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Bu çalışmada, eğrisel geniş başlıklı savak üzerinden geçen akımın hız alanı, 
iki farklı akım koşulları altında, bir boyutlu Lazer Doppler Anemometresi (LDA) 
kullanılarak ölçülmüştür. Deney ile aynı akım koşullarında, temel denklemler 
Standart k-ε, RNG k-ε, Realizable k-ε, SST ve RSM türbülans modelleri 
kullanılarak, sonlu hacimler yöntemine dayalı ANSYS-Fluent paket programı 
yardımıyla çözülmüştür. Su yüzü profilinin hesabı için Akışkan hacimleri yöntemi 
(Volume of Fluid-VOF) yöntemi kullanılmıştır. Sayısal sonuçlar üzerinde seçilen ağ 
yapısının etkisini incelemek için GCI (Grid Convergence Index) yöntemi 
kullanılmıştır. Sayısal hesaplamalardan elde edilen akım hızları ve su yüzü profilleri, 
sayısal sonuçların doğrulanması bağlamında deneysel ölçümlerle karşılaştırılmıştır. 
Sayısal ve deneysel bulguların karşılaştırması, RNG k-ε türbülans modelinin, hız 
alanı ve su yüzünün hesaplamasında, bu çalışmada kullanılan diğer türbülans 
modellerine göre daha başarılı olduğunu göstermiştir. 
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 In this study, the velocity field of the overflow a curvilinear broad crested 
weir is measured using a one-dimensional Laser Doppler Anemometry (LDA) for 
two different flow conditions. Using standard k-ε, RNG k-ε, Realizable k-ε, SST and 
RSM turbulence closure models, the basic equations are solved by ANSYS-Fluent 
package program based on finite volume method for the same experimental 
conditions. The volume of fluid (VOF) method is used to compute the free surface of 
the flow. GCI (Grid Convergence Index) is performed to examine the effect of the 
selected grid structure on the numerical results. The numerical results for the velocity 
field and flow profiles are compared with the experimental results for validation 
purposes. The comparisons of the numerical and experimental results show that the 
numerical simulation using the RNG k–ε turbulence closure model predicts the 
velocity field and free surface profile more accurately compared to those of the other 
turbulence models used in the present study. 
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1. GİRİŞ 

 

Geniş başlıklı savaklar, açık kanallarda veya akarsularda su akımını kontrol 

etmek, su seviyesini düzenlemek ve debi ölçümü amaçlarıyla kullanılan su 

yapılarındandır. Akarsu yatağını yada kanal kesitini kapatacak şekilde tasarlanan 

geniş başlıklı savakların dikdörtgen, üçgen, trapez ve eğrisel kesite sahip tipleri 

mevcuttur.  

Geniş başlıklı bir savak, akım ortamına yerleştirildiğinde, kritik-altı rejimden 

kritik-üstü rejime geçiş süreci ile birlikte, hızlı değişen akım koşullarının oluştuğu 

karmaşık akım yapısı ortaya çıkacaktır. Buna bağlı olarak, özellikle kısa ve 

yuvarlatılmış kret yapısına sahip olan savaklarda, akım çizgilerinin eğriselliğinden 

dolayı geçiş bölgesi civarında, hidrostatik olmayan basınç dağılımları meydana 

gelecektir. Akım ile etkileşime giren bu tür yapıların tasarımını gerçekleştirebilmek 

için akım profilinin, hız ve basınç alanlarının doğru bir şekilde tahmin edilmesinin 

önemi büyüktür. Geniş başlıklı savaklar gibi kontrol yapıları ile etkileşim içinde olan 

akımların analizleri, fiziksel model deneyleri ile gerçekleştirilebilmektedir. 

Laboratuvar ortamında gerçekleştirilen yapı-akım etkileşimi ile ilgili model 

çalışmaları, öngörülen performans ölçütlerinin sağlanıp sağlanmadığı hakkında 

önemli bilgilerin edinilmesine yardımcı olmakla birlikte, ölçek etkilerinden 

kaynaklanan bazı kaçınılmaz hataların sonuçlara yansıdığı da bilinen bir gerçektir. 

Diğer taraftan, suyun hareketini idare eden denklemlerin analitik çözümlerini elde 

etmek, bu denklemlerin viskozite ve türbülans ifadeleri içermesinden dolayı bazı 

basit ve sınırları geometrik olan akım problemleri dışında oldukça zordur. Bununla 

birlikte, bu tür problemlerin teorik analizleri, çeşitli sayısal metotlar kullanılmak 

suretiyle yaklaşık olarak yapılabilmektedir. Hesaplamalı Akışkanlar Dinamiği 

(Computational Fluid Dynamics-CFD) yöntemlerinde kaydedilen gelişmeler, geniş 

başlıklı savak üzerinden geçen akımda olduğu gibi, su-yapı etkileşiminin söz konusu 

olduğu açık kanal akımlarının analizinde önemli kolaylıklar ve hızlı çözümlere 

olanak sağlamaktadır. Bu şekilde, birçok su yapısı tasarımının CFD ile 

gerçekleştirilmesi günümüzde mümkün hale gelmiştir. Buna ilave olarak, sayısal 

modelleme ile akım probleminin çok daha kısa sürede ve ekonomik olarak çözülerek 
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akım hakkında her türlü bilginin elde edilebilir olması, analiz ve tasarım işlemlerinin 

farklı koşullar altında hızlı biçimde tekrarlanmasına ve sonuçlandırılmasına da imkân 

tanımaktadır.  

Bu çalışmada, laboratuvar kanalına yerleştirilmiş eğrisel geniş başlıklı savak 

ile etkileşim halindeki serbest yüzeyli akımın hız alanı, iki farklı debi durumu için, 

Laser Doppler Anemometry (LDA) tekniği ile ölçülmüştür. Sonlu hacimler 

yöntemine dayalı olarak geliştirilen ANSYS-Fluent paket programı yardımıyla akımı 

idare eden temel denklemler, beş farklı türbülans modeli kullanılarak çözülmüştür. 

