
 

T.C. 

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ 

FEN BİLİMLERİ ENSTİTÜSÜ 

EMG İŞARETLERİNİN SINIFLANDIRILMASI  

VE ÖBEKLEŞTİRİLMESİ 

 

 

 

 

 

 

 

MÜCAHİD GÜNAY 
 

 

 

 

 

 

 

YÜKSEK LİSANS TEZİ 

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI 

KAHRAMANMARAŞ 2011 

 



 

T.C. 

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ 

FEN BİLİMLERİ ENSTİTÜSÜ 

EMG İŞARETLERİNİN SINIFLANDIRILMASI 

VE ÖBEKLEŞTİRİLMESİ 

 

 

 

 

 

 

MÜCAHİD GÜNAY 
 

 

 

 

 

 

 

Bu tez,  

Elektrik-Elektronik Mühendisliği Anabilim Dalında 

YÜKSEK LİSANS 

derecesi için hazırlanmıştır. 

KAHRAMANMARAŞ 2011



 

Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü öğrencisi 

Mücahid GÜNAY tarafından hazırlanan “EMG İşaretlerinin Sınıflandırılması ve 

Öbekleştirilmesi” adlı bu tez, jürimiz tarafından 10/01/2011 tarihinde oy birliği ile 

Elektrik-Elektronik Mühendisliği Anabilim Dalında Yüksek Lisans tezi olarak kabul 

edilmiştir.  

Yrd.Doç.Dr.Ahmet ALKAN(DANIŞMAN)  

Elektrik-Elektronik Mühendisliği Anabilim Dalı, K.S.Ü. 

 
 

Prof.Dr.M.Kemal KIYMIK(ÜYE)    

Elektrik-Elektronik Mühendisliği Anabilim Dalı, K.S.Ü. 

  

Yrd.Doç.Dr.M.Sait BOZGEYİK(ÜYE)   

Fizik Mühendisliği Anabilim Dalı, K.S.Ü. 

 
 

 

 

 

 

 

 

 

 

 

 

Yukarıdaki imzaların adı geçen öğretim üyelerine ait olduğunu onaylarım.     

Prof.Dr.Hakkı ALMA 

Fen Bilimleri Enstitüsü Müdürü 
 

 

 



 

TEZ BİLDİRİMİ 

 

Tez içindeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edilerek 

sunulduğunu, ayrıca tez yazım kurallarına uygun olarak hazırlanan bu çalışmada orijinal 

olmayan her türlü kaynağa eksiksiz atıf yapıldığını bildiririm. 

 

 

              

         Mücahid Günay 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bu çalışma KSÜ Bilimsel Araştırma Projeleri Yönetim Birimi tarafından desteklenen 
“Protez Kollar için EMG İşaretlerinin Sınıflandırılması ve Tanımlanması” adlı Yüksek 
Lisans Projesi tarafından desteklenmiştir. 
Proje No: 2010/5-8 YLS 

Not: Bu tezde kullanılan özgün ve başka kaynaktan yapılan bildirişlerin, çizelge, şekil ve 
fotoğrafların kaynak  gösterilmeden kullanımı, 5846 sayılı Fikir ve Sanat Eserleri 
Kanunundaki hükümlere tabidir. 



 

 i    
 

EMG İŞARETLERİNİN SINIFLANDIRILMASI VE ÖBEKLEŞTİRİLMESİ 
(YÜKSEK LİSANS TEZİ) 

 
MÜCAHİD GÜNAY 

 
ÖZ 

Bu çalışmada Elektromiyografi (EMG) işaretleri kullanılarak başarılı bir kol protez 

kontrolü için gerekli olan işaretlerin öbekleştirilmesi ve sınıflandırılması araştırılmıştır. 

Çalışmada dört farklı hareket için biceps ve triceps kaslarından üretilen EMG işaretleri 

incelenmiştir. Bu amaçla çalışmada koldan alınan 4 farklı harekete ait EMG işareti K- 

Ortalama, Bulanık C Ortalama, Destek Vektör Makineleri, Diskriminant Analizi, 

Olasılıksal Sinir Ağları ve İleri Beslemeli Yapay Sinir Ağları algoritmaları kullanılarak 

öbekleştirme ve sınıflandırma gerçekleştirilmiştir. Bu algoritmalar kullanılmadan önce 

işaretlerin bir ön işlemeden geçirilmesi gerekmektedir. Ön işlemede çok değişik 

uygulamalar mevcuttur. Bu amaçla işaretlerin Ortalama Mutlak Değer, Hareketli Averaj 

Filtresi, Eğri Uydurma ve Özbağlanım metotlarıyla özellik vektörleri elde edilmiştir. Elde 

edilen bu özellik vektörleri öbekleştirme algoritmalarına giriş olarak uygulanmıştır. 

Kullanılan veri seti üzerinde oldukça başarılı öbekleştirme ve sınıflandırma sonuçları elde 

edilmiştir. 

Anahtar  Kelimeler: EMG; DVM; LDA; YSA; Olasılıksal Sinir Ağları; K-Ortalama; 

Bulanık C-Ortalama. 
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ABSTRACT 

In this thesis, classification and clustering of electromyography (EMG) signals studied 

required for a prosperous arm prosthesis control. EMG signals generated by biceps and 

triceps muscles for four different movements are examined. To this end, clustering and 

classifying is carried out to EMG signals regarding to four different movements captured 

from the arm, by using K-Means, Fuzzy C Means, Support Vector Machine, Discriminant 

Analysis, Probabilistic Neural Network and Feed Forward Artificial Neural Network 

algorithms.  Prior to these algorithms, signals need to be preprocessed. There exists 

abundant different appliances in preprocessing.  For this purpose, by using Mean Absolute 

Value, Moving Average Filter, Curve Fitting and Autoregressive methods, the feature 

vectors of the signals are acquired .These feature vectors are provided as inputs to the 

classification/clustering algorithms. On the used data sets, very high 

classification/clustering performances are achieved. 

Key Words: EMG; SVM; LDA; ANN; PNN; K-Means; Fuzzy C-Means. 
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EMG İŞARETLERİNİN SINIFLANDIRILMASI VE ÖBEKLEŞTİRİLMESİ 
 

ÖZET 
 

Bu çalışmada Elektromiyografi (EMG) işaretleri kullanılarak başarılı bir kol protez 

kontrolü için gerekli olan işaretlerin öbekleştirilmesi ve sınıflandırılması araştırılmıştır. 

EMG işaretleri kas liflerinin kasılması sonucu oluşan çok sayıda aksiyon potansiyellerin 

birleşimi olup deri yüzeyinde algılanmaktadır.  Çalışmada dört farklı hareket için biceps ve 

triceps kaslarından üretilen EMG işaretleri incelenmiştir. Her EMG işaretinin tek bir 

örüntüsü olup, bu örüntülerin doğru ayrıştırılması ve sınıflandırılması önemlidir. Özellikle 

protez kol tasarımlarında değişik hareketler yapılırken elde edilen EMG işaretlerinin 

analizi oldukça önemlidir. Bu amaçla çalışmada koldan alınan 4 farklı harekete ait EMG 

işareti K- Ortalama, Bulanık C Ortalama, Destek Vektör Makineleri, Diskriminant Analizi, 

Olasılıksal Sinir Ağları ve İleri Beslemeli Yapay Sinir Ağları algoritmaları kullanılarak 

öbekleştirme ve sınıflandırma gerçekleştirilmiştir. Bu algoritmalar kullanılmadan önce 

işaretlerin bir ön işlemeden geçirilmesi gerekmektedir. Ön işlemede çok değişik 

uygulamalar mevcuttur. Bu amaçla işaretlerin Ortalama Mutlak Değer, Hareketli Averaj 

Filtresi, Eğri Uydurma ve Özbağlanım metotlarıyla özellik vektörleri elde edilmiştir. Elde 

edilen bu özellik vektörleri öbekleştirme algoritmalarına giriş olarak uygulanmıştır. 

Kullanılan veri seti üzerinde oldukça başarılı öbekleştirme ve sınıflandırma sonuçları elde 

edilmiştir.
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CLASSIFICATION AND CLUSTERING OF EMG SIGNALS 
 

SUMMARY 
 

In this thesis, classification and clustering of electromyography (EMG) signals studied 

required for a prosperous arm prosthesis control. The signal is the synthesis of numerous 

action potentials and captured from the skin surface. In this work, EMG signals generated 

by biceps and triceps muscles for four different movements are examined. Each EMG 

signal has one single pattern and it is essential to seperate and to classify these patterns 

properly. To this end, clustering and classifying is carried out to EMG signals regarding to 

four different movements captured from the arm, by using K-Means, Fuzzy C Means, 

Support Vector Machine, Discriminant Analysis, Probabilistic Neural Network and Feed 

Forward Artificial Neural Network algorithms.  Prior to these algorithms, signals need to 

be preprocessed. There exists abundant different appliances in preprocessing.  For this 

purpose, by using Mean Absolute Value, Moving Average Filter, Curve Fitting and 

Autoregressive methods, the feature vectors of the signals are acquired .These feature 

vectors are provided as inputs to the classification/clustering algorithms. On the used data 

sets, very high classification/clustering performances are achieved. 
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1. GİRİŞ 

 
Teknolojinin gelişimine paralel olarak elde edilen veri gün geçtikçe artmaktadır. Elde 

edilen verinin içerdiği bilgi de doğru orantılı bir şekilde artmaktadır. Bu verilerin kısa 

zamanda ve yüksek doğrulukta yorumlanması da önem kazanmaktadır.  Bu büyük ve 

kısmen karmaşık verinin anlamlı bir bilgiye dönüştürülmesi istatistiksel işaret işlemenin 

konusudur. İşaret işleme, verinin anlaşılır bir şekle dönüştürülmesi için çeşitli yöntemlerle 

veriyi işlemeye çalışır. Bu yöntemler, işaret işleme algoritmaların sürekli geliştirilmesini 

sağlamıştır. Bu algoritmalar, bilgisayarlar tarafından verilerin hızlı bir şekilde işlenerek 

yorumlanması için kullanılır.  

Bu çalışmada, biyoelektriksel işaretlerden olan EMG’nin sınıflandırılması ve bu 

sınıflandırmada kullanılan yöntemlerin karşılaştırılması yapılmıştır. 

 

1.1.EMG İşaretleri 
 

Elektromiyogram (EMG), kasın kasılması sonucu ortaya çıkan biyopotansiyel 

işaretlerdir. Elektromiyogram işaretlerin kaynağı vücutta meydana gelen çeşitli 

elektrokimyasal olaylardır. İstemli kas hareketleri, beyinde oluşan aksiyon 

potansiyellerinin sinirler yoluyla kasa iletilmesi sonucu ortaya çıkar. İskelet kaslarının 

fonksiyonel olarak temel birimi, motor ünitelerdir. Gevşek demetlerde motor ünitesinin 

bileşenleri boyunca uzanır. Çeşitli motor ünitelerinin lifleri iç içe durumda bulunmaktadır. 

EMG işaretleri günümüzde kas-sinir hastalıkları teşhisi gibi klinik uygulamalarda, 

uzuv kesilmelerinde kesik yere takılan protez uzuvların miyoelektriksel kontrollerinde 

kaynak işaret olarak kullanılmaktadır.  

Kelime anlamı itibariyle, elektriksel aktivite ile ilgili olarak “electro”, Yunanca 

“muscle” kökünden gelen “myo” ve kayıt miktarı anlamına gelen “gram” terimlerinden 

oluşan Elektromiyogramın tarihsel gelişimine bakıldığında 1666 yılında İtalyan hekim 

Francesco Redi’nin kaslarda elektrik üretimini ilk olarak fark eden bilim adamı olduğu 

kayıtlarda yer almaktadır. Galvani 1791’de kurbağının gastrocnemius kası üzerinde 

çalışarak kas kasılmasıyla elektrik üretimi arasında bir ilişki olduğunu gözlemlemiştir. 

Alman bilim adamı Alexander von Humboldt(1769- 1859) ilk elektrotları tasarladı ve 

birçok deneyde uyarıcı olarak denedi. Johannes S.C. Sweigger 1820’de Oersted 

manyetizması temelli ilk pratik galvanometreyi yaptı. 1900’lü yıllara kadar teknolojinin 
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gelişimine paralel olarak bu alanda çalışmalar yapıldı . H.Piper 1912 yılında Almanya da 

tel galvanometre ile çalışma yapan EMG araştırmacılarındandır. 1924 yılında Gasser ve 

Erlanger benzer çalışmaları osiloskop kullanarak yapmışlardır. 4 yıl sonra Proebster bu 

işaretlerin denervated kaslar tarafından üretildiğini gözlemlemiş ve klinik EMG’nin alanını 

açmıştır. 1929 yılında Adrian ve Bronk’un geliştirdiği ortak merkezli iğne elektrotu hala 

EMG çalışmalarında geniş bir kullanım alanı olan güçlü bir araçtır. Motor ünite aksiyon 

potansiyeli nicel analiz ve metotlarının (MÜAP) geliştiricileri olarak anılan Kugelberg, 

Petersen, Buchtal, Guld, Gydikov, Kosarov, Pinelli, Rosenfalck ve Stalberg vakum tüpü 

yükselticileri ve daha sonra katı hal devrelerini on yıllarca kullandılar. Devrin birçok 

çalışması arasında Denny-Brown’un 1949 yılındaki “EMG işaretlerinin yorumu” çalışması 

sözü edilen çalışmalardandır. Uchizono 1953 yılında kara kurbağasının sartorious 

kasındaki işaretlerin yayılımını tanımlamıştır. Willison 1964 yılında EMG işaretlerinin 

genlik analizini yapmıştır. Şu an 5. baskısı yayında olan ve kilometre taşı sayılan J.V. 

Basmajian tarafından yazılan “Muscles alive ” adlı kitabın ilk baskısı 1962 yılında 

yayınlanmıştır. 1979 yılında EMG işaretlerinin fizyolojisi ve matematiğini birleştiren De 

Luca tarafından yayımlanan makale bu konuda bir ilk olup EMG içerik bilgisi ve çıkarımı 

ile ilgili temel bir yaklaşım oluşturmuştur. EMG çalışmalarında bilgisayarların kullanımı 

modellerin gelişimi ve simülasyon yöntemlerinin kullanımını kolaylaştırmıştır. 1970’ler ve 

1980’lerde birçok grup ve araştırmacı bu konuyla ilgilenmiş, yayınlar yayınlamış ve bu 

alanda oldukça gelişme kaydedilmiştir. Dimitrova ve Lindstrom modelleme alanının 

öncülerindendir. Bu modeller EMG işaretinin biyofiziğinin anlaşılmasına oldukça katkı 

sağlamış ve böylece işaretin içerdiği bilgilerin çıkarımını kolaylaştırmıştır. Ayrıca bu 

modeller iyi bir eğitim aracı olmakla birlikte mevcut uygulamalar ile yeni uygulamaların 

geliştirilmesiyle uğraşan uzmanlar için temel çalışma kaynağıdır. EMG işaretlerinin ilk ve 

doğal alanlarından biride protez kontrolüdür. Miyoelektrik kontrol olarak da bilinen ve ilk 

olarak 1940’larda açılan bu alan 1960, 1970 ve 1980’lerde hızla gelişmiştir. Potansiyel ile 

eşzamanlı çalışan çok fonksiyonlu EMG örüntüsü temelli protezler güncel ve gelişen bir 

alandır. J.V. Basmajian, S. Carlsöö, B. Johnson, M. MacConaill, J. Pauly ve L. Scheving 

1965 yılında yaptıkları toplantıda uluslararası Elektromiyografi ve Kas bilimi topluluğunu 

(The International Society of Electromyography and Kinesiology) kurmayı kararlaştırdılar 

ve 1966 yılında ISEK’i resmileştirdiler. Bu topluluk EMG ilgili toplantılar, konferanslar ve 

sempozyumlar organize etmektedir. 1988 yılında EMG araştırma sonuçlarının bir dergide 
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yayınlanması önerisi ISEK konseyi tarafından kabul edilmiştir. Electromyography and 

Kinesiology dergisinin ilk sayısı 1991 yılında yayınlanmıştır. 1995 yılında bir grup 

araştırmacının önderliğinde ve Avrupa Birliğinin katkılarıyla Kasların Noninvassive 

Değerlendirilmeleri için Yüzeyel EMG (Surface EMG for Noninvassive Assesment of 

Muscles) projesi hazırlanmış ve 1996 yılında finanse edilmiştir. SENIAM’ın amacı; bu 

konularda çalışan laboratuarların kabul edilebilir bir seviyeye getirilmesidir. Bilgisayar 

girdili aygıtların kullanımı ile sinir-kas bozulmalarını önleme(Prevention of 

Neuromuscular Disorders in the Use of Computer Input Devices) isimli çalışma ise Avrupa 

Birliği tarafından finanse edilen ikinci anlaşmadır  (Yazıcı, 2008).  
 

