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Bu tez beg boliimden olugmaktadir.

Ik boliim giris kismina ayrilmistir.

Ikinci boliimde, toplanabilme teorisinin ve topolojik vektdr uzaylar: teorisinin bazi
temel kavramlarina yer verilmistir.

Uciincii boliimde, oncelikle Hahn ozelligi tanimlanip bu ézelligin fonksiyonel analitik
gosterimi ve Hahn uzaylarinin temel 6zellikleri ifade edilmigtir. Daha sonra, [*° uza-
yiin Hahn 6zelligine sahip biiyiik altuzaylarinin yapilar: incelenmis ve baz érnekler
verilmigtir.

Dordiincii boliimde, matris Hahn 6zelligi ve ayrilabilir Hahn 6zelligi tanitilmis ve bu
kavramlarin temel ozellikleri incelenmigtir. Bu kavramlarin, Hahn 6zelligi ile aym
felsefeye sahip olmalarina kargin daha genis bir uygulama alanina sahip olduklar:
gosterilmigtir.

Son boliimde ise, Hahn-tipi ozelliklerin uygulamalar: verilmistir.
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This thesis consists of five chapters.

The first chapter has been devoted to the introduction.

In the second chapter, some basic concepts of summability theory and topological
vector spaces theory have been recalled.

In the third chapter, firstly the Hahn property has been defined and its functional
analytic interpretation and basic properties have been explained. Subsequently the
structure of big subspaces of [* with the Hahn property has been investigated and
some examples have been given.

In the fourth chapter, the concepts of matrix Hahn property and seperable Hahn
property have been explained and their basic properties have been investigated.
Although these concepts and the Hahn property share the same philosophy, it has
been shown that these properties are more widely applicable.

In the final chapter, applications of the Hahn-type properties have been given.
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{(Az), }

SIMGELER DiZzZiNi

FE dizi uzayinda terimleri 0 ve 1 olan dizilerin kiimesinin gerdigi uzay
X uzay1 iizerinde tanimh zayif topoloji

S kiimesinin karakteristik fonksiyonu

x dizisinin A matrisi altindaki doniigiim dizisi
{(Ax),} dizisi mevcut olan diziler uzay:

Hemen hemen yakinsak diziler uzay:

Sifira kuvvetli hemen hemen yakinsak diziler uzay:
Sifir yogunluga sahip kiimelerin sinifi

Lacunary kiimelerin simifi

Diizgiin sifir yogunluga sahip kiimelerin sinifi

A matrisinin toplanabilirlik alam

A matrisinin sifira toplanabilirlik alam

Cesaro matrisi

Riesz matrisi

Norlund matrisi

ls uzaymin aligilmig supremum normu

Tiim potent ve konsevatif matris metodlarinin kiimesi
Reel terimli tiim diziler uzay:

A-kuvvetli toplanabilen diziler uzay1

Simirh diziler uzay:

Sinirh seriler uzayi

p-yinci kuvvetten mutlak yakinsak seri olugturan dizilerin uzay:
Yakinsak diziler uzayi

Sifira yakinsak dizler uzayi

Ince dizilerin gerdigi uzay

Sonlu diziler uzay1

(Sp{z})’



1. GIRIS

Keyfi bir E dizi uzay1 verildiginde, ' tarafindan igerilen ve terimleri 0 ve 1 olan
dizilerin kiimesinin gerdigi uzay y (F) ile gosterilirse ve de x (E) C F olacak bi¢imde
keyfi bir F' FFK uzay1 verildiginde E C F' elde edebilirsek E dizi uzayr Hahn 6zel-
liklidir veya Hahn uzayidir denir (Bennett 1995 ve Bennett, Boos ve Leiger 2002).

E dizi uzay1 keyfi bir F'K uzay1 olarak verildiginde, F uzayimmin Hahn 6zellikli ol-
mast i¢in gerek ve yeter sart y (E) uzaymin F uzayimmin yogun ve figih bir altuzay:
olmasidir (Bennett ve Kalton 1972). Bu teoremin bir sonucu olarak Hahn uzay-
larinin fonsiyonel analiz agisindan bir karakterizasyonu Bennett (1995) tarafindan
verildi. Ancak uygulamasi oldukca giic olan bu teoremin tek uygulamasi [*° dizi
uzayinin Hahn ozellikli olmasidir. Aslinda bu teoremin uygulamasindaki zorluk,
X (F) uzaymin F uzayinda ficih oldugunu gostermektir. E = [* olarak alindiginda
bu sorun, Nikodym dézelligi sayesinde agilmigtir (Wilansky 1978). Diger yandan;
Bennett, Boos ve Leiger (2002) Hahn 6zelligi ile aym prensibe dayanan fakat Hahn
ozelligi icin verilmis olan fonksiyonel analitik gosterime sahip olmayan ayrilabilir
Hahn 6zelligini ve matris Hahn 6zelligini tanimladi. Calismamizda bu kavramlar da

incelenmis ve ornekler verilmigtir.

Bu yiiksek lisans tezinin amaci, keyfi bir dizi uzay: verildiginde bu uzay tarafindan
igerilen ve terimleri 0 ve 1 olan dizilerin kiimesinin gerdigi uzayin, verilen bu dizi
uzayini ne olgiide belirledigini ortaya koymaktir. Bu amag¢ dogrultusunda Hahn

ozelligi ve bu ozellige sahip olan dizi uzaylar: caliymamizda detaylica incelenmistir.



2. TEMEL KAVRAMLAR

Bu boliimde toplanabilme teorisinin ve topolojik vektor uzaylari teorisinin calig-
mamizda faydalanacagimiz bazi temel kavramlar1 verilecektir. Bu yiiksek lisans

tezinde N = {1,2,3, ...} dogal sayilar kiimesini gosterecektir.

2.1 Topolojik Vektor Uzaylari

Bu kisimda topolojik vektor uzaylari ile ilgili olarak ¢alismamizda faydalanacagimiz

temel kavramlar: hatirlatacagiz.

Tanmim 2.1.1 Keyfi X vektor uzayi, vektor iglemleri siirekli olan bir topolojik uzay

ise X uzayima topolojik vektor uzayr denir (Wilansky 1978).

Tanim 2.1.2 X keyfi bir vektor uzay: olmak iizere A C X olsun.
A kiimesinin konveks olmasi i¢in gerek ve yeter sart 0 < ¢t < 1 ve s+t = 1 olmak

lzere,

SA+tACA

olmasidir. Bir lokal konveks uzay, sifirin her bir komgulugu sifirin konveks bir komsu-
lugunu iceren topolojik vektor uzayidir.
A kiimesinin yutan olmasi i¢in gerek ve yeter sart her x € X igin, |[t| < & olmak

tizere tx € A olacak bicimde bir € > 0 bulunmasidir (Wilansky 1978).
Tanim 2.1.3 Bir topolojik vektor uzayinda konveks, yutan ve kapali kiimelere fi¢s
denir. Her figis1 sifirin komgulugu olan lokal konveks uzaylara ficils wzay denir

(Wilansky 1978).

Tamim 2.1.4 X ve Y dizi uzaylar olmak iizere, ¢ C Y C X olsun. Her bir



y = (yr) € Y icin, X iizerinde p, yar1 normu

py(x) = (‘her x = (x) € X igin)

()
E TrYk
k=1

olacak bi¢imde tammlanir ve P, = (p, |y € Y'), X tizerinde 7p, lokal konveks topolo-

jisini olugturur. (X,Y") bir dual ¢ifti olsun. Her bir y € Y igin,
py: X —R

py(r) = |< x,y >| olmak tizere P, := (p,|y € Y) yar1 normlar ailesi X tizerinde
o(X,Y) ile gosterilen zayif topologiyi olugturur. (X, o(X,Y)) uzayr Hausdorff uza-
yidir (Boos 2000). ( X? tanmmi i¢in Tanim 2.2.3’e bakinz. )

Tamm 2.1.5 (X,Y) bir dual ¢ifti olsun. ) # M C Y olmak iizere M kiimesinin
lokal konveks (Y, o(Y, X)) uzayinda sinirli olmasi igin gerek ve yeter sart her z € X
icin,

sup |(z,y)| < o0
yeM

olmasidir (Boos 2000).

2.2 FK Uzaylar:

Bu kisimda F'K uzaylar1 tamimlanacak ve bu 6zellige sahip olan dizi uzaylarina

ornekler verilecektir.

Tanim 2.2.1 w ile reel terimli tiim dizilerin uzay1 gosterilmek iizere, w’ nin her bir

altvektor uzay1 dizi uzay: olarak adlandirilir.

Tanim 2.2.2 F'K uzaylari; tam, metriklegebilir, lokal konveks topolojiyle donatilmig

ve bu topoloji altinda siirekli koordinatlara sahip yani,

T — Ty, k=1,2,3, ..



siirekli olan dizi uzaylaridir.

Aligilmig baz1 F K uzaylari,

2]l = sup [z
n

normuyla siirh diziler uzay: [*°, onun kapali altuzay: olan yakinsak diziler uzayi ¢

ve sifira yakinsak diziler uzay1 ¢y uzaylaridir. Dahasi p > 1 olmak {izere,
1
0 P
]l = (Z \$k|p>
k=1

pn(x) = |T0| n=123,..

normuyla [P uzay,

yarl normuyla w uzay1i ve

n
>
k=1

normu ile verilen simirh seriler uzayi bs uzay1 da alisilmig F'K uzaylaridir.

]l,, = sup
n

Bu dizi uzaylariin diginda ¢rnegin ¢ sonlu diziler uzay1 F'K topolojisiyle donatila-

maz (Bennett, Boos ve Leiger 2002).

Tanim 2.2.3 Keyfi bir X dizi uzaymin «, 3 ve v— dualleri sirasiyla,

X :{y€w :Vr e X, Z|xkyk|<oo}

k=1
X8 . = {y cw :VrelX, Za:kyk serist yakmsak}
k=1
X7 :{yEw Vo € X, sup Zxkyk <oo}
" k=1

olacak bigimde tanimlamr (Boos 2000). X bir boyutlu bir dizi uzay1 ise;

X = Sp{z}



diyelim, bu durumda (Sp{z})? gosterimi yerine 2° gosterimini kullanmay1 tercih

edecegiz. Diger yandan z° uzayn,

y_)|yk| ) k:172a37"' ve Yy —sup

n

Z TEYk

k=1

yart normlariyla bir F'K uzayidir (Bennett, Boos ve Leiger 2002).

Tanim 2.2.4 X D ¢ ve X bir F'K uzay1 olmak {izere, X uzaymin f—duali,
x={(r(0%): fex'}

olacak sekilde tammlamr (Wilansky 1984). Burada, 6" := (5;“) olup her j,k € N
icin,

S5k — 1,
j
0, k#jicin

k = j igin

olacak bi¢cimde tanimhdir.
Dahasi, X ve Y dizi uzaylar i¢in 7 ile bu uzaylarin «, 3,y veya f —duali gosterilmek
lzere

YCcX=X"CY"

gergeklenir (Wilansky 1984).
2.3 Toplanabilirlik Alanlar:

Bu kisimda keyfi bir A = (a,;) sonsuz matrisinin toplanabilirlik alanlarini tanim-

layacagiz.

