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ÖZET

Yüksek LisansTezi

HAHN ÖZELL·IKL·I D·IZ·I UZAYLARI

Emel SAVKU

Ankara Üniversitesi

Fen Bilimleri Enstitüsü

Matematik Anabilim Dal¬

Dan¬̧sman: Prof. Dr. Cihan ORHAN

Bu tez beş bölümden oluşmaktad¬r.
·Ilk bölüm giri̧s k¬sm¬na ayr¬lm¬̧st¬r.
·Ikinci bölümde, toplanabilme teorisinin ve topolojik vektör uzaylar¬teorisinin baz¬

temel kavramlar¬na yer verilmi̧stir.

Üçüncü bölümde, öncelikle Hahn özelli¼gi tan¬mlan¬p bu özelli¼gin fonksiyonel analitik

gösterimi ve Hahn uzaylar¬n¬n temel özellikleri ifade edilmi̧stir. Daha sonra, l1 uza-

y¬n¬n Hahn özelli¼gine sahip büyük altuzaylar¬n¬n yap¬lar¬incelenmi̧s ve baz¬örnekler

verilmi̧stir.

Dördüncü bölümde, matris Hahn özelli¼gi ve ayr¬labilir Hahn özelli¼gi tan¬t¬lm¬̧s ve bu

kavramlar¬n temel özellikleri incelenmi̧stir. Bu kavramlar¬n, Hahn özelli¼gi ile ayn¬

felsefeye sahip olmalar¬na kaŗs¬n daha geni̧s bir uygulama alan¬na sahip olduklar¬

gösterilmi̧stir.

Son bölümde ise, Hahn-tipi özelliklerin uygulamalar¬verilmi̧stir.

2010, 59 sayfa

Anahtar Kelimeler : FK uzaylar¬, dizi uzaylar¬, Hahn özelli¼gi, ayr¬labilir Hahn

özelli¼gi, matris Hahn özelli¼gi.
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ABSTRACT

Master Thesis

SEQUENCE SPACES WITH HAHN PROPERTY

Emel SAVKU

Ankara University

Graduate School of Natural And Applied Sciences

Department of Mathematics

Supervisor: Prof. Dr. Cihan ORHAN

This thesis consists of �ve chapters.

The �rst chapter has been devoted to the introduction.

In the second chapter, some basic concepts of summability theory and topological

vector spaces theory have been recalled.

In the third chapter, �rstly the Hahn property has been de�ned and its functional

analytic interpretation and basic properties have been explained. Subsequently the

structure of big subspaces of l1 with the Hahn property has been investigated and

some examples have been given.

In the fourth chapter, the concepts of matrix Hahn property and seperable Hahn

property have been explained and their basic properties have been investigated.

Although these concepts and the Hahn property share the same philosophy, it has

been shown that these properties are more widely applicable.

In the �nal chapter, applications of the Hahn-type properties have been given.

2010, 59 pages

Key Words: FK spaces, sequence spaces, Hahn property, seperable Hahn property,

matrix Hahn property
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S·IMGELER D·IZ·IN·I

�(E) E dizi uzay¬nda terimleri 0 ve 1 olan dizilerin kümesinin gerdi¼gi uzay

�(X; Y ) X uzay¬üzerinde tan¬ml¬zay¬f topoloji

�S S kümesinin karakteristik fonksiyonu

f(Ax)ng x dizisinin A matrisi alt¬ndaki dönüşüm dizisi

!A f(Ax)ng dizisi mevcut olan diziler uzay¬
ac Hemen hemen yak¬nsak diziler uzay¬

jacj0 S¬f¬ra kuvvetli hemen hemen yak¬nsak diziler uzay¬

�0� S¬f¬r yo¼gunlu¼ga sahip kümelerin s¬n¬f¬

� Lacunary kümelerin s¬n¬f¬

�0u Düzgün s¬f¬r yo¼gunlu¼ga sahip kümelerin s¬n¬f¬

cA A matrisinin toplanabilirlik alan¬

(co)A A matrisinin s¬f¬ra toplanabilirlik alan¬

C1 Cesàro matrisi

Rp Riesz matrisi

Np Nörlund matrisi

k:k1 `1 uzay¬n¬n al¬̧s¬lm¬̧s supremum normu

KP Tüm potent ve konsevatif matris metodlar¬n¬n kümesi

! Reel terimli tüm diziler uzay¬

!(A) A-kuvvetli toplanabilen diziler uzay¬

`1 S¬n¬rl¬diziler uzay¬

bs S¬n¬rl¬seriler uzay¬

lp (p � 1) p-yinci kuvvetten mutlak yak¬nsak seri oluşturan dizilerin uzay¬

c Yak¬nsak diziler uzay¬

c0 S¬f¬ra yak¬nsak dizler uzay¬

T ·Ince dizilerin gerdi¼gi uzay

' Sonlu diziler uzay¬

x� (Sp fxg)�

v



1. G·IR·IŞ

Key� bir E dizi uzay¬verildi¼ginde, E taraf¬ndan içerilen ve terimleri 0 ve 1 olan

dizilerin kümesinin gerdi¼gi uzay � (E) ile gösterilirse ve de � (E) � F olacak biçimde

key� bir F FK uzay¬verildi¼ginde E � F elde edebilirsek E dizi uzay¬Hahn özel-

liklidir veya Hahn uzay¬d¬r denir (Bennett 1995 ve Bennett, Boos ve Leiger 2002).

E dizi uzay¬key� bir FK uzay¬olarak verildi¼ginde, E uzay¬n¬n Hahn özellikli ol-

mas¬için gerek ve yeter şart � (E) uzay¬n¬n E uzay¬n¬n yo¼gun ve f¬ç¬l¬bir altuzay¬

olmas¬d¬r (Bennett ve Kalton 1972). Bu teoremin bir sonucu olarak Hahn uzay-

lar¬n¬n fonsiyonel analiz aç¬s¬ndan bir karakterizasyonu Bennett (1995) taraf¬ndan

verildi. Ancak uygulamas¬oldukça güç olan bu teoremin tek uygulamas¬ l1 dizi

uzay¬n¬n Hahn özellikli olmas¬d¬r. Asl¬nda bu teoremin uygulamas¬ndaki zorluk,

� (E) uzay¬n¬n E uzay¬nda f¬ç¬l¬oldu¼gunu göstermektir. E = l1 olarak al¬nd¬¼g¬nda

bu sorun, Nikodym özelli¼gi sayesinde aş¬lm¬̧st¬r (Wilansky 1978). Di¼ger yandan;

Bennett, Boos ve Leiger (2002) Hahn özelli¼gi ile ayn¬prensibe dayanan fakat Hahn

özelli¼gi için verilmi̧s olan fonksiyonel analitik gösterime sahip olmayan ayr¬labilir

Hahn özelli¼gini ve matris Hahn özelli¼gini tan¬mlad¬. Çal¬̧smam¬zda bu kavramlar da

incelenmi̧s ve örnekler verilmi̧stir.

Bu yüksek lisans tezinin amac¬, key� bir dizi uzay¬verildi¼ginde bu uzay taraf¬ndan

içerilen ve terimleri 0 ve 1 olan dizilerin kümesinin gerdi¼gi uzay¬n, verilen bu dizi

uzay¬n¬ ne ölçüde belirledi¼gini ortaya koymakt¬r. Bu amaç do¼grultusunda Hahn

özelli¼gi ve bu özelli¼ge sahip olan dizi uzaylar¬çal¬̧smam¬zda detayl¬ca incelenmi̧stir.
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2. TEMEL KAVRAMLAR

Bu bölümde toplanabilme teorisinin ve topolojik vektör uzaylar¬ teorisinin çal¬̧s-

mam¬zda faydalanaca¼g¬m¬z baz¬ temel kavramlar¬ verilecektir. Bu yüksek lisans

tezinde N = f1; 2; 3; :::g do¼gal say¬lar kümesini gösterecektir.

2.1 Topolojik Vektör Uzaylar¬

Bu k¬s¬mda topolojik vektör uzaylar¬ile ilgili olarak çal¬̧smam¬zda faydalanaca¼g¬m¬z

temel kavramlar¬hat¬rlataca¼g¬z.

Tan¬m 2.1.1 Key�X vektör uzay¬, vektör i̧slemleri sürekli olan bir topolojik uzay

ise X uzay¬na topolojik vektör uzay¬denir (Wilansky 1978).

Tan¬m 2.1.2 X key� bir vektör uzay¬olmak üzere A � X olsun.

A kümesinin konveks olmas¬için gerek ve yeter şart 0 � t � 1 ve s + t = 1 olmak

üzere,

sA+ tA � A

olmas¬d¬r. Bir lokal konveks uzay, s¬f¬r¬n her bir komşulu¼gu s¬f¬r¬n konveks bir komşu-

lu¼gunu içeren topolojik vektör uzay¬d¬r.

A kümesinin yutan olmas¬ için gerek ve yeter şart her x 2 X için, jtj < " olmak

üzere tx 2 A olacak biçimde bir " > 0 bulunmas¬d¬r (Wilansky 1978).

Tan¬m 2.1.3 Bir topolojik vektör uzay¬nda konveks, yutan ve kapal¬kümelere f¬ç¬

denir. Her f¬ç¬s¬ s¬f¬r¬n komşulu¼gu olan lokal konveks uzaylara f¬ç¬l¬ uzay denir

(Wilansky 1978).

Tan¬m 2.1.4 X ve Y dizi uzaylar¬ olmak üzere, ' � Y � X� olsun. Her bir

2



y = (yk) 2 Y için, X üzerinde py yar¬normu

py(x) =

�����
1X
k=1

xkyk

����� ( her x = (xk) 2 X için)

olacak biçimde tan¬mlan¬r ve Py = (py jy 2 Y ); X üzerinde �Py lokal konveks topolo-

jisini oluşturur. (X; Y ) bir dual çifti olsun. Her bir y 2 Y için,

py : X ! R

py(x) = j< x; y >j olmak üzere Py := (py jy 2 Y ) yar¬normlar ailesi X üzerinde

�(X;Y ) ile gösterilen zay¬f topolojiyi oluşturur. (X; �(X; Y )) uzay¬Hausdor¤ uza-

y¬d¬r (Boos 2000). ( X� tan¬m¬için Tan¬m 2.2.3�e bak¬n¬z. )

Tan¬m 2.1.5 (X;Y ) bir dual çifti olsun. ; 6= M � Y olmak üzere M kümesinin

lokal konveks (Y; �(Y;X)) uzay¬nda s¬n¬rl¬olmas¬için gerek ve yeter şart her x 2 X

için,

sup
y2M

jhx; yij <1

olmas¬d¬r (Boos 2000).

2.2 FK Uzaylar¬

Bu k¬s¬mda FK uzaylar¬ tan¬mlanacak ve bu özelli¼ge sahip olan dizi uzaylar¬na

örnekler verilecektir.

Tan¬m 2.2.1 ! ile reel terimli tüm dizilerin uzay¬gösterilmek üzere, !�n¬n her bir

altvektör uzay¬dizi uzay¬olarak adland¬r¬l¬r.

Tan¬m 2.2.2 FK uzaylar¬; tam, metrikleşebilir, lokal konveks topolojiyle donat¬lm¬̧s

ve bu topoloji alt¬nda sürekli koordinatlara sahip yani,

x! xk , k = 1; 2; 3; :::

3



sürekli olan dizi uzaylar¬d¬r.

Al¬̧s¬lm¬̧s baz¬FK uzaylar¬;

kxk1 = sup
n
jxnj

normuyla s¬n¬rl¬diziler uzay¬l1, onun kapal¬altuzay¬olan yak¬nsak diziler uzay¬c

ve s¬f¬ra yak¬nsak diziler uzay¬c0 uzaylar¬d¬r. Dahas¬p > 1 olmak üzere,

kxkp =
 1X
k=1

jxkjp
! 1

p

normuyla lp uzay¬,

pn(x) = jxnj , n = 1; 2; 3; :::

yar¬normuyla ! uzay¬ve

kxkbs = sup
n

�����
nX
k=1

xk

�����
normu ile verilen s¬n¬rl¬seriler uzay¬bs uzay¬da al¬̧s¬lm¬̧s FK uzaylar¬d¬r.

Bu dizi uzaylar¬n¬n d¬̧s¬nda örne¼gin ' sonlu diziler uzay¬FK topolojisiyle donat¬la-

maz (Bennett, Boos ve Leiger 2002).

Tan¬m 2.2.3 Key� bir X dizi uzay¬n¬n �; � ve 
� dualleri s¬ras¬yla,

X� : =

(
y 2 ! : 8x 2 X;

1X
k=1

jxkykj <1
)

X� : =

(
y 2 ! : 8x 2 X;

1X
k=1

xkyk serisi yak{nsak

)

X
 : =

(
y 2 ! : 8x 2 X; sup

n

�����
nX
k=1

xkyk

����� <1
)

olacak biçimde tan¬mlan¬r (Boos 2000). X bir boyutlu bir dizi uzay¬ise;

X = Sp fxg

4



diyelim, bu durumda (Sp fxg)� gösterimi yerine x� gösterimini kullanmay¬tercih

edece¼giz. Di¼ger yandan x� uzay¬,

y ! jykj , k = 1; 2; 3; ::: ve y ! sup
n

�����
nX
k=1

xkyk

�����
yar¬normlar¬yla bir FK uzay¬d¬r (Bennett, Boos ve Leiger 2002).

