
 
ANALYTICAL MODELING OF REINFORCED CONCRETE COLUMNS WITH 

LAP SPLICES 

 

 

 

 

 

 

by 

Sharmin Reza Chowdhury 

B.S., Civil Engineering, Bangladesh University of Engineering and Technology, 

1996 

M.S., Civil Engineering, Bangladesh University of Engineering and Technology, 

2000 

 

 

 

 

 

 

 

Submitted to the Institute for Graduate Studies in 

Science and Engineering in partial fulfillment of 

the requirements for the degree of 

Doctor of Philosophy 

 

 

 

Graduate Program in Civil Engineering 

Boğaziçi University 

2011  



 

ii

ANALYTICAL MODELING OF REINFORCED CONCRETE COLUMNS WITH 

LAP SPLICES 

 

 

 

 

 

 

 

APPROVED BY: 

 

 

Assist. Prof. Kutay Orakçal              …………………………….. 
              
   (Thesis Supervisor) 
 
              Prof. Uğur Ersoy              …………………………....... 
 
    
   Prof. Alper İlki                                 ……………………………… 
 

 
Prof. Cengiz Karakoç                       ……………………………… 

 
    
   Assoc. Prof. Orhun Köksal             ………………………………. 

 

 

 

 

 

 

DATE OF APPROVAL: 06.06.2011 

 

 



 

iii

ACKNOWLEDGEMENTS 
 

 

I would like to express my sincere gratitude and appreciation to my thesis supervisor 

Assistant Professor Dr. Kutay Orakçal for his invaluable constant guidance, generous help, 

invaluable innovative suggestions, continued encouragement, remarkable patience and 

unfailing enthusiasm   throughout the process of completion of this thesis. 

 

I would like to thank to the members of the thesis committee, Professor Dr. Uğur 

Ersoy, Professor Dr. Cengiz Karakoç, Professor Dr. Alper İlki and Associate Professor Dr. 

Orhun Köksal for their precious suggestions. 

 

The author also would like to acknowledge Professor Dr. Erol Güler, Prof. Dr. Turan 

Özturan, Chairman, Department of Civil Engineering, and Associate Professor Dr. Emre 

Otay for arranging financial support throughout my PhD study. 

 

I would also like to special thank Dr. Murat Melek for providing test data that he 

obtained during his PhD at University of California, Los Angeles (UCLA).  

 

Thanks also to my friends Yavuz Tokmak, Musa Rahmanlar, Tahir Erdem Öztürk, 

Ufuk Şahin, Emin Çiftçi, Ernur Akiner, Yusuf Eşidir, Arshiya Abadkon for their support 

and friendly behavior during my study in Turkey. This research has been financially 

supported by Boğaziçi University Foundation Fahir İlkel Fellowsip for International Ph.D. 

Students, and by Boğaziçi University Research Fund, under Project No. 08A403 (859). 

The author acknowledges the co-operation and support of all the teachers and staff of 

Department of Civil Engineering to complete the thesis to this stage. 

 

I am indebted to my parents for the endless support, encouragement and love they 

have given me throughout my life. I cannot forget the support of my dear wife, whose 

patience and encouragement throughout this study have meant so much to me. Lastly, my 

son, Rajit of 4 years old, whose innocent, restless attitude always stimulates and refreshes 

me for the accomplishment of my study. 



 

iv

ABSTRACT 
 

 

ANALYTICAL MODELING OF REINFORCED CONCRETE COLUMNS 

WITH LAP SPLICES 

 

 

A possible source of seismic failure in existing reinforced concrete structures is loss 

of anchorage in column reinforcement, along deficient lap splices with short lap length and 

inadequate transverse reinforcement conditions. Reliable modeling of the bond slip 

behavior and anchorage failures in such columns is important for performance assessment 

of existing buildings using nonlinear static and dynamic analysis methods. 
 

In this study, a novel analytical modeling approach is proposed, for simulating the 

lateral load – deformation response of reinforced concrete columns with deficient lap 

splices. The modeling approach involves implementing bond stress vs. slip springs in the 

formulation of a fiber-based macro model. Through this methodology, local bond-slip 

behavior associated with both pullout failure of reinforcing bars and formation of splitting 

cracks in concrete can be characterized. The proposed model directly considers the 

influence of bond slip deformations on the lateral load – displacement response of a 

column under reversed cyclic lateral loading, and successfully represents the distribution of 

bond stresses and slip deformations, due to either splitting or pullout anchorage failures, 

along the lap splice region. The model successfully represents the distribution of local 

bond slip deformations along the length of a reinforced concrete column, as opposed to 

conventional methods where bond slip deformations are assumed to be localized at 

prescribed locations. The flexible formulation of the model allows investigating the 

influence of using smooth reinforcing bars, presence of 180-degreee hooks, the strain 

penetration effects on the response of a column. 

 

 Response predictions of the analytical model were validated against results of 

cyclic tests on lap-splice-deficient column specimens, and the model was found to 

consistently represent the experimental behavior, both at global and local response levels, 

with a reasonable level of accuracy. Additional correlation studies conducted between 
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model predictions and test results in the literature further verified that the model can 

effectively reflect the global response characteristics and failure modes of various column 

configurations incorporating either deficient lap splices or anchorage-deficient continuous 

reinforcement. Overall, the modeling approach proposed in this study is believed to be a 

significant improvement, towards realistic consideration of bond slip deformations and 

anchorage failures on the seismic response and performance of reinforced concrete 

structures.    
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ÖZET 
 

 

EKSİK BİNDİRME BOYLU BETONARME KOLONLARIN ANALİTİK 

MODELLENMESİ  

 

 

Mevcut betonarme binaların deprem performansını kötü yönde etkileyen önemli 

özelliklerden biri kolon donatısındaki bindirmeli ek bölgelerinde eksik bindirme boyu ve 

yetersiz enine donatı kullanımı nedeniyle oluşan sıyrılma davranışıdır. Bindirme boyu 

yetersiz kolonlardaki aderans kaybı ve sıyrılma davranışının güvenilir bir şekilde 

modellenmesi, mevcut betonarme binaların statik ve dinamik hesap yöntemleriyle analizi 

ve performans değerlendirmesi için açısından önem taşımaktadır.  

 

Bu çalışmada yetersiz bindirme boyuna sahip betonarme kolonların deprem etkileri 

altında yanal yük – şekildeğiştirme davranışını öngören bir analitik modelleme yöntemi 

sunulmuştur. Sunulan model, makro-lifli bir betonarme kolon modelinin formülasyonuna 

aderans gerilmelerinin sıyrılma deformasyonları ile değişimini temsil eden yayların 

eklenmesinden oluşmaktadır. Önerilen modelleme yöntemi ile bindirmeli ek bölgesinde 

oluşan sıyrılma deformasyonlarının kolonun tersinir tekrarlanır yükler altında yük–

şekildeğiştirme davranışına etkisi etkin bir şekilde temsil edilebilmekte; çekip çıkma ya da 

yarılma mekanizmaları nedeniyle oluşacak sıyrılma deformasyonlarının ve aderans 

gerilmelerinin bindirme bölgesi boyunca dağılımı öngörülebilmektedir. Modelin esnek 

formülasyonu, düz yüzeyli donatının kullanımının, 180-derece kanca davranışının, ve 

ankraj bölgesindeki sıyrılma deformasyonlarının kolon davranışına etkilerini göz önünde 

bulundurmaya olanak sağlamaktadır.  

 

Analiz sonuçları yetersiz bindirme boyuna sahip ve nervürlü donatı içeren kolon 

numuneleri üzerinde yapılan deney sonuçlarıyla detaylı bir şekilde karşılaştırılmış; analitik 

modelin deneysel sonuçları hem yük – öteleme davranışı hem de yerel şekildeğiştirmelerin 

dağılımı bakımından doğru ve tutarlı bir şekilde temsil ettiği gözlemlenmiştir. Analitik 

model sonuçları ayrıca literatürde sunulan farklı konfigürasyon ve ankraj özelliklerine 

sahip çok sayıda kolon numunesi üzerinde yapılmış olan deneylerin sonuçları ile 
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karşılaştırılmış; modelin deneylerde gözlemlenen yatay yük davranışı ve kırılma türlerini 

tutarlı bir şekilde yansıttığı gösterilmiştir. Önerilen analitik modelleme yönteminin, 

donatıda sıyrılma etkilerinin betonarme yapıların deprem davranışına etkisinin daha iyi 

irdelenebilmesi için önemli olduğu düşünülmektedir. 
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1.   INTRODUCTION 
 

 

1.1.  General 

 

One source of severe seismic damage in poorly-detailed reinforced concrete 

buildings is the loss of anchorage between reinforcing bars and concrete along short and 

poorly-confined lap splices in columns, which are located typically above floor levels 

where large inelastic demands are expected. Typical lap splice lengths of 20 to 30 

longitudinal bar diameters, which are commonly encountered in many existing and poorly-

detailed reinforced concrete buildings worldwide, have been shown to be inadequate in 

transferring the tensile stresses in longitudinal reinforcement along the lap splice region of 

a column. For example, lap splices in reinforced concrete columns in older buildings in the 

United States, or within the non-participating frames in some newer buildings, were 

typically designed as compression lap splices. Compression lap splice lengths are typically 

short (20 to 24 bar diameters), and only moderate transverse reinforcement is provided 

over the lap length. Under earthquake actions, the columns typically develop significant 

bending moments, subjecting the longitudinal reinforcement within the splice region to 

relatively large tensile stresses, particularly if the splice is located just above the floor slab, 

which is common in older construction. Given that required lap lengths (typically 20 or 24 

longitudinal bar diameters) for tension substantially exceed those for compression, bond 

slip failures along the splice region may occur at load levels less than that required to reach 

the nominal moment capacity of the column, resulting in loss in column strength, stiffness, 

and ductility. The load-deformation responses of columns representative of those found in 

older buildings are not well understood; and in particular, the degradation of strength and 

stiffness of a column due to splice failure and the ability of the column to undergo inelastic 

deformation while maintaining axial load capacity, are of interest. The effects of bond 

deterioration and slip deformations in longitudinal reinforcing bars on the overall response 

of reinforced concrete columns with inadequate lap-splice lengths must be taken into 

account in order to develop reliable analytical modeling approaches for such lap-splice-

deficient columns, particularly for improvement of nonlinear analysis methods used for 

seismic performance assessment of existing buildings. 
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Past experimental observations studies on individual reinforcing bars anchored in 

concrete have identified two main types of bond failure mechanisms between concrete and 

reinforcing steel, depending mainly on the amount of concrete confinement provided 

around the reinforcing steel bar. If the cover concrete is adequate and the concrete is well 

confined by transverse reinforcement, bond failure typically occurs by pullout. On the 

other hand, if the cover is inadequate and the concrete is unconfined or poorly confined, 

bond failure occurs by splitting of the concrete surrounding the bar. A significant number 

of experimental and analytical studies have been conducted on the anchorage and bond slip 

characteristics isolated bars embeded in concrete. Several constitutive bond stress vs. slip 

relationships have been proposed to simulate both pullout and splitting modes of bond 

failures for individual bars. 

 

However, the current state-of-the-art modeling approach for simulating bond slip 

behavior in reinforced concrete columns with deficient lap splices consists only of 

incorporating simple zero-length moment vs. slip rotation springs at the splice regions of 

column members, which are intended to represent deformations associated with bond slip 

at critical locations where inadequate anchorage conditions are provided. The moment vs. 

rotation behavior of the bond slip spring is calibrated via combining results of one-

dimensional analysis on isolated reinforcing bars embedded in concrete, which 

characterizes the bar pull-out force (P) vs. slip deformation behavior of the individual bar, 

with results of moment–curvature analyses that relate the forces in the reinforcing bars (P) 

to the moments applied on the member cross-section at a critical location. In general, only 

monotonic bar pullout vs. slip and moment vs. curvature analyses are employed, in order to 

generate a moment vs. rotation envelope for the bond slip spring, and the cyclic behavior 

of the bond slip spring is represented via predefined and somewhat ad-hoc unloading and 

reloading rules (e.g., Cho and Pincheira, 2004). 

 

This modeling approach, although simple in formulation, introduces certain 

inconsistencies in the analysis. First, using predefined loading and unloading rules for the 

rotational bond slip spring introduces incompatibility between flexural and bond slip 

deformations in a RC member during unloading and reloading, and impairs the reliability 

of the model in predicting the energy dissipation capacity of the member under reversed 

cyclic loading. Second, using results of monotonic moment–curvature analyses creates a 
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conceptual error in calibration of the moment vs. rotation envelope of the bond slip spring. 

Pronounced bond slip behavior often results in strength-degrading responses associated 

with the post-peak (degrading) region of the bar pullout force vs. slip response of the 

individual reinforcing bars, which results in degradation of the lateral load vs. 

displacement (or the moment vs. rotation) of the member. Therefore, a monotonic 

moment–curvature analysis should be employed only up to the point (moment) that 

corresponds to the load where significant slip occurs for an individual reinforcing bar. 

Subsequently, realistic unloading in the moment–curvature response should be considered, 

even when the moment vs. rotation envelope of the bond slip spring is being calibrated for 

monotonic loading. Furthermore, this modeling approach requires multiple steps in the 

analysis, and bond slip deformations are assumed to be concentrated at pre-defined critical 

locations on the member, which needs to be specified in the model. 

 

1.2.  Scope 

 

Given these shortcomings, the scope of this research study is to develop a more 

robust and refined modeling approach to simulate the bond-slip responses observed in 

reinforced concrete columns under reversed cyclic loading. The proposed modeling 

methodology involves modifying the formulation of a fiber-based flexural model (i.e., the 

Multiple Vertical Line Element Model), with the fibers representing the hysteretic flexural 

behavior of concrete only. Reinforcing bar elements, with uniaxial hysteretic stress–strain 

relationships of their own, are connected to the concrete fibers through uniaxial bond slip 

springs, the behavior of which are represented with experimentally-derived hysteretic bond 

stress vs. slip constitutive relationships available in the literature (Eligehausen et al., 1983, 

for pullout, Harajli et al., 2009 for splitting, Verderame et al., 2009 for smooth reinforcing 

bars, and Fabbrocino et al., 2004 for 180-degree hooks). Through this methodology, local 

bond slip behavior is incorporated at the fiber level, and full coupling (compatibility) of 

flexural and bond slip deformations of the model is retained under reversed cyclic loading 

conditions. The model proposed does not require intermediate steps in the analysis, and 

successfully represents the distribution of local bond slip deformations along the height of 

a reinforced concrete member, as opposed to conventional methods where bond slip 

deformations are assumed to be localized at prescribed locations.  
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The proposed analytical modelling approach captures many important response 

characteristics associated with the cyclic behaviour reinforced concrete columns with short 

lap splices, where failure or degradation in the load-deformation response is initiated by 

bond slip between longitudinal steel bars and the surrounding concrete in the lap splice 

region. Several bond stress vs. slip constitutive relationships are implemented in the model 

formulation, depending based on the type of reinforcing bar (deformed or plain) used, and 

the failure mode (pullout or splitting) expected. The model allows slip deformations to be 

distributed over the height of the column, instead of being localized in prescribed regions. 

Full coupling of flexural and bond slip deformations are enforced at all locations on the 

column, under generalized and reversed cyclic loading conditions. The model allows 

monitoring of local responses including longitudinal strains and stresses in concrete and 

reinforcing steel, as well as bond stresses and slip deformations at any location on the 

column. Local rotations, strain profiles, and neutral axis locations, and bond stress 

distributions along either longitudinal or starter splice bars can also be obtained using the 

analytical model proposed.  

 

Upon development and implementation of the model formulation, detailed and 

comprehensive correlation studies were conducted between model results and experimental 

data, in order to identify the capabilities and weaknesses of the proposed model, as well as 

to provide a better understanding of nonlinear bond slip behaviour of reinforced concrete 

columns with deficient lap splices. Analytical and experimental response comparisons 

were made at both global and local response levels, for various column configurations with 

either deformed or plain reinforcing bars; with various lap splice lengths, cross sections, 

material properties and reinforcement conditions; subjected to different axial load levels 

and lateral loading patterns.  

 

1.3.  Research Significance 

 

With current modeling approaches available in the literature, it is not possible to 

fully comprehend and analytically represent the coupled flexural and bond slip behaviour 

of reinforced concrete columns with short lap splices. The behavioural model proposed in 

this study is intended to capture many important response characteristics associated with 

the cyclic behavior of reinforced concrete columns with short lap splices, Detailed 
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response comparisons conducted between the model results and experimental data, at both 

global and local response levels, allows a better understanding of the coupled flexural and 

bond slip responses of lap-splice-deficient columns. The model presented can also be used 

as an effective tool in nonlinear analysis of structural systems, as part of performance-

based evaluation methodologies for existing reinforced concrete buildings. 

 

1.4.  Objective 

 

Specifically, the objectives of this study are: 

(i) To develop a macroscopic analytical model, which accurately predicts the 

nonlinear inelastic response of reinforced concrete columns with short lap splices, at both 

global and local response levels,  

(ii) To implement refined constitutive material and bond-slip relationships in the 

analytical model, and to adopt flexible nonlinear analysis solution strategies for conducting 

analyses for various column configurations, 

(iii) To investigate the sensitivity of model results, at both global and local model 

response levels, to changes in model parameters, 

(iv) To conduct detailed calibration studies on the analytical model and to perform 

comprehensive correlation studies, at various response levels and locations, between 

analytical model results and a detailed experimental program involving cyclic loading tests 

on densely-instrumented reinforced concrete column specimens. 

(v) To conduct additional correlation studies between model results and experimental 

observations in the literature, in order to evaluate various response characteristics, 

including the influence of using plain bars, presence of hooks, and strain penetration 

effects on column response, 

(vi) To reach conclusions on the effectiveness of the proposed model in predicting 

the cyclic response of reinforced concrete column with short lap splices and deficient 

anchorage conditions, and to arrive at recommendations upon further improvements of the 

model.    
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1.5.  Thesis Outline 

 

Nine chapters are included in this thesis. A general introduction, as well as the scope 

and objectives of the study are described in chapter one. Chapter two provides a review of 

the various constitutive bond stress vs. slip models available in literature, previous 

experimental and analytical studies on the bond slip behavior of reinforced concrete 

members, and the current state-of-the-art modeling approaches available. The description 

and numerical formulation of the proposed analytical model is presented in Chapter three. 

Chapter four describes the cyclic material constitutive relationships used for reinforcing 

steel and concrete, as well as the bond stress vs. slip constitutive relationships incorporated 

in the analytical model. Numerical solution strategies adopted to conduct nonlinear 

analyses using the analytical model are described in Chapter five. Chapter six provides an 

examination of the characteristic attributes of the analytical model results, and also 

investigates the sensitivity of the model results to selected model parameters. Chapter 

seven provides information on correlation of the analytical model results with results of an 

experimental program on densely instrumented column specimens with deformed 

reinforcing bars and deficient lap splices. A brief description of the experimental program, 

detailed information on calibration of the model, and comparisons of model results with 

the extensive experimental data at both global and local response levels are presented. 

Chapter eight further compares the analytical model results with additional experimental 

observations available in the literature on various column specimens with both deformed 

and plain reinforcing bars, with both deficient lap splices and continuous longitudinal 

reinforcement (where bond slip behavior in the anchorage zone is of interest). In Chapter 

nine, the analytical results are summarized, concluding remarks on the abilities and 

weaknesses of the model are presented, and recommendations on further improvement and 

application of the model are provided. 
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2.   LITERATURE REVIEW 
 

 

Past experimental studies on individual reinforcing bars embedded in concrete have 

identified two main types of bond failure mechanisms, depending on the amount of 

concrete surrounding the reinforcing bar, as well as the level of confinement. If the 

surrounding concrete is of significant thickness and the concrete is well confined by 

transverse reinforcement, bond failure typically occurs by pullout. On the other hand, if the 

concrete cover is small and the concrete is either unconfined or poorly confined, bond 

failure occurs by splitting of the surrounding concrete. Several bond stress vs. slip 

constitutive models to simulate both pullout (for deformed as well as smooth reinforcing 

bars) and splitting (only for deformed reinforcing bars) modes of bond failures are 

available in the literature, as described in the following section. 

 

2.1.  Constitutive Models for Bond Stress-Slip Relation 

 

Eligehausen et al. (1983) first proposed a robust hysteretic constitutive model for the 

local bond stress vs. slip relationship for a single reinforcing deformed bar anchored within 

a reinforced concrete beam-column joint.  The model was derived using experimental 

results from tests conducted on 125 specimens with short anchorage lengths, subjected to 

either monotonic tensile loading or reversed cyclic loading. Effects of loading history, 

confining reinforcement amount, bar diameter, concrete compressive strength, clear cover, 

bar spacing, and rate of pull-out on the local bond stress vs. slip relationship were all 

considered during development of the constitutive model. Cyclic degradation in both bond 

stress and stiffness was incorporated in the model formulation. The model was shown to 

agree reasonably well with experimental results, and is still widely used in bond slip 

modeling applications. Prior to the work by Eligehausen et al. (1983), although the bond 

slip behavior under reversed loading for rather small slip deformation values (s < s1) could 

be predicted with sufficient accuracy, the influence of loading cycles for larger slip values 

(s > s1) on the local bond stress vs. slip relationship was not well-defined. 
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Figure 2.1. Constitutive Model for Local Bond Stress vs. Slip Relationship for Confined 

Concrete (Eligehausen et al., 1983). 

 

The local bond stress vs. slip constitutive relationships proposed by Harajli et al. 

(1994, 2002, and 2004) apply to reinforcing bars embedded in plain and fiber-reinforced 

concrete under monotonic tension, and are applicable to both splitting and pull-out type 

bond failures (Harajli et al., 1994). These constitutive models were developed upon 

compiling a broad database of experimental data, including results of the tests conducted 

by Eligehausen et al. (1983) and Harajli et al. (1995). The original version of the model 

consisted of two monotonic backbone relationships, representing pull-out and splitting 

failures for unconfined and confined concrete, respectively. These backbone relationships 

were later improved (reference) to consider the influence of partial confinement on the 

bond stress vs. slip response of reinforcing bars experiencing splitting type of bond failure.   
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Figure 2.2.  Monotonic Bond Stress vs. Slip Constitutive Model (Harajli et al.,1994, 2002, 

2004). 
 

Harajli (2009) first developed a robust hysteretic local bond stress-slip constitutive 

model to simulate splitting mode bond failure for deformed reinforcing bars, as shown in 

Figure 2.3. This cyclic constitutive model accounted for splitting of both unconfined and 

moderately-confined concrete, and incorporated the effect of several critical bond slip 

parameters, such as the diameter of reinforcing bars, the ratio of concrete cover to bar 

diameter, concrete compressive strength, the amount of confining reinforcement, and the 

type of confinement including steel ties, fiber-reinforced concrete (FRC), and reinforced 

concrete polymer jackets. Cyclic degradation in both bond stress and stiffness were also 

incorporated in this constitutive model. 

 

As described above, existing information in the literature on the bond slip behavior 

of deformed reinforcing bars include extensive experimental data and various constitutive 

relationships, both monotonic and hysteretic, which account for the governing parameters 

influencing bond slip response. On the other hand, available information in the literature 

on the bond stress vs. slip relationship of plain (smooth) bars, which can be important for 

seismic performance assessment of existing reinforced concrete buildings in many 

countries, is very limited. 
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 Figure 2.3.  Hysteretic Bond Stress vs. Slip Constitutive Model for Splitting Failure 

(Harajli, 2009). 
 

A robust hysteretic bond stress vs. slip constitutive model for plain reinforcing bars 

was only recently developed by Verderame et al. (2009 a,b), based on experimental results 

of monotonic and cyclic pull-out tests on plain bars embedded in concrete (Figure 2.4). 

The monotonic envelope of this constitutive model includes an initial ascending branch up 

to a peak bond stress capacity value, which corresponding to a very low magnitude of slip 

deformation. During this phase of the behavior, chemical–physical adhesion, mechanical 

micro-interlocking, and the friction between the bar surface and surrounding concrete 

contribute to development of bond stress capacity. Then, a softening branch, represents the 

progressive degradation of the friction mechanism with increasing slip deformation. 

Finally, a horizontal branch, at a constant magnitude of bond stress, represents minimum 

frictional component of bond resistance. Hysteretic rules of the constitutive model are 

based on experimentally-observed cyclic degradation of the frictional bond resistance 

component.   

 

The constitutive bond stress vs. slip models adopted in this study for both deformed 

and plain reinforcing bars are described in detail in Chapter 4 of this thesis. 

 

Bo
nd

 S
tre

ss
, u

Umax

Uo
UN

(sr)H (sr)K

Umax

Slip, s



 

11

 
Figure 2.4.  Hysteretic Bond-Slip Relationship for Plain Reinforcing Bar (Verderame et 

al., 2009 a,b). 

 

2.2.  Experimental Studies on the Bond Slip Behavior of Reinforced Concrete 

Columns 

 

Experimental observations available in literature on the bond slip behavior of 

reinforced concrete columns can be categorized in three types; as columns with deformed 

reinforcing bars incorporating lap splices, columns with smooth reinforcing bars 

incorporating lap splices and hooks, and columns with continuous deformed reinforcing 

bars experiencing anchorage slip (strain penetration) effects. Examples of such 

experimental studies are presented in the following paragraphs. All of these experimental 

studies were used in experimental calibration and verification of the analytical model 

proposed in this study, as described in Chapters 7 and 8 of this thesis. 

 

Melek and Wallace (2004) conducted experiments of densely-instrumented full-scale 

column specimens constructued with deformed reinforcing bars, with various 

configurations, in order to better characterize the influence of bond slip deformation and 

slip failure on the lateral load response of lap-splice-deficient reinforced concrete columns. 

The primary variables in their test program included the level of axial compressive load, 

the ratio of maximum moment to maximum shear force (shear span), and the loading 

history. All column specimens had deformed reinforcing bars and a lap splice length equal 

to 20 bar diameters. The experimental results indicated the lateral strength of specimens 
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started degrading at lateral drift ratio of 1.0 to 1.5%, due to the deterioration of the bond 

between the reinforcement and the surrounding concrete. The data showed that higher axial 

load levels slightly increased the lateral load capacity of the specimens, and that changes in 

shear demand did not appear to influence the lateral load at which bond deterioration 

initiated. 

 

Aboutaha (1994) and Aboutaha et al. (1996) conducted a series of tests on cantilever 

type column specimens, representing half the length of an actual column in a real building 

frame. All column specimens were 2.74 meter high from the top of footing to the point of 

load application, to ensure flexural-dominated behavior. Cyclic lateral loads were applied 

at the tip of the column specimens and all columns were loaded in the weak direction. 

Lateral loads were increased in 22 kN increments until significant inelastic displacement 

was observed. Lateral displacements were then increased in increments corresponding to 

0.5% drift ratios. All columns were tested without axial load. The lap splice length of the 

specimens were 24 bar diameters. Generally, splice failure was associated with vertical 

splitting cracks along the full height of the splice. For some specimens, splice failure after 

yielding of the main longitudinal bars occurred. 

 

Harajli and Dagher (2008) tested full-scale cantilever column specimens with lap-

splices located at column. Systematically-varied concrete grades of C14, C16, and C20, 

and reinforcing bar diameters of 14 mm, 16 mm, and 20 mm were used in the construction 

of the test specimens. The specimens consisted of columns having a half height of 1.5 m 

and a 200 mm wide by 400 mm deep rectangular cross section, supported over a 1200 mm 

long, 500 mm wide, and 500 mm deep footing. The column longitudinal reinforcement 

was lap-spliced, with starter bars of the same diameter anchored within the footing using 

standard 90-degree hooks. The lap splice length for all column specimens was selected as 

30db, where db is the diameter of the column reinforcement. The side cover cs and bottom 

cover cb of the spliced bars in the column section were chosen to produce a range of values 

of c/db that would induce splitting bond failure before steel yielding. The transverse 

reinforcement in these specimens consisted of φ8 mm diameter ties spaced at 200 mm  

throughout the height of the column with the first tie placed at 50 mm  above the column-

footing interface. As the main objective of this experimental study was to investigate the 

splitting bond strength of column splices and since the splitting bond strength of spliced 
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bars depends primarily on the tension stresses acting on the spliced bars, the specimens 

were tested under pure flexure, with no axial compression. Failure was characterized by 

significant vertical splitting cracks in the lap splice region. The splitting cracks started at 

the base of the column and propagated upward along the full splice length as the lateral 

drift increased. Splitting bond failure caused concrete spalling along the splice length and 

substantial slip of starter bars at the column-footing interface. 

 

Elgawady et al. (2010) investigated the cyclic behavior of eight 4/10-scale reinforced 

concrete column specimens representing construction conditions in the state of 

Washington prior to 1971. All specimens were tested under constant axial load and 

incrementally increasing lateral loading cycles. Two modes of failure were observed for 

the column specimens, which are low-cycle fatigue failure of longitudinal reinforcement 

and slip failure of the lap splice. In the column specimens, longitudinal bars were lap 

spliced (over a length of 35 bar diameter), at the base of the column with the starter bars 

extending from the foundation. All specimens had an approximate longitudinal 

reinforcement ratio of 1.2%, provided with 12.5 mm diameter deformed rebars, and 6.3  

mm diameter smooth mild steel ties at 125 mm spacing as transverse reinforcement. The 

specimens were subjected to reverse cyclic lateral loading with increasing levels of lateral 

displacements.  

 

Lynn et al. (1996) conducted tests on eight full-scale column specimens representing 

construction details in the United States prior to the 1970s. The specimens were subjected 

to reversed cyclic lateral displacements, while the axial load was held constant for the 

duration of the test, at a level corresponding to approximately 12% of the axial load 

capacity of the columns. Observed failure modes included localized crushing of concrete, 

buckling of reinforcement, splitting bond failure at the lap splice, shear failure, and axial 

load collapse. 

 

The full scale column specimen, ‘L0’, tested by of Harries et al. (2006), incorporated 

a 22 bar diameter lap splice length, and was tested under combined axial and cyclic lateral 

loads. The column specimen was initially designed so that the lap splice would cause bond 

slip failure prior to achieving the flexural capacity of the column. The column specimen 

had 458 mm square cross sections with eight 22 mm – diameter longitudinal reinforcing 
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bars. 9.5 mm – diameter ties with 356 mm spacing were located over a height of 1780 mm 

from the base of the column. These ties incorporated deficient 90-degree hooks. The axial 

load level applied during testing was approximately 25% of the column axial load 

capacity, and was maintained constant throughout the cyclic lateral load history, using a 

regulated system of hydraulic rams. The reversed cyclic lateral loads were applied to the 

column specimen at a height of 2440 mm, which was selected to ensure a sufficiently high 

moment-to-shear ratio to result in flexure-dominated column behavior. The columns were 

tested as cantilevers with the lateral loads applied at the top, approximately representing 

the half the height of an actual column in a building frame, for which the point of 

inflection is located at the midheight. Failure was characterized by significant vertical 

splitting cracks in the lap splice region. 

 

Yildiz (2006) conducted an experimental program on reinforced concrete columns 

with deficient detailing and low material quality, representing older non-ductile buildings 

in Turkey. Two of her specimens (Specimens AF(COG0)B1 and AF(COG0)B2) 

incorporated deficient lap splices, with splice lengths equal to 15 bar diameters, and were 

subjected to constant axial and reversed cyclic lateral loads. All test specimens were 

designed such that shear failure would be avoided. However, all specimens possessed 

inadequate confinement and low concrete quality.  

 

Verderame et al. (2008) conducted experiments on reinforced concrete column 

specimens incorporating with smooth reinforcing bars. Two types of specimens were 

considered, depending on the longitudinal reinforcement details at column base. Type A 

specimens had lap-spliced and hooked bars with 40 bar diameter long splice length, 

whereas continuous longitudinal bars were provided for Type B specimens. Two different 

levels of axial load (12% and 24% of axial load capacity) were applied to represent the 

behavior of columns in a prototype building. For the specimen types investigated in detail 

in the present study, the specimens were 2000 mm high, with a 300 mm by 300 mm square 

cross-section. Longitudinal reinforcement consisted of six 12 mm – diameter smooth bars, 

while 8 mm – diameter ties were spaced at 100 mm spaced. Cyclic lateral loads were 

applied at a height of 1570 mm from the top of the specimen foundation A maximum 

cyclic drift of ±100 mm was applied, and the specimens were cycled three times at 15 

target drift levels. Moderate decay of strength due to progressive spalling of concrete cover 
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and strong pinching effect exhibited for Type A column specimen. Loss of strength due to 

spalling of concrete cover and buckling of reinforcing bars exhibited for Type B specimen. 

 

Yilmaz (2009) investigated the effect of deficient lap splices with plain bars 180-

degree hooks, as well as the influence of low concrete compressive strength on the lateral 

load behavior of reinforced concrete columns in typical poorly-constructed buildings in 

turkey. In his experimental study, the column specimens incorporated 14 mm – diameter 

(φ) smooth longitudinal bars, 10 mm – diameter poorly detailed and wide-spaced ties, and 

an average concrete compressive strength of approximately 10 MPa.  In construction of 

four specimens, different lap splice lengths (25φ, 35φ, 44φ, 55φ) were used, and one 

specimen incorporated continuous longitudinal reinforcement. The column specimens were 

tested under zero axial load and reversed-cyclic lateral loading.  

 

To investigate the influence of bond slip deformations in anchorage zones (i.e., strain 

penetration effects) on the cyclic lateral load behavior of reinforced concrete columns,  

Low and Moehle (1987) tested a series of reinforced concrete cantilever column specimens 

with rectangular cross sections and continuous longitudinal reinforcement anchored into 

specimen foundations. For the column specimens tested, the anchorage length (within the 

foundation) of the longitudinal reinforcement corresponded to 23 bar diameters. The 

specimens were subjected to constant axial load and reversed cyclic lateral loading. 

 

Bousias et al. (1995) also tested a column specimen with continuous deformed 

reinforcing bars to investigate the influence of strain penetration effects (anchorage slip) 

on column behavior.  The column specimen was 1490 mm high, with a 250 mm by 250 

mm cross section. An anchorage length (within the specimen foundation) corresponding to 

30 bar diameters was used in the construction of the specimen. This column was also 

subjected to constant axial load and reversed cyclic lateral loading.  

 

2.3.  Analytical Studies on the Bond Slip Behavior of Reinforced Concrete Members 

 

Various types of analytical models have been proposed for simulating the bond slip 

behavior in reinforced concrete structural members. A simple constitutive modeling 

approach is using the single bar model shown in Figure 2.5, for representing the bond slip 
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behavior of individual longitudinal bars in a member. The force-deformation response of a 

reinforcing bar embedded in concrete may be described by this one-dimensional model. In 

this model, the bar is divided into a finite number of short segments. Each bar segment is 

connected to a nonlinear spring that represents the local bond resistance on the surface of 

the bar segment. Knowing the stress-strain characteristics of the materials and assuming a 

bond stress-slip relationship for the bar embedded in concrete, the pullout force P and the 

slip deformation Δslip can be calculated. 

 

 
Figure 2.5.  Uniaxial  Model for an Isolated Bar. 

 

Unlike the behavior of isolated bars, spliced bars interact with each other, following 

a complex force transfer mechanism. Experimental studies have shown, however, that the 

cracking, splitting, and bond slip behavior in a lap splice region is similar to that of 

individual embedded bars; and it is generally accepted that the load-carrying capacity of a 

spliced bar is almost the same as that of a single embedded bar. 

 

Using the idea of an embedded bar model, Reyes (1999) and Reyes and Pincheira 

(1999) developed a nonlinear analysis procedure to estimate the lateral strength and 

displacement capacity of older reinforced concrete columns with short lap splices. 

Although their procedure provided a good estimate of the lateral strength and failure mode 

of a splice-deficient column, the lateral deformation capacity was underestimated and the 

post-peak response was not consistently well represented by their model.   

