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ABSTRACT

IMPLEMENTATION OF THREE SEGMENTATION ALGORITHMS FOR CT
IMAGES OF TORSO

Oz, Sinan
M.Sc., Department of Electrical and Electronics Enginegri
Supervisor : Assist. Prof. Dr. Yesim Sergsajlu Dogrusdz

January 2011, 173 pages

Many practical applications in the field of medical imageqassing require valid
and reliable segmentation of images. In this dissertati propose three fier-
ent semi-automatic segmentation frameworks for 2D-uppeotmedical images to
construct 3D geometric model of the torso structures. Infittse framework, an
extended version of the Otsu’s method for three level tholelshg and a recursive
connected component algorithm are combined. The segn@nfabcess is accom-
plished by first using Extended Otsu’s method and then lageh each consecutive
slice. Since there is no information about pixel positianthie outcome of Extended
Otsu’s method, we perform some processing after labelirmgptmect pixels belong-
ing with the same tissue. In the second framework, Chan-\@ggrfethod, which is
an example of active contour models, and a recursive coatdecmponent algorithm
are used together. The segmentation process is achievegl @8i method without
egde information as stopping criteria. In the third and femhework, the combina-
tion of watershed transformation and K-means are used aetimentation method.
After segmentation operation, the labeling is performedtie determination of the

medical structures. In addition, segmentation and labediperation is realized for

iv



each consecutive slice in each framework. The results df fFamework are com-

pared quantitatively with manual segmentation resultyaduate their performances.

Keywords: Image Segmentation, thresholding, waterstatstorm, active contour
models



0z

GOVDE BT GORUNTULERI ICIN UC BOLUTLEME ALGORITMASI
UYGULAMASI

Oz, Sinan
Y uksek Lisans, Elektrik ve Elektronik ¥hendislgi Bolumi
Tez Yoneticisi : Yrd. Dog. Dr. Yesim Serig@aadjlu Dogrusz

Ocak 2011, 173 sayfa

Medikal goruntll islemeleri alanindaki @u pratik uygulamalar gecerli veigenilir
bir sekilde gruntl bolutlemeye ihtiyagc duymaktadir. Bu dokandajist govde 2B
medikal goruntiler icin ¢ farkli 3B yari-otomatik blutleme yntemlerini medikal
yapilarin 3B modellerini tekrar olusturmak iciimermekteyiz. Birinci §ntemde,
Otsu metodunuru¢ seviyeli esikleme icin gelistirilmis versiyonueil4-Bajlantih
Ardisik Baglanmisogeler algoritmasi bir arada kullaniimaktadirolBtleme islemi
ardisik gelen kesitlerde sirasiyla Gelistirilmis Otsetodu kullanilarak ve etiketleme
yapilarak gerceklestirilir. Gelistirilmis Otsu metonun sonucunda piksel konum bil-
gisinin etkisi olmadj! icin, etiketleme isleminden sonra bazi islemleriggdaestir-
meye ihtiyac duymaktayizlkinci yontemde, aktif dis hat modellerinrneji olan
Chan-Vese methodu ve 4-Bantili Ardisik Baglanmisogeler algoritmasi birlikte
kullaniimaktadir. Blutleme islevi durdurma kriteri olarak kenar bilgisi kulidmayan
CV metodu kullanilarak yapiimaktadldciindi ve son olan §ntemde, havzaihiisim
ve K-means kmeleme algoritmalarinin birlesimi,0liitleme methodu olarak kul-
laniimaktadir. Blutleme isleminden sonra, etiketleme islemi medikal klam belir-

lenmesiicin gerceklestiriimektedir. Ayrica, higg yontemde, blitleme ve etiketleme
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islemleri her ardisik kesit icin ayri ayri gercekienektedir. Her ¢ yontemin
sonuclari, performanslarini @erlendirmek icin manuelddiitteme sonuclariyla karsilas-

tirnlmaktadir.

Anahtar Kelimeler: Gruntll Bolutleme, esikleme, havzadigim, aktif dis hat mo-

delleri

Vil
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CHAPTER 1

INTRODUCTION

1.1 Motivation

There is a rapid progress in the field of medical imaging. @viarthis, some imaging
modalities, such as Computed Tomography (CT) and Magneticrfaese Imaging
(MRI), can be &ectively used for non-invasive mapping of the anatomy oflgesui.
Thus, scientists and physicians have an opportunity to getual information about
anatomical structures via these modalities, which bridgsutithe acquirement of
potentially life saving information.

There are many research areas related to medical imagiclyg asuthe enhancement
of the image segmentation techniques to facilitate a mareige interpretation of the
data and to help for training in diagnosis, the automatiomedical image processing
for minimization of manual intervention, and the developinef acceleration tech-
niques for reducing the processing time required for adilngshe large amount of
data obtained from medical capture devices.

The use of medical imaging varies according to field of stugiynple visualization
and inspection of anatomic structures, patient diagnasiganced surgical planning
and simulation or computer-aided surgery, radiotherapymhg, measurement of
tissue volumes, and localization of tumors and other patiies are the most com-
mon usage. Nowadays, there is little progress in the utitinaof modern volume
visualization techniques to perform precise affttent analysis even though it guar-

antees exceedingly precise and high quality 3D view of anedal structures.
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In this thesis, we focus on the automatization of medicabiensegmentation and the
visualization of anatomic structures. Combiningfelient segmentation algorithms,
filtering and morphological operations, we aim to proposeraisautomatic frame-
work for sequential segmentation of 2D thoraxial CT images tandevelop a vi-
sualization tool based on the library (OpenGL) for the restarction of anatomic

structures using a simple surface meshing method.

1.2 Objective

The main objective of this thesis is the development of tlsemi-automatic torso
segmentation frameworks using the image segmentatiomitpods available in the
literature. These segmentation frameworks are used toedeé anatomical structures
belonging to torso, such as lung, heart, and rib cage, arettmstruct 3D geometric

models of these structures. In order to reach this objeatevaim to:

1. Propose new semi-automatic frameworks with least ugervention to de-
lineate anatomical structures belonging to torso: Auticreggmentation ap-
proaches are achieved within exactly defined bounds. Hémese approaches
require the formalization of the necessary priori knowkedout the object of
interest, which is a challenging task. Manual segmentatarthe other hand,
requires a long amount of time and highly relies on the paréorce of the ex-
pert. We explore semi-automatic algorithms, which extilaebbject of interest
with a little user interaction. Semi-automatic approaciesmore robust and
preferable than automatic approaches [1] and do rfé¢isitom disadvantages

of manual segmentation.

2. Develope a medical image segmentation tool with usendtgeinterface: For
the optimal cooperation between computer-based imageaasallgorithms
and human operators, a proposed medical image segmeritail@mould have
user friendly interface so as to improve information flowbetn the tool and

the operator. It should be comprehensible and easy to use.

3. Develope a visualization tool for displaying 3D geoneiniodels of the struc-

tures: 3D medical visualization provides the operator vaitBD representa-
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tion of the patient’s anatomy reconstructed from the setafge slices. Most
widely used rendering techniques are surface renderingdardt rendering

(volume rendering). In this thesis, we aim to facilitatefaoe rendering.

1.3 Scope and contribution of the thesis

The scope of the thesis are:

e The development of three semi-automatic frameworks fansggation of torso
and its structures; lungs, heart and rib cage. Otsu's medblasdd on [2, 3],
Chan-Vese’s level set method based on [4], and watershesfarambased on
[5] are used as the segmentation techniques. Besides thésedsiemorpho-
logical operations (erosion and dilation) and labelingrapen based on [6]

are also applied.

e The use of segmentation results for one (initial) slice asrpnformation for

the segmentation of remaining slices to minimize user vetation.

e The developement of a visualization tool to display 3D getiee of seg-
mented structures using the OpenGL library based on a sisyface ren-

dering technique [7].

The main contribution of the thesis is new semi-automaftrsantation frameworks
with least user intervention to delineate anatomical stmes belonging to upper torso
from CT images.

1.4 Thesis Outline

This dissertation is organized into six chapters. The fist introductory chapters
make mention of previous work. The next three chapters dehl3id segmentation
methods, and the corresponding results. Eventually, aleding chapter is submit-

ted. In more detail:



Chapter 2: Background: The applications and methods of miadiege seg-

mentation

Chapter 3: Medical image segmentation using thresholding
Chapter 4: Medical image segmentation using active contours
Chapter 5: Medical image segmentation using watershedorams

Chapter 6: Discussions and conclusions



CHAPTER 2

BACKGROUND

Medical imaging is the visualization process of the wholenan body or some parts
of it for clinical purposes and medical science. It providegreat knowlegde for
scientist and physicians to reveal, diagnose or examireasgés and to study normal
anatomy and physiology. Depending on patient populatiahaulinical problem,
a variety of imaging modalities are available for use. Mdigneesonance imaging
(MRI), computed tomography (CT), fluoroscopy, angiographigrasound, nuclear
medicine and various imaging modalities can be given as sxamples of medical

imaging modalities [8].

Medical images designating the internal aspect of the boeysapposed to be pro-
duced using nonivasive techniques since the physical et under the skin does
not occur in the medical imaging modalities. In other womls,can not take a mea-
surement at any internal point of the body in an invasive Wynetheless, by expos-
ing the living tissue to somefliects such as ultrasonic pressure waves and echos or
X-ray radiation, we make observations outside of the bodynsiering this sense,
we can comprehend medical images as the outcome of matlcainatierse prob-
lems. Projection radiography is a good example to undettdta® medical images.
X-rays, which are absorbed atffidirent rates in dierent tissue types such as bone,
muscle and fat, penetrate through the body, then X-ray tiadizgs observed on the
other side. Since the same procedure is repeated multipés tivith a diferent angle
for each, one can reconstruct 2D images of the body sliceg nsathematical inverse
problems.

In medical images, image intensities representing meamnts is strictly related



to radiation absorption in X-ray imaging, RF signal ampléud MRI, or acoustic
pressure in ultrasound. Making a single measurement atleeation of the part of
the body brings about a scalar image. Making more than onsune@ent there (eg.
dual-echo MRI) causes a multi channel image [9]. Images maybbaned in the
continous domain or in discrete space. X-ray film and MRI cagiben as examples
of the former and the latter, respectively. In 2D discretages, the location of each

measurement is called a pixel and in 3D images, it is calleakalv

A large number of images are acquired even after performisomgle MR or CT
scan. Moreover, the size of these images are growing day Yay Taerefore, the
use of computers have been required in order to facilitageatialysis of these im-
ages. Especially, computer algorithms to delineate anasdrstructures and other
regions of interest have been becoming increasingly saamfiin assisting and au-
tomating specific radiological tasks. Image enhancemegistration, segmentation,
and visualization are the most common algorithms in biocedmaging applica-
tions [10]. These approaches are becoming more importanaimy medical appli-
cations, e.g., 1) diagnostics, 2) preoperative planningytBaoperative navigation, 4)

surgical robotics, 5) postoperative validation, 6) tragiand 7) telesurgery [11].

Medical image segmentation, a widespread operation in #aical image applica-
tions, is the process of pixel or voxel classification in a roa@dmage dataset. The
outcome of the segmentation is the labeled image datasieatimdy tissue type or
anatomical structure of the pixel or voxel. The labels tlesutt from this process

have a wide variety of applications in medical research asuklization.

As far as the dimensionality is concerned, medical imagensegation algorithms
operate in a 2D domain and a 3D domain. Some algorithms depeodly on im-
age intensities, such as thresholding, are independehéafitage domain; however,
certain algorithms, e.g., deformable models and regiowigig incorporating spatial
information may operate with aftierent way due to the dependency on the dimen-
sionality of the image. In general, 2D methods are appliedRamages, and 3D
methods [12] are applied to 3D images. In some cases, onltee loand, 2D meth-
ods are applied sequentially to the slices of a 3D image [[I3ik is prefered because

of the fact that they are easy to implement, they have lowepzdational complexity,



and they need lower data storage capacity. Furthermorgjrcetructures are more

easily defined along 2D slices.

Nowadays, tomographing imaging units, such as CT or MR, destalprovide huge
amounts of high resolution spatial data. Performing maimmage segmentation on
the data by experts takes so much time that the process Intotéd be indficient
and boring. In order to address this problem, automatic mi-seitomatic segmenta-
tion algorithms, which extract the object of interest witme or little user interaction,
are developed. Automatic methods can be applied succesfithin exactly defined
bounds. However, semi-automatic approaches are moretiatdipreferable than au-
tomatic approaches since the formalization of the necegsari knowledge about
object of interest is challenging. On the other hand, findifiigient ways for infor-
mation flow between user and computer is a essential challangemi-automatic

approaches [1].

2.1 Applications of Medical Image Segmentation

Medical image segmentation have been applied to variouscaleidhage modali-

ties. To illustrate, brain structures, such as the thalaamgsthe pallidum, can be
segmented using MR images of the human brain or mass lessonkecdetected in
mammographic images. Applications of medical image seggtien can be classi-
fied in terms of the imaging modality in use and the object ted&gmented. In the
following paragraphs, some medical applications of thersagation in the literature

will be summarized by focusing on the applications relatethis thesis.

The applications of medical image segmentation vary and@esad over many areas.
We do not have any possibility to account for all of them ineheéue to fact that most
of them are not in the scope of this dissertation. Segmemtati brain structures,
segmentation in retinal imagery, and cardiac and lung setatien are most com-
mon applications of medical imagery. In brain segmentasa@ommonly performed
on MR images. Many of the studies [14-17] focus on the segatient of brain
structures. There are also some studies [18, 19] which esigoba the detection of

abnormal brain structures. In retinal segmentation, thpieadions emphasis on the
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detection of retinal diseases [20] and crucial structurdbe human retina [21,22].
We account for cardiac and lung segmentation in detail withcgic subsections.
Other foremost applications of medical image segmentatierextraction of prostate
[23], bone segmentation [24, 25], spinal MRI segmentatioB],[2egmentation of
the structure with tubular surfaces [27-29], liver segragoh [30], segmentation
of coronary vessels from digital subtracted angiogramg, [Bdtection of variegated

coloring in skin tumors [32, 33].

2.1.1 Cardiac Segmentation in CT and MR Images

Cardiac image segmentation is a growing and important relsemea of medical im-
age analysis [34,35]. Segmentation and tracking of castractures is used to assist
physicians in various states of treatment of cardiovasdit®eases. Because of the
motion of the heart during a cardiac cycle and as a resultspiiration, incorporating
image data and temporal data becomes more important. Ng&adl2 cardiac MRI
and CT datasets are commonly used. For example, Lgheh. [36] proposed a
novel method for the segmentation of 4D (3Qime) cardiac MRI data using a priori
knowledge about the temporal deformation of the myocarditmaddition, Deyet
al. [12] developed a 3D semi-automated segmentation algotitsegment the heart
in the 4D-CT datasets acquired without contrast enhancefoense in estimating

respiratory motion of the heart.

2.1.2 Lung Segmentation

In the literature, the segmentation studies related to Imdmay can be classified into
two broad groups; human lung segmentation and pulmonanylasggmentation. In
the human lung segmentation, segmentation procedure®axtract the whole lung
or pulmonary structures no matter whether thefjesufrom some lung dieases or not.
On the other hand, in the pulmonary nodule segmentatiomeetation procedures
deal with only nodules in the lung. The identification of poimary nodules usually

indicates the existence of lung cancer.
In computerized lung CT image analysis, automated lung setatien is usually
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realized a preprocessing step. Its robustness have indumm¢he performance of
computerized noninvasive evaluation of numerous lungedisg, such as lung cancer,
emphysema, pulmonary embolism, and interstitial lungatie€ILD), and other clin-
ical practices, e.g., preoperative planning of lobectenji¥]. Thus, the development
of an accurate automated lung segmentation scheme canfoenuity advantageous
for clinical practices and quantitative lung image anaysihe strategies based on
thresholding techniques [38] are relatively succesfukteeet lung parenchyma from
CT images because of obvious lower intensities of lung pérgma in Hounsfield
Unit (HU) than the surrounding structures. Using merelhesholding techniques
brings about inaccurate segmentation results due to laedpoundaries. Sluimer
et al. [39] presented a survey about computerized analysis of Chesaf the
lung. They summed up the problems causing inaccurate segtioenas high density
pathologies such as juxtapleural nodules, posterior atetianattachments between
left and right lungs, false positive inclusion of other arg@utside the lung (e.g., liver

or spleen), and nonsmooth exclusion of the trachea andlgesske hilar regions.

In order to make up for the errors from a single thresholdingre are a large number
of approaches, such as [40—44], in the literature. Many @f&thdies were designed
with consideration of specific applications, e.g., wholegwsegmentation [37,45],
airway detection and analysis [46], lung nodule detectidn],[lobgfissure segmen-
tation [48], and interstitial lung disease [49] and sclemoda disease [44] diagnosis.
Masutani [50] proposed to address irregular segmentatandary using radial ba-
sis functions (RBFs). Nonetheless, a set of points passiogghrthe boundary of

the anatomical structures should be manually specified &y us

The application of interest in this study is ultimately puod 3D geometric model of
the torso; thus we need to segment all tissues with the tdngact, we focus on all

tissues and organs in the upper torso and their 3D geometdelhm this thesis.

