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OZET

Bu calisma ii¢ boliimden olugmaktadir.

Birinci boliimde, diferansiyel denklemlerle ilgili temel tanimlara yer verilmistir.

Ikinci boliimde Sonlu fark metodu, Adomian ayrisim metodu ve Homotopi Pertiirbasyon
metotlarmin genel yapilar1 anlatilmustir.

Uciincii boliim ise tezimizin orijinal kismini olusturmaktadir ve iki kisimdir. Birinci
kistmda KdV denklemine sirasiyla SFM, ADM ve HPM uygulanarak denklemin sayisal
¢Ozliimleri incelenmistir. Ikinci kisimda ise, Burgers denklemine SFM, ADM ve HPM

uygulanarak denklemin sayisal ¢coziimleri incelenmistir.

Anahtar Kelimeler: KdV denklemi, Burgers denklemi, Sonlu Fark Metodu (SFM),
Adomian Ayrisim Metodu (ADM), Homotopi Pertiirbasyon
Metodu (HPM), Crank Nicolson, Adomian Polinomlari,
Sonlu Fark Yaklasimi.



SUMMARY

Solitions of Some Non-linear Partial Differential
Equations With Finite Difference Method

This thesis consists of three chapters.
In the first chapter, provides fundamental definitions related to differential equations.
In the second chapter, we give general structures of Finite Difference Method, Adomian
Decomposition Method and Homotopy Perturbation Method.
The third chapter is the our major contribution and it has two section. In the first section of
third chapter, numerical solitions of the KdV equation were investigated by applying Finite
Difference Method, ADM and HPM methods respectively to the KdV equation. In the
second section of third chapter, numerical solitions of the Burgers equation were
investigated by applying Finite Difference Method, ADM and HPM methods respectively

to the Burgers equation.

Key Words: KdV equation, Burgers equation, Finite Difference Method (SFM),
Adomian Decomposition Method (ADM), Homotopy Perturbation
Method (HPM), Crank Nicolson, Adomian Polinomials, Finite Dif-

ference Approximation.
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SEMBOLLER LiSTESI

L : Diferensiyel operatorii
L’ : Integral operatorii
Nu : Lineer olmayan terim
A : Adomian polinomu
0, : n-terim yaklagimi
u(x,t) : Coziim fonksiyonu
p : Kiiciik bir parametre
R : Reel say1 sistemi
A : Lamda
€ : Ebsilon
Q : Omega
r : Gama
1 : Xi
(0] : Phi
c : Sigma
KISALTMALAR
KDD : Kismi Diferansiyel Denklem
SFM : Sonlu Fark Metodu
SFD : Sonlu Fark Denklemi
ADM : Adomian Ayrisim Metodu
HPM : Homotopi Pertiirbasyon Metodu
KdV : Korteweg-de Vries Denklemi



1. GIRIS
1.1. Korteweg de Vries (KdV) Denklemi

Bagimsiz dalgalar (solitary waves) ilk defa 1834 yilinda durgun bir teknenin on
tarafindan kopan yuvarlak, diizgiin ve olduk¢a belirgin bir su kiimesinin seklinde bir
degisiklik veya hizinda en ufak bir azalma olmaksizin yaklasik 3 kilometrelik bir kanal
boyunca ilerlediginin Scott Russell [1] tarafindan gozlemlenmesiyle kayda gec¢mistir.
Salinim yapan diger dalga tiirlerinden farkli hareket bicimi nedeniyle yine Russell
tarafindan bunlara "bagimsiz dalga" adi verilmistir. 1847 yilinda Stokes [2] ve 1872
yilinda Boussinesq [3] gibi bircok matematik¢i kisaca bu konudan bahsetmis olsa da sig
sulardaki bagimsiz dalgalarin profilini goézlemleyen Scott Russell’dan sonraki ilk teorik
caligmalar 1895 yilinda Korteweg ve de Vries’e aittir. Korteweg ve de Vries [4] sig bir
kanalda tek yonde ilerleyen dalgalarin olusumuna dair giiniimiizde oldukga ilgi ceken
denklemi bulmuslardir. Burada,
[ : kanalin derinligi
[+n : (n kigctik olmak iizere ) ylizeyin dipten itibaren yiiksekligi
o : sivinin diizgiin hareketi ile ilgili kiigiik bir sabit
I

0 :————Dbir parametre
3 pg

T : yiizey gerilimi

g : yercekimi ivmesi

L ¢ stvinin yogunlugu

olmak iizere dalganin hareketi ile ilgili kismi diferansiyel denklem

3 |go|2 1 1 9
_3 /89 n 1.1
=3 lax{3 Ty '7+3Ga } (b

bicimindedir.

3
n = pau, §=—,f%x, T:‘,Zg_,ua't
o ol

doniistimleriyle (1.1) denklemi

Uy +uy+Euuy + fug., =0 (1.2)



seklini alir. Burada & :% [ ve u bilinen parametrelerdir. (1.2) denkleminde x=&-T

doniisiimii yapilir ve T yerine ¢ yazilirsa

u, +éeuu +pu, =0 (1.3)
KdV denklemi elde edilir [5].

KdV denklemi inverse scattering yontemiyle [6] analitik olarak ¢oziilebilir olmasina
ragmen bu yontemin zamandan bagimsiz Schrodinger denklemine bagh olarak sadece
birka¢ ©6zel potansiyel i¢in sonu¢ veriyor olmasi sebebiyle niimerik c¢oziimleri 6nemini
korumaktadir. KdV denkleminin niimerik ¢oziimiinii ilk olarak Zabusky ve Kruskal [7]
sonlu farklar yontemini kullanarak elde etmislerdir. O calismada iki bagimsiz dalganin
etkilesiminin O6zellikleri ortaya konulmustur. Zabusky ve Kruskal, ikinci bir dalgayla
karsilagtiginda gecis asamasi haric, seklini koruyarak diizgiin hizla ilerleyen dalgalar i¢in
soliton kavramini tanimlamislardir. Helal ve Mehanna [8] KdV denklemine Adomian
ayrisim yontemini ve sonlu farklar yontemini uygulayarak sayisal ve analitik ¢oziimleri

karsilagtirmiglardir. Cavlak [28] ise GKdV denklemini yar1 analitik metotlarla incelemistir.

1.2.Burgers Denklemi

v, bir reel sabit olmak iizere;

u,+uu —vu =0 (1.4)
denklemi Burgers denklemi olarak bilinir ve ilk olarak Bateman [9] tarafindan calisilmistir.
Burger [10], 6zellikle tiirbiilansin modeli olmast gibi, bu denklemi iceren genis capta
caligmalar yapmistir. Bundan dolay1 denklem Burgers denklemi olarak adlandirilmastir.

Burgers denklemi icin baglangi¢ ve sinir sartlar: sirasiyla,

u(x,0)=f(x), as<x<b (1.5)

u(a,t)=a, u(b,t)=p, te[0,T] (1.6)
olarak secilir.

Burgers denklemi, 1s1 iletimi, gaz dinamigi, esneklik, sayilar teorisi, sok dalga teorisi

ve tiirbiilans problemlerinin modellemesinde kullanilir.
Burgers denklemi dogrusal olmayan konvektif uu_terimi ve vu _ viskozite teriminden

dolay1 Navier- Stokes denklemine benzer Ozellikler gosterir. Bu nedenle Navier- Stokes

denkleminin niimerik coziimlerine gecmeden Once daha basit bir model olan Burgers



denklemini ¢alismak uygun bir baglangigtir. Bu yiizden Burgers denklemi, Navier- Stokes
denkleminin niimerik ¢6ziim metotlarinin kararlilik ve dogrulugunun test edilmesinde bir
model olarak kullanilir.

Hopf [11] ve Cole [12], keyfi baslangi¢c kosullar1 icin Burgers denklemini analitik ve
birbirinden bagimsiz olarak cozmiislerdir. Bircok durumda bu coziimler, v viskozite
sabitinin kiiciik degerleri i¢in ¢ok yavas yakisayabilen sonsuz serileri igerir.

Bugiine kadar bircok bilim adami Burgers denkleminin niimerik c¢oziimlerini
bulabilmek icin c¢esitli niimerik ¢6ziim metotlar1 kullandilar. Cok kiigtik viskozite
degerlerinde denklemin niimerik ¢oziimlerinde zorluklarin ortaya ¢iktig1 goriildii. Jain ve
Holla [13] kiibik spline fonksiyonlar yardimiyla sonlu farklar metoduyla bir ve iki boyutlu
Burgers denkleminin niimerik ¢oziimii iizerinde ¢alismislardir. Kutluay, Bahadir ve Ozdes
[14] sonlu farklar metodunun bir uygulamasi olan explicit ve tam explicit metotlariyla

Burgers denkleminin niimerik ¢dziimiinii elde etmislerdir.



2. TEMEL TANIMLAR

2.1 Tanim: Bir veya birden fazla bagimlh degiskenin, bir veya daha fazla bagimsiz
degiskene gore birinci veya daha yiiksek mertebeden tiirevlerini iceren denklemlere

“diferansiyel denklemler” denir [33].

2.2 Tamim: Bir bagimsiz ve en az bir bagimli degisken ve bagimli degiskenin bagimsiz
degiskene gore birinci veya daha fazla mertebeden tiirevlerini iceren denklemlere “adi

diferansiyel denklemler” denir. n. mertebeden adi diferansiyel denklemlerin genel formu,

Fx,y,9,9"...y")=0
seklindedir [33].

2.3. Tammm: En az iki bagimsiz ve en az bir bagimli degisken ile bagimli degiskenin
bagimsiz degiskenlere gore birinci veya daha fazla mertebeden kismi tiirevlerini iceren
denklemlere “kismi diferansiyel denklemler” denir. Kismi diferansiyel denklemlerin genel

formu,

F(X,9,2,2,5 25 2y 2y Zyyoee) =0

seklindedir [33].

2.4. Tanmm: Bir diferansiyel denklemde bulunan en yiiksek mertebeden tiirevin

mertebesine o diferansiyel denklemin “mertebesi” denir [33].