Tamim 2.3.1 A = (a,;) reel veya kompleks terimli sonsuz matris ve z = (xy) keyfi

bir dizi olmak {izere her n € N i¢in

o0
E ATy
k=1



serisi yakinsak ise

(Az), = Z e
k=1

olmak iizere Ar = {(Ax),} dizisine x dizisinin A doniigiim dizisi denir (Maddox
1970).

wa = {r € w: Azx mevcut}

ve

cy = {x € wy : lim(Az), mevcut}

uzaylarini tanmimlayalim. Eger f : c4 — K fonksiyonelini

f(z) = lim(Az),

n

seklinde tamimlarsak f bir toplanabilme metodudur. Eger lim(Az),, = L ise x dizisi
L degerine A — toplanabilirdir denir. Hatta bu durumda bazen, lim, x = L yazilir.

Diger yandan c4 uzayi,

r — |z, k=1,2,3,..
m
T — sup E AnkTr| n=1273,..
k=1
o0
r — sup E Ak Tk,
k=1

yart normlar1 altinda bir /'K uzayidir ve dahasi bu topolojide ayrilabilirdir (Wilan-
sky, 1984).

A matrisinin sifira toplanabilirlik alani,

(co)a:={r €ca: Az € ¢}



ve kuvvetli toplanabilirlik alani,

w(A) = {x € w:bir L igin limz |ank| |z — L| = 0}
k=1
olacak bicimde tamimlanir (Bennett, Boos ve Leiger 2002).

Teorem 2.3.1 (Silverman-Toeplitz Teoremi) Bir A = (a,;) matrisinin regiiler

olmasi i¢in gerek ve yeter kosul,
() [|A]] = sup 3 |ank| < oo
n k=1
(77) lim appy =0  (her k € N i¢in)
n—od
(7i) lim > an, =1

olmasidir (Boos 2000)

Ornegin,
1 1<k<n
n
Cnk =
0, k>n

olacak bicimde tanimli C'; Cesaro matrisi regiilerdir.



3. HAHN OZELLIGIi

Bu boliimde, oncelikle Hahn o6zelligi ifade edilecek ve bu 6zellige sahip olan dizi
uzaylarinin yapist ile ilgili temel sonuglar incelenecektir. Hatta bazi dizi uzaylariin
yeterince biiyiik olmasi ile Hahn 6zelligine sahip olmasi arasindaki iligki gosterilerek,

ele aldigimiz orneklerle de bu 6zelligin daha iyi anlagilmasi saglanacaktir.

3.1 Tanimlar ve Ilk Sonuclar

Bu kisimda Hahn 6zelligi tanimlanacak ve fonksiyonel analitik gosterimi Teorem
3.1.1° de ifade edilerek, bu teoremin tek uygulamasi Sonu¢ 3.1.1° de incelenecektir.
Dahasi; Hahn uzaylarinin sahip oldugu temel ozellikler incelenecek, ¢zellikle Hahn

ozellikli herhangi bir F'K uzayimin ayrilabilir olmadig1 gosterilecektir.

Tanim 3.1.1 E bir dizi uzay1 olmak iizere, E tarafindan igerilen ve terimleri 0 ve
1’ lerden olugan dizilerin kiimesinin gerdigi uzay1 x(F) ile gosterelim. Keyfi bir F
F K uzayi igin,

X(E)CF=ECF (3.1.1)

gercekleniyorsa, F dizi uzayr Hahn ézelliklidir veya Hahn uzayndir denir. Eger Hahn
ozellikli F dizi uzay1 bir F K uzayi ise (3.1.1) geregince F, x(F) uzaym kapsayan
en kiicitkk /'K uzayidir (Bennett, Boos ve Leiger 2002).

Teorem 3.1.1 F bir F'K uzay1 olsun. Bu durumda asagidaki ¢zellikler denktir.
(1) E, Hahn ozelliklidir.

(17) x(E), E dizi uzaymin yogun ve figih bir altuzayidir (Bennett, Boos ve Leiger
2002).

Ancak bu teoremin literatiirde tek bir uygulamas: vardir.

Sonug 3.1.1 [*°, Hahn uzayidir (Bennett, Boos ve Leiger 2002).



Oncelikle ispatimiz icin gerekli olan bir dizi hatirlatmada bulunalim.

Hatirlatma 3.1.1

1) [ = x(I*°) 4 bs formunda ifade edilebilir. Dahasi; her x € [*° ve her € > 0 igin,
r =y+ 2z ve |z||, < e olacak bicimde bir y € x(I{*°) ve bir z € bs vardir (Boos
2000).

2) bfa(N) ile dogal sayilarin tiim altkiimeleri iizerinde taniml, sinirh, sonlu toplam-
sal kompleks degerli p kiime fonksiyonlarinin uzayimi gosterelim. Sonlu toplamsal
kiime fonksiyonu,

(i) n(@) =0

(i7) S, T € Nve SNT = () olmak iizere,

u(SUT) = u(S) + p(T)

ozelliklerini gercekler. Dahasi,
||| := sup {Z W(E)| :N=UE;, i#j i¢in E;NE; = @}
i=1

olmak tizere bfa(N) normlu bir uzaydir.
Her bir f € (I*)', E C N ve z, F iizerinde tanimh karekteristik fonksiyon olmak

lizere

fz) = Nfﬂvdﬂ = n(E)

formunda ifade edilir ve (I*°)" = bfa(N) gerceklenir (Wilansky 1978).

3) A, H kiimesinin altkiimelerinin bir o cebiri olmak tizere, B C bfa(H,.A) ve her
bir £ € A ve her pu € B igin |u(F)| < Kg olacak bigimde bir K mevcut olsun. Bu
durumda B, bfa(H,.A) normlu uzayinda smirh bir kiimedir (Wilansky 1978).

4) X ficih bir uzay ve S, X uzaymin yogun bir altkiimesi olsun. S kiimesinin figih
olmasi i¢in gerek ve yeter sart X’ de o(X’,S) smurh olan her kiimenin o(X’, X)

siurh olmasidir (Wilansky 1978).

ispat (Sonug 3.1.1). Teorem 3.1.1° in kogullarinin gergeklendigini gosterelim.



Oncelikle x(I*°) uzaymin, [* uzaymin yogun bir altuzay1 oldugunu gosterelim. Hatir-
latma 8.1.1(1) geregince keyfi « € [*° ve her € > 0 icin x = y+ 2z ve ||2||, < € olacak
bigimde bir y € x(I*°) ve bir z € bs vardir. x = y + z oldugundan x — y = z ve
dolaysiyla ||z — y||, = ||z, < € elde edilir.

Yani keyfi x € [*° ve her ¢ > 0 i¢in, ||z —y||,, < € olacak bi¢imde bir y € x(I*°)
bulunabildiginden x(I°°) uzay1, [*° uzayimn yogun bir altuzayidir.

Simdi x(I*°) uzaymin (> uzayimin ficih bir altuzayi oldugunu gosterelim. Bunun igin
Hatirlatma 3.1.1(4) ifadesinden faydalanalim.

[ bir FK uzayidir dolayisiyla tamdir ve boylece ikinci kategoridendir. O halde
[ uzay1 figithdir (Wilansky, 1978). x(I*°) uzaymnn, [* uzayimin yogun bir altuzay1
oldugunu yukarida gostermistik. O halde y(I*°) uzaymm figith olmas: igin gerek
ve yeter sart (I°°) da o [({°)’, x({°°)] sinirli olan her kiimenin o [(1*°)’, [*°] siurh ol-
masidir. O halde keyfi B C (I*°)’ olmak iizere, B kiimesi o [(I*°)’, x({*°)] sinirh olsun.

Bu durumda, her y € x(I°°) igin,

sup [< y, f > =sup|f(y)] < oo (3.1.2)
feB feB

gerceklenir.

E C N ve z, F iizerinde tammmh karekteristik fonksiyon olsun. O halde x € x(I*)
elde edilir. Hatirlatma 3.1.1(2) geregince B C bfa(N) diyebiliriz ve her bir 4 € B
fonksiyonuna kargilik gelen f € (I°°) igin

f(@) = Jdu = u(E)
N
gergeklenir. (3.1.2) geregince her bir £ C N i¢in,

sup |pu(E)| < oo
neEB

gergeklenir. Yani, her bir £ C N ve her u € B i¢in |u(E)| < Kg olacak bicimde
bir Kp vardir. Hatirlatma 3.1.1(3) geregince B, bfa(N) = (I*°)’ normlu uzayinda
sinirh bir kiimedir. O halde,

sup || f]] < o0
feB
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elde edilir. Bu durumda, her x € [* i¢in

|f @) < [ fIH7llo

elde edilir. Boylece her x € [* i¢in,

sup | f (z)] < sup || f] [|=]l,
feB feB

bulunur. Yani, her x € [* igin

sup [ f(z)] < o0
feB

gergeklenir. Boylece (I°°) da keyfi se¢ilen B kiimesi o [(1°°)’,(°°] simirhdir. Bu da

ispat1 tamamlar.

Onerme 3.1.1 Bir A indeks kiimesinin her bir o elemani icin E, Hahn uzay ise

>~ E, Hahn uzayidir (Bennett, Boos ve Leiger 2002).

acA

Onerme 3.1.2 FE bir Hahn uzay1 ise E C [*® ve x(E), sup norm topolojisine gore
E uzayinda yogundur (Bennett, Boos ve Leiger 2002).

Ispat. x(E) uzayi, tanim geregince [* uzaymin bir altuzayidir. E dizi uzayr Hahn
ozellikli oldugundan (3.1.1) ifadesinde F' FK uzaymi [ dizi uzay1 olarak segersek,
E C [*° gergeklenir.

Simdi de x(FE) uzaymin sup norm topolojisine gore E uzaymda yogun oldugunu
gosterelim.

X(E) C E oldugundan x(E) C E elde edilir.

X(E), [°° uzaymm kapal bir altuzayidir. O halde, x(E) sup norm topolojisine gore
bir F'K uzayidir ve hipotez geregince £ bir Hahn uzay1 oldugundan (3.1.1)” den,

X(E) Cx(E) = E C x(E)

elde edilir. Boylece, elde etigimiz bu iki ifade birlikte diisiiniildiigiinde x(F) uza-
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yinin sup norm topolojisine gore E uzayinda yogun oldugu goriiliir. Bu da ispati

tamamlar.

Onerme 3.1.3 E bir Hahn uzay: ise x(E)? = EP gerceklenir (Bennett, Boos ve
Leiger 2002).
Ispat. E bir Hahn uzay: ve x(E)? # E? olsun.
x(E) C E oldugundan E° C x(E)” elde edilir, bu durumda kabuliimiiz geregince
bir z € x(E)°\E” segebiliriz. Yani, z € x(E)? ve x ¢ EP oldugunu kabul edelim.
x € x(E)? oldugundan her y € x(E) icin i xRy serisi yakinsaktir. O halde her
y € x(E) i¢in y € 2”, yani =

X(B) C o’

elde edilir.

2" bir FK uzay1 ve hipotez geregince E bir Hahn uzay1 oldugundan (5.1.1) den
E C 2° olmalidir. Kabuliimiiz geregince x ¢ E, yani bir z € F igin i Tk 2k serisi
yakinsak degildir. O halde z ¢ 2” olur ki bu durumda E ¢ 2" elde I:;ililir. Bu ise

bir geligkidir. Bu da ispati tamamlar.

Lemma 3.1.1 F' O ¢ ve F, dizilerin sayilabilir bir kiimesinin gerdigi uzay olsun.
Bu durumda F, F'K uzaylarinin arakesiti olarak yazilabilir (Bennett, Boos ve Leiger
2002).

Ispat. F D ¢ odugundan,

(n) 0, k<n
ak -
1 k=n
olmak iizere F' = Sp {aV, a®, a®, ..} formunda ifade edilebilir.