Su yüzünün teorik olarak belirlenmesinde Akışkan Hacimleri (Volume of Fluid-

VOF) yöntemi kullanılmıştır. Sayısal modellerden elde edilen akım hızları ve su 

yüzü profilleri, deneysel olarak ölçülen hız ve su yüzü profilleri ile karşılaştırılmıştır.  
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2. ÖNCEKİ ÇALIŞMALAR 

 

Eğrisel geniş başlıklı savak üzerinden geçen akımda olduğu gibi, su-yapı 

etkileşimin söz konusu olduğu açık kanal akımların analizi ile ilgili birçok deneysel 

ve teorik çalışma yapılmıştır.  

Boutros ve ark. (1987), tabanı düzgün olmayan bir kanalda serbest akım 

yüzeyini incelemek amacıyla teorik çalışma yapmışlar, Schwarz-Chridtoffel 

transformasyonu ve karışık sınır değer problemi için kullanılan Hilbert çözümünden 

yararlanarak serbest yüzey profillerini hesap etmişlerdir.  

Ramamurthy ve ark. (1987), keskin kenarlı savak üzerinden geçen iki boyutlu 

akımın özelliklerini irdelemek amacıyla deneysel çalışma yapmışlar, krete yakın 

bölgedeki hız ve basınç dağılımlarını incelemişlerdir. Elde ettikleri deneysel 

bulgulardan, Cd debi katsayısının H/P boyutsuz büyüklüğüne bağlı olarak değiştiğini 

göstermişlerdir. Burada H savak membasındaki su derinliği, P savak yüksekliğidir. 

Faltas ve ark. (1989), trapez kesitli geniş başlıklı savak üzerinden geçen 

akımın özelliklerini teorik olarak incelemişlerdir. Elde ettikleri bulguları, farklı 

Froude sayıları ve taban şekilleri için yapılmış deneysel çalışmadan elde edilen 

ölçümlerle karşılaştırmışlar, Froude sayısı ile memba su derinliğinin akım 

karakteristikleri üzerindeki etkilerini araştırmışlardır.  

Hager ve Schwalt (1994), yaptıkları çalışmada, geniş başlıklı savak üzerinden 

geçen akımın özelliklerini deneysel olarak incelemişlerdir. Farklı debilerde 

gerçekleştirdikleri çalışmaların neticesinde, savak üzerindeki akım yapılarının basınç 

ve hız dağılımları açısından birbirlerine benzer özellikler gösterdiğini tespit 

etmişlerdir. 

Aköz (1996), potansiyel akımların analizi ile ilgili teorik ve deneysel çalışma 

yapmıştır. Bu amaçla, laboratuvarda modellediği kapak arkasındaki hız alanını 

muline ile ölçmüş; deneysel ölçümleri sonlu farklar ve sonlu elemanlar 

yöntemlerinden elde ettiği sayısal bulgularla karşılaştırmıştır. 

Wen ve ark. (1997), geometrisi karmaşık olan iki boyutlu düzenli ve 

sıkışmayan serbest yüzeyli akımlar ile ilgili deneysel ve teorik çalışmalar 

gerçekleştirmişlerdir. Karmaşık geometriye sahip akım bölgesi için geliştirdikleri 
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sınır integral yönteminden buldukları sonuçları, deneysel olarak ölçtükleri bulgularla 

karşılaştırarak serbest akım yüzeyinin profilini yaklaşık olarak belirlemeye 

çalışmışlardır. 

Montes (1997), sürtünmesiz akım kabulü ile düzlemsel kapak altından geçen 

akım için sayısal bir çözüm yöntemi geliştirmiş, deneysel ve sayısal daralma 

katsayıları arasındaki farklılıkları incelemiştir. Sayısal su yüzü profili ile akım 

alanının farklı kesitlerinde hesap edilen hız ve basınç dağılımlarının, deneysel 

ölçümlerle büyük ölçüde uyum içinde olduğunu belirtmiştir. 

Chanson ve Montes (1998), laboratuvarda modelledikleri dairesel savak 

üzerinden geçen akım ile ilgili yapmış oldukları deneysel çalışmada, savak yarıçapı 

ve yüksekliği gibi yapısal özellikler ile memba su derinliğinin akım karakteristikleri 

üzerindeki etkilerini araştırmışlardır. Elde ettikleri bulgulardan, savak üzerinden 

geçen akım profilinin büyük ölçüde memba koşullarından etkilendiği sonucuna 

ulaşmışlardır.  

Johnson (1998), farklı savak tipleri için debi katsayılarını belirlemeye yönelik 

deneysel çalışma yapmıştır. Savak yükü ve yapı geometrisine bağlı olarak yapılacak 

savak sınıflandırılmasının daha doğru olacağını rapor etmiştir. Ayrıca, Ht/W 

oranının, yapı üzerinden geçen akımın debisini idare eden önemli parametre 

olduğunu göstermiştir. Burada Ht toplam enerji yüksekliğini, W kret kalınlığını 

temsil etmektedir.  

Roth ve Hager (1999), kapak altından geçen akım ile ilgili yapmış oldukları 

deneysel ve teorik çalışmada, viskozite ve yüzeysel gerilmenin akım karakteristikleri 

üzerindeki etkilerini incelemişlerdir. Kapak üzerinde oluşan basınç dağılımı ile akım 

alanının farklı kesitlerindeki hız dağılımlarını, sürtünmesiz akım koşulları için elde 

etmişler; enerji kayıplarının ihmal edilmesinden dolayı, sayısal daralma 

katsayılarının deneysel değerlerden daha büyük çıktığını belirtmişlerdir. Ayrıca 

kapağın hemen membasında görülen durma noktasındaki köşe çevrintisi oluşumunu 

da irdelemişlerdir. 