2.5. Tanmm: Bir diferansiyel denklemde bulunan en yiiksek mertebeden tiirevin

kuvvetine diferansiyel denklemin “derecesi” denir [33].
2.6. Kismi Diferansiyel Denklemlerin Simiflandirilmasi

Miihendislikte karsilasilan kismi diferansiyel denklemlerin biiyiikk bir ¢cogunlugu bir
veya ikinci mertebeden denklemlerdir. Bu tip denklemlerin bir kismu i¢in analitik ¢6ziim
bulunsa bile 6zellikle lineer olmayan tipleri icin sayisal ¢oziime bagvurmak gerekir. Sayisal
¢Ozliim i¢in degisik yontemler uygulanmakla beraber bu yontemler denklemlerin tiplerine

gore bazi 6zellikler arz eder.



2.6.1. Matematiksel Siniflandirma

Bir ¢(x,y) fonksiyonu igin ikinci mertebeden kismi diferansiyel denklem genel

formda

2 2 2
990,892,092, 5. £ Fp-G(x,y) 2.1)

A
ox* 0xdy dy’ ox dy

seklinde yazilabilir. Bu denklem
A,B,C,D,E,F = f(x,y)
ise lineer,
AB.C=flx.y.0.0.0)
ise yar1 lineer bir denklemdir.
Boyle bir denklemin karakterini A,B,C katsayilar1 belirler. Verilen denklem,

B*—4AC ) 0 =  Hiperbolik Diferansiyel Denklem
B*—4AC =0 = Parabolik Diferansiyel Denklem

B*—4AC (0 = Eliptik Diferansiyel Denklem

olarak siniflandirilir.
2.6.1.1. Parabolik Diferansiyel Denklemler

Verilen baslangi¢c ve sinir sartlarindan baglanarak, bir yonii acik bir alanda adim adim
ilerleyerek ¢oziim bulunan denklemlerdir. Dolayisiyla herhangi bir noktadaki ¢6ziim o
noktadan onceki noktalardaki degerlere bagh olarak elde edilir. Ornegin Sekil 2.I'de P
noktasimdaki (herhangi bir t aninda) ¢6ziim, P’nin alt tarafindaki noktalara baglh olarak
bulunur. Yani P noktasindaki Ozelik daha Onceki zaman adimlarinda (tiden Once)
hesaplanan noktalardaki degerlere bagh olup sonraki zaman adimlarinda (t’den sonra)

hesaplamanin yapilacagi noktalara bagl degildir.



x=1L >

Sekil 2.1. Parabolik bir denklemin ¢dziim alan1

Parabolik denklemlerin tipik 6rnegi difiizyon denklemidir. Isil difiizyon denklemi olan

gecici rejim 1s1 iletimi denkleminde
o _ 9 T

ot ox’

A=0, B=0ve C =« olup diskriminant sifirdir. Dolayisiyla denklem parabolik denklemdir.

2.2)

Bu denklemin ¢oziimii icin baslangi¢ sarti (t=0 i¢cin sicaklik degerleri) ve smir sartlari
(x=0 ve x=L i¢in sicakliklar) verildiginde t yoniinde adim adim ilerleyerek her 7 an1 i¢in
sicaklik dagilimi elde edilir.

Parabolik denklemlere bir baska 6rnek siirekli rejimdeki bir akisa ait

2
., du_udu

ox dy pay (23)
momentum denklemidir. Burada akisin x yoniinde ve bu yondeki hiz bileseninin u oldugu
dikkate almirsa x yoniinde adim adim ilerleyerek her adimda v yoniindeki hiz profilleri
bulunur. Agiktir ki bu ¢oziimiin yapilabilmesi i¢in baslangic sartlar1 (x = 0 icin hiz

degerleri) ve sinir sartlari (v = 0 ve v = h i¢in hiz degerleri) bilinmelidir [33].
2.6.1.2. Hiperbolik Diferansiyel Denklemler

Bir tarafi acik alanda, baslangi¢c degerlerden baslayarak adim adim ilerlemeyle ¢6ziim
bulunan denklemlerdir. Diizlemde P noktasindaki ¢oziim bulunmak isteniyorsa P
noktasindan Once gelen ve iki dogru arasinda kalan noktalardaki ¢oziim bilinmelidir. Bu iki
dogru hiperbolik denklemlerde Onemli olup karakteristik dogrular olarak adlandirilir
(bunlar egri de olabilir). Karakteristik egriler arasindaki alanin kesim noktasindan onceki
kismi P(x,t) noktasindaki ¢oziimii etkileyen alan, sonraki kisim ise P(x,t)’deki ¢coziimiin

etkiledigi alan olacaktir (Sekil. 2.2).
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Sekil 2.2. Hiperbolik bir denklemin ¢oziim alan1

Yani etkileyen alan disinda herhangi bir tedirginlik P(x,7) noktasindaki ¢oziimii
etkilemez. Bu agidan bakildiginda parabolik denklemler, hiperbolik denklemlerin 6zel bir
hali gibi diisiiniilebilir. Yani parabolik denklemlerde iki karakteristik dogru iist iiste ¢akisik
olup yatay gibi diisiiniilebilir. Gercekten parabolik denklemlerde diskriminant sifir olup
kath karakteristikler vardir.

Hiperbolik denklemlerin tipik 6rnegi dalga denklemidir.

o’u  ,0%u

a S

Burada A=1, B=0 ve C = -¢” olup diskriminant pozitif oldugundan hiperbolik denklem

(2.4)

s0z konusudur. Yine burada da verilen baslangic sartlarindan hareketle adim adim ¢6ziim

elde edilir [33].
2.6.1.3. Eliptik Diferansiyel Denklemler

Sinir deger problemleri bu gruba girer. Coziim yapilacak alan i¢inde bir P noktasindaki
¢Oziim diger noktalara ve smir degerlerine baghdir (Sekil 2.3). Dolayisiyla ¢oziim icin
biitiin simir degerler bilinmelidir. I¢ noktalarda ¢oziimiin adim adim degil eszamanl olarak
bulunmas: gerekir. Bu bakimdan c¢oziimii diger denklem tiplerine gore daha zor olan
denklemlerdir. Diskriminant negatif oldugu icin eliptik denklemlerde reel karakteristik egri
yoktur [33].
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Sekil 2.3. Eliptik bir denklemin kapal1 ¢oziim alan1

Eliptik denklemlerin tipik 6rnegi Laplace denklemidir:
du u_
ox* 9y’
Bu denklemde A= 1, B=0 ve C=1 olup diskriminant negatiftir. iki boyutlu 1s1 iletimi
denklemi
T o°T
T2tz
ox~  dy
de bu tip bir denklemdir. Iki boyutlu sikistirilamaz akisa ait momentum denklemi

ou  du au: 1 dp ﬂ{& azu}

0 2.5)

0 (2.6)

2.7)

ERr PR P W PR

konuma gore eliptik, fakat zamana gore hiperbolik karakterli bir denklemdir. Baz1

denklemler duruma gore karakter degistirebilir. Mesela sikistirilabilir siirtiinmesiz akisa ait

potansiyel fonksiyon ifadesi

2’ 1 d%¢
o M 1y &9

mach sayis1t M>1 ise (ses luistii akis) hiperbolik, M</ (ses alt1 akis) eliptik karakter

gosterecektir. Bu durum sayisal ¢oziimde 0zel dikkat gerektirir [33].

2.7. Tammm: Bir degiskenli skaler bir fonksiyon i¢in Adomian polinomlari, f

fonksiyonu n defa tiirevlenebilir bir fonksiyon olmak iizere,
1 oo
An = f[zUtJ
n i=0

formiili ile tanimlanir [31].



3. MATERYAL VE METOD
3.1. Sonlu Farklar Metodu (SFM)

Kismi tiirevli diferansiyel denklemlerin ¢oziimiinde degisik yOntemler kullanilir.
Bunlarin arasmmda en eski ve acik yontem sonlu farklar yontemidir. Sonlu farklar
yonteminde, siirekli ¢oziim alam diskretize edilerek (alan belli araliklarda noktalarla temsil
edilerek) bagimli degiskenin sadece bu noktalardaki degeri bulunmaya ¢aligilir. Tiirevlerin
yaklasik olarak sonlu farklarla ifade edilmesi, verilen kismi diferansiyel denkleminin
(KDD) cebirsel bir denklem veya denklem sistemi olan sonlu fark denklemlerine (SFD)
doniismesini saglar. Sonugta elde edilen cebirsel sistem, orijinal KDD in karakterine bagl
olur.

Sonlu farklar yonteminin temeli, kismi diferansiyel denklemlerde goriilen tiirevlerin
sonlu ve ayrik noktalarda yaklasik olarak ifade edilmesi iizerine kuruludur.

Sonlu farklar yontemi kisaca soyle 6zetlenebilir:

Bagimmlh degiskenin u(x,y) oldugu bir diferansiyel denklem ele alinsin. Sonlu fark
denkleminin kurulmasinda ilk adimlardan biri ¢6ziim alanim grid noktalara bélmektir.

Coziim alaninda olusturulan grid noktalar, x- yoniinde konumu belirten i ve y- yoniinde

konumu belirten j indisleri kullanilarak numaralandirilir. Buna gore herhangi bir
(xl., y; ) noktasinda

X, =x, +iAx (3.1

y; =Y, +JjAy (3.2)
yazilabilir. Bu noktadaki fonksiyonun degeri

U ; =u(xl.,yj) 3.3)

ve civar noktalardaki fonksiyonun degerleri



y
4
Ay
(j+1) 3 — Uiy jr1
(J) 2 Uigpj | Hisj Wiy i |y A%
X, ¥;)
(j-1) 1
Ui, i1
1 2 3 4 x

(i=1) (i) (i+1)

Sekil 3.1. Sonlu Farklar Yonteminde ¢6ziim alaninin grid
noktalara boliinmesi ve numaralandirma

lj+1:u(x,yj+Ay)

=u(x,yj Ay)
H”:u(x +Ar,y,)
u,_ A_u(x —Ax,y; )

seklinde gosterilecektir.

Bir tiirevin sonlu farklarla ifadesinin temelini tiirev tanimi olusturur. u(x, y)

fonksiyonun (xl., y j) noktasindaki tiirevi

a_uzlimu(xi+Ax’yj)_u(xi’yj) _ U, —
or 40 At At

u
“L + hata (3.4)

olacaktir. Esitligin sag kismu tiirevin sonlu farklarla gosterimidir. Sonlu fark
gosterimindeki hata, limitin kaldirilmasiyla olusan hata olup bu hatanin mertebesi ayrica
tizerinde durulmasi gereken énemli bir konudur.