A = (ayx) matrisini, a,, = alr) yardimiyla sifir olmayan kogegene sahip alt ticgensel
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matris olarak tanimlayalim.

1 00
10

- o o O
o o o O

Boylece A nin tersi olan A~! tek olarak mevcuttur.

Diger yandan ¢ncelikle,

gpzwﬁzﬂ{xﬁ:wa}

oldugunu gosterelim. Bunun i¢in keyfi bir € ¢ alalim. Her y € w igin,

o0 n
YTk = Y TiUk
k=1 k=1

elde edilir. Toplam sonlu oldugundan acik olarak bu seri yakinsaktir ve bu yiizden
r € w” gerceklenir.

Simdi, w” C ¢ oldugunu gorelim. = € w® ve z ¢ ¢ olsun. z ¢ ¢ odugundan,
i=1,23,... ve k(1) <k(2)<kB3)<..<k(i)<..

olmak tizere, sonsuz ¢oklukta & (7) i¢in ;) # 0 elde edilir. Diger yandan; kabultimiiz
geregince x € w” oldugundan, her y € w icin Y x,y; serisi yakinsaktir.

k=1
Simdi bir y dizisini,

olacak bi¢imde tanimlayalim. Bu durumda,

1

Lk(i)

DTkYk = Y Tr(i)
k=1 i=1

= Y1
i=1
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raksak serisi elde edilir. Bu ise kabuliimiizle celisir. Dolayisiyla w® C ¢ elde edilir.

Yani,

p=uw’

gerceklenir. A~! mevcut oldugundan A birebirdir, boylece

F o= A(p)

- 4(n~)

= N A@")

TEW

formunda yazilabilir. 2%, FK uzayidir ve FK uzaylar1 arasimda tamiml matris
doniistimleri siirekli oldugundan F', F'K uzaylarimin arakesiti olarak yazilmig olur.

Bu da ispat1 tamamlar.

Teorem 3.1.2 F, bir FFK uzay1 ve E D ¢ olsun. E Hahn o6zellikli ise ayrilabilir
degildir (Bennett, Boos ve Leiger 2002).

Ispat. F Hahn ozellikli oldugundan, Onerme 3.1.2 geregince E C [° gerceklenir.
Diger yandan E uzayinin topolojisi, [*° dizi uzaymdan E {izerine indirgenen topolo-
jiden daha genistir. Bu durumda, E uzayimin sup norm topolojisine gore ayrilabilir
olmadigini gostermek yeterlidir.

E aynlabilir olsun. O halde F, sayilabilir ¢coklukta terimleri 0 ve 1 olan dizi icerir.
Diyelim ki bu diziler sayillamaz ¢oklukta olsun. Terimleri 0 ve 1 olan bu dizilerin sup
norm topolojisine gore aralarindaki uzaklik bir birimdir. Bu dizilerin her birinin %
yarigapli yuvarlarin merkezi olduklarini kabul edersek, bu durumda yuvarlar sayila-
maz c¢oklukta ve ayrik olur. Kabuliimiiz geregince E ayrilabilir oldugundan sayila-
bilir ve yogun bir M altkiimesi vardir. Yani keyfi x € E ve her ¢ > 0 i¢in, d (z,y) < €
olacak bicimde bir y € M bulabiliriz. O halde, M kiimesinin her bir eleman1 yaricapi
% olan bu agik yuvarlarda bulunur. Diger yandan bu yuvarlar ayrik ve sayilamaz
coklukta oldugundan M sayilamaz coklukta eleman icerir. Bu ise M kiimesinin

sayilabilir bir kiime olmasiyla celigir. O halde E uzay1 sayilabilir coklukta 0, 1 dizisi

igerir.
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O halde; tanim geregince x (F), sayilabilir goklukta dizinin gerdigi bir uzaydir ve
Lemma 3.1.1 geregince F'K uzaylarinin arakesiti olarak yazilabilir.

A indeks kiimesinin her bir a elemani i¢in F,, keyfi bir F'K uzay1 olmak iizere,

X(E)= N Fu
acA

elde edilir. Hipotez geregince E Hahn 6zellikli oldugundan (3.1.1)’ den, her o € A
icin y (F) C F, gerceklenir. Oyleyse her o € A icin E C F, elde edilir. Boylece,

E < N F,
acA
~ E=—y(E) (3.1.3)

elde edilir. Diger yandan,

x(E) € x(Z)nE
= {z € F: z in goriintii kiimesi sonlu}
= |O_o|1 {z € E : x in goriintii kiimesi n elemanli}
gerceklenir. Ifade ettigimiz bu son kiime birinci kategoridendir (Wilansky 1978).
Oysa ki E F'K uzay1 oldugundan tamdir ve ikinci kategoridendir. Dolaysiyla, (3.1.3)
geregince y (F) uzay1 da ikinci kategoriden olmalidir ve bu nedenle birinci kategori-

den olan bir uzayin altuzay: olamaz. Elde ettigimiz bu son celiskiden dolay1 F uzay:

ayrilabilir degildir. Bu da ispat1 tamamlar.
3.2 Biiyiik Hahn Uzaylar:
Bu kisimda [*° dizi uzayinin Hahn 6zelligine sahip olan biiyiik altuzaylarini inceleye-

cegiz. Biiyiikliigiin, Hahn uzay1 olmay1 gerektirip gerektirmedigine iligkin aragtir-

mamiza Teorem 3.2.1 aydinlatici bir cevap vermektedir.
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Onerme 3.2.1 e ile (1,1,1,...) birim dizisi gosterilmek tizere E dizi uzay:
bs+ Sp{e} C E C[™ (3.2.1)

ifadesini gergeklerse, £ = bs + x (£) formunda yazlabilir (Bennett, Boos ve Leiger
2002).

Ispat. Keyfi bir z € F alalm ve y € (E) dizisini x — y = z € bs olacak bigimde
uygulayarak her £k = 1,2, 3, ... icin x;, > 0 elde edebiliriz. Dahas1 = dizisini ve tabi
ki y ve z dizilerini de uygun bir skalar ile ¢arparak £ = 1,2,3,... icin 0 < x < 1
elde ederiz.

y1 = 0 alalim ve 21, ys, 29, y3, ... terimlerini agagidaki sekilde tanimlayalim. k£ € N

olmak {izere,

k k
L Yy <>z igin
2k =Tk — Yk V€  Yky1 = Jj=1 J=1
0, d.d.

olsun. £k =1,2,3,... olmak iizere y; = 0 veya 1 gerceklenir ve 0 < x; < 1 oldugun-

dan,
n

>, (@h = yk)

k=1

<1

n
> %k
k=1

|2]l,s = sup = sup
n n

elde edilir. O halde z € bs gergeklenir. y = x — z € F + bs ve (3.2.1) geregince
bs C F oldugundan y € x (E) elde edilir. Bu da ispati tamamlar.

Agagidaki lemmay1 ispatsiz olarak verecegiz.
Lemma 3.2.1 F, bs uzayini iceren bir dizi uzay1 ve x € F dizisinin goriintii kiimesi

yalnizca {0, 1,2, ..., N} degerlerinden olusuyorsa, © € y (F) gergeklenir (Bennett,
Boos ve Leiger 2002).
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Simdi, > ile kismi toplamlar operatoriinii gosterelim. O halde keyfi bir - dizisi igin,

Zw = (21, x1 + 29, 1 + T2+ 73, ...)

olacak bigimde tammlamr. Agk olarak, FE bir FK uzayi ise » (E) bir FK uzayidir.

Lemma 3.2.2 x (I*°) C > [x (bs + Sp{e})] gergeklenir (Bennett, Boos ve Leiger
2002).

Ispat. = = (x}), terimleri 0 ve 1 olan keyfi bir dizi olsun. y dizisini,

y= Z_l r = (21,3 — 21,23 — Ta, ...)

yardimiyla tanimlayalim. Bu durumda y, terimleri —1,0,1 olan bir dizidir ve y € bs
gergeklenir. Gergekten,

> Uk
k=1

= sup|ry+x2— 21+ 23— To+ .. + Ty — Tpo

lylly, = sup

n

= sup |z,
n

elde edilir. Her k = 1,2, 3, ... icin =, € {0, 1} olacak bicimde sectigimizden ||y|[,, <1
elde edilir. Lemma 3.2.17 den

y+ee€ x(bs+ Sp{e})

elde edilir. u = y + e diyelim. O halde u ve e € x (bs + Sp{e}) oldugundan vektor

uzay aksiyomlar1 geregince
y=u—e€ x(bs+ Sp{e})

elde edilir. Boylece,

Yy=Yr=xe Y [x(bs+Sp{e})]

17



bulunur. x keyfi olarak secildiginden

x (1) € 32 [x (bs + Sp{e})]

elde edilir.

Teorem 3.2.1 E bir dizi uzay1 olsun. Eger,
bs + Sp{e} C ECI>®

gercekleniyorsa, £ Hahn 6zelliklidir (Bennett, Boos ve Leiger 2002).
Ispat. Onerme 3.2.1° den
E=bs+x(FE)

formunda yazlabilir ve hipotezden Sp{e} C E oldugundan,
E =bs+ x(E)+ Sp{e}

gerceklenir. y (E) ve bs + Sp {e} uzaylarmi ayr ayn ele alarak Onerme 8.1.17 den
faydalanalim.

Tanmu geregince x(x (E)) = x (E) oldugundan x(y (F)) uzaym kapsayan her F
FK uzay1 x (E) uzaymi da kapsar. Bu durumda (8.1.1) geregince x (£) Hahn
uzayidir.

Diger yandan, x (bs + Sp{e}) uzaym kapsayan her ' FK uzaymm bs + Sp{e}
uzayini kapsadigini gostermeliyiz.

Her i € Nicin u®, bs+ Sp {e} uzay1 tarafindan igerilen ve terimleri 0 ve 1 olan keyfi
dizi olsun. y® € bs olmak iizere u”) = ¢ 4 ¢ formundadir. O halde keyfi 3, skalar1

i¢in,

- S0+

n ) n
= Z y(l)ﬁz‘ + Z B;
i=1 =1
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olmak iizere z € x (bs + Sp{e}) olur. o = i B, olmak iizere her ¢ i¢in 3, keyfi
oldugundan « keyfi bir skalardir, boylece ozZ:E1 Sp{e} elde edilir. Bu durumda
kabuliimiiz geregince Sp{e} C F gergeklenir.

Son olarak bs C F' oldugunu gosterelim. Bunun igin 6ncelikle > (bs) = [*° oldugunu

gostermeliyiz.

S(bs) = {d x:z€bs}
= {(kﬁjlxk) tx € bs} c ™ (3.2.2)

elde edilir. Diger yandan, z € Y. ' (I*°) olsun. O halde Y.z € [* gerceklenir.

Boylece = € bs elde edilir. Yani,
SSTHI®) Chs = 10 C Y (bs) (3.2.3)

gergeklenir. (3.2.2) ve (3.2.3) birlikte diisiiniildiigiinde [*° = > (bs) bulunur.
Kabuliimiiz geregince, x (bs + Sp{e}) C F oldugundan > [x (bs + Sp{e})] C D (F)
elde edilir. Lemma 3.2.2 ve Sonug¢ 3.1.1 geregince,

X (1) € 32 [x (bs + Sp{e})] € 22(F)

olup,

1= C .(F)

elde edilir. Bu da ispat1 tamamlar.