Tan¬m 2.2.4 X � ' ve X bir FK uzay¬olmak üzere, X uzay¬n¬n f�duali,

Xf :=
n�
f
�
�k
��
: f 2 X 0

o
olacak şekilde tan¬mlan¬r (Wilansky 1984). Burada, �k :=

�
�kj
�
olup her j; k 2 N

için,

�kj =

8<: 1; k = j için

0; k 6= j için

olacak biçimde tan¬ml¬d¬r.

Dahas¬, X ve Y dizi uzaylar¬için � ile bu uzaylar¬n �; �; 
 veya f �duali gösterilmek

üzere

Y � X ) X� � Y �

gerçeklenir (Wilansky 1984).

2.3 Toplanabilirlik Alanlar¬

Bu k¬s¬mda key� bir A = (ank) sonsuz matrisinin toplanabilirlik alanlar¬n¬tan¬m-

layaca¼g¬z.

Tan¬m 2.3.1 A = (ank) reel veya kompleks terimli sonsuz matris ve x = (xk) key�

bir dizi olmak üzere her n 2 N için

1X
k=1

ankxk

5



serisi yak¬nsak ise

(Ax)n =
1X
k=1

ankxk

olmak üzere Ax = f(Ax)ng dizisine x dizisinin A dönüşüm dizisi denir (Maddox

1970).

!A := fx 2 ! : Ax mevcutg

ve

cA :=
n
x 2 !A : lim

n
(Ax)n mevcut

o
uzaylar¬n¬tan¬mlayal¬m. E¼ger f : cA ! K fonksiyonelini

f(x) = lim
n
(Ax)n

şeklinde tan¬mlarsak f bir toplanabilme metodudur. E¼ger lim
n
(Ax)n = L ise x dizisi

L de¼gerine A� toplanabilirdir denir. Hatta bu durumda bazen, limA x = L yaz¬l¬r.

Di¼ger yandan cA uzay¬,

x ! jxkj ; k = 1; 2; 3; :::

x ! sup
m

�����
mX
k=1

ankxk

����� ; n = 1; 2; 3; :::

x ! sup
n

�����
1X
k=1

ankxk

�����
yar¬normlar¬alt¬nda bir FK uzay¬d¬r ve dahas¬bu topolojide ayr¬labilirdir (Wilan-

sky, 1984).

A matrisinin s¬f¬ra toplanabilirlik alan¬,

(c0)A := fx 2 cA : Ax 2 c0g

6



ve kuvvetli toplanabilirlik alan¬,

!(A) :=

(
x 2 ! : bir L için lim

n

1X
k=1

jankj jxk � Lj = 0
)

olacak biçimde tan¬mlan¬r (Bennett, Boos ve Leiger 2002).

Teorem 2.3.1 (Silverman-Toeplitz Teoremi) Bir A = (ank) matrisinin regüler

olmas¬için gerek ve yeter koşul;

(i) kAk = sup
n

1P
k=1

jankj <1

(ii) lim
n!1

ank = 0 (her k 2 N için)

(iii) lim
n!1

1P
k=1

ank = 1

olmas¬d¬r (Boos 2000)

Örne¼gin,

cnk =

8<: 1
n
; 1 � k � n

0; k > n

olacak biçimde tan¬ml¬C1 Cesàro matrisi regülerdir.

7



3. HAHN ÖZELL·I¼G·I

Bu bölümde, öncelikle Hahn özelli¼gi ifade edilecek ve bu özelli¼ge sahip olan dizi

uzaylar¬n¬n yap¬s¬ile ilgili temel sonuçlar incelenecektir. Hatta baz¬dizi uzaylar¬n¬n

yeterince büyük olmas¬ile Hahn özelli¼gine sahip olmas¬aras¬ndaki ili̧ski gösterilerek,

ele ald¬¼g¬m¬z örneklerle de bu özelli¼gin daha iyi anlaş¬lmas¬sa¼glanacakt¬r.

3.1 Tan¬mlar ve ·Ilk Sonuçlar

Bu k¬s¬mda Hahn özelli¼gi tan¬mlanacak ve fonksiyonel analitik gösterimi Teorem

3.1.1�de ifade edilerek, bu teoremin tek uygulamas¬Sonuç 3.1.1�de incelenecektir.

Dahas¬; Hahn uzaylar¬n¬n sahip oldu¼gu temel özellikler incelenecek, özellikle Hahn

özellikli herhangi bir FK uzay¬n¬n ayr¬labilir olmad¬¼g¬gösterilecektir.

Tan¬m 3.1.1 E bir dizi uzay¬olmak üzere, E taraf¬ndan içerilen ve terimleri 0 ve

1�lerden oluşan dizilerin kümesinin gerdi¼gi uzay¬�(E) ile gösterelim. Key� bir F

FK uzay¬için,

�(E) � F ) E � F (3.1.1)

gerçekleniyorsa, E dizi uzay¬Hahn özelliklidir veya Hahn uzay¬d¬r denir. E¼ger Hahn

özellikli E dizi uzay¬bir FK uzay¬ise (3.1.1) gere¼gince E, �(E) uzay¬n¬kapsayan

en küçük FK uzay¬d¬r (Bennett, Boos ve Leiger 2002).

Teorem 3.1.1 E bir FK uzay¬olsun. Bu durumda aşa¼g¬daki özellikler denktir.

(i) E, Hahn özelliklidir.

(ii) �(E), E dizi uzay¬n¬n yo¼gun ve f¬ç¬l¬bir altuzay¬d¬r (Bennett, Boos ve Leiger

2002).

Ancak bu teoremin literatürde tek bir uygulamas¬vard¬r.

Sonuç 3.1.1 l1; Hahn uzay¬d¬r (Bennett, Boos ve Leiger 2002).
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Öncelikle ispat¬m¬z için gerekli olan bir dizi hat¬rlatmada bulunal¬m.

Hat¬rlatma 3.1.1

1) l1 = �(l1) + bs formunda ifade edilebilir. Dahas¬; her x 2 l1 ve her " > 0 için,

x = y + z ve kzk1 < " olacak biçimde bir y 2 �(l1) ve bir z 2 bs vard¬r (Boos

2000).

2) bfa(N) ile do¼gal say¬lar¬n tüm altkümeleri üzerinde tan¬ml¬, s¬n¬rl¬, sonlu toplam-

sal kompleks de¼gerli � küme fonksiyonlar¬n¬n uzay¬n¬gösterelim. Sonlu toplamsal

küme fonksiyonu,

(i) �(;) = 0

(ii) S; T � N ve S \ T = ; olmak üzere,

�(S [ T ) = �(S) + �(T )

özelliklerini gerçekler. Dahas¬,

k�k := sup
(

nX
i=1

j�(Ei)j : N = [Ei; i 6= j için Ei \ Ej = ;
)

olmak üzere bfa(N) normlu bir uzayd¬r.

Her bir f 2 (l1)0, E � N ve x; E üzerinde tan¬ml¬karekteristik fonksiyon olmak

üzere

f(x) =
R
N
xd� = �(E)

formunda ifade edilir ve (l1)0 = bfa(N) gerçeklenir (Wilansky 1978).

3) A, H kümesinin altkümelerinin bir � cebiri olmak üzere, B � bfa(H;A) ve her

bir E 2 A ve her � 2 B için j�(E)j < KE olacak biçimde bir KE mevcut olsun. Bu

durumda B, bfa(H;A) normlu uzay¬nda s¬n¬rl¬bir kümedir (Wilansky 1978).

4) X f¬ç¬l¬bir uzay ve S, X uzay¬n¬n yo¼gun bir altkümesi olsun. S kümesinin f¬ç¬l¬

olmas¬ için gerek ve yeter şart X 0 de �(X 0; S) s¬n¬rl¬ olan her kümenin �(X 0; X)

s¬n¬rl¬olmas¬d¬r (Wilansky 1978).

·Ispat (Sonuç 3.1.1). Teorem 3.1.1� in koşullar¬n¬n gerçeklendi¼gini gösterelim.
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Öncelikle �(l1) uzay¬n¬n, l1 uzay¬n¬n yo¼gun bir altuzay¬oldu¼gunu gösterelim. Hat¬r-

latma 3.1.1(1) gere¼gince key�x 2 l1 ve her " > 0 için x = y+z ve kzk1 < " olacak

biçimde bir y 2 �(l1) ve bir z 2 bs vard¬r. x = y + z oldu¼gundan x � y = z ve

dolay¬s¬yla kx� yk1 = kzk1 < " elde edilir.

Yani key� x 2 l1 ve her " > 0 için, kx� yk1 < " olacak biçimde bir y 2 �(l1)

bulunabildi¼ginden �(l1) uzay¬, l1 uzay¬n¬n yo¼gun bir altuzay¬d¬r.

Şimdi �(l1) uzay¬n¬n l1 uzay¬n¬n f¬ç¬l¬bir altuzay¬oldu¼gunu gösterelim. Bunun için

Hat¬rlatma 3.1.1(4) ifadesinden faydalanal¬m.

l1 bir FK uzay¬d¬r dolay¬s¬yla tamd¬r ve böylece ikinci kategoridendir. O halde

l1 uzay¬f¬ç¬l¬d¬r (Wilansky, 1978). �(l1) uzay¬n¬n, l1 uzay¬n¬n yo¼gun bir altuzay¬

oldu¼gunu yukar¬da göstermi̧stik. O halde �(l1) uzay¬n¬n f¬ç¬l¬ olmas¬ için gerek

ve yeter şart (l1)0 da � [(l1)0; �(l1)] s¬n¬rl¬olan her kümenin � [(l1)0; l1] s¬n¬rl¬ol-

mas¬d¬r. O halde key�B � (l1)0 olmak üzere, B kümesi � [(l1)0; �(l1)] s¬n¬rl¬olsun.

Bu durumda, her y 2 �(l1) için,

sup
f2B

j< y; f >j = sup
f2B

jf(y)j <1 (3.1.2)

gerçeklenir.

E � N ve x; E üzerinde tan¬ml¬karekteristik fonksiyon olsun. O halde x 2 �(l1)

elde edilir. Hat¬rlatma 3.1.1(2) gere¼gince B � bfa(N) diyebiliriz ve her bir � 2 B

fonksiyonuna kaŗs¬l¬k gelen f 2 (l1)0 için

f(x) =
R
N
xd� = �(E)

gerçeklenir. (3.1.2) gere¼gince her bir E � N için,

sup
�2B

j�(E)j <1

gerçeklenir. Yani, her bir E � N ve her � 2 B için j�(E)j < KE olacak biçimde

bir KE vard¬r. Hat¬rlatma 3.1.1(3) gere¼gince B; bfa(N) = (l1)0 normlu uzay¬nda

s¬n¬rl¬bir kümedir. O halde,

sup
f2B

kfk <1
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elde edilir. Bu durumda, her x 2 l1 için

jf (x)j � kfk kxk1

elde edilir. Böylece her x 2 l1 için,

sup
f2B

jf (x)j � sup
f2B

kfk kxk1

bulunur. Yani, her x 2 l1 için

sup
f2B

jf(x)j <1

gerçeklenir. Böylece (l1)0 da key� seçilen B kümesi � [(l1)0; l1] s¬n¬rl¬d¬r. Bu da

ispat¬tamamlar.

Önerme 3.1.1 Bir A indeks kümesinin her bir � eleman¬için E� Hahn uzay¬iseP
�2A

E� Hahn uzay¬d¬r (Bennett, Boos ve Leiger 2002).

Önerme 3.1.2 E bir Hahn uzay¬ise E � l1 ve �(E), sup norm topolojisine göre

E uzay¬nda yo¼gundur (Bennett, Boos ve Leiger 2002).

·Ispat. �(E) uzay¬, tan¬m¬gere¼gince l1 uzay¬n¬n bir altuzay¬d¬r. E dizi uzay¬Hahn

özellikli oldu¼gundan (3.1.1) ifadesinde F FK uzay¬n¬l1 dizi uzay¬olarak seçersek,

E � l1 gerçeklenir.

Şimdi de �(E) uzay¬n¬n sup norm topolojisine göre E uzay¬nda yo¼gun oldu¼gunu

gösterelim.

�(E) � E oldu¼gundan �(E) � E elde edilir.

�(E); l1 uzay¬n¬n kapal¬bir altuzay¬d¬r. O halde, �(E) sup norm topolojisine göre

bir FK uzay¬d¬r ve hipotez gere¼gince E bir Hahn uzay¬oldu¼gundan (3.1.1)� den,

�(E) � �(E)) E � �(E)

elde edilir. Böylece, elde eti¼gimiz bu iki ifade birlikte düşünüldü¼günde �(E) uza-
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y¬n¬n sup norm topolojisine göre E uzay¬nda yo¼gun oldu¼gu görülür. Bu da ispat¬

tamamlar.

Önerme 3.1.3 E bir Hahn uzay¬ ise �(E)� = E� gerçeklenir (Bennett, Boos ve

Leiger 2002).

·Ispat. E bir Hahn uzay¬ve �(E)� 6= E� olsun.