1.1.1.EMG İşaretinin Ölçülmesi 

EMG işaretleri yüzey elektrotları ve iğne elektrotlar olmak üzere iki tip elektrot 

aracılığıyla ölçülmektedir. Bunlardan yüzey elektrotları ile yapılan ölçümlerde geniş bir 

alandaki elektriksel aktivite ile ilgili bilgi edinilmektedir. Bir motor ünitesinin veya 

üniteler grubunun incelenmesinde, elektrotların bilgi topladıkları alttaki alan çok geniş 

olabilir. Ayrıca yüzeydeki kasların faaliyetinin alttaki kaslardan gelen bilgiyi maskelemesi 

sebebiyle yüzey elektrotlarını yalnız yüzeydeki kasların incelenmesinde kullanmak 

gerekmektedir. Bir kas grubunun faaliyetinin diğer bir kas grubu faaliyetini maskelemesi 

olayı, çok miktarda motor birim aksiyon potansiyellerinin karışması ile olur ve bu olay 

“girişim olayı” olarak bilinir. Kasılma şiddeti sonucu aktif motor birim sayısı artar. Aynı 

anda birçok kas lifinin etkinleşmesiyle, her bir kas lifinin ürettiği işaret bir diğerini yok 

edebilir ya da kuvvetlendirebilir  (Bozkurt, 2007). 

Özel olarak bir motor ünitesinin veya üniteler grubunun incelenmesinde, elektrotların 

bilgi topladıkları alttaki alan çok geniş olabilir. Ayrıca, yüzeydeki kasların faaliyeti alttan 

gelen bilgiyi maskelediğinden yüzey elektrotlar, sadece yüzeydeki kasların incelenmesinde 

kullanılabilir (Çevikcan, 2007). 

Yüzey elektrotlar, bağlanacak yüzey iletkenliği önleyecek kir, yağ tabakası vs. gibi 

maddelerden temizlemek maksadıyla asetonlu pamukla silindikten sonra bağlanır. Yüzey 

temizleme işleminden sonra elektrot çiftine iletkenliği artırmak maksadıyla jel sürülür ve 

ölçüm yapılacak bölgeye yerleştirilir. Elektrotlardan gelen EMG işaretlerinin genliği 

kuvvetlendirici tarafından yükseltilir. Daha sonra yükseltilmiş bu işaret kesim frekansı 10 

Hz olan bir yüksek geçiren filtreden geçirilerek istenmeyen DC bileşenlerden arındırılır. 

Ayrıca şebekeden kaynaklanan 50 Hz’lik gürültüyü engellemek maksadıyla bant genişliği 
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2 Hz olan bir çentik filtre kullanılır. İşaretin AC değerinin düzgün olarak elde edilebilmesi 

için ortalama değerinin alınması gerekir. Bunun için önce işaret tam dalga doğrultucudan 

ve sonra alçak geçiren filtrelerden geçirilir. Bu aşamada elde edilen EMG işareti girişteki 

ham EMG işaretinin yükseltirmiş ve ortalama değeri alınmış şeklidir. Bu aşamadan sonra 

elde edilen EMG işareti A/D dönüştürücüden geçirilerek bilgisayar ortamında kayıt 

edilebilir  (Bozkurt, 2007). 

Tek bir motor ünitesinden uyarılma sonucu, iğne elektrotlarla elde edilen hücre dışı 

potansiyel değişimleri 3–15 ms arasında sürer ve motor ünitesinin büyüklüğüne bağlı 

olarak genliği 20–2000 mV’dur. Deşarj frekansı genellikle saniyede 6–30 darbe 

arasındadır. EMG kayıtlamada yüzey elektrotlar kullanılmakla birlikte kas içine doğrudan 

girilmesi gereken uygulamalarda iğne elektrotlar kullanılır. İşaretlerin 

kuvvetlendirilmesinde fark kuvvetlendiriciler kullanılır. EMG işaretinin bilgisi kaslarda 

harcanan güce, elektrotların yerleşimi gibi faktörlere bağlıdır. Tek fibere batırılan iğne 

elektrot ile sadece o fibere ait potansiyel ve gürültü ölçülür iken, yüzey elektrotlarla 

yapılan ölçümlerde elektrotların yerleştirildiği bölgedeki örtüşmüş kasların gürültüsü ve 

potansiyellerinin ortalaması ölçülecektir (Yazıcı, 2008).   
 

1.1.2.EMG’nin Temel İlkeleri 

Elektromiyogramda meydana gelen anormal değişimlerin tanımlanması ve 

açıklanması, kas aksiyon potansiyellerinin karakteristik özelliklerinin, şeklinin, genliğinin, 

süresinin ve frekansının dikkatli incelenmesine bağlıdır. 

Elektromiyografi aşağıdaki konularda büyük kolaylık sağlar: 

• Denervatıon 'in bulunması 

• Motor sinir liflerinin durumlarıyla ilgili gerekli bilginin bulunması (bunlar sinir 

iletim zamanı ve hızıdır.) 

• Sinir hasarlarının yerlerinin belirlenmesi 

• Reinnervatıon'da duyarlı bir fihristin sağlanması 

• Motor düzenleme hareketini izleme 

Aşağıdaki bilgiler elektromiyografinin teşhise yönelik kullanımıyla ilgilidir: 

• Elektromiyografinin amacı klinik teşhisi desteklemektir, teşhis koymak değildir 

• Metodun kullanımı kolaydır ve hastayı rahatsız etmez. 

• Uyarım elektromiyografisi, sinirlerdeki motor iletim zamanlarının ve iletim 

hızlarının belirlenmesinde kolaylık sağlar. 
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• İstemli hareket veya sinir uyarımlarına cevap olarak kaslardan alman motor aksiyon 

potansiyellerinin dağılımı ve yapısı, sinir iletiminin normal, kısmi veya tamamen kesilmiş 

veya zayıflamış olup olmadığını gösterir. 

• Sinir iletim hızındaki düşme, bağlantı noktasındaki gecikmedeki artış ve motor 

ünitesi potansiyellerinin zaman, genlik ve Sayıca azalması iletimi zayıflatan bir bölgenin 

olduğunu gösterir. 

• Etkilenen kas veya kaslardan birkaç motor ünitesi potansiyelinin bulunması, en az 

birkaç lifin hasar gördüğü bir bölgeyi gösterir. 

• Bir kas denerve edildiği zaman çırpınır. Bu kasın düzgün, hızlı, eşzamanlı olmayan 

kasılmaları formundadır ve kas yüzeyine zayıf, sürekli, dalgalı bir hareket verir. Bu hareket 

deri üzerinden görülemez. 

• İstemli bir harekete ve sinir uyarımlarına rağmen durgunluğun devam etmesi, daha 

sonra bunun kendiliğinden meydana gelen çırpımın aksiyon potansiyelleri tarafından takip 

edilmesi iletimin tamamen kesintiye uğradığını gösterir. 

• Kendiliğinden meydana gelen çırpınımlar, axonal (sinir hücresi) devamlılığın 

olmadığı sinir bölgeleri tarafından denerve edilen kasların karakteristik bir özelliğidir. Bu 

ikinci, üçüncü, dördüncü veya beşinci dereceden bir hasar olduğunda meydana gelir. Bu 

kategoriler arasında elektromiyografide bir fark gözlenmez. 

• Axon sürekliliğinin korunduğu fakat iletimin bloke edildiği birinci dereceden bir 

hasarda, etkilenen kaslar çırpınmaz  (Altınbaş, 2007). 
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2. ÖNCEKİ ÇALIŞMALAR 

 
Mohamed (1989), “EMG sınıflandırma için Walsh fonksiyonunun bir uygulaması” 

üzerine bir çalışma yaparak, makale yazmıştır. Makalede, Walsh Dönüşümü EMG sinyal 

boyutunu azaltmak için kullanılmıştır. Walsh dönüşümünün çok boyutlu bir datayı nasıl 

tek boyuta düşürdüğü anlatılmış ayrıca EMG işaretinin sınıflandırmasında Fourier ve 

Walsh fonksiyonları karşılaştırılmıştır. 

Yang ve ark.(1996), “EMG sınıflandırma uygulaması ile örüntü tanıma için yeni bir 

bulanık yaklaşım” üzerine bir çalışma yaparak makale yazmışlardır. Makalede, hata 

yayılım algoritması ile iyi tanımlanmış bulanık kümeler elde edilmiş ve bu kümeler EMG 

işaretlerinin sınıflandırması için kullanılmıştır. Ayrıca bu sınıflandırma Yapay Sinir 

Ağlarıyla yapılan sınıflandırma ile kıyaslanmıştır. 

Kwon ve ark. (1998), “Sürekli EMG sınıflandırma amacı için işaret hibrid HMM-

GA-MLP sınıflandırıcısı” üzerine bir çalışma yaparak, makale yazmışlardır. Makalede, 

Genetik algoritma (GA) ile çok katmanlı perceptron (MLP) ve gizli Markov metodunun 

(HMM’s) hibrid sınıflandırıcısı kullanılarak EMG işaretlerinin sınıflandırılması konusu ele 

alınmıştır. Sınıflandırma için 4 ayırıcı strateji (HMM-MLP, HMM-GA-MLP, HMM-CPN 

ve HMM-GACPN) uygulanarak denenmiştir. 

Cai ve ark. (1999), “Dalgacık Dönüşümü temelli bir EMG sınıflandırma metodu” 

üzerine bir çalışma yaparak, makale yazmışlardır. Makalede, EMG işaretlerinin Dalgacık 

Dönüşümü ile özellik çıkarımı yapılmış ve Yapay Sinir Ağları kullanılarak işaret 

sınıflandırılmıştır. Ayrıca kullanılan Yapay Sinir Ağlarının yapısı ayrıntılı olarak 

anlatılmıştır. Ön işlemede uygulanan Dalgacık Dönüşümü sayesinde sınıflandırmada 

%90'lık bir başarı elde edilmiştir. 

Chan ve ark. (2000), “Protez kontrolü için bulanık EMG sınıflandırması” üzerine bir 

çalışma yaparak, makale yazmışlardır. Makalede, protez kontrolü için EMG sinyallerinin 

sınıflandırılması amaçlanmıştır. Sınıflandırmanın kontrolü konusunun önemine vurgu 

yapılmıştır. Bahsettiği sistemde; EMG işaretleri, kabul edilebilir bir hız ve gerçekçi 

bulanık sistem yapısı elde etmek için çalıştırma safhasının başında denetleme olmadan 

Basic Iso-Data algoritmasını kullanarak kümelenir ve kümeleme sonuçları bulanık sistem 

parametrelerini başlatmak için kullanılır. Daha sora, sistemdeki bulanık kurallar geri 

yayılım algoritması ile çalıştırılır. Daha sora, sistemdeki bulanık kurallar geri yayılım 

algoritması ile çalıştırılır. Bulanık yaklaşım Yapay Sinir Ağları ile dört örnekte 
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karşılaştırılır ve çok benzer sınıflandırma sonuçları elde edilir. Öncekilere göre en az üç 

noktada üstündür: yüksek doğrulama oranı; aşırı çalıştırmaya duyarsızlık ve daha tutarlı 

çıktılar, böylece daha yüksek güvenilirlik sağlar. Bulanık yaklaşımın ANN yaklaşımına 

göre potansiyel avantajları da tartışılmıştır. 

Englehart (2001), “Çok fonksiyonlu miyoelektrik kontrolü için dalga temelli sürekli 

sınıflandırma şeması” üzerine bir çalışma yaparak, makale yazmışlardır. Bu çalışmada üst 

kolların kontrolünün miyoelektrik sinyaller kullanarak iyileştirilmesi açıklanmaktadır. 

Bahsedilen miyoelektrik kontrol şemasının başarısı problemin doğru tanımlanmasına ve 

sınıflandırmanın hassasiyetine bağlı olduğu bildirilmiştir. Daha önceki çalışmalardan daha 

fazla hassasiyet gösteren yeni bir yaklaşım açıklanmıştır. Bu yaklaşımın başarısının temeli, 

ana bileşen analizi ile boyutu azaltılmış bir dalgacık temelli özellikler dizisinin 

kullanılmasıdır. Ayrıca, dört kanallı miyoelektrik verinin; tek veya iki kanala kıyasla, 

sınıflandırma hassasiyetini önemli bir şekilde artırdığını göstermektedir. Verinin devam 

eden akışı üzerinde sınıf kararları üreten güçlü bir online sınıflandırıcı oluşturulmuştur. Bu 

metodun gelişiminin ilk aşamalarında olmasına rağmen daha sağlıklı ve verimli sonuçlar 

ürettiğinden bahsedilmiştir. 

Huang ve ark. (2003), “Sinir Ağları ve SOM'un kademelendirilmiş mimarisini 

kullanarak kavrama durumları için EMG sınıflandırması” üzerine bir çalışma yaparak, 

makale yazmışlardır. Makalede, sekiz ayrı ön kol kavrama hareketinin sınıflandırılmasında 

yüksek sınıflandırma oranını ve kısa öğrenim zamanı için sınıflandırıcı geliştirilmiştir. Bu 

amaç için Özellik haritalı sinir ağının basamaklı mimarisi (CANFM - Cascaded 

Architecture of Neural Networks with Feature Map) ele alınmış ve bu mimarinin iki öğesi 

olan, danışmansız öğrenmeye sahip SOM ve danışmanlı öğrenmeye sahip 'çok katmanlı 

ileribeslemeli sinir ağı' ayrıntılı olarak açıklanmıştır. Bu mimarinin k-en yakın komşu, 

bulanık k-en yakın komşu ve geriyayılımlı sinir ağı'ndan daha iyi bir sınıflandırma 

yaptığından bahsetmektedir. 

Hu ve ark.(2005), “RWPE kullanılarak EMG işaretlerinin sınıflandırılması” üzerine 

bir çalışma yaparak, makale yazmışlardır. Makalede, EMG işaretinden özellik çıkarımı için 

yeni ve basit bir metot olan RWPE, dalgacık paket dönüşümüne istinaden önerilmiştir. 

Burada bahsedilen RWPE'nin en önemli işlevi işaretteki gürültüyü bastırırken 

sınıflandırma için ayırt edici özelliklerini daha belirgin hale getirmesidir. 
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Kocyigit ve Korurek (2005), “EMG işaretlerini dalgacık dönüşümü ve bulanık 

mantık sınıflayıcı kullanarak sınıflama” üzerine bir çalışma yaparak, makale yazmışlardır. 

Bu çalışmada öznitelik çıkartma yöntemi olarak zaman-frekans domeni analiz yöntemlerini 

kullanarak protez koluna ait dört farklı hareket için EMG işaretlerini daha iyi 

sınıflandırılması hedef olarak belirlenmiştir. Bunun için boyut azaltma ve bulanık 

sınıflama yöntemleri de incelenmiştir. Sınıflama problemi öznitelik çıkartma, boyut 

azaltma ve örüntü sınıflama aşamalarına ayrılmıştır. Dalgacık dönüşümü öznitelik çıkartma 

yöntemi olarak büyük üstünlük sağladığı bildirilmiştir. Özniteliklerin çıkartma aşamasında 

yüksek boyuta sahip olmalarından dolayı sınıflama başarısı, Ana Bileşenler Analizi (ABA) 

ve Bağımsız Bileşenler Analizi (BBA) gibi uygun boyut azaltma yöntemleriyle 

gerçekleştirilmiştir. 

Subasi ve ark. (2006), “Dalgacık sinir ağı kullanarak EMG işaretlerinin 

sınıflandırılması” üzerine bir çalışma yaparak, makale yazmışlardır. Makalede, EMG 

işaretinin sınıflandırılması için ileri beslemeli hata geri yayılımlı yapay sinir ağları 

(FEBANN) ve dalgacık sinir ağları (WNN) temelli sınıflandırıcılar geliştirilmiş ve 

karşılaştırılmıştır. Nörolojik hastalıktan çeken 13 denek, miyopatiden çeken 7 denek ve 

sağlıklı 7 denekten elde edilen 1200 MUP'lar analiz edilmiş, WNN tekniğinden en başarılı 

%90.7 FEBANN tekniğinden en başarılı %88 sonuç elde edilmiştir ve WNN temelli 

sınıflandırıcıların FEBANN temelli sınıflandırıcılara karşı daha iyi sınıflandırma yaptığı 

gösterilmiştir. 