Sonug 3.2.1 Keyfi bir £ F'K uzayi i¢in,
bs + Sp{e} C E CI[>®

gergeklensin. Bu durumda y (F) uzayi, E uzayinda yogun ve figilidir (Bennett, Boos
ve Leiger 2002).
Sonug 3.2.1, Teorem 3.1.1 ve Teorem 3.2.1° den kolaylikla elde edilir.
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Teorem 3.2.1° in bir sonucu olarak Cesaro toplanabilir sinirh diziler uzayimmin Hahn

ozellikli oldugu kolayca goriiliir. Bu uzayi,

1 n
E, = {x €™ lim — ) xp mevcut}

=00 M =

ile gosterelim.
Her z = (z3) € Sp{e} igin, k = 1,2,3, ... ve v keyfi bir skalar olmak {iizere x, = «
gerceklenir. O halde,

lim 1 i xp = lim 1 (na) = « (3.2.4)

n—oo M, k=1 n—oo M,

elde edilir. Oyleyse o € E, yani Sp{e} C E; gerceklenir.

Diger yandan, keyfi bir y € bs igin M > 0 olmak iizere sup | yx| = M < oo
n|k=1
gergeklenir. O halde,
1|2 1
0< =D | <—-M—0 (n — o0) (3.2.5)
N k=1 n

elde edilir. Boylece y € F4, yani bs C F; gerceklenir.
(8.2.4) ve (8.2.5) geregince bs + Sp{e} C Ej elde edilir. F; uzaymin tanimindan
FE; C [*° oldugundan,

bs + Sp{e} C By C ™

elde edilir. Boylece Teorem 3.2.1° den F; Hahn 6zelliklidir.

E; uzayina ait terimleri 0 ve 1 olan diziler, pozitif tamsayilarin dogal yogunluga sahip
altkiimeleri yardimiyla karakterize edilebilen 6nemli bir simif olugtururlar. Soyle ki,
A C N olmak iizere A kiimesinin asimptotik yogunlugu d olsun. Simdi bir s dizisini

her £ € N icin,

1, ke A
Sp = (3.2.6)
0, k¢ A

olacak bicimde tanimlayalim.
O halde,
1z 1z
lim — > s = lim — > x4 (k) =d
oo M =] o0 I =1

elde edilir. Bu durumda s € F; elde edilir.
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Diger yandan s, F; uzayindan alinan ve terimleri 0 ve 1 olan keyfi bir dizi olsun.
A C N olmak iizere s dizisini (3.2.6) yardimiyla tanimlayalim.
R N

lim — > x4 (k) = lim — > s

n—oo M, k=1 n—oo M, k=1
gerceklenir. Bu limit mevcut oldugundan A kiimesi dogal yogunluga sahiptir.
E4, Hahn uzay1 oldugundan (3.1.1) geregince bu smufi kapsayan en kiigiik 'K uza-
yidir.
Simdi Sifira Cesaro toplanabilir sinirh diziler uzay1 olan,

1 n
E2::{x€l°°: lim—Zxk:()}

n—oo M k=1
uzayim ele alalim. Sp{e} € E5 oldugundan Teorem 3.2.1 gergeklenmez ve ger¢ekten
E5 Hahn 6zellikli de degildir. Bunu gorebilmek icin,

1
F::{melooz lim—Z]:ck]:O}

nee M =y

olacak bicimde tanimlanan sifira kuvvetli Cesaro toplanabilir sinirl diziler uzayimni
ele alahm. Bu uzay, x (F>) uzayimm kapsadigi halde Es uzayim kapsamayan bir F'K
uzayidir.

Ornegin; k € N olmak iizere {(—1)k

W—/
I

(—=1,1,—1,1,...) dizisini gézoniine alalim.

oldugundan {(—l)k} € F5 gerceklenir fakat;

1 n
lim — >

n—o0 N =y

(-1 =1

oldugundan {(—l)k} ¢ F elde edilir. Boylece (3.1.1) geregince Ey bir Hahn uzay:
degildir.
FE ve Ey uzaylar arasindaki bu fark e dizisinden kaynaklanmaktadir. Bu da Teorem

3.2.17 in ne kadar hassas oldugunu gosterir.
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Teorem 3.2.2 F bir dizi uzay1 olmak iizere,
E=1"x(E)+c (3.2.7)

olsun. Bu durumda E dizi uzaymin Hahn 6zellikli olmasi i¢in gerek ve yeter sart
X (E)? =1, olmasidir (Bennett, Boos ve Leiger 2002).

Ispat. Oncelikle gerek sartin gerceklendigini gosterelim. E Hahn ozellikli oldugun-
dan Onerme 3.1.3 geregince x (E)” = E® oldugunu biliyoruz. Diger yandan hipotez-
den E = [*.x (F) + ¢y oldugundan

EP = (I%.x (B) + c)’

olup,
E? = (I®.x (E))’ N (c)’

gerceklenir. Boylece,

EP = (I x(E)’ Nl (3.2.8)

elde edilir. [*.x (F) C [ gergeklenir. Gergekten, keyfi z € I®.x (E), y € [ ve

z € x (F) olmak iizere x = yz formunda yazilabilir. O halde,

7]l = sup|zn]
n

= SUp [Yn2n]
n

< sup |y,| sup |z,|

n n

= [Ylloo 2]l <00

gergeklenir. Bu durumda z € [*°, yani [*°.x (E) C [* elde edilir. Ayrica
1°.x(E) Cl®= (™) cC (I®x(E))’

=1 C (I®x(E))’ (3.2.9)
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elde edilir. (3.2.8) ve (3.2.9) ifadelerini birlikte diisiiniirsek,
Ef =1 x(E)’ Nl =1

yani,
elde edilir.
Simdi yeter sartin gerceklendigini gosterelim. y (E)'g = [ olsun.

X(E)CF (3.2.10)
olacak bicimde keyfi F' F'K uzay icin,

ECF (3.2.11)

oldugunu gosterelim.
Bunun igin [®.y (E) ve ¢y uzaylarimi ayr1 ayr ele alarak Onerme 3.1.1° den fay-
dalanalim ve (3.2.11) ifadesinin gerceklendigini gosterelim.

(3.2.7) ve (3.2.10) ifadeleri geregince x(I*°.x (E)) C F gergeklenir. O halde,
[*x(E)CF (3.2.12)

oldugunu gostermeliyiz.
Toplam, E tarafindan igerilen ve terimleri O ve 1 olan diziler iizerinden alinmak ve

z € x (F) olmak iizere
®x(E)=) Iz

formunda yazilabilir. Her bir [*°x uzay1 Sonu¢ 3.1.1 geregince Hahn uzayidir ve
dolayisiyla Onerme 3.1.1° den 1°.x (E) Hahn 6zelliklidir.

Simdi ¢y C F' oldugunu gosterelim. Bunu gorebilmek i¢in 6ncelikle

owCFeF cd=1
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oldugunu hatirlatalim (Wilansky, 1984). Yani her k£ € N igin,
her f € F'igin ( f (5k)) €l (3.2.13)

ifadesinin gerceklendigini gostermemiz yeterlidir. Burada, 6" := (5;“) olup her j, k €
N igin,

S5k — 1,
J
0, k#jigin

k = j icin

olacak bi¢imde tanimhdir.
Her bir y € x (E) igin [®y, [*° uzaymin kapah bir altuzayidir. Gergekten, y € x (E)
olmak tizere

T, 17— 1~
u— T, (u) =uy

olacak bigimde lineer T}, operatoriinii tammlayalim.

1Ty (W)l = luylls
< sup |ug| sup |y
n n

= ullo 1yl <00

gerceklendiginden T, operatorii stireklidir. [*°y C [*° oldugundan Ty, = T ope-
ratorii stireklidir.

T:1%y — I~
u— T (u) =uy

olmak tizere T~ (I°°) = [y gergeklenir ve [ kapali oldugundan T operatérii altinda
ters goriintiisii de kapaldir.

[*y, [*° dizi uzaymin kapali bir altuzay1 oldugundan [*° uzayindan indirgenen sup
norm topolojisine gore bir F'K uzayidir. (3.2.12) geregince, [y C F gergeklenir. O
halde, keyfi f € F’ fonksiyonelini [*y uzayma kisitladigimizda bu fonksiyonel sup
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norm topolojisine gore de siireklidir.

+ o+ o+
= ‘f (_y17_y27"'a_yna0707"')‘

< Hf|l°°y||oo 191l

z Fof (69

elde edilir. Ust siir isaretten ve n degerinden bagimsiz oldugundan,

S [y (89)] < oo
k=1

gerceklenir. Mutlak yakinsak her seri yakinsak oldugundan ve f— dual tanimindan,
(f (5k)) € x (E)’ =1y elde edilir. (5.2.13) ifadesi gerceklenmis oldugundan ¢y C F

elde edilir. Bu da ispat1 tamamlar.

Simdi klasik toplanabilme teorisinden bildigimiz iki teoremden faydalanarak sifira
kuvvetli Cesaro toplanabilir sinirli diziler uzaymin Hahn ¢zellikli oldugunu gostere-

lim. Bunun i¢in agagidaki iki teoremi ispatsiz olarak verelim.

Teorem 3.2.3 (Agnew Teoremi) % — 0 (k — o0) iken Y a,, serisi yakinsak
k=1

ise > |a,| < oo gergeklenir (Agnew 1947).
n=1

Teorem 3.2.4 A = (ay;) regiiler bir matris olmak iizere sinirh z = () dizisinin a
degerine kuvvetli A —toplanabilir olmasi igin gerek ve yeter sart xy,  dizisinin sifira
kuvvetli A — toplanabilir ve lim z, = a olacak sekilde bir Z C N bulunmasidir

nez
(Hill ve Sledd 1968).

Sonug 3.2.2 Sifira kuvvetli Cesaro toplanabilir sinirli diziler uzay:

1
F:= {xeloo dlim— ) |xk]:0}
k=1

n n

Hahn o6zelliklidir (Bennett, Boos ve Leiger 2002).

Ispat. F uzaymin Hahn ozellikli oldugunu gosterebilmek icin Teorem 3.2.2° den
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faydalanalim. Bunun i¢in 6ncelikle her bir z € F',

T =2TXwz T TXz

formunda ifade edilebilir. Simdi

Xz N—K
doniigtimiinii,
1, ne”Z
Xz (n) =
0, n¢ Z

olacak bicimde tanimlayalim. Bu durumda, bu doniisiim terimleri 0 ve 1 olan bir
dizi belirtir.

Keyfi bir z € F' alalim. Teorem 3.2.4° den

lim (z,x5 (n)) =limz, =0

n—o0 nez

gerceklenir. Yani,

T.Xz € Co (3.2.14)

elde edilir. Diger yandan, Teorem 3.2.4 geregince xy,, dizisi sifira kuvvetli C;

toplanabilirdir. Yani,

N
lim — 21 ‘XN\Z (k)} =0

n—oo 1

gergeklenir. Ashnda bu ifade terimleri 0 ve 1 olan xy, , dizisinin x (F) uzayma ait

oldugunu gosterir ve x € [* oldugundan,
z.Xnz € 17X (F) (3.2.15)

elde edilir. O halde (3.2.14) ve (3.2.15) ifadeleri geregince her x € F igin = €
[°.x (F) + ¢o gergeklenir. Yani,

F Cli®x(F)+c (3.2.16)
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elde edilir.
Simdi, [®.y (F') + ¢y C F oldugunu gorelim. Keyfi y € [®.x (F') + ¢y alahm. x € [*°,
z € x(F) ve v € ¢y olmak iizere y = xz + v formunda yazlabilir. v € ¢y ve C4

regiiler oldugundan,
1 .~
lim — > || =0

n—oo N, k=1

gergeklenir. Boylece v € F elde edilir. Diger yandan; = € [* ve x(F) C F

oldugundan,

n

1 1
0<—> |zpze| <2l = D2 |2r] — 0 (n — o0)
N p=1 N k=1

elde edilir. Yani xz € F' gerceklenir.

