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ABSTRACT

ANALYTICAL MODELING OF REINFORCED CONCRETE COLUMNS
WITH LAP SPLICES

A possible source of seismic failure in existing reinforced concrete structures is loss
of anchorage in column reinforcement, along deficient lap splices with short lap length and
inadequate transverse reinforcement conditions. Reliable modeling of the bond slip
behavior and anchorage failures in such columns is important for performance assessment

of existing buildings using nonlinear static and dynamic analysis methods.

In this study, a novel analytical modeling approach is proposed, for simulating the
lateral load — deformation response of reinforced concrete columns with deficient lap
splices. The modeling approach involves implementing bond stress vs. slip springs in the
formulation of a fiber-based macro model. Through this methodology, local bond-slip
behavior associated with both pullout failure of reinforcing bars and formation of splitting
cracks in concrete can be characterized. The proposed model directly considers the
influence of bond slip deformations on the lateral load — displacement response of a
column under reversed cyclic lateral loading, and successfully represents the distribution of
bond stresses and slip deformations, due to either splitting or pullout anchorage failures,
along the lap splice region. The model successfully represents the distribution of local
bond slip deformations along the length of a reinforced concrete column, as opposed to
conventional methods where bond slip deformations are assumed to be localized at
prescribed locations. The flexible formulation of the model allows investigating the
influence of using smooth reinforcing bars, presence of 180-degreee hooks, the strain

penetration effects on the response of a column.

Response predictions of the analytical model were validated against results of
cyclic tests on lap-splice-deficient column specimens, and the model was found to
consistently represent the experimental behavior, both at global and local response levels,

with a reasonable level of accuracy. Additional correlation studies conducted between



model predictions and test results in the literature further verified that the model can
effectively reflect the global response characteristics and failure modes of various column
configurations incorporating either deficient lap splices or anchorage-deficient continuous
reinforcement. Overall, the modeling approach proposed in this study is believed to be a
significant improvement, towards realistic consideration of bond slip deformations and
anchorage failures on the seismic response and performance of reinforced concrete

structures.
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OZET

EKSiK BINDIRME BOYLU BETONARME KOLONLARIN ANALITIK
MODELLENMESI

Mevcut betonarme binalarin deprem performansimi kotii yonde etkileyen onemli
ozelliklerden biri kolon donatisindaki bindirmeli ek bolgelerinde eksik bindirme boyu ve
yetersiz enine donatt kullanimi nedeniyle olusan siyrilma davranisidir. Bindirme boyu
yetersiz kolonlardaki aderans kaybi ve siyrilma davramisinin giivenilir bir sekilde
modellenmesi, mevcut betonarme binalarin statik ve dinamik hesap yontemleriyle analizi

ve performans degerlendirmesi i¢in agisindan 6nem tagimaktadir.

Bu calismada yetersiz bindirme boyuna sahip betonarme kolonlarin deprem etkileri
altinda yanal yiik — sekildegistirme davranigini dngdren bir analitik modelleme yontemi
sunulmustur. Sunulan model, makro-lifli bir betonarme kolon modelinin formiilasyonuna
aderans gerilmelerinin siyrilma deformasyonlar1 ile degisimini temsil eden yaylarin
eklenmesinden olusmaktadir. Onerilen modelleme yontemi ile bindirmeli ek bélgesinde
olusan siyrilma deformasyonlarinin kolonun tersinir tekrarlanir yiikler altinda yiik—
sekildegistirme davranisina etkisi etkin bir sekilde temsil edilebilmekte; ¢ekip ¢ikma ya da
yartlma mekanizmalar1 nedeniyle olusacak siyrilma deformasyonlarinin ve aderans
gerilmelerinin bindirme bolgesi boyunca dagilimi Ongoriilebilmektedir. Modelin esnek
formiilasyonu, diiz yiizeyli donatinin kullaniminin, 180-derece kanca davranmisinin, ve
ankraj bolgesindeki siyrilma deformasyonlarinin kolon davramigina etkilerini gz oniinde

bulundurmaya olanak saglamaktadir.

Analiz sonuglar1 yetersiz bindirme boyuna sahip ve nerviirli donati1 iceren kolon
numuneleri lizerinde yapilan deney sonuglariyla detayli bir sekilde karsilastirilmis; analitik
modelin deneysel sonuglar1 hem yiik — 6teleme davranisi hem de yerel sekildegistirmelerin
dagilimi bakimindan dogru ve tutarhi bir sekilde temsil ettigi gozlemlenmistir. Analitik
model sonuglart ayrica literatiirde sunulan farkli konfiglirasyon ve ankraj Ozelliklerine

sahip ¢ok sayida kolon numunesi iizerinde yapilmis olan deneylerin sonuclari ile
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karsilastirilmis; modelin deneylerde gézlemlenen yatay yiik davranisi ve kirilma tiirlerini
tutarli bir sekilde yansittigi gosterilmistir. Onerilen analitik modelleme y&nteminin,
donatida siyrilma etkilerinin betonarme yapilarin deprem davranigina etkisinin daha iyi

irdelenebilmesi i¢in 6nemli oldugu diisiiniilmektedir.
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Stiffness of the uniaxial bond slip spring

Confinement effectiveness coefficient for concrete

Stiffness of horizontal shear spring

Stiffness of i-th uniaxial element
Stiffness of the uniaxial steel element

Number of MVLE model elements
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Parameter defining shape of monotonic stress-strain curve for concrete
Radious of the steel bar

Cyclic curvature coefficient for steel

Equation parameter for connecting and transition curves

Residual force

Steel parameters defining degradation of cyclic curvature
Clear spacing of stirrups or hoops
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Slip
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Maximum slip deformation

Hook end slip
Deformation in horizontal spring

Bond stress
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Clear spacing between laterally supported longitudinal reinforcing bars
Nondimensional strain on concrete tension envelope

Nondimensional strain on concrete compression envelope
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Nondimensional critical strain on concrete tension envelope
Nondimensional critical strain on concrete compression envelope
Nondimensional concrete cracking strain

Horizontal distance of i-th uniaxial element to central axis of model element

Nondimensional concrete spalling strain

Displacement at nodal degree of freedom

Key nodal displacement to be incremented
Displacement

Column top flexural displacement

Reloading stress offset for concrete
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Longitudinal strain

Concrete strain at unloading or target point on a connecting curve
Concrete strain

Monotonic strain at peak concrete compressive stress

Strain in i-th uniaxial element

Concrete strain at initial point

Concrete strain where monotonic stress-strain relation starts following a

straight line
Concrete cracking strain

Concrete strain at which the cyclic tension envelope originates

Concrete strain at target point

Concrete strain at unloading point from monotonic compression envelope
Absolute maximum strain in steel at strain reversal

Strain at intersection of the elastic and plastic lines for steel bars embedded

in concrete
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and strain at previous reversal point
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Scalar load parameter
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Uniaxial stress
Uniaxial bond stress
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Steel stress at reversal point

Steel yield stress
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1. INTRODUCTION

1.1. General

One source of severe seismic damage in poorly-detailed reinforced concrete
buildings is the loss of anchorage between reinforcing bars and concrete along short and
poorly-confined lap splices in columns, which are located typically above floor levels
where large inelastic demands are expected. Typical lap splice lengths of 20 to 30
longitudinal bar diameters, which are commonly encountered in many existing and poorly-
detailed reinforced concrete buildings worldwide, have been shown to be inadequate in
transferring the tensile stresses in longitudinal reinforcement along the lap splice region of
a column. For example, lap splices in reinforced concrete columns in older buildings in the
United States, or within the non-participating frames in some newer buildings, were
typically designed as compression lap splices. Compression lap splice lengths are typically
short (20 to 24 bar diameters), and only moderate transverse reinforcement is provided
over the lap length. Under earthquake actions, the columns typically develop significant
bending moments, subjecting the longitudinal reinforcement within the splice region to
relatively large tensile stresses, particularly if the splice is located just above the floor slab,
which is common in older construction. Given that required lap lengths (typically 20 or 24
longitudinal bar diameters) for tension substantially exceed those for compression, bond
slip failures along the splice region may occur at load levels less than that required to reach
the nominal moment capacity of the column, resulting in loss in column strength, stiffness,
and ductility. The load-deformation responses of columns representative of those found in
older buildings are not well understood; and in particular, the degradation of strength and
stiffness of a column due to splice failure and the ability of the column to undergo inelastic
deformation while maintaining axial load capacity, are of interest. The effects of bond
deterioration and slip deformations in longitudinal reinforcing bars on the overall response
of reinforced concrete columns with inadequate lap-splice lengths must be taken into
account in order to develop reliable analytical modeling approaches for such lap-splice-
deficient columns, particularly for improvement of nonlinear analysis methods used for

seismic performance assessment of existing buildings.



Past experimental observations studies on individual reinforcing bars anchored in
concrete have identified two main types of bond failure mechanisms between concrete and
reinforcing steel, depending mainly on the amount of concrete confinement provided
around the reinforcing steel bar. If the cover concrete is adequate and the concrete is well
confined by transverse reinforcement, bond failure typically occurs by pullout. On the
other hand, if the cover is inadequate and the concrete is unconfined or poorly confined,
bond failure occurs by splitting of the concrete surrounding the bar. A significant number
of experimental and analytical studies have been conducted on the anchorage and bond slip
characteristics isolated bars embeded in concrete. Several constitutive bond stress vs. slip
relationships have been proposed to simulate both pullout and splitting modes of bond

failures for individual bars.

However, the current state-of-the-art modeling approach for simulating bond slip
behavior in reinforced concrete columns with deficient lap splices consists only of
incorporating simple zero-length moment vs. slip rotation springs at the splice regions of
column members, which are intended to represent deformations associated with bond slip
at critical locations where inadequate anchorage conditions are provided. The moment vs.
rotation behavior of the bond slip spring is calibrated via combining results of one-
dimensional analysis on isolated reinforcing bars embedded in concrete, which
characterizes the bar pull-out force (P) vs. slip deformation behavior of the individual bar,
with results of moment—curvature analyses that relate the forces in the reinforcing bars (P)
to the moments applied on the member cross-section at a critical location. In general, only
monotonic bar pullout vs. slip and moment vs. curvature analyses are employed, in order to
generate a moment vs. rotation envelope for the bond slip spring, and the cyclic behavior
of the bond slip spring is represented via predefined and somewhat ad-hoc unloading and

reloading rules (e.g., Cho and Pincheira, 2004).

This modeling approach, although simple in formulation, introduces certain
inconsistencies in the analysis. First, using predefined loading and unloading rules for the
rotational bond slip spring introduces incompatibility between flexural and bond slip
deformations in a RC member during unloading and reloading, and impairs the reliability
of the model in predicting the energy dissipation capacity of the member under reversed

cyclic loading. Second, using results of monotonic moment—curvature analyses creates a



conceptual error in calibration of the moment vs. rotation envelope of the bond slip spring.
Pronounced bond slip behavior often results in strength-degrading responses associated
with the post-peak (degrading) region of the bar pullout force vs. slip response of the
individual reinforcing bars, which results in degradation of the lateral load vs.
displacement (or the moment vs. rotation) of the member. Therefore, a monotonic
moment—curvature analysis should be employed only up to the point (moment) that
corresponds to the load where significant slip occurs for an individual reinforcing bar.
Subsequently, realistic unloading in the moment—curvature response should be considered,
even when the moment vs. rotation envelope of the bond slip spring is being calibrated for
monotonic loading. Furthermore, this modeling approach requires multiple steps in the
analysis, and bond slip deformations are assumed to be concentrated at pre-defined critical

locations on the member, which needs to be specified in the model.

1.2. Scope

Given these shortcomings, the scope of this research study is to develop a more
robust and refined modeling approach to simulate the bond-slip responses observed in
reinforced concrete columns under reversed cyclic loading. The proposed modeling
methodology involves modifying the formulation of a fiber-based flexural model (i.e., the
Multiple Vertical Line Element Model), with the fibers representing the hysteretic flexural
behavior of concrete only. Reinforcing bar elements, with uniaxial hysteretic stress—strain
relationships of their own, are connected to the concrete fibers through uniaxial bond slip
springs, the behavior of which are represented with experimentally-derived hysteretic bond
stress vs. slip constitutive relationships available in the literature (Eligehausen ef al., 1983,
for pullout, Harajli et al., 2009 for splitting, Verderame et al., 2009 for smooth reinforcing
bars, and Fabbrocino et al., 2004 for 180-degree hooks). Through this methodology, local
bond slip behavior is incorporated at the fiber level, and full coupling (compatibility) of
flexural and bond slip deformations of the model is retained under reversed cyclic loading
conditions. The model proposed does not require intermediate steps in the analysis, and
successfully represents the distribution of local bond slip deformations along the height of
a reinforced concrete member, as opposed to conventional methods where bond slip

deformations are assumed to be localized at prescribed locations.



The proposed analytical modelling approach captures many important response
characteristics associated with the cyclic behaviour reinforced concrete columns with short
lap splices, where failure or degradation in the load-deformation response is initiated by
bond slip between longitudinal steel bars and the surrounding concrete in the lap splice
region. Several bond stress vs. slip constitutive relationships are implemented in the model
formulation, depending based on the type of reinforcing bar (deformed or plain) used, and
the failure mode (pullout or splitting) expected. The model allows slip deformations to be
distributed over the height of the column, instead of being localized in prescribed regions.
Full coupling of flexural and bond slip deformations are enforced at all locations on the
column, under generalized and reversed cyclic loading conditions. The model allows
monitoring of local responses including longitudinal strains and stresses in concrete and
reinforcing steel, as well as bond stresses and slip deformations at any location on the
column. Local rotations, strain profiles, and neutral axis locations, and bond stress
distributions along either longitudinal or starter splice bars can also be obtained using the

analytical model proposed.

Upon development and implementation of the model formulation, detailed and
comprehensive correlation studies were conducted between model results and experimental
data, in order to identify the capabilities and weaknesses of the proposed model, as well as
to provide a better understanding of nonlinear bond slip behaviour of reinforced concrete
columns with deficient lap splices. Analytical and experimental response comparisons
were made at both global and local response levels, for various column configurations with
either deformed or plain reinforcing bars; with various lap splice lengths, cross sections,
material properties and reinforcement conditions; subjected to different axial load levels

and lateral loading patterns.

1.3. Research Significance

With current modeling approaches available in the literature, it is not possible to
fully comprehend and analytically represent the coupled flexural and bond slip behaviour
of reinforced concrete columns with short lap splices. The behavioural model proposed in
this study is intended to capture many important response characteristics associated with

the cyclic behavior of reinforced concrete columns with short lap splices, Detailed



response comparisons conducted between the model results and experimental data, at both
global and local response levels, allows a better understanding of the coupled flexural and
bond slip responses of lap-splice-deficient columns. The model presented can also be used
as an effective tool in nonlinear analysis of structural systems, as part of performance-

based evaluation methodologies for existing reinforced concrete buildings.

1.4. Objective

Specifically, the objectives of this study are:

(1) To develop a macroscopic analytical model, which accurately predicts the
nonlinear inelastic response of reinforced concrete columns with short lap splices, at both
global and local response levels,

(i1) To implement refined constitutive material and bond-slip relationships in the
analytical model, and to adopt flexible nonlinear analysis solution strategies for conducting
analyses for various column configurations,

(iii) To investigate the sensitivity of model results, at both global and local model
response levels, to changes in model parameters,

(iv) To conduct detailed calibration studies on the analytical model and to perform
comprehensive correlation studies, at various response levels and locations, between
analytical model results and a detailed experimental program involving cyclic loading tests
on densely-instrumented reinforced concrete column specimens.

(v) To conduct additional correlation studies between model results and experimental
observations in the literature, in order to evaluate various response characteristics,
including the influence of using plain bars, presence of hooks, and strain penetration
effects on column response,

(vi) To reach conclusions on the effectiveness of the proposed model in predicting
the cyclic response of reinforced concrete column with short lap splices and deficient
anchorage conditions, and to arrive at recommendations upon further improvements of the

model.



1.5. Thesis Outline

Nine chapters are included in this thesis. A general introduction, as well as the scope
and objectives of the study are described in chapter one. Chapter two provides a review of
the various constitutive bond stress vs. slip models available in literature, previous
experimental and analytical studies on the bond slip behavior of reinforced concrete
members, and the current state-of-the-art modeling approaches available. The description
and numerical formulation of the proposed analytical model is presented in Chapter three.
Chapter four describes the cyclic material constitutive relationships used for reinforcing
steel and concrete, as well as the bond stress vs. slip constitutive relationships incorporated
in the analytical model. Numerical solution strategies adopted to conduct nonlinear
analyses using the analytical model are described in Chapter five. Chapter six provides an
examination of the characteristic attributes of the analytical model results, and also
investigates the sensitivity of the model results to selected model parameters. Chapter
seven provides information on correlation of the analytical model results with results of an
experimental program on densely instrumented column specimens with deformed
reinforcing bars and deficient lap splices. A brief description of the experimental program,
detailed information on calibration of the model, and comparisons of model results with
the extensive experimental data at both global and local response levels are presented.
Chapter eight further compares the analytical model results with additional experimental
observations available in the literature on various column specimens with both deformed
and plain reinforcing bars, with both deficient lap splices and continuous longitudinal
reinforcement (where bond slip behavior in the anchorage zone is of interest). In Chapter
nine, the analytical results are summarized, concluding remarks on the abilities and
weaknesses of the model are presented, and recommendations on further improvement and

application of the model are provided.



2. LITERATURE REVIEW

Past experimental studies on individual reinforcing bars embedded in concrete have
identified two main types of bond failure mechanisms, depending on the amount of
concrete surrounding the reinforcing bar, as well as the level of confinement. If the
surrounding concrete is of significant thickness and the concrete is well confined by
transverse reinforcement, bond failure typically occurs by pullout. On the other hand, if the
concrete cover is small and the concrete is either unconfined or poorly confined, bond
failure occurs by splitting of the surrounding concrete. Several bond stress vs. slip
constitutive models to simulate both pullout (for deformed as well as smooth reinforcing
bars) and splitting (only for deformed reinforcing bars) modes of bond failures are

available in the literature, as described in the following section.

2.1. Constitutive Models for Bond Stress-Slip Relation

Eligehausen et al. (1983) first proposed a robust hysteretic constitutive model for the
local bond stress vs. slip relationship for a single reinforcing deformed bar anchored within
a reinforced concrete beam-column joint. The model was derived using experimental
results from tests conducted on 125 specimens with short anchorage lengths, subjected to
either monotonic tensile loading or reversed cyclic loading. Effects of loading history,
confining reinforcement amount, bar diameter, concrete compressive strength, clear cover,
bar spacing, and rate of pull-out on the local bond stress vs. slip relationship were all
considered during development of the constitutive model. Cyclic degradation in both bond
stress and stiffness was incorporated in the model formulation. The model was shown to
agree reasonably well with experimental results, and is still widely used in bond slip
modeling applications. Prior to the work by Eligehausen et al. (1983), although the bond
slip behavior under reversed loading for rather small slip deformation values (s <s;) could
be predicted with sufficient accuracy, the influence of loading cycles for larger slip values

(s > s;) on the local bond stress vs. slip relationship was not well-defined.
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Figure 2.1. Constitutive Model for Local Bond Stress vs. Slip Relationship for Confined
Concrete (Eligehausen et al., 1983).

The local bond stress vs. slip constitutive relationships proposed by Harajli et al.
(1994, 2002, and 2004) apply to reinforcing bars embedded in plain and fiber-reinforced
concrete under monotonic tension, and are applicable to both splitting and pull-out type
bond failures (Harajli et al., 1994). These constitutive models were developed upon
compiling a broad database of experimental data, including results of the tests conducted
by Eligehausen et al. (1983) and Harajli et al. (1995). The original version of the model
consisted of two monotonic backbone relationships, representing pull-out and splitting
failures for unconfined and confined concrete, respectively. These backbone relationships
were later improved (reference) to consider the influence of partial confinement on the

bond stress vs. slip response of reinforcing bars experiencing splitting type of bond failure.
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Figure 2.2. Monotonic Bond Stress vs. Slip Constitutive Model (Harajli et al.,1994, 2002,
2004).

Harajli (2009) first developed a robust hysteretic local bond stress-slip constitutive
model to simulate splitting mode bond failure for deformed reinforcing bars, as shown in
Figure 2.3. This cyclic constitutive model accounted for splitting of both unconfined and
moderately-confined concrete, and incorporated the effect of several critical bond slip
parameters, such as the diameter of reinforcing bars, the ratio of concrete cover to bar
diameter, concrete compressive strength, the amount of confining reinforcement, and the
type of confinement including steel ties, fiber-reinforced concrete (FRC), and reinforced
concrete polymer jackets. Cyclic degradation in both bond stress and stiffness were also

incorporated in this constitutive model.

As described above, existing information in the literature on the bond slip behavior
of deformed reinforcing bars include extensive experimental data and various constitutive
relationships, both monotonic and hysteretic, which account for the governing parameters
influencing bond slip response. On the other hand, available information in the literature
on the bond stress vs. slip relationship of plain (smooth) bars, which can be important for
seismic performance assessment of existing reinforced concrete buildings in many

countries, is very limited.
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Figure 2.3. Hysteretic Bond Stress vs. Slip Constitutive Model for Splitting Failure
(Harajli, 2009).

A robust hysteretic bond stress vs. slip constitutive model for plain reinforcing bars
was only recently developed by Verderame et al. (2009 a,b), based on experimental results
of monotonic and cyclic pull-out tests on plain bars embedded in concrete (Figure 2.4).
The monotonic envelope of this constitutive model includes an initial ascending branch up
to a peak bond stress capacity value, which corresponding to a very low magnitude of slip
deformation. During this phase of the behavior, chemical-physical adhesion, mechanical
micro-interlocking, and the friction between the bar surface and surrounding concrete
contribute to development of bond stress capacity. Then, a softening branch, represents the
progressive degradation of the friction mechanism with increasing slip deformation.
Finally, a horizontal branch, at a constant magnitude of bond stress, represents minimum
frictional component of bond resistance. Hysteretic rules of the constitutive model are
based on experimentally-observed cyclic degradation of the frictional bond resistance

component.

The constitutive bond stress vs. slip models adopted in this study for both deformed

and plain reinforcing bars are described in detail in Chapter 4 of this thesis.
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Figure 2.4. Hysteretic Bond-Slip Relationship for Plain Reinforcing Bar (Verderame et
al., 2009 a,b).

2.2. Experimental Studies on the Bond Slip Behavior of Reinforced Concrete

Columns

Experimental observations available in literature on the bond slip behavior of
reinforced concrete columns can be categorized in three types; as columns with deformed
reinforcing bars incorporating lap splices, columns with smooth reinforcing bars
incorporating lap splices and hooks, and columns with continuous deformed reinforcing
bars experiencing anchorage slip (strain penetration) effects. Examples of such
experimental studies are presented in the following paragraphs. All of these experimental
studies were used in experimental calibration and verification of the analytical model

proposed in this study, as described in Chapters 7 and 8 of this thesis.

Melek and Wallace (2004) conducted experiments of densely-instrumented full-scale
column specimens constructued with deformed reinforcing bars, with various
configurations, in order to better characterize the influence of bond slip deformation and
slip failure on the lateral load response of lap-splice-deficient reinforced concrete columns.
The primary variables in their test program included the level of axial compressive load,
the ratio of maximum moment to maximum shear force (shear span), and the loading
history. All column specimens had deformed reinforcing bars and a lap splice length equal

to 20 bar diameters. The experimental results indicated the lateral strength of specimens
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started degrading at lateral drift ratio of 1.0 to 1.5%, due to the deterioration of the bond
between the reinforcement and the surrounding concrete. The data showed that higher axial
load levels slightly increased the lateral load capacity of the specimens, and that changes in
shear demand did not appear to influence the lateral load at which bond deterioration

initiated.

Aboutaha (1994) and Aboutaha et al. (1996) conducted a series of tests on cantilever
type column specimens, representing half the length of an actual column in a real building
frame. All column specimens were 2.74 meter high from the top of footing to the point of
load application, to ensure flexural-dominated behavior. Cyclic lateral loads were applied
at the tip of the column specimens and all columns were loaded in the weak direction.
Lateral loads were increased in 22 kN increments until significant inelastic displacement
was observed. Lateral displacements were then increased in increments corresponding to
0.5% drift ratios. All columns were tested without axial load. The lap splice length of the
specimens were 24 bar diameters. Generally, splice failure was associated with vertical
splitting cracks along the full height of the splice. For some specimens, splice failure after

yielding of the main longitudinal bars occurred.

Harajli and Dagher (2008) tested full-scale cantilever column specimens with lap-
splices located at column. Systematically-varied concrete grades of C14, C16, and C20,
and reinforcing bar diameters of 14 mm, 16 mm, and 20 mm were used in the construction
of the test specimens. The specimens consisted of columns having a half height of 1.5 m
and a 200 mm wide by 400 mm deep rectangular cross section, supported over a 1200 mm
long, 500 mm wide, and 500 mm deep footing. The column longitudinal reinforcement
was lap-spliced, with starter bars of the same diameter anchored within the footing using
standard 90-degree hooks. The lap splice length for all column specimens was selected as
30db, where dy, is the diameter of the column reinforcement. The side cover ¢; and bottom
cover ¢, of the spliced bars in the column section were chosen to produce a range of values
of c/dy that would induce splitting bond failure before steel yielding. The transverse
reinforcement in these specimens consisted of @8 mm diameter ties spaced at 200 mm
throughout the height of the column with the first tie placed at 50 mm above the column-
footing interface. As the main objective of this experimental study was to investigate the

splitting bond strength of column splices and since the splitting bond strength of spliced
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bars depends primarily on the tension stresses acting on the spliced bars, the specimens
were tested under pure flexure, with no axial compression. Failure was characterized by
significant vertical splitting cracks in the lap splice region. The splitting cracks started at
the base of the column and propagated upward along the full splice length as the lateral
drift increased. Splitting bond failure caused concrete spalling along the splice length and

substantial slip of starter bars at the column-footing interface.

Elgawady et al. (2010) investigated the cyclic behavior of eight 4/10-scale reinforced
concrete column specimens representing construction conditions in the state of
Washington prior to 1971. All specimens were tested under constant axial load and
incrementally increasing lateral loading cycles. Two modes of failure were observed for
the column specimens, which are low-cycle fatigue failure of longitudinal reinforcement
and slip failure of the lap splice. In the column specimens, longitudinal bars were lap
spliced (over a length of 35 bar diameter), at the base of the column with the starter bars
extending from the foundation. AIl specimens had an approximate longitudinal
reinforcement ratio of 1.2%, provided with 12.5 mm diameter deformed rebars, and 6.3
mm diameter smooth mild steel ties at 125 mm spacing as transverse reinforcement. The
specimens were subjected to reverse cyclic lateral loading with increasing levels of lateral

displacements.

Lynn et al. (1996) conducted tests on eight full-scale column specimens representing
construction details in the United States prior to the 1970s. The specimens were subjected
to reversed cyclic lateral displacements, while the axial load was held constant for the
duration of the test, at a level corresponding to approximately 12% of the axial load
capacity of the columns. Observed failure modes included localized crushing of concrete,
buckling of reinforcement, splitting bond failure at the lap splice, shear failure, and axial

load collapse.

The full scale column specimen, ‘L.0O°, tested by of Harries et al. (2006), incorporated
a 22 bar diameter lap splice length, and was tested under combined axial and cyclic lateral
loads. The column specimen was initially designed so that the lap splice would cause bond
slip failure prior to achieving the flexural capacity of the column. The column specimen

had 458 mm square cross sections with eight 22 mm — diameter longitudinal reinforcing
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bars. 9.5 mm — diameter ties with 356 mm spacing were located over a height of 1780 mm
from the base of the column. These ties incorporated deficient 90-degree hooks. The axial
load level applied during testing was approximately 25% of the column axial load
capacity, and was maintained constant throughout the cyclic lateral load history, using a
regulated system of hydraulic rams. The reversed cyclic lateral loads were applied to the
column specimen at a height of 2440 mm, which was selected to ensure a sufficiently high
moment-to-shear ratio to result in flexure-dominated column behavior. The columns were
tested as cantilevers with the lateral loads applied at the top, approximately representing
the half the height of an actual column in a building frame, for which the point of
inflection is located at the midheight. Failure was characterized by significant vertical

splitting cracks in the lap splice region.

Yildiz (2006) conducted an experimental program on reinforced concrete columns
with deficient detailing and low material quality, representing older non-ductile buildings
in Turkey. Two of her specimens (Specimens AF(COGO)B1 and AF(COGO0)B2)
incorporated deficient lap splices, with splice lengths equal to 15 bar diameters, and were
subjected to constant axial and reversed cyclic lateral loads. All test specimens were
designed such that shear failure would be avoided. However, all specimens possessed

inadequate confinement and low concrete quality.

Verderame et al. (2008) conducted experiments on reinforced concrete column
specimens incorporating with smooth reinforcing bars. Two types of specimens were
considered, depending on the longitudinal reinforcement details at column base. Type A
specimens had lap-spliced and hooked bars with 40 bar diameter long splice length,
whereas continuous longitudinal bars were provided for Type B specimens. Two different
levels of axial load (12% and 24% of axial load capacity) were applied to represent the
behavior of columns in a prototype building. For the specimen types investigated in detail
in the present study, the specimens were 2000 mm high, with a 300 mm by 300 mm square
cross-section. Longitudinal reinforcement consisted of six 12 mm — diameter smooth bars,
while 8 mm — diameter ties were spaced at 100 mm spaced. Cyclic lateral loads were
applied at a height of 1570 mm from the top of the specimen foundation A maximum
cyclic drift of £100 mm was applied, and the specimens were cycled three times at 15

target drift levels. Moderate decay of strength due to progressive spalling of concrete cover
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and strong pinching effect exhibited for Type A column specimen. Loss of strength due to

spalling of concrete cover and buckling of reinforcing bars exhibited for Type B specimen.

Yilmaz (2009) investigated the effect of deficient lap splices with plain bars 180-
degree hooks, as well as the influence of low concrete compressive strength on the lateral
load behavior of reinforced concrete columns in typical poorly-constructed buildings in
turkey. In his experimental study, the column specimens incorporated 14 mm — diameter
(¢) smooth longitudinal bars, 10 mm — diameter poorly detailed and wide-spaced ties, and
an average concrete compressive strength of approximately 10 MPa. In construction of
four specimens, different lap splice lengths (25¢, 359, 44¢, 55¢) were used, and one
specimen incorporated continuous longitudinal reinforcement. The column specimens were

tested under zero axial load and reversed-cyclic lateral loading.

To investigate the influence of bond slip deformations in anchorage zones (i.e., strain
penetration effects) on the cyclic lateral load behavior of reinforced concrete columns,
Low and Moehle (1987) tested a series of reinforced concrete cantilever column specimens
with rectangular cross sections and continuous longitudinal reinforcement anchored into
specimen foundations. For the column specimens tested, the anchorage length (within the
foundation) of the longitudinal reinforcement corresponded to 23 bar diameters. The

specimens were subjected to constant axial load and reversed cyclic lateral loading.

Bousias et al. (1995) also tested a column specimen with continuous deformed
reinforcing bars to investigate the influence of strain penetration effects (anchorage slip)
on column behavior. The column specimen was 1490 mm high, with a 250 mm by 250
mm cross section. An anchorage length (within the specimen foundation) corresponding to
30 bar diameters was used in the construction of the specimen. This column was also

subjected to constant axial load and reversed cyclic lateral loading.

2.3. Analytical Studies on the Bond Slip Behavior of Reinforced Concrete Members

Various types of analytical models have been proposed for simulating the bond slip

behavior in reinforced concrete structural members. A simple constitutive modeling

approach is using the single bar model shown in Figure 2.5, for representing the bond slip
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behavior of individual longitudinal bars in a member. The force-deformation response of a
reinforcing bar embedded in concrete may be described by this one-dimensional model. In
this model, the bar is divided into a finite number of short segments. Each bar segment is
connected to a nonlinear spring that represents the local bond resistance on the surface of
the bar segment. Knowing the stress-strain characteristics of the materials and assuming a
bond stress-slip relationship for the bar embedded in concrete, the pullout force P and the

slip deformation Ag;, can be calculated.

Concrete Reinforcing bar

Figure 2.5. Uniaxial Model for an Isolated Bar.

Unlike the behavior of isolated bars, spliced bars interact with each other, following
a complex force transfer mechanism. Experimental studies have shown, however, that the
cracking, splitting, and bond slip behavior in a lap splice region is similar to that of
individual embedded bars; and it is generally accepted that the load-carrying capacity of a

spliced bar is almost the same as that of a single embedded bar.