Sonlu fark goOsterimi bu temele oturtulabilir. Bu amagla sonlu fark ifadelerinin
olusturulmasinda,

1- Taylor seri agilim

2- Polinom uydurma

3- Integral metodu

4- Sonlu hacim yaklasimmi
yontemleri kullanilir. Cogu zaman bu dort yontemle aynt SFD i elde edilir. Bunlardan

polinom uydurma yontemi daha ¢ok sinir sartlarinin tatbikinde uygulanir.
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3.1.1 Taylor Serisi Acilimu ile Sonlu Fark Formiilleri

du o ul A’
ulx +Ax,y. )=ulx,y, )| +—| Ax+— ——
(l y/) (lyj) axi’j alej 2'
5 3.5)
ou ’ul (Ax)
Uy, =  +—| M+—| ——
x|, ; ox 2!
ifadesinden birinci tiirev ¢ekilirse
au u[+1j _u[j azu| Ax
a5 ¢ J = .. 3.6
ox|; ; Ax axz‘i,j 2! (3:0)
ileri sonlu fark tiirev ifadesi,
du 82u| (Ax)’ 83u| (Ax)’
ulx —Ax,y. )=ulx,y |——| Ax+ - +--
( ’ y’) ( ’ y’) x|, ; 8x2|l,,j 2 8x3|[,j 3!
seklinde yazilarak birinci tiirev ifadesi ¢ekilirse
du ’ul (Ax)’ oul (Ax)’
u_ . =u . ——| (Ax)+ - +- 3.7
Y o ) ox* |l.’]. 2 ox |l.’]. 3! G7)
ou u, . —Uu,, . azu| Ax
— =——4+ —t 3.8
ox|,; Ax 8x2|i’j 2 S
au u,.—u,_ .
—| =—"—+0(Ax 39
> e Gy (3.9)
geri sonlu fark tiirev ifadesi elde edilir. (3.7) esitligi (3.5) esitliginden cikartilip,
ou ou u (Ax)" 9%u (Ax)’
u, . —u_,  =—Ax+—Ax+ -
A B ox ox> 2  ox 2
Ou (Ax)" 9'u (Ax)
+— — 4 ... 3.10
ox> 3! ox’ 3! (5.10)
Ax)' 9*
EPYNELPN CLIA =
ox 3! ox
ve birinci tiirev ¢ekilirse
au U, —U_ N
—| =——+0(Ax 3.11
> P (Ax) (3.11)

merkezi sonlu fark ifadesi bulunur. Kesme hatalarina bakildiginda bu ifadenin ikinci

mertebeden hassasiyete sahip oldugu goriiliir.

Diger taraftan (3.5) ve (3.7) esitlikleri taraf tarafa toplanip,

11



o’u (AX)2 d‘u (AX)4
U+, _2ui’j+28x2 5 +8x4 2 +-- (3.12)

ikinci mertebeden tiirev terimi cekilirse,

82u| u, —2u  +u_ . 2
=— ~———+O0(Ax 3.13
axz |i’j (AX)Z ( ) ( )

ikinci tiirev icin merkezi sonlu fark ifadesi elde edilir. Kesme hatasina bakildiginda bu
ifadenin ikinci mertebeden hassasiyete sahip oldugu anlagilir.

Benzer sekilde x’e gore alman tiirev ifadeleri y’ye gore tiirev icin de yazilabilir.
Ornegin; y’ye gore birinci tiirev icin merkezi sonlu fark,

a_lxt _ L (3.14)
I, 2Ay '

olacaktir. Goriildiigii gibi y yoniinde tiirev i¢in j indisi degismeli ve y yoniindeki adim
alinmalidir.
Daha cok grid noktasi kullanilarak daha yiiksek hassasiyetli bagintilar elde edilir.

Bunun i¢in Taylor serisi (i +2, j) noktasinda yazilirsa,

ou 82u| (2AX 83u|
Uin ;= +—| (2Ax)+ + 3.15
g x|, ; ( ) ox> L,j 2! ox’ L,j 3! (3-15)
elde edilir. (3.5) denklemi 2 ile ¢arpilip yukaridaki ifadeden ¢ikartilirsa,
2 Ax 2 2 Ax 2 3
U 2”1+1 - i‘_zui‘+al/2t| ) _28 1/2t| ( 8u|
J UM T a2 Tan] 2 Tor » 3'
elde edilir. Buradan ikinci tiirev gekilerek,
Ou| _Uiay =2, Tty | 0ul 6(Ax (3.16)
ox> |l,,j Ax* ax | 3' '
veya
82u| Uiy =2y U,
=— ity T +0(Ax 3.17
x> L,j A’ ( ) ( )

ileri sonlu fark tirev formiilii elde edilir. Birinci mertebeden hassasiyete sahip bu ifade
normalde ¢6ziim alaninin simnirlarinda kullanilabilir. Bu ifade (3.6) denkleminde yerine

yazilir ve diizenlenirse

+4u,, . —3u, .
a_u — 1+2/ ul+1,j ul,/ +O(AX)2 (318)
x|, ; 2Ax

12



birinci tiirev icin ikinci mertebeden hassasiyetli ve iic nokta kullanan bir formiil elde
edilmis olur.

Benzer sekilde elde edilen bazi ¢ok nokta kullanan tiirev formiilleri asagida
siralanmustir [32].

Birinci tiirev icin geri sonlu fark formiilii:

ou
ox

3“1‘,‘ + 4ui+l,j U, 2
- +0(Ax) (3.19)
2Ax

iJ
Birinci tiirev icin ¢ok nokta merkezi sonlu fark formiilii:

ou
ox

—u ., +8u. —8u +u_ .
_ qu,j ul+l,] ul*l,] ul*lj +O(AX)2 (320)
12Ax

iJ
Uciincii tiirev icin merkezi sonlu fark formiilii:

a3u| — ui+2,j _3ui+l,j +33ui,j _uifl,j (3'21)
ox’ | (Ax)

i
Uciincii tiirev icin ¢ok nokta merkezi sonlu fark formiilii:

83u| U +6u —12u,,, . +10ui,j —31/11.71’].

i+3,) i+2,j i+1,j
3
x|

2(Ax)

(3.22)

ij

3.2. Adomian Ayrisim Metodu (ADM)

Ayrisim yOnteminin, bir seri metodu oldugu, bircok cebirsel, lineer veya lineer
olmayan diferansiyel denklemlere basarili bir sekilde uygulandigi bilinmektedir. Genel
olarak bu metottan bahsedecek olursak; kabul edelim ki F, hem lineer hem de lineer
olmayan terimleri iceren bir genel lineer olmayan adi diferansiyel operator olmak iizere;

F(u)=g(x) (3.23)
olsun. L - verilen diferansiyel denklemde bulunan en yiiksek mertebeden tiirev operatoriinii,
R- lineer operatoriin kalan kismin1 ve N - ise lineer olmayan terimi gostermek iizere (3.23)
denklemi

Lu+Ru+Nu=g (3.24)

seklinde yazilabilir. L bir lineer operatér olmak iizere L nin, L' tersi de mevcut olsun.
(3.24) esitligi
Lu=g—Ru—Nu (3.25)

13



seklinde yazilabilir ve (3.25) esitliginin her iki tarafina soldan L' operatorii uygulanirsa;
L'Lu=L"'g—L'Ru—L"'Nu (3.26)
elde edilir.
L’nin ikinci mertebeden ve tersi mevcut olan lineer bir operator oldugunu kabul

edelim. (3.26) esitliginde gerekli islemleri yaptiktan sonra
u=u(0)+tu (0)+L'g—L'Ru—L"'Nu (3.27)

¢oziim fonksiyonu bulunur. (3.27) ile elde edilen esitlikteki N (x) lineer olmayan terim

seklinde ifade edilmektedir. Buradaki A, Adomian polinomlar: 6zel polinomlardir. (3.27)
esitligindeki u ; ayristirilmis seri ¢oziim fonksiyonudur. Bu seri ¢oziim fonksiyonunun
birinci terimi u,, verilen baslangi¢c degeri sag taraf fonksiyonun integrali olmak iizere
u,=a+bt—L"g ile bulunur daha sonra u, terimi kullanilarak u,,u,,u,, - terimleri elde

edilerek ayristirilmis seri ¢oziim fonksiyonu;

u(x,1) = u,(x,1) (3.28)
n=0
yazilabilir. Bu seri ¢oziimii kullanilarak (3.27) esitligi tekrar yazilirsa
Du,=uy—L' Y u,~L"D A, (3.29)
n=0 n=0 n=0

genel seri formu elde edilir. Benzer olarak (3.29) esitligi acik sekilde
u, =—L"'Ru,— LA,

u,=—L"'Ru,—L"A (3.30)

u, =—L"Ru —L'A , n>0
formunda yazilabilir. Buradaki A, polinomlar: her bir lineer olmayan terim i¢in genel-
lestirilebilir ve bu genellestirmede A, sadece u,'a, A, ise u, ve u,'e, A, ise u, , u, ve

u,'ye bagl ve benzer sekilde (3.30) esitligindeki biitiin A, Adomian polinomlar1 elde

edilebilir. A, Adomian polinomunun ayristirilmis hali ise literatiirde

14



Ay=f(u,)

o[l w (4>
Az—u{duojf(uo){2!j[du§jf(uo) (3.31)

1] a =
A =—. D> A ,n>0
" n!{dl” LZ: ukﬂm "

ile verilmektedir. Baz1 problemlerin sayisal ¢oziimlerinin daha hassas olmasinin istenildigi
durumlarda ayrisim serisi i¢in ¢ok sayida terimin hesaplanmasi gerekebilir. Bu gibi
durumlarda (3.31) genel formiiliiniin kullanilmasi, (3.27) ayristirma serisinin ¢ok sayida
teriminin  hesaplanmasinda kolaylik saglamaktadir. Ayrisim metodu kullanilarak

u(x,t) kapali ¢oziim fonksiyonunun bu fonksiyona ait sayisal ¢oziimlerin elde edilmesi

icin;
®(x,t) =D u,(x,1), n=0 (3.32)
n=0
olmak iizere;
Iim® =u(x,t) (3.33)

ifadesi (3.30) indirgeme bagintisi goz Oniine alinarak kolayca hesaplanabilir [19]. Buna
ilaveten (3.33) seklindeki ayrisim seri ¢oziimii, genel olarak fiziksel problemlerde cok hizli
olarak yakinsayan sonuclar vermektedir. Ayrisim serisinin yakinsaklig literatiirde bir¢cok
yazar tarafindan arastirilmigtir. Ayrisim serisinin yakinsakligi teorik olarak Y.Cherruault

ve arkadaslar1 tarafindan incelenmistir [15-21].