Choi ve Kim (2000), yapmış oldukları çalışmada, Ogee profilli savak 

üzerinden geçen akımın debisini, savak üzerindeki hız ve basınç dağılımlarını ve 

buna ilave olarak akım profillerini sonlu elemanlar yöntemi kullanarak sayısal olarak 
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hesap etmişlerdir. Çevrintisiz ve sıkışmayan akım kabulü ile yapmış oldukları 

hesaplamalardan elde ettikleri bulguları, USACE ( U.S Army Corps of Engineers) 

test sonuçları ile karşılaştırmışlar, deneysel ve sayısal bulguların birbirleriyle oldukça 

uyumlu olduklarını gözlemlemişlerdir. 

Assy (2001), savak üzerine yerleştirilen bir kapak vasıtasıyla oluşturulan 

kontrollü ve kontrolsüz savak akımının sayısal analizi için sonlu farklar yöntemine 

dayalı bir çözüm yöntemi sunmuştur. Çevrintisiz akım kabulü ile geliştirmiş olduğu 

sayısal yöntemde, akım alanın tüm hesap noktalarında akım fonksiyonunu hesap 

etmiş ve buna bağlı olarak da hız alanını belirlemiştir. Ayrıca su yüzü profili, debi 

katsayısı ve basınç alanlarını da sayısal olarak elde etmiştir. 

Behr (2001), şüt kanalının sonundaki enerji kırıcı yapının tasarımı için dolu 

savak üzerinden geçen akımın özelliklerini sayısal olarak irdelemiştir. Navier-Stokes 

denklemlerini, sonlu elemanlar yöntemine dayalı bir CFD yazılımı kullanarak 

çözmüş, su yüzü profilini ve hız alanını teorik olarak belirlemiştir. 

 Chen ve ark. (2002), basamaklı dolu savak üzerinden geçen akım profilini 

sayısal olarak modellemişler ve elde ettikleri bulguları deneysel ölçümlerle 

karşılaştırmışlardır. Akımı idare eden temel denklemler standart k-ε türbülans modeli 

kullanılarak çözülmüş, su yüzünün teorik olarak belirlenmesinde VOF yöntemi 

kullanılmıştır. Düşüm bölgesinde görülen çok az farklılıkların dışında deneysel ve 

sayısal akım profillerinin oldukça uyumlu olduğu rapor edilmiştir. 

 Sarker ve Rhodes (2003), laboratuvar kanalına yerleştirilmiş dikdörtgen 

kesitli geniş başlıklı bir savak ile etkileşim halindeki serbest yüzeyli akımın 

özelliklerini deneysel ve teorik olarak irdelemişlerdir. Bir CFD yazılımı olan, sonlu 

hacimler yöntemine dayalı Fluent paket programı ile akımı idare eden temel 

denklemler sayısal olarak çözülmüştür. Türbülans viskozitesinin hesabında standart 

k-ε türbülans kapama modeli kullanılmıştır. Sayısal su yüzü profilleri deneysel 

bulgular ile karşılaştırılmış ve birbirleriyle uyumlu olduğu görülmüştür. 

 Ghodsian (2003), yan kapak akımlarının hidrolik karakteristiklerini 

belirlemek amacıyla deneysel çalışma yapmıştır. Enerji yüksekliğinin yan kapak 

boyunca sabit kaldığı kabulüyle, yan kapaklar için debi katsayısının, Froude sayısı ve 

memba derinliğinin kapak açıklığına oranı ile olan ilişkisini tespit etmeye çalışmıştır. 
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 Ashgriz ve ark. (2004), açık kanal içine yerleştirilen yarım silindirik bir yapı 

üzerinden geçen akımı sayısal olarak modellemişler; temel denklemlerin sayısal 

çözümlerini, sonlu elemanlar yöntemine dayalı ANSYS programını kullanarak elde 

etmişlerdir. Su yüzü profillerinin hesabı için VOF metodunu kullanmışlardır. Akım 

alanındaki teorik basınç ve hız dağılımlarını elde ederek grafiksel olarak 

sunmuşlardır. 

 Nguyen ve Nestmann (2004), Avrupa’nın önemli akarsularından olan ve 1320 

km uzunluğundaki Rhine akarsuyunun profilini, VOF yöntemi kullanarak sayısal 

olarak hesap etmişlerdir. Türbülanslı akımın hareketini idare eden denklemleri 

standart k-ε modeli kullanarak sayısal olarak çözmüşler, farklı kesitlerdeki akım 

hızlarının derinlikle değişimlerini teorik olarak irdelemişlerdir. 

 Chatila ve Tabbara (2004), Ogee profilli savakların hidrolik özelliklerini 

farklı akım koşulları altında deneysel ve teorik olarak incelemişlerdir. Sonlu 

elemanlar yöntemine dayalı çözüm yapan ADINA paket programı kullanılarak elde 

edilen sayısal su yüzü profilleri, laboratuarda ölçülen su yüzü profilleri ile 

karşılaştırılmış, deneysel ve teorik profillerin uyum içinde olduğu görülmüştür. 

 Şeker (2006), modellemiş olduğu üçgen bir savak arkasındaki akımın 

hızlarını deneysel ve teorik olarak karşılaştırmıştır. Hız alanı, parçacık görüntülemeli 

hız ölçümü (PIV) tekniği ile ölçülmüş ve elde edilen deneysel bulgular, sonlu 

elemanlar yöntemine dayalı ANSYS paket programından elde edilen sayısal 

bulgularla karşılaştırılmıştır. Serbest su yüzünün hesabında VOF yöntemi 

kullanılmıştır. Yapılan karşılaştırmalar neticesinde, deneysel ve sayısal akım hızları 

ile su yüzü profillerinin birbirleri ile uyumlu oldukları görülmüştür. 