2.2 Methods of Medical Image Segmentation

The medical image segmentation is considered a veficudli problem due to the

imaging process itself and the complexity and variabilityhee anatomy that is rep-
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resented in the images. In order to address this challengiolglem, various seg-
mentation methods have been developed in the literaturest pfoposed methods
are specific to a particular problem, e.g., anatomy specci@ing some priori

information that must either be built into the system or jed by a human operator.
Therefore, the researchers dealing with this problem hawhaoice rather than to pay

insuficient attention to most other problems.

In the literature, there are many papers reviewing variegsrentation methods. In
these papers, e.g., [9,51], the methods of medical imageesgtion were classi-
fied in many ways, according toftirent classification schemes. Nevertheless, we
present here a broad classification of them into six groupractive threshold-
ing [52, 53], region-based [16], boundary detection [54listering-based [55, 56],
atlas-based [15,57,58] and hibrid [59, 60] methods. Inghoéding, intensity values
of all pixels in an image are compared with a threshold ornibenisities that lie within
a particular range. The algorithm decides whether the spareding pixel belongs
to foreground or background with respect to the comparissalt. The key point to
this algorithm is the selection of the threshold value. Baugebased methods utilize
such edge detection techniques as a gradient filter in coderextract boundaries of
different segments. On the other hand, this makes it sensitieafpe noise. Region-
based segmentation techniques, which are based on spé&tiahation, argue that
pixels in the same segment have similar features. The degienaing procedure
begins with some initial points, called as seeds. Then,mpares every seed with
its surrounding neighbors. Depending on a certain merginigrion is satisfied, the
procedure decides whether the neighboring pixel is add#atetsame segment with
the seed or not. Naturally, the selection of a merging ¢ateis superior to determine
the success of the segmentation using this method. Moregowst of the algorithms
based on region splitting and merging are sensitive to Hre@bsition and the perfor-
mance sequence of the initial seed points. Alternativatgrifet al. [61] proposed
an unseeded region-growing algorithm for image segmemtatiClustering-based
techniques are also widely used image segmentation. Fonm&ak-means clus-
tering is a classical and powerful clustering algorithmathis still applied to many
applications [55,56]. The advantages and disadvantagal thfese segmentation

techniques compel researcher to combine more of them irdachgnethods.
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In the next subsections, methods of medical image segnmmtate described in
detail with six categories; thresholding, region-basedhwds, boundary detection

methods, atlas-based methods, hybrid methods and otheesé&gtion concepts.

2.2.1 Thresholding

Thresholding is a simple buftfective technique to separate objects from the back-
ground in medical image segmentation [51]. In this tech@jgqurange of intensity
levels, whose boundaries are caltbcesholdsare used to create binary partition for
each material class of a medical image. All pixels with isteas between these two
thresholds are grouped together into one class and thokenignsities staying out

of the range are grouped together into another class. Im othels, the output of the
thresholding operation in the medical imagery is a binarggemwhose one state will
indicate the foreground objects, i. e., some structuresngghg to the body, while

the complementary state will correspond to the background.

Various factors cause to complicate the thresholding djera Nonstationary and
correlated noise, ambient illumination, frequency of geels within the object and
its background, inadequate contrast, and object size matm@nsurate with the scene
can be given as some examples of the factors. In additiodatheof objective mea-
sures to assess the performance of various thresholdingtalgs, and the diiculty

of extensive testing in a task-oriented environment, haa@nbmentioned as other

major handicaps [62].

Thresholding can be performed using single threshold otiptelthresholds. Using
a single threshold, it is possible to generate a binary saggdémage. In this case,
the range is defined as the intensity levels between theesihgtéshold and the min-
imum intensity level of an image, usually 0. If multiple teh®lds are in use for the

segmentation, this is known as multithresholding [63].

Any region in the histogram of an image is defined by two thoidsy a lower thresh-
old and an upper threshold. Then, every pixel in the imagempared with this
region. If the pixel lies into the range it will be tagged asefground, and if it is out

of the range as background (see Figure 2.1). In images wittragood contrast
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Figure 2.1: Histogram of an image with two thresholdsand T, dividing the his-
togram into three seperate regions.

between regions, this technique is quite satisfactory tbopma segmentation. The
thresholds in use profoundly concern the quality of the sagation results. In other
words, a little change in the threshold values causedfarent segmented region.
This is the main drawback of this technique. In order to comspée for thesefiects,
automatic, local and adaptive solutions can be applied B8pther drawback is that
thresholding is very sensitive to noise and intensity inbgemeities. For this reason,
preprocessing on a raw image, such as filtering and imageneaheent, is required
to improve the results of the segmentation. However typyicaresholding does not
take into consideration the spatial characteristics oihaagie, some post-processing

techniques brings to a succesful conclusion to cope with thi

In the literature, there is a remarkable number of surveyshogsholding. Sahoo
et. al. [63] prepared a survey about nine thresholding algorithntsamalized their
performance in a comparative manner. lede al. [64] carried out an analysis in
order to compare five global thresholding methods with et@and proposed use-
ful criteria for assessment of thresholding performanceaddition, Glasbey [65]
conducted an extensive statistical study to indicate tlaioaships and performance
differences between 11 histogram-based algorithms. Sezgisamklr [62] de-
scribed 40 thresholding algorithms with the idea undegytimem, categorized them

according to the information content used.
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2.2.2 Region-Based Methods

Watershed transform and region growing are commonly knovamles of region-
based segmentation approaches. Watershed transformgaod geowing are shown
as examples of region splitting and merging methods, réiseéc In the following

subsections, watershed transform and region growing rdsthe explained.

2.2.2.1 Watershed Transform

The watershed transform, originally proposed by Digabel bantiejoul [66] and
later improved by Beuchest al. [67], is the method of choice for image segmenta-
tion in the field of mathematical morphology. The intuitivesgription of this method
comes from geography: a grey-level image may be consideradandscape or to-
pographic relief, where the grey level of pixel is intergekas its altitude in the relief,
and a drop of water falling a topographic relief flows alongaghpto finally reach to
local minimum. At the end, the watersheds are representttbdimes seperating the
drainage areas (also called catchment basins) over re@i8h Actually, instead of

the original image, the watershed transform is appliedstgiiadient.

There are several disadvantages of watershed transfopnavéisegmentation, (2)
sensitivity to noise, (3) poor detection of significant bdanes with low contrast, (4)

poor detection of thin structures.

Oversegmentation: The watershed transform produces plenty of small regiontgsi
instead of the original image, catchment basins are cordputéts gradient. Number
of resultant regions should be minimized to achieve theulsegigmentation results.
Using marker image, which causes to decrease in the numb&noha in the image,
is the solution to the minimization of region quantity [69].7Moreover, The usage
of a scale space approach to choose the regions of intertbssuah diterent filters

as morphological operations [71] or nonlineaftasions [72] is also conducted.

Sensitivity to noise: Local variations of the image causes the results of the trans

form to change dramatically. Thigfect deteriorates due to the use of the gradient
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estimation amplifing the noise. In order to lower the proldestemmed from the

local variations, anisotropic filters have been used [73].

Poor detection of significant boundaries with low contrast: If the region of inter-
est has not high enough contrast boundaries, the watenstmsfidarm is not capable of
the accurate segmentation. In addition, the detected amntimes not always corre-
spond to the contours of interest although the watershadftem intuitively extracts
those with higher value between markers [59]. For the plaatevgshed transform,
the boundary surface detection between white matter arychgadter is more diicult
than such surfaces with higher contrast as the boundartesée gray matter and

CSF or between CSF and bone, for example.

Poor detection of thin structures: The gradient estimation cause the image to
smooth due to usual approach of storing gradient valuesatirilye image pixel posi-
tions instead of storing them with sub-pixel accuracy whenwatershed transform
is performed on the gradient image. This brings about thecdity in the detection

of thin catchment basin areas, which is crucial for mediceges segmentation.

A number of advantages of the watershed transform exits fést, simple, and intu-
itive. The parallel implementation of this method is alssgible. Moga and Gabbou;
[74] reported that the process could be linearly speededup iumber of proces-
sors up to 64, for instance. In addition, even if the contodghe image is poor,
its complete partitioning with separated regions is gaaat so there is no need to
join any kind of contour. In some studies [75, 76], the teqles to embed the water-
shed transform in a multiscale framework were proposedatatthadvantages can be
utilized to enhance the accuracy of their segmentatiorstdelirthermore, some ad-
vantages of the watershed transform over active contousarteices were presented
in [77]. In energy minimization methods, noise brings abewbneous results be-
cause of the fact that it can produce local minima. Howewerwatershed transform
is not dfected by lower-contrast edges since the watershed linegysl@orrespond to
the strongest edges between the markers. In addition talleisvatershed transform
always extracts a contour between the markers even if thererdy weak edges in

that area. This contour will be positioned where the pixalgshhigher contrast.

14



2.2.2.2 Region Growing

Region growing is a bottom up technique which extracts an emwagion connected
based on some similarity constraints. Region is iteratigebyvn from the seed subre-
gion by adding in neighbouring subregions that are simi¢eselol on some predefined
criteria, increasing the size of the region, where subregisually correspond to pix-
els or voxels in the image or to catchment basins in watershedform. The grow-
ing procedure is continued until all subregions belong tosoegion. The predefined
criteria, actually similarity constraints, can be defin@ddd on intensity information,
edges in the image, afat the output of any other segmentation algorithm [78]. In
simplest region growing algoritm, a seed point that is méynwselected by an op-
erator is required and the extraction of all pixels connéttethe initial seed based
on any predefined criteria is realized. In order to deterrtii@eseed points, user in-
teraction is required, which is its primary drawback. Inestlvords, one must plant
a seed for each region to be extracted. Split and merge isienrggowing related
algorithm which does not need a seed point [79]. Another Heak of the region
growing is the sensitivity to noise. This causes the ex¢iotgions to posses holes or
become disconnected. On the contrary, partial-voluffeets could lead to merger of
separate regions. a homotopic region-growing algorith@ [is been developed to
address these problems, where the topology between ai redjion and an outcome
is planted. In addition, fuzzy analogies to region growimydrbeen used [81]. In
medical image processing, region growing is rarely usedoawn. In general, it is
used with other image processing operations. Especiallgelineate small and sim-
ple structures such as lesions and tumors are common megigidations of region

growing [82, 83].

2.2.3 Boundary Dedection Methods

Boundary dedection methods have had a critical role in 2D d@hdn@dical image
segmentation due to the fact that it has been commonly useclifiical purposes
and medical science [84]. Over the last decades, the nuniltee @applications
of boundary detections have been growing owing to fasterenobust, and less

artifacted scanning methods. Because of the complexity aficakstructures, the
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large variability in shapes, some kinds of noise, and lichliedy scanning methods,
the boundary detection of anatomic structures in medicabeny is more diicult
than in other imaging fields. Despite the before mentiondicdlties, there have
been some studies obtaining faster and more accurate afpghis in 2D and 3D.
In this section, we attempt to summarize the lastest teclesign 2D and 3D for

boundary detections using deformable models, also knovaictase contour models.

In recent years, active contour models have been incrdgsamgl widely used in
image segmentation. These methods are basically des@asbfadlows. First of all,

a close curve, also known as the evolving curve [4, 85, 86fletermined for the
initialization in the image to be segmented. Then, driving turve by a partial dif-
ferential equation (PDE), it is evolved until the evolvingree converges. According
to the representation of the evolving curve, active contoodels can be classified as
explicit [87,88] and implicit [4, 89, 90] categories. Snaketypical explicit active
contour model, uses parametric equations to explicitlyeggnt the evolving curve.
Implicit active contour models, i.e., level set methods ][86place the parametric
curve with a signed distance function, i.e., the level setfiwn. A level set function
[86] is a real-valued function of multiple variables; whée tfunction takes a con-
stant value, e.g., zero, the obtained set is the zero leteilgeh is used to represent
the evolving curve. Thus, the evolving curve is implicitgpresented by the zero set
of the level set function. This representation results iafpactive contour models
that could handle the topological changing more convelyi¢inén the explicit active

contour models [90].

Based on the way defining boundaries, level set methods ctrefure categorized
into either edge-based [89,91] or region-based [4, 92]rdlgus. Edge-based level
set methods consider boundaries as a kind of discontinuatigray values. To detect
this discontinuation, these methods all define an edgeatafi¢hat is a positive and
nondecreasing function. In theory, the evolving curve sthatop where the edge
indicator is equal to zero. However, in practice, due to thistence of noise, edge-
based level set methods often cannot stop at a boundarydocatdditionally, it is

not easy for this kind of methods to detect weak and intercamiolaries in images.
To address these problems, Chan and Vese [4] proposed a-wged level set
method called Chan-Vese (CV) method which incorporates theifdid-Shah [93]
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functional into a level set framework to give a piecewisestant representation to
an image. The main idea of this method is to find the similantg given image,
and it regards the subregion inside the evolving curve asifaromobject and the
subregion outside as the background. The evolving curveiverd by an energy
functional which is defined on the level set function and mpooates a “fitting” term.
The “fitting” term defines the extent that the piecewise camistepresentation fits the

initial image.

The CV method [4] utilizes a scalar, i.e., the gray value, fwresent a pixel, but a
scalar cannot comprehensively describe other informati@n image, such as gra-
dient and orientation information. Additionally, this rhetl does not work well for
images with noise, particularly the salt and pepper noisan@& al. [94] essentially
extended the traditional CV method [4] from a scalar field teetor field, but this
method was mainly applied on the segmentation of multicehimages. That is to
say, the representation of each pixel is still a scalar ilnehannel. Due to its vector
form, this model ignores the spatial structure informatémnong multichannel im-
ages. Wang and Vemuri [92] proposed a level set method, thgWamuri (WV)
method, to segment a symmetrical tensor field, e.¢fuslon tensor magnetic reso-
nance images (DTMRIs). This method can also be used to segméute images
by using a local structure tensor (LST) [95]. However, an Lj&3t takes into ac-
count the horizontal and vertical direction informatiordagnores a basic important
component, i.e., the gray value, which makes the applicatfdhis method limited.

Additionally, this method is only applicable for the symmyetensor field.

2.2.4 Atlas-Based Methods

Atlas-based segmentation methods have béecterely used for segmentation pur-
poses in the various image modalities [96—98]. Compared @thlibr segmentation
methods, it has a significant advantage. That is to say, asprgviously segmented
image as a reference that shows how to make the segmentésimactures, it permits
the use of a priori information on the simple shape and tistion of the segmented

structures.
Segmentation procedure for new images can be realizedngiple using only an
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atlas image. On the other hand, recent studies, such as1(2pindicate that the
use of multiple atlas images produces better segmentagurits. Knowledge about
a number of references could be merged to an average atl&} di® a so-called
probabilistic atlas including probability values for egmdrticular location [96, 100].
Thus, it is desired that the atlases consist of all the vaitigbf a given population.
Nevertheless, the multiple altases should be registeréaettarget image indepen-
dently and the resultant segmentations combined in ordaptein maximum benefit
of those [101].

An analogy can be made between the combination of segmamtatierived inde-
pendently from multiple atlas images and the combinatiomaftiple independent
classifiers in a generic classification problem [104]. IrstAnalogy, each trans-
formed atlas image can be regarded as a classifier, whidmnassiabel value to each
voxel of the target image. The training process can be alsgadito the registration
between the atlas image and the target image. It has beelywideen in the pattern
recognition field that combining multiple classifiers caalgimore robust and accu-
rate results than using single classifiers [105], this featdpthe main motivation for

multi-atlas approaches.

The most widely used combination strategy in the literatsnmajority voting, also
named majority rule, decision fusion or label voting. Thppeach weights each can-
didate segmentation equally and assigns to each voxelleétlzat most segmenta-
tions agree on [101,102]. Another popular approach is@alieultaneous truth and
performance level estimation (STAPLE), which uses an eghen-maximization
(EM) approach to reach the best possible final segmentafiof, 107]. STAPLE es-
timates the performance of each classifier iteratively aemkts it accordingly. The
two different methods presented in [107] are extensions of the oii0@] for im-
ages with multiple segmented structures. Shape-basedgingrrepresents another
way of combining segmentations [108] which is based on Heeln distance maps
computed for all structures in each candidate segmentafibea method was shown
to keep structure regularity and contiguity better thanamiyj voting. Another possi-
bility is atlas selection: instead of combining segmentsj methods can be devised
to select atlases a priori (before registration) or a pasigafter registration) [101].

In [109], a number of atlases is selected for combinatioethas mutual informa-
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tion [110]. In [111], atlas selection is done on a structuasib for the segmentation
of brain magnetic resonance (MR) images. For each giventstejdhe atlas image

with highest local mutual information is selected.

2.2.5 Hybrid Methods

In this subsection, we will look at the segmentation usingeihing from more than

one of the previous kinds of segmentation algorithms.