 

Girard and Bastien (2002) proposed an analytical modeling approach to investigate 

the response of reinforced coulmns subjected to cyclic loads, which was incorporated in a 

general purpose finite-element program (CLEF) developed at Laval University. The three-

dimensional finite-element model considered the concrete confinement effect, the 
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softening response of concrete, the strength loss due to bond deterioration, and the slip 

deformation of the reinforcing bar relative to the surrounding concrete. In their research, it 

was shown that the use of finite elements with additional degrees of freedom at each node 

to represent the relative slip between concrete and steel is a reliable method to model the 

response of structural members for which the progressive deterioration of the bond 

between steel and concrete influences the general behavior. Comparing with the 

experimental behavior, the stiffness of the numerical model was found greater due to the 

initial stiffness of the bond-slip constitutive law was considered constatant for 

programming simplicity. A bond stress-slip relationship with a reduced envelope , as 

suggested by Eligehausen et al. (1983) could be used to represent the behavior of the 

interface after some repeated cycles. 

 

Limkatanyu and Spacone (2003) generated a fiber-based frame element model 

(Figure 2.6) where bond slip deformations are not assumed to be localized at prescribed 

locations on the member. They applied this model that explicitly accounts for the bond slip 

deformation of steel reinforcing bars to simulate the response of two experimentally tested 

reinforced concrete structural specimens, a beam–column joint and a two-story frame. 

Their frame element consisted of two components: a two-node beam element and a number 

of two-node rebar elements, which are allowed to undergo slip deformation with respect to 

beam. The nodal degrees of freedom of the beam and of the rebars were different to permit 

reinforcement slip. The main objective of this study was to analyze the importance of 

considering bond slip in evaluating the response of reinforced concrete frame structures 

subjected to cyclic loading. The study of the beam-column subassembly validated the 

model accuracy and showed how including the effects of bond slip leads to a spindle-

shaped hysteretic loops, and to a better representation of the amount of hysteretic energy 

dissipation, since excluding the bond-slip effects overestimated the amount of hysteretic-

energy dissipation. The bond slip effects were found not to affect the load carrying 

capacity of the assembly, since no slip failure was observed in either the experimental test 

or the analytical results. The stress and bond stress distributions on the reinforcing 

indicated that the bond stress demand within the joint was critical, and that bond slip inside 

the joint resulted in large fixed-end rotations at the beam-joint interfaces.  
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Figure 2.6.  RC Frame Element with Bond-Slip: Degrees of Freedom, Fiber Section 

Discretization (Limkatanyu and Spacone, 2003). 

 

To evaluate the results of these tests, the effect of bond stress vs. slip behavior of lap-

spliced longitudinal bars on the overall monotonic column response was analytically 

modeled by Melek (2006), using a rotational bond slip spring at the column base. 

Monotonic bond stress vs. slip relationships were used to calibrate the moment vs. slip 

rotation spring. Investigation of moment vs. rotation responses of the specimens indicated 

that rotation caused by slippage of longitudinal bars accounted for a significant portion of 

the total rotation. After bond deterioration initiated, inelastic rotations were dominated by 

slip deformations. The calculated peak lateral load for the model agreed closely with the 

peak loads obtained in the tests. However, the monotonic moment versus slip rotation 

response underestimated the lateral drift (or rotation) at which lateral strength degradation 

initiates. It was stated that monotonic analyses of the column specimens underestimates 

lateral stiffness degradation with increasing lateral drift, probably because the monotonic 

bond stress vs. slip relationships used do not consider the damage caused by a cyclic 

displacement history. 
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Figure 2.7.  Column Model by Melek (2006). 

 

Belmouden and Pierino (2006) proposed an analytical model (Figure 2.8) for 

simulating the nonlinear hysteretic behavior of reinforced concrete walls, which accounts 

for strength degradation, stiffness degradation, pinching, inelastic shear deformation, 

confinement, and bond slip effects. In this study, bond slip behavior was again represented 

using a rotational slip spring. To establish the validity of the proposed model, correlation 

studies were conducted between analysis and test results, to compare cyclic load–

displacement hysteretic responses and hysteretic energy dissipation capacities. Although 

the analysis results were generally in good agreement with experimental results, the model 

was found to be incapable of accurately predicting local deformations on the wall 

associated with bond slip; indicating that a robust and mechanics-based macro-model 

which can accurately predict cyclic bond slip responses of columns at both local and global 

(system) levels was yet to be developed. 
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Figure 2.8.  Dimensions (mm) and Analytical Model Developed for Reinforced 

Concrete Structural Walls (Belmouden and Pierino, 2006). 

 

Ayoub (2006) presented a new inelastic element, which was derived from a two-field 

mixed formulation, where forced and deformations are approximated with independent 

interpolation functions for analysis of reinforced concrete beam-column elements with 

bond-slip-dominated responses. He presented an algorithm for implementation of the 

model in a general purpose nonlinear finite-element analysis program, to consider  both 

slip deformation and pullout failure effects in the analysis. The bond stress-slip model used 

in his model was  based on the work of Eligehausen et al. (2003). His model was evaluated 

by correlation studies with experimentally tested reinforced concrete columns. Although 

this numerical studies confirmed the accuracy of the model in representing the global 

behavior, pinching effect was not captured properly. 

 

Cho and Pincheira (2006) recently developed an analytical modelling approach to 

predict the lateral load behavior of reinforced concrete columns with short lap splices. 

They considered three basic deformation modes and resistance mechanisms to describe the 

nonlinear response of a reinforced concrete column as shown in Figure 2.10. The modes of 

deformation included contributions from flexure, shear, and bond slip of reinforcement at 

the splice region. Their modeling approach used followed the principles of the lumped 

plasticity models, and is an extension of the two dimensional, single component model 

developed by Giberson (1969) modified to include shear response (Pincheira et al., 1999). 
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Figure 2.9 depicts the profile of a reinforced concrete column and its corresponding 

computer model. An element of length equal to the clear length of the column was used to 

model the contributions of flexure and shear. This member consisted of an elastic beam-

column element with a nonlinear rotational spring at the base and a zero-length shear 

spring. The deformations due to bond slip in the lap splice region were simulated by a 

nonlinear rotational bond slip spring at the base of the model element. The moment vs. 

rotation behavior of the bond slip spring was calibrated via combining results of one-

dimensional analysis on isolated reinforcing bars embedded in concrete, which 

characterizes the bar pull-out force (P) vs. slip deformation behavior of the individual bar, 

with results of moment–curvature analyses that relate the forces in the reinforcing bars (P) 

to the moments applied on the member cross-section at a critical location. The backbone 

relations and hysteretic laws of the rotational bond spring is illustrated in Figure 2.11. The 

backbone curve was suggested to be tri-linear, with ascending and descending branches.     

 
Figure 2.9.  Beam-column Model with Bond-slip Spring. 

 



rein

to 

rela

relo

Par

α); 

the 

the 

 

 

Fi
 

 

Fig
 

Analytica

nforced conc

develop cyc

ationships, C

oading rule

rameters for 

and pinchin

analytical a

specimens i

igure 2.10.  M

gure 2.11.  M

al results we

crete column

clic respons

Cho and Pin

s to the m

lateral stiffn

ng (γ1 and γ2

and experim

indicated tha

Modes of D

Moment vs. S

ere calibrated

ns with typic

se character

cheira (2006

moment ver

ness degrada

2)  were dete

mental results

at rotation ca

eformation  

Slip Rotation

d with exper

cal construct

ristics using

6) suggested

sus slip ro

ation with ap

ermined by d

s. Investigati

aused by slip

(Cho and Pi

n (Cho and P

rimental data

tions details

g monotonic

d implementi

otation back

pplied cyclic

doing sensit

ion of mom

ppage of lon

incheira, 200

Pincheira, 20

a from cyclic

s of the early

c pull-out fo

ing hystereti

kbone curve

c displaceme

ivity studies

ent vs. rotat

ngitudinal ba

 

06). 

006). 

c loading tes

y 1970s. In o

force versus 

ic unloading

e (Figure 2

ent history (β

s for matchin

tion respons

ars accounte

22

 

sts on 

order 

 slip 

g and 

2.11). 

β and 

ng of 

es of 

ed for 



 

23

a significant portion of the total rotation. After bond deterioration initiated, inelastic 

rotations rotational were dominated by slip deformations. Although the general 

characteristics (global response) of the measured response under cyclic loading were 

represented well by the analytical model, due to the ad-hoc rules hysteretic laws for the 

flexural and rotational bond slip springs, the pattern of the post peak cycles was not 

represented accurately.  Also, the model did not allow estimation of the distribution of 

local deformations in the splice region, since similarly to other conventional methods, 

inelastic flexural and bond slip deformations were assumed to be localized at a prescribed 

location on the member (at the base of column).  

 

As described in this section, the current state-of-the-art macroscopic modeling 

approach for simulating bond slip behavior in slender reinforced concrete members 

involves incorporating zero-length moment vs. rotation springs at the boundaries of beam-

column-elements which represent deformations associated with bond slip at critical 

locations on a member where inadequate anchorage is provided or slip deformations are 

expected to impact deformations. In general, only monotonic bar pullout vs. slip and 

moment vs. curvature analyses are employed, in order to generate a moment vs. rotation 

envelope for the bond slip spring, and the cyclic behavior of the bond slip spring is 

represented via predefined unloading and reloading rules with typically ad-hoc parameters. 

 

On the other hand, although microscopic modeling approaches can provide a detailed 

description of the local response, their efficiency, practicality, and robustness are 

questionable due to complexities in calibrating the model and interpreting the results.   

 

To obtain a more robust, yet practical response prediction, an analytical modeling 

approach based on a fiber formulation (a distributed plasticity model) has the potential to 

provide a mechanics-based and reliable, yet practical solution.  Therefore, a fiber-based 

macroscopic modeling approach to simulate nonlinear flexural responses was used as a 

baseline model for the current study. Characteristics of the flexural macro-model used, 

which is referred to the Multiple Vertical Line Element Model (MVLEM), are described in 

the following paragraphs.  
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The Multi Vertical Line Element Model (MVLEM) was shown to capture important 

flexural response features (e.g., shifting of the neutral axis and the effect of a fluctuating 

axial force on strength and stiffness), which are commonly ignored in lumped plasticity 

(flexural hinge) models. It offers the flexibility to incorporate various material hysteretic 

models and important response features (for example, confinement and nonlinear shear 

behavior) in the analysis. 

 

 
 

Figure 2.12.  MVLE Model for RC Walls (Orakcal, 2004). 
 

In the Multiple-Vertical-Line-Element (MVLE) Model (Figure 2.12), a structural 

wall is represented as a stack of MVLEs, placed on top of each other. The flexural 

response of each element is governed by a series of uniaxial elements (or macro-fibers) 

connected to infinitely rigid beams at the top and bottom levels (at floor levels for 

example). Therefore, the plane-sections-remain-plane assumption applies. The force-

deformation relationships of the uniaxial elements are defined according to uniaxial stress-

strain relationships implemented in the model for concrete and steel and the tributary area 

assigned to each uniaxial element. A horizontal spring simulates the shear response of the 

model element. The shear response of the model element is simulated by a horizontal 

spring at the center of rotation and shear deformations are concentrated in this spring. The 

flexural and shear deformations of the original model are uncoupled; and the shear spring 

follows a prescribed force-deformation relation, such as the Origin-Oriented-Hysteresis-

Model with a trilinear force-deformation envelope (Figure 2.13). Therefore, the model is 
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incapable of simulating coupled shear-flexural responses in members experiencing 

significant nonlinear shear deformations. As well, the model formulation incorporates a 

perfect-bond assumption between concrete and reinforcing steel bars, and thus cannot 

predict bond-slip responses in members with deficient anchorage conditions. 

 

 
 

Figure 2.13.  Model Shear Response. 

 

Orakcal et al. (2004) verified that the improved multiple-vertical-line-element model 

captures important response characteristics associated with cyclic flexural response of 

reinforced concrete structural walls with continuous longitudinal reinforcement and 

adequate anchorage attributes. The scope of the study by Orakcal et al. (2004) was to 

implement state-of-the-art, reliable, robust material constitutive laws into the MVLEM and 

demonstrate the effectiveness of the MVLEM for modeling and simulating the inelastic 

response of reinforced concrete structural walls, via detailed correlation studies between 

model results and experimental (Orakcal and Wallace, 2006) data. Based on the analysis 

results, it was verified that the MVLEM captures important response characteristics 

associated with cyclic behavior of slender reinforced concrete structural walls governed by 

flexure. The analytical model was able to simulate important behavioral features including 

shifting of the neutral axis along the wall cross section and the effect of fluctuating axial 

force, which are commonly ignored in simple models. Characteristics of the cyclic 
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response, including stiffness degradation and strength deterioration, hysteretic shape, and 

pinching behavior were clearly captured in the analysis results. However, the model was 

found to underestimate the longitudinal compressive strains in concrete, since it did not 

consider coupling of nonlinear shear and flexural deformations, as is typically the case for 

all fiber-based analytical model formulations. 

 

The proposed modeling methodology in this study involves modifying the 

formulation of the MVLEM, so that the macro-fibers represent the hysteretic axial-flexural 

behavior of concrete only. Reinforcing bar elements, with uniaxial hysteretic stress–strain 

relationships of their own, are connected to the concrete fibers through uniaxial bond slip 

springs, the behavior of which are represented with experimentally-derived hysteretic bond 

stress vs. slip constitutive relationships available in the literature. Through this 

methodology, local bond slip behavior is incorporated at the fiber level, and coupling 

(compatibility) of flexural and bond slip deformations of the model is satisfied under 

reversed cyclic loading conditions. The description and numerical formulation of the 

model is presented in the following Chapter. 

 

 

  

 

 

 

. 
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3.   DESCRIPTION OF ANALYTICAL MODEL 
 

 

The analytical model proposed in this study is based on the formulation of a 

macroscopic fiber model for modeling the axial-flexural behavior of reinforced concrete 

members. The Multiple-Vertical-Line-Element Model (MVLEM), the accuracy of which 

was verified by Orakcal et al. (2006), has been used in this study as a baseline model to 

simulate the coupled axial, flexural and bond slip responses of reinforced concrete columns 

with lap splices. The analytical model shown in Figure 3.1 represents the modified 

MVLEM element proposed here, where the fibers (vertical elements) of the MVLEM 

model element represent the behavior of concrete alone. Uniaxial elements representing 

the reinforcing steel bars are connected to the rigid beams of the MVLEM element through 

uniaxial bond slip springs. The model element with 18 degrees of freedom is used over lap 

splice region of the column. The model element with 12 degrees of freedom, which is used 

outside the lap splice region, is depicted in Figure 3.2. The reinforced concrete column 

with the lap splice is modeled as a stack of m model elements, which are placed upon one 

another, as shown in Figure 3.3. 

 

   
Figure 3.1.  Model Element with 18 Degrees of Freedom Used in the Lap Splice Region. 
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Figure 3.2.  Model Element with 12 Degrees of Freedom Used Outside the Lap Splice 

Region. 

 

The coupled axial, flexural and bond slip responses of the model are simulated by a 

series of uniaxial elements (or macro-fibers) for concrete, connected to rigid beams at the 

top and bottom levels of the model elements, which enforce plane sections assumption in 

the analysis. Steel macro-fibers are connected to the top rigid beams, through uniaxial 

bond slip springs, the behavior of which are represented via bond stress vs. slip 

constitutive relations. At the base of the column model, three additional bond slip springs 

are incorporated to connect the steel macro-fibers to concrete fibers at the bottom rigid 

beam level, as shown in Figure 3.3. The stiffness properties and force-deformation 

relationships of the uniaxial elements (concrete macro-fibers) of the element are defined 

according to cyclic constitutive model implemented for concrete as well as the tributary 

area assigned to each uniaxial element (Figure 3.4). A cyclic constitutive relationship for 

reinforcing steel is adopted for the uniaxial steel elements. Cyclic bond characteristics 

between concrete and steel are represented through constitutive bond stress vs. slip 

relationships, which are incorporated in the bond slip springs connecting the uniaxial steel 

elements to the rigid beams.  The number of the uniaxial elements (n) can be increased to 

obtain a more refined description of the column cross-section. 
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Figure 3.3.  Sample Model Assembly. 

 

 
Figure 3.4.  Tributary Concrete Area Assignment. 

 

The relative rotation between top and bottom faces of the model element occurs 

around the point located on the central axis of the element at height ch (Figure 3.5), as 

proposed in the original MVLEM element formulation. Rotations and resulting transverse 

displacements are calculated based on the average curvature in concrete, derived from 
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section and material properties, corresponding to the bending moment at height ch of each 

element (Figure 3.5).  

 

 
Figure 3.5.  Rotations and Displacements of the MVLEM Element (Orakcal, 2004). 

 

A suitable value of the parameter c is based on the expected curvature distribution 

along the element height h. A value of c = 0.4 recommended by Vulcano et al. (1988) 

based on comparison of the model response with experimental results, is also used in this 

study.  

 

A horizontal spring located at the the relative height ch, with a nonlinear hysteretic 

force-deformation behavior following an origin-oriented hysteresis rule simulates the shear 

response of the column element (Figure 3.6). The trilinear shear force vs. shear 

displacement relation developed by Sezen (2002) defines the backbone of the hysteretic 

constitutive relationship for the shear spring. It must be mentioned that since the columns 

investigated in this study are not expected to be shear critical, a detailed constitutive 

modeling approach was not implemented to define the shear behavior of the horizontal 

(shear) spring. Improved predictions of column shear response require consideration of the 

interaction between shear and flexure responses, especially where highly inelastic flexural 

deformations take place. However, since this study concentrates on modeling of reinforced 

concrete columns, the behavior of which is dominated by either bond slip, flexure, or 

simultaneously slip and flexure responses, a simple origin-oriented shear force vs. 

deformation behavior with a trilinear backbone curve was adopted. For the proposed model 

formulation, bond slip and flexural mode of deformations are coupled, whereas flexural 
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and shear modes of deformation are uncoupled (i.e., flexural deformations do not affect 

shear strength or deformation) (Figure 3.7). 

 

 
Figure 3.6.  Origin-Oriented –Hysteresis Model for Horizontal Shear Spring. 

 

 
Figure 3.7.  Uncoupling of Flexural and Shear Modes of Deformation of the Model 

Element. 

 

A single model element used in the lap splice region has 18 global degrees of 

freedom (DOF); with three at the center of each rigid top and bottom beam (6 DOF total 

for concrete), and two at each end of the six longitudinal steel elements (12 DOF total for 

reinforcing steel), as shown in Figure 3.1. The average longitudinal strain value for each 

uniaxial (concrete and steel) element is obtained from the element displacements 

(translations and rotations) defined at the 18 global degrees of freedom. To relate the 

average strains in the concrete macro-fibers to the 6 global degrees of freedom for 
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concrete, the rigid beams enforce the plane-sections-remain-plane kinematic assumption. 

Accordingly, if [ ]δ  is a vector that represents the displacement components at the 18 nodal 

degrees of freedom of each model element (Figure. 3.1): 
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 (3.1) 

  

  

Then, the resulting axial deformations of the uniaxial elements can be obtained as: 

  

 [ ] [ ] [ ].u a δ=  (3.2) 

 

  

where [ ]a  is a geometric transformation matrix and [ ]u  denotes the axial deformation of 

the uniaxial elements: 
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 (3.3) 

 

In the formulation above, u1…. un denote the axial deformations of the concrete 

macro-fibers ( ‘n’ denotes the number of concrete macro-fibers), ub1 and ub2 denote the 

axial deformations of the uniaxial bond slip springs connected to the exterior starter bars, 

ub3 and ub4 denote the axial deformations of the uniaxial bond slip springs connected to 

exterior longitudinal bars, and ub5 and ub6 denote the axial deformations of uniaxial bond 

slip springs connected to the middle starter and longitudinal bars, respectively. Similarly, 

ust1, ust2, ust3, ust4, ust5, ust6 denote the axial deformations of the steel elements representing 

the exterior and middle starter and longitudinal bars. In a lap splice, a started bar is defined 

as the reinforcing steel bar extending from the foundation, and the longitudinal bar is the 

bar extending along the height of the column.  

 

The geometric transformation matrix [ ]a  converts the displacement components at 

the nodal degrees of freedom to uniaxial element deformations as: 
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where xi is the distance of the i-th concrete element to the cross-sectional geometric 

centroid of the model element, dl is the distance of a longitudinal bar to the centroid of the 

model element , ds is the distance of a starter bar to the centroid. 

 

The average uniaxial strain in each concrete macro-fiber and steel element ( )iε  can 

then be calculated by simply dividing their respective  axial deformation by the element 

height, h: 

 

 i
i

u
h

ε =  (3.5) 

 

The slip deformation in each bond slip spring is defined directly as the axial 

deformation of the spring. The average strains in the concrete macro-fibers and steel 

elements are therefore not necessarily bound by the plane-sections-remain-plane kinematic 

assumption, and the assumption applies for the concrete macro-fibers only. Slip 

deformations between concrete and the steel depend on the constitutive bond stress vs. slip 

properties of the bond slip springs. 
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The deformation in the horizontal shear spring ( )Hu  of each model element can be 

similarly related to the displacement components [ ]δ  at the 18 element degrees of freedom 

as: 

 [ ] [ ]T
Hu b δ=  (3.6) 

 

where the geometric transformation vector [ ]b  is defined as: 
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The stiffness properties and force-deformation relationships of the uniaxial elements 

are defined according to the uniaxial constitutive relationships adopted for concrete and 

steel, as well as the tributary area assigned to each concrete macro-fiber and the cross-

sectional area of the longitudinal steel bars. For the bond slip springs, the stiffness and 

force-deformation properties depend on the constitutive bond stress vs. slip relationships 

implemented, as well as the surface area of the longitudinal bar over which bond stresses 

act. 

 

For a prescribed strain level ( )iε  at the i-th uniaxial element (macro-fiber) for 

concrete, the axial stiffness of the i-th uniaxial concrete element ( )ick  is defined as: 
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( ) ( )c ci i

ic

E A
k

h
=  (3.8) 

 

where ( )icE  is the concrete tangent modulus (strain derivative of the adopted constitutive 

stress-strain relationships for concrete) at the prescribed strain level ( )iε ; ( )icA is the 

tributary concrete area assigned to the uniaxial element, and h is the model element height.  

 

For a uniaxial steel element, the axial stiffness ( )stk is defined similarly as: 

 

 
( )( )s s

st

E A
k

h
=  (3.9) 

 

where ( )sE  is the steel tangent modulus (strain derivative of the adopted constitutive 

stress-strain relationships for reinforcing steel) at the prescribed strain level, and ( )sA  is the 

cross-sectional area of the longitudinal steel bar represented by the uniaxial element.  

 

For a bond slip spring, the axial stiffness ( )bk is calculated as: 

 

 ( ) ( )2b bondk E h rπ=  (3.10) 

 

where ( )bondE  is the bond stress tangent modulus (slip derivative of the adopted constitutive 

bond stress vs. slip relationship) at a prescribed slip deformation, r is the radius of the 

longitudinal steel bar connected to the bond slip spring, and h is the model element height. 

 

The stiffness of the horizontal shear spring ( )Hk  and the force in the horizontal 

spring ( )Hf  for a prescribed shear deformation ( )Hu  are derived from the origin-oriented 

force-deformation relationship (with a trilinear backbone) implemented in the model for 

the shear spring.  
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Therefore, if kH is the stiffness of the horizontal shear spring, ki is the stiffness of the 

i-th uniaxial concrete element (macro-fiber), xi is the distance of the i-th concrete element 

to the cross-sectional geometric centroid of the model element, dl is the distance of a 

longitudinal bar to the centroid of the model element , ds is the distance of a starter bar to 

the centroid , n is the number of uniaxial concrete elements, kb1 and kb2 are the stiffnesses 

of the uniaxial bond slip springs connected to the two exterior starter bars, kb3 is the 

stiffness of the bond slip spring connected to middle starter bar, kb4 and kb5 are the 

stiffnesses of the bond slip springs connected to two exterior longitudinal bars, kb6 is the 

stiffness of the bond slip spring connected to middle longitudinal bar, kst1 and kst2 are the 

stiffnesses of the uniaxial steel elements for the two exterior starter bars, kst3 is the stiffness 

of the steel element for the middle starter bar, kst4 and kst5 are the stiffnesses of the steel 

elements for the two exterior longitudinal bars, kst6 is the stiffness of the steel element for 

the  middle longitudinal bar; the stiffness matrix of the first (bottom) model element 

relative to the eighteen degrees of freedom is defined by Equation (3.11). Stiffness matrix 

of the other model elements used over the lap splice region relative to eighteen degrees of 

freedom is defined by Equation (3.12). The stiffness matrix of the model elements used 

outside the lap splice region relative to the twelve degrees of freedom is defined by 

Equation (3.13). 
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The axial force in the i-th uniaxial concrete element ( )if  is defined as: 

  

 ( ) ( )i c ci i
f Aσ=  (3.14) 

 

where ( )c i
σ is the uniaxial stress for concrete obtained from the implemented constitutive 

relationships at the prescribed strain ( )iε . 

For a uniaxial steel element axial force ( )stf  is defined similarly as:  

 

 ( )( )st s sf Aσ=  (3.15) 

 

where ( )sσ is the uniaxial stress for steel obtained from the implemented constitutive 

relationships at the prescribed strain level. 

 

For a bond slip spring, the axial force ( )bf is calculated as: 

 

 ( )( )2b bf rhσ π=  (3.16) 

 

where ( )bσ  is the uniaxial bond stress from the adopted constitutive bond stress vs. slip 

relationship at a prescribed slip deformation, r is the radius of the longitudinal steel bar 

connected to the bond slip spring, and h is the model element height. 

 

Furthermore, if fH is the force in the horizontal spring, fi is the force in the i-th 

uniaxial concrete element, fb1 and fb2 are the forces in the uniaxial bond slip springs 

connected to two exterior starter bars, fb3 is the force in the bond slip spring connected to 

middle starter bar, fb4 and fb5 are the forces in the bond slip springs connected to two 

exterior longitudinal bars, fb6 is the force in the bond slip spring connected to middle 

longitudinal bar, fst1 and fst2 are the forces in the uniaxial steel elements for the two exterior 

starter bars, fst3 is the force in the steel element for the middle starter bar, fst4 and fst5 are the 

forces in the steel elements for the two exterior longitudinal bars, fst6 is the force in the 

steel element for the  middle longitudinal bar, the resisting (internal) force vector for the 
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first (bottom) model element relative to the eighteen element degrees of freedom is 

obtained from model element force equilibrium as:  
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 (3.17) 

 

and the resisting force vector for the other model elements used over the lap splice region 

relative to eighteen degrees of freedom is obtained as:  
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Finally, the resisting force vector for the model elements used outside the lap splice 

region relative to the twelve degrees of freedom is obtained similarly as: 
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 (3.19) 

 

The model formulation described in this Chapter is a robust and efficient approach to 

relate the coupled flexural and bond slip responses of a reinforced concrete column directly 

to uniaxial material behavior and uniaxial bond slip behavior, without incorporating any 

additional empirical assumptions. The primary simplification the model involves applying 

the plane-sections-remain-plane kinematic assumption to calculate the average longitudinal 

strains in concrete only (for each uniaxial concrete element). Connecting uniaxial steel 

elements to concrete elements via bond slip springs permits relative slip deformations 

between concrete and reinforcing steel, and allows successful coupling flexural and slip 

deformations of a column, at local response level and in a purely geometric manner. The 

only geometric parameters that may influence the analytical model response are the 

number of uniaxial elements used along the length of the column cross section (n), the 

number of MVLEM elements stacked on top of each other along the height of the column 

(m), and the parameter defining the location of the center of rotation along the height of 

each MVLEM element (c). The number of the uniaxial elements (n) and the MVLEM 

elements (m) can be increased to obtain a more refined description of the column geometry 

and a more accurate representation of the local response, especially where large inelastic 

deformations take place (e.g., in the lap splice region). Details of the constitutive 

relationships implemented in the model formulation for the concrete and reinforcing steel 

elements, as well as the bond slip springs, are presented in the next chapter. 
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4.   MATERIAL CONSTITUTIVE MODELS 
 

 

As described in Chapter 3, the analytical model proposed in this study is formulated 

such that the uniaxial elements (macro-fibers) of the original Multiple-Vertical-Line-

Element Model (MVLEM) represent the hysteretic axial-flexural behavior of concrete 

only. Reinforcing bar elements, with uniaxial hysteretic stress–strain relationships of their 

own, are connected to the concrete fibers through uniaxial bond slip springs, the behavior 

of which are represented with experimentally-derived hysteretic bond stress vs. slip 

constitutive relationships available in the literature. Characteristics of the constitutive 

relationships implemented in the model for concrete, reinforcing steel, and the bond slip 

springs directly influence the analytical model response. Therefore, details of the uniaxial 

hysteretic constitutive relationships adopted in the analytical model for reinforcing steel 

and concrete, as well as the bond stress vs. slip relationships implemented for deformed 

bars, plain bars, and 180-degree hooks are described in the following sections. 

 

4.1.  Constitutive Model for Reinforcing Steel 

 

The well-known nonlinear hysteretic constitutive model proposed by Menegotto and 

Pinto (1973) and extended by Filippou et al. (1983) is implemented for reinforcing steel, as 

shown in Figure 4.1. The constitutive model considers Bauschinger’s effect and the 

influence of both kinematic and isotropic strain hardening on the hysteretic uniaxial stress 

– strain behavior of reinforcing steel bars.  

 

The formulation of the hysteretic stress-strain (σ - )ε  relationship of Menegotto and 

Pinto (1973) can be expressed as:      

  

 ( )
( )

*
* *

1/*

1-b

1
RR

b
ε

σ ε
ε

= +
+

 (4.1) 

  

    

where 
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 *
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r

r

ε εξ
ε ε

−
=

−
 (4.2) 

and 

       

 *

0

r

r

σ σσ
σ σ

−
=

−
 (4.3) 

     

Equation (4.1) represents a curved transition from an elastic asymptote with slope 

0E  to a yield asymptote, with slope 01 bEE =  (Figure 4.1). Parameters rσ  and rε  are 

stress and strain values at the strain reversal point. R is a cyclic parameter that influences 

the curvature of the transition curve between the two asymptotes (and thus permits the 

Bauschinger effect to be represented), Parameters 0σ  and 0ε  are the stress and strain 

values at the point of intersection of the two asymptotes. Parameter b  is the strain 

hardening ratio. The strain and stress values ( )rr σε ,  and ( )00 ,σε  are updated after each 

strain reversal, as shown in Figure 4.1.  

 

 

 
Figure 4.1.  Constitutive Model for Steel  (Menegotto and Pinto, 1973). 
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The tangent modulus ( )tE  of the stress – strain relationship is given by the following 

expression:    

 
*

0
*

0

r
t

r

d dE
d d

σ σσ σ
ε ε ε ε

⎛ ⎞−
= = ⎜ ⎟−⎝ ⎠

 (4.4) 

where 

       

 
( )

* *

1/* **

1 1
11

R

R RR

d bb
d
σ ε
ε εε

⎡ ⎤ ⎡ ⎤−⎢ ⎥= + −⎢ ⎥⎢ ⎥ +⎣ ⎦+⎣ ⎦
 (4.5) 

 

Menegotto and Pinto expressed the cyclic curvature parameter, R ,  as: 

   

 1
0

2

aR R
a

ξ
ξ

= −
+

 (4.6) 

         

where 0R  is the value assigned to the parameter R  for initial (or monotonic) loading, and 

1a  and 2a   are experimentally determined parameters that represent the degradation of the 

curvature within subsequent cycles. The absolute strain difference represented by the 

parameter ξ  (Figure 4.2) can be expressed as: 

          

 ( )0m

y

ε ε
ξ

ε
−

=  (4.7) 

 

where parameter 0ε  is the strain at the current intersection point of the two asymptotes, 

and mε  is the maximum or minimum strain, at the previous point of strain reversal. 

Parameter yε  is the strain at the monotonic yield point. 
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Figure 4.2.  Degradation of Cyclic Curvature. 

 

To illustrate the effect of degradation in cyclic curvature, for two different sets of 

values for parameters 0R , 1a  and 2a  (which were experimentally calibrated by prior 

researchers based on cyclic test results on reinforcing bars), a comparison of cyclic stress – 

strain histories  generated by the constitutive model ( 0R , 1a , 2a  = 20, 18.5, 0.15 by 

Menegotto and Pinto, 1973; 0R , 1a , 2a  = 20, 18.5, 0.0015 by Elmorsi et al., 1998) is 

shown in Figure 4.3. 
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Figure 4.3.  Sensitivity of the Stress-Strain Relationship to Cyclic Curvature Parameters. 

 

The original Menegotto and Pinto (1973) model, although simple in formulation, has 

been shown to accurately represent test results for reinforcing steel bars under typical 

strain histories. The main limitation of the model is its failure to simulate isotropic strain 

hardening. Isotropic hardening effects can be influential on the cyclic behavior of 

reinforcing steel bars in reinforced concrete members, especially during crack closure. 

Based on experimental observations, Filippou et al. (1983) proposed a modification to the 

original model by Menegotto and Pinto (1973), by introducing a stress shift to the 

compressive yield asymptote to account for isotropic strain hardening in order to improve 

the prediction of the stress – strain behavior during crack closure, The shift is arranged by 

shifting the compressive yield asymptote by a stress magnitude, stσ , in a parallel manner, 

as shown in Figure 4.4.   
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Figure 4.4.  Stress Shift due to Isotropic Strain Hardening. 

 

The imposed stress shift on the compressive yield asymptotes ( )stσ  proposed by 

Filippou et al. (1983) is expressed as: 

        

 max
3 4

st

y y

a aσ ε
σ ε

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.8) 

 

where maxε  is the absolute maximum strain, yε , yσ  are, respectively, the strain and stress 

values  at the monotonic yield point, and 3a  and 4a  are experimentally determined 

parameters. Based on test results, Filippou et al. (1983) suggested values of 0.01 and 7 for 

parameters 3a  and 4a , respectively. 

 

 

 

 

 

0 0.01 0.02 0.03 0.04 0.05

Strain, ε

-600

-400

-200

0

200

400

600

800

St
re

ss
, σ

  (
M

Pa
)

Initial Yield Asyptote

Shifted Yield Asyptote
σstσ1

 ε1
'  ε 1

"

 εmax εy



 

51

4.2.  Constitutive Model for Concrete 

 

The hysteretic constitutive model proposed by Chang and Mander (1994) is 

implemented in the present model to represent the cyclic stress – strain behavior of the 

concrete macro-fibers. The Chang and Mander (1994) is an advanced, rule-based, 

generalized, and non-dimensional constitutive model, which can simulate the hysteretic 

stress – strain behavior of both confined and unconfined, ordinary and high-strength 

concrete subjected to cyclic compression and tension. Gradual transition in the cyclic 

stress-strain behavior upon crack opening and closure, which had not been adequately 

addressed in previous models, are considered in detail in this model. As well, the cyclic 

behavior of concrete in tension is modeled similar to that in compression, based on results 

of a detailed test program conducted by Yankelevsky and Reinhardt (1987).  

 

4.2.1.  Compression Envelope Curve 

 

Chang and Mander (1994) defined the compression envelope curve of the model by 

the initial slope cE , the strain and stress values at the peak compressive stress point 

( )cc f ′′ ,ε , a parameter r  from Tsai’s (1988) equation defining the shape of the envelope 

curve, and a parameter 1>−
crx  to define the spalling strain (Figure 4.5). 

 

The compression and tension envelope curves can be written in non-dimensional 

form by the use of the following equations: 

 ( )
( )

nxy x
D x

=  (4.9) 

   

 ( ) ( )
( ) 2

1 rx
z x

D x

−
=

⎡ ⎤⎣ ⎦
 (4.10) 

  

where, 

        

 ( ) 1
1 1

rr xD x n x
r r

⎛ ⎞= + − +⎜ ⎟− −⎝ ⎠
 (4.11) 
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Figure 4.5.  Compression and Tension Envelope Curves of the Model by Chang and 

Mander (1994). 

 

where r not equal to one 

         

 ( ) ( )1 1 lnD x n x x= + − +  (4.12) 

where r equals to one and n  and x  are defined for the compression envelope as: 

          

 c

c

x ε
ε

− =
′

 (4.13) 

   

 c c

c

En
f
ε− ′

=
′

 (4.14) 

 

The non-dimensional spalling strain can be calculated by: 

          

 
( )
( )

cr
sp cr

cr

y x
x x

n z x

−
−

− −
= −  (4.15) 
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In the equations above, cε  is the concrete strain, cε ′  is the concrete strain at peak 

unconfined (or confined) stress, cf ′  is the unconfined (or confined) concrete strength, cE  

is the concrete initial Young’s modulus, −x  is the non-dimensional strain on the 

compression envelope, −
crx  is the non-dimensional critical strain on the compression 

envelope curve (used to define a tangent line up to the spalling strain), spx  is the non-

dimensional spalling strain, ( )xy  is the non-dimensional stress function, ( )xz  is the non-

dimensional tangent modulus function, as shown in Figure 4.5. 

