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Bu calismada, egrisel genis baslikli savak Uzerinden gegen akimin hiz alan,
iki farkli akim kosullar1 altinda, bir boyutlu Lazer Doppler Anemometresi (LDA)
kullanilarak 6lgulmustir. Deney ile aym akim kosullarinda, temel denklemler
Standart k-, RNG k-e, Redlizable k-¢, SST ve RSM tirbilans modelleri
kullanlarak, sonlu hacimler yontemine dayali ANSYS-Fluent paket programi
yardimiyla ¢ozilmustir. Su yuzi profilinin hesabr igin Akiskan hacimleri yontemi
(Volume of Fluid-VOF) yontemi kullamlmstir. Sayisal sonuclar tGzerinde secilen ag
yapisimin - etkisini  incelemek icin GCI (Grid Convergence Index) yontemi
kullanilmistir. Sayisal hesaplamalardan elde edilen akim hizlar1 ve su yuzi profilleri,
sayisal sonuclarin dogrulanmas: baglaminda deneysel 6lciimlerle karsilastirilmstir.
Sayisal ve deneysel bulgularin karsilastirmas;, RNG k-e tlrbilans modelinin, hiz
alam ve su yuzinin hesaplamasinda, bu calismada kullamilan diger tirbiulans
modellerine gore daha basaril1 oldugunu gostermistir.

Anahtar Kelimeler: Egrisel Genis baslikli savak, LDA, Sayisal model, VOF, Hiz
profili
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In this study, the velocity field of the overflow a curvilinear broad crested
weir is measured using a one-dimensional Laser Doppler Anemometry (LDA) for
two different flow conditions. Using standard k-e, RNG k-e, Realizable k-g, SST and
RSM turbulence closure models, the basic equations are solved by ANSY S-Fluent
package program based on finite volume method for the same experimental
conditions. The volume of fluid (VOF) method is used to compute the free surface of
the flow. GCI (Grid Convergence Index) is performed to examine the effect of the
selected grid structure on the numerical results. The numerical results for the velocity
field and flow profiles are compared with the experimental results for validation
purposes. The comparisons of the numerical and experimental results show that the
numerical simulation using the RNG k— turbulence closure model predicts the
velocity field and free surface profile more accurately compared to those of the other
turbulence models used in the present study.
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1. GIRIS Osuz SIMSEK

1. GIRIS

Genis baslikli savaklar, agik kanallarda veya akarsularda su akimim kontrol
etmek, su seviyesini dizenlemek ve debi o6lgimu amaglariyla kullanilan su
yapilarindandir. Akarsu yatagini yada kanal kesitini kapatacak sekilde tasarlanan
genis baslikli savaklarin dikdortgen, Uggen, trapez ve egrisel kesite sahip tipleri
mevcuttur.

Genis bagslikl1 bir savak, akim ortamina yerlestirildiginde, kritik-alt: rejimden
kritik-Usti rejime gegis sureci ile birlikte, hizl1 degisen akim kosullarinin olustugu
karmasik akim yapisi ortaya cgikacaktir. Buna bagli olarak, 0Ozellikle kisa ve
yuvarlatilmis kret yapisina sahip olan savaklarda, akim gizgilerinin egriselliginden
dolay1 gecis bolgesi civarinda, hidrostatik olmayan basing dagilimlart meydana
gelecektir. Akim ile etkilesime giren bu tir yapilarin tasarimim gergeklestirebilmek
icin akim profilinin, hiz ve basing alanlarinin dogru bir sekilde tahmin edilmesinin
Onemi buyuktir. Genis baslikli savaklar gibi kontrol yapilari ile etkilesim iginde olan
akimlarin  analizleri, fiziksel model deneyleri ile gergeklestirilebilmektedir.
Laboratuvar ortaminda gerceklestirilen yapi-akim etkilesimi ile ilgili model
calismalari, Ongorilen performans Olgitlerinin saglamp saglanmadigr  hakkinda
onemli bilgilerin edinilmesine yardimci olmakla birlikte, ©6lcek etkilerinden
kaynaklanan bazi kaginilmaz hatalarin sonuglara yansidigi da bilinen bir gergektir.
Diger taraftan, suyun hareketini idare eden denklemlerin analitik ¢oztimlerini elde
etmek, bu denklemlerin viskozite ve turbilans ifadeleri icermesinden dolay: bazi
basit ve sinirlar1 geometrik olan akim problemleri disinda oldukga zordur. Bununla
birlikte, bu tur problemlerin teorik analizleri, ¢esitli sayisal metotlar kullanilmak
suretiyle yaklasik olarak yapilabilmektedir. Hesaplamali Akiskanlar Dinamigi
(Computational Fluid Dynamics-CFD) yontemlerinde kaydedilen gelismeler, genis
baslikl1 savak tizerinden gegen akimda oldugu gibi, su-yap: etkilesiminin sbz konusu
oldugu agik kanal akimlarinin analizinde 6nemli kolayliklar ve hizli ¢ozimlere
olanak saglamaktadir. Bu sekilde, bircok su yamsi tasarimimin CFD ile
gerceklestirilmesi ginimizde mumkin hale gelmistir. Buna ilave olarak, sayisal
modelleme ile akim probleminin ¢ok daha kisa siirede ve ekonomik olarak ¢ozilerek
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akim hakkinda her tarlt bilginin elde edilebilir olmasi, analiz ve tasarim islemlerinin
farkli kosullar altinda hizl1 bigimde tekrarlanmasina ve sonucglandirilmasina da imkan
tanimaktadr.

Bu calisgmada, laboratuvar kanalina yerlestirilmis egrisel genis baslikli savak
ile etkilesim halindeki serbest yuzeyli akimin hiz alan, iki farkli debi durumu igin,
Laser Doppler Anemometry (LDA) teknigi ile olgilmustdr. Sonlu hacimler
yontemine dayal1 olarak gelistirilen ANSY S-Fluent paket program yardimiyla akimi
idare eden temel denklemler, bes farkl: tirbilans modeli kullamilarak ¢ozilmustir.
Su yuzinin teorik olarak belirlenmesinde Akiskan Hacimleri (Volume of Fluid-
VOF) yontemi kullamlmistir. Sayisal modellerden elde edilen akim hizlari1 ve su

yuzl profilleri, deneysel olarak élctilen hiz ve su yuzu profilleri ile karsilastirilmistir.
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2. ONCEKI CALISMALAR

Egrisel genis baslkli savak Uzerinden gecen akimda oldugu gibi, su-yapi
etkilesimin s6z konusu oldugu agik kanal akimlarin analizi ile ilgili bircok deneysel
ve teorik ¢alisma yapil mstir.

Boutros ve ark. (1987), tabam dizgin olmayan bir kanalda serbest akim
ylzeyini incelemek amaciyla teorik calisma yapmuslar, Schwarz-Chridtoffel
transformasyonu ve karisik simir deger problemi igin kullanilan Hilbert ¢oztimiinden
yararlanarak serbest ylzey profillerini hesap etmislerdir.

Ramamurthy ve ark. (1987), keskin kenarl1 savak Uzerinden gegen iki boyutlu
akimin oOzelliklerini irdelemek amaciyla deneysel calisma yapmislar, krete yakin
bolgedeki hiz ve basing dagilimlarim incelemislerdir. Elde ettikleri deneysel
bulgulardan, Cy debi katsayisimin H/P boyutsuz biyikltgine bagli olarak degistigini
gostermislerdir. Burada H savak membasindaki su derinligi, P savak yuksekligidir.

Faltas ve ark. (1989), trapez kesitli genis baslikli savak Uzerinden gecen
akimin ozelliklerini teorik olarak incelemislerdir. Elde ettikleri bulgulari, farkli
Froude sayilar1 ve taban sekilleri icin yapilmis deneysel calismadan elde edilen
Olcimlerle karsilastirmislar, Froude sayisi ile memba su derinliginin akim
karakteristikleri Uzerindeki etkilerini arastirmuglardir.

Hager ve Schwalt (1994), yaptiklar: calismada, genis baslikli savak Gizerinden
gegen akimin Ozelliklerini  deneysel olarak incelemislerdir. Farkli debilerde
gerceklestirdikleri calismalarin neticesinde, savak Uzerindeki akim yapilarinin basing
ve hiz dagilimlart agisindan birbirlerine benzer 6zellikler gosterdigini  tespit
etmislerdir.

Ako6z (1996), potansiyel akimlarin analizi ile ilgili teorik ve deneysel calisma
yapmistir. Bu amagla, laboratuvarda modelledigi kapak arkasindaki hiz alanini
muline ile o6lgmis; deneysel Olcimleri sonlu farklar ve sonlu elemanlar
yontemlerinden elde ettigi sayisal bulgularla karsilastirmstir.

Wen ve ark. (1997), geometrisi karmasik olan iki boyutlu dizenli ve
skigmayan serbest yizeyli akimlar ile ilgili deneysel ve teorik calismalar
gerceklestirmiglerdir. Karmasik geometriye sahip akim bolgesi icin gelistirdikleri
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sinir integral yonteminden bulduklar1 sonuglari, deneysel olarak olctikleri bulgularla
karsilastirarak serbest akim ylzeyinin profilini  yaklasik olarak belirlemeye
calismuslardir.

Montes (1997), strtiinmesiz akim kabull ile dizlemsel kapak altindan gegen
akim icin sayisal bir ¢ozim yontemi gelistirmis, deneysel ve sayisal daralma
katsayilar1 arasindaki farklhiliklari incelemistir. Sayisal su yuzu profili ile akim
alaninin farkli kesitlerinde hesap edilen hiz ve basing dagilimlarimin, deneysel
Olcimlerle biytk 6lctide uyum icinde oldugunu belirtmistir.

Chanson ve Montes (1998), laboratuvarda modelledikleri dairesel savak
Uzerinden gecen akim ile ilgili yapmus olduklar: deneysel calismada, savak yaricapi
ve yuksekligi gibi yapisal 6zellikler ile memba su derinliginin akim karakteristikleri
Uzerindeki etkilerini arastirmuglardir. Elde ettikleri bulgulardan, savak Uzerinden
gecen akim profilinin blylk 6lciide memba kosullarindan etkilendigi sonucuna
ulagmuglardir.

Johnson (1998), farkli savak tipleri igin debi katsayilarini belirlemeye yonelik
deneysel calisma yapmistir. Savak yuku ve yapr geometrisine bagli olarak yapilacak
savak siniflandiriilmasinin daha dogru olacagimi rapor etmistir. Ayrica, HJ/W
oraninin, yapr Uzerinden gecen akimin debisini idare eden Onemli parametre
oldugunu gostermistir. Burada H; toplam enerji yuksekligini, W kret kalinligin
temsil etmektedir.

Roth ve Hager (1999), kapak atindan gegen akim ile ilgili yapms olduklar:
deneysel ve teorik calismada, viskozite ve yilizeysel gerilmenin akim karakteristikleri
Uzerindeki etkilerini incelemislerdir. Kapak tizerinde olusan basing dagilimi ile akim
alamnin farkli kesitlerindeki hiz dagilimlarini, strtinmesiz akim kosullar: igin elde
etmisler; enerji  kayiplarimn  ihmal edilmesinden dolay;, sayisal daralma
katsayillarinin deneysel degerlerden daha biylk c¢iktigim belirtmiglerdir. Ayrica
kapagin hemen membasinda gorulen durma noktasindaki kose gevrintisi olusumunu
dairdelemiglerdir.

Choi ve Kim (2000), yapmis olduklari caligmada, Ogee profilli savak
Uzerinden gegen akimin debisini, savak Uzerindeki hiz ve basing dagilimlarim ve
buna ilave olarak akim profillerini sonlu elemanlar yontemi kullanarak sayisal olarak
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hesap etmislerdir. Cevrintisiz ve sikismayan akim kabull ile yapmis olduklari
hesaplamalardan elde ettikleri bulgulari, USACE ( U.S Army Corps of Engineers)
test sonuglart ile karsilastirmislar, deneysel ve sayisal bulgularin birbirleriyle oldukga
uyumlu olduklarin gézlemlemislerdir.

Assy (2001), savak Uzerine yerlestirilen bir kapak vasitasiyla olusturulan
kontrolli ve kontrolsiiz savak akiminin sayisal analizi igin sonlu farklar yontemine
dayal1 bir ¢ozim yontemi sunmustur. Cevrintisiz akim kabull ile gelistirmis oldugu
sayisal yontemde, akim alamn tim hesap noktaarinda akim fonksiyonunu hesap
etmis ve buna bagl1 olarak da hiz alamini belirlemistir. Ayrica su yizu profili, debi
katsayisi ve basing alanlarini da sayisal olarak elde etmistir.

Behr (2001), st kanalinin sonundaki enerji kirici yapinin tasarime icin dolu
savak Uzerinden gecen akimin 6zelliklerini sayisal olarak irdelemistir. Navier-Stokes
denklemlerini, sonlu elemanlar yontemine dayali bir CFD yazilimi kullanarak
¢Ozmus, su yuzi profilini ve hiz alamni teorik olarak belirlemistir.

Chen ve ark. (2002), basamakli dolu savak Uzerinden gecen akim profilini
sayisal olarak modellemisler ve elde ettikleri bulgulart deneysel dlgimlerle
karsilastirmiglardir. Akimi idare eden temel denklemler standart k-e tiirbilans modeli
kullanilarak ¢6zllmis, su yuzinun teorik olarak belirlenmesinde VOF yontemi
kullanilmigtir. DUstim bdlgesinde gorilen ¢ok az farkliliklarin disinda deneysel ve
say1sal akim profillerinin oldukga uyumlu oldugu rapor edilmistir.

Sarker ve Rhodes (2003), laboratuvar kanalina yerlestirilmis dikdortgen
kesitli genis baslikli bir savak ile etkilesim halindeki serbest yizeyli akimin
Ozelliklerini deneysel ve teorik olarak irdelemislerdir. Bir CFD yazilimi olan, sonlu
hacimler yontemine dayali Fluent paket programu ile akimi idare eden temel
denklemler sayisal olarak ¢ozilmustlr. TUrbulans viskozitesinin hesabinda standart
k-e turbilans kapama modeli kullamlmstir. Sayisal su yuzi profilleri deneysel
bulgular ile karsilastirilmis ve birbirleriyle uyumlu oldugu gordlmastar.

Ghodsian (2003), yan kapak akimlarimin hidrolik karakteristiklerini
belirlemek amaciyla deneysel calisma yapmustir. Enerji yuksekliginin yan kapak
boyunca sabit kaldig1 kabullyle, yan kapaklar icin debi katsayisinin, Froude sayisi ve
memba derinliginin kapak agikligina oran ile olan iliskisini tespit etmeye ¢alismustir.
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Ashgriz ve ark. (2004), acik kanal icine yerlestirilen yarim silindirik bir yapi
Uzerinden gecen akimi sayisal olarak modellemisler; temel denklemlerin sayisal
¢ozumlerini, sonlu elemanlar yontemine dayal1 ANSY S programini kullanarak elde
etmislerdir. Su yUzi profillerinin hesabr icin VOF metodunu kullanmiglardir. Akim
alamindaki teorik basing ve hiz dagilimlarim elde ederek grafiksel olarak
sunmuglardr.

Nguyen ve Nestmann (2004), Avrupa nin énemli akarsularindan olan ve 1320
km uzunlugundaki Rhine akarsuyunun profilini, VOF yontemi kullanarak sayisal
olarak hesap etmislerdir. Turbulansli akimin hareketini idare eden denklemleri
standart k-¢ modeli kullanarak sayisal olarak c¢ozmusler, farkli kesitlerdeki akim
hizlarinin derinlikle degisimlerini teorik olarak irdelemislerdir.

Chatila ve Tabbara (2004), Ogee profilli savaklarin hidrolik 6zelliklerini
farkli akim kosullar1 altinda deneysel ve teorik olarak incelemislerdir. Sonlu
elemanlar yontemine dayal1 ¢cozim yapan ADINA paket programi kullamlarak elde
edilen sayisal su yuzi profilleri, laboratuarda Olgilen su yuzu profilleri ile
karsilastirilmig, deneysel ve teorik profillerin uyum iginde oldugu gorulmustir.