Ahmad ve Chappell (2007), “Değişen yaklaşık entropi kullanılarak yüzey EMG 

sınıflandırması” üzerine bir çalışma yaparak, makale yazmışlardır. Bu çalışmada, 20 denek 

bilek hareketleri yaparken izometrik kasılma ve karşı kasılma EMG sinyalleri yüzey 

elektrotlarla kaydedilmiş ve bu datalar sınıflandırılmıştır. 

Oskoei ve Hu (2007), “Miyoelektrik kontrol sistemleri” üzerine bir çalışma yaparak, 

makale yazmışlardır. Bu çalışmada örüntü tanıma temelli ve örüntü tanıma temelli 

olmayan miyoelektrik kontrol üzerinde son zamanlarda yapılan araştırma ve geliştirmeleri 

gözden geçirerek tiplerine, yapılarına ve mevcut uygulamalara bağlı en son başarıları 

sunmaktadır. 

Khezri ve ark. (2007), “Çok fonksiyonlu el protezi kontrolü için nöro-bulanık yüzey 

EMG örüntü tanıma” üzerine bir çalışma yaparak, makale yazmışlardır. Bu çalışmada el 

protezinin hareketlerinin modelini tanımlamak için yüzeysel EMG sinyallerinden 
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yararlanılmıştır. Protez bir elin kontrolü için de hareket komutlarını belirlemeyi amaçlayan 

uyarlanabilir bir bulanık mantık çıkarım sistemi (ANFIS) kullanmak önerilmiştir. 

Sınıflandırmada yararlanılan miyoelektrik sinyaller, altı el hareketinden oluşmaktadır. Bu 

çalışmada tasarlanan ve kullanılan bulanık-mantık sistemleri, bağımsız olarak ve hem 

zaman hem de zaman-frekans özellikleri için karma bir biçimde test edilmiştir. Bu Birleşik 

yaklaşım için sistemin ortalama hassasiyetinin %96 olduğu bildirilmiştir. 

Lucas ve ark. (2008), “SVM ve işaret temelli dalgacık optimizasyonu kullanarak çok 

kanallı EMG sınıflandırması” üzerine bir çalışma yaparak, makale yazmışlardır. Bu 

çalışma miyoelektrik protezleri kontrol amacı ile çok kanallı EMG işaretlerinin danışmanlı 

sınıflandırılması için bir yöntem öneriyor. Çözüm kümesi, ana dalgacığın serbest 

parametrelendirilmesi kullanılarak her bir kaydedilen EMG işaretinin ayrık dalgacık 

dönüşümünün üzerine temellendirilmiştir.  Çok kanallı çözüm kümesinde SVM 

yaklaşımıyla sınıflandırma gerçeklenir. Kolun üzerindeki 8 bölgeden kaydedilen EMG ile 

6 el hareketinin sınıflandırılmasında bu metot uygulanmıştır. 
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3.MATERYAL VE METOT 

 
3.1.Materyal 

 
3.1.1.Kullanılan Veri 

Bu çalışmada, kola ait dirsek açma, dirsek kapama, ön kolu içe döndürme ve ön kolu 

dışa döndürme hareketlerinden oluşan dört farklı sınıfa ait 100’er adet toplam 400 EMG 

işareti kullanılmıştır. Bu dört sınıfa ait EMG işaretleri, kolun biceps ve triceps kaslarından 

iki kanallı olarak elde edilmiş ve her kanaldan alınmış işaret 1000 Hz’de örneklenmiş, her 

kanaldan 256 örnek olmak üzere toplam 512 örnekten oluşmuştur. Şekil.1’de bu dört tür 

işaretten birer örnek görülmektedir. (Englehart, 2001; Günay ve Alkan, 2009; Günay ve 

Alkan, 2010) 

EMG işaretlerinin analizinde öznitelik çıkartma işlemi oldukça büyük bir öneme 

sahiptir. Bu amaçla literatürde çok değişik özellik çıkarım yöntemleri kullanılmaktadır. 

Kullanılan her özellik çıkarım yönteminin başarımları da değişik olmaktadır. Bu çalışmada 

özellik çıkarımı amacıyla işaret, 32 örneklik pencerelere ayrılıp, elde edilen 16 adet 

penceredeki örneklerin önce mutlak değerleri sonra da her pencerenin ortalaması 

hesaplanmıştır. Bu şekilde her işaret bu işlem sonunda 16 adet özellik vektörüyle ifade 

edilmiştir. Elde edilen özellikler kullanılarak dört tür işaretten oluşan EMG verisi 

öbekleştirme işlemine tabi tutulmuştur (Günay ve Alkan, 2009; Günay ve Alkan, 2010).  

 

3.2.Metot 
 
3.2.1.Önişleme Metotları 

3.2.1.1.Ortalama Mutlak Değer 

Ortalama Mutlak Değer (OMD) yönteminde önişlem, iki şekilde gerçekleştirilebilir. 

Birincisi, önce veri seti belirli aralıklarla pencerelenir. Daha sonra her pencerenin sırayla 

mutlak değeri ve ortalaması alınarak bir özellik vektörü oluşturulur. Diğer yöntemde 

öncelikle veri setinin tamamının mutlak değeri alınır. Daha sonra veri seti belirli aralıklarla 

pencerelenir. Pencereleme işleminden sonra her pencerenin ortalaması alınarak bir özellik 

vektörü elde edilir. Her EMG işareti için elde edilen bu özellik vektörleri, daha sonra 

sınıflandırma algoritmalarının girişine uygulanır. (Özer, 2010) 
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3.2.1.2.Özbağlanım (AR) Katsayıları 

Özbağlanım modeli, x(n) veri dizisinin bir rasyonel sistem tarafından nitelendirilen 

doğrusal bir sistemin çıkışı olarak modellenmesi ile temsil edilebilir. Güç spektral 

yoğunluğunun (GSY) parametrik yöntemlerle kestiriminde, veri dizisi ve kestirimi yapılan 

yönteme ait parametreler kullanılır. Özbağlanım metodunda işarete ait belli bir andaki 

genliği elde etmek için, o ana kadar örneklenmiş bölümlerin genlikleri farklı oranlarda 

toplanır ve bu toplama bir tahmin hatası eklenir. AR model parametrelerinin çözümünde 

doğrusal denklemler kullanılır. Bu yüzden AR yöntemi daha yaygın kullanılır. Özbağlanım 

modeli, birim karşıtlıklı beyaz gürültü ile sürülen nedensel, tüm-kutuplu ayrık filtre çıkışı 

olarak gösterilir. “p” inci dereceden AR yöntemine ait güç spektrumu, 

 

2

1

2

)(1

)0(
)(







p

k

jk
p

j
x

eka

b
eP



  
(3.1)

 

ifadesiyle verilir. Eğer b(0) ve ap(k) verilerden tahmin edilebilirse (kestirilebilirse) 

güç spektrumunun kestirimi şu formda da yazılabilir: 
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Burada a(k) AR katsayılarını, p model derecesini ve b(0) ise varyansı ifade etektedir. 

Açıkça görülebilir ki,  ifadesinin kesinliği, model parametrelerinin 

kestirimindeki kesinliğe ve daha önemlisi AR modelinin üretilen veri ile birbirini tutup 

tutmadığına bağlıdır. AR spektrum kestirimi, işlem için tüm-kutuplu model kurulmasını 

gerektirdiğinden, tüm kutup parametrelerinin kestirimi için teknikler vardır. Genlik 

oranlarını belirleyen AR katsayılarını farklı yöntemlerle hesaplamak mümkündür. Bunlara 

örnek olarak Levinson - Durbin ve Burg algoritmaları verilebilir. Burg yönteminde AR 

katsayılarını bulmak için işaretten alınan örneklerin ileri - geri hataları kullanılır ve 

modelin derecesi AR katsayılarının sayısı ile belirlenir. Levinson - Durbin yönteminde AR 
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katsayılarının bulunması için Otokorolasyon denklemlerinin çözülmesi gerekmektedir. 

Bunun için özilişki fonksiyonlarından faydalanılır  (Bozkurt, 2007). 
 

3.2.1.2.1.Özbağlanım Spektrum Kestirimi için Burg Yöntemi 

Burg yöntemi 1975 yılında J.P.Burg tarafından geliştirilmiştir. Burg algoritması, AR 

model parametreleri kümesini, ileri – geri yöndeki kestirim hatalarının kareleri toplamının 

minimizasyonu ile bulur. Burg yöntemi diğer AR spektrum kestirim metodları gibi özilişki 

fonksiyonu hesaplamaz. Bunun yerine direkt yansıma katsayısı tahmini yapılır. Burg 

algoritmasında “p”inci dereceden model için ileri ve geri kestirim hataları şöyle tanımlanır:  

 

 
(3.3)

 

 
(3.4)

 

Yansıma katsayısı  ile ilişkili AR katsayıları (3.5) nolu ifadede verilmiştir. 

 

 
(3.5)

 

Yansıma katsayısı kestirimi için ise 

 

 

(3.6)

 

ifadesi kullanılır. Daha önce belirtildiği gibi, Burg yönteminde AR katsayılarının 

bulunmasında kullanılan ileri ve geri yöndeki kestirim hataları ise şu ifadelerle bulunur: 
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(3.7)

 

 
(3.8)

 

AR parametrelerinin kestirimi yapıldıktan sonra güç spektral yoğunluğunun (GSY) 

hesaplanması için ise 3.9 nolu ifade kullanılır: 

 

 

(3.9)

 

ifadesi  toplamı olarak gösterilir ve toplam en küçük karesel hatadır. 

Parametre kestiriminde Burg yöntemi verimli ve kararlı bir AR yöntemdir  (Bozkurt, 

2007). 
 

3.2.1.2.2.Özbağlanım Spektrum Kestirimi için Otokorelasyon (Yule-Walker) Yöntemi 

Otokorelasyon yöntemi bazı kaynaklarda Yule-Walker yöntemi olarak da 

geçmektedir. AR işlemleri için kullanılan Yule-Walker denklemlerinin, otokorelasyon 

denklemleri ile eşdeğer olması sebebiyle her iki ismin de kullanılması uygundur. 

Bu yöntemde AR katsayıları ap(k), normal otokorelasyon denklemleri çözülerek 

bulunur: 
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Burada, 
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3.10 eşitliği ap(k) katsayıları için çözülüp, yerine konursa, 
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elde edilir. 

Bu parametrelerin 3.12 nolu eşitliğe dahil edilmesiyle, güç spektrumu için tahmin 

üretilmiş olur  (Özer, 2010). 
 

3.2.1.2.3.Özbağlanım Spektrum Kestirimi için Kovaryans Yöntemi 

AR parametrelerinin kestirimi için bir başka yaklaşım ise Kovaryans yöntemidir. 

Kovaryans yöntemi AR spektrum kestiriminde ileri kestirim hatalarının kareleri toplamının 

minimize edilmesi temeli üzerine kuruludur. Bu yöntem, bir dizi doğrusal denklemin 

çözümünü gerektirir: 
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şeklinde verilmektedir. 

Otokorelasyon yöntemindeki doğrusal yöntemlerden farklı olarak, burada verilen 

matrisler, Toeplitz matris değildir. Bununla beraber, kovaryans yönteminin, otokorelasyon 

yöntemine göre avantajı, otokorelasyon kestiriminde gerekli olan verilerin pencerelenmesi 

işlemini gerektirmemesidir. Bu yüzden, kısa veri kayıtlarında kovaryans yöntemi, 
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otokorelasyon yöntemine göre daha yüksek çözünürlükte spektrum kestirimi üretir. Ancak 

veri kayıtları uzadıkça, iki yöntem arasındaki fark da ihmal edilebilir ölçülere gelmektedir  

(Özer, 2010). 
 

3.2.1.2.4.Özbağlanım Spektrum Kestirimi için İyileştirilmiş Kovaryans Yöntemi 

Bu yöntem verilerin pencerelenmesini gerektirmemesi açısından kovaryans 

yöntemine benzer. Kovaryans yönteminden farklı olarak, ileri kestirim hatalarının kareleri 

toplamının minimize edilmesi yerine, iyileştirilmiş kovaryans yöntemi ileri ve geri kestirim 

hatalarının kareleri toplamını minimize eder. Bu sebeple bazı kaynaklarda bu yöntem 

“ileri-geri yöntemi” veya “en küçük kareler yöntemi” olarak da geçmektedir (Bozkurt, 

2007). Sonuç olarak kovaryans yönteminde kullanılan 3.18 nolu ifade burada da aynen 

geçerli olmakla birlikte, bu yöntemde 3.19 ifadesi yerine aşağıdaki ifade kullanılır: 

 

 

(3.15)

 

3.2.1.3. Hareketli Averaj Filtre 

 Hareketli Averaj Filtresi (HAF) yönteminde veri setinin mutlak değeri alınır. Bu 

işlem EMG işaretinin yansıma etkisinden kurtulmak içindir. Daha sonra belirlenen pencere 

uzunluğu kadar noktanın ortalaması alınır ve bu oluşturulacak özellik vektörünün ilk 

değeridir. Daha sonra bu pencere işaret üzerinde belirlenen miktarda kaydırılarak özellik 

vektörünün diğer değerleri de hesaplanmış olur. OMD’ye göre işlem yükü daha çok 

olduğundan işlem zamanı da OMD’ye göre uzundur. Fakat OMD’ye kıyasla daha 

karakteristik sonuçlar verebilmektedir. 
 

3.2.2.Öbekleştirme Yöntemleri 

3.2.2.1.K-Ortalama 

En eski kümeleme metotlarından biri olan K-means algoritmasının genel mantığı, n 

adet veri nesnesinden oluşan bir veri setini, giriş parametresi olarak verilen k adet veriye 

bölümlemektir. Amaç gerçekleştirilen bölümleme işlemi sonunda elde edilen kümelerin, 

küme içi benzerliklerinin maksimum ve kümeler arası benzerliklerinin minimum olmasını 

sağlamaktır. Küme benzerliği, kümenin ağırlık merkezi olarak kabul edilen bir nesne ile 

kümedeki diğer nesneler arasındaki uzaklıkların ortalama değeri ile ölçülmektedir.  

K-means algoritmasının işlem basamakları şöyledir: 
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1. Adım: Küme merkezleri belirlenir. Bunun için iki farklı yol vardır. Birinci yol 

nesneler arasından küme sayısı olan k adet rasgele nokta seçilmesidir. İkinci yol ise merkez 

noktaların tüm nesnelerin ortalaması alınarak belirlenmesidir, 

2. Adım: Her nesnenin seçilen merkez noktalara olan uzaklığı hesaplanır. Elde edilen 

sonuçlara göre tüm nesneler k adet kümeden kendilerine en yakın olan kümeye yerleştirilir 

3. Adım: Oluşan kümelerin yeni merkez noktaları o kümedeki tüm nesnelerin 

ortalama değeri ile değiştirilir, 

4. Adım: Merkez noktalar değişmeyene kadar 2. ve 3. adımlar tekrarlanır. 

K-means algoritmasında her bir nesnenin noktalara uzaklığını hesaplamak için 

kullanılan dört farklı formül aşağıda açıklanmaktadır. (MacQueen, 1967; Mercer, 2003). 

A) Öklit Uzaklığı (Euclidean Distance); Öklit Uzaklığı formülü ile standartlaştırılmış 

verilerle değil, işlenmemiş verilerle hesaplama yapılır. Öklit uzaklıkları kümeleme 

analizine sıra dışı olabilecek yeni nesnelerin eklenmesinden etkilenmezler. Ancak boyutlar 

arasındaki ölçek farklılıkları Öklit uzaklıklarını önemli ölçüde etkilemektedir. Öklit 

uzaklık formülü en yaygın olarak kullanılan uzaklık hesaplama formülüdür. Formül 

Denklem 3.16’ de görülmektedir. Uzaklık 

 

 
(3.16)

 

B) Karesel Öklit Uzaklığı (Squared Euclidean Distance); Boyutlar arasındaki ölçek 

farklılığı, karesel Öklit uzaklığını önemli ölçüde etkilemektedir. Ancak kolay hesaplama 

tekniği nedeniyle tercih edilen bir uzaklık hesaplama formülüdür. Formül Denklem 3.17’de 

görülmektedir. 

 

 
(3.17)

 

C) City-Block (Manhattan) Uzaklığı (City-Block (Manhattan) Distance); Manhattan 

uzaklığı boyutlar arasındaki ortalama farka eşittir. Bu ölçüt kullanıldığında farkın karesi 

alınmadığı için sıra dışılıkların etkisi azalır. Manhattan uzaklığının formülü Denklem 3.18’ 

de görülmektedir. 
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 (3.18)

 

D) Chebychev Uzaklığı (Chebychev Distance): Chebychev uzaklığı iki nesne 

arasındaki mutlak maksimum uzaklığa eşittir. Chebychev uzaklığının formülü Denklem 

3.19’ da görülmektedir. 