2.2.6 Other Segmentation Concepts

There are other segmentation methods, such as neural ketwdid?2], Bayesian
classifiers [20,113], Hidden Markov Model [114], normatizeuts [115], LEGION
[116], and fuzzy theory [117], which are commonly used in roakdimage analy-
sis. In the following paragrahps, some of the aforementianethods are described

briefly since all these methods in this subsection are out@pes of this dissertation.

Neural Networks: In a neural network framework for image segmentation, rleura
network is usually applied with basic segmentation openati such as thresholding,
region growing, or etc, since neural networks requires staarires describing the
object to be segmented. Some examples of the features aecaauilarity, iner-

tial momentum, mean and standart deviation of radial lemagith intensity, entropy
of intensity distribution, fractal index, eccentricityjiaotropy and etc. For example,
Cascioet al. [112] proposed an algorithm depending on an edge-baseshtbiceop-

erator strategy for the mass segmentation. From the sdleséons of interest, they
extracted 12 features to discriminate between the two etagmthological patients

or healthy subjects.

Normalized Cuts: In the NCut, segmentation is considered as a graph-paitigon
problem: “it maximizes both the total dissimilarity betwethe diterent groups and

the total similarity within the groups [118].” The NCut segmt&tion technique has
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a tendency to merge ftierent features, e.g., windowed histograms, position hbrig
ness. The combination of various features expand its adjait areas using fierent

imaging modalities.

Fuzzy Connectedness: In images, regions belonging to object appear with a va-
riety in intensities due to the actual object material progpas well as due to such
artifacts as noise, blurring, and variations in backgroarginated from the imaging
modalities. Object regions can be recognized easily byrgbseas a gestalt despite
this gradation of intensities. With a fuzzy topological sept called fuzzy connect-
edness, this scheme intends to mimic what the observer dezyFionnectedness
denotes how the image components be connected togeth&llgpdt19]. During
recongnizing object in an image, the connectedness shréegiveen every pair of the
image components and all possible connection paths betiegrair is considered.
Modern workstations’ computational speed give a chancatia& objects from an
image using theoretical advances in fuzzy connectednasdyviamic programming
in spite of high combinatorial complexity. Fuzzy connectesk framework are used
in several medical applications in the areas of computeotgpaphic (CT), magnetic
resonance (MR), angiography, mammography, and colonographvell as for de-
tection of tumors and multiple sclerosis of the brain andewpgrway disorders in
children [117].

2.3 The Image Dataset Used In This Dissertation

In general, CT or MR Medical images have 12-16 bits resolutiogray scale. The
dataset used in this study is obtained with CT medical imagindality. The dataset
comprise 61 CT images of upper torso in DICOM format, with feagugiven Table
2.1.

In Figure 2.2, one of the images from the data set is depictddmapping to 8-bits
resolution. It is obvious that the contrast between orgartssues (such as heart,
fat and muscle tissue) to be segmented is lower with comgarkédtween lungs and

torso. Chest CT contains four significant anatomical tissbesie, lung, heart and
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Table 2.1: Features of the image data set

Photometric interpretation Grayscale|
Size 512x512
X Voxel Width 0.75mm
Y Voxel Width 0.75mm
Slice Thickness 5mm

Bits Allocated 12 Bits

soft tissue.

Figure 2.2: One of the images in the CT dataset with mappinglib i&solution

2.4 Some Operations in Medical Image Segmentation

Anisotropic Filter:  The way for éfective suppression of imaging noise is anisotropic
filtering, which preserves fine details such as region boueslauring this. In gen-

eral, conventional linear filters, e.g., Gauss filters, nsadtearp boundaries and small
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structures of an image become blurry. In 1990, Perona [1@@ldped the Perona-
Malik anisotropic ditusion method in order to remove the sidieets of conventional
linear filters. Perona also studied about the influence dditfierent parameters in fil-
ter functional on image boundaries. Multichannel anigatrdiffusion for smoothing
in brain MR images are developed based on Perona’s study by (3€1]. To ef-
fectively reduce noise in homogeneous regions and preséjeet boundaries are its
significant benefits. It also strengthens edges in the imadgact, anisotropic filters

is commonly used in the preprocessing steps of medical irregmentation [122].

We applied anisotropic tusion filter proposed by Perona and Malik [120] with the
parameters Table 2.2 before each segmentation frameworks.

Table 2.2: Parameters for the anisotropigidion filter

Diffusion Const. (K)| 30
Lambda 0,25
Number of Iteration | 50

Morphological Operations: Morphological operations involve filtering a labelmap
such that the boundary of a labeled region either growst{@ligor shrinks (erosion).
Sequences of morphological operations can augment maggralestation by filling

in small holes or breaking connections between regions.

2.5 Evaluation of Segmentation Results

2.5.1 Manual Segmentation For Comparison Purpose

In order to evaluate quantitatively the performance of coppsed segmentation al-
gorithms, the ground-truth reference images are requi@de way to obtain the
ground truth images is by manual segmentation performedhbgxpert. Then the
performance can be measured by comparing the results obgedpsegmentation
algorithm with the manually segmented images. Althougthis inethodology, per-

fect ground truth images are not guaranteed due to the ctengdépendency on the
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performance of the expert, the manual segmentation resudtslose to the ground
truth that they can be used for validation of our results. Mdisegmentation can be
performed by delinating the boundaries or areas of the tdjede segmented with
a completely manual manner or it can be realized by assigiing expert with some

computerized operations such as iso-intensity contounsatershed regions.

Completely Manual Segmentation: The completely manual segmentation is used
to delineate the desired contours directly onto the raw andg this kind of seg-
mentation, the expert with knowledge of anatomy utilizescauge-based software to
delineate the boundaries of the objects of interest on el ia an image stack.
The manual cadiac segmentation and bone segmentatiorréerditerent slices are
depicted in Figure 2.3 and Figure 2.4, respectively. Theuabysegmented images
and corresponding original images of lung for threffedlent slices are shown to-
gether in Figure 2.5. In each image, the manually segmeniedts are represented

by the color white.

In real images, boundary of a segmented region is a smoathdlturve. The smooth
closed curve can be represented by flicent number of straight lines to obtain
piecewise approximation of the closed curve. In the coreptehanual segmentation,
an expert selects aficient number of points to represent the closed curve. Heee, t
accurate selection and thefcient number of these points are the critical issues. For
this reason, unwillingly selecting faulty points or havimguticient numbers lead
to the deformation of the real shape of the region to be setgdento obtain fair
representation of the boundaries in CT images, the numbexelspselected by an
expert should be about 100. Thus, this method is very eximgudtie to the fact
that the expert spends too much time to perform completelyualasegmentation.
Because of the fatigue, this causes him or her to have a teypdennake errors.
Therefore, we need to find an easier way for manual segmentdti this study, we

performed manual segmentation using watershed transform.

Manual Segmentation using Watershed Transform: In order to eliminate the
drawbacks of the completely manual segmentation procetgeleveloped a man-

ual segmentation tool based on the watershed transfornchwartitions the image
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(b)

Figure 2.3: The original images (right) and the manual eardegmentation results
(left) for (a) the slice 18, (b) the slice 30, and (c) the sB& The segmented objects
are represented the color white.
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(b)

Figure 2.4: The original images (right) and the manual bagmentation results
(left) for (a) the slice 11, (b) the slice 29, and (c) the sHide The segmented objects
are represented with the color white.
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(b)

Figure 2.5: The original images (right) and the manual luegnsentation results
(left) for (a) the slice 14, (b) the slice 31, and (c) the si& The segmented objects
are represented with the color white.
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into disjoint homogeneous regions with respect to the pikehsity value. This tool
makes the manual segmentation operation significantlyeeasd more reliable. At
the first step, the segmenter applies the watershed tramsfiorthe slice to be man-
ually segmented. The watershed transform provides a fewirednhomogeneous
regions. Then, the expert can tag each region with the oneeobprtedefined labels,
namely, background, lungs, torso, bones or heart by clickiith a mouse. As an
alternative, instead of manually labeling all regions ogeohe, the segmenter can
change the label of any prelabelled region to a new one ajtatihg the preseg-
mented images. Thus, fske can correct hiiser faults, and leave the segmentation
unfinished to continue sometime later. However, the expenesimes want to tag the
pixels belonging to the same region withfdrent tags (see Figure 2.6(a)). For this
reason, in order to make structure boundaries smooth, veetiggvexpert a chance to
define triangle regions so that/sBbe labels inside the triange with a predefined label

via our segmenter tool (see Figure 2.6(b)).

(@) (b)

Figure 2.6: (a) The problem of manual segmentation onlygusiatershed transform
(b) The proposed solution for this problem.

During the manual segmentation operation, we worked wittM&hmet Akif TEBER,
who is a radiology specialist at Etlik Intisas Hospital. Thanually segmented im-
ages for three dlierent slices are depicted in Figure 2.7. Background, luragspt

bones, and heart are represented with such colors as blaek,goeen, yellow, and

red, respectively.

For the performance assesment of our segmentation frarkeytbe manual segmen-

tation was performed on every other slice in the CT image datag Dr. Mehmet
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Akif Teber. That is to say, we made segmentation on 31 of @ksliThus, we have
31 ground truth images. Every pixels in each image are ¢takainto five groups;
background, lungs, torso, bones, and heart. For exam@antnual segmentation

result of the slice 31 is depicted in Figure 2.8.

The left and right lungs including the trachea were segnieasslungs colored with
blue. Since the upper part of the patient’s right lung haslsedject to an interstitial
lung diease, it has higher intensities than the other pantsnanual lung segmen-
tation, these pixels with higher intensities were alsosifees] as lung. In the man-
ual thoraxial segmentation, the thoraxial tissues exolgithe lungs, the trachea, the
heart, the beginning segments of the main vessels, and tleshweere classified as
torso and colored with green. The bones and the cartilagbédwgher densities were
segmented as bones colored with yellow. In the manual castigmentation, the
beginning of the main vessels such as the superior vena ttevaferior vena cava,
the aorta, the pulmonary artery, and the pulmonary veingvadéso segmented as a

cardiac tissue. Therefore, the initial segments of thessals were colored with red.

2.5.2 Quantitative Performance Measures

For quantitative performance measures, we use three sielegative Rate Metric
(NR), Overlap Index (OI) and Similarity Index (Sl). All mets are based on pixel-
wise matches and mismatches between the ground truth intebéhe segmented
image resulted from the proposed algorithm. For Negative Regtric, the lower the
score the better the algorithm is at correctly segmentinggimund that matches the
ground truth foreground segmentation. In the ideal caseMéRic is equal to zero.
NR Metric is the sum of two parts: a false negative score ardise positive score. A
low false positive score means good delination of objedbregA low false negative
score means good delination of foreground internal to theabbAs for Overlap and
Similarity Index, the score close to 1 means that the algriprovides good results.
On the contrary, the score close to 0 means the segmentatcamipletely false. In
the ideal case, both metrics are equal to one. (For detatlseofiefinition of these

metrics, see Appendix A.)
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(b)

Figure 2.7: The original images (right) and the manual sedat®n results using
the watershed transform (left) for (a) the slice 23, (b) thees31, and (c) the slice
39. Background, lungs, torso, bones, and heart are repeestirg color black, blue,

green, yellow, and red, respectively.
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Figure 2.8: The original images (right) and the manual segaim®n results (left) for
the slice 31. Background, lungs, torso, bones, and heartegregented the color
black, blue, green, yellow, and red, respectively.
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CHAPTER 3

MEDICAL IMAGE SEGMENTATION USING
THRESHOLDING

Brightness levels come fromftierent surfaces change depending on their colors, their
light absorption and reflection behavior. A threshold, iedirightness constant, can
be determined to segment these surfaces to each other. &lythresholding is
computationally cheap and fast and it is widely used in sengmplications although

it is oldest segmentation method.

In this section, first we begin to give mathematical infonmaabout OTSU's bi-level
thresholding method, multi-level thresholding using exed version of OTSU’s
method and component labeling. Then, we will investigate éRperiments on a
slice with multi level thresholding. We will conclude thepatiments of sequential

segmentation on medical image slices.

3.1 Mathematical Theory

3.1.1 OTSU's Bi-Level Thresholding Method For Image Segmentatio

This method has an aim to choose a threshold value that meegrtiie between-class
variances [2]. The maximization of between class variaat®s means to minimize

within-class variance.

Let us assume that a gray level image hapixels and the gray level value ranges

from O toL — 1. The number of pixels with gray leve(0 < i < L — 1) is given with
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f, and the probability of having gray levein image is given as:

P = (3.1)

fi
N’
After bi-level thresholding, the pixels are divided intodwiasses. These classes are:

C,: set of pixels with gray level value0 < i < T, whereT is the calculated threshold

value.
C,: set of pixels with gray level value T <i <L -1.

The corresponding probability distribution functions &&sse<; andC, are

c,: o P (3.2a)
w1 w1
Co: PT”,..., Pia (3.2b)
w2 w2

wherew; andw, are zeroth-order cumulative moment€3fandC, respectively and

given as

T T
wi=) P= %Z f, (3.3a)

i=0 i=0
L-1 1 L-1

wr= ) Pi=g > (3.3b)
i=T+1 i=T+1

T . T -
|Pi i= |f
= E Lico (3.4a)

L-1 . L-1
iP;

. T if
po= ), o= % (3.4b)
1=T+1 "l

and the mean value of the whole image intensity is given as,
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L-1

1,
M=w1M1+w2,u2=Z|Pi = NZ'fia (3.5)
0

i=0

the between-class variance of the thresholded image isediedis,

0f = w1 (U1 — )* + wa (2 — p)?, (3.6a)
08 = Wi — 2w + Wip? + Waps — 2waptopt + Wl (3.6b)
0f = Wil + wopth + i (w1 + W) =20 (Wit + woity), (3.6¢)
~———— ~—
1 H
0f = Wil + w5 — k. (3.6d)

Otsu stated that the optimal threshold values chosen such that the between-class
variancer3 is maximized. In other words, for every gray valué,is calculated, then

T that maximizes the between-class variance is chosen.

T = argmax{c3} (3.7a)

- 1 (ZiTzoifi)z (ZiL:_Tl+1ifi)2
T argmax{ﬁ o f ’ i)
Lif)  (Zhaif)
f:argmax{( I_TOI ) ( I_LTI )}
iio fi i+ i

whereu? andN are constant for each image. Thus, they can be ignored toia

the optimum threshold valuk.

3.1.2 Iterative (Optimal) Threshold Selection For Bi-Level Thresholding Method

This threshold selection method works well even if the imhggogram is not bi-

modal. This method assumes that regions of two main greyslere present in the
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image. The algorithm (see Algorithm 1) is iterative, fourtém iterations usually

being stficient.

Algorithm 1 Iterative (optimal) threshold selection

1. Assuming no knowledge about the exact location of objectssider as a first
approximation that the four corners of the image contairkgasuind pixels

only and the remainder contains object pixels.

2. Atstept, computeu}, andug as the mean background and object grey level re-
spectively, where segmentation into background and abgdtep is defined

by the threshold valug&' determined in the previous step (equation 3.9);

t iP; ZieC}3 ifi
Up = — = , (3.8a)
® |EZC‘B th ZiectB fi
iP; ZieCt Ifl
o=y =S (3.8b)
iec, Wq ZieC}) i
3. Set : .

T now provides an updated backgroyrabject distinction.

4. If T = T, halt; otherwise return to step 2.

The method performs well under a large variety of image e@sttconditions. Its

result is very close to the outcome of Otsu’s bi-level thaddimg method.

3.1.3 Multi-Level Thresholding Using Extended Version of OTSU'sMethod

In multi-level thresholding, bi-level thresholding forhation is extended by assum-
ing that we haveK classes instead of two, so we should h&ve 1 threshold values
T, Ty, ..., Tk_1. For example, the selection of two threshold for threedldueshold-
ing is depicted in Figure 3.1. The pixels of the image areddidi intoK different

classes:
C,: set of pixels with gray level valug 0 < i < Ty, whereT; is the calculated first
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threshold value.
C,: set of pixels with gray level valug T; < i < T,, whereT, is the calculated

second threshold value.

Ck: set of pixels with gray level valueTx_1 < i < L-1, whereTk_; is the calculated

last threshold value andis the number of intensity level of image.

Histogram

o /;\ 3

0 ™ T2 L1

Figure 3.1: The selection of threshold values using ThreeeLExtended Version of
OTSU’s Method

The corresponding probability distribution functions fasses are computed simi-

larly. Then the zeroth order cumulative moments are:

we= )P :%Zfi for k=1,2,...K (3.10)

ieCj ieCi

and the first order cumulative moments of classes are defged a

we=— Y Pi=——>"f for k=12..,K (3.11)

and the mean value of the whole image intensity is given as,

K
U= Z Wik (3.12)
k=1

Finally, we can define the between-class variance as:
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K K
= > olux—p)* = [Z wkﬂﬁ] — 1. (3.13)
k=1 k=1

The optimum threshold values are chosen to maximize

[T’l, To, ., fK_l] = argmax{UZB} (3.14a)
K
- argmax{ Z wk,uﬁ) - ,uz} (3.14b)
lE:l
= argmax{z wk,uﬁ} (3.14c¢)
k=1
2
1 & |(Bieg i)
= argmax{ﬁ kZ:; m‘} (3.14d)
ic f
= argmax{ [(Z 1 ]} (3.14e)
k=1 Z|eci i

whereu? andN are constant for each image. Thus, they can be ignored tontiate
the optimum threshold values.