Using the idea of an embedded bar model, Reyes (1999) and Reyes and Pincheira
(1999) developed a nonlinear analysis procedure to estimate the lateral strength and
displacement capacity of older reinforced concrete columns with short lap splices.
Although their procedure provided a good estimate of the lateral strength and failure mode
of a splice-deficient column, the lateral deformation capacity was underestimated and the

post-peak response was not consistently well represented by their model.

Girard and Bastien (2002) proposed an analytical modeling approach to investigate
the response of reinforced coulmns subjected to cyclic loads, which was incorporated in a
general purpose finite-element program (CLEF) developed at Laval University. The three-

dimensional finite-element model considered the concrete confinement effect, the
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softening response of concrete, the strength loss due to bond deterioration, and the slip
deformation of the reinforcing bar relative to the surrounding concrete. In their research, it
was shown that the use of finite elements with additional degrees of freedom at each node
to represent the relative slip between concrete and steel is a reliable method to model the
response of structural members for which the progressive deterioration of the bond
between steel and concrete influences the general behavior. Comparing with the
experimental behavior, the stiffness of the numerical model was found greater due to the
initial stiffness of the bond-slip constitutive law was considered constatant for
programming simplicity. A bond stress-slip relationship with a reduced envelope , as
suggested by Eligehausen ef al. (1983) could be used to represent the behavior of the

interface after some repeated cycles.

Limkatanyu and Spacone (2003) generated a fiber-based frame element model
(Figure 2.6) where bond slip deformations are not assumed to be localized at prescribed
locations on the member. They applied this model that explicitly accounts for the bond slip
deformation of steel reinforcing bars to simulate the response of two experimentally tested
reinforced concrete structural specimens, a beam—column joint and a two-story frame.
Their frame element consisted of two components: a two-node beam element and a number
of two-node rebar elements, which are allowed to undergo slip deformation with respect to
beam. The nodal degrees of freedom of the beam and of the rebars were different to permit
reinforcement slip. The main objective of this study was to analyze the importance of
considering bond slip in evaluating the response of reinforced concrete frame structures
subjected to cyclic loading. The study of the beam-column subassembly validated the
model accuracy and showed how including the effects of bond slip leads to a spindle-
shaped hysteretic loops, and to a better representation of the amount of hysteretic energy
dissipation, since excluding the bond-slip effects overestimated the amount of hysteretic-
energy dissipation. The bond slip effects were found not to affect the load carrying
capacity of the assembly, since no slip failure was observed in either the experimental test
or the analytical results. The stress and bond stress distributions on the reinforcing
indicated that the bond stress demand within the joint was critical, and that bond slip inside

the joint resulted in large fixed-end rotations at the beam-joint interfaces.
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Figure 2.6. RC Frame Element with Bond-Slip: Degrees of Freedom, Fiber Section
Discretization (Limkatanyu and Spacone, 2003).

To evaluate the results of these tests, the effect of bond stress vs. slip behavior of lap-
spliced longitudinal bars on the overall monotonic column response was analytically
modeled by Melek (2006), using a rotational bond slip spring at the column base.
Monotonic bond stress vs. slip relationships were used to calibrate the moment vs. slip
rotation spring. Investigation of moment vs. rotation responses of the specimens indicated
that rotation caused by slippage of longitudinal bars accounted for a significant portion of
the total rotation. After bond deterioration initiated, inelastic rotations were dominated by
slip deformations. The calculated peak lateral load for the model agreed closely with the
peak loads obtained in the tests. However, the monotonic moment versus slip rotation
response underestimated the lateral drift (or rotation) at which lateral strength degradation
initiates. It was stated that monotonic analyses of the column specimens underestimates
lateral stiffness degradation with increasing lateral drift, probably because the monotonic
bond stress vs. slip relationships used do not consider the damage caused by a cyclic

displacement history.
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Figure 2.7. Column Model by Melek (2006).

Belmouden and Pierino (2006) proposed an analytical model (Figure 2.8) for
simulating the nonlinear hysteretic behavior of reinforced concrete walls, which accounts
for strength degradation, stiffness degradation, pinching, inelastic shear deformation,
confinement, and bond slip effects. In this study, bond slip behavior was again represented
using a rotational slip spring. To establish the validity of the proposed model, correlation
studies were conducted between analysis and test results, to compare cyclic load—
displacement hysteretic responses and hysteretic energy dissipation capacities. Although
the analysis results were generally in good agreement with experimental results, the model
was found to be incapable of accurately predicting local deformations on the wall
associated with bond slip; indicating that a robust and mechanics-based macro-model
which can accurately predict cyclic bond slip responses of columns at both local and global

(system) levels was yet to be developed.
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Figure 2.8. Dimensions (mm) and Analytical Model Developed for Reinforced
Concrete Structural Walls (Belmouden and Pierino, 2006).

Ayoub (2006) presented a new inelastic element, which was derived from a two-field
mixed formulation, where forced and deformations are approximated with independent
interpolation functions for analysis of reinforced concrete beam-column elements with
bond-slip-dominated responses. He presented an algorithm for implementation of the
model in a general purpose nonlinear finite-element analysis program, to consider both
slip deformation and pullout failure effects in the analysis. The bond stress-slip model used
in his model was based on the work of Eligehausen et a/l. (2003). His model was evaluated
by correlation studies with experimentally tested reinforced concrete columns. Although
this numerical studies confirmed the accuracy of the model in representing the global

behavior, pinching effect was not captured properly.

Cho and Pincheira (2006) recently developed an analytical modelling approach to
predict the lateral load behavior of reinforced concrete columns with short lap splices.
They considered three basic deformation modes and resistance mechanisms to describe the
nonlinear response of a reinforced concrete column as shown in Figure 2.10. The modes of
deformation included contributions from flexure, shear, and bond slip of reinforcement at
the splice region. Their modeling approach used followed the principles of the lumped
plasticity models, and is an extension of the two dimensional, single component model

developed by Giberson (1969) modified to include shear response (Pincheira et al., 1999).
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Figure 2.9 depicts the profile of a reinforced concrete column and its corresponding
computer model. An element of length equal to the clear length of the column was used to
model the contributions of flexure and shear. This member consisted of an elastic beam-
column element with a nonlinear rotational spring at the base and a zero-length shear
spring. The deformations due to bond slip in the lap splice region were simulated by a
nonlinear rotational bond slip spring at the base of the model element. The moment vs.
rotation behavior of the bond slip spring was calibrated via combining results of one-
dimensional analysis on isolated reinforcing bars embedded in concrete, which
characterizes the bar pull-out force (P) vs. slip deformation behavior of the individual bar,
with results of moment—curvature analyses that relate the forces in the reinforcing bars (P)
to the moments applied on the member cross-section at a critical location. The backbone
relations and hysteretic laws of the rotational bond spring is illustrated in Figure 2.11. The

backbone curve was suggested to be tri-linear, with ascending and descending branches.

Shear spring

Column element (Fenforced concrete

element)

Flexural spring

' C

Zero length ¥

Y
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Figure 2.9. Beam-column Model with Bond-slip Spring.
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Figure 2.11. Moment vs. Slip Rotation (Cho and Pincheira, 2006).

Analytical results were calibrated with experimental data from cyclic loading tests on
reinforced concrete columns with typical constructions details of the early 1970s. In order
to develop cyclic response characteristics using monotonic pull-out force versus slip
relationships, Cho and Pincheira (2006) suggested implementing hysteretic unloading and
reloading rules to the moment versus slip rotation backbone curve (Figure 2.11).
Parameters for lateral stiffness degradation with applied cyclic displacement history ( and
a); and pinching (y; and y,) were determined by doing sensitivity studies for matching of
the analytical and experimental results. Investigation of moment vs. rotation responses of

the specimens indicated that rotation caused by slippage of longitudinal bars accounted for



23

a significant portion of the total rotation. After bond deterioration initiated, inelastic
rotations rotational were dominated by slip deformations. Although the general
characteristics (global response) of the measured response under cyclic loading were
represented well by the analytical model, due to the ad-hoc rules hysteretic laws for the
flexural and rotational bond slip springs, the pattern of the post peak cycles was not
represented accurately. Also, the model did not allow estimation of the distribution of
local deformations in the splice region, since similarly to other conventional methods,
inelastic flexural and bond slip deformations were assumed to be localized at a prescribed

location on the member (at the base of column).

As described in this section, the current state-of-the-art macroscopic modeling
approach for simulating bond slip behavior in slender reinforced concrete members
involves incorporating zero-length moment vs. rotation springs at the boundaries of beam-
column-elements which represent deformations associated with bond slip at critical
locations on a member where inadequate anchorage is provided or slip deformations are
expected to impact deformations. In general, only monotonic bar pullout vs. slip and
moment vs. curvature analyses are employed, in order to generate a moment vs. rotation
envelope for the bond slip spring, and the cyclic behavior of the bond slip spring is

represented via predefined unloading and reloading rules with typically ad-hoc parameters.

On the other hand, although microscopic modeling approaches can provide a detailed
description of the local response, their efficiency, practicality, and robustness are

questionable due to complexities in calibrating the model and interpreting the results.

To obtain a more robust, yet practical response prediction, an analytical modeling
approach based on a fiber formulation (a distributed plasticity model) has the potential to
provide a mechanics-based and reliable, yet practical solution. Therefore, a fiber-based
macroscopic modeling approach to simulate nonlinear flexural responses was used as a
baseline model for the current study. Characteristics of the flexural macro-model used,
which is referred to the Multiple Vertical Line Element Model (MVLEM), are described in
the following paragraphs.
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The Multi Vertical Line Element Model (MVLEM) was shown to capture important
flexural response features (e.g., shifting of the neutral axis and the effect of a fluctuating
axial force on strength and stiffness), which are commonly ignored in lumped plasticity
(flexural hinge) models. It offers the flexibility to incorporate various material hysteretic
models and important response features (for example, confinement and nonlinear shear

behavior) in the analysis.
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Figure 2.12. MVLE Model for RC Walls (Orakcal, 2004).

In the Multiple-Vertical-Line-Element (MVLE) Model (Figure 2.12), a structural
wall is represented as a stack of MVLEs, placed on top of each other. The flexural
response of each element is governed by a series of uniaxial elements (or macro-fibers)
connected to infinitely rigid beams at the top and bottom levels (at floor levels for
example). Therefore, the plane-sections-remain-plane assumption applies. The force-
deformation relationships of the uniaxial elements are defined according to uniaxial stress-
strain relationships implemented in the model for concrete and steel and the tributary area
assigned to each uniaxial element. A horizontal spring simulates the shear response of the
model element. The shear response of the model element is simulated by a horizontal
spring at the center of rotation and shear deformations are concentrated in this spring. The
flexural and shear deformations of the original model are uncoupled; and the shear spring
follows a prescribed force-deformation relation, such as the Origin-Oriented-Hysteresis-

Model with a trilinear force-deformation envelope (Figure 2.13). Therefore, the model is
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incapable of simulating coupled shear-flexural responses in members experiencing
significant nonlinear shear deformations. As well, the model formulation incorporates a
perfect-bond assumption between concrete and reinforcing steel bars, and thus cannot

predict bond-slip responses in members with deficient anchorage conditions.
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Figure 2.13. Model Shear Response.

Orakcal et al. (2004) verified that the improved multiple-vertical-line-element model
captures important response characteristics associated with cyclic flexural response of
reinforced concrete structural walls with continuous longitudinal reinforcement and
adequate anchorage attributes. The scope of the study by Orakcal et al. (2004) was to
implement state-of-the-art, reliable, robust material constitutive laws into the MVLEM and
demonstrate the effectiveness of the MVLEM for modeling and simulating the inelastic
response of reinforced concrete structural walls, via detailed correlation studies between
model results and experimental (Orakcal and Wallace, 2006) data. Based on the analysis
results, it was verified that the MVLEM captures important response characteristics
associated with cyclic behavior of slender reinforced concrete structural walls governed by
flexure. The analytical model was able to simulate important behavioral features including
shifting of the neutral axis along the wall cross section and the effect of fluctuating axial

force, which are commonly ignored in simple models. Characteristics of the cyclic
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response, including stiffness degradation and strength deterioration, hysteretic shape, and
pinching behavior were clearly captured in the analysis results. However, the model was
found to underestimate the longitudinal compressive strains in concrete, since it did not
consider coupling of nonlinear shear and flexural deformations, as is typically the case for

all fiber-based analytical model formulations.

The proposed modeling methodology in this study involves modifying the
formulation of the MVLEM, so that the macro-fibers represent the hysteretic axial-flexural
behavior of concrete only. Reinforcing bar elements, with uniaxial hysteretic stress—strain
relationships of their own, are connected to the concrete fibers through uniaxial bond slip
springs, the behavior of which are represented with experimentally-derived hysteretic bond
stress vs. slip constitutive relationships available in the literature. Through this
methodology, local bond slip behavior is incorporated at the fiber level, and coupling
(compatibility) of flexural and bond slip deformations of the model is satisfied under
reversed cyclic loading conditions. The description and numerical formulation of the

model is presented in the following Chapter.
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3. DESCRIPTION OF ANALYTICAL MODEL

The analytical model proposed in this study is based on the formulation of a
macroscopic fiber model for modeling the axial-flexural behavior of reinforced concrete
members. The Multiple-Vertical-Line-Element Model (MVLEM), the accuracy of which
was verified by Orakcal er al. (2006), has been used in this study as a baseline model to
simulate the coupled axial, flexural and bond slip responses of reinforced concrete columns
with lap splices. The analytical model shown in Figure 3.1 represents the modified
MVLEM element proposed here, where the fibers (vertical elements) of the MVLEM
model element represent the behavior of concrete alone. Uniaxial elements representing
the reinforcing steel bars are connected to the rigid beams of the MVLEM element through
uniaxial bond slip springs. The model element with 18 degrees of freedom is used over lap
splice region of the column. The model element with 12 degrees of freedom, which is used
outside the lap splice region, is depicted in Figure 3.2. The reinforced concrete column
with the lap splice is modeled as a stack of m model elements, which are placed upon one

another, as shown in Figure 3.3.
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Figure 3.1. Model Element with 18 Degrees of Freedom Used in the Lap Splice Region.
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Figure 3.2. Model Element with 12 Degrees of Freedom Used Outside the Lap Splice
Region.

The coupled axial, flexural and bond slip responses of the model are simulated by a
series of uniaxial elements (or macro-fibers) for concrete, connected to rigid beams at the
top and bottom levels of the model elements, which enforce plane sections assumption in
the analysis. Steel macro-fibers are connected to the top rigid beams, through uniaxial
bond slip springs, the behavior of which are represented via bond stress vs. slip
constitutive relations. At the base of the column model, three additional bond slip springs
are incorporated to connect the steel macro-fibers to concrete fibers at the bottom rigid
beam level, as shown in Figure 3.3. The stiffness properties and force-deformation
relationships of the uniaxial elements (concrete macro-fibers) of the element are defined
according to cyclic constitutive model implemented for concrete as well as the tributary
area assigned to each uniaxial element (Figure 3.4). A cyclic constitutive relationship for
reinforcing steel is adopted for the uniaxial steel elements. Cyclic bond characteristics
between concrete and steel are represented through constitutive bond stress vs. slip
relationships, which are incorporated in the bond slip springs connecting the uniaxial steel
elements to the rigid beams. The number of the uniaxial elements (n) can be increased to

obtain a more refined description of the column cross-section.
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Figure 3.4. Tributary Concrete Area Assignment.

The relative rotation between top and bottom faces of the model element occurs

around the point located on the central axis of the element at height ck (Figure 3.5), as

proposed in the original MVLEM element formulation. Rotations and resulting transverse

displacements are calculated based on the average curvature in concrete, derived from
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section and material properties, corresponding to the bending moment at height ¢4 of each

element (Figure 3.5).
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Figure 3.5. Rotations and Displacements of the MVLEM Element (Orakcal, 2004).

A suitable value of the parameter ¢ is based on the expected curvature distribution
along the element height 4. A value of ¢ = 0.4 recommended by Vulcano et al. (1988)
based on comparison of the model response with experimental results, is also used in this

study.

A horizontal spring located at the the relative height ch, with a nonlinear hysteretic
force-deformation behavior following an origin-oriented hysteresis rule simulates the shear
response of the column element (Figure 3.6). The trilinear shear force vs. shear
displacement relation developed by Sezen (2002) defines the backbone of the hysteretic
constitutive relationship for the shear spring. It must be mentioned that since the columns
investigated in this study are not expected to be shear critical, a detailed constitutive
modeling approach was not implemented to define the shear behavior of the horizontal
(shear) spring. Improved predictions of column shear response require consideration of the
interaction between shear and flexure responses, especially where highly inelastic flexural
deformations take place. However, since this study concentrates on modeling of reinforced
concrete columns, the behavior of which is dominated by either bond slip, flexure, or
simultaneously slip and flexure responses, a simple origin-oriented shear force vs.
deformation behavior with a trilinear backbone curve was adopted. For the proposed model

formulation, bond slip and flexural mode of deformations are coupled, whereas flexural
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and shear modes of deformation are uncoupled (i.e., flexural deformations do not affect

shear strength or deformation) (Figure 3.7).
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Figure 3.6. Origin-Oriented —Hysteresis Model for Horizontal Shear Spring.
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Figure 3.7. Uncoupling of Flexural and Shear Modes of Deformation of the Model

Element.

A single model element used in the lap splice region has 18 global degrees of
freedom (DOF); with three at the center of each rigid top and bottom beam (6 DOF total
for concrete), and two at each end of the six longitudinal steel elements (12 DOF total for
reinforcing steel), as shown in Figure 3.1. The average longitudinal strain value for each
uniaxial (concrete and steel) element is obtained from the element displacements
(translations and rotations) defined at the 18 global degrees of freedom. To relate the

average strains in the concrete macro-fibers to the 6 global degrees of freedom for
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concrete, the rigid beams enforce the plane-sections-remain-plane kinematic assumption.
Accordingly, if [5 ] is a vector that represents the displacement components at the 18 nodal

degrees of freedom of each model element (Figure. 3.1):
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Then, the resulting axial deformations of the uniaxial elements can be obtained as:

[u]=[a].[5] 3.2)

where [a] is a geometric transformation matrix and [u] denotes the axial deformation of

the uniaxial elements:
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(3.3)

In the formulation above, u;.... u, denote the axial deformations of the concrete
macro-fibers ( ‘n’ denotes the number of concrete macro-fibers), u;; and up, denote the
axial deformations of the uniaxial bond slip springs connected to the exterior starter bars,
ups and upy denote the axial deformations of the uniaxial bond slip springs connected to
exterior longitudinal bars, and ups and u,s denote the axial deformations of uniaxial bond
slip springs connected to the middle starter and longitudinal bars, respectively. Similarly,
Ugel, U2, Usi3, Usts, Ugss, Ugs denote the axial deformations of the steel elements representing
the exterior and middle starter and longitudinal bars. In a lap splice, a started bar is defined
as the reinforcing steel bar extending from the foundation, and the longitudinal bar is the

bar extending along the height of the column.

The geometric transformation matrix [a] converts the displacement components at

the nodal degrees of freedom to uniaxial element deformations as:
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where x; is the distance of the i-th concrete element to the cross-sectional geometric
centroid of the model element, d; is the distance of a longitudinal bar to the centroid of the

model element , d,is the distance of a starter bar to the centroid.

The average uniaxial strain in each concrete macro-fiber and steel element (g,) can

then be calculated by simply dividing their respective axial deformation by the element

height, 4:

g = (3.5)

The slip deformation in each bond slip spring is defined directly as the axial
deformation of the spring. The average strains in the concrete macro-fibers and steel
elements are therefore not necessarily bound by the plane-sections-remain-plane kinematic
assumption, and the assumption applies for the concrete macro-fibers only. Slip
deformations between concrete and the steel depend on the constitutive bond stress vs. slip

properties of the bond slip springs.
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The deformation in the horizontal shear spring (u H) of each model element can be

similarly related to the displacement components [5 ] at the 18 element degrees of freedom

as:

u, =[b] [5] (3.6)

where the geometric transformation vector [b] is defined as:

-

S OO O OO OO o o o o

(3.7)

The stiffness properties and force-deformation relationships of the uniaxial elements
are defined according to the uniaxial constitutive relationships adopted for concrete and
steel, as well as the tributary area assigned to each concrete macro-fiber and the cross-
sectional area of the longitudinal steel bars. For the bond slip springs, the stiffness and
force-deformation properties depend on the constitutive bond stress vs. slip relationships
implemented, as well as the surface area of the longitudinal bar over which bond stresses

act.

For a prescribed strain level (s,) at the i-th uniaxial element (macro-fiber) for

concrete, the axial stiffness of the i-th uniaxial concrete element (k) is defined as:
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(3.8)

where (E

c

)l. is the concrete tangent modulus (strain derivative of the adopted constitutive
stress-strain relationships for concrete) at the prescribed strain level (g,); (4, )l. is the

tributary concrete area assigned to the uniaxial element, and / is the model element height.

For a uniaxial steel element, the axial stiffness (k,)is defined similarly as:

b =LA (3.9)

where (E,) is the steel tangent modulus (strain derivative of the adopted constitutive
stress-strain relationships for reinforcing steel) at the prescribed strain level, and (4,) is the

cross-sectional area of the longitudinal steel bar represented by the uniaxial element.

For a bond slip spring, the axial stiffness (,

h

)is calculated as:

k, :(Ebond)h(Zﬂ'V) (3.10)

where (E,,,) is the bond stress tangent modulus (slip derivative of the adopted constitutive

bond stress vs. slip relationship) at a prescribed slip deformation, 7 is the radius of the

longitudinal steel bar connected to the bond slip spring, and h is the model element height.

The stiffness of the horizontal shear spring (k, ) and the force in the horizontal
spring ( H) for a prescribed shear deformation (u H) are derived from the origin-oriented

force-deformation relationship (with a trilinear backbone) implemented in the model for

the shear spring.
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Therefore, if ky is the stiffness of the horizontal shear spring, k; is the stiffness of the
i-th uniaxial concrete element (macro-fiber), x; is the distance of the i-th concrete element
to the cross-sectional geometric centroid of the model element, d; is the distance of a
longitudinal bar to the centroid of the model element , d; is the distance of a starter bar to
the centroid , n is the number of uniaxial concrete elements, ky; and kg, are the stiffnesses
of the uniaxial bond slip springs connected to the two exterior starter bars, ky; is the
stiffness of the bond slip spring connected to middle starter bar, ks and kys are the
stiffnesses of the bond slip springs connected to two exterior longitudinal bars, kyg is the
stiffness of the bond slip spring connected to middle longitudinal bar, ky; and kg, are the
stiffnesses of the uniaxial steel elements for the two exterior starter bars, kg3 is the stiffness
of the steel element for the middle starter bar, kg4 and kgs are the stiffnesses of the steel
elements for the two exterior longitudinal bars, kg is the stiffness of the steel element for
the middle longitudinal bar; the stiffness matrix of the first (bottom) model element
relative to the eighteen degrees of freedom is defined by Equation (3.11). Stiffness matrix
of the other model elements used over the lap splice region relative to eighteen degrees of
freedom is defined by Equation (3.12). The stiffness matrix of the model elements used
outside the lap splice region relative to the twelve degrees of freedom is defined by

Equation (3.13).
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k, =k, 0 0 0 0 0 0 0 0 0 0
k,+k, 0 0 0 0 0 0 0 0 0 0
k, —k, 0 0 0 0 0 0 0 0
[k]= k,+k, 0 0 0 0 0 0 0 0
 k, ~k, O 0 0 0 0 0
k,+k, 0 0 0 0 0 0
-k, —k, 0 0 0 0
k,+k, 0 0 0 0
k, -k, 0 0
Cky otk 00
» k.sl‘, _ks/(,
Symmetry k% +k,
kH(l—c)Z:A;
2k, c(1-c)=B;
el =) =5 (3.12)
Zki=D;
i=1
D> kx, =E;
i=1
> kX =F;
i=1

ky +k, +k, +k, +k, +k =K,
kyd,—k,d +k,d —k,d =K.d;
kyd? +k, d? +k, d} +k, d’ =K,d*;



Symmetry

k,(1-¢c)* = 4;
2k,c(1-c)=B;

Zn:kix,. =E;
i=1

Zn:kix,.z =F;
i=1

[k,c*+B+A 0

D

k,c’h-(B/2)h  k,c*-B-A 0
E 0 -D
kW +F  k,c’h +(B/2)h -E
k,c’+B+A 0
ky +k, +k, +D

«(B/2)h-Ah
-E
(B/2)h*> - F
(B/2)h+Ah
kyd, —k, d,+E
kyd! +k,d} + Ah* + F

0 0

0 0

0 0

0 0
—k, 0
k,d, 0
—k,, 0
kg, +k, 0

k.
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(3.13)
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The axial force in the i-th uniaxial concrete element ( £;) is defined as:

fi=(0.),(4.), (3.14)

where (o,).is the uniaxial stress for concrete obtained from the implemented constitutive
relationships at the prescribed strain (¢, ).

For a uniaxial steel element axial force (f,) is defined similarly as:

fu=(0,)(4) (3.15)

where (o,)is the uniaxial stress for steel obtained from the implemented constitutive

relationships at the prescribed strain level.

For a bond slip spring, the axial force ( £,)is calculated as:

1y =(0,)(27rh) (3.16)

where (o,) is the uniaxial bond stress from the adopted constitutive bond stress vs. slip

relationship at a prescribed slip deformation, 7 is the radius of the longitudinal steel bar

connected to the bond slip spring, and h is the model element height.

Furthermore, if fy is the force in the horizontal spring, fi is the force in the i-th
uniaxial concrete element, f,; and f,, are the forces in the uniaxial bond slip springs
connected to two exterior starter bars, fy; is the force in the bond slip spring connected to
middle starter bar, f,4 and fys are the forces in the bond slip springs connected to two
exterior longitudinal bars, fis is the force in the bond slip spring connected to middle
longitudinal bar, fi; and f, are the forces in the uniaxial steel elements for the two exterior
starter bars, f3 1s the force in the steel element for the middle starter bar, f4 and fys are the
forces in the steel elements for the two exterior longitudinal bars, fys is the force in the

steel element for the middle longitudinal bar, the resisting (internal) force vector for the
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first (bottom) model element relative to the eighteen element degrees of freedom is

obtained from model element force equilibrium as:

Ju
PEEVEVESA

fch = fix, - fod, + fid,
i=1
_fH
P R A A A A
i=1

—fu(=h+Y fx,+ fod, — f,.d, + f,d, - [, 4,
i=1

1.
[F] = fs11 _fb]

.
fstz - sz

1.,
S, = I,
~Ja, 1,
Ja, =T,
—fa. S (3.17)
fst5 - be
~Ja T,
Jso = I,

and the resisting force vector for the other model elements used over the lap splice region

relative to eighteen degrees of freedom is obtained as:
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/,
O

fuch—Y fx,
i=1
_fH
Zfl +J[b| +/[bz +f;73 +fb4 +f”5 +f;76
i=1

—fu(=h+Y fx,+ fod, — f,d + f,d, - [, 4,
i=1

_ f;tl
[F]= S =1
_ fg "
S, = I,
_ f;g
Sy =T,
~fo, T 1,
S, = T, (3.18)
~fo. + S,
Jog =T,
—fas * T,
Joo = I,

Finally, the resisting force vector for the model elements used outside the lap splice

region relative to the twelve degrees of freedom is obtained similarly as:
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i
>.f,

fuch—= fix,
i=1
_fH

St Sy St

[F]= B (3.19)
—fu(l=ch+) fx.+ f,d, - £, d,

_f;tl
fst, _fbl

_fsl2
fu =1

_f.;t3
A

The model formulation described in this Chapter is a robust and efficient approach to
relate the coupled flexural and bond slip responses of a reinforced concrete column directly
to uniaxial material behavior and uniaxial bond slip behavior, without incorporating any
additional empirical assumptions. The primary simplification the model involves applying
the plane-sections-remain-plane kinematic assumption to calculate the average longitudinal
strains in concrete only (for each uniaxial concrete element). Connecting uniaxial steel
elements to concrete elements via bond slip springs permits relative slip deformations
between concrete and reinforcing steel, and allows successful coupling flexural and slip
deformations of a column, at local response level and in a purely geometric manner. The
only geometric parameters that may influence the analytical model response are the
number of uniaxial elements used along the length of the column cross section (n), the
number of MVLEM elements stacked on top of each other along the height of the column
(m), and the parameter defining the location of the center of rotation along the height of
each MVLEM element (c). The number of the uniaxial elements (n) and the MVLEM
elements (m) can be increased to obtain a more refined description of the column geometry
and a more accurate representation of the local response, especially where large inelastic
deformations take place (e.g., in the lap splice region). Details of the constitutive
relationships implemented in the model formulation for the concrete and reinforcing steel

elements, as well as the bond slip springs, are presented in the next chapter.
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4. MATERIAL CONSTITUTIVE MODELS

As described in Chapter 3, the analytical model proposed in this study is formulated
such that the uniaxial elements (macro-fibers) of the original Multiple-Vertical-Line-
Element Model (MVLEM) represent the hysteretic axial-flexural behavior of concrete
only. Reinforcing bar elements, with uniaxial hysteretic stress—strain relationships of their
own, are connected to the concrete fibers through uniaxial bond slip springs, the behavior
of which are represented with experimentally-derived hysteretic bond stress vs. slip
constitutive relationships available in the literature. Characteristics of the constitutive
relationships implemented in the model for concrete, reinforcing steel, and the bond slip
springs directly influence the analytical model response. Therefore, details of the uniaxial
hysteretic constitutive relationships adopted in the analytical model for reinforcing steel
and concrete, as well as the bond stress vs. slip relationships implemented for deformed

bars, plain bars, and 180-degree hooks are described in the following sections.
4.1. Constitutive Model for Reinforcing Steel
The well-known nonlinear hysteretic constitutive model proposed by Menegotto and
Pinto (1973) and extended by Filippou et al. (1983) is implemented for reinforcing steel, as
shown in Figure 4.1. The constitutive model considers Bauschinger’s effect and the
influence of both kinematic and isotropic strain hardening on the hysteretic uniaxial stress

— strain behavior of reinforcing steel bars.

The formulation of the hysteretic stress-strain (0 - 8) relationship of Menegotto and

Pinto (1973) can be expressed as:

(4.1)

where
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£] 8 —E
S =—-—1 (4.2)
& — &,
and
o =2 (4.3)
o,—0,

Equation (4.1) represents a curved transition from an elastic asymptote with slope

E, to a yield asymptote, with slope E, =bE, (Figure 4.1). Parameters o, and ¢, are

stress and strain values at the strain reversal point. R is a cyclic parameter that influences
the curvature of the transition curve between the two asymptotes (and thus permits the
Bauschinger effect to be represented), Parameters o, and &, are the stress and strain
values at the point of intersection of the two asymptotes. Parameter b is the strain

hardening ratio. The strain and stress values (5,,,0'r) and (g,,0,) are updated after each

strain reversal, as shown in Figure 4.1.

600 |

(&0 | E,= bE,
(80%0¢%) Oy|__ '
400 — ! —
|
S 200 — i —
=] |
o) X
- 0 Sy *
A o ow. (1-b)e
) o =be+ R
& 200 (1+e7) " —
« E-E
E =
-400 — € -8 |
(8011001) G*_ G- Gr
(e%06,) " 0,-0,
600 | | | |
-0.01 -0.005 0 0.005 0.01 0.015 0.02
Strain, €

Figure 4.1. Constitutive Model for Steel (Menegotto and Pinto, 1973).
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The tangent modulus (E t) of the stress — strain relationship is given by the following

expression:
g =49 _[%=0, |do_ (4.4)
de \ g,—¢& )de
where
. . R
da* . b - £ _ 4.5)
de (1+ g*R) I+¢

Menegotto and Pinto expressed the cyclic curvature parameter, R | as:

_ o 4¢
R=R, p— (4.6)

where R, is the value assigned to the parameter R for initial (or monotonic) loading, and

a, and a, are experimentally determined parameters that represent the degradation of the

curvature within subsequent cycles. The absolute strain difference represented by the

parameter & (Figure 4.2) can be expressed as:

(¢, - &)

&

y

$= 4.7)

where parameter &, is the strain at the current intersection point of the two asymptotes,
and ¢, is the maximum or minimum strain, at the previous point of strain reversal.

Parameter ¢, is the strain at the monotonic yield point.
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Figure 4.2. Degradation of Cyclic Curvature.

