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ÖZET 
 

Bu çalışma üç bölümden oluşmaktadır. 

Birinci bölümde, diferansiyel denklemlerle ilgili temel tanımlara yer verilmiştir.  

Đkinci bölümde Sonlu fark metodu, Adomian ayrışım metodu ve Homotopi Pertürbasyon 

metotlarının genel yapıları anlatılmıştır.  

Üçüncü bölüm ise tezimizin orijinal kısmını oluşturmaktadır ve iki kısımdır. Birinci 

kısımda KdV denklemine sırasıyla SFM, ADM ve HPM uygulanarak denklemin sayısal 

çözümleri incelenmiştir. Đkinci kısımda ise, Burgers denklemine SFM, ADM ve HPM 

uygulanarak denklemin sayısal çözümleri incelenmiştir. 

 

 

 

Anahtar Kelimeler: KdV denklemi, Burgers denklemi, Sonlu Fark Metodu (SFM), 

Adomian Ayrışım Metodu (ADM), Homotopi Pertürbasyon  

Metodu (HPM), Crank Nicolson, Adomian Polinomları,  

Sonlu Fark Yaklaşımı. 
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SUMMARY 
 

Solitions of Some Non-linear Partial Differential 
Equations With Finite Difference Method 

 
This thesis consists of three chapters. 

In the first chapter, provides fundamental definitions related to differential equations. 

In the second chapter, we give general structures of Finite Difference Method, Adomian 

Decomposition Method and Homotopy Perturbation Method.  

The third chapter is the our major contribution and it has two section. In the first section of 

third chapter, numerical solitions of the KdV equation were investigated by applying Finite 

Difference Method, ADM and HPM methods respectively to the KdV equation. In the 

second section of third chapter, numerical solitions of the Burgers equation were 

investigated by applying Finite Difference Method, ADM and HPM methods respectively 

to the Burgers equation. 

 

 

Key Words: KdV equation, Burgers equation, Finite Difference Method (SFM),  

  Adomian Decomposition Method (ADM), Homotopy Perturbation  

  Method (HPM), Crank Nicolson, Adomian Polinomials, Finite Dif- 

 ference Approximation. 
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SEMBOLLER LĐSTESĐ 

 
            L   : Diferensiyel operatörü     

L-1-1-1-1        : Đntegral operatörü 

Nu        : Lineer olmayan terim 

nA        : Adomian polinomu 

nφ         : n-terim yaklaşımı 

u(x, t)   : Çözüm fonksiyonu 

p           : Küçük bir parametre 

R          : Reel sayı sistemi 

λ           : Lamda 

ε           : Ebsilon 

Ω          : Omega 

Γ          : Gama 

ξ           : Xi 

φ          : Phi 

            σ         : Sigma  

 

 

KISALTMALAR 

KDD  : Kısmi Diferansiyel Denklem 

SFM   : Sonlu Fark Metodu 

SFD   : Sonlu Fark Denklemi 

ADM   : Adomian Ayrışım Metodu 

HPM  : Homotopi Pertürbasyon Metodu 

KdV    : Korteweg-de Vries Denklemi



 

1. GĐRĐŞ 

1.1. Korteweg de Vries (KdV)  Denklemi  

Bağımsız dalgalar (solitary waves) ilk defa 1834 yılında durgun bir teknenin ön 

tarafından kopan yuvarlak, düzgün ve oldukça belirgin bir su kümesinin şeklinde bir 

değişiklik veya hızında en ufak bir azalma olmaksızın yaklaşık 3 kilometrelik bir kanal 

boyunca ilerlediğinin Scott Russell [1] tarafından gözlemlenmesiyle kayda geçmiştir. 

Salınım yapan diğer dalga türlerinden farklı hareket biçimi nedeniyle yine Russell 

tarafından bunlara "bağımsız dalga" adı verilmiştir. 1847 yılında Stokes [2] ve 1872 

yılında Boussinesq [3] gibi birçok matematikçi kısaca bu konudan bahsetmiş olsa da sığ 

sulardaki bağımsız dalgaların profilini gözlemleyen Scott Russell’dan sonraki ilk teorik 

çalışmalar 1895 yılında Korteweg ve de Vries’e aittir. Korteweg ve de Vries [4] sığ bir 

kanalda tek yönde ilerleyen dalgaların oluşumuna dair günümüzde oldukça ilgi çeken 

denklemi bulmuşlardır. Burada, 

l : kanalın derinliği 

l η+ : (η  küçük olmak üzere ) yüzeyin dipten itibaren yüksekliği 

α : sıvının düzgün hareketi ile ilgili küçük bir sabit 

3

:
3

l Tl

pg
σ −   bir parametre  

:T  yüzey gerilimi 

:g  yerçekimi ivmesi 

:ρ  sıvının yoğunluğu  

olmak üzere dalganın hareketi ile ilgili kısmi diferansiyel denklem 

2
2

2

3 2 1 1

2 3 2 3T

g

l x x

η
η αη η σ

 ∂ ∂
= + + ∂ ∂ 

                                                                      (1.1) 

biçimindedir. 

3
2 2

, ,
g

u x T t
l

αµ µα
η βα ξ

σ σ
= = − =  

dönüşümleriyle (1.1) denklemi 

0Tu u uu uξ ξ ξξξε µ+ + + =                                                                                            (1.2) 
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şeklini alır. Burada 
3

2
ε β=   ve  µ  bilinen parametrelerdir. (1.2) denkleminde x Tξ= −  

dönüşümü yapılır ve T  yerine t  yazılırsa 

0t x xxxu uu uε µ+ + =                                                                                                    (1.3) 

KdV denklemi elde edilir [5]. 

KdV denklemi inverse scattering yöntemiyle [6] analitik olarak çözülebilir olmasına 

rağmen bu yöntemin zamandan bağımsız Schrödinger denklemine bağlı olarak sadece 

birkaç özel potansiyel için sonuç veriyor olması sebebiyle nümerik çözümleri önemini 

korumaktadır. KdV denkleminin nümerik çözümünü ilk olarak Zabusky ve Kruskal [7] 

sonlu farklar yöntemini kullanarak elde etmişlerdir. O çalışmada iki bağımsız dalganın 

etkileşiminin özellikleri ortaya konulmuştur. Zabusky ve Kruskal, ikinci bir dalgayla 

karsılaştığında geçiş aşaması hariç, seklini koruyarak düzgün hızla ilerleyen dalgalar için 

soliton kavramını tanımlamışlardır. Helal ve Mehanna [8] KdV denklemine Adomian 

ayrışım yöntemini ve sonlu farklar yöntemini uygulayarak sayısal ve analitik çözümleri 

karşılaştırmışlardır. Cavlak [28] ise GKdV denklemini yarı analitik metotlarla incelemiştir. 

 
 

1.2.Burgers Denklemi 

,v  bir reel sabit olmak üzere; 

0t x xxu uu vu+ − =                                                                                                        (1.4) 

denklemi Burgers denklemi olarak bilinir ve ilk olarak Bateman [9] tarafından çalışılmıştır. 

Burger [10], özellikle türbülansın modeli olması gibi, bu denklemi içeren geniş çapta 

çalışmalar yapmıştır. Bundan dolayı denklem Burgers denklemi olarak adlandırılmıştır. 

Burgers denklemi için başlangıç ve sınır şartları sırasıyla, 

( ) ( ),0 ,u x f x a x b= ≤ ≤                                                                                         (1.5) 

( ) ( ) [ ], , , , 0,u a t u b t t Tα β= = ∈                                                                           (1.6) 

olarak seçilir.  

Burgers denklemi, ısı iletimi, gaz dinamiği, esneklik, sayılar teorisi, şok dalga teorisi 

ve türbülans problemlerinin modellemesinde kullanılır.  

Burgers denklemi doğrusal olmayan konvektif xuu  terimi ve xxvu  viskozite teriminden 

dolayı Navier- Stokes denklemine benzer özellikler gösterir. Bu nedenle Navier- Stokes 

denkleminin nümerik çözümlerine geçmeden önce daha basit bir model olan Burgers 
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denklemini çalışmak uygun bir başlangıçtır. Bu yüzden Burgers denklemi, Navier- Stokes 

denkleminin nümerik çözüm metotlarının kararlılık ve doğruluğunun test edilmesinde bir 

model olarak kullanılır. 

Hopf [11] ve Cole  [12], keyfi başlangıç koşulları için Burgers denklemini analitik ve 

birbirinden bağımsız olarak çözmüşlerdir. Birçok durumda bu çözümler, v  viskozite 

sabitinin küçük değerleri için çok yavaş yakınsayabilen sonsuz serileri içerir.  

Bugüne kadar birçok bilim adamı Burgers denkleminin nümerik çözümlerini 

bulabilmek için çeşitli nümerik çözüm metotları kullandılar. Çok küçük viskozite 

değerlerinde denklemin nümerik çözümlerinde zorlukların ortaya çıktığı görüldü. Jain ve 

Holla [13] kübik spline fonksiyonlar yardımıyla sonlu farklar metoduyla bir ve iki boyutlu 

Burgers denkleminin nümerik çözümü üzerinde çalışmışlardır. Kutluay, Bahadır ve Özdeş 

[14] sonlu farklar metodunun bir uygulaması olan explicit ve tam explicit metotlarıyla 

Burgers denkleminin nümerik çözümünü elde etmişlerdir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

       2. TEMEL TANIMLAR 

2.1 Tanım: Bir veya birden fazla bağımlı değişkenin, bir veya daha fazla bağımsız 

değişkene göre birinci veya daha yüksek mertebeden türevlerini içeren denklemlere 

“diferansiyel denklemler” denir [33].  

2.2 Tanım: Bir bağımsız ve en az bir bağımlı değişken ve bağımlı değişkenin bağımsız 

değişkene göre birinci veya daha fazla mertebeden türevlerini içeren denklemlere “adi 

diferansiyel denklemler” denir. n. mertebeden adi diferansiyel denklemlerin genel formu, 

( )( , , ', '',..., ) 0nF x y y y y =  

şeklindedir [33]. 

2.3. Tanım: En az iki bağımsız ve en az bir bağımlı değişken ile bağımlı değişkenin 

bağımsız değişkenlere göre birinci veya daha fazla mertebeden kısmi türevlerini içeren 

denklemlere “kısmi diferansiyel denklemler” denir. Kısmi diferansiyel denklemlerin genel 

formu, 

( , , , , , , , ,...) 0x y xx xy yyF x y z z z z z z =  

şeklindedir [33]. 

2.4. Tanım: Bir diferansiyel denklemde bulunan en yüksek mertebeden türevin 

mertebesine o diferansiyel denklemin “mertebesi” denir [33]. 

2.5. Tanım: Bir diferansiyel denklemde bulunan en yüksek mertebeden türevin 

kuvvetine diferansiyel denklemin “derecesi” denir [33]. 

2.6. Kısmi Diferansiyel Denklemlerin Sınıflandırılması 

Mühendislikte karşılaşılan kısmi diferansiyel denklemlerin büyük bir çoğunluğu bir 

veya ikinci mertebeden denklemlerdir. Bu tip denklemlerin bir kısmı için analitik çözüm 

bulunsa bile özellikle lineer olmayan tipleri için sayısal çözüme başvurmak gerekir. Sayısal 

çözüm için değişik yöntemler uygulanmakla beraber bu yöntemler denklemlerin tiplerine 

göre bazı özellikler arz eder. 



5 
 

2.6.1. Matematiksel Sınıflandırma 

Bir ( ),x yϕ  fonksiyonu için ikinci mertebeden kısmi diferansiyel denklem genel 

formda 

( )
2 2 2

2 2
,A B C D E F G x y

x x y y x y

ϕ ϕ ϕ ϕ ϕ
ϕ

∂ ∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂ ∂ ∂
                                           (2.1) 

şeklinde yazılabilir. Bu denklem 

( )yxfFEDCBA ,,,,,, =  

ise lineer, 

( )yxyxfCBA ϕϕϕ ,,,,,, =  

ise yarı lineer bir denklemdir. 

