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GÖZLEMLENEMEYEN RİSK FAKTÖRLERİNİN ÖLÜMLÜLÜK ÜZERİNDEKİ 
ETKİSİ 

Funda KUL 

ÖZ                          

Aktüerler, sigortalı popülasyonun aynı risk faktörlerine maruz kalan bireylerden 

oluşmadığının, diğer bir deyişle, sigortalı popülasyonun homojen bir yapıya sahip 

olmadığının farkındadırlar. Bu heterojenlik, popülasyonun ölüm zamanı verisi 

kullanılarak elde edilen ölüm oranları arasında bağımlılığa neden olmaktadır.  

Hayat sigortası ürünlerinin doğru fiyatlandırılabilmesi için popülasyonun 

ölümlülüğüne etki eden heterojenlik yapısının iyi anlaşılması gerekmektedir. 

Sigortalı popülasyonun heterojenliğinin temel olarak iki kaynağı bulunmaktadır. 

Bunlar; gözlemlenebilir ve gözlemlenemeyen risk faktörlerinden kaynaklanan 

heterojenliktir. Gözlemlemlenebilir risk faktörlerinden kaynaklanan heterojenlik 

poliçe düzenlenirken risk kabul sürecinde dikkate alınabilirken, gözlemlenemeyen 

risk faktörlerinden kaynaklanan heterojenlik ise dikkate alınamamaktadır. 

Gözlemlenemeyen risk faktörlerinden kaynaklanan heterojenlik risk faktörüne 

ilişkin bilginin bulunmaması veya var olan bilginin yetersiz olmasından 

kaynaklanmaktadır.  

Bu çalışmada, Türkiye’de faaliyet gösteren 5 büyük sigorta şirketinden elde edilen 

ölüm verisi cinsiyete göre ayrılmış ve heterojenlik yapısının belirlenebilmesi için 

hassasiyet modelleri incelenmiştir. Hassasiyet modeli parametrelerinin tahmini için 

ise Genelleştirilmiş Doğrusal Modelleme Yöntemi kullanılmıştır. Elde edilen 

sonuçlara göre kadın ve erkek sigortalı veri kümeleri için heterojenliğin etkisinin 

önemli olduğu görülmüştür.  
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THE EFFECT OF UNOBSERVED RISK FACTORS ON MORTALITY 

Funda KUL 

ABSTRACT 

Actuaries know that people, who bring into being insured population, does not 

exposure same risk factors, in other words, insured population is not 

homogeneous.  This inhomogeneity, causes dependence between mortality rates 

which is obtained from population mortality time data.  

In order to fairly price life insurances, a better understanding of the extent of 

heterogeneity in population mortality is required. Basically, there are two reasons 

for heterogeneity in insured population. They are heterogeneity causes from 

observable risk factors and heterogeneity causes from unobservable risk factors. 

As, heterogeneity causes from observable risk factors is taken into consideration 

at underwriting process when issuing a policy, heterogeneity causes from 

unobservable risk factors is not taken. Heterogeneity causes from unobservable 

risk factors results from being uninformed or not having enough knowledge about  

risk factor. 

This paper applies well established frailty models to quantify the extent of 

heterogeneity in Turkey insured population death data which is taken from 5 active 

insurance company in Turkey and seperated by gender. To estimate parameters is 

used Generalized Linear Modelling Method. The results confirm significant 

heterogeneity effect exists for male and female insured population.  
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1. GİRİŞ ve ÖNCEKİ ÇALIŞMALAR 

1.1. Giriş 

Risk, gerçekleşmesi kesin olmayan; ancak gerçekleştiğinde, zarar veya kayıp 

durumlarına yol açabilecek bir olayın ortaya çıkması anlamına gelir. Hasta olma riski, 

trafik kazası yapma riski ya da faiz riski genel anlamıyla risk kavramına örnek olarak 

verilebilir. Hasta olma riski, ilaç ya da aşı gibi korunma araçları ile en aza 

indirgenebileceği gibi, maddi zararlara yol açabilecek risklerden de sigorta ürünleri 

satın alınarak korunulabilir.  

Sigorta, kişilerin karşılaşabilecekleri zarar ve gelir kaybına yol açabilecek olayların 

ekonomik sonuçlarından korunmak için aynı riski paylaşan bireylerin risklerini, belli bir 

prim karşılığında transfer etme sistemidir. Yangın, deprem, trafik kazası gibi çeşitli 

risklerin ev ya da otomobil üzerinde yol açabileceği finansal zararlardan korunmak 

için yangın sigortası, doğal afet sigortası, kasko ya da trafik sigortası yaptırabileceği 

gibi kişilerin hayatlarını kaybetmesi ya da malul olması gibi durumlarda geride 

bırakılacak aile ya da lehdarların finansal kayba uğraması riskinden korunmak için de 

hayat sigortası yaptırabilir (Yıldırım, 2010). Gelişmiş ülkelerde hayat sigortaları 

sadece riskten korunma amaçlı değil yatırım yapma amacıyla da kullanılmaktadır 

(Atkinson ve Dallas, 2000). 

Hayat sigortası yaptırmadan önce bireyin risk kabul sürecinden (underwiriting) 

geçmesi gerekmektedir. Risk kabul sürecinde; yaş, cinsiyet, yaşanılan bölge gibi risk 

faktörleri dikkate alınarak bireyin ait olduğu risk sınıfı belirlenir ve bu birey için o risk 

sınıfına ilişkin prim oranı uygulanır. Cummins et al. (1983), hayat sigortaları için 

risklerin sınıflandırılmasını ayrıntılı olarak incelemişlerdir. Günümüzde, sigorta 

şirketleri ‘Sayısal Fiyatlandırma Sistemi (Numerical Rating System)’ olarak 

adlandırılan yöntemi kullanarak risk sınıflandırması yapmaktadır. Bu yöntem, ilk 

olarak 1919 yılında Amerika’da uygulanmaya başlanmıştır (Olivieri,2006).   

Hayat sigortalarında aktüeryal denge eşitliği ilkesine göre prim hesaplanırken iki 

temel varsayım kullanılmaktadır. Bunlar; faiz oranı varsayımı ve hayat tablosu 

varsayımıdır. Faiz oranı varsayımı, teminatın zaman değerinin sürekli değişmesi 

nedeniyle, hayat tablosu varsayımı ise yaşa göre ölümlülük eğiliminin ileriye yönelik 

analizinin yapılabilmesi için kullanılmaktadır. Hayat tabloları, her yaşa göre yaşayan 



 
 

2

kişi sayısı, ölen kişi sayısı ve ölüm oranlarının bulunduğu tablolardır. Tosetti et al. 

(2000), hayat sigortası poliçelerinin fiyatlandırılmasında ölüm oranları ve faiz 

oranlarının yanlış seçiminin etkilerini ayrıntılı olarak incelemişlerdir. Birçok hayat 

sigortası ürününün finansal yapısı önemli olmasına rağmen son yıllarda ölümlülük 

eğilimine bağlı olarak ölüm oranlarının değişiminin incelenmesi daha büyük önem 

taşımaktadır (Pitacco, 2003). Bu nedenle hayat sigortalarının değerlemesinde ölüm 

oranlarının zaman veya yaşa göre değişiminin analiz edilmesi oldukça önem 

kazanmıştır. 

Olivieri ve Pitacco (2002) ölümlülük eğilimine ilişkin aşağıdaki üç durumun 

gözlemlendiğini belirtmişlerdir : 

 Genişleme (Expansion) 

 Dikdörtgenleşme (Rectangularization) 

 Ölümlülük dalgalanması (Mortality fluctuation) 

Genişleme, yaşam eğrisinin en büyük yaşının daha ileri yaşlara uzaması; 

dikdörtgenleşme, yaşam eğrisinin ileri yaşlarda yoğunlaşması, erken yaşlarda 

yoğunluğunun azalması ve ölümlülük dalgalanması ise, ölüm oranlarının yaştan yaşa 

farklı şekillerde sapma göstermesi olarak açıklanmaktadır. Yukarıda açıklanan 

ölümlülük eğilimlerinden genişleme ve dikdörtgenleşmenin modellenebilmesi için 

uzun zaman boyunca kaydedilmiş ölüm kesit verisine ihtiyaç duyulurken ölümlülük 

dalgalanmasının modellenebilmesi için ise kısa zaman boyunca kaydedilmiş ölüm 

kesit verisi yeterli olmaktadır. 

Ölümlülük dalgalanmalarına neden olan riskler farklı yaklaşımlar kullanılarak 

modellenebilmektedir. Bu modelleme yaklaşımlarının bazılarında uzun ömürlülüğün 

(longevity) artma eğilimi incelenirken diğer modelleme yaklaşımlarında ise ölümlülük 

dalgalanmalarının yapısı incelenmektedir (Lee ve Carter,1992; Pitacco, 2003).  

Ölümlülük dalgalanmasının dört temel nedeni vardır. Bunlardan ilki, ölüm tablosunun 

ya da olasılıksal ölümlülük modelinin yanlış olarak belirlenmesidir. Bir diğer neden ise 

popülasyondaki gözlem sayısının yeterli olmamasıdır. Çünkü gözlem sayısı az olan 

popülasyonlarda Büyük Sayılar Kanunu doğrulanamamakta ve bu yüzden bu 

popülasyonlarda rastgele sapmaların aksine sistematik sapmalar ortaya çıkmaktadır 

(Olivieri, 2002). Bir diğer neden ise Yaş Kaçması (Age Heaping)’dır. Yaşa göre 
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popülasyon verisi araştırması yapılırken, bireylerin yaşlarını en yakın beş ve beşin 

katlarına yuvarlayarak vermelerinden kaynaklanmaktadır. Son neden ise 

popülasyonu etkileyen risk faktörlerinin yeterli olarak belirlenememesidir. Portföy, 

homojen ve yeterli gözlem sayısına sahip olduğunda, ölümlülük dalgalanmaları doğal 

bir yapıya sahip olmaktadır. Bu dalgalanmaların kaynağı ölümlülüğü etkileyen risk 

faktörleri ile açıklanabilmektedir. Ölüm oranlarına ilişkin projeksiyonun gerçeğe en 

uygun şekilde yapılabilmesi için ise risk faktörlerinin yeterli ve doğru bir şekilde 

tanımlanması gerekmektedir (Pitacco, 2004; Pitacco ve Olivieri, 2005). Fakat ölüm 

verisi toplanırken risk faktörlerine ilişkin ayrıntılı bilgiye ulaşmak her zaman mümkün 

olamamaktadır. Bu nedenden dolayı, risk faktörlerine göre oluşturulmuş alt 

popülasyonlar, heterojen bir yapıya sahip olur. Alt popülasyonların heterojen olması 

ise ölüm oranları arasında bağımlılık yapısı oluşturur. Bu bağımlılık yapısı, 

ortalamaya bağlı tüm istatistiksel bilginin yorumlanmasını zorlaştırır (Keyfitz, 1985; 

Hougaard, 2000).  Bundan dolayı, Yashin et al. (1995) ölümlülüğü etkileyen risk 

faktörlerini gözlemlenebilir (observable) risk faktörleri ve gözlemlenemeyen 

(unobservable) risk faktörleri olmak üzere ikiye ayırmışlardır.    

Pitacco et al. (2009) ise gözlemlenebilir risk faktörlerini temel olarak 5 ana başlık 

altında incelemişlerdir: 

i. Yaş, cinsiyet gibi biyolojik ve fizyolojik özelliklere ilişkin risk faktörleri 

ii. İklim ve kirlilik gibi yaşanılan çevreye ilişkin risk faktörleri 

iii. Mesleğe ilişkin risk faktörleri 

iv. Bireysel yaşam şekline ilişkin risk faktörleri 

v. Sağlık durumuna ilişkin risk faktörleri 

Bu risk faktörlerinden (ii) başlığı tüm popülasyonun ölümlülüğünü etkilemektedir. Bu 

nedenle hayat tabloları bölge ayrımında oluşturulur. Geriye kalan faktörler ise 

bireysel ölümlülüğü etkilemektedir. Hayat sigortası şirketleri, bu risk faktörlerini poliçe 

düzenlendiğinde gözlemleyebilmektedir. Aktüerya literatüründe, gözlemlenebilir risk 

faktörlerine göre oluşturulan değerleme modellerine ‘bireysel değerleme modelleri 

(individual valuation models)’ adı verilmektedir (Olivieri, 2006). 

Gözlemlenemeyen risk faktörleri, bir risk faktörüne ilişkin yeterli bilginin bulunmaması 

veya var olan bilginin yetersiz olması durumunda ortaya çıkmaktadır. 

Gözlemlenemeyen risk faktörlerinden kaynaklanan heterojenliğin değerlendirildiği 

modellere ise aktüeryal literatürde ’birikimli değerleme modelleri (collective valuation 

models)’ adı verilmektedir (Olivieri, 2006).  
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Yaşam modellemesinde gözlemlenemeyen risk faktörlerinin etkisini inceleyen 

modellerden birisi, Hassasiyet Modelleri (Frailty Models)’dir. Hassasiyet modelleri, 

popülasyonun ölümlülüğüne etki eden gözlemlenemeyen ortak risk faktörlerinin etkisi 

bilindiğinde ölüm oranlarının birbirinden bağımsız olduğu varsayımını kullanmaktadır. 

Diğer bir deyişle; hassasiyet modelleri, ölüm oranlarının koşullu bağımsızlık özelliğine 

sahip olduğu düşünülerek oluşturulmuştur. 

Hassasiyet modelleri, risk faktörlerine göre sınıflandırılmış bireyler için tanımlanan 

dayanak ölüm hızının (baseline force of mortality), negatif olmayan ve 

gözlemlenemeyen risk faktörlerinin etkisini gösteren bir raslantı değişkeni ile 

çarpılarak oluşturulmaktadır (Duchateau ve Janssen, 2008). Hassasiyet 

modellerindeki temel düşünce, popülasyondaki bireylerin yaşları ilerledikçe, 

hassasiyet seviyesi yüksek olan bireyin ölme riskinin yüksek olması nedeniyle, 

sistemden daha erken ayrılmasıdır. Böylece hassasiyet etkisi seviyesi yüksek olan 

birey, sistemden daha erken ayrılacağı için popülasyonun ortalama hassasiyet 

seviyesi düşecek ve hassasiyet dağılımının sol tarafına kayacaktır. Sonuç olarak, 

popülasyonda hayatta kalan bireyler daha düşük ortalama hassasiyet etkisi 

seviyesine sahip olacaktır. 

Hassasiyet modelleri için popülasyonun heterojenlik yapısı, hassasiyet etkisinin 

dağılımı ile belirlenmektedir. Hassasiyet etkisi dağılımı ne kadar basık ise 

popülasyonun da o derece heterojen olduğu düşünülmektedir. Popülasyonun 

heterojenliğinden kaynaklanan ölüm oranları arasındaki bağımlılık ise hassasiyet 

etkisi dağılımının varyansı ile ölçülebilmektedir. Hassasiyet etkisi dağılımının 

varyansı büyük ise heterojenlikten kaynaklanan bağımlılık yapısı da güçlü olmaktadır 

(Duchateau ve Janssen, 2008).    

Bu çalışmada, 2004-2008 yılları arasında Türkiye kadın ve erkek sigortalı verisi 

kullanılarak ölüm oranlarındaki dalgalanmalar, hassasiyet modelleri kullanılarak 

modellenmeye çalışılacaktır. Çalışmanın Birinci Bölümü’nde tezin amacı, kapsamı ve 

önceki çalışmalar verilmiştir. İkinci Bölüm’de ise yaşam modellerinin tarihçesi, temel 

özellikleri ve uygulandığı temel çalışmalar ele alınacaktır. Üçüncü Bölüm’de 

hassasiyet modelleri ayrıntılı olarak incelenecektir. Dördüncü Bölüm’de modele ilişkin 

uygun parametrelerin belirlenmesi için kullanılacak Genelleştirilmiş Doğrusal 

Modelleme Yöntemi ile ilgili bilgi verilerek model algoritması tanıtılacak ve 2004-2008 

Türkiye Sigortalı verisine ilişkin uygun hassasiyet modeli araştırması yapılacaktır. 
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Ayrıca, İlişkisel yöntem kullanılarak; modelleme sonucunda elde edilen ölüm hızları 

için uzatma işlemi yapılacaktır. Beşinci Bölüm’de ise elde edilen sonuçlar 

değerlendirilecek ve 2010 Türkiye Sigortalı Hayat Tablosu (TRSH-2010) ile 

karşılaştırılacaktır.  

1.2. Önceki Çalışmalar 

Ölüm verisi için gözlemlenemeyen risk faktörlerinin etkisi, ilk olarak Beard (1959) 

çalışmasında kullanılmıştır. Bu çalışmada gözlemlenemeyen risk faktörlerinin 

etkisinin tanımlanabilmesi için uzun ömürlülük etkisi kullanılmış ve popülasyon için 

dayanak ölüm hızının Makeham Ölümlülük Yasası’na uyduğu kabul edilerek 

modelleme yapılmıştır.   

Gözlemlenemeyen risk faktörlerinin etkisini tanımlamak için hassasiyet etkisi ifadesi 

ilk olarak, Vaupel et al. (1979) tarafından kullanılmıştır. Bu çalışmada, 

gözlemlenemeyen risk faktörlerinin etkisini belirlemek için Z rastlantı değişkeni 

tanımlanmış ve bu rastlantı değişkeninin Gamma dağılımı’na uyduğu varsayılarak 

hassasiyet modellemesi yapılmıştır. Oluşturulan hassasiyet modelinde her bireye 

özgü hassasiyet etkisi tanımlanarak bireylerin ölüm hızları arasında farklılık olmasına 

izin verilmiştir. Ayrıca, Z rastlantı değişkeninin farklı değerleri kullanılarak standart 

ölüm oranlarına ilişkin çıkarımlar yapılmıştır.  

Manton et al. (1981), Vaupel et al. (1979) çalışmasında tanımlanan modele takvim 

yılının etkisini de ekleyerek yeniden modelleme yapmışlardır. Bu çalışmada, 

düzeltme yapmak amacıyla 1850-1975 yılları arasında Amerika ve İsveç için ulusal 

ölüm oranlarını kullanarak hassasiyet modeli oluşturulmuştur. 

Vaupel ve Yashin (1985a) birbirleriyle heterojen ve kendi içlerinde homojen olan iki 

alt popülasyon için inceleme yapmışlardır. Bu çalışmada, bu iki alt popülasyon için 

ayrı ayrı ölüm hızları elde edilmiş ve bu alt popülasyonların bir bütün olarak ele 

alınmasının ölüm hızlarında beklenmedik sonuçlara neden olabileceği gösterilmiştir. 

Bunu gösterebilmek için bu iki alt popülasyonu farklı oranlarda karıştırmışlardır. 

Ayrıca hassasiyet etkisi için Kesikli, Tekdüze, Gamma, Weibull ve Lognormal 

dağılımı kullanarak farklı hassasiyet dağılımı seçiminin etkilerini incelemişlerdir.  
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Vaupel ve Yashin (1985b), yaş ve zaman faktörünün ölümlülük modelleri üzerindeki 

etkisini incelemişler ve nedene bağlı (kaza nedeniyle ölüm gibi) ölümlülük oranları 

için hassasiyet modelleri oluşturmaya çalışmışlardır. 

Yashin et al. (1985), risk kabul sürecindeki riskleri gözlemlenebilir ve 

gözlemlenemeyen risk faktörleri olmak üzere ikiye ayırmış, yaş ve zaman için 

stokastik değişime izin veren hassasiyet modellerini incelemişlerdir. 

Manton et al. (1986), Amerika Birleşik Devletleri’nin toplam ölümlülük verisini ve 

akciğer kanseri ölümlülük verisini kullanarak hassasiyet dağılımı için Gamma, Ters 

Gauss ve Dejenere dağılımı seçerek bu hassasiyet dağılımları için uyum iyiliği testi 

elde etmişlerdir. Sonuç olarak ise dayanak ölüm hızı seçiminin, hassasiyet 

dağılımının seçiminden daha önemli olduğu sonucuna ulaşmışlardır. 

Jones (1988), sigortalı bireyler için risk kabul sürecinde seçilmiş ayrılma oranlarının 

etkisini incelemek için hassasiyet modellerini kullanmıştır. 

Congdon (1993), (25)-(90) yaş aralığındaki İngiltere ölüm verisini kullanarak 

Gompertz/Gamma hassasiyet modeli ve ELT (English Life Tables) 12 düzeltme 

formüllerine olan uyumluluğu incelemiştir.  

Congdon (1994), Gompertz/Gamma hassasiyet modelinde diğer parametreler sabit 

kaldığında Gamma dağılımının varyansındaki değişimin doğrudan beklenen yaşam 

süresi ile ilişkili olduğunu göstermiştir. Ayrıca bu çalışmada Gompertz/Ters Gauss 

hassasiyet modeli kullanılmış ve Gompertz/Gamma hassasiyet modeline ilişkin 

olarak parametre tahmininde farklı bir yöntem geliştirilmeye çalışılmıştır. Manton et 

al. (1994) tarafından belirtilen dayanak ölüm hızı seçiminin hassasiyet dağılımının 

seçiminden daha önemli olduğu sonucunun tersinin doğru olduğuna ilişkin bulgular 

elde edilmiştir.  

Yashin et al. (1994), risk faktörlerine göre sınıflandırma yapılmadan hassasiyet 

modellemesinin doğru sonuçlar vermeyeceğini göstermişlerdir.   

Damaskos (1998), İngiliz Hayat Tabloları (ELT)’nı kullanarak Gompertz/Gamma 

hassasiyet modeli için ağırlıklandırılmış en küçük kareler yöntemi ile modele ilişkin 

parametre değerlerini tahmin etmiştir.  
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Wang ve Brown (1998), Amerika Aktüerler Derneği (Society of Actuaries) tarafından 

oluşturulmak istenen 1994 Grup Hayat Annüitesi Rezerv Tablosu’nda dayanak ölüm 

hızı için Gompertz Ölümlülük Yasası’nı ve hassasiyet dağılımı için ise Gamma 

dağılımını kullanmışlardır.  

Vaupel (1999), 1850-1975 Amerika ve İsveç ölüm verisini kullanılarak yaş ve zamana 

göre dinamik bir hassasiyet modeli oluşturmuştur. 

Butt ve Haberman (2002) sigorta tabanlı iki ölüm verisinde hassasiyet etkisinin olup 

olmadığını sorgulamışlardır. Bunun için dayanak ölüm hızı için Makeham/Gompertz 

Ölümlülük Modeli’ni ve hassasiyet dağılımı olarak ise Gamma ve Ters Gauss 

dağılımlarını kullanmışlardır. Bu modellere ilişkin parametre tahminlerinin elde 

edilebilmesinde Genelleştirilmiş Doğrusal Modeller (Generalized Linear Models) ve 

Ağırlıklandırılmış Doğrusal Olmayan Modeller (Weighted Non-Linear Models) 

kullanılmıştır. 2002 yılında yapılan bu araştırma projesi, 2004 yılında makale olarak 

yayınlanmıştır (Butt ve Haberman,2004).  

Olivieri (2006) hassasiyet modellerinin kullanılması sonucunda hayat annüitesi 

portföyünün riskini değerlendirmiştir. Bu çalışmada Butt ve Haberman (2004)  

tarafından oluşturulan hassasiyet modeli parametrelerinden yararlanılmıştır.   

Willemse ve Kaas (2007) ölüm hızının Gompertz Ölümlülük Yasası’na ve hassasiyet 

etkisi dağılımının Gamma dağılımı’na uyması durumunun Genelleştirilmiş Gompertz 

Dağılımı’na uyan iki rastlantı değişkeninin farkı şeklinde ifade edilebileceğini 

ispatlamışlardır. 

Martine et al. (2009), ileri yaşlardaki bireyler için bazı ortak risk faktörlerinin etkisini 

hesaba katarak hassasiyet  etkisinin olup olmadığını incelemişlerdir. 

Su ve Sherris (2011) ise Avustralyalı kadın ve erkek annüitantlar için 

Gompertz/Gamma hassasiyet modeli, Gompertz/Ters Gauss hassasiyet modeli ve 

Markov Modeli’ni kullanmışlardır. Bu modellere ilişkin parametrelerin log-olabilirlik 

fonksiyonu ile basit bir şekilde tahmin edilebilmesi için popülasyonun ölüm hızının  

Normal dağılıma uyduğu varsayılmıştır. 
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2. YAŞAM ANALiZi 

2.1.  Giriş 

Bireylerin gelecek yaşam sürelerinin modellenmesi, hayat sigortası şirketleri ve 

sosyal güvenlik kurumları açısından oldukça önemlidir. Bireylerin beklenen gelecek 

yaşam sürelerinin ne yönde ve ne kadar değişeceğinin öngörülebilmesi için ise 

geçmiş yaşam deneyiminin doğru olarak yorumlanıp, modellenmiş olması 

gerekmektedir. Yapılan modelleme doğru ise belli bir güven düzeyinde geleceğe 

ilişkin doğru tahminler yapılabilir.   

