayabilecegi, kolayca ayarlayabilecegi basit bir yapiya sahiptir.
Yapist PID kontrolden olusan pek ¢ok kontrol sistemi basarili sonuglar verdiginden

dolay1 halen endiistride yaygin bir uygulama alanina sahiptir [30].

PID kontrolor oransal, integral ve tiirevsel olmak tizere 3 ayr1 etkiden olusur. Oransal
etki anlik hata ile, integral etki hatanin toplamu ile, tiirevsel etki ise hatanin degisimi
ile olan reaksiyona karar verir. Bu 3 etkinin toplami bir sistemin kontrol edilen

degiskeninin ayarlanmasini saglar.

PID algoritmasinda 3 farkli etkinin agirliklarmi tetikleyen katsayilarin ayarlanmasi
ile sistemin kapali ¢evrim dinamik davranis1 kontrol edilir. PID kontroldr algoritmasi
kullanilmast sistemin optimal kontrolunu veya sistem kararliligini garanti

etmemektedir. Sekil 3.1'de paralel yapidaki PID tipi kontroloriin blok diagrami

Referans + ' ! Cileis
4‘@— Hata -+ I K!-_I-elz‘z‘ T Sistem >
0

gosterilmektedir.

k

k4

Sekil 3.1 : PID Tipi Kontrol6riin Blok Diagrama.
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Oransal etki arttirlldiginda sistem cevabi hizlanir [29], siirekli rejim hatas1 azalir
fakat elemine edilemez [31]. Buna karsin salmimlar artar [32]. Istenilen referans
degeri ile Olglilen sistem c¢ikisi arasindaki degere hata denir. P oransal ifadenin

¢ikisi, K, oransal kazang, e hata, ¢ zaman degiskeni olmak iizere oransal ifade

P=K et) 3.1)

olarak yazilir.

Integral etki sistemin kapali ¢cevrim dinamik davramismin kararli oldugu durumda
birim basamak cevap icin siirekli rejim hatasin1 elimine eder [29]. Diger taraftan
integral etki arttirldiginda salmimlar artacaktir [32]. Integral ifadesi hem hata

miktar1 hem de hata siiresi ile ilgilidir. / integral ifadenin ¢ikisi, K, integral kazang,

e hata, t zaman, 7 yapay integral degiskeni olmak {izere integral ifade
I=K,[elc)dr (3.2)
0

olarak yazilir.

Kapali ¢evrim dinamik davranist salinimli sistemler i¢in kontrolor tasarlanirken
tiirevsel etki kontroldriin yapisina eklenir [29]. Tiirevsel etki arttirildiginda sistem

cevabi daha kiigiik salinimlara sahip olacaktir [32]. D tiirevsel ifadenin ¢ikisi, K,

tiirevsel kazang, e hata, r+ zaman olmak iizere tiirevsel ifade

d
D= Kd Ee(z‘) (33)

olarak yazilir.

Oransal, integral ve tiirevsel kazanglarin etkileri Cizelge 3.1'de gdsterilmektedir.

Cizelge 3.1 : Orantisal, Integral ve Tiirevsel Kazanclarm Etkileri.

Yiikselme Zamani Asim Oturma Zamani1  Kararli Hal Hatasi
K, Azalir Artar Kiigiik Degisim Azalir
K, Azalir Artar Artar Elenir
K, Kiiglik Degisim Azalir Azalir Kiigiik Degisim
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PID tipi kontroloriin ¢ikis1 oransal, integral ve tlirevsel etkiler toplanarak hesaplanir.

Tanimlanan control ¢ikist u(t) asagidaki gibi yazilir.
d
u(f):er(t)+ KiJ.e(r)dr+KdEe(t) (.4)

3.1.1 PID Tipi Kontrolorlerin Simirlar:

PID tipi kontrolorlerin pek ¢ok kontrol probleminde basarili sonuglar verirken bazi
uygulamalarda yetersiz kaldiklart da goriilmiistiir. Ozellikle, tek baslarina

kullanildiklar1 zaman kotii performans verebilirler.

PID tipi kontrolorler dogrusal olduklarindan dolayi dogrusal olmayan sistemlerde
PID tipi kontrolorlerin performansi degiskendir. Bu sebeple, ¢ogunlukla PID tipi
kontrolorler PID kazang planlamasi veya bulanik mantik methodlari ile gelistirilirler.

Bu tezde, PID tipi kontr6lor bulanik mantik methodu kullanilarak gelistirilecektir.

Pratik uygulamalarda sistemin parametre degerlerinde degisimler veya belirsizlikler
s0z konusu olabilir [33]. Ayrica kontrolore bagli 6l¢ii aletlerinden kaynaklanan
sorunlar ¢ikabilir. Yeterli yiiksek Ornekleme orani, 6lgme hassasiyeti ve dlgme
kesinligi yeterli kontrol performansini basarmak icin gereklidir. Diger bir problem
ise tlirev ifadesinin giirtiltiiden dolay1 ¢ikista biiyiik degisimlere sebep olabilmesidir.
Bu sebeple, yiiksek frekanstaki giiriiltii bilesenlerini silmek i¢in dlgiimleri

alcakgeciren filitrelerle siizmek yararh olacaktir [32,34].

3.2 Bulamik Mantik

Klasik mantik sonuglart 0 ya da 1 olarak smirlarken bulanik mantik ¢ok degerli
mantigin bir formu oldugundan o&tiirti sonuglar1 0 ile 1 arasindaki degerler olarak
belirtmektedir. Diger bir deyisle, bulanik mantik mutlak dogru ve mutlak yanlis gibi
kesin degerlendirmeler yapmak yerine yaklagik degerler tanimlar. Bulanik mantik
insan aklinin diisiinme mantig1 gibi dogrunun derecesine dayali bir degerlendirme
yapar. Bu yoniiyle bulanik mantik insan aklinin diisiinme bi¢gimine en yakin mantik
sistemidir [35,36]. Klasik manti§a gore insanin boyu ya uzundur ya da kisa. Fakat,

bulanik mantiga gdre insanin boyu ¢ok uzun, uzun, kisa veya cok kisa olabilir.
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"Fuzzy Sets [Bulanmik Kiimeler]" klasik kiime kavramina alternatif olarak 1965
yilinda Lotfy A. Zadeh tarafindan yaymland1 [37]. Ilerki yillarda Lotfy A. Zadeh
bulanik kiimeler teorisine dayanarak dilbilimsel yaklagim ve sistem analizi hakkinda
calismalarin1 genisletti [38-40]. Daha sonra Lotfy A. Zadeh tarafindan bulanik
kontroliin temel diisiinceleri onerildi [40,41]. Bulanik kontroliin ilk uygulamasi ise
Mamdani tarafindan bir buhar makinesini kontrol etmek amaciyla gergeklestirildi
[42-45]. Bu uygulama bulanik mantigin bir kontrol sistemine uygulanisinin ilk
ornegiydi. Ayn1 zamanda Kickert ve Van Nauta Lemke bir su tesisinin sicaklik
kontroliinii bulanik kontrol uygulayarak gerceklestirdi [46]. Bu basaridan sonra King
ve Mamdani tarafindan bir kimyasal reaktoriin kontrolii gene bulanik kontrol
kullanilarak gerceklestirilmeye c¢alisildt [47]. 1975 yilina gelindiginde bulanik
kontroliin ilk endiistri uygulamasi Danimarka'da bir ¢imento firmminin kontroliinde
gergeklestirildi [48,49]. 1980'li yillarin ortalarina gelindiginde ard arda bulanik
kontrol ilkelerine dayanan uygulamalar goriilmeye baslandi. 1983 yilindan
baslayarak 1985 yilima kadar Seiji Yasunobu ve arkadaglari bulanik kontroliin
otomatik tren operasyon kontrolii i¢in daha iyi bir kontrolér oldugunu gosteren
benzetim sonuglarint yayimladi [50-53]. 1987 yilina gelindiginde bu diisiince hayata
gecirilerek Sendai demiryolundaki hizlanma, frenleme, durma gibi kritik biitiin
operasyonlar bulanik kontrol algoritmasi ile saglandi. Bu basarili uygulamadan
cesaret alarak Seiji Yasunobu ve Toshitsugu Hasegava otomatik konteyner vinci
operasyon sistemi c¢alismalarint gerceklestirdi [53-55]. Aymi yillarda Takeshi
Yamakawa bir klasik kontrol problemi olan ters sarkaci bulanik kontrol kullanarak
gerceklestirdi [56]. Bu uygulamalardan sonra hem endiistri hem de tiiketici
uygulamalar i¢in ¢ok genis alanda bulanik sistemler gelistirildi. Daha sonralari

bulanik mantik miithendis dis1 alanlarda da uygulanmaya basland.

3.2.1 Bulamk Mantigin Temel Kavramlar:

Lotfy A. Zadeh 1965 yilindaki makalesinde bulanik mantigin temelini bulanik
kiimelere dayandirmist1 [37]. Klasik mantikta bir eleman bir kiimeye ya aittir ya da
degildir. Bulanik mantik ise belirsizlik i¢eridigi i¢in bir eleman bir kiimeye hem ait
olabilir hem de olmayabilir. Bulanik kiimelerde her bir elemana bir iiyelik derecesi
atanir. Bu lyelik derecesine gore elemanin kiime ile olan iiyelik iliskisi belirlenir.

Eger eleman kiimeye ait ise elemanin {iyelik derecesi 1'dir, eger eleman kiimeye ait

36



degil ise elemanin iiyelik derecesi 0'dir. Uyelik fonksiyonunun girisleri kesin

degerlerken ¢ikislar1 bulanik degerlerdir.

-~

1.0 b—e——————— — — \
Uyelik Yasl
Derecesi Yash degil

0.0 I »  Agirhk

Sekil 3.2 : Bir Keskin Kiime i¢in Uyelik Fonksiyonu.

L

o o -

Uyelik Yasl
Derecesi Yash degil
I Cok yash degil
0.0 »  Agirhk

Sekil 3.3 : Bir Bulanik Kiime i¢in Uyelik Fonksiyonu.

Sekil [3.2] ve Sekil [3.3] klasik mantik ile bulanik mantik arasindaki farki
gostermektedir. Sekil [3.2]'de gorildiigii gibi iiyelik fonksiyonu keskin gegislidir.
Giris degerlerindeki  kiiclik degisikliklere kars1t c¢ikis degerlerinde biiyiik
degisikliklere sebep olabilir. Sekil [3.3]'de tiyelik fonksiyonu yumusak gecislidir.

Bulanik mantikta karar asamasi "Eger-Ise" 6nermeleri formundaki kural tabanina
dayanir. Kural tabanini olusturan bu kurallar sistemi tasarimeci tarafindan yazilir.
"Eger" kismi antesedan ad1 verilen akil yiiriitmenin bir kismini, "Ise" kism1 ise sonug

ad1 verilen diger kismi olusturmaktadir.

3.3 Bulanik Kontrol

Sekil [3.4]'de goriildiigii gibi bir bulanik kontrolér bulaniklastirma, davranig

tanimlama, kural taban1 ve netlestirme olmak iizere 4 ana baglik altinda toplanabilir.
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Davranis

r
r

—» Bulaniklagtirma Metlestirme ———®

Tanimlama

Kural Tabam

Sekil 3.4 : Bulanik Kontrolor Blok Diagramu.

Bir bulanik kontroloriin girigsine gelen kesin degerler bulaniklastirma isleminde her
girig bulanik kiimesi i¢in bulanik degerlere ¢evrilir. Elde edilen bulanik degerler ile
davrams tamimlamada kural tabanimindaki kurallara dayanarak bulanik kararlar elde

edilir. Netlestirme isleminde bulanik kararlar kesin degerlere ¢evrilir.

3.3.1 Bulaniklastirma

Bulaniklagtirma kesin bir giris degerini bir veya birden fazla bulanik kiimeye
ayristirma islemidir. Bulaniklagtirma isleminde giris degerleri kural tabanindaki
kurallarla karsilagtirilarak hangi dilbilimsel karsiligi elde edecegi belirlenir. Cok
cesitli egriler olmasina ragmen goémiilii kontroldrlerde temsili daha kolay oldugundan

ticgen ve ikizkenar yamuk iiyelik fonksiyonlari en ¢ok kullanilanlardir.