Böyle bir denklemin karakterini A,B,C katsayıları belirler. Verilen denklem, 

2 4 0B AC− 〉 ⇒  Hiperbolik Diferansiyel Denklem 

2 4 0B AC− = ⇒ Parabolik Diferansiyel Denklem 

2 4 0B AC− 〈 ⇒  Eliptik Diferansiyel Denklem 

olarak sınıflandırılır. 

2.6.1.1. Parabolik Diferansiyel Denklemler 

Verilen başlangıç ve sınır şartlarından başlanarak, bir yönü açık bir alanda adım adım 

ilerleyerek çözüm bulunan denklemlerdir. Dolayısıyla herhangi bir noktadaki çözüm o 

noktadan önceki noktalardaki değerlere bağlı olarak elde edilir. Örneğin Şekil 2.l’de P 

noktasındaki (herhangi bir t anında) çözüm, P’nin alt tarafındaki noktalara bağlı olarak 

bulunur. Yani P noktasındaki özelik daha önceki zaman adımlarında (tj’den önce) 

hesaplanan noktalardaki değerlere bağlı olup sonraki zaman adımlarında (tj’den sonra) 

hesaplamanın yapılacağı noktalara bağlı değildir.  
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Şekil 2.1. Parabolik bir denklemin çözüm alanı 

Parabolik denklemlerin tipik örneği difüzyon denklemidir. Isıl difüzyon denklemi olan 

geçici rejim ısı iletimi denkleminde 

2

2

x

T

t

T

∂

∂
=

∂

∂
α                                                                                   (2.2) 

A=0, B=0 ve C =α  olup diskriminant sıfırdır. Dolayısıyla denklem parabolik denklemdir. 

Bu denklemin çözümü için başlangıç şartı (t=0 için sıcaklık değerleri) ve sınır şartları 

( x =0  ve  x=L için sıcaklıklar) verildiğinde t yönünde adım adım ilerleyerek her t anı için 

sıcaklık dağılımı elde edilir. 

Parabolik denklemlere bir başka örnek sürekli rejimdeki bir akışa ait 

2

2

u u u
u v

x y y

µ

ρ

∂ ∂ ∂
+ =

∂ ∂ ∂
                                                                           (2.3) 

momentum denklemidir. Burada akışın x yönünde ve bu yöndeki hız bileşeninin u olduğu 

dikkate alınırsa x yönünde adım adım ilerleyerek her adımda v yönündeki hız profilleri 

bulunur. Açıktır ki bu çözümün yapılabilmesi için başlangıç şartları (x = 0 için hız 

değerleri) ve sınır şartları (v = 0 ve v = h için hız değerleri) bilinmelidir [33]. 

2.6.1.2. Hiperbolik Diferansiyel Denklemler  

Bir tarafı açık alanda, başlangıç değerlerden başlayarak adım adım ilerlemeyle çözüm 

bulunan denklemlerdir. Düzlemde P noktasındaki çözüm bulunmak isteniyorsa P 

noktasından önce gelen ve iki doğru arasında kalan noktalardaki çözüm bilinmelidir. Bu iki 

doğru hiperbolik denklemlerde önemli olup karakteristik doğrular olarak adlandırılır 

(bunlar eğri de olabilir). Karakteristik eğriler arasındaki alanın kesim noktasından önceki 

kısmı P(x,t) noktasındaki çözümü etkileyen alan, sonraki kısım ise P(x,t)’deki çözümün 

etkilediği alan olacaktır (Şekil. 2.2). 
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                                             Şekil 2.2. Hiperbolik bir denklemin çözüm alanı 

Yani etkileyen alan dışında herhangi bir tedirginlik P(x,t) noktasındaki çözümü 

etkilemez. Bu açıdan bakıldığında parabolik denklemler, hiperbolik denklemlerin özel bir 

hali gibi düşünülebilir. Yani parabolik denklemlerde iki karakteristik doğru üst üste çakışık 

olup yatay gibi düşünülebilir. Gerçekten parabolik denklemlerde diskriminant sıfır olup 

katlı karakteristikler vardır. 

Hiperbolik denklemlerin tipik örneği dalga denklemidir. 

2

2
2

2

2

x

u
c

t

u

∂

∂
=

∂

∂
                                      (2.4) 

Burada A=1, B=0 ve C = -c2 olup diskriminant pozitif olduğundan hiperbolik denklem 

söz konusudur. Yine burada da verilen başlangıç şartlarından hareketle adım adım çözüm 

elde edilir [33]. 

2.6.1.3. Eliptik Diferansiyel Denklemler 

Sınır değer problemleri bu gruba girer. Çözüm yapılacak alan içinde bir P noktasındaki 

çözüm diğer noktalara ve sınır değerlerine bağlıdır (Şekil 2.3). Dolayısıyla çözüm için 

bütün sınır değerler bilinmelidir. Đç noktalarda çözümün adım adım değil eşzamanlı olarak 

bulunması gerekir. Bu bakımdan çözümü diğer denklem tiplerine göre daha zor olan 

denklemlerdir. Diskriminant negatif olduğu için eliptik denklemlerde reel karakteristik eğri 

yoktur [33]. 
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Şekil 2.3. Eliptik bir denklemin kapalı çözüm alanı 

Eliptik denklemlerin tipik örneği Laplace denklemidir: 

2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
                                                                      (2.5) 

Bu denklemde A= 1, B=0 ve C=1 olup diskriminant negatiftir. Đki boyutlu ısı iletimi 

denklemi 

2 2

2 2
0

T T

x y

∂ ∂
+ =

∂ ∂
                                                                                   (2.6) 

de bu tip bir denklemdir. Đki boyutlu sıkıştırılamaz akışa ait momentum denklemi 










∂

∂
+

∂

∂
+

∂

∂
−=

∂

∂
+

∂

∂
+

∂

∂
2

2

2

21
 

y

u

x

u

x

p

x

u
v

x

u
u

t

u

ρ

µ

ρ
                        (2.7) 

konuma göre eliptik, fakat zamana göre hiperbolik karakterli bir denklemdir. Bazı 

denklemler duruma göre karakter değiştirebilir. Mesela sıkıştırılabilir sürtünmesiz akışa ait 

potansiyel fonksiyon ifadesi 

0
1

1
2

2

22

2

=
∂

∂

−
−

∂

∂

yMx

ϕϕ
                                       (2.8) 

mach sayısı M>1 ise (ses üstü akış) hiperbolik, M<1 (ses altı akış) eliptik karakter 

gösterecektir. Bu durum sayısal çözümde özel dikkat gerektirir [33]. 

2.7. Tanım: Bir değişkenli skaler bir fonksiyon için Adomian polinomları, f  

fonksiyonu n  defa türevlenebilir bir fonksiyon olmak üzere, 









= ∑

∞

=0

1

i
in Uf

n
A  

formülü ile tanımlanır [31].



 

      3. MATERYAL VE METOD    

3.1. Sonlu Farklar Metodu (SFM) 

Kısmi türevli diferansiyel denklemlerin çözümünde değişik yöntemler kullanılır. 

Bunların arasında en eski ve açık yöntem sonlu farklar yöntemidir. Sonlu farklar 

yönteminde, sürekli çözüm alanı diskretize edilerek (alan belli aralıklarda noktalarla temsil 

edilerek) bağımlı değişkenin sadece bu noktalardaki değeri bulunmaya çalışılır. Türevlerin 

yaklaşık olarak sonlu farklarla ifade edilmesi, verilen kısmi diferansiyel denkleminin 

(KDD) cebirsel bir denklem veya denklem sistemi olan sonlu fark denklemlerine (SFD) 

dönüşmesini sağlar. Sonuçta elde edilen cebirsel sistem, orijinal KDD in karakterine bağlı 

olur. 

Sonlu farklar yönteminin temeli, kısmi diferansiyel denklemlerde görülen türevlerin 

sonlu ve ayrık noktalarda yaklaşık olarak ifade edilmesi üzerine kuruludur. 

Sonlu farklar yöntemi kısaca şöyle özetlenebilir:  

Bağımlı değişkenin u(x,y) olduğu bir diferansiyel denklem ele alınsın. Sonlu fark 

denkleminin kurulmasında ilk adımlardan biri çözüm alanını grid noktalara bölmektir. 

Çözüm alanında oluşturulan grid noktalar, x- yönünde konumu belirten i ve y- yönünde 

konumu belirten j indisleri kullanılarak numaralandırılır. Buna göre herhangi bir 

( ),i jx y noktasında 

xixx oi ∆+=                                                              (3.1) 

j oy y j y= + ∆                                                              (3.2) 

yazılabilir. Bu noktadaki fonksiyonun değeri 

 ( ), ,i j i ju u x y=                                                                                                (3.3) 

ve civar noktalardaki fonksiyonun değerleri 
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     Şekil 3.1. Sonlu Farklar Yönteminde çözüm alanının grid  
           noktalara bölünmesi ve numaralandırma 

 

( )
( )
( )
( )

, 1

, 1

1,

1,

,

,

,

,

i j i j

i j i j

i j i j

i j i j

u u x y y

u u x y y

u u x x y

u u x x y

+

−

+

−

= + ∆

= − ∆

= + ∆

= − ∆

 

şeklinde gösterilecektir. 

Bir türevin sonlu farklarla ifadesinin temelini türev tanımı oluşturur. ( ),u x y  

fonksiyonun ( ),i jx y  noktasındaki türevi 

( ) ( ) 1, ,

0

, ,
lim

i j i j i j i j

t

u x x y u x y u uu
hata

t t t
+

∆ →

+ ∆ − −∂
= = +

∂ ∆ ∆
                                  (3.4) 

olacaktır. Eşitliğin sağ kısmı türevin sonlu farklarla gösterimidir. Sonlu fark 

gösterimindeki hata, limitin kaldırılmasıyla oluşan hata olup bu hatanın mertebesi ayrıca 

üzerinde durulması gereken önemli bir konudur. 

Sonlu fark gösterimi bu temele oturtulabilir. Bu amaçla sonlu fark ifadelerinin 

oluşturulmasında, 

1- Taylor seri açılımı 

2- Polinom uydurma 

3- Đntegral metodu 

4- Sonlu hacim yaklaşımı 

yöntemleri kullanılır. Çoğu zaman bu dört yöntemle aynı SFD i elde edilir. Bunlardan 

polinom uydurma yöntemi daha çok sınır şartlarının tatbikinde uygulanır. 
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3.1.1 Taylor Serisi Açılımı ile Sonlu Fark Formülleri 

( ) ( )

( )

2 2

2
, ,

22

1, , 2
, ,

, ,
2!

2!

i j i j

i j i j

i j i j

i j i j

u u x
u x x y u x y x

x x

xu u
u u x

x x
+

∂ ∂ ∆
+ ∆ = + ∆ + +

∂ ∂

∆∂ ∂
= + ∆ + +

∂ ∂

⋯

⋯

                                               (3.5) 

ifadesinden birinci türev çekilirse 

2
1, ,

2
, ,

2!
i j i j

i j i j

u uu u x

x x x
+ −∂ ∂ ∆

= − −
∂ ∆ ∂

⋯                                                                      (3.6) 

ileri sonlu fark türev ifadesi, 

( ) ( ) ( ) ( )
2 32 3

2 3
, , ,

, ,
2 3!i j i j

i j i j i j

x xu u u
u x x y u x y x

x x x

∆ ∆∂ ∂ ∂
− ∆ = − ∆ + − +

∂ ∂ ∂
⋯  

şeklinde yazılarak birinci türev ifadesi çekilirse 

( )
( ) ( )

2 32 3

1, , 2 3

, , ,
2 3!i j i j

i j i j i j

x xu u u
u u x

x x x
−

∆ ∆∂ ∂ ∂
= − ∆ + − +

∂ ∂ ∂
⋯                                  (3.7) 

2
, 1,

2

, ,
2

i j i j

i j i j

u uu u x

x x x
−

−∂ ∂ ∆
= + +

∂ ∆ ∂
⋯                                                (3.8) 

, 1,

,

0( )i j i j

i j

u uu
x

x x
−

−∂
= + ∆

∂ ∆
                                                           (3.9) 

geri sonlu fark türev ifadesi elde edilir.  (3.7) eşitliği  (3.5) eşitliğinden çıkartılıp, 

( ) ( )

( ) ( )

( )

2 22 2

1, 1, 2 2

3 33 3

3 3

3 3

3

2 2

3! 3!