 Kırkgöz ve ark.(2006), dikdörtgen ve üçgen kesite sahip geniş başlıklı 

savaklar ile etkileşim halindeki iki-boyutlu açık kanal akımını deneysel ve sayısal 

olarak analiz etmişlerdir. Temel denklemleri, standart k-ε ve k-ω türbülans modelleri 

kullanarak sonlu elemanlar yöntemine dayalı ANSYS-Flotran ile çözmüşlerdir. Su 

yüzü profilinin hesabında VOF yöntemini kullanmışlardır. Sayısal olarak hesap 

edilen hız profillerini, PIV tekniği ile ölçülen hız profilleri ile karşılaştırmışlar, k-ω 

türbülans modelinin deneysel sonuçlara daha yakın olduğu sonucuna ulaşmışlardır. 
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Ayrıca, farklı yoğunluklara sahip ağ yapıları kullanarak ağ yapısının sayısal sonuçlar 

üzerindeki etkisini de incelemişlerdir. 

 Öner ve ark. (2007), açık kanal içerisine yerleştirdikleri dikdörtgen geniş 

başlıklı bir savak üzerinden geçen iki-boyutlu açık kanal akımını teorik ve deneysel 

olarak irdelemişlerdir. Hız alanını deneysel olarak PIV hız ölçme tekniği ile 

ölçmüşlerdir. Hareket denklemlerinin sayısal çözümlerini, sonlu elemanlar 

yöntemine dayalı ANSYS-Flotran ile elde etmişler, serbest su yüzünün hesabını VOF 

yöntemi ile gerçekleştirmişlerdir. Sayısal modellemede türbülans viskozitesinin 

hesabı için üç farklı türbülans kapama modeli kullanmışlardır: Standart k-ε, standart 

k-ω ve SST. Hesap edilen akım hızları ve su yüzü profillerini deneysel ölçümlerle 

karşılaştırmışlar ve standart k-ω türbülans modeli kullanılarak elde edilen bulguların, 

deneysel bulgularla son derece uyumlu olduklarını tespit etmişlerdir. 

 Aköz ve ark. (2009), düşey bir kapak altından geçen iki-boyutlu açık kanal 

akımında hız alanını, standart k-ε ve standart k-ω türbülans modellerini kullanarak 

ANSYS-Flotran ile sayısal olarak elde etmişlerdir. Su yüzü profilini hesap etmek için 

VOF yöntemini kullanmışlardır. Sekiz farklı mesh yapısını test etmek suretiyle, 

hesaplama ağ yoğunluğunun sayısal çözümler üzerindeki etkisini araştırmışlardır. 

Sayısal bulgularla karşılaştırmak amacıyla kapak arkasındaki akımın hız alanını, PIV 

yöntemi ile deneysel olarak ölçmüşlerdir. Elde ettikleri sayısal ve deneysel sonuçlar, 

standart k-ε türbülans modelinin deney sonuçlarıyla daha uyumlu olduğunu ortaya 

koymuştur. 

 Kırkgöz ve ark. (2009), açık kanal içerisinde katı sınıra yakın dairesel silindir 

ile etkileşim halindeki iki-boyutlu türbülanslı akımın özelliklerini deneysel ve teorik 

olarak irdelemişlerdir. Silindir etrafındaki akımın hız alanı PIV tekniği ile deneysel 

olarak ölçülmüştür. Standart k-ε, standart k-ω ve SST türbülans modelleri 

kullanılarak üç farklı ağ yapısı için sayısal çözümler elde edilmiştir. Deneysel ve 

sayısal bulguların karşılaştırmalarından, standart k-ω ve SST türbülans modelleri 

kullanılarak elde edilen sayısal bulguların, deney bulgularına daha yakın olduğu 

sonucuna ulaşılmıştır.  

 



2. ÖNCEKİ ÇALIŞMALAR                                  Oğuz ŞİMŞEK 

8 

 

 

 

 

 

 

 

 

 

 



3. DENEY DÜZENEĞİ                                  Oğuz ŞİMŞEK 

9 

3. DENEY DÜZENEĞİ  

 

3.1. Deney Düzeneği 

 

Deneyler Çukurova Üniversitesi, İnşaat Mühendisliği Bölümü hidrolik 

laboratuvarındaki kapalı çevrim olarak çalışan Şekil 3.1.’deki açık kanal 

düzeneğinde gerçekleştirilmiştir. Şekil 3.2.’ de şematik olarak da verilmiş olan kanal 

düzeneği 0.2 m genişlik, 0.20 m derinlik ve 2.4 m  uzunluğundaki açık su kanalından 

oluşmaktadır. Kanal tabanı ve yan yüzeyler 5mm kalınlığındaki saydam cam 

malzemeden yapılmış, böylece ölçümler için pürüzsüz ve saydam bir yüzey elde 

edilmiştir. Suyun girişteki hazneden üniform olarak çıkmasını sağlamak için, suyun 

giriş bölgesine akışı düzenlemek için filtreler yerleştirilmiştir. Böylece kanal 

girişinde suyun mümkün olduğu kadar çalkantısız ve düzenli olarak girmesi 

sağlanmıştır. 

 

 
Şekil 3.1. Deney kanalının genel görünümü 
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 Eğrisel geniş başlıklı savak, Şekil 3.2.’de de görüldüğü gibi, kanal 

başlangıçından 0.7 m uzaklığa, kanal kesitini kapatacak şekilde yerleştirilmiştir. 

Savak yapısının kret yüksekliği 0.068 m dir. 