 

The stress cf  and the tangent modulus tE  at any given strain on the compression 

envelope curve can be expressed as below: 

          

 ( )c cf f x− −=  (4.16) 

       

 ( )t tE E x− −=  (4.17) 

     

 

where ( )−− xfc  and ( )−− xEt  are defined as: 

If −− < crxx    (Tsai’s equation)  

      

 ( )c cf f y x− −′=  (4.18) 

     

 ( )t cE E z x− −=  (4.19) 

           

If spcr xxx ≤≤ −−   (Straight line) 

        

 ( ) ( )( )c c cr cr crf f y x n z x x x− − − − − −⎡ ⎤′= + −⎣ ⎦  (4.20) 

           

 ( )t c crE E z x− −=  (4.21) 
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If spxx >   (Spalled) 

           

 0c tf E− −= =  (4.22) 

 

The minus superscript in the equations above refers to the stress-strain behavior in 

compression. Once the concrete is considered to be spalled, the stresses are zero for larger 

compressive strains. A large value of −
crx  should be defined for the case of confined 

concrete, where the spalling strain value will be larger. The material parameters associated 

with the compression envelope curve of the model are the concrete compressive strength
'

cf , the concrete strain at peak stress '
cε , the concrete initial Young’s modulus (modulus of 

elasticity) cE , the Tsai’s parameter r  defining the shape of the compression envelope, and 

the non-dimensional critical strain −
crx  where the envelope curve starts following a straight 

line. Parameters cE , '
cε  and r  associated with the unconfined compression envelope can 

be empirically related to the unconfined concrete strength '
cf  (MPa) as: 

 

 

Initial modulus of elasticity:  

 

 ( )
3

88200c cE f Mpa′=  (4.23) 

 

Strain at peak stress:   

    

 ( )1 4
'

28
c

c

f
ε

′
=  (4.24) 

   

Shape parameter:   

      

 1.9
5.2

cfr
′

= −  (4.25) 

For confined concrete, the compressive envelope model by Chang and Mander 

(1994) complies with the confinement model developed by Mander et al. (1988). This 
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model is applicable to reinforced concrete members with either circular or rectangular 

cross-sections, and any general type and configuration of transverse reinforcement (Figure 

4.6). The effectively confined concrete area for rectangular sections is given by the 

expression: 

      

 ( )2

1
1 0.5 1 0.5

6

n
i

e c c
i c c

w s sA b d
b d=

⎛ ⎞′ ⎛ ⎞⎛ ⎞′ ′
= − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∑  (4.26) 

 

The confined concrete core area is given by: 

   

 cc c c stA b d A= −   

 

The lateral pressure for each direction is calculated by: 

 

 lx e x yhf k fρ′ =  (4.27) 

     

 ly e y yhf k fρ′ =  (4.28) 

 

where,  

 e
e

cc

Ak
A

=  (4.29) 

  

 sx
x

c

A
s d

ρ =  (4.30) 

   

where =sxA  total area of transverse reinforcement parallel to the x axis 

  

 sy
y

c

A
s b

ρ =  (4.31) 

     

where =syA  total area of transverse reinforcement parallel to the y axis 
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The equation proposed by Chang and Mander (1994) to represent the analytical 

confinement coefficient K  is expressed as: 

 

     

 0.91 0.1
1

cc

c

fK Ax
f Bx
′ ⎛ ⎞= = + +⎜ ⎟′ +⎝ ⎠

 (4.32) 

    

where,           

 1 2

2
l l

c

f fx
f

′ ′′+
=

′
 (4.33)

  

 1
2 1

2

, ,l
l l

l

fr where f f
f

′
′ ′= ≥

′
 (4.34) 

       

 ( ) 4.9896.8886 0.6096 17.275 rA r e−= − +  (4.35) 

   

 
( )3.8939

4.5 55 0.9849 0.6306 0.1r
B

e
A

−
= −

− −
 (4.36) 

 

in which the analytical confinement coefficient K  is the ratio of the confined concrete 

strength ccf ′  to the unconfined concrete strength cf ′ .  

 

Equation (4.32) can be expressed in the following form: 

  

 1cc c lf f k f′ ′= +  (4.37) 
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Figure 4.6.  Confinement Mechanism for Circular and Rectangular Cross Sections 

(Chang and Mander, 1994). 

        

By taking lf  as the average of 1lf  and 2lf , this can be rewritten as:   

       

 11cc

c

fK k x
f
′

= = +
′

 (4.38) 

where, 

          

 1
0.90.1

1
k A

Bx
⎛ ⎞= +⎜ ⎟+⎝ ⎠

 (4.39) 

 

The strain at peak stress for confined concrete ( )ccε ′  as adopted by Chang and 

Mander takes the form: 

          

 ( )21cc c k xε ε′ ′= +  (4.40) 

 

with,    
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 2 15k k=  (4.41) 

       

where cε ′  is the strain at peak unconfined stress. 

 

4.2.2.  Tension Envelope Curve 

 

As stated previously, the shape of the tension envelope curve in the model by Chang 

and Mander is the same as that of the compression envelope curve (Figure 4.5). However, 

upon each cycle, the tension envelope curve is shifted to a new origin 0ε  as discussed in 

the next section. The non-dimensional parameters for the tension envelope curve are 

expressed as:      

 0c

t

x ε ε
ε

+ −
=  (4.42) 

      

 c t

t

En
f
ε+ =  (4.43)

  

 

The non-dimensional cracking strain is given by: 

 

   

 
( )
( )

cr
crk cr

cr

y x
x x

n z x

+
+

+ +
= −  (4.44) 

    

where cε  is the concrete strain, tε  is the concrete strain at peak tension stress, tf  is the 

concrete tensile strength, cE  is the concrete initial Young’s modulus, +x  is the non-

dimensional strain on the tension envelope curve, crkx  is the cracking strain and +
crx  is the 

critical strain on the tension envelope curve. The tangent modulus tE  and stress cf  are 

defined as:           

 ( )c cf f x+ +=  (4.45)
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 ( )t tE E x+ +=  (4.46) 

 

where ( )++ xf c  and ( )++ xEt  are defined as: 

 

If ++ < crxx      

           

 ( )c tf f y x+ +=  (4.47) 

           

 ( )t cE E z x+ +=  (4.48) 

If crkcr xxx ≤≤ ++    

        

 ( ) ( )( )c t cr cr crf f y x n z x x x+ + + + + +⎡ ⎤= + −⎣ ⎦  (4.49) 

           

 ( )t c crE E z x+ +=  (4.50) 

 

If crkxx >   (Cracked) 

           

 0c tf E+ += =  (4.51) 

 

in which the functions y  and z  are defined by Equations (4.9) and (4.10). The plus 

superscript refers to the stress – strain behavior in tension. When concrete is fully cracked, 

it is considered to no longer resist any tensile stress during crack opening. However, upon 

reversal from a tensile strain, gradual crack closure is considered to take place. 

Contribution of concrete between the cracks in a reinforced concrete member (the tension 

stiffening phenomenon) can be considered through an average tensile stress – strain 

relationship, for which the concrete can be assumed to not fully crack, allowing a large 

value of +
crx  to be used.  
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4.2.3.  Hysteretic Properties of the Model 

 

The hysteretic parameters of the Chang and Mander (1994) model for cyclic 

compression (Figure 4.7) were calibrated based on statistical analysis of extensive test 

data, and are defined as empirical parameters expressed in the form: 

 

         

 sec

0.57

0.57

un

c c
c

un

c

f
E

E E
ε

ε
ε

−

−
−

⎛ ⎞
+⎜ ⎟′⎜ ⎟= ⎜ ⎟

+⎜ ⎟⎜ ⎟′⎝ ⎠

 (4.52) 

         

 0.1 exp 2 un
pl c

c

E E ε
ε

−
− ⎛ ⎞

= −⎜ ⎟⎜ ⎟′⎝ ⎠
 (4.53) 

          

 0.09 un
un

c

f f ε
ε

−
− −Δ =

′
 (4.54) 

         

 
1.15 2.75

un

un

c

εε
ε
ε

−
−

−
Δ =

+
′

 (4.55) 

where '
cε  is the strain at peak compressive stress, cE  is the initial Young’s modulus, and 

unf  and unε  are the unloading stress and strain values.  

 

The plastic (residual) strain upon unloading ( plε ), the new stress ( newf ) and tangent 

modulus ( newE ) values upon return to unloading strain from the envelope curve ( unε ), and 

the strain ( reε ), stress ( ref ) and tangent modulus ( reE ) at the point of return to the 

envelope curve can be geometrically related to the  empirical parameters (Figure 4.7) as: 
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Figure 4.7.  Hysteretic Parameters of the Model by Chang and Mander (1994). 
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f f ε
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For cyclic behavior in tension, Chang and Mander (1994) proposed the following empirical 

parameters: 
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 sec
0

0.67

0.67

un

c t
c

un

t

f
E

E E
ε

ε ε
ε

+

+
+

⎛ ⎞
+⎜ ⎟

⎜ ⎟= ⎜ ⎟−
+⎜ ⎟⎜ ⎟

⎝ ⎠

 (4.62) 

          

 1.1

0 1

c
pl

un

t

EE
ε ε

ε

+

+
=

−
+

 (4.63) 

     

 0.15 unf f+ +Δ =  (4.64) 

  

 ( )00.22 unε ε ε+ +Δ = −  (4.65) 

 

where tε  is the strain at peak tensile stress, cE  is the initial Young’s modulus and 0ε  is 

the shifted origin of the tensile envelope curve. The geometrically – derived parameters for 

cyclic tension therefore defined as: 

          

 
sec

un
pl un

f
E

ε ε
+

+ +
+= −  (4.66) 

          

 new unf f f+ + += − Δ  (4.67) 

          

 new
new

un pl

fE
ε ε

+
+

+ +=
−

 (4.68) 

          

 re unε ε ε+ + += + Δ  (4.69) 

          

 0re
re

t

f f ε ε
ε

+
+ + ⎛ ⎞−
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⎝ ⎠

 (4.70) 
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 0re
re

t

E E ε ε
ε

+
+ + ⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.71) 

 

A reversal from the compression envelope curve (Figure 4.8), involves calculating 

the shifted origin of the tension envelope curve ( )0ε and evaluating the unloading strain 

from the tension envelope curve. The procedure that describes reversal from the 

compression envelope (Figure 4.8) is as follows:  

 

(i) Calculate the compression strain ductility as: 

 

 un
u

c

x ε
ε

−
− =

′
 (4.72) 

 

(ii) Calculate the tension strain ductility: 

       

 0un
u

t

x ε ε
ε

+
+ −

=  (4.73) 

 

(iii) If −+ < uu xx , then: 

 u ux x+ −=  (4.74) 

   

 0 0ε =  (4.75) 

    

 un u txε ε+ +=   

       

 ( )un c uf f x+ + +=  (4.76) 

 

(iv) Calculate: 

 0
sec

2 un

pl

f
E E

ε
+

+ −Δ =
+

 (4.77) 
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(iv) Finally, 

 0 0pl u txε ε ε ε− += + Δ −  (4.78) 

       

 0un u txε ε ε+ += +  (4.79) 

 

Therefore, upon each unloading from the compression envelope, the origin of the 

tension envelope is shifted based on the unloading strain from the compression envelope. 

The unloading strain from the tension envelope is re-calculated so that it corresponds to a 

tension strain ductility equal to the compression strain ductility experienced just before 

unloading from the compression envelope, or a previously experienced actual tension 

strain ductility, whichever is greater. 

 

 
Figure 4.8.  Unloading from the Compression Envelope Curve. 

 

To simulate continuous hysteretic behavior, the constitutive model uses smooth 

“connecting” curves for unloading and reloading between the compression and tension 

envelope curves, and smooth “transition” curves for partial unloading and reloading 

between the connecting curves (Figure 4.9). Both connecting and transition curves have 

slope continuity with uniform sign of curvature in between the starting and final points. 
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Figure 4.9.  Continuous Hysteresis in Compression and Tension. 

 

For the transition curves (Figure 4.10), Chang and Mander (1994) proposed a 

relationsip between starting and target points A ( )aa f,ε  and B ( )bb f,ε , based on unloading 

( )unε  and plastic ( )plε strain values, which is expressed in the form: 
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Figure 4.10.  Transition Curves Before Cracking. 

 

After full cracking, the tension envelope is reduced to zero, and the connecting curve 

upon unloading (i.e., strain reversal) represents gradual gap closure (Figure 4.11).  

 

 
Figure 4.11.  Transition Curves After Cracking. 
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The generalized equation used in the constitutive model to represent the connecting 

and transition curves takes the form: 

    

 
sec

a
b a

f
E

ε ε −= −  (4.81) 

        

 ( ) R
c I c I I c If f E Aε ε ε ε⎡ ⎤= + − + −⎣ ⎦  (4.82) 

        

 ( )1 Rc
t I c I

c

fE E A R ε ε
ε

∂
= = + + −

∂
 (4.83) 

 

in which, 

      

 F SEC

SEC I

E ER
E E

−
=

−
 (4.84) 

       

 SEC I
R

F I

E EA
ε ε

−
=

−
 (4.85) 

    

and, 

      

 F I
SEC

F I

f fE
ε ε

−
=

−
 (4.86) 

 

where cf  is the concrete stress, cε  is the concrete strain, tE  is the concrete tangent 

modulus, If  is the stress at the initial point, Ff  is the stress at the final (target) point, Iε  

is the strain at the initial point, Fε  is the stress at the final point, IE  is the tangent modulus 

at the initial point, FE  is the tangent modulus at the final point, SECE  is the secant modulus 

between the initial and final points, and R  and A  are equation parameters. The equations 

represent a stress-strain curve with a single sign of curvature and slope continuity between 

the initial and target points.   
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4.3.  Modeling of Tension Stiffening 

 

The contribution of cracked concrete to the tensile resistance of reinforced concrete 

members is known as the effect of tension stiffening. The concrete between the cracks, 

which is still bonded to the reinforcing steel bars, contributes to the tensile resistance of the 

member. In this study, the tension stiffening effect is directly incorporated into the 

constitutive stress-strain relationships implemented for concrete and steel, as described in 

the following paragraphs. 

 

Based on extensive tests on reinforced concrete panel specimens subjected to normal 

stresses, Belarbi and Hsu (1994) developed two constitutive models: one for the average 

tensile stress-strain relationship of concrete and one for the average tensile stress-strain 

relationship of steel reinforcing bars stiffened by concrete. The average stress-strain 

relationship proposed by Belarbi and Hsu for concrete in tension takes the form (Figure 

4.12): 

 

  If crc εε ≤  then    

 c c cEσ ε=  (4.87) 

  If crc εε >  then     

 
0.4

cr
c cr

c

f εσ
ε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (4.88) 

where: 

          

 3875 ( )c cE f MPa′=  (4.89) 

      

 0.31 ( )cr cf f MPa′=  (4.90) 

             

 0.00008crε =  (4.91) 

 

In the equation above, cε  is the average concrete tensile strain, cσ  is the average concrete 

tensile stress, cE  is the initial Young’s modulus of the average stress-strain relationship, 
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crf  is concrete the tensile cracking stress, and crε  is the concrete strain at cracking. The 

expressions for crf , crε , cE , and the power constant 0.4 in Equation (4.91) are obtained 

from the average and best fit of experimental results of reinforced concrete panel 

specimens. 

 

 
Figure 4.12.  Average Stress-Strain Relationship by Belarbi and Hsu (1994) for 

Concrete in Tension. 

 

Belarbi and Hsu (1994) identified the difference between the average stress–strain 

relationship of reinforcing steel bars surrounded by concrete and the stress–strain 

relationship of bare steel bars (Figure 4.13). The most important difference was found to 

be the reduction of the yield stress, yσ , as yielding of a reinforced concrete element occurs 

when the steel stress at the cracked section reaches the yield strength of the bare bar. At the 

same time, the average steel stress smeared along the length of the element reaches a level 

lower than that of the yield stress of the bare bar. Based on experimental data from the RC 

panels, the reduction of the yield stress of bars embedded in concrete were found to be 

empirically dependent on the cross-sectional area ratio of the longitudinal steel in the panel 

( )ρ , and the ratio of concrete cracking stress ( )crf  to the steel yield stress ( )yσ . The 

strain-hardening slope (plastic modulus) of the steel bars embedded in concrete was also 
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observed to differ from the plastic modulus of bare bars with the variation also dependent 

on the above parameters.  

 

 
Figure 4.13.  Effect of Tension Stiffening on Reinforcing Bars. 

 

Based on evaluation and characterization of experimental data, Belarbi and Hsu 

(1994) proposed the simple bilinear constitutive model shown in Figure 4.14. for 
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Figure 4.14.  Average Stress-Strain Relationship by Belarbi and Hsu (1994) for 

Reinforcing Bars Embedded in Concrete. 

 

The effective yield stress at the intersection of the two lines ( )*
nσ  and the plastic 

slope ( )*
pE  are determined using the following expressions: 

          

 ( )* 0.93 2n yBσ σ= −  (4.92) 

   

 * (0.02 0.25 )p sE B E= +  (4.93) 

 

where the parameter B  is defined as: 
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In the equations above, yσ  and sE  are the yield stress and modulus of elasticity of 

the bare steel bars, ( )ρ  is the cross-sectional area ratio of the longitudinal steel bars in the 
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reinforced concrete section, and ( )crf  is the concrete cracking stress, obtained according to 

the relationship in Equation (4.90). Equation (4.93) was derived assuming that the plastic 

modulus of “bare” steel bars ( )pE  is approximately equal to 2.5% of the modulus of 

elasticity ( )sp EE 025.0= . For a more general case, Equation (4.93) can be expanded as: 

         

 * (0.8 0.25 )p sE b B E= +  (4.95) 

 

where b  is the strain hardening ratio ( )sp EE  defined for the bare steel bars. 

Accordingly, the bilinear model of Belarbi and Hsu (1994) for modeling the average 

(smeared) stress-strain behavior of steel reinforcing bars embedded in concrete, takes the 

form (Figure 4.23): 

 

 If  ns εε ≤ ,  

    

 s s sEσ ε=  (4.96) 

    

 If  ns εε > ,  

   

 ( ) ( ) ( )0.93 2 0.8 0.25s y s s nB b B Eσ σ ε ε= − + + −  (4.97) 

 

where  sσ  is the average (smeared) stress, sε  is the average strain, and nε  is the average 

strain defined at the intersection of the two lines: 

        

 
( )* 0.93 2 yn

n
s s

B
E E

σσε
−

= =  (4.98) 

 

and sE , yσ , and b  are the modulus of elasticity, yield stress, and strain-hardening ratio 

measured experimentally for bare steel bars.  
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4.4.  Constitutive Model for Shear 

 

The empirical model developed by Sezen (2002) to simulate the shear force – 

deformation behavior of lightly reinforced concrete columns under monotonic lateral 

loading is implemented in the analytical model to represent the behavior of the horizontal 

shear spring. The model uses four points (Figure 4.15) to represent a piecewise linear 

lateral load – shear deformation response of a column element. The four points that define 

the shear deformation – lateral load (shear force) relationship correspond to cracking (δcr, 

Vcr), yielding (δy, Vy), and peak strength (δn, Vn) pointes, as well as the shear deformation 

at complete loss of shear capacity (δend, 0). 

 

The shear deformation and lateral load at onset of cracking is calculated using 

equations (4.99) and (4.100).  

         

 
'7.5 c g

cr
col

f I
V

c h
⋅ ⋅

=
⋅

 (4.99) 

       

 6 3
5

cr col cr col
cr

g c g

V h V h
G A E A

δ ⋅ ⋅ ⋅ ⋅
= =

⋅ ⋅ ⋅
 (4.100) 

 

where G is shear modulus, Ec is the modulus of elasticity of concrete, Ag is gross cross-

sectional area, c is the neutral axis depth and Ig is the uncracked cross-sectional moment of 

inertia. 

 

Shear deformation at first yielding of longitudinal reinforcement is determined using: 

         

 3
0.2 0.4

y col
y

r c g

V h
P E A

δ
⋅⎛ ⎞

= ⋅⎜ ⎟+ ⋅ ⋅⎝ ⎠
 (4.101) 

 

where Pr is the ratio of applied axial load (P) to the axial load capacity of the column  (P0) 

[ 0 0.85 (1 )c g l y slP f A f Aρ′= − + where ρl = longitudinal reinforcement ratio (= Asl/Ag), and Asl = 

total area of longitudinal reinforcement, f’c is the compressive strength of concrete] and Vy 
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is the shear force at yielding [
2 y

y

M
V

L
= for double-curvature specimens (My = moment 

capacity at yield) where L is the length of column]
 
 

 

The shear deformation corresponding to the peak strength is calculated using: 

       

 1 4s col
n

w s c

V h
d b E E

δ
ρ

⎡ ⎤⋅
= ⋅ +⎢ ⎥⋅ ⋅⎣ ⎦

 (4.102) 

 

where ρw is the transverse reinforcement ratio, Vs is the shear force carried by transverse 

reinforcement [ s yw
s

A f d
V

s
α=  where α is the slope of the line fitted to test data (for most 

shear strength models α =1), fyw is the yield strength of transverse reinforcement, As is the 

transverse reinforcement area within a spacing s and d is the distance from the extreme 

compression fiber to centroid of tension reinforcement], b is the section width and hcol is 

the height of the column.  

 

The Peak lateral strength is calculated using: 

 

 ( )
6

1 0.80
6

s ywc
n c s g

c g

A f df pV k V V k A k
a sf Ad

⎛ ⎞′⎜ ⎟= + = + +
⎜ ⎟′
⎝ ⎠

 (4.103) 

                
 

where ‘a’ is shear span, Vc is the shear carried by concrete and Vs is shear carried by 

transverse reinforcement. 

 

The peak lateral strength Vn, must be smaller than the lateral load, Vp, required to reach the 

maximum flexural capacity, Mp, at column end ( 2 /p pV M L=  , for double-curvature 

specimens) 

 

The shear displacement at the end of monotonic loading, δend, is calculated from  
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 , , ,end total end flex n slip n nδ δ δ δ δ= − − ≥  (4.104) 

 

where, δtotal,end = total displacement of column at loss of axial capacity. If the final failure is 

dominated by shear, then the column does not develop its maximum flexural and slip 

deformation potential. Therefore, flexure and bar slip displacements at axial failure are the 

same as flexure and bar slip displacements corresponding to peak later strength, δflex,n and 

δslip,n, respectively. δn is calculated from Equation (4.102). 

 

 
 

Figure 4.15.  Origin-Oriented –Hysteresis Model for Horizontal Shear Spring. 

 

For a given axial load ratio, P/P0 and transverse reinforcement parameter Aswfyh/(sP0), the 

drift ratio at axial load failure could be obtained from Figure 4.16 ( , *total end driftratio Lδ = ) 

Shear Displacement

S
he
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Figure 4.16.  Drift Capacity at the Loss of Axial Load Capacity (Sezen, 2002). 

 

The trilinear shear force vs. shear displacement relation developed by Sezen (2002) 

defines the backbone of the hysteretic constitutive relationship for the shear spring. An 

origin-oriented hysteresis rule simulates the shear response of the column element (Figure 

4.15). It must be mentioned that since the columns investigated in this study are not 

expected to be shear critical, a detailed constitutive modeling approach was not 

implemented to define the shear behavior of the horizontal (shear) spring. Improved 

predictions of column shear response require consideration of the interaction between 

shear and flexure responses, especially where highly inelastic flexural deformations take 

place. However, since this study concentrates on modeling of reinforced concrete columns, 

the behavior of which is dominated by either bond slip, flexure, or simultaneously slip and 

flexure responses, a simple origin-oriented shear force vs. deformation behavior with a 

trilinear backbone curve was adopted.  

 

4.5.  Constitutive Models for  Bond Stress vs. Slip Deformation 

 

Uniaxial hysteretic bond stress vs. slip constitutive models are used to represent the 

cyclic force – deformation behavior of the bond slip springs of the analytical model. Past 

experimental studies on individual reinforcing bars embedded in concrete have identified 
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two main types of bond failure mechanisms, depending on the amount of concrete 

surrounding the reinforcing bar, as well as the level of confinement. If the surrounding 

concrete is of significant thickness and the concrete is well confined by transverse 

reinforcement, bond failure typically occurs by pullout. On the other hand, if the concrete 

cover is small and the concrete is either unconfined or poorly confined, bond failure occurs 

by splitting of the surrounding concrete. Several bond stress vs. slip constitutive models to 

simulate both pullout (for deformed as well as smooth reinforcing bars) and splitting (only 

for deformed reinforcing bars) modes of bond failures are available in the literature. 

Among them, for deformed reinforcing bars, the bond stress vs. slip relationship developed 

by Eligehausen et al. (1983) for pullout mode of bond failure; and the bond stress vs. slip 

relationships developed by Harajli et al. (1994, 2002, 2004, 2009) for splitting mode of 

bond failure were selected in this study. For pullout failure of plain reinforcing bars, the 

hysteretic bond stress vs. slip constitutive model  recently developed by Verderame et al. 

(2009) was adopted, and a constitutive model for 180-degree hooks developed by by 

Fabbrocino et al. (2002, 2005)  was implemented. Details of the constitutive bond slip 

relationships used are described in the following subsections.  

 

4.5.1.  Constitutive Bond Stress vs. Slip Model by Eligehausen et al. (1983) 

 

Eligehausen et al. (1983) proposed the well-known and robust constitutive model for 

the local bond stress vs. slip relationship for single reinforcing bars, based on results of 

tests on deformed bars embedded in beam-column joints.  The model was derived using 

experimental results from tests conducted on 125 specimens with short anchorage lengths 

subjected to either monotonic tensile loading or reversed cyclic loading. Effects of loading 

history, confining reinforcement, bar diameter, concrete strength, clear cover, bar spacing, 

transverse pressure, and the rate of pullout on the local bond stress vs. slip relationship 

were investigated. The model proposed compares reasonably well with experimental 

results, and is widely used in modeling applications. Although the model is originally 

developed for single bars embedded in concrete, it has also been shown to be suitable to be 

used for modeling the bond stress vs. slip behavior of lap–spliced reinforcing bars (e.g., 

Reyes, 1999).  
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4.5.1.1.  Monotonic Envelope.  The monotonic (envelope) bond stress vs. slip relationship 

of the constitutive model includes four branches (Figure 4.17): (1) a nonlinear ascending 

branch (Equation (4.105)), (2) a plateau after the peak stress is reached (Equation (4.106)), 

(3) a linearly descending branch (Equation (4.107)), and (4) a second plateau after the 

residual stress is reached (Equation (4.108)).  

 

For  s ≤ s1 

 ( )1 1( )s s s ατ τ= ⋅  (4.105) 

For s1 ≤ s ≤ s2  

 1τ τ=  (4.106) 

For s2 ≤ s ≤ s3 

 
( )
( ) ( )1 3

1 2
3 2

( )s s s
s s
τ τ

τ τ
−

= − ⋅ −
−  (4.107) 

For s ≥ s3    

 3τ τ=  (4.108) 

        

 
 

Figure 4.17.  Proposed Analytical Model for Monotonic Local Bond Stress-slip 

Relationship for Confined Concrete (Eligehausen et al. ,1983). 
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Default parameters of the monotonic envelope for confined and unconfined concrete, 

for a reference concrete compressive strength value of 30 MPa, are presented in Table 4.1. 

Modifications to the default envelope parameters were suggested by Eligehausen et al. 

(1983) to account for variability in the following conditions:  

 

Bar Diameter: The default values were calibrated for #8 (db = 25.4 mm) reinforcing 

bars. Peak bond stress (τ1) values are increased or decreased by 10% for #6 (db = 19.05 

mm) or #10 (db = 32.26 mm) longitudinal reinforcement, respectively.  

 

Deformation Pattern: Envelope parameters need to be modified if the deformation 

pattern of the reinforcement bars used in the construction of the columns specimens are 

different than the test specimens used in the calibration of the Eligehausen et al. (1983) 

model. Clear spacing between lugs affects the bond stress vs. slip behavior substantially. 

As the clear spacing between lugs increases, the slip also increases. Since the slip 

parameters (s1, s2 and s3) of the monotonic bond stress vs. slip model were calibrated using 

experimental results with clear lug distance of 10.5 mm, Eligehausen et al. (1983) 

proposed to scale the slip parameters (s1, s2 and s3)  by c1 (mm)/10.5 mm, but not more 

than +/- 30%.  

 

Concrete Strength: Default model parameters were derived for test results from 

specimens with compressive concrete strength values of 30 MPa. For specimens with 

different concrete compressive strengths, it is suggested to modify the parameters τ 1 and τ 3 

with a factor of (fc’/30)β , where f’c is in MPa and β = 1/2 to 2/3.  

 

Clear Spacing: Peak (τ 1) and residual (τ 3) bond stresses values are reduced if the 

clear spacing between longitudinal reinforcing bars is smaller than 4db.  

 

External Pressure: If external transverse load (pressure) is applied along the 

anchorage or lap-splice length, then the maximum and residual bond stresses should be 

increased. In typical cases, especially for lap splices in columns, no external transverse 

loads are applied along the splice region; therefore, no modification to the default value is 

necessary. 



 

80

Table 4.1.  Eligehausen et al. (1983)  Local Bond Stress – Slip Material Model Parameters 

for Confined and Unconfined Concrete. 

 
 

Loading Rate: The envelope relationship is based on pull-out tests where the loading 

rate (slip per minute) was controlled. The test results indicated that the slip rate influenced 

the maximum (τ 1) and residual (τ 3) bond stresses values achieved during the tests, where 

the maximum and residual bond stresses increased as the slip rate increased. Eligehausen 

et al. (1983) proposed a modification to account for slip rate, where the default bond 

stresses are modified by -/+15% for slip rates between 0.01 mm/min and 100 mm/min 

using a logarithmically linear relation.  

 

4.5.1.2.  Hysteretic Rules.  The hysteretic unloading/reloading behavior of the constitutive 

model by Eligehausen et al. (1983) consists of several branches as shown in Figure 4.18, in 

which the dashed line represents test results and the solid line indicates the constitutive 

model response. Figure 4.19 illustrates the characteristics of the complete hysteretic bond 

stress vs. slip constitutive relation, which is described in the following paragraphs. 
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Figure 4.18.  Hysteretic Branches of Bond Stress vs. Slip Constitutive Model for Confined 

Concrete (Eligehausen et al. ,1983). 

 

Upon each successive unloading and reloading, reduced bond stress vs. Slip 

envelopes are derived from the monotonic envelopes, by reducing the characteristic bond 

stress τ1 and τ3 through reduction factors, which are formulated as a function of a 

parameter, called the “damage factor” (d). It can be observed in Figure 4.19 that maximum 

bond resistance (τ1) deteriorates faster than the ultimate frictional resistance (τ3). However, 

there is a strong correlation between the deterioration rate of the maximum and frictional 

bond resistance values. This can be observed in Figure 4.21, which illustrates the reduction 

of the frictional resistance τ3 as a function of the damage parameter d, deduced from the 

reduction in the maximum bond resistance τ1. Figure 4.20 illustrates the correlation 

between the measured damage factor,d as a function of the calculated dimensionless 

dissipated energy factor, E/E0.  
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Figure 4.19.  Proposed Analytical Model for Local Cyclic Bond Stress-slip Relationship 

for Confined Concrete (Eligehausen et al. ,1983). 

 

The normalized energy, E0, corresponds to the absorbed energy under monotonically 

increasing slip deformation up to a value of  s3. Therefore, from Figure 4.20, 

       

 1 1( ) ( 1)(1 )N N dτ τ= = −  (4.109) 

 

where N is the number of cycles and 
1.1

01.2( / )1 E Ed e−= −  
 

 3 3( ) 1
2

dN
d

τ τ ⎛ ⎞= −⎜ ⎟−⎝ ⎠
 (4.110) 

 

3τ − , 3τ +  as shown in Figure 4.19, can be solved from Equation (4.110) 
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Figure 4.20.  Damage Factor, d, for the Reduced Envelope as a Function of the 

Dimensionless Energy Dissipation Ratio E/E0 (Eligehausen et al. ,1983). 

 
Figure 4.21.  Ratio of the Ultimate Frictional Bond Resistance of the Reduced Envelope to 

that of the Monotonic Envelope as a Function of the Damage Factor, d (Eligehausen et al. 

,1983). 
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No reduction of the envelope (monotonic or reduced) is assumed for partial 

unloading or reloading (e.g. path EFE, Figure 4.19). In the tests, cycles were always 

carried out between increasing peak values of slip deformation. However, during 

generalized excitations, it is possible that a cycle is not completed to the envelope values 

of smax  and smin (e.g. path GHM in Figure 4.19). In this case, the damage parameter is 

interpolated between the values valid for the last slip reversal and for the completed cycle 

(point E and point P in this example) using following equation: 

      

 ( ) L
L c L

L C

s s
d d d d

s s
−

= + −
−  (4.111) 

where, 

d : damage factor of current inversion point (point H in example) 

dL: damage factor of last inversion point (point E in example) 

dC: damage factor for the completed cycle (point P in example) 

sL:slip value of last inversion point (slip of point E in example) 

sC: slip value of completed cycle (slip of point P in example) 

s: slip value of current inversion point (slip of point H in example) 

 

The frictional bond resistance (τf in Figure 4.19) is related to the value of the ultimate 

bond resistance of the corresponding reduced envelope (τ3 in Figure 4.19). The relationship 

between τf and τ3 as a function of the ratio smax/s3 deduced from the tests is shown in Figure 

4.23. The following relationships were derived by Eligehausen et al. (1983) based on 

results presented in Figure 4.23: 

 

if (smax/s3) < 0.50
 

 max
3

3
( ) ( ) 0.10 1.8f

sN N sτ τ ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (4.112) 

if (smax/s3) > 0.50     

 3( ) ( )f N Nτ τ=  (4.113) 

  

The expression above is used only for the calculation of the frictional resistance for 

the first slip reversal ( fτ − in Figure 4.19). 
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Figure 4.22 illustrates the correlation between the measured reduction factor df as a 

function of the computed dimensionless dissipated energy factor Ef/Eof, as well as the 

proposed function for df. Ef is the energy dissipated by friction alone and the normalizing 

energy Eof is equal to the product of τ3 and s3. Based on results presented in Figure 4.22 the 

following expression was proposed by Eligehausen et al. (1983): 

         

 ( )0( ) 1f f fN dτ τ= −  (4.114) 

where  

  

 1.2( / )0.671 f ofE E
fd e−= −  (4.115) 

 
Figure 4.22.  Damage Factor, df, for Frictional Bond Resistance during Cycles, as a 

Function of the Dimensionless Energy Dissipation Ef/Eof (Eligehausen et al. ,1983). 

 

If unloading is from a larger slip deformation value than the peak slip in the previous 

cycle (e.g. path STU in Figure 4.19), the new frictional bond resistance, τfu, is interpolated 

between two values (Figure 4.24). The first value is related to the τ3 (residual bond 

stresses) value of the corresponding new reduced envelope using the analytical function 

given in Figure 4.23  and the second  value is the τf (frictional bond resistance ) value 

reached in the last cycle (τf (1) in Figure 4.24).  



 

86

Regarding variability of the cyclic parameters with testing conditions, Eligehausen et 

al. (1983) stated that the cyclic parameters described above may be assumed valid valid for 

different test conditions than those based on which they have been determined. Details of 

the complete constitutive model formulation are presented in the report by Eligehausen et 

al. (1983). 

 

 
Figure 4.23.  Relationship Between Frictional Bond Resistance during Cycling, ( )f Nτ , and 

the Corresponding Ultimate Frictional Bond Resistance 3 ( )Nτ (Eligehausen et al. ,1983). 