3.1.3.1 Experiments of Multi-Level Thresholding on A Single Ske

In our experiment, we use a medical image (see Figure 3.0)Mgitbits information
in gray scale. It is obtained with CT medical imaging modalifyhis image is of
upper torso in DICOM format. The gray level of original images the range of (0,
4096), and the histogram of the image is given in Figure 3.3.

First of all, we perform Otsu’s bi-level thresholding methasing Equation 3.7. As
a result of this, we find a optimal threshold valueTas= 574. In Figure 3.4, the
white pixels are classifies ascéass1 and the remainders are aglass0. Then,

we perform iterative selection method. As we can see fromirei@®.5, the iterative

selection method yields an identical result as bi-levedsholding method.
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Figure 3.2: Original Image
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Figure 3.3: The histogram of the original image
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Figure 3.4: The outcome of the bi-level thresholdifig£ 574). The pixel whose
values are greater than the threshold are represented t&s Whe remains are black.

Figure 3.5: The result of the iterative selection methbd=(574), which is the same
as that of the bi-level thresholding.
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Figure 3.6: The outcome of the multi-level thresholdifig € 196, T, = 682). The
pixel whose values are greater than the threshigldre represented as white. Other
pixels whose values are between the thresholds are grajhamdrmains are black.

As far as multi-level thresholding is concerned, we makeesexpents for three and
four level thresholding. In Figure 3.6, the result of thieeel thresholding method
is depicted. In Figure 3.7, the original image is classifiei ithree classes. This
classification is performed by the selection of the two thots values. These classes
are represented with the colors white, gray, and black. drother figures, the image
pixels are classified into two classes: the former is the ptxels which belongs
to the corresponding class representing by the color whitktlae latter is the set of
pixels which does not belong to the class representing bgdloe black.

In Figure 3.8, the result of four-level thresholding mett®depicted. In Figure 3.9,
the original image is classified into four classes. Thissifestion is performed by
the selection of the three threshold values. These classe®presented with the
colors white, two level of gray, and black. In the other figyréhe image pixels
are classified into two classes: the former is the set of piwdlich belongs to the
corresponding class representing by the color white anthtter is the set of pixels

which does not belong to the class representing by the ctdokb
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(@) The outcome of the multi-level threstd) The outcome of the multi-level thresh-
olding (T; = 196, T, = 682). The pixelolding (T; = 196, T, = 682). The pixel
whose values are lower than the threshwlibse values are between the threshbid
T, are represented as white. The othersadT, represented as white. The others are
black. (Pixelvalues< 196) black. (196 < pixelvalues< 682

(c) The outcome of the multi-level thresh-
olding (T; = 196, T, = 682). The pixel
whose values are greater than the thresh-

old T, represented as white. The others are
black. (682 < pixelvalue$

Figure 3.7: The outcome of the multi-level thresholdinghiewn as (a), (b) and (c).
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Figure 3.8: The outcome of the multi-level thresholdiiig € 196, T, = 682,T; =
1187). The pixel whose values are greater than the threSi®lre represented as
white. Other pixels whose values are between the thresfigldadT; are dark gray,
others between the threshdlg andT, are light gray, and the remains are black.

Every possible combination of threshold values are andlyaebtain the optimum
threshold values. For this reason, the increase in the nuailieresholds causes to
take much more time to compute them. Since the bit depth in DA@@ages is 12
Bit, and the gray level value range is betwd®n4095 in our image, and therefore
applying multilevel thresholding requires consideralsteant of time. In the case of
three threshold values, it takes about 5 minutes to obtagsktiold values. However,
for 4 threshold values it takes more than 4 hours for one imdwgre 4 nested 'for-
loops’ are iterated from 1 to 4095 to obtain the maximum ofdlass variance values.
Therefore, multi-level thresholding with more than 3 thralsl values was not taken
into account. In order to address the time problem, an iteraptimum threshold
selection method can be applied. It is not logical to try @gible combinations
SO we can ignore some combinations using an iterative appesafor multi-level

thresholding.

The resultant images may contain scattered and discorthectels because this

thresholding technique does not take into account theapataracteristics of the
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image, Furthermore, due to lack of spatial informations thiethod is very sensitive

to noise and intensity inhomogenities.

(@) The representation of class (4 The representation of class 2
(pixel values< 194). (194 < pixel values< 660).

(c) The representation of class @) The representation of class 4.
(660 < pixel values< 1187). (1187< pixel values.

Figure 3.9: The outcome of the multi-level thresholdinghiewn as (a), (b), (c), and

(d).
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3.1.4 Component Labeling

A binary image is composed of pixels with two levels of intgsBoth levels represent
whether the pixel belongs to object or background. Someeptkels belonging to

object are connected to each other. A set of connected @xrelsalled component.
Each component on the image should be tagged with a uniqet |&omponent

Labeling algorithm searches all the connected pixels obthary image and assigns
a unique label to each component. In Figure 3.10, the bimaage before and after
labeling is shown. In many application, some charactessif the components such

as position, dimension, and orientation are calculatethduhe labeling process [6].
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Figure 3.10: The binary image before and after labeling

Holding whole binary image in the memory requires more har@specifications.
In order to prevent this, sequential algorithm uses two roftse image at a moment.
For this reason, it can be performed even when the imageaesists a file and there
is a space limitations in the memory; nevertheless, thegs®is completed after two
passing over the image. In Algorithm 2 [6], the labeling @®xis clearly explained.
In the algorithm, upper and left neighbours of the pixel ¢énest is examined and the
pixel is supposed to be labeled as neighbours. If both neigduave dierent labels,
it is labeled with one of the labels and an equivalence tabf@epared to maintain
track of all labels that are equivalent. In the second pasquivalence table is used

for the appointment a unique label to all pixels of a compdonen
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Algorithm 2 Sequential Connected Components Algorithm using 4-cornvigcti
1. Scan the image from left to right and from top to bottom.

2. If the pixel belongs to the object, then examine the uppdreaft neighbours.

¢ If one of them is labeled and the other is not, then tag withstirae label.
e If labels of both neighbours are same, then tag with the sabwd.|

e If labels of both neighbours areftirent, then tag with the upper’s label
and add labels to the equivalence table as equivalent lalbhls means
that both labels represent same component.

e Otherwise assign a new label to this pixel and add this lab#ld¢ equiv-

alence table.

3. Perform again and again Step 2 until there are not any el@dlpixel to con-

sider.

4. Rescan the image to arrange the labels based on the equivaédble. Substi-

tute the lowest label in equivalent set of each label for it.
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Scanning an image from left to right and from top to bottone,4kquential algorithm
deals with only two neighbours of a pixel: the one is abovetardther is left. Note
that these two pixels have already been inspected by thathlgadue to the direction
of scanning. If none of these pixels belong to the object) the pixel of interest is
assigned a new label. If only one of these two pixels belonghé object and has
been tagged with labél, then the new pixel will be tagged with lalel If both pixels
belong to the object and have been tagged with the samellabi®n the new pixel
will be tagged with labeL. In the case where both neigbours have been tagged with
different labels, then both labels have been used for the samgooemt and they
have to be merged, nonetheless. In this situation, the gixajged with one of these
two labels, usually the left neighbour’s label that is thealest one, and both labels
are recorded as equivalent labels in the equivalence tableigures 3.11 and 3.12,

the result of the first and second pass over an image are eepiespectively.
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Figure 3.11: After first pass over an image

The equivalence table includes the information about alivedent labels that are
mapped to the same component. This information guaranmegsstgn unique label
to each component. In the first pass, all those labels belgrigione component are

proclaimed equivalent. In the second pass, one label froegaivalent set is used for
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Figure 3.12: After second pass over an image

the appointment to all pixels of a component. The smalldstlla the equivalent set
is usually selected to represent a component. The assigrfreeanique label to each
component is realized in the second scan. After all processar, the labels in use
are renumbered so that gaps in the labels are eliminatede Sbracteristics such as
first and second moments, area, and perimeter can be calt@itateach component

during these two scans.

3.2 A Framework For Sequential Segmentation on Medical Imag&lices

In this section, we propose a semi-automatic sequentiahsetation framework on
CT Torso image set using the combination of multilevel thodding and sequential
labeling. In Figure 3.13, the proposed sequential segrmentiamework is clearly
explained. First of all, a user chooses any slice where tiecobf interest clearly
appears from the slice set and then also selects any smalbwiwhich encapsu-
lates the object on the slice (see Figure 3.14). Excludiegehuser interferences,
the whole procedure is performed automatically. After glttng a histogram of the

window, the software determines the range of intesity witiekignate the object of
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A slice and a window an this slice which encapsulates
tha object to be segmented is selacted by a user.

¥

The histogram of the window is calculated and the two
threshold values dlassifing the pixels of window into
three class are determined by using Extended version of
OTSW's Matod.

Using these twa threshald valses, the binary image
represeniing the object of interest is generated from ¢ ————
whole image instead of the window.

r

All components in the image are designated and labelled After the marphologic
using Sequential Labeling Algorithm. oparations, the outcomea is
used as the window for an

adjacent slice

[
k.
All components whose large part of area is in the
window are supposed to belong o the object. Cthers are
fo belong o the background,
Are all slice in the N

mage set considerad?

Yes

!

30 Model of the object is constructed

Figure 3.13: Flow Chart of The Proposed Framework
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interest using Three-Level Extended Version of Otsu’s Mdtfsee Figure 3.15). For
all slices in the image set, these calculated thresholdegalill be valid. In other
words, it is not necessary to recalculate thresholds fdn ekee. If intensity value of
a pixel stays in this range, then the pixel will belong to thgeot; otherwise, to the
background. After considering all pixels of the image, tireaby image representing
object and background distinction is obtained (see Figut€)3 Sequential Con-
nected Components Algorithm is used for the labeling prooés$ise binary image.
Performing the algorithm, the components which have unigbels are achieved.
The component whose large part of area correspond to theohtba window are
perceived as belonging to the object. Therefore, other compts are supposed to
belong to the background (see Figure 3.17). So far, the seigwien procedure for
a slice is completed. After the morphological operatiohs, autcome of the proce-
dure for a slice is used as the search window for an adjadeatsshce two succesive
CT images resemble to each other. These procedure is pedfdamall slice in the

medical image set so as to reconstruct the 3D model of the(siee Figure 3.18).

Figure 3.14: User Interference

48



255

" “ ’W w_
— 4096

o
0 Number of bins

Number of pixels

Figure 3.15: Determination of the range of intesity whiclsigeate the object of
interest

Figure 3.16: The binary image representing object and brackgl distinction

49



Ny

Figure 3.17: The outcome of the segmentation operation $omgle slice

Figure 3.18: 3D representation of the object
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3.3 Results

The proposed framework is performed on CT image set congi@inimages. In
Figure 3.19, the segmented images of lungs for twiterknt slices are given. In
Figures 3.20 and 3.21, the segmented images of bones anddreaslice are given,

respectively.

Figure 3.19: The segmentation of lungs for the slices (a)ntB(h) 31

The average run-time durations are calculated based oremgplted G+ source
code run on an Intel(R) Core(TM)2Duo 3.00GHz CPU with 1.95GB RAMPCG
and listed in Table 3.1. At the begining of the segmentatiparation, the scheme
calculates the threshold values; thus it requires addititme for an initial slice. For
this reason, the segmentation for an initial slice spendshmuore time compared to

the operation for another slice.

Table 3.1: The approximate durations for segmentation §du heart and bones
using thresholding

Elapsed Time
Segmentation process
for an initial slice 5 sec
Overall segmentation
process 125 sec
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Figure 3.21: The cardiac segmentation for the slice 18
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In Figures 3.22, 3.23, and 3.24, 3D representation of 2D satgtion of lungs, bones,
and heart generated from all segmented images are depiespactively.

@ (b)

(© (d)

(e)

Figure 3.22: 3D representation of 2D segmentation of lungs different views
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(@) (b)

(© (d)

Figure 3.23: 3D representation of 2D segmentation of bormes different views
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(e)

Figure 3.24: 3D representation of 2D segmentation of heam Qifferent views
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3.3.1 Quantitative Evaluation of Segmentation Results

As far as quantitative evaluations of the segmentationlteeaue concerned, in this
section, we compare the semi-automatically segmentedambgsed on threshold-
ing, with “Ground Truth” resulted from the manual segmebotabased on watershed
transform. Negative Rate Metric (NRM), Overlap Index (Ol) éidnilarity Index
(SI) are used as explained in Chapter 2.5.2 and Appendix A.

In Figures 3.25, 3.26 and 3.27, negative rate metrics, mhjssdra segmented, and
overlapped rates and similarity indices are shown basedoparison between the

automatically and manually segmented images for lungs.
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Figure 3.25: Negative Rate Metric results based on compabistween the automat-
ically and manually segmented images for lungs.

As shown in Figures 3.25 and 3.27, all metrics have the samaviieur. The slices
between 7 and 11 has the worst segmentation results in glsegmentation results.
Panel (a) of Figure 3.28 shows the image from slice 11 alorily & segmentation
results. Here, the colors red, green, and blue represesedigxtra segmented and
overlapped regions, respectively. The numerical valugeegtvaluation metrics for
these images are also given on the segmented images. Idi¢kissince the upper

part of the patient’s right lung has been subject to an ititedslung disease, the
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intesity values of the lung pixels are higher than their ralrmalues. For this reason,
they are segmented as torso using the proposed framewor&licén55, shown in
panel (b) of Figure 3.28, the relatively bad results are iabthfor lung because of
the high proportion of perimeter pixels to actual lung ardamely, the increase in
the proportion of perimeter to the lung area leads to theedeser in the segmentation
quality since there is always faulty segmented pixels intbendary regions of the
structures. As for the remaining slices, we achieve good kegmentation results;
for example, in some slices such as slice 25, similarity xnfde lung reaches .08.
Figure 3.29 shows lung segmentation results of two slicésafil 37) with good
values of evaluation metrics. As shown in the slice 37, tlopleagus is segmented as

lung due to its lower intensities, however.
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Metrics for lung segmentation
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Figure 3.26: Missed and extra segmented rates based on deorphaetween the
automatically and manually segmented images for lungs.
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Figure 3.27: Overlapped rate and similarity index basedamnparison between the
automatically and manually segmented images for lungs.
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NR: 0.1277
Ol :0.7449
SI:0.8509

NR: 0.0560
OI:0.8879
ST :0.9263

(b)

Figure 3.28: Two examples of bad lung segmentation resudgist); the slices (a) 11
and (b) 55. The original images (left) are also shown.
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NR: 0.0077
OI : 0.9860
S1:0.9873

NR: 0.0084
OI : 0.9857
SI: 0.9869

(b)

Figure 3.29: Two examples of good lung segmentation regudjist); the slices (a)
25 and (b) 37. The original images (left) are also shown.
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Quantitative results for bone segmentation are given iniféig 3.30, 3.31 and 3.32.
In these figures, negative rate metrics, missed, extra sagoheand overlapped rates
and similarity indices are depicted, respectively, based@@mmparison between the
automatically and manually segmented images. Two examytagpoor evaluation
metric values examples came from slices 01 and 57 (see F&y88 and the ones
with good results are from slices 23 and 45 (see Figure 3.82)rding to both the
similarity index and negative rate metric. In these figuies,ahe colors red, green,

and blue represent missed, extra segmented and overlaggieds, respectively.
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Figure 3.30: Negative Rate Metric results based on compabistween the automat-
ically and manually segmented images for bones.

As shown in the Figures 3.33(a) and 3.33(b), the pixels spording to the spongy
bone which is internal to the compact bone and the cartilaye tower intensities
compared to the compact bone. Because of this, our algoritisees the pixels
belonging to the spongy bones and the cartilages. In addibones have large pro-
portion of perimeter to area since they are scattered oeetottso. For this reason,
the the overall segmentation quality has a tendency to dsern@ee the mean value of
S| (Figure 3.32)). Despite these problems with the segnientaf bones, similarity
index for bones rises overdD in some slices, as seen in the Figure 3.34.
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hetrics far bone segmentation
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Figure 3.32: Overlapped rate and similarity index basedamparison between the

automatically and manually segmented images for bones.



(b)

NR: 0.2474
01 : 0.5093
SI : 0.6317

NR:0.2247
0I:0.5522
SI : 0.6712

Figure 3.33: Two examples of bad bone segmentation resigtg); the slices (a) 01

and (b) 57. The original images (left) are also shown.