 

 (3.19)

 

 (3.20)

 

x,y; Aralarındaki uzaklık hesaplanan nesneleri uzayda temsil eden noktalardır. 

K-means algoritmasının en büyük eksikliği k değerini tespit edememesidir. Bu nedenle 

başarılı bir kümeleme elde etmek için, farklı k değerleri için deneme yanılma yönteminin 

uygulanması gerekmektedir (Taşan, 2008). 
 

3.2.2.2.Bulanık C Ortalama 

Bir nesnenin bir kümeye ait olmasına “doğru” olmamasına “yanlış” denilebilir. 

Gerçekte, bir nesnenin bir kümeye tam anlamıyla ait olması pek mümkün değildir. Bu 

durumda, nesnenin bir kümeye ait olma derecesinden söz edilebilir. Nesnenin, bir kümeye 

ait olma derecesi, bulanık tabanlı algoritmalarla belirlenebilir. Bu ait olma derecesi, 0 ile 1 

arasında değerler alır. Daha basit anlamıyla, bir nesnenin bir kümeye ait olması ait olduğu 

küme ve bu kümeye ait olma derecesi ile gösterilebilir (Koçyiğit ve Korürek, 2005). 

Bu ait olma derecesine, bir kümeye olan aitlik değeri de denilir. Bu sebeple bulanık 

algoritmalar, diğer klasik sınıflama algoritmalarına göre daha fazla bilgi içerirler. 

Kümeleme yöntemi, eğiticisiz sınıflandırma yöntemlerindendir. Eğiticisiz algoritmalar, 

kullanacakları veri setini kendileri düzenler. Bu düzenlemeyle, öznitelik uzayını diğer 

eğitimli algoritmalara kıyasla eğitim alanından bağımsız bir şekilde gerçekleştirirler. 

Kümeleme algoritmalarını, sürekli örnekleme yapılan ölçümlere uygulamak mümkündür. 

Dolayısıyla hem mevcut kümelerin sürekli farklı kombinasyonun, hem de yeni kümelerin 

oluşturulması sağlanır. Bu sebeple, aynı sonuçları verecek olan zaman-serisi yeni ölçümler, 

aynı kümeye dâhil edilecektir. Tam durağan veya tam sürekli denilemeyen biyolojik 
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işaretlerin sınıflanmasın da uyarlamalı küme oluşturabilmesi açısından bulanık 

algoritmalar daha etkin kullanılabilir (Koçyiğit ve Korürek, 2005). 

Bulanık C-Ortalama Yöntemi: G, küme sayısını; p, veri sayısını; k, veri indisini; i, 

küme indisini; r, bulanıklığı artıran parametreyi [r ∈ (1,∞)]; dki, k. eleman vektörünün i. 

sınıfa olan öklidyen uzaklığını; µi, küme merkezlerini gösterir ;   
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Burada kümelere olan uzaklık değeri zki aşağıdaki formülle hesaplanır, 
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3.2.3.Sınıflandırma Yöntemleri 

3.2.3.1. Destek Vektör Makineleri 

Temel olarak, istatistiksel öğrenme algoritmalarından biri olan ve Vapnik-

Chervonenkis tarafından tanımlanan DVM, birçok gerçek problemde başarılı sonuçlar 

vermiştir. DVM’nin dayandığı teori, Vladimir Vapnik ve Alexey Chervonenkis tarafından 

1960’lı yıllarda başlatılıp 1970’li yıllarda gelişen başarılı bir çalışmanın ürünüdür. Ancak, 

ilk başarılı uygulamaları 1990’lı yıllarda gerçekleştirilmiş olup, bu uygulamalardan sonra 

matematikçilerin ve yapay zeka (Artificial Intelligence -AI) bilim adamlarının ilgi odağı 

olmuştur. DVM’nin temel mantığı doğrusal olarak ayrıştırılabilen veri yapıları için en iyi 

ayırıcı düzlemin belirlenmesidir. Doğrusal olarak ayrıştırılamayan veri yapıları dönüşüm 

tekniği ile farklı bir boyuta taşınarak çözülür. Destek vektörü öğrenme, basit fikirler 

üzerine kurulma ve pratik uygulamalarda yüksek performans göstermesi bakımından 

oldukça kullanışlıdır. DVM’lerde kullanılacak örnek sayısı önemli değildir. DVM eğitim 
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esnasında görülmemiş verileri de sorunsuz olarak sınıflandırır. Bu DVM’nin 

genelleştirebilme yeteneğini gösterir. Genelleştirebilme özelliği DVM’yi diğer tekniklere 

göre(YSA, karar ağacı vs.) iyi bir alternatif yapmaktadır. Son zamanlarda ise örüntü 

tanıma, yüz bulma ve tanıma, veri madenciliği, dil yapısını inceleyen mantıksal 

programlamalarda, uçak alt basınç profillerinin modellenmesi, biyoloji ve diğer 

biyoinformatik uygulamalarda, gen analizlerinde ve proteinlerin sınıflandırılmasında DVM 

kullanılmaya başlanmıştır (Karagülle, 2008).  

Bu bölümde Destek Vektör Makineleri hakkında genel bilgi verilecek ve öğrenme 

işleminden bahsedilecektir. 
 

3.2.3.1.1. Destek Vektör Makinelerinde Öğrenme 

Destek vektör makineleri, istatistiksel tekniklerin olasılık dağılımının temel alındığı 

eğitme algoritması olarak bilinir. Birçok pratik durumda, istatistiksel tekniklerin temelini 

oluşturan dağıtma yasalarının hakkında yeterli bilgi ve dağılım bulunmamaktadır. Bu işlem 

gerçek dünya uygulamalarında ortak olan çok ciddi bir kısıtlamadır.  

Sahip olduğumuz yüksek boyutlu olan desenleri eğitmek günümüze ait 

uygulamalarda güçlükle kaydedilir. Öğrenen makine algoritmaları yüksek boyutlu 

uzaylarda çalıştırabilmeli ve az sayıda veriden öğrenme işlemini yapabilmelidir. Boyut 

indirgeme işlemi sağlanırsa veri çiftleri kolay bir şekilde elde edileceğinden daha iyi 

sonuçlar verilmiş olur. Klasik istatistiksel tekniklerin temel performansı Şekil 3.1'de 

verilmiştir.  Pratik koşullarda rasgele bir veri takımından alınan küçük örnek boyutu 

güvenilmezdir, genellikle hata ile sonuçlanır. 

 



 

20 
 

 

Şekil 3.1 Modelleme hatasının eğitim veri kümesi boyutu ilişkisi 

 

DVM polinomial modellerde, yapay sinir ağlarında, bulanık mantıkta ve RTF 

sınıflandırıcılarda sıkça kullanılan yeni bir metottur. DVM'yi, yapısal risk minimizasyonu 

(YRM) olarak bulunan yeni öğrenim teknikleri ve VC teorisi temsil eder. Geliştirilen 

Vapnik teorisi düşük seviyeli model VC boyutu, görünmeyen veriler üzerinde iyi bir 

genelleme yaparak hatanın düşük olasılıkta olduğunu gösterir. Bu özellik, tüm hesaplayan 

alana özeldir. Veri çiftlerini eğitmede o kadar iyi model olmasa da genelleme işlemini iyi 

gerçekleştiren modeldir. Bazı kısıtlamalar altında DVM'nin usulüne uydurma teori 

yapısında, istatistiksel öğrenen teori veya yapısal riskten ziyade minimizasyon 

türetilebilmesi vardır. Buradan, DVM'nin istatistiksel öğrenen teori ve yapısal risk 

teorisinin minimizasyonunu çıkaran, yani, öğrenen bir teknik olduğu söylenebilir. 

Tümevarım prensibini ve VC sınırının teorisini temel alan verilerle bu yaklaşımlarda 

öğrenme işlemi gerçekleşir. En basit desen tanıma görevlerinde, vektör makinelerinin 

azami kenarla bir sınıflandırıcıyı yaratması için doğrusal ayıran bir yüksek düzlemi 

kullanır. Bunu gerçeklemek için, öğrenen problem, doğrusal olmayan bir optimizasyon 

problemi olarak alınır. Verilmiş sınıflar uzayının olduğu orijinal girişte doğrusal olarak 

ayrılamadığı zaman DVM önce doğrusal olarak, daha yüksek boyutlu bir özellik uzayını 

orijinal giriş uzayına dönüştürür. Bu dönüşüm, çeşitli doğrusal olmayan eşleştirmeleri 

kullanarak başarılabilir: Polinomial, çok katmalı algılayıcıda olduğu gibi sigmoidal, radyal 

olarak simetrik görevler Gaussian olduğu esas görevlere sahip olması için RTF 
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eşleştirmeleri olabilir. Doğrusal olmayan dönüşüm adımı yapıldıktan sonra, doğrusal 

optimal ayrımı bulmak DVM'nin görevidir. Yani, optimizasyon problemini çözmesi, 

doğrusal ayrılabilir sınıflar için orijinal giriş uzayında ayırıcı düzlem hesabı olarak aynı 

türden olur. Özellik uzayında sonuç veren yüksek düzlem, azami bir kenar sınıflandırıcısı 

olduğunda optimal sonucu verir. Standart öğrenme durumu, Şekil 3.2'de gösterilmektedir 

(Karagülle, 2008).  

 

 

 

Şekil 3.2 Veri görevlerinden öğrenme işleminin standardı 

 

Öğrenme, stokastik bir süreçtir. Şekil 4.3’te rasgele eğitim gösterilmektedir.  Eğitim 

takımı, rasgele değişken takımlarından oluşturularak, giriş değişkeni, rasgele değişken xi 

'dir. Girişten P(xi) olasılıkla çekilmiş, çıktıya ait olan yi 'nin, olasılığı P( yi | xi ) ’dir. Bu 

özellik eğitim fazı sırasında di (istek) tarafından yi yanıtını gösterir. Bu yüzden P(di | xi ) = 

P( yi | xi ) olarak ifade edilebilir. y burada, sadece basitlik için kullanılan çıktı değişkeninin 

yönsüz değeridir. Bütün kökler, temelde aynı vektör çıktısı y'den türer. Toplanan (x,d) veri 

noktalarının olasılıkları P(x, d) = P(x)P( y | x) şeklindedir. 
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Şekil 3.3 Eğiten veri takımını toplarken öğrenmenin rastgele gösterimi 

 

İstatistiksel ayarda, veri öğrenmede üç temel bileşen vardır. Bunlar; x rasgele 

girişlerin bir üreteci, eğitim sisteminin yanıtları y ve x girişleri ile y sistem çıkışlarını 

kullanarak öğrenmeye çalışan makinedir. Şekil 3.4, çeşitli alanlarda ortak olan öğrenimi 

gösterir.  Özellikle, sistem teşhisini kontrol eder ve işleme tabi tutmaya çalışır. Kullanılan 

X ve Y verisinin arasındaki ilişkiyi geri dönüşte D başarılı şekilde bulması için eğiten evre 

esnasında öğrenen bir makine görevleri ya da bir fonksiyonu ile sınıflandırma görevlerinde 

veriyi ayırır. Öğrenme işleminin yaklaşık fonksiyonel sonucu fa (x, w) ’dır. Bu fonksiyon, 

yaklaşık (veya doğru) temeli oluşturmayı, giriş ve gerileme veya karar sınırında çıktının 

arasında bağımlı durumları tahmin eder (Karagülle, 2008). 
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Şekil 3.4 Öğrenen makinenin modeli 
 

3.2.3.1.2. Destek Vektör Makine Algoritması 

DVM temelinde, öncelik değişkenini bir özellikle çağırıp, çok boyutlu düzlemde 

kullanılan niteliğe dönüştürür. En uygun temsili seçmenin amacı, özellik seçimi olarak 

bilinir. Özellikler doğru seçilirse iyi temsiller elde edilerek doğru sonuçlara ulaşılabilir. Bir 

olayı tanımlayan özellik takımı bir vektör ile çağırılır. Bundan dolayı DVM modelinin 

amacı, hedef değişkeninin bir kategorisiyle olayların vektör kümelerini ayıran optimal 

aşkın düzlemi bulmaktır. Aşırı düzlemin yanındaki vektörler destek vektörleridir. Şekil 

3.5’te destek vektör algoritmasının genel yapısı görülmektedir.  

 

 

 

Şekil 3.5 Destek Vektör Makine Algoritması 
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N boyutlu aşırıdüzlemi düşünmeden önce basit 2 boyutlu bir örnek üzerinde 

algoritmanın çalışmasını inceleyelim. Sınıflandırma için 2 kategorili hedef değişkeni ele 

alalım. Devamlı değerlerle iki öncelik değişkeni olduğunu varsayalım. X ekseninde öncelik 

değişkenlerinden birini Y ekseninde diğerini kullanarak veri noktalarını oluşturursak 

aşağıdaki şekli elde ederiz. Hedef değişkeninin bir kategorisini dikdörtgenler ile, diğer 

kategorileri ovallar ile temsil ederiz. Şekil 3.6’de sınıflandırma örneği görülmektedir.  

 

 

 

Şekil 3.6 Sınıflandırma örneği 

 

Bu örnekte durumlar tamamen farklı köşelerde toplanıp tamamen ayrıştırılmıştır. 

DVM analizi, olayları ayıran 1-boyutlu aşkın düzlemi hedef kategorilerini temel alarak 

bulmaya çalışır. Mümkün çizgilerin sınırsız sayısı vardır. iki aday çizgi yukarıdaki gibi 

gösterilir. Hangi çizginin, daha iyi olduğunu ve optimal çizgiyi nasıl bulacağımız 

önemlidir. Noktalı gösterilen çizgiler en yakın vektörler arasında mesafeyi ayıran çizgiye 

paralel olarak çekilir. Noktalı çizgilerin arasındaki mesafe kenarı çağırır. Kenarın 

genişliğini zorlayan vektörler, destek vektörleridir. Şekil 3.7’de destek vektörleri ve elde 

edilen maksimum sınırlar gösterilmiştir.  
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Şekil 3.7. Destek Vektörleri ve Sınırlar 

 

DVM analizi, destek vektörlerinin arasındaki kenarı azami dereceye çıkararak yön 

verilen çizgileri bulur. Eğer bütün analizler, iki öncelik değişkeniyle iki kategori hedef 

değişkenine dayansaydı noktalar kümesini düz bir çizgi ile bölmüş olurdu. Yüksek 

boyutlara geçersek; Yukarıdaki örnekte 2 boyut için iki öncelik değişkeni kullanılıp, 

düzlem üzerinde çözüm bulunmuştur. Bu işlem 1 boyut için çizgi şeklindedir. 3 boyutlu bir 

örnek ele alınırsa 3. öncelik değişkeni devreye girerek bir küp elde edilmiş olur. 

Ekstra öncelik değişkenleri eklenildiği gibi, veri noktaları N boyutlu uzayda temsil 

edilebilir ve (N-1) ayırıcı düzlem, onları ayırabilir. iki grubu bölmek için en basit yol, düz 

bir çizgi veya N-boyutlu bir düzlemdir. Ama noktalar doğrusal çizgiyle ayrılamayacak 

şekilde bulunursa bu işlem yapılamaz. Şekil 3.8’de doğrusal olmayan sınıflandırma örneği 

görülmektedir.  
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Şekil 3.8. Doğrusal Olmayan Sınıflandırma 

 

Bu durumda doğrusal olmayan bir çizgiye ihtiyaç duyulur. Veriye doğrusal olmayan 

eğrilerle uymaktansa DVM’yi başka bir uzaya çekirdek fonksiyonu aracılığıyla taşıyarak 

daha tutarlı bir şekilde ayrım sağlanmış olunur. Şekil 3.9’de çekirdek fonksiyonlarının üst 

boyuta taşınması gösterilmektedir.  

 

 

 

Şekil 3.9. Çekirdek fonksiyonları ile üst boyuta taşıma işlemi 

 

Çekirdek fonksiyonu, sınıflandırmanın yapılabilmesi için veriyi daha yüksek 

boyutlara taşıyabilir. Şekil 3.10’de verinin yüksek boyutlara taşınarak yapılan haritalama 

işlemi gösterilmektedir.  
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Şekil 3.10 Haritalama işlemi 

 

Çekirdek fonksiyonunun üst boyuta taşınma işlemi güçlü bir yaklaşımdır. Çok 

karmaşık sınırlarla ayrılan durumlarda bile Şekil 3.11 resimde görüldüğü gibi DVM 

modellerine izin verir (Karagülle, 2008).  