 

4.5.2.  Constitutive Bond Stress vs. Slip Models by Harajli et al. (1994, 2002, 2004, 

2009)  

 

Harajli et al. (1994, 2002, and 2004) proposed constitutive bond stress vs slip 

relationships which may be applied to reinforcing bars embedded in plain (unconfined) 

concrete and fiber reinforced concrete under monotonic tension, and are applicable to both 

bond splitting and pull-out type failures (Harajli et al., 1994). The models were developed 

upon compiling a broad database of experimental results, including the tests conducted by 

Eligehausen et al. (1983) and Harajli et al. (1995). 
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Figure 4.24.  Calculation of Zero Initial Frictional Bond Resistance for Unloading from 

Larger Value of Peak Slip smax than Previous Cycles (Eligehausen et al. ,1983). 

 

4.5.2.1. Monotonic Envelope.  The original model formulation consisted of two monotonic 

backbone relationships, representing pull-out and splitting failures for confined and 

unconfined concrete, respectively (Figure 4.25). The model has been updated since it was 

first proposed in 1994.  Harajli et al. (2004) proposed modifications to incorporate the 

influence of partial confinement on the bond stress vs. slip response of reinforcing bars 

experiencing splitting type failures. 

 

The ascending branch of the local bond stress – slip relationship proposed by Harajli 

et al. (1994) is very similar to the one proposed by Eligehausen et al (1983), and takes the 

form:   

( )0.3
1 1( )u s u s s= ⋅  (4.116) 
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Figure 4.25.  Monotonic Bond Stress – Slip Model (Harajli et al. ,1994, 2002, 2004). 

 

where s ≤ sα and u1 is the maximum bond stress of a reinforcement bar with a pull-out type 

failure and s1 is the amount of slip deformation corresponding to the maximum bond stress 

(u1). The maximum bond stress for pull-out failure (u1) is calculated as:  

        

 1( ) ( )2.57 'MPa c MPau f= ⋅  (4.117) 

 

For members with splitting type failure, once a bond stress of αumax is reached, the bond 

stress vs. slip relationship increases linearly until the maximum bond stress (umax) is 

reached (Figure 4.24), according to the following expression: 

 

 ( )max max
max

max

( ) u uu s u s s
s s α

α

αα − ⋅
= ⋅ + ⋅ −

−
 (4.118) 

      

where umax and smax are given by Equations (4.119) and (4.120),  respectively, and the 

coefficient α is taken as  0.7. 
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 ( )

2 3

max 10.78 ' c
c MPa

b

c Ku f u
d

⎛ ⎞+
= ⋅ ⋅ ≤⎜ ⎟

⎝ ⎠
 (4.119) 

          

 
( ) max

1
1 0.3 ln

1
max 1 0

max

ln
u

u us s e s
u

⎛ ⎞
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⎝ ⎠
⎛ ⎞

= ⋅ + ⋅ ⎜ ⎟
⎝ ⎠

 (4.120) 

 

In the equations above, s0 is 0.15 mm for plain (unconfined) normal-strength 

concrete and 0.40 mm (0.016 in.) for concrete confined with ordinary transverse 

reinforcement, and Kc is equal to ( )nsAtr ⋅⋅ /0.7  (Harajli et al., 2004). The addition of the 

terms ( )( )bc dKc +  and s0 in Equations (4.117) and (4.118), respectively, represent 

improvements (Harajli et al., 2002) to the original model by Harajli et al. (1994).  

 

These improvements are especially useful when modeling local bond stress vs. slip 

behavior of reinforcing bars embedded in partially (or moderately) confined concrete. For 

the column tests selected for this study (Chapters 7 and 8), where the transverse 

reinforcement spacing is too large to prevent a global splitting type failure, it is possible to 

account for the impact of the transverse reinforcement on the local bond stress vs. slip 

behavior using this model improvement. For unconfined concrete, the third branch of the 

monotonic bond stress – slip relationship involves a sudden drop of the bond stresses from 

umax to βτmax after the maximum bond stress is reached (u = umax and s = smax), where β is a 

taken between 0.6 and 0.7. For the partially confined condition, the local bond stress vs. 

slip relationship does not degrade as rapidly, as shown in Figure 4.26, and follows the 

following expression:         

 ( )max 0.5ps csu u K= ⋅ +  (4.121) 

 

where Kcs is equal to )/(5.7 ncsAtr ⋅⋅⋅ .  The final branch of the relationship for unconfined 

concrete is expressed as: 

 ( ) 0.5
max max( )u s u s sβ −= ⋅ ⋅  (4.122) 

 

where  s ≥ s3, as shown in Figure 4.26, until the bond stress degrades to zero. 
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The experimental results used in development of the model indicated that the amount 

of slip deformation, and thus the slip parameters of the monotonic model, are dependent on 

the clear spacing between the lugs of the reinforcing bar. For known lug spacing, the 

following values for s1 are recommended by Harajli et al. (1994): 

 

s1 = 0.15c1 = 1.95 mm (0.08 in.) 

s2 = 0.35c1 = 4.55 mm (0.18 in.) 

s3 = c1 = 13.00 mm (0.51 in.) 

 

If specific information on reinforcement geometry is not available, Harajli et al. 

(2002) recommends that slip parameters s1, s2 and s3 be taken as 1.5 mm, 3.5 mm, and 10 

mm, respectively. 

 

4.5.2.2.  Hysteretic Rules.  Harajli (2009) proposed hysteretic unloading and reloading 

rules for the bond stress vs. slip relationship, which are applicable for the monotonic 

envelope shown in Figure 4.25 for partially confined concrete representing splitting mode 

of bond failure. Harajli (2009) proposed to adopt the idealization shown in Figure 4.26 to 

describe the cyclic bond stress–slip response for one cycle. Figure 4.27 illustrates the 

proposed idealized response for several successive cycles. The proposed hysteretic rules 

were generated as a function of the following characteristic cyclic response parameters: (1) 

slope of the unloading branch k0, (2) slip sr at which the rate of bond resistance experiences 

a sudden increase, (3) bond degradation ratio uN/u0. 

 
Figure 4.26.  Proposed Idealized Cyclic Response for One Complete Cycle (Harajli, 2009). 
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Based on the observed trends in the experimental data, the following empirical 

expression is recommended for evaluating the slope k0t of the unloading branch of the 

bond stress vs. slip response in tension for all values of maximum slip deformation, smax: 

         

 
0

0
max / 2 / 2

sp
t

sp

uu
k

s s
= ≥  (4.123) 

 

provided that /
0 /t ck f  is not taken less than 6.0 per mm. Because slip deformations 

in compression (defined when the reinforcing bar is in compression) is negligibly small, it 

would be sufficiently accurate to assume that first loading in compression would occur 

along the monotonic envelope curve in compression. For unloading or reloading in 

subsequent compression cycles, the slope k0c would be such that the response follows a 

line that joins the point of zero slip to the point of maximum negative slip mobilized 

during the loading history (Figure 4.26). 
 

 
Figure 4.27.  Proposed Model of Cyclic Bond Stress-Slip Response (Harajli, 2009). 

 

Experimentally-observed variation of the slip ratio sr / smax at different values of the 

maximum slip deformation smax for the first two reloading cycles in tension is presented in 

Figure 4.27. Based on the trend shown, and neglecting the expected slight increase in 
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max/rs s with subsequent loading cycles, the following regression equation for estimating sr 

was derived by Harajli (2009): 

       

 max
max

0.44 0.035ln( )rs
s

s
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (4.124) 

 

 
Figure 4.28.  Variation of Slip Ratio max/rs s with Maximum Slip Deformation (Harajli, 

2009). 

The bond degradation response associated with cyclic loading is simulated through a 

bond degradation ratio uN/u0, where u0 =bond resistance at slip smax on the envelope curve 

from which first unloading occurred, and uN is the bond stress at slip s=smax corresponding 

to tension reloading cycle. The bond degradation ratio was observed to be mostly 

dependent on the number of cycles and maximum slip smax value mobilized during the 

loading history; however, it was practically insensitive to the bar diameter or ratio of 

concrete cover to bar diameter and type of confinement used. For larger slip deformation 

values beyond splitting, the average bond degradation ratio decreases considerably but is 

practically independent of the maximum slip smax.  

 

Figure 4.29 shows variation of the bond degradation ratio uN/u0 with number of 

cycles N corresponding to the limited number of cycles generated for two different ranges 

of maximum slip smax. Regression analysis to the experimental data presented in Figure 

4.29 leads to the following expressions for evaluating the bond degradation ratio with 

number of cycles for complete half-cycles: 
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Figure 4.29.  Variation of Bond Degradation Ratio 0/Nu u  with Cycle Number N: (a) 

sps s≤ and (b) sps s≥ (Harajli, 2009). 

 

For slip deformation s less than or equal to ssp, 

        

 
0

1 0.1ln( 1)Nu
N

u
= − +  (4.125) 

 

For slip deformation s greater than ssp, 

         

 
0

1 0.35ln( 1)Nu
N

u
= − +  (4.126) 

 

For the case of incomplete cycles, the bond stress vs. slip behavior is assumed to follow 

the simple bilinear response shown in Figure 4.30. Details of the constitutive model are 

presented in the paper by Harajli (2009). 
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Figure 4.30.  Simplified Response for Incomplete Cycle (Harajli, 2009). 

 

4.5.3.  Constitutive Bond Stress-Slip Model by Verderame et al. (2009) for Smooth 

Reinforcing Bars 

 

The existing literature does not offer significant contribution on the definition of 

numerical models representing the bond and interaction mechanisms between plain 

reinforcing bars and concrete. The only code instructions relative to the local constitutive 

bond–slip relationship for plain bars can be found in CEB-FIP Model Code 90 (1993). This 

model (Figure 4.31(a)) is constituted by a first monomial branch, given by the following 

expression:         

 ,max
max

b b
s

s

α

τ τ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (4.127) 

 

and a second constant branch, for s > smax, with ,maxb bτ τ= . Model Code 90 (1993) 

suggested to assume, for plain hot rolled bars, parameter α is equal to 0.5 and smax = 0.10 

mm. The maximum bond strength value was assumed equal to ,max 0.30b cfτ =  for good 

bond conditions and to ,max 0.15b cfτ = for poor bond conditions, where fc is the 

cylindrical compressive strength of concrete. 
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Figure 4.31.  Monotonic Bond Stress vs. Slip Relationship for Plain Bars: (a) from CEB-

FIP Model Code 90 (1993) and (b) from Experimental Results Reported in Verderame et 

al. (2009). 

 

It was debated that this model cannot fully represent the effective interaction 

mechanisms between plain reinforcing bars and concrete. As a matter of fact, the wide 

experimental program carried out by Abrams (1913) and the phenomenological description 

proposed by Tassions (1979) and Rehm (1969) highlighted that the experimental response 

of a plain bar, in terms of bond stress vs. slip relationship, follows a first ascending branch 

up to a peak strength value corresponding to very low values of slip deformation. During 

this phase, chemical–physical adhesion, mechanical micro-interlocking between concrete 

and indentations of surface of the bar and also the friction component contribute to the 

bond strength. Then, a softening branch (transition curve) related to the progressive 

degradation of friction mechanism is present, which differs from the formulation proposed 

by Model Code 90 (1993). This softening branch continues until a minimum frictional 

value of bond stress (Figure 4.30(b)). Recent experimental results reported by Fabbrocino 

et al. (2005), Feldman and Bartlett (2005); and Verderame et al. (2009 a) confirmed what 

was asserted first by Abrams (1913) and later by Tassions (1979). 

 

4.5.3.1.  Monotonic envelope. The monotonic constitutive model which best fits the 

experimental bond stress vs. slip behavior for plain reinforcing bars is the one proposed by 

Eligehausen et al. (1983) (also known as BPE model, Figure 4.32), modified by removing 

the plateau branch with the aim of modeling the bond behavior of FRP bars Cosenza et al. 
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(1997). In Figure 4.32(a) and 4.32(b),the original and modified BPE models are shown, 

and respective characteristic parameters are reported. In both cases the ascending branch is 

expressed by the monomial expression in Equation (4.127).  

 

 
Figure 4.32.  BPE Model (a) Original (b) Modified by Eligehausen et al. (1983). 

 

The modified BPE model, has no horizontal branch for slippage values higher than 

smax. A linear softening branch’s expression is expressed as follows: 

        

 ( ),max
,max max

max

b
b b p s s

s
τ

τ τ= − −  (4.128) 

 

On the basis of the modified BPE model and experimental results obtained by 

Verderame et al. (2009, part 1), maximum bond strength τb,max was expressed to be 

proportional to the square root of the cylindrical compressive strength of concrete fc, 

through a factor equal to 0.31, with a coefficient of variation equal to 0.39 as:  

         

 ,max 0.31b cfτ =  (4.129) 

 

where fc is the cylindrical compressive strength of concrete. Equation (4.127) is consistent 

with the experimental observations of  Fabbrocino et al. (2005) and with the proposal of 

the  Model Code 90 (1993) for good bond conditions. The purely frictional bond strength 

was evaluated in relation with the maximum bond strength value, , ,maxb f bτ τ . Again, based 
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on experimental results, the mean value of the purely frictional bond strength is expressed 

as: 

 , ,max0.43b f bτ τ=  (4.130) 

 

with a coefficient of variation equal to 0.18. This result confirmed the theoretical 

observation reported in Tassions (1979), where the value of the ratio , ,maxb f bτ τ was assumed 

to be equal to at least 0.30. Using Equation (4.128), the above relationship can be 

rearranged as: 

          

 , 0.13b f cfτ =  (4.131) 

 

which is consistent with the proposal of Model Code 90 (1993) for poor bond conditions. 

 

4.5.3.2. Hysteretic Rules. The hysteretic unloading and reloading rules proposed by 

Verderame et al. (2009, part II) for the modified BPE backbone relationship are illustrated 

in Figure 4.33. Characteristics of the hysteretic behavior are based on experimental results 

from cyclic pull-out tests, with different target values of maximum imposed slip 

deformation, as reported in Verderame et al. (2009 a). The hysteretic rules were derived to 

simulate the test results, in a simple, yet representative manner. 

 

 
Figure 4.33.  Hysteretic Bond Stress vs. Slip Relationship (Verderame et al. ,2009a). 
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When the smooth reinforcing bar is loaded for the first time, the bond stress vs. slip 

behavior follows the monotonic envelope curve (path 0AB). When a reversal is imposed 

from an arbitrary value of slip deformation, a linear unloading branch, with stiffness kun is 

followed, until the so-called cyclic bond resistance, ,b cτ  (path BC). This resistance value is 

kept constant when slip deformation decreases until the reinforcing bar reaches the initial 

position, which corresponds to zero  slip deformation between steel and concrete. When 

the sign of the slip is reversed, the bond stress increases on a linear branch, with a stiffness 

(slope) of kun, until the residual bond resistance value, ,b rτ  (path DEF).  

 

When a second slip reversal is imposed, the bond stress vs. slip relationship first 

follows an unloading branch with stiffness kun, followed by a cyclic frictional branch with 

,b cτ τ= until the point H, located on the unloading branch (path FGH). As the slip 

deformation increases, a reloading branch with stiffness kun is followed until the residual 

bond resistance ( ,b rτ ) is reached, after which the bond stress is kept constant with the 

increasing value of slip (path HIL). On the other hand, if the slip is reversed again from 

point H (Figure 4.33 (b)), the bond stress decreases following an unloading branch with 

stiffness kun until the cyclic bond resistance ( ,b cτ τ= ) is reached, after which is the bond 

stress is kept constant for increasing negative values of slip up to the maximum slip value 

attained previously. When this maximum slip value is reached, the relationship follows a 

reloading branch up to the constant bond stress branch, corresponding to ,b rτ τ=  (path 

HILMN).  

 

In this constitutive model, under cyclic excitations and in correspondence with 

values of slip higher than the maximum one previously attained, the bond stress vs. slip 

relationship does not reach the monotonic envelope curve, but to reduced bond stress 

values bounded by the purely frictional bond resistance, ,b rτ . During the cycles, the bond 

stress is kept constant at a value of ,b cτ , both during pulling out and pushing in of the bar. 

Therefore, to completely define the hysteretic model, only two parameters are required, 

which are the residual bond resistance ( ,b rτ ) and the cyclic bond resistance ( ,b cτ ). Finally, 

assuming that no further degradation of the bond resistance takes place as the number of 
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partial loading cycles increases, the proposed model yields symmetric bond stress vs. slip 

behavior, which is consistent with experimental observations, which also do not highlight 

significant asymmetry associated with the first loading direction. 

 

Verderame et al. (2009b)  assumed that the hysteretic parameters of the constitutive 

bond slip behavior mainly depend on the compressive strength of concrete and the surface 

roughness of the bar, because of the nature of the interaction mechanisms at the interface 

between plain bars and concrete. Therefore, as done with ,b fτ in the definition of the 

monotonic envelope curve, parameters ,b rτ  and ,b cτ are evaluated to be proportional to the 

maximum bond resistance. Neglecting the variability in the surface roughness of 

reinforcing bars, it is possible to extend the proposed model to different values of the 

concrete strength, basing on the defined ratios between the maximum bond resistance and 

the square root of the cylindrical compressive strength of concrete. It was stated that this 

assumption is yet to be better investigated by executing cyclic pull-out tests with different 

values of concrete strength (Verderame et al., 2009 b). 

 

 

 
Figure 4.34.  Hysteretic Bond-slip Relationship for Plain Reinforcing Bar (Verderame et 

al., 2009b). 
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Details on the characteristic parameters of the constitutive bond stress vs. slip 

relationship, as well as possible maximum and minimum values and coefficients of 

variation are described in Verderame et al. (2009b).  Figure 4.34 illustrates a brief 

summary of the model, with characteristic values used for the parameters. For the model 

implemented in this study, the slope of the linear unloading and reloading branches were 

taken as is kun = 15 MPa/mm,  based on the overall average experimental value observed . 

by Verderame et al. This value was assumed to be constant and not depending on the 

number and the magnitude of cycles. The progressive stiffness degradation due to the 

increase of the maximum imposed slip was therefore neglected. As a matter of fact, 

according to the experimental data, this stiffness changes from an average value of about 

28 N/mm3, corresponding to smax = 0.5 mm, to a value of 8 N/mm3 when smax = 8.0 mm. It 

was observed that this simplification has no significant influence on the structural response 

modeling, as long as this stiffness does not assume values significantly higher than the 

experimental variability range.. 

 

4.5.4.  Constitutive Model for Axial Stress in Bar vs. Slip Deformation for 180-degree 

Circular Hooks by Fabbrocino et al. (2002, 2005)   

 

4.5.4.1.  Monotonic Envelope.  Fabbrocino et al. (2005) conducted out pull-out type tests 

in order to evaluate the response, in terms of axial stress in reinforcing bar vs. slip 

deformation relationship, of 180° circular hooks, which is the most common anchorage 

condition for smooth bars in column splices.  In the experimental program, three different 

specimen configurations were considered, including ‘full’ type specimens, ‘end’ type 

specimens and ‘full-H’ type specimens. Here, only the ‘full’ type specimen configuration 

(Figure 4.35 (b)) is discussed, as this configuration is applicable to 180-degree hooks in 

typical column splices. The tests were conducted in such a way that only the hook was 

embedded in the concrete specimen (Figure 4.35(b)), and a direct measure of the slip 

deformation at the end of the hook could be obtained. The loading was applied under 

displacement control. The main parameters investigated during the experimental study 

were the bar diameter, the concrete cover thickness, the cast direction, and the type of 

loading (monotonic or cyclic).  
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Figure 4.35(a) provides an overview of experimental results on hooks made of 12 

mm diameter reinforcing bars. The test results given are in terms of σhook (bar stress) vs. 

shook (hook end slip) relationships for specimens that fit the bond conditions for hooks at 

column base or anchored in interior beam column joints. Test results indicate that the hook 

shows a very high initial stiffness, followed by a pronounced nonlinear behavior even at 

low stress levels. However, and interestingly, the bar shows the capacity to reach yield 

stress, under progressively increasing slip deformations. Therefore, a pure slip failure does 

not occur. The bar stress vs. slip response is not characterized at yield by a well-defined 

yield plateau (due to the limited yield spreading along the circular branch, so that yielding 

develops only in the straight unbounded region), and significant increase in slip 

deformation can be observed only after strain hardening starts.  

 
Figure 4.35.  Results of Experimental Tests and Stress-slip Relation for 180-degree Hooks 

Fabbrocino et al. (2005). 

 

Based on the test results, a constitutive bar stress vs. hook end slip deformation 

relationship was derived by Fabbrocino et al. (2005), the formulation of which resembles 

the first monotonic branch of the constitutive relationship by Eligehausen et al. (1983) 

(Figure 4.35):       

 u
u

s
f

s

α

σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (4.132) 

 

where s is the hook end slip, su is the hook end slip at bar failure, fu is the bar ultimate 

stress, and α is a dimensionless positive exponent that is generally smaller than 1. Ultimate 
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stress and slip at bar failure are used as basic parameters of the theoretical formulation; the 

first of which is a parameter depending upon the steel grade, and the second of which can 

be evaluated using statistical analysis of available test results. Regression analysis results 

on the experimental data is shown in Figure 4.35(a), with reference to different hook 

orientations (test groups a, b, and c denote hook being parallel to concrete casting 

direction, and perpendicular to casting direction with hook downward and upward 

respectively). Optimal parameters depending on hook orientation as well as based on all 

test data is reported in Figure 4.35. In this study, the overall average values  (α = 0.30, su, = 

3.90 mm) were used to represent the constitutive behavior of 180-degree hooks. 

 

4.5.4.2.  Hysteretic Behavior.   Fabbrocino et al. (2002) also carried out cyclic tests on 

180° circular hooks. Some minor changes in the experimental setup was done in order to 

avoid buckling of the reinforcing bar when subjected to compressive stresses. Tests were 

carried out up to bar fracture, at longitudinal strain values higher than 0.2. Figure 4.36(a) 

shows the load history (bar end displacement) that was applied on the reinforcing bar 

specimen. Figure 4.36(b) reports the measured bar axial stress vs. bar end displacement 

relationship. The yielding stress level is reported on the same plot, highlighting an 

asymmetrical behavior. In fact, for a given displacement, the stress level reached under 

compression is higher than the corresponding stress level under tension. This behavior 

continues until concrete spalling (pushing-out) at the bottom of the concrete block (Figure 

4.35(b)), which is clearly represented in the experimental results as a sudden loss in bar 

compressive stresses. 

 

After this spalling occurs, the compressive strength of the hook rapidly deteriorates, 

and a pinching-type behavior develops . From a local point of view, the asymmetric 

behavior becomes more pronounced,, as shown in Figure 4.36(c), where the bar stress is 

plotted against hook end slip. In fact, a very stiff behavior occurs under compression 

during the early cycles; as the slip deformation under compression increases, a large 

permanent slip deformation accumulates related to progressive pulling out of the bar. This 

effect is however counterbalanced by an increasing level of deformation under 

compression, which leads to spalling concrete cone in the bottom region of the specimen 

block (Figure 4.35(b)). This phenomenon starts a sudden reduction of the compressive 
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Figure 4.36.  Experimental Results of Cyclic Test on 180-degree Hook Made of 12 mm 

Diameter Smooth Bar (Fabbrocino et al.i, 2002). 

 

stress capacity and a pronounced increase of slip deformation under compression. 

However, this behavior is specific to the test setup, and will not be applicable to a hook in 

the lap splice region of a column. Therefore, and especially since a representative 

hysteretic behavior is not available for hooks in column splices, a simple origin-oriented 

hysteretic response was implemented in the present analytical model for column hooks 

(Figure 4.37), together with the monotonic envelope described in Figure 4.35 to relate 

axial stresses in a smooth bar with hook end slip deformations. 
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Figure 4.37.  Implemented Origin-Oriented Hysteretic Constitutive Model for 180-degree 

Hooks.  

Together with the material constitutive models for steel and concrete, and the 

constitutive relationships for deformed bars, smooth bars, and hooks described in this 

chapter, as well the nonlinear analysis solution strategy to be described in Chapter 5, the 

formulation of the model described in Chapter 3 was implemented in Matlab (“Matlab”), 

to perform nonlinear quasi-static (monotonic or cyclic) analyses using the analytical model 

proposed.  
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5.   NONLINEAR ANALYSIS SOLUTION STRATEGY  
 

 

The model element formulations described in Chapter 3 (with elements of 18 degrees 

of freedom used in the lap splice region and elements of 12 degrees of freedom used 

outside the lap splice region as shown in Figure 5.1) were assembled together in Matlab, 

using a direct stiffness assembly approach, to form a component model for an individual 

reinforced concrete column with a lap splice. The constitutive relationships described in 

Chapter 4 were implemented in the model for concrete, steel, and the bond slip springs. An 

appropriate incremental-iterative solution strategy was adopted for conducting nonlinear 

quasi-static (monotonic or cyclic) analyses of individual columns.  

 
Figure 5.1.  Sample Model Assembly with Degrees of Freedom. 

 

Selection of a suitable incremental-iterative numerical solution strategy for nonlinear 

analysis depends on type of loading (static or dynamic) and type of analysis (load-
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controlled, displacement-controlled, or combination).  A displacement-controlled iterative 

solution strategy was implemented in this study for conducting a nonlinear quasi-static 

analyses, using the model formulation developed. The reason behind choosing this 

displacement-controlled iterative solution strategy is that the experimental programs 

selected for this study to calibrate and correlate the experimental results with the analytical 

results are drift-controlled reverse cyclic reinforced concrete column tests which are 

subjected to prescribed lateral displacement histories at the top of the column. Descriptions 

of numerical solution strategies are given below. Details of the nonlinear solution analysis 

strategy implemented in this study are presented in this Chapter. 

 

5.1.  The Nonlinear Quasi-Static Problem 

 

Figure 5.2 illustrates a generic nonlinear quasi-static response, in the form of 

analytically-obtained lateral load vs. top displacement behavior of a reinforced concrete 

column subjected to a reverse cyclic lateral loading imposed at the top. In order to generate 

a quasi-static response, the external load or displacement effects are applied with a 

sufficiently slow rate, such that they do not induce dynamic effects on the analytical (or 

experimental) response. 

 

The general equilibrium equation for nonlinear quasi-static response can be expressed as:
   

 ( ){ } { }int extF Fδ =  (5.1) 

 

where ( ){ }δintF  denotes the internal resisting force vector, which is a nonlinear functional 

of system (nodal degree of freedom) displacements, and { }extF  is the external force vector, 

representing the externally applied forces at the nodal degrees of freedom. In the case of a 

linear elastic system, the static problem would reduce to the linear equation as 

    

 [ ]{ } { }extK Fδ =  (5.2) 

 

where [ ]K  denotes the stiffness matrix and { }δ  is the vector of nodal displacements.  
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Figure 5.2.  Generic Nonlinear Quasi-static Response. 

 

 

5.2.  Incremental Iterative Approach – Newton-Raphson Scheme 

 

The conventional Newton-Raphson solution scheme is capable of linearizing the 

nonlinear equilibrium equation, through an incremental iterative strategy.  Figure 5.3 

illustrates a schematic of the Newton-Raphson iterative solution algorithm, with the 

incremental equation of equilibrium expressed as:    

  

 ( ){ } { }int extF FδΔ Δ = Δ  (5.3) 

 

where ( ){ }δΔΔ intF  is the incremental restoring force vector being a nonlinear functional of 

the incremental nodal displacement vector ( )δΔ , and { }extFΔ  is the incremental external 

load vector. Equation (5.3) is linearized within an arbitrary load step i about { } { }iδδ = , 

providing the equation for the first iteration within the load step as:   

       

 [ ] { } { }1 1
exti ii

K FδΔ = Δ  (5.4) 
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where  [ ]1iK  denotes the tangent stiffness matrix of the system at the beginning of the load 

step, obtained by differentiating the internal (restoring) force resisting vector with respect 

to displacements at the degrees of freedom: 

 [ ] ( )
( )

1 int

i

i

d F
K

d
δ δ

δ
=

=  (5.5) 

           

 
Figure 5.3.  Newton-Raphson Iteration Scheme. 

 

The linearized incremental equilibrium equation for the j’th iteration of the Newton-

Raphson scheme within the load step i can be written as: 
   

 [ ] { } { }j j j

i ii
K RδΔ = Δ  (5.6) 

where          

 { } { } { }1 1
int

j j j

i i i
R R F− −Δ = Δ − Δ  (5.7) 
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The term { } j
iRΔ  represents the vector of residual forces (Figure 5.3) and the term 

{ } 1
int

−Δ j
iF  is the increment of internal resisting forces for the iteration being equal to the 

difference in between the two internal resisting force vectors: { } { } 2
int

1
int

−− − j
i

j
i FF  (Figure 

5.4). 

 
Figure 5.4.  Nodal Displacement and Internal Resisting Force Increments. 

 

After successive iterations on the incremental nodal displacement vector, 

Convergence is achieved by minimizing the vector of residual forces to a specified value 

of tolerance. The resulting incremental nodal displacement vector for the i’th load step can 

be computed as the sum:    

   

 { } { } { } { }1 2 .......... l

i i i i
δ δ δ δΔ = Δ + Δ + + Δ  (5.8) 

 

where l is the number of iterations performed in order to achieve convergence.  

 

Although the conventional Newton-Raphson strategy successfully linearizes the 

equilibrium equation to obtain an iterative solution, it is incapable of passing load limit 

points within the quasi-static load-displacement path of the system, because the load level 
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is held constant while iterations are conducted to achieve convergence. Passing load limit 

points for incremental nonlinear analysis approaches is extremely difficult due to the near 

singular nature of the tangent stiffness matrix in the neighborhood of a load limit point. 

Iterations should be performed on externally applied loads as well as nodal displacements 

by introducing constraint equations within the solution strategy to proceed beyond a load 

limit point. Several different techniques have been proposed to pass beyond the load limit 

and the most well known being ‘iteration at constant arc-length’ introduced by Wempner 

(1971) and updated by Ricks (1979). An adaptation of the ‘arc-length’ method, with a 

displacement-controlled iterative strategy, based on incrementation of selected 

displacement components of the model (Clarke and Hancock, 1990)  is used in this study 

as the iterative solution technique. Details of the iterative solution strategy used are 

described in the following section. 
 

5.3.  Applied Nonlinear Analysis Solution Strategy 
 

The solution strategy used in this study is based on a modified Newton-Raphson 

iterative approach, where the tangent stiffness matrix is computed at the beginning of each 

load step and held constant for each load step. An iterative strategy, based on 

incrementation of a selected displacement component and iterations at constant value of 

the selected displacement component was used for the purpose of passing load limit points 

as well as for comparison of analysis results with results of displacement-controlled 

experiments conducted on column specimens.  
 

In the incremental-iterative method implemented, each load step consists of the 

application of an increment of external load with subsequent iterations required to satisfy 

the total equilibrium equations within a specified tolerance. In this text, the notation 

adopted is to use the subscript i to denote load step number i, and the superscript j to 

denote the iteration cycle j (within load step i). Iteration cycles begin at 1=j , which is 

defined to correspond to an increment of external load. The equilibrium iterations 

commence at 2=j . The scalar λ  denotes a load parameter to be used in combination 

with a reference external load vector (assuming external loading to be proportional), and 

{ }δ  is the vector of nodal displacements at the model degrees of freedom. There are two 
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distinct strategies required for the successful completion of a single load step in an 

incremental-iterative scheme: 

 

(i) Selection of a suitable external load increment 1
iλΔ  for the first iteration cycle. The 

 selected increment is referred to as the “initial load increment”, and the particular 

 strategy used to determine it is referred to as the “load incrementation strategy”.  

 

(ii) Selection of an appropriate “iterative strategy” for use in subsequent iterative cycles 

 ( 2≥j ), where the aim is to restore equilibrium as rapidly as possible. If iterations 

 are performed on the load parameter j
iλΔ  as well as the nodal displacements { } j

iδ , 

 then an additional constraint equation involving j
iλΔ  is required. It is the form of 

 this constraint equation, which distinguishes the various iteration strategies.  

 

A description of the incremental-iterative technique for a single load step i is 

described in the following subsections. It is assumed that perfect convergence has been 

achieved at the conclusion of load step ( 1−i ), so that the solution { }( )1,1 −− ii δλ  is known to 

satisfy total equilibrium (Figure 5.5). 

 

5.3.1.  The First Iteration Cycle, j = 1 

 

The new load step starts with the computation of the tangent stiffness matrix [ ]iIK , 

based on the known displacements (strains) and loads (stresses) at the conclusion of the 

previous load step. The initial ‘tangent’ displacements’ { }iIδ  for this load step are then 

computed as the solution of:    

     

 [ ] { } { }I I Ii ii
K Fδ =  (5.9) 

      

in which { }iIF  is the reference external load vector, typically as specified in the input data 

for the problem. The magnitude of the tangent displacements is arbitrary, only their 

direction is important. Next, the value of the initial load increment 1
iλΔ  is determined 
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according to a particular load incrementation strategy, referred to as the “incrementation of 

a selected displacement component” in this study. The incremental displacements are then 

evaluated by scaling the tangent displacements:      

   

 { } { }1 1
i Ii i

δ λ δΔ = Δ  (5.10) 

 

The total displacements and load level are updated from those existing at the 

conclusion of the previous load step (Figure 5.5) as:  

  

 { } { } { }1 1

1i i i
δ δ δ

−
= + Δ  (5.11) 

        

 1 1
1i i iλ λ λ−= + Δ  (5.12) 

          

At this stage the solution does not satisfy global equilibrium within the specified 

tolerance, so additional iterative cycles are required to restore equilibrium. 

 

5.3.2.  Equilibrium Iteration Cycles, j ≥ 2 
 

The Newton-Raphson or modified Newton-Raphson iterative strategies are incapable 

of passing limit points because the load level is held constant while iterating to obtain 

convergence; therefore, the load parameter j
iλΔ  must be allowed to vary if limit points are 

to be overcome. With a varying load parameter, a general solution technique evolves if it is 

assumed that, for any iteration 2≥j  within load step i, the change in the incremental 

displacements can be expressed as: 
      

 [ ] { } { } { } 1j jj
I i Ii i ii

K Fδ λ ψ −Δ = Δ −  (5.13) 

 

 where,  

 { } { } { }1 1 1
int

j j j
exti i i

F Fψ − − −= −  (5.14) 
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The vector { } 1
int

−j
iF  represents the internal nodal forces obtained at equilibrium from 

element contributions (forces in the uniaxial elements and horizontal springs in the present 

model). For proportional loading, the external forces { } 1−j
iextF  at the conclusion of the 

previous iteration may be expressed as: 

          

 { } { }1 1j j
ext i Ii i

F Fλ− −=  (5.15) 

 

The right-hand side of the Equation (5.13) is linear in j
iλΔ , thus the final solution 

can be written as the linear combination of two vectors: 

         

 { } { } { }j jj
i I Ri i i

δ λ δ δΔ = Δ + Δ  (5.16) 

 

in which { }iIδ  are the tangent displacements, already computed for 1=j , and 

{ } j
iRδΔ are the ‘residual’ displacements (Figure 5.6) obtained from Equation (5.17): 

         

 [ ] { } { } 1j j
I R i ii

K δ ψ −Δ = −  (5.17) 

 

The incremental change on the nodal displacements for this iteration is computed 

using Equation (5.16), and the total displacements and load level are updated from the 

previous iteration (Figure 5.5) as: 

        

 { } { } { }1j j j

i i i
δ δ δ−= + Δ  (5.18) 

          

 1j j j
i i iλ λ λ−= + Δ  (5.19) 
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Figure 5.5.  Representation of the Adapted Nonlinear Analysis Solution Scheme for a 

Single Degree of Freedom System.  
 

Iteration cycles are continued until a convergence criterion based on either the forces 

or displacements is satisfied. If convergence is not achieved within a specified number of 

cycles, or if divergence of the solution is detected, a re-solution strategy may be adopted, 

with the application of a reduced initial load increment.  The convergence criterion and the 

re-solution strategy used in this study are described in later subsections.  

 

5.3.3.  Load Incrementation Strategy: Incrementation of a Selected Displacement 

Component 

 

The initial load increment of each load step is chosen to limit a specified ‘key’ 

displacement nδ  (being the lateral top displacement of the column in this study) in the 
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Figure 5.6.  Iterative Strategy and Residual Displacements. 