2 2
3!

i j i j

x xu u u u
u u x x

x x x x

x xu u

x x

xu u
x

x x

+ −

∆ ∆∂ ∂ ∂ ∂
− = ∆ + ∆ + −

∂ ∂ ∂ ∂

∆ ∆∂ ∂
+ + +

∂ ∂

∆∂ ∂
= ∆ + +

∂ ∂

⋯

⋯

                                         (3.10) 

ve birinci türev çekilirse 

1, 1, 2

,

( )
2

i j i j

i j

u uu
O x

x x
+ −

−∂
= + ∆

∂ ∆
                                                                                    (3.11) 

merkezi sonlu fark ifadesi bulunur. Kesme hatalarına bakıldığında bu ifadenin ikinci 

mertebeden hassasiyete sahip olduğu görülür. 

Diğer taraftan (3.5) ve (3.7) eşitlikleri taraf tarafa toplanıp,  
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( ) ( )
2 42 4

1, 1, , 2 4
2 2

2 4!i j i j i j

x xu u
u u u

x x
+ −

∆ ∆∂ ∂
+ = + + +

∂ ∂
⋯                                            (3.12) 

ikinci mertebeden türev terimi çekilirse, 

( )
( )

2
21, , 1,

22

,

2
i j i j i j

i j

u u uu
O x

x x

+ −
− +∂

= + ∆
∂ ∆

                                                                  (3.13)  

ikinci türev için merkezi sonlu fark ifadesi elde edilir. Kesme hatasına bakıldığında bu 

ifadenin ikinci mertebeden hassasiyete sahip olduğu anlaşılır. 

Benzer şekilde x’e göre alınan türev ifadeleri y’ye göre türev için de yazılabilir. 

Örneğin; y’ye göre birinci türev için merkezi sonlu fark, 

y

uu

y

u jiji

ji
∆

−
=

∂

∂ −+

2

1,1,

,

                                                        (3.14) 

olacaktır. Görüldüğü gibi y yönünde türev için j indisi değişmeli ve y yönündeki adım 

alınmalıdır. 

Daha çok grid noktası kullanılarak daha yüksek hassasiyetli bağıntılar elde edilir. 

Bunun için Taylor serisi ( )2,i j+  noktasında yazılırsa, 

( )
( ) ( )

2 32 3

2, , 2 3
, , ,

2 2
2

2! 3!i j i j

i j i j i j

x xu u u
u u x

x x x
+

∆ ∆∂ ∂ ∂
= + ∆ + + +

∂ ∂ ∂
⋯                                (3.15) 

elde edilir. (3.5) denklemi 2 ile çarpılıp yukarıdaki ifadeden çıkartılırsa, 

( ) ( ) ( )
2 2 32 2 3

2, 1, , , 2 2 3

, , ,

2 2
2 2 2

2! 2! 3!i j i j i j i j

i j i j i j

x x xu u u
u u u u

x x x
+ +

∆ ∆ ∆∂ ∂ ∂
− = − + − + +

∂ ∂ ∂
⋯  

elde edilir. Buradan ikinci türev çekilerek, 

( )
32 3

2, 1,

2 2 3

,

2 6

3!
i j i j ij

i j

u u u xu u

x x x
+ +− + ∆∂ ∂

= + +
∂ ∆ ∂

⋯                                             (3.16) 

veya  

( )
2

2, 1, ,

2 2

,

2
0i j i j i j

i j

u u uu
x

x x
+ +− +∂

= + ∆
∂ ∆

                                                (3.17) 

ileri sonlu fark türev formülü elde edilir. Birinci mertebeden hassasiyete sahip bu ifade 

normalde çözüm alanının sınırlarında kullanılabilir. Bu ifade (3.6) denkleminde yerine 

yazılır ve düzenlenirse  

( )
22, 1, ,

,

4 3
0

2
i j i j i j

i j

u u uu
x

x x
+ +− + −∂

= + ∆
∂ ∆

                                             (3.18) 
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birinci türev için ikinci mertebeden hassasiyetli ve üç nokta kullanan bir formül elde 

edilmiş olur. 

Benzer şekilde elde edilen bazı çok nokta kullanan türev formülleri aşağıda 

sıralanmıştır [32]. 

Birinci türev için geri sonlu fark formülü: 

( )
21, 2,

,

3 4

2
ij i j i j

i j

u u uu
O x

x x
+ +

+ −∂
= + ∆

∂ ∆
                                             (3.19) 

Birinci türev için çok nokta merkezi sonlu fark formülü: 

( )
22, 1, 1, 2,

,

8 8

12
i j i j i j i j

i j

u u u uu
O x

x x
+ + − −

− + − +∂
= + ∆

∂ ∆
                                                       (3.20) 

Üçüncü türev için merkezi sonlu fark formülü: 

( )

3
2, 1, , 1,

33

,

3 3
i j i j i j i j

i j

u u u uu

x x

+ + −
− + −∂

=
∂ ∆

                                             (3.21) 

Üçüncü türev için çok nokta merkezi sonlu fark formülü: 

( )

3
3, 2, 1, , 1,

33

,

6 12 10 3

2

i j i j i j i j i j

i j

u u u u uu

x x

+ + + −
− + − + −∂

=
∂ ∆

                                                       (3.22) 

 

3.2. Adomian Ayrışım Metodu (ADM) 

Ayrışım yönteminin, bir seri metodu olduğu, birçok cebirsel, lineer veya lineer 

olmayan diferansiyel denklemlere başarılı bir şekilde uygulandığı bilinmektedir. Genel 

olarak bu metottan bahsedecek olursak; kabul edelim ki F , hem lineer hem de lineer 

olmayan terimleri içeren bir genel lineer olmayan adi diferansiyel operatör olmak üzere; 

( ) ( )F u g x=                                                                                                               (3.23) 

olsun. L - verilen diferansiyel denklemde bulunan en yüksek mertebeden türev operatörünü, 

R- lineer operatörün kalan kısmını ve N - ise lineer olmayan terimi göstermek üzere (3.23) 

denklemi 

Lu Ru Nu g+ + =                                                                                                      (3.24) 

şeklinde yazılabilir. L bir lineer operatör olmak üzere L nin, 1L−  tersi de mevcut olsun. 

(3.24) eşitliği 

Lu g Ru Nu= − −                                                                                                      (3.25) 
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şeklinde yazılabilir ve (3.25)  eşitliğinin her iki tarafına soldan 1L−  operatörü uygulanırsa; 

1 1 1 1L Lu L g L Ru L Nu− − − −= − −                                                                                    (3.26) 

elde edilir. 

L ’nin ikinci mertebeden ve tersi mevcut olan lineer bir operatör olduğunu kabul 

edelim. (3.26) eşitliğinde gerekli işlemleri yaptıktan sonra 

( )' 1 1 1(0) 0u u tu L g L Ru L Nu− − −= + + − −                                                                    (3.27) 

çözüm fonksiyonu bulunur. (3.27) ile elde edilen eşitlikteki ( )N u   lineer olmayan terim  

( )
0

n
n

N u A
∞

=

=∑  

şeklinde ifade edilmektedir. Buradaki nA  Adomian polinomları özel polinomlardır. (3.27) 

eşitliğindeki u ; ayrıştırılmış seri çözüm fonksiyonudur. Bu seri çözüm fonksiyonunun 

birinci terimi 0u , verilen başlangıç değeri sağ taraf fonksiyonun integrali olmak üzere 

0u 1a bt L g−= + −  ile bulunur daha sonra 0u  terimi kullanılarak 1 2 3, , ,u u u ⋅⋅ ⋅  terimleri elde 

edilerek ayrıştırılmış seri çözüm fonksiyonu; 

0

( , ) ( , )n
n

u x t u x t
∞

=

=∑                                                                                                     (3.28) 

yazılabilir. Bu seri çözümü kullanılarak (3.27) eşitliği tekrar yazılırsa 

 1 1
0

0 0 0
n n n

n n n

u u L u L A
∞ ∞ ∞

− −

= = =

= − −∑ ∑ ∑                                                                               (3.29) 

genel seri formu elde edilir. Benzer olarak (3.29) eşitliği açık şekilde 

1 1
1 0 0

1 1
2 1 1

1 1
1 , 0n n n

u L Ru L A

u L Ru L A

u L Ru L A n

− −

− −

− −
+

= − −

= − −

= − − ≥

⋮
                                                                                  (3.30) 

formunda yazılabilir. Buradaki nA  polinomları her bir lineer olmayan terim için genel-

leştirilebilir ve bu genelleştirmede 0A  sadece 0u 'a, 1A  ise 0u  ve 1u 'e, 2A  ise 0u  , 1u  ve 

2u 'ye bağlı ve benzer şekilde (3.30) eşitliğindeki bütün nA  Adomian polinomları elde 

edilebilir. nA   Adomian polinomunun ayrıştırılmış hali ise literatürde 
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( )

( )

( ) ( )

( ) ( ) ( )

0 0

1 1 0

0

2 2
1

2 2 0 02
0 0

32 3
1

3 3 0 1 2 0 02 3
0 0 0

2!

3!

A f u

d
A u f u

du

ud d
A u f u f u

du du

ud d d
A u f u u u f u f u

du du du

=

 
=  

 

    
= +    

    

      
= + +      

      
⋮

                                 (3.31) 

 
0 0

1
. , 0

!

n
k

n kn
k

d
A u n

n d
λ

λ
λ

∞

= =

  
= Φ ≥  

  
∑               

ile verilmektedir. Bazı problemlerin sayısal çözümlerinin daha hassas olmasının istenildiği 

durumlarda ayrışım serisi için çok sayıda terimin hesaplanması gerekebilir. Bu gibi 

durumlarda (3.31) genel formülünün kullanılması, (3.27) ayrıştırma serisinin çok sayıda 

teriminin hesaplanmasında kolaylık sağlamaktadır. Ayrışım metodu kullanılarak 

( , )u x t kapalı çözüm fonksiyonunun bu fonksiyona ait sayısal çözümlerin elde edilmesi 

için; 

( )
0

, ( , ) , 0n
n

x t u x t n
∞

=

Φ = ≥∑                                                                                      (3.32) 

olmak üzere; 

lim ( , )n
n

u x t
→∞

Φ =                                                                                                          (3.33) 

ifadesi (3.30) indirgeme bağıntısı göz önüne alınarak kolayca hesaplanabilir [19]. Buna 

ilaveten (3.33) şeklindeki ayrışım seri çözümü, genel olarak fiziksel problemlerde çok hızlı 

olarak yakınsayan sonuçlar vermektedir. Ayrışım serisinin yakınsaklığı literatürde birçok 

yazar tarafından araştırılmıştır. Ayrışım serisinin yakınsaklığı teorik olarak Y.Cherruault 

ve arkadaşları tarafından incelenmiştir [15-21]. 

 

3.3. Homotopi Pertürbasyon Metodu (HPM) 

Bu bölümde, topolojideki homotopi ile pertürbasyon tekniğini birleştirerek 

pertürbasyon metotlarının dezavantajlarını ortadan kaldıran ve sadece zayıf lineer olmayan 

denklemler için değil aynı zamanda kuvvetli nonlineerliğe sahip denklemler için de elde 

edilen çözümlerin, tüm çözüm bölgesinde geçerli olduğu, yarı analitik bir metot olan 
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homotopi pertürbasyon metodu tanıtılacaktır. 