Yaşam analizini klasik istatistiksel analizden ayıran en önemli özellik veri 

kümesindeki gözlem sansürlenmesi (data-censoring) ve gözlem kesilmesi (data-

truncation)dir. Sansürleme ve kesme, klasik istatistiksel analizdeki temel varsayımları 

kullanmayı oldukça zorlaştırmaktadır (Karim, 2008). Belirlenmiş bir zaman 

noktasından önce, sonra veya belirlenmiş iki nokta arasındaki olayların dikkate 

alındığı duruma ‘sansürleme (censoring)’ ve herhangi bir zamandan önce 

gerçekleşen olayların dikkate alınmadığı durum için ise ‘kesme (truncation)’ kavramı 

kullanılmaktadır. Sansürleme işlemi rastgele iken kesme işlemi rastgele değildir.  

Yaşam analizini klasik istatistiksel analizden ayıran bir diğer önemli özellik ise 

varsayımların farklılık göstermesidir. Örneğin; klasik istatistiksel analizde model 

artıklarının Normal dağılıma, yaşam analizinde ise ölüm sayısı artıklarının Poisson 

dağılımına uyduğu varsayılmaktadır. Ölüm sayısı artıklarının Poisson dağılımına 

uyduğu varsayımı, Forfar et al. (1988) ve Renshaw (1991,1995) tarafından ayrıntılı 

olarak incelenmiştir. 

2.2. Yaşam Analizinde Kullanılan Fonksiyonlar  

Bu kesimde risk sınıflandırılması, sansürleme ve kesme olmadığında yaşam analizi 

ile ilgili bazı önemli gösterimler ele alınacaktır.  

Şu anda (x) yaşında olan bir bireyin gelecek yaşam süresi, T rastlantı değişkeni ile 

gösterilmektedir. Bu durumda (x) yaşındaki birey öldüğü anda (x+T) yaşında olacaktır 

(Gerber, 1997). Burada, T, negatif olmayan bir rastlantı değişkeni olarak 

tanımlanmakta ve aksi belirtilmediği sürece bu rastlantı değişkeninin tanım aralığının 

[0, )  olduğu kabul edilmektedir (Duchateau ve Janssen, 2008). T rastlantı 

değişkeninin birikimli dağılım fonksiyonu,  
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t

0

G(t) Pr(T t) g(u)du , t 0   
                             (2.1)

 

şeklinde tanımlanmaktadır. Eş. (2.1), bir bireyin t yıl içerisinde ölmesi olasılığını 

göstermektedir. T rastlantı değişkenine ilişkin G birikimli fonksiyonunun bilindiği ve 

sürekli olduğu varsayıldığında olasılık yoğunluk fonksiyonu, 'g(t) G (t)  olarak elde 

edilmektedir ve 

g(t)dt Pr(t T t dt)                                                                                           (2.2) 

şeklinde tanımlanmaktadır (Gerber,1997). Bu bağlamda, bir bireyin t anından sonra 

yaşaması olasılığını gösteren fonksiyon, yaşam fonksiyonu olarak adlandırılmakta ve 

t

S(t) P(T t) 1 G(t) g(u)du


                                 (2.3) 

eşitliği ile ifade edilmektedir. Yaşam analizindeki bir diğer önemli fonksiyon ise, 

tehlike hızı fonksiyonudur ve h(t) ile gösterilmektedir  Tehlike hızı fonksiyonu, olayın t 

anından önce gerçekleşmediği bilindiğinde,  t,t t  aralığında gerçekleşmesinin 

koşullu olasılığından elde edilmektedir. Tehlike hızı fonksiyonu bu koşullu olasılığının 

t  sıfıra giderken limitinin alınması ile bulunmaktadır. Bu durumda tehlike hızı 

fonksiyonu , 

t 0

P(t T t t T t) g(t)h(t) lim
t S(t) 

   
 


                           (2.4) 

şeklinde elde edilmekte ve birikimli tehlike hızı fonksiyonu ise 

t

0

H(t) h(u)du                                      (2.5) 

olarak tanımlanmaktadır. Yaşam fonksiyonu, tehlike hızı fonksiyonunun integrali 

alınarak,  

t

0

S(t) exp h(u)du exp( H(t))
        
                                  (2.6) 
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şeklinde yazılabilmektedir. Aynı şekilde tehlike hızı fonksiyonu da yaşam fonksiyonu 

kullanılarak, 

 dh(t) ln S(t)
dt

                     (2.7) 

eşitliğinden elde edilebilmektedir (Duchateau ve Janssen,2008). 

Hayat Sigortaları Matematiği’nde tehlike hızı fonksiyonu x  veya (x)  ile 

gösterilmekte ve ölüm hızı (force of mortality rate) olarak adlandırılmaktadır (Bowers 

et al., 1997). Hayat Sigortaları Matematiği’nde bir diğer önemli fonksiyon ise xq  ile 

gösterilen fonksiyondur. Bu fonksiyon, (x) yaşındaki bireyin bir yıl içerisinde ölmesi 

olasılığını göstermektedir.  

xl , (x) yaşında yaşayan kişi sayısını göstermek üzere x xl  eğrisi ölüm eğrisi (curve of 

deaths) olarak adlandırılmaktadır. Bu eğrinin (x)’e göre türevinin sıfır olduğu noktalar, 

büküm noktasını göstermektedir.  Bazı yaşlar için ölüm oranı olan xq  ve ölüm hızı 

olan x  arasında x xq    veya x xq   ilişkisi bulunmaktadır. x xl   eğrisinin artan 

olduğu noktalarda x xq    ve x xl   eğrisinin azalan olduğu noktalarda x xq   

olmaktadır (Neill, 1983). 

2.3. Sansürleme ve Kesme 

Sansürlenmiş veya kesilmiş gözlem, ilgilenilen duruma ilişkin kısmi bilgi içermektedir. 

Bundan dolayı sansürleme ve kesmeye neden olan noktaların dikkatlice belirlenmesi 

gerekmektedir. Bu kesimde sansürleme ve kesme işlemlerinin, yaşam verisinin 

birikim fonksiyonunu nasıl değiştirdiği incelenecektir. 

2.3.1. Sansürleme 

Gelecek yaşam süresinin tam değerinin bilinmediği fakat sadece u  değerine eşit ve 

bu değerden büyük olduğu bilindiğinde gelecek yaşam süresini gösteren T rastlantı 

değişkeni soldan sansürlüdür. Aksine, gelecek yaşam süresinin r değerine eşit ve bu 

değerden küçük olduğu bilindiğinde gelecek yaşam süresini gösteren T rastlantı 

değişkeni sağdan sansürlüdür. Eğer, [r,u)  aralığı biliniyorsa gelecek yaşam süresini 

gösteren rastlantı değişkeni aralık sansürlüdür (Duchateau ve Janssen, 2008).  
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Bu çalışmada temel olarak sağdan sansürleme kullanılacağı için sağdan 

sansürlemenin gelecek yaşam süresi rastlantı değişkeninin olasılık yoğunluk 

fonksiyonunu nasıl etkilediği incelenecektir. Şekil 2.1’de sağdan sansürleme 

gösterilmiştir: 

 

 

 

 

 

 

 

Burada, 1t  ilgili gözlem döneminin başladığı ve 2t  ise ilgili gözlem döneminin bittiğini 

noktayı göstermektedir. Bu iki nokta arasında geçen süre genelde bir yıl olarak 

belirlenmektedir. Bu şekilde (x) incelemeye alınan yaşam sürelerini ve (o) ile 

gösterilenler ise sağdan sansürlenmiş gözlemleri tanımlamaktadır. 

1 2 nX ,X ,...,X  birikimli dağılım fonksiyonu F olan bağımsız ve aynı dağılıma sahip 

rastlantı değişkenleri ve 1 2 nY ,Y ,...,Y  ise birikimli dağılım fonksiyonu G olan birbirinden 

bağımsız ve aynı dağılıma sahip sansürlenme zamanlarını gösteren rastlantı 

değişkenleri olsun. Burada, X ve Y rastlantı değişkenlerinin bağımsız ve aynı 

dağılıma sahip olmaları varsayımı, sansürlenmiş veriden yapılacak dağılım 

çıkarımının elde edilebilmesi için yeterlidir (Fleming ve Harrington, 1991). Böylece, f 

ve g olasılık yoğunluk fonksiyonları, sırasıyla, X ve Y rastlantı değişkenlerine aittir. 

Burada sadece      1 1 2 2 n nT , , T , , ..., T ,    değerleri gözlemlenebilmekte, 

 i i iT min X ,Y  olarak tanımlanmakta ve i  , 

i i i
i

i i i

1 : X Y , T sansürlüolmayan gözlem
0 : X Y , T sansürlü gözlem

   
 

ile gösterilmektedir.  

    Şekil 2.1. Sansürleme 
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Sansürlü olmayan gözlem için gelecek yaşam süresini gösteren rastlantı 

değişkeninin birikim fonksiyonu, 

x t x y

P(T t , 1) P(X t ,X Y) f(x)g(y)dxdy
 

                                             

 
x t x y x t

f(x) g(y)dy dx f(x) 1 G(x) dx F(t)
  

        
                  (2.8) 

olarak elde edilmektedir.  Sansürlü gözlem için ise gelecek yaşam süresini gösteren 

rastlantı değişkeninin birikimli fonksiyonu, 

x t x y

P(T t , 0) P(X t ,X Y) f(x) g(y)dxdy
 

                    

x t x y x t

f(x) g(y)dy dx f(x)G(x) F(t)
  

       
                                        (2.9) 

şeklinde elde edilir (Wienke,1996).  

Wienke (2006) tarafından oluşturulan teoreme göre  T,  verisinin olasılık yoğunluk 

fonksiyonu,  

1f(t, ) (f(t)(1 G(t))) (g(t)(1 F(t)))                         (2.10) 

şeklinde göstermektedir. Bu teoremde sansürleme zamanı ve gelecek yaşam 

sürelerinin birbirinden bağımsız olduğu varsayımı kullanılmaktadır. Sansürleme ve 

gözlem bağımsız değilse olabilirlik fonksiyonuna sansürleme etkisi dahil edilmez.  

2.3.2.  Kesme  

Birçok yaşam analizi uygulamasında, soldan kesme kullanılmaktadır. Sansürleme, 

rastgele olarak tanımlanmasına rağmen; kesme, rastgele değildir. Soldan kesmede 

çalışmanın doğal başlangıcından sonra, gözlemlerin bilinen bir zamanda sisteme 

girdiği bilinmektedir. Söz konusu kesme zamanından önce bireyin başarısız olması 

durumunda bireyler kayıt altına alınmamaktadır. Bu çalışmada soldan kesme 

kullanılacağı için soldan kesmenin T rastlantı değişkeninin olasılık yoğunluk 

fonksiyonunu nasıl etkilediği incelenecektir.  
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Burada, 1t  ilgili gözlem döneminin başladığı ve 2t  ise ilgili gözlem döneminin bittiğini 

noktayı göstermektedir. Bu iki nokta arasında geçen süre genelde bir yıl olarak 

alınmaktadır. 

Şekil 2.2’de ikinci gözlem yaşam analizi çalışması başlamadan önce sistemden 

ayrıldığı için inceleme altına alınmamıştır. Burada, çalışma yürütücüsü bu bireyin 

farkında değildir. Diğer bir deyişle, kesme, koşullu dağılımdan yapılan örnekleme 

olarak düşünülebilmektedir. Gözlemlerin yaşam süresi ve sansürlenme durumunu 

içerdiği düşünülsün ve  * *T ,  şeklinde gösterilsin. Bilinen kesme zamanı *t ile 

gösterildiğinde gözlemlerin soldan kesilmiş olması durumunda yaşam fonksiyonu, 

* * *P(T t, ) P(T t, T t)           

* * *
P(T t, ) P(T t, )

P(T t) (1 F(t ))(1 G(t ))
       

 
  

             (2.11) 

şeklinde tanımlanmaktadır. Bu durumda hem soldan kesilmiş hem de sağdan 

sansürlenmiş gözlem için olasılık yoğunluk fonksiyonu, 

*
* *
h(t, )f(t, ,t )

(1 F(t ))(1 G(t ))


 
 

     

       
* * * *

f t 1 G t g(t) 1 F t
(1 )

(1 F(t ))(1 G(t )) (1 F(t ))(1 G(t ))
 

   
   

                          (2.12) 

                 Şekil 2.2. Kesme 
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olarak tanımlanır. Eş. (2.12)’de sansürleme zamanı, kesme zamanı ve yaşam 

sürelerinin birbirinden bağımsız olduğu varsayımı kullanılmaktadır.  

2.4. Yaşam Modellemesi 

Yaşam modellemelerinde temel olarak iki yaklaşım kullanılmaktadır. Bunlar; 

‘parametrik yaklaşım’ ve ‘parametrik olmayan yaklaşım’dır. Parametrik yaklaşım 

kullanmanın avantajları şunlardır : 

 Elde edilen sonuçlar yaşlara göre düzeltilebilir, interpolasyon ve 
ekstrapolasyon yapılabilir. 

 Yaşam modeli oluşturularak hayat tablosu oluşturulabilir. 

 Parametreler kolaylıkla yorumlanabilir. 

 Çok fazla sayıdaki oran ve olasılıklar, birkaç parametreyle açıklanabilir 
(Keyfitz, 1985; Congdon,1993; Chang,1998). 

 Yaşam modeline bağlı olan fonksiyonlar analitik olarak kolaylıkla incelenebilir. 

 Farklı popülasyonlar için ölümlülük modelleri arasında karşılaştırma yapılabilir. 

 Ölümlülük eğiliminin değerlemesi ve ele alınan zaman içerisinde öngörüsü 
yapılabilir. 

Aktüeryal ve demografik literatüre bakıldığında parametrik modellemenin 

kullanılmasının amacı, daha az parametre ile veriye en iyi uyumu sağlayan 

modellemenin yapılmasıdır (Butt ve Haberman, 2002). 

Parametrik olmayan yaklaşımın avantajları da şu şekilde sıralanabilir                

(Wolfgang, 1990; John, 2000): 

 Güçlü varsayımlarda bulunulmasına gerek yoktur. 

 Sabit parametrik modele bağlı kalınmamaktadır. 

 İki değişken arasında var olan ilişkinin açıklanmasında esneklik sağlamaktadır.  

 Ardışık değerler arasında interpolasyon yapılmasına izin vermektedir. 

 Kayıp gözlemlerin yerine konulması için esnek yöntemler bulmaya izin 
vermektedir.  

 Aykırı değerlerin bulunduğu verinin analizinde en uygun yaklaşımdır.  
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Bu kesimde yaşam modellemesi için kullanılan parametrik ve parametrik olmayan 

modellere ilişkin kısa bir litaretür incelemesi yapılacaktır.  

2.4.1. Parametrik yaklaşım 

Yaşam modellemesinde parametrik yaklaşım için iki farklı yaklaşım kullanılmaktadır. 

İlk yaklaşımda veri setine uygun model birkaç parametre yardımı ile açıklanır. İkinci 

yaklaşımda ise bilinen parametrik dağılımlar kullanılarak modelleme yapılır. 

2.4.1.1. Parametreler yardımı ile yapılan modelleme 

Yaşam analizi ile ilgili ilk önemli çalışma, Graund (1662) tarafından yapılmıştır. Bu 

çalışma, Londra’nın ölümlülüğüne ilişkin ilk ayrıntılı çalışmadır. İkinci önemli çalışma 

ise 1693 yılında Halley tarafından yapılmıştır. Bu çalışmada ise Breslau için ilk defa 

hayat tablosu oluşturulmuştur.  

Ölümlülük yasası olarak nitelendiren ilk çalışma, 1725 yılında De Moivre tarafından 

yapılmıştır.  Bu modelde, maksimum yaşın (w) olarak bilindiği ve (x) yaşındaki bir 

birey için T rastlantı değişkeninin (0, w-x) aralığında sürekli Tekdüze dağılıma sahip 

olduğu varsayılmaktadır. Bu model için olasılık yoğunluk fonksiyonu,  

1f(x) , 0 t w x
w x

   


                 (2.13) 

şeklinde tanımlanmaktadır.  

Gompertz Modeli, 1825 yılında Benjamin Gompertz tarafından oluşturulmuştur. Bu 

çalışmada oldukça büyük bir yaş aralığı için (bebek ölümlülüğü ve ileri yaş 

ölümlülüğü hariç) yaşa göre ölüm hızlarının durağan bir üstel oran ile artan bir şekilde 

modellenebileceği sonucu elde edilmiştir. Bu modelde yaşlanma süreci De Moivre 

Yasası’ndan daha iyi tanımlamakta olup en son yaşın (w) olduğu varsayımı ortadan 

kalkmaktadır. Bu model, demografi ve diğer disiplinlerde yaygın olarak 

kullanılmaktadır. Gözlemlerin matematiksel olarak Gompertz Modeli’ne uyduğunun 

araştırma dünyasında kabul görmesi nedeniyle ölümlülük yasası olarak 

düşünülmektedir. Bu modele göre  ölüm hızı, 

x
x Bc                     (2.14) 
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olarak tanımlanmıştır. Burada, B 0  temel ölümlülüğü, c 0  ise yaşa göre 

ölümlülükteki sabit artış oranını göstermektedir. Bu modelde ölümlülük eğilimi sadece 

yaşa göre tanımlanmıştır. Bu yüzden Gompertz Ölümlülük Yasası belirli bir yaşa 

kadar yetişkin ölümlülüğünü tanımlamak için kullanılmaktadır. Bazı ileri yaş aralığı 

içinde bu modelin uygun olduğu varsayılır. İkinci Gompertz Ölümlülük Yasası (1860), 

10 parametreden oluşan bir formüldür. Bu formül, 

 
xx x x m (x n)

xln l bc gh xdf jk                           (2.15) 

şeklindedir. Bu modeldeki amaç, Gompertz Ölümlülük Yasası’nda yeterince 

tanımlanamayan ölümlülüğün tüm yaş aralığı için modellenmesidir. Eş. (2.15)’de 

tanımlanan fonksiyon, ölüm hızına eşittir. Üçüncü Gompertz Ölümlülük Yasası ise 

1862 yılında oluşturulmuştur.  

1867 yılında Makeham tarafından yapılan çalışmada Gompertz Ölümlülük Yasası ile 

tanımlanan ölüm hızına kaza nedeniyle genç ölümlülüğünü tanımlayan sabit bir 

parametre eklenerek Makeham Ölümlülük Yasası oluşturulmuştur. Bu modelde ölüm 

hızı,  

x
x A Bc                     (2.16) 

şeklinde tanımlanmaktadır. 1871 yılında Thiele ise ölüm hızlarını modellemek için 7 

parametreli,  

2 X
x A exp( Bx) Cexp( D(x E) ) FG                      (2.17) 

şeklinde bir model geliştirmiştir. Bu modelde yaşam süresinin tüm yaşlar için 

modellenmesi amaçlanmıştır. Bu modeldeki her bir parametre insan ölümlülüğüne 

ilişkin birer özelliği tanımlamaktadır. İlk terim, doğumdan sonra hızla artan bebek 

ölümlülüğünü, ikinci terim kaza nedeniyle gerçekleşen ölümlülüğü ve üçüncü terim 

ise ileri yaşlar için ölümlülüğü göstermektedir. İkinci Makeham modeli (1890) ise dört 

parametrelidir ve 

x
x A Hx Bc                       (2.18) 
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şeklinde gösterilmektedir.  Perks (1932), lojistik eğri olarak bilinen dört parametreli bir 

model oluşturmuştur. Bu modele, Birinci Perks Modeli adı verilmekte ve yaşa göre 

ölüm hızı, 

x

x x
A Bc
1 Dc


 
                    (2.19) 

olarak tanımlanmıştır. Bu modelde A, B ve c parametreli Makeham Ölümlülük Yasası 

ile 1, D ve c parametreli Makeham Ölümlülük Yasası oranlanmıştır. D parametresi 

sıfır olarak alındığında bu model Makeham Ölümlülük Yasası’na, A ve D 

parametreleri sıfır olduğunda ise Gompertz Ölümlülük Yasası’na uymaktadır. Böylece 

Perks (1932) tarafından oluşturulan bu lojistik model, Gompertz ve Makeham 

Ölümlülük Yasası’nın hangi yaş aralıkları için uygun olduğunun incelenmesinde 

kullanılabilmektedir. Birinci Perks Modeli heterojenliğin ölüm oranları üzerindeki 

etkisini inceleyen modellerden birisidir. Birinci Perks Modeli, İngiltere’de annüitantlar 

için oluşturulan hayat tablosunun düzeltilmesinde kullanılmıştır. Aynı yıl içerisinde 

Perks, Eş. (2.19)’da tanımlanan modele  benzeyen beş parametreli yeni bir modeli, 

x

x x x
A Bc

1 Kc Dc


 

                    (2.20) 

eşitliği ile ifade etmiştir. Eş. (2.20)’de tanımlanan model İkinci Perks Modeli olarak 

adlandırılmaktadır. Bu modelde paydanın etkisi, (80) ve üzeri yaşlar için ölümlülüğü 

çok iyi tanımlayan Gompertz Ölümlülük Yasası’ndaki üstel artışı düzeltmek amacıyla 

kullanılmıştır.  

1951 yılında Weibull tarafından yapılan çalışmada ise ölüm hızının bulunulan yaşın 

bir kuvvet olarak büyüdüğü bir model oluşturulmuştur. Weibull (1951)  ölüm hızı için 

B
x Ax                     (2.21) 

iki parametreli bir model kullanmıştır. Eş. (2.21)’de tanımlanan modele göre A ve B 

parametreleri kullanılmıştır. A parametresi, başlangıç yaş için temel ölümlülüğü 

tanımlamaktadır. B parametresi ise yaş ilerledikçe yaşın ölüm hızı üzerindeki etkisini 

ölçeklendirmek amacıyla kullanılmıştır.  
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ELT (English Life Tables) 11-12 çalışmalarında (27) ve üzerindeki yaşlar için ölüm 

oranlarında düzeltme yapmak amacıyla; 1 2a, b, c, x , x , ve   parametrelerine sahip 

bir eğri oluşturmuştur. Bu model, 

2
x 1 2x

12

bm a c exp( (x x ) )
1 exp( (x x ))

      
  

            (2.22) 

eşitliği ile ifade edilmiştir. Eş. (2.22)’de tanımlanan modele göre üç terim 

bulunmaktadır. İlk terim her bir yaş için sabit ölümlülüğü tanımlamaktadır. İkinci terim, 

( 2x ) yaşından uzaklaşıldıkça,   durağan üstel artış oranını göstermek üzere, ölüm 

hızındaki azalmayı tanımlamaktadır. İleri yaşlarda bu terim sıfıra oldukça yakın bir 

değer almaktadır. Üçüncü terim ise ( 1x ) yaşından uzaklaşıldıkça ölüm hızındaki artışı 

tanımlamaktadır. İleri yaşlarda ise bu terim b’ye yakınsamaktadır. Beard (1971), beş 

parametreli bir model kurmuştur. Modelde (x) yaşındaki bir bireyin bir yıl içinde ölme 

olasılığı,  

x

x 2x x

Bcq A
Ec 1 Dc 

 
                  (2.23) 

eşitliği ile modellenmiştir. Eş. (2.23)’te tanımlanan modele göre A parametresi sabit 

ölümlülüğü; B,C,D ve E parametreleri ise yaşlara göre ölümlülüğü detaylı olarak 

tanımlamak için kullanılmıştır. Bu model, İngiltere için 1949-1952 yılları arasında 

sigortalı bireyler için hayat tablosunun düzeltilmesinde kullanılmıştır. Barnett (1974) 

yıllık ölüm oranları için dört parametreli formül elde etmiştir. Bu formül, 

x
f(x)q

1 f(x)


                    (2.24) 

şeklindedir ve ( )   xf x A Hx Bc  şeklinde tanımlanmaktadır. Bu formül 1967-1970 

yılları arasındaki İngiltere sigortalı deneyiminden elde edilen ölüm oranlarını 

düzeltmek için kullanılmıştır. Eş. (2.24)’te tanımlanan modele göre A parametresi 

sabit ölümlülüğü; H, parametresi yaşa göre ölüm oranında azalmayı; B ve c 

parametreleri ise yaşa göre ölüm oranlarındaki üstel artışı açıklamaktadır. Bu modele 

göre yaş ilerledikçe ölüm oranı artmaktadır.  
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Birinci ve İkinci Heligman-Pollard (1980) modellerinde tüm yaşlar için ölümlülüğü 

modellemek amacıyla A, B, C, D, E, F, G ve H parametrelerinden oluşan ve üç terimli 

modeller oluşturulmuştur.  

Birinci Heligman-Pollard Modeli’nde ( )
1 ( )x
f xq
f x




 olmak üzere,  

2
C e

xE(log )(x B) XFf(x) A De GH
                    (2.25) 

şeklindedir. İkinci Heligman-Pollard Modeli ise, 

 
 

2

C e
x XE logx B F

x X
GHq A De

1 GH

       
                           (2.26) 

eşitliği ile verilir. Eş. (2.26)’ de tanımlanan model, biraz daha değiştirilerek Üçüncü 

Heligman-Pollard Modeli elde edilmiştir. Bu model, 

 C
2 X

x B
x e X

x GHq A Dexp E log
F 1 KGH


                                       (2.27) 

şeklindedir. İleri yaşlar için ilk iki terimin çok küçük bir değer alması nedeniyle Eş. 

(2.25) ve Eş.(2.26)’da tanımlanan modeller benzer sonuçlar vermektedir. ELT 

(English Life Tables) 15 tablosu Eş. (2.27)’deki model kullanılarak oluşturulmuştur. 