3.3. Homotopi Pertiirbasyon Metodu (HPM)

Bu boliimde, topolojideki homotopi ile pertiirbasyon teknigini birlestirerek
pertiirbasyon metotlarinin dezavantajlarini ortadan kaldiran ve sadece zayif lineer olmayan
denklemler icin degil ayn1 zamanda kuvvetli nonlineerlige sahip denklemler icin de elde

edilen ¢oziimlerin, tiim ¢oziim bolgesinde gecerli oldugu, yari analitik bir metot olan
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homotopi pertiirbasyon metodu tanitilacaktir.
Bu metodun temel fikrini agiklamak i¢in asagidaki lineer olmayan diferensiyel

denklemi goz Oniine alalim

A(u)—f(r)zO, re Q. (3.34)
(3.34) denklemi i¢in sinir kosulu

B(u,0u/or)=0, rel, (3.35)
seklinde belirlenir. Burada A genel diferansiyel operatérii, B sinir operatérii, f (r) bilinen

analitik fonksiyon ve I ise € ya bagimli bir sinirdir.
Genel olarak A diferansiyel operatdrii L ve N gibi iki parcaya ayrilabilecek sekilde
yazilabilir ki burada L lineer, N ise lineer olmayan operatordiir. Buna gore (3.34)

denklemi asagidaki gibi yeniden diizenlenebilir.
L(u)+N@w)—f(r)=0 (3.36)
buna gore homotopi teknigi ile bir homotopi olusturulur.
v(r,p): Qx[0,1] > R
olmak tizere,
H(v,p)=(1-p)[L(v)-L(,) ]+ p[A(v)-f(r)]=0.reQ (3.37)
dir. Burada pe [0,1] bir parametre ve u, ise (3.34) denkleminin bir baslangi¢ kosuludur.
O halde
H(v,p)=L(v)—L(u,)— pL(v)+ pL(u,)+ pA(v)—pf (r)=0
=L(v)=L(uy) = p[ L(v) =L (1) = A(v)+ f (r) ]=0
= L(v)=L(uy)+ pL(uy) = p[L(v)=A(v)+f (r) ] =0
olup (3.34)den A(u)— f(r)=0 dir. Bdylece
L(v)—L(uy)+ pL(u,)—p[L(v)]=0 (3.38)
elde ederiz ve buradan (3.36) esitligini kullanarak
L(u)+N(u)-f(r)=0= L(u)==N (u)+ f (r) (3.39)
denklemi bulunur. Bulunan (3.39) denklemi (3.38) denkleminde yerine yazilmasiyla
L(v)~L(uy)+ pL(uy)~ p[~N(v)+ f (r)]=0

olur. Boylece (3.37) denklemi
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H(v,p)=L(v)=L(u,)+ pL(u,)+ p[ N (v)- f (r)]=0, (3.40)
seklinde yeniden yazilabilir. Burada pe[0,1], baslangic kosulu u, ve
v(r,p) : QX[O,I] — R dir. (3.37) ve (3.40) denklemlerinden

H(v,0)=L(v)—L(u,)=0 (3.41)

H(v.1)=A(v)-f(r)=0 (3.42)
dir. Burada p=0 oldugunda (3.37) denklemi lineer bir denklem haline gelir; p=1

oldugunda lineer olmayan orijinal bir denklem olur. Bu yiizden 0’dan 1’e p nin degisim
islemi, L(v)—L(u,)=0 denklemini A(v)—f(r)=0 denklemine doniistiiriir.
L(v)—L(u,)=0 asikr problemi 0’dan 1’e monoton olarak artan p parametresi, siirekli
olarak A(v)—f(r)=0 problemine deforme oluyorsa bu topolojide deforme olarak
adlandirilir.  L(v)—L(u,)=0 ve A(v)— f(r)ifadelerine ise homotopiktirler denir.
Homotopi pertiirbasyon metodu geregince, ilk olarak yerlestirilen parametre p ’yi kiiciik

parametre olarak kabul ederek (3.37) ve (3.40) denklemlerinin ¢6ziimii

V=V, v+ PV, + PRy, e = Z p'v, (3.43)

n=0

olacak sekilde p parametresinin kuvvet serisi

P’ f(v)—f(x)=0, (3.44)
pif (v)vi+f(x)=0, (3.45)
p2 :f,(vo)vz "‘%f”("o)vl2 =0, (3.46)
p3 :f,(vo)vz +%f”("0)2"1v2 "‘%f,’,("o)vl3 =0, (3.47)

yazilir. (3.44)-(3.47) denklemlerinin v,, v, ve v, i¢in ¢oziilmesiyle

f(xo)
=) 3.48
' f (Vo) ( )
o () [f(vo)jz
 =—J odh __ J 1 : : 3.49
Ty P Ty Pt e G4
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I (o) v, _ f”’(vo)vf
£ (%) 317 (vy)

—_l f”(v()) 2 f(vo) 3 f”’(Vo) f(v()) 3
_ 2(}"(%)} (f/(vo)j +6f'(v0)£f’(v0)j ’ (3.50)

v, =—

(3.43) serisinin v,, v, ve v, bilesenleri elde edilir. Elde edilen (2.48)-(3.50) denklemleri,

(3.43) denkleminde p =1 alinarak yeniden yazilirsa (3.34) denkleminin ¢6ziimii

u= lim(vo +pv+pv, +py, +)
p—1

v (3.51)
=V VY, Y =Dy,
n=0

seklinde elde edilir. Homotopi pertiirbasyon metodu [22]-[27] geleneksel pertiirbasyon
metodunun tiim 6zelliklerine sahiptir. (3.43) serisi lineer olmayan A(v) operatdriine bagl
oldugu oranda yakinsamaktadir. (Asagidaki goriis; He [25] tarafindan 6nerilmektedir)

(1) V ile ilgili olarak N(V)nin ikinci tiirevi, goreceli olarak olabildigince kiiciik
degerlere sahip olmalidir. p —1 gibi.

(2) L' (0N /9V ) nin normu ise serilere yaklagsm diye cok kiiciik olmalidir.

3.9. Gauss Eleme Yontemi

AX = B seklindeki denklem sistemlerinin ¢dziimiinde kullanilan yontemlerden biridir. Bu
yontemle, bilinmeyenler sistematik olarak yok edilip verilen denklem sistemi,
a,x,+a,x,+-+a, x =d,
ayXx, +-+a, x =d,
X, =d,
seklinde bir iist iicgen sisteme doniistiiriiliir. Buradan bilinmeyenler en son denklemden
baslayarak, yukari dogru yerine yazmak suretiyle bulunur.

d _ di_;uikxk

x = , X

L

nn uii

e Gauss eleme yonteminde verilen denklem sisteminin iist ticgen sisteme doniistiiriilmesi

islemi asagidaki gibi yapilir:
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Verilen denklem sisteminin birinci denkleminde kdsegen iizerindeki eleman, yani x; in

katsayist sifirdan farkli ise birinci denklem pivot denklem olarak secilir.
M, =—— , k=23,..n
11
sayilar1 tanimlanarak pivot denklem bu sayilarla carpilir ve swrasiyla k—inct denklemden

cikartilip k —inct denklemin yerine yazilir. Yani;

1. Aduimda: S, — S, —M,,S, satir islemleri uygulanir. Bu islemler yapildiginda birinci

denklem hari¢ geriye kalan denklemlerde x, bilinmeyeni yok edilmis olur. yani nxn tipindeki
sistem ;
@, X +apx, +--+a,x, =d,

(1) (1) _ g
Ay X+ +ay,x, =d,

aVx =dV

nn n

sekline doniisiir.

2. Adimda: Ortaya ¢ikan sistemin ikinci denkleminin kdsegen iizerindeki elemani, yani x,

nin katsayisi1 sifirdan farkl ise ikinci denklem pivot denklem olarak secilir.

O

Az
Mkz :T . k:3,4,...,n
22

sayilar1 tamimlanir pivot denklem bu sayilarla carpilip swrasiyla k —inct denklemden c¢ikartilir
ve k—inct denklemin yerine yazilir. Boylece 1 ve 2 inci denklem hari¢ geriye kalan

denklemlerden x, bilinmeyeni yok edilmis olur.

Bu sekilde devam edilerek (n—1) adim sonunda denklem sistemi bir iist iicgen sisteme

donistiiriilmiis olur ve bilinmeyenler en son denklemden baslayarak yukari dogru yerine

yazmak suretiyle hesaplanir [32].
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4.UYGULAMALAR

4.1.Dogrusal Olmayan KdV Denklemine Sonlu Fark Metodu, Adomian Ayrisim

Metodu ve Homotopi Pertiirbasyon Metodunun Uygulanmasi

4.1.1. Sonlu Fark Metodu ile Coziim

u,—6uu +u_ =0 (4.1)

u(x,O):é(x—l) 4.2)
1

u(O,t)—6(1_t),u(1,t)—0, 120 (4.3)

seklinde baslangic ve sinir sartlar1 verilmis, ayrica analitik ¢oziimii de,

(1) :é(%lj 4.4)

seklinde olan, nonlineer KdV denklemini Sonlu Fark Metotlarindan biri olan Crank

Nicolson Metodu ile ¢ozelim[31]. Simdi (4.1) denkleminde u, tiirevi yerine
L i 4.5)
ileri fark yaklasimi, u _ tiirevi yerine

~ i+1
u. . =— !