3.3.2 Kural Tabam

Kural tabani sistemin nasil kontrol edilecegini igeren bilgiyi bir kural takim
formunda icinde barmdirir. Bu kural takimi "Eger-ise" &nermesi seklindedir ve
genellikle sistemi ¢ok iyi bilen bir tasarimeci tarafindan yazilir. Ancak bazi
uygulamalarda kurallar sinir aglar1 ve genetik algoritma gibi yaklasimlarla da elde

edilebilinir [57].

3.3.3 Davranis Tanimlama

Davranis tanimlama kural tabanindaki hangi kontrol kuralinin amaca uygun
oldugunu degerlendirir. Daha sonra kontrolor ¢ikisinin ne olmasi gerektigine karar

verir. Sonug bir bulanik kararlar kiimesidir.

3.3.4 Netlestirme

Davranis tanimlama igsleminden sonra dilbilimsel bir sonug elde edilir. Bu sonucun
sisteme bir kontrol sinyali olarak gonderilebilmesi i¢in kesin bir sayisal degere

cevrilmesi gerekir. Bulaniklastirma isleminin tersi olan bu isleme netlestirme islemi
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denir. Birkag¢ netlestirme islemi vardir. Bunlar "Centre of Gravity (COG)", "Centre
of Gravity Method for Singletons (COGS)", "Bisector of Area (BOA)", "Mean of
Maxima (MOM)", "Leftmost maximum (LM)" ve "Rightmost maximum (RM)"

olarak siralanabilir.

3.3.5 Bulanik Kontrolun Avantaj ve Dezavantajlar:

Bulanik kontrolorler sistemi iyi bilen bir tasarimci performansini andirmasi igin
gelistirildiler. Tasarimer bilgisi s6zel kurallar formunda sifrelenerek kontrolorlerin
yapisina eklendi. Bu yonleriyle geleneksel analitik kontrol yontemlerine bir alternatif
olusturdular. geleneksel kontrolorlerin en biiyiikk dezavantaji PID tipi kontroldrlerin
sistemi dogrusal olarak varsaymasi veya belirli bir nokta etrafinda dogrusal
davrandigini kabul etmesidir. Bu sebeple bulanik kontroldrler PID tipi kontrolorlere

gore dogrusal olmayan sistemlerde daha basarili sonug verirler.

Bir sistemin kesin matematiksel modelini elde etmek miimkiin degildir. Pratikte
dogrusal olmayan, belirsiz, zamanla degisen, karmasik, 1yi tanimlanmamis sistemler
s06z konusudur. Bu sebeple sistemlerin kontrolii i¢in bulanik kontrolorler gibi kesin
matematiksel modele ihtiyact olmayan kontroldrler tasarlanmalidir. Eger sistem
hakkinda hi¢ birsey bilinmiyorsa sistem i¢in bulanik kontrolér tasarlamak

imkansizdir.

Bulanik kontroliin en belirgin dezavantaji kararlilik, dayaniklilik ve en iyilik gibi
kontrolor performasini analiz etme eksikligidir. Sistemin nasil cevap verecegi
onceden kestirilemez. Yapilacak tek sey benzetimlerle davranisi kestirmeye
caligmaktir. Bu sebeple, bulanik denetimde kullanilan kurallar deneyime ¢ok
baglidir. Diger bir dezavantaj ise PID tipi kontrolor 3 tane ayarlanabilir parametre
icerirken bulanik kontrolorler ¢ok fazla ayarlanabilir parametre icerir. Bunlardan
bazilar1 giris ve ¢ikis iiyelik fonksiyonlarinin yapist ve sayisi, kural tabani olarak
siralanabilinir. En Onemli nokta kural taban1 ve iiyelik fonksiyonunun

parametrelerinin se¢imidir.

3.4 Gri Sistem Kurami

Gri sistem teorisinin adi arastirilan konularin renkleri iizerine dayandirilmistir.
Kontrol teorisinde renklerin koyulugu elde edilen bilginin kesinlik derecesini isaret

etmek i¢in kullanilir. Ornegin bir sistemin matematiksel modeli, icsel iliskileri ve
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yapisi tamamen bilinmiyorsa siyah sistem olarak adlandirilir. Diger taraftan tamamen
biliniyorsa beyaz sistem olarak adlandirilir. Yukaridaki tanimlar dikkate alinarak
matematiksel modeli, icsel iligkileri ve yapist kismi olarak bilinen ve kismi olarak
bilinmeyen sistem gri sistem olarak adlandirilir. Gergek hayatta her sistem az veya

cok belirsizlik i¢erdiginden dolay1 her sistem gri sistem olarak diistiniilebilinir.

Insanlarin elde ettigi bilgiler hem igeriden ve hem de disaridan gelen bozucular ve
kavramsal diizey smirlamalar yiiziinden daima belirsizdir. Bilim ve teknolojideki
gelismelerle birlikte g¢esitli sistemlerdeki belirsizligi insanlarin anlamasi &ncesine
gore daha kolaylasti. 20. ylizyilin ortalarindan sonra miithendislik alaninda belirsizlik

lizerine ¢esitli sistem teorileri ve metotlar1 ortaya ¢ikmustir.

1982 yilinda Julong Deng gri sistem lizerine ilk yaymnim "The Control Problem of
Grey System" adiyla "System and Control Letters" adli uluslararas1 dergide yayinladi
[58]. Bu yayn gri sistem teorisinin yeni bir konu olarak dogusunu baslatmisti. Gri
sistem teorisi 1980'li yillarin basinda yapisi ve davranisi lizerine bilgi eksikligi olan
sistemler diisiiniilerek bir ara¢ olarak Onerilmistir. Gri model 6ngdriide bulunmak ve
karar vermek i¢in uygulanabilinir oldugundan dolay1 tamamlanamayan veya belirsiz

bilgiler igeren sistemlerin iistesinden gelmenin bir yoludur.

Gri kontrolorlerin en basarili uygulamalarinin ger¢cek zamanli uygulamalarda oldugu
goriilmektedir. Gri sistem teori metodu sistemin ¢ikisindan sadece 4 deger alarak
sistemin bir sonraki degerini tahmin eder. Her zaman yeni bir veri alindiginda,
orijinal veri setindeki en eski veri silinerek onun yerine orijinal veri setine eklenir.
Boylece gri ongorii dogrusal olmayan zamanla degisen sistemlerde Ongdriiyi
saglamak i¢in kendini yeniler. Bu durumda gri kontroldrler belirsizliklere ve diger

bozucu etkenlere karsi klasik kontroldrlere gore ¢ok daha giirbiiz davranis gosterirler.

Gri 6ngorii kontroldrleri bir¢ok farkli disipline uygulanmigtir. Bunlardan bazilari
sOyle siralanabilir. Torna islemi sirasinda kesme kuvvetini belirlerken belirsizlikler
s0z konusudur. Bu belirsizlikler goz Oniine alinarak gri bulanik kontrolor onerildi
[59-61]. Dingdu [62] elektrikli ocak kontroliinde ve Qi [63] teflon tencere
olusumunda polimerlesen tencerenin sicaklik kontrolii i¢in gri Oongdrii kontrolii
Oonermistir. Disiplinler aras1 bir konu olan elektro-hidrolik basing kontroliinde gri
ongorii kontrolor onerilmistir [64]. Klasik bir kontrol problemi olan ters sarkac

kontroliinii i¢in gri 6ngorii kontrolor onerilmistir [65]. Gene yaygin olarak kullanilan

40



bir dogru akim motorunun kontroliinii i¢in de gri 6ngorii kontrolér onerilmistir [66].
Jiguang [67] cok daha farkli bir konu olan gemi denge kontroliinde gri &ngorii
kontroldrleri dnermistir. Mobil robot uygulamalarinda yoriinge kontrolii ve hedef
konumu tahmini alanlarinda gri sistemden yararlanilmistir [68,69]. Miihendislik
alanlarinin yan1 sira sosyal bilimlerde de gri sistem uygulama alanlar1 bulmustur.
Akay [70] gri 6ngdrii metodunu kullanarak Tiirkiye'nin gelecekteki elektrik talebini
tahmin etmislerdir. Kontrol miihendisliginde gri sistemin pek ¢ok alanda uygulandigi
goriiliir. Ornegin, Zhang [71] ayrik kontroldrler i¢in gri dngdrii kontroldr dnerirken
Ruiqing [72] biiyiilk zaman gecikmeleri olan sistemler i¢in gri ongorii tabanli tek
noron yapili kontrolorler 6nermistir. Rongcheng [73] artik hata modelini gelistirerek
adaptif gri bulanik kontrolorii, Wei [74] iteratif 6grenme tabanli gri 6ngorii kontrolii
analiz etmistir. Wong [75] ve Feng [76] cevrimi¢i olarak gri dngorii kontroloriin
adim biiyiikliglinii ayarlayan kontroldr tasarimi gerceklestirmistir. Chiang [77] ise
G(2,1) modelini kullanarak es zamanli reliiktans motorunun hiz kontroliinii

saglamstir.

3.4.1 GM(m,n) Model

Gri modeller sistemin matematiksel modelini, yapisini bilmeksizin sadece sistemin
cikis degerlerini alarak sistemin gelecekteki ¢ikis degerleri tahmin eder. Gri sistem
kuramimda GM(m,n) gosterimi, m'inci mertebeden bir diferansiyel denklemli ve n
adet degiskenli bir modeli temsil eder. GM(1,1) modeli "Birinci Mertebeden Bir
Degiskenli Gri Model" olarak okunur.

3.4.2 GM(1,1) Model

GM(1,1) model sadece sifirdan biiyiik sistem cikislari i¢in kullanilabilir. Bu tezde
dogrusal olmayan bir mobil robot ele alinmistir. S6z konusu mobil robotun hizi
daima sifirdan biiyiik olacagi i¢in, GM(1,1) modeli mobil robotun hiz kontrolu i¢in

kullanilabilir.

(0)

Bir sistemin ¢ikiginin aldig1 degerler X veri dizisi olarak ifade edilir:

X0 =(c9,cO.,......C0n=>4 3.5)

C,-(,IZ) ifadelerin matematiksel agilimi
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k
(m) _ (m—l) —
cl =3k =123,....,n (3.6)
olmak iizere X*) veri dizisine biriktirme islemi uygulanirsa yeni bir veri dizisi olan
X veri dizisi
X0 =(c,cY...esC ) n > 4 3.7)

olarak elde edilir.

Islenmemis veri dizisinin ardisik iki elemaninin ortalama degerleri d m(k) dizisi

dV(k)=0,5C" +0,5C") k =2,3,.....n 3.8)

olarak yazilir. DY dizisi

DY = (@"(1),d"(2)....d" (n)) (3.9)

olarak elde edilir.

Olusturulan veri dizisinden bir dogrusal egri olusturulur. Bodylece a ve b

parametreleri agagidaki denklem yardimiyla elde edilir.

+aX'(t)=b (3.10)

A A b| _u. b
Cll = {Cf,?) ——}e = G.11)
olarak elde edilir.

Yukaridaki [ﬂ degiskenleri en kiiciik kareler yontemi ile hesaplanir.

a TpY! pT
MZ(B B)'B"Y (3.12)
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Y ve B matrisleri asagidaki sekilde elde edilir:

Y =[c9.c9...cof (3.13)
—d"V(2) 1]
~-dV(3) 1

B=| . . (3.14)
-d"(n) 1]

él.(’lk)ﬂ veri dizinine ters birikim islemi uygulanirsa 6ngorii modeli elde edilir.

A A A A b —da a
=l = = el -2 i) 415
H adim sonraki degeri hesaplamak i¢in kullanilacak matematiksel ifade:

A A b —a(k+H- a
el =| el =2t fi-er) 616

olarak elde edilir.

3.4.3 GM(1,1) Model

GM(1,1) modeli olusturulurken veri dizisinde 4 adet veri tutulur. Eger bu veri
dizisinde tutulan 4 adet veri her yeni gelen veriler yardimiyla giincelleniyorsa buna

"Yuvarlanan GM(1,1) model" denir.