 

 

 

Şekil 3.11. Örnek DVM modeli 
 



 

28 
 

3.2.3.1.3. DVM’de Kullanılan Çekirdek Fonksiyonları 

Çekirdek fonksiyonları sınıflandırmanın daha yüksek boyutlarda yapılabilmesi için 

taşıma işleminde kullanılabilir. Uygulamaların büyük çoğunluğunda birçok çekirdek 

fonksiyonu iyi sonuçlar verir. 

Sık kullanılan çekirdek fonksiyonları Doğrusal, Polinomial, Radyal Tabanlı ve 

Sigmoid Fonksiyonlarıdır (Karagülle, 2008). 

 

3.2.3.1.3.1.Doğrusal Fonksiyon 

Doğrusal sınıflandırma işlemi, doğrular çizilerek yapılır ve dikdörtgen, kare gibi 

şekillerin sınıflandırılmasında daha etkilidir. 

Doğrusal sıflandırmada kullanılan fonksiyon, ( u ,.v ) formülü ile temsil edilir. Şekil 

3.12’de gösterildiği gibi doğrusal olarak sınıflandırma yapar (Karagülle, 2008).  

 

 

 

Şekil 3.12. İki Boyutlu Örnek Uzayında Doğrusal Fonksiyon Gösterimi 
 

3.2.3.1.3.2.Polinomal Fonksiyon 

Polinomial fonksiyon ile sınıflandırma, (γ .u .v + katsayı 
0 

)derece formulü kullanılarak 

yapılmaktadır. 

Şekil 3.13’de doğrusal ve doğrusal olmayan sınıflandırma birlikte gösterilmektedir. 

Şekil 3.14’da ise 2 boyutlu örnek uzayında Polinomial fonksiyonun sınıflandırılması 

gösterilmektedir (Karagülle, 2008).  
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Şekil 3.13. Doğrusal ve Doğrusal Olmayan Sınıflandırma Gösterimi 

 

 

 

Şekil 3.14. İki Boyutlu Örnek Uzayında Polinomial Fonksiyon Gösterimi 
 

3.2.3.1.3.3.Radyal Tabanlı Fonksiyon 

Radyal Tabanlı sınıflandırma işlemi, doğrusal olmadığından örneği daha yüksek 

boyutlu bir uzaya taşıyarak gerçekleştirir. Bu işlem için exp( −γ .| u − v |
2 

) fonksiyonu 

kullanılır. Şekil 3.15, Radyal tabanlı fonksiyon kullanılarak farklı bir boyuta taşınma ve 

sınıflandırma sonucunu göstermektedir. Şekil 3.16’de, 2 boyutlu örnek uzayında 

sınıflandırma gösterilmektedir (Karagülle, 2008).  
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Şekil 3.15. RTF ile Sınıflandırılarak Farklı Boyuta Taşınması 

 

 

 

Şekil 3.16. İki Boyutlu Örnek Uzayında Radyal Tabanlı Fonksiyon Gösterimi 
 

3.2.3.1.3.4.Sigmoid Fonksiyon 

Sigmoid fonksiyon ile sınıflandırma, tanh( γ .u ,.v + katsayı 0 ) formulü kullanılarak 

yapılmaktadır. Şekil 3.17’de sigmoid fonksiyon yapısı gösterilmiştir (Karagülle, 2008).  

 

 

Şekil 3.17. Sigmoid Fonksiyon 
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İdeal olarak bir DVM analizi, tamamen iki ayrı sınıflandırma sonucunu ve özellik 

vektörlerini ayıran çok boyutlu düzlemi üretmelidir. Yine de, mükemmel sınıflandırma 

mümkün olmayabilir. Modelin veriyi iyi bir şekilde genelleyemediği ve çok fazla özellik 

vektörleri üreterek sonuca ulaştığı zamanlar olabilir. Şekil 3.18’de hatalı sınıflandırma 

örneği görülmektedir.  

 

 

 

Şekil 3.18. Hatalı Sınıflandırma Örneği 

 

Kategorileri ayırma işleminde esnekliğe izin vermek için C parametresi kullanılır. Bu 

parametre hataları kontrol altına almak için kullanılır. Örneğin sert kenarlara yumuşaklık 

kazandırarak daha iyi sınıflandırma yapılmasını sağlar. C'nin değerini artırmak, iyi bir 

şekilde genellenemeyen kaçan noktaların sınıflandırmasını sağlar (Karagülle, 2008).  
 

3.2.3.2. Diskriminant Analizi 

Diskriminant(Ayırma) analizi, diskriminant fonksiyonları ile bir nesneye ait sınıflar 

arası ayrıma en fazla etki eden özellikleri (değişkenleri) belirlemede ve sınıfı bilinmeyen 

yeni bir nesnenin hangi sınıfa dâhil olacağına karar vermede kullanılan bir analizdir. Bu 

analiz genel anlamda bir ayırma işlemi olup p adet özelliğe sahip bir nesnenin, bu 
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özelliklerinden faydalanılarak, mevcut sınıflardan (grup) birine dâhil olmasını veya mevcut 

nesneleri birbirinden ayıracak en iyi fonksiyonları bulmada kullanılan çok değişkenli 

istatistik yöntemlerinden biridir. Diskriminant analizi, birkaç farklı adlandırma ile 

literatürde geçer. Bunlar; kanonik Diskriminant Analizi, en çok olabilirlik Diskriminant 

Analizi ve Bayes Diskriminant Analizi şeklindedir (Çamdeviren, 2000).  

Fisher (1936) yılında, diskriminant analizinde kullanılan diskriminant 

fonksiyonlarının ölçütünü ortaya koymuştur. Diskriminant fonksiyonlarındaki bu ölçüt, 

uzaklık ölçüleri, yanlış sınıflandırma olasılığı ve yanlış sınıflandırma maliyetini içeren 

optimal yaklaşımdır.  

Welch (1939) yılında, en iyi ayırmanın, hatalı sınıflandırma olasılığı ve yanlış 

sınıflandırma maliyetleri en aza indirgendiğinde gerçekleşeceğini ortaya koymuştur.  

Roy (1939) yılında, p değişkenli iki normal dağılım için kovaryans matrislerinin 

eşitliğini test etmiştir.  

Rao (1948) yılında,  ikiden çok sınıf olduğunda nesneleri minimum hata ile 

sınıflandırmaya çalışmıştır.  

Anderson ve Bahadur (1962) yılında, ortalaması ve varyans-kovaryans matrisi farklı 

olan çok değişkenli normal dağılımların sınıflandırılması üzerinde çalışmıştır. Hotelling ve 

Mahalanobis’de bu ve benzeri çalışmalarda bulunmuşlardır (Emin, 1984)  

Nesnelerin sınıflandırılmasında genel olarak bazı matematiksel eşitliklerden 

yararlanılır. Diskriminant fonksiyonları olarak adlandırılan bu eşitliklerden faydalanılarak 

birbirine en çok benzeyen sınıfların oluşturulması için sınıfların ortak özellikleri 

belirlenmeye çalışılır. Ayırma amacı ile kullanılan bu sınıf karakteristikleri diskriminant 

değişkenleri olarak adlandırılır. Kısaca, iki veya daha fazla sınıfa ait farklılıkların bu 

diskriminant değişkenleri ile ortaya konulması işlemidir (Klecka, 1987).  

Amaç, nesneler arasındaki hatalı sınıflandırma olasılığını en aza indirerek ait 

oldukları sınıflara ayırmak veya bu nesnelerin rastsal olarak alındığında ait oldukları 

sınıfları belirlenmektir (Johnson ve Wichern, 2002). Bu durumda belirlenen sınıfların 

ortalamaları arasındaki farkın maksimum olması sağlanmalıdır.  

Diskriminant Analizi, sınıflar arasında çeşitli özellikler göz önüne alınarak 

farklılıkların ortaya konulmasını sağlar. Nesneler en az hata ile ait oldukları sınıflara 

ayrılmaktadır. Bu esastan hareketle nesnelerin sınıflarını belirleyecek fonksiyonları 
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bulmaktır. İki veya daha fazla sınıfın aralarındaki etkileşimin ne seviyede ve nesnelerin 

özellikleri arasında ne gibi farklılıklar bulunduğunu ortaya koymaktır (Tümer, 2001).  

İşlevsel olarak, sınıfların farklılıklarını anlamak ve bir varlığın (birey, nesne) belirli 

bir sınıfa veya birkaç metrik bağımsız özelliğe dayalı olarak bir sınıfa ait olması olasılığını 

kestirmektir. Sınıflar arası farklılığa en çok etki eden özelliklerin hangileri olduğunu ortaya 

çıkarır (Cangül, 2006).  
 

3.2.3.2.1. Çok Boyutlu Ölçekleme Analizi 

İstatistiksel olarak kişisel tercihler, tutumlar, eğilimler, inançlar ve bekleyişler gibi 

davranışsal verilerin analizinde kullanılır. Çok boyutlu ölçekleme, n tane nesne (birey, 

gözlem) arasındaki uzaklık değerlerini kullanarak bu nesnelerin çok boyutlu uzaydaki 

konumlarını, ilişki yapısını veren resmini ortaya koymayı amaçlamaktadır. Uzaklıklar veya 

farklılıklar yardımıyla nesnelerin geometrik konumlarının belirlenmesi, şekillendirilmeleri 

önemli bir konudur. Bu amaçla yapılan çalışmalarda genellikle elde edilen şekillerin çok 

boyut içermesi sebebiyle bu ölçeklemelere çok boyutlu ölçekleme adı verilmiştir (Tatlıdil 

1996). 

Bu analiz belli bir dağılım varsayımı gerektirmeyen bir yöntemdir. Buna karşın bu 

yöntemin sağlaması gereken varsayımların bazıları şunlardır: n tane nesne ya da birim 

arasındaki uzaklıkları kullanır. Bu uzaklıklar simetrik ve yansımalıdır. Veri tipini doğru 

olarak belirlemek gerekir (Örneğin; sınıflamalı, sıralı, eşit aralıklı veya orantılı). Analiz 

edilecek veriler farklılıklar belirtiyor ise, farklılıklar matrisi nicel değerler içermelidir 

(Cangül, 2006). 
 

3.2.3.2.2. Çok Değişkenli Normal Dağılım 

Çan eğrisi şeklindeki normal dağılımın çeşitli boyutlara genelleştirilmesi çok 

değişkenli istatistikte önemli bir rol oynar. Aslında birçok istatistiksel teknik, verilerin çok 

değişkenli normal bir dağılımdan üretildiği varsayımına dayanmaktadır. Gerçek veriler 

hiçbir zaman tam olarak çok değişkenli normal dağılıma sahip olamasalar da normal 

dağılım çoğunlukla “doğru” ana kütle dağılımına oldukça yaklaşmaktadır (Cangül, 2006). 

Çok değişkenli istatistiksel analiz tekniklerinin çoğunda, örneklemlerin çok 

değişkenli normal dağılımlı kütlelerden geldiği kabul edilmektedir. Çok değişkenli normal 

dağılımı kullanmanın avantajları vardır. Bunlardan bazılarını şu şekilde sıralayabiliriz: 

Çok değişkenli normal dağılım, 
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• Matematiksel olarak incelenmesi, çözümlenmesi ve sonuçların yorumlanması 

açısından kolay olan dağılımdır. 

• Doğada sürekli değişken içeren çok değişkenli olaylar normal dağılım 

gösterir. Birçok uygulamacı, diğer dağılımlarla ilgili yaklaşımlar yaygın kullanıma sahip 

olmadığından ayrıntılı bilgiye sahip olmayabilir. 

• Çok değişkenli istatistiklerin örneklem dağılımları merkezi limit teoremi etkisinden 

dolayı çok değişkenli normal dağılım gösterir. 

• Çoğu problemin incelenmesinde normal dağılım varsayımlarınınkullanılması 

oldukça tutarlı bir yaklaşımdır. 

Çok değişkenli normal dağılımın bir avantajı matematiksel olarak anlaşılır olması ve 

birçok faydalı sonucun elde edilebilmesidir. Bu genellikle diğer veri üreten dağılımlarda 

rastlanmayan bir özelliktir. Tabii matematiksel çekiciliği pratik uygulama yapan bir 

araştırmacının çok da işine yaramaz. Bununla birlikte normal dağılımlar uygulamada iki 

sebepten dolayı faydalıdır. İlk olarak normal dağılım bazı durumlarda doğal bir kütle 

modeli olarak hizmet vermektedir. İkinci olarak ta birçok çok değişkenli istatistik 

örneklem dağılımları merkezi-limit teoreminin etkisiyle ana kütleye bağlı olmaksızın 

yaklaşık olarak normaldir (Cangül, 2006). 

Özet olarak, birçok doğal problem normal dağılım teorisine yaklaşık sonuçlar 

vermektedir. Esasen normal dağılımın önemi, hem bazı doğal olaylara karşılık gelen bir 

ana kütle modelinden, hem de birçok istatistik uygulaması için uygun bir örneklem 

dağılımına sahip olmasından kaynaklanır (Cangül, 2006).  
 

3.2.3.2.3. Tek Değişkenli Normal Dağılım Eşitlikleri 

Ortalama değeri μ ve varyansı σ2 olan tek değişkenli normal dağılımın olasılık 

yoğunluk fonksiyonu aşağıdaki şekildedir. 
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Bu fonksiyonun şekli, Şekil 3.10’de görüldüğü gibi çana benzediği için çan eğrisi 

olarak ta adlandırılır. Şekilde ayrıca eğri altında kalan ve ortalamadan ±1 ve ±2 standart 
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sapmaya karşılık gelen kısımlar gösterilmiştir. Bu alanlar olasılıkları gösterir. Normal 

rastsal X değişkeni için, 

 

68,0)(   XP  

95,0)22(   XP  

9973,0)33(   XP  

 

yazılabilir.  

Ortalaması   ve varyansı 2  olan normal yoğunluk fonksiyonu ),( 2N  ile Şekil 

3.19’daki gibi gösterilir. 

 

a) 

 

b) 

 

Şekil 3.19.(a),(b) Ortalaması   ve varyansı 2
 
olan bir normal yoğunluk ve eğri altındaki 

alanlar. 

 

Tek değişkenli normal yoğunluk fonksiyonunun üssündeki, 
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terimi x ’ten  ’ye kadar olan uzaklığın standart sapma birimi cinsinden karesini 

ölçmektedir. Bu durum çeşitli değişkenlerin gözlemlerinden oluşan 1p  boyutlu bir x  

vektörüne şu şekilde genelleştirilebilir: 

 

)()( 1    xx T

 

 

(3.26)

 

1p  boyutlu bir   vektörü X
 
rastsal vektörünün beklenen değerini belirtmektedir. 

pp   boyutlu   matrisi ise X ’in varyans-kovaryans matrisidir. Simetrik   matrisinin 

pozitif tanımlı olduğu varsayıldığında, bu son denklem  x ’ten   ’ye olan genelleştirilmiş 

uzaklığın karesidir (Cangül, 2006). 
 

3.2.3.2.4. Çok Değişkenli Normal Dağılım Eşitlikleri 

Çok değişkenli normal yoğunluk, tek değişkenli normal yoğunluğun çok boyuta         

( 2p ) genelleştirilmesi ile elde edilir (Cangül, 2006). 

Çok değişkenli normal yoğunluk, (3.24)’deki yoğunluk fonksiyonundaki tek 

değişkenli uzaklığın (3.25) çok değişkenli genelleştirilmiş uzaklıkla (3.36) değiştirilmesi 

ile elde edilir. Bu değişiklik yapıldığında tek değişkenli normalleştirme sabiti 

olan 2/122/1 )()2(   ’nin, herhangi bir p boyutu için çok değişkenli yoğunluk 

fonksiyonunun yüzeyi altında kalan hacmi birim değer yapacak şekilde daha genel bir 

sabitle değiştirilmesi gerekir. Bu çok değişkenli durumda olasılıklar, ix  değerlerinin 

oluşturduğu bölgeler üzerinde tanımlanan yüzeyler altında kalan hacimler cinsinden ifade 

ediliyor olmaları sebebiyle gereklidir. Bu sabit şu şekilde, 
2/1'2/)2(

 p gösterilebilir. 

Bundan hareketle, sonuç olarak bir ],...,,[ 21 pXXXX  rastsal vektörü için p-boyutlu bir 

normal yoğunluk, pi ,...,2,1  için  ix  olmak üzere, 
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şeklinde ifade edilir. Bu durumda p-boyutlu normal yoğunluk, tek değişkenli durumdan tek 

farkı p indisi ile ),( pN

 

şeklinde gösterilir (Cangül, 2006). 