Seker (2006), modellemis oldugu Ucgen bir savak arkasindaki akimin
hizlarint deneysel ve teorik olarak karsilastirmustir. Hiz alani, parcacik goruntilemeli
hiz 6lgimiu (PIV) teknigi ile dlgllmis ve elde edilen deneysel bulgular, sonlu
elemanlar yontemine dayali ANSYS paket programindan elde edilen sayisal
bulgularla karsilastirilmistir.  Serbest su  yiUzinin hesabinda VOF  yontemi
kullanmlmastir. Yapilan karsilastirmalar neticesinde, deneysel ve sayisal akim hizlari
ile su yuzu profillerinin birbirleri ile uyumlu olduklar1 gorulmuUstdr.

Kirkgoz ve ark.(2006), dikdortgen ve Ucggen kesite sahip genis bagslikl
savaklar ile etkilesim halindeki iki-boyutlu acik kanal akimini deneysel ve sayisal
olarak analiz etmislerdir. Temel denklemleri, standart k-e ve k-w tirbilans modelleri
kullanarak sonlu elemanlar yontemine dayali ANSY S-Flotran ile ¢cbzmUslerdir. Su
yuzi profilinin hesabinda VOF yontemini kullanmislardir. Sayisal olarak hesap
edilen iz profillerini, PIV teknigi ile olcllen iz profilleri ile karsilastirmislar, k-w

turbllans modelinin deneysel sonuglara daha yakin oldugu sonucuna ulasmislardir.
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Ayrica, farkli yogunluklara sahip ag yapilar: kullanarak ag yapisinin sayisal sonuglar
Uzerindeki etkisini de incelemislerdir.

Oner ve ark. (2007), acik kanal igerisine yerlestirdikleri dikdortgen genis
baslikl1 bir savak tizerinden gegen iki-boyutlu agik kanal akimini teorik ve deneysel
olarak irdelemislerdir. Hiz alanim deneysel olarak PIV hiz 6lgme teknigi ile
Olcmislerdir. Hareket denklemlerinin  sayisal ¢ozimlerini, sonlu elemanlar
yontemine dayali ANSY S-Flotran ile elde etmisler, serbest su ylztiniin hesabini VOF
yontemi ile gergeklestirmislerdir. Sayisal modellemede tlrbulans viskozitesinin
hesabr i¢in Ug farkl: tirbilans kapama modeli kullanmiglardir: Standart k-e, standart
k-w ve SST. Hesap edilen akim hizlar1 ve su yuzu profillerini deneysel 6lgiimlerle
karsilastirmislar ve standart k-w ttrbilans modeli kullanilarak elde edilen bulgularin,
deneysel bulgularla son derece uyumlu olduklarim tespit etmislerdir.

Akoz ve ark. (2009), disey bir kapak altindan gegen iki-boyutlu agik kanal
akiminda hiz alammni, standart k-e ve standart k-w turbilans modellerini kullanarak
ANSY S-Flotran ile sayisal olarak elde etmislerdir. Su yizi profilini hesap etmek igin
VOF yontemini kullanmiglardir. Sekiz farkli mesh yapisini test etmek suretiyle,
hesaplama ag yogunlugunun sayisal ¢ozimler Uzerindeki etkisini arastirmislardir.
Sayisal bulgularla karsilastirmak amaciyla kapak arkasindaki akimin hiz alamini, PIV
yontemi ile deneysel olarak dlgmuslerdir. Elde ettikleri sayisal ve deneysel sonuglar,
standart k-e tirbulans modelinin deney sonuglariyla daha uyumlu oldugunu ortaya
koymustur.

Kirkgoz ve ark. (2009), acik kanal icerisinde kat1 sinira yakin dairesel silindir
ile etkilesim halindeki iki-boyutlu turbilanslt akimin 6zelliklerini deneysel ve teorik
olarak irdelemislerdir. Silindir etrafindaki akimin hiz alam PIV teknigi ile deneysel
olarak Olcllmigstir. Standart k-e, sandart k-w ve SST tUrbulans modelleri
kullanilarak ¢ farkli ag yapist igin sayisal ¢ozimler elde edilmistir. Deneysel ve
sayisal bulgularin karsilastirmalarindan, standart k-w ve SST tirbtlans modelleri
kullanlarak elde edilen sayisal bulgularin, deney bulgularina daha yakin oldugu

sonucuna ulasil mstir.
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3. DENEY DUZENEGI

3.1. Deney Diizenegi

Deneyler Cukurova Universitesi, Insaat Muhendisligi Bolimi hidrolik
laboratuvarindaki kapalt cevrim olarak calisan Sekil 3.1.’deki agik kanal
diizeneginde gerceklestirilmistir. Sekil 3.2." de sematik olarak da verilmis olan kanal
diizenegi 0.2 m genislik, 0.20 mderinlik ve 2.4 m uzunlugundaki agik su kanalindan
olusmaktadir. Kanal tabani ve yan yizeyler 5mm kalinligindaki saydam cam
malzemeden yapilmis, boylece dlcimler icin purizsiz ve saydam bir ylzey elde
edilmistir. Suyun giristeki hazneden tGniform olarak ¢ikmasini saglamak icin, suyun
giris bolgesine akisi diuzenlemek icin filtreler yerlestirilmistir. Bdylece kanal
girisinde suyun mumkin oldugu kadar calkantisiz ve dizenli olarak girmesi

saglanmustir.

Sekil 3.1. Deney kanalinin genel gérinimi
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Egrisel genis baslhikli savak, Sekil 3.2.’de de goruldigi gibi, kanal
baglangicindan 0.7 m uzakliga, kanal kesitini kapatacak sekilde yerlestirilmistir.
Savak yapisinin kret yuksekligi 0.068 m dir.

— \
i 3~ ..H...r.“.....r. ..................................................E\_“
070 m 1.00 m
-~ o - ™
Lazer

I Foto Dedektér

RN Akim Islemcisi

Bilgisayar

Sekil 3.2. Deney diizeninin sematik gosterimi ve LDA yerlesimi

Sekil 3.2."de sematik gorinumi verilen test alamndaki deneyler iki farkli
debi, ©,=0.00546 m*s ve Q,=0.00824 m*/s durumlari icin gerceklestirilmistir. Akim
debisi Q;=0.00546 m*s (Durum 1) icin memba su derinligi h,=0.126 m olarak
Olcllmustir. Kesit ortalama hizi V, =0.22096 nvs, memba akiminda Froude sayist
Fro (=VJ(gho)*®)= 0.1987 ve Reynolds sayisi Re, (=4VR.,/n)=18000"dir (R,
hidrolik yaricap ve n kinematik viskozitedir). Q,=0.00824 (Durum 2) icin su
derinligi h,=0.146 m, kesit ortalama hiz1 V, =0.28812 m/s, Froude sayisi Fr, =
0.2407 ve Reynolds sayisi Re,=24000  dir.

Hiz olcuimleri Laser Doppler Anenometry (LDA) teknigi kullanan bir 6lgim
sistemi (DANTEC LDA) ile gergeklestirilmistir Sekil.3.2..

10
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3.1.1. Lazer Doppler Anemometres (LDA) Teknigi fle Akim Hizimin Olciilmesi

Akimin yapisim belirlemek igin yapilan deneylerde kizgin-tel (hot-wire),
kizgin-film (hot-film), PIV ve LDA anhk hizlarin 6lgilmesinde yaygin olarak
kullanilan cihazlardir. Bu cihazlardan kizgin tel ve kizgin film, kullammlar1 sirasinda
akigkan icerisine bir 6lcim ucu sokularak akim rahatsiz edilmektedir. PIV yontemi,
akimi rahatsiz etmeden, hassas bir sekilde, ayni anda diizlemsel bir bélgedeki anlik
hizlar1 Glgerek akim karakteristiklerini belirlemektedir. LDA ise ayni: anda sadece tek
bir noktada oOlcim yapabilmektedir. Deney alaminda farkli zamanlarda tek bir
noktada yapilan olcimlerle akim alamnin 6zelliklerinin belirlenmesi ise 6zellikle
ayrilmis akim bolgeleri ve karmasik yapiya sahip akimlarin yapisim tammlamada
yetersiz kalabilmektedir. Bununla birlikte LDA, kat1 sinira yakin bolgedeki noktasal
hizlarin belirlenmesinde, bir baska ifade ile sinir tabakasi bolgesindeki hiz profilinin
daha hassas bir sekilde elde edilmesi hususunda PIV 6lglim teknigine gore Ustinlik
gostermektedir.

Lazer doppler anemometre, lazer 1sigim kullanarak tek bir noktadaki hizi
belirler. O noktadaki hiz bilesenlerini kisa siirede birbirini takip eden ylzlerce dlgim
sonucunda belirler. LDA, akigskan icerisinde hareket eden kigik parcaciklar ile
yayilan lazer 1isimmin doppler frekansindaki degisimini tespit ederek hiz dl¢timunt
gerceklestirir. Lazer anemometresi bir mercek tarafindan kirilan isinlarin 6lgtim
yapilan noktada odaklanmasi prensibi ile calisir. Isin Ureticiden ¢ikan ve mercek
vasitasiyla kirilan isinlar hizin 6lgulecegi noktaya odaklanir. Foto detektdr tarafindan
toplanan 6lcimsel bilgiler, akim islemcisi tarafindan anlik olarak BSA Flow
Software yazilimina aktarilir Sekil 3.3.. Laser Doppler Anemometresinin galisma
prensiplerine ait daha genis bilgi Durst ve ark (1981), Goldstein (1983), Ardiclioglu
(1994), tarafindan verilmistir.

Laser Doppler Anemometresi, Sekil 3.1.’de goéruldigi gibi, U¢ dogrultuda
hareket kabiliyetine sahip bir cerceve sistemine yerlestirilmistir. Bu sistemin
Uzerinde yer alan hareket kollar1 vasitasiyla, akim alamin istenilen mesafe ve
derinligindeki bir noktadan, anlik hizlarin dogru bir sekilde elde edilmesi mimkin
hale gelmistir.

11



3. DENEY DUZENEGi Osuz SIMSEK

o DN Yw S Apecden Tk Wiekw i
CoanlEEBeDElEEx s m B E e ]

| iwafecn Fupierer #2  BlGm T 75 T dppksda” Sl B |
Jeet ot

= e i apeReaton L st Pege
[& 1 rdap T WEa TR Apphealior - BSG TIE Spphostian |

T Ragim I Xoun] | Tomm] E v
100 BTy i}
I Y TEe
i [ o JEEFT AR Tk B R
| Merqwirtios. u
I_El-l' M Tro=ara S

e T T e, e e e
- 5 Ene B e ricia e
e

o | b, pria L

Sekil 3.3. BSA Flow Software yaziliminin ekran goruntisi

Bu calismada egrisel genis baslikli savak akiminda anlik akim hizlari, kanal
ekseni boyunca Dantec® LDA 62N04 bir boyutlu akimolger kullanilarak elde
edilmistir. Lazer dalga uzunlugu 660nm, lazer demetleri arasindaki mesafe 60 mm ve
Olculebilen hiz sapinclart 0.7 um/s den 4.6 mm/s’ ye kadar degisebilmektedir. LDA
sisteminde, foto detektor ile birlikte BSA F30 (62N60) tipi akim islemcisi
kullamlmgtir. Ayrica anlik oOlgllen hizlarin prosesi, analizi ve grafiksel olarak
islenmesi Dantec LDA sistemi icinde yer aan BSA-Flow vyazilim ile
gerceklestirilmistir Sekil 3.3..

u

pt
Sekil 3.4. Turbulansli akimda ortalama hizin tespiti

12
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Olgim noktasinda, hizin bir T periyodu igerisinde anlik hiz degerleri
alinmaktadir. T integrasyon zaman olup bu ¢alismada 60 sn olarak secilmistir Sekil
3.4.. Zaman ortalamali hiz buyuklikleri, anlik hiz dlgimlerinin prosesi sonrasinda
elde edilmektedir. Ayrica anlik hiz degerleri élclldigiinden u ve buna bagl:
turbllans siddeti degerleri de elde edilebilmektedir. Anlik akim hiz1 u, ortalama akim
hizi T ve hiz sapinci ut arasindaki iliski asagidaki gibi ifade edilmektedir:

u=u+uc (3.1)
198

u=—aqu 3.2.
N2 (32)
_ 18 (- 3.3

Ursm = ﬁa(uu) (33)

Burada N hiz numunesi sayisidir.

13



3. DENEY DUZENEGI Oguz SIMSEK

14



4. TEMEL DENKLEMLER VE TURBULANS MODEL LERI Oguz SIMSEK

4. TEMEL DENKLEMLER VE TURBULANSMODELLERI
4.1. TEMEL DENKLEMLER

4.1.1 Sikismayan Turbulansh Akimda Sureklilik Denklemi

Sikismayan, turbillansli akimda u=u+u¢, v=v+v¢ ve w=w+w¢ anlik hiz

Tu,

bilesenlerini —- = 0 denkleminde yerine yazalim:

T, |, fug

1
—X(u+u© (v+v<y+ﬂ—(w+w<} 0 veya —- x. ‘ﬂXi

=0 (4.1)

Bir At zaman aralig1 icin (4.1.) denkleminin zamansal ortalamasim alalim. Ornek

olarak birinci terimin zamansal ortalamas: alinirsa:

t+fteﬂ 1-[ t+Al
(u ufa—— OSﬂx( ufagit i S&Lﬁi‘g_ﬂ (4.2

elde edilir. Benzer sekilde, diger terimlerin de zamansal ortalamalar: alinirsa (4.1)
sireklilik denkleminin zamansal ortalamasi asagidaki gibi olur:

flu ﬂ+ﬂ_w_0 veya divv =TU _g (4.3)

ix Ty 1z fix;
(4.1.) denkleminden (4.3.) denklemi ¢ikarilirsa:

M M+M_O eyaTI

=0 (4.4.)
™x Ty 1z 1X;

15
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elde edilir ki (4.3.) ve (4.4.) denklemlerinden, ortalama hiz bilesenleri ve trbilans
hiz sapinglarinin aym streklilik denklemini saglachigi gorulmektedir.

4.1.2. Sikismayan Akimlar icin Hareket Denklemi

Kartezyen koordinatlarda bir akim alam iginde dx, dy, dz boyutlu bir
elemanter bir kontrol hacmi icindeki sistem icin Newton’un 2° kanunu;

0
Fs=——= dm= dm 4.5.
a t dt Ot (45

veya elemanter bir dm sistem kitlesi igin bu ifadeyi asagidaki gibi yazabiliriz;

d

r
— =adm 4.6.
p (4.6.)

o I
a Fs=dm

Esitligin sag tarafinda ki ivmeyi hesaplamak Uzere, t amnda (Xx,y,2)
noktasinda bulunan bir akiskan parcasinin hizi

=V(x,Y,2,1) (4.7)
dt zaman sonunda akiskanin yeni hizi
\I/t+dt :\'/(x+dx,y+dy,z+dz,t+dt) :\'/t +d\'/ (4.8)

olacaktur.
(X, y, 2) ve (x+dx, y+dy, z+dz) noktalari arasinda hizdaki degisme

dV —ﬂﬂdx+ﬂdy+ﬂﬂdz+%dt (4.9.)

fy

16



4. TEMEL DENKLEMLER VE TURBULANS MODEL LERI Oguz SIMSEK

t ye goretirev alinirsa;

a=—v _IWOX (4.10))
da fx d fyd gz dt Tt

% =u, ﬂ =V, % =w kullamlirsatoplam ivme;
dt dt dt

v _ MV WY (4.11)

t x Ty 1z 1t
o I d\l/ r . .. . ... e
a Fs= dma =adm ifadesinin tamamlanabilmesi icin esitligin ol

tarafinin yani sisteme etkiyen dis kuvvetlerin belirlenmesi gerekir. Bunlar kitlesel ve
yuzeysel kuvvetlerdir. Akima etkiyen kuvvetler, kiitlesel, ylizeysel, basing ve kayma
kuvvetleri olarak siralanir, buna gore;

Kutlesel Kuvvetler: Birim kitleye x, y, z dogrultularinda etkiyen kitlesel kuvvetler
X, Y, Zise bunlarin bileskesi

K = Xi + Y] +Zk (4.12)

seklindedir. dm =r.dxdydz kutlesine etkiyen kiitlesel kuvvet bilesenleri;

Xr .dxdydz (4.13)
Yr .dxdydz (4.14)
Zr .dxdydz (4.15)

17
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Ylzeysel Kuvvetler: Kartezyen koordinatlara gore akimin bir noktasindaki gerilme
durumu Sekil 4.1." deki skaler bilesenlerle belirlenir.