Bu durumda vektor uzay aksiyomlarindan xz + v € F' oldugundan,

[ X(F)+c CF (3.2.17)
gergeklenir. O halde (3.2.16) ve (3.2.17) uyarinca,

F=1"x(F)+c

formundadir.
Simdi, x (F)” = I, oldugunu gostermeliyiz. Keyfi z € x (F)” alahm. A— dualin

tanmmindan, her bir y € y (F) igin ) x4y, serisi yakinsaktir. O halde x (F') uzayimnda
k=1

bulunan ve terimleri 0 ve 1 olan diziler i¢in de ) zxyy serisi yakinsaktir.
k=1
F uzaymin tanimi geregince bu diziler dogal sayilarin sifir yogunluklu altkiimeleri
tarafindan karakterize edilebilirler. O halde Agnew Teoremi geregince, Y |x,| < oo
n=1

gergeklenir. O halde,
X (F)’ cly (3.2.18)

elde edilir.
Keyfi bir y € [; alahm. Her x € F igin,

o) o)

2 ol < Yoo 22 Ikl = 1l llylly < 00
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ve mutlak yakinsak her seri yakinsak oldugundan y € x (F )B gerceklenir. O halde,
I C x (F)° (3.2.19)

elde edilir.
(3.2.18) ve (3.2.19) ifadeleri birlikte diistiniildigiinde x (F)” = I; elde edilir. F =

1°.x (F) 4 ¢y olmak tizere x (F)” = I; oldugundan Teorem 3.2.2 geregince F Hahn
ozelliklidir.
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4. ZAYIF HAHN TiPi OZELLIiKLER

Bu boliimde, Hahn o6zelligi ile ayni prensibe sahip olan fakat; Hahn ozelligi i¢in
Teorem 8.1.17 de vermis oldugumuz gibi bir fonksiyonel analitik gosterime sahip
olmayan ayrilabilir Hahn 6zelligini ve matris Hahn 6zelligini tanimlayacagiz. Bunun
yamisira, bu iki 6zelligin Hahn ozelliginden ¢ok daha genis bir uygulama alanina

sahip oldugunu goérecegiz.

Tanim 4.1 F dizi uzayinin ayrilabilir Hahn 6zelligine sahip olmasi icin gerek ve yeter
sart I keyfi bir ayrilabilir F'K uzay1 olmak tizere (3.1.1) ifadesinin gergeklenmesidir
(Bennett, Boos ve Leiger 2002).

A = (ani) keyfi sonsuz matris olmak iizere Tansm 2.3.1 uyarinca, c4 uzaymin ayrila-
bilir F'K uzay1 oldugunu biliyoruz. Bu hatirlatmadan sonra artik matris Hahn 6zel-

ligini tamimlayalim.

Tanim 4.2 FE dizi uzaymin matris Hahn 6zelligine sahip olmasi icin gerek ve yeter

sart her A = (a,x) matrisi i¢in,
X(E)Cca=FECecy (4.1)

ifadesinin gerceklenmesidir (Bennett, Boos ve Leiger 2002).

Tanwym 4.1 ve Tanam 4.2 ifadelerinin 15181 altinda keyfi bir E dizi uzay1 Hahn 6zellikli
ise ayrilabilir Hahn 6zelikli ve boylece F dizi uzay: matris Hahn 6zelliklidir. Ayrica,
Onerme 3.1.1 her tic Hahn 6zelligi icin de gerceklenir.

Asgagida verecegimiz Teorem 4.1 ise x (E) uzaymim E uzayimda yogun olmasi diginda
Béliim 3.1 de Hahn uzaylan icin ifade ettigimiz tiim ozelliklerin, ayrilabilir Hahn

uzaylar: ve matris Hahn uzaylar icin de gercgeklendigini gostermektedir.

Teorem 4.1 F bir matris Hahn uzay1 ise £ C [ ve X(E)ﬁ = FEP gerceklenir.
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Dahas1 E' dizi uzay1 ¢ uzayini kapsayan bir F'K uzayi ise bu durumda E ayrilabilir
degildir (Bennett, Boos ve Leiger 2002).

Ispat. E bir matris Hahn uzay: olsun. [ uzayi, y (1°°) uzaymm kapsayan topla-
nabilirlik alnlarinin arakesiti olarak yazilabilir (Bennett, Leiger ve Zeltser, 2006).
Yani; B yukarida belirttigimiz 6zellige sahip sonsuz matrislerin bir kiimesi olmak

izere,

X(E) S = (] ca
AeB

gergeklenir. O halde, her A € B igin x (E) C ¢4 elde edilir. Hipotezden E uzay:
matris Hahn 6zellikli oldugundan (4.1)’ den her A € B icin E C ¢4 gergeklenir.
Bu durumda,

Egloo: ﬂCA
AeB

elde edilir.

Simdi, x (E)” = E? oldugunu gosterelim.

Tanmm geregince x (E) € E oldugundan E° C y (E)” elde edilir.

Diger yandan x (E)” ¢ EP oldugunu kabul edelim. Bir x € y (E)’\ Ef alahm. O
halde Onerme 3.1.8’ de takip ettigimiz ispata paralel olacak bicimde ilerledigimizde,

X (E) € 2’
elde edilir.

1 T2 0 0

Ty r9 x3 0 0

olmak iizere 2° = CB(z) olsun. Bu esitligin gerceklendigini kolayca gorebiliriz. Soyle
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ki,

CBz) @ = {y cw: (Z xkyk) € c}
k=1

= {y Ew: Y xpyr serisi yakmsak}
k=1

= _/L"B

elde edilir. F uzay1 matris Hahn 6zellikli oldugundan,

X (E) Ccpa) = E C cp) (4.2)

olmahdir.

Oysa ki; kabuliimiiz geregince z ¢ E° oldugundan, bir z € F icin i 2z yakinsak
degildir. Yani z ¢ 2° = CB(z) oldugu sonucu ortaya cikar. Bu is]g:@.g) ifadesi ile
celisir. Yani,

X (B)’ C B

elde edilir. Boylece, x (E)” = E elde edilir.

Teoremimizin son parcasinin ispati i¢in Lemma 3.1.17 de elde ettigimiz

F = ﬂA(mﬂ)

rTEW

esitliginden faydalanalim. Diger yandan; A ve B (x) matrisleri iiggen matrisler

oldugundan,

A(2) = A(cp@) = cpa

olmak {izere

F= ﬂ CB(I)A—I

TEW
olarak toplanabilirlik alanlarmin arakesiti seklinde ifade edilir. Ispatimiza Teo-
rem 3.1.2° dekine benzer bigimde devam edersek F uzaymin ayrilabilir olmadigini

goririz.

Simdi, Teorem 4.3’ ii ispatlayabilmemiz icin gerekli olan baz hatirlatmalarda bulu-
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nalim.

Tanim 4.3 Keyfi bir E dizi uzay1 ic¢in [*.F C E ifadesi gercekleniyorsa E uzayi

katidir denir. F uzaymin kat1 olmasi i¢in gerek ve yeter sart
{(uk) cw: El(xk?) € E7 Vk € N: |uk| < |x/€|} -y

ifadesinin gergeklenmesidir (Boos 2000).

Tanim 4.4 Keyfi bir £ dizi uzayinin monoton olmasi igin gerek ve yeter sart

X (1) .E C E olmasidir (Boos 2000).

Ornegin; p > 1 olmak iizere [” uzay1 katidir. Yani, p > 1 olmak iizere [®.[P C [P

gergeklenir. Soyle ki; keyfi z € [*°.[P i¢in, ©x = (z3) € I ve y = (yx) € [P olmak

Zk|p)
$kyk|p)
P v
SUP ‘xk‘) ’yk’p>

— (i (£ |yk|p);

=zl llyll, < oo

iizere z = xy formundadir.

I2ll, =

b
(3
(&

I M8

||M8

oldugundan z € [P gergeklenir.
Verdigimiz tanimlar1 gozoniine alirsak y (1°°) C [*° oldugundan her kat1 dizi uza-
yinin monoton oldugu acik¢a goriiliir. Fakat bunun tersi her zaman dogru degildir.

Ornegin y (I°°) uzay1 monoton oldugu halde kat1 degildir. Bu durum,

X (1) :={r € w: {zy : k € N} sonlu bir kiime} (Boos 2000)
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tanimi uyarinca aciktir.

Teorem 4.2 X dizi uzay1 kat1 ise X® = X? = X7 gerceklenir (Boos 2000).

Ispat. X kat1 bir dizi uzay: olsun. Tansm 2.2.3 uyarmnca
X*c XxPcXx?

oldugu aciktir. O halde sadece X7 C X“ oldugunu gostermemiz yeterlidir.
Keyfi y = (yx) € X7 alahm. Her z = (x;) € X igin,

Z TEYk

k=1

sup < 00

n

gergeklenir. Keyfi x = (x;) € X icin 2z = (2;) dizisini 2z, = xpsgn (yx2x) olacak
bigimde tamimlayalim. X kati ve her k£ € N igin |z;| < |zy| oldugundan Tanim 4.3

geregince z € X elde edilir. Boylece

Z |$kyk| = Z TrYk sgn (xkyk)
k=1 k=1
= | %Yk
k=1

Z ZkYk

k=1

< sup

n

< 00 (ze Xveye X7)

olup > |zxyx| dizisi monoton ve sinirli oldugundan yakinsaktir. O halde zy € Iy,
k=1

yani yie X elde edilir.
Tiim bu hatirlatmalardan sonra artik Teorem 4.3’ ii ispatlayabiliriz.

Teorem 4.3 s = (s,) pozitif tam sayilarin bir dizisi olmak iizere s; = 1 ve

(Spa1 — Sp) siirsiz olsun.

Sp+1—1
E = {x cw:|z|p=sup >, |zl < oo}

n k=sn

uzay1 ayrilabilir Hahn ozelliklidir; fakat Hahn o6zellikli degildir (Bennett, Boos ve
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Leiger 2002).
Ispat. E, ¢ sonlu diziler uzayim kapsayan kat1 bir dizi uzayidir ve x (E)B = BF
gerceklenir. Gergekten,

Y(EY =E° =F := {y €Ew:). maks |y < oo} (4.3)

n sn<k<spt1

elde edilir. Bu esitligi elde edebilmek i¢in F C Ef ve y (E)° ¢ F durumlarm
inceleyelim.

Oncelikle F ¢ E? oldugunu gosterelim. Keyfi bir y € F' alalim. Her bir = € E icin,

Sk+1—1

2wl < 20 maks yil 2 feil < lylle llzlls < o0

S <1<Sk41 i=sp

elde edilir. O halde y € E* elde edilir, boylece Teorem 4.2 uyarinca y € E° elde
edilir.

Simdi x (E)” C F oldugunu gosterelim. Keyfi y € y (E)” olmak iizere &, ile s, <
io < Sk+1 ve |yi,| = maks{|y;| s sp <@ < spr1} (kK € N) olacak bigimde en kiigiik

)

indis olan iy’ 1 gosterelim. Eger, x dizisini z¢, = sgnye, ve ¢ ¢ {&, : k € N} i¢in

x; = 0 olcak bicimde tanimlarsak,

57z+1_1
|z]lp =sup > |z <1
n 1=58n

elde edilir. F uzayr monoton oldugundan y (E) = E N x (I*°) gergeklenir (Bennett
1995), dolaywsiyla x € x (E) olur. Diger yandan y € x (E)’B oldugundan,

;ykxk = > Ye, 58N Ye,

= >, maks |y;| < oo
k

5, <1<Sg41

gergeklenir. O halde y € F' elde edilir. Boylece E, ayrilabilir Hahn uzayidir (Boos
ve Leiger, 2007).