�(E) � E oldu¼gundan E� � �(E)� elde edilir, bu durumda kabulümüz gere¼gince

bir x 2 �(E)�nE� seçebiliriz. Yani, x 2 �(E)� ve x =2 E� oldu¼gunu kabul edelim.

x 2 �(E)� oldu¼gundan her y 2 �(E) için
1P
k=1

xkyk serisi yak¬nsakt¬r. O halde her

y 2 �(E) için y 2 x�; yani

�(E) � x�

elde edilir.

x� bir FK uzay¬ve hipotez gere¼gince E bir Hahn uzay¬oldu¼gundan (3.1.1)� den

E � x� olmal¬d¬r. Kabulümüz gere¼gince x =2 E�; yani bir z 2 E için
1P
k=1

xkzk serisi

yak¬nsak de¼gildir. O halde z =2 x� olur ki bu durumda E * x� elde edilir. Bu ise

bir çeli̧skidir. Bu da ispat¬tamamlar.

Lemma 3.1.1 F � ' ve F , dizilerin say¬labilir bir kümesinin gerdi¼gi uzay olsun.

Bu durumda F; FK uzaylar¬n¬n arakesiti olarak yaz¬labilir (Bennett, Boos ve Leiger

2002).

·Ispat. F � ' odu¼gundan,

a
(n)
k =

8<: 0; k < n

1 k = n

olmak üzere F = Sp
�
a(1); a(2); a(3); :::

	
formunda ifade edilebilir.

A = (ank) matrisini, ank = a
(k)
n yard¬m¬yla s¬f¬r olmayan köşegene sahip alt üçgensel
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matris olarak tan¬mlayal¬m.

A =

26666666666664

1 0 0 0 0 :::

1 0 0 0 :::

1 0 0 :::

1 0 :::

37777777777775
Böylece A n¬n tersi olan A�1 tek olarak mevcuttur.

Di¼ger yandan öncelikle,

' = !� =
T�

x� : x 2 !
	

oldu¼gunu gösterelim. Bunun için key� bir x 2 ' alal¬m. Her y 2 ! için,

1P
k=1

xkyk =
nP
k=1

xkyk

elde edilir. Toplam sonlu oldu¼gundan aç¬k olarak bu seri yak¬nsakt¬r ve bu yüzden

x 2 !� gerçeklenir.

Şimdi, !� � ' oldu¼gunu görelim. x 2 !� ve x =2 ' olsun. x =2 ' odu¼gundan,

i = 1; 2; 3; ::: ve k (1) < k (2) < k (3) < ::: < k (i) < :::

olmak üzere, sonsuz çoklukta k (i) için xk(i) 6= 0 elde edilir. Di¼ger yandan; kabulümüz

gere¼gince x 2 !� oldu¼gundan, her y 2 ! için
1P
k=1

xkyk serisi yak¬nsakt¬r.

Şimdi bir y dizisini,

yk =

8<: 1
k(i)
; k = k (i)

0; d:d:

olacak biçimde tan¬mlayal¬m. Bu durumda,

1P
k=1

xkyk =
1P
i=1

xk(i)
1

xk(i)

=
1P
i=1

1
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¬raksak serisi elde edilir. Bu ise kabulümüzle çeli̧sir. Dolay¬s¬yla !� � ' elde edilir.

Yani,

' = !�

gerçeklenir. A�1 mevcut oldu¼gundan A birebirdir, böylece

F = A (')

= A

� T
x2!

x�
�

=
T
x2!

A(x�)

formunda yaz¬labilir. x�; FK uzay¬d¬r ve FK uzaylar¬ aras¬nda tan¬ml¬ matris

dönüşümleri sürekli oldu¼gundan F , FK uzaylar¬n¬n arakesiti olarak yaz¬lm¬̧s olur.

Bu da ispat¬tamamlar.

Teorem 3.1.2 E, bir FK uzay¬ve E � ' olsun. E Hahn özellikli ise ayr¬labilir

de¼gildir (Bennett, Boos ve Leiger 2002).

·Ispat. E Hahn özellikli oldu¼gundan, Önerme 3.1.2 gere¼gince E � l1 gerçeklenir.

Di¼ger yandan E uzay¬n¬n topolojisi, l1 dizi uzay¬ndan E üzerine indirgenen topolo-

jiden daha geni̧stir. Bu durumda, E uzay¬n¬n sup norm topolojisine göre ayr¬labilir

olmad¬¼g¬n¬göstermek yeterlidir.

E ayr¬labilir olsun. O halde E, say¬labilir çoklukta terimleri 0 ve 1 olan dizi içerir.

Diyelim ki bu diziler say¬lamaz çoklukta olsun. Terimleri 0 ve 1 olan bu dizilerin sup

norm topolojisine göre aralar¬ndaki uzakl¬k bir birimdir. Bu dizilerin her birinin 1
3

yar¬çapl¬yuvarlar¬n merkezi olduklar¬n¬kabul edersek, bu durumda yuvarlar say¬la-

maz çoklukta ve ayr¬k olur. Kabulümüz gere¼gince E ayr¬labilir oldu¼gundan say¬la-

bilir ve yo¼gun birM altkümesi vard¬r. Yani key�x 2 E ve her " > 0 için, d (x; y) < "

olacak biçimde bir y 2M bulabiliriz. O halde,M kümesinin her bir eleman¬yar¬çap¬
1
3
olan bu aç¬k yuvarlarda bulunur. Di¼ger yandan bu yuvarlar ayr¬k ve say¬lamaz

çoklukta oldu¼gundan M say¬lamaz çoklukta eleman içerir. Bu ise M kümesinin

say¬labilir bir küme olmas¬yla çeli̧sir. O halde E uzay¬say¬labilir çoklukta 0, 1 dizisi

içerir.
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O halde; tan¬m¬gere¼gince � (E), say¬labilir çoklukta dizinin gerdi¼gi bir uzayd¬r ve

Lemma 3.1.1 gere¼gince FK uzaylar¬n¬n arakesiti olarak yaz¬labilir.

A indeks kümesinin her bir � eleman¬için F� key� bir FK uzay¬olmak üzere,

� (E) =
T
�2A

F�

elde edilir. Hipotez gere¼gince E Hahn özellikli oldu¼gundan (3.1.1)� den, her � 2 A

için � (E) � F� gerçeklenir. Öyleyse her � 2 A için E � F� elde edilir. Böylece,

E �
T
�2A

F�

) E = � (E) (3.1.3)

elde edilir. Di¼ger yandan,

� (E) � � (l1) \ E

= fx 2 E : x in görüntü kümesi sonlug

=
1F
n=1

fx 2 E : x in görüntü kümesi n elemanl¬g

gerçeklenir. ·Ifade etti¼gimiz bu son küme birinci kategoridendir (Wilansky 1978).

Oysa ki E FK uzay¬oldu¼gundan tamd¬r ve ikinci kategoridendir. Dolays¬yla, (3.1.3)

gere¼gince � (E) uzay¬da ikinci kategoriden olmal¬d¬r ve bu nedenle birinci kategori-

den olan bir uzay¬n altuzay¬olamaz. Elde etti¼gimiz bu son çeli̧skiden dolay¬E uzay¬

ayr¬labilir de¼gildir. Bu da ispat¬tamamlar.

3.2 Büyük Hahn Uzaylar¬

Bu k¬s¬mda l1 dizi uzay¬n¬n Hahn özelli¼gine sahip olan büyük altuzaylar¬n¬inceleye-

ce¼giz. Büyüklü¼gün, Hahn uzay¬olmay¬gerektirip gerektirmedi¼gine ili̧skin araşt¬r-

mam¬za Teorem 3.2.1 ayd¬nlat¬c¬bir cevap vermektedir.
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Önerme 3.2.1 e ile (1; 1; 1; :::) birim dizisi gösterilmek üzere E dizi uzay¬

bs+ Sp feg � E � l1 (3.2.1)

ifadesini gerçeklerse, E = bs+ � (E) formunda yaz¬labilir (Bennett, Boos ve Leiger

2002).

·Ispat. Key� bir x 2 E alal¬m ve y 2 � (E) dizisini x � y = z 2 bs olacak biçimde

inşa edelim. x dizisine uygun bir sabit ekleyerek ve ayn¬ i̧slemi y dizisi için de

uygulayarak her k = 1; 2; 3; ::: için xk � 0 elde edebiliriz. Dahas¬x dizisini ve tabi

ki y ve z dizilerini de uygun bir skalar ile çarparak k = 1; 2; 3; ::: için 0 � xk < 1

elde ederiz.

y1 = 0 alal¬m ve z1; y2; z2; y3; ::: terimlerini aşa¼g¬daki şekilde tan¬mlayal¬m. k 2 N

olmak üzere,

zk = xk � yk ve yk+1 =

8><>:
1;

kP
j=1

yj <
kP
j=1

xj için

0; d:d:

olsun. k = 1; 2; 3; ::: olmak üzere yk = 0 veya 1 gerçeklenir ve 0 � xk < 1 oldu¼gun-

dan,

kzkbs = sup
n

���� nP
k=1

zk

���� = sup
n

���� nP
k=1

(xk � yk)
���� � 1

elde edilir. O halde z 2 bs gerçeklenir. y = x � z 2 E + bs ve (3.2.1) gere¼gince

bs � E oldu¼gundan y 2 � (E) elde edilir. Bu da ispat¬tamamlar.

Aşa¼g¬daki lemmay¬ispats¬z olarak verece¼giz.

Lemma 3.2.1 E, bs uzay¬n¬içeren bir dizi uzay¬ve x 2 E dizisinin görüntü kümesi

yaln¬zca f0; 1; 2; :::; Ng de¼gerlerinden oluşuyorsa, x 2 � (E) gerçeklenir (Bennett,

Boos ve Leiger 2002).
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Şimdi,
P
ile k¬smi toplamlar operatörünü gösterelim. O halde key�bir x dizisi için,

X
x := (x1; x1 + x2; x1 + x2 + x3; :::)

olacak biçimde tan¬mlan¬r. Aç¬k olarak, E bir FK uzay¬ise
P
(E) bir FK uzay¬d¬r.

Lemma 3.2.2 � (l1) �
P
[� (bs+ Sp feg)] gerçeklenir (Bennett, Boos ve Leiger

2002).

·Ispat. x = (xk), terimleri 0 ve 1 olan key� bir dizi olsun. y dizisini,

y =
P�1 x = (x1; x2 � x1; x3 � x2; :::)

yard¬m¬yla tan¬mlayal¬m. Bu durumda y, terimleri �1; 0,1 olan bir dizidir ve y 2 bs

gerçeklenir. Gerçekten,

kykbs = sup
n

���� nP
k=1

yk

����
= sup

n
jx1 + x2 � x1 + x3 � x2 + :::+ xn � xn�1j

= sup
n
jxnj

elde edilir. Her k = 1; 2; 3; ::: için xk 2 f0; 1g olacak biçimde seçti¼gimizden kykbs � 1

elde edilir. Lemma 3.2.1� den

y + e 2 � (bs+ Sp feg)

elde edilir. u = y + e diyelim. O halde u ve e 2 � (bs+ Sp feg) oldu¼gundan vektör

uzay aksiyomlar¬gere¼gince

y = u� e 2 � (bs+ Sp feg)

elde edilir. Böylece,

P
y =

PP�1 x = x 2
P
[� (bs+ Sp feg)]
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bulunur. x key� olarak seçildi¼ginden

� (l1) �
P
[� (bs+ Sp feg)]

elde edilir.

Teorem 3.2.1 E bir dizi uzay¬olsun. E¼ger,

bs+ Sp feg � E � l1

gerçekleniyorsa, E Hahn özelliklidir (Bennett, Boos ve Leiger 2002).

·Ispat. Önerme 3.2.1� den

E = bs+ � (E)

formunda yaz¬labilir ve hipotezden Sp feg � E oldu¼gundan,

E = bs+ � (E) + Sp feg

gerçeklenir. � (E) ve bs + Sp feg uzaylar¬n¬ayr¬ayr¬ele alarak Önerme 3.1.1� den

faydalanal¬m.

Tan¬m¬gere¼gince �(� (E)) = � (E) oldu¼gundan �(� (E)) uzay¬n¬kapsayan her F

FK uzay¬ � (E) uzay¬n¬ da kapsar. Bu durumda (3.1.1) gere¼gince � (E) Hahn

uzay¬d¬r.

Di¼ger yandan, � (bs+ Sp feg) uzay¬n¬ kapsayan her F FK uzay¬n¬n bs + Sp feg

uzay¬n¬kapsad¬¼g¬n¬göstermeliyiz.

Her i 2 N için u(i), bs+Sp feg uzay¬taraf¬ndan içerilen ve terimleri 0 ve 1 olan key�

dizi olsun. y(i) 2 bs olmak üzere u(i) = y(i)+ e formundad¬r. O halde key��i skalar¬

için,

z =
nP
i=1

u(i)�i

=
nP
i=1

�
y(i) + e

�
�i

=
nP
i=1

y(i)�i +
nP
i=1

�i
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olmak üzere z 2 � (bs+ Sp feg) olur. � =
nP
i=1

�i olmak üzere her i için �i key�

oldu¼gundan � key� bir skalard¬r, böylece � 2 Sp feg elde edilir. Bu durumda

kabulümüz gere¼gince Sp feg � F gerçeklenir.

Son olarak bs � F oldu¼gunu gösterelim. Bunun için öncelikle
P
(bs) = l1 oldu¼gunu

göstermeliyiz.

P
(bs) = f

P
x : x 2 bsg

=

��
nP
k=1

xk

�
: x 2 bs

�
� l1 (3.2.2)

elde edilir. Di¼ger yandan, x 2
P�1 (l1) olsun. O halde

P
x 2 l1 gerçeklenir.