1 {—SMFI 180l — 24ty + 14w —3ulfy | —Sul +18ul, —24ul, +14u), 3u),

"2 2n 2n
(4.6)
Crank-Nicolson sonlu fark yaklasimi, uu_ nonlineer terimi yerine
(1w —u oul —u!
I/”/tx = uij _ i+l i—1 + i+l i—1 (47)
2 2h 2h
sonlu fark yaklasimi yazilip , r= * almirsa, nonlineer KdV denklemi igin,

h3



Eruijh2 ut + l—gr u" + ﬁr—grul.jh2 u
4 4 4 4
(2 i Ju (S Ju
4 4 4
=(—§rul.jh2juij_l+(1+§rjuij+(—§r+§ml/‘h2ju‘
4 4 4 4

24 ; 14 ; 3
+ —r |u, | —r |u+| =1
4 4 4

Jj+l
i+4

Crank-Nicolson sonlu fark yaklasimi elde edilir [29].

4.1.1.1 Sayisal Sonuclar

(4.1) denkleminin Sonlu Fark Yaklasimi ile elde edilen sayisal ¢6ziimii Tablo 4.1 de,

niimerik ¢oziim ve tam ¢oziim i¢in grafikler Sekil 4.1-Sekil 4.4 de verildi.

Tablo 4.1 de (4.1) denklemi i¢in 7 =0.0001,

nin 2=0.1 deki degeri icin SFM ile elde edilen sayisal ¢oziim ile tam ¢oziim karsilastirild:

ve aradaki hata verildi.

Jj+l
i+1

k =0.0001 alinarak mesh uzunlugu

Tablo 4.1. h=0.1, kK =0.0001 igin KdV denkleminin SFM ile
yaklasik ¢oziimiiniin analitik ¢6ziim ile karsilastirilmast

t= 0.0001
x | Sayisal Coziim
(SFM) Analitik Coziim Hata

0 -0.1666833 -0.1666833 0

0.1] -0.15001523 -0.15001501 2.3E-07
0.2] -0.13334625 -0.13334667 4.3E-07
0.3] -0.11667837 -0.11667834 3.00E-08
0.4] -0.10001 -0.10001 1.00E-08
0.5]| -0.08334167 -0.08334167 0
0.6| -0.06667333 -0.06667334 1.00E-08
0.7] -0.05000497 -0.050005 4.00E-08
0.8] -0.03333674 -0.03333667 7.00E-08
0.9] -0.01666986 -0.01666833 1.53E-06
1 0 0 0
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Sekil 4.1. h=0.1, kK =0.0001 i¢in KdV denkleminin
SFM ile yaklasik ¢oziimiiniin ii¢ boyutlu goriiniimii

%
)
2

e "
anaitik

Sekil 4.2. KdV denkleminin analitik ¢oziimiiniin
tic boyutlu goriiniimii
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t=0.0001

00240 01 02 03 04 05 06 0.7 08
-0.04 -
-0.06 -

-0.08 -

u(x,t)

-0.12
-0.14
-0.16 -
-0.18 -

Sekil 4.3. h=0.1, k =0.0001 i¢in KdV denkleminin SFM ile
yaklasik ¢oziimiiniin iki boyutlu goriiniimii

t=0.0001

0024 0 01 02 03 04 05 06 07 08
-0.04
-0.06 -
-0.08 -
-0.1
-0.12
-0.14
-0.16
-0.18 -

Sekil 4.4. KdV denkleminin analitik ¢oztimiiniin iki boyutlu goriiniimii
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4.1.2. Adomian Ayrisim Metodu ile Coziim

Simdi, (4.2) baslangi¢c kosulu ile verilen (4.1) KdV denklemini Adomian ayrisim
metodu ile ¢cozelim. Bu denklem operator formunda,
Lu=6uu —u_, 4.9)

seklinde yazilir. Burada L :a3 olarak ifade edilmektedir. L, operatdriiniin tersi ise L'
¢

integral operatérii olup L' = .[ (.)dt seklinde gosterilir. Su durumda (4.9) denkleminin her
0

iki tarafina soldan L' uygulanirsa,
L'(Lu)=L"[6uu, —u_,] (4.10)
elde edilir. Buradan,

u(x,t) =u(x,0)+ L' [6uu |- L' [u,,] (4.11)

olur. Burada lineer olmayan terim Ouu, :6214,1 seklinde tanimlanarak A, Adomian

n=0
polinomunun ilk ii¢ terimi,
Ay =u, (uox )’
A= Uy (ul ) +u, (ulx )’
Ay =uy () +u, (u)+u, (u,), (4.12)
A= Uy (”3 ) tu (“2 ) tu, (“1 ) tu; (“o ) ’

olarak alinabilir. (4.11) denklemi icin,

_x-1
u(x0) ===, (4.13)

ue,(x,t)==L"[(u,),. —6A], k=0

seklinde rekiirans bagintis1 yazilabilir. Elde edilen bu bagintidan,
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(1) ===,

(r) =1 [64, =, ]=<(x-1)r
u, (x,1) = L' 6A —u, ]zé(x—l)ﬂ,
(1) =L;'[ 64—, ]:é(x—nﬁ

seklinde ayrisim serisinin ilk dort terimi bulunur. Bulunan u,u ,u,,u, terimleri (3.28)

esitliginde yerine yazilarak (4.1) KdV denkleminin yaklasik ¢oziimii,

u(x,t)= ZM(x,t) Uyt U, Fu, Uyt
n=0

:XT_l(l+t+t2+t3+-~-)

olarak elde edilebilir. Boylece (4.1) denkleminin analitik ¢oziimiiniin kapali formu,

o)

4.1.2.1 Sayisal Sonuclar

(4.1) denkleminin Adomian Ayrisim Yontemi ile elde edilen sayisal ¢oziimii Tablo 4.2

de, sayisal ¢oziim ve analitik ¢6ziim i¢in grafikler ise Sekil 4.5 -Sekil 4.8 de verildi.

Tablo 4.2 de (4.1) denklemi i¢cin 7=0.0001, alinarak ADM ile elde edilen sayisal

¢Ozlim ile tam ¢oziim karsilastirild: ve aradaki hata verildi.
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Tablo 4.2. KdV denkleminin ADM ile yaklasik ¢oziimiiniin
analitik ¢oziim ile karsilastirilmast

t= 0.0001
x | Sayisal Coziim
(ADM) Analitik Coziim Hata

0 -0.1666833 -0.1666833 0

0.1] -0.15015 -0.15001501 1.50158x107"°
02| -0.133467 -0.13334667 1.33449%x10
03] -0.116783 -0.11667834 1.16809%x107"°
04| -0.1001 -0.10001 1.00114x107"
05| -0.0834167 -0.08334167 | 8.34194x10™
0.6] -0.0667334 -0.06667334 | 6.67244x10™
0.7] -0.0500501 -0.050005 5.00572x10™
0.8] -0.0333667 -0.03333667 | 3.33622x10™
09| -0.0166834 -0.01666833 1.66811x10™
1 0 0 0

L7

7
"l”"""
W A S . 4
’II"I"""""'

Sekil 4.5. KdV denkleminin ADM ile yaklasik
¢oziimiiniin ti¢ boyutlu goriintimii
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7 77
'II”" =
A P T

e i .
A
0

-0,05

. — 77 7 /

-0.1 LT T T T T T /

L7777 LT 77 77 /0.05
-0.15 "II”""""""'"'

Sekil 4.6. KdV denkleminin analitik ¢oztimiiniin

tic boyutlu goriiniimii

0.4 0.6 0.8 1

Sekil 4.7. KdV denkleminin ADM ile yaklagik
¢oziimiiniin iki boyutlu gériiniimii

0.4 0.6 0.8 1

Sekil 4.8. KdV denkleminin analitik ¢oziimiiniin
iki boyutlu goriinimii
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4.1.3. Homotopi Pertiirbasyon Metodu fle Coziim

Simdi de, (4.2) baslangi¢ kosulu ile verilen lineer olmayan (4.1) KdV denklemini son
olarak Homotopi Pertiirbasyon Metodu ile ¢6zelim. Denklemin yaklasik ¢oziimiinii elde

etmek icin,

(1= p)[Y=u, 1+ plY—6YY +Y =0

(4.14)
Y—u,+ pu,—6pYY +pY =0
3 . i
seklinde bir homotopi kurulabilir. Burada, Y =a—b3t, Y =a—u, Y =a—uve pE [0,1] dir.
ox ot ox

u(x,0) = Tl baslangic sart1 ile verilen (4.1) denkleminin ¢6ziimii,

Y=Y, +pY,+pY,+pY, ZpY x,1) (4.15)
n=0

Y=Y+ pYtp Vot p’ Vot (4.16)
Y =Y, +pY +p’Y, +p’Y, +- 4.17)

seklinde ele alinabilir. (4.15) - (4.17) denklemlerinin (4.14) de yerine yazilmasiyla,
(K>+PYI+192 Y2+p3%j—ﬂﬁpﬂo—@(%+le+p2Y2+p31/3)(Y +pY, +p’Y, + p’Y,)
+p (Y, +pY, +p*Y, +pY)) =0,
Yo+ pY+ p* Y+ p* V—up+ puy+(=6pY, —6p°Y, —6p°Y, ) (Y, + p¥, + Y, + p’Y;)
+pY, +p’Y, +p’Y, =0,

Y+PY+P Y+p Y u0+pu0 6pY,Y, —6p°Y,Y.
—6Y,p’Y, 6P’V Y, —6p’Y Y, —6p’Y.Y, +pY +pY, +pY, =0

elde edilir. Bu denklem p 'nin ayni kuvvetli terimlerine gore yeniden diizenlenirse,

P’ Yo—u, =0, (4.18)
P Y +u,~6Y,Y, +Y, =0, (4.19)
piY,—6Y,Y —6YY, +Y =0, (4.20)
P Y, —6Y,Y. —6YY —6Y,Y, +Y, =0, (4.21)
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bulunur. (4.18) - (4.21) denklemlerinin ¢6ziimii ile,
po IY()—ﬂ() =0=> Yo =ﬂ()

x—1
=Y, =u,(x,0)=——
6
-1
:3%:£_3
6
Pl Y Hu =6, Y, +Y) =0,= Y, =—u,+6%,Y, =Y, ve u,=0
t
, 1
=Y =||6YY -Y |dt=—t(—1+x),
1 .([[ 070 0] 6 (
PP iY,—6YY —6YY, +Y =0= Y, =6Y,Y, +6Y,Y, ¥
t
=¥, =[[6X,Y, +6YY, Y, | dt
0

=Y, :étz(—HX),

P’ Y,=6Y,Y, —6VY, —6V,Y, +Y, =0= Y, =6Y,Y, +6VY, +6,Y, -V,

(4.22)

(4.23)

(4.24)

=Y, = [ [6V,Y,+6XY, +6V,Y, -V, |dt  (4.25)
0

=Y, =ét3(—1+x),

seklinde serinin ilk ii¢ terimi elde edilmis olur. . (4.22) - (4.25) denklemleri p —1 iken

(4.15) denkleminde yerine yazilirsa (4.1) nonlineer KdV denkleminin yaklasik ¢6ziimii,

u(x,t)=Y,+pY, + p’Y, + p’Yy+---,

u(xr)=tim (Y, + pY, + p%, + p'Y, +--:)

=Y, +Y,+Y,+Y,

x—=1 1 1 1
=——+—t(-1+x)+—t(-1+x)+ =1 (-1+
¢ te (=1+x) p (=1+x) p (=1+x)

olarak elde edilir. Boylece (4.1) denkleminin analitik ¢oziimiiniin kapal formu

o)
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4.1.3.1. Sayisal Sonuclar

(4.1) denkleminin Homotopi Pertiirbasyon Metodu ile elde edilen sayisal ¢oziimii

Tablo 4.3 de, sayisal ¢oziim ve analitik ¢oziim i¢in grafikler ise Sekil 4.9 -Sekil 4.12 da

verildi.