Dördüncü Heligman-Pollard Modeli (1980) ise 9 parametreli ve 

 
k

C

k

2 X
x B

x e X

x GHq A Dexp E log
F 1 KGH


                              (2.28) 

şeklindedir. Heligman-Pollard Modelleri’nde temel olarak üç terim bulunmaktadır. Bu 

modellerde ilk terim çocuk ölümlülüğünü, ikinci terim kazaen ölümlülüğü (özellikle 20 

yaş civarında) ve üçüncü terim ise ileri yaş ölümlülüğünü tanımlamaktadır. 

Heligman-Pollard Modeli’nde ilk terim içerisinde üç parametre bulunmaktadır. A 

parametresi, kabaca (1) yaşındaki ölümlülüğü vermekte olup çocuk ölümlülüğüne 

ilişkin seviye veya yoğunluk ölçümü olarak alınabilmektedir (McNown ve Rogers, 

1989; Rogers ve Gard, 1991; Hartmann, 1987). B parametresi, yaş uzaklık değişkeni 

(age displacement variable)dir ve (0) ile (1) yaş ölümlülükleri arasındaki farkı 



 
 

20

göstermektedir (Rogers ve Gard, 1991). B parametresinin değeri arttıkça (0) 

yaşındaki bireyin bir yıl içinde ölmesi olasılığının değeri 0,5’in altına düşmekte ve (1) 

yaşındaki bireyin bir yıl içinde ölmesi olasılığı olasılığına yakınlaşmaya 

başlamaktadır. Son olarak C parametresi çocukluk dönemi ve genç yetişkinlik dönemi 

boyunca ölüm oranının yaşa göre nasıl bir hızla azaldığını göstermek için 

kullanılmaktadır. A’nın değerindeki azalma çocuk ölümlülüğündeki azalma ile 

tutarlıdır. A,B ve C parametrelerinin hepsi sıfır ile bir aralığında yer almaktadır.  

Heligman-Pollard Modeli’nde ikinci terim içerisinde de üç parametre bulunmaktadır. D 

parametresi, yetişkin ölümlülüğündeki yoğunluğu ve seviyeyi tanımlamaktadır. E 

parametresi kazaen ölümlülükteki sıçramayı tanımlamakta olup sıçramanın yayılımı 

ile ters ilişkilidir. F parametresi ise bulunulan pozisyonu göstermektedir (Heligman ve 

Pollard, 1980; McNown ve Rogers, 1989; Rogers ve Gard, 1991). D parametresi sıfır 

ile bir aralığında yer almaktadır. E parametresi ise sıfır ile sonsuz aralığında bir değer 

almaktadır. F parametresinin tanım aralığı tam olarak belirlenememektedir.  

Heligman-Pollard Modeli’nin üçüncü teriminde Eş. (2.25) ve Eş. (2.26)’da iki 

parametre, Eş. (2.27) ve Eş. (2.28)’de üç parametre bulunmaktadır. G parametresi 

(0) yaşındaki temel ölümlülüğü ve H parametresi artış oranını göstermektedir (Rogers 

ve Gard, 1991). G parametresi sıfır ile bir aralığında yer almakta iken H parametresi 

sıfır ile sonsuz aralığında değer almaktadır. Eş. (2.27) ve Eş. (2.28)’deki K 

parametresi ise ağırlıklandırma yapmak amacıyla kullanılmaktadır.  

Forfar, McCutcheon, Wilkie (1988), Eş. (2.29)  ve Eş. (2.30) ile tanımlanan modelleri 

oluşturmuşlardır. Bu modellerde (r+s) kadar parametrenin bulunduğu genel bir model 

elde edilmiştir.  Bu modeller,  

r r s
r,s i-1 i-r-1

x i i
i 1 i r 1

GM x exp x


  

          
 

               (2.29) 

r,s
r,s

x r,s
GMq LGM

1 GM
 

                   (2.30) 

şeklindedir.   parametreleri her bir yaş için ağırlıklandırma yapma amacıyla 

kullanılmıştır. Bu modelde r, sıfır değerini aldığında polinomal terim bulunmamakta ve 

s, sıfır değerini aldığında ise üstel terim bulunmamaktadır.  
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Eş. (2.29)’da tanımlanan modelde GM(0,2) Gompertz Ölümlülük Yasası’nı, GM(1,2) 

Birinci Makeham Ölümlülük Yasası’nı ve GM(2,2) İkinci Makeham Ölümlülük 

Yasası’nı göstermektedir. İngiltere’de 1991-1994 dönemi için iki yıllık seçim 

periyoduna sahip ve seçim periyoduna sahip olmayan emekli bireyler için bu model 

düzeltme amaçlı kullanılmıştır. Bu analizde r parameresi iki ve s parametresi üç 

olarak alınmıştır. 

2.4.1.2. Bilinen dağılımlar yardımı ile yapılan modelleme 

Bu modelleme için bilinen ilk ve en basit model, Üstel modeldir. Üstel modelde riskin 

zaman boyunca sabit kaldığı varsayılmaktadır. Bu nedenden dolayı hafızasız olarak 

nitelendirilmektedir. Diğer bir deyişle, bir zaman aralığında ölme olasılığı; bulunulan 

ana değil, sadece o aralığın uzunluğuna bağlıdır. Yani, X x  olduğu bilindiğinde 

X x ’in dağılımı orjinal dağılım ile aynıdır: 

P(x X x X x) Pr(X )                          (2.31) 

Burada,   herhangi bir pozitif değerdir. Sonuç olarak, üstel dağılım bulunulan 

zamanın sıfır olmasından etkilenmemektedir. Üstel model, bir t parametresinin olması 

nedeniyle küçük bir değişime bile çok duyarlı olduğundan daha esnek dağılımlar 

kullanılmıştır.  

Weibull modeli, 1951 yılında iki pozitif parametreli üstel dağılımın genişletilmiş hali 

olarak, Waloddi Weibull tarafından oluşturulmuştur.  Modelin ikinci parametresinin 

esneklik sağlaması nedeniyle farklı şekillerde ölüm hızı fonksiyonu elde 

edilebilmektedir. Weibull Dağılımı’nın olasılık yoğunluk fonksiyonu,  

1f(x) x exp( x )                                (2.32) 

şeklindedir. Pike (1966) kanserin diğer hastalıklardan bağımsız olduğu varsayımı ile 

kanser hastaları için Weibull tehlike hızı fonksiyonunun kuramsal olarak uyum 

sağladığını göstermiştir. Weibull Dağılımı, tehlike hızlarının tek modlu ve geniş U 

şekline benzediği durumlarda uygun değildir. Weibull dağılımı genişletilerek değişik 

şekiller için incelemeler Mudholkar ve Hutson (1996) tarafından yapılmıştır.   

Log-lojistik dağılımın tehlike hızı fonksiyonu, Lognormal dağılımın tehlike hızı 

fonksiyonunun şekline benzemektedir. Log-lojistik dağılım, Gompertz Ölümlülük 
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Yasası ve ortalaması ile varyansı bir olan Gamma dağılımının karmasından 

oluşmaktadır. 

Ölümlülük modellemesinde kullanılan bir başka dağılım ise Gamma dağılımıdır. 

Gamma dağılımı, Üstel dağılımın özel bir durumudur. Gamma dağılımı yaşam 

analizinde yaşam fonksiyonu ve tehlike hızı fonksiyonlarının kapalı bir fonksiyon 

olması nedeniyle yaygın olarak kullanılamamaktadır. 

2.4.2. Parametrik olmayan yaklaşım 

Parametrik modelleme yaklaşımında model parametrelerinin tahmin edilmesindeki 

zorluklar nedeniyle parametrik olmayan yaklaşım kullanılmaktadır. Bu modellerden 

en önemlileri Kaplan-Meier tahmin edicisi, Hızlandırılmış Başarısızlık Zamanı Modeli 

(Accelerated failure time model) ve Orantılı Tehlike Modeli ( The Proportional Hazard 

Model)’dir. 

Kaplan-Meier tahmin edicisi (Kaplan ve Meier, 1958), yapay yaşam fonksiyonuna 

dayanan yaşam fonksiyonunun parametrik olmayan en çok olabilirlik tahmin 

edicisidir.  Homojen bireylerden oluşan bir gruba ilişkin yaşam biçiminin karakterize 

edilebilmesi için yapay yaşam fonksiyonunun yaşlara göre değeri hesaplanır. Eğer 

örneklemde sansürlenmiş gözlemler yoksa t anındaki yapay yaşam fonksiyonu, t 

anında yaşayan bireylerin sayısının örneklem büyüklüğünün n değerine bölünmesi ile 

elde edilir. Sansürlenmiş gözlemler ile ilgilenildiğinde ise yaşam fonksiyonunun 

sansürleme durumuna uygunlaştırılması gerekmektedir. 

Diğer önemli parametrik olmayan model ise orantılı tehlike modelidir ve PH modeli 

olarak kullanılmaktadır. Orantılı tehlike modeli, bağımlı değişkenin durasyonu ile 

ilgilenen oldukça basit bir regresyon modelidir. Orantılı tehlike modelinde bireylerin 

yaşam süresini etkileyen ortak risk faktörleri eşdeğişkenler (covariates) olarak 

adlandırılmaktadır. Bu durumda X eşdeğişken vektörü ile 0( )h t  , t anında (yaşında) 

bireysel tehlike hızı fonksiyonunu göstermek üzere popülasyonun tehlike hızı 

fonksiyonu,   

k

0 i i
i 1

h(t,X) h (t)exp X


                                 (2.33) 
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olarak tanımlanmaktadır. Bu modelde eşdeğişkenlerin bağımsız olduğu ve tüm 

gözlemlerin aynı dayanak tehlike hızı fonksiyonuna sahip olduğu varsayımı 

kullanılmaktadır. Ayrıca bu modelde, eş değişkenler dayanak tehlike hızı 

fonksiyonunu çarpımsal olarak etkilemektedir.  

Yaşam analizinde eşdeğişken etkisini modellemek için kullanılan bir diğer önemli 

parametrik olmayan model ise hızlandırılmış başarısızlık zamanı modelidir. 

Hızlandırılmış başarısızlık zamanı modeli, AFT model olarak adlandırılmaktadır 

(Kalbfleisch and Prentice, 1980). AFT modelleri, veriye daha iyi uyum sağlaması 

nedeniyle PH modellerinden daha uygulanabilirdir (Reid, 1994). AFT modeli, 

'log(t) x                               (2.34) 

şeklinde ifade edilir. Burada; x, sabit veya rastgele olarak tanımlanmış eşdeğişken 

vektörünü;   , eşdeğişken etki vektörünü ve   ise hata terimini göstermektedir. 

AFT modeli, parametrik ve parametrik olmayan AFT modeli olmak üzere ikiye 

ayrılmaktadır. Parametrik AFT modelinde, hata teriminin dağılımının bilindiği ve bu 

hata terimlerinin dağılımlarının birbirinden bağımsız ve aynı dağılıma sahip olduğu 

varsayılmaktadır. Parametrik olmayan AFT modelinde ise hata teriminin dağılımı 

belirlenmemektedir (Duchateau ve Janssen, 2008).  

Aktüeryal literatür incelendiğinde ise parametrik olmayan düzeltme için genel olarak 

iki yöntem kullanıldığı görülmektedir. Bunlardan birisi eğri uydurma (splines) 

yöntemidir. Bu yöntem, ELT (English Life Tables) 13-14 çalışmalarında  kullanılmıştır. 

Eğri uydurma yönteminde parçalı polinomlar kullanılmaktadır.  a,b  aralığında m+2 

tane düğüm (knot) adı verilen reel sayılar 

0 1 m m 1a ... b                          (2.35) 

şeklinde belirlenerek  eğri uydurma fonksiyonu, s, her bir aralık için 0 1 mp ,p ,...,p  

polinomları ile, 

0 0 1

1 1 2

m m m 1

p (x); x
p (x); x

s(x)
...
p (x); x 

                         

                      (2.36) 
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şeklinde tanımlanmaktadır. Belirlenen düğüm noktalarının sıralanışına göre eğri 

uydurmanın şekli belirlenmektedir (Chan et al., 1984). 

Parametrik olmayan düzeltmeye ilişkin aktüerler tarafından en yaygın olarak 

kullanılan yöntem Whittaker-Henderson modelidir. Bu model, amaç fonksiyonunun 

minimize edilmesine dayanarak düzeltme yapmak amacıyla kullanılmaktadır. 

1 2 nz ,z ,...,z  gözlem değerlerine karşılık gelen düzeltilmiş değerler 1 2 ny ,y ,...,y  ile 

gösterildiğinde amaç fonksiyonu, 

n n k
2 2

1 2 n h h h h k h
h 1 h 1

F(y ,y ,...,y ) w (y z ) w ( y )


 

                  (2.37) 

şekllindedir. Burada   sabit bir parametre w değerleri ağırlıkları ve k hy  ise  

k
i

k h h k i
i 0

k
y ( 1) y

i  


          

şeklinde gösterilen hy  ‘nin k’ıncı dereceden ileri farkı olarak tanımlanmaktadır. 

Türkiye Kadın ve Erkek Sigortalı Hayat Tabloları’nın (TRSH-2010) düzeltilmesinde bu 

yöntem kullanılmıştır.  

2.5. Hassasiyet Modelleri 

Yaşam analizinde gelecek yaşam süresi dağılımını analiz etmek için kullanılan 

karışık (mixture) dağılımların en önemlilerinden birisi hassasiyet modelleridir 

(Klugman et al., 2008). Hassasiyet modellerinin temelini gözlemlenebilen ve 

gözlemlenemeyen risk faktörleri ayrımı oluşturmaktadır. Hassasiyet modellerinde 

gözlemlenemeyen risk faktörlerini tanımlamak için dayanak tehlike hızı fonksiyonuna 

Z rastlantı değişkeninin etkisi, çarpımsal olarak eklenmektedir.  

Gözlemlenemeyen risk faktörlerinin etkisi de eklendiğinde tehlike hızı fonksiyonu, 

x x
x xt 0

Pr(T t Z z)
h (z) lim zh (t)

t

 
                 (2.38) 

şeklinde tanımlanmaktadır. Bu durumda Z bilindiğinde koşullu yaşam fonksiyonu, 

x
z

T Z T Z
0

S (t z) exp h (t z)dt exp( zH(t)) (S(t))
 
      
  
               (2.39) 
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şeklinde elde edilir. Hassasiyet etkisi, genel olarak, parametrik dağılımlarla ifade 

edilmektedir. 

Hassasiyet modellerini parametrik yaklaşım veya parametrik olmayan yaklaşım 

başlıkları altında incelemek doğru değildir. Bunun temel nedeni ise dayanak tehlike 

hızı fonksiyonunun, 0( )h t , parametrik veya parametrik olmayan bir model olarak 

tanımlanmasından kaynaklanmaktadır.  

Dayanak tehlike hızı fonksiyonunda ortak risk faktörlerinin etkisi tanımlanmadığında, 

hassasiyet modeli; parametrik bir model olmaktadır.  

Dayanak tehlike hızı fonksiyonunda ortak risk faktörlerinin etkisi hesaba katıldığında 

ise dayanak tehlike hızı fonksiyonu parametrik olmayan bir model olmakta ve 

hassasiyet modeli de parametrik olmayan bir model olmaktadır.  

Sağlık alanı ile ilgili çalışmalarda parametrik olmayan hassasiyet modelleri 

kullanılırken, demografik ve aktüeryal çalışmalarda parametrik hassasiyet modelleri 

kullanılmaktadır. Üçüncü Bölüm’de hassasiyet modelleri ayrıntılı olarak 

incelenecektir.  
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3. HASSASİYET MODELLERİ  

3.1. Giriş 

Yaşam analizi, ölüm zamanı verisi kullanılarak yapılmaktadır. Geleneksel yaşam 

modellerinde veri kümesindeki gözlemlerin gelecek yaşam sürelerinin bağımsız ve 

aynı dağılımlı olduğu, diğer bir deyişle, incelenen popülasyonun homojen olduğu 

varsayılmaktadır. Fakat bu varsayımın sağlık ve ölümlülük istatistiklerine bakıldığında 

doğru olmadığı gözlenmektedir. Bu durumda, gözlemlerin gelecek yaşam sürelerinin, 

birbirinden bağımsız olduğu varsayımı yanlış olmaktadır. Çünkü popülasyonun 

heterojen olması gözlemlerin gelecek yaşam süreleri arasında bağımlılığa neden 

olmaktadır. Popülasyonun heterojen olması, bazı beklenmedik sonuçların 

açıklanmasını ve elde edilen sonuçlar için alternatif yorumlar yapılabilmesine olanak 

sağlamaktadır (Hougaard, 1991).  

Popülasyonun heterojenliğinin iki temel kaynağı olduğu söylenebilir : 

 Gözlemlenebilir risk faktörlerinden kaynaklanan heterojenlik 

 Gözlemlenemeyen risk faktörlerinden kaynaklanan heterojenlik 

Bu çalışmada ikinci heterojenlik kaynağına değinilecek ve gözlemlenebilir risk 

faktörlerinden kaynaklanan heterojenlik ise bütünlük sağlayabilmek açısından 

incelenecektir. Popülasyonun heterojen olması nedeniyle bazı bireylerin yüksek ölüm 

riskine sahip olduğu düşünüldüğünde, diğer bireylerin bu bireylerden daha az veya 

daha yüksek ölüm riskine sahip olmaktadır. Bu şekildeki bir popülasyonun homojen 

olduğu düşünülerek yaşam modellemesi yapılması durumunda, popülasyonun 

ölümlülüğünün yanlış tanımlanması sorunu ortaya çıkar. 

Popülasyon için gözlemlenemeyen risk faktörleri nedeniyle  heterojenlik söz konusu 

ise yaşam modellemesi yapılırken popülasyonun değişik risk seviyelerine sahip 

bireylerden oluştuğu varsayımı altında karışık modeller kullanılmaktadır. Bu 

modellerde gözlemlenemeyen risk faktörlerinin etkisi, rastlantı değişkenleri ile 

tanımlanmakta ve hassasiyet etkisi (frailty effect) olarak adlandırılmaktadır.  

Hassasiyet modellerinde bireylerin farklı hassasiyet değerlerine sahip olduğu ve 

hassasiyet seviyesi yüksek olan bireyin hassasiyeti daha düşük olan bireye göre 

popülasyondan daha erken ayrılacağı varsayımında bulunulmaktadır. Böylece zaman 
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veya yaş ilerledikçe hassas bireylerin sistemden erken ayrılması nedeniyle daha 

güçlü bireyler sistemde kalacak ve buna bağlı olarak ölüm hızı azalacaktır. 

Hassasiyet etkisi, bir veri kümesindeki gözlem veya veri kümesindeki her bir risk 

sınıfı için ayrı ayrı tanımlanabilir. Genel bir tanım yapılmak istenirse, hassasiyet 

modelleri, bireyler veya risk sınıfları arasındaki bağımlılığı gösteren rastgele etkiyi 

içeren genişletilmiş parametrik veya orantılı tehlike modelidir (Duchateau ve Janssen, 

2008). Hassasiyet modelleri için popülasyonun heterojenlik durumu, hassasiyet 

teriminin dağılımı ile belirlenmektedir.  

Popülasyon için (0) yaşındaki bireylerin, düşük hassasiyet seviyesinde yoğun ve 

sağa doğru uzun kuyruklu olduğu ve (0) yaşındaki bireyler için ortalama hassasiyet 

seviyesinin bir olduğu düşünülmektedir. Yaş ilerledikçe, hassasiyet seviyesi yüksek 

olan bireylerin ölme riskinin yüksek olması nedeniyle bu bireyler sistemden daha 

erken ayrılacaklardır. Bu durumda; hassasiyet seviyesi yüksek olan bireyler 

sistemden daha erken ayrılacağı için ortalama hassasiyet seviyesi düşecek ve 

yaşayan bireylerin hassasiyet dağılımının sol tarafına kaymasına neden olacaktır. 

Böylece hayatta kalan bireyler, daha düşük ortalama hassasiyet seviyesine sahip 

olacaktır. 

Hassasiyet etkisini gösteren rastlantı değişkeni için farklı parametrik dağılımlar 

kullanılmaktadır. Bu dağılımların bazı özellikleri taşıması gerekmektedir. Bir sonraki 

kesimde, hassasiyet dağılımlarının özellikleri ayrıntılı olarak incelenecektir.   

3.2. Hassasiyet  Dağılımlarının Temel Özellikleri  

Hassasiyet dağılımı, söz konusu veri kümesindeki heterojenlikten kaynaklanan 

bağımlılık yapısını en iyi şekilde tanımlayabilmelidir. Hassasiyet dağılımının 

kullanılmasındaki temel amaç, gelecek yaşam süreleri arasındaki bağımlılık yapısının 

açıklanmasına kolaylık sağlamaktır. 

Hassasiyet dağılımı olarak kullanılacak dağılımın uygunluğunu belirleyebilmek için 

bazı fonksiyonlar ve bu fonksiyonların temel özelliklerinden yararlanılması 

gerekmektedir.   

Bu fonksiyonlardan ilki Laplace Dönüşümü’dür. Laplace Dönüşümü ile bağlantı ilk 

olarak Hougaard (1984, 1986a, 1986b) tarafından dikkate alınmıştır. Doğal olarak 

hassasiyet dağılımı belirlenirken kullanılacak dağılımın Laplace Dönüşümü’nün olup 
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olmaması önemli olmaktadır. Bu sayede parametre tahmini yapılırken geleneksel en 

çok olabilirlik yöntemleri kullanılabilmekte ve hassasiyet dağılımının yaşam 

fonksiyonu ve ölüm hızı fonksiyonu nasıl etkilediği Laplace Dönüşümü kullanılarak 

sorgulanabilmektedir. Literatürde Gamma dağılımı, Pozitif durağan dağılım (Positive 

Stable Distribution), Ters gauss dağımı, Güç varyans fonksiyonu (Power Variance 

Function) dağılımı ve Bileşik poisson dağılımı, hassasiyet dağılımı olarak 

kullanılmıştır. Literatürde kullanılan bir başka dağılım ise Lognormal dağılımdır. 

Lognormal dağılımın Laplace Dönüşümü’nün yapılamaması nedeniyle bu bölümde 

ele alınmayacaktır.  

Burada, i risk sınıfında in  tane bireyin olduğunu düşünülsün. Hassasiyet rastlantı 

değişkeni Z, bu risk sınıfındaki tüm bireyler için birikimli dayanak tehlike ölüm hızı 

fonksiyonu 0H (t)  ve eşdeğişken etkisi  exp tx   şeklinde tanımlansın. Bu durumda 

bu risk sınıfı için koşullu yaşam fonksiyonu, 

i i i

t t
i n i 0 1 i1 0 n inS (t ) exp z (H (t )exp(x ) ... H (t )exp(x ))                      (3.1) 

şeklinde yazılır. Dayanak ölüm hızı fonksiyonunun risk sınıfındaki tüm bireyler için 

aynı olması durumunda, tehlike hızı fonksiyonu bireyler arasında hassasiyet terimi 

kadar fark gösterecektir. Eş. (3.1)’de dayanak tehlike hızı fonksiyonunun her bir birey 

için aynı olduğu ve ortak risk faktörü etkisini olmadığı varsayıldığında, bu risk sınıfı 

için çoklu yaşam fonksiyonu, 

i i
i n i 0 1 i 0 nS (t ) exp( z H (t ))...exp( z H (t ))                              (3.2) 

olarak yazılabilmektedir. Eş. (3.2)’de  

L(s) E(exp( Zs))                             

Laplace Dönüşümü kullanıldığında bu risk sınıfı için çoklu yaşam fonksiyonu, 

i

i i

n

i n 0 1 0 n 0 s
s 1

S (t ) L(H (t ))...L(H (t )) L(H (t ))


          (3.3) 

şeklinde tanımlanmaktadır. Laplace Dönüşümü, hassasiyet dağılımları için önemli 

olup, Laplace Dönüşümü’nün türevi alınarak hassasiyet dağılımının beklenen değer 

ve varyans gibi momentleri bulunabilmektedir.  
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Bir rastlantı değişkeninin Laplace Dönüşümü yapılabiliyorsa, bu rastlantı değişkeninin 

Laplace Dönüşümü’nün sıfır noktasında komşuluğu olduğu anlamına gelmektedir. Bu 

durumda Z rastlantı değişkeninin beklenen değeri,  

'E(Z) L(0)   

şeklindedir. Bir rastlantı değişkeninin sıfıra göre momentlerinin Laplace Dönüşümü ile 

bulunmasında, 

k k (k)E(Z ) ( 1) L (0)   

eşitliğinden yararlanılır. Böylece, hassasiyet rastlantı değişkeninin varyansı Laplace 

Dönüşümü kullanılarak, 

'' ' 2Var(Z) L (0) (L(0))                      (3.4) 

şeklinde elde edilir. Hassasiyet rastlantı değişkeninin olasılık yoğunluk fonksiyonunu 

gösteren Zf , ilgilenilen popülasyon için çalışmanın başında belirlenmekte ve daha 

sonra zamanla değiştiği varsayılmaktadır. Bu değişim, ortalamadan daha hassas 

bireylerin popülasyondan erken ayrılması şeklinde olmaktadır. Basitleştirmek için 

ortak risk faktörü bilgisinin olmadığı varsayıldığında t anında yaşayan bir birey için 

olasılık yoğunluk fonksiyonu,  

0 Z
Z

0

exp( zH (t))f (z)f (z T t)
L(H (t))


                                        (3.5) 

şeklindedir. Koşullu hassasiyet teriminin başlangıçta beklenen değerinin bir olduğu 

ve zaman ilerledikçe hassasiyet seviyesi yüksek olan bireylerin, sistemden ayrılması 

beklendiği için bu değerin azalacağı varsayılmaktadır.  Benzer şekilde, t anında ölen 

bir birey için hassasiyet dağılımının olasılık yoğunluk fonksiyonu, 

0 Z
Z '

0

z exp( zH (t))f (z)f (z T t)
L(H (t))


                                      (3.6) 

şeklinde gösterilir. Bir diğer önemli fonksiyon ise hassasiyet teriminin bağımlılık 

derecesinin ölçülmesi için kullanılan Kendall’ın   fonksiyonudur (Duchateau ve 

Janssen, 2008).  Bu yöntemi basitçe anlatabilmek için ikişer gözlemli iki risk sınıfı 

olduğu ve eşdeğişken faktörlerinin etkisinin sıfır olduğu varsayılsın. İlk risk sınıfı i, bu 
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risk sınıfındaki olay zamanları i1 i2(T ,T )  ve ikinci risk sınıfı k, bu risk sınıfındaki olay 

zamanları k1 k2(T ,T )  olarak tanımlansın. Bu durumda Kendall’ın   değeri (Kendall, 

1938),  

 i1 k1 i2 k2E sign((T T )(T T ))                       (3.7) 

şeklindedir. Sürekli dağılımlar için diğer bir formül de Genest ve MacKay (1986) 

tarafından elde edilmiştir. Bu çalışmaya göre   değeri,  

i1 k1 i2 k2 i1 k1 i2 k2

i1 k1 i2 k2

P((T T )(T T ) 0) P((T T )(T T ) 0)
2P((T T )(T T ) 0) 1
2p 1

        

    

 

 

şeklinde elde edilmektedir. Laplace Dönüşümü kullanılarak Kendall’ın   değeri ise, 

s
(2)

0 0

4 sL(s)L sds 1


                         (3.8) 

şeklinde elde edilir (Duchateau ve Janssen, 2008). 