Ornegin Cl.(f,’(), Ci(,(l)()-i-l , Cl.(%z ve Cl.(f,’c)+3 veri degerleri kullanilarak Ci(,(/)()+4 tahmin edilirse

veri dizinindeki ilk veri atilir, tahmin edilen deger veri dizininin sonuna eklenir.
Boylece C;\.,, Ci/,, Cils ve C;, veri dizisi elde edilir ve bu veri dizisi

kullanilarak Cff,’ls verisi tahmin edilir. Bu diizen en son asamaya kadar siirekli olarak

devam eder. Bu tezde yuvarlanan GM(1,1) modeli, dogrusal olmayan mobil robot

hizinin 6ngodriilmesi amaciyla kullanilmistir.
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4. BENZETIMLER

Pratikte, kontrolor ayrik zamanda olacaktir. Boliim 2°de elde edilen denklemler ise
stirekli zamanlhidir. Dolayisiyla benzetimler gergeklestirilirken gercege uygunluk
acisindan sistemin ¢ikislart ayristirilacaktir. Bu boliimde Simulink/MATLAB paket
programi kullanilarak yapilan benzetimlerde sistem c¢ikislarina "quantizer
[nicemleyici]" konularak ayriklastirma islemi yapilacaktir. Sabit hiz kontrolii
yapilirken ayriklastirma zamani 0.001 s, yoriinge kontroliinde ise ayriklastirma
zamant 0.001 s, 0.1 s ve 0.15 s olarak secilmistir. Ayriklagtirma igleminin nasil

yapildigina ait blok diyagrami Sekil 4.1'de gosterilmektedir.

Eeferans + f——.\ ikeig
T Eontrolér » Sistem »

L 4

[

Micemleyict

Sekil 4.1 : Nicemleyici Gosterimi i¢in Blok Diagrama.

Dinamik modelde siirtiinme etkisinin modellenmesi olduk¢a zordur. Bu nedenle,
siirtiinme etkisinin modellenmesi yerine soniim fonksiyonu tanimlanir. Ornegin, bir
manipulatdr bir cismi tutup kaldirdi§i zaman cismin atalet momenti ve kiitlesi
manipulatoriin parametrelerini degistirecektir. Bu sebeple, toplam kiitle, atalet
momenti ve kiitle merkezinin yeni degerlerle giincellestirilmesi gerekmektedir.
Ancak, pek cok uygulamada tutup kaldirilan cismin kiitlesi ve atalet momenti
bilinmemektedir. Sonug olarak, sistemin kesin dinamik modelini siirdiirmek kolay
degildir. Bu gibi durumlarda dinamik model kesin olarak bilinmediginden dolay1

hesaplanmis tork kontrol methodu kullanilarak manipulatoriin kontrolii saglanir [78].

Cift eksenli harekette kiiresel robotun hareket denklemlerini elde etmek igin

ayristirtlmis  dinamik yaklasimi  kullanilmistir. Bu  yaklasimda bir serbestlik
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derecesinin diger bir serbestlik derecesine etki etmediginin varsayildigin1 Bolim
2.3'de bahsetmistik. Bu yaklasim dikkate alinirsa sistemin dinamik modelinin kesin
olarak bilinemeyecegi sOylenebilinir. Bu sebeple, hesaplanmis tork kontrol methodu

sistemi kontrol etmek ic¢in kulanilir. Kontroloriin genel yapisi Sekil4.2'de

gosterilmektedir.
g
g
+ 0 | @
=istem
a
+
&
V(&?, a8 cr:l

Sekil 4.2 : Hesaplanmis Tork Kontrol Methodu I¢in Kontroloriin Genel Yapisal
Diagrama.

Benzetimlerde kullanilacak sisteme ait parametreler, M =3 kg, m, =2 Kkg,

R=02m, /=0,075 mve g=9_8I % , olarak secilmistir. Ornekleme zamani ise

0.1 s olarak alinmustir.

4.1 Kontrolor Tasarimi

Genel olarak mekanik sistemlerin hareket denklemleri agagidaki formda yazilir:
M (q(0))g(e)+V (q(0). 4(e) = ulz) @.1)

Sistemin kararlilik analizini yapmak i¢in sistemdeki yliksek dereceden ifadeler yok

edilmelidir [79]. Bu sebeple, u girisi asagidaki gibi ifade edilir.

u(t)=V(q(t).q(0))+ K e(t)+ K et)+ M (q()), () 4.2)
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K, ve K, pozitif sabitler olmak kosuluyla kararl kapali ¢evrim dinamigi alagidaki

gibi elde edilir.

é(t)+ K, é(t)+ K e(t)=0 4.3)

4.2 Bulanik Kontrolor i¢in Kural Tablosu ve Uyelik Fonksiyonlar

Bir bulanik kontrolor ¢ikarim tablosunda kurallar tasarimei tarafindan belirlenir. Bu
calismada kullanilan bulanik kontrol kural tablosu Cizelge 4.1'de gosterilmistir.
Hatanin, hatanin tlirevinin ve kontrol igaretinin {iyelik fonksiyonlari tiggensel bi¢imli

islevler olarak secilmis ve Sekil 4.3'de gosterilmistir.

Cizelge 4.1 : Genel Bir Bulanik Kontrolor Kural Tablosu.

% NL NM NS /R PS PM PL
e
PL /R PS PM PL PL PL PL
PM NS 7R PS PM PL PL PL
PS NM NS /R PS PM PL PL
/R NL NM NS ZR PS PM PL
NS NL NL NM NS /R PS PM
NM NL NL NL NM NS ZR PS
NL NL NL NL NL NM NS ZR
1 NL NV NS ZR PS PM PL
0.5 .
oL |
0.5+ -
_1 | | | |

| | | |
-1 -0.8 -06 -04 -02 0 02 04 0.6 0.8 1

Sekil 4.3 : ¢, ¢ ve u ’nun Uyelik islevleri.

Bir bulanik kontrolor iki giris ve bir ¢ikistan olusur. Bu nedenle, bir bulanik
kontroldriin yaklasik olarak zamanla parametreleri degisen bir geleneksel kontrolor
gibi davrandig1 sOylenebilinir. Sekil 4.4'de bulanik hesaplanmis tork kontrolii igin

kontroloriin genel yapisi gosterilmektedir.
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Sekil 4.4 : Bulanik Hesaplanmis Tork Kontrol Methodu i¢in Kontroldriin Genel
Yapisal Diagramu.

4.3 Gri Ongoriisel Kontrolor

Gri 6ngorii kontrolii sistemin ¢ikis degerlerinden en son 5 tanesini alir ve gelecekteki

sistemin degerini tahmin eder. Sekil 4.5'de gri bulanik hesaplanmis tork kontrolii i¢in

kontroloriin genel yapisi gosterilmektedir.

g
. g
% 4+ +

-;-/;\ i’ M(H,cr) - Sisterm °

A A A &

+ + -

&

718, a8, &)

Bulamk
Eontrolér

& ‘ +i-5'lp
9@+:_ g,

Gri
Cingériisel
Eontrolér

F Y

Sekil 4.5 : Gri Bulanik Hesaplanmis Tork Kontrol Methodu i¢in Kontroloriin Genel
Yapisal Diagramu.

Bu boliimde gosterilen blok diyagramlarmin simulink uygulamar1 Ekler EK B.1

bolimiinde gosterilmektedir.
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4.4 Tek Serbestlik Dereceli Sarkac ile Dogrusal Yoriingede Hareket Kontrolu
Tek serbestlik dereceli sarkac ile dogrusal yoriingede sabit hiz kontrolii yapilacaktir.

4.4.1 Dogrusal Yoriingede Sabit Hizla Hareket

Dogrusal yoriingede sabit hizla hareket i¢in referans konum, hiz ve ivme grafikleri

Sekil 4.6, 4.7 ve 4.8'de sirasiyla gosterilmektedir.

5':' T T T T T T T T T

40

35

an

24

Referans g Konum [rad]

14 .

| | |
a 2 4 B g 10 12 14 16 13 20
Laman [s]

Sekil 4.6 : Referans 8 Agisal Konum.
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Referans g Hiz [rad/s]

Referans g lvme [rad/s)

3.5

24

1.5

0.8

0.6

0.4

0.2

0.2

0.4

06

0.8

2 4 B g 10 12 14 16 13
Laman [s]

Sekil 4.7 : Referans 8 Agisal Hiz.

20

|
2 4 B g 10 12 14 16 18

Laman [5]

Sekil 4.8 : Referans 6 Acisal Ivme.
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Sekil 4.9 hesaplanmis tork kontrol methodu icin K sabitinin belirlenmesini
gostermektedir. Sekilde de goriildiigii gibi K, katsayis: arttikca sistem cevabindaki

asma da artmaktadir. Gri Ongoriisel kontroliin sistemi diisiik bir agimla kontrol
edebilecegi bildiginden dolay1 bu agmalarin biiyiik olmasi bu asamada dnemsenmez.

K, sabitinin degeri arttik¢a sistem hizlanmakta ayni zamanda sistemin iiretmesi
gereken tork degeride artmaktadir. Sekil 4.11 'de goriildiigii gibi K, =1.25 degeri
icin tork degeri sonsuza gitmektedir. Bu sebeple, sistem i¢in K sabiti 1 olarak

segilir. K, =0.8, K, =1 i¢in girig momenti cevabi Sekil 4.10'de gosterilmektedir.

Hiz [m/s]

------- Feferans

— Kp=0.8 k=1

— — Kp=058 Kw=038

— - — Kp=08 Kw=0E
I I

| | |
a 2 4 B g 10 12 14 16 13 20
Laman [s]

Sekil 4.9 : HTK Methodu Igin Sistem Cevab1 - K, Katsayisini Belirme.
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0
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15

20

Sekil 4.10 : K, =0.8, K, =1 Katsay1 Degerleri Icin Giris Momenti.
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6000 -

4000 -

2000
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1
Zaman [s]

1.5
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Sekil 4.11: K, =0.8, K, =1.25 Katsay1 Degerleri I¢in Giris Momenti.
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Sekil 4.12 hesaplanmis tork kontrol methodu i¢in K, sabitinin belirlenmesini
gostermektedir. Sekilde de goriildigii gibi K, katsayisi arttikca hem sistemin hizi
artmakta hem de sistem cevabindaki agsma azalmaktadir. K, sabitinin degeri arttikca

sistem hizlanmakta ayni zamanda sistemin iiretmesi gereken tork degeride

artmaktadir. Sekil 4.14'de goriildiigii gibi K, =1,5 degeri igin tork degeri sonsuza
gitmektedir. Bu sebeple, sistem igin K, sabiti $1§ olarak secilir. K, =1, K, =1igin

giris momenti Sekil 4.13 'de gosterilmektedir.

I:IB T T T T T T T T T

Hiz [m/s]

------- Referans

— Kp=1 k=1

— — Kp=0.8 kv=1 ||

— - = Kp=05 k=1
I

| |
a 2 4 a] g 10 12 14 16 13 20

ZLaman [s]

Sekil 4.12 : HTK Methodu i¢in Sistem Cevabi - K , Katsayisini Belirme.
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Sekil 4.13: K =1, K =1 Katsay1 Degerleri I¢in Girig Momenti.
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Tork [Nm]

o ‘1 | | L

0 0.5 1 1.5 2
Zaman [s]

Sekil4.14: K =15, K, =1 Katsay1 Degerleri Icin Giris Momenti.
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Sekil 4.15'de hesaplanmis tork kontrol methodu ile bulanik hesaplanmis tork kontrol
methodunun karsilastirilmas1 goriilmektedir. Bulanik hesaplanmis tork kontrol
methodu hesaplanmig tork kontrol methoduna gore daha hizli ve az asimla sistemi
kontrol etmektedir. Sistemin oturma zamaninda da yadsinamayacak bir fark vardir.
Bulanik hesaplanmig tork kontrol methodu i¢in giris momenti Sekil 4.16'de

gosterilmektedir.
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|:| | 1 | | | | | I I
1] 2 4 B g 10 12 14 16 18 20
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Sekil 4.15 : Bulanik HTK Methodu I¢in Sistem Cevabu.
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Sekil 4.16 : Bulanik HTK Methodu I¢in Giris Momenti.