Tablo 4.3 de (4.1) denklemi icin #=0.0001, alinarak HPM ile elde edilen sayisal

¢Oziim ile tam ¢oziim karsilastirildi ve aradaki hata verildi.

Tablo 4.3. KdV denkleminin HPM ile yaklasik ¢oziimiiniin
analitik ¢oziim ile karsilastirilmasi

t= 0.0001
x | Sayisal Coziim
(HPM) Analitik Coziim Hata

0 -0.1666833 -0.1666833 0

0.1] -0.15015 -0.15001501 1.50158x10™"
0.2] -0.133467 -0.13334667 1.33449x107"
0.3] -0.116783 -0.11667834 1.16809x107"
04| -0.1001 -0.10001 1.00114x107
05| -0.0834167 -0.08334167 | 8.34194x10™
0.6] -0.0667334 -0.06667334 | 6.67244x10™
0.7] -0.0500501 -0.050005 5.00572x10™
0.8 -0.0333667 -0.03333667 | 3.33622x10™
09| -0.0166834 -0.01666833 1.66811x10™
1 0 0 0
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-0.05
u
-0.1

-0.15

Sekil 4.9. KdV denkleminin HPM ile yaklasik
¢Oziimiiniin ti¢ boyutlu goriiniimii

—-0.05
u
-0.1

-0.15

Sekil 4.10. KdV denkleminin analitik ¢oziimiiniin

ii¢c boyutlu gortintimii

Sekil 4.11. KdV denkleminin HPM ile yaklasik ¢oziimiiniin

iki boyutlu goriintimii
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Sekil 4.12. KdV denkleminin analitik ¢oziimiiniin
iki boyutlu goriinimii

4.2.Dogrusal Olmayan Burgers Denklemine Sonlu Fark Metodu, Adomian

Aynisim Metodu ve Homotopi Pertiirbasyon Metodunun Uygulanmasi

4.2.1. Sonlu Fark Metodu ile Coziim

u +uu, =u (4.26)

u(x,0)=x (4.27)
1

0,t)=0, u(l,t)=—, t=20 4.28

(0.0)=0. (L) = 429

seklinde baslangic ve sinir sartlar1 verilmis, ayrica analitik ¢oziimii de,

Mwﬁﬁ; (4.29)

seklinde olan, nonlineer Burgers denklemini Sonlu fark metodu ile ¢ozelim [31]. Simdi

(4.26) denkleminde u, tiirevi yerine
u, =———-7>u: (4.30)

ileri fark yaklasimi, u__ tiirevi yerine,

Jo_ J J
%EWI%+% 431)

merkezi fark yaklasimini, ayrica uu_nonlineer terimi yerine
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jo_ i
uu, =u’ By “Win (4.32)
2h
Kk . e
sonlu fark yaklasimi yazilip , r = Z alinirsa, nonlineer Burgers denklemi i¢in,
i K Ji LT j
u” =u; +?(ui_1 —2u; +ui+1)——ui (”m —ui_l) (4.33)

seklinde ac¢ik sonlu fark yaklasimi elde edilir [30].
4.2.1.1 Sayisal Sonuclar

(4.26) denkleminin Sonlu Fark Metodu ile elde edilen sayisal ¢oziimii Tablo 4.13 de,
sayisal ¢6ziim ve analitik ¢6ziim i¢in grafikler ise Sekil 4.13-Sekil 4.16 da verildi.

Tablo 4.4 de (4.26) denklemi i¢in, r=0.001, k& =0.000001 alinarak mesh uzunlugu
h nm h=0.01 deki degeri icin SFM ile elde edilen yaklasik ve tam ¢6ziim karsilastirildi

ve aradaki hata verildi.

Tablo 4.4. h=0.01, kK =0.000001 i¢in Burgers denkleminin SFM
ile yaklasik ¢coziimiiniin, analitik ¢oziimil ile karsilastirilmast

t= 0.001
Sayisal Coziim

X (SFM) Analitik Coziim Hata

0 0 0 0
0.1 0.0999001 0.0999001 2.00E-10
0.2 0.1998002 0.1998002 2.00E-10
0.3 0.299700301 0.2997003 1.1E-09
0.4 0.399600398 0.3996004 1.6E-09
0.5 0.499500496 0.4995005 3.9E-09
0.6 0.599400598 0.599400599 1.6E-09
0.7 0.6993007005 0.6993006993 1.2E-09
0.8 0.799200797 0.799200799 2.7E-09
0.9 0.899100899 0.899100899 0

1 0.999000999 0.999000999 0
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Sekil 4.13. £ =0.01, k£ =0.000001 i¢in Burgers denkleminin SFM ile
yaklasik ¢oziimiiniin ii¢ boyutlu goriintimii

Sekil 4.14. Burgers denkleminin analitik ¢ozlimiiniin ti¢ boyutlu goriiniimii
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t=0.001

y 0.5 ~ —u(x,t)

0 T T T T T
0 01 02 03 04 05 06 08 09 1

X

Sekil 4.15. £ =0.01, k£ =0.000001 i¢in Burgers denkleminin SFM ile
yaklasik ¢oziimiiniin iki boyutlu goriintimii

t=0.001

1 5
0,9 1
0,8 1
0,7
0,6

y 0,51 —u(x,t)
0,4
0,3
0,2
0,1

o o1t 02 03 04 05 06 08 09 1

X

Sekil 4.16. Burgers denkleminin analitik ¢oziimiiniin iki boyutlu goriintimii
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4.2.3. Adomian Ayrisim Metodu ile Coziim

Simdi, (4.27) baslangic kosulu ile verilen (4.26) nonlineer Burgers denklemini
Adomian ayrigim metodu ile ¢ozelim. Bu denklem operatr formunda,
Lu=-uu_+u_ (4.34)

seklinde yazilir. Burada L :ai olarak ifade edilmektedir. L, operatriiniin tersi ise L'
¢

integral operatorii olup L' = .[ (.)dt seklinde gosterilir. Bu durumda (4.34) denkleminin

0
her iki tarafina soldan L' uygulanirsa,
L' (Lu)=L"[u, —uu,] (4.35)
elde edilir. Buradan,

u(x,t) =u(x,0)+ L' [u, —uu_] (4.36)

olur. Burada lineer olmayan terim wu, = ZAW seklinde tamimlanarak A Adomian
n=0

polinomunun ilk ii¢ terimi,

Ay =u, (uox )’
A =u, (“1)+“0(“1 )’
A= Uy (”2)+”1X (”1)+uzx (”0)’ (4.37)

olarak alinabilir. (4.36) denklemi icin,

{u(x, 0)=ux,

e, () =L [ (), —(A)]. k20 (4.38)

seklinde rekiirans bagintis1 yazilabilir. Elde edilen bu bagintidan,

36



seklinde ayrisim serisinin ilk dort terimi bulunur. Bulunan u,u,,u,,u, terimleri (3.28)

esitliginde yerine yazilarak (4.26) Burgers denkleminin yaklasik ¢coziimii,

w(x,1) = D u(x,0) =y + 1y + 1y +y +---
n=0

=x(I—t+> = +--)

olarak elde edilir. Boylece (4.26) denkleminin analitik ¢Oziimiiniin kapali formu ,

u(x,r) X

1+t

4.2.2.1. Sayisal Sonuclar

(4.26) denkleminin Adomian Ayrisim Metodu ile elde edilen sayisal ¢oziimii Tablo
4.5 de, sayisal ¢oziim ve analitik ¢6ziim i¢in grafikler ise Sekil 4.17 -Sekil 4.20 de verildi.

Tablo 4.5 de (4.26) denklemi icin #=0.001, alinarak ADM ile elde edilen sayisal

¢Oziim ile tam ¢oziim karsilastirild: ve aradaki hata verildi.