Simdi F dizi uzaymm Hahn 6zellikli olmadigini gosterelim. Oncelikle E, hipotezde
belirtilen normla bir F'K uzayidir (Bennett 1974). O halde, y (£) uzaymin E uza-
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yinda yogun olmadigini gosterirsek Teorem 3.1.1 geregince E uzayiin Hahn 6zellikli
olmadigl sonucuna da ulagmig oluruz.
xr = (xy) dizisini,

1

L = ) Sn S k< Sp41 (77, = 1,2,3, )
Sn+1 — Sn

olacak bicimde tanimlayalim.

sn+1—1 1
el =sup S Jay| = su {<sn+1——sn>————————} 1
N k=s, n Sn+1 — Sn

oldugundan = € F elde edilir. y € x (E) olmak iizere,
y=0 iken fr—yl,=1
ve eger y # 0 ise Oyle biiyiik bir n segelim ki,

a = min
min Y|

olmak tizere s,11 — s, > i olsun. Oyleyse bir § > 0 icin a > anl_Sn + 0 diyebliriz.

Simdi, s, < k < s,41 olmak iizere

|=/Ek: - yki| - ’l‘kl - 8n+3_57L ’ yk = O lgln
=yl = loel 2 c=— » v #0 i¢in
elde edilir. O halde,
Sp4+1—1 Sp+1—1
|z —yllg=sup > |we—wl > > |opg—wl >1
n k=sn k=sn

elde edilir ki bu keyfi € > 0 olmak {tizere her z € E icin ||z — y||; < ¢ olacak bigimde
bir y € x (E) elemanimin var olmadigini gosterir. Boylece x (E) uzay1 E uzayinda

yogun degildir. Bu da ispati tamamlar.
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5. ORNEKLER
Bu boliimde Hahn tipi ¢zelliklerin bazi uygulamalarini inceleyecegiz.

Teorem 5.1 (Hahn Teoremi) Keyfi bir A = (a,;) matrisi igin,
X(UZ) Cea= 1" Ceqy

gergeklenir (Hahn 1922).

Hahn tarafindan verilmis olan bu teorem, aslinda [* uzayinin matris Hahn 6zellikli
oldugunu gosterir. Oysa ki Sonu¢ 3.1.17 de [*° uzaymin Hahn ¢zellikli oldugunu
gostermistik, dolayisiyla [* uzay1 matris Hahn 6zelligini de tasir.

Hahn uzaylari, vermis oldugumuz bu teorem dolayisiyla Hahn’ in onuruna kendisinin

ismiyle adlandirilmigtir.
5.1 Cesaro Toplanabilme

Cesaro toplanabilir sinirhi diziler uzayinin matris Hahn 6zelligini tagidigin1 Kuttner
ve Maddox (1981) gosterdiler. Bunu anlayabilmek icin 6ncelikle ilgili teoremi ifade

edelim.

Teorem 5.1.1 » > 0 olsun. Keyfi A = (a,x) matrisi i¢in, A € (I* N (C,r),c)
olmasi icin gerek ve yeter sart dogal yogunluga sahip her bir £/ C N kiimesi igin

(Z ank> € ¢ olmasidir (Kuttner ve Maddox 1981).

keE

Simdi keyfi bir A = (a,) matrisi igin,
X(C1NI®)Cea=CrNI® Cegy

ifadesinin gerceklendigini Teorem 5.1.1° den faydalanarak gosterelim.

r = 1 olacak bicimde segelim. C; N[> uzaymndan 0 ve 1’ lerin keyfi bir s dizisini
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alalim. Bu dizi dogal yogunluga sahip £ C N yardimiyla,

1, ke E
0, k¢ E

Sk —

olacak bigimde tamimlanir (bkz. Bolim 3.2). Agkca s € x (CyNI®) olur. O
halde kabuliimiiz geregince <Z ank5k> € ¢ ve boylece (Z anr | € c elde edilir.
=1

n keE n

Teorem 5.1.1 geregince A € (I*° N (C,1),c) gergeklenir. Yani,
CiNI*® Cea

bulunur.
Diger yandan; ¢aligmamizda Teorem 3.2.1 geregince C7 N> uzayimin Hahn 6zellikli
oldugunu belirlemigtik dolayisiyla, C7 N [*° uzaymin matris Hahn 6zellikli oldugu

agiktir.
5.2 Baz1 Dizi Uzaylarinin Yapisi

Onerme 3.2.1 uyarinca; [° uzay1 terimleri 0 ve 1 olan dizilerin sonlu lineer kombi-

nasyonlarinin uzay1 ve bs uzay1 yardimiyla ifade edilebilir. Soyle ki,
1= x (1) +bs

formundadir. Aslinda Onerme 3.2.1, Hahn uzay1 calismalarinda bs uzayimn ne kadar

onemli oldugunu gosteren ilk igarettir.
5.3 Hemen Hemen Yakinsak Diziler

Hemen hemen yakinsak diziler uzay1 ac ile gosterilir ve

1 mtn—1
ac := {x climsup— > g mevcut}

n m N p=m

olacak bigimde tanimlanir (Lorentz 1948). Bu durumda F' —lim z = L yazilir (Boos
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2000).

ac uzayl,

bs + Sp{e} Cac C I~

ifadesini gergeklediginden Teorem 8.2.1 uyarinca Hahn ozelliklidir (Bennett, Boos
ve Leiger, 2002).
Bunu gorebilmek igin ¢ncelikle keyfi bir x € Sp{e} alahm. Her k = 1,2,3, ... i¢in

z = a (a € K) olur.

1 m+n—1 1
lim sup— > ;= lim sup — (na) = « (5.3.1)
n—=00 m N p—m n—oo ., M

gerceklenir. Boylece = € ac elde edilir.

Simdi, keyfi bir = € bs alalim. sup | > x| = M < oo gergeklenir. Her n € N igin,

r k=1
1 m+n—1 1 m—+n—1 m—1 1
O0<sup—| > ap|=sup—| >, xp— Y. x| <sup—2M — 0 (n — o)
m k=m m M| k=1 k=1 m N
olup
1 m4n—1
sup— », xp—0 (n — o0) (5.3.2)
m T g=m
yani, x € ac elde edilir.
(5.8.1) ve (5.3.2) ifadeleri uyarinca,
bs + Sp{e} C ac (5.3.3)

gerceklenir.

Simdi ac C I*° oldugunu gosterelim. Keyfi bir x € ac alalim, a € K olmak {izere
F —limz = a olsun. Bu durumda, keyfi ¢ > 0 olmak iizere her n > ng ve her m
i¢in,

1 m+n—1

- > mp—a

N k=m

<é€
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olacak bicimde bir ng bulabiliriz. ¢ = 1 alalim. a € K ve ny € N olmak {izere,

1 m—+n—1
— > (rr—a)| <1 (n > ng ve her m € N icin)
n k=m
gerceklenir. Her bir m € N icin,
m-+no m-+no
Tm| = | D0 T~ > T
k=m k=m+1
m-+ng m-+ng
= | Y (ep—a)— > (zp—a)+a
k=m k=m+1
m-+ng m~+no
< | X (@—a|+| X (vx—a)l +]d
k=m k=m-+1

< ng+1+ne+ |al

= 277,0—1—1—1—\@]

gergeklenir. O halde,

Sup || < 00
m

olur ve x € [* elde edilir. Boylece,
ac C 1~

gerceklenir.

Sonunda, (5.8.3) ve (5.5.4) uyarinca,
bs + Sp{e} Cac CI*®

elde edilir.

5.4 Kuvvetli Konservatif Matrisler

(5.3.4)

A = (a,;) matrisinin kuvvetli konservatif olmasi i¢in gerek ve yeter sart ac C cy

olmasidir (Boos 2000). Bennett (1995), Kuttner ve Parameswaran (1994) tarafindan

kuvvetli konservatif bir matrisin sinirhi toplanabilirlik alaninin matris Hahn 6zellikli

oldugu gosterildi. Bunu anlayabilmek icin 6ncelikle potent matris tanimini verelim.
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Tanmim 5.4.1 Her bir B = (b)) matrisi igin,

X (ca) Ceg=caNI® Cep

ifadesi gergekleniyorsa A = (a,;) matris metoduna potent matris denir. KP ile tiim

konservatif ve potent matris metodlarmin kiimesi gosterilir (Boos 2000).

Keyfi bir A matrisinin potent olmasi i¢in gerek ve yeter sart ¢4 NI[°° uzayimin matris
Hahn 6zellikli olmasidir. Her kuvvetli konservatif matris potent oldugundan (Boos,
2000) acikga, kuvvetli konservatif bir matrisin simrli toplanabilirlik alan1 matris

Hahn 6zelliklidir. Bu su anlama gelir; keyfi bir B = (b,,;;) matrisi igin,
ac C ¢y olmak tizere x (ca) Ccp = caNI™® Cep (5.4.1)

gerceklenir. Simdi ac uzayinin 6zelliklerinden faydalanarak kosullar: zayiflatip sonucu

giiclendirebiliriz.

Teorem 5.4.1 Kuvvetli konservatif bir matrisin siirli toplanabilirlik alan1 Hahn
ozelliklidir (Bennett, Boos ve Leiger 2002).

ispat. ac C cy oldugundan bs C cy ve e € cy elde edilir. Boylece Teorem 3.2.1
geregince c4 N[ uzayr Hahn ozelliklidir. Yani A = (a,x) kuvvetli konservatif bir
matris olmak tizere x (cq NI®) C F olacak bicimde keyfi bir F' FK uzay: ver-
ildiginde ¢4 N1 C F gergeklenir. (5.4.1) ifadesinde ayrilabilir bir F'K uzay1 olan

c4 uzayindan yararlandigimiza dikkat edelim.

Teorem 5.4.2 (Sinirhh Tutarlilik Teoremi) A = (a,;) ve B = (by) regiiler
matrisler olmak {izere, cy N I*® C cp ise her x € ¢4 NI igin limy x = limgx

gergeklenir (Boos 2000).

Tanim 5.4.2 A = (a,;) matrisinin kuvvetli regiiler olmasi icin gerek ve yeter sart

limy x = L olmasidir (Boos 2000).
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Simdi 0-1 Tutarlilik Teoremini ispatlayabilmemiz igin gerekli olan bir hatirlatmada

bulunalim.

Hatirlatma 5.4.1 ¢ C ac C [* ve F' —lim|. = lim gergeklenir (Boos 2000).

Teorem 5.4.3 (0-1 Tutarlihk Teoremi) A = (a,;) kuvvetli regiiler bir matris
olmak ve B = (b,;) matrisi, A matrisi ile A — limitlenebilir 0, 1 dizileri tizerinde
tutarli ise ¢4 NI® C cp ve her x € ¢4, NI igin A ve B matrisleri tutarhdir (Bennett,
Boos ve Leiger 2002).