To illustrate the effect of degradation in cyclic curvature, for two different sets of

values for parameters R,, a, and a, (which were experimentally calibrated by prior

researchers based on cyclic test results on reinforcing bars), a comparison of cyclic stress —

strain histories generated by the constitutive model (R,, a,, a, = 20, 18.5, 0.15 by
Menegotto and Pinto, 1973; R,, a,, a, = 20, 18.5, 0.0015 by Elmorsi et al., 1998) is

shown in Figure 4.3.
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Figure 4.3. Sensitivity of the Stress-Strain Relationship to Cyclic Curvature Parameters.

The original Menegotto and Pinto (1973) model, although simple in formulation, has
been shown to accurately represent test results for reinforcing steel bars under typical
strain histories. The main limitation of the model is its failure to simulate isotropic strain
hardening. Isotropic hardening effects can be influential on the cyclic behavior of
reinforcing steel bars in reinforced concrete members, especially during crack closure.
Based on experimental observations, Filippou et al. (1983) proposed a modification to the
original model by Menegotto and Pinto (1973), by introducing a stress shift to the
compressive yield asymptote to account for isotropic strain hardening in order to improve
the prediction of the stress — strain behavior during crack closure, The shift is arranged by

shifting the compressive yield asymptote by a stress magnitude, o ,, in a parallel manner,

st

as shown in Figure 4.4.



50

Stress, o (MPa)

0 0.01 0.02 0.03 0.04 0.05
Strain, €

Figure 4.4. Stress Shift due to Isotropic Strain Hardening.

The imposed stress shift on the compressive yield asymptotes (O"ﬂ) proposed by

Filippou et al. (1983) is expressed as:
Gu g, [_5 - a4j (4.8)

where ¢, 1s the absolute maximum strain, g,, o, are, respectively, the strain and stress

X

values at the monotonic yield point, and a, and a, are experimentally determined

parameters. Based on test results, Filippou et al. (1983) suggested values of 0.01 and 7 for

parameters a, and a,, respectively.
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4.2. Constitutive Model for Concrete

The hysteretic constitutive model proposed by Chang and Mander (1994) is
implemented in the present model to represent the cyclic stress — strain behavior of the
concrete macro-fibers. The Chang and Mander (1994) is an advanced, rule-based,
generalized, and non-dimensional constitutive model, which can simulate the hysteretic
stress — strain behavior of both confined and unconfined, ordinary and high-strength
concrete subjected to cyclic compression and tension. Gradual transition in the cyclic
stress-strain behavior upon crack opening and closure, which had not been adequately
addressed in previous models, are considered in detail in this model. As well, the cyclic
behavior of concrete in tension is modeled similar to that in compression, based on results

of a detailed test program conducted by Yankelevsky and Reinhardt (1987).
4.2.1. Compression Envelope Curve

Chang and Mander (1994) defined the compression envelope curve of the model by

the initial slope E_, the strain and stress values at the peak compressive stress point
(5' fc'), a parameter » from Tsai’s (1988) equation defining the shape of the envelope

co

curve, and a parameter x_ > 1 to define the spalling strain (Figure 4.5).

The compression and tension envelope curves can be written in non-dimensional

form by the use of the following equations:

nx
y(x) = D) (4.9)
z(x) = M (4.10)

where,

D(x)=1+(n——jx+—’ (4.11)
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Figure 4.5. Compression and Tension Envelope Curves of the Model by Chang and

Mander (1994).

where r not equal to one

D(x)=1+(n—1+Inx)x (4.12)
where r equals to one and » and x are defined for the compression envelope as:
¥ =l (4.13)
gC
n =B (4.14)
A
The non-dimensional spalling strain can be calculated by:
Y ( ) (4.15)
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In the equations above, ¢, is the concrete strain, ¢, is the concrete strain at peak
unconfined (or confined) stress, f. is the unconfined (or confined) concrete strength, E.

is the concrete initial Young’s modulus, x~ is the non-dimensional strain on the

compression envelope, x_ is the non-dimensional critical strain on the compression
envelope curve (used to define a tangent line up to the spalling strain), x, is the non-

dimensional spalling strain, y(x) is the non-dimensional stress function, z(x) is the non-

dimensional tangent modulus function, as shown in Figure 4.5.

The stress f, and the tangent modulus E, at any given strain on the compression

envelope curve can be expressed as below:
L= (x) (4.16)

E =E (x) (4.17)

where f (x’) and E, (x’) are defined as:

If x* <x, (Tsai’s equation)
fo=1(x) (4.18)
E =Ez(x) (4.19)

If x; <x” <x,  (Straight line)
fo= ()2 (e ) (x -x,) | (4.20)

t c cr

E =Ez(x,) 4.21)
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If x>x,, (Spalled)

fT=E =0 (4.22)

The minus superscript in the equations above refers to the stress-strain behavior in

compression. Once the concrete is considered to be spalled, the stresses are zero for larger

compressive strains. A large value of x_ should be defined for the case of confined

concrete, where the spalling strain value will be larger. The material parameters associated

with the compression envelope curve of the model are the concrete compressive strength

f., the concrete strain at peak stress &, the concrete initial Young’s modulus (modulus of
elasticity) E,_, the Tsai’s parameter » defining the shape of the compression envelope, and
the non-dimensional critical strain x_ where the envelope curve starts following a straight
line. Parameters E,, &, and r associated with the unconfined compression envelope can

be empirically related to the unconfined concrete strength . (MPa) as:

Initial modulus of elasticity:

E, =8200( /! )% Mpa (4.23)
Strain at peak stress:
£ = (1[2;%)31/4 (4.24)
Shape parameter:
r=£—1.9 (4.25)

For confined concrete, the compressive envelope model by Chang and Mander

(1994) complies with the confinement model developed by Mander et al. (1988). This
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model is applicable to reinforced concrete members with either circular or rectangular

cross-sections, and any general type and configuration of transverse reinforcement (Figure

4.6). The effectively confined concrete area for rectangular sections is given by the

expression:

n (W’)2 s '
A=\bd - ~—~—||1-05— || 1-0.5—
e L c*e ,2:1: 6 bc dc

The confined concrete core area is given by:
A.=bd —A

cc cc st

The lateral pressure for each direction is calculated by:

Afl‘i = kepr:vh

fll),) = kepyjryh

where,

where A4

total area of transverse reinforcement parallel to the x axis

<

P, =

[}
KS)

where A4, = total area of transverse reinforcement parallel to the y axis

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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The equation proposed by Chang and Mander (1994) to represent the analytical

confinement coefficient K is expressed as:

K= _ 1+A)?(0.1+ 0.9 ) (4.32)

f! 1+Bx

where,
i/ (4.33)
2f!
_L[i ! !
r=-="-,where, f, 2 I (4.34)
12

A=6.8886—(0.6096+17.275r)e """ (4.35)
B=— 4.5 -5 (4.36)

2(0.9849 —0.6306e‘3‘8939’)—0.1

in which the analytical confinement coefficient K is the ratio of the confined concrete

strength f, to the unconfined concrete strength f.

Equation (4.32) can be expressed in the following form:

Jee=FH RS (4.37)
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iw(—l

Figure 4.6. Confinement Mechanism for Circular and Rectangular Cross Sections

(Chang and Mander, 1994).

By taking f, as the average of f,, and f,,, this can be rewritten as:

K:&:1+k7c (4.38)
/! 1
where,
k = A(0.1+ 09_) (4.39)
1+ Bx

The strain at peak stress for confined concrete (géc) as adopted by Chang and

Mander takes the form:

el =€ (1+kx) (4.40)

with,
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k, = 5k, (4.41)

where ¢! is the strain at peak unconfined stress.

4.2.2. Tension Envelope Curve

As stated previously, the shape of the tension envelope curve in the model by Chang
and Mander is the same as that of the compression envelope curve (Figure 4.5). However,
upon each cycle, the tension envelope curve is shifted to a new origin &, as discussed in
the next section. The non-dimensional parameters for the tension envelope curve are

expressed as:

=% (4.42)
gt
nt = EE (4.43)
/.
The non-dimensional cracking strain is given by:
x+
X, =X, —M (4.44)

where ¢, is the concrete strain, &, is the concrete strain at peak tension stress, f, is the
concrete tensile strength, E_ is the concrete initial Young’s modulus, x* is the non-
dimensional strain on the tension envelope curve, x_, is the cracking strain and x,. is the

critical strain on the tension envelope curve. The tangent modulus E, and stress f, are

defined as:

fo=1(x) (4.45)
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E =E (x") (4.46)
where f* (x*) and E; (x*) are defined as:

+ +
If x* <x,,

L= ry(x") (4.47)
Ef =Ez(x") (4.48)
If x) <x*<x,
L= A ()2 () (0 = x5 ] (4.49)
E =Ez(x}) (4.50)
If x> x,, (Cracked)
fr=E =0 (4.51)

in which the functions y and z are defined by Equations (4.9) and (4.10). The plus

superscript refers to the stress — strain behavior in tension. When concrete is fully cracked,
it is considered to no longer resist any tensile stress during crack opening. However, upon
reversal from a tensile strain, gradual crack closure is considered to take place.
Contribution of concrete between the cracks in a reinforced concrete member (the tension
stiffening phenomenon) can be considered through an average tensile stress — strain

relationship, for which the concrete can be assumed to not fully crack, allowing a large

value of x, to be used.
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4.2.3. Hysteretic Properties of the Model

The hysteretic parameters of the Chang and Mander (1994) model for cyclic
compression (Figure 4.7) were calibrated based on statistical analysis of extensive test

data, and are defined as empirical parameters expressed in the form:

—f“" +0.57
E¢
£ (4.52)

Sl 40,57

&

c

E;, =0.1E, exp[—2 8—] (4.53)
_ _ e,
A =0.09f [|Em (4.54)
P P — (4.55)
1.15+2.75 5

c
where ¢, is the strain at peak compressive stress, E, is the initial Young’s modulus, and

f.. and &, are the unloading stress and strain values.

The plastic (residual) strain upon unloading (¢, ), the new stress ( f,,, ) and tangent

ew

modulus (£, ) values upon return to unloading strain from the envelope curve (¢, ), and

the strain (¢,,), stress ( f,,) and tangent modulus (£ ) at the point of return to the

envelope curve can be geometrically related to the empirical parameters (Figure 4.7) as:
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Figure 4.7. Hysteretic Parameters of the Model by Chang and Mander (1994).

S
gpl = gun _a (456)
Jrow =S =D (4.57)
E,.. = f— (4.58)
gun _gpl
e, =¢, +As (4.59)
- | &
Je=1 (—J (4.60)
8(’
E=E(8—J (4.61)
gc

For cyclic behavior in tension, Chang and Mander (1994) proposed the following empirical

parameters:
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L{”” +0.67
Bl =E,| 25 (4.62)
En =% 1 0.67
gt
. E,
= (4.63)
gun _SO +1
gt
Af*=0.15f" (4.64)
As' =022(s), - &) (4.65)

where ¢, is the strain at peak tensile stress, £, is the initial Young’s modulus and ¢, is

the shifted origin of the tensile envelope curve. The geometrically — derived parameters for

cyclic tension therefore defined as:

s —,_f;— (4.66)

Soow =T =" (4.67)

E' = # (4.68)
En —E€p1

e =€, +Ae” (4.69)

re

s

] (4.70)
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£ —&,

re

E:E(

A reversal from the compression envelope curve (Figure 4.8), involves calculating

J 4.71)

¢

the shifted origin of the tension envelope curve (go)and evaluating the unloading strain

from the tension envelope curve. The procedure that describes reversal from the

compression envelope (Figure 4.8) is as follows:

(1) Calculate the compression strain ductility as:

= (G (4.72)

x = [Gm " (4.73)
gl

(iii) If x < x,, then:
X =X, (4.74)
£, =0 (4.75)

Eun = X, 6,
for=15(x0) (4.76)
(iv) Calculate:

Agy =2 (4.77)

EX + E,

sec
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(iv) Finally,

gy =&, +Ag —x,¢, (4.78)

+

& =X6+E, (4.79)

Therefore, upon each unloading from the compression envelope, the origin of the
tension envelope is shifted based on the unloading strain from the compression envelope.
The unloading strain from the tension envelope is re-calculated so that it corresponds to a
tension strain ductility equal to the compression strain ductility experienced just before
unloading from the compression envelope, or a previously experienced actual tension

strain ductility, whichever is greater.

Compression

/ (gunaf:n)

Stress, f.

O €:,0)/ (£0,0)

/
/

/
/
A:'

er fFo s (g, fr / :
(Ere rf) +\‘(\ uns T new) /z Tension
(Ein{fun) S~ . Not to scale

Sa-

Strain, €,

Figure 4.8. Unloading from the Compression Envelope Curve.

To simulate continuous hysteretic behavior, the constitutive model uses smooth
“connecting” curves for unloading and reloading between the compression and tension
envelope curves, and smooth “transition” curves for partial unloading and reloading
between the connecting curves (Figure 4.9). Both connecting and transition curves have

slope continuity with uniform sign of curvature in between the starting and final points.
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Figure 4.9. Continuous Hysteresis in Compression and Tension.

For the transition curves (Figure 4.10), Chang and Mander (1994) proposed a

relationsip between starting and target points A(g,, f,) and B(g,, f, ), based on unloading

(gw) and plastic (g p,) strain values, which is expressed in the form:

S "En _ (4.80)

+ — _
Eun — gpl gun - gpl

un
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Figure 4.10. Transition Curves Before Cracking.

After full cracking, the tension envelope is reduced to zero, and the connecting curve

upon unloading (i.e., strain reversal) represents gradual gap closure (Figure 4.11).

Compression

o
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o (Gap Closure)
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(€5.,0) Tension
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Figure 4.11. Transition Curves After Cracking.
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The generalized equation used in the constitutive model to represent the connecting

and transition curves takes the form:

=1 +(gc—g,)[E, +A|gc—$,|R}

t

os,
in which,
— Ly = Ege
ESEC - EI
A= ESEC _Eé
|‘9F ‘91|
and,
Egpe = Je=),
Ep — &

E :%:E1+A(R+l)|gc—

R
&

|

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

where f. is the concrete stress, &, is the concrete strain, E, is the concrete tangent

modulus, f, is the stress at the initial point, f. is the stress at the final (target) point, &,

1s the strain at the initial point, ¢, is the stress at the final point, £, is the tangent modulus

at the initial point, £ is the tangent modulus at the final point, E,. is the secant modulus

between the initial and final points, and R and A are equation parameters. The equations

represent a stress-strain curve with a single sign of curvature and slope continuity between

the initial and target points.
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4.3. Modeling of Tension Stiffening

The contribution of cracked concrete to the tensile resistance of reinforced concrete
members is known as the effect of tension stiffening. The concrete between the cracks,
which is still bonded to the reinforcing steel bars, contributes to the tensile resistance of the
member. In this study, the tension stiffening effect is directly incorporated into the
constitutive stress-strain relationships implemented for concrete and steel, as described in

the following paragraphs.

Based on extensive tests on reinforced concrete panel specimens subjected to normal
stresses, Belarbi and Hsu (1994) developed two constitutive models: one for the average
tensile stress-strain relationship of concrete and one for the average tensile stress-strain
relationship of steel reinforcing bars stiffened by concrete. The average stress-strain
relationship proposed by Belarbi and Hsu for concrete in tension takes the form (Figure

4.12):

If . <&, then
o .=F¢, (4.87)

If g.>¢&, then

0.4
.= f, (8—] (4.88)
gC
where:

E =3875,/f/(MPa) (4.89)
f.. =031 f!(MPa) (4.90)
&, =0.00008 (4.91)

In the equation above, ¢, is the average concrete tensile strain, o, is the average concrete

tensile stress, £, is the initial Young’s modulus of the average stress-strain relationship,
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/., 1s concrete the tensile cracking stress, and &, is the concrete strain at cracking. The

expressions for f, , ¢,, E., and the power constant 0.4 in Equation (4.91) are obtained

cr?

from the average and best fit of experimental results of reinforced concrete panel

specimens.
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Figure 4.12. Average Stress-Strain Relationship by Belarbi and Hsu (1994) for

Concrete in Tension.

Belarbi and Hsu (1994) identified the difference between the average stress—strain
relationship of reinforcing steel bars surrounded by concrete and the stress—strain
relationship of bare steel bars (Figure 4.13). The most important difference was found to

be the reduction of the yield stress, o, as yielding of a reinforced concrete element occurs

when the steel stress at the cracked section reaches the yield strength of the bare bar. At the
same time, the average steel stress smeared along the length of the element reaches a level
lower than that of the yield stress of the bare bar. Based on experimental data from the RC
panels, the reduction of the yield stress of bars embedded in concrete were found to be
empirically dependent on the cross-sectional area ratio of the longitudinal steel in the panel

(p), and the ratio of concrete cracking stress (f,.) to the steel yield stress (a},). The

strain-hardening slope (plastic modulus) of the steel bars embedded in concrete was also
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observed to differ from the plastic modulus of bare bars with the variation also dependent

on the above parameters.
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Figure 4.13. Effect of Tension Stiffening on Reinforcing Bars.

Based on evaluation and characterization of experimental data, Belarbi and Hsu
(1994) proposed the simple bilinear constitutive model shown in Figure 4.14. for

reinforcing steel bars embedded in concrete
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Figure 4.14. Average Stress-Strain Relationship by Belarbi and Hsu (1994) for

Reinforcing Bars Embedded in Concrete.

The effective yield stress at the intersection of the two lines (0';) and the plastic

slope (E;) are determined using the following expressions:
0, =(0.93-2B)0, (4.92)
Ep =(0.02+0.25B)E, (4.93)

where the parameter B is defined as:
1.5
B- l(&] (4.94)

In the equations above, o, and E_ are the yield stress and modulus of elasticity of

the bare steel bars, (p) is the cross-sectional area ratio of the longitudinal steel bars in the
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reinforced concrete section, and (£, ) is the concrete cracking stress, obtained according to

the relationship in Equation (4.90). Equation (4.93) was derived assuming that the plastic

modulus of “bare” steel bars (E p) is approximately equal to 2.5% of the modulus of

elasticity (E , =0.025E ) For a more general case, Equation (4.93) can be expanded as:
E,=(0.80+0.25B)E, (4.95)
where b is the strain hardening ratio (E L/ ES) defined for the bare steel bars.
Accordingly, the bilinear model of Belarbi and Hsu (1994) for modeling the average

(smeared) stress-strain behavior of steel reinforcing bars embedded in concrete, takes the

form (Figure 4.23):

If ¢ <¢,,
o, =Ez¢, (4.96)

If ¢, >¢,,
o, =(0.93-2B)c, +(0.85+0.25B)E, (¢, ~¢,) (4.97)

where o is the average (smeared) stress, ¢, is the average strain, and &, is the average

strain defined at the intersection of the two lines:

g ="n=3"" /0y (4.98)

and £, o,, and b are the modulus of elasticity, yield stress, and strain-hardening ratio

measured experimentally for bare steel bars.
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4.4. Constitutive Model for Shear

The empirical model developed by Sezen (2002) to simulate the shear force —
deformation behavior of lightly reinforced concrete columns under monotonic lateral
loading is implemented in the analytical model to represent the behavior of the horizontal
shear spring. The model uses four points (Figure 4.15) to represent a piecewise linear
lateral load — shear deformation response of a column element. The four points that define
the shear deformation — lateral load (shear force) relationship correspond to cracking (o,
Ver), yielding (6, V), and peak strength (6,, V,) pointes, as well as the shear deformation

at complete loss of shear capacity (Jenq, 0).

The shear deformation and lateral load at onset of cracking is calculated using

equations (4.99) and (4.100).

v 751 (4.99)

— 6'I/cr'hcal _3'Vcr'hcol
T 5.G-4, E 4,

(4.100)

where G is shear modulus, E. is the modulus of elasticity of concrete, A, is gross cross-
sectional area, c is the neutral axis depth and I, is the uncracked cross-sectional moment of

inertia.

Shear deformation at first yielding of longitudinal reinforcement is determined using:

3 V -h
5 = —r e (4.101)
* 02+04-P ) E, -4,

where P, is the ratio of applied axial load (P) to the axial load capacity of the column (Py)
[ B, =085f4,(1-p)+ f,4, where p; = longitudinal reinforcement ratio (= Ag/Ay), and Ay =

total area of longitudinal reinforcement, f’. is the compressive strength of concrete] and ¥,
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v

is the shear force at yielding [V, =

for double-curvature specimens (My = moment

capacity at yield) where L is the length of column]

The shear deformation corresponding to the peak strength is calculated using:

g =ttt | 1, 4 (4.102)
d-b |p,E E

s c

where p, is the transverse reinforcement ratio, V; is the shear force carried by transverse

As f: vwd
N

reinforcement [V, =« where a is the slope of the line fitted to test data (for most

shear strength models a =1), fy,, is the yield strength of transverse reinforcement, A, is the
transverse reinforcement area within a spacing s and d is the distance from the extreme
compression fiber to centroid of tension reinforcement], b is the section width and h¢ is

the height of the column.

The Peak lateral strength is calculated using:

Af,.d
V,=k(V.+V,) \/_ 0.804, +k o (4.103)

AN :

where ‘a’ is shear span, V. is the shear carried by concrete and V; is shear carried by

transverse reinforcement.

The peak lateral strength V,,, must be smaller than the lateral load, V,, required to reach the

maximum flexural capacity, M,, at column end (¥, =2Mm,/L , for double-curvature

specimens)

The shear displacement at the end of monotonic loading, dcng, is calculated from
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5 = 5 §/Zex,n - §slip,r1 2 5;1 (4104)

end — Ywotal,end

where, dotal,end = total displacement of column at loss of axial capacity. If the final failure is
dominated by shear, then the column does not develop its maximum flexural and slip
deformation potential. Therefore, flexure and bar slip displacements at axial failure are the
same as flexure and bar slip displacements corresponding to peak later strength, dgexn and

dslip,n, respectively. O, is calculated from Equation (4.102).

(B Vn< V)
(Sy’vy) n n

(S¢rVer)
cr-vcr (Send’o)

Shear Force
@)

Shear Displacement
Figure 4.15. Origin-Oriented —Hysteresis Model for Horizontal Shear Spring.

For a given axial load ratio, P/P and transverse reinforcement parameter As,fyh/(sP), the

drift ratio at axial load failure could be obtained from Figure 4.16 (0, ..y = drifiratio™ L)



76

12

0.00 002 0.04 0.06
Drift Ratio

Figure 4.16. Drift Capacity at the Loss of Axial Load Capacity (Sezen, 2002).

The trilinear shear force vs. shear displacement relation developed by Sezen (2002)
defines the backbone of the hysteretic constitutive relationship for the shear spring. An
origin-oriented hysteresis rule simulates the shear response of the column element (Figure
4.15). It must be mentioned that since the columns investigated in this study are not
expected to be shear critical, a detailed constitutive modeling approach was not
implemented to define the shear behavior of the horizontal (shear) spring. Improved
predictions of column shear response require consideration of the interaction between
shear and flexure responses, especially where highly inelastic flexural deformations take
place. However, since this study concentrates on modeling of reinforced concrete columns,
the behavior of which is dominated by either bond slip, flexure, or simultaneously slip and
flexure responses, a simple origin-oriented shear force vs. deformation behavior with a

trilinear backbone curve was adopted.

4.5. Constitutive Models for Bond Stress vs. Slip Deformation

Uniaxial hysteretic bond stress vs. slip constitutive models are used to represent the

cyclic force — deformation behavior of the bond slip springs of the analytical model. Past

experimental studies on individual reinforcing bars embedded in concrete have identified
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two main types of bond failure mechanisms, depending on the amount of concrete
surrounding the reinforcing bar, as well as the level of confinement. If the surrounding
concrete is of significant thickness and the concrete is well confined by transverse
reinforcement, bond failure typically occurs by pullout. On the other hand, if the concrete
cover is small and the concrete is either unconfined or poorly confined, bond failure occurs
by splitting of the surrounding concrete. Several bond stress vs. slip constitutive models to
simulate both pullout (for deformed as well as smooth reinforcing bars) and splitting (only
for deformed reinforcing bars) modes of bond failures are available in the literature.
Among them, for deformed reinforcing bars, the bond stress vs. slip relationship developed
by Eligehausen et al. (1983) for pullout mode of bond failure; and the bond stress vs. slip
relationships developed by Harajli et al. (1994, 2002, 2004, 2009) for splitting mode of
bond failure were selected in this study. For pullout failure of plain reinforcing bars, the
hysteretic bond stress vs. slip constitutive model recently developed by Verderame et al.
(2009) was adopted, and a constitutive model for 180-degree hooks developed by by
Fabbrocino et al. (2002, 2005) was implemented. Details of the constitutive bond slip

relationships used are described in the following subsections.

4.5.1. Constitutive Bond Stress vs. Slip Model by Eligehausen et al. (1983)

Eligehausen et al. (1983) proposed the well-known and robust constitutive model for
the local bond stress vs. slip relationship for single reinforcing bars, based on results of
tests on deformed bars embedded in beam-column joints. The model was derived using
experimental results from tests conducted on 125 specimens with short anchorage lengths
subjected to either monotonic tensile loading or reversed cyclic loading. Effects of loading
history, confining reinforcement, bar diameter, concrete strength, clear cover, bar spacing,
transverse pressure, and the rate of pullout on the local bond stress vs. slip relationship
were investigated. The model proposed compares reasonably well with experimental
results, and is widely used in modeling applications. Although the model is originally
developed for single bars embedded in concrete, it has also been shown to be suitable to be
used for modeling the bond stress vs. slip behavior of lap—spliced reinforcing bars (e.g.,

Reyes, 1999).
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4.5.1.1. Monotonic Envelope. The monotonic (envelope) bond stress vs. slip relationship

of the constitutive model includes four branches (Figure 4.17): (1) a nonlinear ascending
branch (Equation (4.105)), (2) a plateau after the peak stress is reached (Equation (4.106)),
(3) a linearly descending branch (Equation (4.107)), and (4) a second plateau after the
residual stress is reached (Equation (4.108)).

For s<s;
o(s)=1,-(s/s,)" (4.105)
Fors;<s<s,
T=1 (4.106)
Fors, <s<s3
r(s)=rl—(rl_13)-(s—sz) (4.107)
(Ss _Sz)
Fors>s;
T=r1, (4.108)
‘Cl -
Q\
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Figure 4.17. Proposed Analytical Model for Monotonic Local Bond Stress-slip
Relationship for Confined Concrete (Eligehausen ef al. ,1983).
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Default parameters of the monotonic envelope for confined and unconfined concrete,
for a reference concrete compressive strength value of 30 MPa, are presented in Table 4.1.
Modifications to the default envelope parameters were suggested by Eligehausen et al.

(1983) to account for variability in the following conditions:

Bar Diameter: The default values were calibrated for #8 (d, = 25.4 mm) reinforcing
bars. Peak bond stress (z;) values are increased or decreased by 10% for #6 (d, = 19.05

mm) or #10 (dy, = 32.26 mm) longitudinal reinforcement, respectively.

Deformation Pattern: Envelope parameters need to be modified if the deformation
pattern of the reinforcement bars used in the construction of the columns specimens are
different than the test specimens used in the calibration of the Eligehausen et al. (1983)
model. Clear spacing between lugs affects the bond stress vs. slip behavior substantially.
As the clear spacing between lugs increases, the slip also increases. Since the slip
parameters (s;, 5, and s3) of the monotonic bond stress vs. slip model were calibrated using
experimental results with clear lug distance of 10.5 mm, Eligehausen et al. (1983)
proposed to scale the slip parameters (s;, s; and s3) by ¢; (mm)/10.5 mm, but not more

than +/- 30%.

Concrete Strength: Default model parameters were derived for test results from
specimens with compressive concrete strength values of 30 MPa. For specimens with
different concrete compressive strengths, it is suggested to modify the parameters 7; and 7 3

with a factor of (f; ’/30)ﬁ , where f’. is in MPa and = 1/2 to 2/3.

Clear Spacing: Peak (7 ;) and residual (z 3) bond stresses values are reduced if the

clear spacing between longitudinal reinforcing bars is smaller than 4d,,.

External Pressure: If external transverse load (pressure) is applied along the
anchorage or lap-splice length, then the maximum and residual bond stresses should be
increased. In typical cases, especially for lap splices in columns, no external transverse
loads are applied along the splice region; therefore, no modification to the default value is

necessary.
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Table 4.1. Eligehausen et al. (1983) Local Bond Stress — Slip Material Model Parameters

for Confined and Unconfined Concrete.

Confined Concrete Unconfined Concrete
Tension Side | Compression Side | Tension Side | Compression Side
ul 13.5 MPa 13.5 MPa 5 MPa 20 MPa
u3 5 MPa 5 MPa ) 7.5 MPa
sl 1 mm 1 mm 0.3 mm 1 mm
52 3 mm 3 mm 0.3 mm 52 =3 mm
53 10.3 mm 10.5 mm 1 mm )
10.5 mm
o 04 0.4 0.4 04

Loading Rate: The envelope relationship is based on pull-out tests where the loading
rate (slip per minute) was controlled. The test results indicated that the slip rate influenced
the maximum (7 ;) and residual (7 ;) bond stresses values achieved during the tests, where
the maximum and residual bond stresses increased as the slip rate increased. Eligehausen
et al. (1983) proposed a modification to account for slip rate, where the default bond
stresses are modified by -/+15% for slip rates between 0.01 mm/min and 100 mm/min

using a logarithmically linear relation.

4.5.1.2. Hysteretic Rules. The hysteretic unloading/reloading behavior of the constitutive

model by Eligehausen et al. (1983) consists of several branches as shown in Figure 4.18, in
which the dashed line represents test results and the solid line indicates the constitutive
model response. Figure 4.19 illustrates the characteristics of the complete hysteretic bond

stress vs. slip constitutive relation, which is described in the following paragraphs.



81

@ Manctonic Envelope
(® Unlooding Branch
(® Friction Branch
@ Reloading Branch
(5 Reduced Envelope

@ I

e s
—

BN ﬁ‘""@—- < —— EXPERIMENTAL

Cgﬁ_‘ ———= ANALYICAL

Figure 4.18. Hysteretic Branches of Bond Stress vs. Slip Constitutive Model for Confined
Concrete (Eligehausen et al. ,1983).

Upon each successive unloading and reloading, reduced bond stress vs. Slip
envelopes are derived from the monotonic envelopes, by reducing the characteristic bond
stress t1 and 13 through reduction factors, which are formulated as a function of a
parameter, called the “damage factor” (d). It can be observed in Figure 4.19 that maximum
bond resistance (t1) deteriorates faster than the ultimate frictional resistance (z3). However,
there is a strong correlation between the deterioration rate of the maximum and frictional
bond resistance values. This can be observed in Figure 4.21, which illustrates the reduction
of the frictional resistance 13 as a function of the damage parameter d, deduced from the
reduction in the maximum bond resistance t;. Figure 4.20 illustrates the correlation
between the measured damage factor,d as a function of the calculated dimensionless

dissipated energy factor, E/E.
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Figure 4.19. Proposed Analytical Model for Local Cyclic Bond Stress-slip Relationship
for Confined Concrete (Eligehausen ef al. ,1983).

The normalized energy, Eq, corresponds to the absorbed energy under monotonically

increasing slip deformation up to a value of s3. Therefore, from Figure 4.20,
n(N)=r,(N=1){1-d) (4.109)

— 1.1
where N is the number of cycles and d =1—e¢ """

d
ZB(N)—i}(l-mj (4.110)

7, , 7, as shown in Figure 4.19, can be solved from Equation (4.110)
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Figure 4.20. Damage Factor, d, for the Reduced Envelope as a Function of the
Dimensionless Energy Dissipation Ratio E/E, (Eligehausen ef al. ,1983).
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that of the Monotonic Envelope as a Function of the Damage Factor, d (Eligehausen et al.