 

structure. If it is assumed that perfect convergence is achieved at the conclusion of the 

previous load step, the displacement increment ( )inδΔ  can be expressed as: 

           

 ( ) { } { }1 T
n i n Ii i

bδ λ δΔ = Δ  (5.20) 

 

in which { }nb  is a vector containing unity in the n’th row and zero elsewhere. Hence, 

          

 
( )

{ } { }
1 n i
i T

n I i
b

δ
λ

δ

Δ
Δ =  (5.21) 

 

5.3.4.  Iterative Strategy: Iteration at Constant Displacement 
 

The constant displacement iteration strategy described here is an example of a more 

general technique presented by Powell and Simons (1981). In this strategy, for the first 

iteration ( 1=j ), the ‘key’ displacement component in the structure ( nδ  in this case) is 

incremented by a prescribed amount as described in the preceding subsection. This 

Displacement,   δ

Lo
ad

 P
ar

am
et

er
,   

λ

New converged
state  i

-   (Δλ) i
2

 δ i
1  δ i

2  δ i...

 λ i
1

 λ i
2

 λ i

...

 (ΔδR) i
2

-   (Δλ) i
2(δI)i



 

116

displacement component is held constant during subsequent iterations ( 2≥j ). Denoting 

the ‘key’ displacement component as nδ , the n’th component in the vector of nodal 

degrees of freedom, the increment in nδ  can be expressed as: 

            

 { } { }T j
n n R i

bδ δΔ = Δ  (5.22) 

 

in which { }nb  is a vector of zero entries except for unity in the n’th row. From Equation 

(5.16), 

        

 { } { } { } { }T T jj
n i n I n Ri i

b bδ λ δ δΔ = Δ + Δ  (5.23) 

 

 If the value of nδ  is to remain unchanged during the equilibrium equations (constant 

displacement) then nδΔ =0, giving the iterative change in the load parameter: 

       

 
{ } { }
{ } { }

T j
n Rj i

i T
n I i

b

b

δ
λ

δ

− Δ
Δ =  (5.24) 

 

5.3.5.  Convergence Criteria and Re-Solution Strategy 
 

Iteration cycles are continued until a convergence criterion based on nodal 

displacements is satisfied at the end of each load step. If convergence is not achieved 

within a specified number of cycles, or if divergence of the solution is detected, a re-

solution strategy is implemented for the load step. 

 

A convergence criterion based on the incremental nodal displacements is used. The 

stringent maximum norm is adopted in the present study to test for convergence, that is: 

 

Maximum norm:       

 max k

k
k

δε
δ∞

Δ
=  (5.25) 
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where kδΔ  is the change in the displacement component k during the current iteration 

cycle and kδ  is the value of that displacement component updated at the end of the 

previous iteration. Convergence is attained when: 

           

 cε ζ
∞

<  (5.26) 

 

where the tolerance cζ  is typically in the range of 10-2 to 10-5 depending on the desired 

accuracy and the non-linear characteristics of the particular problem. 

 

A re-solution strategy was incorporated in the iterative solution technique, if 

convergence is not attained at each load step within the maximum specified number of 

iterative cycles, or if the solution appears to be diverging. Within a single load step an 

increase of stiffness is the principal reason for non-convergence of the analytical model. 

The re-solution strategy adopted includes recovering the previous converged load step, and 

starting the current load step, using the initial stiffness matrix of the first load step of the 

nonlinear solution strategy. If convergence is still not attained within the number of 

specified iterations, the value of the prescribed displacement increment is reduced and the 

iterative strategy is repeated until convergence is attained for progressively smaller 

increments of the prescribed displacement component.  

 

The incremental-iterative nonlinear solution strategy described in this chapter is ideal 

for obtaining the complete quasi-static load vs. deformation response of the analytical 

model proposed for this study, and for comparison of the model results with drift-

controlled test results on column specimens.  During the iterations, the lateral displacement 

imposed at the top of the column (selected displacement component) remains constant, and 

iterations are performed on both displacement and load components to obtain static 

equilibrium within a specified tolerance. The analytical model results obtained using this 

solution strategy are presented in the following Chapter (Chapter 6), where the sensitivity 

of the analytical  results to model parameters are also discussed. 
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6.   ANALYTICAL MODEL RESULTS AND PARAMETRIC 

SENSITIVITY STUDIES 
 

 

The analytical model formulation presented in Chapter 3 and the constitutive 

relationships described in Chapter 4 were implemented in Matlab (“Matlab”) together with 

the incremental-iterative solution strategy described in Chapter 5, for conducting nonlinear 

quasi-static analyses of lap-spliced columns using the analytical model proposed. 

Characteristics of the analytical model response and sensitivity of the model results to 

model parameters are presented in this chapter. 

 

6.1.  Review of the Analytical Model 

 

The analytical model proposed in this study is capable of predicting the inelastic 

response of reinforced concrete columns with lap splices, considering coupling of axial, 

flexural and slip deformation components. The main feature of the model is that it allows 

distribution of the bond slip deformations over the height of the column. The model can 

efficiently capture neutral axis migration along the cross section, as well as the effects of, 

tension-stiffening, progressive gap closure, concrete confinement, nonlinear shear 

behavior, variation in axial force, on the response. A brief review of the model and 

material constitutive features is provided in this section, before presenting characteristic 

attributes of the model response.   

 

In the proposed model, a reinforced concrete column is formulated as a stack of ‘m’ 

model elements, which are placed upon one another (Figure 6.1 (a)). The coupled flexural 

and bond slip response response is simulated by a series of uniaxial elements (or macro-

fibers) of concrete connected to rigid beams at the top and bottom (e.g., floor) levels, and 

uniaxial steel elements connected to the rigid beams (and therefore to concrete) through 

uniaxial bond slip springs at top level of each model element. At the base of model, three 

additional bond slip springs are included for better representation of bond stresses at 

column base. The model element shown in lower part of Figure 6.1(b) (with 18 degrees of 

freedom) is used over the lap splice region (to represent spliced bars), and the element 

shown in upper part (with 12 degrees of freedom) is used outside the lap splice region. A 
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horizontal spring placed at the height ch, with a nonlinear hysteretic force-deformation 

behavior following an origin-oriented hysteresis rule with the trilinear monotonic envelope 

by Sezen (2002) simulates the shear response of the model element.  

 

 
 

Figure 6.1.  (a) Sample Model Assembly (b) Model Elements Used within and Outside the 

Lap Splice Region.  

 

For representing the behavior of the bond slip springs, two alternative calibration 

methods were used. In the first method, along the entire length of a column, the monotonic  

bond stress vs. slip envelopes defined for  splitting mode of failure in partially-confined 

concrete (Harajli et al., 2004, Harajli and Mabsout, 2002) were used (Figure 6.2) to 

account for the partial confinement effect of widely-spaced ties. The hysteretic rules 

proposed by Harajli (2009) was adopted for the cyclic response (Figure 6.3). 

 

In the second methodology, the bond slip springs were calibrated to address the 

possibility that the transverse reinforcement would restrain the widening of splitting cracks 

locally, close to the tie. Bond slip springs close to tie locations were assigned constitutive 

bond slip relationships representing slip failure, whereas the springs between the ties were 
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Figure 6.2.  Monotonic Bond Stress vs. Envelopes (Harajli et al.,1994, 2002, 2004). 

 

 

 
Figure 6.3.  Cyclic Constitutive Bond Stress vs. Slip Relationship for Splitting Failure. 

 

assigned constitutive bond slip relationships representing splitting failure in partially-

confined concrete. For example, for the columns tested by Melek and Wallace (2004), 

transverse reinforcement provided along the splice length of the column specimens is only 

28% of that required amount to prevent a splitting failure. Therefore the splitting 

constitutive relationship for partially-confined concrete (Harajli, 2009) were used along 

only 72% of the splice length (where the partial confinement was assumed to be due to the 

presence of the pedestal at column base), and the pull-out constitutive relationship by 

Eligehausen et al. (1983) (Figure 6.4) was used along the remaining 28%.  
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Figure 6.4.  Cyclic Constitutive Model for Bond Stress vs. Slip Relationship for Confined 

Concrete (Eligehausen et al., 1983). 

 

For modeling of spliced column with smooth reinforcing bars, since there is no 

possibility for splitting failure (due to absence of lugs on plain bars), all bond slip springs 

are assigned the same constitutive bond stress. vs. slip relationship (Figure 6.5) developed 

by Verderame et al. (2009). For 180-degree hooks, the constitutive monotonic envelope 

proposed by Fabbrocino et al. (2004, 2005) was used to relate reinforcing bar stresses to 

hook end slip deformations. An origin-oriented hysteretic response was assigned to the 

hooks, due to absence of a cyclic constitutive model in the literature. 

 

 
 

Figure 6.5.  Cyclic Bond Stress vs. Slip Relationship for Smooth Reinforcing Bars. 
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The advanced constitutive relationship proposed by Chang and Mander (1994) 

(Figure 6.6) is assigned to the concrete macro-fibers of the analytical model, since it allows 

detailed calibration the monotonic and hysteretic parameters for an improved 

representation of the stress-strain behavior. This constitutive model provides a direct and 

flexible approach to incorporate important material behavioral features (for example, 

hysteretic behavior in tension, progressive gap closure, tension stiffening effects) into the 

analysis.  

 

 
 

Figure 6.6.  Constitutive Material Model for Concrete (Chang and Mander, 1994). 

 

The constitutive model used for reinforcing steel is the Menegotto and Pinto (1973) 

model, as extended by Filippou et al. (1983) to include isotropic strain hardening effects.  

This constitutive model, although simple in formulation, has been shown to accurately 

simulate experimental behavior. The model formulation incorporates cyclic degradation of 

the curvature of the unloading and reloading curves and thus allows the Bauschinger’s 

effect to be represented (Figure 6.7).  
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Figure 6.7.  Constitutive Material Model for Reinforcing Steel. 

 

6.2.  Analytical Model Response 

 

 The analytical model, with the properties outlined in the previous section, was 

implemented in Matlab together with a direct stiffness assembly procedure and an 

incremental-iterative numerical scheme to perform nonlinear quasi-static (monotonic or 

cyclic) analysis of the columns with lap splices. The displacement-controlled iterative 

solution strategy described in Chapter 5 was used for conducting the analyses. 

 

 The column specimens tested by Melek and Wallace (2004) were first used to 

calibrate and evaluate the model reponse. Design and reinforcement details for the column 

specimens, as well as the loading protocol, are presented in detail in Melek and Wallace 

(2004), and are summarized in Chapter 7. Details of the model calibration and comparison 

of the analytical results with experimental data will be presented in Chapters 7 and 8. This 

chapter focuses on characteristic features of the model response, as well as the sensitivity 

of the analytical results to changes in model parameters.  

 

Figure 6.8 shows a representative lateral load vs. top displacement response 

prediction of the model, for a specific column specimen (2S10MI, tested by Melek and 

Wallace (2004)), with a height of 1.83 meters, 457 mm2 cross section, 8 – #8 (db =25.4 
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mm ) longitudinal bars and #3 (9.5 mm diameter) rectangular hoops with 90-degree hooks 

spaced at 304.8 mm on center along the column height, and an applied axial load of 10% 

of the axial load capacity of the specimen.  A lap splice length of 20db (508 mm) was used 

in construction of this specimen. During the test, a standard lateral displacement history  
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Figure 6.8.  Load – Displacement Response Predicted by MVLEM using Harajli (2009).  

 

was applied, which consists of three cycles at each displacement level with monotonically 

increasing drift levels (0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 3, 5, 7, and 10%). In the 

preliminary analysis, one cycle is applied at each displacement level, for simplicity. For 

the specimen, the concrete compressive strength was approximately 36 MPa, with a strain 

at peak stress of 0.002. The yield stress for the longitudinal bars was measured as 

approximately 510 Mpa. The analytical response presented in the figure is obtained using 

25 model elements over the height of the lap splice region, 4 model elements above the lap 

splice region, 26 uniaxial concrete elements (macro-fibers) along the width of the section, 

and a value of c = 0.4 for the relative height of the shear spring. The bond stress vs. slip 

relationship for partially confined concrete by Harajli (2009) is used for all bond slip 

springs along the entire height of column. As there is no cyclic bond stress degradation 

present in this relationship (only cyclic stiffness degradation exists), the backbone of cyclic 
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response prediction follows monotonic response prediction, as shown in Figure 6.8. The 

analysis results clearly reflect actual characteristics of cyclic bond slip response of a 

column with a deficient lap splice, including degradation of the lateral load upon slip 

initiation, stiffness degradation, shape of the load-displacement hysteresis loops, and 

pinching behavior. 
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Figure 6.9.  Predicted Variation in Position of Neutral Axis. 

 

The model successfully allows variation of the neutral axis depth for a cyclic 

displacement history applied at the top of the column, as shown in Figure 6.9, which 

displays the predicted position of the neutral axis in the model element at the base of the 

column, normalized by the column width. The distance from the centroid of the column 

cross section to the neutral axis approaches infinity when the lateral  displacement (and 

thus, rotation) of the column approaches zero and reaches its local extreme or limit points 

(peaks and valleys) at peak displacement (displacement reversal) points.  

Figure 6.10 compares the average longitudinal strain histories predicted at the 

extreme concrete fiber and at the centroid of the column for the element at the base of the 

column till crushing of concrete, demonstrating the effect of applied displacement history 

and neutral axis migration on the predicted strains. The longitudinal strains are not 

symmetric with respect to the zero strain axis, and the strains predicted at the centroid are 
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tensile for almost the entire loading history, except for a range of small displacements (due 

to the presence of axial load).   

 

Figure 6.11 shows the cyclic analysis results for the distribution of bond stresses 

between concrete and the exterior (corner) longitudinal and starter reinforcing bars along 

lap splice region at 0.25% lateral drift, where as Figure 6.12 shows the monotonic analysis 

results for the distribution of bond stresses at 0.6% lateral drift, where lateral degradation 

in the lateral load is initiated. It is clearly seen from Figures 6.11 and 6.12 that unlike the 

behavior of isolated bars, spliced bars (here longitudinal and starter bars) behave 

differently in a complex stress transfer mechanism which is correctly represented by the 

model.  Most of the stresses are transferred through longitudinal bars at bottom part of 

splice and most of the stresses are transferred through starter bars near the top portion of 

the splice which is visible from these figures also. So model capability in predicting local 

bond stresses is observed. 
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Figure 6.10.  Predicted Longitudinal Strain Histories. 
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Figure 6.11.  Predicted Bond Stress Distribution along the Splice Length for Cyclic. 

Analysis. 

 
 

Figure 6.12.  Predicted Bond Stress Distribution along the Splice Length for Monotonic 

Analysis. 
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Figure 6.13 shows the cyclic analysis results for the distribution of longitudinal steel 

stresses in exterior longitudinal and starter bars along the lap splice length at 1% lateral 

drift, where lateral strength degradation starts. Figure 6.14 shows the cyclic analysis results 

for the history of longitudinal steel strains in exterior longitudinal and starter bars in the 

model element at the base of the column.  As starter bar is fixed at bottom, due to most of 

the maximum column moment are taken, steel stress are found maximum (also strain as 

shown in Figure 6.14) in the starter bar near bottom part of column. In the upper part of 

splice, as most of the moment are taken by longitudinal bar, steel stress are found more in 

the longitudinal bar (Figure 6.13). So model can able to capture such local phenomenon 

correctly. The analysis results for column base moment vs. total (accumulated) rotation of 

the column at the top of the lap splice is shown in Figure 6.15. 

 

 

 
Figure 6.13.  Predicted Steel Stress Distribution along the Lap Splice Length. 

 

Figures 6.16 and 6.17 display the analysis results for the same column and using the 

same model and constitutive material parameters, with the exception of absence of the lap 

splice. The analysis employed continuous reinforcing bars throughout the full height of 
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Figure 6.14.  Predicted Strain Histories on Reinforcing Steel at Column Base. 
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Figure 6.15.  Predicted Base Moment vs. Total Rotation along the Lap Splice Length. 

 

column.  Comparing the Figure 6.8 with the Figures 6.16 and 6.17, it is observed that 

column model with lap splice shows more degradation after peak (although the capacities 

are found same) with clear pinching properties. 
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Figure 6.16.  Predicted Load – Displacement Response of the Column with Continuous 

Reinforcing Bars Using Harajli (2009) Bond Slip Relationship for Partially-Confined 

Concrete. 

-200 -100 0 100 200
Top Displacement (mm)

-400

-200

0

200

400

La
te

ra
l L

oa
d 

(k
N

)

-10 -5 0 5 10

Lateral Drift (%)

-400

-200

0

200

400

 
Figure 6.17.  Predicted Load – Displacement Response with Continuous Bar without Bond 

Stress Slip Spring. 
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Results presented in Figure 6.16 are obtained using the bond stress vs. slip 

constitutive relationship for  partially confined concrete by Harajli (2009). For comparison,  

Figure 6.17 shows analysis results for the special case of using rigid bond slip springs 

between reinforcing bars and concrete (flexural response with perfect bond assumption). 

Comparison of the two analytical responses indicates that although there is no slip failure 

or no significant slip deformation when continuous reinforcement is used, incorporation of 

the bond slip springs may marginally change the geometry of the unloading/reloading 

loops of the cyclic response. The model which includes bond slip springs (Figure 6.16) 

predicts slightly narrower unloading/reloading loops compared to the model which 

assumes perfect bond between steel and concrete (Figure 6.17). 

 

So proposed analytical model are capable in predicting cyclic response both at global 

(lateral load vs. top displacement, moment vs. rotations) and local levels (stress and strain 

of steel, average concrete strain, position of neutral axis and bond stress distribution) 

correctly. 

 

6.3.  Parametric Sensitivity Studies 

 

Apart from constitutive material and bond slip parameters, the only parameters 

associated with the analytical model are the number of model elements stacked on top of 

each other along the height of the column (m), the number of uniaxial concrete elements 

(macro-fibers) along the column cross section (n), and the parameter defining the relative 

location of the center of rotation along the height of each model element (c). Sensitivity of 

the model results to variations of these parameters is addressed in this section. The 

sensitivity of the model response to the axial load level on a column is also investigated. 

 

Figures 618(a) and 6.18(b) illustrates preliminary lateral load vs. top displacement 

response predictions for the aforementioned column specimen (Specimen 2S10MI, tested 

by Melek and Wallace (2004)), using either 8 model elements along the lap splice with 

thirteen uniaxial concrete elements along the width of the column, or by using 16 model 

elements along the lap splice with 26 uniaxial concrete elements along the width. Four 

model elements are used above the lap splice region of the column. In both analyses, the 

pull-out bond stress vs. slip relationship for confined concrete by Eligehausen et al. (1983) 
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was used for the bond slip springs in the vicinity of the stirrups, whereas the splitting bond 

stress vs. slip relationship for partially-confined concrete by Harajli (2009) was used for 

the others. For the analysis depicted in Figure 6.18(a), pullout springs were used for 2 of 

the 8 model elements (1 at the location of each tie), whereas for Figure 6.18(b), pullout 

springs were used for 4 of the 16 model elements (2 at the location of each tie). For the 

remaining elements over the entire column length, splitting springs for partially-confined 

were used for both analyses.  

 

The comparison indicates that increasing the number of concrete macro-fibers or the 

number of model elements does not change significantly the prediction of the global 

response (lateral load vs. top displacement); however, use of more elements is valuable in 

terms of obtaining more detailed information on local behavior, such as the state of stress 

and strain at a particular location. For example, results shown in Figure 6.18(c) compare 

the average longitudinal strain histories predicted at the extreme concrete fiber and the 

cross-sectional centroid of the column at the base. Using more model elements over the 

height of the column allows for an improved local prediction of the strains. Also, using 

more concrete macro-fibers along the width of the column allows for a more refined 

description of the concrete cross section. Therefore, the model incorporates the flexibility 

to choose how much detail is desired in the analytical results. 
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(a)  Predicted Load – Displacement Response with 8 Model Elements and 13 

Concrete Macro-Fibers. 
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(b) Predicted Load – Displacement Response with 16 Model Elements and 26 

Concrete Macro-Fibers. 

Figure 6.18.  Sensitivity of the Response to Number of Model Elements and Concrete 

Macro-Fibers. 
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Analysis results presented in Figure 6.18 also indicate that there is apparent cyclic 

strength degradation (reduction in lateral load during cyclic loading compared with 

monotonic loading), when pullout and splitting springs are used in combination. The 

backbone of the analytical cyclic response is reduced, compared with the monotonic 

response. This is due to the cyclic bond stress degradation in the pullout constitutive model 

by Eligehausen, et al. (1983), which is not present in the splitting constitutive model for 

partially-confined concrete by  Harajli (2009). As well, comparing the analysis results 

presented in Figure 6.8 (using splitting springs only) and Figure 6.18 (using pullout and 

splitting springs in combination), it is apparent that as there is no significant difference  in 

the analytical responses obtained using  these two bond-slip spring calibration methods. 
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(c)  Longitudinal Strain Histories in the Model Element at the Base of the Column. 

 

Figure 6.18.  (Continued) Sensitivity of the Response to Number of Model Elements and 

Concrete Macro-Fibers. 

 

Sensitivity of the analysis results to the parameter defining the relative location of 

the center of rotation (also the relative location of the horizontal shear spring) along the 

height of each model element c is illustrated in Figure 6.19. Figure 6.19(a) compares the 

predicted lateral load vs. top displacement response obtained using a column model with 

eight model elements (and thirteen concrete macro-fibers) for a value of c = 0.4  
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recommended by Vulcano et al. (1988), and an illustrative extreme value of c = 0.0 (center 

of rotation at the bottom of each model element). Figure 6.19 (b) compares the predicted 

response for c = 0.4 and c = 0.0, using a column model with 16 model elements (and 26 

concrete macro-fibers). The two analytical responses are very similar, indicating that 

variation in parameter c does not influence the characteristic shape of the load – 

displacement response significantly, as long as an adequate number of model elements are 

stacked on top of each other.  
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(a) Predicted Load – Displacement Response with 8 Model Elements and 8 Concrete 

Macro-Fibers. 

Figure 6.19.  Sensitivity of Response to Parameter c. 
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(b) Predicted Load – Displacement Response with 16 Model Elements and 26 Concrete 

Macro-Fibers. 

Figure 6.19.  (Continued) Sensitivity of Response to Parameter c. 

 

Sensitivity of the model response to variation of the applied axial load level on the 

column was also investigated. Figure 6.20 shows a comparison of the analytically 

predicted lateral load versus top displacement responses of the column for applied axial 

load levels of 10% , 20% and 30% of the axial load capacity of the column respectively. 

The model response for zero axial load was presented previously in Figure 6.8. The results 

clearly display the significant impact of axial load on the column response. The analytical 

model successfully captures the influence of the axial load level on the flexural and bond 

slip behavior of columns with lap splices. 
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(a) Predicted Load – Displacement Response for an Axial Load Level of 10% of the 

Axial Load Capacity.  
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(b) Predicted Load – Displacement Response for an Axial Load Level of 20% of the 

Axial Load Capacity.  

Figure 6.20.  Effect of Axial Load Level on Analytical Response. 
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(c) Predicted Load – Displacement Response for an Axial Load Level of 30% of the 
Axial Load Capacity. 

Figure 6.20.  (continued) Effect of Axial Load Level on Analytical Response. 

 

 Overall, based on the preliminary analysis results presented, it is verified that the 

analytical model proposed captures important response characteristics associated with the 

cyclic behavior of reinforced concrete columns with lap splices, the response of which is 

governed by either bond slip, flexure, or a coupled combination thereof. The analytical 

model is capable of directly incorporating important behavioral features in the analysis, 

including shifting of the neutral axis along the column cross-section, the distribution of 

bond stresses and slip deformations in the starter and longitudinal bars along the lap splice, 

and the direct effect of axial force (constant and fluctuating) on the analytical response, 

which are commonly ignored in simple models. Characteristics of the cyclic response, 

including stiffness degradation, and strength degradation, and hysteretic shape are clearly 

captured in the analysis results. Deterioration of lateral load due to slip failure and the 

preceding pinched response are also clearly represented. It is observed that the model 

global response is not significantly sensitive to model parameters including the number of 

model elements over the height of a column or the number of concrete macro-fibers along 

the width of the cross-section, as long as a reasonable number of model elements and 
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macro-fibers are used in the construction of the model. However, finer discretization of the 

model provides improved local response predictions. Details on experimental calibration of 

the analytical model and correlation of model responses, at both global and local response 

levels, with an extensive test program conducted by Melek and Wallace (2004) are 

presented in the following chapter. 
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7.   EXPERIMENTAL CALIBRATION AND VERIFICATION OF THE 

ANALYTICAL MODEL 
 

 

This chapter provides detail information on physical calibration of the analytical 

model and comparison of the model results with results of an experimental program on six 

densely-instrumented column specimens, which incorporate deformed reinforcing bars and 

deficient lap splices. A brief description of the experimental program, detailed information 

on calibration of the model, and comprehensive correlations of model results with 

extensive test data are presented. Analytical results are compared with the experimental 

measurements, at both global and local response levels. The comparisons are useful for 

understanding the bond slip response characteristics of reinforced concrete columns with 

deficient lap splices, as well as for assessment of the effectiveness and accuracy of the 

analytical model. The comparisons also help illustrate the model capabilities, limitations, 

and possible improvements.  

 

7.1.  Overview of the Experimental Program 

 

The column tests by Melek and Wallace (2004), described in detail in Melek (2006), 

are used to calibrate and evaluate the analytical model. In this experimental program, six 

full-scale columns were tested under a variety of conditions. The test specimens consisted 

of cantilever columns which are monolithically-cast with foundation blocks, which are 

attached to a strong floor. The specimens are subjected to different levels of axial load and 

cyclic lateral loads applied at the top of the specimens. The specimen configuration 

represented half the height of an interior column in a building, extending from column 

mid-height (where a point of inflection is expected under earthquake loading) to the 

column-joint interface. Column heights between 1.52 m and 1.83 m, and a 457x457 mm 

square cross section were used for the test specimens. Brief descriptions of  specimen 

details and the test setup are provided in the following sections.  Additional details of the 

experimental program are available in Melek (2006). 
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7.1.1.  Specimen Details 

 

Column reinforcing details (Figure 7.1), with eight 25.4 mm nominal diameter 

vertical bars and 9.5 mm diameter hoops with 90-degree hooks spaced at 305 mm on 

center along the column height, were based on a review of typical reinforcing details in 

older buildings, and are very similar to the details used in the specimens tested by Lynn et 

al. (1996). As deformed bar was used, there was no slip at the top of the longitudinal bar. 

In the tests, the column height was selected to ensure the shear strength of the column was 

sufficient to develop the flexural strength at the base of the column, where the lap splice 

was located. This was done to ensure that splice failures would be observed. A lap splice 

length of 20 longitudinal bar diameters (20db, 508 mm) was used and axial load was held 

constant during application of a prescribed cyclic lateral displacement history at the top of 

the column.  

 

The lateral displacement history selected for 5 of the 6 tests is fairly typical, and 

consists of three cycles at each displacement level, with monotonically increasing drift 

levels (0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 3, 5, 7, and 10%). A lateral displacement history 

representative of what might be expected in near-fault seismic regions was used for one 

specimen (2S20HN). The primary test variables were the axial load level (0.1, 0.2 and 0.3 

of the column concrete axial load capacity, Agf’c), the column shear demand at maximum 

base moment (0.67 to 0.93 of the nominal shear strength, Vn), and the applied displacement 

history (shown in Table 7.1). The first three specimens (2S10M, 2S20M and 2S30M) were 

subjected to the standard cyclic lateral displacement history (STD), with the axial load held 

constant for the duration of the tests at 0.1, 0.2, and 0.3 of Agf’c (534, 1068 and 1601 kN), 

respectively. A comparison of the provided lap-splice length (20db) with the lap-splice 

length required by ACI 318-02 (calculated as 31db), revealed that splice failure 

(degradation of lateral load capacity) was expected when the bending moment in the 

column reached approximately 60% to 70% of the nominal 
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Figure 7.1.  Reinforcing Details. 

 

moment capacity; although a review of previous test data (e.g., Lynn et al.(1996)) 

suggested that column longitudinal reinforcement may reach yield in tension. The 

objective of the three tests (specimens 2S10M, 2S20M and 2S30M)  was to assess the 

influence of axial load on lap splices with moderate shear stress level and widely-spaced 

transverse reinforcement. Two additional specimens (2S20H and 2S20HN) were tested to 

investigate the influence of higher shear force and applied displacement history on column 

behavior, for moderate axial load level (0.20Agf’c). The axial load level and the expected 

average shear stress (at failure) value were increased for the final specimen (2S30X) to 

magnify the maximum shear force demand expected during the test to approximately the 

calculated nominal shear capacity (Table 7.1). The average shear stress level at the 

expected initiation of splice failure was magnified by decreasing the column height from 

1829 mm to 1677mm for specimens S20HI and S20HIN, and to 1524 mm for specimen 

S30XI. 
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The specimen identification (ID) labels were similar to those used by Lynn et al. 

(1996); and define the longitudinal steel ratio, the level of the applied axial load, the shear 

demand level for the lateral load value expected at splice deterioration (Moderate, High 

and MaXimum), and the applied lateral displacement history. For example, label 2S20HN 

corresponds to: 2 = 2% longitudinal steel ratio (8-25.4 mm) ; S = Spliced; 20 = 0.20Agf’c; 

H = High Shear Demand; N = Near Fault Lateral Displacement History.  

 

Table 7.1.  Test matrix. 
 

 

Specimen 

P
/(% )g cA f  

*

provided

required

s

s

l

l
 

( )cV kN ( )nV kN  @u EXP

n

V M
V
 

Column 

height(mm) 

Displacement 

history 

2S10M 10 0.65 212 201 0.67 1829 STD 

2S20M 20 0.65 245 334 0.70 1829 STD 

2S30M 30 0.65 278 367 0.78 1829 STD 

2S20H 20 0.64 242 331 0.81 1676 STD 

2S20HN 20 0.64 242 331 0.81 1676 Near Fault 

2S30X 30 0.64 275 363 0.93 1524 STD 

*ACI 318-02 Equation (12-1) 

 

7.1.2.  Materials 

 

Standard compressive strength tests (ASTM C31-39) on 153mm x 305mm cylinders 

were conducted 7 and 28 days after concrete casting. In addition, concrete stress – strain 

tests were also performed at the test dates. Concrete peak compressive stress value was 

approximately 36 MPa, with a strain at peak stress of 0.002 and 0.0025 for the first and 

second concrete batches, respectively, used for the two groups of specimens (Figures 7.2 

and 7.3).  

 

Stress – strain tests were not conducted for the longitudinal reinforcing bars since bar 

yielding was not anticipated due to the inadequate splice lengths provided). Geometrical 

details of longitudinal reinforcing bars are shown on Figure 7.4. It is noted that Grade 60 

(Yield strength, 413 MPa) longitudinal reinforcement was used for the specimens, 
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Figure 7.2.  Measured Concrete Stress-Strain Relationship for Specimens: 2S10M, 2S20M, 

and 2S30M. 

 

 
 

Figure 7.3.  Stress-Strain Diagram for Specimens: 2S20H, 2S20HN, and 2S30X. 

 

although Grade 40 (Yield strength, 275 MPa)  reinforcement is more common in older 

buildings, because of the non-availability of Grade 40 reinforcing bars in the market. 

However, use of Grade 60 reinforcement would actually increase the possibility of splice 

failure along short lap-splice length (20db), which was the desired failure mode. The 
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mechanical properties of the steel and concrete used in the construction of the test 

specimens are shown in Table 7.2 

 

 
Figure 7.4.  Longitudinal Reinforcement Bar Geometry (db = 25.4 mm (#8)). 

 

Table 7.2.  Material Properties 
 

Material 2S10M-2S20M-2S30M 2S20H-2S20HN-2S30X 

 

Concrete 

/ ( )cf Mpa  ( )ctf Mpa  ( )rf Mpa  / ( )cf Mpa  ( )ctf Mpa  ( )rf Mpa  

36 3.4 3.8 35 - 3.7 

Steel ( )bd mm  ( )yf Mpa  ( )uf Mpa  ( )bd mm  ( )yf Mpa  ( )uf Mpa  

(column) 25.4 510 818 25.4 510 818 

(starter) 25.4 521 746 25.4 507 807 

(ties) 9.5 481 750 9.5 481 750 

 

 

7.1.3.  Test Setup 

 

The test setup used in the experiments is shown in Figure 7.5. The lateral load was 

applied with a 550 kN hydraulic actuator with 610 mm  stroke. The actuator was bolted to 

the column specimen at one end and to a steel reaction frame at the other end, using rod 

eye-clevis bracket connections that allow free rotation in the vertical plane of the actuator. 

  

24.64 mm (0.97 in.)
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5.00 mm 
(0.20 in.) 

c = 18.00 mm (0.71 in.) 
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An MTS 407 controller connected to a hydraulic power supply was used to control the 

actuator load and displacement.  

 

 

 
 

Figure 7.5.  Test Setup with Reaction Frame (Melek, 2006). 

 

 The axial load on each specimen was held constant for the duration of the applied 

lateral displacement history. The axial load assembly consisted of two, 889.6 kN 

ENERPAC hollow plunge cylinders, two 46 mm diameter pre-stressing  steel rods, two 

steel channels, and two 76 mm  thick steel plate assemblies. The connection at the top of 

the column to the axial load assembly was established using 16 mm diameter J-bolts that 

were anchored in the concrete at the top of the column. The specimens were subjected to 

axial load by placing the 46 mm diameter threaded rods in tension. The threaded rod was 

anchored to a 76mm plate, which was anchored to the strong floor with four 32 mm  

diameter, threaded, high-strength steel tie-down rods.  A hand pump with a reservoir was 

used to pressure the cylinders.  During testing, the hydraulic pressure was continuously 

monitored and adjusted to maintain the desired level of constant axial load (Melek, 2006). 
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7.1.4.  Instrumentation and Data Acquisition 

 

Different types of instrumentation were used to monitor the applied lateral load and 

displacement, strain on longitudinal and transverse reinforcement, flexural and shear 

deformations of the column, and pedestal translation and rotation. For each specimen, 

reinforcing bar strains were measured using 27 longitudinal and 6 transverse reinforcement 

strain gauges, as shown in Figure 7.6. The strain-gauge-labeling scheme is presented 

 
Figure 7.6.  Strain Gauge Layout (Melek, 2006). 

in Figure 7.7. Column deformations (flexure, shear and lateral displacement) were 

measured with linear voltage transducers (+/- 1.5 in.; 38 mm). The instrumentation layout 

was modified slightly between the first set of three specimens and the second set of three 

specimens. External instrumentation for the first set of three specimens (S10MI, S20MI, 

and S30MI) consisted of 31 linear transducers, 25 on one side of the specimen to form a 

grid as shown in Figure 7.8. Four transducers were placed on the opposite face of the 
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column to obtain rotational response at the column base due to flexure and slip (Figure 

7.9).  

 

 
Figure 7.7.  Strain Gauge Labeling Scheme (Melek, 2006). 

 

The instrumentation layout was changed for the second set of specimens, where the 

number of linear potentiometers used was reduced from 31 to 18. Of the 18 linear 

potentiometers, six pairs were utilized to measure the flexural response (average curvature) 

of the specimen over the column height (Figure 7.10). The measurement of shear 

distortions was made possible by using four wire potentiometers (Figure 7.11) that were 

placed diagonally on the opposite face of the column. Two additional transducers were 

placed on two ends of the pedestal base to monitor any rotation of the foundation system. 

The external instrumentation layout and the labeling scheme are given in Figures 7.12 and 
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7.13, respectively. Potentiometers were connected to the reinforced concrete column with 

6 mm  – diameter fine threaded rods which were placed in the forms prior to concrete 

placement.  

 

 
 

Figure 7.8.  External Instrumentation Grid (2S10M, 2S20M, 2S30M, Melek, 2006). 

 

 
 

Figure 7.9.  Transducers Used to Measure Total and Slip Rotation at Column Base 

(Specimens 2S10M, 2S20M, 2S30M, Melek, 2006). 
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Figure 7.10.  External Instrumentation (2S20H, 2S20HN, 2S30X, Melek, 2006). 