Böylece x 2 bs elde edilir. Yani,

P�1 (l1) � bs) l1 �
P
(bs) (3.2.3)

gerçeklenir. (3.2.2) ve (3.2.3) birlikte düşünüldü¼günde l1 =
P
(bs) bulunur.

Kabulümüz gere¼gince, � (bs+ Sp feg) � F oldu¼gundan
P
[� (bs+ Sp feg)] �

P
(F )

elde edilir. Lemma 3.2.2 ve Sonuç 3.1.1 gere¼gince,

� (l1) �
P
[� (bs+ Sp feg)] �

P
(F )

olup,

l1 �
P
(F )

elde edilir. Bu da ispat¬tamamlar.

Sonuç 3.2.1 Key� bir E FK uzay¬için,

bs+ Sp feg � E � l1

gerçeklensin. Bu durumda � (E) uzay¬, E uzay¬nda yo¼gun ve f¬ç¬l¬d¬r (Bennett, Boos

ve Leiger 2002).

Sonuç 3.2.1, Teorem 3.1.1 ve Teorem 3.2.1�den kolayl¬kla elde edilir.
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Teorem 3.2.1�in bir sonucu olarak Cesàro toplanabilir s¬n¬rl¬diziler uzay¬n¬n Hahn

özellikli oldu¼gu kolayca görülür. Bu uzay¬,

E1 :=

�
x 2 l1 : lim

n!1

1

n

nP
k=1

xk mevcut
�

ile gösterelim.

Her x = (xk) 2 Sp feg için, k = 1; 2; 3; ::: ve � key� bir skalar olmak üzere xk = �

gerçeklenir. O halde,

lim
n!1

1

n

nP
k=1

xk = lim
n!1

1

n
(n�) = � (3.2.4)

elde edilir. Öyleyse x 2 E1, yani Sp feg � E1 gerçeklenir.

Di¼ger yandan, key� bir y 2 bs için M > 0 olmak üzere sup
n

���� nP
k=1

yk

���� = M < 1

gerçeklenir. O halde,

0 � 1

n

���� nP
k=1

yk

���� � 1

n
M ! 0 (n!1) (3.2.5)

elde edilir. Böylece y 2 E1; yani bs � E1 gerçeklenir.

(3.2.4) ve (3.2.5) gere¼gince bs + Sp feg � E1 elde edilir. E1 uzay¬n¬n tan¬m¬ndan

E1 � l1 oldu¼gundan,

bs+ Sp feg � E1 � l1

elde edilir. Böylece Teorem 3.2.1� den E1 Hahn özelliklidir.

E1 uzay¬na ait terimleri 0 ve 1 olan diziler, pozitif tamsay¬lar¬n do¼gal yo¼gunlu¼ga sahip

altkümeleri yard¬m¬yla karakterize edilebilen önemli bir s¬n¬f oluştururlar. Şöyle ki,

A � N olmak üzere A kümesinin asimptotik yo¼gunlu¼gu d olsun. Şimdi bir s dizisini

her k 2 N için,

sk =

8<: 1; k 2 A

0; k =2 A
(3.2.6)

olacak biçimde tan¬mlayal¬m.

O halde,

lim
n!1

1

n

nP
k=1

sk = lim
n!1

1

n

nP
k=1

�A (k) = d

elde edilir. Bu durumda s 2 E1 elde edilir.
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Di¼ger yandan s; E1 uzay¬ndan al¬nan ve terimleri 0 ve 1 olan key� bir dizi olsun.

A � N olmak üzere s dizisini (3.2.6) yard¬m¬yla tan¬mlayal¬m.

lim
n!1

1

n

nP
k=1

�A (k) = lim
n!1

1

n

nP
k=1

sk

gerçeklenir. Bu limit mevcut oldu¼gundan A kümesi do¼gal yo¼gunlu¼ga sahiptir.

E1; Hahn uzay¬oldu¼gundan (3.1.1) gere¼gince bu s¬n¬f¬kapsayan en küçük FK uza-

y¬d¬r.

Şimdi S¬f¬ra Cesàro toplanabilir s¬n¬rl¬diziler uzay¬olan,

E2 :=

�
x 2 l1 : lim

n!1

1

n

nP
k=1

xk = 0

�

uzay¬n¬ele alal¬m. Sp feg * E2 oldu¼gundan Teorem 3.2.1 gerçeklenmez ve gerçekten

E2 Hahn özellikli de de¼gildir. Bunu görebilmek için,

F :=

�
x 2 l1 : lim

n!1

1

n

nP
k=1

jxkj = 0
�

olacak biçimde tan¬mlanan s¬f¬ra kuvvetli Cesàro toplanabilir s¬n¬rl¬diziler uzay¬n¬

ele alal¬m. Bu uzay, � (E2) uzay¬n¬kapsad¬¼g¬halde E2 uzay¬n¬kapsamayan bir FK

uzay¬d¬r.

Örne¼gin; k 2 N olmak üzere
n
(�1)k

o
= (�1; 1;�1; 1; :::) dizisini gözönüne alal¬m.

lim
n!1

1

n

nP
k=1

(�1)k = 0

oldu¼gundan
n
(�1)k

o
2 E2 gerçeklenir fakat;

lim
n!1

1

n

nP
k=1

���(�1)k��� = 1
oldu¼gundan

n
(�1)k

o
=2 F elde edilir. Böylece (3.1.1) gere¼gince E2 bir Hahn uzay¬

de¼gildir.

E1 ve E2 uzaylar¬aras¬ndaki bu fark e dizisinden kaynaklanmaktad¬r. Bu da Teorem

3.2.1� in ne kadar hassas oldu¼gunu gösterir.
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Teorem 3.2.2 E bir dizi uzay¬olmak üzere,

E = l1:� (E) + c0 (3.2.7)

olsun. Bu durumda E dizi uzay¬n¬n Hahn özellikli olmas¬için gerek ve yeter şart

� (E)� = l1 olmas¬d¬r (Bennett, Boos ve Leiger 2002).

·Ispat. Öncelikle gerek şart¬n gerçeklendi¼gini gösterelim. E Hahn özellikli oldu¼gun-

danÖnerme 3.1.3 gere¼gince � (E)� = E� oldu¼gunu biliyoruz. Di¼ger yandan hipotez-

den E = l1:� (E) + c0 oldu¼gundan

E� = (l1:� (E) + c0)
�

olup,

E� = (l1:� (E))� \ (c0)�

gerçeklenir. Böylece,

E� = (l1:� (E))� \ l1 (3.2.8)

elde edilir. l1:� (E) � l1 gerçeklenir. Gerçekten, key� x 2 l1:� (E) ; y 2 l1 ve

z 2 � (E) olmak üzere x = yz formunda yaz¬labilir. O halde,

kxk1 = sup
n
jxnj

= sup
n
jynznj

� sup
n
jynj sup

n
jznj

= kyk1 kzk1 <1

gerçeklenir. Bu durumda x 2 l1; yani l1:� (E) � l1 elde edilir. Ayr¬ca

l1:� (E) � l1 ) (l1)� � (l1:� (E))�

) l1 � (l1:� (E))� (3.2.9)
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elde edilir. (3.2.8) ve (3.2.9) ifadelerini birlikte düşünürsek,

E� = (l1:� (E))� \ l1 = l1

yani,

� (E)� = l1

elde edilir.

Şimdi yeter şart¬n gerçeklendi¼gini gösterelim. � (E)� = l1 olsun.

� (E) � F (3.2.10)

olacak biçimde key� F FK uzay¬için,

E � F (3.2.11)

oldu¼gunu gösterelim.

Bunun için l1:� (E) ve c0 uzaylar¬n¬ayr¬ayr¬ele alarak Önerme 3.1.1� den fay-

dalanal¬m ve (3.2.11) ifadesinin gerçeklendi¼gini gösterelim.

(3.2.7) ve (3.2.10) ifadeleri gere¼gince �(l1:� (E)) � F gerçeklenir. O halde,

l1:� (E) � F (3.2.12)

oldu¼gunu göstermeliyiz.

Toplam, E taraf¬ndan içerilen ve terimleri 0 ve 1 olan diziler üzerinden al¬nmak ve

x 2 � (E) olmak üzere

l1:� (E) =
X

l1x

formunda yaz¬labilir. Her bir l1x uzay¬Sonuç 3.1.1 gere¼gince Hahn uzay¬d¬r ve

dolay¬s¬yla Önerme 3.1.1�den l1:� (E) Hahn özelliklidir.

Şimdi c0 � F oldu¼gunu gösterelim. Bunu görebilmek için öncelikle

c0 � F , F f � cf0 = l1
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oldu¼gunu hat¬rlatal¬m (Wilansky, 1984). Yani her k 2 N için,

her f 2 F 0 için
�
f
�
�k
��
2 l1 (3.2.13)

ifadesinin gerçeklendi¼gini göstermemiz yeterlidir. Burada, �k :=
�
�kj
�
olup her j; k 2

N için,

�kj =

8<: 1; k = j için

0; k 6= j için

olacak biçimde tan¬ml¬d¬r.

Her bir y 2 � (E) için l1y; l1 uzay¬n¬n kapal¬bir altuzay¬d¬r. Gerçekten, y 2 � (E)

olmak üzere

Ty : l
1 ! l1

u! Ty (u) = uy

olacak biçimde lineer Ty operatörünü tan¬mlayal¬m.

kTy (u)k1 = kuyk1

� sup
n
jukj sup

n
jykj

= kuk1 kyk1 <1

gerçeklendi¼ginden Ty operatörü süreklidir. l1y � l1 oldu¼gundan Tyjl1y = T ope-

ratörü süreklidir.

T : l1y ! l1

u! T (u) = uy

olmak üzere T�1 (l1) = l1y gerçeklenir ve l1 kapal¬oldu¼gundan T operatörü alt¬nda

ters görüntüsü de kapal¬d¬r.

l1y; l1 dizi uzay¬n¬n kapal¬bir altuzay¬oldu¼gundan l1 uzay¬ndan indirgenen sup

norm topolojisine göre bir FK uzay¬d¬r. (3.2.12) gere¼gince, l1y � F gerçeklenir. O

halde, key� f 2 F 0 fonksiyonelini l1y uzay¬na k¬s¬tlad¬¼g¬m¬zda bu fonksiyonel sup
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norm topolojisine göre de süreklidir.���� nP
k=1

+
ykf

�
�k
����� =

����f �+y1; +y2; :::; +yn; 0; 0; :::�����
�



fjl1y

1 kyk1
elde edilir. Üst s¬n¬r i̧saretten ve n de¼gerinden ba¼g¬ms¬z oldu¼gundan,

1P
k=1

��ykf ��k��� <1
gerçeklenir. Mutlak yak¬nsak her seri yak¬nsak oldu¼gundan ve �� dual tan¬m¬ndan,�
f
�
�k
��
2 � (E)� = l1 elde edilir. (3.2.13) ifadesi gerçeklenmi̧s oldu¼gundan c0 � F

elde edilir. Bu da ispat¬tamamlar.

Şimdi klasik toplanabilme teorisinden bildi¼gimiz iki teoremden faydalanarak s¬f¬ra

kuvvetli Cesàro toplanabilir s¬n¬rl¬diziler uzay¬n¬n Hahn özellikli oldu¼gunu göstere-

lim. Bunun için aşa¼g¬daki iki teoremi ispats¬z olarak verelim.

Teorem 3.2.3 (Agnew Teoremi) k
nk
! 0 (k !1) iken

1P
k=1

ank serisi yak¬nsak

ise
1P
n=1

janj <1 gerçeklenir (Agnew 1947).

Teorem 3.2.4 A = (ank) regüler bir matris olmak üzere s¬n¬rl¬x = (xk) dizisinin a

de¼gerine kuvvetli A�toplanabilir olmas¬için gerek ve yeter şart �NnZ dizisinin s¬f¬ra

kuvvetli A � toplanabilir ve lim
n2Z

xn = a olacak şekilde bir Z � N bulunmas¬d¬r

(Hill ve Sledd 1968).

Sonuç 3.2.2 S¬f¬ra kuvvetli Cesàro toplanabilir s¬n¬rl¬diziler uzay¬

F :=

�
x 2 l1 : lim

n

1

n

nP
k=1

jxkj = 0
�

Hahn özelliklidir (Bennett, Boos ve Leiger 2002).

·Ispat. F uzay¬n¬n Hahn özellikli oldu¼gunu gösterebilmek için Teorem 3.2.2� den
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faydalanal¬m. Bunun için öncelikle her bir x 2 F ,

x = x:�NnZ + x:�Z

formunda ifade edilebilir. Şimdi

�Z : N! K

dönüşümünü,

�Z (n) =

8<: 1; n 2 Z

0; n =2 Z

olacak biçimde tan¬mlayal¬m. Bu durumda, bu dönüşüm terimleri 0 ve 1 olan bir

dizi belirtir.