 

3.2.3.2.5. Diskriminant Analizinin Varsayımları 

Diskriminant Analizi, hangi değişkenlerde daha fazla farklılık oluştuğunun 

belirlenmesinde de kullanılır. Böylece grupların ayrılmasında etkin olan faktörlerin tespit 

edilmesini de sağlar. Elde edilen fonksiyonlarla gerçek grupların karşılaştırılması yapılarak 

fonksiyonların yeterli olup olmadıkları test edilebilir. (Erçetin, 1993). 

Diskriminant Analizi, hatalı sınıflandırma olasılığını en aza indirgeyerek birimleri ait 

oldukları gruplara ayırmak amacına yönelik olan, istatistiksel bir karar verme yöntemidir 

(Tatlıdil, 1996). 

Diskriminant Analizi, X veri setindeki değişkenlerin iki veya daha fazla gerçek 

gruplara ayrılmasını belirlemek amacıyla yararlanılan bir yöntemdir (Özdamar, 1999). 

Ayırt edici değişkenlerin sahip olabilecekleri istatistiksel özelliklerle ilgili bazı 

kısıtlamalar vardır. Hiç bir değişken diğer ayırt edici değişkenlerin bir lineer bileşimi 

olmamalıdır. Bir lineer bileşim sabit katsayılar ile çarpılan bir ya da daha çok değişkenin 

ağırlıklı toplamıdır. Bu yüzden bir araştırmacı bu değişkenlerin yanında bunların toplamını 

ya da ortalamasını kullanma şansına sahip olmaz. Birbiri ile oldukça uyumlu iki değişkeni 

de aynı anda kullanamayız. Lineer bileşimlere karşı olan bu kısıtlama sezgisel olarak 

anlamlı olsa da matematiksel olarak gereklidir. Lineer bileşim olarak elde edilecek bir 

değişken, bileşenlerin sahip olduğu bilgilerin ötesinde yeni bir bilgi içermediğinden 

kullanımı gereksizdir (Cangül, 2006). 

 Birçok uygulamada gerekli olan bir başka varsayım her bir grup için kovaryans 

matrislerinin eşit olmasıdır. En kolay ve sıkça kullanılan Diskriminant Analizi, türü ayırt 

edici değişkenlerin basit bir lineer bileşimi şeklinde olan bir lineer diskriminant fonksiyonu 

kullanmaktadır. Bu yöntem en kolay olanıdır. Çünkü eşit grup kovaryans matrisleri 

varsayımı diskriminant fonksiyonu ve belli başlı önem testlerini hesaplamada kullanılan 

formüllerin basitleştirilmesini sağlar. Diskriminant Analizi, grupların kovaryans 

matrislerinin eşit olup olmamasına göre farklı biçimlerde uygulanabilmektedir. Her ne 

kadar Diskriminant Analizinin temel varsayımlarından birisi grupların kovaryans 
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matrislerinin birbirine eşit olduğu biçiminde ise de bu varsayım geçerli olmaması 

durumlarında da Diskriminant Analizi yapılabilmektedir (Cangül, 2006). 

Bir başka varsayım, her bir grubun çok değişkenli normal dağılıma sahip bir kütleden 

geldiğidir. Bu şekilde bir dağılım da her değişkenin, sabit değerler etrafında normal bir 

dağılıma sahip olmaları durumunda ortaya çıkar. Bu durum, önem testlerinin ve grup 

üyeliklerinin olasılıklarının kesin olarak hesaplanabilmesini sağlar. Bu varsayım 

kaldırılması durumunda hesaplanan olasılıklar doğru değildir (Cangül, 2006). 

Diskriminant Analizi aynı zamanda birbirine girmiş ortak özelliklere sahip grupları 

birbirinden ayırmak için grup ortalama vektörlerini birbirinden ayıracak fonksiyonlar 

geliştiren bir yöntemdir (Cangül, 2006). 

Diskriminant Analizi; Varyans Analizi (ANOVA) ve Çoklu-Değişkenli Varyans 

Analizi (MANOVA) yöntemleri gibi grupları ortalamalarına (ortalama vektörlerine) göre 

ortak ortalamadan (ortalama vektöründen) farklı olmalarını sağlayacak bir ayırma kriteri 

geliştirmeyi amaçlayan bir yöntemdir. Bu nedenle veri setlerine Diskriminant Analizi 

uygulanabilmesi için veri setlerinin ANOVA ve MANOVA uygulaması için gerekli olan 

aşağıdaki varsayımları taşıması gerekir. 

1) X veri matrisi çok değişkenli normal dağılım göstermelidir. 

2) Değişkenlerin varyans ve kovaryansları homojen olmalıdır. X matrisinde yer alan 

değişkenler ortak kovaryans matrisine sahip çok değişkenli ana kütleden çekilmiş örnekler 

olmalıdır. 

3) Değişkenlerin ortalamaları ve varyansları arasında bir korelasyon bulunmamalıdır. 

4) Değişkenler arasında çoklu bağımlılık bulunmamalıdır. 

5) X matrisi grupların birbirinden ayrılmasında rol oynamayacak gereksiz değişken 

içermemeli, grupların birbirinden ayrılmasını sağlayacak kadar doğru ve gerekli 

değişkenleri içermelidir. 

Bu varsayımlar Diskriminant Analizine genelde yapılan yaklaşımlara dayalı bir 

matematiksel model ortaya koyar. Eğer belli bir problemin verileri varsayımları 

sağlamazsa istatistiksel sonuçlar tam olarak gerçeği yansıtmayacaktır.  
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Şekil 3.20. Ayırt edici değişkenler ve gruplar arasındaki ilişkiler 

 

Grupları bir tek seviye değişkeni yardımı ile tanımlanmış olarak düşünürsek 

Diskriminant Analizinin bir seviye değişkenini çeşitli aralık seviye değişkenlerine atayan 

bir teknik olduğunu görürüz (Cangül, 2006). 

Diskriminant Analizinin altında yatan matematiksel kavramlar şu şekilde 

özetlenebilir: 

g : grup sayısı 

p : ayırt edici değişkenlerin sayısı 

ni : i grubundaki durumların sayısı 

n. : tüm gruplardaki tüm durumların sayısı. 

Tüm istatistiksel ve matematiksel modellerde olduğu gibi, Diskriminant Analizi de 

bazı varsayımlara dayanmaktadır. Analizin ayırım gücü dayandığı varsayımların 

sağlanmasına ya da bu varsayımlar karşısında sağlam olmasına bağlıdır. Özellikle modelin 

başarısının, beklenenden düşük çıktığı durumlarda, doğru yorumda bulunabilmek için bu 

varsayımların test edilmesi gerekmektedir. Diskriminant Analizinin varsayımları şu şekilde 

ifade edilebilir: 

1) Ana kütle belli özelliklere göre gruplanabilir (Tatsuoka, 1976). Birbirinden farklı 

iki veya daha fazla grup söz konusu olmalıdır (Polat, 1995). Yani 2g ’dir. 

2) Her grupta en az iki durum olmalıdır: 2in . 

3) Veriler ana kütleden rastsal olarak seçilmiştir. 

Gruplar Ayırt edici 
değişkenler 

 

GX

X

X

G

G
…
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4) Toplam durum sayısının 2 eksiğinden az olmak kaydıyla herhangi sayıda ayırt 

edici değişken olmalıdır: 20  np . 

5) Ayırt edici değişkenler 1. ölçek seviyesinde ölçülürler. 

6) Hiçbir ayırt edici değişken diğer ayırt edici değişkenlerin lineer bileşimi olamaz. 

7) Özel formüller kullanılmadıkça her bir grup için kovaryans matrisleri (yaklaşık 

olarak) eşittir. Gruplara ait ortalamalar ve kovaryans matrisi önceden bilinir. Grupların 

kovaryans (sapma) matrisleri eşittir (Karels ve Prakash, 1987). Bu varsayımın 

sağlanmadığı durumlarda, Diskriminant Analizinin karesel (kuadratik) formu kullanılabilir. 

8) Her bir grup, ayırt edici değişkenler üzerindeki çok değişkenli normal dağılıma 

sahip bir örnek grubundan alınır. Bağımsız değişkenler çok boyutlu normal dağılıma 

sahiptirler (Leeuwen, 1985). 

9) Grupların eşit sayıda birimden oluşmadığı durumlarda, üyelerin öncelikli 

olasılıklarının bilindiği varsayılır. 

10) Herhangi bir durumun yanlış sınıflandırılmasının maliyeti önceden bellidir.  

Bu varsayımlardan bir ya da daha fazlasının sağlanmadığı durumda, Diskriminant 

Analizi optimum bir sınıflandırma ortaya koyamayacaktır (Cangül, 2006). 

Buraya kadar sınıflandırmaya esas olan varsayım her grubun eşit olarak 

değerlendirilmesine dayalıdır. Uygulamada bu istenen bir durum olmayabilir. Örneğin bir 

veri setinin %90 bir gruba kalan %10 kısmı bir başka gruba dâhil olsun. Hiçbir hesap 

yapmaksızın verilen yeni bir ölçümün ilk gruba dâhil olma olasılığının yüksek olduğu 

aşikârdır. Yeni ölçümün diğer gruba ait kuvvetli özelliklerinin olmadığı durumda ilk gruba 

sınıflanması mantıklıdır.  Bu durumda, sınıflandırmaya ait sonradan ortaya çıkan 

olasılıkların öncelikli olasılıklara katılması gerekebilir.  

Bir başka olasılıkta, yanlış sınıflandırmanın bedelinin gruplara göre ciddi farklılıklar 

gösterdiği durumdur. Bunu şu şekilde açıklayalım. Sınıflandırmada yanlışlık yapıldığında 

hasta, bir tümör kötü huylu olduğu halde iyi huylu diye sınıflandırıldığında, iyi huylu 

olduğu halde kötü huylu diye sınıflandırılmasına göre daha çok zarar göreceği ihtimali 

yüksektir. Bu olasılıklar öncelikli olasılıklara benzer bir şekilde kullanılabilir (Cangül, 

2006). 
 

3.2.3.2.6. Diskriminant Analizine Geometrik Yaklaşım 
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Diskriminant analizinin geometrik yorumunu yapmak için pozitif 1x  ve 2x  

özelliklerine sahip 1K  ve 2K  sınıflarından 1N  ve 2N  adet nesnenin olduğunu düşünelim. 

Bu nesnelerin aldığı 1x  ve 2x  özellik değerleri öklidyen uzayda 1N  ve 2N  adet noktaya 

karşılık gelir. Bu noktaların oluşturduğu normal dağılıma sahip bulutlar ise bir elips olarak 

çizilebilir (Ünal, 2006).   

Örneğin I doğrusu 1K  ve 2K  sınıfına ait iki boyutlu özellik uzayını ayıran J 

doğrusuna dik bir doğru olsun (Şekil 3.4).  1K  ve 2K  sınıflarına ait nesneleri temsil eden 

noktaların izdüşümleri I doğrusu üzerine düşürülür. 1K  ve 2K  sınıflarının I doğrusu 

üzerindeki ortalama vektörlerinin izdüşümü arasındaki varyans, en büyüklenmiş olur.  

Nesnelere ait p adet özelliklerinin I doğrusu üzerindeki izdüşümleri, lineer bir 

dönüşümle bulunur. Bu durumda I ekseni, nesnelerin p adet özelliği dikkate alınarak 

oluşturulan bir ayırma eksenine dönüşmüş olur.  Bu doğru aynı zamanda diskriminant 

fonksiyonlarını temsil eder.  

I ve J doğrularının kesiştiği w noktası, bu tek boyutlu ayırma uzayını S1 ve S2 olmak 

üzere iki bölgeye ayırır. Sonuç olarak S1 bölgesine izdüşümü düşen bir nesne küçük bir 

hata ile 1K   sınıfına ve S2 bölgesine düşen ise 2K   sınıfına sınıflandırılmış olur.  

 

Şekil 3.21. Diskriminant analizine geometrik yaklaşım. 
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Ayırma ekseni I,  1K  ve 2K  sınıflarının çok değişkenli normal dağılıma ve ortak 

varyans-kovaryans’a sahip olmaları varsayımı üzerine oluşturulmuştur. Bu iki varsayım 

altında J doğrusu, iki sınıfı birbirinden ayıran en iyi doğru olacaktır. Aksi takdirde bu 

doğru, en iyi ayırma doğrusu olmayacaktır (Ünsal ve Güler, 2005).  

Diskriminant analizinin uygulama adımları şu şekildedir: 

• Öncelikli grup üyelikleri belirlenir. 

• Analize alınan gruplar arasında fark olup olmadığı, Bartlett’in Ki-kare test 

istatistiği ile test edilir. Test sonucu gruplar arasında anlamlı bir fark varsa, analize devam 

edilir. 

• Kullanılacak değişkenler seçilir. Değişken seçiminde Öncelikli bilgi ya da istatistikî 

yöntemler uygulanabilir. 

• Değişkenler arasında çoklu bağlantının olup olmadığı incelenir. Bu amaçla 

birleştirilmiş grup içi korelâsyon matrisi incelenir. Bu matristeki korelasyon değerleri 

mutlak değerce %75’den büyük ise değişkenlerden bir kısmının atılması gerekir. Bu 

adımın sonunda değişken kümesi belirlenmiş olur. 

• BW 1  matrisinin özdeğerleri ve bu özdeğerlere ilişkin özvektörler bulunur. Bu 

özvektörler, diskriminant fonksiyonları için gerekli ağırlıkları verir. Diskriminant 

fonksiyonlarının anlamlılık testi de bu özdeğerler kullanılarak yapılır. Eğer herhangi bir 

fonksiyon anlamlı ise yaptığı ayrımın başarılı olduğu söylenebilir. 

• Standartlaştırılmamış diskriminant fonksiyonu kullanılarak her bir birey için 

diskriminant fonksiyonu değerleri elde edilir. Bu değerler sınıflandırma aşamasında 

kullanılacaktır. 

• Grup üyelikleri için Öncelikli olasılıklar belirlenir. Daha sonra bu olasılıklar ve 

diskriminant skorları kullanılarak sonsal olasılıklar elde edilir. Bireyin sahip olduğu en 

büyük sonsal olasılık tespit edilir. Bu olasılığı veren grubun o bireyin ait olduğu grup 

olduğu tahmin edilir ve birey sınıflandırılmış olur. 

• Her bir birey sınıflandırıldıktan sonra, diskriminant fonksiyonunun başarısı, doğru 

sınıflandırma yüzdesi incelenerek tespit edilebilir (Özdamar, 2002). 
 

3.2.3.2.7. Lineer Diskriminant Analizi (LDA) 
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Diskriminant analizinde temel amaç, gruplar arası kareler toplamının, gruplar içi 

kareler toplamına oranını maksimum yapacak p adet özelliği ayıracak doğrusal bileşeni 

bulmaktır (Ünal, 2006). 
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plamıkareler to içiGruplar 

plamıkareler to arasıGruplar 
maxF

 
 (3.28) 

 

Bu problem istatistiksel olarak şu şekilde gösterilir; p adet nesnenin g adet sınıfa 

ayrıldığını düşünelim. k. sınıfta kN  adet nesne ve toplam nesne sayısı N olsun.  Her nesne 

için p adet özellik pXXX ,...,, 21  verilmiş olsun. Bu durumda grup ortalama vektörü,  
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ve genel ortalama vektörü ise, 
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şeklindedir. Çok-değişkenli varyans analizinden (MANOVA), toplam çarpımlar ve kareler 

toplamı,  
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gruplar arası çarpımlar ve kareler toplamı, 
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grup içi çarpımlar ve kareler toplamı,  
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şeklindedir. Her üç çarpımlar ve kareler toplamı arasında, 

 

WBT   (3.34) 

 

şeklinde bir bağıntı vardır. Bu değerler serbestlik dereceleri bölünürse, toplam varyans, 

gruplar arası varyans ve gruplar içi varyans aşağıdaki gibi olur.  
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Diskriminant analizinin temel varsayımından aşağıdaki ölçüt ortaya çıkar; 
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Burada, 
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1p  boyutlu katsayılar vektörüdür. Lagrange yöntemine göre,  ’nın sütun vektörü 

olan Tu ’ye göre kısmi türevi alınarak sıfıra eşitlenir. 
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(3.46)’daki eşitlik,
 

1WuuT  kısıtlaması kullanılarak (3.47)’deki eşitlik halini alır. 

 

0 WuBu   (3.41) 

 

Bu eşitlik, W matrisinin tersi 1W  matrisi ile soldan çarpılırsa, aşağıdaki eşitlik (3.42) 

elde edilir. 

 

0)( 1  uIBW   (3.42) 

 

Özdeğer olarak adlandırılan   ’nın köklerini bulan, her   değeri için (3.49)’daki 

denklemin çözümü aranan u vektörünü verir. 