Bu metodun temel fikrini açıklamak için aşağıdaki lineer olmayan diferensiyel 

denklemi göz önüne alalım 

( ) ( ) 0, .A u f r r− = ∈ Ω                                                                                           (3.34) 

(3.34) denklemi için sınır koşulu 

( ), / 0, ,B u u r r∂ ∂ = ∈ Γ                                                                                            (3.35) 

şeklinde belirlenir. Burada A genel diferansiyel operatörü, B  sınır operatörü, ( )f r  bilinen 

analitik fonksiyon ve  Γ  ise Ω  ya bağımlı bir sınırdır.  

Genel olarak A  diferansiyel operatörü L  ve N gibi iki parçaya ayrılabilecek şekilde 

yazılabilir ki burada L  lineer, N  ise lineer olmayan operatördür. Buna göre (3.34)  

denklemi aşağıdaki gibi yeniden düzenlenebilir.  

( ) ( )( ) 0L u N u f r+ − =                                                                                             (3.36) 

buna göre homotopi tekniği ile bir homotopi oluşturulur.  

( ) [ ], : 0,1v r p RΩ× →  

olmak üzere,  

( ) ( ) ( ) ( ) ( ) ( )0, 1 0 ,H v p p L v L u p A v f r r= − − + − = ∈ Ω                                    (3.37) 

dir. Burada [ ]0,1p ∈  bir parametre ve 0u  ise (3.34) denkleminin bir başlangıç koşuludur. 

 O halde  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0, 0H v p L v L u pL v pL u pA v pf r= − − + + − =                                                           

               ( ) ( ) ( ) ( ) ( ) ( )0 0 0L v L u p L v L u A v f r= − − − − + =    

               ( ) ( ) ( ) ( ) ( ) ( )0 0 0L v L u pL u p L v A v f r= − + − − + =    

olup  (3.34) den   ( ) ( ) 0A u f r− =   dır. Böylece  

 ( ) ( ) ( ) ( )0 0 0L v L u pL u p L v− + − =                                                                       (3.38) 

elde ederiz ve buradan (3.36)  eşitliğini kullanarak    

( ) ( ) ( ) ( ) ( ) ( )0L u N u f r L u N u f r+ − = ⇒ = − +                                                   (3.39) 

denklemi bulunur. Bulunan (3.39) denklemi  (3.38) denkleminde yerine yazılmasıyla     

( ) ( ) ( ) ( ) ( )0 0 0L v L u pL u p N v f r− + − − + =    

olur. Böylece  (3.37)   denklemi  
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( ) ( ) ( ) ( ) ( ) ( )0 0, 0,H v p L v L u pL u p N v f r= − + + − =                                         (3.40) 

şeklinde yeniden yazılabilir. Burada [ ]0,1p ∈ , başlangıç koşulu 0u  ve 

( ) [ ], : 0,1v r p RΩ× →  dir. (3.37)  ve (3.40) denklemlerinden 

( ) ( ) ( )0,0 0H v L v L u= − =                                                                    (3.41) 

( ) ( ) ( ),1 0H v A v f r= − =                                                                      (3.42) 

dir. Burada 0p =  olduğunda (3.37) denklemi lineer bir denklem haline gelir; 1p =  

olduğunda lineer olmayan orijinal bir denklem olur. Bu yüzden 0’dan 1’e p  nin değişim 

işlemi, ( ) ( )0 0L v L u− =  denklemini ( ) ( ) 0A v f r− =  denklemine dönüştürür. 

( ) ( )0 0L v L u− =  aşikâr problemi 0’dan 1’e monoton olarak artan p  parametresi, sürekli 

olarak ( ) ( ) 0A v f r− =  problemine deforme oluyorsa bu topolojide deforme olarak 

adlandırılır. ( ) ( )0 0L v L u− =  ve ( ) ( )A v f r− ifadelerine ise homotopiktirler denir.  

Homotopi pertürbasyon metodu gereğince, ilk olarak yerleştirilen parametre p ’yi küçük 

parametre olarak kabul ederek (3.37) ve (3.40) denklemlerinin çözümü  

2 3
0 1 2 3

0

n
n

n

v v pv p v p v p v
∞

=

= + + + + =∑⋯                                                                      (3.43) 

olacak şekilde p  parametresinin kuvvet serisi 

( ) ( )0
0 0: 0,p f v f x− =                                                                                           (3.44) 

( ) ( )1
0 1 0: 0,p f v v f x′ + =                                                                               (3.45) 

( ) ( )2 2
0 2 0 1

1
: 0,

2!
p f v v f v v′ ′′+ =                                                                               (3.46) 

( ) ( ) ( )3 3
0 3 0 1 2 0 1

1 1
: 2 0,

2! 3!
p f v v f v v v f v v′ ′′ ′′′+ + =                                                     (3.47) 

yazılır. (3.44)-(3.47) denklemlerinin 1v , 2v  ve 3v  için çözülmesiyle 

( )
( )

0
1

0

,
f x

v
f v

= −
′

                                                                                            (3.48) 

( )
( )

( )
( )

( )
( )

22
0 1 0 0

2

0 0 0

,
2! 2!

f v v f v f v
v

f v f v f v

 ′′ ′′
= − = −   ′ ′ ′ 

                                            (3.49) 
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( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

3
0 1 2 0 1

3

0 0

2 3 3

0 0 0 0

0 0 0 0

3!

1
,

2 6

f v v v f v v
v

f v f v

f v f v f v f v

f v f v f v f v

′′ ′′′
= − −

′ ′

     ′′ ′′′
= − +          ′ ′ ′ ′     
⋮

                                               (3.50) 

(3.43) serisinin 1v , 2v  ve 3v  bileşenleri elde edilir. Elde edilen (2.48)-(3.50) denklemleri, 

(3.43) denkleminde 1p =  alınarak yeniden yazılırsa (3.34) denkleminin çözümü 

( )2 3
0 1 2 3

1

0 1 2 3
0

lim
p

n
n

u v pv p v p v

v v v v v

→

∞

=

= + + + +

= + + + + =∑

⋯

⋯

                                                                         (3.51) 

şeklinde elde edilir. Homotopi pertürbasyon metodu [22]-[27] geleneksel pertürbasyon 

metodunun tüm özelliklerine sahiptir. (3.43) serisi lineer olmayan ( )A v  operatörüne bağlı 

olduğu oranda yakınsamaktadır. (Aşağıdaki görüş; He [25] tarafından önerilmektedir)   

(1) V ile ilgili olarak ( )N V nin ikinci türevi, göreceli olarak olabildiğince küçük 

değerlere sahip olmalıdır. 1p →  gibi. 

(2) 1( / )L N V− ∂ ∂ nin normu ise serilere yaklaşsın diye çok küçük olmalıdır. 

 

3.9. Gauss Eleme Yöntemi 

AX B=  şeklindeki denklem sistemlerinin çözümünde kullanılan yöntemlerden biridir. Bu 

yöntemle, bilinmeyenler sistematik olarak yok edilip verilen denklem sistemi,  

11 1 12 2 1 1

22 2 2 2

n n

n n

nn n n

a x a x a x d

a x a x d

a x d

+ + + =

+ + =

=

⋯

⋯

⋱
 

şeklinde bir üst üçgen sisteme dönüştürülür. Buradan bilinmeyenler en son denklemden 

başlayarak, yukarı doğru yerine yazmak suretiyle bulunur.  

,
i ik k

n k i
n i

nn ii

d u x
d

x x
u u

=

−

= =
∑

 

● Gauss eleme yönteminde verilen denklem sisteminin üst üçgen sisteme dönüştürülmesi 

işlemi aşağıdaki gibi yapılır: 
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Verilen denklem sisteminin birinci denkleminde köşegen üzerindeki eleman, yani 1x  in 

katsayısı sıfırdan farklı ise birinci denklem pivot denklem olarak seçilir. 

1
1

11

, 2,3,...,k
k

a
M k n

a
= =  

sayıları tanımlanarak pivot denklem bu sayılarla çarpılır ve sırasıyla k ıncı−  denklemden 

çıkartılıp k ıncı−  denklemin yerine yazılır. Yani; 

  

1. Adımda:    1 1k k kS S M S→ −    satır işlemleri uygulanır. Bu işlemler yapıldığında birinci 

denklem hariç geriye kalan denklemlerde 1x  bilinmeyeni yok edilmiş olur. yani nxn  tipindeki 

sistem ; 

11 1 12 2 1 1

(1) (1) (1)
22 2 2 2

(1) (1)

n n

n n

nn n n

a x a x a x d

a x a x d

a x d

+ + + =

+ + =

=

⋯

⋯

⋱
 

şekline dönüşür. 

 

2. Adımda:  Ortaya çıkan sistemin ikinci denkleminin köşegen üzerindeki elemanı, yani 2x  

nin katsayısı sıfırdan farklı ise ikinci denklem pivot denklem olarak seçilir.  

(1)
2

2 (1)
22

, 3,4,...,k
k

a
M k n

a
= =  

sayıları tanımlanır pivot denklem bu sayılarla çarpılıp sırasıyla k ıncı−  denklemden çıkartılır 

ve k ıncı−  denklemin yerine yazılır. Böylece 1 ve 2 inci denklem hariç geriye kalan 

denklemlerden 2x  bilinmeyeni yok edilmiş olur. 

   ⋮  

Bu şekilde devam edilerek ( )1n −  adım sonunda denklem sistemi bir üst üçgen sisteme 

dönüştürülmüş olur ve bilinmeyenler en son denklemden başlayarak yukarı doğru yerine 

yazmak suretiyle hesaplanır [32]. 



 

 4.UYGULAMALAR 

4.1.Doğrusal Olmayan KdV Denklemine Sonlu Fark Metodu, Adomian Ayrışım 

Metodu ve Homotopi Pertürbasyon Metodunun Uygulanması 

      4.1.1. Sonlu Fark Metodu Đle Çözüm 

6 0t x xxxu uu u− + =                                                                                                   (4.1) 

( ) ( )
1

,0 1
6

u x x= −                                                                                   (4.2) 

( )
( )

( )
1

0, , 1, 0 , 0
6 1

u t u t t
t

= = ≥
−

                                                                           (4.3) 

şeklinde başlangıç ve sınır şartları verilmiş, ayrıca analitik çözümü de, 

( )
1 1

,
6 1

x
u x t

t

− 
=  

− 
                                                                                                      (4.4) 

şeklinde olan, nonlineer KdV denklemini Sonlu Fark Metotlarından biri olan Crank 

Nicolson Metodu ile çözelim[31]. Şimdi  (4.1)  denkleminde  tu  türevi yerine 

1j j
i i

t

u u
u

k

+ −
≅                                                                                                               (4.5) 

ileri fark yaklaşımı, xxxu  türevi yerine  

1 1 1 1 1
1 2 3 4 1 2 3 4

3 3

5 18 24 14 3 5 18 24 14 31

2 2 2

j j j j j j j j j j
i i i i i i i i i i

xxx

u u u u u u u u u u
u

h h

+ + + + +
+ + + + + + + +

 − + − + − − + − + −
≅ + 

 
    (4.6)   

Crank-Nicolson sonlu fark yaklaşımı, xuu  nonlineer terimi yerine  

1 1
1 1 1 11

2 2 2

j j j j
j i i i i

x i

u u u u
uu u

h h

+ +
+ − + −

  − −
≅ +  

  
                                                                        (4.7) 

sonlu fark yaklaşımı yazılıp , 
3

k
r

h
=  alınırsa, nonlineer KdV denklemi için,
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2 1 1 2 1
1 1

1 1 1
2 3 4

2 2
1 1

2

6 5 18 6
1

4 4 4 4

24 14 3

4 4 4

6 5 18 6
1

4 4 4 4

24 14

4 4

j j j j j
i i i i i

j j j
i i i

j j j j j
i i i i i

j
i

ru h u r u r ru h u

r u r u r u

ru h u r u r ru h u

r u

+ + +
− +

+ + +
+ + +

− +

+

     
+ − + −     

     

     
− + −     
     

     
= − + + + − +     
     

 
+ − 
 

3 4

3

4
j j

i ir u r u+ +

   
+   

   

                                      (4.8) 

Crank-Nicolson sonlu fark yaklaşımı elde edilir [29]. 