Key� bir x 2 F alal¬m. Teorem 3.2.4� den

lim
n!1

(xn�Z (n)) = lim
n2Z

xn = 0

gerçeklenir. Yani,

x:�Z 2 c0 (3.2.14)

elde edilir. Di¼ger yandan, Teorem 3.2.4 gere¼gince �NnZ dizisi s¬f¬ra kuvvetli C1

toplanabilirdir. Yani,

lim
n!1

1

n

nP
k=1

���NnZ (k)�� = 0
gerçeklenir. Asl¬nda bu ifade terimleri 0 ve 1 olan �NnZ dizisinin � (F ) uzay¬na ait

oldu¼gunu gösterir ve x 2 l1 oldu¼gundan,

x:�NnZ 2 l1:� (F ) (3.2.15)

elde edilir. O halde (3.2.14) ve (3.2.15) ifadeleri gere¼gince her x 2 F için x 2

l1:� (F ) + c0 gerçeklenir. Yani,

F � l1:� (F ) + c0 (3.2.16)
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elde edilir.

Şimdi, l1:� (F )+ c0 � F oldu¼gunu görelim. Key� y 2 l1:� (F )+ c0 alal¬m. x 2 l1;

z 2 � (F ) ve v 2 c0 olmak üzere y = xz + v formunda yaz¬labilir. v 2 c0 ve C1
regüler oldu¼gundan,

lim
n!1

1

n

nP
k=1

jvkj = 0

gerçeklenir. Böylece v 2 F elde edilir. Di¼ger yandan; x 2 l1 ve � (F ) � F

oldu¼gundan,

0 � 1

n

nP
k=1

jxkzkj � kxk1
1

n

nP
k=1

jzkj ! 0 (n!1)

elde edilir. Yani xz 2 F gerçeklenir.

Bu durumda vektör uzay aksiyomlar¬ndan xz + v 2 F oldu¼gundan,

l1:� (F ) + c0 � F (3.2.17)

gerçeklenir. O halde (3.2.16) ve (3.2.17) uyar¬nca,

F = l1:� (F ) + c0

formundad¬r.

Şimdi, � (F )� = l1 oldu¼gunu göstermeliyiz. Key� x 2 � (F )� alal¬m. �� dualin

tan¬m¬ndan, her bir y 2 � (F ) için
1P
k=1

xkyk serisi yak¬nsakt¬r. O halde � (F ) uzay¬nda

bulunan ve terimleri 0 ve 1 olan diziler için de
1P
k=1

xkyk serisi yak¬nsakt¬r.

F uzay¬n¬n tan¬m¬gere¼gince bu diziler do¼gal say¬lar¬n s¬f¬r yo¼gunluklu altkümeleri

taraf¬ndan karakterize edilebilirler. O halde Agnew Teoremi gere¼gince,
1P
n=1

jxnj <1

gerçeklenir. O halde,

� (F )� � l1 (3.2.18)

elde edilir.

Key� bir y 2 l1 alal¬m. Her x 2 F için,

1P
k=1

jxkykj � kxk1
1P
k=1

jykj = kxk1 kyk1 <1

27



ve mutlak yak¬nsak her seri yak¬nsak oldu¼gundan y 2 � (F )� gerçeklenir. O halde,

l1 � � (F )� (3.2.19)

elde edilir.

(3.2.18) ve (3.2.19) ifadeleri birlikte düşünüldü¼günde � (F )� = l1 elde edilir. F =

l1:� (F ) + c0 olmak üzere � (F )
� = l1 oldu¼gundan Teorem 3.2.2 gere¼gince F Hahn

özelliklidir.
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4. ZAYIF HAHN T·IP·I ÖZELL·IKLER

Bu bölümde, Hahn özelli¼gi ile ayn¬ prensibe sahip olan fakat; Hahn özelli¼gi için

Teorem 3.1.1� de vermi̧s oldu¼gumuz gibi bir fonksiyonel analitik gösterime sahip

olmayan ayr¬labilir Hahn özelli¼gini ve matris Hahn özelli¼gini tan¬mlayaca¼g¬z. Bunun

yan¬s¬ra, bu iki özelli¼gin Hahn özelli¼ginden çok daha geni̧s bir uygulama alan¬na

sahip oldu¼gunu görece¼giz.

Tan¬m 4.1 E dizi uzay¬n¬n ayr¬labilir Hahn özelli¼gine sahip olmas¬için gerek ve yeter

şart F key�bir ayr¬labilir FK uzay¬olmak üzere (3.1.1) ifadesinin gerçeklenmesidir

(Bennett, Boos ve Leiger 2002).

A = (ank) key�sonsuz matris olmak üzere Tan¬m 2.3.1 uyar¬nca, cA uzay¬n¬n ayr¬la-

bilir FK uzay¬oldu¼gunu biliyoruz. Bu hat¬rlatmadan sonra art¬k matris Hahn özel-

li¼gini tan¬mlayal¬m.

Tan¬m 4.2 E dizi uzay¬n¬n matris Hahn özelli¼gine sahip olmas¬için gerek ve yeter

şart her A = (ank) matrisi için,

� (E) � cA ) E � cA (4.1)

ifadesinin gerçeklenmesidir (Bennett, Boos ve Leiger 2002).

Tan¬m 4.1 ve Tan¬m 4.2 ifadelerinin ¬̧s¬¼g¬alt¬nda key�bir E dizi uzay¬Hahn özellikli

ise ayr¬labilir Hahn özelikli ve böylece E dizi uzay¬matris Hahn özelliklidir. Ayr¬ca,

Önerme 3.1.1 her üç Hahn özelli¼gi için de gerçeklenir.

Aşa¼g¬da verece¼gimiz Teorem 4.1 ise � (E) uzay¬n¬n E uzay¬nda yo¼gun olmas¬d¬̧s¬nda

Bölüm 3.1� de Hahn uzaylar¬için ifade etti¼gimiz tüm özelliklerin, ayr¬labilir Hahn

uzaylar¬ve matris Hahn uzaylar¬için de gerçeklendi¼gini göstermektedir.

Teorem 4.1 E bir matris Hahn uzay¬ ise E � l1 ve � (E)� = E� gerçeklenir.
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Dahas¬E dizi uzay¬' uzay¬n¬kapsayan bir FK uzay¬ise bu durumda E ayr¬labilir

de¼gildir (Bennett, Boos ve Leiger 2002).

·Ispat. E bir matris Hahn uzay¬olsun. l1 uzay¬, � (l1) uzay¬n¬kapsayan topla-

nabilirlik alnlar¬n¬n arakesiti olarak yaz¬labilir (Bennett, Leiger ve Zeltser, 2006).

Yani; B yukar¬da belirtti¼gimiz özelli¼ge sahip sonsuz matrislerin bir kümesi olmak

üzere,

� (E) � l1 =
T
A2B

cA

gerçeklenir. O halde, her A 2 B için � (E) � cA elde edilir. Hipotezden E uzay¬

matris Hahn özellikli oldu¼gundan (4.1)� den her A 2 B için E � cA gerçeklenir.

Bu durumda,

E � l1 =
T
A2B

cA

elde edilir.

Şimdi, � (E)� = E� oldu¼gunu gösterelim.

Tan¬m¬gere¼gince � (E) � E oldu¼gundan E� � � (E)� elde edilir.

Di¼ger yandan � (E)� * E� oldu¼gunu kabul edelim. Bir x 2 � (E)� n E� alal¬m. O

halde Önerme 3.1.3�de takip etti¼gimiz ispata paralel olacak biçimde ilerledi¼gimizde,

� (E) � x�

elde edilir.

B (x) :=

26666666666664

x1 0 0 :::

x1 x2 0 0 :::

x1 x2 x3 0 0 :::

: : : : :

: : : : :

: : : : :

37777777777775
olmak üzere x� = cB(x) olsun. Bu eşitli¼gin gerçeklendi¼gini kolayca görebiliriz. Şöyle
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ki,

cB(x) : =

�
y 2 ! :

�
nP
k=1

xkyk

�
2 c
�

: =

�
y 2 ! :

1P
k=1

xkyk serisi yak¬nsak
�

: = x�

elde edilir. E uzay¬matris Hahn özellikli oldu¼gundan,

� (E) � cB(x) ) E � cB(x) (4.2)

olmal¬d¬r.

Oysa ki; kabulümüz gere¼gince x =2 E� oldu¼gundan, bir z 2 E için
1P
k=1

xkzk yak¬nsak

de¼gildir. Yani z =2 x� = cB(x) oldu¼gu sonucu ortaya ç¬kar. Bu ise (4.2) ifadesi ile

çeli̧sir. Yani,

� (E)� � E�

elde edilir. Böylece, � (E)� = E� elde edilir.

Teoremimizin son parças¬n¬n ispat¬için Lemma 3.1.1� de elde etti¼gimiz

F =
T
x2!

A
�
x�
�

eşitli¼ginden faydalanal¬m. Di¼ger yandan; A ve B (x) matrisleri üçgen matrisler

oldu¼gundan,

A
�
x�
�
= A

�
cB(x)

�
= cB(x)A�1

olmak üzere

F =
T
x2!

cB(x)A�1

olarak toplanabilirlik alanlar¬n¬n arakesiti şeklinde ifade edilir. ·Ispat¬m¬za Teo-

rem 3.1.2�dekine benzer biçimde devam edersek E uzay¬n¬n ayr¬labilir olmad¬¼g¬n¬

görürüz.

Şimdi, Teorem 4.3�ü ispatlayabilmemiz için gerekli olan baz¬hat¬rlatmalarda bulu-
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nal¬m.

Tan¬m 4.3 Key� bir E dizi uzay¬için l1:E � E ifadesi gerçekleniyorsa E uzay¬

kat¬d¬r denir. E uzay¬n¬n kat¬olmas¬için gerek ve yeter şart

f(uk) 2 ! : 9 (xk) 2 E, 8k 2 N, jukj � jxkjg � E

ifadesinin gerçeklenmesidir (Boos 2000).

Tan¬m 4.4 Key� bir E dizi uzay¬n¬n monoton olmas¬ için gerek ve yeter şart

� (l1) :E � E olmas¬d¬r (Boos 2000).

Örne¼gin; p � 1 olmak üzere lp uzay¬kat¬d¬r. Yani, p � 1 olmak üzere l1:lp � lp

gerçeklenir. Şöyle ki; key� z 2 l1:lp için, x = (xk) 2 l1 ve y = (yk) 2 lp olmak

üzere z = xy formundad¬r.

kzkp =

� 1P
k=1

jzkjp
� 1

p

=

� 1P
k=1

jxkykjp
� 1

p

�
(� 1P

k=1

�
sup
k
jxkj
�p
jykjp

� 1
p

)

= (kxkp1)
1
p

� 1P
k=1

jykjp
� 1

p

= kxk1 kykp <1

oldu¼gundan z 2 lp gerçeklenir.

Verdi¼gimiz tan¬mlar¬gözönüne al¬rsak � (l1) � l1 oldu¼gundan her kat¬dizi uza-

y¬n¬n monoton oldu¼gu aç¬kça görülür. Fakat bunun tersi her zaman do¼gru de¼gildir.

Örne¼gin � (l1) uzay¬monoton oldu¼gu halde kat¬de¼gildir. Bu durum,

� (l1) := fx 2 ! : fxk : k 2 Ng sonlu bir kümeg (Boos 2000)
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tan¬m¬uyar¬nca aç¬kt¬r.

Teorem 4.2 X dizi uzay¬kat¬ise X� = X� = X
 gerçeklenir (Boos 2000).

·Ispat. X kat¬bir dizi uzay¬olsun. Tan¬m 2.2.3 uyar¬nca

X� � X� � X


oldu¼gu aç¬kt¬r. O halde sadece X
 � X� oldu¼gunu göstermemiz yeterlidir.

Key� y = (yk) 2 X
 alal¬m. Her x = (xk) 2 X için,

sup
n

���� nP
k=1

xkyk

���� <1
gerçeklenir. Key� x = (xk) 2 X için z = (zk) dizisini zk = xk sgn (ykxk) olacak

biçimde tan¬mlayal¬m. X kat¬ve her k 2 N için jzkj � jxkj oldu¼gundan Tan¬m 4.3

gere¼gince z 2 X elde edilir. Böylece

nP
k=1

jxkykj =
nP
k=1

xkyk sgn (xkyk)

=

���� nP
k=1

zkyk

����
� sup

n

���� nP
k=1

zkyk

���� <1 (z 2 X ve y 2 X
)

olup
nP
k=1

jxkykj dizisi monoton ve s¬n¬rl¬oldu¼gundan yak¬nsakt¬r. O halde xy 2 l1;

yani y 2 X� elde edilir.

Tüm bu hat¬rlatmalardan sonra art¬k Teorem 4.3� ü ispatlayabiliriz.

Teorem 4.3 s = (sn) pozitif tam say¬lar¬n bir dizisi olmak üzere s1 = 1 ve

(sn+1 � sn) s¬n¬rs¬z olsun.

E :=

�
x 2 ! : kxkE = sup

n

sn+1�1P
k=sn

jxkj <1
�

uzay¬ayr¬labilir Hahn özelliklidir; fakat Hahn özellikli de¼gildir (Bennett, Boos ve
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Leiger 2002).

·Ispat. E, ' sonlu diziler uzay¬n¬kapsayan kat¬bir dizi uzay¬d¬r ve � (E)� = E�

gerçeklenir. Gerçekten,

� (E)� = E� = F :=

�
y 2 ! :

P
n

maks
sn�k<sn+1

jykj <1
�

(4.3)

elde edilir. Bu eşitli¼gi elde edebilmek için F � E� ve � (E)� � F durumlar¬n¬

inceleyelim.