63



NR: 0.0949
OI:0.8115
ST : 0.8733

NR: 0.0657
OI: 0.8694
ST : 0.9091

(b)

Figure 3.34: Two examples of good bone segmentation re@igts); the slices (a)
23 and (b) 45. The original images (left) are also shown.
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In Figures 3.36 and 3.37, missed, extra segmented, ancpped rates and similarity
index are depicted based on comparison between the autathatind manually
segmented images of the heart. With respect to both thessitgiindex and negative
rate metric, bad results are observed in slices 25 and 4B(38gand the good ones
are from the slices 17 and 45 (see 3.39). In these figuresptbeanding is same as

in lungs and bones.
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Figure 3.35: Negative Rate Metric results based on compabistween the automat-
ically and manually segmented images for heart.

In this CT image dataset, intravenous contrast material \gad to help highlight
blood vessels. The cardiac muscles have lower intenditzgsthe blood with contrast
material. Therefore, our algorithm misses the pixels bgiloyn to musclesi(e., the
red regions) as seen in Figure 3.38(a). On the contrarytéhed the pulmonary
vesselsi(e. the green regions) due to their high intensities. In sliteshown in
Figure 3.38(b), our algorithm did not produce good resutisesthe heart does not
have clear boundaries. The worst performances were obtéineslices from 47 to
61. For these slices, the algorithm was unable to segmerdebeending thoracic
aorta, yielding high NRM values and low Sl values. On the otiand, there are
some slices such as 17 and 45, shown in Figure 3.39, for wh&kitnilarity index

is larger than ®5.
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Metrics for cardiac segmentation
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Figure 3.36: Missed and extra segmented rates based on deorphaetween the
automatically and manually segmented images for heart.

Metrics for cardiac segrmentation
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Figure 3.37: Overlapped rate and similarity index basedamparison between the
automatically and manually segmented images for heart.
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NR: 0.2654
0I:04730

(b)

Figure 3.38: Two examples of bad cardiac segmentationtsegight); the slices (a)
25 and (b) 41. The original images (left) are also shown.
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NR: 0.0313
OI:09377
ST :0.9611

NR: 0.0369
OI:0.9262
SI : 0.9593

(b)

Figure 3.39: Two examples of good cardiac segmentationtsgsight); the slices (a)
17 and (b) 45. The original images (left) are also shown.
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For the segmentation of all tisues or organs in upper tolsotean values and the
standard deviations of NRM and Sl are given in Table 3.2. Thesdts indicate that

the best result is obtained for lung segmentation becausieediighest mean value
and lowest standard deviation of SI. On the contrary, thestwvesults are obtained for
cardiac segmentation due to the lowest mean value and thedtigtandard deviation
of SI.

Table 3.2: The mean values and the standard deviations of NRMsafor segmen-
tation of lungs, heart and bones using thresholding

NRM Overlapping | Similartity Index
Mean/Std Mean/Std Mean/Std
For lung | 0.02700.0317| 0.94790.0642| 0.95900.0397
For bones 0.14770.0407| 0.70690.0817| 0.78630.0614
For heart| 0.23500.2028| 0.52990.4061| 0.57130.4228
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CHAPTER 4

MEDICAL IMAGE SEGMENTATION USING ACTIVE
CONTOURS

Over the last decades, active contour models have beenyuiget! in medical image
segmentation. The basic idea in active contour models isiegpa close curve, also
known as the evolving curve [4, 85, 86, 94], under the comdgdrom a given image
until the curve converges to the boundary of the objects. éDoeses an initial curve
around the object to be segmented, then it converges togssi boundary under the
influence of external and internal forces. As far as the gr&tion of the evolving
curve is concerned, active contour models can be divideddarplicit [87,88] and
implicit [4, 89, 90] categories. A typical example of exiactive contour models
is snake [87,88], where the explicit representation of tludvéng curve is performed
by parametric equations. Level set methods [86, 123, 12Hicwis an example of
implicit active contour models, replace the parametriovewith a signed distance
function, called as the level set function. A level set fumci86], which is a real-
valued function of multiple variables, can take a constahie, such as zero. In such
a situation, the zero level set is obtained and used to représe evolving curve. In
other words, the zero set of the level set function impiicitpresents the evolving
curve. Implicit active contour models can cope with the togacal deformations

more conveniently than the explicit active contour mod@@

In this section, first we will introduce the Chan-Vese (CV)waetontour model [4] as
an example of geometric active contour models, and matheashbaickground about
CV method and zeroth and first order level set methods, intedily Osher and
Sethian [123] are given in Appendix B.
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4.1 Active Contour Model Without Edges

The active contour models depending on gradient of imagblesta delineate only
object boundaries marked with gradient of image. In the veald, the stopping
function based on gradient never reaches zero on the edysstbie discrete gra-
dients are bounded. Thus, the curve cannot catch the baaaddio address these
handicaps, the active contour model without edges have jfre@osed by Chan and

Vese [4], itis also called as Chan-Vese (CV) method.

Chan-Vese method is a powerful and flexible geometric acowaur model that can
detect objects whose boundaries are not necessarily maiked gradient. Similar
to other active contour models, it aims an energy functiobganinimized. Unlike
others, its stopping term has not a dependency on imageegutatiowever. For this
reason, it can achieve the segmentation of tissue strsctswene of which would be

difficult to define object boundaries due to the complexity of iggie structures.

Such minimal partition problem derived from active contouwndel can be formu-
lated and solved using the level set method. Level set methnde used a single
phase segmentation by using zero level set or can be extémdadtiple phase seg-
mentation by using multiple level set functions. With N leset functions one can
represents up to 2N phases. For instant, it is possible tesept four distinct regions
with two level set functions. The mathematical backgroufodghe active contours

without edges and level set functions are clearly desciibbéghpendix B.

4.2 A Framework For Segmentation on Consecutive Medical Imag Slices

In this section, we propose a semi-automatic segmentatoneivork on a CT Torso
image set using the combination of active contour modelautiedges and sequential
labeling. In Figure 4.1, the proposed sequential segment&éiamework is clearly
explained. First of all, a user chooses any slice from thee diet where the objects
to be segmented clearly appears, and then selects thrde fhiaegenerate two lines
(see Appendix E). The part of the image under these linesiscarded since it is not

related to thoraxial part of the image. The resultant imagdepicted in Figure 4.2.
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A slice encapsulating the objects to be segmented is
selecled and some parls of image not relsted with torso
are discarded by a user.

k.

CV active contour meathod 15 used to divide the Image
into two segment. One is composed of backgroundand f¢————————
lungs. The other consists of torso,

¥

All segments in the image are divided into unconnected
regions using Sequential Labaling Algorithm, Thus, the
segmentations of torso and lungs are reallzed,

k.
The present resull is used 1o
2-Phase active contour modal without edges is used 1o determine the Lipschitz
sagrnent toraxial part of image, * functions of an adjacent
slice.
[
b
After Sequentlal Labeling Algarithm, toraxial regions of
the image is divided into three class; torso, bones and
heart,
Are all slice in the i

image sat considerad?,

Yes

!

30 Model of the object is constructed

Figure 4.1: Flow Chart of The Proposed Framework
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After applying CV active contour method on this resultantg®an order to segment
it into two groups of pixels, we realize the sequential laizel As a result of this
labeling, the segmentation of torso, lungs, and backgraufidalized for a slice. The
remaining procedure is performed on the set of pixels bétanthe torso. 2-Phase
active contour model without edges is used in order to divielan into 4 classes.
After applying sequential labeling algorithm to obtain thgatial information, we
achieve the segmentation of bones and heart. With this tegt the segmentation
procedure for a slice is completed (see Figure 4.3). Thusneee on to the next
slice. Because of the fact that two succesive CT images reseaalth other, the
results of the present slice is assigned as the initial gabfehe scalar Lipschitz
functions for an adjacent slice. The same segmentatioredtoe is repeated for the
current slice. Finally, all slices in the medical image set segmented. From 2D
segmentation of the individual slices, we can reconstheB8D model of the objects

of interest (see Figure 4.4).

Figure 4.2: User Interference
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Figure 4.3: The outcome of the segmentation operation forglesslice

(b)

Figure 4.4: 3D representations of the objects
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4.3 Results

The proposed framework is performed on CT image set. In Fgdirg 4.6, 4.7, and
4.8, the segmentation results for slices 17, 35, 43, 54 eatspely, are shown. In
these figures, lungs are shown in blue, torso is shown in tisgubones are shown

in yellow and heart is shown in red.

Figure 4.5: The segmentation results for slice 17

Figure 4.6: The segmentation results for slice 35
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Figure 4.7: The segmentation results for slice 43

Figure 4.8: The segmentation results for slice 54
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The average run-time durations are calculated based oreingrited G+ source
code run on an Intel(R) Core(TM)2Duo 3.00GHz CPU with 1.95GB RANG and
listed in Table 4.1.

Table 4.1: The approximated durations for the frameworletbam active contour
model

Elapsed Time
Segmentation process

for an initial slice 39 sec
Overall segmentation
process 1659 sec

In Figures 4.9, 4.10, 4.11, and 4.12, 3D representation as&inentation of lungs,
torso, bones, and heart generated from all segmentatiayesrare depicted, respec-
tively.
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(@) (b)

() (d)

(e)

Figure 4.9: 3D representation of 2D segmentation of lungs fdifferent views
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(e)

Figure 4.10: 3D representation of 2D segmentation of tar@m fdifferent views
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Figure 4.11: 3D representation of 2D segmentation of bormes tifferent views
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(f)

Figure 4.12: 3D representation of 2D segmentation of heam Qifferent views

81



4.3.1 Quantitative Evaluation of Segmentation Results

As for quantitative evaluations of the segmentation resitt this section, we com-
pare the semi-automatically segmented images basediva eathtours with “Ground
Truth” resulted from the manual segmentation based-onralage transform. Nega-

tive Rate Metric (NRM), Overlap Index (Ol) and Similarity IndéSl) are used as in
Chapter 3.
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Figure 4.13: Negative Rate Metric results based on compabstween the automat-
ically and manually segmented images for lungs.

In Figures 4.13, 4.14 and 4.15, negative rate metrics, mhjssdra segmented, and
overlapped rates and similarity indices are depicted basedomparison between
the automatically and manually segmented images for lurigeese figures show
that all metrics lead to similar conclusions; the slicesMeein 7 and 11 have the
worst segmentation results among all lung segmentatiartsed?anel (a) of Figure
4.16 shows the image from slice 7 along with its segmenta&ésualts. Here, the
colors red, green, and blue represent missed, extra segdnemd overlapped regions,
respectively. The numerical values of the evaluation rogfor these images are also
given on the segmented images. In this slice, since the ypgérof the patient’s

right lung has been subject to an interstitial lung disetsEse pixels are segmented
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as torso using the proposed framework. In slice 55, showraiebp(b) of Figure

4.16, the relatively bad results are obtained for lung bseani the high proportion
of perimeter pixels to actual lung area. Namely, the in@dasthe proportion of

perimeter to the lung area leads to the decrease in the ségfinarguality since there
is always faulty segmented pixels in the boundary regionlestructures. As for the
remaining slices, we achieve good lung segmentation sedolt example, in some
slices such as slice 37, similarity index for lung reach89 OFigure 4.17 shows lung
segmentation results of two slices (29 and 37) with goodesabf evaluation metrics.
As shown in the slice 37, contrary to the segmentation resising thresholding, the

esophagus is not segmented as lung despite its lower ing=nsi
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Metrics for lung segmentation
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Figure 4.14: Missed and extra segmented rates based on usarphetween the
automatically and manually segmented images for lungs.

MWletrics for lung segmentation
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0Ol : 0.5996
S1:0.7369

NR: 0.1078
Ol : 0.7845
S1:0.8758

(b)

Figure 4.16: Two examples of bad lung segmentation resudgist); the slices (a) 07
and (b) 55. The original images (left) are also shown.
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0Ol : 0.9848
Sl :0.9890

(b)

Figure 4.17: Two examples of good lung segmentation regtdjist); the slices (a)
29 and (b) 37. The original images (left) are also shown.
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Quantitative results for torso segmentation are given gufds 4.18, 4.19 and 4.20.
In these figures, negative rate metrics, missed, extra sagoheand overlapped rates
and similarity indices are depicted, respectively, based@@mmparison between the

automatically and manually segmented images.
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Figure 4.18: Negative Rate Metric results based on compabstween the automat-
ically and manually segmented images for torso.

In the thoraxial segmentation, we define bones and hearedabdnaxial tissues. On
the contrary, we exclude lungs from the thoraxial tissues.this reason, the faulty
segmented regions in lungs cause the segmentation perfoenfiar torso to decline.
As shown in Figure 4.19, the rate of extra segmented regieakin the slices
between 7 and 11 since the upper part of the patient’s rigigf has been subject to
an interstitial lung disease. This also brings about theedese in the similarity index.
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hetrics for torso segmentation
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Figure 4.19: Missed and extra segmented rates based on dearpaetween the
automatically and manually segmented images for torso.

Metrics for torso segrmentation
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Figure 4.20: Overlapped rate and similarity index basedamparison between the

automatically and manually segmented images for torso.
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Quantitative results for bone segmentation are given iniféig4.21, 4.22 and 4.23.
In these figures, negative rate metrics, missed, extra sagoheand overlapped rates
and similarity indices are depicted, respectively, based@@mmparison between the
automatically and manually segmented images. Two examytagpoor evaluation
metric values came from slices 27 and 51 (see Figure 4.24jrendnes with good
results are from slices 05 and 31 (see Figure 4.25) accotdibgth the similarity
index and negative rate metric. In these figures also, thmokd, green, and blue
represent missed, extra segmented and overlapped reggspsgtively.
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Figure 4.21: Negative Rate Metric results based on compabstween the automat-
ically and manually segmented images for bones.

As shown in the Figures 4.24(a) and 4.24(b), some pixels hayleer intensities
belonging to liver, stomach, or other abdominal organs. Bseaf the similarities
between the intensities of these tissues and the boneslgouitlam labels the pixels
belonging to liver and stomach as bones. Moreover, it migsepixels belonging to
the spongy bones and the cartilages. Around these slicegyverall segmentation
quality tends to decrease (see the mean value of Sl (Fig@B)4. Nevertheless,

similarity index for bones rises over8D in some slices, as seen in the Figure 4.25
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Metrics for bone segmentation
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Figure 4.22: Missed and extra segmented rates based on dearpaetween the
automatically and manually segmented images for bones.

Mletrics for bone segmentation
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Figure 4.23: Overlapped rate and similarity index basedamparison between the
automatically and manually segmented images for bones.
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(b)

Figure 4.24: Two examples of bad bone segmentation resigtg); the slices (a) 27
and (b) 51. The original images (left) are also shown.
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NR: 0.0486
0Ol :0.9181
S1:0.7958

(b)

Figure 4.25: Two examples of good bone segmentation re@igtg); the slices (a)
05 and (b) 31. The original images (left) are also shown.
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In Figures 4.27 and 4.28, missed, extra segmented, anchpped rates and similar-
ity index are depicted based on comparison between the atit@tly and manually
segmented images for the heart. According to both the gityiladex and the nega-
tive rate metric, bad results are observed in slices 25 ande894.29) and the good
ones are from the slices 35 and 51 (see 4.30). In these figheesplor coding is

same as in lungs and bones.
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Figure 4.26: Negative Rate Metric results based on compabistween the automat-
ically and manually segmented images for heart.

Because of the usage of intravenous contrast material, gorgidm misses the pixels
belonging to muscld.g., the red regions) as seen in Figure 4.29(a). On the conttary,
selected the pulmonary vesséls ( the green regions) due to their high intensities. In
slice 39 shown in Figure 4.29(b), our algorithm did not proglgood results because
of the uncertain boundaries of the heart. Nonethelesse @@ some slices such as
35 and 51, where similarity index reaches t6®as seen in Figure 4.30. Unlike the
framework based on thresholding, the algorithm was ablegonent the descending

thoracic aorta.

For the segmentation of all tisues or organs in upper tolsotean values and the
standard deviations of NRM and Sl are given in Table 4.2. Thesadts indicate that

the best results are obtained for lung segmentation becdtise highest mean value
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hetrics far cardiac segmentation
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Figure 4.27: Missed and extra segmented rates based on usarphetween the
automatically and manually segmented images for heart.

Metrics for cardiac segmentation
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Figure 4.28: Overlapped rate and similarity index basedamparison between the
automatically and manually segmented images for heart.
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01:06172
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(b)

Figure 4.29: Two examples of bad cardiac segmentationtse§ught); the slices
(a)25 and (b) 39. The original images (left) are also shown.
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(b)

Figure 4.30: Two examples of good cardiac segmentatiortse@ight); the slices
(2)35 and (b) 51. The original images (left) are also shown.
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and lowest standard deviation of SI. On the contrary, thestwvesults are obtained for
cardiac segmentation due to the lowest mean value and thedtigtandard deviation
of Sl

Table 4.2: The mean values and the standard deviations of NRMsafor segmen-
tation of lungs, heart and bones using thresholding

NRM Overlapping | Similartity Index
Meary/Std Mean/Std Mean/Std
For lung | 0.03800.0494| 0.92500.0992| 0.95120.0610
For bones 0.14570.0412| 0.75630.0902| 0.54460.2702
For heart| 0.09940.0428| 0.80270.0854| 0.86770.0569
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CHAPTER 5

MEDICAL IMAGE SEGMENTATION USING WATERSHED
TRANSFORM

As in many fields of image processing, watershed transfogrbean widely used in
medical image segmentation [125]. The intuitive desasiptdf this method com-
ing from geography is that a grey-level image may be consitlas topographic re-
lief, where the intensity value of pixel is interpreted asattitude in the relief. Let
us consider that the rain is gradually falling on the terréen the watersheds are
constructed in order that the catchment basins are totefigratted. In general, this

method is performed on the gradient of the image insteadelfit

The watershed transform, which is an intuitive method, hasraber of advantages.
In detail, it is simple to use, it is fast and can be paraléglizin addition to these, it
produces plenty of seperated regions from the image evle gantrast is poor, so it
does not require any kind of contour joining. On the otherdh#rhas some important
disadvantages such as oversegmentation, sensitivityise,nand poor detection of

thin structures and significant areas with low contrast bauies [59].