OZ

dz dx

T T
av b Ui ¥ :‘1 Ty
/ T m s
A x¥ 1 = = ; l T}-h O »
T,

T

o

z Tz}-‘ U-z

Sekil 4.1. Diferansiyel eleman ylzeyine gelen gerilmeler

S, ty t, — » xekseninedik diizlemde
t Sy t, —» yekseninedik diizlemde
t t, S, — » zekseninedik dizlemde
x dog. y dog. z dog.

bir noktadaki ortalama normal gerilme;

6, to, to,
__z (4.16.)

al
I
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olduguna gore akiskanlardaki basing gerilmesi pozitif olarak alinirsa bir noktadaki

ortalama basing su sekilde olur:

+p, +
Px ¥Ry TP F;y P (4.17))

p=
Buna gore akiskan elemamnin merkezindeki gerilmeler, gerilme tansort ile
belirli ise, x eksenine dik eleman yuz Gzerindeki gerilmeler ile x ekseni
dogrultusundaki diger yizeylerdeki gerilmeler. Sekil4.2.’de gortlmektedir. Kayma
gerilmelerinin pozitif yoni koordinat merkezine uzak ylzde, negatif yonu ise yakin

ylzdedir.

dx
et - aT
dy T +_ZKEE Tx_ Sit
m F 2 x 2
d=
- +EE‘IE dx
G R Slady | [Bx ; T Ty de
L Ea &v 2 > ¥ &y 2
5 T —_— = 8o, dx
v dx x 5
S v ; ox 2
= o | IL:*'E-[}xd—}
Cl,; dx ) ay 2
T
2
- / D 21_ dg
L =& 2
Y o8& 2

Ed

Sekil 4.2.X ekseni dogrultusundaki gerilmeler
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Basing Kuvvetleri icin Sekil 4.2. ele alinirsa;

x dogrultusunda;

o, dx @& o, dxal o
« « dz = —* dxdydz 4.18.
80 ™ 2 8 x 2 &]ﬂy X y ( )
y dogrultusunda;
e o, dy & Yo, dyau . _ o
o+t 2 zdx = — dydzdx 4.19.
S-cy v 2 & fy 2 %pl Ty Y (419)
z dogrultusunda;

é ﬂc dz & Yo,dz o,

. . xdy = dzdxd 4.20.
80 22 & fz 2 %ﬂ ' y (420)
olur.
Kayma kuvvetleri ise; x dogrultusunda:

¢  Tpdy & T,

?tyx +ﬂ—?' Tox ™ ﬂy 5 :[ﬂXdZ

é y e (4.21)

¢ T, ,dz &= T, dzal Ty i
AP LR S L2 W LT Ve e L
€=z 2 & 1z 2&{1 Ty Tz

+

dzdxdy

y dogrultusunda:

ﬂ dzdydx + ﬂﬂ dxdydz (4.22)
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z dogrultusunda:

T dxdzdy + —— Ty, ~ dydzdx (4.23)
fix iy
Newton’'un 2. Kanunu yazilirsa;
4 F=dma (4.24)
dm =r dxdydz (4.25)
r_d\
a=— 4.26.
m (4.26)
Birim hacme gelen bileske dis kuvvet:
o 1
Fr
ar_; (4.27)
dm
f =kiltlesel kuvvet (f, )+yiizeysel kuvvet (f,)
- — 1 1 1
fo=rK =r(Xi+Yj+2k) (4.28)
x eksenine dik yuzeylere gelen bileske kuvvet:
gT . B%—d dz- gT i T—%-dyd = X alydz (4.29)
2 5 X 2 4 X
(4.30.)

y ekseni igcin = E dydzdx
fiy
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T,
zekseniigin = q dzadxdy (4.31)
Birim hacme gelen bileske ylzeysel kuvvet:
T T, 9T, [
FERLTRLLIS LF ) (4.32)
X 1-[y 1-[z

BuradaT normal ve kayma kuvvetlerini tammlamaktadhr.

Yiizeyler icin T, T,, T, gerilme vektorleri asagidaki gibi yazilabilir.

1 1 1
T, =io, +jt,, +kt,,

burada t,, : X’ edik dizlemde y dogrultusundaki kayma gerilmesi

(4.33)

(4.34)

(4.35)

Sikigmayan viskoz akimlar igin vektdr tansor-notasyonu ile hareketin

diferansiyel denklemi:

F Y KA RT
dt

(4.36)

Y ukarida elde edilen hareket denklemleri gerilme bilesenlerini icermektedir.

Akiskanlarin hareketi incelenirken bu ifadelerin hiz gradyan cinsinden yazilmasi

daha kullanigli olmaktadir. Bu iliski Stokes kanunlari ile saglanmaktadir. Stokes

kanunlar1 elastik ortamlardaki Hooke kanunlarinda yapilan bazi degisikliklerle elde
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edilmektedir. Bu degisikliklerin neticesinde hiz gradyanlari cinsinden hareketin
diferansiyel denklemi asagidaki sekilde yazilabilir:
x dogrultusu igin;

du_ x.Tp '"[ (2“” 2ohvV)]

pP— =P
dt X
ﬂu W q w U (4.37)
[ HGy * o I gl R+
fy Ix*° 9z° x
y dogrultusu igin;
oy Te '"[ (2“" 2 6]
dt x
‘ﬂv fw W (4.38)
L AL P A )
1z 9z Ty" ™ Ty X
z dogrultusu igin;
2 r
PE pZ ‘ﬂp ﬂ[ (2ﬂ—W-§dlvV)]
(4.39)

[ (“ﬂVXV g L+ )]

Yukarida gorilen ifadelere Newtonien olmayan akiskanlarin hareket
denklemleri denmektedir ve bu denklemler 7 bilinmeyen icermektedir. Bunlar: u, v,
w,p,p W T.

Hareket denklemleri lineer olmadigindan bu sekilleriyle ¢bzimi ¢ok zordur.
Bu ylizden denklemlerde baz: sadelestirmeler yapmak gereklidir.

Newtonien akiskanlar igin p=sabit alarak x dogrultusu icin denklemi

yazarsak;
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du _ o Tu 2 ,9%u . T°v  T°w
M oox-" o <
Pt P ix T ™2 3 (‘ﬂx xTy ¥ ‘ﬂx‘ﬂz) (4.40)
PRI WAL ) h
Ty Ty x1z 1z°
du _ o n ‘ﬂ u . 1°v _T°w
dt X-_X 5( ‘ﬂx ‘ﬂx2 ‘ﬂx‘ﬂy_z‘ﬂx‘ﬂz
; (4.41)
3‘ﬂV+3‘ﬂlj+3‘ﬂlzJ+3‘ﬂw)
xty Ty 1z ix9iz
du_ o o, pn,Tu, v Tw fu_  Tu
—=pX - 4.42.
Pt P x 3( x2 ‘ﬂx‘ﬂy %9z 3‘ﬂy2 2) (4.42)
pd—u:px-m+ﬂ(ﬂ2”+ v +‘”2W +3.”Zu ‘ﬂu ‘ﬂu) (4.43)
dt x 3'x* XTIy xYz 9x° ‘ﬂy z° T
d_u_ Tp, 1 T & E_F‘ﬂ_wo ‘ﬂuo 4.44
P ot ix 39x g‘ﬂx v Tzg "Eﬂx y2 122 5 (4.44)
du o pT L,
~~ =pX - V N? 4.45,
P ~P% 311 < divV +uN“u (4.45)
y ve z yonu icin de aym sekilde yazilirsa;
dv o, pnf Lo
—=pY - d|vV+ N2v 4.46.
Py =P ﬂy 31y H (4.46)
d_W: _E El - [2
p o pZ = + 312 divV +uN-w (4.47)

Vektorel notasyon ile yazilacak olursa;
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a_ & & E[ L r L,r
p =p p+3N(N.V)+pN V (4.48.)

du p [2
— =pX -4+ N2y 4.49.
P =P i u (4.49.)
du Tp L,
— =pY - 4+ N2y 4.50.
P P 1y 0 (4.50.)
du p [2
— =pZ- 4 IN?w 451.
P~ P s u (4.51)

Seklinde elde edilir. Bu denklemlere sikismayan akimlar igin hareket denklemleri
denmektedir. Vektorel notasyon ile yazilacak olursa;

r L. r
p‘i—\t/ =pK -Np+uN?Vv (4.52.)

3 dogrultudaki bilesenleri:

p§E+VE+WE+ﬂ_u9:pX_ E+ ﬂzu +ﬂ2U +ﬂ2U9

= = 453.a.
™ Ty Tz Tty T T VO (4532)

dv Tp c 2
—=pY - —+uN*“v veya
pdt p 1y 3 €y

25



4. TEMEL DENKLEMLER VE TURBULANS MODEL LERI Oguz SIMSEK

2 2 2y, A
pgu_+v_+wﬂ+ﬂvo pY-E+ a.[v'f'ﬂv'i'ﬂVg (453b)

Y P AL VAl T VCR Vo P2y

dw fip

pa_pz- ﬂz+uN2W veya
w ‘ﬂwo “w ‘ﬂ w ‘ﬂ w0
pg ‘ﬂy Z g éﬂx W g 8

Navier-Stokes denklemleri olarak bilinen bu denklemler, bagimsiz olarak,
Fransa' da Navier (1823), Poisson (1831) ve Saint- Venant (1843) ile Ingiltere' de
Stokes (1845) tarafindan elde edilmistir.

4.1.3. Skismayan Turbdlansh, Newtonien Akiskan Akiminda Hareket

Denklemleri (Reynolds Denklemleri)

Burada, Navier-Stokes denklemlerinin zamansal ortalamalar1 alinarak,
sikismayan, tirbiilansl;, Newtonien akiskan akimina uyarlamasi yapilacaktir. Ornek
olarak Navier-Stokes denkleminin x bilesenini ele alalim:

pgu—+v— wi WOy TP ke (4.54.)

Ty ﬂz ‘ﬂtg "X

Denklemde u=u+u¢, v=v+v¢ w=w+w¢ve p=p+ptyazilirsa

vt tod o ygtond. oo

T (455)

=pX- ﬂ—i(ﬁwﬁwﬂz(ﬁwﬁ
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Bu denklemin zamansal ortalamasini alalim. Ornegin, birinci terimin

zamansal ortalamast

(u+u<aﬂ(U+u9 p s Gﬂ—u +pu’ E +pu’ Ju (4.56.)

ix = ix fix fix

seklinde yazilir. (4.56.) denkleminin ikinci ve uUguncl terimlerinin zamansal
ortalamalar1 flu’/ fx ve U’ niin zamansal ortalamas: sifir oldugundan, sifirdir. Boylece

(4.55.) denklemindeki terimlerin zamansal ortalamalari asagidaki gibi bulunur:

u —ﬂ(a + U(} = _ﬂ_u_ 'E
p(u + ufa ix pu.”X +pu x (4.57.a)
N V2R LIChL Bt VR (457.b)

v Ty Ty

@ﬂ(u ug _ p—ﬂ_u_ Ju

(W +w 0 +pw E (4.57.c)
Thorpg=1o as9)
uNZ{u+ud=pN2u (4.59.)

Bu degerler (4.55.) denkleminde yerine yazilirsa, sikismayan, turbilangli,

Newtonien akiskan akiminda Reynolds hareket denkleminin x bileseni elde edilir:
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- ‘HU ‘HU P

pgu—+v—y+ ‘ﬂz T T=pX- ﬂx+pN u
) (4.60.)
pu¢— +r V¢_‘ﬂvu¢+p ¢M’§
iy 1z 5

boylece, Reynolds denkleminin U¢ dogrultu icin bilesenleri asagidaki gibi yazilir:

& fu -9u —‘ﬂu ‘ﬂu —pX - fp

pEU——+V_—+W ——+uN? u+ ( pu?)
AR VP Tx (4.61.2)
T, =.9, ==
+—(-pu'v)+—(- puw
ﬂy( pu'v) ﬂz( puw)
pgu—+v—+wﬂ+ﬂuo pY - ﬂp+uN u+ ( pu'v)
Ty Tz %t Ty (4.61b)
17, 5.9, ——
+—(-pV?) +—(- pV'W
ﬂy( pv™) ﬂz( pV'W)
—ﬂU ﬂU ﬂp 1, —
p u—+v—+ =pZ- — +uN? u+— (- puw’)
é AR ¥ Tz T (4.61.C.)
T, == .9, =
+—(-pv'W) +—(- pw
ﬂy( pV'W) ﬂz( pw')
veya vektor-tansor notasyonu ile:
P =pK - RP+ufieV +[fix] (4.62)
veya indis notasyonu ile:
ﬂﬁi ﬂai _ ‘ﬂp T°u 1 P—
A =hK - — 1 + 2 (-pu.u. 4.63.
pu,ﬂxj Pt —PK ﬂXIHﬂX ﬂx +11x,»( pu;u;) (4.63)
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Bu denklemler, turbulansli akim igin Reynolds (1895) hareket denklemleri
olarak anilir. Bu ifadeler Navier Stokes denklemlerine ilave olarak Reynolds (veya
calkant) gerilmelerini  igermektedir. Calkanti gerilmeleri tansorii (Reynolds,
turbulence or eddy stresses) asagidaki gibidir:

7

éGX Tyy ‘Ele;| g' pU_(E - PUT‘;/(]: - pUQV(?j
e u — — -

¢ = (E:‘Tyx Oy Ty~ & put¢ - pv€ - p\ﬂ(h (4.64.)
&, 1, .4 g- putve - pveve - pwdfg

Reynolds denklemleri, lineer olmamalari yaninda u, v, w, p ve 6 calkanti
gerilmesiyle birlikte 10 bilinmeyen igermektedir. Halbuki sureklilik denklemi ile
birlikte 4 adet denklem vardir. Bazi varsayimlar ile Reynolds ifadeleri
sadelestirilerek bazi pratik akim problemleri igin yaklasik ¢oziimler elde edilebilir.

Reynolds denklemlerinin sag tarafinda bulunan calkant1 gerilmeleri tansori
aslinda du/dt, dv/dt, ve dw/dt’'lerin zamansal ortalamalarinin alinmasiyla ortaya
¢cikmis momentum terimleridir. Ancak (d’ Alembert dinamik denge prensibine gore)
denklemin sag tarafina gege bu terimlere, gerilme tansorunin ilave terimleri seklinde
bakilabilir.

Tarbllansli, Newtonien akiskan akiminda Boussinesg yaklasimina gore
gerilme tansord,

1

2 T
T, =- pS; +2ud,; - 5udlvVESij (4.65.)

(4.65.) binye denklemine (4.64.) tlrbilans gerilme tansdrinin eklenmesi ile
asagidaki gibi yazilabilir.

r
T, =- PO +2ud; - gudivVSij +1°veya,
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A
1
D> D D> D
o O S
]

o Sl o

_ _+_:u
T é'ﬂx ‘ﬂyg 28X Tz gy
(o elfU, WO v iEw v
e2&ly W5 28 T
elaﬂu Tw o 1aq1v fwé w g

431(4?‘44g 444144@

ortdlama huzlar viskoz gerilmeler
é- ué - uee - uGve
— —u
- 5udlvVS +pe- ude - vé - vivg

& utve - vave - wel
8§ aa4412444438 (4.66.)

ortlama cakant1 gerilmeleri

(4.66.) binye denkleminin (4.53.) hareket denkleminde kullamlimasi ile, 6rnek
olarak, sikisan turbilansli, Newtonien akiskan akiminda Reynolds denkleminin x
bileseni asagidaki gibi diizenlenebilir:

du u

pa_p +_§ p+2pﬂ—-§deVV puﬂ?-
e . (a67)
é 4 e
LIe aqﬂ+ﬂ_ pUGE+ b aq1u ﬂ—: pUE
K T R 7 T R
veya,
Jdu_ e Tp, 1@ ud €@, vl g ¢ @, Twd
ot o E v 8 Ty A (460)
29 T
- 2 o)+ T pue )T (g T (e

30



4. TEMEL DENKLEMLER VE TURBULANS MODEL LERI Oguz SIMSEK

p%—px- 2p+uN U+Hﬂﬂ d|vV- %pﬂldlvv (469)
+."1X( P“‘E)“Lﬂ—y( PU‘W@*—( pudv

ve sonu¢ olarak, sikisan Newtonien akiskan akiminda Reynolds denkleminin x

bileseni:
p%—px E)F:-WN u+31;Ld|vV+ﬂ1X( pu_@) @70)
+ L pu@@+—( pudig

y

seklinde bulunur. (4.70.) denkleminde divV =0 yazilirsa sikismayan, Newtonien

akiskan akiminda Reynolds denkleminin x bileseni elde edilir:

du 1
=2 =pX - -2

o 0 +HNZG +ﬂix(- pu_@)+ﬂ—11/(- puTQ(a+%(- qu<§ (4.71)

4.2. TURBULANS MODELLERI

Kitlenin ve momentumun korunumunu idare eden hareket denklemleri

kartezyen tansdr notasyanunda asagidaki gibi yazilabilir:

% =0 (4.72.)