 

 4.1.1.1 Sayısal Sonuçlar 

(4.1)  denkleminin Sonlu Fark Yaklaşımı ile elde edilen sayısal çözümü Tablo 4.1 de, 

nümerik çözüm ve tam çözüm için grafikler Şekil 4.1-Şekil 4.4 de verildi.  

Tablo 4.1 de (4.1)  denklemi için 0.0001t = , 0.0001k =  alınarak mesh uzunluğu h  

nın 0.1h =  deki değeri için SFM ile elde edilen sayısal çözüm ile tam çözüm karşılaştırıldı 

ve aradaki hata verildi. 

 

                     Tablo 4.1. 0.1, 0.0001h k= =  için KdV denkleminin SFM ile   

                        yaklaşık çözümünün analitik çözüm ile karşılaştırılması 
 

t= 0.0001 

x Sayısal  Çözüm 
(SFM) Analitik Çözüm Hata 

 0   -0.1666833    -0.1666833 0 

 0.1   -0.15001523    -0.15001501       2.3E-07 

 0.2   -0.13334625    -0.13334667       4.3E-07 

 0.3   -0.11667837    -0.11667834      3.00E-08 
 0.4   -0.10001    -0.10001      1.00E-08 

 0.5   -0.08334167    -0.08334167             0 

 0.6   -0.06667333    -0.06667334      1.00E-08 

 0.7   -0.05000497    -0.050005      4.00E-08 

 0.8   -0.03333674    -0.03333667      7.00E-08 

 0.9   -0.01666986    -0.01666833      1.53E-06 

 1    0     0 0 
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                                       Şekil 4.1. 0.1, 0.0001h k= =  için KdV denkleminin  

                                                       SFM ile yaklaşık çözümünün üç boyutlu görünümü 
 

 

 

 

 

 

 

 

                         
                                    Şekil 4.2.  KdV  denkleminin analitik çözümünün  
                                                     üç boyutlu görünümü 
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t=0.0001

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

y u(x,t)

 

                                 Şekil 4.3. 0.1, 0.0001h k= =  için KdV  denkleminin SFM ile 

                                           yaklaşık çözümünün iki boyutlu görünümü 
 

 

 

 

 

 

t=0.0001

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

y u(x,t)

 
                         Şekil 4.4. KdV denkleminin analitik çözümünün iki boyutlu görünümü 
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4.1.2. Adomian Ayrışım Metodu Đle Çözüm 

Şimdi, (4.2) başlangıç koşulu ile verilen (4.1)  KdV denklemini Adomian ayrışım 

metodu ile çözelim. Bu denklem operatör formunda,  

6t x xxxL u uu u= −                                                                                                           (4.9) 

şeklinde yazılır. Burada tL
t

∂
=

∂
 olarak ifade edilmektedir. tL  operatörünün tersi ise 1

tL−  

integral operatörü olup ( )1

0

.
t

tL dt− = ∫  şeklinde gösterilir. Şu durumda (4.9) denkleminin her 

iki tarafına soldan 1
tL−  uygulanırsa, 

( ) [ ]1 1 6t t t x xxxL L u L uu u− −= −                                                                                        (4.10) 

elde edilir. Buradan,  

[ ] [ ]1 1( , ) ( ,0) 6t x t xxxu x t u x L uu L u− −= + −                                                                      (4.11) 

olur. Burada lineer olmayan terim 
0

6 6x n
n

uu A
∞

=

= ∑  şeklinde tanımlanarak nA  Adomian 

polinomunun ilk üç terimi, 

( )
( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0

1 0 1 0 1

2 0 2 1 1 2 0

3 0 3 1 2 2 1 3 0

,

,

,

,

x

x x

x x x

x x x x

A u u

A u u u u

A u u u u u u

A u u u u u u u u

=

= +

= + +

= + + +

⋮

                                                               (4.12) 

olarak alınabilir. (4.11) denklemi için, 

[ ]1
1

1
( ,0) ,

6

( , ) ( ) 6 , 0k t k xxx k

x
u x

u x t L u A k−
+

−
=


 = − − ≥

                                                               (4.13) 

şeklinde rekürans bağıntısı yazılabilir. Elde edilen bu bağıntıdan, 
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( )

( ) ( )

( ) ( )

( ) ( )

0

1
1 0 0

1 2
2 1 1

1 3
3 2 2

1
, ,

6
1

, 6 1 ,
6
1

, 6 1 ,
6
1

, 6 1
6

xxx

xxx

xxx

t

t

t

x
u x t

u x t L A u x t

u x t L A u x t

u x t L A u x t

−

−

−

−
=

 = − = − 

 = − = − 

 = − = − 

⋮

 

 

şeklinde ayrışım serisinin ilk dört terimi bulunur. Bulunan 0 1 2 3, , ,u u u u  terimleri (3.28) 

eşitliğinde yerine yazılarak (4.1) KdV denkleminin yaklaşık çözümü, 

0 1 2 3
0

2 3

( , ) ( , )

1
(1 )

6

n

u x t u x t u u u u

x
t t t

∞

=

= = + + + +

−
= + + + +

∑ ⋯

⋯

 

olarak elde edilebilir. Böylece (4.1) denkleminin analitik çözümünün kapalı formu, 

( )
1 1

,
6 1

x
u x t

t

− 
=  

− 
 

olur. 

 

4.1.2.1 Sayısal Sonuçlar 

(4.1)  denkleminin Adomian Ayrışım Yöntemi ile elde edilen sayısal çözümü Tablo 4.2 

de, sayısal çözüm ve analitik çözüm için grafikler ise Şekil 4.5 -Şekil 4.8 de verildi. 

Tablo 4.2 de (4.1)  denklemi için 0.0001t = , alınarak ADM ile elde edilen sayısal 

çözüm ile tam çözüm karşılaştırıldı ve aradaki hata verildi. 
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                     Tablo 4.2. KdV denkleminin ADM ile yaklaşık çözümünün 
                                         analitik çözüm ile karşılaştırılması 
 

t= 0.0001 

x Sayısal Çözüm 
(ADM) Analitik Çözüm Hata 

 0 -0.1666833    -0.1666833     0 

 0.1     -0.15015    -0.15001501     1.50158×10-13 
 0.2     -0.133467    -0.13334667     1.33449×10-13 
 0.3     -0.116783    -0.11667834     1.16809×10-13 
 0.4     -0.1001    -0.10001     1.00114×10-13 
 0.5 -0.0834167    -0.08334167     8.34194×10-14 
 0.6 -0.0667334    -0.06667334     6.67244×10-14 
 0.7 -0.0500501    -0.050005     5.00572×10-14 
 0.8 -0.0333667    -0.03333667     3.33622×10-14 
 0.9 -0.0166834    -0.01666833     1.66811×10-14 
 1      0 0     0 
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                                            Şekil 4.5. KdV denkleminin ADM ile yaklaşık 
                                                            çözümünün üç boyutlu görünümü 
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                                             Şekil 4.6. KdV denkleminin analitik çözümünün  

                                                              üç boyutlu görünümü 

 

                               

0 0.2 0.4 0.6 0.8 1

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Appr . ADM

 

                                    Şekil 4.7. KdV denkleminin ADM ile yaklaşık  
çözümünün iki boyutlu görünümü 
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                                       Şekil 4.8. KdV denkleminin analitik çözümünün 
                                                        iki boyutlu görünümü 
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4.1.3. Homotopi Pertürbasyon Metodu Đle Çözüm 

Şimdi de, (4.2) başlangıç koşulu ile verilen lineer olmayan (4.1) KdV denklemini son 

olarak Homotopi Pertürbasyon Metodu ile çözelim. Denklemin yaklaşık çözümünü elde 

etmek için,                                                                                                                                        

 
( )

. . .
' '''

0

. . .
' '''

0 0

1 [ ] [ 6 ] 0

6 0                  

p Y u p Y YY Y

Y u pu pYY pY

− − + − + =

− + − + =

                                                    (4.14) 

şeklinde bir homotopi kurulabilir. Burada, 
3 .

''' '

3
, ,

u u u
Y Y Y

x t x

∂ ∂ ∂
= = =

∂ ∂ ∂
ve [ ]1,0∈p  dir. 

1
( ,0)

6

x
u x

−
=  başlangıç şartı ile verilen (4.1) denkleminin çözümü, 

2 3
0 1 2 3Y Y pY p Y p Y= + + + +⋯ ( )

0

,n
n

n

p Y x t
∞

=

=∑                                                         (4.15) 

. . . . .
2 3

0 1 2 3Y Y pY p Y p Y= + + + +⋯                                                                                (4.16)                        

'" '" "' 2 '" 3 "'
0 1 2 3Y Y pY p Y p Y= + + + +⋯                                                                             (4.17) 

şeklinde ele alınabilir. (4.15) - (4.17)  denklemlerinin (4.14) de yerine yazılmasıyla, 

( )( )

( )

. . . . . .
2 3 2 3 ' ' 2 ' 3 '

0 1 2 3 0 0 0 1 2 3 0 1 2 3

'" "' 2 '" 3 "'
0 1 2 3

6

0,

Y pY p Y p Y u p u p Y pY p Y p Y Y pY p Y p Y

p Y pY p Y p Y

 
+ + + − + − + + + + + + 

 

+ + + + =

            

( )( )
. . . . . .

2 3 2 3 ' ' 2 ' 3 '
0 1 2 3 0 0 0 1 2 0 1 2 3

'" 2 "' 3 '"
0 1 2

6 6 6

0,

Y pY p Y p Y u p u pY p Y p Y Y pY p Y p Y

pY p Y p Y

+ + + − + + − − − + + +

+ + + =
 

. . . . . .
2 3 ' 2 '

0 1 2 3 0 0 0 0 0 1

3 ' 2 ' 3 ' 3 ' '" 2 "' 3 '"
0 2 1 0 1 1 2 0 0 1 2

6 6

6 6 6 6 0

Y pY p Y p Y u pu pY Y p Y Y

Y p Y p YY p Y Y p Y Y pY p Y p Y

+ + + − + − −

− − − − + + + =
 

elde edilir. Bu denklem p ’nin aynı kuvvetli terimlerine göre yeniden düzenlenirse, 

. .
0

0 0: 0,p Y u− =                                                                                                          (4.18) 

. .
1 ' '"

1 0 0 0 0: 6 0,p Y u Y Y Y+ − + =                                                                                        (4.19) 

.
2 ' ' "'

2 0 1 1 0 1: 6 6 0,p Y Y Y Y Y Y− − + =                                                                                   (4.20) 

.
3 ' ' ' '"

3 0 2 1 1 2 0 2: 6 6 6 0,p Y Y Y YY Y Y Y− − − + =                                                                       (4.21) 

⋮                
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bulunur. (4.18) - (4.21) denklemlerinin çözümü ile, 

    

. . . .
0

0 00 0

0 0

0

: 0

1
( , )

6
1

,
6

p Y u Y u

x
Y u x o

x
Y

− = ⇒ =

−
⇒ = =

−
⇒ =

                                                                        (4.22)   

. . . . .
1 ' '" ' '"

1 0 0 0 0 1 0 0 0 0 0

' '"
1 0 0 0

0

: 6 0, 6 , 0

1
6 ( 1 ),

6

t

p Y u Y Y Y Y u Y Y Y ve u

Y Y Y Y dt t x

+ − + = ⇒ = − + − =

 ⇒ = − = − + ∫
                           (4.23)           

. .
2 ' ' "' ' ' "'