In this section, first we will introduce mathematical baakgnd about the watershed
transform and k-means clustering. Then, we will show expenital result of these
methods. Finally, we conclude the experiment of sequesggentation on medical

image slices.
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5.1 Mathematical Theory

5.1.1 Watershed Definitions for Digital Images

Let us considet is a 2D grey value image, the pixel value of the imadg,y) is
between the rang@®, N), andNg (X, y) is the set of the neighbours of a pixel located
at(x,y) with respect to the digital gric.

There are two definitions of watershed for the digital imadks algorithmic defi-
nition by Vincent and Soille [126] and the definition by topaghical distance by
Meyer [127]. In this thesis, we focus on the algorithmic débn of the watershed

transform by immersion proposed by Vincent and Soille [126]

Algorithmic definition by immersion: Letl : D — N be a digital grey value
image, which possesses the minimum vdiyg and the maximum valuk,,... When

it undergoes a recursion with the grey letighcreasing fronh,i, to hyay the basins
associated with the minima dfare successively extended. L&t denote the union
of the set of basins computed at levelA connected component of the threshold set
The1 at levelh + 1 can be either a new minima, or an extension of a basByirnn

the latter case one computes the geodesic influence zdBevathin Ty, 4, resulting

in an updateB, + 1. Let MIN,, denote the union of all regional minima at altituidle

Define the following recursion:

Bhyin = (%, Y) € DIl (X, Y) = hin} = Ty, (5.1)
Bhi1 = MINh.1 U Influence Zong, , (Br), h € [Nimin, hmay) |

In the Figure 5.1, an example of the watershed transformrdogpto the recurrence
is given, where A, B, and C are labels of basins and W is assigrnéehote watershed
pixels. Moreover, minima pixels in orijinal image are shoimrbold. We note that

8-connectivity is used.
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Figure 5.1: Watershed transform by immersion on the 8-catedegrid. (a): Original
image; (b-g): labelling steps based on 5.1.

5.1.2 K-Means Clustering

Roughly speaking, K-means clustering (also called c-maaras) unsupervise learn-
ing algorithm to classify samples based on their features knnumber of classes,
where K a is positive integer. The classification is perfainby minimizing the

sum of absolute distances between samples and the cordasgafuster centroid or
mean. The final aim of K-means clustering is to classify the@as without super-

vising. An algorithm for K-means clustering is given in Algbm 3.

Algorithm 3 An algorithm for K-means clustering

1. Setinitial mean values for each of the classes.
2. Classify N samples by assigning the to “closest” mean.
3. Recompute the mean values as the average of samples inltdssies.

4. Continue untill there is no change in the mean values.
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5.2 A Framework For Sequential Segmentation on Medical Imagé&lices

A slice encapsulating the objects to be segmented
selected and some parts of image not related with forso
are discarded by a user.

'

Before tha watershad transform is applied, sobal
operator is used to exract the edges of the image.
Walersheds are relabelled so thal they are annexed fo |
labelled reglons with respect to their intesily values, With
k=means clustering, huge number of regions generated
from watershed transform are dassified into two classes.

'

All segments in the image are divided into unconnected
regions using Sequential Labeding Algorithm, Thus, tha
segmentations of torso and lungs are realized.

v

The calculated mean values after
By k-means algarithm, the small reglans belonging to Fl k-migans algorithm for the presant

toraxial part of the image are divided into three regions. slice is assigned to initial mean

values of an adjacent slice.

| 3

h 4

After Sequential Labeling Algorithm, teraxial regions of
the image are segmented 1o torso, bones and heart,

Areall slice in the

mage set considerad? No

|
Yes

¥

30 Model of the object is constructed

Figure 5.2: Flow Chart of The Proposed Framework

In this section, we propose a semi-automatic sequentiahsetation framework on

CT Torso image set using the combination of watershed tramsfi-means clus-

tering and sequential labeling. In Figure 5.2, the propasliential segmentation
framework is clearly explained. First of all, a user choam®gslice from the slice set
where the objects to be segmented clearly appears and s@sealécts three pixels
that generate two lines (see Appendix E). The parts of thgemader these lines
are discarded since they are not related to thoraxial pahteofimage. The resultant
image is depicted in Figure 5.3. Performing sobel operatothcs resultant image
in order to extract edges we realize the watershed transfmgenerate many small

regions. This causes oversegmentation. In order to hamdls@gmentation, we need
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to merge these small regions. Using K-means clusteringitthgo, we classify the
regions into two groups. The outcome is used as an input éosdigquential labeling.
As a result of this, the segmentation of torso, lungs, andédgacind is finalized for
a slice. The remaining procedure is performed on the setxelgpbelonging to the
torso. A new K-means algorithm is performed on the thorasegions in order to
divide them into 3 classes. After performing sequentiatledy algorithm to obtain
the spatial information, we achieve the segmentation oeband heart. Thus, the
segmentation procedure for a slice is completed (see Figdde Next, we need to
pass the next slice. Because of the fact that two succesive &Jeisresemble each
other, the mean value results of the present slice are &sbagithe initial mean val-
ues for K-means clustering of an adjacent slice. With theesaranner, all slices in
the medical image set are segmented. Finally, we can recchst3D model of the
objects of interest by combining the 2D segmentation resilall slices (see Figure
5.5).

Figure 5.3: User Interference
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Figure 5.4: The outcome of the segmentation operation forgesslice

@) (b)

Figure 5.5: 3D representations of the objects
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5.3 Results

The proposed framework is performed on our CT image set. Tdraeeaetation results
of lungs (blue), torso (turquoise), bones (yellow), andrhéad) are depicted in
Figures 5.6, 5.7, 5.8, and 5.9, for the slices 17, 35, 43, dndgSpectively.

Figure 5.6: The segmentation results for slice 17

Figure 5.7: The segmentation results for slice 35
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Figure 5.8: The segmentation results for slice 43

Figure 5.9: The segmentation results for slice 54
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The average run-time durations are calculated based oreingrited G+ source
code run on an Intel(R) Core(TM)2Duo 3.00GHz CPU with 1.95GB RANG and
listed in Table 5.1.

Table 5.1: The approximated durations for the frameworledas watershed trans-
form

Elapsed Time
Segmentation process
for an initial slice 21 sec
Overall segmentation
process 1281 sec

In Figures 5.10, 5.11, 5.12, and 5.13, 3D representatioaementation of lungs,
torso, bones, and heart generated from all segmentatioitges image set is de-

picted, respectively.
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() (d)

(e) (f)

Figure 5.10: 3D representation of 2D segmentation of lunys fdifferent views
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Figure 5.11: 3D representation of 2D segmentation of tarwm fdifferent views
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(c) (d)

(e) (f)

Figure 5.12: 3D representation of 2D segmentation of bormes different views
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(d)

(e) (f)

Figure 5.13: 3D representation of 2D segmentation of heam Qifferent views

110



5.3.1 Quantitative Evaluation of Segmentation Results

In this section, we compare the semi-automatically segeteimages based-on wa-
tershed transform with “Ground Truth” resulted from the malrsegmentation. Neg-
ative Rate Metric (NRM), Overlap Index (OI) and Similarity kd(SI) are used like

Chapters 3 and 4.
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Figure 5.14: Negative Rate Metric results based on compabistween the automat-
ically and manually segmented images for lungs.

In Figures 5.14, 5.15 and 5.16, negative rate metrics, mhjssdra segmented, and
overlapped rates and similarity indices are given base@omparison between the au-
tomatically and manually segmented images for lungs. Tfiggees have consistent
findings; all metrics imply similar conclusions on the penfi@ance of the watershed
segmentation algorithm. The slices between 7 and 11 haverdh& segmentation

results among all lung segmentation results. Panel (a)guir€i5.17 shows the image
from slice 7 along with its segmentation results. Here, thlers red, green, and blue
represent missed, extra segmented and overlapped reggspsctively. The numeri-

cal values of the evaluation metrics for these images acegiéen on the segmented
images. In this slice, since the upper part of the patiergist ilung has been subject

to an interstitial lung disease. For this reason, they agensated as torso using the
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proposed framework. In slice 55, shown in panel (b) of Figui&, the relatively bad
results are obtained for lung because of the high propodi@erimeter pixels to ac-
tual lung area. Because of this, faulty segmented pixels ast likely to take place
in the boundary regions of the structures. As for the remgirslices, we achieve
good lung segmentation results; for example, in some stigek as slice 29, similar-
ity index for lung reaches.09. Figure 5.18 shows lung segmentation results of two

slices (29 and 41) with good values of evaluation metrics.
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Metrics for lung segmentation
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Figure 5.15: Missed and extra segmented rates based on dearpaetween the
automatically and manually segmented images for lungs.
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(b)

Figure 5.17: Two examples of bad lung segmentation resugfist]; the slices (a) 07
and (b) 55. The original images (left) are also shown.
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NR: 0.0033
0Ol : 0.9941
S1:0.9950

(b)

Figure 5.18: Two examples of good lung segmentation regtdjist); the slices (a)
29 and (b) 41. The original images (left) are also shown.
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Quantitative results for thoraxial segmentation are givekigures 5.19, 5.20 and
5.21. In these figures, negative rate metrics, missed, s&fnaented, and overlapped
rates and similarity indices are depicted, respectivedgeld on comparison between

the automatically and manually segmented images.
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Figure 5.19: Negative Rate Metric results based on compabstween the automat-
ically and manually segmented images for torso.

In the thoraxial segmentation, we define bones and hearedabdnaxial tissues. On
the contrary, we exclude lungs from the thoraxial tissues.this reason, the faulty
segmented regions in lungs cause the segmentation perfoenfiar torso to decline.
As shown in Figure 5.20, the rate of extra segmented regiea&in the slices
between 7 and 11 since the upper part of the patient’s rigigf has been subject to
an interstitial lung disease. This also brings about theedese in the similarity index.
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hetrics for torso segmentation
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Figure 5.20: Missed and extra segmented rates based on deorphaetween the
automatically and manually segmented images for torso.

hetrics for torso segmentation
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Figure 5.21: Overlapped rate and similarity index basedamnparison between the
automatically and manually segmented images for torso.
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Quantitative results for bone segmentation are given inifeig5.22, 5.23 and 5.24.
In these figures, negative rate metrics, missed, extra sagoheand overlapped rates
and similarity indices are depicted, respectively, based@@mmparison between the
automatically and manually segmented images. Two examytagpoor evaluation
metric values examples came from slices 13 and 51 (see FigR% and the ones
with good results are from slices 19 and 33 (see Figure 5.@&)rding to both the
similarity index and negative rate metric. In these figuies,ahe colors red, green,

and blue represent missed, extra segmented and overlaggieds, respectively.
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Figure 5.22: Negative Rate Metric results based on compabistween the automat-
ically and manually segmented images for bones.

As shown in the Figures 5.25(a) and 5.25(b), this algoritnike active contours,
does not segment the pixels belonging to liver and stomadjoass. However, it
misses the pixels belonging to the spongy bones and thdagadi Around these
slices, the overall segmentation quality tends to decrésesethe mean value of Sl

(Figure 5.24)). Nevertheless, similarity index for bonemsahes to 80 in some slices,
as seen in the Figure 5.26.
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Metrics for bone segmentation

07 : . : T : T
—-—#-= Hate of extra-segmented region o
——#-- Rate of missed region u A F‘.L
0.6 s [T 4
A TR
[ ¥ K H \I!'
AR
05 1:*'1 H -'l”t' . -
* .
i i
I ! 4
[} 1
: ]
1
1
03 | ; i 4
: 1 1y !
] Iy |
L ' |
i . i
02 1 1 e 1
AR ! :
1 ] ! fl-l 1
-AVARNRTA f
J
ol ;% I LY I: il
! : R, a4
l_‘ 1-‘ - ,rr by -
0 Ih'_'l-_'Jl"'P.! \-l “-‘..H..-.g-k-
0 10 20 30 40 A0 =] 70

Mumber of slices

Figure 5.23: Missed and extra segmented rates based on dsarphetween the
automatically and manually segmented images for bones.

Metrics for bone segmentation
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Figure 5.24: Overlapped rate and similarity index basedamparison between the
automatically and manually segmented images for bones.
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NR: 0.1655
Ol : 0.6691
S1:0.7990

NR: 0.3285
Ol : 0.3430
S| :0.5108

(b)

Figure 5.25: Two examples of bad bone segmentation resigtg); the slices (a) 13
and (b) 51. The original images (left) are also shown.
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NR: 0.0473
0Ol : 0.9057
S1:0.9436

(b)

Figure 5.26: Two examples of good bone segmentation re@igts); the slices (a)
19 and (b) 33. The original images (left) are also shown.
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In Figures 5.28 and 5.29, missed, extra segmented, ancpped rates and similarity
indices are depicted based on comparison between the aidallyaand manually

segmented images for heart. According to both the simylamdex and negative rate
metric, bad results are observed in slices 21 and 39 (seg &8he good ones are
from the slices 19 and 37 (see 5.31). In these figures, the cotbng is the same as

in previous results.
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Figure 5.27: Negative Rate Metric results based on compabistween the automat-
ically and manually segmented images for heart.

Because of the usage of intravenous contrast material, gorgidm misses the pixels
belonging to muscle.g., the red regions) as seen in Figure 5.30(a). On the contrary,
it catches the pulmonary vessel®( the green regions) due to their high intensities.
In slice 39 shown in Figure 5.30(b), our algorithm does natdpice good results
because of the uncertain boundaries of the heart. Nonstdleere are some slices
such as 19 and 37, where similarity index rises ovéi7 (s seen in Figure 4.30.

Like the framework based on thresholding, the algorithm matsable to segment the

descending thoracic aorta.

For the segmentation of all tisues or organs in upper tolsotean values and the
standard deviations of NRM and Sl are given in Table 5.2. Thesdts indicate that
the best results are obtained for lung segmentation becdtise highest mean value
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Metrics for cardiac segmentation
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Figure 5.28: Missed and extra segmented rates based on dearphaetween the
automatically and manually segmented images for heart.

hletrics for cardiac segmentation
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Figure 5.29: Overlapped rate and similarity index basedamnparison between the
automatically and manually segmented images for heart.
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NR: 0.2978
Ol : 0.4074
Sl :0.5267

(b)

Figure 5.30: Two examples of bad cardiac segmentationtse§ught); the slices
(2)21 and (b) 39. The original images (left) are also shown.
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NR:0.0175
Ol : 0.9650
S1:0.9810

NR: 0.0267

Ol : 0.9466
S1:0.9725

(b)

Figure 5.31: Two examples of good cardiac segmentatiotse@ight); the slices
(2)19 and (b) 37. The original images (left) are also shown.
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and lowest standard deviation of SI. On the contrary, thestwvesults are obtained for
cardiac segmentation due to the lowest mean value and thedtigtandard deviation
of Sl

Table 5.2: The mean values and the standard deviations of NRMsafor segmen-
tation of lungs, heart and bones using thresholding

NRM Overlapping | Similartity Index
Meary/Std Mean/Std Mean/Std
For lung | 0.02700.0494| 0.94670.0990, 0.96670.0617
For bones 0.16520.1152| 0.670%0.2309| 0.76730.1647
For heart| 0.30820.2115| 0.38440.4237| 0.41630.4430
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CHAPTER 6

DISCUSSIONS AND CONCLUSIONS

In this dissertation, three semi-automatic frameworksttier segmentation of main
tissues and organs in the human upper torso were proposathplanented on CT
images. In the first framework, the main segmentation algariis thresholding;
component labeling and morphological operations are us@dadp up the theshold-
ing framework. In the second framework, active contour nhedthout edges (also
known as Chan-Vese method) is applied with component lagpelimthe third frame-
work, watershed transform (as a segmentation algorithmdymes a large number
of regions. This is an undesirable situation, known as @grentation. By using
k-means clustering, these regions are merged with respéiceir average values of
pixel intensities. The performances of each of these tihmaadworks are appraised
for each tissue in the upper torso by comparing the segmemtasults quantitatively

with manual segmentation results.

According to validation metrics for segmentation resuttsjoiced by the three frame-
works, none of the frameworks can give a complete and rolmlistien for segmen-
tation of all the tissues or organs in upper torso. Each niettas some advantages
and disadvantages, and produces accurate results for segioe of a specific organ
or tissue.