,1983).
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No reduction of the envelope (monotonic or reduced) is assumed for partial
unloading or reloading (e.g. path EFE, Figure 4.19). In the tests, cycles were always
carried out between increasing peak values of slip deformation. However, during
generalized excitations, it is possible that a cycle is not completed to the envelope values
of smax and spip (e.g. path GHM in Figure 4.19). In this case, the damage parameter is
interpolated between the values valid for the last slip reversal and for the completed cycle

(point E and point P in this example) using following equation:

s, =S

d=d,+(d.-d,)

4.111)

S, =S
where,
d : damage factor of current inversion point (point H in example)
dr: damage factor of last inversion point (point E in example)
dc: damage factor for the completed cycle (point P in example)
sp:slip value of last inversion point (slip of point E in example)
sc: slip value of completed cycle (slip of point P in example)

s: slip value of current inversion point (slip of point H in example)

The frictional bond resistance (t¢ in Figure 4.19) is related to the value of the ultimate
bond resistance of the corresponding reduced envelope (73 in Figure 4.19). The relationship
between 1rand 13 as a function of the ratio sya.x/s3 deduced from the tests is shown in Figure
4.23. The following relationships were derived by Eligehausen et al. (1983) based on

results presented in Figure 4.23:

if (Smax/s3) < 0.50
rf.(N)=r3(N)(O.10+1.8sm“S) (4.112)
3

if (Smax/s3) > 0.50
7,(N)=1,(N) (4.113)

The expression above is used only for the calculation of the frictional resistance for

the first slip reversal (7, in Figure 4.19).
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Figure 4.22 illustrates the correlation between the measured reduction factor dr as a
function of the computed dimensionless dissipated energy factor E¢/Eqs, as well as the
proposed function for df. Er is the energy dissipated by friction alone and the normalizing
energy E.ris equal to the product of 13 and s;. Based on results presented in Figure 4.22 the

following expression was proposed by Eligehausen et al. (1983):

r,(N)=1,(1-d,) (4.114)
where
~1.2(E, /E, )0.67
d,=l-e =7 (4.115)
7, (N}
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Figure 4.22. Damage Factor, dy, for Frictional Bond Resistance during Cycles, as a

Function of the Dimensionless Energy Dissipation E¢/Eq¢ (Eligehausen et al. ,1983).

If unloading is from a larger slip deformation value than the peak slip in the previous
cycle (e.g. path STU in Figure 4.19), the new frictional bond resistance, 1y, is interpolated
between two values (Figure 4.24). The first value is related to the 13 (residual bond
stresses) value of the corresponding new reduced envelope using the analytical function
given in Figure 4.23 and the second value is the 1¢ (frictional bond resistance ) value

reached in the last cycle (t¢ (1) in Figure 4.24).
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Regarding variability of the cyclic parameters with testing conditions, Eligehausen et
al. (1983) stated that the cyclic parameters described above may be assumed valid valid for
different test conditions than those based on which they have been determined. Details of
the complete constitutive model formulation are presented in the report by Eligehausen et

al. (1983).
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Figure 4.23. Relationship Between Frictional Bond Resistance during Cycling, 7, (N), and

the Corresponding Ultimate Frictional Bond Resistance z,(~) (Eligehausen ef al. ,1983).

4.5.2. Constitutive Bond Stress vs. Slip Models by Harajli et al. (1994, 2002, 2004,
2009)

Harajli et al. (1994, 2002, and 2004) proposed constitutive bond stress vs slip
relationships which may be applied to reinforcing bars embedded in plain (unconfined)
concrete and fiber reinforced concrete under monotonic tension, and are applicable to both
bond splitting and pull-out type failures (Harajli et al., 1994). The models were developed
upon compiling a broad database of experimental results, including the tests conducted by

Eligehausen et al. (1983) and Harajli et al. (1995).
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Figure 4.24. Calculation of Zero Initial Frictional Bond Resistance for Unloading from

Larger Value of Peak Slip smax than Previous Cycles (Eligehausen et al. ,1983).

4.5.2.1. Monotonic Envelope. The original model formulation consisted of two monotonic

backbone relationships, representing pull-out and splitting failures for confined and
unconfined concrete, respectively (Figure 4.25). The model has been updated since it was
first proposed in 1994. Harajli et al. (2004) proposed modifications to incorporate the
influence of partial confinement on the bond stress vs. slip response of reinforcing bars

experiencing splitting type failures.

The ascending branch of the local bond stress — slip relationship proposed by Harajli
et al. (1994) is very similar to the one proposed by Eligehausen et a/ (1983), and takes the

form:

u(s)=u,-(s/s,)" (4.116)
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Figure 4.25. Monotonic Bond Stress — Slip Model (Harajli et al. ,1994, 2002, 2004).

where s <'s, and u; is the maximum bond stress of a reinforcement bar with a pull-out type
failure and s; is the amount of slip deformation corresponding to the maximum bond stress

(u;). The maximum bond stress for pull-out failure (i;) is calculated as:

Uiy = 2-5T e (4.117)

For members with splitting type failure, once a bond stress of au,y is reached, the bond
stress vs. slip relationship increases linearly until the maximum bond stress (uq) 18

reached (Figure 4.24), according to the following expression:

u(s)za-umx+M~(s—sa) (4.118)

Smax - S(Z

where u,,,. and s, are given by Equations (4.119) and (4.120), respectively, and the

coefficient o is taken as 0.7.
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e =078 (1 o .(";Kﬁ] <u, (4.119)
b

(1/0.3)-In| “max
s =s-e - ]+so-1n[ij (4.120)
u

max

In the equations above, sy is 0.15 mm for plain (unconfined) normal-strength
concrete and 0.40 mm (0.016 in.) for concrete confined with ordinary transverse

reinforcement, and K, is equal to 7.0- 4, /(s-n) (Harajli et al., 2004). The addition of the
terms ((c+KC )/ d ,,) and sy in Equations (4.117) and (4.118), respectively, represent

improvements (Harajli et al., 2002) to the original model by Harajli et al. (1994).

These improvements are especially useful when modeling local bond stress vs. slip
behavior of reinforcing bars embedded in partially (or moderately) confined concrete. For
the column tests selected for this study (Chapters 7 and 8), where the transverse
reinforcement spacing is too large to prevent a global splitting type failure, it is possible to
account for the impact of the transverse reinforcement on the local bond stress vs. slip
behavior using this model improvement. For unconfined concrete, the third branch of the
monotonic bond stress — slip relationship involves a sudden drop of the bond stresses from
Umax 10 PTgy after the maximum bond stress is reached (¢4 = w4, and s = s,,4,), Where fis a
taken between 0.6 and 0.7. For the partially confined condition, the local bond stress vs.
slip relationship does not degrade as rapidly, as shown in Figure 4.26, and follows the

following expression:

u, =u, (0.5+K,) (4.121)

where K., is equal to 7.5- 4, /(s -c-n). The final branch of the relationship for unconfined

concrete is expressed as:

U(5) = Bty (550 ) (4.122)

where s > s3, as shown in Figure 4.26, until the bond stress degrades to zero.
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The experimental results used in development of the model indicated that the amount
of slip deformation, and thus the slip parameters of the monotonic model, are dependent on
the clear spacing between the lugs of the reinforcing bar. For known lug spacing, the

following values for s; are recommended by Harajli ef al. (1994):

$1 =0.15¢; = 1.95 mm (0.08 in.)
$2=0.35¢; =4.55 mm (0.18 in.)
s3=c; = 13.00 mm (0.51 in.)

If specific information on reinforcement geometry is not available, Harajli et al.
(2002) recommends that slip parameters s;, s, and s3 be taken as 1.5 mm, 3.5 mm, and 10

mm, respectively.

4.5.2.2. Hysteretic Rules. Harajli (2009) proposed hysteretic unloading and reloading

rules for the bond stress vs. slip relationship, which are applicable for the monotonic
envelope shown in Figure 4.25 for partially confined concrete representing splitting mode
of bond failure. Harajli (2009) proposed to adopt the idealization shown in Figure 4.26 to
describe the cyclic bond stress—slip response for one cycle. Figure 4.27 illustrates the
proposed idealized response for several successive cycles. The proposed hysteretic rules
were generated as a function of the following characteristic cyclic response parameters: (1)
slope of the unloading branch ko, (2) slip s; at which the rate of bond resistance experiences

a sudden increase, (3) bond degradation ratio un/u,.

Bond Stress u

Maonotonic anvalope

- i -
o B |TFow Slip s

Maonotonic envalope

Figure 4.26. Proposed Idealized Cyclic Response for One Complete Cycle (Harajli, 2009).
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Based on the observed trends in the experimental data, the following empirical
expression is recommended for evaluating the slope kot of the unloading branch of the

bond stress vs. slip response in tension for all values of maximum slip deformation, Smax:

U, U,

k, = >
or 12 5,12 (4.123)

provided that &,/ \/7 is not taken less than 6.0 per mm. Because slip deformations

in compression (defined when the reinforcing bar is in compression) is negligibly small, it
would be sufficiently accurate to assume that first loading in compression would occur
along the monotonic envelope curve in compression. For unloading or reloading in
subsequent compression cycles, the slope ko, would be such that the response follows a
line that joins the point of zero slip to the point of maximum negative slip mobilized

during the loading history (Figure 4.26).

Bond Stress u
MONEANIC envelope

Subsequent L
cycles =
L - - H‘\-‘--
15t oycle
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""" unkading/reloading
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Figure 4.27. Proposed Model of Cyclic Bond Stress-Slip Response (Harajli, 2009).

Experimentally-observed variation of the slip ratio s; / smax at different values of the
maximum slip deformation s,,,x for the first two reloading cycles in tension is presented in

Figure 4.27. Based on the trend shown, and neglecting the expected slight increase in
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s, /8. With subsequent loading cycles, the following regression equation for estimating s,

was derived by Harajli (2009):

max

[ 5 J: 0.44+0.0351In(s, ) (4.124)

1 < & lstowelic reversal
<& 2ndevelic reversal

f-% 0% 4 | inear Repression
= —
2001 3
& 2= 0.03F Ln(xH0.44
1]
0 | 2 3 4 5 ]

Maxitmum Slip Sp (mm)

Figure 4.28. Variation of Slip Ratio s, /s,, with Maximum Slip Deformation (Harajli,
2009).

The bond degradation response associated with cyclic loading is simulated through a
bond degradation ratio un/ug, where uy =bond resistance at slip smax on the envelope curve
from which first unloading occurred, and uy is the bond stress at slip s=smax corresponding
to tension reloading cycle. The bond degradation ratio was observed to be mostly
dependent on the number of cycles and maximum slip Sy.x value mobilized during the
loading history; however, it was practically insensitive to the bar diameter or ratio of
concrete cover to bar diameter and type of confinement used. For larger slip deformation
values beyond splitting, the average bond degradation ratio decreases considerably but is

practically independent of the maximum slip Smax.

Figure 4.29 shows variation of the bond degradation ratio un/up with number of
cycles N corresponding to the limited number of cycles generated for two different ranges
of maximum slip smax. Regression analysis to the experimental data presented in Figure
4.29 leads to the following expressions for evaluating the bond degradation ratio with

number of cycles for complete half-cycles:
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Figure 4.29. Variation of Bond Degradation Ratio u, /u, with Cycle Number N: (a)

§ < 8., and (b) S = S, (Harajli, 2009).
For slip deformation s less than or equal to s,

B _1-0.1In(N +1) (4.125)

Uy
For slip deformation s greater than s,

Z_NZI_O'%IH(NH) (4.126)
0

For the case of incomplete cycles, the bond stress vs. slip behavior is assumed to follow
the simple bilinear response shown in Figure 4.30. Details of the constitutive model are

presented in the paper by Harajli (2009).
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Figure 4.30. Simplified Response for Incomplete Cycle (Harajli, 2009).

4.5.3. Constitutive Bond Stress-Slip Model by Verderame et al. (2009) for Smooth

Reinforcing Bars

The existing literature does not offer significant contribution on the definition of
numerical models representing the bond and interaction mechanisms between plain
reinforcing bars and concrete. The only code instructions relative to the local constitutive
bond-slip relationship for plain bars can be found in CEB-FIP Model Code 90 (1993). This
model (Figure 4.31(a)) is constituted by a first monomial branch, given by the following

expression:

S
Tb = 7’-b,max (S_] (4127)

and a second constant branch, for s > sy, With 7, = 7} . . Model Code 90 (1993)
suggested to assume, for plain hot rolled bars, parameter o is equal to 0.5 and sp.x = 0.10

mm. The maximum bond strength value was assumed equal to 7, ., = 0.30\/70 for good

bond conditions and to 7, ., =0.15\/7€ for poor bond conditions, where f. is the

cylindrical compressive strength of concrete.
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Figure 4.31. Monotonic Bond Stress vs. Slip Relationship for Plain Bars: (a) from CEB-
FIP Model Code 90 (1993) and (b) from Experimental Results Reported in Verderame et
al. (2009).

It was debated that this model cannot fully represent the effective interaction
mechanisms between plain reinforcing bars and concrete. As a matter of fact, the wide
experimental program carried out by Abrams (1913) and the phenomenological description
proposed by Tassions (1979) and Rehm (1969) highlighted that the experimental response
of a plain bar, in terms of bond stress vs. slip relationship, follows a first ascending branch
up to a peak strength value corresponding to very low values of slip deformation. During
this phase, chemical-physical adhesion, mechanical micro-interlocking between concrete
and indentations of surface of the bar and also the friction component contribute to the
bond strength. Then, a softening branch (transition curve) related to the progressive
degradation of friction mechanism is present, which differs from the formulation proposed
by Model Code 90 (1993). This softening branch continues until a minimum frictional
value of bond stress (Figure 4.30(b)). Recent experimental results reported by Fabbrocino
et al. (2005), Feldman and Bartlett (2005); and Verderame et al. (2009 a) confirmed what
was asserted first by Abrams (1913) and later by Tassions (1979).

4.5.3.1. Monotonic envelope. The monotonic constitutive model which best fits the

experimental bond stress vs. slip behavior for plain reinforcing bars is the one proposed by
Eligehausen et al. (1983) (also known as BPE model, Figure 4.32), modified by removing

the plateau branch with the aim of modeling the bond behavior of FRP bars Cosenza et al.
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(1997). In Figure 4.32(a) and 4.32(b),the original and modified BPE models are shown,
and respective characteristic parameters are reported. In both cases the ascending branch is

expressed by the monomial expression in Equation (4.127).

tb,max Tb,max

P (T, maxSmax)

Smax Sy St s / Smax S §

{a) ih)

Figure 4.32. BPE Model (a) Original (b) Modified by Eligehausen et al. (1983).

The modified BPE model, has no horizontal branch for slippage values higher than

Smax- A linear softening branch’s expression is expressed as follows:

z-b,max (

S = Sax ) (4.128)

Tb = Tb,max - p
S

max

On the basis of the modified BPE model and experimental results obtained by
Verderame et al. (2009, part 1), maximum bond strength Tpm.x Was expressed to be
proportional to the square root of the cylindrical compressive strength of concrete fc,

through a factor equal to 0.31, with a coefficient of variation equal to 0.39 as:

7y =031/, (4.129)

where f. is the cylindrical compressive strength of concrete. Equation (4.127) is consistent
with the experimental observations of Fabbrocino et al. (2005) and with the proposal of
the Model Code 90 (1993) for good bond conditions. The purely frictional bond strength

was evaluated in relation with the maximum bond strength value, ¢, , /7, . . Again, based
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on experimental results, the mean value of the purely frictional bond strength is expressed

as:

7, =0437, .. (4.130)

with a coefficient of variation equal to 0.18. This result confirmed the theoretical

observation reported in Tassions (1979), where the value of the ratio ¢, , /z, . Was assumed

to be equal to at least 0.30. Using Equation (4.128), the above relationship can be

rearranged as:

7, =0.13f.

(4.131)

which is consistent with the proposal of Model Code 90 (1993) for poor bond conditions.

4.5.3.2. Hysteretic Rules. The hysteretic unloading and reloading rules proposed by

Verderame et al. (2009, part II) for the modified BPE backbone relationship are illustrated
in Figure 4.33. Characteristics of the hysteretic behavior are based on experimental results
from cyclic pull-out tests, with different target values of maximum imposed slip
deformation, as reported in Verderame et al. (2009 a). The hysteretic rules were derived to

simulate the test results, in a simple, yet representative manner.
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Figure 4.33. Hysteretic Bond Stress vs. Slip Relationship (Verderame et al. ,2009a).
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When the smooth reinforcing bar is loaded for the first time, the bond stress vs. slip
behavior follows the monotonic envelope curve (path 0AB). When a reversal is imposed

from an arbitrary value of slip deformation, a linear unloading branch, with stiffness ky, is
followed, until the so-called cyclic bond resistance, 7, . (path BC). This resistance value is

kept constant when slip deformation decreases until the reinforcing bar reaches the initial
position, which corresponds to zero slip deformation between steel and concrete. When

the sign of the slip is reversed, the bond stress increases on a linear branch, with a stiffness

(slope) of kys, until the residual bond resistance value, 7, (path DEF).

When a second slip reversal is imposed, the bond stress vs. slip relationship first

follows an unloading branch with stiffness ky,, followed by a cyclic frictional branch with
T =7, until the point H, located on the unloading branch (path FGH). As the slip
deformation increases, a reloading branch with stiffness ky, is followed until the residual
bond resistance (7,, ) is reached, after which the bond stress is kept constant with the

increasing value of slip (path HIL). On the other hand, if the slip is reversed again from

point H (Figure 4.33 (b)), the bond stress decreases following an unloading branch with
stiffness ky, until the cyclic bond resistance (T = 7, . ) is reached, after which is the bond

stress is kept constant for increasing negative values of slip up to the maximum slip value

attained previously. When this maximum slip value is reached, the relationship follows a
reloading branch up to the constant bond stress branch, corresponding to 7 =7, (path

HILMN).

In this constitutive model, under cyclic excitations and in correspondence with
values of slip higher than the maximum one previously attained, the bond stress vs. slip

relationship does not reach the monotonic envelope curve, but to reduced bond stress

values bounded by the purely frictional bond resistance, 7,, . During the cycles, the bond

stress is kept constant at a value of 7, ., both during pulling out and pushing in of the bar.
Therefore, to completely define the hysteretic model, only two parameters are required,
which are the residual bond resistance ( 7, ) and the cyclic bond resistance ( 7. ). Finally,

assuming that no further degradation of the bond resistance takes place as the number of
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partial loading cycles increases, the proposed model yields symmetric bond stress vs. slip
behavior, which is consistent with experimental observations, which also do not highlight

significant asymmetry associated with the first loading direction.

Verderame et al. (2009b) assumed that the hysteretic parameters of the constitutive
bond slip behavior mainly depend on the compressive strength of concrete and the surface

roughness of the bar, because of the nature of the interaction mechanisms at the interface

between plain bars and concrete. Therefore, as done with 7, ,in the definition of the

monotonic envelope curve, parameters 7, and 7, . are evaluated to be proportional to the

maximum bond resistance. Neglecting the variability in the surface roughness of
reinforcing bars, it is possible to extend the proposed model to different values of the
concrete strength, basing on the defined ratios between the maximum bond resistance and
the square root of the cylindrical compressive strength of concrete. It was stated that this
assumption is yet to be better investigated by executing cyclic pull-out tests with different

values of concrete strength (Verderame et al., 2009 b).
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Figure 4.34. Hysteretic Bond-slip Relationship for Plain Reinforcing Bar (Verderame et
al., 2009b).
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Details on the characteristic parameters of the constitutive bond stress vs. slip
relationship, as well as possible maximum and minimum values and coefficients of
variation are described in Verderame et al. (2009b). Figure 4.34 illustrates a brief
summary of the model, with characteristic values used for the parameters. For the model
implemented in this study, the slope of the linear unloading and reloading branches were
taken as is ky, = 15 MPa/mm, based on the overall average experimental value observed .
by Verderame et al. This value was assumed to be constant and not depending on the
number and the magnitude of cycles. The progressive stiffness degradation due to the
increase of the maximum imposed slip was therefore neglected. As a matter of fact,
according to the experimental data, this stiffness changes from an average value of about
28 N/mm3, corresponding to Spax = 0.5 mm, to a value of 8 N/mm3 when sp,x = 8.0 mm. It
was observed that this simplification has no significant influence on the structural response
modeling, as long as this stiffness does not assume values significantly higher than the

experimental variability range..

4.5.4. Constitutive Model for Axial Stress in Bar vs. Slip Deformation for 180-degree
Circular Hooks by Fabbrocino et al. (2002, 2005)

4.5.4.1. Monotonic Envelope. Fabbrocino et al. (2005) conducted out pull-out type tests

in order to evaluate the response, in terms of axial stress in reinforcing bar vs. slip
deformation relationship, of 180° circular hooks, which is the most common anchorage
condition for smooth bars in column splices. In the experimental program, three different
specimen configurations were considered, including ‘full’ type specimens, ‘end’ type
specimens and ‘full-H’ type specimens. Here, only the ‘full’ type specimen configuration
(Figure 4.35 (b)) is discussed, as this configuration is applicable to 180-degree hooks in
typical column splices. The tests were conducted in such a way that only the hook was
embedded in the concrete specimen (Figure 4.35(b)), and a direct measure of the slip
deformation at the end of the hook could be obtained. The loading was applied under
displacement control. The main parameters investigated during the experimental study
were the bar diameter, the concrete cover thickness, the cast direction, and the type of

loading (monotonic or cyclic).
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Figure 4.35(a) provides an overview of experimental results on hooks made of 12
mm diameter reinforcing bars. The test results given are in terms of Gheok (bar stress) vs.
Shook (hook end slip) relationships for specimens that fit the bond conditions for hooks at
column base or anchored in interior beam column joints. Test results indicate that the hook
shows a very high initial stiffness, followed by a pronounced nonlinear behavior even at
low stress levels. However, and interestingly, the bar shows the capacity to reach yield
stress, under progressively increasing slip deformations. Therefore, a pure slip failure does
not occur. The bar stress vs. slip response is not characterized at yield by a well-defined
yield plateau (due to the limited yield spreading along the circular branch, so that yielding
develops only in the straight unbounded region), and significant increase in slip

deformation can be observed only after strain hardening starts.
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Figure 4.35. Results of Experimental Tests and Stress-slip Relation for 180-degree Hooks
Fabbrocino et al. (2005).

Based on the test results, a constitutive bar stress vs. hook end slip deformation
relationship was derived by Fabbrocino et al. (2005), the formulation of which resembles
the first monotonic branch of the constitutive relationship by Eligehausen ef al. (1983)
(Figure 4.35):

o=/, (S—J (4.132)

where s is the hook end slip, s, is the hook end slip at bar failure, f, is the bar ultimate

stress, and o is a dimensionless positive exponent that is generally smaller than 1. Ultimate
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stress and slip at bar failure are used as basic parameters of the theoretical formulation; the
first of which is a parameter depending upon the steel grade, and the second of which can
be evaluated using statistical analysis of available test results. Regression analysis results
on the experimental data is shown in Figure 4.35(a), with reference to different hook
orientations (test groups a, b, and ¢ denote hook being parallel to concrete casting
direction, and perpendicular to casting direction with hook downward and upward
respectively). Optimal parameters depending on hook orientation as well as based on all
test data is reported in Figure 4.35. In this study, the overall average values (a = 0.30, s,, =

3.90 mm) were used to represent the constitutive behavior of 180-degree hooks.

4.5.4.2. Hysteretic Behavior. Fabbrocino et al. (2002) also carried out cyclic tests on

180° circular hooks. Some minor changes in the experimental setup was done in order to
avoid buckling of the reinforcing bar when subjected to compressive stresses. Tests were
carried out up to bar fracture, at longitudinal strain values higher than 0.2. Figure 4.36(a)
shows the load history (bar end displacement) that was applied on the reinforcing bar
specimen. Figure 4.36(b) reports the measured bar axial stress vs. bar end displacement
relationship. The yielding stress level is reported on the same plot, highlighting an
asymmetrical behavior. In fact, for a given displacement, the stress level reached under
compression is higher than the corresponding stress level under tension. This behavior
continues until concrete spalling (pushing-out) at the bottom of the concrete block (Figure
4.35(b)), which is clearly represented in the experimental results as a sudden loss in bar

compressive stresses.

After this spalling occurs, the compressive strength of the hook rapidly deteriorates,
and a pinching-type behavior develops . From a local point of view, the asymmetric
behavior becomes more pronounced,, as shown in Figure 4.36(c), where the bar stress is
plotted against hook end slip. In fact, a very stiff behavior occurs under compression
during the early cycles; as the slip deformation under compression increases, a large
permanent slip deformation accumulates related to progressive pulling out of the bar. This
effect is however counterbalanced by an increasing level of deformation under
compression, which leads to spalling concrete cone in the bottom region of the specimen

block (Figure 4.35(b)). This phenomenon starts a sudden reduction of the compressive
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Figure 4.36. Experimental Results of Cyclic Test on 180-degree Hook Made of 12 mm
Diameter Smooth Bar (Fabbrocino et al.i, 2002).

stress capacity and a pronounced increase of slip deformation under compression.
However, this behavior is specific to the test setup, and will not be applicable to a hook in
the lap splice region of a column. Therefore, and especially since a representative
hysteretic behavior is not available for hooks in column splices, a simple origin-oriented
hysteretic response was implemented in the present analytical model for column hooks
(Figure 4.37), together with the monotonic envelope described in Figure 4.35 to relate

axial stresses in a smooth bar with hook end slip deformations.
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Figure 4.37. Implemented Origin-Oriented Hysteretic Constitutive Model for 180-degree
Hooks.

Together with the material constitutive models for steel and concrete, and the
constitutive relationships for deformed bars, smooth bars, and hooks described in this
chapter, as well the nonlinear analysis solution strategy to be described in Chapter 5, the
formulation of the model described in Chapter 3 was implemented in Matlab (“Matlab”),
to perform nonlinear quasi-static (monotonic or cyclic) analyses using the analytical model

proposed.
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S. NONLINEAR ANALYSIS SOLUTION STRATEGY

The model element formulations described in Chapter 3 (with elements of 18 degrees
of freedom used in the lap splice region and elements of 12 degrees of freedom used
outside the lap splice region as shown in Figure 5.1) were assembled together in Matlab,
using a direct stiffness assembly approach, to form a component model for an individual
reinforced concrete column with a lap splice. The constitutive relationships described in
Chapter 4 were implemented in the model for concrete, steel, and the bond slip springs. An
appropriate incremental-iterative solution strategy was adopted for conducting nonlinear
quasi-static (monotonic or cyclic) analyses of individual columns.
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Figure 5.1. Sample Model Assembly with Degrees of Freedom.

Selection of a suitable incremental-iterative numerical solution strategy for nonlinear

analysis depends on type of loading (static or dynamic) and type of analysis (load-
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controlled, displacement-controlled, or combination). A displacement-controlled iterative
solution strategy was implemented in this study for conducting a nonlinear quasi-static
analyses, using the model formulation developed. The reason behind choosing this
displacement-controlled iterative solution strategy is that the experimental programs
selected for this study to calibrate and correlate the experimental results with the analytical
results are drift-controlled reverse cyclic reinforced concrete column tests which are
subjected to prescribed lateral displacement histories at the top of the column. Descriptions
of numerical solution strategies are given below. Details of the nonlinear solution analysis

strategy implemented in this study are presented in this Chapter.
5.1. The Nonlinear Quasi-Static Problem

Figure 5.2 illustrates a generic nonlinear quasi-static response, in the form of
analytically-obtained lateral load vs. top displacement behavior of a reinforced concrete
column subjected to a reverse cyclic lateral loading imposed at the top. In order to generate
a quasi-static response, the external load or displacement effects are applied with a
sufficiently slow rate, such that they do not induce dynamic effects on the analytical (or

experimental) response.

The general equilibrium equation for nonlinear quasi-static response can be expressed as:
1 ()} ={F.} 5.1)

where {F,

' ()} denotes the internal resisting force vector, which is a nonlinear functional
of system (nodal degree of freedom) displacements, and {Fm} is the external force vector,

representing the externally applied forces at the nodal degrees of freedom. In the case of a

linear elastic system, the static problem would reduce to the linear equation as

[K]{o} =1{F..} (5.2)

where [K] denotes the stiffness matrix and {5} is the vector of nodal displacements.
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Figure 5.2. Generic Nonlinear Quasi-static Response.

5.2. Incremental Iterative Approach — Newton-Raphson Scheme

The conventional Newton-Raphson solution scheme is capable of linearizing the
nonlinear equilibrium equation, through an incremental iterative strategy. Figure 5.3
illustrates a schematic of the Newton-Raphson iterative solution algorithm, with the

incremental equation of equilibrium expressed as:

{AF, (A5)} ={AF,} (5.3)

where {AF, (A5 )} is the incremental restoring force vector being a nonlinear functional of
the incremental nodal displacement vector (AS), and {AF,,} is the incremental external
load vector. Equation (5.3) is linearized within an arbitrary load step i about {5 }= {5 }i ,

providing the equation for the first iteration within the load step as:

[K]{As}, ={AF,,}, (5.4)
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where [K ]: denotes the tangent stiffness matrix of the system at the beginning of the load

step, obtained by differentiating the internal (restoring) force resisting vector with respect

to displacements at the degrees of freedom:
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Figure 5.3. Newton-Raphson Iteration Scheme.

The linearized incremental equilibrium equation for the j’th iteration of the Newton-

Raphson scheme within the load step i can be written as:

(K] {as} ={AR}/ (5.6)

1

where

(AR} ={AR}" —{AF, }]" (5.7)
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The term {AR}/ represents the vector of residual forces (Figure 5.3) and the term

{AF,, }f ' is the increment of internal resisting forces for the iteration being equal to the

Y —AF. }7 (Figure

i i
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Figure 5.4. Nodal Displacement and Internal Resisting Force Increments.

After successive iterations on the incremental nodal displacement vector,
Convergence is achieved by minimizing the vector of residual forces to a specified value
of tolerance. The resulting incremental nodal displacement vector for the i’th load step can

be computed as the sum:

{AS} :{A5}1+{A5}f+ .......... +{AS}

i

(5.8)

where / is the number of iterations performed in order to achieve convergence.

Although the conventional Newton-Raphson strategy successfully linearizes the
equilibrium equation to obtain an iterative solution, it is incapable of passing load limit

points within the quasi-static load-displacement path of the system, because the load level
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is held constant while iterations are conducted to achieve convergence. Passing load limit
points for incremental nonlinear analysis approaches is extremely difficult due to the near
singular nature of the tangent stiffness matrix in the neighborhood of a load limit point.
Iterations should be performed on externally applied loads as well as nodal displacements
by introducing constraint equations within the solution strategy to proceed beyond a load
limit point. Several different techniques have been proposed to pass beyond the load limit
and the most well known being ‘iteration at constant arc-length’ introduced by Wempner
(1971) and updated by Ricks (1979). An adaptation of the ‘arc-length’ method, with a
displacement-controlled iterative strategy, based on incrementation of selected
displacement components of the model (Clarke and Hancock, 1990) is used in this study
as the iterative solution technique. Details of the iterative solution strategy used are

described in the following section.
5.3. Applied Nonlinear Analysis Solution Strategy

The solution strategy used in this study is based on a modified Newton-Raphson
iterative approach, where the tangent stiffness matrix is computed at the beginning of each
load step and held constant for each load step. An iterative strategy, based on
incrementation of a selected displacement component and iterations at constant value of
the selected displacement component was used for the purpose of passing load limit points
as well as for comparison of analysis results with results of displacement-controlled

experiments conducted on column specimens.

In the incremental-iterative method implemented, each load step consists of the
application of an increment of external load with subsequent iterations required to satisfy
the total equilibrium equations within a specified tolerance. In this text, the notation
adopted is to use the subscript i to denote load step number i, and the superscript j to
denote the iteration cycle j (within load step 7). Iteration cycles begin at j =1, which is
defined to correspond to an increment of external load. The equilibrium iterations

commence at j =2. The scalar 4 denotes a load parameter to be used in combination

with a reference external load vector (assuming external loading to be proportional), and

{5 } is the vector of nodal displacements at the model degrees of freedom. There are two
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distinct strategies required for the successful completion of a single load step in an

incremental-iterative scheme:

(i) Selection of a suitable external load increment A, for the first iteration cycle. The

selected increment is referred to as the “initial load increment”, and the particular

strategy used to determine it is referred to as the “load incrementation strategy”.

(i1) Selection of an appropriate “iterative strategy” for use in subsequent iterative cycles

(j =2), where the aim is to restore equilibrium as rapidly as possible. If iterations
are performed on the load parameter A4/ as well as the nodal displacements {5}/,
then an additional constraint equation involving AA/ is required. It is the form of

this constraint equation, which distinguishes the various iteration strategies.