Ispat. A kuvvetli regiiler bir matris ise regiilerdir. Gergekten, ¢ C ac C ¢4 oldugun-

dan A € (¢, c) ve her x € ¢ igin Hatirlatma 5.4.1 uyarinca
limr =F —limx

gergeklenir. Diger yandan A kuvvetli regiiler oldugundan F' — limx = limy x elde
edilir. O halde, her x € ¢ igin limx = lim4 « olur ve boylece A matrisi regiilerdir.
Diger yandan hipotezden

X (ca) C cp ve her z € x (ca) igin limy z = limpg x (5.4.2)
elde edilir. A kuvvetli regiiler oldugundan kuvvetli konservatiftir, dolayisiyla c4 N[>

uzay1 matris Hahn uzayidir. Boylece,
X (ca) =x(canl™) Cep

oldugundan,

caNI® Cep

elde edilir. Diger yandan, ac C c4 ve ac C [ olacagindan ac C cy NI™® C cp
bulunur. O halde B kuvvetli konservatif, dolayisiyla konservatiftir. Bu durumda,
| B|| < co gergeklenir ve her k € N icin limp 6 ve limp e meveuttur. Her k € N icin
6% € x (c4) oldugundan ve A regiiler oldugundan ve (5.4.2)" den,

lim, 6" = limp 6" = 0

elde edilir. Diger yandan bs C ac C ¢4 oldugundan Lemma 3.2.1° den e € x (ca)
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elde edilir. Dolayisiyla (5.4.2) den,
limge =limge=1
gerceklenir. Silverman-Toeplitz Teoremi uyarinca B matrisi regiilerdir. Dolayisiyla

sinarly tutarhilik teoreminden, her = € ¢4 N[* i¢in A ve B tutarhdir.
5.5 Kuvvetli Hemen Hemen Yakinsaklhik

Sifira kuvvetli hemen hemen yakinsak dizilerin uzay1 olan,

1 mtn—1
lac|, = {x Ew: limsup— > |zg| = 0}
noo0 s N k=,

uzay1 matris Hahn 6zellikdir (Bennett, Boos ve Leiger 2002).
Bunu anlayabilmek icin 6ncelikle bazi hatirlatmalarda bulunalim.

Tanim 5.5.1 Porzitif tam sayilarin keyfi bir S altkiimesi i¢in

1 m+n—1

lim sup— Y. xg(k)=0

n—oo 4 n k=m

ise S, diizgiin sifir yogunluga sahiptir denir. Diizgiin sifir yogunluga sahip kiimelerin

sinifi 2 ile gosterilir (Freedman ve Sember 1981).

S € 1 olmak tizere |ac|, uzayinda, terimleri 0 ve 1 olan keyfi bir y = (y;) dizisi,

1, ke S
0, k¢S

Yk (5.5.1)

formunda gosterime sahiptir. Gergekten, S € 70 olmak iizere keyfi bir 0, 1 dizisi i¢in

1 m—+n—1 1 m+n—1
lim sup— > [y = lmsup— >° xg(k)=0
n—oo N k—m

n—00 4y N g, m

elde edilir. Boylece y € |ac|, gergeklenir.

Diger yandan, S pozitif tam sayilarin keyfi bir altkiimesi olmak tizere |ac|, uzayimndan
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aliman y, 0 ve 1 dizisinin (5.5.1) formunda bir gosterime sahip oldugu benzer sekilde

gosterilir.

Teorem 5.5.1. A = (ay;) sonsuz matris olsun. c4 2 |ac|, olmasi icin gerek ve yeter

sart keyfi S € n¥ igin lim Y a,, mevcut olmasidir (Freedman ve Sember 1981).
" keS

Simdi |ac|, uzaymin matris Hahn 6zellikli oldugunu gosterelim.

X (lac|y) € cp olacak bicimde keyfi bir B = (by;) matrisi alahm. y € x (|ac|,) olmak

tizere y, 0 ve 1 dizisi B — toplanabilirdir. Tanim 5.5.1 ve (5.5.1) geregince,

N0 k=1 =00 k=1

=00 kg
elde edilir ve bu limit mevcut oldugundan Teorem 5.5.1 uyarinca,
lac|, € cp
gerceklenir. Bu da ispati tamamlar.

5.6 Kuvvetli Toplanabilirlik

Freedman ve Sember (1981), sifira kuvvetli Cesaro toplanabilir sinirh diziler uzayinin

1 »
{xel"o:—Z\xk\—M) (n—>oo)},
N =1

matris Hahn ozellikli oldugunu gosterdi. Oysa ki, bu uzayimn daha giiclii bir 6zellik

olan Hahn 6zelligine sahip oldugunu biliyoruz.

Teorem 5.6.1 A = (a,;) pozitif terimli kuvvetli regiiler bir matris olsun. O halde,
|A], == {:1: €™ im > ap|zk| = 0}
n—oo k
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ve
|A| .= {x €l lim Y ap |z — 1] = O}
n—oo k

uzaylar1 Hahn 6zelliklidir (Bennett, Boos ve Leiger 2002).
Ispat. £ = |A|, diyelim. Oncelikle E dizi uzaymin kati oldugunu gosterelim. Keyfi
bir x € [*.F alalim. y € [* ve z € E olmak iizere z = yz formundadir. Bu

durumda,

0< Hm )k |z] = im D ank lyrze] < |yl Hm > ang 26| =0 (5.6.1)

elde edilir. Bu da z € F olmasim gerektirir. [*.F C E oldugundan F uzay: katidir

ve boylece keyfi bir x € F i¢in , Z C N olmak iizere

T=x.X,+TX

N\Z

formunda bir gosterime sahiptir. Teorem 3.2./ uyarinca,

dm (rx, (k) = Jim 2 =0

gerceklenir, yani

r.X, €Co (5.6.2)

elde edilir.
Diger yandan, yine Teorem 3.2.4 geregince xy, » dizisi sifira kuvvetli A—toplanabilirdir,
yani

lim Z Ak

n—oo k

Xows (k)’ —0 (5.6.3)

gergeklenir. Ashinda (5.6.3) ifadesi terimleri 0 ve 1 olan Xy, dizisinin x (E) uzayma

ait oldugunu gosterir ve x € [*° oldugunudan,
TXy, €17 X (E) (5.6.4)

elde edilir.
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(5.6.2) ve (5.6.3) ifadeleri birlikte diigiiniildiigiinde,

Ecl®x(E)+c (5.6.5)

elde edilir.

Diger yandan, keyfi bir y € ¢g alalim. y, — 0 (k — o0) oldugundan |yx| — 0
(k — 00) gergeklenir ve A regiiler oldugundan y € F elde edilir. Ayrica y (E) C E
oldugundan (5.6.1) uyarinca,

I“x(E)CFE
elde edilir. Boylece,
I“Xx(E)+c¢CE (5.6.6)
bulunur.
(5.6.5) ve (5.6.6) uyarinca,
E=1"x(E)+ c (5.6.7)

formundadir.
Simdi, x (E)” = I, oldugunu gosterdigimizde Teorem 3.2.2° den faydalanarak E
uzayimin Hahn 6zellikli oldugunu ispatlamis olacagiz.

O halde, keyfi bir z € [; alahm. Her y € y (F) igin,

Ek; |2eye| < ||y||oo§k3 k] = [yl 1]l < 00
olup, = € x (E)'B elde edilir. Boylece
I, C x(E)” (5.6.8)

gerceklenir. A kuvvetli regiiler bir matris oldugundan |ac|, C E elde edilir. O halde,
X (lacly) € x (E) gergeklenir ve boylece x (E)’ C x (]ac\o)ﬂ bulunur.

Diger yandan; X(|ac|0)’3 = [; gerceklenir. Gergekten, keyfi = € X(’CLC|0)5 alalim.
Her y € x (|ac|,) icin, Xk:mkyk serisi yakinsaktir. y = (y) dizisini (5.5.1) formunda

tammlarsak S € n° olmak tizere Y xxg (k) serisi yakinsaktir yani, > z; serisi
K keS
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yakinsaktir. O halde,

> lak| < o0
%

elde edilir (Freedman ve Sember, 1981). Boylece = € [; elde edilir, yani

X (|ac|0)/3 Ch

gerceklenir. Diger yandan

L C x (Jacly)”

oldugu aciktir. O halde,

X (]ac|0)6 =l

elde edilmis olur. Bunu ve (5.6.8) ifadesini de gozoniine aldigimizda,

oldugu goriiliir. Boylece Teorem 3.2.2 uyarinca E, Hahn uzayidir.

Simdi, |A| uzaymin Hahn 6zellikli oldugunu gosterelim.
Al = [Alo + Sp{e}

formundadir. Boylece |A| uzaymin Hahn 6zellikli oldugu Onerme 8.1.1 geregince

aciktir.
5.7 Alisilmis Toplanabilme
Zeller (1953) gosterdi ki;

Kuvvetli C toplanabilme verilidiginde, [*° uzay1 iizerinde kuvvetli C'; toplanabil-

meye denk olacak sekilde regiiler bir A matrisi vardir.

O halde Teorem 5.6.17 de kuvvetli regiilerlik sarti1 kaldirilabilir. Bu 6zellik dikkate

alindiginda Teorem 5.6.1 uyarinca boyle bir regiiler matrisin siirl toplanabilirlik
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alan1 Hahn ozelliklidir (Bennett, Boos ve Leiger 2002).

5.8 Tuhaf Bir Toplanabilme Metodu

Regiiler bir A = (a,;) matrisi ya siirh raksak dizi limitlemez, yani ¢y N> = ¢

gerceklenir ya da c4 N[> uzay1 [*° uzaymin ayrilabilir olmayan bir altuzayidir.
Bu ozellik ve 5.7 baghg altinda inceledigimiz durum birlikte degerlendirildiginde
cqa NI*® # c olmak iizere cy N [ uzay1 yeterince biiyiik bir dizi uzayiysa Hahn

ozellikli olabilir (Bennett, Boos ve Leiger, 2002).

Simdi tuhaf bir matris metodunu inceleyelim.

1 0 0 00
-1 1 0 00
1 -1 1 00
A= 0 1 -1 10

matrisini ele alalim. Acik olarak, Silverman-Toeplitz Teoremi geregince A matrisi
regiilerdir.

z=(1,2,2,1,0,0,1,2,2,1,0,0,...)

wraksak dizisini ele alahm. Az = e oldugundan ve x ({°°) uzaynin tanimindan,

x€cyNx ()

elde edilir.
Oysa ki, A matrisi hig bir wraksak 0, 1 dizisini limitlemez. y = (y;) boyle bir dizi

olsun. O halde y dizisi sonsuz c¢oklukta 01 ve 10 modelinde terime sahiptir. Bu
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durumda y sonsuz coklukta
(010 veya 101) wve (100 veya 101)
modelinde terim icerir. Oyleyse, Ay doniisiim dizisi sonsuz coklukta,
(=1 veya0) ve (1 veya 2)
icerir. Boylece Ay ¢ ¢, yani y ¢ c4 elde edilir (Bennett, Boos ve Leiger, 2002).

5.9 Yakinsak Alt Seriler

a = (a,) pozitif terimli bir dizi olmak {izere
Ya,=00 ve a,—0 (n— 0 (5.9.1)

olsun. Pozitif tam sayilarin ny < ny < ... < ng < ... kogulunu saglayan n; indisleri

yardimiyla yukaridaki serinin yakinsak altserilerini ) | a,, olacak bicimde gosterelim.
k

(Bu altseriler cs (a) ile gosterilir.) Simdi bir serinin yakinsaklhig: ile altserilerinin
yakinsaklig1 arasindaki iligkiyi anlamamiza yardimc: olacak bazi kosullar: inceleye-

lim.

k
— —0 (k—o00) igin Y a, <ocoise Y. a, < oo
Nk k k

gerceklenir ve bir adim daha ileriye gidersek,
Ngs1 — M — 00 (k—00) igin Y a, <ooise Y a, < oo
k

k

gergeklenir (Bennett, Boos ve Leiger 2002).
Agagidaki onermeyi ispatsiz olarak verecegiz.