HAu. ‘ITU 2_ ‘ﬂp T°u 1
gy s 1 (z. 4.73.
pé it U — fix pPg, - x, + ﬂsz + x (ti) (4.73))
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Denklem (4.73.) ve (4.74.)'de u; hiz bilesenlerini, p basinci, m akiskamn dinamik
viskozitesini, p akiskanin yogunlugunu, pgx yercekiminin sebep oldugu kiitlesel
kuvveti, t zaman, tj; ise turbulans kayma (Reynolds) gerilmelerini ifade etmektedir.
Reynolds gerilmeleri Boussinesq yaklasimina gore asagidaki gibi ifade edilir:

- , u o
T, =- puitlug::pt% L 3
=,

T (4.74))
xi &

iP

2
3

denklemdeki u’; ve u’j ise turbulans hiz sapinglarin, W, tlrbllans viskozitesi, §; ise

Kronecker delta olarak adlandirilir. Denklemin sag tarafinda bulunan ikinci terim,
sikigmayan akislar icin normal gerilmenin toplamimin her zaman trbilans kinetik

enerjisine esit olabilmesini saglama amaciyla bulunmaktadir (Eger i=j ise §; =1).

Reynolds denklemlerinde Uc¢ boyutlu akista bir basing, ¢ hiz bileseni
bulunur. Tarbulans kayma gerilmelerinin isleme katilmasiyla birlikte ¢ boyutlu
akista 6 adet bilinmeyen bilesen de degiskenler arasina eklenmis olmaktadir. Toplam
10 bilinmeyen terime karsilik 4 denklem bulundugundan denklem sisteminin ¢ozimii
mUmkin olamayacaktir. Bir baska ifadeyle sistem kapatilamayacaktir. Reynolds
gerilmelerinin neden oldugu bu duruma kapanma problemi (Closure Problem) adi
verilmektedir. Turbulans modelleri, Denklem (4.71.)" teki t; 'nin hesaplanmasi ve
bdylelikle de denklem sisteminin kapatilmasi gorevini Gstlenmektedirler.

k-e Turbllans Modelleri: Isminden de anlasilacag: lzere k - ¢ modellerinde,
turbllans kinetik enerjisi (k) ve onun kayip oram “disipasyonu” (g) icin olmak Uzere
iki adet transport denklemi Navier-Stokes denklemlerine ek olarak ¢ozilmektedir. €
"un gercek transport denkleminin eldesi Navier-Stokes denklemlerinden mumktinddr
(Davidson, 2005). Ancak bu denklem son derece karmasiktir ve pek ¢ok bilinmeyeni
icermektedir. Arastirmacilar bu denklem yerine ¢ok daha sadelestirilmis bir hali olan
modellenmis & denklemini tdrbllans modellerinde kullamimak (zere adapte
etmislerdir. Elbette her modelde oldugu gibi bu modelde de pek ¢ok yaklasim,
varsayim ve ihmal sdz konusudur. Sonug olarak, modellenmis ¢ transport denklemi,
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k transport denklemine cok benzer bir formda ve basitlestirilmis bicimde
kullanmlmaktadir.

k-¢ modellerinde turbilans viskozitesi,

k2
=pC, — (4.75)
€

formunu almaktadir. Cp turbilans modeli sabitidir.

Standart k-g Turbulans Modeli (SKE): iki denklemli tirbiilans modelleri arasinda
ekonomikligi ve pek ¢ok akis olayinda kabul edilebilir dogrulukta sonug vermesi
acisindan yaygin olarak kullamlan yari ampirik bir modeldir. Turbilans kinetik
enerjisi (k) ve kayip oram (g) icin yazilan iki adet transport denkleminin ¢ozimi ve
turbllans viskozitesinin hesabini icerir. Kaldirma kuvvetleri etkisi ihmal edildiginde,

bu transport denklemleri k ve g igin sirast ile

& 0
1(r K) +i(r kui):i l“k‘”—kj+Gk -re (4.76.)
ﬂt 1.[Xi T[Xj T[Xj ﬂ
2
—(re)+—r(reu)= —C G C,re-R 4.77.
m()x,()ﬂéﬂ b G Cor o (477)
; kvevag'un | [ kvevag'un| [kvevag'un| [kvevac'un|
rilu..e-.‘.::ﬂr | o e |5
+ 1 kanveksivonla = < difiizvonla >+ 1 tiretim F— 1 kayip :
|:|"I. gisim HHM.,!H ' _ [
| tagenami . [ M j | mikter | miktari [
seklinde yazilabilir. Diflzivite terimleri,
r, §u+ —veF _gp+“‘i (4.78.)
Ok @
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Hiz gradyanindan kaynaklanan turbulans kinetik enerjisini Gretimini ifade eden terim

- fu.
G, =-pu; U] ‘ﬂ_xj (4.79.)

olup burada turbilans viskozitesi, turbulans kinetik enerjisi ve onun kayip oran

cinsinden

u, =pC, - (4.80.)

yazilabilir. Bu modelde R=0 olup, deneysel sabitleri
C,=144,C,, =192,C =009k ve ¢ icin tlrbllans Prandtl sayilar

o, =1.0,6, =1.3t0r (Launder ve Spalding, 1972). Denklem (4.76.) ve denklem
(3.80.) asagidaki gibi ifade edilebilir;

RNG k-g Turbilans Modéli (RNG): RNG k-¢ turbilans modeli Y akhot ve Orszag
(1986) tarafindan dustnulmis ve gelistirilmis (Yakhot ve ark. 1992) yine iKi
denklemli bir model olup esas itibariyle Navier-Stokes denklemlerinden
renormalization group teorisi kullanilarak elde edilmistir. Bu modelde k ve e igin
transport denklemleri denklem (4.76.) ve denklem (4.77.)’ deki gibi yazilabilir. Temel
farki sabitlerin farkli olmasi ve ilave terimlerin gelmesidir. RNG k-e tdrbilans
modelinde (4.76.) ve (4.77.) esitliklerinde bulunan difizivite terimleri asagidaki gibi

olur:
r,=op , I'y =a,p, (4.81)
Burada akiskanin viskozitesi ile turbilans viskozitenin toplam olan efektif viskozite

He =H+p, (4.82)
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olup asagidaki adi diferansiyel denklemin ¢ozimiinden elde edilir.

5
T=1.72 eln

K
d¢— d(u,./
Song o -tec,

(4.83)

Bu denklem distk Re sayisi etkilerini hesaba katmay: saglamaktadir. RNG k-
modelinin, standart k-¢ modeline gére en biytk farki, ¢ denklemine ilave olarak
gelen R terimidir. Bu terim,

_C,pn’°(- i) &2
1+pn’ K

(4.84)

ifadesiyle hesaplanir. Bu ifade denklem (3.77.)’'de yerine konursa denklemin
sagindaki 3. terim ile birlestirildiginde transport denklemi,

2

1 1 T & g0 g . €
—(pe) +—(re)=—CI', —7+C,_—G, - C2p— 4.85.
ﬂt(p) 1.[Xi( |) ﬂxjé sﬂxja 1sk k Zpk ( )
sekline donustUrdltr, bu durumda
¥ C 3 1- /
c =c, +2xn - 1mo) (4.86)

1+pn°

olur. Bu denklemde n turbulans kinetik enerjisinin Uretimi ve kayip oraninin
fonksiyonu olup,
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burada S= /2SS, (4.88)
LT U (4.89)
o2& 9x, ‘ﬂxjg

seklinde ifade edilir. Bu ilave terim, standart k- modelinde olmayan, yiuksek kayma
oranlar: ve akim cgizgisi egriliklerini gbz 6nune almasi agisindan 6énemlidir. Kayma
oramnmin kuvvetli oldugu (yuksek n) durumlarda kayip artmakta, bu da tirbilans
viskozitesini ve k degerini azaltmakta yani akistan daha az enerji ¢ekilmesine yol
acmaktadir. Boylece sirkilasyon olan bolgelerde biyikligl deneysel verilere daha
yakin ¢ikmaktadir. Bu modelde kullamlan sabitler C;.=1.42, C,.=1.68, C,=100,
no=4.38, p=0.012, C,=0.0845 dir.

Denklem (4.78.)'de a,ve a, parametreleri k ve ¢ igin efektif Prandtl

sayilarinin tersini gostermekte olup, RNG teorisinden analitik olarak tiretilen

0.3679

| a- 13920 0+ 23020 7" _ (4.90)
HS

g - 13929 |a, +2.3929|

ifadesinden hesaplanmaktadir. Burada a,=1 dir. Yiksek Reynolds sayilarinda
(/&) o, =a, @L.393 olmaktadr.

Realizable k-¢ Turbilans Modeli (RKE): Standart tUrbilans viskozitesi modelinde
bulunan C,, sabitinin degeri ataletli simir tabaka alt1 bolgede elde edilmistir. Gergekte
bu sabit farkli akis bolgelerinde degisim gostermektedir. Ustelik tirbiilans
viskozitesinin hesabinda kullamilan modelin yiksek sekil degistirme miktarlarinda
“anlamsiz’ (non-realizable) oldugu uzun zamandir bilinen bir gergektir. Buna gore,

Sk/ef3,7oldugunda, normal gerilme negatif olabilmekte ve hatta Reynolds
gerilmelerinde Scwartz esitsizligi ihlal edilmektedir (Shin ve ark., 1995). RKE
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modelinde bu problemlerin 6nine gecebilmek icin standart k-¢ ve RNG k-¢
modellerinde sabit olan C, katsayisi dinamik bir form almaktadir. Buna gore

A, +A,—

seklinde tammmlanmustir. Denklem (4.88.)’ de bulunan terimler,

U =SS, +9,Q; (4.92.)

§~2ij =Q; - 2¢,0,,Q; = ﬁij - €, (4.93)

A, =+/6cosp ¢ = éarccos(\/EW) (4.94.)
SiSicSa

w =" §J§ (4.95.)

S=./SS, (4.96.)

seklinde ifade edilir. Burada Q o, agisal hziyla donmekte olan bir referans

Ij’

sistemine gore ortalama dénme miktar1 ve S ise gerime tansdrinin ortalama
modulidir. RKE modelinde standart k-¢ modelinden farkli olarak yeni bir kayip

miktar: denklemi de gelistirilmistir;

6 2
n 8% B oS - pc,

1 Ge
s L =_" + 2t _
( €) + XJ (pp ) . gﬂ o, gﬂxjg k+\/E
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Burada,
2 k0
C,= maks@0.43;k—8% (4.98.)
é S”+5%
€ 1]

C, =1.9seklinde verilmektedir. Goruldugu gibi € un olusumu ve kayibi tamamen

farkli bir formda ele alinmis ve olusumu bir fonksiyona baglanmistir. RKE modeli
gelistirilmis bicimi ile yiksek Reynolds sayisina sahip ve tamamen turbtlansl

akislar igin uygundur.

SST k- Tirbilans Moddli (SST): Standart k-o modeli (Wilcox, 1988) sinir
tabaka akislarinda yiksek basar1 sagliyor olsa da, Menter (1992)'in ters basing
gradyan iceren sinir tabaka akislart icin yaptigi populer tdrbilans modelleri
karsilastrmasinda, standart k- modeliyle gercekci hiz profillerinin yam sira,
haddinden fazla kayma gerilmesi hesaplandigi belirtiimektedir. S6z konusu
calismada Menter bunun nedeninin modelin kayma gerilmesinin tasiniminin hesabini
icermedigi belirtiimekte ve turbllans viskozitesinin hesabinda yaptigir kigik bir
degisiklik ile sonuglarin iyilestiriimesini  saglamistir. Calismada  turbilans
viskozitesinin standart tamminin ters basing gradyanmin iceren akislarda hatall
sonuglarin kaynagi oldugu belirtiimektedir. Bu dustince uyarinca Menter (1993)
turbilans viskozitesinin hesabinda pratik bir degisiklik yaparak kayma gerilmesinin
0.3 (Bradshaw sabiti) k’den daha blyik ¢ikmamasini saglamistir. Ayrica tirbulans
viskozitesinin hesabina akilli bir fonksiyon ekleyerek bu degisikligin yalmzca simr
tabaka bolgesinde kalmasim saglamstir. Buna gore tirbilans viskozitesinin hesab,

k
T (4.99)
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seklinde degistirilmistir. Burada &, 0.3'e esit sabit sayiy1 gostermektedir. Q sinir

tabaka icerisinde iki boyutlu bir akis icin distnilecek olursa 111—; tlrevini

gostermekte, ancak genel kompleks akislar icin girdaplilik buyUklugl olarak
alinabilmektedir. F, ise sinir tabaka icerisinde 1 ve disinda O olan, iki deger
arasindaki gegisin yumusak bicimde olmasini saglayan akilli bir fonksiyondur. Buna

gore F, fonksiyonu,
F, = tanh(arg?) (4.100.)
arg, = maxae Jk @9 (4.101)
§0.090). y’o 2

seklinde tanimlanmaktadir. Burada y ile duvardan normal yondeki uzaklik ifade
edilmektedir.

Wilcox (1991), sandart k- modelinin ¢zellikle serbest kayma akislarinda
o’'nin giris simrindaki  degerlerini asirt derecede bagli oldugunu ve tlrbilans
viskozitesinin degerlerini iki kattan fazla degistirebildigini gostermistir ve o tasimm
denklemine baz: eklentilerin yapilmasi gerekebilecegini belirtmistir. Boylece Menter
(1993), sinir tabaka icerisinde, bu bblgede ¢ok basarili olan orijinal k- modelini
kullaip serbest kayma akislarinda ise modelin serbest akim degerlerine
bagliligindan kurtulmay: amaglayarak o tasimim denkleminde onemli degisiklik
yapmustir. Denklem standart k-¢ modelinde kullanilan ¢ tasimim denkleminde
degisken donisumt yapilarak kullamimakta ve bdylece standart k-o modelinde
kullanilan o tasimm denklemine “gapraz diflizyon” ad: verilen terim eklenmektedir.

Ancak bu terimin sinir tabakada gok basarili olan orijinal formu etkilememesi
icin (-ki etkilemektedir) (Wilcox, 1998) akill1 bir fonksiyon ile bu terimin yalmizca
serbest akislarda ve sinir tabakanin Ust bolgelerinde kullamimast saglanmustir. Buna
gore SST k-o modeli, tirbulans viskozitesinin hesabinda daha 6nce sozi edilen

degisiklik disinda, sinir tabaka icerisinde orijinal k- modelini, serbest kayma
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akislarinda ise standart k-¢ modelini kullanmaktadir. SST modelinde kullamlan

turbilans kinetik enerjisi k ve spesifik kayip o, denklemleri,

_1 2 ko oy
_(rk)+ﬂTj(rk) ﬂTjél“ijEﬂ:ij . B pko (4.102.)
T+ T o)= igrw”—“gwﬂi-ﬁwpmz
It fix; fix; ™ig = X, (4.103.)
1 ﬂk ﬂa)
2(1- E
+2( )ch ﬂ ﬂX

seklindedirler. ® denkleminde en sonda yer alan capraz difiizyon terimi Fy
fonksiyonuna baglanmistir. Buna goére tirbulans viskozitesinin hesabindaki mantiga
benzer bicimde simir tabaka iginde viskoz at tabaka ve logaritmik tabakada
fonksiyon 1 degerini almakta ve disariya dogru yavasca 0’ a dogru degismektedir. F;

fonksiyonu,

F, = tanh(arg;) (4.104))

& Jk 50000 Ar k u

arg, = mlnemax 4.105.