 

 
 

Figure 7.11.  Shear Instrumentation (2S20H, 2S20HN, 2S30X, Melek, 2006). 
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The lateral load was measured using a 667 kN load cell. The column top lateral 

displacement was monitored using a transducer (+/- 305mm) mounted on the cylinder. In 

addition, a wire potentiometer (+/- 508 mm) was mounted between the specimen and a 

rigid external reference frame to measure the lateral displacement at the point of lateral 

load application (top displacement).  Besides top displacement, mid-height and pedestal 

lateral displacements were measured relative to the rigid reference frame using wire 

potentiometers (Figure 7.14). 

 

 
Figure 7.12.  External Instrumentation Layout (2S10M, 2S20M, 2S30M). 

 
Figure 7.13.  External Instrumentation Layout (2S20H, 2S20HN, 2S30X) 
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Figure 7.14.  Test Specimen with Cable-Extension Position Transducers (Melek, 2006). 

 

7.1.5.  Testing Procedure 

 

The specimens were subjected to constant axial load and cyclic lateral loads by the 

application of a cyclic displacement at the top of the column. Two different lateral 

displacement histories were applied to specimens, a standard history and a near-fault 

history. The standard displacement history is fairly typical (Figure 7.15), and consisted of 

three cycles at each displacement level with monotonically increasing drift levels (0.1, 

0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 3, 5, 7, and 10%).  

 

The specimen subjected to the near-fault displacement history was cycled three times 

at 0.1, 0.25, 0.5 and 1.0% drift levels, followed by one half cycle to 1.5% lateral drift level 

in one direction, followed by monotonically increasing drift in the opposite direction until 

failure was reached (Figure 7.16).   

 

One objective of the tests was to apply large displacement amplitudes to assess both 

the loss of lateral load capacity and the loss of axial load-carrying capacity. The latter was 
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important in evaluating life-safety and collapse prevention performance levels. Due to this 

consideration, lateral drift cycles were continued after the loss of lateral strength until axial 

load-carrying capacity was lost. 

 
Figure 7.15.  Standard Displacement History. 

 
Figure 7.16.  Near-Fault Displacement History. 
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7.2.  Calibration of the Analytical Model 

 

For calibration of the analytical model proposed, all six column specimens tested by 

Melek (2006) was used. Experimental calibration of the geometric, as well as the 

constitutive parameters of the analytical model, are discussed in the following subsections. 

 

7.2.1.  Geometry 

 

Figures 7.17 and 7.18 show a preliminary lateral load – top displacement response 

prediction obtained using the analytical model, for column specimen 2S10M, using either 

eight model elements along the lap splice length with thirteen concrete macro-fibers along 

the width of the column, or using 16 model elements along the lap splice length with 26 

concrete macro-fibers along the width. Four model elements are used above the lap splice 

region for both analyses. For both of these analyses, the splitting bond stress vs. slip 

relation for partially confined concrete by Harajli (2009) and the pullout bond stress vs. 

slip relation for confined concrete by Elegehausen et al. (1983) are used in a combined 

manner, where the bond slip springs in the vicinity of the ties are assigned pullout 

relationships, as described in Chapter 6. Since the comparison indicates that increasing the 

number of concrete macro-fibers or the number of model elements does not significantly 

influence the prediction of the global response (lateral load vs. top displacement), for 

subsequent analysis of all of the six specimens, 8 model elements were used along the lap 

splice region, 4 model elements were used above the lap splice region, and 13 concrete 

macro-fibers were used along the width of the columns. 

 

The model elements are discretized along column height to allow consistent 

deformation comparisons between model and experimental results at all locations where 

strain gauges and displacement transducers were attached to the specimens during testing. 

The location and height of each model element is calibrated in such a way that the location 

of each model element approximately coincides with the location of a strain gauge or 

displacement sensor. For all analyses, the parameter representing the relative center of 

rotation of each model element (c) was assigned a value of 0.40. 
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Figure 7.17.  Sensitivity of the Model Response to Number of Model Elements and 

Concrete Macro-Fibers. 

 

 

 
 

Figure 7.18.  Sensitivity of the Model Response to Number of Model Elements and 

Concrete Macro-Fibers. 

 

 

 

-200 -100 0 100 200
Lateral Displacement (mm)

-400

-200

0

200

400

La
te

ra
l L

oa
d 

(k
N

)

-10 -5 0 5 10
Lateral Drift (%)

-80

-40

0

40

80

La
te

ra
l L

oa
d 

(k
ip

s)

8 MVLEM elements 
13 Uniaxial elements

 

-200 -100 0 100 200
Lateral Displacement (mm)

-400

-200

0

200

400

La
te

ra
l L

oa
d 

(k
N

)

-10 -5 0 5 10
Lateral Drift (%)

-80

-40

0

40

80
La

te
ra

l L
oa

d 
(k

ip
s)

16 MVLEM elements
26 Uniaxial elements



 

156

7.2.2.  Materials 

7.2.2.1 Steel Stress-Strain Relation. The constitutive model used for reinforcing steel was 

calibrated for yield strength, elastic modulus, strain hardening ratio, and cyclic curvature 

degradation parameters. Yield strength values were calibrated based on uniaxial test results 

on steel coupon samples of the reinforcing steel used in the construction of the specimens. 

Since test results for the stress vs. strain behavior of the reinforcement was not available, 

typical values of E0 = 200 GPa and b = 2% was used for the elastic modulus and the strain 

hardening ratio, respectively.  The values R0 = 20, a1 = 18.5, and a2 = 0.15 (accounting 

for the cyclic degradation of the curvature coefficient R and thus the Bauschinger effect), 

originally suggested by Menegotto and Pinto (1983), were used in the calibration. Table 

7.3 summerizes the constitutive parameters used in the analysis for reinforcing steel. Since 

longitudinal bar yielding was not observed during these tests, the steel yield strength and 

strain hardening ratio values were not modified for consideration of tension stiffening 

effects on the reinforcement. 
 

Table 7.3.  Calibrated Constitutive Parameters for Concrete and Steel 
 

Material Parameter Specimens 2S10M-2S20M-

2S30M 

Specimens 2S20H-

2S20HN-2S30X 

 

 

Concrete in 

compression 

/ ( )cf Mpa  36 35 

/
cε  0.002 0.0025 

( )cE Mpa  27577 21000 

crε  0.0025 0.0032 

r  5.02 7 

 

 

Concrete in 

tension 

( )tf Mpa  3.4 3.4 

tε  0.00008 0.00008 

( )cE Mpa  27577 21000 

crε  0.0035 0.0035 

r  1.20 1.20 

Reinforcing bar 

(Column, starter 

and ties) 

( )yf Mpa  510 (column), 521 (starter) 

and 481 (ties)  

510 (column), 507 (starter) 

and 481 (ties) 

0 ( )E Gpa  200 200 

b  0.02 0.02 
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7.2.2.2 Concrete Stress – Strain Relations  The monotonic envelope curves of the Chang 

and Mander (1994) constitutive model for compression and tension were calibrated for 

values of peak compressive and tensile stress (f’c and ft), strains at peak stress (ε’c and εt), 

elastic modulus Ec, the parameter r defining the shape of the envelope curves, and the 

normalized strain parameter xcr (or εcr) controlling the post peak slope of the envelope 

curves.   

 

 

 
Figure 7.19.  Calibration of Concrete Constitutive Model for Compression. 

 

The envelope curve for unconfined concrete in compression was calibrated using 

results of monotonic stress-strain tests, conducted at time of testing, on standard 152 mm x 

304 mm cylinder specimens of the concrete used in the construction for the first (2S10M, 

2S20M, 2S30M) and second batches (2S20H, 2S20HN, 2S30X) of concrete (Figure 7.19), 

with a 20% residual stress value defined for the envelope curve for improving the stability 

of the analysis. The parameters used for the calibration of the monotonic envelopes for 

unconfined concrete in compression and tension are presented in Table 7.3. Stress – strain 

relations for confined concrete were not used in modeling of these columns, since the 

amount of transverse reinforcement used in the specimens did not provide effective 
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confinement. The concrete tensile strength was determined from the relationship ft = 

0.31√f’c (MPa), and a value of 0.00008 was selected for the strain εt at peak monotonic 

tensile stress, as suggested by Belarbi and Hsu (1994). The shape of the monotonic tension 

envelope was calibrated (via the parameters r and xcr) to reasonably represent the average 

post-crack stress – strainship relation proposed by Belarbi and Hsu (1994) for considering 

the effects of tension stiffening on concrete. The hysteretic stress-strain rules defined by 

Chang and Mander (1994),  modified slightly as described by Orakcal (2004), were used to 

simulate the cyclic behavior of unconfined concrete implemented in model.  

 

7.2.2.3 . Shear Force - Deformation Relation. The trilinear envelope curve of the origin-

oriented force–deformation relationship, which was adopted for the horizontal shear 

springs in the model elements, were calibrated based on the empirical relationships 

proposed by Sezen (2002), as described in Chapter 3. The calibrated envelope parameters 

for each of the six column specimens are listed in Table 7.4. It must be mentioned that 

during testing, none of the column specimens experienced shear failure or significant shear 

deformations. 

 

Table 7.4.  Shear Force – Deformation Envelope Parameters for the Horizontal Shear 

Springs. 

Column 
(mm.) (kN) 

δcr δy δn Vcr Vy Vn Vp 

2S10M 0.03  0.80 3.96  33.4  208.7  237.0 251.0  

2S20M 0.03  0.81 3.96  33.4 246.5  267.9  276.5  

2S30M 0.03  0.80 3.96 33.4  278.6  294.1  296.6  

2S20H 0.03  0.81  3.63  36.0  263.6  282.5  305.0  

2S20HN 0.03 0.81  3.63  36.0 263.6  282.5  305.0  

2S30X 0.03  0.80 3.30 39.6 328.0  333.2  364.0  

 

 

7.2.2.4 Bond Stress – Slip Relations.Envelope parameters of the constitutive bond stress – 

slip relationships adopted in the analytical model, for splitting failure by Harajli et al. 

(1994, 2004, 2009) and for pullout failure (in the vicinity of the ties) by Eligehausen et al. 
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(1983), were calibrated as proposed originally in the constitutive relationship formulations. 

The calibrated parameters are listed in Table 7.5.  

 

Table 7.5.  Calibrated Bond Stress – Slip Parameters for Splitting and Pullout. 
 

Parameter 
1s

mm
 

2s
mm

 3s
mm

 

1u
Mpa

 
3u

Mpa
 

maxu
Mpa

 
psu

Mpa
 

maxs
mm

 

0s
mm

 

α  β  

Harajli et al. 

(1994) 

1.95 4.55 13 15.42 - 5.74 3.07 0.22 0.15 0.70 0.65 

Eligehausen et 

al. (1983) 

1.24 3.71 13 14.78 5.48 - - - - 0.40 - 

 

 

7.3.  Comparison of Analytical Results with Test Results 

 

Detailed comparisons were made between the analytical model results and the 

experimental measurements, at various response levels, for all six of the column specimens 

tested in the experimental program. Comparisons of various response attributes are 

discussed in the following subsections. 

 

7.3.1.  Lateral Load – Top Displacement Response  

 

 The lateral load – top displacement response measurements for the column 

specimens were processed to eliminate measurement errors related to sliding and uplift of 

the specimen pedestal  and the effect of the horizontal component of the axial load on 

lateral load at higher drift levels. The corrected lateral load – top displacement 

measurements were considered in the comparisons. 

 

Figures 7.20 to 7.31 compare the measured and predicted lateral load – top 

displacement responses for all six column specimens. It can be observed in the figures that 

the general characteristics of the measured response agree very well with the calculated 

response.  All specimens exhibit similar responses, with sudden lateral strength 

degradation at a drift levels between 1% and 1.5%, both in  measured and calculated 

results. It is also observed that the peak lateral load reached for each specimen is 
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influenced by the level of the applied axial load, where the the lateral load capacity 

increases with higher axial load levels. 

 

The lateral load capacity and the lateral stiffness of the columns are well-represented 

for most of the lateral drift levels. It can be seen that the model provides a reasonably 

accurate estimate of the global response for all columns, although the model tends to 

slightly underestimate the lateral displacement values at peak load. It must be mentioned 

that the hysteresis laws of implemented analytical stress-strain relations for steel and 

concrete, shear, and bond stress-slip relations are controlled by several parameters that 

account for cyclic properties of the response, including stiffness degradation upon 

unloading, pinching of the hysteresis loops and strength decay upon repeated loading 

cycles. Overall, the comparisons indicate that the cyclic properties of the analytical 

responses are in agreement with the measured cyclic behavior. 
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Figure 7.20.  Measured Lateral Load Top Displacement Relationship for Specimen 

2S10M. 

 

 
 

Figure 7.21.  Calculated Lateral Load Top Displacement Relationship for Specimen 

2S10M. 
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Figure 7.22.  Measured Lateral Load Top Displacement Relationship for Specimen 

2S20M. 

 
 

Figure 7.23.  Calculated Lateral Load Top Displacement Relationship for Specimen 

2S20M. 
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Figure 7.24.  Measured Lateral Load Top Displacement Relationship for Specimen 

2S30M. 

 

 
 

Figure 7.25.  Calculated Lateral Load Top Displacement Relationship for Specimen 

2S30M. 
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Figure 7.26.  Measured Lateral Load Top Displacement Relationship for Specimen 2S20H. 

 

 
 

 

Figure 7.27.  Calculated Lateral Load Top Displacement Relationship for Specimen 

2S20H. 
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Figure 7.28.  Measured Lateral Load Top Displacement Relationship for Specimen 

2S20HN. 

 

 
 

Figure 7.29.  Calculated Lateral Load Top Displacement Relationship for Specimen 

S20HN. 
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Figure 7.30.  Measured Lateral Load Top Displacement Relationship for Specimen 2S30X. 

 

 

 
 

Figure 7.31.  Calculated Lateral Load Top Displacement Relationship for Specimen 

2S30X. 
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7.3.2.  Rotation Histories at Different Locations 

 

Total rotations predicted by the model due to combined effects of flexural and slip 

deformations were compared with the measued rotations for all six specimens at different 

locations (at column base, at the top of the lap splice, and in-between). Rotations predicted 

by the model due to slip deformation only (with flexural rotations excluded) were also 

compared with the experiment results.  Figures 7.32 to 7.38 present total rotation 

comparisons at column base for all six column specimens. Figures 7.39 to 7.46 compare 

the total rotations at the top of the lap splice regions, with the exception of Figure 7.41, 

which compares total rotation at a distance of 330 mm from the column base for specimen 

‘2S10M’. Figures 7.47 to 7.52 compare pure slip rotations (with flexural contribution 

excluded) at the top of lap splice region for all specimens. The results are discussed in the 

following paragraphs. 

 

It is first necessary to describe the methodology used to calculate the rotation 

measured in the tests, as well as the way rotations are defined in the analysis results. In the 

tests, for  specimens 2S20H, 2S20HN and 2S30X, total rotations at the top of the splice  

were determined by calculating the difference in the axial (vertical) displacements 

measured by the two displacement sensors (SL1 and SL2 as shown in Figure 7.13), and 

dividing the difference in the axial displacements by the distance between the sensors (660 

mm). To calculate the total rotation at a distance of 330 mm from column base for 

specimens 2S10M, 2S20M and 2S30M, the, same procedure was adopted, as shown in 

Figure 7.12.  

 

Also in the test data, in order to obtain the total rotation at the base of specimens 

2S10M, 2S20M and 2S30M, the difference in the axial displacements measured by the two 

linear displacement sensors (SL3 and SL4 as shown in Figure 7.12) were divided by the 

distance between the sensors (508 mm), and this value was subtracted from the total 

rotation at a distance of 330.20 mm from column base.  

 

In order to calculate the total rotation at column base for specimens 2S20H, 2S20HN 

and 2S30X, the difference in the axial displacements measured by the two displacement 

sensors L2 and L1 (shown in Figure 7.13) was divided by the distance between the sensors 
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(203.20 mm) to obtain a first rotation value. Next, the difference in the axial displacements 

measured by the two displacement sensors L4 and L3 were divided by the distance 

between the sensors  (203.20 mm) to obtain a second rotation value. Finally the rotation at 

base was obtained by subtracting the sum of these two values from the total rotation at the 

top of the lap splice. Finally, in the test data, in order to obtain the total rotation at top of 

the lap splice for  specimens 2S10M, 2S20M and 2S30M, the two rotation values 

calculated in a similar manner to specimens 2S20H, 2S20HN and 2S30X, with the total 

rotation values at column base. 

 

In the analysis results, total rotations at different locations on the columns are 

directly obrained from the rotational degrees of freedom of the model, as flexural and slip 

deformations are coupled in the model results. However, since pure slip deformations 

along the splice can contribute significantly to column top displacement; rigid body 

rotation of the column due to slip deformations over the splice length can also be obtained 

from the model results. In the analysis results, slip rotation values were extracted by 

subtracting the rotations associated with the longitudinal deformations of the uniaxial steel 

elements from the the total rotations at the rotational degrees of freedom of the model  

 

Figures from 7.32 to 7.38 compare analytical and experimental results for the total 

rotation histories at the base of all column specimens (2S10M, 2S20M, 2S30M, 2S20H, 

2S20HN and 2S30X). The comparisons indicate that analytical model captures the 

experimental results, with the only exception of specimen 2S10M (Figures 7.32 and 7.33). 

Analysis results presented in Figures 7.32 and 7.33  were obtained using 8 model elements 

in the lap splice region with 13 concrete macro-fibers and 12 model elements in the lap 

splice region with 26 concrete macro-fibers, respectively. For this particular specimen, 

accuracy of the predicted response is apparently sensitive to discretization of the model, 

probably due to strain localization effects associated with crushing of concrete. 

 

Figures 7.39 to 7.46 compare analytical and experimental total rotation histories at 

the top of the lap splice for all column specimens (2S10M, 2S20M, 2S30M, 2S20H, 

2S20HN and 2S30X). A reasonable level of agreement is observed in these figures 

between the measued and calculated rotation histories. Analysis results shown in Figures 

7.39 and 7.40 were obtained using 8 model elements in the lap splice region with 13 
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concrete macro-fibers and 12 model elements in the lap splice region with 26 concrete 

macro-fibers, respectively. As the two analysis results are close, strain localization effects 

do not seem to be governing the response predictions for this case. 

 

Figure 7.41 compares the  analytical and experimental total rotation histories at a 

distance of 330 mm from column base, for specimen 2S10M.  

 

Correlation of measured and calculated slip rotations (with flexural contributions 

excluded) at the top of the lap splice region are also reasonably well as shown in Figures 

from 7.47 to 7.52. Overall, the analytical model has proved to be efficient in predicting 

rotations (both due to slip deformations and the combined effect of flexural and slip 

deformations) at different locations, for all of the column specimens investigated. 
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Figure 7.32.  Comparison of Measured and Calculated Total Base Rotation Histories for 

Specimen 2S10M (Analysis with 8 Model Elements and 13 Macro-Fibers). 

 

 
 

Figure 7.33.  Comparison of Measured and Calculated Total Base Rotation Histories for 

Specimen 2S10M (Analysis with 12 Model Elements and 26 Macro-Fibers). 
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Figure 7.34.  Comparison of Measured and Calculated Total Base Rotation Histories for 

Specimen 2S20M. 

 

 

 
 

 

Figure 7.35.  Comparison of Measured and Calculated Total Base Rotation Histories for 

Specimen 2S30M. 
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Figure 7.36.  Comparison of Measured and Calculated Total Base Rotation Histories for 

Specimen 2S20H. 

 

 

 
 

Figure 7.37.  Comparison of Measured and Calculated Total Base Rotation Histories for 

Specimen 2S20HN. 
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Figure 7.38.  Comparison of Measured and Calculated Total Base Rotation Histories for 

Specimen 2S30X. 

 

 
 

Figure 7.39.  Comparison of Measured and Calculated Total Rotation Histories at Top of 

Splice for Specimen 2S10M (Analysis Done with Less Elemnts and Uniaxial Fibers). 
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Figure 7.40.  Comparison of Measured and Calculated Total Rotation Histories at Top of 

Splice for Specimen 2S10M (Analysis Done with More Elemnts and Uniaxial Fibers). 
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Figure 7.41.  Comparison of Measured and Calculated Total Rotation Histories at 330 mm 

from Column Base for Specimen 2S10M. 
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Figure 7.42.  Comparison of Measured and Calculated Total Rotation Histories at Top of 

Splice for Specimen 2S20M. 

 

 

 
 

Figure 7.43.  Comparison of Measured and Calculated Total Rotation Histories at Top of 

Splice for Specimen 2S30M. 
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Figure 7.44.  Comparison of Measured and Calculated Total Rotation Histories at Top of 

Splice for Specimen 2S20H. 

 

 

 
 

Figure 7.45.  Comparison of Measured and Calculated Total Rotation Histories at Top of 

Splice for Specimen 2S20HN. 
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Figure 7.46.  Comparison of Measured and Calculated Total Rotation Histories at Top of 

Splice for Specimen 2S30X. 

 

 

 
 

Figure 7.47.  Comparison of Measured and Calculated Slip Rotation Histories at Top of 

Splice for Specimen 2S10M. 
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Figure 7.48.  Comparison of Measured and Calculated Slip Rotation Histories at Top of 

Splice for Specimen 2S20M. 

 

 
 

Figure 7.49.  Comparison of Measured and Calculated Slip Rotation Histories at Top of 

Splice for Specimen 2S30M. 
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Figure 7.50.  Comparison of Measured and Calculated Slip Rotation Histories at Top of 

Splice for Specimen 2S20H. 

 

 

 
 

Figure 7.51.  Comparison of Measured and Calculated Slip Rotation Histories at Top of 

Splice for Specimen 2S20HN. 
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Figure 7.52.  Comparison of Measured and Calculated Slip Rotation Histories at Top of 

Splice for Specimen 2S30X. 

 

7.3.3.  Reinforcing Steel Strain Distributions and Histories 

 

Along the lap splice regions of the test specimens,  three strain gauges were affixed 

to the exterior (corner) longitudinal bars, whereas two gauges were affixed to the exterior 

(corner) starter bars (starter bars being the bars anchored into the pedestal), as depicted in 

Figure 7.7. It can be deduced that longitudinal strains are equal to zero at the tips of the 

longitudinal and starter bars. Damage on the specimens and during testing led to failure of 

the strain gauges, generally at approximately 3% lateral drift (data point 770); therefore, 

readings for higher drift ratios are not available for most of the strain gauges.  

 

Figures 7.53 to 7.58 compare the measured and calculated longitudinal strain 

distributions along the lap splice on exterior longitudinal and starter bars of three 

specimens (2S10M, 2S20M and 2S30M) at selected lateral drift levels. Figures 7.59 to 

7.73 compare the analytically-obtained longitudinal strain histories with the steel strain 

history measurements of the strain gauges, located at different locations on the longitudinal 

and starter bars for different column specimens. In general, the test measurements and 

model results show reasonable agreement (considering the typical scatter observed in strain 
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gauge measurements in reinforced concrete member tests based on proximity of a strain 

gauge to a crack), up to a drift level of 1% (data point 450), after which lateral load 

degradation starts with the initiation of bond deterioration along splice length,  

 

It must be mentioned that steel strain predictions obtained using the analytical model 

for the interior (side) longitudinal and starter bars were not as good. The strains measured 

on the interior bars were significantly different than the strains on the exterior (corner) bars 

at the same drift levels, as reported by Melek and Wallace (2004). This may indicate that 

bond stresses acting on interior bars (side bars) within a splice may be different than those 

acting on exterior bars. The bond stress vs. slip constitutive relationship by Harajli (1994, 

2004, 2009) for splitting of partially-confined concrete was originally developed based on 

test results for corner bars, and maybe incapable of accurately representing bond stresses 

acting on middle bars (side bars) of a column cross-section. A constitutive bond-stress vs. 

slip relation specifically applicable to side bars of a reinforced concrete cross section, is 

not available in the literature.  

 
Figure 7.53.  Comparison of Measured and Calculated Steel Strain Distributions along Lap 

Splice on Exterior Longitudinal Bar of Specimen 2S10M. 
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Figure 7.54.  Comparison of Measured and Calculated Steel Strain Distributions along Lap 

Splice on Exterior Starter Bar of Specimen 2S10M. 

 
Figure 7.55.  Comparison of Measured and Calculated Steel Strain Distributions along Lap 

Splice on Exterior Longitudinal Bar of Specimen 2S20M. 
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Figure 7.56.  Comparison of Measured and Calculated Steel Strain Distributions along Lap 

Splice on Exterior Starter Bar of Specimen 2S20M.  

 
Figure 7.57.  Comparison of Measured and Calculated Steel Strain Distributions along Lap 

Splice on Exterior Longitudinal Bar of Specimen 2S30M.  
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Figure 7.58.  Comparison of Measured and Calculated Steel Strain Distributions along Lap 

Splice on Exterior Starter Bar of Specimen 2S30M.  

 

 
Figure 7.59.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 3 for Specimen 2S10M. 
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Figure 7.60.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 7 for Specimen 2S10M. 

 

 

 
 

Figure 7.61.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 11 for Specimen 2S10M. 
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Figure 7.62.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 15 for Specimen 2S10M. 

 

 

 

 
 

Figure 7.63.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 19 for Specimen 2S10M. 
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Figure 7.64.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 3 for Specimen 2S20M. 

 

 

 
Figure 7.65.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 7 for Specimen 2S20M. 
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Figure 7.66.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 11 for Specimen 2S20M. 

 

 
 

Figure 7.67.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 15 for Specimen 2S20M. 
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Figure 7.68.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 19 for Specimen 2S20M. 

 

 

 
 

Figure 7.69.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 3 for Specimen 2S30M. 
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Figure 7.70.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 7 for Specimen 2S30M. 

 

 

 
Figure 7.71.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Ggauge No. 11 for Specimen 2S30M. 
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Figure 7.72.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 15 for Specimen 2S30M. 

 

 

 
Figure 7.73.  Comparison of Measured and Calculated Steel Strain Histories at Location of 

Strain Gauge No. 19 for Specimen 2S30M. 
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7.3.4.  Concrete Strain Profiles and Average Longitudinal Strain Histories 

 

Figures 7.74 to 7.83 compare the measured and predicted longitudinal strain profiles 

(due to deformation of concrete) as well as the neutral axis position, along the width of the 

column specimens at different lateral drift levels.  

 

The concrete strain profiles at a distance of 330mm from the base of column 

specimens 2S10M, 2S20M and 2S30M, were calculated using measurements of the 

displacement sensors SL1 and SL2 (shown in Figure 7.12) at peak positive and negative 

top displacement (top displacement reversal) data points, for selected drift levels (Figures 

7.74 to 7.79). The concrete strain profiles at a distance of 508 mm from the base (at the top 

of the lap splice region) of column specimens 2S20H and 2S30X, were also calculated 

using measurements of the displacement sensors SL1 and SL2 (shown in Figure 7.13) at 

peak positive and negative top displacement (top displacement reversal) data points, for 

selected drift levels (Figures 7.80 to 7.83). It must be noted that the specimens exhibited 

sudden lateral load degradation dur to splice failure, at drift levels between 1% and 1.5%.  

 

Average longitudinal strain histories measured by individual displacement sensors 

(connected to concrete) were also compared with the analysis results, as shown in Figures 

Figures 7.84 to 7.93. location of displacement sensors SL1 and SL2 are shown in Figures 

7.12 and 7.13) for all column specimens. The analytical longitudinal strain value at the 

location of each displacement sensor was calculated via a simple geometric transformation, 

using the displacements at the model degrees of freedom. Data from the displacement 

sensors SL1 and SL2 were not available during the entire loading history, since the sensors 

were removed at different times before the end of the tests, in order to prevent damage on 

the sensors during to crushing of concrete. 

 

Overall, comparisons presented in Figures 7.74 to 7.93 indicate that analytical model 

is capable of providing reasonably accurate predictions of the concrete strain profiles (as 

well as the neutral axis depth), and the average longitudinal strain histories at specific 

locations, especially for lateral drift levels not exceeding 1.5%. At larger drift levels, 

together the rapid degradation in load degradation due to splice failure, progressive 

crushing of concrete was observed at the base of all of the column specimens, which 
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naturally impaired the accuracy of the model in predicting the concrete strain profiles and 

longitudinal strain histories. 

 
 

Figure 7.74.  Comparison of Measured and Calculated Concrete Strain Profiles by 

Displacement Sensors (SL1-SL2) for Specimen 2S10M Under Drift Levels. 

 

 
Figure 7.75.  Comparison of Measured and Calculated Concrete Strain Profiles by 

Displacement Sensors (SL1-SL2) for Specimen 2S10M Under Drift Levels. 
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Figure 7.76.  Comparison of Measured and Calculated Concrete Strain Profiles by 

Displacement Sensors (SL1-SL2) for Specimen 2S20M Under Drift Levels. 
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Figure 7.77.  Comparison of Measured and Calculated Concrete Strain Profiles by 

Displacement Sensors (SL1-SL2) for Specimen 2S20M Under Drift Levels. 
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Figure 7.78.  Comparison of Measured and Calculated Concrete Strain Profiles by 

Displacement Sensors (SL1-SL2) for Specimen 2S30M Under Drift Levels. 

 

 
 

 

Figure 7.79.  Comparison of Measured and Calculated Concrete Strain Profiles by 

Displacement Sensors (SL1-SL2) for Specimen 2S30M Under Drift Levels. 
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Figure 7.80.  Comparison of Measured and Calculated Concrete Strain Profiles by 

Displacement Sensors (SL1-SL2) for Specimen 2S20H Under Drift Levels. 

 

 
 

Figure 7.81.  Comparison of Measured and Calculated Concrete Strain Profiles by 

Displacement Sensors (SL1-SL2) for Specimen 2S20H Under Drift Levels. 
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Figure 7.82.  Comparison of Measured and Calculated Concrete Strain Profiles by 

Displacement Sensors (SL1-SL2) for Specimen 2S30X Under Drift Levels. 

 

 

 
 

 

Figure 7.83.  Comparison of Measured and Calculated Concrete Strain Profiles by 

Displacement Sensors (SL1-SL2) for Specimen 2S30X Under Drift Levels. 
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Figure 7.84.  Comparison of Measured and Calculated Average Longitudinal Strain 

Histories, at the Location of Displacement Sensor SL1, for Specimen 2S10M. 

 

 

 
 

Figure 7.85.  Comparison of Measured and Calculated Average Longitudinal Strain 

Histories, at the Location of Displacement Sensor SL2, for Specimen 2S10M. 
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Figure 7.86.  Comparison of Measured and Calculated Average Longitudinal Strain 

Histories, at the Location of Displacement Sensor SL1, for Specimen 2S20M. 

 

 

 
 

Figure 7.87.  Comparison of Measured and Calculated Average Longitudinal Strain 

Histories, at the Location of Displacement Sensor SL2, for Specimen 2S20M. 
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Figure 7.88.  Comparison of Measured and Calculated Average Longitudinal Strain 

Histories, at the Location of Displacement Sensor SL1, for Specimen 2S30M. 

 

 

 
Figure 7.89.  Comparison of Measured and Calculated Average Longitudinal Strain 

Histories, at the Location of Displacement Sensor SL2, for Specimen 2S30M. 
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Figure 7.90.  Comparison of Measured and Calculated Average Longitudinal Strain 

Histories, at the Location of Displacement Sensor SL1, for Specimen 2S20H. 

 

 

 
 

Figure 7.91.  Comparison of Measured and Calculated Average Longitudinal Strain 

Histories, at the Location of Displacement Sensor SL2, for Specimen 2S20H. 
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Figure 7.92.  Comparison of Measured and Calculated Average Longitudinal Strain 

Histories, at the Location of Displacement Sensor SL1, for Specimen 2S30X. 

 

 

 
 

Figure 7.93.  Comparison of Measured and Calculated Average Longitudinal Strain 

Histories, at the Location of Displacement Sensor SL2, for Specimen 2S30X. 
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7.3.5.  Neutral Axis Position History 

 

The model successfully represents the variation in the position of the neutral axis 

measured within the lap splice region of the column specimens, during the cyclic lateral 

loading history applied throughout the tests, as shown in Figures from 7.94 to 7.103.  

Figures 7.94 to 7.99 compare the predicted position of the neutral axis from the column 

centroid, normalized by the column width, at a distance of 330 mm from the base of 

column specimens 2S10M, 2S20M and 2S30M, with the measured neutral position 

obtained using measurements from displacement sensors SL1 and SL2 shown in Figure 

7.12.  Figures 7.100 to 7.103 compare the predicted position of the neutral axis from 

column centroid, normalized by the column width, at a distance of 508 mm from the base 

of the column specimens 2S20H and 2S30X, with the measured neutral position obtained 

using measurements from displacement sensors SL1 and SL2 shown in Figure 7.13. For all 

results, the distance from the column centroid to the neutral axis position approaches 

infinity when the top lateral  displacement (and thus, rotation) of the column approaches 

zero, and reaches its local extreme or limit points (peaks and valleys) at peak displacement 

(displacement reversal) points. The experimental and analytical neutral axial position 

histories show similar variation and reach similar values at peak (displacement reversal) 

points, as observed in the figures. The occasional erratic values in the experimental results 

are due to distortion of the displacement sensors due to local crushing of concrete at 

locations where the sensors are connected. 
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Figure 7.94.  Experimental Variation in Position of Neutral Axis for Specimen 2S10M. 

 

 

 

 
 

Figure 7.95.  Analytical Variation in Position of Neutral Axis for Specimen 2S10M. 
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Figure 7.96.  Experimental Variation in Position of Neutral Axis for Specimen 2S20M. 

 

 

 

 
 

Figure 7.97.  Analytical Variation in Position of Neutral Axis for Specimen 2S20M.  
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Figure 7.98.  Experimental Variation in Position of Neutral Axis for Specimen 2S30M. 

 

 

 

 

 
 

Figure 7.99.  Analytical Variation in Position of Neutral Axis for Specimen 2S30M.  
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Figure 7.100.  Experimental Variation in Position of Neutral Axis for Specimen 2S20H. 

 

 

 

 

 
Figure 7.101.  Analytical Variation in Position of Neutral Axis for Specimen 2S20H.  
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Figure 7.102.  Experimental Variation in Position of Neutral Axis for Specimen 2S30X. 

 

 

 

 
 

Figure 7.103.  Analytical Variation in Position of Neutral Axis for Specimen 2S30X.  
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7.3.6.  Average Bond Stresses along Spliced Bars 

 

The model results are also compared with “processed” test measurements, in terms 

of the average bond stresses (along the lap splice region) between reinforcing steel and 

surrounding concrete, for both starter and longitudinal bars, as shown in Figures 7.104 to 

7.123. The experimental average bond stress (u) values were calculated using the variation 

in the longitudinal steel stresses in the bars, calculated using the strains measured by the 

strain gauges on the bars. To convert the measured steel strains (ε) into longitudinal steel 

stresses (fs), a simple hysteretic elasto – plastic stress – strain relationship was used for the 

reinforcing steel, as proposed by Melek (2006). The longitudinal steel stresses were then 

transformed into average bond stress values along the lap splice using the relation: 

 

 4
s bf d

u
l

=  (7.1) 

  

where fs is the change in the longitudinal stress on the bar, db is the nominal bar 

diameter, and l is the length of the splice. In this calculation process, to obtain the average 

bond stress on a starter bar, measurements of the strain gauge affixed to the starter bar at 

the column base level (Strain gauge No.3 shown in Figure 7.7) is used. To obtain the 

average bond stress on a longitudinal bar, measurements of the strain gauge affixed to the 

longitudinal bar at the top of the splice (Strain gauge No.19 shown in Figure 7.7) is used. 

In the analytical model results, average bond stress values along the lap splice between 

concrete and the reinforcing steel bars is obtained in a much more direct manner, by 

simply taking the weighted average of the bond stresses (weighted with respect to the 

height of each model element), which develop in the bond slip springs of the model.  

 

Figures 7.104 to 7.123 compare the experimentally–obtained and analytically–

predicted average bond stresses along the lap splice (between concrete and the longitudinal 

or starter bars) vs. the top lateral displacement of each column specimen. As the 

experimental bond stress values were processed from strain gauge measurements, the 

results are only presented until the data point when the strain gauge was damaged.  
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The level of correlation between the analytical and experimental results can be 

deemed reasonable, considering the typical scatter observed in strain gauge measurements 

in reinforced concrete member tests based on proximity of a strain gauge to a crack. The 

analytical model seems to capture the general pattern of the average bond stress vs. top 

displacement behavior of the column specimens, and the maximum average bond stress 

values for some of them. Both the analytical results and experimental measurements 

indicate that the average bond stress levels along the lap splice on the longitudinal and 

starter bars are somewhat different; and it is possible that relatively larger bond stresses 

will develop on the starter bars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

211

 
 

Figure 7.104.  Experimental Average Bond Stress on Longitudinal Bar along Lap Splice 

vs. Top Displacement for Specimen 2S10M.  