Tablo 4.5. Burgers denkleminin ADM ile yaklasik ¢oziimiiniin,
analitik ¢oziimii ile karsilastirilmasi

t= 0.001
Sayisal Coziim

X (ADM) Analitik Coziim Hata

0 0 0 0
0.1 0.0999001 0.0999001 9.99062x107"*
02| 0.1998 0.1998002 1.99812x10"2
03| 0.2997 0.2997003 2.9976x10"
04| 0.3996 0.3996004 3.99625%x107"°
05| 0.4995 0.4995005 4.99545x10™"°
06| 0.599401 0.599400599 |5.9952x107"°
0.7 0.699301 0.6993006993 | 6.99441x10™"
08| 0.799201 0.799200799 |7.9925x107"
09| 0.899101 0.899100899 |8.99281x10™"*

1 0.999001 0.999000999 |9.9909x10™"
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Sekil 4.17. Burgers denkleminin ADM ile yaklasik
¢oziimiiniin ii¢ boyutlu goriintimii

0.75
0.5
0.25 %

1

Sekil 4.18. Burgers denkleminin analitik ¢oziimiiniin
iic boyutlu goriintimii

0.8}

0.6

0.4 0.6 0.8 1

Sekil 4.19. Burgers denkleminin ADM ile yaklasik
¢coziimiiniin iki boyutlu goriiniimii
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0.4 0.6 0.8 1

Sekil 4.20. Burgers denkleminin analitik ¢oziimiiniin
iki boyutlu goriintimii

4.2.2. Homotopi Pertiirbasyon Metodu le Coziimii

Simdi de, (4.27) baslangic kosulu ile verilen (4.26) non-lineer Burgers denklemini
Homotopi Pertiirbasyon metodu ile ¢ozelim. Denklemin yaklasik ¢6ziimiinii elde etmek
icin,

(1= p)[Y=u, ]+ p[Y+YY ~Y']=0

(4.39)
Y—u,+ puy+ pYY —pY =0
2 . i
seklinde bir homotopi kurulabilir. Burada, Y ' =a—bzt, Y =a—u, Y :8_u ve pe [0,1] dir.
ox ot ox

u(x,0) = x baslangi¢ sart1 ile verilen (4.26 denkleminin ¢6ziimii,

Y=Y, +pY,+ pY,+ pY,+-- = p"Y, (x,1) (4.40)
n=0

Y=Y+ pY+p Y+ p Y+ (4.41)
Y =Y, +pY, +pY,+pY, +-- (4.42)
Y = Y() + le" + pZYZ" + p3Y3" 4. (4.43)

seklinde ele alinabilir. (4.40) - (4.43) esitliklerinin (4.39) da yerine yazilmasiyla,
(Yﬁ pY+p'Y,+p'Y, j —uy+ puy+ p (Y, + pY, + p°Y, + p'Y, ) (Y, + pY, + p*Y, + p'Y,;)

—p(Y, + pY, +p’Y, + p’Y; ) =0,
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Yo+ Y+ p Yot p* YVimug+ puyt pYoY, + p°YoY, + pYY, + p°XY + p°YY, + LY,

-pY, - pY, - p’Y, =0,

Y()"'le""p2 Y2+p3 Yz_uo"'puo"'pYoY(; +p2Y0Y1' +p3Y0Y2' +p2Y1Y(;

+p’YY, + p’VY, - pY, - p’Y, - p’Y, =0

elde edilir. Bu denklem p 'nin ayni kuvvetli terimlerine gore yeniden diizenlenirse,

P’ Yo—u, =0, (4.44)
P Y tu t Y)Y, Yy =0, (4.45)
PP Y+ Y)Y, +YY, Y =0, (4.46)
P YAY Y, +RY + VY Y, =0, (4.47)

bulunur. (4.44) - (4.47) denklemlerinin ¢6ziimii ile,

P’ :Y()—ﬂ() =0= Yo =ﬂ()
=Y, =u,(x,0)=x (4.48)
=Y =x,

P :Y1+’/“0+Y0Y0' Y, :0,:>Yl :_MIO_YOYO'-'_YO"’ ve ’/“0 =0
t
¥, = [ [-xy+ ¥, Ja (4.49)
0
=Y =—xt,

P YAYY +YY, Y =0 Y, =Y, - Y -YY,
t
=Y, =[[¥ ¥y -y, ]d (4.50)
0

=Y, =xt’,

P VAN Y VY 4 YY, Y, =0 Y, =Y, - XY, - VY, -Y,Y,
t
=Y, =[[¥, -%Y,-VY, -Y,Y, |dt (4.51)
0

=Y, =-xt’,

seklinde serinin ilk ii¢ terimi elde edilmis olur. (4.48) - (4.51) denklemleri p —1 iken
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(4.40) denkleminde yerine yazilirsa (4.26) non-lineer Burgers denkleminin yaklasik
¢Ozumii
u(x,1) ZI}E}(Y()"‘PYl +p’Y, +pY, +-)
=Y, +Y,+Y,+Y, +--
=X—xt+ Xt =Xt +---
=x(l=t+£7 =+

olarak elde edilir. Boylece (4.26) denkleminin analitik ¢Oziimiiniin kapali formu

X
M(X,t)::t

olur.

4.2.3.1. Sayisal Sonuclar

(4.26) denkleminin Homotopi Pertiirbasyon Metodu ile elde edilen sayisal ¢oziimii
Tablo 4.6 da, sayisal ¢coziim ve analitik ¢coziim i¢in grafikler ise Sekil 4.21-Sekil 4.24 de

verildi.
Tablo 4.6 da (4.26) denklemi icin ¢ =0.001, alinarak HPM ile elde edilen sayisal

¢Oziim ile tam ¢oziim karsilastirildi ve aradaki hata verildi.

Tablo 4.6. Burgers denkleminin HPM ile yaklasik ¢6ziimiiniin,
analitik ¢oziimil ile karsilastiriimasi

t= 0.001
Sayisal Coziim

X (HPM) Analitik Coziim Hata

0 0 0 0
0.1 0.0999001 0.0999001 9.99062x10™*
02| 0.1998 0.1998002 1.99812x10"2
03| 0.2997 0.2997003 2.9976x10"
04| 0.3996 0.3996004 3.99625%x107"°
05| 0.4995 0.4995005 4.99545x10™"°
0.6 0.599401 0.599400599 |5.9952x107"°
07| 0.699301 0.6993006993 | 6.99441x10™"°
0.8 0.799201 0.799200799 |7.9925x107"
09| 0.899101 0.899100899 |8.99281x10™"*

1 0.999001 0.999000999 |9.9909x10™"
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Sekil 4.21. Burgers denkleminin HPM ile yaklasik
¢oOzlimiiniin ii¢ boyutlu goriiniimii

0.75
0.5
0.25}

Sekil 4.22. Burgers denkleminin analitik ¢oziimiiniin
iic boyutlu goriintimii
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Sekil 4.23. Burgers denkleminin HPM ile yaklagik

¢Oziimiiniin iki boyutlu gériiniimii

0.8l s

0.6 - -

0.4 0.6 0.8

Sekil 4.24. Burgers denkleminin analitik ¢oziimiiniin

iki boyutlu goriiniimii

43



S.SONUCLAR VE TARTISMA

5.1. Sonug : Baslangic sarth KdV denkleminin sonlu fark metodu, ayristm metodu ve
homotopi pertiirbasyon metodu ile sayisal ¢oziimleri elde edildi. Elde edilen sonuglara gore
homotopi pertiirbasyon metodu ile adomian ayrisim metodunda ayni sonuclar elde edildi.
Bazi adimlarda sonlu fark metodu daha iyi sonuclar vermesine ragmen genel olarak
bakildiginda adomian ayrisim metodu ve homotopi pertiirbasyon metodu ile sayisal

¢Oziimlerde sonlu fark metoduna gore analitik ¢6ziime daha yakin degerler bulundu. Elde

edilen hata tablosu Tablo 5.1. de verilmistir.

Tablo 5.1. KdV denkleminin SFM, ADM ve HPM ile elde edilen
sayisal ¢oziimlerinin hata tablosu

t= 0.0001

X Hata (SFM) Hata (ADM) Hata (HPM)
0 0 0 0

0.1 2.3E-07 1.50158x10° | 1.50158x10™"°
0.2 4.3E-07 1.33449x10° | 1.33449x107"°
0.3| 3.00E-08 1.16809x10™° | 1.16809x107"
0.4 1.00E-08 1.00114x10"° | 1.00114x107"
0.5 0 8.34194x10™ | 8.34194x10™
0.6 1.00E-08 6.67244x10 | 6.67244x107*
07| 4.00E-08 5.00572x10 | 5.00572x107*
0.8| 7.00E-08 3.33622x107* | 3.33622x107*
0.9 1.53E-06 1.66811x10™ |  1.66811x10™
1 0 0 0




5.2. Sonug : Baglangi¢ sartli Burgers denkleminin sonlu fark metodu, ayrigim metodu ve
homotopi pertiirbasyon metodu ile sayisal ¢oziimleri elde edildi. Elde edilen sonuglara gore
homotopi pertiirbasyon metodu ile adomian ayrisim metodunda ayni sonuglar elde edildi.
Bazi adimlarda sonlu fark metodu daha iyi sonuclar vermesine ragmen genel olarak
bakildiginda adomian ayrisim metodu ve homotopi pertiirbasyon metodu ile sayisal
¢Oziimlerde sonlu fark metoduna gore analitik ¢oziime daha yakin degerler bulundu. Elde

edilen hata tablosu Tablo 5.2. de verilmistir.

Tablo 5.2. Burgers denkleminin SFM, ADM ve HPM ile elde edilen
sayisal ¢oziimlerinin hata tablosu

t= 0.001
Hata (SFM) Hata (ADM) Hata (HPM)
0 0 0
0.1 2.00E-10 9.99062x10™'* | 9.99062x10*
0.2 2.00E-10 1.99812x10™" | 1.99812x10"?
0.3 1.1E-09 2.9976x10"%  2.9976x10™"
0.4 1.6E-09 3.99625x107" | 3.99625x10™"
0.5 3.9E-09 4.99545x107"° | 4.99545x107"
0.6 1.6E-09 5.9952x10"°  15.9952x107"°
0.7 1.2E-09 6.99441x107"° | 6.99441x107"
0.8 2.7E-09 7.9925x10"°  |7.9925%10"3
0.9 0 8.99281x10™"% [8.99281x10™"
1 0 9.9909x107"%  19.9909x10™"3
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KdV denkleminin ek doniisiim uygulanarak Crank Nicolson metodu ile ¢céziimii
parameter(NN=2000)
double precision bleft(1:NN-1,1:NN),br(1:NN-1,1:NN-1),
*  1u0(0:NN),u(0:NN),bv(1:NN-1),ua(0:NN)
double precision r, k,tm(1:NN-1,1:NN),xc(1:NN-1)
double precision tson,e,12,lsonsuz
open(1,file="KdV_crank nicolson.txt',status="unknown')
write(*,*) 't son zaman degerini giriniz'
read(*,*) tson
write(*,*) 'tson=',tson
write(*,*) 'n degerini giriniz'
read(*,*) n
write(*,*)'n=",n
write(*,*) 'k degerini giriniz'
read(*,*) k
write(*,*)'k="k
write(1,%*)
write(1,*)'n=",n
write(1,%*)
write(1,*)'tf=",tson
write(1,*)
write(1,555)k
write(1,%*)
555 format('k=',f10.5)
h=0.1D0
r=k/(h**3)
write(*,*)'h=",h
mtekrar=n/10
write(1,*)'r=",r
x=0.D0
ts=0.D0
do 11 i=0,n
x=i*h
u0()=(1./6)*(x-1.)
ua(i)=(1./6)*((x-1.)/(1.-ts))
write(1,*)x,u0(i),ua(i)
11 continue
mson=int(tson/k)
write(*,*)'mson=',mson
do 20 m=1,mson
bleft(1,1)=1.-(5.*1/4.)
bleft(1,2)=(6.*r/4.)*((-h**2)*u0(1)+3.)
bleft(1,3)=-6.*r
bleft(1,4)=7.%r/2.
bleft(1,5)=-3.%*r/4.
bleft(2,1)=(r/2.)*((3*h**2)*u0(2)+1.)
bleft(2,2)=1.
bleft(2,3)=(-r/2.)*((3*h**2)*u0(2)+1.)
bleft(2,4)=r/4.
do 10 i=3,n-3
bleft(i,i-2)=-r/4.