A description of the incremental-iterative technique for a single load step i is
described in the following subsections. It is assumed that perfect convergence has been

achieved at the conclusion of load step (i —1), so that the solution (/1,._1’ {6 }l._l) is known to

satisfy total equilibrium (Figure 5.5).
5.3.1. The First Iteration Cycle, j =1

The new load step starts with the computation of the tangent stiffness matrix [K, ]i,

based on the known displacements (strains) and loads (stresses) at the conclusion of the

previous load step. The initial ‘tangent’ displacements’ {é‘ , }i for this load step are then

computed as the solution of:
[K/]i{él}i :{Fl}i (59)

in which {F ) }i is the reference external load vector, typically as specified in the input data

for the problem. The magnitude of the tangent displacements is arbitrary, only their

direction is important. Next, the value of the initial load increment AZ. is determined
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according to a particular load incrementation strategy, referred to as the “incrementation of
a selected displacement component” in this study. The incremental displacements are then

evaluated by scaling the tangent displacements:

(A} =A4{5,} (5.10)

i

The total displacements and load level are updated from those existing at the

conclusion of the previous load step (Figure 5.5) as:

{6}, ={s},, +{as}, (5.11)

A=A, +AA (5.12)

At this stage the solution does not satisfy global equilibrium within the specified

tolerance, so additional iterative cycles are required to restore equilibrium.

5.3.2. Equilibrium Iteration Cycles, j > 2

The Newton-Raphson or modified Newton-Raphson iterative strategies are incapable
of passing limit points because the load level is held constant while iterating to obtain
convergence; therefore, the load parameter A4/ must be allowed to vary if limit points are
to be overcome. With a varying load parameter, a general solution technique evolves if it is
assumed that, for any iteration j>2 within load step i, the change in the incremental

displacements can be expressed as:

[Kl]i{A5}}j =A%/ {Fl}i_{‘/l}}jil (5.13)

where,

v =R - (5.14)

i
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The vector {F,, };-/ “' represents the internal nodal forces obtained at equilibrium from
element contributions (forces in the uniaxial elements and horizontal springs in the present

}”' at the conclusion of the

i

model). For proportional loading, the external forces {F

ext

previous iteration may be expressed as:

(R} =2 E

ext )

(5.15)

1

The right-hand side of the Equation (5.13) is linear in AA/, thus the final solution

can be written as the linear combination of two vectors:
{AS) =AX/ {5,},+{AS,}] (5.16)

in which {5 , }l. are the tangent displacements, already computed for j=1, and

{Aé‘ X }',." are the ‘residual’ displacements (Figure 5.6) obtained from Equation (5.17):

[K,]{AS) =—{w} (5.17)

The incremental change on the nodal displacements for this iteration is computed
using Equation (5.16), and the total displacements and load level are updated from the

previous iteration (Figure 5.5) as:
{8V =15} +{as} (5.18)

A=A AL (5.19)
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Single Degree of Freedom System.

Iteration cycles are continued until a convergence criterion based on either the forces
or displacements is satisfied. If convergence is not achieved within a specified number of
cycles, or if divergence of the solution is detected, a re-solution strategy may be adopted,
with the application of a reduced initial load increment. The convergence criterion and the

re-solution strategy used in this study are described in later subsections.

5.3.3. Load Incrementation Strategy: Incrementation of a Selected Displacement

Component

The initial load increment of each load step is chosen to limit a specified ‘key’

displacement &, (being the lateral top displacement of the column in this study) in the
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Figure 5.6. Iterative Strategy and Residual Displacements.

structure. If it is assumed that perfect convergence is achieved at the conclusion of the

previous load step, the displacement increment (A5n ),. can be expressed as:
(85,) =aA b} {5,}, (5.20)
in which {b, } is a vector containing unity in the n’th row and zero elsewhere. Hence,

AR __(8d), (5.21)

i T
{bn } {51 }i
5.3.4. Iterative Strategy: Iteration at Constant Displacement

The constant displacement iteration strategy described here is an example of a more
general technique presented by Powell and Simons (1981). In this strategy, for the first

iteration (j =1), the ‘key’ displacement component in the structure (6, in this case) is

incremented by a prescribed amount as described in the preceding subsection. This
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displacement component is held constant during subsequent iterations ( j > 2). Denoting

the ‘key’ displacement component as ¢,, the n’th component in the vector of nodal

n?o

degrees of freedom, the increment in &, can be expressed as:
AS, ={b,} {AS,} (5.22)

in which {bn} is a vector of zero entries except for unity in the n’th row. From Equation

(5.16),
AS, =AY (b} {8} +{b,} {AS,) (5.23)

If the value of &, is to remain unchanged during the equilibrium equations (constant

displacement) then AJ, =0, giving the iterative change in the load parameter:
, b .
AR = b—l (5.24)

5.3.5. Convergence Criteria and Re-Solution Strategy

Iteration cycles are continued until a convergence criterion based on nodal
displacements is satisfied at the end of each load step. If convergence is not achieved
within a specified number of cycles, or if divergence of the solution is detected, a re-

solution strategy is implemented for the load step.

A convergence criterion based on the incremental nodal displacements is used. The

stringent maximum norm is adopted in the present study to test for convergence, that is:

Maximum norm:

AS,

”5”00 = max (5.25)
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where AJ, is the change in the displacement component k& during the current iteration
cycle and &, is the value of that displacement component updated at the end of the

previous iteration. Convergence is attained when:

lel, <<. (5.26)

where the tolerance ¢ is typically in the range of 10 to 10~ depending on the desired

c

accuracy and the non-linear characteristics of the particular problem.

A re-solution strategy was incorporated in the iterative solution technique, if
convergence is not attained at each load step within the maximum specified number of
iterative cycles, or if the solution appears to be diverging. Within a single load step an
increase of stiffness is the principal reason for non-convergence of the analytical model.
The re-solution strategy adopted includes recovering the previous converged load step, and
starting the current load step, using the initial stiffness matrix of the first load step of the
nonlinear solution strategy. If convergence is still not attained within the number of
specified iterations, the value of the prescribed displacement increment is reduced and the
iterative strategy is repeated until convergence is attained for progressively smaller

increments of the prescribed displacement component.

The incremental-iterative nonlinear solution strategy described in this chapter is ideal
for obtaining the complete quasi-static load vs. deformation response of the analytical
model proposed for this study, and for comparison of the model results with drift-
controlled test results on column specimens. During the iterations, the lateral displacement
imposed at the top of the column (selected displacement component) remains constant, and
iterations are performed on both displacement and load components to obtain static
equilibrium within a specified tolerance. The analytical model results obtained using this
solution strategy are presented in the following Chapter (Chapter 6), where the sensitivity

of the analytical results to model parameters are also discussed.
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6. ANALYTICAL MODEL RESULTS AND PARAMETRIC
SENSITIVITY STUDIES

The analytical model formulation presented in Chapter 3 and the constitutive
relationships described in Chapter 4 were implemented in Matlab (“Matlab”) together with
the incremental-iterative solution strategy described in Chapter 5, for conducting nonlinear
quasi-static analyses of lap-spliced columns using the analytical model proposed.
Characteristics of the analytical model response and sensitivity of the model results to

model parameters are presented in this chapter.

6.1. Review of the Analytical Model

The analytical model proposed in this study is capable of predicting the inelastic
response of reinforced concrete columns with lap splices, considering coupling of axial,
flexural and slip deformation components. The main feature of the model is that it allows
distribution of the bond slip deformations over the height of the column. The model can
efficiently capture neutral axis migration along the cross section, as well as the effects of,
tension-stiffening, progressive gap closure, concrete confinement, nonlinear shear
behavior, variation in axial force, on the response. A brief review of the model and
material constitutive features is provided in this section, before presenting characteristic

attributes of the model response.

In the proposed model, a reinforced concrete column is formulated as a stack of ‘m’
model elements, which are placed upon one another (Figure 6.1 (a)). The coupled flexural
and bond slip response response is simulated by a series of uniaxial elements (or macro-
fibers) of concrete connected to rigid beams at the top and bottom (e.g., floor) levels, and
uniaxial steel elements connected to the rigid beams (and therefore to concrete) through
uniaxial bond slip springs at top level of each model element. At the base of model, three
additional bond slip springs are included for better representation of bond stresses at
column base. The model element shown in lower part of Figure 6.1(b) (with 18 degrees of
freedom) is used over the lap splice region (to represent spliced bars), and the element

shown in upper part (with 12 degrees of freedom) is used outside the lap splice region. A
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horizontal spring placed at the height ch, with a nonlinear hysteretic force-deformation
behavior following an origin-oriented hysteresis rule with the trilinear monotonic envelope

by Sezen (2002) simulates the shear response of the model element.
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Figure 6.1. (a) Sample Model Assembly (b) Model Elements Used within and Outside the

Lap Splice Region.

For representing the behavior of the bond slip springs, two alternative calibration
methods were used. In the first method, along the entire length of a column, the monotonic
bond stress vs. slip envelopes defined for splitting mode of failure in partially-confined
concrete (Harajli et al., 2004, Harajli and Mabsout, 2002) were used (Figure 6.2) to
account for the partial confinement effect of widely-spaced ties. The hysteretic rules

proposed by Harajli (2009) was adopted for the cyclic response (Figure 6.3).

In the second methodology, the bond slip springs were calibrated to address the
possibility that the transverse reinforcement would restrain the widening of splitting cracks
locally, close to the tie. Bond slip springs close to tie locations were assigned constitutive

bond slip relationships representing slip failure, whereas the springs between the ties were
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Confined Concrete (Pullout)
Harajli et al. (1994)
Partially Confined Concrete
=== (Splitting)

Wy - - - Harajli et al. (2004)

Plain Concrete (Splitting)
Harajli et al. (2002)

Local Bond Stress

Slip
Figure 6.2. Monotonic Bond Stress vs. Envelopes (Harajli ef al.,1994, 2002, 2004).

Bond Stress, u

Slip, s

Figure 6.3. Cyclic Constitutive Bond Stress vs. Slip Relationship for Splitting Failure.

assigned constitutive bond slip relationships representing splitting failure in partially-
confined concrete. For example, for the columns tested by Melek and Wallace (2004),
transverse reinforcement provided along the splice length of the column specimens is only
28% of that required amount to prevent a splitting failure. Therefore the splitting
constitutive relationship for partially-confined concrete (Harajli, 2009) were used along
only 72% of the splice length (where the partial confinement was assumed to be due to the
presence of the pedestal at column base), and the pull-out constitutive relationship by

Eligehausen et al. (1983) (Figure 6.4) was used along the remaining 28%.
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Figure 6.4. Cyclic Constitutive Model for Bond Stress vs. Slip Relationship for Confined
Concrete (Eligehausen et al., 1983).

For modeling of spliced column with smooth reinforcing bars, since there is no
possibility for splitting failure (due to absence of lugs on plain bars), all bond slip springs
are assigned the same constitutive bond stress. vs. slip relationship (Figure 6.5) developed
by Verderame et al. (2009). For 180-degree hooks, the constitutive monotonic envelope
proposed by Fabbrocino et al. (2004, 2005) was used to relate reinforcing bar stresses to
hook end slip deformations. An origin-oriented hysteretic response was assigned to the

hooks, due to absence of a cyclic constitutive model in the literature.
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Figure 6.5. Cyclic Bond Stress vs. Slip Relationship for Smooth Reinforcing Bars.
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The advanced constitutive relationship proposed by Chang and Mander (1994)
(Figure 6.6) is assigned to the concrete macro-fibers of the analytical model, since it allows
detailed calibration the monotonic and hysteretic parameters for an improved
representation of the stress-strain behavior. This constitutive model provides a direct and
flexible approach to incorporate important material behavioral features (for example,
hysteretic behavior in tension, progressive gap closure, tension stiffening effects) into the

analysis.
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Strain, g,

Figure 6.6. Constitutive Material Model for Concrete (Chang and Mander, 1994).

The constitutive model used for reinforcing steel is the Menegotto and Pinto (1973)
model, as extended by Filippou et al. (1983) to include isotropic strain hardening effects.
This constitutive model, although simple in formulation, has been shown to accurately
simulate experimental behavior. The model formulation incorporates cyclic degradation of
the curvature of the unloading and reloading curves and thus allows the Bauschinger’s

effect to be represented (Figure 6.7).
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Figure 6.7. Constitutive Material Model for Reinforcing Steel.

6.2. Analytical Model Response

The analytical model, with the properties outlined in the previous section, was
implemented in Matlab together with a direct stiffness assembly procedure and an
incremental-iterative numerical scheme to perform nonlinear quasi-static (monotonic or
cyclic) analysis of the columns with lap splices. The displacement-controlled iterative

solution strategy described in Chapter 5 was used for conducting the analyses.

The column specimens tested by Melek and Wallace (2004) were first used to
calibrate and evaluate the model reponse. Design and reinforcement details for the column
specimens, as well as the loading protocol, are presented in detail in Melek and Wallace
(2004), and are summarized in Chapter 7. Details of the model calibration and comparison
of the analytical results with experimental data will be presented in Chapters 7 and 8. This
chapter focuses on characteristic features of the model response, as well as the sensitivity

of the analytical results to changes in model parameters.

Figure 6.8 shows a representative lateral load vs. top displacement response
prediction of the model, for a specific column specimen (2S10MI, tested by Melek and
Wallace (2004)), with a height of 1.83 meters, 457 mm2 cross section, 8 — #8 (d, =25.4
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mm ) longitudinal bars and #3 (9.5 mm diameter) rectangular hoops with 90-degree hooks
spaced at 304.8 mm on center along the column height, and an applied axial load of 10%
of the axial load capacity of the specimen. A lap splice length of 20d, (508 mm) was used

in construction of this specimen. During the test, a standard lateral displacement history
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Figure 6.8. Load — Displacement Response Predicted by MVLEM using Harajli (2009).

was applied, which consists of three cycles at each displacement level with monotonically
increasing drift levels (0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 3, 5, 7, and 10%). In the
preliminary analysis, one cycle is applied at each displacement level, for simplicity. For
the specimen, the concrete compressive strength was approximately 36 MPa, with a strain
at peak stress of 0.002. The yield stress for the longitudinal bars was measured as
approximately 510 Mpa. The analytical response presented in the figure is obtained using
25 model elements over the height of the lap splice region, 4 model elements above the lap
splice region, 26 uniaxial concrete elements (macro-fibers) along the width of the section,
and a value of ¢ = 0.4 for the relative height of the shear spring. The bond stress vs. slip
relationship for partially confined concrete by Harajli (2009) is used for all bond slip
springs along the entire height of column. As there is no cyclic bond stress degradation

present in this relationship (only cyclic stiffness degradation exists), the backbone of cyclic
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response prediction follows monotonic response prediction, as shown in Figure 6.8. The
analysis results clearly reflect actual characteristics of cyclic bond slip response of a
column with a deficient lap splice, including degradation of the lateral load upon slip
initiation, stiffness degradation, shape of the load-displacement hysteresis loops, and

pinching behavior.
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Figure 6.9. Predicted Variation in Position of Neutral Axis.

The model successfully allows variation of the neutral axis depth for a cyclic
displacement history applied at the top of the column, as shown in Figure 6.9, which
displays the predicted position of the neutral axis in the model element at the base of the
column, normalized by the column width. The distance from the centroid of the column
cross section to the neutral axis approaches infinity when the lateral displacement (and
thus, rotation) of the column approaches zero and reaches its local extreme or limit points
(peaks and valleys) at peak displacement (displacement reversal) points.

Figure 6.10 compares the average longitudinal strain histories predicted at the
extreme concrete fiber and at the centroid of the column for the element at the base of the
column till crushing of concrete, demonstrating the effect of applied displacement history
and neutral axis migration on the predicted strains. The longitudinal strains are not

symmetric with respect to the zero strain axis, and the strains predicted at the centroid are
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tensile for almost the entire loading history, except for a range of small displacements (due

to the presence of axial load).

Figure 6.11 shows the cyclic analysis results for the distribution of bond stresses
between concrete and the exterior (corner) longitudinal and starter reinforcing bars along
lap splice region at 0.25% lateral drift, where as Figure 6.12 shows the monotonic analysis
results for the distribution of bond stresses at 0.6% lateral drift, where lateral degradation
in the lateral load is initiated. It is clearly seen from Figures 6.11 and 6.12 that unlike the
behavior of isolated bars, spliced bars (here longitudinal and starter bars) behave
differently in a complex stress transfer mechanism which is correctly represented by the
model. Most of the stresses are transferred through longitudinal bars at bottom part of
splice and most of the stresses are transferred through starter bars near the top portion of
the splice which is visible from these figures also. So model capability in predicting local

bond stresses is observed.
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Figure 6.10. Predicted Longitudinal Strain Histories.
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Figure 6.12. Predicted Bond Stress Distribution along the Splice Length for Monotonic

Analysis.
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Figure 6.13 shows the cyclic analysis results for the distribution of longitudinal steel
stresses in exterior longitudinal and starter bars along the lap splice length at 1% lateral
drift, where lateral strength degradation starts. Figure 6.14 shows the cyclic analysis results
for the history of longitudinal steel strains in exterior longitudinal and starter bars in the
model element at the base of the column. As starter bar is fixed at bottom, due to most of
the maximum column moment are taken, steel stress are found maximum (also strain as
shown in Figure 6.14) in the starter bar near bottom part of column. In the upper part of
splice, as most of the moment are taken by longitudinal bar, steel stress are found more in
the longitudinal bar (Figure 6.13). So model can able to capture such local phenomenon
correctly. The analysis results for column base moment vs. total (accumulated) rotation of

the column at the top of the lap splice is shown in Figure 6.15.
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Figure 6.13. Predicted Steel Stress Distribution along the Lap Splice Length.

Figures 6.16 and 6.17 display the analysis results for the same column and using the
same model and constitutive material parameters, with the exception of absence of the lap

splice. The analysis employed continuous reinforcing bars throughout the full height of
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Figure 6.15. Predicted Base Moment vs. Total Rotation along the Lap Splice Length.

column. Comparing the Figure 6.8 with the Figures 6.16 and 6.17, it is observed that

column model with lap splice shows more degradation after peak (although the capacities

are found same) with clear pinching properties.



130

Lateral Drift (%)

400 400

= 200 200

X

= |

®

S o 0

©

o |

®©

— 200 — -200
-400 -400

-200 -100 0 100 200
Top Displacement (mm)

Figure 6.16. Predicted Load — Displacement Response of the Column with Continuous
Reinforcing Bars Using Harajli (2009) Bond Slip Relationship for Partially-Confined
Concrete.
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Results presented in Figure 6.16 are obtained using the bond stress vs. slip
constitutive relationship for partially confined concrete by Harajli (2009). For comparison,
Figure 6.17 shows analysis results for the special case of using rigid bond slip springs
between reinforcing bars and concrete (flexural response with perfect bond assumption).
Comparison of the two analytical responses indicates that although there is no slip failure
or no significant slip deformation when continuous reinforcement is used, incorporation of
the bond slip springs may marginally change the geometry of the unloading/reloading
loops of the cyclic response. The model which includes bond slip springs (Figure 6.16)
predicts slightly narrower unloading/reloading loops compared to the model which

assumes perfect bond between steel and concrete (Figure 6.17).

So proposed analytical model are capable in predicting cyclic response both at global
(lateral load vs. top displacement, moment vs. rotations) and local levels (stress and strain
of steel, average concrete strain, position of neutral axis and bond stress distribution)

correctly.

6.3. Parametric Sensitivity Studies

Apart from constitutive material and bond slip parameters, the only parameters
associated with the analytical model are the number of model elements stacked on top of
each other along the height of the column (m), the number of uniaxial concrete elements
(macro-fibers) along the column cross section (n), and the parameter defining the relative
location of the center of rotation along the height of each model element (c). Sensitivity of
the model results to variations of these parameters is addressed in this section. The

sensitivity of the model response to the axial load level on a column is also investigated.

Figures 618(a) and 6.18(b) illustrates preliminary lateral load vs. top displacement
response predictions for the aforementioned column specimen (Specimen 2S10MI, tested
by Melek and Wallace (2004)), using either 8 model elements along the lap splice with
thirteen uniaxial concrete elements along the width of the column, or by using 16 model
elements along the lap splice with 26 uniaxial concrete elements along the width. Four
model elements are used above the lap splice region of the column. In both analyses, the

pull-out bond stress vs. slip relationship for confined concrete by Eligehausen et al. (1983)
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was used for the bond slip springs in the vicinity of the stirrups, whereas the splitting bond
stress vs. slip relationship for partially-confined concrete by Harajli (2009) was used for
the others. For the analysis depicted in Figure 6.18(a), pullout springs were used for 2 of
the 8 model elements (1 at the location of each tie), whereas for Figure 6.18(b), pullout
springs were used for 4 of the 16 model elements (2 at the location of each tie). For the
remaining elements over the entire column length, splitting springs for partially-confined

were used for both analyses.

The comparison indicates that increasing the number of concrete macro-fibers or the
number of model elements does not change significantly the prediction of the global
response (lateral load vs. top displacement); however, use of more elements is valuable in
terms of obtaining more detailed information on local behavior, such as the state of stress
and strain at a particular location. For example, results shown in Figure 6.18(c) compare
the average longitudinal strain histories predicted at the extreme concrete fiber and the
cross-sectional centroid of the column at the base. Using more model elements over the
height of the column allows for an improved local prediction of the strains. Also, using
more concrete macro-fibers along the width of the column allows for a more refined
description of the concrete cross section. Therefore, the model incorporates the flexibility

to choose how much detail is desired in the analytical results.
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Figure 6.18. Sensitivity of the Response to Number of Model Elements and Concrete

Macro-Fibers.
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Analysis results presented in Figure 6.18 also indicate that there is apparent cyclic
strength degradation (reduction in lateral load during cyclic loading compared with
monotonic loading), when pullout and splitting springs are used in combination. The
backbone of the analytical cyclic response is reduced, compared with the monotonic
response. This is due to the cyclic bond stress degradation in the pullout constitutive model
by Eligehausen, et al. (1983), which is not present in the splitting constitutive model for
partially-confined concrete by Harajli (2009). As well, comparing the analysis results
presented in Figure 6.8 (using splitting springs only) and Figure 6.18 (using pullout and
splitting springs in combination), it is apparent that as there is no significant difference in

the analytical responses obtained using these two bond-slip spring calibration methods.
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Figure 6.18. (Continued) Sensitivity of the Response to Number of Model Elements and

Concrete Macro-Fibers.

Sensitivity of the analysis results to the parameter defining the relative location of
the center of rotation (also the relative location of the horizontal shear spring) along the
height of each model element c is illustrated in Figure 6.19. Figure 6.19(a) compares the
predicted lateral load vs. top displacement response obtained using a column model with

eight model elements (and thirteen concrete macro-fibers) for a value of ¢ = 0.4
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recommended by Vulcano et al. (1988), and an illustrative extreme value of ¢ = 0.0 (center
of rotation at the bottom of each model element). Figure 6.19 (b) compares the predicted
response for ¢ = 0.4 and ¢ = 0.0, using a column model with 16 model elements (and 26
concrete macro-fibers). The two analytical responses are very similar, indicating that
variation in parameter ¢ does not influence the characteristic shape of the load —
displacement response significantly, as long as an adequate number of model elements are

stacked on top of each other.
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Figure 6.19. Sensitivity of Response to Parameter c.
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Figure 6.19. (Continued) Sensitivity of Response to Parameter c.

Sensitivity of the model response to variation of the applied axial load level on the
column was also investigated. Figure 6.20 shows a comparison of the analytically
predicted lateral load versus top displacement responses of the column for applied axial
load levels of 10% , 20% and 30% of the axial load capacity of the column respectively.
The model response for zero axial load was presented previously in Figure 6.8. The results
clearly display the significant impact of axial load on the column response. The analytical
model successfully captures the influence of the axial load level on the flexural and bond

slip behavior of columns with lap splices.
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Figure 6.20. Effect of Axial Load Level on Analytical Response.
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Figure 6.20. (continued) Effect of Axial Load Level on Analytical Response.

Overall, based on the preliminary analysis results presented, it is verified that the
analytical model proposed captures important response characteristics associated with the
cyclic behavior of reinforced concrete columns with lap splices, the response of which is
governed by either bond slip, flexure, or a coupled combination thereof. The analytical
model is capable of directly incorporating important behavioral features in the analysis,
including shifting of the neutral axis along the column cross-section, the distribution of
bond stresses and slip deformations in the starter and longitudinal bars along the lap splice,
and the direct effect of axial force (constant and fluctuating) on the analytical response,
which are commonly ignored in simple models. Characteristics of the cyclic response,
including stiffness degradation, and strength degradation, and hysteretic shape are clearly
captured in the analysis results. Deterioration of lateral load due to slip failure and the
preceding pinched response are also clearly represented. It is observed that the model
global response is not significantly sensitive to model parameters including the number of
model elements over the height of a column or the number of concrete macro-fibers along

the width of the cross-section, as long as a reasonable number of model elements and
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macro-fibers are used in the construction of the model. However, finer discretization of the
model provides improved local response predictions. Details on experimental calibration of
the analytical model and correlation of model responses, at both global and local response
levels, with an extensive test program conducted by Melek and Wallace (2004) are

presented in the following chapter.
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7. EXPERIMENTAL CALIBRATION AND VERIFICATION OF THE
ANALYTICAL MODEL

This chapter provides detail information on physical calibration of the analytical
model and comparison of the model results with results of an experimental program on six
densely-instrumented column specimens, which incorporate deformed reinforcing bars and
deficient lap splices. A brief description of the experimental program, detailed information
on calibration of the model, and comprehensive correlations of model results with
extensive test data are presented. Analytical results are compared with the experimental
measurements, at both global and local response levels. The comparisons are useful for
understanding the bond slip response characteristics of reinforced concrete columns with
deficient lap splices, as well as for assessment of the effectiveness and accuracy of the
analytical model. The comparisons also help illustrate the model capabilities, limitations,

and possible improvements.

7.1. Overview of the Experimental Program

The column tests by Melek and Wallace (2004), described in detail in Melek (2006),
are used to calibrate and evaluate the analytical model. In this experimental program, six
full-scale columns were tested under a variety of conditions. The test specimens consisted
of cantilever columns which are monolithically-cast with foundation blocks, which are
attached to a strong floor. The specimens are subjected to different levels of axial load and
cyclic lateral loads applied at the top of the specimens. The specimen configuration
represented half the height of an interior column in a building, extending from column
mid-height (where a point of inflection is expected under earthquake loading) to the
column-joint interface. Column heights between 1.52 m and 1.83 m, and a 457x457 mm
square cross section were used for the test specimens. Brief descriptions of specimen
details and the test setup are provided in the following sections. Additional details of the

experimental program are available in Melek (2006).
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7.1.1. Specimen Details

Column reinforcing details (Figure 7.1), with eight 25.4 mm nominal diameter
vertical bars and 9.5 mm diameter hoops with 90-degree hooks spaced at 305 mm on
center along the column height, were based on a review of typical reinforcing details in
older buildings, and are very similar to the details used in the specimens tested by Lynn et
al. (1996). As deformed bar was used, there was no slip at the top of the longitudinal bar.
In the tests, the column height was selected to ensure the shear strength of the column was
sufficient to develop the flexural strength at the base of the column, where the lap splice
was located. This was done to ensure that splice failures would be observed. A lap splice
length of 20 longitudinal bar diameters (20dy, 508 mm) was used and axial load was held
constant during application of a prescribed cyclic lateral displacement history at the top of

the column.

The lateral displacement history selected for 5 of the 6 tests is fairly typical, and
consists of three cycles at each displacement level, with monotonically increasing drift
levels (0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 3, 5, 7, and 10%). A lateral displacement history
representative of what might be expected in near-fault seismic regions was used for one
specimen (2S20HN). The primary test variables were the axial load level (0.1, 0.2 and 0.3
of the column concrete axial load capacity, 4,f".), the column shear demand at maximum
base moment (0.67 to 0.93 of the nominal shear strength, V), and the applied displacement
history (shown in Table 7.1). The first three specimens (2S10M, 2S20M and 2S30M) were
subjected to the standard cyclic lateral displacement history (STD), with the axial load held
constant for the duration of the tests at 0.1, 0.2, and 0.3 of Agf’c (534, 1068 and 1601 kN),
respectively. A comparison of the provided lap-splice length (20d,) with the lap-splice
length required by ACI 318-02 (calculated as 31dy), revealed that splice failure
(degradation of lateral load capacity) was expected when the bending moment in the

column reached approximately 60% to 70% of the nominal
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Figure 7.1. Reinforcing Details.

moment capacity; although a review of previous test data (e.g., Lynn et al.(1996))
suggested that column longitudinal reinforcement may reach yield in tension. The
objective of the three tests (specimens 2S10M, 2S20M and 2S30M) was to assess the
influence of axial load on lap splices with moderate shear stress level and widely-spaced
transverse reinforcement. Two additional specimens (2S20H and 2S20HN) were tested to
investigate the influence of higher shear force and applied displacement history on column
behavior, for moderate axial load level (0.20Agf’c). The axial load level and the expected
average shear stress (at failure) value were increased for the final specimen (2S30X) to
magnify the maximum shear force demand expected during the test to approximately the
calculated nominal shear capacity (Table 7.1). The average shear stress level at the
expected initiation of splice failure was magnified by decreasing the column height from
1829 mm to 1677mm for specimens S20HI and S20HIN, and to 1524 mm for specimen
S30XI.
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The specimen identification (ID) labels were similar to those used by Lynn et al.
(1996); and define the longitudinal steel ratio, the level of the applied axial load, the shear
demand level for the lateral load value expected at splice deterioration (Moderate, High
and MaXimum), and the applied lateral displacement history. For example, label 2S20HN
corresponds to: 2 = 2% longitudinal steel ratio (8-25.4 mm) ; S = Spliced; 20 = 0.20A,f;
H = High Shear Demand; N = Near Fault Lateral Displacement History.

Table 7.1. Test matrix.

P Zsprov[ded V.(kN) | ¥V (kN) % Column Displacement
Specimen | (% A,f; ") Z— " height(mm) history
Syequired*

2S10M 10 0.65 212 201 0.67 1829 STD

2S20M 20 0.65 245 334 0.70 1829 STD

2S30M 30 0.65 278 367 0.78 1829 STD

2S20H 20 0.64 242 331 0.81 1676 STD
2S20HN 20 0.64 242 331 0.81 1676 Near Fault

2S30X 30 0.64 275 363 0.93 1524 STD

*ACI 318-02 Equation (12-1)

7.1.2. Materials

Standard compressive strength tests (ASTM C31-39) on 153mm x 305mm cylinders
were conducted 7 and 28 days after concrete casting. In addition, concrete stress — strain
tests were also performed at the test dates. Concrete peak compressive stress value was
approximately 36 MPa, with a strain at peak stress of 0.002 and 0.0025 for the first and
second concrete batches, respectively, used for the two groups of specimens (Figures 7.2

and 7.3).

Stress — strain tests were not conducted for the longitudinal reinforcing bars since bar
yielding was not anticipated due to the inadequate splice lengths provided). Geometrical
details of longitudinal reinforcing bars are shown on Figure 7.4. It is noted that Grade 60

(Yield strength, 413 MPa) longitudinal reinforcement was used for the specimens,
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Figure 7.3. Stress-Strain Diagram for Specimens: 2S20H, 2S20HN, and 2S30X.

although Grade 40 (Yield strength, 275 MPa) reinforcement is more common in older
buildings, because of the non-availability of Grade 40 reinforcing bars in the market.
However, use of Grade 60 reinforcement would actually increase the possibility of splice

failure along short lap-splice length (20dy), which was the desired failure mode. The
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mechanical properties of the steel and concrete used in the construction of the test

specimens are shown in Table 7.2
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Figure 7.4. Longitudinal Reinforcement Bar Geometry (d, = 25.4 mm (#8)).

Table 7.2. Material Properties

Material 2S10M-2S820M-2S30M 2S20H-2S20HN-2S30X
fl(Mpa) | f,(Mpa) | f.(Mpa) | f/(Mpa) | f,(Mpa) | f.(Mpa)
Concrete 36 34 38 35 i 37
Steel d,(mm) | f,(Mpa) | f,(Mpa) d,(mm) | f,(Mpa) | f,(Mpa)
(column) 25.4 510 818 25.4 510 818
(starter) 254 521 746 254 507 807
(tics) 9.5 481 750 9.5 431 750

7.1.3. Test Setup

The test setup used in the experiments is shown in Figure 7.5. The lateral load was

applied with a 550 kN hydraulic actuator with 610 mm stroke. The actuator was bolted to

the column specimen at one end and to a steel reaction frame at the other end, using rod

eye-clevis bracket connections that allow free rotation in the vertical plane of the actuator.
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An MTS 407 controller connected to a hydraulic power supply was used to control the

actuator load and displacement.

Figure 7.5. Test Setup with Reaction Frame (Melek, 2006).