 

01  IBW   (3.43) 

 

 ’nın i. kökü için bulunan vektör iu  ile gösterilirse, i. diskriminant fonksiyonu, 
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şeklinde ifade edilir. Buna göre, p tane ayırıcı özellik için, k. gruptaki, n. nesne için 

diskriminant fonksiyonu, 

 

pknpknknkn XuXuXuf  ...2211  (3.45) 
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şeklini alır. 

Burada;  

iX : i. nesnelere ait özellikler ),...,2,1( pi  , k. gruptaki ),...,2,1( gk  , n. nesne 

),...,2,1( kNn  için değeri, 

iu : diskriminant fonksiyonunun i. katsayısı, 

g : sınıf sayısı, 

Bu  iu  değerleri “istenilen diskriminant fonksiyonunun standart olmayan ham 

katsayıları" olarak tanımlanır (Ünal, 2006). 

Diskriminant fonksiyonlarının yorumunu kolaylaştırması açısından ham katsayılar, 

dönüşüm yapılarak farklı katsayılara dönüştürülebilir. Bu katsayılar, veri seti 

standartlaştırılmadan aşağıdaki dönüşümler yapılarak bulunur (Ediz, 1997).  
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Dönüşüm işleminden sonra diskriminant fonksiyonu, 

 

pknpknknkn XvXvXvvf  ...22110  (3.47) 

 

şeklinde elde edilir. 

Katsayılarda yapılan düzeltme işlemi ile diskriminant fonksiyonlarının eksen 

merkezi, sistemin merkezi olarak kabul edilen diskriminant fonksiyonlarının tümünün sıfır 

değeri aldığı noktaya kayar. Bu şekilde herhangi bir nesnenin diskriminant fonksiyonu 

değerine bakılarak sistem merkezinden ne kadar uzakta ve ne yönde olduğu da 

belirlenebilir (Klecka, 1987).  

Standart olmayan katsayılar, her bir özelliğin sınıflandırma işlemine olan etkilerini 

gösterir (Ediz, 1997). Hangi değişkenin sınıflandırma etkisinin daha fazla olduğunu 

sorgulamak için katsayıların mutlak değerine bakılır. Mutlak değerce büyük olan 

katsayıların sınıflandırmaya etkisi de büyük olacaktır (Pouisen ve French, 2003).  
 

3.2.3.2.8. Lineer Diskriminant Fonksiyonunun Katsayıları 
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p adet özelliğe sahip nesnelerin lineer ayırımında kullanılacak diskriminant 

fonksiyonu aşağıdaki şekilde verilir,  

 

pknpknknkn XvXvXvvf  ...22110 ; ki ,...,2,1  (3.48) 

 

Burada; 

if : i. diskriminant fonksiyonu, 
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ijv : doğrusal diskriminant fonksiyonun katsayıları, 

1 : Ortak (pooled) varyans-kovaryans matrisinin tersi, 

i : i. sınıfının ortalama vektörü,  ki ,...,2,1  
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 (3.50) 

 

0iv : sabit değer, 

T
i : i. sınıfın ortalama vektörünün transpozu, ki ,...,2,1  

Diskriminant fonksiyonun karar kuralı, 

 

 )(),...,(),(max)( 21 imiiii XfXfXfXf  ; ki ,...,2,1  (3.51) 

 

şeklinde olur. 

İki sınıf arasında benzerlik olması durumunda, sadece bir diskriminant fonksiyonu 

oluşturulabilir. bu diskriminant fonksiyonu ortak diskriminant fonksiyonu olarak 

adlandırılır. Bu durumda ortak doğrusal diskriminant fonksiyonuna ait katsayılar, şu 

şekilde bulunur (Sangün, 2007). 
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Burada; 

12v : birinci ve ikinci bileşen katsayılarının ortak vektörünü, 

1  : Birinci sınıfa ait ortalama vektörü, 

2  : İkinci sınıfa ait ortalama vektörü, 
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 (3.53) 

 

10v : Birinci fonksiyona ait sabit değer, 

20v : İkinci fonksiyona ait sabit değer, 

2
ijD : Mahalanobis uzaklığı,  

Mahalanobis uzaklığı, p adet özelliğe sahip iki nokta arasındaki en büyük uzaklığı 

veren karesel bir ifadedir. Şu şekilde formüle edilir;  
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Herhangi bir nesnenin veya yeni bir nesnenin k adet sınıftan hangisine 

sınıflandırılacağına ait karar verme kuralları ; 
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sınıflandırılır (Sangün, 2007). 

Burada; 

0X : Herhangi bir nesneye ait özellik vektörüdür (Sharma,1996; Rencher, 2002; 

Timm, 2002; Özdamar 2004; Velilla ve Hernandez, 2005; Sueyoshi, 2006).  
 

3.2.3.3.Yapay Sinir Ağları 
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Doğrusal ve özellikle doğrusal olmayan süreçlerde, YSA’nın eşleme, paralellik, 

öğrenme ve uyarlanma gibi özelliklerinden faydalanılmaktadır. YSA; paralellik özelliğine 

sahip, algoritmik ve sayısal olmayan bir bilgi işleme sistemidir. Basitçe çok sayıda içten 

birbirine bağlı yapay sinir hücresi olarak isimlendirilen yapılardan oluşmaktadır ((Taşan, 

2008)). 

YSA’nın bu sayılan özelliklerinden ötürü, son yıllarda ona karşı ilgi büyük bir artış 

göstermiştir. Havacılık, otomotiv, bankacılık, savunma sanayi, elektronik, eğlence, finans, 

endüstri, tıp, robotik, ses, güvenlik ve haberleşme gibi değişik konularda uygulamaları 

bulunmaktadır. 
 

3.2.3.3.1.Yapay Sinir Ağlarının Temel Özellikleri 

Yapay sinir ağları, insan sinir hücrelerinin ve sinir ağının biyolojik yapısından 

esinlenmiştir. YSA, insan sinir sisteminin en küçük birimi olan sinir hücresine (neuron) 

benzer elemanlar olan işlem birimlerinden oluşmaktadır. İnsan beyninin çalışması ile 

benzer özellikler göstermektedir. Örneğin; tecrübe ederek öğrenebilirler, önceden 

öğrenilmiş bilgilerden tümevarım yapabilirler ve yeni sonuçlar çıkarabilirler. Bu 

benzerliklere rağmen, YSA’nın yakın bir gelecekte insan beyninin yapabildiği her şeyi 

yapabileceğini söylemek yanlış olur. 

İnsan beyninde yaklaşık 1010 sinir hücresi ve hücre başına da bağlantı sayısının 104 

civarında olması beynin çok karmaşık bir yapı olduğunu anlamamız için yeterlidir. Her 

sinir hücresi kendi bağlantılarından ve diğer sinir hücrelerinden veya dış dünyadan bilgi 

alabilir. Sinir hücreleri birden fazla çıkış işareti verebilir. YSA’nın fiziksel yapısı basitçe 

Şekil 3.22’te gösterilmiştir (Taşan, 2008). 
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Şekil 3.22. Yapay Sinir Ağının Fiziksel Yapısı 
 

3.2.3.3.2.Yapay Sinir Hücresi Modeli 

Bir yapay sinir hücresi, bir “t” anında yalnızca bir işaret gönderebilir. Bu işlem 

esnasında yapay sinir hücresinin girişine gelen işaretler ağırlık katsayıları ile çarpılıp, daha 

sonra da toplanırlar. Bu durum, Denklem 4.1’ de gösterilmiştir. 

 

 (3.57) 

 

Denklem 4.1’de “Net” adı verilen ifade ağırlıklı girişlerin cebirsel toplamıdır. “x” ise 

girişlerin oluşturduğu vektör, “w” ise ağırlıkların oluşturduğu vektördür. 

Her girişin kendi ağırlık değerleri vardır. Girişler ağırlık değerleriyle çarpıldıktan 

sonra toplanırlar ve bu değere eşik değeri eklendikten sonra “f” aktivasyon 

fonksiyonundan geçirilir (Şekil 3.23). Aktivasyon fonksiyonu olarak genellikle Şekil 

3.24’de gösterilen tipler kullanılmaktadır. 
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Şekil 3.23. Temel yapay sinir hücre yapısı. 

 

 

 

Şekil 3.24. Aktivasyon fonksiyonları; (a) Log-sigmoit aktivasyon fonksiyonu, (b) Tan-

sigmoit aktivasyon fonksiyonu, (c) Doğrusal aktivasyon fonksiyonu. 

Ağ, tek katmanlı olabildiği gibi çok katmanlı da olabilir. Bu durumda, giriş ve çıkış 

katmanları dışındaki katmanlara gizli katman (hidden layer) denmektedir ve Şekil 3.25’te 

çok katmanlı algılayıcı ağ yapısı görünmektedir. 
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Şekil 3.25. Çok katmanlı ağ yapısı. 

 

Giriş ile yapay sinir hücresinin aktivasyon fonksiyonunun işleme tabi tutulması 

sonucunda bir çıkış elde ederiz. Bu fonksiyon, doğrusal olmayan bir fonksiyondur. Aynı 

zamanda eşik değeri seçimi “b” ile birlikte bu fonksiyon seçimi yapay sinir hücresinin 

modelini belirler. Genelde sigmoit fonksiyonu tercih edilir.  

YSA, katman olarak adlandırılan bölümlerden oluşmaktadır. Katman sayısı tek ise 

bu yapılara tek katmanlı ağ, katman sayısı birden fazla ise çok katmanlı ağlar denir (Şekil 

3.25). Tek katmanlı ağların çeşitli uygulamalarda sınırlı yetenek gösterdikleri 

ispatlanmıştır. Çok katlı ağlarda her katmandaki yapay sinir hücresi sayısı farklı olabilir. 

Araştırmacılar çok katmanlı ağların eğitilmesine izin veren algoritmalar geliştirmişlerdir 

(Zurada, 1992). Eşlenik gradyan yöntemleri, bu algoritmalardan yaygın olanıdır. Bu 

algoritma her yaklaşımda arama yapmaktadır. Böylece, her araştırma için ağın girişlere 

verdiği cevabın defalarca hesaplanması gerekmektedir. Bu çalışmada kullanılan ölçekli-

eşlenik gradyan (SCG; Scaled-Conjugate Gradient) yöntemi ile zaman gecikmesine sebep 

olan yol arama algoritması kullanılmamaktadır (Taşan, 2008). 
 

3.2.3.3.3. Tek katmanlı-ileri beslemeli sinir ağları (FFNN) 

Yapay Sinir Ağlarında en basit ağ yapısı, tek katmanlı ileri beslemeli yapay sinir 

ağıdır. Bu tip ağda, temel katmanlardan olan ara katmanlar yoktur. Ağ sadece bir giriş 

katmanı ve bir çıkış katmanından oluşur. Bu tip ağın yapısına bir örnek Şekil.3.26’da 

gösterilmiştir. İleri besleme denmesinin sebebi, bilginin girişten çıkışa doğru ilerlemesidir. 

Giriş katmanı giren bilgi üzerinde hiçbir işlem yapmadan veriyi çıkış katmanına iletir ve 

bu yüzden Tek katmanlı olarak isimlendirilir (Bozkurt, 2007).  
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Şekil 3.26. Tek katmanlı yapay sinir ağı 
 

3.2.3.3.4. Çok katmanlı-ileri beslemeli sinir ağları (MLFFNN) 

Çok katmanlı yapay sinir ağları, tek katmanlıdan farklı olarak, giriş ve çıkış 

katmanları arasında bir veya daha fazla gizli katman (ara katman) içerir. Bu ağın yapısına 

bir örnek Şekil.3.27’da verilmiştir. Gizli katmanlar giriş ve çıkış katmanları arasında yer 

alır ve bilgiyi işlemek adına işlemler yaparlar. Giriş katmanı geniş olduğunda gizli 

katmanlar sayesinde yüksek dereceli istatistiksel bilgi elde edilebilir. Çok katmanlı 

yapılarda bir katmanın çıkış işaretleri bir sonraki katmana giriş işareti olarak verilir. Eğer 

bir yapay sinir ağında giriş katmanında m adet giriş düğümü, ilk gizli katmanda h1 adet 

nöron, ikinci gizli katmanda h2 adet nöron ve çıkış katmanında ise q adet nöron var ise, bu 

çok katmanlı ileri besleme ağına m-h1-h2-q ağı denir. Eğer her katman için, bir katmanda 

bulunan nöronlar bir sonraki katmanın tüm nöronlarına bağlıysa bu tip ağa tam bağlantılı 

ağ denir. Tersi durumda ise ağa kısmi bağlantılı ağ adı verilir (Bozkurt, 2007). 

 

 

 



 

54 
 

Şekil 3.27. Çok katmanlı yapay sinir ağı 
 

3.2.3.4.Olasılıklı Sinir Ağları 

Olasılıksal sinir ağı (PNN, Probabilistic Neural Network) bir Bayes sınıflandırıcının 

parametrik olmayan bir gerçeklemesini göz önünde bulundurabilir. Bilinmeyen şart 

yoğunlukları Parzen pencereleri kullanılarak tahmin edilir ve Bayes karar kuralı en yüksek 

olasılığın çıkış kategorisini elde etmek için uygulanır. PNN eğitim verisinin temel 

dağıtımına göre hiç bir varsayımın yapılmadığı serbest model (modelden bağımsız) bir 

tahmin edici olarak düşünülebilir (Güllüoğlu, 2007).  
 

3.2.3.4.1.Matematiksel Temel 

PNN ‘nin temelini teşkil eden fikir Parzen pencerelerini kullanarak bilinmeyen şart 

yoğunluklarını tahmin etmektir. Parzen‘in tekniği verilen bir kategorinin her bir eğitim 

vektörü çevresinde n-boyutlu bir Gauss fonksiyonu merkezlemektir. Verilen kategorinin 

doğru olasılık yoğunluk fonksiyonlarının (oyf) bir tahmini olarak bu bireysel gauss 

servislerinin üstüne konan, ölçekleme (bölüntü) ile ayrılır. n artırımlar ile, tahmin edilen 

oyf yaklaşımları doğru oyf 'yi verir. Matematiksel olarak, tahmin edilen oyf şu şekildedir;  

 

 (3.57) 

 

Burada  düz sabittir, (d(x,yi)) saklanmış yi örneği ve x test örneği arasındaki 

uzaklıktır, çok değişkenli örnek(model) vektöründeki bileşenlerin sayıdır ve n ise 

verilen kategorideki eğitilen kategorilerin sayısıdır. Bu formülasyonun avantajı şudur ki, 

birkaç örnek oyf temelini teşkil eden, esnek bir tahmin yapmak için gereklidir.      

PNN bu tahmin etme sürecinin paralel bir uygulamasıdır. Dağıtma (yayılma) katmanı 

bir bağlantı noktası gibi temel hizmet verir ve örüntü katmanının nöronları arasında giriş 

vektörünün elemanlarını yayar. Bu ikinci katman kategori tarafından organize edilir, her 

bir kategoriden her biri için eğitim örneği bir nöron ile gerçekleştirilir. Her bir örüntü 

katmanı birimi test vektörü ve saklanmış eğitim vektörü arasındaki öklit uzaklığını 

hesaplar. Gauss doğrusalsızlığı bu uzaklık ölçümü ile uygulanır. Toplama katmanındaki 

her bir birim, verilen bir sınıfın örüntü katman çıkışlarını içerir ve ölçekleme (bölütleme) 

bu kategoride eğitme örneklerinin sayısının tersi ile toplanır. Toplama katmanının çıkışları 
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tahmin edilen şart yoğunluklarıdır. Son katman maksimum olasılığın kategorisini 

belirleyen karar katmanıdır (Güllüoğlu, 2007).  

 

 

 

 

Şekil 3.28. Olasılıksal Sinir Ağı Yapısı 
 

3.2.3.4.2.Eğitme 

Eğitme, örüntü vektörlerinin örüntü katman birimlerine doğrudan pay edildiği andır. 

Kodlamanın meydana gelmediği basit durumdur (Güllüoğlu, 2007).  
 