3.3. Hassasiyet Model Türleri 

Literatürde, heterojenliğin etkisini hesaba katan kesikli ve sürekli yaklaşım olmak 

üzere iki tür hassasiyet modellemesi yaklaşımı bulunmaktadır.  

3.3.1. Kesikli yaklaşım 

Kesikli yaklaşımda, bazı özel risk faktörlerinin etkisinin belirlenmesi amaçlanmış ve 

heterojenlik basit fonksiyonlar yardımıyla tanımlanmıştır. 1959 yılında Levinson 

tarafından yapılan çalışmada, gelecek yaşam süresinin olasılık yoğunluk 

fonksiyonunun kesikli olduğu belirlenmiş ve farklı yaşlardan bireylerden oluşan 

heterojen bir popülasyon m adet homojen risk sınıfına bölündüğünde i’inci grup için 

yıllık ölümlülük oranı  iq  olarak tanımlanmıştır. Popülasyonun homojen risk 

sınıflarına ayrılmasından dolayı her bir risk sınıfındaki bireylerin yaşlarının aynı 

olması beklenir. Risk sınıfları için yıllık ölümlülük oranları,  

     1 2 mq q ... q  
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şeklinde sıralansın. Zaman ilerledikçe, ölümler ve yaşam koşullarının değişiklik 

göstermesi nedeniyle risk sınıflarının tüm popülasyona olan oranlarının farklılaşması 

beklenmektedir. Fakat bu modelde, her bir risk sınıfı için bu risk faktörlerin 

değişmediği varsayımı kullanıldığında, zamana bağlı olarak  iq  yıllık ölümlülük 

oranlarının değişmeyeceği varsayılmıştır. 

ijP (x) , (x) yaşında i’inci sınıfta bulunan bireyin (x+1) yaşında j’inci sınıfa geçmesi 

olasılığını göstermek üzere ve bir bireyin bir yıl içerisinde ölüm dışında en fazla bir 

geçiş yapılabildiği varsayıldığında 

 

ij

ij

P (x) 0 ; j i

P (x) 0 ; j i

 

                                  (3.9) 

olur ve bu geçiş olasılıklarının toplamı bire eşit olmaktadır. Bu çalışmada ijP  geçiş 

olasılıklarına bozulma olasılıkları adı verilmektedir. 1969 yılında Redington tarafından 

yapılan çalışmada parametrik yaklaşım kullanılmış ve 

x z
x c                                (3.10) 

şeklinde tanımlanmıştır. Burada, c e  ve lnz 



 olarak kullanılmıştır.   

Bu modelde z, ölüm hızının bir olduğu yaşı göstermektedir.  Z ’nin oldukça büyük 

hatta son yaşa (maximum age) yakın bir yaş olması ve verilen z yaşı için ölüm hızının 

artış oranını gösteren c’nin değerinin bire yaklaşması gerekmektedir.  Z değeri için c 

ne kadar büyükse; ölüm hızı da o kadar küçük olmakta ve bu nedenle c, ölümlülüğe 

direnç parametresi (resistance to death) olarak adlandırılmaktadır. Bu tanım, 

Gompertz Ölümlülük Yasası’nda ölümden kaçınma gücü (strength to avoid death) 

olarak tanımlanmıştır.      

Bir bireyin ölümlülüğünü etkileyen faktörlerin gözlemlenemediği bilgisi verildiğinde c 

ve z parametrelerinin bu bireye özgü olduğu söylenebilir ve popülasyondaki 

heterojenliğin tanımlanabilmesi için ise c ve z birer rastlantı değişkeni olarak 

belirlenebilir.   
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Redington (1969),  bir popülasyonu m homojen risk grubuna ayırmış ve her bir grup 

için c, z ve ölüm hızları ayrı ayrı belirlemiştir. Heterojenlik nedeniyle model kesikli 

olarak oluşturulmuş ve c ile z için simetrik dağılımlar kullanılmıştır. Böylece 

popülasyon için ortalama ölüm hızı, 

m

x x(i) x(i)
i 1

a


                                (3.11) 

şeklinde tanımlanmış ve x  merkezi ölüm hızı olarak adlandırılmıştır. Bu bilgilere 

göre popülasyonun ortalama ölüm hızı, 

(x z ')
x' c '    

olarak modellenmiştir. Heterojenlikten dolayı ileri yaşlar için x x'  olması beklenir. 

Redington(1969) c ve z parametrelerinin simetrik olması nedeniyle standart 

sapmalarının sonlu olması dışında özel varsayımlara gerek olmadığını vurgulamıştır.   

Keyfitz ve Littman (1979) heterojenliği uygun şekilde tanımlayabilen  önemli ve  basit 

modeller geliştirmişlerdir. Popülasyonun homojen olduğu varsayılsın ve bu 

popülasyon için yaşa bağlı yıllık ölümlülük oranları xq ,x 0,1,2,... olarak tanımlansın. 

Bu durumda (x) yaşındaki birey için beklenen tam yıl yaşam süresi, 

x h x h x
h 0 h 1

e h q p
 

 

                     (3.12) 

şeklinde tanımlanır. Yıllık ölümlülük oranlarının yaştan bağımsız olduğu 

varsayıldığında ise beklenen tam yıl yaşam süresi, 





   
 h

x
h 1

1 1e e p
1 p q  

olur. Burada, hepsi ( 0x ) yaşındaki bireylerden oluşan heterojen bir popülasyon 

olduğu varsayılsın ve bu popülasyon bazı risk faktörlerine göre m tane homojen risk 

sınıfına ayrılsın. Ayrıca, her bir risk sınıfı için yıllık ölümlülük oranlarının sabit olduğu 

düşünülsün. Bu durumda (i)q , i’inci risk sınıfı için yıllık ölümlülük oranını ve
0( i)xa   i’inci 

risk sınıfının tüm popülasyona olan oranını göstermek üzere ( 0x ) yaşındaki bireyler 

için ortalama yıllık ölümlülük oranı, 
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0x0

m

x (i) (i)
i 1

q a q


                              (3.13) 

şeklinde elde edilir.  Bu durumda tüm popülasyon için beklenen tam yıl yaşam süresi, 

0

0
0( i )

[HO]
x m

x
x (i)

i 1

1 1e
q a q



 


                            (3.14) 

şeklinde ifade edilir. Ayrı ayrı düşünüldüğünde ise i’inci risk sınıfındaki birey için 

beklenen yaşam süresi, 

(i)
(i)

1e
q

   

şeklinde tanımlanır. Burada, her bir risk sınıfının toplam popülasyona olan oranının 

farklı olması nedeniyle, bazı risk sınıfları için tanımlanan beklenen tam yıl yaşam 

süresi daha az tanımlanırken, diğer risk sınıfları için tanımlanan beklenen tam yıl 

yaşam süresi de fazla belirlenmektedir.  Bu yüzden her bir risk sınıfı için beklenen 

tam yıl yaşam süreleri ayrı ayrı hesaplanıp ağırlıklandırıldığında tüm popülasyon için 

ortalama beklenen yaşam süresi, 

0

0 0

m m
x (i)[HE]

x x (i) (i)
i 1 i 1 (i)

a
e a e

q 

                                        (3.15) 

şeklinde tanımlanır. Her bir risk sınıfı için yıllık ölümlülük oranlarının Eş. (3.15)’deki 

gibi aritmetik ortalaması yerine harmonik ortalaması alınarak popülasyonun homojen 

olduğu varsayıldığında elde edilen beklenen tam yıl yaşam süresinin popülasyonun 

heterojen olduğunda elde edilen beklenen tam yıl yaşam süresinden küçük olması 

beklenir. Ancak bu durum, hayat sigortası şirketlerinin yükümlülükler için yetersiz 

rezerv ayırmasına neden olacağından istenmemektedir. 

Popülasyonun heterojen olduğu varsayıldığında ise her bir risk sınıfında beklenen 

kişi sayısının,  

0x (i)

(i)

a
q

 

 olması beklenir. Bu oranlar kullanılarak popülasyonun bileşimi, 
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0

0

x (i) (i)
x(i) m

x (i) (i)
i 1

a / q
a

a / q





                   (3.16) 

şeklinde elde edilir. Bu durumda popülasyon için beklenen yaşam yaşam süresi, 

 
 

0

0

0
0

m m m
x (i) (i)HE (i)

x x(i) (i) (i) x (i) (i)m HE
i 1 i 1 i 1 x

x (i) (i)
i 1

a / q e
e a e e a e

ea / q  



        
  


             (3.17) 

şeklindedir. Eş. (3.17), Eş. (3.15) eşitliği ile karşlaştırıldığında başlangıçta belirlenmiş 

ağırlıklar bireylerin beklenen yaşam süreleri arasındaki orana bağlı olarak 

düzenlenmiştir. Düşük ( )iq  değeri için yüksek ( )ie  değeri elde edileceğinden 

   
0

HE HO
x xe e  olur. Yani, popülasyonun homojen olduğu varsayımı altında elde edilen 

beklenen tam yıl yaşam süresi tahmini zaman ilerledikçe doğru ve yeterli 

olamayacaktır. 

3.3.2. Sürekli yaklaşım 

Bir önceki kısımda da değinildiği gibi popülasyon için heterojenlik durumu, kesikli 

olarak modellenmek istenildiğinde, çok fazla sayıda parametrenin kullanılması 

gerekmektedir. Kesikli yaklaşımda, popülasyon m risk sınıfına ayrılarak her bir risk 

sınıfının büyüklüğüne göre başlangıç oranları tanımlanmakta ve bu risk sınıflarının 

her biri için gelecek yaşam süresini tanımlayan olasılık dağılımı belirlenmektedir. Risk 

sınıfları büyüklüklerinin popülasyon büyüklüğüne olan oranın sabit olması nedeniyle, 

elde edilen sonuçlar gerçeği yansıtmayabilir. Analitik sonuçlar elde edilmek 

isteniyorsa,, yaşam dağılımı için önemli basitleştirmelerin yapılması gerekmektedir 

(Olivieri, 2006).  

Yaşam analizinde parametre sayısının fazla olması sorunu, sürekli yaklaşım 

kullanılarak çözülebilir. Parametre sayısının az olması ve değişen ölümlülük eğilimi 

dikkate alındığında, yaşa göre ölümlülüğün tanımlanabilmesi için sürekli modelleme 

tercih edilebilir. Hayat sigortası şirketleri, risk kabul sürecinde gözlemlenebilir risk 

faktörlerine göre risk sınıflandırması yapabilmektedirler. Daha öncede belirtildiği 

üzere hayat sigortası şirketleri, fiyatlandırma yaparken ölümlüğe etki eden 

gözlemlenemeyen risk faktörlerinin etkisini de dikkate alması gerekmektedir. Bu 
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yüzden gözlemlenemeyen risk faktörlerinden kaynaklanan heterojenliğin etkisini 

göstermek amacıyla negatif olmayan  Z rastlantı değişkeni kullanılmaktadır (Butt ve 

Haberman, 2004). 

Sürekli yaklaşımda hassasiyet modelleri temel olarak ikiye ayrılmaktadır. Bunlardan 

birisi, tek değişkenli hassasiyet modelleri; diğeri ise çok değişkenli hassasiyet 

modelleridir. Çok değişkenli hassasiyet modelleri de kendi içerisinde ikiye 

ayrılmaktadır. Bunlar, paylaşımlı hassasiyet modelleri (shared frailty models) ve ilişkili 

hassasiyet modelleri (correlated frailty models)  olarak adlandırılmaktadır. 

Bu çalışmada tek değişkenli hassasiyet modelleri kullanılacağından, tek değişkenli 

hassasiyet modelleri ayrıntılı olarak ele alınacaktır. Çok değişkenli hassasiyet 

dağılımlarına ilişkin olarak ise tanım, varsayımlar ve kullanılan alanlar konusunda 

genel bilgi verilecektir.  

3.4. Tek Değişkenli  Hassasiyet Modelleri 

Gözlemlenemeyen risk faktörlerinin etkisini içeren hassasiyet modellerinin anlatımını 

basitleştirmek için gözlemlenebilir risk faktörlerinden kaynaklanan heterojenlik 

etkisinin olmadığı varsayılacaktır. Popülasyondaki gözlemlenemeyen risk 

faktörlerinden kaynaklanan heterojenlik probleminin çözülebilmesi için ise ilk çalışma 

Vaupel et al. (1979) tarafından yapılmıştır. Bu çalışmada temel varsayım, 

gözlemlenemeyen risk faktörlerinin etkisi olarak tanımlanan ve yaştan bağımsız olan 

Z rastlantı değişkeninin dayanak tehlike hızı fonksiyonunu çarpımsal olarak 

etkilemesidir. Bu varsayım, 

0 0h (t,Z) Zh (t)                                           (3.18)                                                                   

şeklinde gösterilmektedir. Gözlemlenemeyen risk faktörleri popülasyondaki tüm 

bireyleri etkilediğinden, Z rastlantı değişkeninin; beklenen değerinin bir, varyansının 

ise sonlu olması beklenmektedir. Hassasiyet dağılımı rastlantı değişkeninin varyansı, 

popülasyondaki heterojenliğin ölçüm değerini göstermektedir. 2  küçük bir değer ise, 

Z’nin değerleri bir etrafında yoğun olarak dağılmaktadır. Eğer 2  büyük bir değer 

alıyorsa Z’nin değerleri oldukça yayılmıştır. Popülasyondaki bütün bireyler veya risk 

sınıfları dayanak tehlike hızı fonksiyonundan Z sabit oranı ile ayrılmaktadır. 
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0h (t,Z)  bireysel tehlike hızı fonksiyonunu göstermek üzere, bu fonksiyon Taylor 

Serisi ile açıldığında, 

'
0 0 0h (t,Z) h (t,0) h (t,0) (Z)                                                                                 

şeklinde gösterilebilmektedir. Burada, (Z) , birinci dereceden büyük dereceler için 

Taylor açılımını ifade etmektedir. Bu terim ihmal edildiğinde, bireysel tehlike hızı 

fonksiyonu, 

'
0 0 0h (t,Z) h (t,0) Zh (t,0)   

şeklinde yakınsamaktadır. Doğal bir varsayım yaparak sıfır rastgele etki 

seviyesindeki bireyler için ölümlülüğün sıfır olduğu varsayıldığında, 

' 0
0 0 Z 0 0

h (t,Z)h (t,Z) Zh (t,0) Z Zh (t)
Z 


  

                (3.19) 

olur. Z hassasiyet seviyesi bilindiğinde koşullu yaşam fonksiyonu,  

t t

0 0 0
0 0

S(t Z) exp h (s,Z)ds exp Z h (s)ds exp( ZH (t))
                    
                          (3.20) 

şeklinde elde edilir. 0 tf (t z) S(t z)h (z)  bilindiğinde z rastgele etki seviyesinde 0T ’ın 

koşullu olasılık yoğunluk fonksiyonu, 

zH(t)
0 t

df (t,z) e zh S(t z)
dt

                              (3.21) 

şeklindedir. Buradan T ve Z rastlantı değişkenlerinin ikili tehlike hızı fonksiyonu, 

0 0 0 t 0h (t,z) f (t,z)g (z) S(t z)h (z) g (z)                            (3.22) 

şeklindedir. Şu ana kadar verilen modelde popülasyondaki bir birey tanımlanmıştır. 

Buna rağmen, bireysel olarak model gözlemlenemez. Sonuç olarak, modelin 

popülasyon için dikkate alınması gerekmektedir. Tüm popülasyon için yaşam 

fonksiyonu, hassasiyet dağılımı bakımından bireysel yaşam fonksiyonlarının 

ortalamasına eşittir. Böylece popülasyon için ortalama yaşam fonksiyonu, 
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0
0

S(t) S(t z)g (z)dz


                     (3.23) 

şeklinde yazılabilir. Burada, S(t) , yeni doğan bireylerden (t) yaşına ulaşanların 

oranını göstermektedir.  

Popülasyonda bireyin (x) yaşında olduğu düşünüldüğünde, bu birey için hassasiyet 

seviyesi ile yeni doğan bir birey için hassasiyet seviyesi arasında; 

x 0 0Z Z T x   

ilişkisi bulunmaktadır. Bu durumda (x) yaşındaki birey için hassasiyet rastlantı 

değişkeninin olasılık yoğunluk fonksiyonu, 

x
x z 0

0 x x

z 0
0

Pr(z Z z z)g (z) lim
z

Pr(T x z Z z z)Pr(z Z z z)
lim

zPr(T x)

 

 

  



      


 

 

şeklinde elde edilir ve olasılık ifadeleri kısaltılarak yazıldığında, 

0 0
x

00

S(x z)g (z) S(x z)g (z)
g (z)

S(x) S(x z)g (z)dz
 


               (3.24) 

olur. Eş. (3.23) ve Eş. (3.24) karşılaştırıldığında (0) yaşındaki birey için hassasiyet 

rastlantı değişkeninin olasılık yoğunluk fonksiyonu verildiğinde, (x) yaşındaki birey 

için hassasiyet dağılımının olasılık yoğunluk fonksiyonu arasında, 

S(x z)
S(x)

  

ilişkisi vardır. (x) yaşındaki bireylerden oluşan popülasyon için tehlike hızı fonksiyonu,  

 

 
 


x 0 00 0
x

00

h (z)S(x z)g (z)dz h (x,z)dz
h (z)

S(x)S(x z)g (z)dz
 

şeklindedir ve bu popülasyon için tehlike hızı fonksiyonu,  



 
 

38

x 0 x 0 x 00 0 0
x

0 0 00 0 0

h (z)S(x z)g (z)dz zh S(x z)g (z)dz h zS(x z)g (z)dz
h (z)

S(x z)g (z)dz S(x z)g (z)dz S(x z)g (z)dz

  

    
  
    

x x x x0 0
x x x x0

h zS(x)g (z)dz h (z)S(x) zg (z)dz
h zg (z)dz h z

S(x) S(x)

 


   

 
         (3.25) 

şeklinde basit bir şekilde ifade edilir. Popülasyon için ortalama hassasiyet dağılımının 

bulunulan yaşa göre türevi alındığında, 

x x x
d h (z) h Var(Z ) 0

dx
   

sonucu elde edilmektedir. Bu durumda; popülasyon için ölüm hızı, popülasyondaki 

bireylerin ölüm hızlarından daha hızlı değişmektedir. Bu durum, hassasiyet seviyesi 

popülasyonun ortalama hassasiyet seviyesinden büyük olan bireyin popülasyondan 

erken ayrılması nedeniyle, popülasyonun ortalama hassasiyet seviyesinin yaş 

ilerledikçe azalmasına neden olmaktadır. 

Hassasiyet modellerinde kullanılan en önemli varsayım, hassasiyet dağılımı için 

kullanılacak dağılımın belirlenmesidir. Literatüre bakıldığında; Gamma, Ters Gauss, 

Pozitif Durağan Dağılım, Ters Gauss Dağılımı, Güç Varyans Fonksiyonu Dağılımı, 

Bileşik Poisson Dağılımı ve Lognormal dağılım yaygın olarak kullanılmaktadır. 

Lognormal dağılımın Laplace Dönüşümü’nün olmaması nedeniyle, bu kesimde 

Lognormal dağılım hariç diğer dağılımlar incelenecektir.  

3.4.1. Gamma dağılımı 

Hassasiyet dağılımı olarak, Gamma dağılımı çok yaygın bir şekilde kullanılmaktadır. 

Greenwood ve Yule (1920), Congdon (1995), dos Santos et al. (1995) ve Hougaard 

(2000) örnek olarak verilebilir. Analitik açıdan bakıldığında; koşulsuz yaşam, olasılık 

yoğunluk ve ölüm hızı fonksiyonlarının kolay elde edilmesi nedeniyle ölüm zamanı 

verisine uyum sağlamaktadır. Bu durum Laplace Dönüşümü’nün basit olarak elde 

edilmesinden kaynaklanmaktadır. Bu dağılımın kullanılmasının bir diğer önemli 

nedeni de biçim parametresi için farklı değerler kullanılarak, olasılık yoğunluk 

fonksiyonunun değişik şekillerde elde edilmesidir. İki parametreli Gamma dağılımı’nın  

olasılık yoğunluk fonksiyonu, 
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1

Z
z exp( z)f (z)

( )

  


 
 

şeklindedir. Burada 0   biçim parametresini ve 0   ölçek parametresini 

göstermektedir. Laplace Dönüşümü ise,  

Z0
L(s) exp( ts)f (z)dz

(s )



 

 

   

  

ile tanımlanmaktadır. Laplace Dönüşümü sıfır komşuluğa sahip olduğundan, Laplace 

Dönüşümü kullanılarak hassasiyet etkisi dağılımının beklenen değer ve varyansı;  

2

E(Z) /
Var(Z) /

  

  
 

şeklinde elde edilir. Burada (0) yaşı için hassasiyet etkisi dağılımının beklenen 

değerinin bire eşit olması gerekliliği nedeniyle, biçim ve ölçek parametrelerinin 

birbirine eşit ve varyansının sonlu olması gerekmektedir. Bu durumda     olacak 

ve Gamma dağılımı’nın varyansı, 

1Var(Z)  


                             (3.26) 

şeklinde tanımlandığında Laplace Dönüşümü 

1/L(s) (1 s)                                (3.27) 

olacaktır. Bu durumda, hassasiyet dağılımının Gamma dağılıma uyması durumunda; 

popülasyonun koşulsuz ölüm hızı fonksiyonu, 

0

0

h (t)h(t)
1 H (t)




                                               (3.28) 

ve yaşam fonksiyonu, 

1/
0S(t) (1 H (t))                      (3.29) 

şeklindedir. Hassasiyet etkisi dağılımı, Gamma dağılımı olarak belirlendiğinde 

popülasyonun ortalama hassasiyet etkisi seviyesi (x)   olmaktadır. Yaş ilerledikçe 
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ortalama hassasiyet etkisi seviyesi azalmaktadır. Burada,  ’nın küçük olması 

heterojenlik seviyesinin yüksek olması ve popülasyonun ortalama hassasiyet etkisi 

seviyesinin daha çabuk düşmesi anlamına gelmektedir. Bu durum, hassasiyet 

modellerinin seçim etkisini daha önemli kılmaktadır. Bu durumda hassasiyet etkisi 

seviyesinin varyansı da 2( (x))   yaş ilerledikçe azalmasına neden olmaktadır. Fakat 

Gamma hassasiyet dağılımı için değişim katsayısı, 1  , sabittir ve yaş ile 

değişmemektedir. Bu durum sadece Gamma hassasiyet dağılımı’na özgü bir 

özelliktir. Diğer hassasiyet dağılımları için değişim katsayısı yaş ilerledikçe, azalma 

eğilimi göstermektedir.  

Gamma dağılımının hassasiyet etkisi dağılımı olarak kullanımı, literatürde çok fazla 

yer almaktadır. Vaupel et al. (1979), heterojen popülasyonlar için hayat tablosunun 

doğrulanmasında; Manton et al. (1981), heterojen popülasyonun ölüm verisini 

kullanarak ölümlülük yapısını karşılaştırmak için; Manton, Stallard ve Vaupel (1981), 

Amerika’daki siyah ve beyaz bireylerin ölümlülükleri arasındaki ilişkiyi bulmak için; 

Manton et al. (1986), sağlık verisini kullanarak ileri yaşlara ilişkin yaşam analizi 

yapmak için ve Jones (1988), hayat sigortacılığında seçilmiş ayrılma etkisinin 

ölümlülük üzerindeki etkisini incelemek için kullanmışlardır.  