Sekil 4.17 ve 4.19 sirastyla hesaplanmis tork kontrol methodu ile gri hesaplanmis
tork kontrol methodunun, bulanik hesaplanmis tork kontrol methodu ile gri 6ngdriisel
bulanik hesaplanmis tork kontrol methodunun karsilastirilmalarini gostermektedirler.
Gortildigi gibi gri 6ngoriisel kontrol sistem cevabindaki agimlari azaltma yetenegine
sahiptir. Gri Ongoriisel kontrolde adim biiyiikliigii ne kadar biiyiirse sistem
cevabindaki agimda buna paralel olarak azalmaktadir. Fakat, adim biiytikligi ¢ok
biyiltiilirse sistem kararsizlagir. Gri hesaplanmis tork kontrol methodu ve gri
bulanik hesaplanmis tork kontrol methodu icin giris momenti Sekil 4.18 ve 4.20'de

gosterilmektedir.
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Sekil 4.17 : Gri Ongoriisel HTK Methodu Igin Sistem Cevabu.
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Sekil 4.18 : Gri Ongériisel HTK Methodu i¢in Giris Momenti.
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Sekil 4.19 : Gri Ongoériisel Bulanik HTK Methodu I¢in Sistem Cevabu.
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Sekil 4.20 : Gri Ongoriisel Bulanik HTK Methodu I¢in Giris Momenti.
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4.5 Cift Serbestlik Dereceli Sarkac ile Egrisel Yoriingede Hareket Kontrolu

Cift serbestlik dereceli sarkag ile egrisel yoriingede dairesel yoriinge iizerinde konum

kontrolii yapilacaktir.

4.5.1 Dairesel Yoriinge Uzerinde Konum Kontrolii

Dairesel yoriinge iizerinde konum kontrolii i¢in referans konum, hiz ve ivme

grafikleri Sekil 4.21, 4.22, 4.23, 4.24, 4.25 ve 4.26'de sirasiyla gosterilmektedir.

1 I:I T T T T T
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1

| | |
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Sekil 4.21 : Referans € Acisal Konum.
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Sekil 4.23 : Referans 0 Acisal fvme.
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Sekil 4.25 : Referans ¢ Agisal Hiz.
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Sekil 4.26 : Referans ¢ Acisal fvme.

Sekil 4.27, 4.28 ve 4.29'de sistemin hesaplanmis tork kontrol methoduyla kontrol

edilmesi sonucunda izlenen yoriingeler gosterilmektedir.
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Sekil 4.27 : HTK Methodu i¢in Sistem Cevabi - Ayriklastirma Zamani: 0.001
Saniye.

¥ [rn]

0&F

06|

0.4

Doy T Referans Yoringe

Gergeklegen Yaringe | |
I

k T

1 1.5 2
A [m]

Sekil 4.28 : HTK Methodu I¢in Sistem Cevab1 - Ayriklastirma Zamani: 0.1 Saniye.
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Sekil 4.29 : HTK Methodu i¢in Sistem Cevabi - Ayriklastirma Zamani: 0.15 Saniye.

Sekil 4.30, 4.31 ve 4.32'de sistemin bulanik hesaplanmis tork kontrol methodu ile

kontrol edilmesi sonucunda izlenen yoriingeler gosterilmektedir.
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Sekil 4.30 : BHTK Methodu I¢in Sistem Cevab1 - Ayriklastirma Zamani: 0.001
Saniye.
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Sekil 4.31 : BHTK Methodu I¢in Sistem Cevabi - Ayriklastirma Zamani: 0.1 Saniye.
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Sekil 4.32 : BHTK Methodu I¢in Sistem Cevabi - Ayriklastirma Zamanz: 0.15
Saniye.

Sekil 4.33, 4.34 ve 4.35'de sistemin gri bulanik hesaplanmis tork kontrol methodu ile

kontrol edilmesi sonucunda izlenen yoriingeler gosterilmektedir.
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Sekil 4.34 : GBHTK Methodu I¢in Sistem Cevab1 - Ayriklastirma Zamani: 0.1
Saniye.
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Sekil 4.35 : GBHTK Methodu Icin Sistem Cevabi - Ayriklastirma Zamanz: 0.15
Saniye.

Benzetimlerde goriildiigii gibi ayriklastirma zamani arttirildik¢a sistemin referans
yoriingeyi izlemesi zorlagmaktadir. Gri bulanik hesaplanmis tork kontrol methodu,
hesaplanmis tork kontrol methodu veya bulanik hesaplanmis tork kontrol methoduna
gore daha fazla hata ile yoriingeyi takip etmektedir. Gri 6ngoérii kontrolii sistemin
cikis degerlerini kullanarak gelecekteki ¢ikislari ¢evrimigi olarak tahmin etmektedir.
Bu tahmin sistemin dinamik modelinden bagimsiz olarak gergeklesir. Gri Ongorii
kontroliiniin bulanik ve geleneksel kontrolorlere gore daha kotli sonug vermesinin
nedeni konum kontroliinde sistemin ¢ikis degerlerinin nonlineer olmasidir. Gri
ongorii kontrolii en kiiclik kareler yontemini kullandigr i¢in dogrusal bir 6ngorii

yapar. Bu sebeple nonlineer ¢ikis degerlerine karsi basarili sonug vermez.
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5. SONUCLAR

Yuvarlanan kiiresel robot mekanizmasinin 6teleme hareketi, sistemde mevcut donme
hareketleri araciligiyla saglanmaktadir. Bu sebeple sistemi modellemek i¢in Euler
acilari, bagvurma-yalpa-yuvarlanma agilar1 gibi donme agilarina ihtiya¢ duyulmustur.
Sistemin dinamik davranis modeli analitik yaklagimla Euler-Lagrange denklemleri
kullanilarak elde edilmistir. Kiiresel yuvarlanmanin hareket denklemleri nonlineer ve
nonhonomiktir. Hareket denklemlerini olusturan diferansiyel denklemler
"ayristirllmis dinamik" yaklasimi ile sadelestirilmistir. Bu sekilde gercek fiziksel

sisteme daha uzak fakat kontrol i¢in kullanilabilir bir model elde edilmistir.

Bu tezde modelleme kisminda ¢ift serbestlik derecesine sahip sarkac kullanilarak
kiiresel robotun yuvarlanma hareketi saglanmigtir. Robotun ¢izgisel ve egrisel
yoriingeler lizerindeki hareketleri incelenmistir. Kiiresel robotun yatay ve egimli
diizlemlerdeki hareketleri incelenip her iki durum icin ayr1 hareket denklemleri elde
edilmistir. Egik diizlemde maksimum tirmanma acis1 ve engel ge¢me yiikseklik

tayini yapilmstir.

Yiiksek dereceden nonlineer ve belirsiz bir sistem olan yuvarlanan kiiresel robotun
hiz kontroliinli ve konum kontroliinli ger¢eklestirmek igin hesaplanmis tork kontrol
yontemi, bulanik hesaplanmis tork kontrol yontemi ve gri bulanik hesaplanmis tork
kontrol yontemi Onerilmistir. Hem hiz hem de konum kontroliinde bulanik
kontrolorlerin geleneksel kontrolorlere gore daha iyi sonug verdigi gozlenmistir. Gri
ongoriisel kontroldrlerin ise hiz kontroliinde geleneksel ve bulanik kontrolorlere gore
daha iyi sonug verdigi, konum kontroliinde ise daha kotii sonug verdigi gézlenmistir.
Bunun sebebinin gri 6ngorii kontroliin sistemin ¢ikis degerlerini kullanarak
gelecekteki gikiglart gevrimigi olarak tahmin ettigi, bu tahmini yaparken ise en kiigiik
kareler yontemini kullandig1 i¢in dogrusal bir 6ngdrii yaptig1 belirtilmigtir. Konum
kontroliinde ise sistem ¢ikislar1 nonlineer ifadelerdir. Dolayisiyla konum kontrolii

icin gri dngoriisel yontemin daha kotii performans gostermesi olasi karsilanmaktadir.
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EK A.1

> restart;
> with(VectorCalculus) :with (LinearAlgebra) :with(diffalqg) :

1. Euler agilan igin rotagyon matrisleri:
> PDEtoels[declare] {({x(L),y(t) ,theta(t) ,psi(t) ,phi(t)},prime=t,quiet) ;
Rotl:=<<cos(phi{t)) ,-sin(phi(t)) ,0>|<sin{phi(t)}) ,cos(phi(t)) ,0>[<0,0,1>>;Rot2:=<<1,0,0>
|<0,cos (theta(t)) ,-sin(theta(t))>|<0,sin(theta(t)) ,cos (theta(t))>> ;Rot3:=<<cos (psi(t)),
-sin(psi(t)) ,0>|<sin(psi(t)) ,cos(psi(t)) ,0>]|<0,0,1>>;

[cos(¢) sin(p) 0]
Rotl =|—sin(¢) cos(dp) 0
L O 0 1
1o 0
Rot2 =|0 «cos(0) =sin(0)
L0 —sin(6) cos(0)]
cos(y) sin(y) 0
Rot3 =|-sm(w) cos(w) O
0 0 1

v

> Rot:=Rot3.Rot2.Rotl;
cos(y) cos(0) —sin{w) cos(0) sin(d)  cos(y) sin( ) + sin(yw) cos(8) cos( )  sin{y) sin( )
Rot :=|—sin{y) cos( ) — cos(y) cos(0) sin(b)  —sin(y) sin{ o) + cos(y) cos(0) cos(d)  cos(y) sin(0)

sin(0) s o) —sin(0) cos( o) cos(0)
2. Lagrange ifadesinde yer alan kinetik enerji tesiminin olugturulmasi:
> E[k]:=1/2*M[k]*v[k] 2+1/2*T[k] *omega [k]"2;

1 2 1 2
£, ::EM’C v, +EJ’,C @,
> omega[k] :=Transpose (diff (theta (t) ,t) *Row (Rotl,1) +diff (psi(t) ,t) *Row (Rot2.Rotl,3)+ (diff (
phi{t) ,£)*<0[0[1>)) ;

9 cos(0)+y sin(8) sin( $)
w, = o' sin( ¢ ) — Lp'sin(e) cos( )

qJ’cos(B)Jrq)'
> vIk] :=<diff (x (£) ,t) ,diff {y(t) ,t),0>;

v, =x'e ty'e
X y
Kinetik enerji:
> E[k]:=1/2*M[k]*v[k].v[k]+1/2*T[k] *omega [k] .omega[k] ;
1 1 1 ‘ . 21 ‘ . 21 ‘ W2
E, :ZEka’QJrEMky’QJrEJk(G cos( )+ sin(8) sin($)) +5Jk(9 sin{ ) — yr sin(8) cos($)) +5Jk(lp cos(B8)+0)
3. Lagrange ifadesi:
> L:=E[k];
1 s 1 s 1 . . ) 2 1 . . 2 1 . 2
L ::Eka’ +£Mky' JrE.]}c (0 cos(d)+y sin(0) sin($)) +£Jk(6 sin( ) —y sin(0) cos(d)) +5Jk(tp cos(0)+¢)
> L:=collect (collect (collect { {(collect (collect (L,diff (theta(t) ,t)) ,diff (psi(t) ,t))) ,cos(tk
eta(t))),sin(theta(t))) ,diff (psi(t),t)) ;
1 1 1 .2 ‘ (1 1 2
L= HEJ,C sm(¢)2+EJk cos(d))zj sm(e)hglfk COS(B)2J(qJ) +J, ¢ cos(8) +[5J,C sm(¢)2+ng cos(¢)2](9)