 
 

Şekil 3.2. Deney düzeninin şematik gösterimi ve LDA yerleşimi 

 

 Şekil 3.2.’de şematik görünümü verilen test alanındaki deneyler iki farklı 

debi, Q1=0.00546 m3/s ve Q2=0.00824 m3/s durumları için gerçekleştirilmiştir. Akım 

debisi Q1=0.00546 m3/s (Durum 1) için memba su derinliği ho=0.126 m olarak 

ölçülmüştür. Kesit ortalama hızı Vo =0.22096 m/s, memba akımında Froude sayısı 

Fro (=Vo/(gho)1/2)= 0.1987 ve Reynolds sayısı Reo (=4VoRo/ν)=18000’dür (Ro 

hidrolik yarıçap ve ν kinematik viskozitedir). Q2=0.00824 (Durum 2) için su 

derinliği ho=0.146 m, kesit ortalama hızı Vo =0.28812 m/s, Froude sayısı Fro = 

0.2407 ve Reynolds sayısı Reo=24000’dir. 

 Hız ölçümleri Laser Doppler Anenometry (LDA) tekniği kullanan bir ölçüm 

sistemi (DANTEC LDA) ile gerçekleştirilmiştir Şekil.3.2.. 
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3.1.1. Lazer Doppler Anemometresi (LDA) Tekniği İle Akım Hızının Ölçülmesi 

 

 Akımın yapısını belirlemek için yapılan deneylerde kızgın-tel (hot-wire), 

kızgın-film (hot-film), PIV ve LDA anlık hızların ölçülmesinde yaygın olarak 

kullanılan cihazlardır. Bu cihazlardan kızgın tel ve kızgın film, kullanımları sırasında 

akışkan içerisine bir ölçüm ucu sokularak akım rahatsız edilmektedir. PIV yöntemi, 

akımı rahatsız etmeden, hassas bir şekilde, aynı anda düzlemsel bir bölgedeki anlık 

hızları ölçerek akım karakteristiklerini belirlemektedir. LDA ise aynı anda sadece tek 

bir noktada ölçüm yapabilmektedir. Deney alanında farklı zamanlarda tek bir 

noktada yapılan ölçümlerle akım alanının özelliklerinin belirlenmesi ise özellikle 

ayrılmış akım bölgeleri ve karmaşık yapıya sahip akımların yapısını tanımlamada 

yetersiz kalabilmektedir. Bununla birlikte LDA, katı sınıra yakın bölgedeki noktasal 

hızların belirlenmesinde, bir başka ifade ile sınır tabakası bölgesindeki hız profilinin 

daha hassas bir şekilde elde edilmesi hususunda PIV ölçüm tekniğine göre üstünlük 

göstermektedir. 

 Lazer doppler anemometre, lazer ısığını kullanarak tek bir noktadaki hızı 

belirler. O noktadaki hız bileşenlerini kısa sürede birbirini takip eden yüzlerce ölçüm 

sonucunda belirler. LDA, akışkan içerisinde hareket eden küçük parçacıklar ile 

yayılan lazer ışınının doppler frekansındaki değişimini tespit ederek hız ölçümünü 

gerçekleştirir. Lazer anemometresi bir mercek tarafından kırılan ışınların ölçüm 

yapılan noktada odaklanması prensibi ile çalışır. Işın üreticiden çıkan ve mercek 

vasıtasıyla kırılan ışınlar hızın ölçüleceği noktaya odaklanır. Foto detektör tarafından 

toplanan ölçümsel bilgiler, akım işlemcisi tarafından anlık olarak BSA Flow 

Software yazılımına aktarılır Şekil 3.3.. Laser Doppler Anemometresinin çalışma 

prensiplerine ait daha geniş bilgi Durst ve ark (1981), Goldstein (1983), Ardıçlıoğlu 

(1994), tarafından verilmiştir.  

 Laser Doppler Anemometresi, Şekil 3.1.’de görüldüğü gibi, üç doğrultuda 

hareket kabiliyetine sahip bir çerçeve sistemine yerleştirilmiştir. Bu sistemin 

üzerinde yer alan hareket kolları vasıtasıyla, akım alanın istenilen mesafe ve 

derinliğindeki bir noktadan, anlık hızların doğru bir şekilde elde edilmesi mümkün 

hale gelmiştir. 
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Şekil 3.3. BSA Flow Software yazılımının ekran görüntüsü 

 

 Bu çalışmada eğrisel geniş başlıklı savak akımında anlık akım hızları, kanal 

ekseni boyunca Dantec® LDA 62N04 bir boyutlu akımölçer kullanılarak elde 

edilmiştir. Lazer dalga uzunluğu 660nm, lazer demetleri arasındaki mesafe 60 mm ve 

ölçülebilen hız sapınçları 0.7 μm/s den 4.6 mm/s’ ye kadar değişebilmektedir. LDA 

sisteminde, foto detektör ile birlikte BSA F30 (62N60) tipi akım işlemcisi 

kullanılmıştır. Ayrıca anlık ölçülen hızların prosesi, analizi ve grafiksel olarak 

işlenmesi Dantec LDA sistemi içinde yer alan BSA-Flow yazılımı ile 

gerçekleştirilmiştir Şekil 3.3..  

 

 
Şekil 3.4. Türbülanslı akımda ortalama hızın tespiti 

T 

u  

u' 
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Ölçüm noktasında, hızın bir T periyodu içerisinde anlık hız değerleri 

alınmaktadır. T integrasyon zamanı olup bu çalışmada 60 sn olarak seçilmiştir Şekil 

3.4.. Zaman ortalamalı hız büyüklükleri, anlık hız ölçümlerinin prosesi sonrasında 

elde edilmektedir. Ayrıca anlık hız değerleri ölçüldüğünden u' ve buna bağlı 

türbülans şiddeti değerleri de elde edilebilmektedir. Anlık akım hızı u, ortalama akım 

hızı u  ve hız sapıncı u′  arasındaki ilişki aşağıdaki gibi ifade edilmektedir: 

 

 uuu ′+=                    (3.1.) 