3.4.2. Pozitif Durağan dağılım 

Aynı dağılımdan elde edilmiş n tane birbirinden bağımsız rastlantı değişkeninin 

toplamının standartlaştırılmış hali, pozitif durağan dağılım olarak adlandırılmaktadır. 

Burada, standartlaştırma  ‘nın (0,1] aralığında olması koşulunda 1/n   ile 

yapılmaktadır. Olasılık yoğunluk fonksiyonu  ve yaşam fonksiyonu kapalı bir formda 

olmamasına rağmen Laplace Dönüşümü, 

L(s) exp( s )                     (3.30) 

şeklinde yazılabilmektedir. Pozitif durağan dağılımların Laplace Dönüşümü’nün 

sıfırda komşuluğu bulunmamaktadır. Çünkü Laplace Dönüşümü’nün sağdan limiti 

alındığında, Laplace Dönüşümü’nün değeri eksi sonsuz değerine ulaşmaktadır. Yani 

ıraksaktır. Bu yüzden, bu dağılımın tüm momentleri sonsuz değerini almaktadır. Tek 

değişkenli hassasiyet modellerinden hassasiyet etkisini gösteren rastlantı 

değişkeninin değerinin dörde eşit veya küçük olması olasılığının 0,90’dan büyük 

olması durumunda, beklenen değer momenti sonsuz değerini almamaktadır. Bu 
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durum Pozitif durağan dağılımın, Normal dağılıma göre daha sivri bir dağılım 

olmasından kaynaklanmaktadır. Çünkü pozitif durağan dağılımının kuyruk ağırlığının 

sıfıra çok yakın bir değer alması beklenmektedir. Bu durumda pozitif durağan dağılım 

için popülasyonun koşulsuz yaşam fonksiyonu, 

0 0S(t) L(H (t)) exp( H (t) )                    (3.31) 

olasılık yoğunluk fonksiyonu, 

1
0 0 0f(t) h (t) H (t) exp( H (t))                        (3.32) 

ve tehlike hızı fonksiyonu,  

1
0 0h(t) h (t) H (t)                      (3.33) 

şeklindedir.  

Pozitif durağan hassasiyet dağılımı, Hougaard (1986b) çalışmasında tanıtılmış ve 

Manatunga ve Oakes (1999) çalışmasında uygulanmıştır.  

3.4.3. Ters Gauss dağılımı 

Ters gauss dağılımının olasılık yoğunluk fonksiyonu, 

3/2 2
Z 2f (z) z exp (z )

2 2z


         
                

şeklindedir. Burada 0 ve 0     olarak tanımlanmaktadır.  Ters Gauss dağılımının 

Laplace Dönüşümü, 

1/ 22

2L(s) exp 2 s
                    

                    

beklenen değer ve varyansı ise,  

3

E(Z) ve Var (Z) 
  


 

şeklindedir. Hassasiyet etkisi dağılımının birinci moment değerinin bir olması 

beklendiği için 1   olarak alınmaktadır. Bu durumda   sonsuza giderken, 



 
 

42

heterojenlik durumunun ortadan kalktığı sonucuna ulaşılır. Ters gauss dağılımının 

beklenen değer ve varyansından 1   olarak alındığında, 

21E(Z) 1 ve Var (Z)   


                 (3.34) 

elde edilir. Bu durumda, popülasyon için koşulsuz yaşam fonksiyonu; 

2
02

1S(t) exp (1 1 2 H (t))
       

                  (3.35) 

ve ölüm hızı fonksiyonu;  

0
2 1/2

0

h (t)h(t)
(1 2 H (t))


 

                   (3.36) 

şeklinde elde edilir.  

Ters Gauss hassasiyet etkisi dağılımı, Hougaard (1984) çalışmasında tanıtılmış ve 

Manton ve Vaupel (1995), Keiding et al. (1997), Klein ve Moeschberger (1997) ile 

Price ve Manatunga (2001) çalışmalarında kullanılmıştır.  

3.4.4. Güç Varyans Fonksiyonu dağılımı 

Gamma, Ters Gauss ve Pozitif Durağan dağılımları da içeren, oldukça geniş bir 

hassasiyet dağılımı ailesidir. Bu dağılımın üç parametresi bulunmakta ve Laplace 

Dönüşümü, 

kL(s) exp (( s) ) 
         

 

şeklindedir. Buradan Güç Varyans Fonksiyonu dağılımının beklenen değeri, 

1E(Z) k    

ve varyansı, 

2Var(Z) k(1 )     

şeklinde elde edilir. Buradan da popülasyonun koşulsuz yaşam fonksiyonu, 
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0
kS(t) exp (( H (t)) ) 

        
 

ve koşulsuz ölüm hızı fonksiyonu, 

1
0 0h(t) kh (t)( H (t))   

elde edilir. Hassasiyet etkisi dağılımının beklenen değerinin bir olması durumunda, 

1E(Z) k 1                      (3.37) 

1
2 2k 1Var(Z) k(1 ) (1 )


  

       
 

                  (3.38) 

yazılır. Bu durumda koşulsuz ölüm hızı fonksiyonu, 

0
2

1
0

h (t)h(t)
(1 H (t))

1








                  (3.39) 

olur. Güç varyans fonksiyonu hassasiyet dağılımı, Tweedy (1984) çalışmasında 

önerilmiş ve Hougaard (1986a) çalışmasında kullanılmıştır. Hougaard et al. (1992) 

Danimarkalı ikizlerin gelecekteki yaşam sürelerinin modellenmesinde hassasiyet 

dağılımı olarak, bu dağılımı kullanmışlardır. 

3.4.5. Bileşik Poisson dağılımı 

Bileşik Poisson hassasiyet dağılımı, X rastlantı değişkenlerinin birbirinden bağımsız 

ve Gamma dağılımına ve N rastlantı değişkeninin de Poisson dağılımına uyduğu ve 

X rastlantı değişkenlerinden bağımsız olduğu dağılımdır ve 

1 2 NX X ... X , N 0
Z

0 , N 0

      
 

şeklinde tanımlanmaktadır. Gamma ve Poisson dağılımlarının Laplace Dönüşüm’leri 

kullanılarak, Bileşik Poisson dağılımının Laplace Dönüşümü, 

ksL(s) exp 1
             
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şeklinde elde edilir. Burada,   Poisson dağılımın ortalamasını ve  k, , Gamma 

dağılımının parametrelerini göstermektedir.  

Hassasiyet etkisi dağılımı olarak Bileşik Poisson dağılımı kullanıldığında koşulsuz 

yaşam fonksiyonu, 

0
kS(t) exp( (( H (t)) ))    


                (3.40) 

ve tehlike hızı fonksiyonu ise , 

1
0 0h(t) kh (t)( H (t))                     (3.41) 

şeklinde olur. 

Parametre değerleri k k


     


 olarak  değiştirildiğinde Laplace 

Dönüşümü, 

kL(s) exp (( s) ) 
           

                 (3.42) 

olur. Burada  , farklılık yaratan bir parametredir. 0   olduğunda dağılım güç 

varyans dağılımına; 0   olduğunda bileşik poisson dağılımına ve 0   ise 

Gamma dağılımına uymaktadır.  

Bileşik Poisson hassasiyet etkisi dağılımı, ilk olarak Aalen (1988,1992) tarafından 

kullanılmıştır. Aalen ve Tretli (1999), testis kanseri olanların, gelecek yaşam 

sürelerinin modellenmesinde, Bileşik Poisson dağılımını kullanmışlardır.  

3.5. Çok Değişkenli Hassasiyet  Modelleri 

Hassasiyet modellerinin en çok uygulandığı diğer bir önemli alan, çok değişkenli 

yaşam verisi analizidir. Bu analizler için bazı örnekler aşağıdadır: 

 Birbirleriyle genetik olarak bağlı olan bireylerin yaşam sürelerinin analizi, 

 Birbirleriyle genetik olarak bağlı olan bireylerin aynı hastalığa tekrar yakalanma 

zamanının analizi, 

 Bir bireyin aynı hastalığa tekrar yakalanma zamanının analizi. 
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Çok değişkenli modellerde; olay zamanları arasındaki var olan bağımlılık yapısı da 

dikkate alınmaktadır. Yaygın olarak kullanılan yaklaşım; gözlemlenemeyen veya gizli 

değişkenler olması durumunda gözlemlenen verinin özelliklerine göre yapılan sınıflar 

arasında, bağımsızlığın tanımlanmasıdır (Hougaard, 2000). Çok değişkenli yaşam 

modellerinde bağımlılık yapısı, gözlemlenen çoklu yaşam süresi için koşullu 

modellerdeki gizil değişkenden ileri gelmektedir.  Örneğin; gözlemlenen eşdeğişken 

bilgileri farklı, genetik olarak bağlı olan bireylerin yaşam süreleri gibi. Gizil değişken 

için varsayılan dağılımın ortalaması alındıktan sonra gözlemlenen veri için çok 

değişkenli bir model oluşturulmaktadır.  

Bir risk sınıfında akraba olan iki birey olsun ve eşdeğişken vektörleri birbirinden farklı  

1 2X ile X vektörleri ile gösterilsin. Bu risk sınıfı için iki boyutlu yaşam fonksiyonu, 

1 2 1 1 2 2
0

S(t , t ) S(t z,X )S(t z,X ) f(z)dz


   

şeklinde tanımlanmaktadır. Burada; f, Z rastlantı değişkeninin olasılık yoğunluk 

fonksiyonunu göstermektedir. Çok değişkenli hassasiyet modelleri, paylaşımlı ve 

ilişkili hassasiyet modelleri olmak üzere iki başlık altında incelenmektedir. 

3.5.1. Paylaşımlı hassasiyet modelleri 

Paylaşımlı hassasiyet modelleri; genetik bağımlılığı olan bireyler, benzer organlar ve 

tekrar eden ölçümlerin olay zamanlarının analiz edilmesinde kullanılmaktadır. Bir risk 

sınıfı içerisindeki bireyler, aynı hassasiyet değerine sahiptirler. Bu yüzden bu 

modellere ‘paylaşımlı hassasiyet modelleri’ adı verilmektedir.  Bu modeller, Clayton 

(1978) tarafından tanıtılmış ve Hougaard (2000) tarafından genişletilmiştir. Anlatımı 

basitleştirmek amacıyla, popülasyonun iki risk sınıfına ayrıldığı ve bu risk sınıflarının 

her birinde iki birey olduğu düşünülsün.  Z hassasiyet koşulunda, herhangi bir risk 

sınıfı içindeki iki bireyden birisi için ölüm hızı fonksiyonu T
0Zh (t)exp( X)  şeklindedir. 

Bu risk sınıfındaki bireyler için hassasiyetin Z değerine eşit olması, bu bireylerin 

yaşam sürelerinde bağımlılığa neden olmaktadır. Burada risk sınıfı içerisindeki 

bireylerin, gelecek yaşam süreleri bağımsız olarak varsayıldığında; bozulmuş 

hassasiyet modelleri kullanılmaktadır. Bozulmuş hassasiyet modellerinde, hassasiyet 

etkisini gösteren Z rastlantı değişkeninin ortalaması bir, varyansı ise sıfır değerine 

eşit olmaktadır.  Hassasiyet rastlantı değişkeninin varyansının sıfırdan büyük olması 
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durumunda ise bu risk sınıfı içerisindeki iki birey için pozitif bağımlılık söz konusudur 

ve Z hassasiyet etkisi rastlantı değişkeni bilindiğinde bu risk sınıfındaki bireyler için 

ikili yaşam fonksiyonu, 

 z z
1 2 1 1 2 2S(t , t Z) S (t ) S (t )  

şeklindedir. Paylaşımlı hassasiyet etkisi olan Z, bir risk sınıfı içerisindeki bireyler 

arasındaki ilişkiyi tanımlamaktadır. Bununla birlikte paylaşımlı hassasiyet modellerinin 

bazı sınırlamaları bulunmaktadır. Bunlar şu şekildedir : 

 Herhangi bir risk sınıfı içerisindeki bireyler için gözlemlenemeyen risk faktörlerinin 

aynı olduğu varsayımı, her zaman gerçeği yansıtmamaktadır. 

  Herhangi bir risk sınıfı içerisindeki yaşam sürelerinin bağımlılığı, yaşam 

sürelerinin marjinal dağılımlarından kaynaklanmaktadır. 

 Tek boyutlu hassasiyet etkisi, risk sınıfı içerisinde pozitif bağımlılık 

oluşturmaktadır. 

Paylaşımlı hassasiyet modelleri için bu kısıtlamalardan ilişkili hassasiyet modelleri 

kullanılarak kurtulunabilmektedir. 

McGilchrist ve Aisbett (1991) katatere bağlı enfeksiyon verisini modellemek için 

paylaşımlı Lognormal hassasiyet modeli kullanmışlardır. 

Dos Santos et al. (1995) göğüs kanserinin yeniden tekrarlanabilirliğinin modellenmesi 

için Gamma ve Lognormal dağılımlı paylaşımlı hassasiyet modeli kullanmışlardır. 

Manatunga ve Oakes (1999) diyabet çalışmasını modellemek için Pozitif durağan 

dağılım kullanmışlardır. 

Andersen et al. (1999) tedavi görülen yerin etkisini test etmek için paylaşımlı 

hassasiyet modellerini kullanarak bir çalışma yapılmıştır.  
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3.5.2. İlişkili hassasiyet modelleri 

İlişkili hassasiyet modelleri ilk olarak iki değişkenli başarısızlık zamanı verisinin 

analizi için kullanılmıştır. Bir risk sınıfı için iki birey olduğu düşünüldüğünde ve bir 

bireyin hassasiyet rastlantı değişkeninin dağılımı bilindiğinde, diğer birey için de 

hassasiyet rastlantı değişkeninin bilindiği varsayılmaktadır. Literatür incelendiğinde, 

ilişkili hassasiyet modellerinde genel olarak; Gamma dağılımı kullanılmakta ve ilişkili 

hassasiyet modelleri için yaşam fonksiyonu, 

1 2z z
1 2 2 1 1 2 21

S(t , t Z ,Z ) S (t ) S (t )  

şeklinde gösterilmektedir. 

Pickles et al. (1994) İngiliz ikizleri arasındaki ergenlik ve anti-sosyal davranışların 

başlangıç yaşının belirlenmesinde, İlişkili Gamma Hassasiyet Modeli’ni kullanmıştır. 

Yashin ve Iachine (1995) ve Yashin et al. (1995)  Danimarkalı ikizlerin ölümlülüğünü 

analiz etmek için İlişkili Gamma Hassasiyet Modeli’ni kullanmışlardır.  

Wienke et al. (2001) ve Zdravkovic et al.(2002) İsveç ve Danimarkalı ikizler için 

koroner kalp hastalığından kaynaklanan ölümlülüğü etkileyen genetik faktörlerini 

analiz etmek için İlişkili Gamma Hassasiyet Modeli’ni kullanmışlardır. 

Wienke et al. (2002) Danimarkalı ikizler için koroner kalp hastalığından kaynaklanan 

ölüme ilişkin faktörlerin analiz edilmesi için genişletme yapmıştır. 

Zahl (1997) Norveç’te nedene bağlı kanser ölümlülüğünü modellemek için İlişkili 

Gamma Hassasiyet Modeli’ni kullanmıştır. 
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4. UYGULAMA 
Bu bölümde, 2004-2008 yılları arasındaki Türkiye kadın ve erkek sigortalı ölüm verisi 

kullanılarak, Hassasiyet Modeli araştırması yapılacaktır. Modelin doğruluğu uyum 

iyiliği testleri ile sınanacak ve modelleme sonucunda elde edilen ölüm oranları (110) 

yaşına kadar  uzatılacaktır.  

4.1. Modelleme 
Bu kesimde, Üçüncü Bölüm’de incelenen tek değişkenli hassasiyet modelinde farklı 

dağılımlar için tanımlanan ölüm hızı, dayanak ölüm hızı fonksiyonunun Gompertz 

Ölümlülük Yasası’na  

x b(exp(p x)) ,x>0   

uyduğu varsayıldığında; tek bir formül ile kısa bir şekilde elde edilmiştir. Burada, z 

hassasiyet seviyesine sahip (x) yaşındaki birey için 

x
exp( g px)(z)

(1 exp( s px))
  

  
                             (4.1) 

şeklinde tanımlanmıştır. Burada,  ’nun aldığı değerlere göre hassasiyet teriminin 

dağılımı, aşağıda verildiği gibi değişmektedir:  

 1   değerini aldığında, hassasiyet dağılımı; Gamma dağılıma uymakta ve 

Eş.(4.1), Gompertz/Gamma hassasiyet modelini tanımlamaktadır. Eş.(3.28) ile 

Eş.(4.1) arasındaki uyum, Ek 1’de verilmiştir. 

 1 2  değerini aldığında, hassasiyet dağılımı;  Ters Gauss dağılıma uymakta ve 

Eş.(4.1), Gompertz/Ters Gauss hassasiyet modelini tanımlamaktadır. Eş.(3.36) ile 

Eş.(4.1) arasındaki uyum, Ek 2’de verilmiştir.  

 0 1  değerini aldığında, hassasiyet dağılımı; Pozitif Durağan dağılıma 

uymakta ve Eş.(4.1), Gompertz/Pozitif Durağan hassasiyet modelini 

tanımlamaktadır. Eş.(3.33) ile Eş.(4.1) arasındaki uyum, Ek 3’te verilmiştir.   

 1  değerini aldığında, hassasiyet dağılımı; Bileşik Poisson dağılıma uymakta 

ve ve Eş.(4.1), Gompertz/Bileşik Poisson hassasiyet modelini tanımlamaktadır. 

Eş.(3.41) ile Eş.(4.1) arasındaki uyum, Ek 4‘te verilmiştir. 
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 1   değerini aldığında, hassasiyet dağılımı; Güç Varyans Fonksiyonu 

dağılımına uymakta ve Eş.(4.1), Gompertz/Güç Varyans Fonksiyonu hassasiyet 

modelini tanımlamaktadır. Eş.(3.39) ile Eş.(4.1) arasındaki uyum, Ek 5‘te 

verilmiştir.  

4.2. Kaba Ölüm Hızlarının Elde Edilmesi 

Bu kesimde 2004-2008 yılları arasındaki kadın ve erkek sigortalı verisinden, kaba 

ölüm hızlarının elde edilmesi için sigortalı veri setine uygulanacak işlemler ele 

alınacaktır.  

4.2.1. 2004-2008 yılları arasındaki Türkiye sigortalı verisi 

Bu çalışmada Sigorta Bilgi Merkezi (SBM) aracılığı ile Türkiye’de faaliyet gösteren 

beş önemli hayat sigortası şirketinden elde edilen sigortalı verisi kullanılmıştır. Bu 

veri, 1 Ocak 2004 tarihinden 31 Aralık 2008 tarihine kadar düzenlenmiş toplam        

13 332 687 poliçeden oluşmaktadır.  

4.2.2.   Eksik ve hatalı veri sorununun ortadan kaldırılması 

Veri kümesi denetimden geçirilerek, tekrarlı ve eksik bilgiler belirlenmiştir. Eksik ve 

hatalı veri sorununun ortadan kaldırılabilmesi için ilk olarak veri kaynağına geri dönüş 

yapılarak, yeniden sorgulama yapılmıştır. Bu sorgulama sonucunda, düzeltilemeyen 

gözlemler sigortalı veri kümesinden çıkarılmıştır.  

4.2.3. Tekrarlama hatasının ortadan kaldırılması 

Tekrarlama hatasının ortadan kaldırılabilmesi için T.C. Kimlik Numaraları’na göre 

sorgulama yapılmıştır. Eksik ve hatalı gözlemler sigortalı veri setinden çıkarılıp 

tekrarlama hataları da ortadan kaldırıldıktan sonra sigortalı veri setinde 3 803 022 

erkek sigortalı birey ve 999 716 kadın sigortalı birey kalmıştır.  

4.2.4. Riske maruz kalan birim sayısının elde edilmesi 

Düzeltmelerden sonra kalan sigortalı verisinden, yaşa göre ölüm hızlarının, x , elde 

edilmesi gerekmektedir.  

Burada, her bir takvim yılı; gözlem dönemi (observation period) olarak 

adlandırılmaktadır. Herhangi bir gözlem döneminde gözlemlerin tam olması, (x) 
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yaşındaki bireyin (x+1) yaşına ulaşana kadar veya bu gözlem dönemi içerisinde 

ölene kadar gözlemlendiği anlamına gelmektedir.  

1 Ocak 2004, çalışmanın başladığı tarih olarak kabul edilmiştir. Yani, 1 Ocak 2004 

tarihinden önce gözlemlenen ölümler ve sigorta sistemine giriş-çıkış yapan gözlemler 

dikkate alınmayarak soldan kesme işlemi yapılmıştır. 31 Aralık 2004, 31 Aralık 2005,        

31 Aralık 2006, 31 Aralık 2007 ve 31 Aralık 2008 tarihlerinde sağdan sansürleme 

yapılmıştır. Gözlemlere sağdan sansürleme yapılarak her bir gözlem dönemi için 

yaşlara göre ölüm hızları elde edilmiştir. Kesme ve sansürleme işlemleri Şekil 4.1’de 

gösterilmiştir: 

 

 

 

 

 

 

 

 

Şekil 4.1’de yatay çizgiler, gözlem altındaki bireyleri yaşlara göre sınıflandırmak için, 

dikey çizgiler ise her bir gözlem dönemini birbirinden ayırmak için kullanılmıştır.  

Şekil 4.1’deki gözlem dönemlerinden herhangi birinde n adet gözlemin bulunduğu ve 

gözlemlerin i 1,2,...,n  şeklinde etiketlendiği düşünülsün. Burada i’inci gözlemin 

i(x t )  yaşında gözlem dönemine girdiği ve i(x s )  yaşında gözlem döneminden 

ölüm veya başka bir nedenden dolayı ayrıldığı düşünüldüğünde,  i i0 t s 1    o 

gözlem dönemi için (x) yaşında riske maruz kalan birim sayısı, 

x 1 1 2 2 n nE (s t ) (s t ) ... (s t )                         (4.2) 

eşitliğinden hesaplanmaktadır. Burada, i i0 s t 1 ,i 1,2,...,n     olmaktadır. 

Şekil 4.1. Sansürleme ve Kesme 

S S S S S

K

1 Ocak 2004 31 Aralık 2004 31 Aralık 2005 31 Aralık 2006 31 Aralık 2007 31 Aralık 2008
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4.2.5. Ölen kişi sayısının bulunması 

Herhangi bir gözlem döneminde, gözlemlenen her ölüm dikkate alınmaktadır. XD , 

herhangi bir gözlem döneminde (x) yaşında ölen kişi sayısını göstermektedir.  

4.2.6.  Gözlenen ölüm hızının elde edilmesi 

Bu çalışmada ölümlerin yıl içerisinde tekdüze dağıldığı varsayımı kullanılarak, (x) 

yaşındaki bireyler için kaba ölüm hızı,  

x
x

x x

D
E 0,5D

 


 

şeklinde hesaplanmaktadır (Butt ve Haberman, 2002).  

Her bir gözlem dönemi için elde edilen riske maruz kalan birim sayılarının ortalaması 

alınarak, tüm çalışma için kullanılacak ortalama riske maruz kalan birim sayıları, xE , 

elde edilir. Aynı şekilde her bir gözlem dönemi için elde edilen ölüm sayılarının 

ortalaması alınarak, tüm çalışma için kullanılacak ortalama ölüm sayıları, xD , 

değerleri elde edilir.  

Kadın ve erkek sigortalılar için elde edilen ortalama ölüm sayıları ve ortalama riske 

maruz kalan birim sayıları kullanılarak, kadın ve erkek sigortalı bireyler için yaşa göre 

ölüm hızları, 

x
x

x x

D
E 0,5D

 


                              (4.3) 

şeklinde hesaplanır.  

Kadın ve erkek sigortalıların ölüm hızları incelenirken, tek ortak risk faktörü yaş 

olarak alındığından; yaşın ölüm hızlarını açıklama oranlarının da incelenmesi 

gerekmektedir. Bu incelemenin yapılabilmesi için Spearman’ın sıra korelasyon 

katsayısından (Spearman, 1904) yararlanılmaktadır. Bu değer, iki sıralı değişken 

arasındaki ilişki derecesinin ölçümünü göstermektedir.  

Eş. (4.3) kullanılarak (18)-(60) yaş aralığındaki kadın ve erkek sigortalılar için elde 

edilen yaşa göre ölüm hızları, sırasıyla, Şekil 4.2 ve Şekil 4.3’te gösterilmiştir : 
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Şekil 4.2 incelendiğinde (18) yaşından (25) yaşına kadar kadın sigortalılar için ölüm 

hızlarında hızlı bir düşüş görülmektedir. (25) yaşından (40) yaşına kadar ölüm 

hızlarından hafif bir artış eğilimi vardır. (40) yaşından (60) yaşına kadar ise, ölüm 

hızları fazla dalgalanmış hem de ölümlülük eğilimi artmıştır. 

 

 

 

 

 

 

 

 

 

 

 

               Şekil 4.2. Kadın sigortalı bireyler için yaşa göre ölüm hızları 
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            Şekil 4.3. Erkek sigortalı bireyler için yaşa göre ölüm hızları 
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Şekil 4.3 incelendiğinde erkek sigortalıların ölüm hızlarının, kadın sigortalıların ölüm 

hızlarına göre daha durağan bir yapı izlediği görülmektedir. Fakat (45) yaşından 

sonra ölümlülük eğilimi hızlı bir şekilde artmaktadır.   