1 e, 1 2, ! W2
+5ka +5Mky +5Jk(¢)
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> L:i=subs (1/2*J[k] *sin(theta (t))"2+1/2*J[k] *cos (theta (£) ) "2=1/2*T[k] ,subs (1/2*J[k] *sin (ph
i(t))"2+1/2*J[k] *cos (phi(t))"2=1/2*J[k],1/2*J[k] *sin(phi(t))"2+1/2*J[k] *cos (phi (t))"2=1
/2%¥J[k],L)) ;
1 , 2 . 1 21 2 1 2 1 .2
L ::EJ}‘(W) +J, b cos(B) y +5Jk(8) +5ka +5 ¥ +5Jk(¢)
4. Kasat Denklemleri:
> F[x]:=R*(cmega[k] .<0,1,0>-diff (x(t) ,t));

F, =R (0 sin($) ~ ' sin(0) cos(9) ~x")
> F[y] :=R¥* (cmega[k].<1,0,0>+diff (y(t) ,t));

F, =R (0 cos(¢) +y sin(6) sin(p) +3")
5. Hareket Denklemleri:

> f£[x] :=diff (subs (theta=theta (t) ,psi=psi(t) ,phi=phi (t) ,x=x(t) ,y=y(t) ,X=diff (x(t) ,t) ,¥Y=dif
£(y(t) ,t) ,Theta=diff (theta (t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs(diff(t
heta (t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi (t) ,t)=Phi,theta (t)=theta,psi(t)=psi,phi(t)
=phi,diff (x(t) ,t)=X,diff (y(t) ,t)=Y,x(t)=x,y(t)=y,1) X)) ,t)
-subs (theta=theta (t) ,psi=psi (t) ,phi=phi (t) ,x=x(t) ,y=y (£) ,X=diff (x(t) ,t) ,Y=diff (y(t) ,t),
Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs (diff (theta(t) ,t)
=Theta ,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi,theta (t)=theta,psi(t)=psi,phi (t)=phi,diff(
x(t) ,t)=X,diff (y(t) ,t)=¥Y,x(t)=x,y(t)=y,L) ,x))+subs (theta=theta(t) ,psi=psi (t) ,phi=phi (t}
Lx=x (L) ,y=y(t) ,X=diff (x(t) ,t) ,¥Y=diff (y(t),t) ,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t),
Phi=diff (phi(t) ,t) ,diff (subs (diff (theta(t) ,t)=Theta,diff(psi(t) ,t)=Psi,diff (phi(t) ,t)=P
hi,theta(t)=theta,psi(t)=psi,phi(t)=phi,diff (x(t) ,t)=X,diff(y(t),L)=Y,x()=x,y(L)=y,8),
X))
=mu[x] *subs (theta=theta (t) ,psi=psi(t) ,phi=phi (t) ,x=x(t) ,y=y(t) ,X=diff (x(t) ,t) ,¥=diff (v
t) ,t) ,Theta=diff (theta (t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs (diff (thete
(t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi, theta(t)=theta,psi(t)=psi,phi(t)=phi
LALiff (x(b) ,b)=X,diff (y(t) ,t)=¥Y,x{t)=x,yv(t)=y,F[x]) ,X))
+mu [v] ¥*subs (theta=theta (t) ,psi=psi(t) ,phi=phi (t) ,x=x(t) ,y=y(t) ,X=diff (x(t) ,t) ,¥=diff (¥
t) ,t) ,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs (diff (thetz
(t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi,theta(t)=theta,psi(t)=psi,phi(t)=phi
LAAfE (x(E) ,B)=X,diff (y(t) ,t) =Y, x(t)=x,y(t)=y,F[y]) X)) +ull];

fo =M x" =, R+u,

> f[y] :=diff (subs (theta=theta (t) ,psi=psi(t) ,phi=phi (t) ,x=x(t) ,y=v(t) ,X=diff (x(t) ,t) ,¥=dif
f(y(t) ,t) ,Theta=diff (theta (t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs(diff(t
heta (t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi (t) ,t)=Phi,theta (t)=theta,psi(t)=psi,phi(t)
=phi,diff (x(t) ,t)=X,diff (yv(t) ,£)=Y,x(t)=x,y(E)=y,L) ,¥)) ,t)
-subs (theta=theta (t) ,psi=psi (t) ,phi=phi (t) ,x=x(t) ,y=y (t) ,X=diff (x(t) ,t) ,Y=diff (y(t) ,t),
Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs (diff (theta(t) ,t)
=Theta ,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi,theta (t)=theta,psi(t)=psi,phi (t)=phi,diff(
x(t) ,£)=X,diff (y(t) ,t)=Y,x(£)=x,y(t)=vy,L) ,vy))+subs (theta=theta (t) ,psi=psi (t) ,phi=phi (t)
,X=x(t) ,y=y(t) ,X=diff (x(t) ,t) ,Y=diff (y(t),t) ,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t),
Phi=diff (phi(t) ,t) ,diff (subs (diff (theta(t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=P
hi,theta(t)=theta,psi(t)=psi,phi(t)=phi,diff (x(t) ,t)=X,diff(y(t),t)=Y,x(t)=x,y(t)=y,8),
Y))
=mu[x] ¥subs (theta=theta (t) ,psi=psi(t) ,phi=phi (t) ,x=x (L) ,y=y (L) ,X=diff (x (t) ,t) ,¥Y=diff (v (
t) ,t) ,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs (diff (theta
(t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi(t),t)=Phi,theta(t)=theta,psi(t)=psi,phi(t)=phi
SAIFE (x (k) ,L)=X,diff (v(t) ,L)=¥Y,x(b)=x,yv(L)=y,F[x]),¥))
+mu [v] *subs (theta=theta (t) ,psi=psi(t) ,phi=phi (t) ,x=x (L) ,y=y (L) ,X=diff (x (L) ,t) ,¥Y=diff (v (
t) ,t) ,Theta=diff (theta (t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs (diff (theta
(t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi, theta(t)=theta,psi(t)=psi,phi{t)=phi
LALFE (x(t) ,£)=X,diff (y(t) ,t)=¥Y,x(t)=x,yv(t)=v,F[v]) ,¥))+ul[2];
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J=Moy" = Rtu,

> f[theta] :=diff (subs (theta=theta (t) ,psi=psi(t) ,phi=phi (t) ,x=x (L) ,y=y (L) ,X=diff (x(t) ,t) ,¥
=diff (yv(t) ,t) ,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t}) ,t) ,diff (subs (di
ff (theta(t) ,t)=Theta,diff (psi(t) ,t£)=Psi,diff (phi(t) ,t)=Phi,theta(t)=theta,psi(t)=psi,ph
i(t)=phi,diff (x(t) ,t)=X,diff (yv(t) ,t)=Y,x{t)=x,v(t)=vy,L}) ,Theta)) ,t)
-subs (theta=theta (t) ,psi=psi (t) ,phi=phi (t) ,x=x(t) ,y=y(t) ,X=diff (x(t) ,t) ,¥Y=diff (v (L) ,t),
Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs(diff (theta (t) ,t)
=Theta,diff (psi(t) ,t)=Psi,diff (phi (t) ,t£)=Phi,theta(t)=theta,psi(t)=psi,phi(t)=phi,diff(
x(t) ,L)=X,diff (v(t) ,L)=Y,x(L)=x,y(t)=v,L) ,theta))+subs (theta=theta(t) ,psi=psi(t) ,phi=ph
if(t) ,x=x(t) ,y=y (L) ,X=diff (x(t) ,t) ,Y=diff (yv(t) ,t) ,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t)
,£) ,Phi=diff (phi(t) ,t) ,diff (subs (diff (theta(t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi(t),
t)=Phi,theta (t)=theta,psi(t)=psi,phi(t)=phi, diff (x(t) ,t)=X,diff (yv(L) ,L)=Y,x(t)=x,v(t)=y
,8) ,Theta))
=mu[x]*subs (theta=theta (t) ,psi=psi (t) ,phi=phi(t) ,x=x(t) ,y=y(t) ,X=diff (x(t) ,t) ,¥=diff (v (
t) ,t) ,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi (t) ,t) ,diff (subs (diff (theta
(t) ,t)=Theta ,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi,theta(t)=theta,psi(t)=psi,phi(t)=phi
Ldiff (x(t) ,£)=X,diff (y(t) ,t)=Y,x(t)=x,y(t)=y,F[x]),Theta))
+mu [y] *subs (theta=theta (t) ,psi=psi (t) ,phi=phi (t) ,x=x(t) ,y=y(t) ,X=diff (x(t) ,t) ,¥=diff (y(
t) ,t) ,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi (t) ,t) ,diff (subs (diff (theta
(t) ,t)=Theta ,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi,theta(t)=theta,psi(t)=psi,phi(t)=phi
Ldiff (x(t) ,£)=X,diff (y(t) ,t)=Y,x(t)=x,yv(t)=y,Fly]),Theta)) ;

S =48 +J, ¢ sin(0) y =p Rsin(o) + p, R cos($)

> f[psi] :=diff (subs (theta=theta (t) ,psi=psi (t) ,phi=phi (L) ,x=x(t) ,y=y(t) ,E=diff (x(t) ,t) ,¥=d
iff (y(t) ,t) ,Theta=diff (theta(t) ,t) ,Psi=diff(psi(t) ,t) ,Phi=diff (phi{t) ,t) ,diff (subs(diff
{theta(t) ,t)=Theta,diff {(psi(t) ,t)=Psi,diff {phi(t) ,t)=Phi,theta(t)=theta,psi(t)=psi,phi{
ty=phi,diff (x(t) ,t)=X,diff (y(t) ,t)=¥Y,x(t)=x,y(t)=y,L) ,Psi)),t)
-subs (theta=theta (t) ,psi=psi (t) ,phi=phi (t) ,x=x{t) ,y=y (t) ,X=diff (x(t) ,t) ,Y=diff (v (t) ,t),
Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff {subs(diff (theta (t) ,t)
=Theta,diff (psi(t) ,t)=Psi,diff (phi (t) ,t)=Phi,theta(t)=theta,psi(t)=psi,phi(t)=phi,diff{
x{k) ,B)=X,diff (y(t) ,t)=¥Y,x(t)=x,y(t)=y, L) ,psi)) +subs (theta=theta (t) ,psi=psi (t) ,phi=phi (
ty ,x=x(t) ,y=y(t) ,X=diff (x(t) ,t) ,¥Y=diff (y(t) ,t) ,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) .t
} ,Phi=diff (phi (t) ,t) ,diff (subs (diff (theta(t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi (t) ,t)
=Phi,theta (t)=theta,psi(t)=psi,phi(t)=phi,diff{x(t) ,t)=X,diff (y(k) , L)=¥,x(t)=x,v(t)=vy.,8
y ,Phi))
=mu[x] *subs (theta=theta (t) ,psi=psi (t) ,phi=phi(t) ,x=x(t) ,y=y(t) ,X=diff (x(t) ,t) ,¥=diff (v (
t) ,t) ,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs (diff (theta
(t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi,theta(t)=theta,psi(t)=psi,phi(t)=phi
,diff (x(t) ,£)=X,diff (y(t) ,t)=Y,x(t)=x,y(t)=y, Flx]) , Psi))
+mu [y] *subs (theta=theta (t) ,psi=psi (t) ,phi=phi (t) ,x=x(t) ,y=y(t) ,X=diff (x(t) ,t) ,¥=diff (v (
t) ,t) ,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs (diff (theta
(t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi,theta(t)=theta,psi(t)=psi,phi(t)=phi
(diff (x(t) ,£)=X,diff (y(t) ,t)=Y,x(t)=x,y(t)=y, Fly]) Psi}));

Fu=Jw +J,0 c0s(8)—J, ¢'sin(8) 8 =~ Rsin(6) cos(6) + 1, R sin(8) sin(¢)