Öncelikle F � E� oldu¼gunu gösterelim. Key�bir y 2 F alal¬m. Her bir x 2 E için,

P
k

jxkykj �
P
k

maks
sk�i<sk+1

jyij
sk+1�1P
i=sk

jxij � kykF kxkE <1

elde edilir. O halde y 2 E� elde edilir, böylece Teorem 4.2 uyar¬nca y 2 E� elde

edilir.

Şimdi � (E)� � F oldu¼gunu gösterelim. Key� y 2 � (E)� olmak üzere �k ile sk �

i0 < sk+1 ve jyi0j = maks fjyij : sk � i < sk+1g (k 2 N) olacak biçimde en küçük

indis olan i0�¬gösterelim. E¼ger, x dizisini x�k = sgn y�k ve i =2 f�k : k 2 Ng için

xi = 0 olcak biçimde tan¬mlarsak,

kxkE = sup
n

sn+1�1P
i=sn

jxij � 1

elde edilir. E uzay¬monoton oldu¼gundan � (E) = E \ � (l1) gerçeklenir (Bennett

1995), dolay¬s¬yla x 2 � (E) olur. Di¼ger yandan y 2 � (E)� oldu¼gundan,

P
k

ykxk =
P
k

y�k sgn y�k

=
P
k

��y�k��
=

P
k

maks
sk�i<sk+1

jyij <1

gerçeklenir. O halde y 2 F elde edilir. Böylece E, ayr¬labilir Hahn uzay¬d¬r (Boos

ve Leiger, 2007).

Şimdi E dizi uzay¬n¬n Hahn özellikli olmad¬¼g¬n¬gösterelim. Öncelikle E; hipotezde

belirtilen normla bir FK uzay¬d¬r (Bennett 1974). O halde, � (E) uzay¬n¬n E uza-
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y¬nda yo¼gun olmad¬¼g¬n¬gösterirsek Teorem 3.1.1 gere¼gince E uzay¬n¬n Hahn özellikli

olmad¬¼g¬sonucuna da ulaşm¬̧s oluruz.

x = (xk) dizisini,

xk =
1

sn+1 � sn
, sn � k < sn+1 (n = 1; 2; 3; :::)

olacak biçimde tan¬mlayal¬m.

kxkE = sup
n

sn+1�1P
k=sn

jxkj = sup
n

�
(sn+1 � sn)

1

sn+1 � sn

�
= 1

oldu¼gundan x 2 E elde edilir. y 2 � (E) olmak üzere,

y = 0 iken kx� ykE = 1

ve e¼ger y 6= 0 ise öyle büyük bir n seçelim ki,

� = min
yk 6=0

jykj

olmak üzere sn+1 � sn > 1
�
olsun. Öyleyse bir � > 0 için � � 1

sn+1�sn + � diyebliriz.

Şimdi, sn � k < sn+1 olmak üzere

jxk � ykj

8<: = jxkj = 1
sn+1�sn ; yk = 0 için

� jykj � jxkj � 1
sn+1�sn ; yk 6= 0 için

elde edilir. O halde,

kx� ykE = sup
n

sn+1�1P
k=sn

jxk � ykj �
sn+1�1P
k=sn

jxk � ykj � 1

elde edilir ki bu key� " > 0 olmak üzere her x 2 E için kx� ykE < " olacak biçimde

bir y 2 � (E) eleman¬n¬n var olmad¬¼g¬n¬gösterir. Böylece � (E) uzay¬E uzay¬nda

yo¼gun de¼gildir. Bu da ispat¬tamamlar.
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5. ÖRNEKLER

Bu bölümde Hahn tipi özelliklerin baz¬uygulamalar¬n¬inceleyece¼giz.

Teorem 5.1 (Hahn Teoremi) Key� bir A = (ank) matrisi için,

� (l1) � cA ) l1 � cA

gerçeklenir (Hahn 1922).

Hahn taraf¬ndan verilmi̧s olan bu teorem, asl¬nda l1 uzay¬n¬n matris Hahn özellikli

oldu¼gunu gösterir. Oysa ki Sonuç 3.1.1� de l1 uzay¬n¬n Hahn özellikli oldu¼gunu

göstermi̧stik, dolay¬s¬yla l1 uzay¬matris Hahn özelli¼gini de taş¬r.

Hahn uzaylar¬, vermi̧s oldu¼gumuz bu teorem dolay¬s¬yla Hahn�¬n onuruna kendisinin

ismiyle adland¬r¬lm¬̧st¬r.

5.1 Cesàro Toplanabilme

Cesàro toplanabilir s¬n¬rl¬diziler uzay¬n¬n matris Hahn özelli¼gini taş¬d¬¼g¬n¬Kuttner

ve Maddox (1981) gösterdiler. Bunu anlayabilmek için öncelikle ilgili teoremi ifade

edelim.

Teorem 5.1.1 r > 0 olsun. Key� A = (ank) matrisi için, A 2 (l1 \ (C; r) ; c)

olmas¬ için gerek ve yeter şart do¼gal yo¼gunlu¼ga sahip her bir E � N kümesi için�P
k2E

ank

�
n

2 c olmas¬d¬r (Kuttner ve Maddox 1981).

Şimdi key� bir A = (ank) matrisi için,

� (C1 \ l1) � cA ) C1 \ l1 � cA

ifadesinin gerçeklendi¼gini Teorem 5.1.1� den faydalanarak gösterelim.

r = 1 olacak biçimde seçelim. C1 \ l1 uzay¬ndan 0 ve 1�lerin key� bir s dizisini
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alal¬m. Bu dizi do¼gal yo¼gunlu¼ga sahip E � N yard¬m¬yla,

sk =

8<: 1; k 2 E

0; k =2 E

olacak biçimde tan¬mlan¬r (bkz. Bölüm 3.2 ). Aç¬kça s 2 � (C1 \ l1) olur. O

halde kabulümüz gere¼gince
� 1P
k=1

anksk

�
n

2 c ve böylece
�P
k2E

ank

�
n

2 c elde edilir.

Teorem 5.1.1 gere¼gince A 2 (l1 \ (C; 1) ; c) gerçeklenir. Yani,

C1 \ l1 � cA

bulunur.

Di¼ger yandan; çal¬̧smam¬zda Teorem 3.2.1 gere¼gince C1\ l1 uzay¬n¬n Hahn özellikli

oldu¼gunu belirlemi̧stik dolay¬s¬yla, C1 \ l1 uzay¬n¬n matris Hahn özellikli oldu¼gu

aç¬kt¬r.

5.2 Baz¬Dizi Uzaylar¬n¬n Yap¬s¬

Önerme 3.2.1 uyar¬nca; l1 uzay¬terimleri 0 ve 1 olan dizilerin sonlu lineer kombi-

nasyonlar¬n¬n uzay¬ve bs uzay¬yard¬m¬yla ifade edilebilir. Şöyle ki,

l1 = � (l1) + bs

formundad¬r. Asl¬ndaÖnerme 3.2.1, Hahn uzay¬çal¬̧smalar¬nda bs uzay¬n¬n ne kadar

önemli oldu¼gunu gösteren ilk i̧sarettir.

5.3 Hemen Hemen Yak¬nsak Diziler

Hemen hemen yak¬nsak diziler uzay¬ac ile gösterilir ve

ac :=

�
x : lim

n
sup
m

1

n

m+n�1P
k=m

xk mevcut
�

olacak biçimde tan¬mlan¬r (Lorentz 1948). Bu durumda F � limx = L yaz¬l¬r (Boos
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2000).

ac uzay¬,

bs+ Sp feg � ac � l1

ifadesini gerçekledi¼ginden Teorem 3.2.1 uyar¬nca Hahn özelliklidir (Bennett, Boos

ve Leiger, 2002).

Bunu görebilmek için öncelikle key� bir x 2 Sp feg alal¬m. Her k = 1; 2; 3; ::: için

xk = � (� 2 K) olur.

lim
n!1

sup
m

1

n

m+n�1P
k=m

xk = lim
n!1

sup
m

1

n
(n�) = � (5.3.1)

gerçeklenir. Böylece x 2 ac elde edilir.

Şimdi, key� bir x 2 bs alal¬m. sup
r

���� rP
k=1

xk

���� =M <1 gerçeklenir. Her n 2 N için,

0 � sup
m

1

n

����m+n�1P
k=m

xk

���� = sup
m

1

n

����m+n�1P
k=1

xk �
m�1P
k=1

xk

���� � sup
m

1

n
2M ! 0 (n!1)

olup

sup
m

1

n

m+n�1P
k=m

xk ! 0 (n!1) (5.3.2)

yani, x 2 ac elde edilir.

(5.3.1) ve (5.3.2) ifadeleri uyar¬nca,

bs+ Sp feg � ac (5.3.3)

gerçeklenir.

Şimdi ac � l1 oldu¼gunu gösterelim. Key� bir x 2 ac alal¬m, a 2 K olmak üzere

F � limx = a olsun. Bu durumda, key� " > 0 olmak üzere her n � n0 ve her m

için, ���� 1n m+n�1P
k=m

xk � a
���� < "
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olacak biçimde bir n0 bulabiliriz. " = 1 alal¬m. a 2 K ve n0 2 N olmak üzere,

1

n

����m+n�1P
k=m

(xk � a)
���� � 1 (n � n0 ve her m 2 N için)

gerçeklenir. Her bir m 2 N için,

jxmj =
����m+n0P
k=m

xk �
m+n0P
k=m+1

xk

����
=

����m+n0P
k=m

(xk � a)�
m+n0P
k=m+1

(xk � a) + a
����

�
����m+n0P
k=m

(xk � a)
����+ ���� m+n0P

k=m+1

(xk � a)
����+ jaj

� n0 + 1 + n0 + jaj

= 2n0 + 1 + jaj

gerçeklenir. O halde,

sup
m
jxmj <1

olur ve x 2 l1 elde edilir. Böylece,

ac � l1 (5.3.4)

gerçeklenir.

Sonunda, (5.3.3) ve (5.3.4) uyar¬nca,

bs+ Sp feg � ac � l1

elde edilir.

5.4 Kuvvetli Konservatif Matrisler

A = (ank) matrisinin kuvvetli konservatif olmas¬için gerek ve yeter şart ac � cA

olmas¬d¬r (Boos 2000). Bennett (1995), Kuttner ve Parameswaran (1994) taraf¬ndan

kuvvetli konservatif bir matrisin s¬n¬rl¬toplanabilirlik alan¬n¬n matris Hahn özellikli

oldu¼gu gösterildi. Bunu anlayabilmek için öncelikle potent matris tan¬m¬n¬verelim.
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Tan¬m 5.4.1 Her bir B = (bnk) matrisi için,

� (cA) � cB ) cA \ l1 � cB

ifadesi gerçekleniyorsa A = (ank) matris metoduna potent matris denir. KP ile tüm

konservatif ve potent matris metodlar¬n¬n kümesi gösterilir (Boos 2000).

Key�bir A matrisinin potent olmas¬için gerek ve yeter şart cA\ l1 uzay¬n¬n matris

Hahn özellikli olmas¬d¬r. Her kuvvetli konservatif matris potent oldu¼gundan (Boos,

2000) aç¬kça, kuvvetli konservatif bir matrisin s¬n¬rl¬ toplanabilirlik alan¬matris

Hahn özelliklidir. Bu şu anlama gelir; key� bir B = (bnk) matrisi için,

ac � cA olmak üzere � (cA) � cB ) cA \ l1 � cB (5.4.1)

gerçeklenir. Şimdi ac uzay¬n¬n özelliklerinden faydalanarak koşullar¬zay¬�at¬p sonucu

güçlendirebiliriz.

Teorem 5.4.1 Kuvvetli konservatif bir matrisin s¬n¬rl¬toplanabilirlik alan¬Hahn

özelliklidir (Bennett, Boos ve Leiger 2002).

·Ispat. ac � cA oldu¼gundan bs � cA ve e 2 cA elde edilir. Böylece Teorem 3.2.1

gere¼gince cA \ l1 uzay¬Hahn özelliklidir. Yani A = (ank) kuvvetli konservatif bir

matris olmak üzere � (cA \ l1) � F olacak biçimde key� bir F FK uzay¬ ver-

ildi¼ginde cA \ l1 � F gerçeklenir. (5.4.1) ifadesinde ayr¬labilir bir FK uzay¬olan

cA uzay¬ndan yararland¬¼g¬m¬za dikkat edelim.

Teorem 5.4.2 (S¬n¬rl¬ Tutarl¬l¬k Teoremi) A = (ank) ve B = (bnk) regüler

matrisler olmak üzere, cA \ l1 � cB ise her x 2 cA \ l1 için limA x = limB x

gerçeklenir (Boos 2000).

Tan¬m 5.4.2 A = (ank) matrisinin kuvvetli regüler olmas¬için gerek ve yeter şart

ac � cA ve L 2 K olmak üzere key� x = (xk) dizisi için F � limx = L iken

limA x = L olmas¬d¬r (Boos 2000).
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Şimdi 0-1 Tutarl¬l¬k Teoremini ispatlayabilmemiz için gerekli olan bir hat¬rlatmada

bulunal¬m.

Hat¬rlatma 5.4.1 c � ac � l1 ve F � limjc = lim gerçeklenir (Boos 2000).

Teorem 5.4.3 (0-1 Tutarl¬l¬k Teoremi) A = (ank) kuvvetli regüler bir matris

olmak ve B = (bnk) matrisi, A matrisi ile A � limitlenebilir 0, 1 dizileri üzerinde

tutarl¬ise cA\ l1 � cB ve her x 2 cA\ l1 için A ve B matrisleri tutarl¬d¬r (Bennett,

Boos ve Leiger 2002).