Kadın sigortalılar için Spearman’ın sıra korelasyon katsayısı 0,8736 ve erkek sigortalı 

bireyler için Spearman’ın sıra korelasyon katsayısı 0,9802 olarak elde edilmiştir. 

Diğer bir deyişle, kadın sigortalıların ölüm hızlarındaki değişimi yaş faktörü % 87,36 

ve erkek sigortalıların ölüm hızlarındaki değişimi yaş faktörü % 98,02 oranında 

açıklayabilmektedir. Bu oranlar kabul edilebilir olduğundan sadece yaş faktörü 

dikkate alınarak ölüm hızlarına ilişkin model araştırması yapılabilir. 

4.3. Parametre Tahmini İçin Kullanılacak Yöntem  

Dayanak ölüm hızı ve hassasiyet dağılımının parametrelerinin tahmin edilebilmesi 

için kullanılan temel yaklaşım, gözlenen popülasyon ölümlülük verisi için ortalama 

hassasiyet etkisi yaklaşımıdır (Vaupel et al., 1985a ; Butt ve Haberman, 2002).  

Ortalama hassasiyet etkisi yaklaşımında, tüm  popülasyon için gözlenen ölüm 

hızının; her bir risk sınıfı için elde edilmiş ölüm hızlarının ortalamasına eşit olduğu 

varsayılmaktadır.  

Ortalama hassasiyet etkisi yaklaşımında, diğer bir önemli varsayım ise ölümlülüğün 

yıl içerisinde x xE  ortalama ile Poisson dağılıma sahip olmasıdır. Bu varsayım ile her 

bir yaş için riske maruz kalan birim sayılarının, yeterli büyüklüğe sahip olduğu 

düşünülmektedir.  

Hassasiyet modellerinde dayanak ölüm hızı ve hassasiyet etkisi dağılımının ayrı ayrı 

belirlenmesi oldukça zordur (Elbers ve Ridder, 1982). Ortalama hassasiyet etkisi 

yaklaşımında hassasiyet modelinin parametre tahminleri, dayanak ölüm hızının 

seçimine bağlıdır. Hassasiyet modellerinde hassasiyet etkisinin dağılımı ise, dayanak 

ölüm hızı ile kaba ölüm hızları arasında bağlantı kurulmasında kullanılmaktadır.  

Bu çalışmada Eş. (4.1)’de tanımlanmış hassasiyet modelinin parametrelerinin tahmin 

edilebilmesi için Genelleştirilmiş Doğrusal Modeller kullanılacağından Genelleştirilmiş 

Doğrusal Modeller’e ilişkin  bilgi verilecektir.  
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4.3.1. Genelleştirilmiş Doğrusal Modeller 

4.3.1.1. Giriş 

Genelleştirilmiş doğrusal modeller klasik doğrusal modellerin genelleştirilmiş halidir 

(Haberman ve Renshaw, 1996). Bir bireyin veya popülasyonun ölümlülüğünü 

etkileyen çok fazla sayıda risk faktörü bulunmaktadır. Yaşam analizinde bazı risk 

faktörlerinin etkisi dikkate alınırken diğer risk faktörlerinin etkisi göz ardı edilmektedir. 

Etkisinin dikkate alındığı faktörler açıklayıcı değişken olarak adlandırılmaktadır. 

Açıklayıcı değişkenler de ikiye ayrılmaktadır. Bunlar nitel ve nicel açıklayıcı 

değişkenlerdir. Bunlardan nicel açıklayıcı değişkenler, eşdeğişken ve nitel açıklayıcı 

değişkenler ise risk faktörü düzeyi olarak adlandırılmaktadır. Yaşam analizinde 

açıklayıcı değişkenler ve açıklayıcı değişkenlerden kaynaklanan bağımlılığın 

bulunarak analiz edilebilmesi için genelleştirilmiş doğrusal modeller gibi çok 

değişkenli modeller kullanılmaktadır.  

Genelleştirilmiş doğrusal modellerin amacı, bağımlı değişken Y ile bağımsız 

değişkenler olarak tanımlanan X’ler arasındaki ilişkinin açıklanmasıdır. Aktüerya 

bilimlerinde genelleştirilmiş doğrusal modeller, 1800’lü yılların başından bugüne 

kadar kullanılmaktadır(Johnson ve Hey,1971; Grimes,1971; Bennett, 1978; Baxter et 

al. ,1980; Coutts, 1984). Genelleştirilmiş doğrusal modellerde temel varsayım verinin 

tek parametreli üstel dağılım ailesine ait bir dağılımdan alınmasıdır (Haberman ve 

Renshaw, 1996). GLM yönteminin diğer varsayımları ise 

 Gözlemler birbirinden bağımsız veya en azından ilişkili olmaması 

 Modelde tek hata terimi olması  

şeklindedir (McCullagh ve Nelder, 1989). Genelleştirilmiş doğrusal modellerde ilk 

olarak veri seti kümesi, açıklayıcı değişkenler ve modele ilişkin parametrelere ilişkin 

eşitlikler oluşturulur. Bu şekilde oluşturulmuş eşitlik sistemi optimal çözüme en uygun 

değer elde edilene kadar adımsal olarak çözülür. Genelleştirilmiş doğrusal modellerin 

bazı dezavantajları aşağıda verilmiştir : 

 Açıklayıcı değişkenlerin, modelin parametre tahminleri üzerindeki etkisinin anlamlı 

olup olmadığına ilişkin testler yapılamaz. 

 Model parametre tahminleri için güven aralığı oluşturulamaz. 
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Genelleştirilmiş doğrusal modellerin dezavantajlarının yanında avantajları da vardır: 

 Ölümlülük modeline ilişkin parametrelerin tahmin edicilerine ilişkin bir takım 

varsayımlar yapılmasına olanak sağlar. 

 Genelleştirilmiş doğrusal modeller ile yapılan çözümlemeler iteratif yöntemlere 

göre daha etkindir.  

 Genelleştirilmiş doğrusal modeller, yalnızca anlamlı değişkenlerin seçilmesine ve 

model varsayımlarının doğrulanmasına yardımcı olan istatistiksel kontrol 

mekanizmasına sahiptir. 

 Klasik doğrusal modellerde kullanılan bağımsız ve açıklayıcı değişkenlerin 

varyansı, sabit Normal dağılıma uyması kısıtı bulunmamaktadır. 

 Açıklayıcı değişkenlerin toplanabilir olması varsayımı kullanılmamaktadır.  

 Bağımlı değişken Y rastlantı değişkeninin negatif olan veya negatif olmayan 

değerler alması zorunluluğu bulunmamaktadır.  

4.3.1.2.  GLM’in yapısı 

iY , i’ nci bağımlı değişkeni göstermek üzere birbirinden bağımsız n sayıda bağımlı 

değişkenden oluşan vektör Y ile tanımlanmaktadır. Doğrusal modelde, bağımlı 

değişkenin aldığı değerlerden oluşan Y vektörü, açıklayıcı değişkenlerden oluşan X 

vektörü ve bilinmeyen parametreler   vektörü ile gösterildiğinde, bağımlı değişken ile 

açıklayıcı değişkenler arasında 

Y X                                                                                                                 (4.4) 

biçiminde bir ilişki tanımlanır. Burada,   hata terimleri vektörünü göstermektedir. 

Genelleştirilmiş doğrusal modellerin temel unsuru, bağımsız değişken vektörü X ile, 

bağımlı değişken Y ile açıklayıcı değişkenler arasındaki bağlantının kurulmasıdır.  

Genelleştirilmiş doğrusal modellerdeki temel amaç,   hata terimi vektörü 

elemanlarının kareler toplamını en küçük yapan   vektörünün elemanlarının 

bulunmasıdır. Gözlem sayısı n ve modeldeki parametre sayısı k ise,   vektörü k 
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sayıda,   vektörü n sayıda bileşenden oluşur. Burada modelin parametre sayısının 

gözlem sayısından küçük olması gerekmektedir.   

Üstel dağılım ailesi, iki parametreli fonksiyonlar kümesi olup, Y  bağımlı değişkeninin 

i sayıdaki elemanlarından her birine ilişkin olasılık yoğunluk fonksiyonu,  

i i i i i if(y ; , ) exp((y b( )) a( ) c(y , ))                                  (4.5) 

ile tanımlanmaktadır. Eşitlikteki ( )a , ( )b  ve ( )c  fonksiyonları tanımlı fonksiyonlar 

olup, bu fonksiyonlara ilişkin birtakım varsayımlar yapılmaktadır. Bu fonksiyonların 

tanımlanabilmesi için yeterli koşul; bağımlı değişkenin olasılık yoğunluk 

fonksiyonunun, bağımlı değişkenin aldığı tüm değerler için integrali alındığında elde 

edilen değerin bire eşit olmasıdır. Bu durumda farklı ( )a , ( )b  ve ( )c  fonksiyonları 

için farklı çözümler elde edilebilmektedir. ( )a , ( )b  ve ( )c  fonksiyonlarının tüm 

gözlem değerleri için aynı olduğu varsayıldığında, tüm gözlemlerin de aynı dağılıma 

sahip olduğu kabul edilmektedir. Burada ( )a  fonksiyonu, pozitif ve sürekli; ( )b  

fonksiyonu,  ’ya göre ikinci türevi pozitif olmak koşuluyla iki kez türevlenebilir bir 

fonksiyon ve ( )c  fonksiyonu,   parametresinden bağımsız bir fonksiyondur.  

Eş. (4.5)’ de yer alan   parametresi doğal parametre ve   parametresi ölçek veya 

yayılım parametresi olarak tanımlanmaktadır. Her bir gözlem değeri için doğal 

parametre değişebildiği halde, ölçek parametresi tüm gözlemler için sabit olmaktadır. 

Doğal parametrenin gözlemden gözleme değişmesi, ortalamanın da gözlemden 

gözleme değişmesine olanak sağlamaktadır.  Poisson dağılımı için ölçek parametresi 

1 olarak alınmaktadır. Üstel dağılım ailesine ait diğer dağılımlar için ise ölçek 

parametresi bilinememekte bu yüzden veri kümesi kullanılarak en çok olabilirlik 

yöntemiyle tahmin edilmesi ya da genelleştirilmiş Pearson ki-kare istatistiğinin 

kullanılması gerekmektedir. 

Üstel dağılım fonksiyonunun yapısında var olan ( )a  fonksiyonu, w  

kullanılmaktadır. Yani ölçek parametresinin başlangıçta tanımlanan ağırlığa olan 

oranıdır. 

Üstel dağılım ailesine mensup dağılımlardan birine sahip olan bağımlı değişkene 

ilişkin ortalama  
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i iE(Y) b'( )                                            (4.6) 

ve varyans 

iVar(Y ) b ''( )a( )                                                              (4.7) 

şeklinde ifade edilmektedir. Varyans eşitliğinden de görüldüğü üzere bağımlı Y 

değişkenine ilişkin varyans, ortalamanın bir fonksiyonu olarak tanımlanabilmektedir. 

Bu yüzden bağımlı Y değişkenine ilişkin varyans V( )  ile gösterilmektedir (De Jong 

ve Heller, 2008). Genelleştirilmiş doğrusal modelin biçimini belirleyen faktörler, bağ 

fonksiyonu, varyans fonksiyonu ve tahmin edilen veya bilinen ölçek parametresidir. 

Üstel dağılım ailesi içinde yer alan bazı dağılımlar için a( ) , b( )  ve c(y, )  

fonksiyonları Çizelge 4.1’ de verilmiştir: 

 

Dağılım a( )  b( )  c(y, )  

Normal Dağılım w  2 2  21 2(wy / ln(2 / w))    

Poisson Dağılımı w  exp( )  ln y!  

Gamma Dağılımı w  ln( )   (w )ln(wy ) lny ln( (w ))       

Binom Dağılımı w  m ln(1 e )  
m

ln
y

     
 

Ters Gauss Dağılımı w  2    31 2(ln(2 y / w) w / ( y))     

 

Genelleştirilmiş doğrusal modeller, veri yapısına bağlı olarak seçilen üstel dağılım 

ailesindeki dağılımlardan biri kullanılarak oluşturulur. iY , i’ nci gözleme ilişkin bağımlı 

değişkeni göstermek üzere bu bağımlı değişkenin ortalaması; 

1( ) ( )    1,2, ,  ; 1,2, ,          i i ij j i
j

E Y g X i n j k                                      (4.8)    

ve varyansı; 

Çizelge 4.1. Üstel Dağılım Ailesi İçin Fonksiyonlar 
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i
i

i

V( )Var(Y )
w

 
                                                      (4.9) 

şeklinde ifade edilir. Genelleştirilmiş doğrusal modellerin yapısında yer alan i , i’ nci 

gözleme ilişkin bilinen hata terimidir. Bu terim, herhangi bir açıklayıcı değişkenin 

bağımlı değişken üzerindeki etkisinin bilindiği durumlarda kullanılır. Bilinen hata 

teriminin ilgili modelin doğrusal tahmin edici fonksiyonuna eklenmesiyle  

X                                                                               (4.10)                                                

eşitliği elde edilir. Doğrusal tahmin edici fonksiyonu Eş. (4.4) ile tanımlanan bağımlı 

değişkenin beklenen değeri, 

1 1E(Y) g ( ) g (X )                                                                               (4.11) 

eşitliği ile elde edilmektedir. i’inci gözleme ilişkin ortalama, i’inci gözleme ilişkin 

doğrusal tahmin edicinin bir fonksiyonu olarak ifade edilmektedir. Doğrusal tahmin 

edici için belirlenen bu fonksiyon genellikle bağ fonksiyonunun ters fonksiyonudur ve  

1
i ig ( )                                     (4.12) 

şeklinde ifade edilir. Genelleştirilmiş doğrusal modellerde kullanılan bağ 

fonksiyonunun, türevlenebilirlik ve tekdüzelik koşullarını sağlaması gerekmektedir. 

Çizelge 4.2’ de genelleştirilmiş doğrusal modellerde kullanılan bazı bağ fonksiyonları 

ve bu bağ fonksiyonlarının tersi gösterilmiştir. 

 

Bağ Fonksiyonu g(x)  1g (x)  

Birim fonksiyon X X 

Logaritmik fonksiyon ln(x) exp(x) 

Logit fonksiyon ln(x / (1 x))  exp(x) (1 exp(x))  

Ters fonksiyon 1/ x  1/ x  

 

Çizelge 4.2. Bağ Fonksiyonları ve Bağ Fonksiyonlarının Ters Fonksiyonları 
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Genelleştirilmiş doğrusal modellerde kullanılan bağ fonksiyonlarından biri olan 

logaritmik bağ fonksiyonu, açıklayıcı değişkenlerin bağımlı değişken üzerindeki 

etkisinin çarpımsal olması özelliğine sahip olması durumunda kullanılmaktadır 

(McCullagh ve Nelder,1989).  

4.3.1.3. GLM için olabilirlik fonksiyonu 
 GLM için  y yanıt vektörü, birbirinden bağımsız olabilirlik fonksiyonu, 

Y
y b( )f (y, , ) exp c(y, )

k( )
   

     
 

                (4.13) 

şeklinde tanımlanır. Burada, k, b ve c fonksiyonları verilen GLM yapısına göre 

belirlenmektedir.   biliniyorsa, rastgele kısım   parametresi ile üstel dağılım 

ailesinden olan bir dağılıma uymaktadır.   bilinmiyorsa, rastgele kısım iki parametreli 

üstel dağılım ailesine ait bir dağılıma uyabilir veya uymayabilirdir.  

Bu olabilirlik fonksiyonunun doğal logaritması alındığında  

Y
y b( )l (y, , ) c(y, )

a( )
  

    


                (4.14) 

elde edilir. Burada 

22

2
l l lE 0 ve E E

                 
 

durumları sağlanmalıdır. Buradan 

   
' 'l y b ( ) b ( )E E 0

a a
                   

 

'b ( ) E(Y)                        (4.15) 

ve 

22 ''

2 2
l l b ( ) Var(Y)E E 0

a( ) a ( )
                

 

''b ( )a( ) Var(Y)                                                                                                   (4.16) 
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sonuçları elde edilir. Genel olarak  a   fonksiyonu, 

2

i

a( ) i 1,...,n
w
 

   


 

şeklindedir. Bu oran,   dağılım parametresi ile önceden belirlenmiş ve her bir 

gözleme göre farklı iw  ağırlıklarına göre belirlenmiş bir sabittir. Burada a fonksiyonu 

bir ölçek fonksiyondur.  

4.3.1.4.  GLM için artıkların incelenmesi 

Gözlem sayısı n olan bir veri seti verildiğinde bunun n parametreli bir model ile 

modellenmesi beklenmektedir. Uygun olarak seçilen model için uyum iyiliği testi 

gözlemlerle tam olarak eşleşen ve uygun model arasındaki farkın artık değerleri 

incelenerek yapılmaktadır. Bu artık değerler, Sapma artıkları, Pearson artıkları ve 

Anscombe artıkları olarak adlandırılmakta ve  

- Sapma artıkları           D ˆr sign(y m) d                 (4.17) 

 

- Pearson artıkları         P
wˆr (y m)

ˆV(m)
                           (4.18) 

 

- Anscombe artıkları     a

ˆln(y) ln(m)r
m̂


                        (4.19) 

şeklinde elde edilmektedir.  Modelin uygun olup olmadığının incelenebilmesi için artık 

yapılarının belli özelliklere sahip olması gerekmektedir. Sapma artıkları 

incelendiğinde düzenli bir dağılım göstermemesi beklenmektedir (Butt ve Haberman, 

2004).  

Uygulamalarda yukarıda tanımlanan artık türlerinden en çok Pearson artıkları 

incelenmektedir. Pearson artıklarının  (-3 ,+3) arasında olması beklenmektedir. 

Sapma artıkları ile Pearson artıkları arasında belirgin bir fark bulunmamaktadır. 

Anscombe artıklarının ise bir doğru etrafında dağılması beklenmektedir. 
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4.3.2. Taylor açılımı ile GLM 

Hassasiyet modellerinde tanımlanan kaba ölüm hızlarının parametrelerinden bazıları 

doğrusal değildir. Bu yüzden, o yaş veya yıl için tanımlanmış kaba ölüm hızları ile o 

yaş veya yıl için tanımlanmış riske maruz kalan birim sayısı çarpıldığında o yıl veya 

yaş için ortalama ölüm sayısı elde edilmektedir. Ölüm sayılarının her bir yıl veya yaş 

için Poisson dağılımı’na sahip olduğunu varsayıldığında,  

         x x x x x x xD Poisson E m E D E                          (4.20) 

şeklinde tanımlanmaktadır. Burada ölüm sayıları x xE  ortalama ile Poisson 

dağılımına uyduğu varsayımında bulunulmaktadır. x xE  ortalamaya sahip Poisson 

Genelleştirilmiş Doğrusal Modelleme’de log olabilirlik fonksiyonu,  

        x x x xLnL( ;y) y ln E E lny!  

şeklindedir. Burada, genelleştirilmiş doğrusal modeller fonksiyonları, 

   x xln E                    (4.21) 

b( ) exp( )                                                                                                  (4.22) 

 a( ) 1                                         (4.23) 

c(y, ) ln(y!)                                                                                                  (4.24) 

şeklinde elde edilir.  

Hassasiyet modelleri ile tanımlanmış ölüm hızı modelinin doğrusal olmaması 

nedeniyle GLM yönteminin uygulanabilmesi için bu modelin doğrusallaştırılması 

gerekmektedir. Renshaw (1991) tarafından önerilen yöntem uygulandığında ölüm 

hızlarının logaritmik dönüşümünü yapılarak doğrusal olmayan kısmı için Taylor 

açılımı kullanıldığında Eş (4.1), 

x x x

x

exp( g px)ln(E ) ln E
(1 exp( s px))

ln(E ) g px ln(1 exp( s px))



          

      
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x x x xln(E ) g px (c Sk )                     (4.25) 

şeklinde elde edilmektedir. Burada,  

xc ln(1 exp( s px))      , xk exp( s p x)(1 exp( s px))      ,   x xxk   

  0S s s  ve    0p p                

şeklinde tanımlanmıştır. Bu model, MATLAB programlama dili kullanılarak yazılmıştır. 

MATLAB programının algoritması ise şu şekildedir: 

1. Adım:   değerleri için eşit olasılıklarla rastgele değerler elde edilir.  

2. Adım:   değerleri elde edildikten sonra 0p  ve 0s  başlangıç değerleri 

kullanılmıştır. Bu başlangıç değerleri regresyon analizi ile Gompertz Ölümlülük 

Yasası’na uyum yapılarak elde edilir. 

3. Adım:  Üçüncü adımda 0p  ve 0s başlangıç değerleri kullanılarak yaşa göre xc , xk  

ve x  değerleri elde edilir. 

4. Adım: Ölüm sayılarının Poisson dağılıma uyduğu varsayımı ile genelleştirilmiş 

doğrusal modelleme yönteminde parametre tahminlerinin elde edilebilmesi için  

en küçük kareler yöntemi kullanılarak g,s ve p parametrelerinin tahmin değerleri 

elde edilir.  

5. Adım: Analizin durdurulacağı noktanın belirlenebilmesi için kısıt olarak 

Pearson’un Ki-Kare Test İstatistiği kullanılmıştır. 0,99 güven düzeyi ve 34 

serbestlik derecesi için Ki-Kare Tablo Değeri 50,892180 olarak alınmıştır. Modelin 

anlamlılığının sağlanabilmesi için ise bu değer üst sınır olarak alınmıştır.   

6. Adım: Oluşturulan model 5’inci Adım’daki kısıtı sağlıyorsa ekler dizininde(Ek 1, 

Ek 2, Ek 3, Ek 4, Ek 5) verilen dönüşümlerin tersi uygulanarak Üçüncü Bölüm’de 

tanıtılan hassasiyet modellerinin parametre değerleri elde edilerek 7’inci Adım’a 

geçilebilir. Oluşturulan modelin 5’inci adımdaki kısıtı sağlamaması durumunda ise 

sıfır değerine oldukça yakın s ve p değerleri elde edilerek Üçüncü Adım’a geri 

dönüş yapılmıştır.  
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7. Adım : Uyum iyiliği testleri ve duyarlılık analizinin yapılabilmesi için tahmin edilen 

parametreler kullanılarak yaşa göre kaba ölüm hızları ve modele göre ölüm hızları 

elde edilir.  

MATLAB programlama dilinde yazılan program kullanılarak ele edilen kaba ve 

beklenen ölüm hızları kullanılarak uyum iyiliği testlerinin yapılabilmesi ve grafiklerin 

çizilebilmesi için Microsoft Excel, SPSS ve R programı kullanılmıştır. 

4.4. Uyum İyiliği Testleri 

Modele göre ölüm hızları ve kaba ölüm hızları arasındaki uyumun test edilmesi 

gerekmektedir. Bu uyumun test edilebilmesi için hipotez testi, 

0

s

H : Model uygundur.
H : Model uygun değildir.

 

biçiminde kurulur. İstatistiksel testler kullanılarak   yanılma düzeyinde test 

istatistiğinin değeri tablo değerleriyle karşılaştırılarak yokluk hipotezinin kabul 

edilebilir olup olmadığı test edilir. Bu amaçla kullanılan testler, 

1. Wilcoxon İşaret Sıralama Testi 

2. Serisel Korelasyon Testi 

3. Belirtme Katsayısı 

4. Pearson’un 2  test istatistiği 

şeklindedir.  

Wilcoxon İşaret Sıralama Testi, kaba ölüm hızları ile modelleme ile elde edilmiş ölüm 

hızlarının ortanca değerleri arasında fark olup olmadığının belirlenmesine ilişkin 

yapılan testtir (Siegel, 1956). Bu testin yapılabilmesi için Standart Normal Dağılım 

Tablosu’ndan   yanılma düzeyine karşılık gelen tablo değeri kullanılmaktadır. Z 

hesap değerinin mutlak değeri , Z tablo değerinden küçük ise yokluk hipotezinin   

yanılma düzeyinde kabul edilebilir olduğu sonucuna ulaşılır. 

Serisel Korelasyon Testi, artıklar için otokorelasyon sorunun olup olmadığının test 

edilmesi için kullanılmaktadır (Durbin ve Watson,1951). Sıra korelasyon test değeri 

sıfıra yakın bir değer aldığında artıklar arasında otokorelasyon problemi olmadığı 

sonucu elde edilir.  
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Belirtme katsayısı, yaşam analizinde uygun modelin kabul edilebilirliğini 

gösterebilecek bir kriter olarak kabul edilmektedir. Bu çalışmada iki farklı belirtme 

katsayısı hesabı dikkate alınmıştır. Bunlardan ilki regresyon analizinde kullanılan 

belirtme katsayısıdır (Anscombe, 1973). İkinci yöntemde ise belirtme katsayısı, 

ortalama ölüm oranı ve modele göre elde edilen ölüm oranlarına göre artık kareleri 

yaşam fonksiyonu ile ağırlıklandırılarak elde edilmektedir (Su ve Sherrish, 2011).  Her 

iki yönteme göre hesaplanan belirtme katsayılarının % 100’e yakın bir değer olması 

istenmektedir. 