> f£[phi] :=diff (subs (theta=theta (t) ,psi=psi(t) ,phi=phi (t) ,x=x (t) ,y=y(t) ,X=diff (x(t) ,t) ,¥=d
iff (y(t) ,t) ,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs (diff
(theta(t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi, theta(t)=theta,psi(t)=psi,phi(
t)y=phi,diff (x(t) ,t)=X,diff (y(t) ,t)=Y,x(E)=x,y(t)=y,L),Phi)) ,t)
-subs (theta=theta (t) ,psi=psi (t) ,phi=phi (t) ,x=x(t) ,y=y(t) ,X=diff (x(t) ,t) ,Y=diff (y(t) ,t),
Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs(diff (theta(t) ,t)
=Theta,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi,theta(t)=theta,psi(t)=psi,phi(t)=phi,diff(
x(L) ,L)=X,diff (y(t) ,L)=¥Y,x(L)=x,y(L)=y.,L) ,phi) ) +subs (theta=theta(t) ,psi=psi(t) ,phi=phi (
t) ,x=x(t) ,y=y (L) ,X=diff (x(t) ,t) ,¥=diff (y(t) ,t) ,Theta=diff (theta(t) ,t)  Psi=diff (psi(t) .t
} ,Phi=diff (phi (t) ,t) ,diff (subs (diff (theta(t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)
=Phi,theta (t)=theta,psi(t)=psi,phi(t)=phi,diff (x(t) ,t)=X,diff (y(t) t)=Y,x(t)=x,y(t)=y,S
) Psi))
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=mu[x] *subs (theta=theta (t) ,psi=psi(t) ,phi=phi(t) ,x=x(t) ,y=y (L) ,Z=diff (x(t) ,t) ,¥=diff (¥ (
t) ,t) ,Theta=diff (theta (t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs (diff (theta
(t) ,t)=Theta ,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi,theta(t)=theta,psi(t)=psi,phi(t)=phi
LAIfE(x (L) ,0)=X,diff (y(t) ,£)=Y ,x(t)=x,y(£)=y,F[x]) ,Phi))

+mu [y] *subs (Etheta=theta (t) ,psi=psi (t}) ,phi=phi(t) ,x=x(t) ,y=y (L) ,X=diff (x(t) ,t) ,¥=diff (v (
t) ,t) ,Theta=diff (theta (t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) ,t) ,diff (subs (diff (theta
(t) ,t)=Theta ,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi,theta(t)=theta,psi(t)=psi,phi(t)=phi
LJAAEE (x(E) , ) =X, diff (y (t) ,£)=Y,x (t)=x,y(t)=y,F[y]) ,Fhi)) ;

=T, sin(8) 8y +J, cos(B) y +J, 6 =0
> F[x];F[y];£[x];£[y] ;f[theta] ;f[psi];f[phi];
R (0 sin($) -y sin(8) cos(9) - x)
R (0 cos(¢) +y «in(8) sin($) +37)
M, x"=—p R+
M, y" =, R+u,
J,0"+J, ¢ sin(8) y'= pr, Rsin(¢) + p, R cos(9)
Joy +J, ¢ cos(8)—J, ¢ sin(8) 8 = —p, R sin(8) cos( )+, R sin(®) sin(6)

—J,6m(0) 8 g+, cos(0)y +J, 4 =0
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EK A.2

[> restart;

[> with(VectorCalculus) :with (LinearAlgebra) :

[> PDEtools [declare] ({x(t) ,v(t) ,theta(t) ,psi(t) ,phi(t) ,alpha(t) ,beta(t)},prime=t, quiet) ;

> ihmal:={psi(t)=0,phi(t)=0,cos{psi(t))=1,cos (phi(t))=1,sin(psi(t))=0,sin{phi(t))=0};

ihmal ={6=0,y=0,cos(dp)=1, cos(y)=1,sin(dp)= 0, sin{y)=0}

[ 1. Euler agilan igin rotagyon matrisleri:

> Rotl:=<<cos (phi(t)) ,-sin(phi(t)) ,0>|<sin(phi(t)) ,cos{phi(t)) ,0>|<0,0,1>>;Rot2:=<<1,0,0>
|<0,cos({theta(t})) ,-sin(theta(t))>|<0,sin(theta (t)) ,cos (theta (£))>> /Rot3:=<<cos (psi(t))},
sin{psi(t)) ,0>|<-sin(psi(t)) ,cos(psi(t)) ,0>|<0,0,1>>;

cos(d) sin(d) O

—sin(¢) cos(dp) 0O
0 0 1

1 0 0

Rot2: =0 cos(0) sin(0)

0 —sin(B) cos(9)

[cos(y) —sin(y) 0

Rof3 =|sm(y) cos(wy) 0

0 0 1

Rotl :

> Rot:=subs (ihmal,Rot3.Rot2.Rotl) ;
1o 0
Rot:=|0 «cos(§) sin(0)
0 —sin(0) cos(0)
2. Lagrange ifadesinde yer alan kinetik enerji tesiminin olugturulmasi:
> E[k]:=1/2*M[k]*v[k] " 2+1/2*T[k] *omega [k]"2+1/2*m[s] *v[s] "2+1/2*T[s] ¥omega [s] "2 ;

1 2 1 2 1 2 1 2
E,C:=5M,Cv,C +£kak +5 LV, +5Jsms
> omegalk] :=subs (ihmal, Transpose {diff (theta (t) ,t) *Row (Rotl, 1) +diff (psi(t) ,t) *Row (Rot2.Rot

1,3) +{diff (phi (£) ,£) *<0|0[1>))) ;

N
o, = 0
0
> v[k]:=<0,R¥diff (theta(t) L), 0>;
v, =R e
Y

[ 2.1. Sarkacin kiitle merkezinin ¢izgisel hizimn edilmesi:
> r[sl]:=<0,1*sin(alpha(t)) ,-1*cos(alpha(t))>;

rp=Isin(a)e —Ilcos{o)e
z
> r[s0] :=simplify(Rot.r[sl]);

0
1o =| = (—cos(0) sin(ow) + sin(0) cos(ct))
—1 (sin(0) sin{ o) + cos(0) cos(ax))
> omegal[sl] :=<diff (alpha(t) ,t),0,0>;
®,; = ae
X
> omegal[s0] :=simplify (omegal[k]+Rot.omegal[sl]) ;

@, =6 +ade
x
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> v[s] i=simplify(simplify(v[k]+CrossProd{omega[s0],r[s0])) trig)
v, =(RO +10 sin(8)sin(n) + 78 cos(0) cos(m) + L e sin(0) sin(er) + /o cos(0) cos(a))e
Y

(8'+ o)/ (—cos(0) sin(o) +sin(8) cos( o)) e

[ 2.2. Sarkacin kiitle merkezinin agisal mzimin edilmesi:
> omegal[s] :=omegal[s0] ;
o, = (8’+ oty) e
X
[ Kinetik enerji:
> E[k] :=simplify(1/2*M[k]*v[k].v[k]+1/2*T[k] *omega [k] .omega [k]+1/2*m[s]*v[s] .v[s]+1/2*T[s
]*BilinearForm{omega[s] ,cmega[s] ,conjugate=false)) ;

Co C L2 .2
E,=m RO o sin(0)sin(a)+m RO o cos(0) cos(e) +m R (0 ) Isin(0)sin(oe)+m R(0) [cos(0)cos(a)
1, 21 5 201 5 12 o1 w21 21 .2 I IR
+§msl (8) +£MkR (8) +§m£R (8) +J.8 a+£Jk(6) +§J£(e) +5J5(a) +m I8 a+5msi (o)
[ 3. Lagrange ifadesinde ver alan potansiyel enerji teriminin olugturulmast:
> E[p] :=simplify (M[k] *g*R+m[s] *g* (R+xr[s0] .<0,0,1>)) ;
E,=-g(-M,R—m R+ m_sin(8)!sino)+m, cos(6)/cos(a))

[ 4. Lagrange ifadesi:
> Li=simplify(E[k]-E[p]l) -
L=m RO lo sin(0)sin(c) +m RO Fo cos(8) cos(a) +m, R (6% 75in(6) sin{o) +m, R (8 7cos(8) cos(er)
1 L] L] 2 | L] Lz .2 | .2
Fom P0) +-MRY(0) +-m RP(0) + 0 o+ - (0) +-J(0) +—J (o) +m PO o+ —m o)
2 2 2 2 2 2 2
~M, gR—gm R+gmsin(0) Isin(a)+gm, cos(8) fcos(or)
{ 6. Hareket Denklemleri:
> f[theta] :=simplify(diff (subs (theta=theta (t}) ,psi=psi (t) ,phi=phi{t} ,x=x(t) ,y=y(t) ,alpha=a
1pha (t) ,beta=beta (t) ,B=diff (beta (t) ,t) ,A=diff (alpha (t) ,t) ,X=diff (x(t) ,t) ,Y=diff (y(t) ,t)
,Theta=diff (theta (t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t),t),
diff (subs (diff (theta(t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Fhi,theta (t)=theta,p
si (t)=psi,phi (t)=phi,diff (z (t) ,t)=X,diff (y(t) ,t)=Y¥,diff (beta(t) ,t)=B,diff (alpha(t) ,t)=A
,alpha (t)=alpha, beta(t)=beta,x (t)=x,y(t)=y,L) ,Theta)) ,t)
-subs (alpha=alpha (t) ,beta=beta (t) ,theta=theta (t) ,psi=psi (t) ,phi=phi (t) ,z=x(t) ,y=y (L) ,X=
diff (x(t) ,t) ,¥=diff (v (Lt} ,t) ,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t) ,Phi=diff (phi(t) .t
) ,B=diff (beta(t) ,t) ,A=diff (alpha(t),t),
diff (subs (diff (beta(t) ,t)=B,diff (alpha(t) ,t)=2A,diff (theta(t) ,t)=Theta,diff (psi(t) , t)=Ps

i,diff (phi{t) ,t)=Phi, theta(t)=theta,psi(t)=psi,phi(t)=phi,diff {(x(t) , £)=X,diff (y(t) ., t)=¥Y
,¥(t)=x,y(t)=y,alpha(t)=alpha,beta(t)=beta,l) ,theta))=tau[x]);

“ . . (2 "
So=m Rilo sin(0)sm(e)—2m Ric cos(0)0 sin(e)+m RI(a) sin(0)cos(o)+m R 7ot cos(0)cos(o)
' ' 2 " 2
+2m Rl sin(0)8 cos(a)—m RI(a) cos(8)sin(o) +2m RO [sin(8)sin(o) +m R(60) [cos(B)sin(ct)

+2m R Bﬂlcos(e) cos(o) —m R (8’)2 Isin(0) cos( o) +m, P 6"+MkR2 0+ mSR2 6”+JS oc”+J’,c 6"+JS 6"+ m, Po
—gm_ cos(0) fsm(o) +gm sin(0) /cos(a) =1,

> flalpha] :=simplify (diff (subs (theta=theta (t) ,psi=psi (t) ,phi=phi(t) ,x=x(t) ,y=y(t) ,alpha=a
lpha (t) ,beta=beta(t) ,B=diff (beta(t) ,t) ,A=diff (alpha (t) ,t) ,X=diff (x(t) ,t) ,¥=diff (v(Lt) , t)
,Theta=diff (theta(t) ,t) ,Psi=diff (psi(t) ,t}) ,Phi=diff (phi(t) ,t),
diff (subs (diff (theta(t) ,t)=Theta,diff (psi(t) ,t)=Psi,diff (phi(t) ,t)=Phi,theta (t)=theta,p
si(t)=psi,phi(t)=phi,diff (x(t) ,t)=X,diff (y(t) ,t)=Y,diff(beta(t) ,t)=B,diff (alpha(t), t)=2
,alpha (t)=alpha,beta(t)=beta,xz (L)=x,y(t)=y,L} ,A)) ,t)
-subs (alpha=alpha (t) ,beta=beta (t) ,theta=theta (t) ,psi=psi (t) ,phi=phi () ,x=x(t) ,y=y(t) ,X=
diff (xz(t) ,t) ,¥Y=diff (y(t),t) ,Theta=diff (theta(t) ,t) ,Psi=diff(psi(t) ,t) ,Phi=diff(phi(t) .t
} ,B=diff (beta(t) ,t}) ,2=diff (alpha(t),t),
diff (subs (diff (beta(t) ,t)=B,diff(alpha(t) ,t)=A,diff (theta(t) ,t)=Theta ,diff (psi(t) ,t)=Ps
i,diff (phi({t) ,t)=Phi, theta(t)=theta,psi(t)=psi,phi(t)=phi,diff (x(t) ,t)=X,diff (y(t) , t)=Y
,X¥(t)=x,y(t)=y,alpha(t)=alpha,beta(t)=beta,lL) ,alpha)) =taul[x]):