% é 0.09w. y ® gcmzcdy g ( )
0

od = maxer K 10 1508 (4.106.)
® ‘ﬂx ‘ﬂx 5

seklinde tammlanmaktadir. Fonksiyon temel olarak, logaritmik tabakadan sonra
sirekli 1 degerini alabilmek icin tlrbllans boy 6lgeginin ¢ok kiguldigl viskoz alt
tabakada ikinci terimi devreye sokmaktadir. Ayrica standart k- modelinin, o’'nn
serbest akim degerlerinden etkilenerek sinir tabaka disindaki o degerinin ¢ok kiguk
hesaplama egiliminin dniine gegebilmek igin fonksiyondaki tgtincl terim vasitasi ile
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fonksiyonun mimkin oldugunca daha kicik degerler alarak duvara daha yakin bir
noktada 1 degerine ulasmasi hedeflenmistir. SST modelinin iki ayr1 model arasinda
gegisi icin katsayilar da yine F; fonksiyonuna baglanarak ¢ herhangi bir katsayiyi
temsil etmek Uzere,

¢ =Fo, +(1- F)o, (4.107.)

seklinde hesaplanmaktadir. Menter katsayillar Uzerinde de hafifce degisiklikler
yapmustir. Buna gore katsayilar,

B, =0.09,a =031,k =0.41,0,, =0.856 (4.108)

2
Bml cle

o, =1176,6,,=2, B, =0.0750,y, = - (4.209.)
Be B
B G,k
o, =1,0,,=1168, B, =0.0828,y, :B—U’Z - % (4.110.)
k k

seklinde verilmektedir. Menter (1994), orijinal modelin hassas noktalarini
vurgulayarak SST modeliyle karsilastirmalara yer vermektedir.

RSM Turbulans Modeli (RSM): “Reynolds Gerilmesi Modeli” (RSM) adim alan
bu yontem Reynolds gerilmelerinin (pru'j) dogrudan transport denklemlerinin
¢Ozumiyle hesaplanmasi esasina dayanir (Gibson ve Launder, 1978; Launder, 1989).
Reynolds gerilmesi tasimim denkleminin Navier-Stokes ve RANS denklemlerinden
basit matematiksel manipulasyonlarla birkag adimda elde edilmeleri mimkandur.
S0z konusu denklem Reynolds gerilmelerinin her bileseni igin tim tasimm
mekanizmasinin  fizigini icermektedir. Elde edilen denklemin terimleri fiziki
anlamlarina uygun bigimde basitlestirilip modellenerek, her Reynolds gerilme
bileseni icin ayr1 bir denklem elde edilmektedir. RSM 6zellikle sekil degistirmenin
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karmasik bir yapr sergiledigi ve egriselligin oldugu akislarda turbilans viskozitesi
modellerine gore daha avantgjlidir (Davidson, 2005). Sonug olarak, 6 adet Reynolds
gerilmesi denklemi ve Reynolds gerilmesi tasimm denkleminde yer alan kayip terimi
icin de 1 adet disipasyon tasimim denklemi ile birlikte Gi¢c boyulu simtlasyonlarda 7
adet ekstra denklem coOzilmesi gerekmektedir. Tahmin edilecegi Uzere RSM,
hesaplama agisindan masrafl1 bir modeldir.

Kaldirma kuvvetlerinin etkisi ihmal edildiginde bu transport denklemleri
asagidaki formda yazilabilir:

7" —. 1 —
ﬁ(Pui uj)+ﬂ7(r KU, Uj) = DT,ij + DL,ij + Rj T, tg; (4.111)
K

denklemin sag tarafindaki terimler sirasi ile

Turbllans diftizyon terimi:

DT,ij =- % pu, Ulj u, + p(akjuli +8ikulj) (4.112)

Molekuler diftizyon terimi:

Dy =+ g B iU (4.113)

Tarbulans gerilmeleri Gretim terimi:

@& fu —qu o
Pij:_pguli ulk_J"'uli u' fy, =

L— 4.114.
R LT (4.114)

Basing uzatma terimi:
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_ u; j 2
=pG U4 s 4.115.
o 2 (4.115)

Dissipasyon terimi:

‘ﬂu ‘ITU

g = ﬂx . (4.116.)

Bu terimlerden D, 9;, ¢; ve terimleri yeni ve bilinmeyen korelasyonlar

icermekte  olup hesaplanabilmeleri  icin  modellenmeleri  gerekmektedir.
Genellestirilmis gradyan diflizyon hipotezinin basitlestirilmis formu kullamlarak
turbllans gerilmelerinden kaynaklanan Gretim terimi

1 & Wy
Y ix, gck ﬂXk Eg

(4.117.)

seklinde modellenebilir (Lien ve Leschziner, 1994). Lineer yaklasim kullanilirsa
basing-uzama terimi U¢ bilesenin toplam seklinde yazilabilir. Bu bilesenler yavas ve

hizl1 basing-uzama bilesenleri ile cidar etkisini ifade eden Piiw bilesenidir (Gibson
ve Launder, 1978; Launder, 1989). Buna gore basing-uzama terimi

3 g
@% 1 q & (4.118)
-C, ruu;u)z afb-—ruu'u':'+ .
g ( )g 3% ki ﬂXI( Uk k% Qijw
seklinde yazilabilir. Burada C;=1.8, C,=0.6 alinmstir.
Dissipasyon terimi ise sikistirilabilirlik thmal edilerek
2
Sij zgpgﬁij (4119)
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alinmustir. Bu denklemlerde gegen tiirbiilans kinetik enerjisi k =u,u./2 ifadesinden

bulunabilirken bunun dissipasyonu olan ¢ fonksiyonu denklem (4.73.)’'da R=0,
Ci1=1.44, Cx=1.92, 6.:=1.0 ve tUrbulans Uretimi terimi G=0.05P; alinarak elde
edilir.

4.2.1. Hiz Dagihm icin Logaritmik Duvar Kanunu (law of the wall)

Sinir tabakasinin turbilansli i¢ bdlgesinde hiz dagilimi igin von Karman-
Prandtl tarafindan verilen ve duvar kanunu (law of the wall) olarak bilinen logaritmik
hiz dagilim ifadesi kullanilmaktadir. Bu ifade asagidaki gibi elde edilebilir. Viskoz

alt tabaka ile turbilansl i¢ bolge ara kesitinde, yani y =46, icin akim hiz1 (4.120.) ve
(4.121.) denklemlerinden asagidaki gibi yazilabilir:

u Jto/r
u et/ vy (4.120)
V. i v
amek - a _ 1 y
=-ZInZ (4.121)

v, Kk h
Un _V:Oy g the 1) 0y, Uk (4.122)
\Y} \% V. K 0O \Y;

LSy Uk ragian Uk = VO, 1,00 (4.123)
K 0 V. V. \ K O

Degeri (4.121.) denkleminde yerine yazilirsa
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5, V.3, u
In—-+ veya, — =
8 V V*

A=

v (4.124.)

S|c|
> <
A=

Burada, % = A sayilarak sag taraftaki ikinci terim logaritmaterimi ile birlestirilirse:

V-9 1B veya L=anYY+p (4.125)
V. \'

\'

S|c|

:Alnl
8V

seklinde logaritmik kanunu olarak bilinen iz dagilim ifadesi elde edilir.
Denklemdeki B ylzey puruzltltgine bagl bir sabittir.

Nikuradse'nin (1932) cilali boru deneylerinde A =25 (xk=0,4)B=55
degerleri elde edilmistir, buna gore logaritmik hiz dagilim:

u :2,5|nﬂ+5,5 (4.126.)
V. \

Seklindedir. Daha sonra cesitli arastirmacilar tarafindan yapilan deneylerde, bu
sabitler icin A =243-25 ve B=47-7aaliklarinda degisen degerler
bulunmustur.

Kirkgtz (1989) tarafindan purtizsiiz tabanli agik kanal akimlarinda yapilan
laboratuvar deneylerinde k = 0,41 bulunmus ve (Reynolds sayisina bagli olarak)
50- 80£ v.ylv £ 200- 600 ve 0,14- 0,05£ y/6 £0,6- 0,5 kosullar1 igin logaritmik
hiz dagilimi asagidaki gibi verilmistir.

=244nYY +55 (4.127)
\'

S|c|
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4.2.2. Sonlu Hacimler Y ontemi

Reynolds ortalamali Navier-Stokes denklemlerinin  veya genel skaler
transport  denkleminin  sayisal olarak  ¢Ozulebilir  cebrik  denklemlere
donustardlebilmesi igin ayriklastirma isleminin gergeklestirilmesi gerekmektedir. Bir
denklemin ayriklastiriimasi, sonlu farklar, sonlu elemanlar veya sonlu hacim
yontemleri ile hesaplama bolgesinin ayrik nokta, eleman ya da hacimler ile ifade
edilmesi ile gergeklestirilebilir (Ferziger ve Peric, 1999; Hoffman ve Chiang, 2000).
Hesaplamal1 calismada son yillarda populerligi ¢cok artan ve pek cok yazilimda
uygulanmis olan sonlu hacim ayriklastirmas: kullanilacaktir.

Akigskan akisim1 modelleyen tasimm denklemlerinin, uzayda sabit bir sonsuz
kicik eleman ele alinarak, bu elemamn tim yizeylerinden yapilan momentum
transferinin hesap edilmesi ile konservatif diferansiyel denklemler formunda eldesi
mumkindir (Anderson, 1996). Sonlu hacim ayriklastirmasi, bu denklemlerin sonlu
bir hacim boyunca entegre edilmesi esasina dayanmaktadir. Akisin ¢ gibi bir tasinim
Ozdiginin (6rnegin sicaklik) konveksiyon ve diflizyon tasinim denklemi kartezyen

tansor notasyonunda,

pﬂ_cp+p‘ﬂ(uj<P): T& T2 o (4.128)
qt Xj ﬂxjé ﬂxja

seklinde ifade edilebilir (Johnson, 1998). Burada; u g ayr1 yondeki hizlari, ¢ akisin
herhangi bir tasimm Ozelligini, T' diftizyon katsayisim ve S kaynak terimini
gostermektedir. Sade ve olabildigince basit bir denklem formu elde etmek amaciyla,
denklem daimi ve bir boyutlu formda yazilacak olursa,

% s (4.129)
dt dxé dxg

d(Ue) _d (ﬁnd_(pb'
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8N, BN,

L 3

W

Q=
P=
Pm

aX

Sekil 4.3. Hesaplamal1 kontrol hacmi

Bu denklem, Sekil 4.3.’de gorilen kontrol hacmi boyunca integre edilirse,
giris ve ¢ikis yuzeylerinin birim degerde oldugu kabul edilelerek (Ac=Aw=1);

—(U(pU )_ P d aﬁ‘"d“’ O+Sudx (4.130)
u

yazilabilir. S6z konusu denklemin sol tarafinin integralden ¢ikarilmasi ile,

o

. d
O g, (UoUe)=(ppUe. - (ppUq, (4.131)

N

ve sag tarafinin integralden ¢ikarilip kaynak terimi bagimli degiskenin fonksiyonu

olarak lineerlestirilirse,

‘éd %d o U doo doo
Qe ¢l ——=+Siix = g a%—f +5, +S
% & o Sb’d & dxg & deg, % TS (4.132)

elde edilir. Burada Sy daha sonra cebrik denklemin saginda kalacak olan kaynak
terimden gelen sabit say1y:1 ve bagimli degiskenin Sp sabit sayidan gelen katsayisini
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gogermektedir. Difluizyon terimleri genel olarak merkezi farklar ile interpole
edilmektedirler (Versteeg ve Malalasekera, 1995). Merkezi farklar kullarmlacak
olursadenklem (4.129.)' ninilk bileseni,

3‘;—“’9 = r?’E'—‘PP% (4.133)
e dxg d X,

@
seklini alir. Konvektif terimler icin, birinci derece ileriye dogru (upwind), merkezi
farklar, QUICK (Quadratic Upwind Interpolation for Convective Kinematics)
(Versteeg ve Malalasekera, 1995), MUSCLE (Monoton Ustream-Centered Schemes
for Conservation Laws) (Blazek, 2001) ve degisik semalari karistirarak kullanan
melez yapida olanlar gibi pek ¢ok farkli 6zelliklerde ayriklastirma semast mevcuttur
(Ferziger ve Peric, 1999; Hoffman ve Chiang, 2000). Ornek olarak, hesaplamali
analizlerde sikca kullamimakta olan “ikinci derece ileriye dogru” interpolasyon

semasi ele alinacak olursa (Davidson, 2005), X, =dx,, = & X kabull yapilarak,

Pe :g% - %(Pw +0((Dx)?) (4.134)
O =20 - 5Py + (DY) (4.135)

seklinde yuzeylerdeki ¢ degerleri belirlenebilir. Bu noktada, ¢ degerlerinin
katsayillarimin ag oOrgusi araliklart 8y 'in esit olmadigi durumda farkli degerler
alacaktir. Yuzeylerdeki ¢ degerleri denklem (4.66.) ve denklem (4.67.)’de yerlerine

yazilacak olursa,

1 6 a8 1 o T
— QT U,c=oy - = T=— - 20, +
2(ng (pp Wgchw 2(wag 8X(cpE Pp +0y) (4.136)

+3, + S5

a3
(PPUsC - 5 -
e2
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bulunur. Boylece;

AsPp = Ay Py + AP - B Puw +Su = A AnPun +Su (4.137)
km

seklinde lineer bir denklem sistemi elde edilmis olur. Buradaki km indisi P hacmine

komsu hacimleri gostermektedir.
4.2.3. Akiskan Hacimleri Y ontemi

Su-hava arakesitine sahip serbest yizeylerin belirlenmesi icin yazilimda
akiskan hacimleri (VOF. Volume of Fluid) yontemi kullamilmaktadir (Hirt ve
Nichols, 1981). VOF yontemi ile hiicrelerin bos, tam veya kismen suyla dolu oldugu
belirlenir. Bu yontemde hesaplama alan: Gizerinde bir akiskan hacmi (F) tammlanir.
Sayet bir hiicre tamamen akiskan ile dolu ise 1 degeri, tamamen bos ise sifir degeri
ve kismen dolu ise hiicrede kapladig: yuzde degerini alir Sekil 4.4..

F=0, | ~
Ve
)

/

N

/

Sekil 4.4. Akigskan hacminin ag Gzerindeki dagilim
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Serbest yiizey, bir egime sahip ise bir hiicredeki yizeyin yerini ve egimini
belirlemek igcin kendisini c¢evreleyen hicreleri dikkate alan bir algoritma
kullamimaktadir. VOF yontemi ile serbest yizeyin izlenmesi ¢ kissmdan olusur.
Oncelikle serbest yiizeyin yeri bulunur. Daha sonra bu yiizey, su ve hava arasinda
keskin bir arakesit olarak belirlenir. Son olarak bu arakesite sinir sartlart uygulanir.
Arakesit Uzerinde sifir kayma gerilmesi ve sabit basing simir  kosullar:
uygulanmaktadir. Akiskan hacmi fonksiyonu F nin degisimi asagidaki diferansiyel
denklem ile verilmektedir.

—+uU—+Vv—+w—=0 (4.138.)

bu denklem ile F degeri akiskan ile birlikte hareket etmektedir

4.2.4. Ag Yakinsama indeks (GClI- Grid Convergence I ndex)

Sayisal ¢cozimlerde secilen sonlu eleman agimin etkisini incelemek icin
ASME (American Society of Mechanical Engineering) tarafindan dnerilen (Celik ve
ark., 2008) GCI (Grid Convergence Index) metodu kullanilacaktir. GCI, model
¢Ozimlerinin sayisal ayriklasmalara (numerical discretizations) duyarliligini ortaya
koymak icin ilk olarak Roache (1994), tarafindan onerilmistir Bu metot temelde,
farkli  ¢0zUmlerin  karsilastirilmasint  igeren,  genellestirilmis  Richardson
Ekstrapolasyon yaklasimina dayamir. Cozim agi yakinsamast ve belirsizliginin
tahmini icin en az G¢ sonlu eleman ag yapisi gereklidir (Roache, 1998).