Pearson’un Ki-Kare Test İstatistiği ise kadın ve erkek sigortalıların ölüm hızları için 

oluşturulan modelin doğru olup olmadığının belirlenebilmesi için kullanılmaktadır 

(Plackett, 1983). Bu istatistik değeri, her bir gözlem için Pearson artıklarının 

karelerinin toplamı şeklinde elde edilmektedir.  Yokluk hipotezinin kabul edilebilir 

olması için hesaplanan bu istatistik değerinin   yanılma düzeyinde n k 1   

serbestlik derecesindeki Ki-Kare Tablo Değeri’nden küçük olması gerekmektedir. 

Burada; n, gözlem sayısını ve k, bağımsız değişken sayısını göstermektedir.  

4.5.  Kadın ve Erkek Sigortalı Veri Kümesinin İncelenmesi 

Genelleştirilmiş Doğrusal Modelleme Yöntemi kullanılarak kadın ve erkek 

sigortalıların ölüm hızları için uygun hassasiyet modeli araştırması yapılmıştır. Bu 

kesimde kadın ve erkek sigortalılar için ölümlülük modellemesinde yapılan işlemler 

ayrıntılı olarak ele alınacaktır.  

4.5.1. Kadın sigortalı veri kümesinin incelenmesi 

Kadın sigortalıların ölüm hızları incelendiğinde ölüm hızlarının Gompertz/Ters Gauss 

Hassasiyet Modeli’ne uyum sağladığı sonucuna ulaşılmış, diğer bir deyişle,            

Eş. (4.1)’de tanımlanan modele göre 0,5   olarak bulunmuştur.  

Üçüncü Bölüm’de hassasiyet dağılımının Ters Gauss dağılımına uyması durumunda 

Eş. (3.36)’ da tanımlanan modele göre 2 =833,335  olarak elde edilmiştir. Dayanak 

ölüm hızı fonksiyonunun Gompertz Ölümlülük Yasası’na uyduğu varsayılmış model 

parametreleri b=0,00051 ve p=0,097  olarak tahmin edilmiştir.  Bu durumda kadın 

sigortalıların ölüm hızları için model, 
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'

x 0,5
'

0,00051 exp(0,097x )=
0,000511+1666,67 (exp(0,097x )-1)
0,097


         

                        (4.26) 

 

şeklinde elde edilmiştir. Burada, 'x x 18, 18 x 60     olarak tanımlanmıştır.   

 

Kadın sigortalılar için kaba ölüm hızları ile modele göre ölüm hızları, Şekil 4.4’te 

gösterilmiştir: 

 

 

 

 

 

 

 

 

 

 

Kadın sigortalılar için Sapma artıkları, Pearson artıkları ve Anscombe artıkları ise 

Şekil 4.5’te gösterilmiştir: 
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Şekil 4.5 incelendiğinde Sapma artıklarının rastgele bir dağılım gösterdiği 

görülmektedir. Pearson artıklarının ise sadece (18) yaşındaki artık değeri hariç diğer 

artıklar (-3,+3) aralığında bulunduğu ve Anscombe artıklarının ise (18)-(25) yaş 

aralığı haricinde pozitif eğimli bir doğrunun etrafında dağıldığı görülmektedir.  

Kadın sigortalıların ölüm hızları için elde edilen Anscombe artıklarının bir doğru 

etrafında dağılmaması nedeniyle (18)-(25) yaş aralığındaki kaba ölüm hızları göz ardı 

Şekil 4.5. Kadın Sigortalı Ölüm Hızları İçin Artıkların İncelenmesi 
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edilerek ve 0,5   olarak alınarak yeniden modelleme yapıldığında parametre 

değerlerinin değiştiği görülmektedir.   

Kadın sigortalıların ölüm hızları için yeniden modelleme yapıldığında Üçüncü 

Bölüm’de hassasiyet dağılımının Ters Gauss dağılımına uyumu durumunda           

Eş. (3.36)’da tanımlanan modele göre 2 =1000  olarak bulunmuştur. Dayanak ölüm 

hızı fonksiyonu Gompertz Ölümlülük Yasası’na uyduğu varsayıldığında model 

parametreleri b=0,00051 ve p=0,12178  olarak tahmin edilmiştir.  Bu durumda kadın 

sigortalılar için model, 

'

x 0,5
'

0,00051 exp(0,12178x )=
0,000511+1000 (exp(0,12178x )-1)
0,12178


         

               (4.27) 

olarak elde edilmiştir. Burada,  'x x 25, 25 x 60     şeklinde tanımlanmıştır.  

Kadın sigortalıların ölüm hızları için ikinci modelleme yapıldığında, elde edilen 

modele göre kadın ölüm hızları ve kaba kadın ölüm hızları Şekil 4.6’da gösterilmiştir: 
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Kadın sigortalıların ölüm hızları için ikinci modelleme sonucunda artıklar yeniden 

incelendiğinde elde edilen sonuçlar Şekil 4.7’de gösterilmiştir: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 4.7 incelendiğinde Sapma artıklarının rastgele dağıldığı görülmektedir. Sapma 

artıkları arasında otokorelasyon sorununun olup olmadığının belirlenebilmesi için 

Serisel Korelasyon testi yapılmıştır. Serisel korelasyon testi yapıldığında -0,0364 
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değeri elde edilmiştir. Bu değerin sıfıra yakın bir değer olması nedeniyle artıklar 

arasında otokorelasyon sorununun olmadığı görülmüştür. 

Pearson artıkları incelendiğinde ise (59) yaşı hariç aykırı değer görülmemektedir. 

Anscombe artıklarının da pozitif eğimli bir doğru etrafında dağıldığı görülmektedir. 

Pearson artıklarındaki aykırı değer veri kümesinden çıkarılıp yeniden modelleme 

yapıldığında ise tahmin edilen model parametrelerinin değişmediği görülmüştür. 

Anscombe artıklarında (44) yaşındaki artık değer hariç diğer artıkların pozitif eğimli 

bir doğru etrafında dağıldığı görülmektedir. (44) yaşındaki aykırı değer veri 

kümesinden çıkarılıp yeniden modelleme yapıldığında da model parametrelerinin 

değişmediği görülmüştür.  

Kadın sigortalıların ölüm hızları için uyum iyiliği testlerinden Wilcoxon İşaret Sıralama 

Testi yapıldığında -1,1469 değeri elde edilmiştir. 0,01 yanılma düzeyinde standart 

normal dağılım tablo değeri olan 2,575 ile karşılaştırılmış ve 1,1469<2,575 olduğu 

görülmüştür. Bu durumda yokluk hipotezinin, yani modelin uygunluğunun kabul 

edilebileceği sonucuna varılmıştır.  

Kadın sigortalıların ölüm hızları için belirtme katsayısına bakıldığında ise; birinci 

yönteme göre hesaplanan belirtme katsayısı değeri 0,65 ve ikinci yönteme göre 

hesaplanan belirtme katsayısı değeri 0,87 olarak elde edilmiştir. Kadın sigortalıların 

ölüm hızları için belirtme katsayısının düşük olmasının nedeni kadın sigortalıların 

ölüm hızlarındaki aşırı dalgalanma durumudur. 

Kadın sigortalıların ölüm hızları için Pearson’un Ki-Kare Test İstatistik değeri ise 35 

olarak elde edilmiştir. Hesap değeri, 35<50,892180 olduğundan modelin 

uygunluğunu gösteren yokluk hipotezinin %99 güven düzeyinde kabul edilebilir 

olduğu sonucuna ulaşılmıştır.  

Kadın sigortalıların ölüm hızları için artık değerleri incelendiğinde ve uyum iyiliği 

testleri sonuçlarına bakıldığında kadın sigortalı bireylerin ölüm hızları için                

Eş. (4.27)’de tanımlanan modelin uygunluğu kabul edilmiştir.   
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4.5.2. Erkek sigortalı veri kümesinin incelenmesi 

Erkek sigortalıların ölüm hızları incelendiğinde ölüm hızlarının Gompertz/Gamma 

Hassasiyet Modeli’ne uyum sağladığı sonucuna ulaşılmıştır. Diğer bir deyişle          

Eş. (4.1)’deki modelde 1   olarak bulunmuştur.   

Üçüncü Bölüm’de hassasiyet dağılımının Gamma dağılımına uyması durumunda,    

Eş. (3.36)’da tanımlanan modele göre =1,02290  olarak bulunmuştur. Dayanak 

ölüm hızı fonksiyonu Gompertz Ölümlülük Yasası’na uyduğu varsayıldığından, 

modelin parametreleri b=0,000493  ve p=0,06343  olarak tahmin edilmiştir.    

Erkek sigortalılar için Gompertz/Gamma hassasiyet modeli,   

'

x
'

0,000493exp(0,06343x )=
0,0004931+1,0229 (exp(0,06343x )-1)
0,06343

     

              (4.28) 

şeklinde elde edilmiştir. Burada, 'x x 18, 18 x 60     olarak tanımlanmıştır.  

Erkek sigortalılar için kaba ölüm hızları ile modele göre ölüm hızları, Şekil 4.8’de 

gösterilmiştir: 
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Erkek sigortalılar için Sapma artıkları, Pearson artıkları ve Anscombe artıkları ise 

Şekil 4.9’ da gösterilmiştir: 
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Şekil 4.9 incelendiğinde Sapma artıklarının sistematik olmayan bir dağılıma sahip 

olduğu görülmektedir. Pearson artıkları incelendiğinde, (-3,+3) aralığında yer 

almayan bir tane artık değeri bulunduğu ve Anscombe artıklarına bakıldığında ise 

(18)-(25) yaşları arasındaki artıklar hariç diğer artıkların pozitif eğimli bir doğru 

etrafında dağıldığı gözlemlenmektedir.  

Erkek sigortalılar için (18)-(25) yaş aralığındaki ölüm hızı değerleri veri kümesinden 

çıkartılarak, yeniden Gompertz/Gamma hassasiyet modeli analizi yapılmıştır. Üçüncü 

Bölüm’de hassasiyet dağılımının Ters Gauss dağılımına uyması durumunda          

Eş. (3.36)’ da tanımlanan modele göre =1,507983  olarak bulunmuştur. Dayanak 

ölüm hızı fonksiyonu Gompertz Ölümlülük Yasası’na uyduğu varsayıldığından model 

parametreleri b=0,000443  ve p=0,09351 olarak tahmin edilmiştir.   

Erkek sigortalılar için Gompertz/Gamma hassasiyet modeli,   

'

x
'

0,000443exp(0,09351x )=
0,0004431+1,507983 (exp(0,09351x )-1)
0,09351

     

             (4.29) 

şeklinde elde edilmiştir. Burada, 'x x 25, 25 x 60     olarak tanımlanmıştır. Şekil 

4.10’da ikinci Gompertz/Gamma hassasiyet modellemesinden elde edilen erkek ölüm 

hızları ile kaba erkek ölüm hızları verilmiştir: 
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Erkek sigortalıların ölüm hızları için Sapma artıkları, Pearson artıkları ve Anscombe 

artıkları Şekil 4.11’de gösterilmiştir: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 4.11 incelendiğinde Sapma artıklarının sistematik bir dağılım göstermediği 

görülmektedir. Artıklar arasında otokorelasyon sorunun olup olmadığının 

belirlenebilmesi amacıyla erkek sigortalı ölüm hızlarına Serisel Korelasyon testi 
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yapılmıştır. Serisel korelasyon testi değeri 0,0103 olarak elde edilmiştir. Bu değer 

sıfıra yakın olduğundan, artıklar arasında otokorelasyon sorununun olmadığı 

görülmüştür. 

Pearson artıklarında ise biri tam (+3) değerinin üzerinde olan, tek bir artık 

bulunmakta olup; diğer artıklar (-3,+3) aralığında yer almaktadır. Anscombe 

artıklarının ise pozitif eğimli bir doğru etrafında dağıldığı görülmektedir. Pearson 

artıklarında görülen aykırı değer veri setinden çıkarıldığında, model parametre 

tahminlerinin değişmediği görülmüştür. 

Erkek sigortalıların ölüm hızları için uyum iyiliği testlerinde Wilcoxon İşaret Sıralama 

Testi yapıldığında 0,0943 değeri elde edilmiştir. 0,01 yanılma düzeyinde standart 

normal dağılım tablo değeri 2,575 olarak elde edilmiş ve 0,0943<2,575 olduğu 

görülmüştür. Bu durumda modelin uygunluğunu gösteren yokluk hipotezinin kabul 

edilebilir olduğu sonucuna varılmıştır. 

Erkek sigortalıların ölüm hızları için yapılan ikinci modellemede, birinci yönteme ve 

ikinci yönteme göre hesaplanan belirtme katsayısı 0,99 olarak hesaplanmıştır. 

Pearson’un Ki-Kare Test İstatistik değeri ise 35 olarak elde edilmiştir.  

Erkek sigortalı bireylerin ölüm hızları için Pearson artıklarının toplamının 35 olduğu 

ve bu hesap değeri tablo değerinden küçük olduğu için (35<50,892180)  yokluk 

hipotezinin 0,01 yanılma düzeyinde kabul edilebilir olduğu görülmüştür. 

Erkek sigortalıların ölüm hızları için ikinci modelleme denemesinden sonra artık 

yapıları, Wilcoxon İşaret Testi, Serisel Korelasyon Testi, Pearson’un Ki-Kare Test 

İstatistiği ve Belirtme Katsayısı değerleri dikkate alındığında Eş. (4.34)’de tanımlanan 

modelin uygun olduğu sonucuna ulaşılmıştır. 

Ölümlülük modellemesinde bir modelin uygun olup olmadığının belirlenebilmesi için 

aşağıda verilen iki önemli kriterin sağlanması gerekmektedir: 

 Modelin parametre tahminlerinin aykırı değerlerden etkilenmemesi 

 Hata varyanslarının homojen olmamasına izin veren bir model olması, diğer bir 

deyişle hata terimi varyansının yaşlara göre değişimine izin vermesi (Butt ve 

Haberman, 2002).   
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Kadın ve erkek sigortalıların ölüm hızları incelendiğinde birinci kriterin sağlandığı 

görülmüştür. İkinci kriterin sağlanıp sağlanmadığının incelenebilmesi için ise Goldfeld 

Quandt Testi yapılabilir. Bu test büyük örneklere uygulanabilen bir testtir ve 

kıyaslama yapılabilmesi için F tablosu kullanılmaktadır (Goldfeld ve Quandt, 1965).  

Kadın sigortalıların ölüm hızları için hesap değeri 31,32 ve erkek sigortalıların ölüm 

hızları için hesap değeri 35,64 olarak elde edilmiştir.  Pay serbestlik derecesi 11 ve 

payda serbestlik derecesinin 11 olması durumunda 0,01 yanılma düzeyinde F 

istatistik değeri 4,47 olduğu görülmüştür. Kadın ve erkek sigortalıların ölüm hızları 

için elde edilen hesap değerleri 4,47’den büyük olması nedeniyle hata terimleri 

varyanslarının aynı olmadığı sonucuna ulaşılmıştır.  

Kadın ve erkek sigortalılar için hassasiyet etkisinin bağımlılık derecesinin 

ölçülebilmesi için Kendall’ın   değerinden yararlanılmaktadır. Eş. (3.8) kullanılarak 

kadın sigortalıların ölüm hızları için Kendall’ın   değeri 499 ve erkek sigortalıların 

ölüm hızları için ise 0,33838 olarak elde edilmiştir. Bu durumda gözlemlenemeyen 

risk faktörlerinin kadın sigortalıların ölüm hızlarında oluşturduğu bağımlılığın erkek 

sigortalıların ölüm hızlarında oluşturduğu bağımlılık derecesinden daha büyük olduğu 

sonucuna varılmaktadır.  

Kadın ve erkek sigortalıların ölüm hızlarındaki bağımlılığın ölçümü ile ilgili 

kullanılabilecek bir başka ölçüt ise hassasiyet etkisi dağılımının varyansıdır. Kadın 

sigortalıların ölüm hızları için uygun bulunan hassasiyet etkisinin varyansı, erkek 

sigortalıların ölüm hızları için uygun bulunan hassasiyet etkisinin varyansından büyük 

olduğu için kadın sigortalıların daha heterojen bir yapıya sahip oldukları 

söylenebilmektedir.  

4.6. Ölüm Hızlarının Uzatılması 

Kadın ve erkek sigortalıların ölüm hızları için yapılan modelleme sonucunda elde 

edilen ölüm hızlarına İlişkisel Model (HPC), uzatma yöntemi uygulanmıştır (Himes, 

Preston ve Coudran,1994). Bu yöntemin uygulanmasının nedeni, İlişkisel Model’in 

diğer uzatma yöntemlerine göre daha uygun sonuçlar vermesidir. Himes, Preston ve 

Coudran (1994) çalışmasında, (45) yaşından (99) yaşına kadar ölüm oranları düşük 

82 farklı ülkenin ölümlülük yapısı dikkate alınarak standart hayat tablosu elde 

edilmiştir. Bu standart hayat tablosundan elde edilen regresyon denklemi kullanılarak 
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modellenen ölüm hızları uzatılabilmektedir. Modele göre ölüm hızlarının İlişkisel 

Model kullanılarak uzatılabilmesi için aşağıdaki adımlar izlenmiştir: 

1. Adım: Uzatılmak istenen tabloyla ilişkilendirilmek üzere standart hayat tablo 

seçilir. 

2. Adım: Standart tablonun istenilen son yaşa kadar uzatılması amacıyla, standart 

tablodaki Y bağımlı değişkenine logit dönüşümü kullanılarak basit doğrusal 

regresyon analizi yapılır. 

3. Adım: Uzatılmak istenen tablo için bağımsız değişken standart tablodan elde 

edilen Y bağımlı değişkeni ile uzatılmak istenen tablonun Y bağımlı değişken 

arasında basit doğrusal regresyon analizi yapılır. Kurulan regresyon denklemi, 

s
x x

s
x x

ln ln
1 1
                   

                 (4.30) 

şeklindedir.  

4. Adım: Uzatılmak istenen tabloya ilişkin regresyon katsayıları elde edilerek, 

istenilen yaşa kadar uzatma işlemi yapılır.  

Kadın sigortalıların ölüm hızları için yapılan uzatma işlemi sonucunda (60)-(110) 

yaşları için elde edilen ölüm hızları Ek 6’da verilmiştir.  Erkek sigortalıların ölüm 

hızları için yapılan uzatma işlemi sonucunda (60)-(110) yaşları için elde edilen yıllık 

ölüm oranları ise Ek 7’de verilmiştir.   
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5. SONUÇ VE ÖNERİLER 

5.1. Sonuçlar 

Herhangi bir ölüm zamanı verisinden elde edilen ölüm oranları modellenirken, 

popülasyonun heterojen olmasından kaynaklanan bağımlılık durumuna ilişkin; 

aktüeryal, demografik ve istatistiksel literatür incelendiğinde, çok fazla sayıda çalışma 

yapıldığı görülmektedir. Popülasyondaki heterojenlikten kaynaklanan bağımlılık 

etkisinin ölçülebilmesi için kesikli ve sürekli yaş formülleri kullanılarak birçok model 

oluşturulmuştur.  

Bu çalışmada, 2004-2008 Türkiye sigortalı verisi kullanılarak dayanak ölüm hızının 

Gompertz Modeli’ne uyduğu varsayılmış, hassasiyet dağılımı için Gamma, Ters 

Gauss, Pozitif Durağan, Güç Varyans Fonksiyonu ve Bileşik Poisson dağılımlarından 

en uygun hassasiyet modeli araştırması yapılmıştır. Parametre tahmini yapılırken 

Genelleştirilmiş Doğrusal Modelleme Yöntemi kullanılmıştır. Genelleştirilmiş Doğrusal 

Modeller, Klasik Doğrusal Modeller’e göre daha kararlı parametre tahminleri elde 

edilmesi ve az sayıda aykırı değerin kabul edilebilirliği açısından daha uygun bir 

yöntem olmaktadır (Butt ve Haberman, 2004). Kadın sigortalıların ölüm hızları için 

Gompertz/Ters Gauss hassasiyet modelinin ve erkek sigortalıların ölüm hızları için 

Gompertz/Gamma hassasiyet modelinin daha uygun olduğu sonucuna varılmıştır.   

Kadın sigortalıların ölüm hızları için yaşa göre hassasiyet etkisi değerleri Şekil 5.1’de 

gösterilmiştir: 

 

 

 

 

 

 

 

 

                       Şekil 5.1 Kadın Sigortalılar İçin Hassasiyet Etkisi 
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Şekil 5.1’de kadın sigortalılar için hassasiyet etkisinin oldukça küçük bir değer aldığı 

ve yaş ilerledikçe azalan hızla azaldığı görülmektedir. Burada, gözlemlenemeyen risk 

faktörlerinin kadın ölüm hızları üzerindeki etkisinin az olduğu sonucuna 

ulaşılmaktadır. Erkek sigortalıların ölüm hızları için yaşa göre hassasiyet etkisi 

değerleri ise Şekil 5.2’de gösterilmektedir : 

 

 

 

 

 

 

 

Şekil 5.2’de erkek sigortalılar için hassasiyet etkisinin (25)-(30) yaşları arasında bire 

yakın değer aldığı ve yaş ilerledikçe artan hızla azaldığı görülmektedir. Burada, 

gözlemlenemeyen risk faktörlerinin erkek ölüm hızları üzerindeki etkisinin fazla 

olduğu sonucuna ulaşılmaktadır.  

Şekil 5.1 ve Şekil 5.2’de, hassasiyet modellerinin temel varsayımlarında olduğu gibi, 

yaş ilerledikçe kadın ve erkek sigortalıların ölüm hızları için hassasiyet seviyesinin 

azaldığı görülmektedir. Diğer bir önemli durum ise erkek sigortalı popülasyonun, 

kadın sigortalı popülasyona göre daha hızlı bir şekilde homojen olmasıdır. 

Hassasiyet etkisinin bire yakın değer alması ilgilenilen popülasyonun homojen 

olduğunu göstermemektedir. Popülasyonun ne derecede heterojen yapıya sahip 

olduğu hassasiyet etkisinin varyansı ile belirlenebilmektedir. Dördüncü Bölüm’de 

kadın ve erkek sigortalılar için hassasiyet etkisinin varyansı karşılaştırıldığında, kadın 

sigortalıların, erkek sigortalılara göre daha heterojen yapıya sahip olduğu sonucuna 

ulaşılmıştır.  

 

Şekil 5.2 Erkek Sigortalılar İçin Hassasiyet Etkisi 
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Kadın ve erkek sigortalıların hassasiyet etkisi değerleri incelendiğinde, erkek 

sigortalıların, kadın sigortalılara göre daha çabuk sistemden ayrılması 

beklenmektedir.  

Kadın ve erkek sigortalılar için Hassasiyet modellemesi sonucunda elde edilen ölüm 

hızları ile Türkiye Kadın ve Erkek Sigortalı Hayat Tablosu’nun (TRSH-2010) 

karşılaştırılması amacıyla ölüm oranlarının tekdüze dağıldığı varsayımı kullanılmıştır.  

Türkiye Kadın ve Erkek Sigortalı Hayat Tablosu oluşturulurken, 2004-2008 yılları 

arası için sigortalı popülasyonun ölüm verisi kullanılarak kadın ve erkek alt 

popülasyonları için yaşa göre kaba ölüm oranları elde edilmiştir. Kadın sigortalı ölüm 

oranlarında, (18)-(60) yaş aralığı için Whittaker-Henderson yöntemi kullanılarak 

düzeltme işlemi yapılmış, (60)-(110) yaş aralığı için ise İlişkisel Model kullanılarak 

uzatma işlemi yapılmıştır. Erkek sigortalı ölüm oranlarında ise (18)-(70) yaş aralığı 

için Whittaker-Henderson yöntemi kullanılarak düzeltme işlemi yapılmış, (70)-(110) 

yaş aralığı için ise İlişkisel Model kullanılarak uzatma işlemi yapılmıştır. TRSH-2010 

Kadın Hayat Tablosu Ek 8’de ve TRSH-2010 Erkek Hayat Tablosu Ek 9’da verilmiştir. 

Hassasiyet modellemesi ve TRSH-2010 hayat tablosunun karşılaştırılabilmesini 

sağlamak amacıyla kadın ve erkek sigortalılar için (25)-(110) yaş aralığı üçe 

bölünmüştür. Şekil 5.3’te kadın sigortalıların (25)-(50) yaş aralığı için ölüm oranları 

gösterilmiştir: 

 

 

 

 

 

 

 

 

 

Şekil 5.3. (25)-(50) Yaş Aralığı İçin Kadın Sigortalı Ölüm Hızlarının  TRSH-2010 
ve Hassasiyet Modellemesine Göre Karşılaştırılması 
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Şekil 5.3 incelendiğinde; Whittaker-Henderson parametrik olmayan düzeltme yöntemi 

ile elde edilen ölüm oranlarının, Hassasiyet modellemesi parametrik düzeltme 

yöntemine göre (25)-(40) yaş aralığı için daha düşük ve (40)-(50) yaş aralığı için ise 

daha yüksek olduğu görülmektedir. Hassasiyet modellemesi ile Whittaker-Henderson 

yöntemi sonucu elde edilen ölüm oranlarının arasındaki farkın çok olmasının temel 

nedeni, kaba ölüm oranlarının fazla dalgalanma göstermesidir. Kadın sigortalıların 

ölüm oranlarının; Hassasiyet modellemesi ve TRSH-2010 tablosunun 

karşılaştırmaları (51)-(80) yaş aralığı için Şekil 5.4’te, (81)-(110) yaş aralığı için ise 

Şekil 5.5’te verilmiştir : 

 

 

 

 

 

 

 

 

 

 

Şekil 5.4 incelendiğinde (51)-(60) yaş aralığı için kadın kaba ölüm oranları ile 

Hassasiyet modellemesi uyumunun, Whittaker-Henderson yöntemine göre daha iyi 

olduğu görülmektedir. Bunun temel nedeni, Whittaker-Henderson düzeltme 

yönteminde en uygun ölüm oranları eğrisi elde edilmeye çalışılırken, sapmalara olan 

duyarlılığın daha fazla olması nedeniyle tahmin edilen ölüm oranlarının yüksek 

olmasıdır.  