Fo=m RO Isin(0)sin(o)+2m, R (e')2 1cos(0) sin(e) +m, RO Icos(0) cos{a) ~ 2m, R (e')2 Isin(®) cos{ o) +.7.0"

+J a"+ms F 9"+m5 F ccﬁ+gms cos(0) /sin{a) — gm sin(0) /cos(o) =1,
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EK A3

[> restart;

[> with(VectorCalculus) :with (LinearAlgebra) :

[> PDEtools[declare] ({x(t) ,y(t) ,theta(t) ,psi(t) ,phi(t) ,alpha(t) beta(t)},prime=t,quiet});

[ L. Euler agilan igin rotasyon matrisleri:

> Rotl:=<<cos(phi(t)),-sin(phi(t)) ,0>|<sin(phi(t)) ,cos(phi(t)) ,0>]|<0,0,1>> ;Rot2:=<<1,0,0>
|<0,cos (theta(t)} ,-sin(theta(t)}>|<0,sin({theta(t)) ,cos(theta(t))>> ;Rot3:=<<cos(psi(t)),
-sin(psi(t)} ,0>|<sin(psi(t})) ,cos(psi(t)) ,0>[<0,0,1>>;

[cos(9)  sin(¢) 0]
Rot? =|—sim{¢) cos(¢) O

1

0

0

0

1

0

Rot2 =0 co(0) sin(0)
L0 —sin(9) cos(0)]
cos(y) sin(y) O
Rot3 =|—sin{y) cos(y) 0O
0 0 1

> Rot:=subs (Rot3.RotZ.Rotl) ;
cos(y) cos( ) — sin(y) cos(0) sin(d)  cos(w) sin(d) + sin(w) cos(8) cos(d)  sin{y) sin(0)
Rot =|—sin{y) cos(d) — cos(y) cos(0) sin(¢p)  —sinfy ) sin( $) + cos( ) cos(0) cos(d)  cos(y) sin(0)
sin( 6 ) sinf d) —sin(9) cos(d) cos(8)
2. Lagrange ifadesinde yer alan kinetik enerji tesiminin olugturulmas:
> E[k]:=1/2*M[k]*v[k] 2+1/2*T[k] *omega [k] *2+1/2*m[s]*v[s]"2+1/2*T[s] *fomega [s] *2;
1 2 1 > 1 s 1 2
£, ::EMkvk +5Jk @, +Ems ¥, +5Jsms
> omegalk] :=subs (Transpose (diff (theta(t) ,t) *Row (Rotl,1)+diff (psi(t) ,t) *Row (Rot2.Rotl,3)+(
diff (phi(t) t)y*<0|0[1=)))

9 cos(0) + y sinf0) sin(4)
© =| 8 sin($) - ' sin(8) cos($)
qJ’cos(G)+q)’
> vIk]:=<diff (x(t) ,t) ,diff (y(t),t),0>;
v, =x'e +y'e
X Y
[ 2.1. Sarkacin kiitle merkezinin ¢izgisel hizimin edilmesi:

> r[sl]:=<l*cos(alpha(t))*sin(beta(t)) ,l*sin(alpha(t})) *cos(beta(t)),-1l*cos(alpha(t)) *cos(
beta{t))>;

r,=1lcos(a)sin(p)e +/sin(o)cos(f)e —/cos(o)cos(f)e
X y Z

> r[s0]:=simplify(Rot.r[sl]) ;

T =

[£(cos(o) sinf3) cos(y) cos( ) — cos(ce) sin( B ) sy ) cos(0) sin( ¢) + sin{ o) cos( ) cos{ ) sin( )
+ sind o) cos() sin{y) cos(0) cos(d ) — sin(y) sind 0 ) cos( o) cos( )]
[/ {(—cos(ou) sin(p) sin{ys) cos(¢) — cos( o) sin( ) cos(y) cos(6) sin(§) — sin(cx) cos(P) sin(y) sin(6)
+sin( o) cos( ) cos(y) cos(8) cos(dp)— cos(y) sin( 0 ) cos( o) cos())]
[ (—sin(0 ) sin( ¢ ) cos{ o) sin{ 5 ) + sing 6 ) cos(¢) sinf or) cos( ) + cos(9) cos( o) cos([))]
> omega[sl] :=<diff (alpha(t) ,t) ,diff (beta(t) ,t)  0>;
@, = e + B'e
X y
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> omega[s0] :=simplify (omega[k]+Rot.omega[sl]) ;

@ =

(6'cos(¢) + Lpfsi.n(ﬁ) sin o) + o cos(y) cos{ ) — o sin{y ) cos(0) sin( ) + [3’ cos(y) sm{¢) + B’si.n(l.p) cos(0) cos( )

e +
X

(8sin() — w'sin(8) cos(6) — o sinyr) cos($) — o cos(yr) cos(B) sin(¢) — B sin(y) sin($) + B cos(y) cos(8) cos(¢h))
e +(y cos(8)+ ¢ +sin(8) sin() o — sin(8) cos() B e
hd z

> v[s] i=simplify(simplify(v[k]+CrossProd{omeqga[s0],r[s0])) trig)

v, =(x"+1 stin(e) cos( o) sin(p) +.hp’cos(¢))2 sin(or) cos(ff) — le'sm(q)) cos(0) cos(oe) cos(f)

+1¢ cos(o) sin{P) sin{y) cos(d)+ 1 6 sin{ o) cos(B) sin(y) sin(d) + 7 & cos(y) sinf9) cos( o) cos(P)

— Ty cos(§) sin §) cos(ou) sin( P )+ 7 o sin(y ) sin(6) sinf o) cos( ) + 7 o cos(y) sing ¢) cos( o) cos(p)

— 1P sin(y) sin(0) cos(c) sin(P) — I B cos(y) cos( ) cos(or) cos(B) — 79 sin(0) cos{ o) sin B) cos($)°

- llp’ cos($)? sina) cos( p) cos(B)’ — lB'sm(q:) sin(0) cos( ) sin o) cos( ) + llp’sin(e) cos( ) cos(0) cos(a) cos(p)
o sin{y ) cos{ ¢ ) cos(9) cos(o) cos(p)+/ sti.n(q,r) sinf ¢ ) cos(6 ) cos( ) cos( )

+ll|J’ cos(0) cos(ce) sin( f) sin(y) cos() + .hp’t::os(e)2 cos( o) s ) cos(y) sin(¢)

+ll|J’ cos(8) sin( o) cos( ) sin{y) sin{ ¢ ) — llp’ cos(8)? sinf o) cos(B) cos(y) cos($)

+ll|J’ cos(0) cos(y) sinf0) cos(or) cos(P) + lq)’cos(ot) sin( ) cos(y) cos(0) sin(h)

- lq)’sin(ct) cos(p) cos(y) cos(0) cos(d) + llp’cos(q)) sinf ¢) cos( o) sin{ p) cos(831%) eX +(y'

+qu’ cos( o) sin B) cos(9)* — lw’cos(a) sin( )+ lqaycos(ot) sin( ) cos( ) cos(d) + lq)'sin(ot) cos( i) cos(y) sin{ )

- lq)’sin(q,l) sin(0) cos(o) cos(f) +19'cos(¢))2 sin( 9 ) sinf o) cos(ff) + 10 cos(d) cos(0) cos(o) cos(ff)

+7y dn(¢) cos(§) sin( o) cos( )+ sin(0) o sin( o) cos( ) cos(y) — 7sin($) o sin(y) cos(o) cos(p)

—/&in(9) B'cos(oc) sin( ) cos(y) + 7 cos(d) [3’ gin(y) cos( o) cos(B) — llp’COS(OL) sin B cos(8)% cos( §)?

+ll|J’ cos(0) cos(ce) sinl ) cos(y) cos(d) — lq,l'cos(ﬁ)2 cos( o) sin{ ) sin{y ) sin( ¢ )

+llp’ cos(0) sin( ) cos(B) cos(y) sin( ) + llp’cos(e)2 sin( o) cos( B sin(y) cos(¢)

- llp’ cos(0) sin(y) sin( 8) cos( o) cos( ) — ld,)’ cos( o) sin{ B sin{ ) cos(6) sin( ¢)

+l¢’sin(ot) cos( ) sin{y ) cos(6) cos(d) — lefcos(fj)) sin(0) sin( ) cos( o) sin( )

+llp’ sin(0) sin( d) cos(0) cos( ) cos(f) +io cos(y) cos(d) cos(8) cos( o) cos( )

+1i B'cos(w) sin{ &) cos(0) cos(a) cos(p) — lefsi.n(qJ) cos(§) sin{ o) cos( p) cos(8)* +lL|JrCOS((1) sin( p) cos(8)?) ey+ I

(x'sm(oc) cos(fi) cos(0) — ﬁ'cos(G) cos{ o) sin(f3) — stin(q)) cos{ o) sin( ) cos(y) cos(d)

+ e'sm(¢) sin(y ) sin{0) cos(a) cos(f) + 1‘u’sin(9) cos($)° cos(o) sin( ) cos(y) — B'cos(d:) sin(or) cos( ) sin{y) sin{ 6 )
+ 6'cos(¢)2 sinf o) cos( ) cos(y) cos(0) — G} cos(0) cos(y) sinf0) cos(a) cos(p)

- Lp'sm(e) cos{ o) sin( i) cos(\) cos(0) + Lp'cos(q)) sinf{y) cos{ ) cos( p) cos(0)*

+ w'sm(e) sinf o) cos( ) sinf{ yo) cos( )’ + 1‘u’ sin ) cos(y) cos( o) cos(p) cos(0)’

- 6'cos(ot) sin( p) sin{y) cos(8) cos(§)F - chos(qn) cos(e) sin{ ) cos(y) cos(8) sl )

- Lp'sm(e) sin(¢) cos{o) sin( ) sin(y ) cos(h)— stin(q)) sin{ o) cos( ) sin(ys) cos(6) cos( )

+ w'sm(e) cos(h) sin{a) cos(B) cos(y) sin(d) + tp'sin(e) cos( $)? sin(c) cos( p) sin(y) cos(0)

+ q,r'sm(ﬁ) cos( o) sin( i) cos(y) cos(6) cos(§)’ — 9’005(4))2 cos( o) st ) sin{y) + 9'cos(ot) sin §) sinf y) cos(0)
- Lp'cos(q)) sin( ) cos(et) cos(f)— Lp'sjn(q)) cos(y) cos(oe) cos(f)— B’sin(q)) sin(0) cos(o) cos(f)

- w'sm(e) sin{ o) cos(f) sin{y) + e’sin(ct) cos(p) cos(y) cos( )% — a'cos(q)) sin(0) cos(a) cos(p)

+ q,r'sm(ﬁ) sinf ¢ ) st o) cos( ) cos(y) cos(0) cos( ) — w'sm(e) cos(¢) cos{ o) sin( 3 ) sin{y) cos(0) sin{ o)

- Btsjn(cc) cos( i) cos(y)) eZ
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2.2. Sarkacimn kiitle merkezinin agisal nzimn edilmesi:
omega[s] :=cmega [s0] ;

B

(Grcos((b) + w'sm(e) sin( ) + a’cos(w) cos(d) — a’si.n(lp) cos(0) sin( o)+ B’cos(w) gin( o)+ B’sin(lu) cos(0) cos(d))

e +
X

(6 sin(4) — ' sin(8) cos($) - o sin(yr) cos($) - o cos(y) cos(B) sin(¢) — B siny) sin($) + B cos(y) cos(6) cos(9))
e +(y cos(0)+d +sin(0) sin(d) o — &in(0) cos( I P e
y z
Kinetik enerji:
E[k] :=simplify(1/2*M[k]*v[k].v[k]+1/2*T[k] *omega[k] .cmega [k]+1/2*m[s] *v[s] .v[s]+1/2*T[s
]*BilinearForm(omega[s] ,omega[s] ,conjugate=false}) ;

E =-2m, r qJ’COS(CL)z sin{ p) cos( )’ B'cos(ﬁ) cos(0)° -2 m, r 1‘u’ cos( ) sin(B) cos(d) efcos(ﬁ) cos(y)? cos(8)?