Buna gore:
d, <d, <d, (4.139)
elzzul' UZ, 623:U2- U3, I :g_l, r2 :g—z (4140)
2 3
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P 0
p= ! lng(ri;" De, x (4.141)
In(r23) (r12 - 1)823 g
Ep =22 (4.142)
u3
 1.25E
GCIre = p5| 2 (4.143)
lrp-1

belirlenir. (4.140.)’de bulunan, up: dy araligiyla tammlanan orta hassasiyetli ag ile
elde edilen hiz degeri, us: d; araligiyla tammlanan hassas ag ile elde edilen hiz
degeri, p: dogruluk mertebesidir. Roache (1994)’ e gore ras, r1» > 1.10 olmalidir. Ug
veya daha fazla ag yapisi icin guvenlik faktord, 1.25 olarak onerilmektedir (Roache,
1997).

Cozimlerde hassas ag yapisindan elde edilen sonuclarin daha iyi olacagi

bekleneceginden, sadece GClyine hesaplanmasi yeterli olacaktir.
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5. SAVAK AKIMININ HAD ILE MODELLENMESI

Son yillarda Hesaplamali Akigskanlar Dinamigi (HAD) yontemlerinde
kaydedilen gelismeler ve bunlarla baglantil: ticari yazilimlarin cogalmas: ile Insaat
Muhendisligi kapsaminda yer alan birgok su yapisinin tasariminda énemli kolayliklar
saglanmistir. Su akimi ile yapi etkilesiminin fiziksel modeller ile laboratuvar
ortaminda test edilmesi, dngorulen performans oOlcitlerinin saglanip saglanmadigi
hakkinda oOnemli bilgilerin edinilmesine yardimcit oldugu asikardir. Sayisal
modelleme ile akimin, kisa sirede ve ekonomik olarak ¢Ozulmesi ve tasarim
islemlerinin farkli kosullar igin hizli bigimde tekrarlanmasi mimkidndir. Ancak
HAD modellemelerinden elde edilen verilerin ne kadar gercekci oldugu ve
kullarilabilirligi konusu, gincel tartisma konularindan birini olusturmaktadir. Bu
bakimdan, sayisal bulgularin deneylerle dogrulanmasina yonelik calismalarin
cogaltilmasina ihtiya¢ duyulmaktadir. Hesaplamali Akiskanlar Dinamigi kapsaminda
Flotran, Fluent, Cobalt, Flow 3D, STAR CFD, v.b. birgok ticari paket program
gelistirilmistir. Bu calismada temel denklemlerin sayisal ¢ozimi igin ANSYS.12.1
paket programu icerisinde bulunan Fluent modalt kullanmilmustir.

5.1. C6zim Bolges ve Sinir Sartlary

Egrisel genis baslikli savak ile etkilesim halindeki agik kanal akimimin sayisal
¢Ozumi icin kullanilan modelin ¢6ztim bolgesinin geometrisi ve boyutlar: Sekil 5.1.
de gorulmektedir. Kullamlan koordinat sisteminin orijini, ¢dzim bdlgesinin sol alt
koses olarak alinmigtir. C6zim bolgesinin Ust sinirr, memba su seviyesinin biraz
Ustiinde, alt sinirt ise kanal tabam ve savak ylzeyinden gegmektedir. Alt sinirda sifir-
hiz duvar simir sarti, yani u=v=0 kabulU yapilmustir. Iki farkli debi durumu icin
yapilan sayisal modelde, giris simir sart1 olarak Durum 1 icin, deneysel olarak 6lcllen
hiz profili kullanilirken, Durum 2 igin ise kesit ortalama hiz1 Gniform olarak tatbik
edilmistir. Boylece her iki durumda sayisal yontemin guict test edilmeye ¢alisilmstir.
Kanal sonundaki serbest dokilme kesiti olan ¢ikis simrinda ve ¢ozum bolgesinin tst
sinirinda, basing sarti p=0 degeri kullamlmustir. Ayrica | tdrbilans siddeti ile ilgili
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giris sinir sart1 olarak deneylerden alinan 0.10 (%10), yani yUksek turbilans siddeti

kosulu tammlanmustr.

¢y l( ;J;sé)smlr COzlim bolgesi

!—ﬂ-

1.00m X

Giris sinir LAIt sinir Cikis siir

u=u(y) -0 v= p=0
V=0 /s u=0, v=0
F=1

Sekil 5.1. Sayisal hesaplama bolgesi ve sinir sartlar

Zamana bagl1 ¢cozim siirecinde, baslangi¢ sart1 olarak, ¢bzim bdlgesinin giris
simirinda doluluk oram F=1 alinmustur.

5.2. Cidar Bolgesinin M odellenmes

Ansys-Fluent, cidar bolgesini modellemek igin duvar fonksiyonu ve iki
tabakal1 bolge modeli seceneklerini sunmaktadir. Bu calismada, cidara yakin
bdlgenin ¢ozinurligl, yiksek ince ag ile ¢ozumlendigi iki tabakali bolge modeli
olarak ele alinmistir. Kirkgoz ve Ardighoglu, y* degerinin 10'dan kiiglik olmas
halinde hiz dagiliminin, viskoz alt tabakadaki lineer dagilima uydugunu rapor
etmislerdir. Bu kriter gbz 6niinde bulundurularak, duvara yakin elemanlarin, y*<10
olacak sekilde boyutsuz cidar mesafesi degerlerine sahip olmalarina dikkat
edilmistir. Hata! Bagvuru kaynagi bulunamadi.’de RNG tirbilans modeli
kullanlarak elde edilen y* degerlerinin kanal boyunca degisimini gostermektedir.
Sekilden de goruldugii gibi, savak yapisimin mansap yiiziindeki bolge disinda, y'<10
durumu gerceklesmistir.
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Sekil 5.2. RNG tirbiilans modeli ile elde edilen y* degerinin kanal boyunca degisimi

Standart k-e ve RSM yontemlerinde, kat1 simirdaki kaymama kosulu ile
birlikte, hareket ve streklilik denklemlerinin duvara kadar integrasyonu, tatminkar
olmayan sonuglar vermektedir. Bu durumu asabilmek icin, iki tabakal1 bolge modeli
yaklasimi yapilmaktadir. Bu modelde, tirbilans viskozitesinin hesabr igin, yiksek
¢cOzunurlukteki ag yapist ile birlikte, viskoziteden etkilenen bolgelerde (viskoz alt
tabaka ve gecis bolgesi) Jongen (1998) tarafindan sunulan asagidaki denklem
kullanmlmaktadir:

rT‘l,enh =1 M + (1_ I e)m,ZIayer (51)

Burada | ¢ gegis fonksiyonu olup turbulanslt bolge igin 1, viskoz alt tabaka igin O
degerine esit olmaktadir. Ara bdlgede ise asagidaki gibi hesap edilmektedir:

1€ aRe, - Re ou
=— éL+t hé :u (5.2)
24

Burada Re,(=ryvk/m cidar mesafesine dayali Reynolds sayis, Re, =200 ve
=|DRe,|/arctan(0.98) . DRe,, Re, degerinin % 5 ila % 20 si arasinda degisen

degerler amaktadir. (5.1.) ifadesindeki m, yuksek Reynolds bolgeleri igin tanimlanan
turbllans viskozitesidir. Maae iSe Vviskoziteden etkilenen bdlgedeki turbilans
viskozitesini temsil etmekte olup asagidaki gibi hesap edilmektedir (Wolfstein,
1969):

55



5. SAVAK AKIMININ HAD ILE MODELLENMESI Oguz SIMSEK

M 2iaer =1 Gyl vk (5.3)
(4.3)) denklemindeki I, uzunluk olcegi asagidaki sekilde ifade edilmektedir:

I, =yC (- €™/ (5.4)
Burada A= 70 ve C; = kC;*'*.
Viskoziteden etkilenen bolge icin turbllans kinetik enerjisinin kayip oram ¢ ise

asagidaki gibi belirlenmektedir:

k3/2

e I (5.5)
(5.5.) ifadesinde yer alan |, uzunluk skalas;
1. =yC,(1- e™/*) (5.6.)

seklinde hesap edilmektedir ( Chen ve Patel, 1988). Burada A, = 2C, (Fluent 12.0).

5.3. Sonlu Hacimler Hesap Ag1

Su-yapr etkilesiminin sz konusu oldugu akim problemlerinin sayisal
hesaplamalarinda, hesaplama agi1 yapisinin  sonuglar Uzerinde etkili oldugu
bilinmektedir. Bu ¢alismadaki probleme uygun hesaplama agimin olusturulmasinda,
edinilen deneyimlere bagli olarak, kati1 sinirlara dogru ve yizey profilinde hizl
degisimin sbz konusu oldugu bdlgelerde hesap ag1 siklastirilmistir. Akimin karakteri
g6z onlne alinarak, Sekil 5.1.'de verilen sayisal ¢ozim bolgesi, Hata! Basvuru
kaynagi bulunamada..’de goruldigi gibi, 14 alt bdlgeye ayrilmis, her bir alt bolgede
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eleman sayisi yaklasik olarak %50 ve %100 artirilmak suretiyle, lineer dortgen

elemanlardan olusan 3 farkl: yogunluga sahip ag yapisi elde edilmistir (Cizelge5.1.).

| X X Xl XI! - -I---I)$IIII = Z(IV
ey NI IV V e Vi 5 :
I vilIE

Sekil 5.3. Sayisal modelin hesaplama aginda kullanilan alt blgeler

izelge 5.1. Uc farklh yogunluktaki aglar icin bolgelerdeki eleman sayilar:

Bolge | Ag-1 | Ag2 | Ag-3 | Bolge | Ag-1l | Ag2 | Ag3
I 40x50 | 60x75 | 80x100 | VIII 50x100 | 75x150 | 100x200
[ 40x40 | 60x60 | 80x80 | IX 10x50 | 15x75 | 20x100
[, 1v 25x40 | 40x60 | 50x80 | X,XI 10x25 | 15x40 | 20x50
V VI 25x40 | 40x60 | 50x80 | XII, X111 | 10x25 | 15x40 | 20x50
VI 40x40 | 60x60 | 80x80 | X1V 10x100 | 15x150 | 20x200

5.4. GCI (Ag yakinsama indeks) Uygulamas

Cizelge 5.1., sayisal hesaplamalarda kullanilan ¢ farkli ag yapist igin eleman
sayilarim gostermektedir. Sayisal ¢ozum alamndaki ag yapisinin yeterli siklikta olup
olmadigi, bir baska ifadeyle ag yapisindan bagimsizlastirilmis sayisal ¢ozimler elde
etmek amaciyla ele alinan Gcli ag sistemi itibariyle yapilan siklastirmanin
uygunlugu, 3. bolimde anlatilan GCI (Grid convergence index - Ag yakinsama
indeks) yontemiyle test edilmistir

COzim bolgesi icerisinde ag yogunlugunun uygun olup olmadig1 farkli
kesitlerde bulunan hiz profilleri tzerinde uygulanmistir. Savak membasinda 0.6 m’
de, savak Uzerinde 1.06 m' de ve savak mansabinda ise 1.70 m' de bulunan hiz
profilleri tzerinde RNG turbulans modeli ile Cizelge 5.1. de verilen hesap aglari igin
¢ozum yapilmistir. Ug kesit icin elde edilmis GCI sonuglari, Cizelge 5.2., Cizelge
5.3. ve Cizelge 5.4." de verilmistir.

57



5. SAVAK AKIMININ HAD iLE MODELLENMESI Oguz SIMSEK
Cizelge 5.2. x=0.60 mi¢in GCI uygulamasi

h(mm) |2 4 10 20 40 60 100 120
d;(m) [0.0010 [0.0012 |0.0020 |0.0033 |0.0053 |0.0076 |0.0033 |0.0010
d,(m) |0.0007 |0.0008 |0.0013 |0.0021 |0.0037 |0.0051 |0.0023 |0.0007
ds(m) |0.0005 |0.0006 |0.0010 |0.0016 |0.0027 |0.0039 |0.0017 |0.0005
u; (m/s) [0.1685 |0.1880 |0.1988 |0.2038 |0.2086 |0.2116 |0.2150 |0.2156
u (m/s) 10.1685 |0.1873 |0.1984 |0.2037 |0.2087 |0.2117 |0.2151 |0.2156
uz (m/s) [0.1693 |0.1875 |0.1984 |0.2036 |0.2086 |0.2117 |0.2152 |0.2157
€12 0.0000 |0.0007 |0.0004 |0.0002 |0.0001 |0.0001 |0.0001 |0.0001
€3 0.0009 |0.0002 |0.0000 |0.0001 |0.0001 |0.0000 |0.0001 |0.0001
li 1.4953 |1.5016 |1.5142 |1.5269 |1.4222 |1.4891 |1.4103 |1.4953
ros 1.3313 |1.3340 |1.3394 |1.3449 |1.3782 |1.3286 |1.3726 |1.3313
p -16.893|3.3174 |6.3193 |1.1474 |-0.4391|5.6836 |1.3988 |-1.9415
GClgine |-0.0065 |0.0007 |0.0000 |-0.0004 |-0.0003 |-0.0001 |-0.0004 |-0.0004
Cizelge 5.3. x=1.06 mi¢in GCI uygulamasi

h(mm) 125 |2 4.5 7 12 22 32 37

di (m) 0.0004 | 0.0005 |0.0006 |0.0007 |0.0010 |0.0016 |0.0021 |0.0023
dz (M) 0.0003 | 0.0003 | 0.0004 |0.0005 |0.0007 |0.0010 |0.0014 |0.0016
ds (m) 0.0002 |0.0002 |0.0003 |0.0004 |0.0005 |0.0008 |0.0011 |0.0012
u; (m/s) |0.5921 |0.6332 |0.6668 | 0.6709 | 0.6721 | 0.6695 |0.6650 |0.6624
u; (m/s) |0.5930 |0.6335 |0.6667 |0.6709 | 0.6721 |0.6699 |0.6658 |0.6635
us (m/s) |0.5948 |0.6361 |0.6673 | 0.6710 | 0.6719 | 0.6697 |0.6657 |0.6635
e 0.0009 |0.0003 | 0.0000 |0.0000 |0.0001 |0.0004 |0.0009 |0.0012
€3 0.0018 |0.0027 |0.0005 |0.0001 |0.0002 |0.0002 |0.0002 |0.0000
I 1.4432 11.4970 |1.5279 [1.4609 |1.5078 |1.5139 |1.4910 |1.4971
ros 1.3453 |1.3337 |1.3467 |1.3380 |1.3369 |1.3387 |1.3281 |1.3285
p -2.6649|-7.7406 | -9.5344 | -3.8736 | -3.9969 | 0.7373 | 3.6360 |9.0635
GClgire |0.0070 |-0.0059-0.0011 |-0.0001 | -0.0004 | -0.0004 | -0.0003 | -0.0001
Cizelge 5.4. x=1.70 migin GCI uygulamasi

h(mm) [1 3 5 7 9 13 15 17.5
d;(m) [0.0003 |0.0004 |0.0006 |0.0008 |0.0009 |0.0012 |0.0014 |0.0015
d,(m) [0.0002 |0.0003 |0.0004 |0.0005 |0.0006 |0.0008 [0.0009 |0.0010
ds(m) [0.0001 |0.0002 |0.0003 |0.0004 |0.0005 |0.0006 |0.0007 |0.0008
u; (m/s) |1.0171 |1.2078 |1.3026 |1.3605 |1.3933 |1.4193 |1.4233 |1.4246
uz (m/s) |1.0153 |1.2108 |1.3062 |1.3632 |1.3957 |1.4226 |1.4274 |1.4295
us(m/s) |1.0131 |1.2171 |1.3104 |1.3656 |1.3974 |1.4239 |1.4286 |1.4307
€12 1.0170 |1.2075 [1.3023 [1.3601 |1.3929 |1.4187 |1.4226 |1.4238
€3 0.0019 |0.0030 |0.0037 |0.0028 |0.0024 |0.0033 |0.0041 |0.0049
r 1.4559 |1.5350 [1.5382 [1.5026 |1.5041 |1.5072 |1.5087 |1.4723
ros 1.3138 |1.2993 |1.3006 |1.3345 |1.2863 |1.3365 |1.3371 |1.3211
p -1.4180 | -3.8196 |-1.8179 |-0.5693 |-0.2176 | 1.6138 |2.5070 |3.0021
GClgire [-0.0082 |-0.0066 | -0.0039 | -0.0022 | -0.0014 | -0.0012 |-0.0010 |-0.0011
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Ag 3 kullanilarak yapilan analizler sonucunda hesaplanan akim hizlarindaki
hatalarin kabul edilebilir degerlere yakinsadigi gorilmus (%2 den kiiglk) ve bdylece,
hesaplama hassasiyetinin ag yogunlugundan bagimsizlastigi kanaatine varilmstir.
Hesap aginin siki olmasi dogrudan sayisal modellemede kullanilan zaman adimin:
etkileyen bir faktordur. Ag yapisinin siki olmast nedeniyle zaman adimi RSM harig
tum turbilans modellerinde At=0.0001s, RSM tirbilans modelinde At=0.00005s
olarak segilmistir. Zaman adimi ve ag yapisina bagli olarak Quad Core 2.6 GHZ
islemcili 4GB RAM o0zelliklerine sahip bir bilgisayar ile 20 s ¢gozim elde etmek igin
gegen siire, yaklasik 7 giin olmaktadir. Ozellikle RSM tiirbiilans modelinde bu siire
15 guine kadar ¢ikabilmektedir.
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6. BULGULAR VE TARTISMALAR
6.1 Hesaplanan Hiz Profilleri