 

 

Şekil 5.4. (51)-(80) Yaş Aralığı İçin Kadın Sigortalı Ölüm Hızlarının TRSH-2010 ve 
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Şekil 5.5’te Whittaker-Henderson düzeltme yöntemine göre elde edilen ölüm 

oranlarının Hassasiyet modellemesine göre daha yüksek olması nedeniyle, TRSH-

2010 için yapılan uzatma işlemi sonucunda elde edilen ölüm oranlarının da 

Hassasiyet modellemesi için yapılan uzatma işlemi sonucunda elde edilen ölüm 

oranlarından yüksek olmaktadır. 

Kadın sigortalılar için kaba ölüm oranları ile modellemeler sonucunda elde edilen 

ölüm oranları karşılaştırıldığında parametrik düzeltmenin parametrik olmayan 

düzeltme yöntemine göre daha iyi sonuç verdiği görülmektedir.  

Erkek sigortalıların ölüm oranlarının; Hassasiyet modellemesi ve TRSH-2010 

tablosunun karşılaştırılmaları (25)-(50) yaş aralığı için Şekil 5.6’da, (51)-(80) yaş 

aralığı için Şekil 5.7’de, (81)-(110) yaş aralığı için ise Şekil 5.8’de verilmiştir:  

 

 

 

 

 

 

 

Şekil 5.5. (81)-(110) Yaş Aralığı İçin Kadın Sigortalı Ölüm Hızlarının TRSH-2010 
ve Hassasiyet Modellemesine Göre Karşılaştırılması 
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Şekil 5.6 incelendiğinde, (25)-(45) yaş aralığı için Whittaker-Henderson parametrik 

olmayan düzeltme yöntemiyle elde edilen ölüm oranları, Hassasiyet modellemesi 

parametrik düzeltme yöntemine göre elde edilen ölüm oranlarına göre daha yüksek; 

(46)-(50) yaş aralığı için ise daha düşük olduğu görülmektedir. Bunun temel nedeni, 

ölüm oranı eğrisindeki sapmaların (45) yaşından sonra artış göstermesidir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 5.7 ve Şekil 5.8 incelendiğinde ise Whittaker-Henderson düzeltme yöntemi ve 

Hassasiyet modellemesi sonucunda elde edilen ölüm oranları, İlişkisel Yöntem ile 

uzatıldığında, Whittaker-Henderson yöntemine göre elde edilen ölüm oranlarının 

Şekil 5.7. (51)-(80) Yaş Aralığı İçin Erkek Sigortalı Ölüm Hızlarının TRSH-2010 ve 
Hassasiyet Modellemesine Göre Karşılaştırılması 
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daha yüksek olduğu görülmektedir. Bunun temel nedeni ise parametrik olmayan 

düzeltme ile elde edilen ölüm oranlarının parametrik düzeltme yöntemine göre daha 

yüksek olmasıdır.  

Erkek sigortalıların yıllık ölüm oranları incelendiğinde; Whittaker-Henderson 

parametrik olmayan düzeltme yöntemi ve Hassasiyet modellemesi parametrik 

düzeltme yönteminin yaklaşık sonuçlar verdiği görülmektedir. Kadın sigortalıların 

ölüm oranlarında olduğu gibi erkek sigortalıların ölüm oranlarında da ölümlülük 

eğiliminin Hassasiyet modellemesinde daha az olduğu sonucuna ulaşılmaktadır.    

Bu çalışmada elde edilen sonuçlar incelendiğinde, Türkiye kadın ve erkek 

sigortalılardan oluşan popülasyonlar için heterojenliğin etkisinin önemli olduğu 

görülmüştür.  

Kadın ve erkek sigortalıların ölüm hızları için yapılan modelleme sonucunda ölüm 

oranlarında sapmanın fazla olduğu durumlarda, parametrik düzeltme yönteminin; 

parametrik olmayan düzeltme yöntemine göre daha iyi sonuçlar verdiği 

görülmektedir.   

 

 

 

 

 

 

 

 

 

 



 
 

84

5.2. Öneriler 

Hassasiyet modelleri, sağlık durumu ve sosyo-ekonomik durum gibi risk faktörlerinin 

farklı ölüm seviyeleri ile ifade edilebilmesi durumunda, hayat sigortalarının 

fiyatlandırılmasında kullanılabilir.  

Temel hassasiyet modelleri ile modellenmiş popülasyonlar için tüm yaşam süresi 

boyunca, bireylerin hassasiyet seviyelerinin sabit olması; bireyler arasındaki 

ölümlülük eğilimi farklılığını açıklamaya yeterli olmayabilir. Yaş ve cinsiyet dışındaki 

diğer risk faktörlerinin de (psikolojik değişimler, sosyolojik değişimler ve zaman 

faktöründeki değişim gibi), hassasiyet üzerindeki etkisinin hesaba katıldığı modeller 

oluşturulabilir.   

Hassasiyet modellerinde, her bir gözlemin sisteme girdiği anda, hassasiyet 

seviyesinin belirlendiği ve daha sonraki zamanda, bunun sabit kaldığı varsayımının 

doğru olamayacağı, insan popülasyonundaki yaşlanma süreci incelendiğinde 

görülmektedir. Stokastik süreçler kullanılarak, hassasiyet seviyesinin zaman 

içerisindeki değişiminin de   incelendiği hassasiyet modelleri oluşturulabilir.  
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EK 1. GOMPERTZ/GAMMA HASSASİYET MODELİ 

 

 

 

x

exp( )
1 1

exp( )

1 exp( ) 1 1
1 exp( )

exp( )

1

                                                                   




  

b b px
b b
p pb px

b b bpx
p p p px

p b
p

b p b px
p b

b
p

 


 







 
exp( )

1 exp( )
exp( )

exp( )
1 exp( )

exp( )
( )

exp( )




                                     

 


  

 


 


bp b px
p b

b px
p bpx

p b
p

g p x
s p x

bpg
p b

bs
p b













  

 

 

 

 

 

 

 

 

 



 
 

95

EK 2. GOMPERTZ/TERS GAUSS HASSASİYET MODELİ 

 

 

 

 

 

 

 

x 1/2 1/2

1/2

1/2

bexp px bexp px

2b 2b 2b1 exp(px) 1 1 exp(px)
p p p

2b1
bexp px p

2b2b 2b 11 exp(px) pp p

2bbexp px / 1
p

2b 2b 2b1 exp(px) / 1
p p p

b exp px
2b1
p

  
   
           

 
  

             





    

            




 1/2 1/2
exp( g px)

(1 exp( s px))2b1 exp(px)
p 2b

b 2bexp( g) , <1
p2b1

p

2bexp( s)
p 2b

 


    
     

 





 
 

 

 

 

 

 

 

 



 
 

96

EK 3. GOMPERTZ/ POZİTİF DURAĞAN DAĞILIM HASSASİYET MODELİ 
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EK 4. GOMPERTZ/ BİLEŞİK POİSSON DAĞILIM HASSASİYET MODELİ 
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EK 5. GOMPERTZ/ GÜÇ VARYANS FONKSİYONU HASSASİYET MODELİ 
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EK 6. KADIN SİGORTALILAR İÇİN GOMPERTZ/TERS GAUSS HASSASİYET 
MODELLEMESİNE GÖRE ÖLÜM HIZLARI 

Yaş Ölüm 
Hızı 

Yaş Ölüm 
Hızı 

25 0,000182 68 0,004113 
26 0,000188 69 0,004622 
27 0,000196 70 0,005201 
28 0,000206 71 0,005861 
29 0,000216 72 0,006639 
30 0,000228 73 0,007517 
31 0,000241 74 0,008512 
32 0,000256 75 0,009601 
33 0,000272 76 0,010829 
34 0,000289 77 0,012203 
35 0,000308 78 0,013783 
36 0,000329 79 0,015543 
37 0,000351 80 0,017556 
38 0,000375 81 0,019833 
39 0,000401 82 0,022484 
40 0,000429 83 0,025403 
41 0,000459 84 0,028581 
42 0,000492 85 0,031968 
43 0,000527 86 0,03568 
44 0,000564 87 0,03978 
45 0,000605 88 0,044301 
46 0,000648 89 0,049354 
47 0,000695 90 0,055002 
48 0,000745 91 0,061578 
49 0,000799 92 0,068852 
50 0,000857 93 0,076532 
51 0,00092 94 0,084021 
52 0,000986 95 0,091638 
53 0,001058 96 0,099795 
54 0,001136 97 0,108747 
55 0,001219 98 0,118295 
56 0,001308 99 0,128216 
57 0,001403 100 0,138448 
58 0,001506 101 0,14892 
59 0,001616 102 0,159554 
60 0,001735 103 0,170269 
61 0,001916 104 0,180979 
62 0,002132 105 0,191598 
63 0,002376 106 0,202045 
64 0,002646 107 0,212244 
65 0,002943 108 0,222123 
66 0,003276 109 0,231624 
67 0,003665 110 0,240696 
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EK 7. ERKEK SİGORTALILAR İÇİN GOMPERTZ/GAMMA HASSASİYET 
MODELLEMESİNE GÖRE ÖLÜM HIZLARI 

Yaş Ölüm Hızı Yaş Ölüm Hızı
25 0,000443 68 0,020359
26 0,000487 69 0,022242
27 0,000534 70 0,024291
28 0,000586 71 0,026545
29 0,000643 72 0,029103
30 0,000705 73 0,031902
31 0,000773 74 0,034981
32 0,000848 75 0,038270
33 0,000930 76 0,041897
34 0,001019 77 0,045866
35 0,001117 78 0,050299
36 0,001225 79 0,055059
37 0,001342 80 0,060322
38 0,001471 81 0,066212
39 0,001611 82 0,073146
40 0,001765 83 0,080892
41 0,001932 84 0,089238
42 0,002115 85 0,097809
43 0,002315 86 0,106902
44 0,002532 87 0,116708
45 0,002769 88 0,127770
46 0,003028 89 0,140383
47 0,003309 90 0,154963
48 0,003614 91 0,171654
49 0,003946 92 0,189108
50 0,004306 93 0,206550
51 0,004696 94 0,222805
52 0,005118 95 0,239691
53 0,005575 96 0,257669
54 0,006068 97 0,277376
55 0,006599 98 0,297946
56 0,007171 99 0,319131
57 0,007786 100 0,340827
58 0,008445 101 0,362913
59 0,009151 102 0,385263
60 0,009905 103 0,407742
61 0,010851 104 0,430214
62 0,011927 105 0,452541
63 0,013112 106 0,474590
64 0,014367 107 0,496234
65 0,015685 108 0,517356
66 0,017079 109 0,537852
67 0,018639 110 0,557627
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EK 8.  TRSH-2010 KADIN HAYAT TABLOSU 

 

YAŞ qx px lx dx ex YAŞ qx px lx dx ex

0 0,008161 0,991839 1000000,00 8161,00 81,62 56 0,002863 0,997137 966220,51 2766,29 27,33
1 0,000266 0,999734 991839,00 263,70 81,29 57 0,003300 0,996700 963454,22 3179,40 26,41
2 0,000214 0,999786 991575,30 212,49 80,31 58 0,003823 0,996177 960274,83 3671,13 25,49
3 0,000171 0,999829 991362,81 169,72 79,33 59 0,004415 0,995585 956603,70 4223,41 24,59
4 0,000136 0,999864 991193,09 134,39 78,34 60 0,005113 0,994887 952380,29 4869,52 23,70
5 0,000105 0,999895 991058,70 104,51 77,35 61 0,005648 0,994352 947510,77 5351,54 22,82
6 0,000093 0,999907 990954,19 91,99 76,36 62 0,006285 0,993715 942159,23 5921,47 21,94
7 0,000078 0,999922 990862,21 77,78 75,37 63 0,007002 0,992998 936237,76 6555,54 21,08
8 0,000064 0,999936 990784,43 63,78 74,37 64 0,007800 0,992200 929682,22 7251,52 20,22
9 0,000052 0,999948 990720,65 51,88 73,38 65 0,008675 0,991325 922430,70 8002,09 19,38
10 0,000044 0,999956 990668,77 43,99 72,38 66 0,009657 0,990343 914428,61 8830,64 18,54
11 0,000039 0,999961 990624,78 38,83 71,38 67 0,010802 0,989198 905597,98 9782,27 17,72
12 0,000035 0,999965 990585,96 35,14 70,39 68 0,012124 0,987876 895815,71 10860,87 16,91
13 0,000035 0,999965 990550,82 34,82 69,39 69 0,013623 0,986377 884954,84 12055,74 16,11
14 0,000040 0,999960 990516,00 39,75 68,39 70 0,015329 0,984671 872899,10 13380,67 15,32
15 0,000052 0,999948 990476,25 51,85 67,39 71 0,017275 0,982725 859518,43 14848,18 14,56
16 0,000077 0,999923 990424,40 75,99 66,40 72 0,019568 0,980432 844670,25 16528,51 13,80
17 0,000112 0,999888 990348,41 110,93 65,40 73 0,022158 0,977842 828141,74 18349,96 13,07
18 0,000151 0,999849 990237,48 149,29 64,41 74 0,025090 0,974910 809791,77 20317,68 12,35
19 0,000186 0,999814 990088,18 183,73 63,42 75 0,028300 0,971700 789474,10 22342,12 11,66
20 0,000209 0,999791 989904,45 206,89 62,43 76 0,031918 0,968082 767131,98 24485,32 10,98
21 0,000223 0,999777 989697,56 220,70 61,44 77 0,035968 0,964032 742646,66 26711,52 10,33
22 0,000225 0,999775 989476,86 222,63 60,46 78 0,040627 0,959373 715935,15 29086,30 9,69
23 0,000220 0,999780 989254,23 217,64 59,47 79 0,045813 0,954187 686848,85 31466,61 9,08
24 0,000210 0,999790 989036,59 207,70 58,48 80 0,051747 0,948253 655382,24 33914,06 8,50
25 0,000205 0,999795 988828,89 202,71 57,50 81 0,058458 0,941542 621468,18 36329,79 7,93
26 0,000212 0,999788 988626,18 209,59 56,51 82 0,066273 0,933727 585138,39 38778,88 7,39
27 0,000225 0,999775 988416,59 222,39 55,52 83 0,074878 0,925122 546359,52 40910,31 6,88
28 0,000237 0,999763 988194,20 234,20 54,53 84 0,084245 0,915755 505449,21 42581,57 6,40
29 0,000248 0,999752 987960,00 245,01 53,55 85 0,094229 0,905771 462867,64 43615,55 5,94
30 0,000265 0,999735 987714,98 261,74 52,56 86 0,105169 0,894831 419252,08 44092,32 5,51
31 0,000289 0,999711 987453,24 285,37 51,57 87 0,117254 0,882746 375159,76 43988,98 5,10
32 0,000310 0,999690 987167,87 306,02 50,59 88 0,130580 0,869420 331170,78 43244,28 4,71
33 0,000324 0,999676 986861,84 319,74 49,60 89 0,145476 0,854524 287926,50 41886,40 4,34
34 0,000332 0,999668 986542,10 327,53 48,62 90 0,162124 0,837876 246040,10 39889,01 3,99
35 0,000343 0,999657 986214,57 338,27 47,63 91 0,181507 0,818493 206151,10 37417,87 3,67
36 0,000362 0,999638 985876,30 356,89 46,65 92 0,202947 0,797053 168733,23 34243,90 3,37
37 0,000388 0,999612 985519,41 382,38 45,67 93 0,225584 0,774416 134489,33 30338,64 3,11
38 0,000421 0,999579 985137,03 414,74 44,68 94 0,247657 0,752343 104150,69 25793,65 2,86
39 0,000457 0,999543 984722,29 450,02 43,70 95 0,270110 0,729890 78357,04 21165,02 2,64
40 0,000492 0,999508 984272,27 484,26 42,72 96 0,294153 0,705847 57192,02 16823,20 2,44
41 0,000532 0,999468 983788,01 523,38 41,74 97 0,320539 0,679461 40368,82 12939,78 2,24
42 0,000581 0,999419 983264,63 571,28 40,77 98 0,348684 0,651316 27429,04 9564,07 2,07
43 0,000642 0,999358 982693,35 630,89 39,79 99 0,377927 0,622073 17864,97 6751,65 1,90
44 0,000716 0,999284 982062,46 703,16 38,81 100 0,408085 0,591915 11113,32 4535,18 1,76
45 0,000800 0,999200 981359,31 785,09 37,84 101 0,438952 0,561048 6578,14 2887,49 1,62
46 0,000876 0,999124 980574,22 858,98 36,87 102 0,470299 0,529701 3690,65 1735,71 1,50
47 0,000944 0,999056 979715,24 924,85 35,90 103 0,501881 0,498119 1954,94 981,15 1,40
48 0,001011 0,998989 978790,39 989,56 34,94 104 0,533448 0,466552 973,79 519,47 1,30
49 0,001083 0,998917 977800,83 1058,96 33,97 105 0,564750 0,435250 454,33 256,58 1,21
50 0,001234 0,998766 976741,87 1205,30 33,01 106 0,595544 0,404456 197,75 117,77 1,13
51 0,001415 0,998585 975536,57 1380,38 32,05 107 0,625604 0,374396 79,98 50,04 1,05
52 0,001632 0,998368 974156,19 1589,82 31,09 108 0,654725 0,345275 29,94 19,61 0,97
53 0,001881 0,998119 972566,36 1829,40 30,14 109 0,682730 0,317270 10,34 7,06 0,86
54 0,002168 0,997832 970736,97 2104,56 29,20 110 0,709471 0,290529 3,28 2,33 0,65
55 0,002490 0,997510 968632,41 2411,89 28,26
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EK 9. TRSH-2010 ERKEK HAYAT TABLOSU 

 

YAŞ qx px lx dx ex YAŞ qx px lx dx ex

0 0,019533 0,980467 1000000,00 19533,00 74,32 56 0,008392 0,991608 895900,43 7518,40 22,94
1 0,000849 0,999151 980467,00 832,89 74,79 57 0,009229 0,990771 888382,03 8198,88 22,13
2 0,000757 0,999243 979634,11 741,36 73,85 58 0,010148 0,989852 880183,16 8932,10 21,33
3 0,000656 0,999344 978892,75 642,47 72,90 59 0,011125 0,988875 871251,06 9692,67 20,55
4 0,000559 0,999441 978250,28 546,97 71,95 60 0,012183 0,987817 861558,39 10496,37 19,77
5 0,000473 0,999527 977703,32 462,75 70,99 61 0,013347 0,986653 851062,02 11359,12 19,01
6 0,000389 0,999611 977240,57 379,88 70,03 62 0,014670 0,985330 839702,90 12318,44 18,26
7 0,000327 0,999673 976860,69 318,95 69,05 63 0,016128 0,983872 827384,46 13344,06 17,53
8 0,000283 0,999717 976541,74 276,41 68,08 64 0,017672 0,982328 814040,40 14385,72 16,81
9 0,000255 0,999745 976265,34 248,71 67,09 65 0,019293 0,980707 799654,68 15427,74 16,10
10 0,000238 0,999762 976016,62 232,35 66,11 66 0,021008 0,978992 784226,94 16475,04 15,41
11 0,000235 0,999765 975784,28 229,63 65,13 67 0,022926 0,977074 767751,90 17601,48 14,73
12 0,000249 0,999751 975554,65 242,88 64,14 68 0,025042 0,974958 750150,42 18785,27 14,06
13 0,000275 0,999725 975311,77 268,58 63,16 69 0,027358 0,972642 731365,15 20008,69 13,41
14 0,000311 0,999689 975043,18 303,22 62,18 70 0,029879 0,970121 711356,47 21254,62 12,77
15 0,000352 0,999648 974739,96 343,28 61,19 71 0,032651 0,967349 690101,85 22532,52 12,15
16 0,000406 0,999594 974396,67 395,39 60,22 72 0,035798 0,964202 667569,33 23897,65 11,54
17 0,000474 0,999526 974001,29 461,84 59,24 73 0,039241 0,960759 643671,68 25258,32 10,95
18 0,000547 0,999453 973539,44 532,67 58,27 74 0,043028 0,956972 618413,36 26609,09 10,38
19 0,000614 0,999386 973006,78 597,91 57,30 75 0,047073 0,952927 591804,27 27858,00 9,82
20 0,000666 0,999334 972408,87 647,62 56,33 76 0,051535 0,948465 563946,27 29062,97 9,28
21 0,000686 0,999314 971761,25 666,63 55,37 77 0,056416 0,943584 534883,30 30175,98 8,76
22 0,000706 0,999294 971094,62 685,59 54,41 78 0,061869 0,938131 504707,32 31225,74 8,25
23 0,000721 0,999279 970409,02 699,66 53,45 79 0,067724 0,932276 473481,59 32066,07 7,77
24 0,000734 0,999266 969709,36 711,77 52,49 80 0,074198 0,925802 441415,52 32752,15 7,29
25 0,000754 0,999246 968997,59 730,62 51,52 81 0,081443 0,918557 408663,37 33282,77 6,84
26 0,000771 0,999229 968266,97 746,53 50,56 82 0,089972 0,910028 375380,60 33773,74 6,40
27 0,000776 0,999224 967520,43 750,80 49,60 83 0,099500 0,900500 341606,86 33989,88 5,98
28 0,000774 0,999226 966769,64 748,28 48,64 84 0,109766 0,890234 307616,97 33765,88 5,59
29 0,000778 0,999222 966021,36 751,56 47,68 85 0,120308 0,879692 273851,09 32946,48 5,22
30 0,000800 0,999200 965269,79 772,22 46,71 86 0,131493 0,868507 240904,61 31677,27 4,86
31 0,000837 0,999163 964497,58 807,28 45,75 87 0,143554 0,856446 209227,34 30035,42 4,52
32 0,000886 0,999114 963690,29 853,83 44,79 88 0,157161 0,842839 179191,92 28161,98 4,20
33 0,000950 0,999050 962836,46 914,69 43,83 89 0,172675 0,827325 151029,94 26079,09 3,89
34 0,001018 0,998982 961921,77 979,24 42,87 90 0,190609 0,809391 124950,84 23816,76 3,59
35 0,001080 0,998920 960942,53 1037,82 41,91 91 0,211139 0,788861 101134,09 21353,35 3,32
36 0,001140 0,998860 959904,72 1094,29 40,96 92 0,232608 0,767392 79780,74 18557,64 3,08
37 0,001207 0,998793 958810,42 1157,28 40,00 93 0,254063 0,745937 61223,10 15554,52 2,86
38 0,001294 0,998706 957653,14 1239,20 39,05 94 0,274057 0,725943 45668,58 12515,79 2,66
39 0,001409 0,998591 956413,94 1347,59 38,10 95 0,294827 0,705173 33152,78 9774,34 2,48
40 0,001556 0,998444 955066,35 1486,08 37,15 96 0,316941 0,683059 23378,45 7409,59 2,30
41 0,001740 0,998260 953580,27 1659,23 36,21 97 0,341181 0,658819 15968,86 5448,27 2,14
42 0,001957 0,998043 951921,04 1862,91 35,27 98 0,366482 0,633518 10520,59 3855,61 1,99
43 0,002202 0,997798 950058,13 2092,03 34,34 99 0,392541 0,607459 6664,98 2616,28 1,85
44 0,002471 0,997529 947966,10 2342,42 33,42 100 0,419227 0,580773 4048,70 1697,33 1,72
45 0,002778 0,997222 945623,68 2626,94 32,50 101 0,446394 0,553606 2351,38 1049,64 1,61
46 0,003102 0,996898 942996,73 2925,18 31,59 102 0,473885 0,526115 1301,74 616,87 1,50
47 0,003448 0,996552 940071,56 3241,37 30,68 103 0,501535 0,498465 684,86 343,48 1,41
48 0,003824 0,996176 936830,19 3582,44 29,79 104 0,529176 0,470824 341,38 180,65 1,32
49 0,004237 0,995763 933247,75 3954,17 28,90 105 0,556639 0,443361 160,73 89,47 1,24
50 0,004690 0,995310 929293,58 4358,39 28,02 106 0,583760 0,416240 71,26 41,60 1,16
51 0,005182 0,994818 924935,19 4793,01 27,15 107 0,610383 0,389617 29,66 18,11 1,09
52 0,005724 0,994276 920142,18 5266,89 26,29 108 0,636364 0,363636 11,56 7,35 1,01
53 0,006310 0,993690 914875,29 5772,86 25,44 109 0,661574 0,338426 4,20 2,78 0,89
54 0,006947 0,993053 909102,42 6315,53 24,60 110 0,685898 0,314102 1,42 0,98 0,66
55 0,007628 0,992372 902786,89 6886,46 23,76
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