2 0 1 1 0 1 2 0 1 1 0 1

' ' "'
2 0 1 1 0 1

0

2
2

: 6 6 0 6 6

6 6

1
( 1 ),

6

t

p Y Y Y YY Y Y Y Y YY Y

Y Y Y YY Y dt

Y t x

− − + = ⇒ = + −

 ⇒ = + − 

⇒ = − +

∫                                           (4.24)           

. .
3 ' ' ' '" ' ' ' '"

3 0 2 1 1 2 0 2 3 0 2 1 1 2 0 2

' ' ' '"
3 0 2 1 1 2 0 2

0

3
3

: 6 6 6 0 6 6 6

6 6 6

1
( 1 ) ,

6

t

p Y Y Y YY Y Y Y Y Y Y YY Y Y Y

Y Y Y YY Y Y Y dt

Y t x

− − − + = ⇒ = + + −

 ⇒ = + + − 

⇒ = − +

∫        (4.25)      

⋮  

şeklinde serinin ilk üç terimi elde edilmiş olur. . (4.22) - (4.25) denklemleri 1p →  iken 

(4.15)  denkleminde yerine yazılırsa (4.1) nonlineer KdV denkleminin yaklaşık çözümü, 

( ) 2 3
0 1 2 3, ,u x t Y pY p Y p Y= + + + +⋯  

( ) ( )2 3
0 1 2 3

1
, lim

p
u x t Y pY p Y p Y

→
= + + + +⋯  

           
0 1 2 3

2 31 1 1 1
( 1 ) ( 1 ) ( 1 )

6 6 6 6

Y Y Y Y

x
t x t x t x

= + + +

−
= + − + + − + + − +

 

olarak elde edilir. Böylece  (4.1) denkleminin analitik çözümünün kapalı formu         

( )
1 1

,
6 1

x
u x t

t

− 
=  

− 
 

olur. 
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4.1.3.1. Sayısal Sonuçlar 

 (4.1)  denkleminin Homotopi Pertürbasyon Metodu ile elde edilen sayısal çözümü 

Tablo 4.3 de, sayısal çözüm ve analitik çözüm için grafikler ise Şekil 4.9 -Şekil 4.12 da 

verildi. 

Tablo 4.3 de (4.1)  denklemi için 0.0001t = , alınarak HPM ile elde edilen sayısal 

çözüm ile  tam çözüm karşılaştırıldı ve aradaki hata verildi. 

 

 

                    Tablo 4.3.  KdV denkleminin HPM ile yaklaşık çözümünün 
                                         analitik çözüm ile karşılaştırılması 
 

t= 0.0001 

x Sayısal Çözüm 
(HPM) Analitik Çözüm Hata 

 0 -0.1666833    -0.1666833     0 

 0.1     -0.15015    -0.15001501     1.50158×10-13 
 0.2     -0.133467    -0.13334667     1.33449×10-13 
 0.3     -0.116783    -0.11667834     1.16809×10-13 
 0.4     -0.1001    -0.10001     1.00114×10-13 
 0.5 -0.0834167    -0.08334167     8.34194×10-14 
 0.6 -0.0667334    -0.06667334     6.67244×10-14 
 0.7 -0.0500501    -0.050005     5.00572×10-14 
 0.8 -0.0333667    -0.03333667     3.33622×10-14 
 0.9 -0.0166834    -0.01666833     1.66811×10-14 
 1      0 0     0 
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                                            Şekil 4.9. KdV denkleminin HPM ile yaklaşık  
                                                             çözümünün üç boyutlu görünümü 
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                                   Şekil 4.10. KdV denkleminin analitik çözümünün  
                                                    üç boyutlu görünümü 
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                                   Şekil 4.11. KdV denkleminin HPM ile yaklaşık çözümünün 
                                                    iki boyutlu görünümü 
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                                     Şekil 4.12. KdV denkleminin analitik çözümünün  
                                                        iki boyutlu görünümü 

 

 

4.2.Doğrusal Olmayan Burgers Denklemine Sonlu Fark Metodu, Adomian 

Ayrışım Metodu ve Homotopi Pertürbasyon Metodunun Uygulanması 

4.2.1. Sonlu Fark Metodu Đle Çözüm 

t x xxu uu u+ =                                                                                                         (4.26) 

( ),0u x x=                                                                                                         (4.27) 

( ) ( )
1

0, 0, 1, , 0
1

u t u t t
t

= = ≥
+

                                                                               (4.28) 

şeklinde başlangıç ve sınır şartları verilmiş, ayrıca analitik çözümü de, 

( ),
1

x
u x t

t
=

+
                                                                                                            (4.29) 

şeklinde olan, nonlineer Burgers denklemini Sonlu fark metodu ile çözelim [31]. Şimdi  

(4.26)  denkleminde  tu  türevi yerine 

1j j
i i

t

u u
u

k

+ −
≅                                                                                                             (4.30) 

ileri fark yaklaşımı, xxu  türevi yerine,  

1 1
2

2j j j
i i i

xx

u u u
u

h
− +− +

≅                                                                                                 (4.31) 

merkezi fark yaklaşımını, ayrıca  xuu  nonlineer terimi yerine  
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1 1

2

j j
j i i

x i

u u
uu u

h
+ −

 −
≅  

 
                                                                                                 (4.32) 

sonlu fark yaklaşımı yazılıp , 
2

k
r

h
=  alınırsa, nonlineer Burgers denklemi için,  

( ) ( )1
1 1 1 12

2
2

j j j j j j j j
i i i i i i i i

k k
u u u u u u u u

h h
+

− + + −= + − + − −                                                   (4.33) 

şeklinde açık sonlu fark yaklaşımı elde edilir [30]. 

4.2.1.1 Sayısal Sonuçlar 

 (4.26)  denkleminin Sonlu Fark Metodu ile elde edilen sayısal çözümü Tablo 4.13 de, 

sayısal çözüm ve analitik çözüm için grafikler ise Şekil 4.13-Şekil 4.16 da verildi. 

Tablo 4.4 de (4.26)  denklemi için, 0.001t = , 0.000001k =  alınarak mesh uzunluğu 

h  nın 0.01h =  deki değeri için SFM ile elde edilen yaklaşık ve tam çözüm karşılaştırıldı 

ve aradaki hata verildi. 

 

 
                        Tablo 4.4. 0.01, 0.000001h k= =  için Burgers denkleminin SFM  

                                             ile yaklaşık çözümünün, analitik çözümü ile karşılaştırılması 
 

t= 0.001 

x 
Sayısal Çözüm 

(SFM) Analitik Çözüm Hata 

0 0 0 0 

0.1     0.0999001    0.0999001  2.00E-10 

0.2     0.1998002    0.1998002  2.00E-10 

0.3 0.299700301    0.2997003 1.1E-09 

0.4 0.399600398    0.3996004 1.6E-09 
0.5 0.499500496    0.4995005 3.9E-09 
0.6 0.599400598 0.599400599 1.6E-09 
0.7   0.6993007005  0.6993006993 1.2E-09 

0.8 0.799200797 0.799200799 2.7E-09 

0.9 0.899100899 0.899100899 0 

1 0.999000999 0.999000999 0 
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                       Şekil 4.13. 0.01, 0.000001h k= =  için Burgers denkleminin SFM ile  

                                           yaklaşık çözümünün üç boyutlu görünümü 

 

 

 

                         

                      Şekil 4.14.  Burgers denkleminin analitik çözümünün üç boyutlu görünümü 
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                       Şekil 4.15. 0.01, 0.000001h k= =  için Burgers denkleminin SFM ile  

                                           yaklaşık çözümünün iki boyutlu görünümü 

 

 

 

 

 

 

 

 

 

   
 Şekil 4.16. Burgers denkleminin analitik çözümünün iki boyutlu görünümü 
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4.2.3. Adomian Ayrışım Metodu Đle Çözüm 

Şimdi, (4.27) başlangıç koşulu ile verilen (4.26) nonlineer Burgers denklemini 

Adomian ayrışım metodu ile çözelim. Bu denklem operatör formunda, 

t x xxL u uu u= − +                                                                                                         (4.34) 

şeklinde yazılır. Burada tL
t

∂
=

∂
 olarak ifade edilmektedir. tL  operatörünün tersi ise 1

tL−  

integral operatörü olup ( )1

0

.
t

tL dt− = ∫  şeklinde gösterilir. Bu durumda (4.34) denkleminin 

her iki tarafına soldan 1
tL−  uygulanırsa, 

( ) [ ]1 1
t t t xx xL L u L u uu− −= −                                                                                           (4.35) 

elde edilir. Buradan,  

[ ]1( , ) ( ,0) t xx xu x t u x L u uu−= + −                                                                                 (4.36) 

olur. Burada lineer olmayan terim 
0

x n
n

uu A
∞

=

=∑  şeklinde tanımlanarak nA  Adomian 

polinomunun ilk üç terimi, 

( )
( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0

1 0 1 0 1

2 0 2 1 1 2 0

3 0 3 1 2 2 1 3 0

,

,

,

,

x

x x

x x x

x x x x

A u u

A u u u u

A u u u u u u

A u u u u u u u u

=

= +

= + +

= + + +

⋮

                                                               (4.37) 

 
olarak alınabilir. (4.36) denklemi için, 

( )1
1

( ,0) ,

( , ) ( ) , 0k t k xx k

u x x

u x t L u A k−

+

=


= − ≥   
                                                                (4.38) 

şeklinde rekürans bağıntısı yazılabilir. Elde edilen bu bağıntıdan, 

( )

( )

( )

( )

0

1
1 0 0

1 2
2 1 1

1 3
3 2 2

, ,

, ,

, ,
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xx
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t

t

u x t x

u x t L u A xt

u x t L u A xt

u x t L u A xt

−

−

−

=

 = − = − 

 = − = 

 = − = − 
⋮
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şeklinde ayrışım serisinin ilk dört terimi bulunur. Bulunan 0 1 2 3, , ,u u u u  terimleri (3.28) 

eşitliğinde yerine yazılarak (4.26) Burgers denkleminin yaklaşık çözümü, 

0 1 2 3
0

2 3

( , ) ( , )

(1 )

n

u x t u x t u u u u

x t t t

∞

=

= = + + + +

= − + − +

∑ ⋯

⋯

 

olarak elde edilir. Böylece (4.26) denkleminin analitik çözümünün kapalı formu , 

( ),
1

x
u x t

t
=

+
 

olur. 

 

 

4.2.2.1. Sayısal Sonuçlar 

 (4.26)  denkleminin Adomian Ayrışım Metodu ile elde edilen sayısal çözümü Tablo 

4.5 de, sayısal çözüm ve analitik çözüm için grafikler ise Şekil 4.17 -Şekil 4.20 de verildi. 

Tablo 4.5 de (4.26)  denklemi için 0.001t = , alınarak ADM ile elde edilen sayısal 

çözüm ile tam çözüm karşılaştırıldı ve aradaki hata verildi. 

 

 

                        Tablo 4.5. Burgers denkleminin ADM ile yaklaşık çözümünün,  
                                             analitik çözümü ile karşılaştırılması 

 

t= 0.001 

x 
Sayısal Çözüm 

(ADM)   Analitik Çözüm Hata 

0 0 0 0 

0.1      0.0999001    0.0999001 9.99062×10-14 
0.2      0.1998    0.1998002 1.99812×10-13 
0.3      0.2997    0.2997003 2.9976×10-13 
0.4      0.3996    0.3996004 3.99625×10-13 
0.5      0.4995    0.4995005 4.99545×10-13 
0.6      0.599401 0.599400599 5.9952×10-13 
0.7      0.699301  0.6993006993 6.99441×10-13 
0.8      0.799201 0.799200799 7.9925×10-13 
0.9      0.899101 0.899100899 8.99281×10-13 

1      0.999001 0.999000999 9.9909×10-13 
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                                     Şekil 4.17. Burgers denkleminin ADM ile yaklaşık  
                                                        çözümünün üç boyutlu görünümü 
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                                            Şekil 4.18. Burgers denkleminin analitik çözümünün  
                                                              üç boyutlu görünümü 
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                                        Şekil 4.19. Burgers denkleminin ADM ile yaklaşık  
                                                           çözümünün iki boyutlu görünümü 
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                                      Şekil 4.20. Burgers denkleminin analitik çözümünün  
                                                         iki boyutlu görünümü 

 

4.2.2. Homotopi Pertürbasyon Metodu Đle Çözümü 

Şimdi de, (4.27) başlangıç koşulu ile verilen (4.26) non-lineer Burgers denklemini 

Homotopi Pertürbasyon metodu ile çözelim. Denklemin yaklaşık çözümünü elde etmek 

için,  

( )
. . .