Tirbilans modellerinin dogrulanmasi baglaminda, deneysel ve sayisal hesap
bulgularimin farkli modeller igin niceliksel olarak karsilastiriimasinda Ortalama
Karesel Hata (OKH) degeri 6lctit olarak kullanilmstar:

18,
OKH :Na U, -1,)

n=1

(6.1)

Burada, T ve U, sirasiyla deneysel ve hesaplanan ortalama hiz degerleri, N

kesit derinligindeki noktasal 6lgiim sayisidir. Cizelge 6.1. ve Cizelge 6.2., iki farkli
debi durumu igin, kanalin farkli kesitlerinde bu calismada kullamlan tirbilans
modelleri icin hesaplanan OKH degerlerini gostermektedir. Cizelgelerde gorilen
parantez icindeki rakamlar, OKH degerleri baz alinarak, ilgili tirbllans modeli
bulgularimin, deneysel bulgulara olan yakinlig ile ilgili sralamay: gostermektedir.

Cizelge 6.1'den de goruldugi gibi, kicik debi kosullarinda, RNG turbilans
modeli, savak yapisinin membasinda ve mansabinda yani kritik-alt: ve kritik-Ustl
Uniform akim bolgelerinde, diger modellerden daha iyi sonuclar vermektedir. Savak
tizerindeki kesitlerde (x=0.8, 0.90, 0.95, 1.00, 1.05, 1.06, 1.10, 1.15, 1.20 ve 1.30 m)
ise, yani, akimda hizl1 sekil degistirmelerin ve egriselligin baskin oldugu yerlerde,
herhangi bir modelin belirgin sekilde Gstinlik sagladigi gorialmemektedir. Bununla
birlikte SKE ve RNG turbilans modellerinden elde edilen sayisal bulgularin,
deneysel 6lcimlere daha fazla yaklastigini soylemek mimkunddir.

BuyUk debi kosullarinda, savak membasinda yani kritik-alt1 Gniform akim
bolgesinde, RSM turbilans modelinin  bariz  Ustinligl, Cizelge 6.2'de de
gorilmektedir. Ancak savak yapisi Uzerinde ve kritik-tstl akim bolgesinde, herhangi
bir turbulans modelinin  belirgin  bir Gstinligiinden s6z etmek  mumkin
gorinmemektedir. Bununla birlikte, ortalama karesel hatalarimin ortalamalart goz
Ondne alindiginda, savak yapisi Uzerinde SKE turbilans modeli daha iyi gorinirken;
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savak mansabinda yani kritik-tstt Gniform akim bolgesinde RNG turbilans modeli
dahaiyi sonuclar vermektedir. Bu calismada kullamlan ttrbilans modellerinin basari
durumlari, Cizelge 6.3'te verilen ortalama OKH degerlerinden de gordlebilir. Bu
degerlerden, her iki debi kosullarinda, kritik-alt1 rejimden kritik-tstU rejime gegisin
s0z konusu oldugu savak civarit karmasik akim bolgesini de igine alan akim
bolgesinin ttimd icin, RNG, RKE, SST, SKE ve RSM, seklinde bir basar1 siralamasi
yapmak mumkunddr. Diger taraftan, literatirde egri yoringeli akimlarda daha iyi
sonu¢ verdigi belirtilen RSM tlrbtlans modelinin bu calismada kullamlan akim
kosullarinda beklenen dlctide basarili olmamasina karsin, SKE'den tiretilmis RNG
ve RKE modellerinin genel olarak daha basarili oldugu gorilmektedir.

Sekil 6.1. ve Sekil 6.2 ’de, kanalin farkli kesitlerinde olglilen yatay hiz
profilleri ile bu élcimlere OKH degeri bakimindan en yakin iki farkli turbllans
modelinden hesaplanan hiz profilleri verilmistir. Sekilde gorildugt gibi, her bir
kesitte birinci sirada yer alan tirbilans modeli bulgulari, kanalin baslangi¢ kesitleri
haric, deneylerle gayet iyi uyum saglamaktadir. Kanal baslangicinda soz konusu olan
bu farkliliklarin, sayisal hesaplamalarda giris simir sarti olarak deneyden alinan
hizlarin ancak bir fonksiyon yarcimiyla girilebilmesi yani noktasal olarak hiz
degerlerinin girilememesinden kaynaklanabilecegi tahmin edilmektedir. Buna ilave
olarak, hazneden kanala giriste, kanal tabaninda yer alan dizensizliklerin, sayisal ve
deneysel hiz profilleri arasinda farkliliklarin  olusmasina neden oldugu da
distnul mektedir.
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Cizelge 6.1. Durum 1 igin farkl: tirbllans modellerine gbre OKH degerleri

Kesit yerleri,x (m) | SKE RNG RKE SST RSM
0,3 | 0.00120® | 0.00110% | 0.00121® | 0.00111?® | 0.00130"
0,45 | 0.00079° | 0.00064 | 0.00082“ | 0.00068® | 0.00110®
Membada| 06 | 0.00094® | 0.00079® | 0.00097“ | 0.00086® | 0.0013®
0,65 | 0.00088% | 0.00071% | 0.00090“ | 0.00079® | 0.0013"
0,7 | 0.00033% | 0.00042? | 0.00180® | 0.00130“ | 0.00100%
Ort. OKH| 3% | 0.00083? | 0.00073% | 0.00114“ | 0.00095® | 0.00120
0,8 | 0.00015? | 0.00014® | 0.00024“ | 0.00019® | 0.00067®
0,9 | 0.00022 | 0.00020% | 0.00023® | 0.00024“ | 0.00041¢
0,95 | 0.00007® | 0.00006 | 0.00009“ | 0.00008® | 0.00052®
1,00 | 0.00024% | 0.00037® | 0.00044“ | 0.00027*? | 0.00190%
1,05 | 0.00035% | 0.00046® | 0.00066" | 0.00044? | 0.00190%
Savak
1.06(hy;) | 0.00143® | 0.00160® | 0.00164“ | 0.00145) | 0.00270
1,10 | 0.00039® | 0.00028@ | 0.00026' | 0.00030“ | 0.00053%
1,15 | 0.00180® | 0.00150” | 0.00151® | 0.00130 | 0.00152%
1,20 | 0.00017 | 0.00020? | 0.00023 | 0.00066 | 0.00170%
1,30 | 0.00370% | 0.00375® | 0.00373? | 0.00600" | 0.00390“
Ort. OKH| %  10,00101® |0.00086® |0.00090® |0.00108“ |0.00157
1,40 | 0.00140® | 0.00099® | 0.00089" | 0.00430" | 0.00320%
1,45 | 0.00110“ |0.000913®|0.000863™ | 0.00320" | 0.000941®
1,50 | 0.00092® | 0.00029® | 0.00091% | 0.00200 | 0.00190%
Mansapda| 1,70 | 0.00170“ | 0.00059Y | 0.00088® | 0.00120% | 0.00260®
1,90 | 0.00320“ | 0.00250® | 0.00240® | 0.00200 | 0.00560®
2,10 | 0.00370“ | 0.00046 | 0.00077? | 0.00120%® | 0.01800®
2,20 | 0.00450° | 0.00110% | 0.00140%? | 0.00240“ | 0.00230®
Ort. OKH| 3% | 0.00236" | 0.00098" | 0.00116@ | 0.00233® | 0.00493"
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Osuz SIMSEK

Cizelge 6.2. Durum 2 igin farkl: tarbllans modellerine gbre OKH degerleri

K esit yerleri,x (m) | SKE RNG RKE SST RSM
0,3 | 0.00200“ | 0.00191® | 0.00190) | 0.00201® | 0.00110%
0,45 | 0.00173? | 0.00161 | 0.00160® | 0.00170® | 0.00171¢
Membada| 06 | 0.00181® | 0.00171® | 0.00170 | 0.00180% | 0.00120
0,65 | 0.00460° | 0.00440 | 0.00470“ | 0.00471® | 0.00270"
0,7 | 0.00490® | 0.00650® | 0.00830 | 0.00670“ | 0.00220%"
Ort.OKH| 3% | 0.00301® | 0.00323® | 0.00364"® | 0.00338“ | 0.00178"
0,8 | 0.00760® | 0.00761® | 0.00764“ | 0.00767* | 0.00740Y
0,9 | 0.01281® | 0.01283“ | 0.01284® | 0.0126® | 0.01210Y
0,95 | 0.00610° | 0.00619® | 0.00612“ | 0.00580® | 0.00560%
1,00 | 0.00160® | 0.00171“ | 0.00170® | 0.00190® | 0.00150V
1,05 | 0.00230% | 0.00243® | 0.00248“ | 0.00231 | 0.00390®
Savak
1.06(hy;) | 0.00240% | 0.00260® | 0.00250® | 0.00270” | 0.00350%)
1,10 | 0.00286% | 0.00285@ | 0.00280'Y | 0.00290“ | 0.00420%
1,15 | 0.00220® | 0.00230® | 0.00223“ | 0.00155% | 0.00160%?
1,20 | 0.00530% | 0.00534® | 0.00540® | 0.00720 | 0.00650%
1,30 | 0.00390% | 0.00393® | 0.00391 | 0.00640" | 0.00396"
Ort. OKH | 3 | 0.00471® | 0.00478® | 0.00476 | 0.00510%® | 0.00503"
1,40 | 0.00610“ | 0.00570® | 0.00572® | 0.00230% | 0.00530®
1,45 | 0.00900“ | 0.00850® | 0.00920® | 0.00540 | 0.00760%?
1,50 | 0.00440® | 0.00350® | 0.00360 | 0.00320? | 0.00090%
Mansapda| 1,70 | 0.00990® | 0.00710® | 0.00713“ | 0.00520® | 0.00480%
1,90 | 0.00218® | 0.00250“ | 0.00220° | 0.00213 | 0.00920®
2,10 | 0.00370% | 0.00460® | 0.00450? | 0.00560“ | 0.01270"
2,20 | 0.00632* | 0.00330 | 0.00334®@ | 0.00360® | 0.00810"
Ort.OKH| % | 0.00594“ | 0.00491® | 0.00510® | 0.00495® | 0.00694®)




6.BULGULAR VE TARTISMALAR Oguz SIMSEK
Cizelge 6.3. Tum kanal boyunca turbilans modellerinin basar: sirasi
Durum Kest SKE RNG RKE SST RSM
Memba 2 1 4 3 5
Durum 1 Savak 3 1 2 4 5
Mansap 4 1 2 3 5
Memba 2 3 5 4 1
Durum 2 Savak 1 3 2 5 4
Mansap 4 1 2 3 5
Durum1 | o it 4 1 2 3 S
Durum 2 4 1 2 3 S

65



6.BULGULAR VE TARTISMALAR Oguz SIMSEK

140 140
(a) x=0.30 m (b) x=0.45m
- o - o]
120 { © Deney 1201 & Deney
—— RNG o o
— RNG
106 4 ceeens SST o 106 4 ¢
......... §8T
o o
— 80 - o RO 4 o]
E H
E o = =)
. 60 - o = 80 - o
o O
40 A = 40 o
*] s}
> §
20 A 20
o] Q
80 aoo
0 ; . 0 S
0 0.1 0.2 0.3 0 0.1 0.2 0.3
u (m/s) u (m/s)
140 140
() x=0.60 m (d) x=0.65m
1201 o Deney o 120 { © Deney °
RNG ) — RNG o
100 - o 100 A covernann SST [+
......... SST :
L] o
- 80 A o] — 80 - o
E =
£ o =] ©
S v’
- 60 o - 60 - o]
O
40 o 40
20 A 20
o
0 ool 0
0 0.1 2 0.3 0 0.1 0.2 0.3
u (m/s) u (m/s)

Sekil 6.11 Durum 1 igin kanalin farkli kesitlerinde deneysel ve hesaplanan hiz

profilleri
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Sekil 6.12. Durum 2 igin kanalin farkli kesitlerinde deneysel ve hesaplanan hiz
profilleri
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6.BULGULAR VE TARTISMALAR Oguz SIMSEK

6.2. Hesaplanan Akim Cizgileri

Sekil 6.3. ve Sekil 6.4'te, sirasiyla Durum 1 ve Durum 2 igin, egrisel genis
baslikli savak akimmin  farkli  tOrbllans modelleriyle yapilan  sayisal
hesaplamalarindan elde edilen akim cizgileri gorilmektedir. Bu ¢alismada kullanilan
turbllans modellerinden elde edilen akim cizgileri sekil itibariyle birbirlerine
benzemektedirler. Savak yapisinin hemen 6n ve arkasinda sinir tabakasi ayrilmasi
tum modeller tarafindan yakalanmakla birlikte, ¢ok kigik boyutlarda oldugu igin
sekillerde gorilememektedir. Akim ¢izgileri, hizimin distk oldugu kritik-alt: bolgede
seyrek iken, rolatif olarak hizin daha biyik oldugu kritik-tstti bdlgede daha sik bir
gorunime burdnmistir. Akim gizgileri topolojisinden, savak yapisinin hemen 6ni
itibari ile iki boyutlu bir akimin sbz konusu oldugu ve bunun savak yapisi bitimine
kadar devam ettigi de gorulebilmektedir.
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(e) RSM
Sekil 6.13. Durum 1 igin farkl: tirbtlans modelleri ile hesaplanan akim gizgileri
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(e) SST
Sekil 6.14.Durum 2 icin farkl: tirbilans modelleri ile hesaplanan akim cizgileri

6.3. Deneysdl ve Hesaplanan Su Yz Profilleri
Bu caligmadaki sayisal hesaplamalarda, su yuzi profilinin belirlenmesinde

Akiskan Hacimleri (VOF) yontemi kullanilmistir. Cizelge 6.4.’te, bu calismada
kullanilan turbilans modelleriyle hesaplanan su yuzu profilleri icin OKH degerleri
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verilmistir. Tablodaki degerlere gore, su yuzu profilinin sayisal hesaplamalarinda
kullanilan tarbulans modelleri icin elde edilen basar1 siralamasi, akim hizlarimn
hesaplanmasindaki basar1 siralamasi ile benzerlik gostermektedir. Sekil 6.5.’de ve
Sekil 6.6."da, sirastyla Durum 1 ve Durum 2 icin, en iyi U¢ modelden bulunan
profillerin deney ile karsilastiriimas: verilmistir. Durum 1 icin basar1 siralamasi
RNG, RKE, SKE iken Durum 2 icin ise bu siralama RNG, SKE, SST seklindedir.
Her iki akim kosulunda da RNG tirbilans modeli en iyi model olarak gozikmekle
birlikte, OKH degerleri incelendiginde aralarindaki farklarin ¢ok kigik olmasi
nedeniyle, tim tdrbilans modellerinin su yizi profili hesaplamalarinda basarili

oldugu sdylenebilir.