3.2.3.4.3.Test Etme 

Bir test vektörü PNN’ye verildiğinde, kararda güvenilir bir tahmin kadar iyi olan 

kazanan kategori çıkışı oluşturur. Bu güvenilir tahmin Bayes karar kuralı kullanılarak, 

tahmin edilen şart yoğunluklarından hesaplanan sonrasal olasılık ile verilir. Tekrar 

belirtelim ki denk önceseller, karar maksimum olabilirlik kriteri temelindedir ki, o da şart 

yoğunluklarıdır (Güllüoğlu, 2007).  
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3.2.3.4.3.Uyarlama 

KNN sınıflandırıcısı ile benzer kolay bir şekilde PNN’de uyarlanır. Aynı önemli 

noktalar göz önüne alınır ve bu nedenle uyarlama algoritması da benzerdir. Bununla 

birlikte, madem PNN test örüntüsü ve en yakın saklanan prototip arasındaki uzaklık çıkış 

değilse, bazı ilave hesaplamalar bu minimum uzaklığı bulmak için gereklidir. Diğer bir 

deyişle, algoritma aynıdır (Güllüoğlu, 2007).  
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4.BULGULAR ve TARTIŞMA 

 
4.1.Önişleme Yöntemlerinin EMG İşaretlerine Uygulanması 

 
Çoğu biyoelektriksel işarette olduğu gibi EMG işaretlerinin analizinde de öznitelik 

çıkartma işlemi oldukça büyük bir öneme sahiptir. Bu amaçla yapılan çalışmalar 

incelendiğinde,  çok değişik özellik çıkarım yöntemlerinin kullanıldığı görülmektedir. 

Kullanılan her özellik çıkarım yönteminin başarımları da değişik olmakta, en iyi sonuç 

verecek öznitelik yöntemleri irdelenmektedir.  (Günay ve Alkan, 2009) 
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Şekil 4.1. Dört Ayrı Hareketten Alınmış İşlenmemiş EMG Verisi (a)  Dirsek Açma  (b)  

Dirsek Kapama  (c)  Ön Kolu İçe Döndürme  (d)  Ön Kolu Dışa Döndürme 
 

4.1.1.Ortalama Mutlak Değer (OMD) Yönteminin Kullanılması 

Bu çalışmada özellik çıkarımı amacıyla, işaret 32 örneklik pencerelere ayrılıp, her 

penceredeki örneklerin önce mutlak değerleri sonra da bunların ortalaması alınmıştır. Bu 

şekilde her işaret bu işlem sonunda 16 adet özellik vektörüyle ifade edilmiştir. Elde edilen 

özellikler kullanılarak dört tür işaret öbekleştirme işlemine tabi tutulmuştur.  

Bu işlemler en uygun ve başarılı sonuç verecek pencere uzunluğunu görebilmek 

amacıyla, değişik pencereleme uzunlukları için işlemler tekrarlanmıştır. Yapılan 

denemelerden elde edilen sonuçların birbirine yakın değerler vermekle birlikte, en iyi 



 

58 
 

sonucun 32 örneklik pencereleme kullanıldığında elde edildiği görülmüştür (Günay ve 

Alkan, 2009). 

 

 

 

Şekil 4.2. Ayrı Hareketten Alınmış, Pencereleme ile Elde Edilen Ortalama Mutlak 

Değerler. (a) Dirsek Açma  (b)  Dirsek Kapama  (c)  Ön Kolu İçe Döndürme  (d)  Ön Kolu 

Dışa Döndürme 
 

4.1.2.Hareketli Averaj Filtresi Yönteminin Kullanılması 

Öncelikle tüm EMG verisinin mutlak değeri alınmış, böylece ortalama alma 

işleminde problem olacak yansıma etkisinden arındırılmıştır. 64 örneklik pencereleme 

kullanılmış ve bu pencerenin ortalaması bir değer olarak kaydedilmiştir. Pencere birer 

birim kaydırılarak 512 örnek uzunluğundaki her bir örüntünün sonuna kadar uygulanmıştır. 

Elde edilen özelik vektörleri 449(512-64+1) örnekten oluşmaktadır. 64 örneklik 

pencerelemeler dışında 4,8,16,32 ve 128 örneklik pencereler de uygulanmış fakat en iyi 

sonuç 64 örnek için elde edilmiştir. 

Bu yöntem OMD’ye göre işaret için daha karakteristik bilgiler vermektedir fakat elde 

edilen özellik vektörü OMD’den elde edilene göre çok uzun olduğu için öbekleştirme ve 

sınıflandırma yöntemlerinde işlem yükünü arttırmaktadır. 
 

4.1.3.Özbağlanım Yöntemlerinin Kullanılması 

Özbağlanım yöntemlerinden Burg, Yule-Walker, Kovaryans ve İyileştirilmiş 

Kovaryans’ı kıyaslayabilmek için aynı parametreler kullanılmıştır. Parametre olarak 

literatürde genellikle 10 katsayı tercih edilse de bu çalışmada en iyi sonuçların 10-20 
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katsayı için elde edildiği gözlemlenmiştir. İşlem yükü açısından OMD ile kıyaslanabilirliği 

düşünülerek 16 katsayı tercih edilmiştir (Günay ve Alkan, 2010).  
 

4.1.4.Eğri Uydurma Yönteminin Kullanılması 

EMG işaretlerinin işlenmesinde literatürde pek yer bulmayan eğri uydurma yöntemi 

çalışmada iki şekilde kullanılmıştır. EMG’nin yansıma etkisinden kurtulması için yine 

mutlak değeri alınmıştır. Daha sonra eğri uydurma algoritması uygulanarak uydurulacak 

polinomal eğri için 4 katsayı elde edilmiştir. Elde edilen bu katsayılar özellik vektörü 

olarak kullanılmıştır. Bunun yanında bu 4 sayı yardımıyla 512 örnekten oluşan bir polinom 

uydurulmuş bu polinom da özellik vektörü olarak kullanılmıştır. 
 

4.2.Öbekleştirme ve Sınıflandırma Yöntemlerinin Özellik Vektörlerine Kullanılması 

4.2.1.K-Ortalama Metodunun Kullanılması
 

Önişleme yöntemleri olarak Ortalama Mutlak Değer kullanılmıştır. Küme sayısı 4 

olarak belirtilmiş hesaplama parametresi olarak öklid uzaklığı seçilmiştir. Danışmansız bir 

öbekleştirici için çok başarılı sayılabilecek %97,25’lik bir başarı elde edilmiştir (Günay ve 

Alkan, 2009). Bu başarıyı gösteren silüet değerleri şöyledir: 

 

 

Şekil 4.3. Öbekleştirme İşleminin Başarısını Gösteren Siluet Değerleri 
 

4.2.2.Bulanık C Ortalama Metodunun Kullanılması
 

Önişleme yöntemleri olarak Ortalama Mutlak Değer, Hareketli Averaj Filtresi ve 

Eğri Uydurma yöntemleri kullanılmıştır.Eğri uydurma için kullanılan 4 katsayı ve 

uydurulan polinoma ait 512 örneklik veriler ayrı özellik vektörleri olarak alınmıştır. 
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Danışmansız bir öbekleştiricidir. Ortalama 20 iterasyonda bu sonuçlara ulaşmıştır (Alkan 

ve Günay, Yayınlanmamış).  

 

Çizelge 4.1. Bulanık C Ortalama için başarı oranları  

Ortalama Mutlak Değer %97,50 

Hareketli Averaj Filtresi %95,75 

Eğri Uydurma(4) %75,25 

Eğri Uydurma(512) %96,50 

 
4.2.3.DVM Sınıflandırıcı Metodunun Kullanılması

 

Önişleme yöntemleri olarak Özbağlanım Katsayıları ve Ortalama Mutlak Değer 

kullanılmıştır. Danışmanlı bir yöntem olduğu için EMG veri seti 2-kat çapraz doğrulama 

yöntemiyle eğitim ve test verisi olmak üzere ikiye ayrılmıştır. Bu yöntemde veri setinin 

yarısı rastgele olarak seçilmekte, seçilen kısmıyla eğitim yaparken kalan kısmı ise test 

datası olarak kullanılmaktadır. Daha sonra test datası ve eğitim datası yer değiştirerek 

işlem tekrarlanmaktadır (Alkan ve Günay, 2010). 

OMD önişleme olarak seçildiğinde başarı %99 olurken Özbağlanım katsayıları 

seçildiğinde ise şöyle olmaktadır: 

 

Çizelge 4.2. AR-DVM ikilisi için sınıflandırma başarıları. 

 

DVM 

Sınıflandırıcı 

Ö
n 
İş

le
m

e 

Burg Özbağlanım %94,13 

Yule-Walker Özbağlanım %92,88 

Kovaryans Özbağlanım %94,25 

Değiştirilmiş Kovaryans Özbağlanım %92,63 

 

4.2.4.Diskriminant Analizi Metodunun Kullanılması
 

Önişleme yöntemleri olarak Ortalama Mutlak Değer kullanılmıştır. Danışmanlı bir 

yöntem olan Diskriminant analizinin eğitim ve test dataları 10-kat çapraz doğrulama 

kullanılarak elde edilmiştir. 10-kat çapraz doğrulama yönteminde giriş veri seti 10 alt 

kümeye ayrılmakta, bu kümelerden her biri sırasıyla eğitim için kullanılırken kalan 9 küme 

test için kullanılmaktadır (Alkan ve Günay, 2010).  
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 Diskriminant Analizinin ise beş farklı sınıflandırma yöntemi için ayrı sonuçlar elde 

edilmiştir. 

 

Çizelge 4.3. Diskriminant analizi için başarı yüzdeleri. 

 

 
4.2.5.İleri Beslemeli YSA Metodunun Kullanılması

 

Önişleme yöntemleri olarak Ortalama Mutlak Değer, Hareketli Averaj Filtresi ve 

Eğri Uydurma yöntemleri kullanılmıştır. Eğri uydurma için kullanılan 4 katsayı ve 

uydurulan polinoma ait 512 örneklik veriler ayrı özellik vektörleri olarak alınmıştır. EMG 

veri setinin ilk yarısı eğitim ikinci yarısı test için kullanılmıştır (Alkan ve Günay, 

Yayınlanmamış). Test datalarının sınıflandırma sonuçları aşağıdaki gibidir: 

 

Çizelge 4.4. İleri Beslemeli YSA için başarı oranları. 

Ortalama Mutlak Değer 92,50% 

Hareketli Averaj Filtresi 95% 

Eğri Uydurma(4) 95,00% 

Eğri Uydurma(512) 95,50% 

 
4.2.6.Olasılıksal Sinir Ağları Metodunun Kullanılması

 

Önişleme yöntemleri olarak Ortalama Mutlak Değer, Hareketli Averaj Filtresi ve 

Eğri Uydurma yöntemleri kullanılmıştır. Eğri uydurma için kullanılan 4 katsayı ve 

uydurulan polinoma ait 512 örneklik veriler ayrı özellik vektörleri olarak alınmıştır. EMG 

veri setinin ilk yarısı eğitim ikinci yarısı test için kullanılmıştır (Alkan ve Günay, 

Yayınlanmamış). Test datalarının sınıflandırma sonuçları aşağıdaki gibidir: 

 

 

 

Diskriminant 

Analizi 

Yöntemleri 

Başarı 

Oranları (%) 

Linear 97,75 

Diaglinear 97,25 

Quadratic 97,75 

Diagquadratic 98,00 

Mahalanobis 96,00 
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Çizelge 4.5. Olasılıksal Sinir Ağları için başarı oranları. 

Ortalama Mutlak Değer 87% 

Hareketli Averaj Filtresi 95,50% 

Eğri Uydurma(4) 97% 

Eğri Uydurma(512) 76,50% 
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5. SONUÇ ve ÖNERİLER 

 
Çizelge 4.6.Önişleme yöntemlerine göre sınıflandırma yöntemlerinin yüzde başarı oranları. 

 % K-ME BCO DVM LDA DLDA QDA DQDA MDA FFNN PNN ORT. 

OMD 97 97 99,125 98 97,25 97,5 98 96 95,75 96,75 97,238

HAF 95,75 95,75 98,875 --- 97 --- 97,75 --- 85,714 96,75 95,37 

EĞ.K 78,698 91,584 98,125 98,25 95,25 97,75 97,75 98 97,5 72,75 92,566

EĞRİ 96 96 97,75 --- 97 --- 98 --- 97,494 96,5 96,963

AR(BURG) 84,091 84,404 92,625 91,75 84 89,75 84,25 81,5 68,354 81,25 84,197

AR(YULE) 83,036 74,766 92,25 92,75 83 89 82,5 81,25 69,27 81 82,882

AR(KOV.) 71,5 68,954 92,375 93,5 82,75 91,75 82,75 82,5 65,404 81,5 81,298

AR(İ.KOV) 77,855 75,478 91,875 93,5 83 91,25 83,75 81,75 74,745 80,75 83,395

ORT. 85,491 85,492 95,375 94,625 89,906 92,833 90,594 86,833 81,779 85,906 88,883

 

Çizelge 4.7.Önişleme yöntemlerine göre sınıflandırma yöntemlerinin süreleri(saniye). 

  Ö.İ.S. K-M. BCO DVM LDA DLDA QDA DQDA MDA FFNN PNN ORT. 

OMD 0,269 0,054 0,035 5,28 0,328 0,023 0,029 0,03 0,028 10,12 0,59 1,651 

HAF 4,406 0,265 0,267 5,802 --- 0,132 --- 0,12 --- 196,1 1,43 29,16 

EĞ.K 0,324 0,065 0,036 5,378 0,034 0,022 0,026 0,023 0,022 7,787 0,457 1,385 

EĞRİ 0,021 0,255 0,239 6,184 --- 0,137 --- 0,125 --- 463,6 1,541 67,43 

AR(BURG) 0,709 0,656 0,054 4,418 0,033 0,02 0,027 0,025 0,028 8,414 0,439 1,412 

AR(YULE) 0,933 0,173 0,045 4,551 0,044 0,02 0,027 0,028 0,028 8,216 0,457 1,359 

AR(KOV.) 0,424 0,088 0,05 5,144 0,031 0,023 0,033 0,027 0,027 8,252 0,447 1,412 

AR(İ.KOV) 0,655 0,101 0,048 4,559 0,042 0,02 0,03 0,025 0,027 8,944 0,436 1,423 

ORT. 0,968 0,207 0,097 5,164 0,085 0,05 0,029 0,05 0,027 88,92 0,725 9,536 

 

EMG işaretlerini ham halleriyle sınıflandırmaya çalışmak başarısız sonuçlar verdiği 

gibi her örüntüdeki örnek sayısının çok fazla olması sınıflandırma yöntemleri için fazladan 

işlem yükü getirmektedir. Dolayısıyla sınıflandırma için harcanan zaman da artmaktadır. 

Bu nedenlerle, işarete ait verilerin en az örnekle işareti en belirgin şekilde tanımlayan 

özellik vektörleri elde etmek oldukça önemlidir. 

Bu amaçla ham EMG örüntülerine birçok işlem uygulanmıştır. OMD kullanımında 

512 örneklik örüntüden 16 örneklik bir özellik vektörü elde edilmiştir. Bu da işlem hızını 

yaklaşık 32 kat arttırmak demektir. Benzer şekilde dört farklı AR yöntemi uygulanmış ve 

onlardan elde edilen 16 katsayı özellik vektörü olarak kullanıldığından bahsedilen 
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avantajlar sağlanmıştır. Eğri uydurma yöntemiyle ise 512 örneklik örüntü sadece 4 

katsayıyla temsil edilebilmiştir. Ayrıca bu 4 katsayıdan elde edilen 512 örneklik polinomal 

eğri işlem yükü açısından bir avantaj sağlamasa da ham dataya göre çok daha karakteristik 

bir özellik vektörü elde edilmesini sağlamıştır. İşlem yükü açısından kayda değer bir etkisi 

olmayan hareketli averaj filtresi de daha karakteristik sonuçlar vermektedir. 

Tüm bu özellik vektörlerini sınıflandırma ve öbekleştirme için kullanılan yöntemler 

ise genel olarak çok başarılı olmuşlardır. Diskriminant analiz sınıflandırma sonuçlarında 

çok başarılı olmasının yanı sıra işlem zamanının diğer yöntemlerden kısa olmasıyla diğer 

yöntemlerden bir adım öndedir. Benzer başarı oranlarını elde eden YSA ve SVMt 

yöntemleri işlem hızı olarak daha yavaştır. Özellikle YSA çok örnekli özellik vektörleri 

giriş olarak uygulandığında çok ağır kalmaktadır. PNN ise YSA’dan hızlı olmasına rağmen 

başarı oranı YSA’dan daha düşüktür. Öbekleştirme Yöntemlerinden olan K-Ortalama ve 

BCO neredeyse aynı başarı oranlarına sahiptir. Bu iki yöntem de danışmansız yöntemler 

olduğu için danışmanlı yöntemler kadar başarılı sonuçlar elde etmesi beklenmese de 

neredeyse onlar kadar başarılı olmuşlardır.  

Bu çalışmadaki başarı oranı ve işlem hızı göz önüne alındığında önişleme için OMD 

ve sınıflandırma için Diskriminant Analizi seçmek protez kollar için sınıflandırıcı 

seçiminde en uygun yöntemlerdir. 
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