Here, we make a comparison of the quantitative segmentegsuits for each tissue

or organ in the upper torso with respect to methods usedsrtltesis.
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Table 6.1: Numerical results for segmentation of lungs

NRM Overlapping | Similartity Index
Meary/Std MearyStd Meary/Std Elapsed Time
Framework using
thresholding 0.02700.0317 | 0.94790.0642 0.95900.0397 55 sec

Framework using

active contours 0.03800.0494 | 0.92500.0992 0.95120.0610 187 sec
Framework using

watershed transform 0.02700.0494 | 0.94670.0990 0.96670.0617 1280 sec
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Figure 6.1: The quantitative performance metrics for lungisig each method. (a)

Mumber of slices
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Negative rate, (b) Overlap Index, (c) Similarity Index
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Lung Segmentation: According to the validation metrics and the elapsed time for
lung segmentation, the framework based on watershed trengiroduces the best
results but its elapsed time is too long. On the other harafrdmework based on
thresholding produces the results very close to those aérala¢d transform and its
elapsed time is about twenty times lower. Therefore, thetrmpsmal solution to

lung segmentation in the proposed methods is the framewas&don thresholding.

As for the comparison between the results from this study thedprevious work
in the literature, the segmentation accuracy of each pegpssheme in this thesis
is reasonable. Moreover, the time cost for thresholdingery Vow. As a previous
work, Puet al. state that the percentage of volume overlapping i& 23.0% when
the diferences in lung volume are considered for lung segmentatioime 43 CT
examinations and the computational cost takes about 7 esriat a CT examination
using a desktop PC computer (AMD Athlon 642 Dual 211 GHz and 2 GB of
RAM). Our proposed thresholding framework produce the segatien results for

lungs with the overlapping ratio approximately 95% iB énin.

Table 6.2: Numerical results for segmentation of torso

NRM Overlapping | Similartity Index
Mean/Std MearyStd MearyStd Elapsed Time
Framework using
active contours 0.00770.0045 | 0.99100.0072| 0.99180.0054 187 sec
Framework using
watershed transform 0.000540.0041 | 0.99300.0068 | 0.99420.0049 1260 sec

Thoraxial Segmentation: According to the performance metrics, like lung seg-
mentation, the frameworks using active contours and wagersransform produce
similar results for thoraxial segmentation. For this reagbe elapsed time plays a
dominant role to choose the best method. According to TaldetBe framework

using active contours is preferable due to its shorter durat
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Bone Segmentation: According to the performance metrics shown in Figure 6.3,
for the slices between 5 and 37, the framework using watdrsh@sform provides
good results but its performances for the number of slicegefathan 37 gradually
decline. For these slices, thresholdings gives the besttsesAs for overall per-

formance, thresholding is the optimal method due to its tihmaand performance

metrics given in Table 6.3.
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Table 6.3: Numerical results for segmentation of bones

NRM
Mean/Std

Overlapping
Meany/Std

Similartity Index
Mean/Std

Elapsed Time

Framework using

thresholding 0.14770.0407 | 0.70690.0817 0.78630.0614 40 sec
Framework using
active contours 0.14570.0412 | 0.756%0.0902 0.54460.2702 1659 sec
Framework using
watershed transformp 0.16520.1152 | 0.670%0.2309 0.76730.1647 1281 sec
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Table 6.4: Numerical results for segmentation of heart

NRM Overlapping | Similartity Index
Mean/Std Meany/Std Mean/Std Elapsed Time
Framework using
thresholding 0.23540.2028 | 0.52990.4061 0.57130.4228 30 sec

Framework using

active contours 0.09940.0428 | 0.802}0.0854 0.867%0.0569 1659 sec
Framework using

watershed transformp 0.30820.2115 | 0.38440.4237 0.41630.4430 1281 sec
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Cardiac Segmentation: According to the performance evaluation metrics shown
in Figure 6.4, for the slices in the ranges 15-19 and 29-3¥ frdamework using wa-
tershed transform provides good results but its overafbperance is lower than the
other methods. For the segmentation of the rest of the sliedgor overall segmen-
tation, active contour method produces relatively goodltesxompared to the other

methods as seen in Table 6.4.

As a conclusion, for each tissue or organ, we should ugerdnt methods. Moreover,
the combination of these methods can be mdlieient for even a single structure.
For lung and torso segmentation, the thresholding provédégient segmentation
results and its performance metrics are very good. On ther dthnd, for bone and
cardiac segmentation, employing hybrid methods can beuwticolto improve their

segmentation performances. In addition, the local saistimstead of performing
segmentation on the whole image, or employing full 3D segatem techniques

may lead to the enhancement of the segmentation results.
There are still unresolved problems and points to improseilte in this thesis. In

future work following studies can be performed for furth@provements:

e The combination of dferent methods may be applied to obtain a complete
effective and robust solution for cardiac and bone segmentatidsing the

advantage of each method, we can improve the segmentasioltsie

e For the visualization of the 3D representation of the stites, surface meshing

may be performed on the 2D segmentation results.

e 3D segmentation methods may improve the bone and cardiatesggtion re-

sults despite their high computational cost.
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Appendix A

SEGMENTATION VALIDATION METRIC

A.1 Negative Rate Metric

Negative rate metric evaluates a false negative (ruﬂéfn) and false positive rate
(NR¢p) as shown in Equation A.1. This metric is based on a pixel-wigmatches

between the base image and the segmented image.

1
NR= E(Nan+ NRp) (A.1)
where
an
NRify = ———
fn th+ an
N¢p
NRif, = ———

Ns, (false positive) : Number of incorrectly detected pixels
N¢n (false negative) : Number of undetected pixels that belorapject of interest

Nip (true positive) : Number of correctly detected pixels thatoing to object of

interest
Ni, (false negative) : Number of correctly rejected pixels

For the negative rate metric, the lower the score the bétgealgorithm is at correctly

segmenting the object of interest that matches the ideaisetation mask in the base
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image. In the ideal case, NR is equal to zero.

A.2 Quantitative evaluation based on calculating missed xra segmented and

overlapped regions

Referehce Regloh  Segmented Region

Figure A.1: Quantitative evaluation is performed by cahtimg missed, extra seg-
mented and overlapped regions.

The measures used throughout the evaluation process @ade of overlapped re-
gion), E (rate of extra-segmented regiol),(rate of missed region), Similarity Index
(SI) [37] (see Figure A.1) and Relative flBrence Measure [128]. Mathematical

formulations of the measures are given below.

» Number of extra-segmented pixels

E .
Number of reference pixels

Number of missed pixels
Number of reference pixels

1>

M

» Number of overlapped pixels
~ Number of reference pixels

A 2 x Number of overlapped pixels

| =
S Number of reference pixels Number of segmented pixels
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Appendix B

BACKGROUND: THE ACTIVE CONTOUR MODEL
WITHOUT EDGES

B.1 The Chan-Vese Active Contour Model For Image Segmentation

Chan and Vese introduced dlerent approximation of the Mumford-Shah (MS) en-

ergy functionalEys (equation B.1), which measures the degree of match between an

image and its segmentation, so as to reveal boundaries objhet to be segmented
without using the gradient of the image to stop the evolviagye on its boundaries
and control points to interpolate the contdlif4]. Moreover, the selection of ini-
tial curve does not critical influence on the segmentatiofopmance. This model is
based on implicit surface evolution. Owing to this impli@presentation, the topo-

logical changes such as splitting and merging can be detect®matically.

Ems (u,C) = af IVUl? 9xdy +,8f (u—1)?9xdy + u.length(C), (B.1)
Q-C

Q

whereQ c R? is connected and bounded image domaiis the orijinal image de-
fined in the image domaif2, C c Q is the set of edge curvesjs a piecewise smooth
approximation of the imagk In addition,a, 8, andu are the positive real constants
which arrange the weights of the terms and settle the scaleaegmentation and

smoothing.

The zero level set of this surface represents a moving curgldélas curve captures
boundaries or tracks interfaces in the image. The Chan-Veshau, which is a
region-based segmentation method, is less sensitive tnitindization and more

robust to noise than other active contour techniques sudnalse. According to
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this method, an image is separated into homogenous regjousiig this level set
function. These regions consist of the image parts withectnean values. An energy

functional proposed by Chan and Vese [4] is defined as;

Ecv (C, ¢y, o) = u.length(C) + v.areqinside(C))

+ A1 f I — ¢y IXAY + Az f Il — col? OXy, (B.2)
insidg(C) outsid€C)

wherel is the given imageC (s) : [0,1] — R?is the curvec; andc, are the real
constants and they rely @ x andv are fixed parameters and equal to or larger than
zero, bothy;s are positive fixed parameters.

As for the relation between CV model and MS functional, the C\delas con-
sidered piecewise constant generalization of the miniragtign problem of the MS
functional. It can be considered as the reduced form of thepké®lem fory = 0,

A1 = A, = A. In this particular situation, the boundatyis considered as a snake or

an active contour and the approximatioof the image can be defined as

c1, inside(C),
u=
Co, outside(C),
wherec; andc, are the average intensity values of the pixels in§idend outsideC

in the image, respectively

The CV model is based on the MS functional and both can be usetthidamage
segmentation purpose. However, CV model and MS functiomaskghtly diferent.
The main objective in the MS model is to generate an appraxamanf the initial
image composed of homogenous regions. The Mumford-Shalelnsédppropriate
to handle an image in which all boundaries are important bay are seperated by
sharp edges. On the contrary, the aim in the CV model is to td#tedoundaries
of objects in an image. If one deals with an image in which djecobjects are
significant and we want to detect the boundaries of objedtsont sharp edges, one
can use the Chan-Vese model [129].
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O-m
<0

Figure B.1: A curve from the zero level set of the Lipschitzdtion ¢ is the boundary
between the regiong(x,y) : ¢ (x,y) > 0} and{(x,y) : ¢ (X, y) < 0}.

The Level Set Formulation of the CV Model: The level set method is used to
address the diculty from the classic active contour models by minimizihg Chan-
Vese energy functional. In the level set formulation, themo explicit contou and
implicit representation is given by the zero level of a Lip$z functiong instead of
C. Therefore, the CV model is reformulated by substitutinfpr C (equation B.3).
This implicit curve physically overcomes the topologicabages, such as splitting
and merging. In addition, independent of the initial pasitithe curve automatically

detects interior contours.

Ecv (C, ¢y, Co) = u.length(¢) + v.areainside(¢))
+ ﬂlf I — c1? 9%y + azf I — col? %Ay, (B.3)
#>0 $<0)

The zero level set of scalar Lipschitz continuous functisnepresented as(x, y) :
Q — R whereQ c R2. The level set functions (x, y) satisfies the following condi-

tions (see Figure B.1):

inside(C) =w ={(x,y) € Q: ¢ (x,y) > 0},
outsideg(C) = Q/w = {(X,y) € Q: ¢ (X y) < 0},
C=0w= {(X’y) €eQ: ¢(X’y) =0},
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Heaviside functiorH and the one dimensional Dirac meastirare used to express
the terms in the energy.

] 160
| oifg <o,
5(¢)=%H(¢)

The terms related with length and area in the energy funaticem be defined as:

engtnio) = [ [ H@oay= [ [ s@)vaioay

area(p) = fg [ He ooy

The remaining terms can be replaced as:

f¢>of“ —C1|26x6y:j;f|| _ G2 H (6) 0%y,
f¢<of" ~afoay= [ [1-af @-H @)ooy

Finally, the energy function can be written as:

Ev(Covc) =p [ [H@Iday+v. | [H@axy

mfgfu —c1|2H(¢)axay+Azfou ~ G2 (1~ H (¢)) 9.

The first term of theEcy and also the solution of minimization problem cannot be
computed because the Heaviside functibrs not diferentiable at 0. Therefore, one
can use the regularized versions of the Heaviside fund¢iand the dirac measure
6 in order to obtain a global minimizer. There are two possibpualization of the
Heaviside functiorH by C? (ﬁ) functions, as given in [4]. These are
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lifp>e
Hic(¢) =4 0if ¢ < €
L1+¢+ Lsin(2)] if 19l <.

and

1 2
Hoe (0) = > (1 + ;arctar(%)).

In our experiments, we use the second regualization of tlaikiele function. As we

know thatH’ (¢) = 6, we can compute the dirac measuras

5.(6) = H.(9) = ==

e+ g2

Whene goes to zeroH, (¢) andé. (¢) converge taH andé, respectively. By using
the slightly regularized versions of the functiodsandé, the energy functional can

be rewritten as

E. (6,C1,Co) = . f f 5. (6) IVl 0xdy + v- f f H. (¢) a3y
Y fg f Il = caf? H, (6) 3%y + fg f Il — o2 (1 - H. (¢)) 9xdy. (B.4)

whereH, andé, are the regularized versions dfands and|VH, (¢)| = 6. (¢) |[V4|.

E. is minimized with respect t@ sincecy andc, are fixed. Gateaux derivative of

enegy functional in the direction is used:

Ec (¢ + ty, €1, Co) — Ec (¢, C1, Co)
t .

DyEc (¢, C1, Co) [¢] = lim_o (B.5)

Gateaux derivative of the term fQ f 0c (¢) |Vo| 0xdy (see Appendix C) is

_ (Ve
i [ [oco (w ¢|)waxay (B.6)
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Gateaux derivative of the term| [ H, (¢) dxdy (see Appendix C) is

v fg f 5. (¢) woxdy (B.7)

Gateaux derivative of the termy [, [|I - cy* H (¢) 9xdy (see Appendix C) is

2 fQ f Il = a6 (¢) wdxdy (B.8)

Gateaux derivative of the teriy [ I — co* (1 - H (¢)) 9xdy (see Appendix C) is

~ o [ [ - cia 0oy (8.9)
Q
Manipulating the derivatives mentioned by Equation B.6, B.B and B.9, one can

obtain the following

DyEc (¢, c1, Co) [¥/]
Ec (¢ + ty, €1, Co) — Ec (¢, C1, Co)

= Iirnt—»O

t
sanl 6€<¢)v-(%)waxay+v | [ o @oay

+Lf(/llll —ci? = Al —00|2)65 (¢) yoxay
(B.10)

: g _
Slnce% =0,

(Y _,
[} [ (o @7 () - .00 waray

+fgf(ﬂl|l ~cif’ — 2]l - col?) 8¢ (¢) paxdy = 0 (B.11)
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By using the fundamental lemma of the calculus of variatiahs,following Euler

Lagrange equation faf is obtained.

V¢
de (¢) (,UV : (W) —-v- (/11 Il = e’ = 221 - Co|2)) =0 (B.12)

99
on

=0o0noQ

Numerical Approximations: So as to find out the solution to the Euler-Lagrange
equations, we apply the steepest descent algorithm insh@adited sense introducing

an artificial time parametér The distributed iteration formula for the steepest detscen

algorithm is given as

op (Vo) 2 o2y -
E—&(@(ﬁlv (|V¢|) v (/11“ Cyl” — 2]l Col))—o

¢ (L. Xy) =¢(0,xy)inQ

Se(¢) 99 _
Vol on = 0 onoQ2

B I, [ TH< (¢) oxdy

= INEOE = averagg(l) in¢ > 0. (B.13)
Q €

1

o1~ H.(6)) dxdy

Co = J;z f(l T HL(9) 93y = averaggl) in¢ < 0. (B.14)

Method of finite diferences is used to approximate the iteration formulahlbet the
space, time stefst and(x,y) = (ih, jh) be the grid points. Lep" = ¢ (nAt, ih, jh) be
an approximation od (t, x, y) with n > 0. The finite diterences are

Adij = disrj — dij AXdij = dij — diaj
Npij=dijo1—dij N dij=dij— dij1
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Discretization of the Euler-Lagrange equation yields

(B.15)

ntl _ gn
PP o) e o) )
=6 (¢7) (Al = caP = 221 = o)
where
ACH
ZH(o7))
1 (1-He(eh)))
o =
% (1 He(o)
He (o)) = %(1 + ;Tarctan(%rjj))
1 €
Oclo)) = =——
( I,J) 7T€2+( IrjJ)Z
_ v (Y Y
X(‘pin,i) =V (|V¢|i,j)
¢in+%,j_¢in—%,j
Vo, = '¢" lhqs_”._; ]
|vJ+2 1] 2
h
ver| = J[«zﬁﬁ%,j—(p{'%,j]i(@“%—¢;jj%JZ
g h h
K = |Vl
Vo n 1 — %
_ - h
(m)i’j K "5:,4%“”:,-%
L h
Vo\' 1 (P4 A i A
x(#hey) = % (A%g0; - A%e7; + ALYy - A

Initial state of¢ can be chosen an arbitrary curve around the objects of sitigréhe

image.
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B.2 2-Phase Piecewise Constant Active Contour Model Without Egks

In this section, the generalization of the 2-phase pieewistant active contour
model without edges [4, 94] and piecewise constant segiti@mtaf images with
more than two segments and junctions are using MS energtidaiat. As known that
using only one level set function, one can represent onlyghases or segments in
the image. As a result of this, other geometrical featurespmsed of more than two
segments cannot be represented using only one level seidiunith a multiphase
level set model, one can represent more than two segmentsse®, triple junctions
and other complex topologies, in affieient way. In order to representphases or
segments with complex topologies, obg,n level set functions are required. Since
this partition is a disjoint decomposition and coveringled iomairnQ2 by definition,

it removes the problems of vacuum and overlap.