The axial load on each specimen was held constant for the duration of the applied
lateral displacement history. The axial load assembly consisted of two, 889.6 kN
ENERPAC hollow plunge cylinders, two 46 mm diameter pre-stressing steel rods, two
steel channels, and two 76 mm thick steel plate assemblies. The connection at the top of
the column to the axial load assembly was established using 16 mm diameter J-bolts that
were anchored in the concrete at the top of the column. The specimens were subjected to
axial load by placing the 46 mm diameter threaded rods in tension. The threaded rod was
anchored to a 76mm plate, which was anchored to the strong floor with four 32 mm
diameter, threaded, high-strength steel tie-down rods. A hand pump with a reservoir was
used to pressure the cylinders. During testing, the hydraulic pressure was continuously

monitored and adjusted to maintain the desired level of constant axial load (Melek, 2006).
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7.1.4. Instrumentation and Data Acquisition

Different types of instrumentation were used to monitor the applied lateral load and
displacement, strain on longitudinal and transverse reinforcement, flexural and shear
deformations of the column, and pedestal translation and rotation. For each specimen,
reinforcing bar strains were measured using 27 longitudinal and 6 transverse reinforcement

strain gauges, as shown in Figure 7.6. The strain-gauge-labeling scheme is presented
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Figure 7.6. Strain Gauge Layout (Melek, 2006).
in Figure 7.7. Column deformations (flexure, shear and lateral displacement) were
measured with linear voltage transducers (+/- 1.5 in.; 38 mm). The instrumentation layout
was modified slightly between the first set of three specimens and the second set of three
specimens. External instrumentation for the first set of three specimens (S10MI, S20MI,
and S30MI) consisted of 31 linear transducers, 25 on one side of the specimen to form a

grid as shown in Figure 7.8. Four transducers were placed on the opposite face of the
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column to obtain rotational response at the column base due to flexure and slip (Figure

7.9).

v

b

203.2mm

Figure 7.7. Strain Gauge Labeling Scheme (Melek, 2006).

The instrumentation layout was changed for the second set of specimens, where the
number of linear potentiometers used was reduced from 31 to 18. Of the 18 linear
potentiometers, six pairs were utilized to measure the flexural response (average curvature)
of the specimen over the column height (Figure 7.10). The measurement of shear
distortions was made possible by using four wire potentiometers (Figure 7.11) that were
placed diagonally on the opposite face of the column. Two additional transducers were
placed on two ends of the pedestal base to monitor any rotation of the foundation system.

The external instrumentation layout and the labeling scheme are given in Figures 7.12 and
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7.13, respectively. Potentiometers were connected to the reinforced concrete column with
6 mm - diameter fine threaded rods which were placed in the forms prior to concrete

placement.

Figure 7.8. External Instrumentation Grid (2S10M, 2S20M, 2S30M, Melek, 2006).

Figure 7.9. Transducers Used to Measure Total and Slip Rotation at Column Base

(Specimens 2S10M, 2520M, 2S30M, Melek, 2006).
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Figure 7.10. External Instrumentation (2S20H, 2S20HN, 2S30X, Melek, 2006).

Figure 7.11. Shear Instrumentation (2S20H, 2S20HN, 2S30X, Melek, 2006).
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The lateral load was measured using a 667 kN load cell. The column top lateral
displacement was monitored using a transducer (+/- 305mm) mounted on the cylinder. In
addition, a wire potentiometer (+/- 508 mm) was mounted between the specimen and a
rigid external reference frame to measure the lateral displacement at the point of lateral
load application (top displacement). Besides top displacement, mid-height and pedestal
lateral displacements were measured relative to the rigid reference frame using wire

potentiometers (Figure 7.14).
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Figure 7.12. External Instrumentation Layout (2S10M, 2S20M, 2S30M).
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Figure 7.13. External Instrumentation Layout (2S20H, 2S20HN, 2S30X)
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Figure 7.14. Test Specimen with Cable-Extension Position Transducers (Melek, 2006).

7.1.5. Testing Procedure

The specimens were subjected to constant axial load and cyclic lateral loads by the
application of a cyclic displacement at the top of the column. Two different lateral
displacement histories were applied to specimens, a standard history and a near-fault
history. The standard displacement history is fairly typical (Figure 7.15), and consisted of
three cycles at each displacement level with monotonically increasing drift levels (0.1,

0.25,0.5,0.75, 1.0, 1.5, 2.0, 3, 5, 7, and 10%).

The specimen subjected to the near-fault displacement history was cycled three times
at 0.1, 0.25, 0.5 and 1.0% drift levels, followed by one half cycle to 1.5% lateral drift level
in one direction, followed by monotonically increasing drift in the opposite direction until

failure was reached (Figure 7.16).

One objective of the tests was to apply large displacement amplitudes to assess both

the loss of lateral load capacity and the loss of axial load-carrying capacity. The latter was
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important in evaluating life-safety and collapse prevention performance levels. Due to this
consideration, lateral drift cycles were continued after the loss of lateral strength until axial

load-carrying capacity was lost.
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Figure 7.15. Standard Displacement History.
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Figure 7.16. Near-Fault Displacement History.
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7.2. Calibration of the Analytical Model

For calibration of the analytical model proposed, all six column specimens tested by
Melek (2006) was used. Experimental calibration of the geometric, as well as the

constitutive parameters of the analytical model, are discussed in the following subsections.

7.2.1. Geometry

Figures 7.17 and 7.18 show a preliminary lateral load — top displacement response
prediction obtained using the analytical model, for column specimen 2S10M, using either
eight model elements along the lap splice length with thirteen concrete macro-fibers along
the width of the column, or using 16 model elements along the lap splice length with 26
concrete macro-fibers along the width. Four model elements are used above the lap splice
region for both analyses. For both of these analyses, the splitting bond stress vs. slip
relation for partially confined concrete by Harajli (2009) and the pullout bond stress vs.
slip relation for confined concrete by Elegehausen et al. (1983) are used in a combined
manner, where the bond slip springs in the vicinity of the ties are assigned pullout
relationships, as described in Chapter 6. Since the comparison indicates that increasing the
number of concrete macro-fibers or the number of model elements does not significantly
influence the prediction of the global response (lateral load vs. top displacement), for
subsequent analysis of all of the six specimens, 8 model elements were used along the lap
splice region, 4 model elements were used above the lap splice region, and 13 concrete

macro-fibers were used along the width of the columns.

The model elements are discretized along column height to allow consistent
deformation comparisons between model and experimental results at all locations where
strain gauges and displacement transducers were attached to the specimens during testing.
The location and height of each model element is calibrated in such a way that the location
of each model element approximately coincides with the location of a strain gauge or
displacement sensor. For all analyses, the parameter representing the relative center of

rotation of each model element (¢) was assigned a value of 0.40.
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7.2.2. Materials

7.2.2.1 Steel Stress-Strain Relation. The constitutive model used for reinforcing steel was

calibrated for yield strength, elastic modulus, strain hardening ratio, and cyclic curvature
degradation parameters. Yield strength values were calibrated based on uniaxial test results
on steel coupon samples of the reinforcing steel used in the construction of the specimens.
Since test results for the stress vs. strain behavior of the reinforcement was not available,
typical values of EQ =200 GPa and b = 2% was used for the elastic modulus and the strain
hardening ratio, respectively. The values RO = 20, al = 18.5, and a2 = 0.15 (accounting
for the cyclic degradation of the curvature coefficient R and thus the Bauschinger effect),
originally suggested by Menegotto and Pinto (1983), were used in the calibration. Table
7.3 summerizes the constitutive parameters used in the analysis for reinforcing steel. Since
longitudinal bar yielding was not observed during these tests, the steel yield strength and
strain hardening ratio values were not modified for consideration of tension stiffening

effects on the reinforcement.

Table 7.3. Calibrated Constitutive Parameters for Concrete and Steel

Material Parameter Specimens 2S10M-2S20M- Specimens 2S20H-
2S30M 2S20HN-2S30X
fc/ (Mpa) 36 35
g 0.002 0.0025
Concrete in ¢
compression E_(Mpa) 27577 21000
g 0.0025 0.0032
r 5.02 7
[, (Mpa) 3.4 34
c 0.00008 0.00008
Concrete in !
tension E (Mpa) 27577 21000
g, 0.0035 0.0035
r 1.20 1.20
Reinforcing bar f. (Mpa) 510 (column), 521 (starter) 510 (column), 507 (starter)
y
(Column, starter and 481 (ties) and 481 (ties)
and ties) E,(Gpa) 200 200
b 0.02 0.02
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7.2.2.2 Concrete Stress — Strain Relations The monotonic envelope curves of the Chang

and Mander (1994) constitutive model for compression and tension were calibrated for
values of peak compressive and tensile stress (f°. and f;), strains at peak stress (€. and &),
elastic modulus E; the parameter r defining the shape of the envelope curves, and the

normalized strain parameter X, (or &) controlling the post peak slope of the envelope

curves.

Test Results (Unconfined)
2510M-2S20M-2S30M

Unconfined Model (2S10M-2S20M-2S30M)

(Mander et al. with 20% concrete residual)

Test Results(Unconfined)
2S20H-2S20HN-2S30X

Unconfined Model (2S20H-2S20HN-2S30X)

Mander et al. with 20% residual
40 L. L,

Stress (MPa)

0 0.004 0.008 0.012
Strain

Figure 7.19. Calibration of Concrete Constitutive Model for Compression.

The envelope curve for unconfined concrete in compression was calibrated using
results of monotonic stress-strain tests, conducted at time of testing, on standard 152 mm x
304 mm cylinder specimens of the concrete used in the construction for the first (2S10M,
2S20M, 2S30M) and second batches (2S20H, 2S20HN, 2S30X) of concrete (Figure 7.19),
with a 20% residual stress value defined for the envelope curve for improving the stability
of the analysis. The parameters used for the calibration of the monotonic envelopes for
unconfined concrete in compression and tension are presented in Table 7.3. Stress — strain
relations for confined concrete were not used in modeling of these columns, since the

amount of transverse reinforcement used in the specimens did not provide effective
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confinement. The concrete tensile strength was determined from the relationship f; =
031\ ¢ (MPa), and a value of 0.00008 was selected for the strain g, at peak monotonic
tensile stress, as suggested by Belarbi and Hsu (1994). The shape of the monotonic tension
envelope was calibrated (via the parameters r and x.,) to reasonably represent the average
post-crack stress — strainship relation proposed by Belarbi and Hsu (1994) for considering
the effects of tension stiffening on concrete. The hysteretic stress-strain rules defined by
Chang and Mander (1994), modified slightly as described by Orakcal (2004), were used to

simulate the cyclic behavior of unconfined concrete implemented in model.

7.2.2.3 . Shear Force - Deformation Relation. The trilinear envelope curve of the origin-

oriented force—deformation relationship, which was adopted for the horizontal shear
springs in the model elements, were calibrated based on the empirical relationships
proposed by Sezen (2002), as described in Chapter 3. The calibrated envelope parameters
for each of the six column specimens are listed in Table 7.4. It must be mentioned that
during testing, none of the column specimens experienced shear failure or significant shear

deformations.

Table 7.4. Shear Force — Deformation Envelope Parameters for the Horizontal Shear
Springs.
(mm.) (kN)

Ser Jy Sn Ver Vy Vh \Z:
2S10M 0.03 0.80 3.96 334 208.7 237.0 251.0
2S20M 0.03 0.81 3.96 334 246.5 267.9 276.5
2S30M 0.03 0.80 3.96 334 278.6 294.1 296.6
2S20H 0.03 0.81 3.63 36.0 263.6 282.5 305.0

2S20HN | 0.03 0.81 3.63 36.0 263.6 282.5 305.0
2S30X 0.03 0.80 3.30 39.6 328.0 3332 364.0

Column

7.2.2.4 Bond Stress — Slip Relations.Envelope parameters of the constitutive bond stress —

slip relationships adopted in the analytical model, for splitting failure by Harajli et al.
(1994, 2004, 2009) and for pullout failure (in the vicinity of the ties) by Eligehausen et al.
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(1983), were calibrated as proposed originally in the constitutive relationship formulations.

The calibrated parameters are listed in Table 7.5.

Table 7.5. Calibrated Bond Stress — Slip Parameters for Splitting and Pullout.

Parameter (04
S S, 3 u, u, u u s S, Yij

mm | mm | mm | Mpa | Mpa | Mpa | Mpa | mm| mm

Harajli et al. 1.95 4.55 13 15.42 - 5.74 3.07 0.22 0.15 0.70 0.65
(1994)
Eligehausen et 1.24 3.71 13 14.78 5.48 - - - - 0.40
al. (1983)

7.3. Comparison of Analytical Results with Test Results

Detailed comparisons were made between the analytical model results and the
experimental measurements, at various response levels, for all six of the column specimens
tested in the experimental program. Comparisons of various response attributes are

discussed in the following subsections.

7.3.1. Lateral Load — Top Displacement Response

The lateral load — top displacement response measurements for the column
specimens were processed to eliminate measurement errors related to sliding and uplift of
the specimen pedestal and the effect of the horizontal component of the axial load on
lateral load at higher drift levels. The corrected lateral load — top displacement

measurements were considered in the comparisons.

Figures 7.20 to 7.31 compare the measured and predicted lateral load — top
displacement responses for all six column specimens. It can be observed in the figures that
the general characteristics of the measured response agree very well with the calculated
response.  All specimens exhibit similar responses, with sudden lateral strength
degradation at a drift levels between 1% and 1.5%, both in measured and calculated

results. It is also observed that the peak lateral load reached for each specimen is
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influenced by the level of the applied axial load, where the the lateral load capacity

increases with higher axial load levels.

The lateral load capacity and the lateral stiffness of the columns are well-represented
for most of the lateral drift levels. It can be seen that the model provides a reasonably
accurate estimate of the global response for all columns, although the model tends to
slightly underestimate the lateral displacement values at peak load. It must be mentioned
that the hysteresis laws of implemented analytical stress-strain relations for steel and
concrete, shear, and bond stress-slip relations are controlled by several parameters that
account for cyclic properties of the response, including stiffness degradation upon
unloading, pinching of the hysteresis loops and strength decay upon repeated loading
cycles. Overall, the comparisons indicate that the cyclic properties of the analytical

responses are in agreement with the measured cyclic behavior.
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Figure 7.20. Measured Lateral Load Top Displacement Relationship for Specimen
2S10M.
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Figure 7.21. Calculated Lateral Load Top Displacement Relationship for Specimen
2S10M.
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Figure 7.22. Measured Lateral Load Top Displacement Relationship for Specimen
2S20M.
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Figure 7.23. Calculated Lateral Load Top Displacement Relationship for Specimen
2S20M.
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Figure 7.24. Measured Lateral Load Top Displacement Relationship for Specimen
2S30M.
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Figure 7.25. Calculated Lateral Load Top Displacement Relationship for Specimen
2S30M.
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Figure 7.26. Measured Lateral Load Top Displacement Relationship for Specimen 2S20H.

Lateral Drift (%)

-10 -5 0 5 10
400 | | | ]
80
1 Calculated |
’Z\ 200 - | 40 8-
< ] 3
5 |
© ©
S 0 0 §
© =
- | S
(B e
— 200 — - 408
— -80
-400
-200 -100 0 100 200

Lateral Displacement (mm)

Figure 7.27. Calculated Lateral Load Top Displacement Relationship for Specimen
2S20H.
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Figure 7.30. Measured Lateral Load Top Displacement Relationship for Specimen 2S30X.
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Figure 7.31. Calculated Lateral Load Top Displacement Relationship for Specimen
2S30X.
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7.3.2. Rotation Histories at Different Locations

Total rotations predicted by the model due to combined effects of flexural and slip
deformations were compared with the measued rotations for all six specimens at different
locations (at column base, at the top of the lap splice, and in-between). Rotations predicted
by the model due to slip deformation only (with flexural rotations excluded) were also
compared with the experiment results. Figures 7.32 to 7.38 present total rotation
comparisons at column base for all six column specimens. Figures 7.39 to 7.46 compare
the total rotations at the top of the lap splice regions, with the exception of Figure 7.41,
which compares total rotation at a distance of 330 mm from the column base for specimen
‘2S10M’. Figures 7.47 to 7.52 compare pure slip rotations (with flexural contribution
excluded) at the top of lap splice region for all specimens. The results are discussed in the

following paragraphs.

It is first necessary to describe the methodology used to calculate the rotation
measured in the tests, as well as the way rotations are defined in the analysis results. In the
tests, for specimens 2S20H, 2S20HN and 2S30X, total rotations at the top of the splice
were determined by calculating the difference in the axial (vertical) displacements
measured by the two displacement sensors (SL1 and SL2 as shown in Figure 7.13), and
dividing the difference in the axial displacements by the distance between the sensors (660
mm). To calculate the total rotation at a distance of 330 mm from column base for
specimens 2S10M, 2S20M and 2S30M, the, same procedure was adopted, as shown in
Figure 7.12.

Also in the test data, in order to obtain the total rotation at the base of specimens
2S10M, 2S20M and 2S30M, the difference in the axial displacements measured by the two
linear displacement sensors (SL3 and SL4 as shown in Figure 7.12) were divided by the
distance between the sensors (508 mm), and this value was subtracted from the total

rotation at a distance of 330.20 mm from column base.

In order to calculate the total rotation at column base for specimens 2S20H, 2S20HN
and 2S30X, the difference in the axial displacements measured by the two displacement

sensors L2 and L1 (shown in Figure 7.13) was divided by the distance between the sensors
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(203.20 mm) to obtain a first rotation value. Next, the difference in the axial displacements
measured by the two displacement sensors L4 and L3 were divided by the distance
between the sensors (203.20 mm) to obtain a second rotation value. Finally the rotation at
base was obtained by subtracting the sum of these two values from the total rotation at the
top of the lap splice. Finally, in the test data, in order to obtain the total rotation at top of
the lap splice for specimens 2S10M, 2S20M and 2S30M, the two rotation values
calculated in a similar manner to specimens 2S20H, 2S20HN and 2S30X, with the total

rotation values at column base.

In the analysis results, total rotations at different locations on the columns are
directly obrained from the rotational degrees of freedom of the model, as flexural and slip
deformations are coupled in the model results. However, since pure slip deformations
along the splice can contribute significantly to column top displacement; rigid body
rotation of the column due to slip deformations over the splice length can also be obtained
from the model results. In the analysis results, slip rotation values were extracted by
subtracting the rotations associated with the longitudinal deformations of the uniaxial steel

elements from the the total rotations at the rotational degrees of freedom of the model

Figures from 7.32 to 7.38 compare analytical and experimental results for the total
rotation histories at the base of all column specimens (2S10M, 2S20M, 2S30M, 2S20H,
2S20HN and 2S30X). The comparisons indicate that analytical model captures the
experimental results, with the only exception of specimen 2S10M (Figures 7.32 and 7.33).
Analysis results presented in Figures 7.32 and 7.33 were obtained using 8 model elements
in the lap splice region with 13 concrete macro-fibers and 12 model elements in the lap
splice region with 26 concrete macro-fibers, respectively. For this particular specimen,
accuracy of the predicted response is apparently sensitive to discretization of the model,

probably due to strain localization effects associated with crushing of concrete.

Figures 7.39 to 7.46 compare analytical and experimental total rotation histories at
the top of the lap splice for all column specimens (2S10M, 2S20M, 2S30M, 2S20H,
2S20HN and 2S30X). A reasonable level of agreement is observed in these figures
between the measued and calculated rotation histories. Analysis results shown in Figures

7.39 and 7.40 were obtained using 8 model elements in the lap splice region with 13
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concrete macro-fibers and 12 model elements in the lap splice region with 26 concrete
macro-fibers, respectively. As the two analysis results are close, strain localization effects

do not seem to be governing the response predictions for this case.

Figure 7.41 compares the analytical and experimental total rotation histories at a

distance of 330 mm from column base, for specimen 2S10M.

Correlation of measured and calculated slip rotations (with flexural contributions
excluded) at the top of the lap splice region are also reasonably well as shown in Figures
from 7.47 to 7.52. Overall, the analytical model has proved to be efficient in predicting
rotations (both due to slip deformations and the combined effect of flexural and slip

deformations) at different locations, for all of the column specimens investigated.
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Figure 7.32. Comparison of Measured and Calculated Total Base Rotation Histories for

Specimen 2S10M (Analysis with 8 Model Elements and 13 Macro-Fibers).
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Figure 7.33. Comparison of Measured and Calculated Total Base Rotation Histories for

Specimen 2S10M (Analysis with 12 Model Elements and 26 Macro-Fibers).
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Figure 7.46. Comparison of Measured and Calculated Total Rotation Histories at Top of
Splice for Specimen 2S30X.
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Figure 7.47. Comparison of Measured and Calculated Slip Rotation Histories at Top of
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Figure 7.48. Comparison of Measured and Calculated Slip Rotation Histories at Top of
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Figure 7.49. Comparison of Measured and Calculated Slip Rotation Histories at Top of
Splice for Specimen 2S30M.
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7.3.3. Reinforcing Steel Strain Distributions and Histories

Along the lap splice regions of the test specimens, three strain gauges were affixed
to the exterior (corner) longitudinal bars, whereas two gauges were affixed to the exterior
(corner) starter bars (starter bars being the bars anchored into the pedestal), as depicted in
Figure 7.7. It can be deduced that longitudinal strains are equal to zero at the tips of the
longitudinal and starter bars. Damage on the specimens and during testing led to failure of
the strain gauges, generally at approximately 3% lateral drift (data point 770); therefore,

readings for higher drift ratios are not available for most of the strain gauges.

Figures 7.53 to 7.58 compare the measured and calculated longitudinal strain
distributions along the lap splice on exterior longitudinal and starter bars of three
specimens (2S10M, 2S20M and 2S30M) at selected lateral drift levels. Figures 7.59 to
7.73 compare the analytically-obtained longitudinal strain histories with the steel strain
history measurements of the strain gauges, located at different locations on the longitudinal
and starter bars for different column specimens. In general, the test measurements and

model results show reasonable agreement (considering the typical scatter observed in strain
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gauge measurements in reinforced concrete member tests based on proximity of a strain
gauge to a crack), up to a drift level of 1% (data point 450), after which lateral load

degradation starts with the initiation of bond deterioration along splice length,

It must be mentioned that steel strain predictions obtained using the analytical model
for the interior (side) longitudinal and starter bars were not as good. The strains measured
on the interior bars were significantly different than the strains on the exterior (corner) bars
at the same drift levels, as reported by Melek and Wallace (2004). This may indicate that
bond stresses acting on interior bars (side bars) within a splice may be different than those
acting on exterior bars. The bond stress vs. slip constitutive relationship by Harajli (1994,
2004, 2009) for splitting of partially-confined concrete was originally developed based on
test results for corner bars, and maybe incapable of accurately representing bond stresses
acting on middle bars (side bars) of a column cross-section. A constitutive bond-stress vs.
slip relation specifically applicable to side bars of a reinforced concrete cross section, is

not available in the literature.
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Figure 7.53. Comparison of Measured and Calculated Steel Strain Distributions along Lap

Splice on Exterior Longitudinal Bar of Specimen 2S10M.
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Figure 7.57. Comparison of Measured and Calculated Steel Strain Distributions along Lap
Splice on Exterior Longitudinal Bar of Specimen 2S30M.
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Figure 7.61. Comparison of Measured and Calculated Steel Strain Histories at Location of

Strain Gauge No. 11 for Specimen 2S10M.
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Strain Gauge No. 19 for Specimen 2S10M.
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Figure 7.67. Comparison of Measured and Calculated Steel Strain Histories at Location of

Strain Gauge No. 15 for Specimen 2S20M.
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Figure 7.68. Comparison of Measured and Calculated Steel Strain Histories at Location of

Strain Gauge No. 19 for Specimen 2S20M.
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Figure 7.69. Comparison of Measured and Calculated Steel Strain Histories at Location of

Strain Gauge No. 3 for Specimen 2S30M.
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Figure 7.70. Comparison of Measured and Calculated Steel Strain Histories at Location of

Strain Gauge No. 7 for Specimen 2S30M.
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Figure 7.71. Comparison of Measured and Calculated Steel Strain Histories at Location of

Strain Ggauge No. 11 for Specimen 2S30M.
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0.002
0.001 —
£ o
S B | H( H‘ “ ﬂ L
wn I\ “' L I H " ﬂl ” 1“ L
E 0 / I r\ /‘\ ,\ ,\ ,\ H //\ /»\ |
-oq—'z A v/ | ’ ! \ TN
U) 1 \ \’J v’ ‘\r’ ” ’, ‘! \yr \’ v
.\‘ ’J ‘{r _
-0.001
Strain Gaugue No:19 ]
4 —— Test |
---- Analysis
-0.002 ‘ ‘ ‘
0 200 400 600

Data Point Number
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7.3.4. Concrete Strain Profiles and Average Longitudinal Strain Histories

Figures 7.74 to 7.83 compare the measured and predicted longitudinal strain profiles
(due to deformation of concrete) as well as the neutral axis position, along the width of the

column specimens at different lateral drift levels.

The concrete strain profiles at a distance of 330mm from the base of column
specimens 2S10M, 2S20M and 2S30M, were calculated using measurements of the
displacement sensors SL1 and SL2 (shown in Figure 7.12) at peak positive and negative
top displacement (top displacement reversal) data points, for selected drift levels (Figures
7.74 to 7.79). The concrete strain profiles at a distance of 508 mm from the base (at the top
of the lap splice region) of column specimens 2S20H and 2S30X, were also calculated
using measurements of the displacement sensors SL1 and SL2 (shown in Figure 7.13) at
peak positive and negative top displacement (top displacement reversal) data points, for
selected drift levels (Figures 7.80 to 7.83). It must be noted that the specimens exhibited

sudden lateral load degradation dur to splice failure, at drift levels between 1% and 1.5%.

Average longitudinal strain histories measured by individual displacement sensors
(connected to concrete) were also compared with the analysis results, as shown in Figures
Figures 7.84 to 7.93. location of displacement sensors SL1 and SL2 are shown in Figures
7.12 and 7.13) for all column specimens. The analytical longitudinal strain value at the
location of each displacement sensor was calculated via a simple geometric transformation,
using the displacements at the model degrees of freedom. Data from the displacement
sensors SL1 and SL2 were not available during the entire loading history, since the sensors
were removed at different times before the end of the tests, in order to prevent damage on

the sensors during to crushing of concrete.

Overall, comparisons presented in Figures 7.74 to 7.93 indicate that analytical model
is capable of providing reasonably accurate predictions of the concrete strain profiles (as
well as the neutral axis depth), and the average longitudinal strain histories at specific
locations, especially for lateral drift levels not exceeding 1.5%. At larger drift levels,
together the rapid degradation in load degradation due to splice failure, progressive

crushing of concrete was observed at the base of all of the column specimens, which
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naturally impaired the accuracy of the model in predicting the concrete strain profiles and

longitudinal strain histories.
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Figure 7.74. Comparison of Measured and Calculated Concrete Strain Profiles by

Displacement Sensors (SL1-SL2) for Specimen 2S10M Under Drift Levels.
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Figure 7.75. Comparison of Measured and Calculated Concrete Strain Profiles by

Displacement Sensors (SL1-SL2) for Specimen 2S10M Under Drift Levels.
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Figure 7.76. Comparison of Measured and Calculated Concrete Strain Profiles by

Displacement Sensors (SL1-SL2) for Specimen 2S20M Under Drift Levels.
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Figure 7.77. Comparison of Measured and Calculated Concrete Strain Profiles by

Displacement Sensors (SL1-SL2) for Specimen 2S20M Under Drift Levels.
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Figure 7.78. Comparison of Measured and Calculated Concrete Strain Profiles by

Displacement Sensors (SL1-SL2) for Specimen 2S30M Under Drift Levels.
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Figure 7.79. Comparison of Measured and Calculated Concrete Strain Profiles by

Displacement Sensors (SL1-SL2) for Specimen 2S30M Under Drift Levels.
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Figure 7.80. Comparison of Measured and Calculated Concrete Strain Profiles by

Displacement Sensors (SL1-SL2) for Specimen 2S20H Under Drift Levels.
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Figure 7.81. Comparison of Measured and Calculated Concrete Strain Profiles by

Displacement Sensors (SL1-SL2) for Specimen 2S20H Under Drift Levels.
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Figure 7.82. Comparison of Measured and Calculated Concrete Strain Profiles by
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Figure 7.85. Comparison of Measured and Calculated Average Longitudinal Strain

Histories, at the Location of Displacement Sensor SL2, for Specimen 2S10M.
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Figure 7.86. Comparison of Measured and Calculated Average Longitudinal Strain

Histories, at the Location of Displacement Sensor SL1, for Specimen 2S20M.
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Figure 7.87. Comparison of Measured and Calculated Average Longitudinal Strain

Histories, at the Location of Displacement Sensor SL2, for Specimen 2S20M.
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Figure 7.88. Comparison of Measured and Calculated Average Longitudinal Strain

Histories, at the Location of Displacement Sensor SL1, for Specimen 2S30M.
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Histories, at the Location of Displacement Sensor SL1, for Specimen 2S20H.
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Figure 7.91. Comparison of Measured and Calculated Average Longitudinal Strain

Histories, at the Location of Displacement Sensor SL2, for Specimen 2S20H.
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Figure 7.92. Comparison of Measured and Calculated Average Longitudinal Strain

Histories, at the Location of Displacement Sensor SL1, for Specimen 2S30X.
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Figure 7.93. Comparison of Measured and Calculated Average Longitudinal Strain

Histories, at the Location of Displacement Sensor SL2, for Specimen 2S30X.
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7.3.5. Neutral Axis Position History

The model successfully represents the variation in the position of the neutral axis
measured within the lap splice region of the column specimens, during the cyclic lateral
loading history applied throughout the tests, as shown in Figures from 7.94 to 7.103.
Figures 7.94 to 7.99 compare the predicted position of the neutral axis from the column
centroid, normalized by the column width, at a distance of 330 mm from the base of
column specimens 2S10M, 2S20M and 2S30M, with the measured neutral position
obtained using measurements from displacement sensors SL.1 and SL2 shown in Figure
7.12. Figures 7.100 to 7.103 compare the predicted position of the neutral axis from
column centroid, normalized by the column width, at a distance of 508 mm from the base
of the column specimens 2S20H and 2S30X, with the measured neutral position obtained
using measurements from displacement sensors SL1 and SL2 shown in Figure 7.13. For all
results, the distance from the column centroid to the neutral axis position approaches
infinity when the top lateral displacement (and thus, rotation) of the column approaches
zero, and reaches its local extreme or limit points (peaks and valleys) at peak displacement
(displacement reversal) points. The experimental and analytical neutral axial position
histories show similar variation and reach similar values at peak (displacement reversal)
points, as observed in the figures. The occasional erratic values in the experimental results
are due to distortion of the displacement sensors due to local crushing of concrete at

locations where the sensors are connected.
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Figure 7.95. Analytical Variation in Position of Neutral Axis for Specimen 2S10M.
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Figure 7.97.

2S20M-Analysis

111

\
0 200

400
Data Point Number

\
600

800

1000

Analytical Variation in Position of Neutral Axis for Specimen 2S20M.



206

! \ ! \
2S30M-Test i
0

_3
=
3
X
] 1Ll I -
Lk _
-2 Column Cross-Section

w
\ ‘ \ ‘ \ \

0 200 400 600 800 1000
Data Point Number

Figure 7.98. Experimental Variation in Position of Neutral Axis for Specimen 2S30M.
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Figure 7.99. Analytical Variation in Position of Neutral Axis for Specimen 2S30M.
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Figure 7.100. Experimental Variation in Position of Neutral Axis for Specimen 2S20H.
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Figure 7.101. Analytical Variation in Position of Neutral Axis for Specimen 2S20H.
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Figure 7.102. Experimental Variation in Position of Neutral Axis for Specimen 2S30X.
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Figure 7.103. Analytical Variation in Position of Neutral Axis for Specimen 2S30X.
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7.3.6. Average Bond Stresses along Spliced Bars

The model results are also compared with “processed” test measurements, in terms
of the average bond stresses (along the lap splice region) between reinforcing steel and
surrounding concrete, for both starter and longitudinal bars, as shown in Figures 7.104 to
7.123. The experimental average bond stress (z) values were calculated using the variation
in the longitudinal steel stresses in the bars, calculated using the strains measured by the
strain gauges on the bars. To convert the measured steel strains (¢) into longitudinal steel
stresses (f;), a simple hysteretic elasto — plastic stress — strain relationship was used for the
reinforcing steel, as proposed by Melek (2006). The longitudinal steel stresses were then

transformed into average bond stress values along the lap splice using the relation:

/.4,
A7 (7.1)

u =

where f; is the change in the longitudinal stress on the bar, d) is the nominal bar
diameter, and / is the length of the splice. In this calculation process, to obtain the average
bond stress on a starter bar, measurements of the strain gauge affixed to the starter bar at
the column base level (Strain gauge No.3 shown in Figure 7.7) is used. To obtain the
average bond stress on a longitudinal bar, measurements of the strain gauge affixed to the
longitudinal bar at the top of the splice (Strain gauge No.19 shown in Figure 7.7) is used.
In the analytical model results, average bond stress values along the lap splice between
concrete and the reinforcing steel bars is obtained in a much more direct manner, by
simply taking the weighted average of the bond stresses (weighted with respect to the
height of each model element), which develop in the bond slip springs of the model.