 

 ∑
=

=
N

1i
u

N
1u                   (3.2.) 

 

 ( )∑
=

−=
N

1i

2
RSM uu

N
1u                  (3.3.) 

 

Burada N hız numunesi sayısıdır.  
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4. TEMEL DENKLEMLER VE TÜRBÜLANS MODELLERİ 

 

4.1. TEMEL DENKLEMLER 

 

4.1.1 Sıkışmayan Türbülanslı Akımda Süreklilik Denklemi  

 

Sıkışmayan, türbülanslı akımda uuu ′+= , vvv ′+=  ve www ′+=  anlık hız 

bileşenlerini 0
x
u

i

i =
∂
∂  denkleminde yerine yazalım: 

 

 ( ) 0)ww(
z

)vv(
y

uu
x

=′+
∂
∂

+′+
∂
∂

+′+
∂
∂  veya 0

x
u

x
u

i

i

i

i =
∂

′∂
+

∂
∂            (4.1.) 

 

Bir Δt zaman aralığı için (4.1.) denkleminin zamansal ortalamasını alalım. Örnek 

olarak birinci terimin zamansal ortalaması alınırsa: 

 

 ( ) ( ) ( )
x
udtuu

Δt
1

x
dtuu

xΔt
1uu

x
u

Δtt

t

Δtt

t ∂
∂

=







′+

∂
∂

=



 ′+
∂
∂

=′+
∂
∂

∫∫
++

44 344 21
            (4.2) 

 

elde edilir. Benzer şekilde, diğer terimlerin de zamansal ortalamaları alınırsa (4.1) 

süreklilik denkleminin zamansal ortalaması aşağıdaki gibi olur: 

 

 0
z
w

y
v

x
u

=
∂
∂

+
∂
∂

+
∂
∂  veya 0

x
uVdiv

i

i =
∂
∂

=                    (4.3.) 

 

(4.1.) denkleminden (4.3.) denklemi çıkarılırsa: 

 

 0
z

w
y
v

x
u

=
∂

′∂
+

∂
′∂

+
∂

′∂  veya 0
x
u

i

i =
∂

′∂                (4.4.) 
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elde edilir ki (4.3.) ve (4.4.) denklemlerinden, ortalama hız bileşenleri ve türbülans 

hız sapınçlarının aynı süreklilik denklemini sağladığı görülmektedir. 

 

4.1.2. Sıkışmayan Akımlar İçin Hareket Denklemi 

 

Kartezyen koordinatlarda bir akım alanı içinde dx, dy, dz boyutlu bir 

elemanter bir kontrol hacmi içindeki sistem için Newton’un 2° kanunu; 

 

 dm
dt
VddmV

dt
d

dt
sMdsF

ss
∫∫∑ ===

rrrr
               (4.5.) 

 

veya elemanter bir dm sistem kütlesi için bu ifadeyi aşağıdaki gibi yazabiliriz; 

 

 dma
dt
VddmsF

r
rr

==∑                  (4.6.) 

 

Eşitliğin sağ tarafında ki ivmeyi hesaplamak üzere, t anında (x,y,z) 

noktasında bulunan bir akışkan parçasının hızı 

 

 )t,z,y,x(V=Vt

rr
                (4.7.) 

 

dt zamanı sonunda akışkanın yeni hızı 

 

 VdV)dtt,dzz,dyy,dxx(VV tdtt

rrrr
+=++++=+             (4.8.) 

 

olacaktır.  

(x, y, z) ve (x+dx, y+dy, z+dz) noktaları arasında hızdaki değişme  

 

 dt
t
Vdz

z
Vdy

y
Vdx

x
VVd

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
rrrrr

             (4.9.) 
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t ye göre türev alınırsa; 

 

 
t
V

dt
dz

z
V

dt
dy

y
V

dt
dx

x
V

dt
Vda

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

==
rrrrr

r
            (4.10.) 

 

 u
dt
dx

= , v
dt
dy

= , w
dt
dz

=  kullanılırsa toplam ivme; 

 

 
t
V

z
Vw

y
Vv

x
Vu

dt
Vda

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

==
rrrrr

r
             (4.11.) 

 

dm.a
dt
VddmsF

r
rr

==∑  ifadesinin tamamlanabilmesi için eşitliğin sol 

tarafının yani sisteme etkiyen dış kuvvetlerin belirlenmesi gerekir. Bunlar kütlesel ve 

yüzeysel kuvvetlerdir. Akıma etkiyen kuvvetler, kütlesel, yüzeysel, basınç ve kayma 

kuvvetleri olarak sıralanır, buna göre; 

Kütlesel Kuvvetler: Birim kütleye x, y, z doğrultularında etkiyen kütlesel kuvvetler 

X, Y, Z ise bunların bileşkesi 

 

 kZjYiXK
rrrr

++=                (4.12.) 

 

şeklindedir. dxdydz.dm ρ=  kütlesine etkiyen kütlesel kuvvet bileşenleri; 

 

 dxdydz.Xρ                 (4.13.) 

 

 .dxdydzYρ                 (4.14.) 

 

 .dxdydzZρ                 (4.15.) 
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Yüzeysel Kuvvetler: Kartezyen koordinatlara göre akımın bir noktasındaki gerilme 

durumu Şekil 4.1.’deki skaler bileşenlerle belirlenir. 

 
Şekil 4.1. Diferansiyel eleman yüzeyine gelen gerilmeler 

 

xσ                 xyτ                    xzτ                                 x eksenine dik düzlemde 

yxτ                 yσ                    yzτ                                 y eksenine dik düzlemde 

zxτ                   zyτ                   zσ                                z eksenine dik düzlemde 

 

 

x doğ.          y doğ.               z doğ. 