' ''
0

. . .
' ''

0 0

1 [ ] [ ] 0

0                  

p Y u p Y YY Y

Y u pu pYY pY

− − + + − =

− + + − =

                                                        (4.39) 

şeklinde bir homotopi kurulabilir. Burada, 
2 .

'' '

2
, ,

u u u
Y Y Y

x t x

∂ ∂ ∂
= = =

∂ ∂ ∂
 ve [ ]1,0∈p  dir. 

( ,0)u x x=  başlangıç şartı ile verilen (4.26 denkleminin çözümü, 

2 3
0 1 2 3Y Y pY p Y p Y= + + + +⋯ ( )

0

,n
n

n

p Y x t
∞

=

=∑                                                         (4.40) 

. . . . .
2 3

0 1 2 3Y Y pY p Y p Y= + + + +⋯                                                                                (4.41)    

' ' ' 2 ' 3 '
0 1 2 3Y Y pY p Y p Y= + + + +⋯                                                                                 (4.42)                     

" '' " 2 " 3 ''
0 1 2 3Y Y pY p Y p Y= + + + +⋯                                                                               (4.43) 

şeklinde ele alınabilir. (4.40) - (4.43)  eşitliklerinin  (4.39) da yerine yazılmasıyla, 

( )( )

( )

. . . . . .
2 3 2 3 ' ' 2 ' 3 '

0 1 2 3 0 0 0 1 2 3 0 1 2 3

" " 2 '' 3 "
0 1 2 3 0,

Y pY p Y p Y u p u p Y pY p Y p Y Y pY p Y p Y

p Y pY p Y p Y

 
+ + + − + + + + + + + + 

 

− + + + =
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. . . . . .
2 3 ' 2 ' 3 ' 2 ' 3 ' 3 '

0 1 2 3 0 0 0 0 0 1 0 2 1 0 1 1 2 0

'' 2 '' 3 "
0 1 2 0,

Y pY p Y p Y u pu pY Y p Y Y p Y Y p YY p YY p Y Y

pY p Y p Y

+ + + − + + + + + + +

− − − =
 

. . . . . .
2 3 ' 2 ' 3 ' 2 '

0 1 2 3 0 0 0 0 0 1 0 2 1 0

3 ' 3 ' '' 2 '' 3 "
1 1 2 0 0 1 2 0

Y pY p Y p Y u p u pY Y p Y Y p Y Y p Y Y

p Y Y p Y Y pY p Y p Y

+ + + − + + + + +

+ + − − − =
 

elde edilir. Bu denklem p ’nin aynı kuvvetli terimlerine göre yeniden düzenlenirse, 

. .
0

0 0: 0,p Y u− =                                                                                                          (4.44) 

. .
1 ' ''

1 0 0 0 0: 0,p Y u Y Y Y+ + − =                                                                                           (4.45) 

.
2 ' ' "

2 0 1 1 0 1: 0,p Y Y Y YY Y+ + − =                                                                                       (4.46) 

.
3 ' ' ' "

3 0 2 1 1 2 0 2: 0,p Y Y Y Y Y Y Y Y+ + + − =                                                                             (4.47) 

⋮                

bulunur. (4.44) - (4.47) denklemlerinin çözümü ile, 

. . . .
0

0 00 0

0 0

0

: 0

( , )

,

p Y u Y u

Y u x o x

Y x

− = ⇒ =

⇒ = =

⇒ =

                                                                           (4.48)    

. . . . .
1 ' " ' "
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0
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,

t

p Y u Y Y Y Y u Y Y Y ve u

Y Y Y Y dt

Y xt

+ + − = ⇒ = − − + =

 ⇒ = − + 

⇒ = −

∫                                     (4.49)           
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Y Y Y Y YY dt
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 ⇒ = − − 

⇒ =

∫                                         (4.50)      
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3
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,
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Y Y Y Y YY Y Y dt

Y xt

+ + + − = ⇒ = − − −

 ⇒ = − − − 
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∫                     (4.51)      

⋮  

 

şeklinde serinin ilk üç terimi elde edilmiş olur. (4.48) - (4.51) denklemleri 1p →  iken 
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(4.40)  denkleminde yerine yazılırsa (4.26) non-lineer Burgers denkleminin yaklaşık 

çözümü 

    

( ) ( )

( )

2 3
0 1 2 3

1

0 1 2 3

2 3

2 3

, lim

1

p
u x t Y pY p Y p Y

Y Y Y Y

x xt xt xt

x t t t

→
= + + + +

= + + + +

= − + − +

= − + − +

⋯

⋯

⋯

⋯

 

olarak elde edilir. Böylece  (4.26) denkleminin analitik çözümünün kapalı formu         

( ),
1

x
u x t

t
=

+
 

olur. 

 

 

4.2.3.1. Sayısal Sonuçlar 

 (4.26)  denkleminin Homotopi Pertürbasyon Metodu ile elde edilen sayısal çözümü 

Tablo 4.6 da, sayısal çözüm ve analitik çözüm için grafikler ise Şekil 4.21-Şekil 4.24 de 

verildi. 

Tablo 4.6 da (4.26)  denklemi için 0.001t = , alınarak HPM ile elde edilen sayısal 

çözüm ile  tam çözüm karşılaştırıldı ve aradaki hata verildi. 

 
 
                       Tablo 4.6. Burgers denkleminin HPM ile yaklaşık çözümünün,  
                                            analitik çözümü ile karşılaştırılması 

 

t= 0.001 

x 
Sayısal Çözüm 

(HPM) Analitik Çözüm Hata 

0 0 0 0 

0.1      0.0999001    0.0999001 9.99062×10-14 
0.2      0.1998    0.1998002 1.99812×10-13 
0.3      0.2997    0.2997003 2.9976×10-13 

0.4      0.3996    0.3996004 3.99625×10-13 
0.5      0.4995    0.4995005 4.99545×10-13 
0.6      0.599401 0.599400599 5.9952×10-13 
0.7      0.699301  0.6993006993 6.99441×10-13 
0.8      0.799201 0.799200799 7.9925×10-13 

0.9      0.899101 0.899100899 8.99281×10-13 
1      0.999001 0.999000999 9.9909×10-13 
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                                           Şekil 4.21. Burgers denkleminin HPM ile yaklaşık  

        çözümünün üç boyutlu görünümü 
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                                         Şekil 4.22. Burgers denkleminin analitik çözümünün  
                                                           üç boyutlu görünümü 
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                                  Şekil 4.23. Burgers denkleminin HPM ile yaklaşık  
çözümünün iki boyutlu görünümü 
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Exact Sol.

 

                                             Şekil 4.24. Burgers denkleminin analitik çözümünün  
                                                        iki boyutlu görünümü



 

5.SONUÇLAR VE TARTIŞMA 

 

5.1. Sonuç : Başlangıç şartlı KdV denkleminin sonlu fark metodu, ayrışım metodu ve 

homotopi pertürbasyon metodu ile sayısal çözümleri elde edildi. Elde edilen sonuçlara göre 

homotopi pertürbasyon metodu ile adomian ayrışım metodunda aynı sonuçlar elde edildi.  

Bazı adımlarda sonlu fark metodu daha iyi sonuçlar vermesine rağmen genel olarak 

bakıldığında adomian ayrışım metodu ve homotopi pertürbasyon metodu ile sayısal 

çözümlerde sonlu fark metoduna göre analitik çözüme daha yakın değerler bulundu. Elde 

edilen hata tablosu Tablo 5.1. de verilmiştir. 

 

 

 

                    Tablo 5.1. KdV denkleminin SFM, ADM ve HPM ile elde edilen  
                                      sayısal çözümlerinin hata tablosu  
 

t= 0.0001 

x Hata (SFM) Hata (ADM) Hata (HPM) 
 0 0     0     0 

 0.1       2.3E-07    1.50158×10-13     1.50158×10-13 
 0.2       4.3E-07    1.33449×10-13     1.33449×10-13 
 0.3      3.00E-08    1.16809×10-13     1.16809×10-13 
 0.4      1.00E-08    1.00114×10-13     1.00114×10-13 
 0.5             0    8.34194×10-14     8.34194×10-14 
 0.6      1.00E-08    6.67244×10-14     6.67244×10-14 
 0.7      4.00E-08    5.00572×10-14     5.00572×10-14 
 0.8      7.00E-08    3.33622×10-14     3.33622×10-14 
 0.9      1.53E-06    1.66811×10-14     1.66811×10-14 
 1 0     0     0 
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5.2. Sonuç : Başlangıç şartlı Burgers denkleminin sonlu fark metodu, ayrışım metodu ve 

homotopi pertürbasyon metodu ile sayısal çözümleri elde edildi. Elde edilen sonuçlara göre 

 homotopi pertürbasyon metodu ile adomian ayrışım metodunda aynı sonuçlar elde edildi.  

Bazı adımlarda sonlu fark metodu daha iyi sonuçlar vermesine rağmen genel olarak 

bakıldığında adomian ayrışım metodu ve homotopi pertürbasyon metodu ile sayısal 

çözümlerde sonlu fark metoduna göre analitik çözüme daha yakın değerler bulundu. Elde 

edilen hata tablosu Tablo 5.2. de verilmiştir. 

 

 

                        Tablo 5.2. Burgers denkleminin SFM, ADM ve HPM ile elde edilen  
                                          sayısal çözümlerinin hata tablosu  
 

t= 0.001 

x Hata (SFM) Hata (ADM) Hata (HPM) 

0 0 0 0 

0.1  2.00E-10  9.99062×10-14 9.99062×10-14 

0.2  2.00E-10  1.99812×10-13 1.99812×10-13 
0.3 1.1E-09  2.9976×10-13 2.9976×10-13 
0.4 1.6E-09 3.99625×10-13 3.99625×10-13 
0.5 3.9E-09 4.99545×10-13 4.99545×10-13 
0.6 1.6E-09  5.9952×10-13 5.9952×10-13 
0.7 1.2E-09 6.99441×10-13 6.99441×10-13 
0.8 2.7E-09  7.9925×10-13 7.9925×10-13 

0.9 0  8.99281×10-13 8.99281×10-13 
1 0  9.9909×10-13 9.9909×10-13 
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        KdV denkleminin ek dönüşüm uygulanarak Crank Nicolson metodu ile çözümü 
        parameter(NN=2000) 
        double precision bleft(1:NN-1,1:NN),br(1:NN-1,1:NN-1), 
*      u0(0:NN),u(0:NN),bv(1:NN-1),ua(0:NN) 
        double precision r, k,tm(1:NN-1,1:NN),xc(1:NN-1) 
        double precision tson,e,l2,lsonsuz 
        open(1,file='KdV_crank nicolson.txt',status='unknown') 
        write(*,*) 't son zaman degerini giriniz' 
        read(*,*) tson 
        write(*,*) 'tson=',tson 
        write(*,*) 'n degerini giriniz' 
        read(*,*) n 
        write(*,*)'n=',n 
        write(*,*) 'k degerini giriniz' 
        read(*,*) k 
        write(*,*)'k=',k 
        write(1,*) 
        write(1,*)'n=',n 
        write(1,*) 
        write(1,*)'tf=',tson 
        write(1,*) 
        write(1,555)k 
        write(1,*) 
555  format('k=',f10.5) 
        h=0.1D0           
        r=k/(h**3) 
       write(*,*)'h=',h 
        mtekrar=n/10 
        write(1,*)'r=',r 
        x=0.D0 
        ts=0.D0 
       do 11 i=0,n 
        x=i*h 
        u0(i)=(1./6)*(x-1.) 
        ua(i)=(1./6)*((x-1.)/(1.-ts)) 
       write(1,*)x,u0(i),ua(i)   
11   continue 
        mson=int(tson/k) 
        write(*,*)'mson=',mson 
        do 20 m=1,mson 
        bleft(1,1)=1.-(5.*r/4.) 
        bleft(1,2)=(6.*r/4.)*((-h**2)*u0(1)+3.) 
        bleft(1,3)=-6.*r 
        bleft(1,4)=7.*r/2. 
        bleft(1,5)=-3.*r/4. 
        bleft(2,1)=(r/2.)*((3*h**2)*u0(2)+1.) 
        bleft(2,2)=1. 
        bleft(2,3)=(-r/2.)*((3*h**2)*u0(2)+1.) 
        bleft(2,4)=r/4. 
        do 10 i=3,n-3  
        bleft(i,i-2)=-r/4. 