·Ispat. A kuvvetli regüler bir matris ise regülerdir. Gerçekten, c � ac � cA oldu¼gun-

dan A 2 (c; c) ve her x 2 c için Hat¬rlatma 5.4.1 uyar¬nca

limx = F � limx

gerçeklenir. Di¼ger yandan A kuvvetli regüler oldu¼gundan F � limx = limA x elde

edilir. O halde, her x 2 c için limx = limA x olur ve böylece A matrisi regülerdir.

Di¼ger yandan hipotezden

� (cA) � cB ve her x 2 � (cA) için limA x = limB x (5.4.2)

elde edilir. A kuvvetli regüler oldu¼gundan kuvvetli konservatiftir, dolay¬s¬yla cA\ l1

uzay¬matris Hahn uzay¬d¬r. Böylece,

� (cA) = � (cA \ l1) � cB

oldu¼gundan,

cA \ l1 � cB

elde edilir. Di¼ger yandan, ac � cA ve ac � l1 olaca¼g¬ndan ac � cA \ l1 � cB

bulunur. O halde B kuvvetli konservatif, dolay¬s¬yla konservatiftir. Bu durumda,

kBk <1 gerçeklenir ve her k 2 N için limB �
k ve limB e mevcuttur. Her k 2 N için

�k 2 � (cA) oldu¼gundan ve A regüler oldu¼gundan ve (5.4.2)� den,

limA �
k = limB �

k = 0

elde edilir. Di¼ger yandan bs � ac � cA oldu¼gundan Lemma 3.2.1� den e 2 � (cA)
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elde edilir. Dolay¬s¬yla (5.4.2)�den,

limA e = limB e = 1

gerçeklenir. Silverman-Toeplitz Teoremi uyar¬nca B matrisi regülerdir. Dolay¬s¬yla

s¬n¬rl¬tutarl¬l¬k teoreminden, her x 2 cA \ l1 için A ve B tutarl¬d¬r.

5.5 Kuvvetli Hemen Hemen Yak¬nsakl¬k

S¬f¬ra kuvvetli hemen hemen yak¬nsak dizilerin uzay¬olan,

jacj0 :=
�
x 2 ! : lim

n!1
sup
m

1

n

m+n�1P
k=m

jxkj = 0
�

uzay¬matris Hahn özellikdir (Bennett, Boos ve Leiger 2002).

Bunu anlayabilmek için öncelikle baz¬hat¬rlatmalarda bulunal¬m.

Tan¬m 5.5.1 Pozitif tam say¬lar¬n key� bir S altkümesi için

lim
n!1

sup
m

1

n

m+n�1P
k=m

�S (k) = 0

ise S; düzgün s¬f¬r yo¼gunlu¼ga sahiptir denir. Düzgün s¬f¬r yo¼gunlu¼ga sahip kümelerin

s¬n¬f¬�0u ile gösterilir (Freedman ve Sember 1981).

S 2 �0u olmak üzere jacj0 uzay¬nda, terimleri 0 ve 1 olan key� bir y = (yk) dizisi,

yk =

8<: 1; k 2 S

0; k =2 S
(5.5.1)

formunda gösterime sahiptir. Gerçekten, S 2 �0u olmak üzere key�bir 0; 1 dizisi için

lim
n!1

sup
m

1

n

m+n�1P
k=m

jykj = lim
n!1

sup
m

1

n

m+n�1P
k=m

�S (k) = 0

elde edilir. Böylece y 2 jacj0 gerçeklenir.

Di¼ger yandan, S pozitif tam say¬lar¬n key�bir altkümesi olmak üzere jacj0 uzay¬ndan
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al¬nan y, 0 ve 1 dizisinin (5.5.1) formunda bir gösterime sahip oldu¼gu benzer şekilde

gösterilir.

Teorem 5.5.1. A = (ank) sonsuz matris olsun. cA � jacj0 olmas¬için gerek ve yeter

şart key� S 2 �0u için lim
n

P
k2S
ank mevcut olmas¬d¬r (Freedman ve Sember 1981).

Şimdi jacj0 uzay¬n¬n matris Hahn özellikli oldu¼gunu gösterelim.

� (jacj0) � cB olacak biçimde key�bir B = (bnk) matrisi alal¬m. y 2 � (jacj0) olmak

üzere y; 0 ve 1 dizisi B � toplanabilirdir. Tan¬m 5.5.1 ve (5.5.1) gere¼gince,

lim
n!1

1P
k=1

bnkyk = lim
n!1

1P
k=1

bnk�S (k)

= lim
n!1

P
k2S
bnk

elde edilir ve bu limit mevcut oldu¼gundan Teorem 5.5.1 uyar¬nca,

jacj0 � cB

gerçeklenir. Bu da ispat¬tamamlar.

5.6 Kuvvetli Toplanabilirlik

Freedman ve Sember (1981), s¬f¬ra kuvvetli Cesàro toplanabilir s¬n¬rl¬diziler uzay¬n¬n

�
x 2 l1 : 1

n

nP
k=1

jxkj ! 0 (n!1)
�
;

matris Hahn özellikli oldu¼gunu gösterdi. Oysa ki, bu uzay¬n daha güçlü bir özellik

olan Hahn özelli¼gine sahip oldu¼gunu biliyoruz.

Teorem 5.6.1 A = (ank) pozitif terimli kuvvetli regüler bir matris olsun. O halde,

jAj0 :=
�
x 2 l1 : lim

n!1

P
k

ank jxkj = 0
�
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ve

jAj :=
�
x 2 l1 : lim

n!1

P
k

ank jxk � lj = 0
�

uzaylar¬Hahn özelliklidir (Bennett, Boos ve Leiger 2002).

·Ispat. E = jAj0 diyelim. Öncelikle E dizi uzay¬n¬n kat¬oldu¼gunu gösterelim. Key�

bir x 2 l1:E alal¬m. y 2 l1 ve z 2 E olmak üzere x = yz formundad¬r. Bu

durumda,

0 � lim
n!1

P
k

ank jxkj = lim
n!1

P
k

ank jykzkj � kyk1 lim
n!1

P
k

ank jzkj = 0 (5.6.1)

elde edilir. Bu da x 2 E olmas¬n¬gerektirir. l1:E � E oldu¼gundan E uzay¬kat¬d¬r

ve böylece key� bir x 2 E için , Z � N olmak üzere

x = x:�
Z
+ x:�

NnZ

formunda bir gösterime sahiptir. Teorem 3.2.4 uyar¬nca,

lim
k!1

�
xk�Z (k)

�
= lim

k2Z
xk = 0

gerçeklenir, yani

x:�
Z
2 c0 (5.6.2)

elde edilir.

Di¼ger yandan, yineTeorem 3.2.4 gere¼gince �NnZ dizisi s¬f¬ra kuvvetliA�toplanabilirdir;

yani

lim
n!1

P
k

ank

����NnZ (k)��� = 0 (5.6.3)

gerçeklenir. Asl¬nda (5.6.3) ifadesi terimleri 0 ve 1 olan �
NnZ
dizisinin � (E) uzay¬na

ait oldu¼gunu gösterir ve x 2 l1 oldu¼gunudan,

x:�
NnZ
2 l1:� (E) (5.6.4)

elde edilir.
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(5.6.2) ve (5.6.3) ifadeleri birlikte düşünüldü¼günde,

E � l1:� (E) + c0 (5.6.5)

elde edilir.

Di¼ger yandan, key� bir y 2 c0 alal¬m. yk ! 0 (k ! 1) oldu¼gundan jykj ! 0

(k !1) gerçeklenir ve A regüler oldu¼gundan y 2 E elde edilir. Ayr¬ca � (E) � E

oldu¼gundan (5.6.1) uyar¬nca,

l1:� (E) � E

elde edilir. Böylece,

l1:� (E) + c0 � E (5.6.6)

bulunur.

(5.6.5) ve (5.6.6) uyar¬nca,

E = l1:� (E) + c0 (5.6.7)

formundad¬r.

Şimdi, � (E)� = l1 oldu¼gunu gösterdi¼gimizde Teorem 3.2.2� den faydalanarak E

uzay¬n¬n Hahn özellikli oldu¼gunu ispatlam¬̧s olaca¼g¬z.

O halde, key� bir x 2 l1 alal¬m. Her y 2 � (E) için,

P
k

jxkykj � kyk1
P
k

jxkj = kyk1 kxk1 <1

olup, x 2 � (E)� elde edilir. Böylece

l1 � � (E)� (5.6.8)

gerçeklenir. A kuvvetli regüler bir matris oldu¼gundan jacj0 � E elde edilir. O halde,

� (jacj0) � � (E) gerçeklenir ve böylece � (E)
� � � (jacj0)

� bulunur.

Di¼ger yandan; � (jacj0)
� = l1 gerçeklenir. Gerçekten, key� x 2 � (jacj0)

� alal¬m.

Her y 2 � (jacj0) için,
P
k

xkyk serisi yak¬nsakt¬r. y = (yk) dizisini (5.5.1) formunda

tan¬mlarsak S 2 �0u olmak üzere
P
k

xk�S (k) serisi yak¬nsakt¬r yani,
P
k2S
xk serisi
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yak¬nsakt¬r. O halde, P
k

jxkj <1

elde edilir (Freedman ve Sember, 1981). Böylece x 2 l1 elde edilir, yani

� (jacj0)
� � l1

gerçeklenir. Di¼ger yandan

l1 � � (jacj0)
�

oldu¼gu aç¬kt¬r. O halde,

� (jacj0)
� = l1

elde edilmi̧s olur. Bunu ve (5.6.8) ifadesini de gözönüne ald¬¼g¬m¬zda,

� (E)� = l1

oldu¼gu görülür. Böylece Teorem 3.2.2 uyar¬nca E, Hahn uzay¬d¬r.

Şimdi, jAj uzay¬n¬n Hahn özellikli oldu¼gunu gösterelim.

jAj = jAj0 + Sp feg

formundad¬r. Böylece jAj uzay¬n¬n Hahn özellikli oldu¼gu Önerme 3.1.1 gere¼gince

aç¬kt¬r.

5.7 Al¬̧s¬lm¬̧s Toplanabilme

Zeller (1953) gösterdi ki;

Kuvvetli C1 toplanabilme verilidi¼ginde, l1 uzay¬üzerinde kuvvetli C1 toplanabil-

meye denk olacak şekilde regüler bir A matrisi vard¬r.

O halde Teorem 5.6.1� de kuvvetli regülerlik şart¬kald¬r¬labilir. Bu özellik dikkate

al¬nd¬¼g¬nda Teorem 5.6.1 uyar¬nca böyle bir regüler matrisin s¬n¬rl¬toplanabilirlik
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alan¬Hahn özelliklidir (Bennett, Boos ve Leiger 2002).

5.8 Tuhaf Bir Toplanabilme Metodu

Regüler bir A = (ank) matrisi ya s¬n¬rl¬¬raksak dizi limitlemez, yani cA \ l1 = c

gerçeklenir ya da cA \ l1 uzay¬l1 uzay¬n¬n ayr¬labilir olmayan bir altuzay¬d¬r.

Bu özellik ve 5.7 başl¬¼g¬alt¬nda inceledi¼gimiz durum birlikte de¼gerlendirildi¼ginde

cA \ l1 6= c olmak üzere cA \ l1 uzay¬ yeterince büyük bir dizi uzay¬ysa Hahn

özellikli olabilir (Bennett, Boos ve Leiger, 2002).

Şimdi tuhaf bir matris metodunu inceleyelim.

A =

26666666666666664

1 0 0 0 0 :::

�1 1 0 0 0 :::

1 �1 1 0 0 :::

0 1 �1 1 0 :::

: : : : :

: : : : :

: : : : :

37777777777777775
matrisini ele alal¬m. Aç¬k olarak, Silverman-Toeplitz Teoremi gere¼gince A matrisi

regülerdir.

x = (1; 2; 2; 1; 0; 0; 1; 2; 2; 1; 0; 0; :::)

¬raksak dizisini ele alal¬m. Ax = e oldu¼gundan ve � (l1) uzay¬n¬n tan¬m¬ndan,

x 2 cA \ � (l1)

elde edilir.

Oysa ki, A matrisi hiç bir ¬raksak 0, 1 dizisini limitlemez. y = (yk) böyle bir dizi

olsun. O halde y dizisi sonsuz çoklukta 01 ve 10 modelinde terime sahiptir. Bu
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durumda y sonsuz çoklukta

(010 veya 101) ve (100 veya 101)

modelinde terim içerir. Öyleyse, Ay dönüşüm dizisi sonsuz çoklukta,

(�1 veya 0) ve (1 veya 2)

içerir. Böylece Ay =2 c; yani y =2 cA elde edilir (Bennett, Boos ve Leiger, 2002).

5.9 Yak¬nsak Alt Seriler

a = (an) pozitif terimli bir dizi olmak üzere

P
n

an =1 ve an ! 0 (n!1) (5.9.1)

olsun. Pozitif tam say¬lar¬n n1 < n2 < ::: < nk < ::: koşulunu sa¼glayan nk indisleri

yard¬m¬yla yukar¬daki serinin yak¬nsak altserilerini
P
k

ank olacak biçimde gösterelim.