 

bir noktadaki ortalama normal gerilme; 

 

 
3

σσσ
σ zyx ++

=                         (4.16.) 
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olduğuna göre akışkanlardaki basınç gerilmesi pozitif olarak alınırsa bir noktadaki 

ortalama basınç şu şekilde olur: 

 

 
3

ppp
p zyx ++

=                (4.17.) 

 

Buna göre akışkan elemanının merkezindeki gerilmeler, gerilme tansörü ile 

belirli ise, x eksenine dik eleman yüz üzerindeki gerilmeler ile x ekseni 

doğrultusundaki diğer yüzeylerdeki gerilmeler. Şekil4.2.’de görülmektedir. Kayma 

gerilmelerinin pozitif yönü koordinat merkezine uzak yüzde, negatif yönü ise yakın 

yüzdedir.  

 
Şekil 4.2.X ekseni doğrultusundaki gerilmeler 
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Basınç Kuvvetleri için Şekil 4.2. ele alınırsa;  

x doğrultusunda; 

 

 dxdydzσdydz
2

dxσσ
2

dxσσ xx
x

x
x xxx ∂

∂
=
















∂
∂

−−
∂

∂
+            (4.18.) 

 

y doğrultusunda; 

 

 dydzdx
σ

dzdx
2

dyσ
σ

2
dyσ

σ yy
y

y
y yyy ∂

∂
=
















∂

∂
−−

∂

∂
+           (4.19.) 

 

z doğrultusunda; 

 

 dzdxdyσdxdy
2
dzσσ

2
dzσσ zz

z
z

z zzz ∂
∂

=















∂
∂

−−
∂

∂
+            (4.20.) 

 

olur. 

Kayma kuvvetleri ise; x doğrultusunda: 

 

dzdxdyτdydxdz
τ

dxdy
2
dzττ

2
dzττ

dxdz
2

dyτ
τ

2
dyτ

τ

zxyxzx
zx

zx
zx

yx
yx

yx
yx

zyzz

yy

∂
∂

+
∂

∂
=
















∂
∂

−−
∂

∂
++

















∂

∂
−−

∂

∂
+

  (4.21.)  

 

y doğrultusunda: 

 

dxdydz
τ

dzdydx
τ xyzy

zz ∂

∂
+

∂

∂
=              (4.22.) 
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z doğrultusunda: 

 

dydzdx
τ

dxdzdyτ yzxz

yx ∂

∂
+

∂
∂

=                (4.23.) 

 

Newton’un 2. Kanunu yazılırsa; 

 

 ∑ = a.dmF
r

                (4.24.) 

 

 dxdydzdm ρ=                (4.25.) 

 

 
dt
Vda
r

r
=                 (4.26.) 

 

Birim hacme gelen bileşke dış kuvvet: 

 

 f
dm

F r
r

=∑                 (4.27.) 

 

 =f
r

kütlesel kuvvet ( kf
r

)+yüzeysel kuvvet ( yf
r

) 

 

( )kZjYiXKf k
rrr

++ρ=ρ=                              (4.28.) 

 

x eksenine dik yüzeylere gelen bileşke kuvvet: 

 

dxdydz
x
xTdydz

2
dx

x
T

Tdydz
2

dx
x
xTT x

xx ∂
∂

=







∂

−−







∂

∂
+

rrrr
          (4.29.) 

 

 y ekseni için dydzdx
Ty

y∂

∂
=

r
                         (4.30.) 
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 z ekseni için dzdxdy
T

z

z

∂
∂

=

r
             (4.31.) 

 

Birim hacme gelen bileşke yüzeysel kuvvet: 

 

[ ]T~
TTT

f
z

z

y

y

x

x
y ∇=

∂
∂

+
∂

∂
+

∂
∂

=
rrrr

             (4.32.) 

 

Burada T  normal ve kayma kuvvetlerini tanımlamaktadır. 

Yüzeyler için zyx T,T,T
rrr

 gerilme vektörleri aşağıdaki gibi yazılabilir. 

 

 xzxyxx τkτjσiT
rrrr

++=               (4.33.) 

 

 yzyyxy τkσjτiT
rrrr

++=               (4.34.) 

 

 zzyzxz σkτjτiT
rrrr

++=               (4.35.) 

 

burada xyτ  : x’ e dik düzlemde y doğrultusundaki kayma gerilmesi 

 Sıkışmayan viskoz akımlar için vektör tansör-notasyonu ile hareketin 

diferansiyel denklemi: 

 

 [ ]T~K
dt
Vd

∇+ρ=ρ                (4.36.) 

 

Yukarıda elde edilen hareket denklemleri gerilme bileşenlerini içermektedir. 

Akışkanların hareketi incelenirken bu ifadelerin hız gradyanı cinsinden yazılması 

daha kullanışlı olmaktadır. Bu ilişki Stokes kanunları ile sağlanmaktadır. Stokes 

kanunları elastik ortamlardaki Hooke kanunlarında yapılan bazı değişikliklerle elde 
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edilmektedir. Bu değişikliklerin neticesinde hız gradyanları cinsinden hareketin 

diferansiyel denklemi aşağıdaki şekilde yazılabilir: 

x doğrultusu için; 

 

 
[ ]

[ ] [ ])
z
u

x
wμ(

z
)

x
v

y
uμ(

y

)Vdiv
3
2-

x
uμ(2

xx
p-ρX

dt
duρ

∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

∂
∂

+

∂
∂

∂
∂

+
∂
∂

=
r

           (4.37.) 

 

y doğrultusu için; 

 

 
[ ]

[ ] [ ])
x
v

y
uμ(

x
)

y
w

z
vμ(

z

)Vdiv
3
2-

y
vμ(2

yx
p-ρY

dt
dvρ

∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

∂
∂

+

∂
∂

∂
∂

+
∂
∂

=
r

           (4.38.) 