Figures 7.104 to 7.123 compare the experimentally—obtained and analytically—
predicted average bond stresses along the lap splice (between concrete and the longitudinal
or starter bars) vs. the top lateral displacement of each column specimen. As the
experimental bond stress values were processed from strain gauge measurements, the

results are only presented until the data point when the strain gauge was damaged.
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The level of correlation between the analytical and experimental results can be
deemed reasonable, considering the typical scatter observed in strain gauge measurements
in reinforced concrete member tests based on proximity of a strain gauge to a crack. The
analytical model seems to capture the general pattern of the average bond stress vs. top
displacement behavior of the column specimens, and the maximum average bond stress
values for some of them. Both the analytical results and experimental measurements
indicate that the average bond stress levels along the lap splice on the longitudinal and
starter bars are somewhat different; and it is possible that relatively larger bond stresses

will develop on the starter bars.
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Figure 7.104. Experimental Average Bond Stress on Longitudinal Bar along Lap Splice
vs. Top Displacement for Specimen 2S10M.
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Figure 7.105. Analytical Average Bond Stress on Longitudinal Bar along Lap Splice vs.
Top Displacement for Specimen 2S10M.
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Figure 7.106. Experimental Average Bond Stress on Starter Bar along Lap Splice vs. Top
Displacement for Specimen 2S10M.
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Figure 7.107. Analytical Average Bond Stress on Starter Bar along Lap Splice vs. Top
Displacement for Specimen 2S10M.
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Figure 7.108. Experimental Average Bond Stress on Longitudinal Bar along Lap Splice
vs. Top Displacement for Specimen 2S20M.
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Figure 7.109. Analytical Average Bond Stress on Longitudinal Bar along Lap Splice vs.
Top Displacement for Specimen 2S20M.
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Figure 7.110. Experimental Average Bond Stress on Starter Bar along Lap Splice vs. Top
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Figure 7.112. Experimental Average Bond Stress on Longitudinal Bar along Lap Splice
vs. Top Displacement for Specimen 2S30M.
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Figure 7.113. Analytical Average Bond Stress on Longitudinal Bar along Lap Splice vs.
Top Displacement for Specimen 2S30M.



216

Lateral Drift (%)
0

© 1200

— 800
Measured - )
— 400

Bond Stress (MPa
o
\
o
Bond Stress (psi)

2s30Mm | ~400

-8 i i i i -800

-80 -40 0 40 80
Lateral Displacement (mm)

Figure 7.114. Experimental Average Bond Stress on Starter Bar along Lap Splice vs. Top
Displacement for Specimen 2S30M.
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Figure 7.115. Analytical Average Bond Stress on Starter Bar along Lap Splice vs. Top
Displacement for Specimen 2S30M.
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Figure 7.116. Experimental Average Bond Stress on Longitudinal Bar along Lap Splice
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Figure 7.117. Analytical Average Bond Stress on Longitudinal Bar along Lap Splice vs.

Top Displacement for Specimen 2S20H.
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Figure 7.118. Experimental Average Bond Stress on Starter Bar along Lap Splice vs. Top
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Figure 7.119. Analytical Average Bond Stress on Starter Bar along Lap Splice vs. Top

Displacement for Specimen 2S20H.
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Figure 7.120. Experimental Average Bond Stress on Starter Bar along Lap Splice vs. Top
Displacement for Specimen 2S30X.
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Figure 7.121. Analytical Average Bond Stress on Starter Bar along Lap Splice vs. Top
Displacement for Specimen 2S30X.
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Figure 7.122. Experimental Average Bond Stress on Starter Bar along Lap Splice vs. Top
Displacement for Specimen 2S20HN.
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Figure 7.123. Analytical Average Bond Stress on Starter Bar along Lap Splice vs. Top
Displacement for Specimen 2S20HN.
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Overall, the detailed comparisons presented in this chapter indicate that the analytical
model was effective in predicting the cyclic behavior of the column specimens investigated
in the experimental program by Melek (2006). The model provides accurate predictions of
global response characteristics including the lateral load capacity, strength degradation,
stiffness degradation, ductility, pinching properties, and other cyclic attributes of the lateral
load vs. top displacement behavior. Rotations due to flexure and slip at different locations
of the column specimens were also predicted well by the model. Local response and
deformation predictions of the model (steel strain distributions, concrete strain profiles,
neutral axis position, and average bond stresses along the lap splice) are also representative
of the experimental measurements, with a reasonable level of accuracy. In the next chapter,
the analytical model predictions are compared with the results of additional experimental
studies, which are available in the literature, conducted on column specimens with various

configurations and anchorage conditions.
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8. FURTHER EXPERIMENTAL VERIFICATION OF THE
ANALYTICAL MODEL

The scope of this chapter is further experimental verification of the analytical model,
for a more broad set of reinforced concrete column configurations. Response predictions
obtained using the analytical model are compared with additional experimental
observations available in the literature, for various column specimens with both deformed
and plain reinforcing bars, and with both deficient lap splices and continuous longitudinal
reinforcement. A total of 24 column tests conducted by 10 research groups are considered
in comparison of the analytical and experimental responses. Comparisons are made at only
the global response level (lateral load vs. top displacement), due to the absence of digital

test data and information on local response measurements.

8.1. Overview of Experimental Studies

A number of experimental studies have been selected for comparing the model
predictions with the results of tests conducted on various types of column specimens with
either deformed or plain reinforcing bars, and with various lap splice lengths, cross
sections, material properties and reinforcement conditions, subjected to different axial load

levels and lateral loading patterns.

Two column specimens (Specimen-1 and Bousias) tested by Low and Moehle (1987)
and Bousias ef al. (1995), both with continuous longitudinal reinforcement, were selected
to investigate the accuracy of the model in representing the so-called for strain penetration
effects (effect of bond slip deformations in the anchorage region of the reinforcement) on
column response. Five splice-deficient column specimens (FC1, FC4, FC5, FC14 and
FC15) tested by Aboutaha et al. (1994, 1996) with different cross sections, concrete
compressive strengths, and longitudinal reinforcement amounts were chosen for additional
comparisons. Three splice-deficient column specimens (C14, C20 and C16) tested by
Harajli and Dagher (2008), with different material properties and reinforcement
configurations, (C14 and C20 have three layers of longitudinal reinforcement, whereas

C16 has four layers of longitudinal reinforcement in the direction of bending) were also
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selected for the comparisons. One specimen (AB1) by Elgawady et al. (2010), was also
considered, since it incorporated four layers of longitudinal reinforcement in the direction
of bending. One other specimen (2SLH18) by Lynn ef al. (1996) was chosen to investigate
the model effectiveness when the column is subjected to a double — curvature bending
moment distribution. To consider further variation in specimen properties and loading
conditions, one specimen (L0) by Harries et al. (2006) and two specimens (AF(COGO0)B1
and AF(COG0)B2) by Yildiz (2006) were selected for the response comparisons.

Furthermore, to investigate the effectiveness of the analytical model in predicting the
responses of columns with smooth reinforcing bars (as well as 180-degree hooks), four
column specimens (C270A1, C270B1, C540A1 and C540B1) tested by Verderame et al.
(2008) were chosen. Five additional column specimens (LS-25¢-N1, LS-35¢-N1, LS-44¢-
N1, LS-55¢-N1 and LS-CON-N1) tested by Yilmaz (2009), with plain pars and different
lap splice lengths. The properties of the test specimens used in comparison of the analytical
predictions of the model with experimental results are presented in Table 8.1. In the table,
the column height (/) values represent the effective height from the column base to the

point where the lateral loading is applied.
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Researcher] Column Column dimensions Longitudinal Rein. Transverse Rein. Concrete | Axial
b,mm | h,mm I, mm Amount I, mm Fy,Mpa Amount fy,Mpa Fc,Mpa L(ou/a)d
0
Low- Specimen 1] 127 165 6922 |6No.2 &4 178* 450 Bmm dia at 36.54 5
Moehle No.3 (23dy) 29mm
Bousias Bousias 250 250 1490 8,16 mm 480% 460 8 mm dia at 70 30.75 15
(30d,) mm
FC1 9144 | 4572 | 27432 16 No. 8 609.6 434 9.5mm dia at 400 324 0
(24d,) 407mm
FC4 9144 | 4572 | 27432 16 No. 8 609.6 434 9.5mm dia at 400 19.65 0
(24d,) 407mm
Aboutaha FC5 9144 | 4572 | 27432 16 No.8 609.6 434 9.5mm dia at 400 20.54 0
(24d,) 407mm
FCH4 6858 ) 4572 27432 2 No.8 609.6 434 9.5mm dia at 400 28.75 0
(24d,) 407mm
FCI15 4572 | 4572 | 27432 8No.8 609.6 434 9.5mm dia at 400 28.75 0
(24dy) 407mm
cH 400 200 1400 8, 4 mm 420 550 8mm dia at 39 0
(30dy,) 200mm
Harajliand C20 400 200 1400 6,20mm 600 617 8mm dia at 32 0
Dagher (30d,) 200mm
Clo 400 200 1400 8, lomm 480 528 8mm dia at 40 0
(30d,) 200mm
Elgawady ABI 381 254 1803 2No.4 445 331 6.3mm dia at 372 31 0
(35d,) 25mm
Lynn 2SLHIB 4572 ] 4572 29464 8No.8 331 331 9.5mm dia at 400 33.1 1]
(20d,) 457mm
Harries LO 458 458 2400 8No.7 490 460 9.5mm dia at 438 24.6 25
(22dy) 150mm
Yildiz AF(C0GO0)B] 240 180 850 4,2mm 180 500 8mm dia at 27.6 10
1 (15d,) 20mm
AF(C0GO0)B| 240 180 850 4,2mm 180 500 8mm dia at 28.77 10
2 (15dy) 20mm
C270A1 300 300 1570 6,12 mm 480 355 ]8mdiaat I00mm}] 430 25 2
Verderame (40d,)
C270B1 300 300 1570 6,2 mm * 355 |8mdia at I00mm | 430 25 2
C540A1 300 300 1570 6,2 mm 480 355 |8mdia at I00mm | 430 25 24
(40d,)
C540B1 300 300 1570 6,12 mm * 355 ]8mdiaat I00mm}] 430 25 24
LS-25¢-N1] 300 200 1650 4,14 mm 350 285 10mm dia at 307 10 0
Yilmaz (25d,) 100mm /200mm
LS-35¢-N1] 300 200 1650 4,14 mm 490 285 10mm dia at 307 10 0
(35d,) 100mm /200mm
LS-44¢9-N1] 300 200 1650 4,4 mm 616 285 10mm dia at 307 10 0
100mm /200mm
(44d,)
LS-55¢-N1] 300 200 1650 4,14 mm 770 285 10mm dia at 307 10 0
(55dy) 100mm /200mm
LS-CON-N1} 300 200 1650 4, 4 mm * 285 10mm dia at 307 10 0
100mm /200mm

*Continuous longitudinal reinforcements

**Anchorage length
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8.2. Analytical Model Formulation

The general model formulation described in Chapter 3 is applicable to most of the
column specimens with lap splices, investigated in this chapter. However, it was necessary
to modify this formulation in order to represent the configuration of some of the specimens
(ABI, 2SLH18, Specimen-1, Bousias, LS-25¢-N1, LS-35¢-N1, LS-44¢-N1, LS-55¢-N1,
C270A1, and C540A1), as described below.

Most of the selected column specimens consist of two or three layers of longitudinal
reinforcement with one layer located middle of the cross section, which is compatible with
the general model formulation (with three layers of reinforcement) shown in Figure 3.1.
However, to incorporate four layers of longitudinal reinforcement in the bending direction,
as seen in specimens C16 (Figure 8.20) and AB1 (Figure 8.27), it was necessary to modify
the original column model formulation slightly to incorporate the additional layer of

reinforcement.

To model the response of specimen 2SLH18 (Figure 8.30), which is subjected to
double — curvature bending moment distribution and zero rotation at the top, necessary
modifications were applied to the direct stiffness assembly procedure used in the

formulation of the analytical model.

Modifications to the original model formulation were also required for specimens
‘Specimen-1°(Figure 8.1) and ‘Bousias’ (Figure 8.4), to simulate the effects of “strain
penetration” (bond slip deformations in the anchorage zone) on the behavior of these
specimens. The lap splice region in the original model formulation were transformed into
the anchorage zone, via fixing the concrete displacement degrees of freedom located at the

top of the rigid beams in this region.

For modeling of the column specimens with plain bars and 180-degree hooks, the
bottom hooks on the longitudinal bars were represented by steel stress — hook end slip
springs connecting the bottom rigid beam of the second model element from column base,
to the longitudinal bars in the splice. The hook springs were not assigned to the very first

model element at the base of the column, to allow the uplift of the longitudinal bar hook
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from the column-pedestal interface. The top hooks on the starter bars at the top level of the
splice or on the longitudinal bars at the top level of the column were also represented by
steel stress — hook end slip springs, connecting the top rigid beam of the respective model
element, to the longitudinal bars. This modeling approach was used to analyze specimens

LS-25¢-N1, LS-35¢-N1, LS-44¢-N1, LS-55¢-N1, C270A1, and C540A1.

8.3. Calibration of the Analytical Model

Experimental calibration of the geometric, as well as the constitutive parameters of
the analytical model, for the column test investigated in this chapter, are discussed in the

following subsections.

8.3.1. Geometry

It is discussed in Chapter 6, that neither the number of model elements nor the
number concrete macro-fibers used in the analytical model have a significant influence on
the global response prediction, as long as an adequate number of elements and fibers are
used to describe the geometric details of a column. The optimum number of model
elements and concrete macro-fibers used to calibrate the model for the column specimens

investigated in this chapter are discussed in the following paragraphs.

Twenty six macro-fibers are used along column width to represent the concrete cross
section of the majority of the columns specimen model. Eight model elements along the
lap splice length and 4 model elements above the lap splice region are assigned to the
analytical model, for most of the columns specimens with deficient lap splices (Specimens

FC1, FC4, FCS5, FC14 , FC15, C14, C20, AF (COG0)B1, AF(COG0)B2, and AB1).

For other specimens, either less or more number of model elements and macro-fibers
were used in calibration, based on the results of preliminary analyses, depending on the
level of detail of the specimen geometry, or the level of complexity of the response. Four
model elements along the lap splice length and two elements above the lap splice region

are selected to model column specimens LS-25¢-N1, LS-35¢-N1, LS-44¢-N1 and LS-
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55¢-N1 (Yilmaz, 2009). Six model elements and 52 macro-fibers were used along the
entire length of column specimen LS-CON-NI, with continuous longitudinal
reinforcement. Four model elements along the lap splice length and two elements above
the lap splice, are selected for specimens C270A1 and C540A1 (Verderame et al., 2009).
Six model elements are used along the whole length of specimens C270B1 and C540B1
with continuous reinforcement. Sixteen model elements along the lap splice and 4 elements
above the lap splice region are for the column specimens, C16 and 2SLH18. For specimen
L0, four model elements along the lap splice and two elements above the lap splice region

are used.

Three separate analytical models are built for each of the two specimens ‘Specimen-
1’ and Bousias’, with continuous longitudinal reinforcement, which were tested to observe
strain penetration effects in the anchorage zone (foundation). The first model included
eight elements in the anchorage zone (with rigid concrete degrees of freedom) and four
elements along the height of the column.The second and third models only included four
elements along the height of each column to simulate its behaviour without incorporating
bond slip deformations (strain penetration) in the anchorage zone. The third model
incorporates rigid bond slip springs, representing the perfect bond assumption between

concrete and reinforcing steel.

8.3.2. Materials

8.3.2.1 Steel Stress-Strain Relation. The constitutive model used for reinforcing steel was

calibrated for yield strength, elastic modulus, strain hardening ratio, and cyclic curvature
degradation parameters. The monotonic parameters of the model were calibrated based on
the values for the specimens investigated. For cases where test results for the stress — strain
behavior of the reinforcement was not available, typical values of £y = 200 GPa and b =
2% was used for the elastic modulus and the strain hardening ratio, respectively. The
values RO = 20, al = 18.5, and a2 = 0.15 (accounting for the cyclic degradation of the
curvature coefficient R and thus the Bauschinger effect), originally suggested by
Menegotto and Pinto (1983), were used in the calibration. Table 8.2 summarizes the

constitutive parameters used in the analysis for reinforcing steel.
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Table 8.2. Calibrated Constitutive Parameters for Confined Concrete and Steel.

Specimen Concrete in compression Concrete in tension Reinforcing bar
/ /
B R I L A A (N I I I e
pa
Mpa Mpa (Mpa) Mpa Gpa

Specimen 1 36.54 | 0.0025 | 28713 | 0.003 5.02 1.87 0.00008 28713 0 1.2 | 408 210 0.002

Bousias 36 0.0025 | 28500 | 0.004 | 2.50 1.86 0.00008 28500 0 1.2 | 421 200 0.02
FCl 32.40 | 0.0024 | 27038 | 0.003 5.02 1.76 0.00008 27038 0 1.2 | 390 200 0.02
FC4 19.65 | 0.0019 | 21056 | 0.002 | 5.02 1.37 0.00008 21056 0 1.2 | 390 200 0.02
FC5 20.55 0.002 21532 | 0.002 | 5.02 1.40 0.00008 21532 0 1.2 | 390 200 0.02

FC14-FC15 28.75 0.0023 | 25469 | 0.003 5.02 1.66 0.00008 25469 0 1.2 390 200 0.02

Cl4 39 0.0026 | 29664 | 0.004 | 5.02 1.94 0.00008 29664 0 1.2 | 496 200 0.02
C20 32 0.0024 | 26870 | 0.003 5.02 1.75 0.00008 26870 0 1.2 | 566 200 0.02
Cl6 40 0.0027 | 30041 | 0.004 | 5.02 1.96 0.00008 30041 0 1.2 | 480 200 0.02
ABI 34 0.0025 | 27697 | 0.004 | 5.02 1.81 0.00008 27697 0 1.2 | 292 200 0.02

2SLHI8 33.10 | 0.0024 | 27328 | 0.003 | 5.02 1.78 0.00008 27328 0 1.2 | 297 200 0.008

L0 24.60 | 0.0021 | 23560 | 0.003 | 5.02 1.54 0.00008 23560 0 1.2 | 400 200 0.02

AF(COGO)B | 27.60 | 0.0022 | 24954 | 0.003 | 5.02 1.63 0.00008 24954 0 1.2 | 446 200 | 0.0015
1

AF(COGO)B | 28.77 | 0.0023 | 25478 | 0.003 | 5.02 1.66 0.00008 25478 © 1.2 | 446 200 | 0.0015
2

C270A1, 29 0.0023 16454 | 0.004 2 1.67 0.00008 25580 0 1.2 300 200 0.002
C270B1,
C540A1,
C540B1

LS-25¢-N1 12 0.0015 16454 | 0.002 5.02 0.99 0.00008 16454 © 1.2 250 183 0.004
LS-35¢-N1
LS-44¢-N1
LS-55¢-N1
LS-CON-N1

8.3.2.2 Concrete Stress-Strain Relations. The monotonic envelope curves of the Chang and

Mander (1994) constitutive model for compression and tension were calibrated for values
of peak compressive and tensile stress (f°; and f;), strains at peak stress (€. and ¢), elastic
modulus E,, the parameter r defining the shape of the envelope curves, and the normalized

strain parameter X, controlling the post peak slope of the envelope curves.

The envelope curve for unconfined concrete in compression was calibrated using
reported results of monotonic stress-strain tests, conducted at time of testing, for the
concrete used in the construction of the specimens, with a 20% residual stress value

defined for the envelope curve for improving the stability of the analysis. The parameters
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used for the calibration of the monotonic envelopes for unconfined concrete in
compression and tension are presented in Table 8.2. Stress — strain relations for confined
concrete were not used in modeling of these columns, since the amount of transverse
reinforcement used in the specimens did not provide effective confinement. The concrete
tensile strength was determined from the relationship f; = 0.31Nf, (Mpa), and a value of
0.00008 was selected for the strain g, at peak monotonic tensile stress, as suggested by
Belarbi and Hsu (1994). The shape of the monotonic tension envelope was calibrated (via
the parameters r and X.;) to reasonably represent the average post-crack stress — strainship
relation proposed by Belarbi and Hsu (1994) for considering the effects of tension
stiffening on concrete. The hysteretic stress-strain rules defined by Chang and Mander
(1994), modified slightly as described by Orakcal (2004), were used to simulate the cyclic

behavior of unconfined concrete implemented in model.

8.3.2.3 Shear Force-Deformation Relation. The trilinear envelope curve of the origin-

oriented force—deformation relationship, which was adopted for the horizontal shear
springs in the model elements, was calibrated based on the empirical relationships
proposed by Sezen (2002), as described in Chapter 3. It must be mentioned that during
testing, none of the column specimens experienced shear failure or significant shear

deformations.

8.3.2.4 Bond Stress Slip Relations. The parameters of the cyclic constitutive bond stress —

slip relationship for splitting failure in partially-confined concrete by Harajli et al. (1994,
2004, 2009), were calibrated as proposed originally in the constitutive relationship
formulations, for most of the splice-deficient column specimens with deformed reinforcing
bars. For the specimen ‘FC4’, where splitting springs were used in combination with pull-
out springs (in the vicinity of the ties), parameters of the cyclic bond stress — slip
relationship for pull-out failure in confined concrete by Eligehausen et al. (1983) were
calibrated as proposed in the original constitutive formulation. Pull-out springs following
the original constitutive relationship by Eligehausen et al. (1983) were also used in the
anchorage zones (foundations) of ‘Specimen-1’ and ‘Bousias’, for consideration of slip

deformations in the anchorage region (strain penetration effects).
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The cyclic bond stress — slip constitutive relationship representing the pullout
behaviour of plain reinforcing bars, developed by Verderame et al. (2009), was calibrated,
using the original constitutive formulation, for column specimens LS-25¢-N1, LS-35¢-N1,
LS-44¢9-N1, LS-55¢-N1, LS-CON-N1 C270A1, C270B1, C540A1 and C540BI1. The
original monotonic steel stress vs. hook end slip constitutive model by Fabbrocino et al.
(2004) for 180-degree hooks was also used for modeling of these specimens, with

adaptation of origin-oriented cyclic rules, as described in Chapter 3.

Table 8.3(a) lists the constitutive bond stress — slip parameters used for the column
models which incorporated both splitting and pullout bond slip springs whereas the
parameters used for the column models splitting springs only, are listed in Table 8.3(b).
Table 8.4 presents the constitutive bond stress — slip parameters used for modelling of the

columns with plain reinforcing bars.

Table 8.3. Calibrated Constitutive Bond Stress — slip Parameters Used for the Specimens
with Deformed Bars.

(a) Specimens Analyzed Using Both Pullout and Splitting Springs.

] Parameter 5, s, s, u, u, U upS Soacl So (04 ﬁ
§ mm| mm| mm| (Mpa)| (Mpa)| (Mpa)| (Mpa)| mm| mm
[=7
wn
Harajlietal. | 195 | 455 | 3 11.39 - 4.15 2.18 022 | 015 | 070 | 0.65
(1994)
é Unconfined
Eligehausen e | 1.00 | 3.00 | 10.5 10.93 4.05 - - - - 0.40
al. (1983)
_ | Harajlieral | 195 13 15.42 - 5.74 3.07 027 | 015 | 0.70 | 0.65
g (1994)
§ Eligehausen ez | 124 | 3.71 | 13 14.78 548 - - - - 0.40
& al. (1983)
Harajlieral. | 1.95 13 15.42 5.74 3.07 027 | 015 | 070 | 0.65
K (1994)
é Eligehausen ez | 124 | 3.71 | 13 14.78 548 0.40
al. (1983)
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Table 8.3. Calibrated Constitutive Bond Stress — Slip Parameters Used for the Specimens
with Deformed Bars (Cont.).

(b) Specimens Analyzed Using Splitting Springs Only.

ooy | (mm)| (mm)| (Mpa) | (Mpa)| (Mpa)| (mm)| (mm)

FC1 1.95 13 14.63 5.46 2.94 0.22 0.15 070 | 0.65
FC5 1.95 13 11.65 435 234 0.22 0.15 070 | 0.65
FC14-FC15 1.95 13 13.78 5.09 2.68 0.22 0.15 070 | 0.65
Cl4 1.95 13 16 6.22 352 0.23 0.15 070 | 0.65
C20 1.95 13 14.54 4.67 278 0.21 0.15 070 | 0.65
Cl6 1.95 13 16 8.46 470 0.32 0.15 070 | 0.65
2SLHI8 1.50 10 14.70 7.14 3.63 0.25 0.15 070 | 0.65
L0 1.95 13 12.75 5.17 2.74 0.23 0.15 070 | 0.65
AF(COGO)BI | 1.50 10 13.50 3.60 5.10 0.40 0.15 070 | 0.65
AF(COG0)B2

ABI 1.95 13 1431 5.09 2.85 0.22 0.15 070 | 0.65

Table 8.4. Calibrated Constitutive Bond Stress — Slip Parameters Used for the Specimens

with Smooth Bars.

Parameter of Verderame (24
Smax Sl z-b,max Tb,f Tb,c 7'-b,r
et al. (2009)
(mm) | (mm)| (Mpa)| (Mpa) | (Mpa) | (Mpa)
C270A1, C270B1, 0.38 3.17 1.55 0.65 0.25 0.45 0.26
C540A1, C540B1
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8.4. Comparison of Model Results with Experimental Results

In this section the response predictions obtained using the analytical model, are
compared with the experimental results. Comparisons are made at only the global lateral
load vs. top displacement response level due to the absence of digital test data and
information on local response measurements. The comparisons are presented and discussed

individually, for each test program.

8.4.1. Low and Moehle (1987) Specimen:

Low and Moehle (1987) tested a series of reinforced concrete cantilever columns
with rectangular cross sections. The columns were subjected to a constant axial load and
cyclic lateral displacements. One of these columns, labeled Low-Moehle “Specimen 17,
with continuous longitudinal reinforcement, is selected here for investigating the efficiency
of the model in simulating strain penetration effects. The specimen geometry is shown in
Figure 8.1. The column was subjected to a constant axial compression of 44.5 kN
(corresponds to approximately 5%Agf’c), and a cyclic lateral displacement history in the
weak direction of the column cross section.. The anchorage length of the longitudinal
reinforcement in the specimen foundation (pedestal) was 178mm, corresponding to 23

longitudinal bar diameters.

Figure 8.2 shows the experimental response of ‘Specimen 1’ which was used by
Spacone and Limkatanyu (2000), to validate the formulation of a reinforced concrete beam
element model, which incorporates bond slip deformations. The correlation between
experimental and analytical results obtained by Spacone and Limkatanyu (2000) was quite

satisfactory.

Figure 8.3 presents three different analytical results obtained using the present
model. The solid line represents results of the first modeling approach (Model 1), where
bond slip deformations in both the column and in the anchorage zone (strain penetration)
are considered. The second model (Model 2), the results of which are represented by the

dashed line with narrow spacing, considers bond slip deformation in the column only,
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Figure 8.1. Geometry and Loading Conditions for ‘Specimen 1’ (Low and Moehle, 1987).

neglecting the strain penetration effects. In the third model (Model 3), represented by the
dashed line with wide spacing, all bond slip and strain penetration effects are neglected

(perfect bond condition).

All three models capture the column lateral load capacity accurately. In Models 2
and 3, the pre-yield stiffness in the analytical results is overestimated, since column base
rotations due to the strain penetration effects are ignored. Moreover, the models that do not
consider column bond slip and strain penetration (model 2 and model 3) obviously tend to
overestimate the hysteretic energy dissipation (cumulative area under the load —
displacement loops) of the specimen. During unloading, initial unloading is followed by
closing of the cracks, reloading, and yielding of the longitudinal steel in tension. With the
model considering bond slip deformations in both the column and the anchorage zone
(model 1), when the column unloads, closing of the crack is accompanied by slip of
reinforcing bars at the column base. This gives a more flexible response, and yielding of

the reinforcing bars in tension is delayed.
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From Figure 8.3, it can be deduced that the hysteretic behavior of reinforced concrete
columns, subjected to severe seismic excitations, is dependent on the bond interection

between steel and concrete, even if no anchorage failure takes place.

30
T
o 10
5,
5 .10
£,

-30 . v

-20 -10 0 10 20 30 40
Tip displacement A, {(mm)

Figure 8.2. Experimental and Previous Analytical Responses of ‘Specimen 1° (Spacone

and Limkatanya, 2000).
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— - Coulmn without bond slip and anchorage
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o
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Top Displacement A (mm)

Figure 8.3. Analytical Response Prediction for ‘Specimen 1°.
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8.4.2. Bousias et al. (1995) Specimen:

Figure 8.4 illustrates details of the column specimen tested by Bousias et al. (1995).
The specimen was 1490 mm long, with a cross section of 250 mm by 250 mm, and
anchorage length of 480 mm (30db) in the foundation; and was subjected to a constant
axial load 300 kN and a variable cyclic lateral load acting at the top. A concrete cover of
15 mm was provided on all faces. The longitudinal reinforcement consisted of 3 bars 16
mm in diameter, placed at the sides, and 2 bars 16 mm in diameter placed at the center.
The concrete compressive strength was 30.7 MPa, and the yield strength of reinforcing
steel was 460 MPa. The elastic modulus measured for the longitudinal steel was

approximately 210,000 MPa.

N
P k
[
;d=1ﬁ mm
220 mn{ 250 mm 1490 mm
220 mm
250 mm
ol

Figure 8.4. Bousias Specimen (Bousias et al., 1995).

Figure 8.5 shows the comparison of lateral load — displacement responses between
the test results and the analytical study conducted by Ayoub (2006). Although the finite
element model formulated by Ayoub (2006) captured the column lateral load capacity, the
hysteretic shape of the unloading and reloading loops and especially the pinching
properties of the response were not represented well by the analytical model by Ayoub

(2006).
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Similarly with the ‘Specimen 1’by Low and Moehle (1987), three models were
generated using the present analytical model for this specimen, the predictions of which
are presented in Figure 8.6. The model formulation considering bond slip deformations in
the both column and in the anchorage zone accurately predicts the cyclic attributes of the
measured response, including lateral load capacity, shape of the hysteretic loops, cyclic

stiffness degradation, cyclic energy dissipation capacity, and pinching behavior.
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Figure 8.5. Experimental and Previous Analytical Results Response of ‘Bousias (1995)’

Specimen (Ayoub, 2006).
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Figure 8.6. Analytical Response Prediction for ‘Bousias (1995)’ Specimen.
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8.4.3. Aboutaha (1994) and Aboutaha et al. (1996) Specimens:

Aboutaha (1994) and Aboutaha et al. (1996) conducted a series of tests on
cantilever-type column specimens (Figure 8.7), representing half the height column,
subjected to bending under double curvature, within a real building frame. All of the
column specimens were 2.74 m high from the top of footing to the point of load
application, to ensure flexural dominated behavior. Cyclic lateral loads were applied at the
top of the column. All columns were loaded in the weak direction. Lateral loads were
increased in 22.25 KN increments until significant inelastic displacement was observed.
Lateral displacements were then increased in increments corresponding to 0.5% drift
ratios. The columns were laterally loaded with two complete cycles at every load or drift
ratio level. No axial load was applied. Longitudinal bars were all spliced at the base of the
column as shown in Figure 8.7. The lap splice length corresponded to 24 bar diameters. A

concrete cover 38 mm was provided for all transverse ties. For all the test specimens, the
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I
iy 1| |6
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Figure 8.7. Details of Test Specimens (Aboutaha, 1994, Aboutaha et al. ,1996).

longitudinal reinforcement bars were 25.4 mm dia. (Yield strength, 413 Mpa)
reinforcement. Transverse ties were with 9.5 mm dia (Yield strength, 276 Mpa) bars,

spaced at 406 mm.
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Five specimens (FCI1, FC4, FCS5, FC14 and FC15) were tested to consider the effect
of varying concrete compressive strength, amount of longitudinal and transverse

reinforcement, and cross-sectional dimensions on the behavior.