 

        bleft(i,i-1)=(r/2.)*((3*h**2)*u0(i)+1.) 
        bleft(i,i)=1. 
        bleft(i,i+1)=(-r/2.)*((3*h**2)*u0(i)+1.)   
        bleft(i,i+2)=r/4. 
10    continue    
        bleft(N-2,N-4)=-r/4. 
        bleft(N-2,N-3)=(r/2.)*((3*h**2)*u0(N-2)+1.) 
        bleft(N-2,N-2)=1. 
        bleft(N-2,N-1)=(-r/2.)*((3*h**2)*u0(N-2)+1.)      
        bleft(N-1,N-1)=(1-9.*r*h**2*u0(N-1)+5.*r/4.) 
        bleft(N-1,N-2)=(r/2.)*((24.*h**2)*u0(N-1)-9.) 
        bleft(N-1,N-3)=(r/2.)*((-6*h**2)*u0(N-1)+12.) 
        bleft(N-1,N-4)=(-7.*r/2.) 
        bleft(N-1,N-5)=(3.*r/4.) 
 
*   Matrisin sağ tarafı  
 
        br(1,1)=1.+(5.*r/4.) 
        br(1,2)=(-6.*r/4.)*((-h**2)*u0(1)+3.) 
        br(1,3)=6.*r 
        br(1,4)=-7.*r/2. 
        br(1,5)=3.*r/4. 
        br(2,1)=(-r/2.)*((3*h**2)*u0(2)+1.) 
        br(2,2)=1. 
        br(2,3)=(r/2.)*((3*h**2)*u0(2)+1.) 
        br(2,4)=-r/4.   
        do 18 i=3,n-3  
        br(i,i-2)=r/4. 
        br(i,i-1)=(-r/2.)*((3*h**2)*u0(i)+1.)  
        br(i,i)=1. 
        br(i,i+1)=(r/2.)*((3*h**2)*u0(i)+1.) 
        br(i,i+2)=-r/4. 
18    continue   
        br(N-2,N-4)=r/4. 
        br(N-2,N-3)=(-r/2.)*((3*h**2)*u0(N-2)+1.) 
        br(N-2,N-2)=1. 
        br(N-2,N-1)=(r/2.)*((3*h**2)*u0(N-2)+1.) 
        br(N-1,N-1)=(1.+9*r*h**2*u0(N-1)-5.*r/4.) 
        br(N-1,N-2)=(-r/2.)*((24.*h**2)*u0(N-1)-9.) 
        br(N-1,N-3)=(-r/2.)*((-6.*h**2)*u0(N-1)+12.) 
        br(N-1,N-4)=(7.*r/2.) 
        br(N-1,N-5)=(-3.*r/4.) 
        do 30 i=1,n-1 
        t=0. 
        do 32 j=1,n-1 
        t=t+br(i,j)*u0(j) 
32    continue 
        bv(i)=t 
30    continue 

  bv(1)=bv(1)-(3.*r*(h**2)*u0(1))*u0(0) 
         bv(2)=bv(2)+(r/2.)*u0(0) 



 

         do 37 i=1,n-1 
         do 37 j=1,n-1 
         tm(i,j)=0. 
         tm(i,j)=bleft(i,j) 
37     continue 
         do 38 i=1,n-1 
         xc(i)=bv(i) 
 38    continue   
         ng=N-1 
         do 300 kg=1,ng 
         do 301 ig=kg+1,ng 
        TM(ig,kg)=TM(ig,kg)/TM(kg,kg) 
301  continue 
         do 302 jg=kg+1,ng 
         do 303 ig=kg+1,ng 
         TM(ig,jg)=TM(ig,jg)-TM(ig,kg)*TM(kg,jg) 
303   continue 
302   continue 
         do 304 ig=kg+1,ng 
         xc(ig)=xc(ig)-TM(ig,kg)*xc(kg) 
304   continue 
300   continue 
         do 305 ig=ng,1,-1 
         do 306 jg=ig+1,ng 
         xc(ig)=xc(ig)-TM(ig,jg)*xc(jg) 
306   continue 
          xc(ig)=xc(ig)/TM(ig,ig) 
305   continue 
         do 39 i=1,n-1 
         u(i)=xc(i) 
 39    continue 
         x=0. 
         ts=m*k 
         write(*,*)ts 
         do 12 i=0,n 
         x=i*h 
         ua(i)=(1./6)*((x-1.)/(1.-ts))   
12     continue 
         u(0)=ua(0) 
         u(n)=0. 
         do 47 i=0,n 
         u0(i)=u(i) 
         x=i*h 
         write(1,50)x,u(i),ua(i) 
47     continue  
20     continue 
         call analitik(n,tson,ua) 
         call hata(u,ua,n,e) 
         call hata_l2(u,ua,n,l2) 
         call hata_lsonsuz(u,ua,n,lsonsuz) 
         write(1,51) tson 



 

         write(1,*) '    x         sonlu fark      Analitik cozum   Hata' 
         write(1,*)' -------------------------------------------------------' 
         do 41 i=1,n 
         x=i*h 
         thata=abs(ua(i)-u(i)) 
         write(1,50) x,u(i),ua(i),thata 
41     continue 
         write(1,*) 
50     format(f8.3,5x,f12.8,5x,f12.8,5x,f12.8) 
60     format(9(f8.3)) 
51     format('t=',f12.5) 
52     format('r=',f12.5) 
         stop 
         end 
 
         subroutine penta(q,n,x) 
         double precision q(1:n,1:n+1),a(1:n),b(1:n),c(1:n),d(1:n),e(1:n) ,f(1:n) 
         double precision ax(1:n),bx(1:n),cx(1:n),dx(1:n),ex(1:n),x(1:n) 
         do 10 i=1,n-2 
         a(i)=q(i+2,i) 
         e(i)=q(i,i+2) 
 10    continue 
         do 11 i=1,n-1 
         b(i)=q(i+1,i) 
         d(i)=q(i,i+1) 
 11    continue 
         do 12 i=1,n 
         c(i)=q(i,i) 
         f(i)=q(i,n+1) 
 12    continue 
         ax(1)=0 
         bx(1)=c(1) 
         cx(1)=d(1)/bx(1) 
         dx(1)=e(1)/bx(1) 
         ex(1)=f(1)/bx(1) 
         ax(2)=b(1) 
         bx(2)=c(2)-ax(2)*cx(1) 
         cx(2)=(d(2)-ax(2)*dx(1))/bx(2) 
         dx(2)=e(2)/bx(2) 
         ex(2)=(f(2)-ax(2)*ex(1))/bx(2)  
         do 13 i=3,n 
         ax(i)=b(i-1)-a(i-2)*cx(i-2) 
         bx(i)=c(i)-ax(i)*cx(i-1)-a(i-2)*dx(i-2) 
         cx(i)=(d(i)-ax(i)*dx(i-1))/bx(i) 
         dx(i)=e(i)/bx(i) 
         ex(i)=(f(i)-ax(i)*ex(i-1)-a(i-2)*ex(i-2))/bx(i) 
 13    continue 
         x(n)=ex(n) 
         x(n-1)=ex(n-1)-cx(n-1)*x(n) 
         do 14 i=n-2,1,-1 
         x(i)=ex(i)-x(i+2)*dx(i)-x(i+1)*cx(i) 



 

 14    continue 
         return 
         end 
 
*       analitik çözüm için altprogram 
 
         subroutine analitik(n,tmax,uu) 
         parameter(m_uzunluk=500) 
         DOUBLE PRECISION X,TMAX,H 
         DOUBLE PRECISION UU(0:m_uzunluk) 
         INTEGER I,N 
         H=1./FLOAT(N) 
*C------------------------------------------------------- 
         DO 213  I=0,n 
          x=I*H 
         UU(I)=(1./6)*((x-1.)/(1.-TMAX))    
213   CONTINUE 
          return 
         END 
 
 
*      Burgers denkleminin ek dönüşüm uygulanarak explicit yöntemiyle çözümü� 
*       UUx=Ui_j*(Ui+1_j-Ui-1_j)/2h dönüşümü uygulanmıştır 
        program burgers_explicit_ekdonusum2 
        parameter(nn=500) 
        double precision u(0:nn),u0(0:nn),ua(0:nn) 
        double precision k,tson,h,dt 
        open(1,file='burgers_explicit_ek1111.txt',status='unknown') 
        write(*,*) 't son zaman de§erini giriniz!' 
        read(*,*) tson 
        write(*,*) 'n-de§erini giriniz!' 
        read(*,*) n 
        write(*,*) 'k de§erini giriniz!' 
        read(*,*) k 
        write(1,*)'ek_donusum_2' 
        write(1,*) 
        write(1,*)'n=',n 
        write(1,*) 
        write(1,*)'tf=',tson 
        write(1,*) 
        write(1,555)k 
        write(1,*) 
555   format('k=',f10.8) 
        h=1./float(n) 
        x=0          
        mtekrar=n/10 
        do 10 i=0,n 
        x=i*h 
        u0(i)=x 
 10   continue 
        u(0)=0. 



 

        u(n)=1. 
        mson=int(tson/k) 
        md=mson/10 
        do 25 m=1,mson 
        do 20 i=1,n-1 
        u(i)=u0(i)+k*(u0(i+1)-2.*u0(i)+u0(i-1))/(h**2) 
     *   -k*u0(i)*(u0(i+1)-u0(i-1))/(2.*h) 
 20   continue 
       do 40 i=1,n-1 
        u0(i)=u(i) 
40 continue 
      dt=m*k 
     u0(0)=0. 
     u0(n)=1./(1.+dt) 

       if (mod(m,md).eq.0) then call analitik(n,dt,ua) 
       write(1,51) m*k 
        write(1,*) '    x         sonlu fark      Analitik cozum  Hata' 
        write(1,*)' -------------------------------------------------------' 
*      do 41 i=20,n-1,20 
        do 41 i=0,n 
        x=i*h 
        write(1,50) x,u0(i),ua(i),abs(ua(i)-u0(i)) 
41    continue 
        endif 
25    continue         
50    format(f8.3,5x,f12.10,5x,f12.10,5x,f12.10) 
51    format('t=',f12.5) 
        stop 
        end 
*      analitik çözüm için altprogram 
       subroutine analitik(n,tmax,uu) 
       parameter(nn=500) 
       DOUBLE PRECISION UU(0:nn) 
       DOUBLE PRECISION X,TMAX,H 
       INTEGER I,N         
       H=1./FLOAT(N) 
       DO 213  I=0,n 
       x=I*H 
      UU(I)=x/(1.+TMAX)    
213 CONTINUE 
       return 
       end 
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