(Bu altseriler cs (a) ile gösterilir.) Şimdi bir serinin yak¬nsakl¬¼g¬ ile altserilerinin

yak¬nsakl¬¼g¬aras¬ndaki ili̧skiyi anlamam¬za yard¬mc¬olacak baz¬koşullar¬inceleye-

lim.

k

nk
! 0 (k !1) için

P
k

ank <1 ise
P
k

an <1

gerçeklenir ve bir ad¬m daha ileriye gidersek,

nk+1 � nk !1 (k !1) için
P
k

ank <1 ise
P
k

an <1

gerçeklenir (Bennett, Boos ve Leiger 2002).

Aşa¼g¬daki önermeyi ispats¬z olarak verece¼giz.

Önerme 5.9.1 (5.9.1) ifadesi gerçeklensin ve b = (bn) key� bir dizi olsun. Bu
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durumda,
P
k

ank <1 iken
P
k

bnk <1 serisinin yak¬nsak olmas¬için gerek ve yeter

şart

b 2 l1 + l1:a

olmas¬d¬r (Bennett, Boos ve Leiger 2002).

Aşa¼g¬daki teoremi ispats¬z olarak verece¼giz.

Teorem 5.9.1 l1 \ x� :=
�
y 2 l1 :

1P
k=1

jxkykj <1
�
uzay¬için aşa¼g¬daki özellikler

denktir.

(i) l1 \ x� Hahn özelliklidir , x 2 l1
(ii) l1 \ x� ayr¬labilir Hahn özelliklidir , x 2 c0
(iii) l1 \ x� matris Hahn özelliklidir , x 2 c0 (Bennett, Boos ve Leiger 2002).

5.10 bs+ c0 Uzay¬

bs + c0 uzay¬hiç bir Hahn tipi özelli¼gi taş¬maz. ·Ilk bak¬̧sta şaş¬rt¬c¬bir sonuçtur;

çünkü bs+ c uzay¬,

bs+ Sp feg � bs+ c � l1

ifadesini gerçekledi¼ginden Teorem 3.2.1 uyar¬nca Hahn özelliklidir (Bennett, Boos

ve Leiger 2002).

Oysa ki, bs + c0 uzay¬ hiç bir Hahn tipi özelli¼gi taş¬maz. Bunu görebilmek için

öncelikle baz¬hat¬rlatmalarda bulunal¬m (Bennett, Boos ve Leiger 2002).

Tan¬m 5.10.1 nk bir indis dizisi olmak üzere

nk+1 � nk !1 (k !1)

olsun. Terimleri 0 ve 1 olan ¬raksak bir x = (xn) dizisi,

xn =

8<: 1; n = nk

0; d:d:
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koşullar¬n¬gerçekliyorsa x bir ince dizi olarak adland¬r¬l¬r ve ince dizilerin gerdi¼gi

uzay T ile gösterilir (Boos 2000).

Aşa¼g¬daki önermeyi ispats¬z olarak verece¼giz.

Önerme 5.10.1 � (bs+ c0) = T gerçeklenir (Bennett, Boos ve Leiger 2002).

Şimdi, bs+ c0 uzay¬n¬n matris Hahn özelli¼gine sahip olmad¬¼g¬n¬gösterelim. �; lacu-

nary kümelerin s¬n¬f¬olmak üzere

� � �0u � �0�

gerçeklenir (Freedman ve Sember, 1981). nk+1 � nk ! 1 (k ! 1) olmak üzere

S = fnkg olsun. Bu durumda,

lim
j!1

1

j

jP
n=1

���
S
(n)
�� = 0

elde edilir. Böylece s¬f¬ra kuvvetli C1 � toplanabilir s¬n¬rl¬diziler uzay¬, T uzay¬n¬

yani � (bs+ c0) uzay¬n¬kapsar fakat; bs uzay¬n¬kapsamaz. Örne¼gin, f(�1)ng dizisi

için, sup

���� nP
k=1

(�1)k
���� � 1 olup f(�1)ng 2 bs olur. Oysa ki,

lim
n!1

1

n

nP
k=1

���(�1)k��� = 1
olup, f(�1)ng dizisi s¬f¬ra kuvvetli C1 � toplanabilir de¼gildir.

Böylece bs + c0 uzay¬matris Hahn özelli¼gini, dolay¬s¬yla hiç bir Hahn tipi özelli¼gi

taş¬maz.

5.11 Riesz ve Nörlund Matrislerinin S¬n¬rl¬Toplanabilirlik Alanlar¬

(pk) reel terimli bir dizi olmak üzere,

p1 > 0 ve pk � 0 (k 2 N) için Pn =
nP
k=1

pn (n 2 N)
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olsun.

Riesz matrisi, Rp = (rnk) ;

rnk =

8<:
pk
Pn

; k � n

0 ; d:d:
(n; k 2 N)

olacak biçimde tan¬mlan¬r.

Nörlund matrisi, Np = (pnk) ;

pnk =

8<:
pn�k+1
Pn

; k � n

0 ; d:d:
(n; k 2 N)

olacak biçimde tan¬mlan¬r (Boos ve Zeltser 2003).

Şimdi, Riesz ve Nörlund matrislerinin çal¬̧smalar¬m¬z için gerekli olan baz¬özellik-

lerini hat¬rlayal¬m.

Hat¬rlatma 5.11.1

(i) Rp matrisi konservatiftir ayr¬ca ya regülerdir ya da l1 � cRp gerçeklenir.

(ii) A = (ank) key�matris olsun. KG ile, � (cA) � cB ifadesini gerçekleyen her bir

B = (bnk) matrisi konservatif olacak biçimde tüm A matrislerinin kümesi gösterilir.

Aç¬kça, KP � KG gerçeklenir. Şöyle ki,

A 2 KP alal¬m.

� (cA) � cB

olacak biçimde key� bir B matrisi verilsin. A potent oldu¼gundan, cA \ l1 � cB ve

A konservatif oldu¼gundan c � cA elde edilir. Böylece c � cB elde edilir, yani B

konservatiftir. O halde A 2 KG elde edilir.

(iii) p = (pn) olmak üzere, Pn ! 1 (n!1) olsun. O halde aşa¼g¬daki koşullar

denktir.

a) Rp metodu potenttir.
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b)
�
pn
Pn

�
2 c0.

c) Rp 2 KG:

(iv) NP metodunun konservatif olmas¬için gerek ve yeter şart
�
pn
Pn

�
2 c olmas¬d¬r.

(v) Np metodunun regüler olmas¬için gerek ve yeter şart
�
pn
Pn

�
2 c0 olmas¬d¬r.

(vi) Rp metodunun regüler olmas¬içi gerek ve yeter şart Pn !1 (n!1) olmas¬d¬r

(Boos ve Zeltser 2003).

Tan¬m 5.11.1 I � N ve I 6= ; olsun. I, sonsuz elemanl¬ise I = N ve r 2 N olmak

üzere r elemanl¬ise I = Nr olarak gösterilir.

S
i2I
Ni = N; Ni \Nj = ; (i; j 2 I ve i 6= j) (5.11.1)

olmak üzere,

Ni := fnij 2 N : j 2 Ng ; (i 2 I)

sonsuz s¬ral¬kümeler olsun. N = (Ni : i 2 I) ; do¼gal say¬lar¬n sonsuz kümeler için

bir parçalanmas¬olsun. Bu durumda,

bs (N) :=

�
x 2 ! : kxkbs(N) = sup

j




(xk)k2Nj


bs <1
�

olarak tan¬mlan¬r (Boos ve Zeltser 2003).

Teorem 5.11.1� i, Teorem 5.11.2� yi ve Teorem 5.11.3� ü ispats¬z olarak verip, bu

teoremlerin sonuçlar¬n¬inceleyelim.

Teorem 5.11.1 Do¼gal say¬lar¬n en az bir parçalanmas¬için key� bir E dizi uzay¬,

bs (N) + Sp feg � E � l1

ifadesini gerçekliyorsa, E uzay¬Hahn özelliklidir (Boos ve Zeltser 2003).

Teorem 5.11.2 n 2 N olmak üzere, p = (pn) 2 l1 ise Nörlund metodu Np regülerdir

ancak potent de¼gildir (Boos ve Zeltser 2003).
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Teorem 5.11.3 p =2 l1 ve Rp potent matris ise do¼gal say¬lar¬n (5.11.1)� i gerçekleyen

bir N = (Ni : i 2 I) parçalanmas¬vard¬r ve bs (N) � l1 \ cRp \ cNp gerçeklenir.

Özellikle, l1 \ cNp ; l1 \ cRp ve l1 \ cRp \ cNp uzaylar¬Hahn özelliklidir (Boos ve

Zeltser 2003).

Şimdi bu durumu inceleyelim.

p =2 l1 ve Rp potent olsun.

p =2 l1 ,
1P
k=1

pk =1

, lim
n!1

nP
k=1

pk =1

, lim
n!1

Pn =1

, Rp metodu reg�ulerdir

Di¼ger yandan, Pn !1 (n!1) ve Rp potent oldu¼gundan Hat¬rlatma 5.11.1(iii)

uyar¬nca
�
pn
Pn

�
2 c0 elde edilir, yani Np regülerdir.

Her x 2 Sp feg için x 2 c gerçeklenir. Rp ve Np regüler oldu¼gundan,

x 2 cRp ve x 2 cNp (5.11.2)

elde edilir. Teorem 5.11.1 ve Teorem 5.11.3 ve (5.11.2) uyar¬nca,

bs (N) + Sp feg � l1 \ cRp \ cNp � l1 \ cRp � l1

ve

bs (N) + Sp feg � l1 \ cRp \ cNp � l1 \ cNp � l1

oldu¼gundan bu uzaylar Hahn özelliklidir.

Sonuç 5.11.1 (i) Rp regüler olmayan ve konservatif ise, yani p 2 l1 gerçekleniyorsa,

bu durumda l1 \ cRp Hahn özelliklidir ve Rp potenttir.

(ii) Rp regüler ise, yani p =2 l1 gerçekleniyorsa, bu durumda aşa¼g¬daki ifadeler denk-

tir.

a) Rp potenttir, yani l1 \ cRp matris Hahn özelliklidir.
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b)
�
pn
Pn

�
2 c0

c)

�
1
Pn
maks
k�n

pk

�
2 c0

d) Rp 2 KG

e) l1 \ cRp ayr¬labilir Hahn özelliklidir.

f) l1 \ cRp Hahn özelliklidir (Boos ve Zeltser 2003).
·Ispat. (i) Hat¬rlatma 5.11.1(i) uyar¬nca l1 � cRp gerçeklenir. Böylece, l

1 �

cRp \ l1 ve cRp \ l1 � l1 elde edilir. Yani, cRp \ l1 = l1 gerçeklenir. l1, Hahn

özellikli oldu¼gundan cRp \ l1 da Hahn uzayd¬r.

·Ispat. (ii) f ) e) a aç¬kt¬r. Hat¬rlatma 5.11.1(ii) uyar¬nca a) d ve Hat¬rlatma

5.11.1(iii) uyar¬nca d) b elde edilir.�
pn
Pn

�
2 c0 oldu¼gundan her altdizisi de s¬f¬ra yak¬nsar. O halde, k � n (k; n 2 N)

için Pk � Pn olup

0 � maks
k�n

pk
Pn
� maks

k�n

pk
Pk
! 0 (n!1)

) 1

Pn
maks
k�n

pk ! 0 (n!1)

elde edilir. Böylece b) c gerçeklenir.

Şimdi, c) b ifadesinin gerçeklendi¼gini görelim.

0 � pn
Pn
� 1

Pn
maks
k�n

pk ! 0 (n!1)

)
�
pn
Pn

�
2 c0

elde edilir.

Hat¬rlatma 5.11.1(iii) ve hipotez uyar¬nca b ) a elde edilir. Son olarak, Teorem

5.11.3 ve hipotez gere¼gince a) f gerçeklenir.

Sonuç 5.11.2 (i) Np regüler olmayan ve konservatif ise, yani
�
pn
Pn

�
2 cnc0 gerçek-

leniyorsa, bu durumda l1 \ cNp Hahn özelliklidir ve Np potenttir.

(ii) Np regüler ise, yani
�
pn
Pn

�
2 c0 gerçekleniyorsa, bu durumda aşa¼g¬daki ifadeler
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denktir.

a) Np potenttir, yani l1 \ cNp uzay¬matris Hahn özelliklidir.

b) p =2 l1
c) cNp \ l1 ayr¬labilir Hahn özelliklidir.

d) cNp \ l1 Hahn özelliklidir (Boos ve Zeltser 2003).

·Ispat. (i) Hat¬rlatma 5.11.1(vi) uyar¬nca l1 � Np gerçeklenir. Böylece, l1 �

l1 \ cNp ve l1 \ cNp � l1 oldu¼gundan,

l1 \ cNp = l1

elde edilir. l1; Hahn uzay¬oldu¼gundan l1 \ cNp uzay¬da Hahn özelliklidir.

·Ispat. (ii) d ) c ) a aç¬kt¬r. Teorem 5.11.2 uyar¬nca a ) b elde edilir. Son

olarak, p =2 l1 olsun, yani Pn ! 1 (n!1) olur. Hipotezden
�
pn
Pn

�
2 c0

oldu¼gundan Hat¬rlatma 5.11.1(iii) uyar¬nca Rp potenttir. Böylece Teorem 5.11.3

gere¼gince b) d elde edilir.
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