Figures 8.8, 8.10, 8.13, 8.16, and 8.18 show the measured responses for specimens
FC1, FC4, FC5, FC14, and FC15, respectively. For specimen FC4, splice failure was
associated with the formation of vertical splitting cracks along the full height of the splice.
Strain readings showed that the strain levels in the longitudinal bars was just below
yielding, prior to splice failure. Hence, splice failure occurred before development of the
flexural yield capacity of the column. Specimen FC4 demonstrated very poor ductility and
energy dissipation characteristics. Specimen FCI1 also experienced a splice failure.
However, specimen FC1 reached its flexural capacity, and maintained it up to a drift ratio
of approximately 2%, prior to splice failure. The improved performance of specimen FC1
was attributed to its higher concrete compressive strength, and the presence of cross ties on
every longitudinal bar. Until 1.5% drift ratio, specimen FC1 experienced stable hysteretic
loops. At 2% drift ratio, the specimen showed dramatic loss in strength and stiffness.
Splice failure after yielding of the main longitudinal bars, and the gradual (as opposed to
sudden) extension of the vertical splitting cracks was attributed to the relatively higher
concrete compressive strength, compared to the design value. For specimen FC5, vertical
splitting cracks extended to almost half the height of the splice, as the lateral load level was
approximately 156 kN. Splice failure occurred when the vertical splitting cracks extended
over the full length of the lap splice, at a lateral load level of 40 kips. The splice failure of
specimens FC14 and FC15 was very brittle, with very rapid loss in strength and stiffness,

and occurred prior to flexural yielding.

In the analytical responses obtained using the present model for all of these column
specimens, the lateral load capacities are predicted very well, as shown in Figures 8.8 to
8.19. The lateral displacement values corresponding to peak lateral load are also generally
well-captured, although the model tends to underestimate the displacement at peak load,
for some cases. General characteristics of the cyclic response, including the shape of the
hysteretic loops, pinching properties, and degradation in the lateral load in post peak region
are all captured reasonably well. However, for specimen FC1 (Figure 8.9), the analytical

model estimates a more rapid degradation in the lateral load due to splice failure, as
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opposed to the experimentally observed flexural yielding prior to splice failure. This
discrepancy may be attributed to no reduction in the bond stresses in the constitutive bond

slip relationships adopted in the model, associated with bar yielding.

Specimen FC4 was analyzed using two model formulations, the first of which
incorporates splitting springs (for partially-confined concrete) only, whereas the second
formulation also included pullout springs (for confined concrete) within the vicinity of the
ties. As described previously in Chapter 6. Results of the two model formulations
presented in Figures 8.11 and 8.12 illustrate that for this specimen, using the second
model formulation (splitting and pullout springs used together) provides an improved
prediction of the response. Consideration of the tension stiffening effects (reduction in the
effective yield strength of reinforcing steel, modification of the strain hardening ratio, and
modification of the post-crack stress — strain behavior of concrete) does not significantly
improve the analytical response prediction for specimen FCS5, as illustrated by the two

analysis results, shown in Figures 8.14 and 8.15.
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Figure 8.11. Analytical Response of Specimen FC4, with Splitting Springs Only.
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8.4.4. Harajli and Dagher (2008) Specimens:
Harajli and Dagher (2008) tested a series of full-scale column specimens with lap-

spliced reinforcement at the base. The three column specimens C14, C16, and C20 had

longitudinal reinforcement diameters of 14, 16, and 20 mm, respectively. Figure 8.20
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Figure 8.20. Details of Test Columns and Load History (Harajli and Dagher, 2008).
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shows details of the three specimens. The area of longitudinal reinforcement produced
reinforcement ratios of 0.015 (for C14), 0.02 (for C16), and 0.023 (for C20). The
longitudinal reinforcing bars of the specimens were lap-spliced with starter bars of the
same diameter, anchored inside the footing using standard 90-degree hooks. The splice
length for all columns was selected at 30 bar diameters. The side cover c¢; and bottom cover
cp of the spliced bars in the column sections were chosen to produce a range of values of
c/dy, that would induce splitting bond failure before steel yielding. The horizontal loads
were applied at a discance of 1.40 m above the column base. All specimens were subjected
to the same lateral load history shown in Figure 8.20. The drift cycles were increased
sequentially with three fully reversed cycles applied at each target drift level up to a
maximum drift ratio of +6%. As the focus of the tests was to investigate the splitting bond
strength of spliced column reinforcement, and since the splitting bond strength of spliced
bars depends primarily on the tension stresses on the spliced bars, the specimens were

tested under flexure only, with no axial load applied on the specimens.

Figures 8.21, 8.23 and 8.25 show the experimental responses for column specimens
C14, C20 and C16 respectively. All specimens developed splitting cracks at the bottom
during relatively early stages of the response. The splitting cracks first developed at the
base of the columns, and propagated upwards along the full splice length, as the lateral
drift increased. Splitting bond failure caused concrete spalling along the splice length and

substantial slip of the starter bars at the column-footing interface.

Figures 8.22, 8.24, and 8.26 present the analytical responses obtained using the
present model for column specimens C14, C20, and C16, respectively, considering tension
stiffening effects on concrete and reinforcing bars. The lateral load capacities of specimens
C14 and C20 were overestimated by the analytical model, whereas a better lateral load
capacity prediction was obtained for specimen C16. General characteristics of the cyclic
response, including the shape of the hysteretic loops, pinching properties, and degradation

in the lateral load in post peak region are captured reasonably well for all specimens.

During the tests, these specimens were observed to fail under a combined effects of
longitudinal bar yielding and slip failure along the splice. The analytical model also

predicts such a coupled yielding—slip response for the specimens. However, the reason that
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the model overestimates the lateral load capacity of specimens C14 and C20 may be
attributed to the fact no reduction was applied to the bond stress values in the constitutive
bond slip relationships adopted in the model, associated with bar yielding. Eligehausen et
al. (1983) states that when a deformed reinforcing bar yields in tension, the bond stresses
acting on the bar are reduced, since the diameter of the bar rapidly decreases, due to
Poisson’s effects, after yielding in tension. The opposite was also stated to be true, for a
reinforcing bar yielding in compression. However, the Poisson’s effect on bond stresses
was not considered in the original hysteretic constitutive bond stress vs. slip model
developed by Eligehausen et al. (1983), and was therefore not adopted in the present
analytical model study. Such an improvement in the constitutive bond slip relationship
may improve the analysis results and lateral load capacity predictions for these column

specimens.
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Figure 8.23. Experimental Response of Specimen C20 (Harajli and Dagher, 2008).
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Figure 8.24. Analytical Response of Specimen C20.



251

120

—iCl6

&l C16FP]

40

=40

Column Shear (KN}
=

=&0)

=120

. aify ] =g i 2 4 (1] K
D ft Ratio %

Figure 8.25. Experimental Response of Specimen C16 (Harajli and Dagher, 2008).
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Figure 8.26. Analytical Response of Specimen C16.
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8.4.5. Elgawady et al. (2010) Specimen:

Elgawady et al. (2010) investigated the cyclic behavior of eight 4/10-scale reinforced
concrete column specimens representing the properties of columns in existing bridges
constructed in the state of Washington prior to 1971. All specimens were tested under
constant axial load and incrementally increasing lateral loading cycles. Two modes of
failure were observed for the column specimens, which are low-cycle fatigue failure of
longitudinal reinforcement and slip failure of the lap splice. In the column specimens,
longitudinal bars were lap spliced (over a length of 35 bar diameter), at the base of the
column with the starter bars extending from the foundation. Column specimens had a
height of 2.03 m and a cross section of 254 mm x 381 mm. All specimens had an
approximate longitudinal reinforcement ratio of 1.2%, provided with 12.5 mm — diameter
deformed rebars, and 6.3 — mm diameter smooth mild steel ties at 125 mm spacing as
transverse reinforcement The specimens were subjected to reverse cyclic lateral loading,
applied at 1803 mm from column base, with increasing levels of lateral displacements. The
concrete of the specimens had an average compressive strength of 31 MPa, measured at the
time of testing. A yield strength of 331 MPa was measured for the longitudinal
reinforcement. Mild steel with a measured yield strength of 372 MPa was used for the

transverse reinforcement. Details of the specimens are illustrated in Figure 8.27.
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Figure 8.27. Typical Dimensions and Reinforcement for a Test Specimen (Elgawady et

al., 2010).

Figure 8.28 shows the experimental lateral load — top displacement relationship of
specimen AB1. During the test, the specimen ultimately failed due to low-cycle fatigue of
the longitudinal reinforcement. At a drift ratio of 1.7%, spalling of the concrete cover and
buckling of the longitudinal bars at the base of the column were initiated. During the last
loading cycles, the longitudinal bars ruptured due to a low-cycle fatigue effects, leading to
more than 20% drop in the lateral load capacity of the specimen. Figure 8.29 shows the
analytical response prediction for the specimen ABI, obtained using the present model,
considering tension stiffening effects on the response. The lateral load capacity of the
column is accurately predicted by the model. Hysteretic characteristics of the response are
also well-represented, except the last three cycles of loading where reinforcement buckling
and low-cycle fatigue effects influence the experimental response. Therefore, the model
predictions may be improved, upon incorporating buckling and low-cycle fatigue effects in

the constitutive relationship adopted in the model for reinforcing steel.
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8.4.6. Lynn et al. (1996) Specimen:

Lynn et al. (1996) conducted tests on eight full-scale column specimens representing
typical detailing used in the United States prior to the 1970s. The specimens were
subjected to reversed cyclic lateral displacements, while the axial load was held constant
for the duration of the test, at a level corresponding to approximately 12% of the axial load
capacity of the columns. Observed failure modes included localized crushing of concrete,
buckling of reinforcement, splitting bond failure at the lap splice, shear failure, and axial
load collapse. One of the specimens, labeled as 2SLH18 (Figure 8.30), incorporated a lap
splice at the base. The lap splice length corresponded to 20 longitudinal bar diameters. The
specimen had a clear height of 2946 mm, and a 457.2 mm — square cross-section. A clear
cover of 50 mm was used. Figure 8.30 shows the reinforcement details of the specimen and
the loading used to impose zero top rotation and double — curvature bending moments on
the specimen. Lateral loads were applied by an actuator attached horizontally between the
loading frame and the reaction frame, with the loading axis passing through the column
mid-height. The vertical actuators were controlled to maintain constant axial load zero

rotation at the top of the column.

Comparing the experimental and analytical responses presented in Figures 8.31 and
8.32, it is observed that the model predicts the response features of the specimen, except
the degradation in the lateral load for larger drift levels. During testing, the specimen
exhibited considerable flexural deformation before failure, associated with yielding of the
longitudinal bars. Since the response of this specimen was not dominated by bond slip
failure of the lap splice, the analytical model incorporating tension stiffening effects
provided a better prediction of the behavior. During the test, considerable damage was
observed in the splice region due to combined flexural and shear deformations. The
analytical model does not capture the lateral load degradation in the later loading cycles,
since it does not incorporate a robust approach to simulate nonlinear shear deformations
through coupling of inelastic flexural and shear responses. This may also be the reason
why the hysteretic loops in the analytical response are somewhat wider. Using an
improved modeling methodology to simulate nonlinear shear responses and shear — flexure

interaction effects may improve the model predictions for such a type of failure mode.
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8.4.7. Harries et al. (2006) Specimen:

The full scale column specimen, ‘L0’ (Figure 8.33), tested by of Harries et al.
(2006), incorporated a 22 bar diameter lap splice length, and was tested under combined
axial and cyclic lateral loads. The column specimen was initially designed so that the lap
splice would cause bond slip failure prior to achieving the flexural capacity of the column.
The column specimens had 458 mm square cross sections with eight 22 mm — diameter
longitudinal reinforcing bars. 9.5 mm — diameter ties with 356 mm spacing were located
over a height of 1780 mm from the base of the column. These ties incorporated deficient
90-degree hooks. The axial load level applied during testing was approximately 25% of the
column axial load capacity, and was maintained constant throughout the cyclic lateral load
history, using a regulated system of hydraulic rams. The reversed cyclic lateral loads were
applied to the column specimen at a height of 2440 mm, which was selected to ensure a
sufficiently high moment-to-shear ratio to result in flexure-dominated column behavior.
The columns were tested as cantilevers with the lateral loads applied at the top,
approximately representing the half the height of an actual column in a building frame, for
which the point of inflection is located at the mid-height. Three loading cycles were at
each load level corresponding to 1/3 and 2/3 of the expected flexural yield capacity,
followed by three cycles at each lateral displacement level corresponding to 1.0, 1.5, 2.0,

2.5,3.0,4.0,5.0, 6.0, 7.0, 8.0, and 10.0 times the expected yield displacement.
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Figure 8.33. Column Reinforcement Details and Test Setup (Harries et al., 2006).
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Figures 8.34 and 8.35 respectively show the experimental and analytical responses
for the specimen, both of which are which are typical of columns having splice lengths
insufficient to develop the yield strength of the longitudinal bars. In test, at 36 mm lateral
displacement, (for which the lateral load capacity of 190 kN was recorded), the
longitudinal cracks in the lap splice region widened and crushing of the concrete at the
base of the column was observed. Widening of the longitudinal cracks indicated sudden
slip deformation along the splice. Failure was ultimately characterized by significant
widening of the vertical splitting cracks in the lap splice region, together with crushing of
concrete. Overall, the analytical response prediction is in good agreement with the
observed behavior. The lateral load capacity, hysteretic properties, and pinching
characteristics of the response are all captured by the analytical model, with reasonable

accuracy.
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Figure 8.35. Analytical Response of Specimen L0, Considering Tension Stiffening.



260

8.4.8. Yildiz (2006) Test:

Yildiz (2006) conducted an experimental program on reinforced concrete columns
with deficient detailing and low material quality, representing older non-ductile buildings
in Turkey. Two of her specimens (Specimens AF(COGO)B1 and AF(COGO0)B2)
incorporated deficient lap splices, with splice lengths equal to 15 bar diameters, and were
subjected to constant axial and reversed cyclic lateral loads. All test specimens were
designed such that shear failure would be avoided. However, all specimens possessed

inadequate confinement. Details of the specimens are presented in Table 8.1 and Figure
8.36.
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Figure 8.36. Column Reinforcement Details (Yildiz, 2006).

Figures 8.37 and 8.39 show the experimental responses measured respectively for
specimens AF(COGO0)B1 and AF(COGO0)B2, whereas Figures 8.38 and 8.40 present the
analytical response predictions for the respective specimens. In both analytical response
predictions, the lateral load capacity of each specimen is overestimated by a small margin.
Other response characteristics including the shape of the hysteresis rules, cyclic
degradation in lateral load in the post-peak region of the response, lateral displacement at
peak lateral load values, and pinching properties, are all well-represented in the analysis

results.
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Figure 8.39. Experimental Response of Specimen AF (C0GO0) B2 (Yildiz, 2006).
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8.4.9. Verderame et al. (2008) Test:

Verderame et al. (2008) conducted experiments on reinforced concrete column
specimens incorporating with smooth reinforcing bars. Two types of specimens were
considered, depending on the longitudinal reinforcement details at column base. Type A
specimens had lap-spliced and hooked bars with 40 bar diameter long splice length (Figure
8.41(a)), whereas continuous longitudinal bars were provided for Type B specimens
(Figure 8.41(b)). Two different levels of axial load (270 kN and 540 kN) were applied to
represent the loading conditions of two columns in a prototype building. For the specimen
types investigated in detail in the present study (C-270A1 and C-540A1 with lap splices
and 180-degree hooks; C-270B1 and C-540B1 with continuous reinforcement), the
specimens were 2000 mm high, with a 300 mm by 300 mm square cross-section.
Longitudinal reinforcement consisted of six 12 mm — diameter smooth bars, while 8 mm —
diameter ties were spaced at 100 mm spaced. Reinforcing steel was mild and ductile with a
yielding stress of 355 MPa and ultimate stress of 470 MPa, with a fracture strain value of
0.27. Concrete used had a cylindrical compressive strength of approximately 25 MPa.
Cyclic lateral loads were applied at a height of 1570 mm from the top of the specimen
foundations. Maximum lateral displacements of +£100 mm were applied on the specimens,
and the specimens were cycled three times at 15 target drift levels, as reported in Figure

8.41(c). Details of the test specimens are presented in Figure 8.41 and Table 8.1.
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Figure 8.42 illustrates the experimental response measured for specimen, C270-Al,
which shows a gradual lateral load degradation (due to progressive spalling of concrete)
and pronounced pinching effects in the behavior. The experimental response of specimen
C-270B1 is shown in Figure 8.46. For this specimen, apart from the overall gradual
degradation in lateral load and moderate pinching behavior, the last drift cycle (=100 mm)
is characterized by a further degradation of lateral load, related to buckling of the
reinforcing bars on the compression side. Figure 8.48 and 8.52 displays the experimental
response of specimens C- 540A1 and C-540B1, which also experienced gradual
degradation in lateral load during the tests, due to progressive crushing and spalling of
concrete. The failure mode of all of specimens was flexure — dominated, and splice failures
were not observed for the specimens (C-270A1 and C-540A1) with deficient lap splices
and hooks.

Experimental responses presented in Figures 8.42 and 8.46 indicate that the lateral
load capacities measured for the specimen with the lap splice (C-270A1) and the specimen
with continuous reinforcement (C-270B1), are similar in magnitude. This behavior is also
observed in the analytical responses shown in Figures 8.43 and 8.47. The analyses of the
results of Figures 8.43 and 8.47 are found assigning the hook springs connecting the
bottom rigid beam of the second model element from column base, to the longitudinal bars
in the splice. (to allow the uplift of the longitudinal bar hook from the column-pedestal
interface). However, although the analytical model captures the lateral load capacities of
the specimens, the gradual degradation of the lateral load capacity with increasing drift is
not represented in the analysis results. As well, the experimental results (Figures 8.42 and
8.46) reveal that the specimen with the lap splice (C-270A1) experiences a more
pronounced pinching behavior, compared to the specimen with continuous reinforcement
(C-270B1). Such a tendency is not represented in the analytical responses (Figures 8.43
and 8.47).

For further investigation, Figures 8.44 and 8.50 present the analytical responses for
the lap spliced specimens C-270A1 and C-540A1, under the condition that the hook
springs of the longitudinal bars of the splice are assigned to the very first model element at

the base of the column . In these analysis results, the lateral load capacities of the column
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specimens are significantly overestimated, compared with the analytical responses

obtained using the hook springs.

The lateral capacities measured during test were also similar for the spliced column
specimen (C-540A1) and the specimen with continuous reinforcement (C-540B1), both
subjected to high—level axial load (Figures 8.48 and 8.52). This behavior is also observed
in the analytical responses shown in Figures 8.49 and 8.53. However, although the
analytical model captures the lateral load capacities of the specimens, the gradual
degradation of the lateral load capacity with increasing drift is again not represented in the

analysis results.

Both the experimental and analytical responses indicate that the overall level of
pinching in the response is influenced by the level of axial load, where higher axial load
results in less pronounced pinching. As well, both the analytical and measured responses
indicate that the lateral load capacity of each specimen is influenced by the level axial
load, where the lateral load capacity increases with increased axial load level, for the
specimens investigated. The analytical and experimental responses are also compatible in
the sense that the analytical results obtained for the specimens with lap splices do not
predict bond slip failure of the splice, due to the presence of the 180-degree hooks on the

starter and longitudinal bars.

The discrepancies in the analytical model predictions may be recovered upon
implementing realistic hysteretic rules in the bar stress vs. end slip deformation
constitutive model for the 180-degree hook (which is not available in the literature), as
well as incorporating the modifications to consider local buckling (as suggested by Prota et

al. ,2009) in the constitutive stress — strain relationship of the reinforcing bars.

The constitutive relationship implemented in the analytical model for reinforcing
steel (Menegotto and Pinto, 1973) may need to be improved to represent the behavior of
plain bars, as suggested by Prota et al. (2009). Prota et al. (2009) proved that cyclic stress
— strain behavior of plain bars is symmetric in tension and compression when the L/D ratio
of the bar (L being the stirrup spacing and D being the longitudinal bar diameter) is smaller

than 8, and that it becomes non-symmetrical due to buckling of the bar, as the L/D ratio
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increases. Comparing the experimental stress — strain behavior of deformed and smooth
bars investigated by Prota er al. (2009), it also appears that the shape of the hysteretic
stress — strain loops may differ among deformed and plain bars. However, the differences
diminish and the shape of the hysteretic loops become increasingly similar as L/D ratios
increase. The L/D ratio of the smooth bars used in the column specimens of Verderame et

al. (2008) is 8.33.

In the other extreme, if the hooks at the bottom of longitudinal bars are removed
from the analytical model for the lap spliced specimens C-270A1 and C-540A1, the
analytical responses would have been as presented in Figures 8.45 and 8.51, respectively,
clearly identifying the necessity to include the hook springs in the analytical model

formulation.
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Figure 8.42. Experimental Response of Specimen C-270 Al (Verderame et al., 2008).
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Figure 8.44. Analytical Response of Specimen C-270 A1, with Hook Asigned at the Base
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Figure 8.45. Analytical Response of Specimen C-270 A1, with no Hook at Column Base.
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Figure 8.47. Analytical Response of Specimen C-270 B1.
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Figure 8.50. Analytical Response of Specimen C-540 A1, with Hook Asigned at the Base

of the Column.
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Figure 8.51. Analytical Response of Specimen C-540 A1, with no Hook at Column Base.
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8.4.10. Yilmaz (2009) Specimens:

Yilmaz (2009) investigated the effect of deficient lap splices with plain bars 180-
degree hooks, as well as the influence of low concrete compressive strength on the lateral
load behavior of reinforced concrete columns in typical poorly-constructed buildings in
Turkey. In his experimental study, the column specimens incorporated 14 mm — diameter
(9) smooth longitudinal bars, 10 mm — diameter poorly detailed and wide-spaced ties, and
an average concrete compressive strength of approximately 12 MPa. In construction of
four specimens, different lap splice lengths (25¢, 35¢, 44¢, 55¢) were used, and one
specimen incorporated continuous longitudinal reinforcement. The column specimens were
tested under zero axial load and reversed-cyclic lateral loading. Figures 8.54, 8.55 and 8.56
present the isometric view, plan view and cross sectional views of a representative column
specimen. The lateral drift history imposed on the specimens is presented in Figure 8.57.
Figure 8.58 shows 28-day compressive stress strain relationships measured on cylindrical
specimens of the concrete used in the construction of the specimens, Figure 8.59 illustrates
the stress — strain test results conducted on samples of the 14-mm-diameter plain
reinforcing bar. Average yield and ultimate stress values for the longitudinal reinforcement
were reported as 285 Mpa and 440 MPa, respectively. Figures 8.60 and 8.61 illustrate the
damage observed on specimens LS-44¢-N1 and LS-55¢-N1, respectively, at large drift
levels. Details of the tests are described in the M.Sc. Thesis by Yilmaz (2009).
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Figure 8.55. Typical Plan View of a Specimen (Yilmaz, 2009).
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Figure 8.60. Damage at the Base of Specimen LS-44¢-N1 (Yilmaz, 2009).
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Figure 8.61. Damage at the Base of Specimen LS-55¢-N1 (Yilmaz, 2009).

Figures 8.62, 8.64, 8.66, and 8.68 show the experimentally-measured lateral load —
top displacement responses of the specimens with increasing lap splice lengths (LS-25¢-
N1, LS-35¢-N1, LS-44¢-N1 and LS-55¢-N1), whereas Figure 8.70 displays the
experimental response of the column specimen (LS-CON-N1) with continuous
longitudinal reinforcement. In all of the five experimental responses, the lateral load
capacities are similar. For the specimens with shorter lap splice lengths (LS-25¢-N1 and
LS-35¢-N1), the responses exhibit degradation in the lateral load after the peak value is
reached, as well as moderate-level pinching behaviour after lateral load degradation
initiates. Cyclic behaviour of the other two specimens with lap splices (LS-44¢-N1 and
LS-55¢-N1) are very similar to each other, with no degradation in the lateral load after the
peak. The hysteretic unloading/reloading loops are progressively wider, and pinching
characteristics diminish, as the lap splice length of the specimens increase. General
response characteristics of the specimen with continuous longitudinal reinforcement (LS-
CON-N1) are similar to those of the specimen with 55-bar-diameter long lap splice (LS-
55¢-N1)

The analytical response predictions obtained using the present model (with hook
springs incorporated) for all of the five specimens testes, are shown in Figures 8.63, 8.65,
8.67, 8.69 and 8.71. The predicted lateral load capacities of the specimens are similar to

each other and reasonably close to the experimentally-measured capacities. In fact, the
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analytical responses obtained for the 4 specimens with various lap splice lengths are

practically identical.

The analytical model is incapable of capturing the hysteretic properties of the
experimentally—measured responses of the lap-spliced specimens, due to the absence of
realistic hysteretic rules in the bar stress vs. hook end slip constitutive model for the 180-
degree hooks. As well, the degradation in lateral load, observed in the experimental
responses is not captured by the analytical model, possible due to the lack of consideration
of local buckling (as suggested by Prota et al., 2009) in the constitutive stress — strain
relationship of reinforcing bars. The stirrup-spacing-to-bar-diameter (L/D) ratio of these
specimens is approximately 14 (larger than 8), indicating that bar buckling effects can be

pronounced for these specimens, as suggested by Prota et al. (2009).

Figure 8.72 presents the analytical response obtained for the lap-spliced specimens
LS-25¢-N1, under the condition that the hook springs of the longitudinal bars of the splice
are assigned to the very first model element at the base of the column. In this analysis
result, the lateral load capacity of the column specimens is significantly overestimated,

similarly to the case for the specimens tested by Verderame et al. (2008).
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of the Column.
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9. SUMMARY AND CONCLUSIONS

The objective of this study was to develop a more robust and refined modeling
approach to simulate the bond-slip responses observed in reinforced concrete columns
under reversed cyclic loading. The proposed modeling methodology involves modifying
the formulation of a fiber-based flexural model (i.e., the Multiple Vertical Line Element
Model), with the fibers representing the hysteretic flexural behavior of concrete only.
Reinforcing bar elements, with uniaxial hysteretic stress—strain relationships of their own,
are connected to the concrete fibers through uniaxial bond slip springs, the behavior of
which are represented with experimentally-derived hysteretic bond stress vs. slip
constitutive relationships available in the literature for the splitting and pullout-type bond
slip behavior of both deformed and smooth reinforcing bars, as well as for 180-degree
hooks. Through this methodology, local bond slip behavior is incorporated at the fiber
level, and full coupling of flexural and bond slip deformations of the model is retained

under reversed cyclic loading conditions.

9.1. Model Capabilities and Characteristics

It is verified that the analytical model proposed captures important response
characteristics associated with the cyclic behavior of reinforced concrete columns with lap
splices, the response of which is governed by either bond slip, flexure, or a coupled
combination thereof. The analytical model is capable of directly incorporating important
behavioral features in the analysis, including shifting of the neutral axis along the column
cross-section, the distribution of bond stresses and slip deformations in the starter and
longitudinal bars along the lap splice, and the direct effect of axial force (constant and
fluctuating) on the analytical response, which are commonly ignored in simple models.
Characteristics of the cyclic response, including stiffness degradation, and strength
degradation, and hysteretic shape are clearly captured in the analysis results. Degradation
of lateral load capacity due to slip failure and the preceding pinched response are also
clearly represented. The model allows monitoring of local responses including longitudinal
strains and stresses in concrete and reinforcing steel, as well as bond stresses and slip

deformations at any location on the column. Local rotations, strain profiles, and neutral
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axis locations, and bond stress distributions along either longitudinal or starter splice bars

can also be obtained using the analytical model proposed.

It is observed that the model global response is not significantly sensitive to model
parameters including the number of model elements over the height of a column or the
number of concrete macro-fibers along the width of the cross-section, as long as a
reasonable number of model elements and macro-fibers are used in the construction of the
model. However, finer discretization of the model provides improved local response

predictions.

9.2. Model Correlation with Detailed Test Data for Specific Column Types

The analytical model was shown to be very effective in predicting the cyclic
behavior of the column specimens investigated in the experimental program by Melek
(2006), conducted on six reinforced column specimens incorporating deformed reinforcing
bars and deficient lap splices. The model provides accurate predictions of global response
characteristics including the lateral load capacity, strength degradation, stiffness
degradation, ductility, pinching properties, and other cyclic attributes of the lateral load vs.
top displacement behavior. Rotations due to flexure and slip at different locations of the
column specimens are also well-predicted by the analytical model. Local response and
deformation predictions of the model (steel strain distributions, concrete strain profiles,
neutral axis position, and average bond stresses along the lap splice) are also representative

of the experimental measurements, with a reasonable level of accuracy.

9.3. Model Correlation with General Test Observations for Various Column Types

Global (lateral load—displacement) response predictions obtained using the analytical
model were also compared with additional experimental observations available in the
literature, for various column specimens with both deformed and plain reinforcing bars,
and with both deficient lap splices and continuous longitudinal reinforcement. Overall, the
correlation studies conducted further verified that the model can effectively reflect the
global response characteristics and failure modes of various column configurations

incorporating either deficient lap splices or anchorage-deficient continuous reinforcement.
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Bond-slip behavior may depends on scale of specimen. All column specimens (24 column
specimens from 10 researchers and 6 detailed column tests from Melek, 2006) except one
selected for this study were full-scaled column. Scaling effects are not expcted to influence
the experimental behavior of the specimens or the correlation of model results with the

experimental results.

The model was shown to accurately represent the influence of bond slip
deformations in the anchorage zone (strain penetration effects) on the global cyclic
response and pinching characteristics of columns with continuous longitudinal

reinforcement.

The coupled flexural yielding and bond slip response observed in some of the lap-
spliced columns investigated, were better-represented by the analytical model when pullout
springs were used in combination with splitting springs (where pullout spring are assigned
in the vicinity of the ties), and the effects of tension stiffening on reinforcing steel behavior
were considered. Nevertheless, the analytical model can still potentially overestimate the
lateral load capacity of such columns, which may attributed to the fact no reduction was
applied to the bond stress values in the constitutive bond slip relationships adopted in the
model, associated with yielding of the reinforcing bars in tension. As well, it is deduced
the model predictions may be improved, upon incorporating buckling and low-cycle

fatigue effects in the constitutive relationship adopted in the model for reinforcing steel.

The analytical model was found to capture the lateral load capacities of the splice-
deficient specimens incorporating plain bars and 180-degree hooks; however, the
degradation observed during the tests in the lateral load with increasing drift levels, due to
local buckling of longitudinal reinforcing bars, was not represented in the model results.
The model also fails to provide accurate predictions of the cyclic characteristics and
pinching attributes of the response of such columns. The discrepancies in the analytical
model predictions may be recovered upon implementing realistic hysteretic rules in the bar
stress vs. end slip deformation constitutive model for 180-degree hooks (which is not
available in the literature), as well as incorporating the modifications to consider local

buckling in the constitutive stress—strain relationship of reinforcing bars.
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9.4. Suggested Improvements and Recommendations for Future Studies

(i) For a more accurate prediction of the lateral load capacity of columns experiencing
flexural yielding together with bond slip deformations in the lap splice region, reduction of
bond stresses associated with yielding of reinforcing bars in tension should be considered

in the formulation of the constitutive bond stress — slip relationships adopted in the model,

(i) The model predictions of cyclic column response may be improved via adaptation of
realistic hysteretic rules in the constitutive the bar stress vs. end slip deformation model
used for 180-degree hooks, as well as considering local buckling effects in the constitutive

stress—strain relationship of the reinforcing bars.

(ii1) For response prediction of columns under more generalized loading conditions and
modes of failure, the nonlinear shear response of the model needs to be improved, via
implementation of a methodology that considers coupling of flexural and shear modes of

deformation in a fiber-based model (e.g., Massone et al., 2006).

(iv) The present model formulation can be used for predicting nonlinear dynamic
responses, via adaptation of an incremental dynamic analysis algorithm that involves
numerical integration and the force-controlled Newton-Raphson iteration strategy

described in Chapter 5.

Overall, the modeling approach proposed in this study is believed to be a significant
improvement, towards realistic consideration of bond slip deformations and anchorage
failures on the seismic response and performance of reinforced concrete structures.
Implementation of the model into a computational platform (e.g., OpenSees, ref) will
provide design engineers improved analytical capabilities to represent the seismic behavior
of splice-deficient columns, which is essential for the application of performance-based

evaluation methods for existing structures.
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