 

 
 

 

Figure 7.105.  Analytical Average Bond Stress on Longitudinal Bar along Lap Splice vs. 

Top Displacement for Specimen 2S10M. 

-80 -40 0 40 80
Lateral Displacement (mm)

-8

-4

0

4

8

B
on

d 
S

tre
ss

 (M
P

a)

-4 -2 0 2 4
Lateral Drift (%)

-800

-400

0

400

800

1200

B
on

d 
S

tre
ss

 (p
si

)

Measured

2S10M

-80 -40 0 40 80
Lateral Displacement (mm)

-8

-4

0

4

8

B
on

d 
S

tre
ss

 (M
P

a)

-4 -2 0 2 4
Lateral Drift (%)

-800

-400

0

400

800

1200

B
on

d 
S

tre
ss

 (p
si

)Calculated

 

2S10M



 

212

 

 
 

Figure 7.106.  Experimental Average Bond Stress on Starter Bar along Lap Splice vs. Top 

Displacement for Specimen 2S10M.  

 

 
 

Figure 7.107.  Analytical Average Bond Stress on Starter Bar along Lap Splice vs. Top 

Displacement for Specimen 2S10M. 
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Figure 7.108.  Experimental Average Bond Stress on Longitudinal Bar along Lap Splice 

vs. Top Displacement for Specimen 2S20M.  

 

 

 
Figure 7.109.  Analytical Average Bond Stress on Longitudinal Bar along Lap Splice vs. 

Top Displacement for Specimen 2S20M. 
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Figure 7.110.  Experimental Average Bond Stress on Starter Bar along Lap Splice vs. Top 

Displacement for Specimen 2S20M.  

 

 

 
 

Figure 7.111.  Analytical Average Bond Stress on Starter Bar along Lap Splice vs. Top 

Displacement for Specimen 2S20M. 
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Figure 7.112.  Experimental Average Bond Stress on Longitudinal Bar along Lap Splice 

vs. Top Displacement for Specimen 2S30M.  

 

 
 

Figure 7.113.  Analytical Average Bond Stress on Longitudinal Bar along Lap Splice vs. 

Top Displacement for Specimen 2S30M. 
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Figure 7.114.  Experimental Average Bond Stress on Starter Bar along Lap Splice vs. Top 

Displacement for Specimen 2S30M.  

 

 

 
 

Figure 7.115.  Analytical Average Bond Stress on Starter Bar along Lap Splice vs. Top 

Displacement for Specimen 2S30M. 
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Figure 7.116.  Experimental Average Bond Stress on Longitudinal Bar along Lap Splice 

vs. Top Displacement for Specimen 2S20H.  

 

 
 

Figure 7.117.  Analytical Average Bond Stress on Longitudinal Bar along Lap Splice vs. 

Top Displacement for Specimen 2S20H. 
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Figure 7.118.  Experimental Average Bond Stress on Starter Bar along Lap Splice vs. Top 

Displacement for Specimen 2S20H.  

 

 

 
 

Figure 7.119.  Analytical Average Bond Stress on Starter Bar along Lap Splice vs. Top 

Displacement for Specimen 2S20H. 
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Figure 7.120.  Experimental Average Bond Stress on Starter Bar along Lap Splice vs. Top 

Displacement for Specimen 2S30X. 

 

 
Figure 7.121.  Analytical Average Bond Stress on Starter Bar along Lap Splice vs. Top 

Displacement for Specimen 2S30X. 
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Figure 7.122.  Experimental Average Bond Stress on Starter Bar along Lap Splice vs. Top 

Displacement for Specimen 2S20HN.  

 

 
 

Figure 7.123.  Analytical Average Bond Stress on Starter Bar along Lap Splice vs. Top 

Displacement for Specimen 2S20HN. 
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Overall, the detailed comparisons presented in this chapter indicate that the analytical 

model was effective in predicting the cyclic behavior of the column specimens investigated 

in the experimental program by Melek (2006). The model provides accurate predictions of 

global response characteristics including the lateral load capacity, strength degradation, 

stiffness degradation, ductility, pinching properties, and other cyclic attributes of the lateral 

load vs. top displacement behavior. Rotations due to flexure and slip at different locations 

of the column specimens were also predicted well by the model. Local response and 

deformation predictions of the model (steel strain distributions, concrete strain profiles, 

neutral axis position, and average bond stresses along the lap splice) are also representative 

of the experimental measurements, with a reasonable level of accuracy. In the next chapter, 

the analytical model predictions are compared with the results of additional experimental 

studies, which are available in the literature, conducted on column specimens with various 

configurations and anchorage conditions. 
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8.   FURTHER EXPERIMENTAL VERIFICATION OF THE 

ANALYTICAL MODEL 
 

 

The scope of this chapter is further experimental verification of the analytical model, 

for a more broad set of reinforced concrete column configurations. Response predictions 

obtained using the analytical model are compared with additional experimental 

observations available in the literature, for various column specimens with both deformed 

and plain reinforcing bars, and with both deficient lap splices and continuous longitudinal 

reinforcement. A total of 24 column tests conducted by 10 research groups are considered 

in comparison of the analytical and experimental responses. Comparisons are made at only 

the global response level (lateral load vs. top displacement), due to the absence of digital 

test data and information on local response measurements. 

 

8.1.  Overview of Experimental Studies  

 

A number of experimental studies have been selected for comparing the model 

predictions with the results of tests conducted on various types of column specimens with 

either deformed or plain reinforcing bars, and with various lap splice lengths, cross 

sections, material properties and reinforcement conditions, subjected to different axial load 

levels and lateral loading patterns.  

 

Two column specimens (Specimen-1 and Bousias) tested by Low and Moehle (1987) 

and Bousias et al. (1995), both with continuous longitudinal reinforcement, were selected 

to investigate the accuracy of the model in representing the so-called for strain penetration 

effects (effect of bond slip deformations in the anchorage region of the reinforcement) on 

column response. Five splice-deficient column specimens (FC1, FC4, FC5, FC14 and 

FC15) tested by Aboutaha et al. (1994, 1996) with different cross sections, concrete 

compressive strengths, and longitudinal reinforcement amounts were chosen for additional 

comparisons. Three splice-deficient column specimens (C14, C20 and C16) tested by 

Harajli and Dagher (2008), with different material properties and reinforcement 

configurations, (C14 and C20 have three layers of longitudinal reinforcement, whereas 

C16 has four layers of longitudinal reinforcement in the direction of bending) were also 
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selected for the comparisons. One specimen (AB1) by Elgawady et al. (2010), was also 

considered, since it incorporated four layers of longitudinal reinforcement in the direction 

of bending. One other specimen (2SLH18) by Lynn et al. (1996) was chosen to investigate 

the model effectiveness when the column is subjected to a double – curvature bending 

moment distribution. To consider further variation in specimen properties and loading 

conditions, one specimen (L0) by Harries et al. (2006) and two specimens (AF(COG0)B1 

and AF(COG0)B2) by Yildiz (2006) were selected for the response comparisons.  

 

Furthermore, to investigate the effectiveness of the analytical model in predicting the 

responses of columns with smooth reinforcing bars (as well as 180-degree hooks), four 

column specimens (C270A1, C270B1, C540A1 and C540B1) tested by Verderame et al. 

(2008) were chosen. Five additional column specimens (LS-25φ-N1, LS-35φ-N1, LS-44φ-

N1, LS-55φ-N1 and LS-CON-N1) tested by Yilmaz (2009), with plain pars and different 

lap splice lengths. The properties of the test specimens used in comparison of the analytical 

predictions of the model with experimental results are presented in Table 8.1. In the table, 

the column height (l) values represent the effective height from the column base to the 

point where the lateral loading is applied. 
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Table 8.1.   Dimensions and Properties of Column Specimens Investigated. 
 

 
*Continuous longitudinal reinforcements 

**Anchorage length 

 

Co ncre te

b, mm h, mm l, mm Amo unt ls, mm F y,Mpa Amo unt fy, Mpa Fc , Mpa

178**
(23db)
480**
(30db)
609.6
(24db)

609.6
(24db)

Abo utaha 609.6
(24db)
609.6
(24db)
609.6
(24db)

420
(30db)

Hara jli and 600

Dagher (30db)
480

(30db)

445
(35db)

331

(20db)
490

(22db)

180
(15db)

180
(15db)
480

Verderame (40db)
C270B1 300 300 1570 6, 12 mm * 355 8m dia  a t 100mm 430 25 12

480
(40db)

C540B1 300 300 1570 6, 12 mm * 355 8m dia  a t 100mm 430 25 24

350
Yilmaz (25db)

490
(35db)

616

(44db)
770

(55db)

LS-CON-N1 300 200 1650 4, 14 mm * 285 10mm dia  a t 
100mm /200mm

307 10 0

10mm dia  a t 
100mm /200mm

307 10 0

10mm dia  a t 
100mm /200mm

307 10 0

LS-55φ-N1 300 200 1650 4, 14 mm 285

10mm dia  a t 
100mm /200mm

307 10 0

LS-44φ-N1 300 200 1650 4, 14 mm 285

10mm dia  a t 
100mm /200mm

307 10 0

LS-35φ-N1 300 200 1650 4, 14 mm 285

8m dia  a t 100mm 430 25 24

LS-25φ-N1 300 200 1650 4, 14 mm 285

8m dia  a t 100mm 430 25 12

C540A1 300 300 1570 6, 12 mm 355

8mm dia  a t 
120mm 

28.77 10

C270A1 300 300 1570 6, 12 mm 355

AF(C0G0)B
2

240 180 850 4 , 12 mm 500

4 , 12 mm 500 8mm dia  a t 
120mm 

27.6 10

460 9.5mm dia  a t 
150mm 

438 24.6 25

Yildiz AF(C0G0)B
1

240 180 850

Harries L0 458 458 2400 8 No . 7

8 No . 8 331 9.5mm dia  a t 
457mm

400 33.1 12

331 6.3mm dia  a t 
125mm

372 31 0

Lynn 2SLH18 457.2 457.2 2946.4

8mm dia  a t 
200mm

40 0

Elgawady AB1 381 254 1803 12 No . 4

8mm dia  a t 
200mm

32 0

C16 400 200 1400 8, 16mm 528

8mm dia  a t 
200mm

39 0

C20 400 200 1400 6, 20mm 617

9.5mm dia  a t 
407mm

400 28.75 0

C14 400 200 1400 8, 14 mm 550

9.5mm dia  a t 
407mm

400 28.75 0

FC15 457.2 457.2 2743.2 8 No . 8 434

9.5mm dia  a t 
407mm

400 20.54 0

FC14 685.8 457.2 2743.2 12 No . 8 434

9.5mm dia  a t 
407mm

400 19.65 0

FC5 914.4 457.2 2743.2 16 No . 8 434

9.5mm dia  a t 
407mm

400 32.4 0

FC4 914.4 457.2 2743.2 16 No . 8 434

FC1 914.4 457.2 2743.2 16 No . 8 434

8, 16 mm 460 8 mm dia  a t 70 
mm

30.75 15

450 13mm dia  a t 
129mm

36.54 5

Bo us ias Bo us ias 250 250 1490

Lo w-
Mo ehle

Spec imen 1 127 165 692.2 6 No . 2 & 4 
No .3

Res earcher Co lumn Co lumn dimens io ns Lo ngitudina l Re in. Trans vers e  Re in. Axia l 
Lo ad
(%)
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8.2.  Analytical Model Formulation 

 

The general model formulation described in Chapter 3 is applicable to most of the 

column specimens with lap splices, investigated in this chapter. However, it was necessary 

to modify this formulation in order to represent the configuration of some of the specimens 

(AB1, 2SLH18, Specimen-1, Bousias, LS-25φ-N1, LS-35φ-N1, LS-44φ-N1, LS-55φ-N1, 

C270A1, and  C540A1), as described below. 

 

Most of the selected column specimens consist of two or three layers of longitudinal 

reinforcement with one layer located middle of the cross section, which is compatible with 

the general model formulation (with three layers of reinforcement) shown in Figure 3.1. 

However, to incorporate four layers of longitudinal reinforcement in the bending direction, 

as seen in specimens C16 (Figure 8.20) and AB1 (Figure 8.27), it was necessary to modify 

the original column model formulation slightly to incorporate the additional layer of 

reinforcement.  

 

To model the response of specimen 2SLH18 (Figure 8.30), which is subjected to 

double – curvature bending moment distribution and zero rotation at the top, necessary 

modifications were applied to the direct stiffness assembly procedure used in the 

formulation of the analytical model.  

 

Modifications to the original model formulation were also required for specimens 

‘Specimen-1’(Figure 8.1)  and ‘Bousias’ (Figure 8.4), to simulate the effects of “strain 

penetration” (bond slip deformations in the anchorage zone) on the behavior of these 

specimens.  The lap splice region in the original model formulation were transformed into 

the anchorage zone, via fixing the concrete displacement degrees of freedom located at the 

top of the rigid beams in this region.  

 

For modeling of the column specimens with plain bars and 180-degree hooks, the 

bottom hooks on the longitudinal bars were represented by steel stress – hook end slip 

springs connecting the bottom rigid beam of the second model element from column base, 

to the longitudinal bars in the splice. The hook springs were not assigned to the very first 

model element at the base of the column, to allow the uplift of the longitudinal bar hook 
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from the column-pedestal interface. The top hooks on the starter bars at the top level of the 

splice or on the longitudinal bars at the top level of the column were also represented by 

steel stress – hook end slip springs, connecting the top rigid beam of the respective model 

element, to the longitudinal bars. This modeling approach was used to analyze specimens 

LS-25φ-N1, LS-35φ-N1, LS-44φ-N1, LS-55φ-N1, C270A1, and C540A1.  

 

8.3.  Calibration of the Analytical Model 

 

Experimental calibration of the geometric, as well as the constitutive parameters of 

the analytical model, for the column test investigated in this chapter, are discussed in the 

following subsections. 

 

8.3.1.  Geometry 

 

It is discussed in Chapter 6, that neither the number of model elements nor the 

number concrete macro-fibers used in the analytical model have a significant influence on 

the global response prediction, as long as an adequate number of elements and fibers are 

used to describe the geometric details of a column. The optimum number of model 

elements and concrete macro-fibers used to calibrate the model for the column specimens 

investigated in this chapter are discussed in the following paragraphs. 

 

Twenty six macro-fibers are used along column width to represent the concrete cross 

section of the majority of the columns specimen model. Eight model elements along the 

lap splice length and 4 model elements above the lap splice region are assigned to the 

analytical model, for most of the columns specimens with deficient lap splices (Specimens 

FC1, FC4, FC5, FC14 , FC15, C14, C20, AF (COG0)B1, AF(COG0)B2, and AB1).  

.  

For other specimens, either less or more number of model elements and macro-fibers 

were used in calibration, based on the results of preliminary analyses, depending on the 

level of detail of the specimen geometry, or the level of complexity of the response. Four 

model elements along the lap splice length and two elements above the lap splice region 

are selected to model column specimens LS-25φ-N1, LS-35φ-N1, LS-44φ-N1 and LS-
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55φ-N1 (Yilmaz, 2009). Six model elements and 52 macro-fibers were used along the 

entire length of column specimen LS-CON-N1, with continuous longitudinal 

reinforcement. Four model elements along the lap splice length and two elements above 

the lap splice, are selected for specimens C270A1 and C540A1 (Verderame et al., 2009). 

Six model elements are used along the whole length of specimens C270B1 and C540B1 

with continuous reinforcement. Sixteen model elements along the lap splice and 4 elements 

above the lap splice region are for the column specimens, C16 and 2SLH18. For specimen 

L0, four model elements along the lap splice and two elements above the lap splice region 

are used.  

 

Three separate analytical models are built for each of the two specimens ‘Specimen-

1’ and Bousias’, with continuous longitudinal reinforcement, which were tested to observe 

strain penetration effects in the anchorage zone (foundation). The first model included 

eight elements in the anchorage zone (with rigid concrete degrees of freedom) and four 

elements along the height of the column.The second and third models only included four 

elements along the height of each column to simulate its behaviour without incorporating 

bond slip deformations (strain penetration) in the anchorage zone. The third model 

incorporates rigid bond slip springs, representing the perfect bond assumption between 

concrete and reinforcing steel. 

 

8.3.2.  Materials 

 
8.3.2.1 Steel Stress-Strain Relation. The constitutive model used for reinforcing steel was 

calibrated for yield strength, elastic modulus, strain hardening ratio, and cyclic curvature 

degradation parameters. The monotonic parameters of the model were calibrated based on 

the values for the specimens investigated. For cases where test results for the stress – strain 

behavior of the reinforcement was not available, typical values of E0 = 200 GPa and b = 

2% was used for the elastic modulus and the strain hardening ratio, respectively.  The 

values R0 = 20, a1 = 18.5, and a2 = 0.15 (accounting for the cyclic degradation of the 

curvature coefficient R and thus the Bauschinger effect), originally suggested by 

Menegotto and Pinto (1983), were used in the calibration. Table 8.2 summarizes the 

constitutive parameters used in the analysis for reinforcing steel.  
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Table 8.2.  Calibrated Constitutive Parameters for Confined Concrete and Steel. 
 

Specimen Concrete in compression Concrete in tension Reinforcing bar  

/
cf

Mpa
 

/
cε  cE

Mpa
 

crε
 

r  tf
M p a

 
tε  

( )
cE

Mpa
 

crε
 

r  yf

Mpa
 

0E
Gpa

 

b  

Specimen 1 36.54 0.0025 28713 0.003 5.02 1.87 0.00008 28713 ∞ 1.2 408 210 0.002 

Bousias 36 0.0025 28500 0.004 2.50 1.86 0.00008 28500 ∞ 1.2 421 200 0.02 

FC1 32.40 0.0024 27038 0.003 5.02 1.76 0.00008 27038 ∞ 1.2 390 200 0.02 

FC4 19.65 0.0019 21056 0.002 5.02 1.37 0.00008 21056 ∞ 1.2 390 200 0.02 

FC5 20.55 0.002 21532 0.002 5.02 1.40 0.00008 21532 ∞ 1.2 390 200 0.02 

FC14-FC15 28.75 0.0023 25469 0.003 5.02 1.66 0.00008 25469 ∞ 1.2 390 200 0.02 

C14 39 0.0026 29664 0.004 5.02 1.94 0.00008 29664 ∞ 1.2 496 200 0.02 

C20 32 0.0024 26870 0.003 5.02 1.75 0.00008 26870 ∞ 1.2 566 200 0.02 

C16 40 0.0027 30041 0.004 5.02 1.96 0.00008 30041 ∞ 1.2 480 200 0.02 

AB1 34 0.0025 27697 0.004 5.02 1.81 0.00008 27697 ∞ 1.2 292 200 0.02 

2SLH18 33.10 0.0024 27328 0.003 5.02 1.78 0.00008 27328 ∞ 1.2 297 200 0.008 

L0 24.60 0.0021 23560 0.003 5.02 1.54 0.00008 23560 ∞ 1.2 400 200 0.02 

AF(C0G0)B

1 
27.60 0.0022 24954 0.003 5.02 1.63 0.00008 24954 ∞ 1.2 446 200 0.0015 

AF(C0G0)B

2 
28.77 0.0023 25478 0.003 5.02 1.66 0.00008 25478 ∞ 1.2 446 200 0.0015 

C270A1, 

C270B1, 

C540A1, 

C540B1 

29 0.0023 16454 0.004 2 1.67 0.00008 25580 ∞ 1.2 300 200 0.002 

LS-25φ-N1 

LS-35φ-N1 

LS-44φ-N1 

LS-55φ-N1 

LS-CON-N1 

12 0.0015 16454 0.002 5.02 0.99 0.00008 16454 ∞ 1.2 250 183 

 

0.004 

 

 

8.3.2.2 Concrete Stress-Strain Relations. The monotonic envelope curves of the Chang and 

Mander (1994) constitutive model for compression and tension were calibrated for values 

of peak compressive and tensile stress (f’c and ft), strains at peak stress (ε’c and εt), elastic 

modulus Ec, the parameter r defining the shape of the envelope curves, and the normalized 

strain parameter xcr controlling the post peak slope of the envelope curves.   

 

The envelope curve for unconfined concrete in compression was calibrated using 

reported results of monotonic stress-strain tests, conducted at time of testing, for the 

concrete used in the construction of the specimens, with a 20% residual stress value 

defined for the envelope curve for improving the stability of the analysis. The parameters 
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used for the calibration of the monotonic envelopes for unconfined concrete in 

compression and tension are presented in Table 8.2. Stress – strain relations for confined 

concrete were not used in modeling of these columns, since the amount of transverse 

reinforcement used in the specimens did not provide effective confinement. The concrete 

tensile strength was determined from the relationship ft = 0.31√f’c (Mpa), and a value of 

0.00008 was selected for the strain εt at peak monotonic tensile stress, as suggested by 

Belarbi and Hsu (1994). The shape of the monotonic tension envelope was calibrated (via 

the parameters r and xcr) to reasonably represent the average post-crack stress – strainship 

relation proposed by Belarbi and Hsu (1994) for considering the effects of tension 

stiffening on concrete.  The hysteretic stress-strain rules defined by Chang and Mander 

(1994),  modified slightly as described by Orakcal (2004), were used to simulate the cyclic 

behavior of unconfined concrete implemented in model.  

 

8.3.2.3 Shear Force-Deformation Relation. The trilinear envelope curve of the origin-

oriented force–deformation relationship, which was adopted for the horizontal shear 

springs in the model elements, was calibrated based on the empirical relationships 

proposed by Sezen (2002), as described in Chapter 3. It must be mentioned that during 

testing, none of the column specimens experienced shear failure or significant shear 

deformations. 

 

8.3.2.4 Bond Stress Slip Relations. The parameters of the cyclic constitutive bond stress – 

slip relationship for splitting failure in partially-confined concrete by Harajli et al. (1994, 

2004, 2009), were calibrated as proposed originally in the constitutive relationship 

formulations, for most of the splice-deficient column specimens with deformed reinforcing 

bars. For the specimen ‘FC4’, where splitting springs were used in combination with pull-

out springs (in the vicinity of the ties), parameters of the cyclic bond stress – slip 

relationship for pull-out failure in confined concrete by Eligehausen et al. (1983) were 

calibrated as proposed in the original constitutive formulation. Pull-out springs following 

the original constitutive relationship by Eligehausen et al. (1983) were also used in the 

anchorage zones (foundations) of ‘Specimen-1’ and ‘Bousias’, for consideration of slip 

deformations in the anchorage region (strain penetration effects).  
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The cyclic bond stress – slip constitutive relationship representing the pullout 

behaviour of plain reinforcing bars, developed by Verderame et al. (2009), was calibrated, 

using the original constitutive formulation, for column specimens LS-25φ-N1, LS-35φ-N1, 

LS-44φ-N1, LS-55φ-N1, LS-CON-N1 C270A1, C270B1, C540A1 and C540B1. The 

original monotonic steel stress vs. hook end slip constitutive model by Fabbrocino et al. 

(2004) for 180-degree hooks was also used for modeling of these specimens, with 

adaptation of origin-oriented cyclic rules, as described in Chapter 3.    

 

Table 8.3(a) lists the constitutive  bond stress – slip parameters used for the column 

models which incorporated both  splitting and pullout bond slip springs  whereas the 

parameters used for the column models splitting springs only, are listed in Table 8.3(b).  

Table 8.4 presents the constitutive bond stress – slip parameters used for modelling of the 

columns with plain reinforcing bars.   

 

Table 8.3.  Calibrated Constitutive Bond Stress – slip Parameters Used for the Specimens 

with Deformed Bars. 

(a) Specimens Analyzed Using Both Pullout and Splitting Springs. 
 

Sp
ec

im
en

 

Parameter 
1s

mm
 

2s
mm

 

3s
mm

 

1

( )
u
Mpa

 

3

( )
u
Mpa

 

max

( )
u
Mpa

 
( )

psu

Mpa
 

maxs
mm

 

0s
mm

 

α  β  

FC
4 

Harajli et al. 

(1994) 

Unconfined 

1.95 4.55 3 11.39 - 4.15 2.18 0.22 0.15 0.70 0.65 

Eligehausen et 

al. (1983) 

1.00 3.00 10.5 10.93 4.05 - - - - 0.40 - 

Sp
ec

im
en

-1
 Harajli et al. 

(1994) 

1.95  13 15.42 - 5.74 3.07 0.27 0.15 0.70 0.65 

Eligehausen et 

al. (1983) 

1.24 3.71 13 14.78 5.48 - - - - 0.40 - 

B
ou

si
as

 

Harajli et al. 

(1994) 

1.95  13 15.42  5.74 3.07 0.27 0.15 0.70 0.65 

Eligehausen et 

al. (1983) 

1.24 3.71 13 14.78 5.48     0.40  
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Table 8.3.  Calibrated Constitutive Bond Stress – Slip Parameters Used for the Specimens 

with Deformed Bars (Cont.).   

(b) Specimens Analyzed Using Splitting Springs Only. 
 

Parameter of 

Harajli et al. 

(1994) 

1

( )
s
mm

 

3

( )
s
mm

 

1

( )
u
Mpa

 
max

( )
u
Mpa

 
( )

psu

Mpa
 

max

( )
s
mm

 

0

( )
s
mm

 

α  β  

FC1 

 

1.95 13 14.63 5.46 2.94 0.22 0.15 0.70 0.65 

FC5 1.95 13 11.65 4.35 2.34 0.22 0.15 0.70 0.65 

FC14-FC15 1.95 13 13.78 5.09 2.68 0.22 0.15 0.70 0.65 

C14 1.95 13 16 6.22 3.52 0.23 0.15 0.70 0.65 

C20 1.95 13 14.54 4.67 2.78 0.21 0.15 0.70 0.65 

C16 1.95 13 16 8.46 4.70 0.32 0.15 0.70 0.65 

2SLH18 1.50 10 14.70 7.14 3.63 0.25 0.15 0.70 0.65 

L0 1.95 13 12.75 5.17 2.74 0.23 0.15 0.70 0.65 

AF(C0G0)B1 

AF(C0G0)B2 

1.50 10 13.50 8.60 5.10 0.40 0.15 0.70 0.65 

AB1 1.95 13 14.31 5.09 2.85 0.22 0.15 0.70 0.65 

 

 

Table 8.4.  Calibrated Constitutive Bond Stress – Slip Parameters Used for the Specimens 

with Smooth Bars. 
 

Parameter of Verderame 

et al. (2009) 
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s
mm

 
1

( )
s
mm
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Mpa
τ

 

,

( )
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τ
 ,
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,

( )
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Mpa
τ

 
α  

C270A1, C270B1, 

C540A1, C540B1 

0.38 3.17 1.55 0.65 0.25 0.45 0.26 
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8.4.  Comparison of Model Results with Experimental Results 

 

In this section the response predictions obtained using the analytical model, are 

compared with the experimental results. Comparisons are made at only the global lateral 

load vs. top displacement response level due to the absence of digital test data and 

information on local response measurements. The comparisons are presented and discussed 

individually, for each test program. 

 

8.4.1.  Low and Moehle (1987) Specimen: 

 

Low and Moehle (1987) tested a series of reinforced concrete cantilever columns 

with rectangular cross sections. The columns were subjected to a constant axial load and 

cyclic lateral displacements. One of these columns, labeled Low-Moehle “Specimen 1”, 

with continuous longitudinal reinforcement, is selected here for investigating the efficiency 

of the model in simulating strain penetration effects. The specimen geometry is shown in 

Figure 8.1. The column was subjected to a constant axial compression of 44.5 kN 

(corresponds to approximately 5%Agf’c), and a cyclic lateral displacement history in the 

weak direction of the column cross section.. The anchorage length of the longitudinal 

reinforcement in the specimen foundation (pedestal) was 178mm, corresponding to 23 

longitudinal bar diameters.  

 

Figure 8.2 shows the experimental response of ‘Specimen 1’ which was used by 

Spacone and Limkatanyu (2000), to validate the formulation of a reinforced concrete beam 

element model, which incorporates bond slip deformations. The correlation between 

experimental and analytical results obtained by Spacone and Limkatanyu (2000) was quite 

satisfactory. 

 

Figure 8.3 presents three different analytical results obtained using the present 

model. The solid line represents results of the first modeling approach (Model 1), where 

bond slip deformations in both the column and in the anchorage zone (strain penetration) 

are considered. The second model (Model 2), the results of which are represented by the 

dashed line with narrow spacing, considers bond slip deformation in the column only, 
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Figure 8.1.  Geometry and Loading Conditions for ‘Specimen 1’ (Low and Moehle, 1987). 

 

neglecting the strain penetration effects. In the third model (Model 3), represented by the 

dashed line with wide spacing, all bond slip and strain penetration effects are neglected 

(perfect bond condition). 

 

All three models capture the column lateral load capacity accurately. In Models 2 

and 3, the pre-yield stiffness in the analytical results is overestimated, since column base 

rotations due to the strain penetration effects are ignored. Moreover, the models that do not 

consider column bond slip and strain penetration (model 2 and model 3) obviously tend to 

overestimate the hysteretic energy dissipation (cumulative area under the load – 

displacement loops) of the specimen. During unloading, initial unloading is followed by 

closing of the cracks, reloading, and yielding of the longitudinal steel in tension.  With the 

model considering bond slip deformations in both the column and the anchorage zone 

(model 1), when the column unloads, closing of the crack is accompanied by slip of 

reinforcing bars at the column base. This gives a more flexible response, and yielding of 

the reinforcing bars in tension is delayed.  
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From Figure 8.3, it can be deduced that the hysteretic behavior of reinforced concrete 

columns, subjected to severe seismic excitations, is dependent on the bond interection 

between steel and concrete, even if no anchorage failure takes place. 

 

 
Figure 8.2.  Experimental and Previous Analytical Responses of ‘Specimen 1’ (Spacone 

and Limkatanya, 2000). 

 

 
 

Figure 8.3.  Analytical Response Prediction for ‘Specimen 1’. 
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8.4.2.  Bousias et al. (1995) Specimen: 

 

Figure 8.4 illustrates details of the column specimen tested by Bousias et al. (1995). 

The specimen was 1490 mm long, with a cross section of 250 mm by 250 mm, and 

anchorage length of 480 mm (30db) in the foundation; and was subjected to a constant 

axial load 300 kN and a variable cyclic lateral load acting at the top. A concrete cover of 

15 mm was provided on all faces. The longitudinal reinforcement consisted of 3 bars 16 

mm in diameter, placed at the sides, and 2 bars 16 mm in diameter placed at the center. 

The concrete compressive strength was 30.7 MPa, and the yield strength of reinforcing 

steel was 460 MPa. The elastic modulus measured for the longitudinal steel was 

approximately 210,000 MPa.  

 

 
 

Figure 8.4.  Bousias Specimen (Bousias et al., 1995). 

 

Figure 8.5 shows the comparison of lateral load – displacement responses between 

the test results and the analytical study conducted by Ayoub (2006). Although the finite 

element model formulated by Ayoub (2006) captured the column lateral load capacity, the 

hysteretic shape of the unloading and reloading loops and especially the pinching 

properties of the response were not represented well by the analytical model by Ayoub 

(2006). 
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Similarly with the ‘Specimen 1’by Low and Moehle (1987), three models were 

generated using the present analytical model for this specimen, the predictions of which 

are presented  in Figure 8.6. The model formulation considering bond slip deformations in 

the both column and in the anchorage zone accurately predicts the cyclic attributes of the 

measured response, including lateral load capacity, shape of the hysteretic loops, cyclic 

stiffness degradation, cyclic energy dissipation capacity, and pinching behavior. 
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Figure 8.5.  Experimental and Previous Analytical Results Response of ‘Bousias (1995)’ 

Specimen (Ayoub, 2006). 

 

 

 
 

Figure 8.6.  Analytical Response Prediction for ‘Bousias (1995)’ Specimen. 
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8.4.3.  Aboutaha (1994) and Aboutaha et al. (1996) Specimens: 

 

Aboutaha (1994) and Aboutaha et al. (1996) conducted a series of tests on 

cantilever-type column specimens (Figure 8.7), representing half the height column, 

subjected to bending under double curvature, within a real building frame. All of the 

column specimens were 2.74 m high from the top of footing to the point of load 

application, to ensure flexural dominated behavior. Cyclic lateral loads were applied at the 

top of the column. All columns were loaded in the weak direction. Lateral loads were 

increased in 22.25 KN increments until significant inelastic displacement was observed. 

Lateral displacements were then increased in increments corresponding to 0.5% drift 

ratios. The columns were laterally loaded with two complete cycles at every load or drift 

ratio level. No axial load was applied. Longitudinal bars were all spliced at the base of the 

column as shown in Figure 8.7. The lap splice length corresponded to 24 bar diameters. A 

concrete cover 38 mm was provided for all transverse ties. For all the test specimens, the  

 

 
Figure 8.7.  Details of Test Specimens (Aboutaha, 1994, Aboutaha et al. ,1996). 

 

longitudinal reinforcement bars were 25.4 mm dia. (Yield strength, 413 Mpa) 

reinforcement.  Transverse ties were with 9.5 mm dia (Yield strength, 276 Mpa) bars, 

spaced at 406 mm.  
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Five specimens (FC1, FC4, FC5, FC14 and FC15) were tested to consider the effect 

of varying concrete compressive strength, amount of longitudinal and transverse  

reinforcement, and cross-sectional  dimensions on the behavior.  

 

Figures 8.8, 8.10, 8.13, 8.16, and 8.18 show the measured responses for specimens 

FC1, FC4, FC5, FC14, and FC15, respectively. For specimen FC4, splice failure was 

associated with the formation of vertical splitting cracks along the full height of the splice. 

Strain readings showed that the strain levels in the longitudinal bars was just below 

yielding, prior to splice failure. Hence, splice failure occurred before development of the 

flexural yield capacity of the column. Specimen FC4 demonstrated very poor ductility and 

energy dissipation characteristics. Specimen FC1 also experienced a splice failure. 

However, specimen FC1 reached its flexural capacity, and maintained it up to a drift ratio 

of approximately 2%, prior to splice failure. The improved performance of specimen FC1 

was attributed to its higher concrete compressive strength, and the presence of cross ties on 

every longitudinal bar. Until 1.5% drift ratio, specimen FC1 experienced stable hysteretic 

loops. At 2% drift ratio, the specimen showed dramatic loss in strength and stiffness. 

Splice failure after yielding of the main longitudinal bars, and the gradual (as opposed to 

sudden) extension of the vertical splitting cracks was attributed to the relatively higher 

concrete compressive strength, compared to the design value. For specimen FC5, vertical 

splitting cracks extended to almost half the height of the splice, as the lateral load level was 

approximately 156 kN. Splice failure occurred when the vertical splitting cracks extended 

over the full length of the lap splice, at a lateral load level of 40 kips. The splice failure of 

specimens FC14 and FC15 was very brittle, with very rapid loss in strength and stiffness, 

and occurred prior to flexural yielding.  

 

In the analytical responses obtained using the present model for all of these column 

specimens, the lateral load capacities are predicted very well, as shown in Figures 8.8 to 

8.19. The lateral displacement values corresponding to peak lateral load are also generally 

well-captured, although the model tends to underestimate the displacement at peak load, 

for some cases. General characteristics of the cyclic response, including the shape of the 

hysteretic loops, pinching properties, and degradation in the lateral load in post peak region 

are all captured reasonably well. However, for specimen FC1 (Figure 8.9), the analytical 

model estimates a more rapid degradation in the lateral load due to splice failure, as 
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opposed to the experimentally observed flexural yielding prior to splice failure. This 

discrepancy may be attributed to no reduction in the bond stresses in the constitutive bond 

slip relationships adopted in the model, associated with bar yielding.  