+4m, r L|J’COS(CL)Z sin(p) cos(¢)’ e'cos(ﬁ) cos(8)” cost )’ — . r (Lp’)2 sind ¢ ) cos{ ) sin{y) cos( $)* cos(y)

—m P (q;')2 sin(B) sin(6) cas(m)? sin( B ) cos(6)’ cos( ) cos(0)% +m_I% ¢ cos{a)? cas(ys) cos(0) sin( $) 6 sin(6)

+m, I lp’cos(q)) cos{a)? sin( B) cos(8)’ oc'cos(lp) cos( )+ n, r q>'cos(oc)2 cos(y) cos( ) w'cos(ﬁ)2

—m, r ¢’COS(L|J) cos{ o) cos( ) Gysi.n([.’i) cos( ¢

— 4 m, r (L]J’)2 cos( o) sin( B) sin{ ) cos( )7 sin{ o) cos( B) cos(yr) cos(0)

—m, I qJ’sin(B) sin( o) cos( o)’ cos($) etcos(e) +2m, I3 w'sm(e) sin( o) cos( o)’ cos( )’ etcos(e)

—-2m, (Lp’)2 sin{0) cos(§)? cos{w)® sin(B) cos{ y)* sin( ) cos(B)

+4m, 7 Lp’sin(e) cos( ) cos(a) sin( ) cos(y)? efsin(oc) cos(p)—J, q)’sin(e) cos(h) [3'

—2m, P (Lpf)2 cos(8) cos(m) sin( B ) cos(y) cos( §)? sin( ¢ sin o) cos( p)— msll.p'cos(ﬁ)2 cos( o) sin( ) sinfy ) sin{ ¢ ) ¥
+m, llp'cos(ﬁ) sin{ o) cos( ) cos(y) sin(¢) y'— m, lq,r'cos(e) st ) sind 9) cos( o) cos( )y’

+m, I (qJ')2 cos(0)? cos( o)’ sin{ B) cos(y) cos($) sin(@) sin{ ¢) cos(p) +mshpfcos(9) cos( o) sin( ) cos(y) cos( ) v
+2m, r (Lp’)2 cos(6) cos( o) sin{ B ) cos( y) cosl § ¥ sin ¢ ) sinf ety cos( P ) +m, Fsin(8) B’cos(a)z cos(y) q,r’

+m, I ¢’cos([3)2 cos{y) lp’ cos( ) cos(8)* — m, £ ¢' sin( s ) cos{ ) cos( i) 9’005((1))2 sin o)

+2m, 7 q)'sm(e) cos(a)? cos( ) q,l’cos(e)2 sin(p) sin(¢)— 2 m, I q)’sin(e) cos( o) cos( p)? L|J’c:os(6)2 sin{ o) cos( )
—m, I (d:’)2 sin(0) cos(o) cos( P sina) cos(@) cos( ) + i, r (L]J’)2 cos(0)” sina) cos( ) cos(y) sin( &) cos( ) sin( B )
+2m, r (L]J’)Z cos(0)° sin o) cos( p)? sin{y) cos{ ¢ ) sin(0) sin{ ¢ ) cos(o) +meL|J’COS(9)2 sin(or) cos( ) sin{y) cos(hp) v’
+m, I stin(e) cos(¢)” cos(p)? Lp'cos(e) sin(y ) + 2 m, 7 9'005(3)2 cos{y) cos( )’ Lp'sm(e) sin(y)

—m, I q)’cos(B)2 cos(ys) cos(0) cos(§)’ lp’* m, P (i)’sin(cc) cos( ) sin(y) Lp'cos((b) cos( o) sin( i)

—m, I ¢’cos(a)2 cos(y) cos($)? e'sm(e) sin( ¢ ) — m, r ¢'cos(a)2 cos(ys) cos( )’ 1‘u’ cos(0)?

—m, I ¢’sin(a) cos( B cos(y) Bycos(q)) sin(8) cos(ot) sin( ) — m, r q)'cos(ﬁ)z cos(y) 1\u'cos(¢) cos(0)°

—2m, IS e'SjIl(()L) cos(P)? cos(y)? Lpfsi.n(qa) cos(a) cos(6) - 4 m_ IS Lpfsi.n(qn) cos(y)? cos( o) cos(p)? G} sin( o) cos( ¢ )?
—2m, 7 (Lp’)2 sinf ) cos(y ) cos(e)” cos( ) sin(0) sin{B) cos(8) cos( )

+2m, r ¢'cos(ct)2 sin{ys) cos(8)” sin{ &) lp’COS(ﬁ)2 — i, P chos(¢)2 sinfe) cos(f)? w'cos(e) sin() cos( o)

—m, r chos(q))z sin{ o) cos(p) B'cos(ot) sin{ ) cos{y) — 2 m, r (Lp’)2 cos(0)’ sin( o) cos(p)° cos(d) sin(0) cos(a)
+m 0 cos(e) sin ) o sin(ys) sin ) cos([) +m, 2y cos(9) sin( ) cos(e)® B sin{yr) sin(0)

+m, IS oc’sin(tp) sin(8) cos(p)? lp’ cos(9)’ -2 m_ IS (qJ’)2 cos(8)7 cos(a)? sin(y) sin( ¢) cos( B )°

+m, 5 ¢’cos(ct)2 sinf yr) cos(¢)* Lp'sj.n(q)) cos(8)* +m, IS qJ'sj.n(ct) cos( ) sin{y) q,r’cos(qn) cos( o) sin( ) cos(6)°

+m, I ¢’cos(tp) cos{ a)? cos( ) Bysin([?i) - 2m, r q)'cos(q,l) cos(c)® cos(B) stin(ﬁ) cos(0)?
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+m, r q)fc:os([i)2 cos(y) cos(8)’ cos(d)’ Lpf+ m, I (¢')2 cos( o) sin{ B) cos(d) gin( o) cos(p) gin( ¢)

+m, I ¢’cos(cc)2 sin(ys) cos(d) Btsin(e) +m, P (b'cos(oc) sin( ) cos( ) u'sm(e) sin( o) cos(fi)

o, 1 cos(B Y sinCu) sin) v 0s(0) +m, () c0s(8) cos(B)* sinCp) sin(5) cos( )

+m, r (lp’)z cos(8)% sin( o) cos(P) sin{y) cos( ) cos( o) sin{ p) + . F q)'cos(ot)2 cos(y) cos(8)? lp’COS(d))
—m, 7 ¢’cos(m)2 cos(y) cos(0)’ l.p'cos(qn)3 + i r W’COS(B) cos( o) sin{ ) cos(d) oc'sin(e) sin(e) cos( )
+m, I (q,l’)2 cos(0)” cos(e)” sin(y) cos( o) sin(¢) + m, P L|chos(0)2 cos(a)* cos(y) sin( §) ) sin(6)

+m, r lp’cos(e) cos( P )° sin ) ctfsi.n(e) —2m, F qJ’cos(e)3 cos(y) cos( o )? cos(p) 9 s )

—m, 7 e’sm(¢) cos( o) sin( ) cos(y) cos( ) cc'sjn(oc) cos( i) cos(0)

+m, I’ (e')2 sin{ &) cos(o) sin{ p) cos(y ) cos(d) sin( ) cos(B)

—2m, F (6')2 sin( ¢) cosC o) sind B ) cos(y)? cos( 0’ sinf o) cos(p) -%—%J’,c (q)’)2 +m, F (l]J’)Z cos{o)? cos( ¢ cos(8)°

—é 2 P (L]J’)2 cos( o)’ cos(0)" cos(y)? - %ms I (q,l’)2 cos( B cos(0)” cos(§)’ - éms r (¢’)2 cos{a)? cos(0)° cos(¢)>?

() cos(9) cos(B)’ cos(y)' ~ 2m, £ () cos(B)” sin(a) cos( ) sin{r) cos(0) cox(or) sin( )

+2m 7 (y) cos(0)" sin(er) cos(P) sin(r) cos($)” cos(cr) sin B)

£2m, 7 (y) cos(0)" sin(ar) cos(B) sin( ) cos($) cos(c) sinf )

+2m, 1 ' siny) sin(8) cos( o) cos(B)° s sin(¢) cos(6) sin( o) cos(8)”

e, 1(8)) cos(6)* sin(®) sin(cr) cos(B)” 0os(8) cos(er) -+ m, I (8) cos(9) cos()* sin(1y) sin(0) cos( )

+4m, 8 cos(o) sin(B) cos(8) w sin(8) sin(oc) cos(P) cos(p)’ + 2 m, I8’ cos($)’ sin(ax) cos(B)” sin(6) ' cos(ex)

—m, 2§ sin(o) cos(P) sin(¢) P sin(8) cos() sin(P) + m, P B cos(8) cos(o:) cos(p)% ¢ sin(o)
—m, s lp’cos(e) cos( o)’ cos(y) cos( ¢ )? sti.n(e) sin(¢) — 2 m, F q,r'cos(e)3 cos( o) sin( ) sinf ¢) d)'SiJl(CL) cos( ) cos(¢)

() c0x(8” cox(or)’ sin(up) sin( ) cos(9)’ — m, I 0os(8) sinfor) cos( ) cos(y) 8 c0x( $) sin® ) cos(cr) sin B)
2, (4 c0s(8)" sin(er) cos(P ) sin(ip) cos(6)” cos(c) sin( B

i, (w) cos(0) sin(y) sin(D) cos(ar) cos(P)? sin($) cos($) sin o)

e, (y) cos(0)sin(yr) sin(0) cos(e)” cos(B) sin( )~ m, £ (1) cos(0) sin(ip) sin(0) cosfor)” cos(B) sn B) cos( $)’
2, () eos(8) sin ) sin(8) cos(o1)’ cos(p) sin(p)

<2, F(y) cos(8) sin(y) sin(8) cos(w)? cos(B) sin(B) cos($)? — m, 14 cos(er) sin(B ) sin(y) cos() sin(4) "

£ (') cox(8) os(B)” sin(ur) cos(6)” in(8) — m, £ (§) cos(e) sin( ) o0s(0)’ sin(9) sin( ) cos( ) cos(9)

—m, I* ¢ cos()” sin(y) cos(0) sin( §) ' cos(§)” + mr, I ¢ cos(B)* cos(y) sin($) © cos($)” sin(6)

+m I ¢ sin(o) cos(B)° cos(y) ' sin(8) cos(8) cos(wx) + m, I ¢ sin ) cos(e)” cos( B) 8’ cos(¢) sin(¢) sin(f )

— 4 m, r B'vzzos(ﬁ)2 sin(y) cos(8) cos( ) Lp'sjn(e) cos(y ) + 4 m, r B'vzzos(ﬁ)2 sin(y) cos(8) cos( )’ Lp'sjn(e) cos(y)
—4m, F e'COS(B)Z sin(y) cos(8) cos(¢)* w'sm(e) cos(y) + 4 m,_ F B'cos(B)2 sin(y) cos(8) cos(¢)’ Lp'sj.n(e) cos(y)

—m, 7 Brsin(qy) cos(B)? cos(0)? cos(¢)’ q;'sm(e) + F (B')2 sin(0) cos(¢) sinf o) cos( B )7 cos(0) cos( o) cos(y)?
+2m, P q)'cos(oc) sin{ B ) cos(y) cos( ¢)? lp’S]‘Il(d)) sin{ o) cos(f)
—2m, P q)'cos(a) sin( B cos(y) cos( ) l,u’sin(q)) sinf o) cos( B ) cos(8)°
+m, r ¢’sin(ot) cos( B cos(ys) sin( o) efcos(q)) cos(0) cos(o) +m, r Lp’sin(e) cos(0) cos( B)7 cos(y) sin(d) o cos(0)
o, B () sin6) cos( B’ cos() cos(0)” cos(4) sin(yr) - m, £ (8) cos(h)? cos(B)? sin( ) sin( ) cos(p)
—2m, P B'cos((j)) cos(p)? sinf ¢ ) Lp'sin(e) cos(y)? + mslti)’sin(a) cos(p) sin{y) cos(6) cos(d) ¥’
—2m, P q)'sjn(oc) cos(fi) sin(y) cos(0) cos(d) lp’ cos( o) sin(f)
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