Cizelge 6.4. Farkli turbilans modelleriyle hesaplanan su yuza profili icin OKH

degerleri
Turbilans | g p RNG RKE SST RSM
modeli
Durum1 | 5-10x10° | 4.88x10° | 4.98x10° |[6.73x10° | 1.7x10
Durum?2 | 545x10° |[524x10° [557x10° |5.48x10° | 6.04x10°
0.2
EOI e e 4 _M_Q_LQ%\ —BENG = Deney
0 /’—\ .
g 05 t m L3 2
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IR e e e e = o ooy, RKFE o Deney
0 h*ao 4?-- B et -] @ -y -3 < ol
g 05 t m L3 2
0.2
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Sekil 6.15. Durum 1 igin deneysel ve hesaplanan su yuzi profilleri
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Sekil 6.16. Durum 2 igin deneysel ve hesaplanan su yuzi profilleri

6.4. Deneysel Hiz Profilleri

Sekil 6.7. ve Sekil 6.8.de, sirastyla Durum 1 ve Durum 2 igin, Lazer Doppler
Anemometre ile elde edilen kanal boyunca farkli kesitlerdeki yatay hiz bileseninin
derinlik boyunca degisimi ile farkli derinliklerdeki anlik hiz degerlerinin zamana
bagl1 degisimleri sunulmustur. Bu ¢alismada, anlik hiz degerlerinin kayit sliresi, daha
once de ifade edildigi gibi, 60 s olarak secilmistir. Bu sekillerden, asagida maddeler
halinde sunulan sonuglar ¢ikarilmistir:

Anlik hizlarin zamana bagli degisimlerindeki genliklerin ytksek
olmasi(hiz sapinglarinin biyuk olmasi) turbilans siddetinin fazla, kicuk olmasi
(iz sapinglarimin kiglk olmasi) ise tlrbilans siddetinin disik olmasini
gostermektedir.

Savak yapisimin memba ve mansabindaki anlik hiz degisimlerinin
zamana bagli degisimlerindeki genliklerin karsilastirilmasindan, akim hizinin
yuksek oldugu kritik-Ustl bolgede turbilans siddetinin daha yiksek ve viskoz alt
tabakanin daha ince oldugunu; mansap bolgesinde ise bunun tersi durumun sz
konusu oldugunu gostermektedir.

Herhangi bir kesit icin anlik hizlarin derinlik boyunca degisimleri goz
Oonine alindiginda, kat1 simra yakin bolgedeki bir noktada tdrbilans siddeti
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maksimum bir degere ulasmakta ve su yuzine dogru ilerledikce turbllans
siddetinin azalmakta oldugu gorulebilmektedir.

Yine kat1 simra yakin bolgelerde, anlik hizlarin zamana bagli
degisimlerinden, gecis bdlgesinde kararsiz bir durumun yani hem tdrbilans hem
de molekiler viskozitenin etkili oldugu sdylenebilir. Su yuzine dogru ilerledikge
turbllansl1 ve kararli bir bolgeye dogru ilerlenmis olmaktadir. Ortalama cizgisi
Uzerindeki salinimsiz  (hiz  sapinglarinin - gordlmedigi) bolgeler, molekiler
viskozitenin hakim oldugu, yani akimin laminer karakterde oldugu bolgelerdir.

Anlik  hiz  dagilmlarimin zamana  baglhh  degisimlerinin
karsilastirilmasindan, Durum 2'deki tiUrbulans siddetleri Durum 1 dekilere
kiyasla daha buyuktir. Bu, kritik-alt1 rejimden kritik-Ustl rejime gegisin siz
konusu oldugu savak bolgesini de igine alan akim bdlgesinin timai icin gegerlidir.

83



6.BULGULAR VE TARTISMALAR Oguz SIMSEK

140

(a) x=0.30 m Zj
120 - /YG; | , , ‘ 7100 mm

0 19 20 30 4 50 60

160 - 0.3
0.2 %N‘W
- 80 A /, 0,1 + T r T — 'Sﬁmm‘
é ] 10 20 30 40 50 60
e
=, 60 -

G
v
O
9]
G
O 0,3
0.2 %WW
40 - o -7 0.1 : : : —=3C¢mm
/ 0 10 20 30 40 50 60
O
O

20 03
= > 02 WQ‘W-WF

Cr 7"
O ‘ ‘ | , },*z:'l w‘

0 e A) 01 +
T ' 0 10 20 30 40 50 60
¢ 0,1 0,2 0.3
u {(m/s)
140 0
(b) x=0.60 m W
120 - o /IM | i i i _ y=110 mm
G/ o 10 20 30 40 50 60
100 - O 03
O ga,z]ﬁh"w'lq“f'!”"‘F}""f’d%
- 80 - e 014 : : . | y=80mm
£ 9 19 20 30 40 50 &0
= O
= 60 - 0 0,3 ;
O 0,2 19
40 - 17 o —_—y=40mm
o 10 20 30 40 50 &0
S
20 - S 3
el R e e o
. o b Tlomm
~ ! 0 10 20 30 40 50 &0
L] 0.1 0.2 0.3

Sekil 6.17. Durum 1 igin kanalin farkli kesitlerindeki deneysel hiz profilleri ile anlik
hiz degerlerinin zamansal degisimleri



6.BULGULAR VE TARTISMALAR Oguz SIMSEK

100

0,4
00 ©)x=080m o 03
20” y=80 mm

Q 10 20 30 40 50 60

0.4
ZGJWMM
=50 m

0,2 4 . . . , o

y (mm)
2 2
00 o \) OX
s
£
2
3

0,4
40 -
0,3 h ) ”"“, PP aqhn ,,"h, oo
30 - A7 0,2 : . . —+=20 mm
9 10 20 30 40 50 &0
20 -
0.4
10 - ——9&,3%@4‘“* L” J‘ . ’ !!‘I;
G,Z T T T T T 3"": —
0 ! 0 10 20 30 40 30 60
0 0,2 4.4
u {(m/s)
80 0.6
(d) x=0.90 m ol ot
70 - ’ =
02 4 - - r o m
0 10 20 30 40 a0 &
60 - d

0.4
50 - 0,3
/; ! =40 mm

P 0,2 4

= 0 10 20 30 4 50 60
240 -

et

~ 0,4

30 A

0.3 -

O
O
o 02 . . ; : . ‘
/ o v 20 30 0 S8 60
0,

B
Qo

0,4 -
> 0,3 -
1=3
o 0.2 . . . | p3mm
' ' ! 0 10 20 30 40 50 &0
0 0,1 0,2 0,3 L4
u (m/s)

Sekil 6.7. (Devam)

85



6.BULGULAR VE TARTISMALAR

Osuz SIMSEK

60 0.6
(e) x=1.00 m o ”I f
50 - S P M L il £ (Y
0 10 20 30 40 50 60
0.6
40 - O
0,5
E‘ O / G,‘i ¥ T T L T ,=:25 m
) 10 20 30 40 50 &0
530 - C
=N 0,6
0,3
20 - C ’ i
9 ;’ 0.4 4 r . r — b mm
8 ) 10 20 30 40 50 60
O
10 - 0.6
g_mao,s]p,,,”,” ot
0 [a NV £ 0,4 u T T T T T m Y
o 0'2 3'4 0.6 0 10 20 30 40 50 &0
u {(m/s)
45
0,7
(Hx=1.06m _ o
40 1 /’ (;5 =30 mm
i | . * - - @
/ 07
30
06 =18 thm
3=
£ 25 o /‘ 0,5 - - - - - -
£ 0 10 20 30 40 5 60
20 cc)/ 0.7 -
0,6 -
15 - ’g / . : 1 y=j mm
o e ol S S S S S S
0,7 -
5 4 06 et A A
o & E y=2 mm
{ oy [LR<3 T T ]
0 0‘5 g 16 20 30 40 50 &0
] (m/s)j

Sekil 6.7. (Devam)

86



6.BULGULAR VE TARTISMALAR Oguz SIMSEK

@I o | e
1 /0:6 | . ‘ —y2Smm

y (mm)
S
wom\w \0 O

-

5]
o
b=
B
3
%
&
&

0 0.5 1

u (m/s)
25 13
(h) x=1.30 m m]I NPT PO
11 + . . ’ — 3216 mm
20 - 0 10 20 30 40 50 60

15 -

y (mm)

11

1.3 1
___? 1.2 7_?'4&.4/ JtV‘\[h

11

O
7
O
i/ bl
1.3 -
10 4
O 1.2 1
O .
O T T Y
v
[®]
O
O@___O,/""
1 1

.5
u {m/s)

Sekil 6.7. (Devam)

87



6.BULGULAR VE TARTISMALAR Oguz SIMSEK

20

. 1,3
()x=1.45m ©
18 - 1,4
=12 mm
3 4 " . . r . .
16 - / 0 10 20 30 4 S0 6
14 - 1,3
1,4
12 - ¥=6 mm
1,3 + . .
] 10 20 30 40 s0 60

y (mm)
AN

4 -
1.6
2 O > 1.2
0 o o 0.8 , y=3 min
0 0.5 1 L5 8 w20 3/ 4 50 &0
u {m/s)
25 - L6
(j) x=1.50 m g
’1 y=10 mm
20 A T w20 38 40 S0 0
1,6
1,2
15 - 'y=5 mm
o 0.8 - r - ;
£ o W 0 30 40 S0 0
E)
=

" u(ms)

Sekil 6.7. (Devam)

88



6.BULGULAR VE TARTISMALAR

Osuz SIMSEK

25

20

y (mm)

!

10 -

25

20

15

y (mm)

10

(k) x=1.70 m
) n ¥
0 0,5 1 1,5
u {m/s)
1) x=1.90 m
| G
e
. 0
O
G‘_._._—-—‘
O
o
- O
L3 -
#"} 111
. 8 Ol } 0,9
0 8,5 1 1.5
i (m/s)

Sekil 6.7. (Devam)

89

ﬂ 1.4

a 10 20 40 S0 60
=12 mm
a 10 20 40 EC 6l

l l l l y:1ﬁmm

o 10 20 40 50 60
0 10 20 40 50 60
a 10 20 40 60



6.BULGULAR VE TARTISMALAR

Osuz SIMSEK

25 16
(m) x=2.10 m »
20 A
_ 15 A
E
£
=
10 A
5 o
] r
0 0.5
w {m/s)
25 16
(n) x=2.20 m .
O 2 12
20 - o
o 1,6
s Gty 1,4
P 12
= O
£ o
= 15
10 - O
Ie) 1,2
(Gt
o) 0.9
O
5 - (§O
O 1 h H t
0 0,5 1 1.5

u {m/s)

Sekil 6.7. (Devam)

90




6.BULGULAR VE TARTISMALAR

Osuz SIMSEK

164

140 -

120 -

100

140

120

100 -

¥y (mm)

(a) x=0.30 m

8
O
O
O
O
O
0.4
/ =ity
0.2
y=25m
o . ‘
o

0.4 1

0.2 -
=120 mm

g T T
o 0 40 60

0.4
0.2
7 ! I ‘ y=60 mm
o 4 T - .
0 26 40 60

g

3

u {m/s)

o
0 0.2 0.4
1 (m/s)
(b) x=0.60 m
Q L
a &1 0.2

Sekil 6.18. Durum 2 i¢in kanalin farkli kesitlerindeki deneysel hiz profilleri ile anlik

hiz degerlerinin zamansal degisimleri
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6.5. Logaritmik Hiz Dagilimi

Sekil 6.9. ve Sekil 6.10.’da sirastyla Durum 1 ve Durum 2 icin egrisel genis
baglikli savak mansabinda, x=1.45, 1.50, 1.70, 1.90, 2.10 ve 2.20 m kesitlerinde
Olcllen akim hizlarinin logaritmik bolgedeki dagilimi gosterilmistir. Gelismekte olan
akim bolges icin oOlcilmis deneysel datalarin, simir tabakasimin tdrbilansli i¢
bdlgesinde, von Karman-Prandtl tarafindan verilen ve duvar kanunu (law of the wall)
olarak bilinen logaritmik hiz dagilim ile uyumlu oldugu goérilmektedir. Bu durum
her iki akim kosulu igin de gegerlidir. uy/n£10 oldugu yani lineer hiz dagiliminin
s0z konusu oldugu bdlgede, LDA ile dlgimler gergeklestirilemediginden bu bolge
icin deneysel datalarin dagilimi sunulamamustir.

25

y =2.44In(x) + 5.5

W,

0 T T
1 10 100 1000
w.y/v

Sekil 6.19. Durum 1 igin logaritmik duvar kanunu dagilimi
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7. SONUCLAR VE ONERILER

Egrisel genis baslikli savak akimini idare eden temel denklemler, SKE, RNG,
RKE, SST ve RSM tirbilans modelleri kullanilarak, sonlu hacimler yontemine
dayali ANSY S-Fluent paket program ile ¢ozilmustir. Serbest su yuzintn profili
akiskan hacimleri (VOF) yontemi ile hesaplanmustir. iki farkli akim kosullar: igin
hesaplanan akim hizlari ve su yizi profilleri, deneysel bulgularla karsilastirilmistir.
Deneysel hiz alan, bir boyutlu Lazer Doppler Anemometresi (LDA) ile 6lcilmstr.

Ortalama OKH degerlerine gore, her iki debi kosullarinda, kritik-alt1 rejimden
kritik-Ustl rejime gegisin sbz konusu oldugu savak civari karmagsik akim bolgesini de
icine alan akim bolgesinin timu icin, sayisal hizlarin deneysel 6lgciimlere yakinligi
baglaminda, RNG, RKE, SST, SKE ve RSM, seklinde bir basar1 siralamasi yapmak
mumkindir. Bu calismada kullanilan tirbilans modellerinden elde edilen akim
cizgileri sekil itibariyle birbirlerine benzemektedirler.

VOF yontemi kullanilarak elde edilen hesaplanan su ylzi profilinin sayisal
hesaplamalarinda kullanilan tirbilans modelleri igin elde edilen basar1 siralamast,
akim hizlarinin hesaplanmasindaki basar1 siralamast ile benzerlik gostermektedir.
Her iki akim kosulunda da RNG tirbilans modeli en iyi model olarak gozikmekle
birlikte, su yuzi profili icin hesaplanmuis OKH degerleri incelendiginde, tim
turbllans modellerinin su yuzi profili hesaplamalarinda basarili oldugu sdylenehbilir.

Sayisal ¢ozum alanindaki ag yapisinin yeterli siklikta olup olmadig, bir baska
ifadeyle ag yapisindan bagimsiz sayisal ¢ozimler elde etmek amaciyla ele alinan
Ucli ag sisteminde yapilan siklastirmamn uygunlugu, GCI (Grid convergence index-
Ag yakinsama indeks) yontemiyle test edilmistir. Sayisal modellemede, kati1 sinir
sirtinmelerinden etkilenen yerlerde ve yiizey profilinde hizli degisimin goruldiugu
bolgelerde ag yapisinda uygulanan siklastirmalarin, sayisal hesap bulgularint olumlu
yonde etkiledigi de gortlmustir

Anlik hizlarin derinlik boyunca degisimleri gbz 6niine alindiginda, turbtilans
siddetinin maksimum degere kat1 sinira yakin bolgedeki bir noktada ulastig1 ve su
yuzine dogru ilerledikce tlrbulans siddetinin azaldigi gorulmastir. Bununla birlikte
kat1 sinira yakin bolgelerde, hem turbllans hem de viskozite etkilerinin goruldugu
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gecis bolgesi sbz konusu iken, su yizine dogru ilerledikge, bunun yerini kararli ve
turbllansl bir akim yapisi almaktadir. Ayricatirbulans siddeti, egrisel genis baslikl
savak yapisimin  membasindan mansabina dogru gidildikge, turbllans siddeti
artmaktadir. Benzer sekilde, akimin debisi arttikca tirbilans siddeti de artmaktadir.
Savak mansabinda gelismekte olan akim kosullar1 icin dlgllen deneysel
datalarin, sinir tabakasinin tirbulansl i¢ bolgesinde, duvar kanunu olarak bilinen

logaritmik hiz dagilimi ile uyumlu oldugu gordlmuistar.
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