 

Specimen FC4 was analyzed using two model formulations, the first of which 

incorporates splitting springs (for partially-confined concrete) only, whereas the second 

formulation also included pullout springs (for confined concrete) within the vicinity of the 

ties.  As described previously in Chapter 6. Results of the two model formulations 

presented in  Figures 8.11 and 8.12 illustrate that for this specimen, using the second 

model formulation (splitting and pullout springs used together) provides an improved 

prediction of the response. Consideration of the tension stiffening effects (reduction in the 

effective yield strength of reinforcing steel, modification of the strain hardening ratio, and 

modification of the post-crack stress – strain behavior of concrete) does not significantly 

improve the analytical response prediction for specimen FC5, as illustrated by the two 

analysis results, shown in Figures 8.14 and 8.15. 
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Figure 8.8.  Experimental Response of Specimen FC1 (Aboutaha et al., 1996). 

 

 
 

Figure 8.9.  Analytical Response of Specimen FC1,with Splitting Springs Only. 
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Figure 8.10.  Experimental Response of Column Specimen FC4 (Aboutaha et al., 1996). 

 
 

Figure 8.11.  Analytical Response of Specimen FC4, with Splitting Springs Only. 

 
Figure 8.12.  Analytical Response of Specimen FC4, with Both Pullout and Splitting 

Springs. 
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Figure 8.13.  Experimental Response of Specimen FC5 (Aboutaha et al., 1996). 

 
Figure 8.14.  Analytical Response of Specimen FC5, Considering Tension Stiffening. 

 

 

 
 

Figure 8.15.  Analytical Response of Specimen FC5, not Considering Tension Stiffening. 
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Figure 8.16.  Experimental Response of Specimen FC14 (Aboutaha et al.,1996). 

 

 

 
 

Figure 8.17.  Analytical Response of Specimen FC14. 
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Figure 8.18.  Experimental Response of Specimen FC15 (Aboutaha et al. ,1996). 

 

 

 

 
 

 

Figure 8.19.  Analytical Response of Specimen FC15.  
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8.4.4.  Harajli and Dagher (2008) Specimens: 

 

Harajli and Dagher (2008) tested a series of full-scale column specimens with lap-

spliced reinforcement at the base. The three column specimens  C14, C16, and C20 had 

longitudinal reinforcement diameters of 14, 16, and 20 mm, respectively. Figure 8.20  

 

 

 
 

Figure 8.20.  Details of Test Columns and Load History (Harajli and Dagher, 2008). 
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shows details of the three specimens. The area of longitudinal reinforcement produced 

reinforcement ratios of 0.015 (for C14), 0.02 (for C16), and 0.023 (for C20). The  

longitudinal reinforcing bars of the specimens were lap-spliced with starter bars of the 

same diameter, anchored inside the footing using standard 90-degree hooks. The splice 

length for all columns was selected at 30 bar diameters. The side cover cs and bottom cover 

cb of the spliced bars in the column sections were chosen to produce a range of values of 

c/db, that would induce splitting bond failure before steel yielding. The horizontal loads 

were applied at a discance of 1.40 m above the column base. All specimens were subjected 

to the same lateral load history shown in Figure 8.20. The drift cycles were increased 

sequentially with three fully reversed cycles applied at each target drift level up to a 

maximum drift ratio of ±6%.  As the focus of the tests was to investigate the splitting bond 

strength of spliced column reinforcement, and since the splitting bond strength of spliced 

bars depends primarily on the tension stresses on the spliced bars, the specimens were 

tested under flexure only, with no axial load applied on the specimens. 

 

Figures 8.21, 8.23 and 8.25 show the experimental responses for column specimens 

C14, C20 and C16 respectively. All specimens developed splitting cracks at the bottom 

during relatively early stages of the response. The splitting cracks first developed at the 

base of the columns, and propagated upwards along the full splice length, as the lateral 

drift increased. Splitting bond failure caused concrete spalling along the splice length and 

substantial slip of the starter bars at the column-footing interface.  

 

Figures 8.22, 8.24, and 8.26 present the analytical responses obtained using the 

present model for column specimens C14, C20, and C16, respectively, considering tension 

stiffening effects on concrete and reinforcing bars. The lateral load capacities of specimens 

C14 and C20 were overestimated by the analytical model, whereas a better lateral load 

capacity prediction was obtained for specimen C16. General characteristics of the cyclic 

response, including the shape of the hysteretic loops, pinching properties, and degradation 

in the lateral load in post peak region are captured reasonably well for all specimens. 

 

During the tests, these specimens were observed to fail under a combined effects of 

longitudinal bar yielding and slip failure along the splice. The analytical model also 

predicts such a coupled yielding–slip response for the specimens. However, the reason that 
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the model overestimates the lateral load capacity of specimens C14 and C20 may be 

attributed to the fact no reduction was applied to the bond stress values in the constitutive 

bond slip relationships adopted in the model, associated with bar yielding. Eligehausen et 

al. (1983) states that when a deformed reinforcing bar yields in tension, the bond stresses 

acting on the bar are reduced, since the diameter of the bar rapidly decreases, due to 

Poisson’s effects, after yielding in tension. The opposite was also stated to be true, for a 

reinforcing bar yielding in compression. However, the Poisson’s effect on bond stresses 

was not considered in the original hysteretic constitutive bond stress vs. slip model 

developed by Eligehausen et al. (1983), and was therefore not adopted in the present 

analytical model study. Such an improvement in the constitutive bond slip relationship 

may improve the analysis results and lateral load capacity predictions for these column 

specimens. 
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Figure 8.21.  Experimental Response of Specimen C14 (Harajli and Dagher, 2008). 

 

 

 

 
 

Figure 8.22.  Analytical Response of Specimen C14.   
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Figure 8.23.  Experimental Response of Specimen C20 (Harajli and Dagher, 2008). 

 

 

 
 

Figure 8.24.  Analytical Response of Specimen C20.  
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Figure 8.25.  Experimental Response of Specimen C16 (Harajli and Dagher, 2008). 

 

 

 

 
 

Figure 8.26.  Analytical Response of Specimen C16.  
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8.4.5.  Elgawady et al. (2010) Specimen: 

 

Elgawady et al. (2010) investigated the cyclic behavior of eight 4/10-scale reinforced 

concrete column specimens representing the properties of columns in existing bridges 

constructed in the state of Washington prior to 1971. All specimens were tested under 

constant axial load and incrementally increasing lateral loading cycles. Two modes of 

failure were observed for the column specimens, which are low-cycle fatigue failure of 

longitudinal reinforcement and slip failure of the lap splice. In the column specimens, 

longitudinal bars were lap spliced (over a length of 35 bar diameter), at the base of the 

column with the starter bars extending from the foundation. Column specimens had a 

height of 2.03 m and a cross section of 254 mm x 381 mm. All specimens had an 

approximate longitudinal reinforcement ratio of 1.2%, provided with 12.5 mm – diameter 

deformed rebars, and 6.3 – mm diameter smooth mild steel ties at 125 mm spacing as 

transverse reinforcement The specimens were subjected to reverse cyclic lateral loading, 

applied at 1803 mm from column base, with increasing levels of lateral displacements. The 

concrete of the specimens had an average compressive strength of 31 MPa, measured at the 

time of testing. A yield strength of 331 MPa was measured for the longitudinal 

reinforcement. Mild steel with a measured yield strength of 372 MPa was used for the 

transverse reinforcement. Details of the specimens are illustrated in Figure 8.27. 
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Figure 8.27.  Typical Dimensions and Reinforcement for a Test Specimen (Elgawady et 

al., 2010). 

 

Figure 8.28 shows the experimental lateral load – top displacement relationship of 

specimen AB1. During the test, the specimen ultimately failed due to low-cycle fatigue of 

the longitudinal reinforcement.  At a drift ratio of 1.7%, spalling of the concrete cover and 

buckling of the longitudinal bars at the base of the column were initiated. During the last 

loading cycles, the longitudinal bars ruptured due to a low-cycle fatigue effects, leading to 

more than 20% drop in the lateral load capacity of the specimen. Figure 8.29 shows the 

analytical response prediction for the specimen AB1, obtained using the present model, 

considering tension stiffening effects on the response. The lateral load capacity of the 

column is accurately predicted by the model. Hysteretic characteristics of the response are 

also well-represented, except the last three cycles of loading where reinforcement buckling 

and low-cycle fatigue effects influence the experimental response. Therefore, the model 

predictions may be improved, upon incorporating buckling and low-cycle fatigue effects in 

the constitutive relationship adopted in the model for reinforcing steel.  
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Figure 8.28.  Experimental Response of Specimen AB-1 (Elgawady et al., 2010). 

 

 

 
 

 

Figure 8.29.  Analytical Response of Specimen AB-1.  
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8.4.6.  Lynn et al. (1996) Specimen: 

 

Lynn et al. (1996) conducted tests on eight full-scale column specimens representing 

typical detailing used in the United States prior to the 1970s. The specimens were 

subjected to reversed cyclic lateral displacements, while the axial load was held constant 

for the duration of the test, at a level corresponding to approximately 12% of the axial load 

capacity of the columns. Observed failure modes included localized crushing of concrete, 

buckling of reinforcement, splitting bond failure at the lap splice, shear failure, and axial 

load collapse. One of the specimens, labeled as 2SLH18 (Figure 8.30), incorporated a lap 

splice at the base. The lap splice length corresponded to 20 longitudinal bar diameters. The 

specimen had a clear height of 2946 mm, and a 457.2 mm – square cross-section. A clear 

cover of 50 mm was used. Figure 8.30 shows the reinforcement details of the specimen and 

the loading used to impose zero top rotation and double – curvature bending moments on 

the specimen. Lateral loads were applied by an actuator attached horizontally between the 

loading frame and the reaction frame, with the loading axis passing through the column 

mid-height.  The vertical actuators were controlled to maintain constant axial load zero 

rotation at the top of the column.  

 

Comparing the experimental and analytical responses presented in Figures 8.31 and 

8.32, it is observed that the model predicts the response features of the specimen, except 

the degradation in the lateral load for larger drift levels. During testing, the specimen 

exhibited considerable flexural deformation before failure, associated with yielding of the 

longitudinal bars.  Since the response of this specimen was not dominated by bond slip 

failure of the lap splice, the analytical model incorporating tension stiffening effects 

provided a better prediction of the behavior. During the test, considerable damage was 

observed in the splice region due to combined flexural and shear deformations. The 

analytical model does not capture the lateral load degradation in the later loading cycles, 

since it does not incorporate a robust approach to simulate nonlinear shear deformations 

through coupling of inelastic flexural and shear responses. This may also be the reason 

why the hysteretic loops in the analytical response are somewhat wider. Using an 

improved modeling methodology to simulate nonlinear shear responses and shear – flexure 

interaction effects may improve the model predictions for such a type of failure mode. 
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(a) 

 
(b) 

 

Figure 8.30.  (a) Column Details (b) Loading assembly (Lynn et al., 1996). 
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Figure 8.31.  Experimental Response of Specimen 2SLH18 (Lynn et al. ,1996). 

 

 

 
 

Figure 8.32.  Analytical Response of Specimen 2SLH18, Considering Tension Stiffening. 
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8.4.7.  Harries et al. (2006) Specimen: 

 

The full scale column specimen, ‘L0’ (Figure 8.33), tested by of Harries et al. 

(2006), incorporated a 22 bar diameter lap splice length, and was tested under combined 

axial and cyclic lateral loads. The column specimen was initially designed so that the lap 

splice would cause bond slip failure prior to achieving the flexural capacity of the column. 

The column specimens had 458 mm square cross sections with eight 22 mm – diameter 

longitudinal reinforcing bars. 9.5 mm – diameter ties with 356 mm spacing were located 

over a height of 1780 mm from the base of the column. These ties incorporated deficient 

90-degree hooks. The axial load level applied during testing was approximately 25% of the 

column axial load capacity, and was maintained constant throughout the cyclic lateral load 

history, using a regulated system of hydraulic rams. The reversed cyclic lateral loads were 

applied to the column specimen at a height of 2440 mm, which was selected to ensure a 

sufficiently high moment-to-shear ratio to result in flexure-dominated column behavior. 

The columns were tested as cantilevers with the lateral loads applied at the top, 

approximately representing the half the height of an actual column in a building frame, for 

which the point of inflection is located at the mid-height. Three loading cycles were at 

each load level corresponding to 1/3 and 2/3 of the expected flexural yield capacity, 

followed by three cycles at each lateral displacement level corresponding to 1.0, 1.5, 2.0, 

2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 10.0 times the expected yield displacement.  

 
Figure 8.33.  Column Reinforcement Details and Test Setup (Harries et al., 2006). 
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Figures 8.34 and 8.35 respectively show the experimental and analytical responses 

for the specimen, both of which are which are typical of columns having splice lengths 

insufficient to develop the yield strength of the longitudinal bars. In test, at 36 mm lateral 

displacement, (for which the lateral load capacity of 190 kN was recorded), the 

longitudinal cracks in the lap splice region widened and crushing of the concrete at the 

base of the column was observed. Widening of the longitudinal cracks indicated sudden 

slip deformation along the splice. Failure was ultimately characterized by significant 

widening of the vertical splitting cracks in the lap splice region, together with crushing of 

concrete. Overall, the analytical response prediction is in good agreement with the 

observed behavior. The lateral load capacity, hysteretic properties, and pinching 

characteristics of the response are all captured by the analytical model, with reasonable 

accuracy.  

 
Figure 8.34.  Experimental Response of Specimens L0 (Harries et al., 2006). 

 

 
Figure 8.35.  Analytical Response of Specimen L0, Considering Tension Stiffening. 
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8.4.8.  Yildiz (2006) Test: 

 

Yildiz (2006) conducted an experimental program on reinforced concrete columns 

with deficient detailing and low material quality, representing older non-ductile buildings 

in Turkey. Two of her specimens (Specimens AF(COG0)B1 and AF(COG0)B2) 

incorporated deficient lap splices, with splice lengths equal to 15 bar diameters, and were 

subjected to constant axial and reversed cyclic lateral loads. All test specimens were 

designed such that shear failure would be avoided. However, all specimens possessed 

inadequate confinement. Details of the specimens are presented in Table 8.1 and Figure 

8.36. 

 

 
 

Figure 8.36.  Column Reinforcement Details (Yildiz, 2006). 

 

Figures 8.37 and 8.39 show the experimental responses measured respectively for 

specimens AF(COG0)B1 and AF(COG0)B2, whereas Figures 8.38 and 8.40 present the 

analytical response predictions for the respective specimens. In both analytical response 

predictions, the lateral load capacity of each specimen is overestimated by a small margin. 

Other response characteristics including the shape of the hysteresis rules, cyclic 

degradation in lateral load in the post-peak region of the response, lateral displacement at 

peak lateral load values, and pinching properties, are all well-represented in the analysis 

results.   
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Figure 8.37.  Experimental Response of Specimen AF (C0G0) B1 (Yildiz, 2006). 

 

 
 

Figure 8.38.  Analytical Response of Specimen AF (C0G0) B1. 
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Figure 8.39.  Experimental Response of Specimen AF (C0G0) B2 (Yildiz, 2006). 

 

 

 
 

Figure 8.40.  Analytical Response of Specimen AF (C0G0) B2.  
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8.4.9.  Verderame et al. (2008) Test: 

 

Verderame et al. (2008) conducted experiments on reinforced concrete column 

specimens incorporating with smooth reinforcing bars. Two types of specimens were 

considered, depending on the longitudinal reinforcement details at column base. Type A 

specimens had lap-spliced and hooked bars with 40 bar diameter long splice length (Figure 

8.41(a)), whereas continuous longitudinal bars were provided for Type B specimens 

(Figure 8.41(b)). Two different levels of axial load (270 kN and 540 kN) were applied to 

represent the loading conditions of two columns in a prototype building. For the specimen 

types investigated in detail in the present study (C-270A1 and C-540A1 with lap splices 

and 180-degree hooks; C-270B1 and C-540B1 with continuous reinforcement), the 

specimens were 2000 mm high, with a 300 mm by 300 mm square cross-section. 

Longitudinal reinforcement consisted of six 12 mm – diameter smooth bars, while 8 mm – 

diameter ties were spaced at 100 mm spaced. Reinforcing steel was mild and ductile with a 

yielding stress of 355 MPa and ultimate stress of 470 MPa, with a fracture strain value of 

0.27. Concrete used had a cylindrical compressive strength of approximately 25 MPa. 

Cyclic lateral loads were applied at a height of 1570 mm from the top of the specimen 

foundations. Maximum lateral displacements of ±100 mm were applied on the specimens, 

and the specimens were cycled three times at 15 target drift levels, as reported in Figure 

8.41(c). Details of the test specimens are presented in Figure 8.41 and Table 8.1.  
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   (a)       (b)  

 
 

 

(c) 

 

Figure 8.41.  (a),(b) Geometry and Reinforcement Details of Column Specimens, (c) 

Lateral Load History (Verderame et al., 2008). 
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Figure 8.42  illustrates the experimental response measured for specimen, C270-A1, 

which shows a gradual lateral load degradation (due to progressive spalling of concrete) 

and pronounced pinching effects in the behavior. The experimental response of specimen 

C-270B1 is shown in Figure 8.46. For this specimen, apart from the overall gradual 

degradation in lateral load and moderate pinching behavior, the last drift cycle (±100 mm) 

is characterized by a further degradation of lateral load, related to buckling of the 

reinforcing bars on the compression side. Figure 8.48 and 8.52 displays the experimental 

response of specimens C- 540A1 and C-540B1, which also experienced gradual 

degradation in lateral load during the tests, due to progressive crushing and spalling of 

concrete. The failure mode of all of specimens was flexure – dominated, and splice failures 

were not observed for the specimens (C-270A1 and C-540A1) with deficient lap splices 

and hooks.   

 

Experimental responses presented in Figures 8.42 and 8.46 indicate that the lateral 

load capacities measured for the specimen with the lap splice (C-270A1) and the specimen 

with continuous reinforcement (C-270B1), are similar in magnitude. This behavior is also 

observed in the analytical responses shown in Figures 8.43 and 8.47. The analyses of the 

results of Figures 8.43 and 8.47 are found assigning the hook springs connecting the 

bottom rigid beam of the second model element from column base, to the longitudinal bars 

in the splice. (to allow the uplift of the longitudinal bar hook from the column-pedestal 

interface). However, although the analytical model captures the lateral load capacities of 

the specimens, the gradual degradation of the lateral load capacity with increasing drift is 

not represented in the analysis results. As well, the experimental results (Figures 8.42 and 

8.46) reveal that the specimen with the lap splice (C-270A1) experiences a more 

pronounced pinching behavior, compared to the specimen with continuous reinforcement 

(C-270B1). Such a tendency is not represented in the analytical responses (Figures 8.43 

and 8.47).  

 

For further investigation, Figures 8.44 and 8.50 present the analytical responses for 

the lap spliced specimens C-270A1 and C-540A1, under the condition that the hook 

springs of the longitudinal bars of the splice are assigned to the very first model element at 

the base of the column . In these analysis results, the lateral load capacities of the column 
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specimens are significantly overestimated, compared with the analytical responses 

obtained using the hook springs. 

 

The lateral capacities measured during test were also similar for the spliced column 

specimen (C-540A1) and the specimen with continuous reinforcement (C-540B1), both 

subjected to high–level axial load (Figures 8.48 and 8.52). This behavior is also observed 

in the analytical responses shown in Figures 8.49 and 8.53. However, although the 

analytical model captures the lateral load capacities of the specimens, the gradual 

degradation of the lateral load capacity with increasing drift is again not represented in the 

analysis results. 

 

Both the experimental and analytical responses indicate that the overall level of 

pinching in the response is influenced by the level of axial load, where higher axial load 

results in less pronounced pinching. As well, both the analytical and measured responses 

indicate that the lateral load capacity of each specimen is influenced by the level axial 

load, where the lateral load capacity increases with increased axial load level, for the 

specimens investigated. The analytical and experimental responses are also compatible in 

the sense that the analytical results obtained for the specimens with lap splices do not 

predict bond slip failure of the splice, due to the presence of the 180-degree hooks on the 

starter and longitudinal bars. 

 

The discrepancies in the analytical model predictions may be recovered upon 

implementing realistic hysteretic rules in the bar stress vs. end slip deformation 

constitutive model for the 180-degree hook (which is not available in the literature), as 

well as incorporating the modifications to consider local buckling (as suggested by Prota et 

al. ,2009) in the constitutive stress – strain relationship of the reinforcing bars.  

 

The constitutive relationship implemented in the analytical model for reinforcing 

steel (Menegotto and Pinto, 1973) may need to be improved to represent the behavior of 

plain bars, as suggested by Prota et al. (2009). Prota et al. (2009) proved that cyclic stress 

–  strain behavior of plain bars is symmetric in tension and compression when the L/D ratio 

of the bar (L being the stirrup spacing and D being the longitudinal bar diameter) is smaller 

than 8, and that it becomes non-symmetrical due to buckling of the bar, as the L/D ratio 
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increases. Comparing the experimental stress – strain behavior of deformed and smooth 

bars investigated by Prota et al. (2009), it also appears that the shape of the hysteretic 

stress – strain loops may differ among deformed and plain bars. However, the differences 

diminish and the shape of the hysteretic loops become increasingly similar as L/D ratios 

increase.  The L/D ratio of the smooth bars used in the column specimens of Verderame et 

al. (2008) is 8.33. 

  

 

In the other extreme, if the hooks at the bottom of longitudinal bars are removed 

from the analytical model for the lap spliced specimens C-270A1 and C-540A1, the 

analytical responses would have been as presented in Figures 8.45 and 8.51, respectively, 

clearly identifying the necessity to include the hook springs in the analytical model 

formulation. 
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Figure 8.42.  Experimental Response of Specimen C-270 A1 (Verderame et al., 2008). 

 

 

 
 

Figure 8.43.  Analytical Response of Specimen C-270 A1. 
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Figure 8.44.  Analytical Response of Specimen C-270 A1, with Hook Asigned at the Base 

of the Column. 

 

 

 
 

Figure 8.45.  Analytical Response of Specimen C-270 A1, with no Hook at Column Base. 
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Figure 8.46.  Experimental Response of Specimen C-270 B1 (Verderame et al., 2008). 

 

 

 

 
Figure 8.47.  Analytical Response of Specimen C-270 B1.  

 

 

 

-8 -6 -4 -2 0 2 4 6 8
Drift (%)

-50
-40
-30
-20
-10

0
10
20
30
40
50

 F
or

ce
, F

 (k
N

)

270B1



 

271

 
 

Figure 8.48.  Experimental Response of Specimen C-540 A1 (Verderame et al., 2008). 

 

 
 

Figure 8.49.  Analytical Response of Specimen C-540 A1.  
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Figure 8.50.  Analytical Response of Specimen C-540 A1, with Hook Asigned at the Base 

of the Column. 

 

 

 

 
 

Figure 8.51.  Analytical Response of Specimen C-540 A1, with no Hook at Column Base. 
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Figure 8.52.  Experimental Response of Specimen C-540 B1 (Verderame et al., 2008). 

 

 

 
 

Figure 8.53.  Analytical Response of Specimen C-540 B1. 
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8.4.10.  Yilmaz (2009) Specimens:  

 

Yilmaz (2009) investigated the effect of deficient lap splices with plain bars 180-

degree hooks, as well as the influence of low concrete compressive strength on the lateral 

load behavior of reinforced concrete columns in typical poorly-constructed buildings in 

Turkey. In his experimental study, the column specimens incorporated 14 mm – diameter 

(φ) smooth longitudinal bars, 10 mm – diameter poorly detailed and wide-spaced ties, and 

an average concrete compressive strength of approximately 12 MPa.  In construction of 

four specimens, different lap splice lengths (25φ, 35φ, 44φ, 55φ) were used, and one 

specimen incorporated continuous longitudinal reinforcement. The column specimens were 

tested under zero axial load and reversed-cyclic lateral loading. Figures 8.54, 8.55 and 8.56 

present the isometric view, plan view and cross sectional views of a representative column 

specimen.  The lateral drift history imposed on the specimens is presented in Figure 8.57. 

Figure 8.58 shows 28-day compressive stress strain relationships measured on cylindrical 

specimens of the concrete used in the construction of the specimens, Figure 8.59 illustrates 

the stress – strain test results conducted on samples of the 14-mm-diameter plain 

reinforcing bar. Average yield and ultimate stress values for the longitudinal reinforcement 

were reported as 285 Mpa and 440 MPa, respectively. Figures 8.60 and 8.61 illustrate the 

damage observed on specimens LS-44φ-N1 and LS-55φ-N1, respectively, at large drift 

levels. Details of the tests are described in the M.Sc. Thesis by Yilmaz (2009). 
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Figure 8.54.  Typical Isometric View of a Specimen (Yilmaz, 2009). 

 

 

 
 

Figure 8.55.  Typical Plan View of a Specimen (Yilmaz, 2009). 
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Figure 8.56.  Reinforcement Layout (Yilmaz, 2009). 
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Figure 8.57.  Imposed Lateral Drift History (Yilmaz, 2009). 

 

 
 

Figure 8.58.  Measured Concrete Stress – strain Relationships (Yilmaz, 2009). 
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Figure 8.59.   Measured Stress – strain Relationships for 14 mm Plain Bars (Yilmaz, 2009). 

 

 

 

 
 

Figure 8.60.  Damage at the Base of Specimen LS-44φ-N1 (Yilmaz, 2009). 

 

 

 

 
 

 
 
 
 

St
re

ss
 (M

pa
) 

Strain  



 

279

 
 

Figure 8.61.  Damage at the Base of Specimen LS-55φ-N1 (Yilmaz, 2009). 

 

Figures 8.62, 8.64, 8.66, and 8.68 show the experimentally-measured lateral load – 

top displacement responses of the specimens with increasing lap splice lengths (LS-25φ-

N1, LS-35φ-N1, LS-44φ-N1 and LS-55φ-N1), whereas Figure 8.70 displays the 

experimental response of the column specimen (LS-CON-N1) with continuous 

longitudinal reinforcement. In all of the five experimental responses, the lateral load 

capacities are similar. For the specimens with shorter lap splice lengths (LS-25φ-N1 and 

LS-35φ-N1), the responses exhibit degradation in the lateral load after the peak value is 

reached, as well as moderate-level pinching behaviour after lateral load degradation 

initiates. Cyclic behaviour of the other two specimens with lap splices (LS-44φ-N1 and 

LS-55φ-N1) are very similar to each other, with no degradation in the lateral load after the 

peak. The hysteretic unloading/reloading loops are progressively wider, and pinching 

characteristics diminish, as the lap splice length of the specimens increase. General 

response characteristics of the specimen with continuous longitudinal reinforcement (LS-

CON-N1) are similar to those of the specimen with 55-bar-diameter long lap splice (LS-

55φ-N1)  

 

The analytical response predictions obtained using the present model (with hook 

springs incorporated) for all of the five specimens testes, are shown in Figures 8.63, 8.65, 

8.67, 8.69 and 8.71. The predicted lateral load capacities of the specimens are similar to 

each other and reasonably close to the experimentally-measured capacities. In fact, the 
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analytical responses obtained for the 4 specimens with various lap splice lengths are 

practically identical.   

 

The analytical model is incapable of capturing the hysteretic properties of the 

experimentally–measured responses of the lap-spliced specimens, due to the absence of 

realistic hysteretic rules in the bar stress vs. hook end slip constitutive model for the 180-

degree hooks. As well, the degradation in lateral load, observed in the experimental 

responses is not captured by the analytical model, possible due to the lack of consideration 

of local buckling (as suggested by Prota et al., 2009) in the constitutive stress – strain 

relationship of reinforcing bars. The stirrup-spacing-to-bar-diameter (L/D) ratio of these 

specimens is approximately 14 (larger than 8), indicating that bar buckling effects can be 

pronounced for these specimens, as suggested by Prota et al. (2009).  

 

Figure 8.72 presents the analytical response obtained for the lap-spliced specimens 

LS-25ø-N1, under the condition that the hook springs of the longitudinal bars of the splice 

are assigned to the very first model element at the base of the column. In this analysis 

result, the lateral load capacity of the column specimens is significantly overestimated, 

similarly to the case for the specimens tested by Verderame et al. (2008). 
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Figure 8.62.  Experimental Response of Specimen LS-25ø-N1 (Yilmaz, 2009). 

 

 

 
 

Figure 8.63.  Analytical Response of Specimen LS-25ø-N1. 
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Figure 8.64.  Experimental Response of Specimen LS-35ø-N1, (Yilmaz, 2009). 

 

 
 

Figure 8.65.  Analytical Response of Specimen LS-35ø-N1. 
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Figure 8.66.  Experimental Response of Specimen LS-44ø-N1 (Yilmaz, 2009). 

 

 

 
Figure 8.67.  Analytical Response of Specimen LS-44ø-N1. 
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Figure 8.68.  Experimental Response of Specimen LS-55ø-N1 (Yilmaz, 2009). 

 

 

 
 

Figure 8.69.   Analytical Response of Specimen LS-55ø-N1. 
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Figure 8.70.  Experimental Response of Specimen LS-CON-N1 (Yilmaz, 2009). 

 

 
Figure 8.71.  Analytical Response of Specimen LS-CON-N1. 
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Figure 8.72.  Analytical Response of Specimen LS-25ø-N1 with Hook Asigned at the Base 

of the Column. 
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9.   SUMMARY AND CONCLUSIONS 
 

 

The objective of this study was to develop a more robust and refined modeling 

approach to simulate the bond-slip responses observed in reinforced concrete columns 

under reversed cyclic loading. The proposed modeling methodology involves modifying 

the formulation of a fiber-based flexural model (i.e., the Multiple Vertical Line Element 

Model), with the fibers representing the hysteretic flexural behavior of concrete only. 

Reinforcing bar elements, with uniaxial hysteretic stress–strain relationships of their own, 

are connected to the concrete fibers through uniaxial bond slip springs, the behavior of 

which are represented with experimentally-derived hysteretic bond stress vs. slip 

constitutive relationships available in the literature for the splitting and pullout-type bond 

slip behavior of both deformed and smooth reinforcing bars, as well as for 180-degree 

hooks. Through this methodology, local bond slip behavior is incorporated at the fiber 

level, and full coupling of flexural and bond slip deformations of the model is retained 

under reversed cyclic loading conditions.  

 

9.1.  Model Capabilities and Characteristics 

 

It is verified that the analytical model proposed captures important response 

characteristics associated with the cyclic behavior of reinforced concrete columns with lap 

splices, the response of which is governed by either bond slip, flexure, or a coupled 

combination thereof. The analytical model is capable of directly incorporating important 

behavioral features in the analysis, including shifting of the neutral axis along the column 

cross-section, the distribution of bond stresses and slip deformations in the starter and 

longitudinal bars along the lap splice, and the direct effect of axial force (constant and 

fluctuating) on the analytical response, which are commonly ignored in simple models. 

Characteristics of the cyclic response, including stiffness degradation, and strength 

degradation, and hysteretic shape are clearly captured in the analysis results. Degradation 

of lateral load capacity due to slip failure and the preceding pinched response are also 

clearly represented. The model allows monitoring of local responses including longitudinal 

strains and stresses in concrete and reinforcing steel, as well as bond stresses and slip 

deformations at any location on the column. Local rotations, strain profiles, and neutral 
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axis locations, and bond stress distributions along either longitudinal or starter splice bars 

can also be obtained using the analytical model proposed.  

 

It is observed that the model global response is not significantly sensitive to model 

parameters including the number of model elements over the height of a column or the 

number of concrete macro-fibers along the width of the cross-section, as long as a 

reasonable number of model elements and macro-fibers are used in the construction of the 

model. However, finer discretization of the model provides improved local response 

predictions. 

 

9.2.   Model Correlation with Detailed Test Data for Specific Column Types 

 

The analytical model was shown to be very effective in predicting the cyclic 

behavior of the column specimens investigated in the experimental program by Melek 

(2006), conducted on six reinforced column specimens incorporating deformed reinforcing 

bars and deficient lap splices. The model provides accurate predictions of global response 

characteristics including the lateral load capacity, strength degradation, stiffness 

degradation, ductility, pinching properties, and other cyclic attributes of the lateral load vs. 

top displacement behavior. Rotations due to flexure and slip at different locations of the 

column specimens are also well-predicted by the analytical model. Local response and 

deformation predictions of the model (steel strain distributions, concrete strain profiles, 

neutral axis position, and average bond stresses along the lap splice) are also representative 

of the experimental measurements, with a reasonable level of accuracy.  

 

9.3.  Model Correlation with General Test Observations for Various Column Types  

 

Global (lateral load–displacement) response predictions obtained using the analytical 

model were also compared with additional experimental observations available in the 

literature, for various column specimens with both deformed and plain reinforcing bars, 

and with both deficient lap splices and continuous longitudinal reinforcement. Overall, the 

correlation studies conducted further verified that the model can effectively reflect the 

global response characteristics and failure modes of various column configurations 

incorporating either deficient lap splices or anchorage-deficient continuous reinforcement. 
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Bond-slip behavior may depends on scale of specimen. All column specimens (24 column 

specimens from 10 researchers and 6 detailed column tests from Melek, 2006) except one 

selected for this study were full-scaled column. Scaling effects are not expcted to influence 

the experimental behavior of the specimens or the correlation of model results with the 

experimental results. 

 

The model was shown to accurately represent the influence of bond slip 

deformations in the anchorage zone (strain penetration effects) on the global cyclic 

response and pinching characteristics of columns with continuous longitudinal 

reinforcement.  

 

The coupled flexural yielding and bond slip response observed in some of the lap-

spliced columns investigated, were better-represented by the analytical model when pullout 

springs were used in combination with splitting springs (where pullout spring are assigned 

in the vicinity of the ties), and the effects of tension stiffening on reinforcing steel behavior 

were considered. Nevertheless, the analytical model can still potentially overestimate the 

lateral load capacity of such columns, which may attributed to the fact no reduction was 

applied to the bond stress values in the constitutive bond slip relationships adopted in the 

model, associated with yielding of the reinforcing bars in tension. As well, it is deduced 

the model predictions may be improved, upon incorporating buckling and low-cycle 

fatigue effects in the constitutive relationship adopted in the model for reinforcing steel.  

 

The analytical model was found to capture the lateral load capacities of the splice-

deficient specimens incorporating plain bars and 180-degree hooks; however, the 

degradation observed during the tests in the lateral load with increasing drift levels, due to 

local buckling of longitudinal reinforcing bars, was not represented in the model results. 

The model also fails to provide accurate predictions of the cyclic characteristics and 

pinching attributes of the response of such columns. The discrepancies in the analytical 

model predictions may be recovered upon implementing realistic hysteretic rules in the bar 

stress vs. end slip deformation constitutive model for 180-degree hooks (which is not 

available in the literature), as well as incorporating the modifications to consider local 

buckling in the constitutive stress–strain relationship of reinforcing bars. 
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9.4.  Suggested Improvements and Recommendations for Future Studies  

 

(i) For a more accurate prediction of the lateral load capacity of columns experiencing 

flexural yielding together with bond slip deformations in the lap splice region, reduction of 

bond stresses associated with yielding of reinforcing bars in tension should be considered 

in the formulation of the constitutive bond stress – slip relationships adopted in the model,  

 

(ii) The model predictions of cyclic column response may be improved via adaptation of 

realistic hysteretic rules in the constitutive the bar stress vs. end slip deformation model 

used for 180-degree hooks, as well as considering local buckling effects in the constitutive 

stress–strain relationship of the reinforcing bars. 

 

 (iii) For response prediction of columns under more generalized loading conditions and 

modes of failure, the nonlinear shear response of the model needs to be improved, via 

implementation of a methodology that considers coupling of flexural and shear modes of 

deformation in a fiber-based model (e.g., Massone et al., 2006). 

 

(iv) The present model formulation can be used for predicting nonlinear dynamic 

responses, via adaptation of an incremental dynamic analysis algorithm that involves 

numerical integration and the force-controlled Newton-Raphson iteration strategy 

described in Chapter 5. 

  

Overall, the modeling approach proposed in this study is believed to be a significant 

improvement, towards realistic consideration of bond slip deformations and anchorage 

failures on the seismic response and performance of reinforced concrete structures. 

Implementation of the model into a computational platform (e.g., OpenSees, ref) will 

provide design engineers improved analytical capabilities to represent the seismic behavior 

of splice-deficient columns, which is essential for the application of performance-based 

evaluation methods for existing structures. 
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