0l<0
02<0

Figure B.2: An example of partition of the image in regionshAbbundaries repre-
sented via two level set of the Lipschitz functidgs = 0} U {¢, = 0}.

Let us considem = log,n level set functiong; : Q@ — R. The union of the zero

level sets ofp; represents the boundaries in the segmented image (see Bd)r
By using the regularized versions of the functidth&ndgs, the 2-phase energy func-
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tional considered in CV active contour model without edgeswstten as

Ecve (91, 92, C11, C10, Co1, Coo) =

" fg f 5. (62) IVehs] XDy + iz fg f 5. (62) IV Oxdy
ny f f H, (¢1) 9%dy + v f f H. (¢2) 93y
Q Q

+ /hlfg f|| — ¢ He (¢2) He (#1) 9%y

+ Ao fg f I = ol He (62) (1~ He (62)) 9xdy

+ /101j;2 f“ — Col? (1 - He (¢2)) He (¢1) 00y

+ oo f f 1= Cool? (1= He (62)) (1 — H. (¢2)) 93y (B.16)

whereH, andé, are the regularized versions dfands and|VH, (¢;)| = 6. (¢i) IV il.
In addition,H, andds, are

1 2 éi
H.(¢)) = §(1+ ;arctan(?)) (B.17)
S8) = W)= (8.18)

E. is minimized with respect t@; sincec,,s are fixed. Gateaux derivative of enegy

functional in the directiony; is used:

Ee (¢ + i, ...) — Ec (9, ---).

D¢i Ee (¢i’ ) [l/ﬁ] = limt—>0 t (Blg)
Gateaux derivative of the term [, [ 6. (¢1) V4| 9xy (see Appendix C) is
Vo
— Ui 0c (d) V - | =— | yioxd B.20
w [, f o (lw)‘” > (520

Gateaux derivative of the term [ [ H. (¢) 9xdy (see Appendix C) is
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" fg f 5. (¢1) yi0xdy (8.21)

Gateaux derivative of the term, [, |11 — cul® H (¢1) ...0xdy in the directiony; is

limy_odxx f f Il = Ceul? H(¢'+tw) H(6) ..OX0y

E(¢)+ ‘9“3;5"") i - He (¢1)
= [imy_ 0y f f I = Cul? ' ...0X0y

= /lxxff“ _Cxxl Hé (¢|)¢|3X5y
Q

= /lxxf f“ - Cxx|2 Oc (¢|) lﬁin-axay (B-22)
Q

Gateaux derivative of the termy [ [ — cud® (1 - H (¢1)) ...0xdy in the directiony;

is

Iimtqo/lxxf fll — Cel? (1-Hg+ w/iz) —(A-H (¢i))...6x8y

—He (¢) - F52 -ty + He ()
= limi_0Axyx f f Il = Cyol? ...0X0y

t
= _/lxxf f“ - Cxxl Hé (q),)t,//.ax@y
Q
= _/lxxf f“ - cxxl2 65 (¢i)‘r//i-~axay (B-23)
Q

Manipulating the derivatives mentioned by Equation B.20,1BR.22 and B.23, one

can obtain the following
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D¢>i Ee (¢1, ¢29 Cxx) [lpl]
Ec (1 + t1, 2, Cux) — Ec (¢1, 2, Cx)

= ”mt_)()

t
\Y
= —/llf f& (@) V- ( o1 )%1/15X3Y+ Vlf f& (¢1) y10x0y
0 V] 0

+ f f(/ln“ —cul® = Aol - C10|2) e (¢1) Y1 H (¢2) 00y
Q

+ L f(/101|| — Cotl* = Aooll — Coo|2) e (01) Y1 (1 - H (¢2)) 0x0y (B.24)

; 0p1 _
Slnce% =0,

116, @) V(S22 )~ 15, (61) | vndxdy
Q Vol

+ f f(/hl“ —cpl? = Agoll - ClO|2) e (¢1) Y H (¢2) 00y
o

+ ‘[Q f(/101|| — Cotl* = Aooll — Coo|2) e (91) Y1 (1 - H (¢2)) oxoy
=0 (B.25)

By using the fundamental lemma of the calculus of variatiahs,following Euler
Lagrange equation fa#, is obtained.

\Y
e (1) (ﬂlV ' (lvz;) -V - (/111“ — cpaf® = Aol - ClO|2) H (¢2))

—dc (1) ((/101 Il = Cotl® = Aooll — Coo|2) (1-H (¢2))) =0 (B.26)

1 _
a—nl = 00noQ;

With the same manner, the following Euler Lagrange equdtiom, is obtained.

\Y
e (¢2) (ﬂzv ' (%) - Vo= (/111“ —cul® = o1l - C01|2) H (¢1))

= 8. (#2) (A0l = aol® = ool — Cool®) (1= H (¢2)) =0 (B.27)
%2 = 0 0noQ,
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Numerical Approximations To find out the solution to the Euler-Lagrange equa-
tions, we apply the steepest descent algorithm in the ldiged sense introducing an
artificial time parametet. The distributed iteration formula for the steepest descen

algorithm is given as

% = 0 (¢1) (,UlV : (;Zil) -V = (/111“ — Cu1l* = Aaoll — ClOlz) H (¢2))
—6c(¢1) ((/101 Il = Cor® = Agoll = Coo|2) (1-H (¢2))) =0 (B.28)
% = 0 (¢2) (ﬂzV : (%) - V2= (/111“ — cua* = Ao |l — C01|2) H (¢1))
= 6. (#2) (A0l = aol® = ool = Cool®) (1= H (¢2))) =0 (B.29)
Fork =1 and 2,

¢k (t’ X, Y) = ¢k (O’ X, Y) in Qk

Je(d) Ik _
Ve on 0 ondQ

_ fQ f IHc (¢2) He (¢1) 9x0y
I, [ He (@2) He (¢2) 9xdy

C11 = averag€l) in ¢, > 0 andg, > 0 (B.30)

3 I, [ THe (62) (1 = He (1)) 00y

B TR G A ey o) nesOand =0 B30
 Jo J V(@ = He(@2)) He (¢2) 3y _
TR @) P gy eood) s> Dandg <0 (8.32)
o D[ VAH DA H @Oy o ande <0

T[T @ He (62)) (- H. (60)) %0y
(B.33)
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Method of finite diferences is used to approximate the iteration formulahloet the
space, time stept and(x.y) = (ih, jh) be the grid points. Lep} = ¢« (nAt, ih, jh) be

an approximation oy (t, x,y) with n > 0. The finite dfferences are

AN = divrj — ¢ij AXdij = dij — di-1

Npij=dije1—dij ALdij = dij— dij1

Discretization of the Euler-Lagrange equation yields

N1 ()0
(Fu), N Wi _s, (@07) (e (@)7) = v2)

Oc ((¢1)irjj) (/111 Il = cul® = Aol - Clo|2) H ((¢2)irjj)
8c (@) (Aoall = cosl® = Aooll = Coo) (L= H((#2)7;))  (B.34)

n+l _ 0
W0 b (@0t (oo () - )

Oc ((¢2)irjj) (/111 Il —cul® = Ao |l - C01|2) H (((pl)irjj)
Oe ((¢2)irjj) (/110 Il = C10” = Agoll — Coo|2) (1 -H ((¢1)irjj)) (B.35)

where

 ZIH((@20) He (@0f))

TSR (@) He (00

o SIH((627) (1= He ((22)7))

Y S H (@) (- He((00n)
(2= He(@20)) He (@)

T S (L A (@) He (@0
X1 Ho(@2)) (2 - He (o)

T S (- A (@) (- (@)
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(@) = [ Zarcan( 1)

T €
1 €
Se(() = =———
T me ()
n Vi "
ny — y.|l—2%
X((¢k)l,]) (|V¢k||,1)
(¢k)in+l$j _(¢k)in_l,j
2 R 2
V(‘/’k)in,j =
(¢k):j+%—(¢k):ji%
2
N ((]Sk)ln_'_%,J - (¢k):1_%’1 2 (¢k):J+% - (¢k)|rjj_% 2
V(o7 = h + h
Ke = V(g7
i (¢k)in+%,j—(¢k)r_%,j
(%)“ Y
|V¢k| i N Kk

(G (9
Ljt+5 -5
h

v. (%)n 1 ((@ihe — (@) B (@ = (D), N (@71 = (@7 _ (@ = (D11
i

Ve Ky h2 h2 h2 h2
1
X (@) = e (A0~ AX (@0 + AL (6T - A% (8

Initial state of eacl®; can be chosen an arbitrary curve around the objects of sitere

in the image.
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Appendix C

GATEAUX DERIVATIVES OF THE CHAN-VESE ENERGY

FUNCTIONAL TERMS

C.1 Gateaux derivative of the termy [, [ 6. (¢) [V¢l dxdy

Gateaux derivative of the term [ [ 6. (¢) |V¢| dxdy in the directiony is

i [ [T 0 WVl
Q

t

Subtracting and adding the tedn(¢) |V (¢ + ty)| to numerator, we obtain

i, o fQ f 5e(¢+w)IV(¢+twt)|—af(¢) IV (¢ + t)

RACLIGIIR RO

= |imt_)o/.lf f Oc (¢ il twt) ~ O (¢) |V (¢ + tlﬂ)l Bxay
Q

+|imt—>0,uff66(¢) IV(¢+tli/)|—|V¢|aXay
Q

elime f f 56(““”)“5‘(‘” IV (6 + )] 9xdy
Q

Se (¢)+ 20 -ty - 5. (9)
~ limeou f f IV (6 + )] Oxdy

t
'ufgfaf?(@
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°|imtﬁo,uff5 ) IV(¢+U//)| |V¢|ax6y
Vo| + I tvy — |V
= lim_ou f f Se (¢)| ¢| Al t v ¢|6x8y

- f f 5. (¢)wvwax«9y (C.4)

Substituting both results in Equation C.1, we may get

”mt—>0/1ff5 (¢ +t) |V(¢':tl//)|—5e(¢) |V¢|0X8y
%.0), Vo.vu
ff +0c(9) =5 Vol 2% (C.5)

After Green’s theorem is applied, we may obtain

o fg f 5. (9) V‘f’v';‘”axay
L@ e
K SQQ Vel an fgf ¥y (56 (@) |V¢|)‘9X‘9y (C.6)

Substituting Equation C.6 in the right side of Equation C.5cae get

9% (¢) ()09 oo AL
# fg o W IVOIOOY 56|V¢| an? s fgf (5 @) V¢|)M(C8y7)

Developing the divergence operator

wf [ (6 (¢)@)waxay

_ 95 (9) Vo
_ f [ <9 waganay s f [o@v. (Wl)wxay c.8)

We may write the right side of Equation C.5 as
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f s sy S o
f faa D 191 yoxy - f f e (P V- (lvﬁ|)¢axay (C.9)

for all admissibley. Slnce""’ 0, we eventually can get

) v
i [ [owv (w ¢|)¢/axay (C.10)

C.2 Gateaux derivative of the termv [ [ H, (¢) 9xdy

Gateaux derivative of the term| [ H, (¢) dxdy in the directiony is

“mtﬁovffH (¢+t1//) He (¢)0xay

- f [ He@ oy

:vfgfé6 (¢) woxoy (C.11)

C.3 Gateaux derivative of the terma, [ [|I — ci* H (¢) 9xdy

Gateaux derivative of the term [ [ I — cuf” H (¢) 9xdy in the directiony is

Iimtﬁo/llf fll —qf? H (¢ HM —H (¢)6xay

He (¢) + Dty — H, (9)
= ||mt_>0/llf f“ - C]_l (9X8y

t
Y f f I — 2 H. (6) wdxdy
Q

) fg f I = 26, (6) wxdy (C.12)
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C.4 Gateaux derivative of the term., [, [|I - cof* (1 - H (¢)) dxdy

Gateaux derivative of the teriy [ I — cof? (1 - H (¢)) 9xdy in the directiony is

oty [ [0 cp EZHETUD - HO),,,

—H (¢) - %2 -ty + H,(9)
= |imt—>0/12ff|| — Cof? oxoy
Q

t
N f f Il = Col2 HZ (6) wdxdy
Q
I f f Il - coP2 5. (6) wdxdy (C.13)
Q

165



Appendix D

SOFTWARE USER GUIDES

D.1 Graphical user interface for filtering operation

Figure D.1: GUI for filtering

The graphical user interface for filtering is shown in FigDxé. After the user clicks
the button called “Filtrele”, anisotropic filtering is ajgd on the medical image data
set. The original medical images are stored in the folderathas “Orijinal’. The
filtered images are stored with the file format “.bin” in théder named as “Filtered”.
In addition, the original and filtered images are depicted$ing the scroll bar in the
GUL.
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tanual Segmentation Result
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Figure D.2:

(b)

GUI to monitor the segmentation results
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D.2 Graphical user interface to monitor the segmentation reults

This interface shown in Figure D.2 is used to monitor the sagation results and
to calculate the metrics for the evaluation of segmentatibhere are a scroll bar,
two combo boxes, a check box, and three images. If the checkdegmented” is
unchecked, the left two images show us the original anddilterersion of the slice
selected by using the scroll bar. If it is checked, the predaand manual segmen-
tation results are monitored in the first two images. In tightrimage, the missed,
overlapped and extra segmented regions are shown for tnese determined by
the user using the combo box. the proposed method is selettethe other combo

box. Moreover, the evaluation metrics are calculated anthm@d in the GUI.

| B I | L= DnsyayaYazi DusyaKapalI Dospadanivikle

™ Diizel

4 | |

Figure D.3: GUI for manual segmentation using watershatstoam

D.3 Graphical user interface for manual segmentation usingvatershed trans-

form

This interface depicted in Figure D.2 is used to help an éxpemake manual seg-

mentation. There are a scroll bar, a combo box, two checkdydlkece buttons, and

168



two images. By clicking three points with a mouse, an expestatids the table on
which a patient lies from the image and the watershed tramsi® perform on the
image. If the check boxes “Geri al” and “Duzelt” are unchetkany region can be
labeled by an expert with a mouse. If the check box “Geri athecked, an expert
undoes labeling of the region. If the check box “Duzelt” i:cked, the software
gives a chance an expert to select any triangular regionaladbél the pixels inside

the region with the structure determined by the user usiagtmbo box.

Figure D.4: GUI for the framework based on thresholding

D.4 Graphical user interface for the framework based on thresholding

This software depicted in Figure D.4 is used to make seminaatic segmentation

based on thresholding. There are a scroll bar which is usethéoselection of the
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initial slice. By clicking two points with a mouse, the usersdebes the region of
interest in the initial image. After defining the region ofarest, the user chooses a
pixel belongin to the structure to be segmented. Then thevacé performs segmen-
tation of the structure selected by user for an initial sli8g clicking the button, the

user continues the segmentation for the remaining slices.

Al =l i il DosyaAcl F\es\rnm\al DosyaKapatl I~ Sirekli

Figure D.5: GUI for the framework based on active contours

D.5 Graphical user interface for the frameworks based on adve contours and

watershed transform

The interfaces for the frameworks based on active contoudsnatershed transform
depicted in Figures D.5 and D.6 are used to make semi-auimsagmentation based
on active contours and watershed transform. A scroll basésidor the selection of
the initial slice. By clicking three points with a mouse, ampert discards the table
on which a patient lies from the image and the watershedftsamgs perform on the
image. Then the software performs segmentation of all obthecture for an initial
slice. By clicking the button, the user continues the segatemt for the remaining

slices.
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Figure D.6: GUI for the framework based on watershed transfo
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Appendix E

HOMOGENEOUS REPRESENTATION OF LINES AND
POINTS

E.1 Representation of lines

A line in the plane is represented by an equation sudxasby + ¢ = 0. Different
lines can be obtain by selectingfdirenta, b andc. Therefore, a vector(b, ¢)" can
represent a line. The equatioas+ by + ¢ = 0 andkax+ kby+ kc = O represent the
same line, for non-zero constdatFor this reason, the vectois b, ¢)" andk(a, b, )"
also represent the same line, for non-zero congtantdeed, two such vectors related

by an overall scaling are considered as being equivalent.

E.2 Representation of points

A point (x,y)" lies on the line & b, c)" if and only if ax+ by + ¢ = 0. This equation
may be written in terms of inner product of vectors; that isy(1)(a, b,c)". Thus,
the point &, y)" in R? can be represented by a vectrny( 1). Like line representation,
two such vectorsx y, 1) and kx ky, k1) represent the same pointf.
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E.3 Line joining points

An expression for the line passing through two poi#ndx could be driven by the

definition of a linel'by I'= X x X.

i ]k
= Xx X = Xj X
4 X] xl/(
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