10

18

32

30

bleft(i,i-1)=(r/2.)*((3*h**2)*u0@{)+1.)
bleft(i,i)=1.
bleft(i,i+1)=(-r/2.)*((3*h**2)*u0(i)+1.)
bleft(i,i+2)=r/4.

continue

bleft(N-2,N-4)=-r/4.
bleft(N-2,N-3)=(r/2.)*((3*h**2)*u0(N-2)+1.)
bleft(N-2,N-2)=1.
bleft(N-2,N-1)=(-r/2.)*((3*h**2)*u0(N-2)+1.)
bleft(N-1,N-1)=(1-9.*r*h**2*u0(N-1)+5.%r/4.)
bleft(N-1,N-2)=(r/2.)*((24.*h**2)*u0(N-1)-9.)
bleft(N-1,N-3)=(r/2.)*((-6*h**2)*u0(N-1)+12.)
bleft(N-1,N-4)=(-7.%r/2.)
bleft(N-1,N-5)=(3.%*r/4.)

Matrisin sag tarafi

br(1,1)=1.4+(5.%r/4.)
br(1,2)=(-6.*r/4.)*((-h**2)*u0(1)+3.)
br(1,3)=6.*r

br(1,4)=-7.%r/2.

br(1,5)=3.*r/4.
br(2,1)=(-r/2.)*((3*h**2)*u0(2)+1.)
br(2,2)=1.
br(2,3)=(r/2.)*((3*h**2)*u0(2)+1.)
br(2,4)=-r/4.

do 18 i=3,n-3

br(i,i-2)=r/4.
br(i,i-1)=(-r/2.)*((3*h**2)*u0(@i)+1.)
br(i,i)=1.
br(i,i+1)=(r/2.)*((3*h**2)*u0@{)+1.)
br(i,i+2)=-r/4.

continue

br(N-2,N-4)=r/4.
br(N-2,N-3)=(-r/2.)*((3*h**2)*u0(N-2)+1.)
br(N-2,N-2)=1.
br(N-2,N-1)=(r/2.)*((3*h**2)*u0(N-2)+1.)
br(N-1,N-1)=(1.4+9*r*h**2*uQ(N-1)-5.%r/4.)
br(N-1,N-2)=(-r/2.)*((24.*h**2)*u0(N-1)-9.)
br(N-1,N-3)=(-r/2.)*((-6.*h**2)*uOQ(N-1)+12.)
br(N-1,N-4)=(7.*1/2.)
br(N-1,N-5)=(-3.*1r/4.)

do 30 i=1,n-1

t=0.

do 32 j=1,n-1

t=t+br(i,j)*u0(j)

continue

bv(i)=t

continue
bv(1)=bv(1)-(3.*r*(h**2)*u0(1))*u0(0)
bv(2)=bv(2)+(x/2.)*u0(0)



37

38

301

303
302

304
300

306

305

39

12

47
20

do 37 i=1,n-1

do 37 j=1,n-1
tm(i,j)=0.

tm(i,j)=bleft(i,j)

continue

do 38 i=1,n-1

xc(1)=bv(1)

continue

ng=N-1

do 300 kg=1,ng

do 301 ig=kg+1,ng

TM(ig,kg)=TM(ig,kg)/ TM (kg kg)

continue

do 302 jg=kg+1,ng

do 303 ig=kg+1,ng
TM(ig.jg)=TM(ig.jg)-TM(ig.kg)*TM(kg.jg)
continue

continue

do 304 ig=kg+1,ng
xc(ig)=xc(ig)-TM(ig.,kg) *xc(kg)
continue

continue

do 305 ig=ng,1,-1

do 306 jg=ig+1,ng
xc(ig)=xc(ig)-TM(ig,jg)*xc(jg)
continue
xc(ig)=xc(ig)/TM(ig,ig)
continue

do 39 i=1,n-1

u(i)=xc(1)

continue

x=0.

ts=m*k

write(*, *)ts

do 12 i=0,n

x=1*h
ua(i)=(1./6)*((x-1.)/(1.-ts))
continue

u(0)=ua(0)

u(n)=0.

do 47 i=0,n

u0@G)=u(i)

x=1*h
write(1,50)x,u(i),ua(i)
continue

continue

call analitik(n,tson,ua)

call hata(u,ua,n,e)

call hata_I2(u,ua,n,12)

call hata_lIsonsuz(u,ua,n,lsonsuz)
write(1,51) tson



41

50
60
51
52

10

11

12

13

write(1,*) ' x sonlu fark  Analitik cozum Hata'
WIIte(1,™)" =mmmm e m e '

do41i=1,n

x=i*h

thata=abs(ua(i)-u(i))
write(1,50) x,u(i),ua(i),thata
continue

write(1,%*)
format(f8.3,5x,f12.8,5x,f12.8,5x,f12.8)
format(9(f8.3))
format('t=",f12.5)
format('r=",f12.5)

stop

end

subroutine penta(q,n,x)

double precision q(1:n,1:n+1),a(1:n),b(1:n),c(1:n),d(1:n),e(1:n) ,f(1:n)
double precision ax(1:n),bx(1:n),cx(1:n),dx(1:n),ex(1:n),x(1:n)

do 10 i=1,n-2

a(i)=q(i+2,1)

e(1)=q(i,i+2)

continue

do 11 i=1,n-1

b(i)=q(i+1,1)

d(i)=q(i,i+1)

continue

do 12 i=1,n

c()=q(1,1)

f(i)=q(i,n+1)

continue

ax(1)=0

bx(1)=c(1)

cx(1)=d(1)/bx(1)
dx(1)=e(1)/bx(1)
ex(1)=f(1)/bx(1)

ax(2)=b(1)
bx(2)=c(2)-ax(2)*cx(1)
cx(2)=(d(2)-ax(2)*dx(1))/bx(2)
dx(2)=e(2)/bx(2)
ex(2)=(f(2)-ax(2)*ex(1))/bx(2)
do 13i=3,n
ax(i)=b(i-1)-a(i-2)*cx(i-2)
bx(i)=c(i)-ax(i)*cx(i-1)-a(i-2)*dx(i-2)
cx(1)=(d(1)-ax(1)*dx(i-1))/bx(i)
dx(i)=e(i)/bx (1)
ex(1)=(f(1)-ax(i)*ex(i-1)-a(i-2)*ex(i-2))/bx (1)
continue

x(n)=ex(n)
x(n-1)=ex(n-1)-cx(n-1)*x(n)
do 14 i=n-2,1,-1
x(1)=ex(1)-x(i+2)*dx(i)-x(i+1)*cx(i)



14  continue
return
end

*  analitik ¢dziim icin altprogram

subroutine analitik(n,tmax,uu)
parameter(m_uzunluk=500)

DOUBLE PRECISION X, TMAX,H
DOUBLE PRECISION UU(0:m_uzunluk)
INTEGER LN

H=1./FLOAT(N)

DO 213 I=0,n
x=I*H
UU®D=(1./6)*((x-1.)/(1.-TMAX))

213 CONTINUE
return
END

*  Burgers denkleminin ek doniisiim uygulanarak explicit yontemiyle ¢o6ziimii
* UUx=Ui_j*(Ui+1_j-Ui-1_j)/2h doniisiimii uygulanmigtir
program burgers_explicit_ekdonusum2
parameter(nn=500)
double precision u(0:nn),u0(0:nn),ua(0:nn)
double precision k,tson,h,dt
open(1,file="burgers_explicit_ek1111.txt',status="unknown')
write(*,*) 't son zaman de§erini giriniz!'
read(*,*) tson
write(*,*) 'n-de§erini giriniz!'
read(*,*) n
write(*,*) 'k de§erini giriniz!'
read(*,*) k
write(1,*)'ek_donusum_2'
write(1,*)
write(1,*)'n=",n
write(1,*)
write(1,*)'tf=",tson
write(1,*)
write(1,555)k
write(1,*)
555 format('k='",f10.8)
h=1./float(n)
x=0
mtekrar=n/10
do 10 i=0,n
x=i*h
u0(i)=x
10 continue
u(0)=0.



u(n)=1.

mson=int(tson/k)

md=mson/10

do 25 m=1,mson

do 20 i=1,n-1

u(i)=u0(i)+k*(u0@i+1)-2.*u0@1)+u0(i-1))/(h**2)
* kFu0(1)*(u0(@+1)-u0(3-1))/(2.*h)

20 continue

do 40 i=1,n-1
u0(i)=u(i)

40 continue

41

25
50
51

dt=m*k
u0(0)=0.
u0(n)=1./(1.+dt)
if (mod(m,md).eq.0) then call analitik(n,dt,ua)
write(1,51) m*k
write(1,%) ' x sonlu fark  Analitik cozum Hata'
write(1,*) ——-m e '
do 41 i=20,n-1,20
do 41 i=0,n
x=i*h
write(1,50) x,u0(i),ua(i),abs(ua(i)-u0(i))
continue
endif
continue
format(f8.3,5x,f12.10,5x,f12.10,5x,f12.10)
format('t=",f12.5)
stop
end
analitik ¢oziim icin altprogram
subroutine analitik(n,tmax,uu)
parameter(nn=500)
DOUBLE PRECISION UU(0:nn)
DOUBLE PRECISION X,TMAX,H
INTEGER LN
H=1./FLOAT(N)
DO 213 1=0,n
x=I*H
UU()=x/(1.+TMAX)

213 CONTINUE

return
end
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