Onerme 5.9.1 (5.9.1) ifadesi gerceklensin ve b = (b,) keyfi bir dizi olsun. Bu
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durumda, > a,, < oo iken > b,, < oo serisinin yakinsak olmas i¢in gerek ve yeter
k k
sart
be l1 + [*.a

olmasidir (Bennett, Boos ve Leiger 2002).
Asagidaki teoremi ispatsiz olarak verecegiz.

Teorem 5.9.1 [* Nzx® = {y el>: i lTryr| < oo} uzay1 icin agagidaki ozellikler
denktir. =

(i) 1°° N a* Hahn ozelliklidir < x € [

(77) 1°° N a® ayrilabilir Hahn 6zelliklidir < z € ¢

(7i) 1°° Nz matris Hahn o6zelliklidir < = € ¢y (Bennett, Boos ve Leiger 2002).
5.10 bs + ¢y Uzay1

bs + ¢y uzay1 hic bir Hahn tipi ozelligi tasimaz. Ilk bakista sasirtici bir sonuctur;
¢linkii bs + c uzayu,

bs + Sp{e} Cbs+c CI™

ifadesini gergeklediginden Teorem 3.2.1 uyarinca Hahn 6zelliklidir (Bennett, Boos
ve Leiger 2002).
Oysa ki, bs + ¢o uzay1 hi¢ bir Hahn tipi 6zelligi tagimaz. Bunu gorebilmek icin

oncelikle bazi hatirlatmalarda bulunalim (Bennett, Boos ve Leiger 2002).

Tanim 5.10.1 n; bir indis dizisi olmak tizere
Ngr1 — N — 00 (K — 00)
olsun. Terimleri 0 ve 1 olan 1raksak bir z = (z,,) dizisi,

, =T

0, dd.



kosullarini gercekliyorsa x bir ince dizi olarak adlandirilir ve ince dizilerin gerdigi

uzay 7 ile gosterilir (Boos 2000).
Asagidaki 6nermeyi ispatsiz olarak verecegiz.
Onerme 5.10.1 y (bs + o) = T gerceklenir (Bennett, Boos ve Leiger 2002).

Simdi, bs + ¢y uzayimnin matris Hahn 6zelligine sahip olmadigini gésterelim. A, lacu-

nary kiimelerin sinifi olmak {izere
0 0

gerceklenir (Freedman ve Sember, 1981). ngi1 — npy — oo (kK — o00) olmak iizere
S = {ny} olsun. Bu durumda,

N
lim = 3 |, ()] = 0

J700 ] n=1

elde edilir. Boylece sifira kuvvetli Cy — toplanabilir sinirh diziler uzayi, 7 uzayimi
yani x (bs + ¢p) uzaymi kapsar fakat; bs uzaymi kapsamaz. Ornegin, {(—1)"} dizisi

> (—l)k’ < 1 olup {(—1)"} € bs olur. Oysa ki,
k=1

icin, sup

1 »
lim — >

n—oo 1, k=1

(—1)’f‘ —1

olup, {(—1)"} dizisi sifira kuvvetli C; — toplanabilir degildir.
Boylece bs + ¢¢ uzayr matris Hahn 6zelligini, dolayisiyla hi¢ bir Hahn tipi 6zelligi

tasimaz.
5.11 Riesz ve Norlund Matrislerinin Simirli Toplanabilirlik Alanlar:

(pr) reel terimli bir dizi olmak iizere,
pr>0 ve pp >0 (keN) igin B, => p, (neN)
k=1
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olsun.

Riesz matrisi, R, = (7m) ,

B, k<n
Tk = " (n,k € N)

0 , dd.
olacak bicimde tanimlanir.
Norlund matrisi, N, = (puk) »

Pn—k+1 , k < n
Pnk = Fn N (n, ke N)
0 , d.d.

olacak bi¢imde tamimlanir (Boos ve Zeltser 2003).

Simdi, Riesz ve Norlund matrislerinin ¢aligmalarimiz igin gerekli olan bazi 6zellik-

lerini hatirlayalim.

Hatirlatma 5.11.1

(i) R, matrisi konservatiftir ayrica ya regiilerdir ya da [* C cg, gerceklenir.

(17) A = (any) keyfi matris olsun. K G ile, x (ca) C cp ifadesini gercekleyen her bir
B = (bnx) matrisi konservatif olacak bigimde tiim A matrislerinin kiimesi gosterilir.
Agik¢a, K P C KG gergeklenir. Soyle ki,

A € KP alalim.

X (ca) Cecp

olacak bicimde keyfi bir B matrisi verilsin. A potent oldugundan, c4 N[> C cp ve
A konservatif oldugundan ¢ C c4 elde edilir. Boylece ¢ C ¢p elde edilir, yani B
konservatiftir. O halde A € KG elde edilir.

(7ii) p = (pn) olmak iizere, P, — oo (n — oo) olsun. O halde asagidaki kogullar
denktir.

a) R, metodu potenttir.
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b) () € co.

c) R, € KG.

(7v) Np metodunun konservatif olmasi igin gerek ve yeter sart <§;—:> € c olmasidir.
(v) N, metodunun regiiler olmas: i¢cin gerek ve yeter sart <%) € ¢y olmasidir.
(vi) R, metodunun regiiler olmasi i¢i gerek ve yeter sart P, — oo (n — o0) olmasidir
(

Boos ve Zeltser 2003).

Tanim 5.11.1 7 C N ve I # () olsun. I, sonsuz elemanl ise I = N ve r € N olmak

tizere r elemanl ise I = N, olarak gosterilir.

UN: =N, NnNN;=0 (i,jel ve i#}) (5.11.1)

el

olmak iizere,

Ni::{nijGN:jEN}, (ZE[)

sonsuz siral kiimeler olsun. N = (N; :i € I), dogal sayilarin sonsuz kiimeler i¢in

bir par¢alanmasi olsun. Bu durumda,

bs (N) := {33 Cw: Hx”bs(N) = sup H($k>k€Nﬂ'Hb < OO}
j S

olarak tamimlanir (Boos ve Zeltser 2003).

Teorem 5.11.1° i, Teorem 5.11.2" yi ve Teorem 5.11.3’ i ispatsiz olarak verip, bu

teoremlerin sonuclarini inceleyelim.

Teorem 5.11.1 Dogal sayilarin en az bir parcalanmasi icin keyfi bir E dizi uzayi,
bs(N)+ Sp{e} C ECI™®

ifadesini gergekliyorsa, £ uzay1 Hahn ozelliklidir (Boos ve Zeltser 2003).

Teorem 5.11.2 n € N olmak tizere, p = (p,) € [; ise Norlund metodu N, regiilerdir
ancak potent degildir (Boos ve Zeltser 2003).
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Teorem 5.11.3 p ¢ [; ve R, potent matris ise dogal sayilarin (5.11.1)” i gercekleyen
bir N = (N; :4 € I) parcalanmasi vardir ve bs (V) C [* N cg, N cy, gergeklenir.
Ozellikle, [* N cn,, 1% N cg, ve 1% N cg, N ey, uzaylarr Hahn ozelliklidir (Boos ve
Zeltser 2003).

Simdi bu durumu inceleyelim.

p ¢ I ve R, potent olsun.

p ¢ Le Y pp=o
k=1

& lim ) pp =0

n—oo k=1

& lim P, = o

n—oo

& R, metodu regilerdir

Diger yandan, P, — oo (n — o0) ve R, potent oldugundan Hatwrlatma 5.11.1 (i)

uyarinca <%Z> € ¢ elde edilir, yani N, regiilerdir.

Her z € Sp{e} i¢in x € ¢ gergeklenir. R, ve N, regiiler oldugundan,
T €cp, Ve € cy, (5.11.2)
elde edilir. Teorem 5.11.1 ve Teorem 5.11.3 ve (5.11.2) uyarinca,
bs(N)+ Sp{e} Cl®Necg,Nen, CI*Neg, CIZ

ve

bs (N)+ Sp{e} Cl®Necr, Nen, CI®Ney, I

oldugundan bu uzaylar Hahn ¢zelliklidir.

Sonug 5.11.1 (i) R, regiiler olmayan ve konservatif ise, yani p € [; gergekleniyorsa,
bu durumda [*° N cg, Hahn 6zelliklidir ve R, potenttir.

(i) R, regiiler ise, yani p ¢ [, gercekleniyorsa, bu durumda asagidaki ifadeler denk-
tir.

a) R, potenttir, yani (*° N cg, matris Hahn 6zelliklidir.
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b) (%) € ¢

c) ( makspk> € ¢

d) R, € KG

e) [ N cp, ayrilabilir Hahn ozelliklidir.

f) 1 N cg, Hahn ozelliklidir (Boos ve Zeltser 2003).

Ispat. (i) Hatwlatma 5.11.1(i) uyarmca [* C cp, gerceklenir. Boylece, I®° C
cr, N1 ve cg, N[> C [* elde edilir. Yani, cg, N> = [* gergeklenir. [*°, Hahn

ozellikli oldugundan cg, N [*° da Hahn uzaydir.

Ispat. (ii) f = ¢ = a agiktir. Hatwrlatma 5.11.1 (i) uyarinca a = d ve Hatirlatma
5.11.1(11) uyarinca d = b elde edilir.

(%) € ¢p oldugundan her altdizisi de sifira yakinsar. O halde, £ < n (k,n € N)
icin P, < P, olup

Ogmaksp—kgmaksp—kﬁ() (n — o0)
k<n n k<n Pk

éﬁn%ggspkﬁo (n — o0)

elde edilir. Boylece b = ¢ gerceklenir.

Simdi, ¢ = b ifadesinin gergeklendigini gorelim.

elde edilir.
Hatwrlatma 5.11.1(3ii) ve hipotez uyarinca b = a elde edilir. Son olarak, Teorem

5.11.3 ve hipotez geregince a = f gerceklenir.

Sonug 5.11.2 (i) N, regiiler olmayan ve konservatif ise, yani (p—"> € c\co gergek-
leniyorsa, bu durumda [*° N cy, Hahn &zelliklidir ve N, potenttir.

(ii) N, regiiler ise, yani <%’;> € ¢p gercekleniyorsa, bu durumda asagidaki ifadeler
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denktir.

a) N, potenttir, yani [*° N cy, uzay: matris Hahn ozelliklidir.

b)pih

c) cn, N 1% ayrnlabilir Hahn 6zelliklidir.

d) cn, N 1°° Hahn o6zelliklidir (Boos ve Zeltser 2003).

Ispat. (i) Hatwrlatma 5.11.1(vi) uyarinca I C N, gerceklenir. Boylece, [ C

[*Nen, ve I* Ney, C 1% oldugundan,

[ ﬁCNp =[>

elde edilir. [*°, Hahn uzay1 oldugundan [*° N cy, uzay1 da Hahn ozelliklidir.

Ispat. (ii) d = ¢ = a agktir. Teorem 5.11.2 uyarinca a = b elde edilir. Son

olarak, p ¢ [y olsun, yani P, — oo (n — o) olur. Hipotezden (2—:) € ¢
oldugundan Hatirlatma 5.11.1(iii) uyarinca R, potenttir. Boylece Teorem 5.11.3

geregince b = d elde edilir.
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