 

z doğrultusu için; 

 

 
[ ]

[ ] [ ])
y
w

z
vμ(

y
)

z
u

x
wμ(

x

)Vdiv
3
2-

z
wμ(2

zz
p-ρZ

dt
dwρ

∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

∂
∂

+

∂
∂

∂
∂

+
∂
∂

=
r

           (4.39.) 

 

Yukarıda görülen ifadelere Newtonien olmayan akışkanların hareket 

denklemleri denmektedir ve bu denklemler 7 bilinmeyen içermektedir. Bunlar: u, v, 

w, p, ,ρ  ,μ  T. 

Hareket denklemleri lineer olmadığından bu şekilleriyle çözümü çok zordur. 

Bu yüzden denklemlerde bazı sadeleştirmeler yapmak gereklidir.  

Newtonien akışkanlar için μ =sabit alarak x doğrultusu için denklemi 

yazarsak; 
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)

z
u

zx
wμ()

y
u

yx
vμ(

)
zx

w
yx

v
x
uμ(

3
2-

x
u2μ

x
p-ρX

dt
duρ

2

22

2

22

22

2

2

2

2

∂
∂

+
∂∂

∂
+

∂
∂

+
∂∂

∂
+

∂∂
∂

+
∂∂

∂
+

∂
∂

∂
∂

+
∂
∂

=
          (4.40.) 

 

 
)

zx
w3

z
u3

y
u3

yx
v3

zx
w2-

yx
v2-

x
u2-

x
u(6

3
μ

x
p-ρX

dt
duρ

2

2

2

2

22

22

2

2

2

2

∂∂
∂

+
∂
∂

+
∂
∂

+
∂∂

∂
+

∂∂
∂

∂∂
∂

∂
∂

∂
∂

+
∂
∂

=
           (4.41.) 

 

 )
z
u3

y
u3

zx
w

yx
v

x
u(4

3
μ

x
p-ρX

dt
duρ 2

2

2

222

2

2

∂
∂

+
∂
∂

+
∂∂

∂
+

∂∂
∂

+
∂
∂

+
∂
∂

=           (4.42.) 

 

 )
z
u3

y
u3

x
u3

zx
w

yx
v

x
u(

3
μ

x
p-ρX

dt
duρ 2

2

2

2

2

222

2

2

∂
∂

+
∂
∂

+
∂
∂

+
∂∂

∂
+

∂∂
∂

+
∂
∂

+
∂
∂

=          (4.43.) 

 

 







∂
∂

+
∂
∂

+
∂
∂

+







∂
∂

+
∂
∂

+
∂
∂

∂
∂

+
∂
∂

= 2

2

2

2

2

2

z
u

y
u

xz
w

y
v

xx3
μ

x
p-ρX

dt
duρ uu

µ             (4.44) 

 

 uμVdiv
x3

μ
x
p-ρX

dt
duρ 2∇+

∂
∂

+
∂
∂

=
rr

             (4.45.) 

 

y ve z yönü için de aynı şekilde yazılırsa; 

 

 vμVdiv
y3

μ
y
p-ρY

dt
dvρ 2∇+

∂
∂

+
∂
∂

=
rr

             (4.46.) 

 

 wμVdiv
z3

μ
z
p-ρZ

dt
dwρ 2∇+

∂
∂

+
∂
∂

=
rr

             (4.47.) 

 

Vektörel notasyon ile yazılacak olursa; 
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 Vμ)V.(
3
μp-Kρ

dt
Vdρ 2

rrrrrrrr
∇+∇∇+∇=              (4.48.) 

 

Sıkışmayan akımlarda =ρ sabit ve 0Vdiv =
r

 dır. Buna göre hareket denklemleri; 

 

 uμ
x
p-ρX

dt
duρ 2∇+

∂
∂

=
r

              (4.49.) 

 

 vμ
y
p-ρY

dt
duρ 2∇+

∂
∂

=
r

              (4.50.) 

 

 wμp-ρZ
dt
duρ 2∇+

∂
∂

=
r

z
                         (4.51.) 

 

Şeklinde elde edilir. Bu denklemlere sıkışmayan akımlar için hareket denklemleri 

denmektedir. Vektörel notasyon ile yazılacak olursa; 

 

 Vμp-Kρ
dt
Vdρ 2

rrrrr
∇+∇=               (4.52.) 

 

3 doğrultudaki bileşenleri: 

 

 uμ
x
pρX

dt
duρ 2∇+

∂
∂

−= veya  

 

 







∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

−=







∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

z
u

y
u

x
uμ

x
pρX

t
u

z
uw

y
uv

x
uuρ       (4.53.a.) 

 

 vμ
y
pρY

dt
dvρ 2∇+

∂
∂

−=  veya 
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 







∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

−=







∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

z
v

y
v

x
vμ

y
pρY

t
v

z
vw

y
vv

x
vuρ       (4.53.b.) 

 

 wμ
z
pρZ

dt
dwρ 2∇+

∂
∂

−=  veya 

 

 







∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

−=







∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

z
w

y
w

x
wμ

z
pρZ

t
w

z
ww

y
wv

x
wuρ       (4.53.c.) 

 

Navier-Stokes denklemleri olarak bilinen bu denklemler, bağımsız olarak, 

Fransa’da Navier (1823), Poisson (1831) ve Saint- Venant (1843) ile İngiltere’de 

Stokes (1845) tarafından elde edilmiştir. 

 

4.1.3. Sıkışmayan Türbülanslı, Newtonien Akışkan Akımında Hareket 

Denklemleri (Reynolds Denklemleri) 

 

 Burada, Navier-Stokes denklemlerinin zamansal ortalamaları alınarak, 

sıkışmayan, türbülanslı, Newtonien akışkan akımına uyarlaması yapılacaktır. Örnek 

olarak Navier-Stokes denkleminin x bileşenini ele alalım: 

 

 uμ
x
pXρ

t
u

z
uw

y
uv

x
uuρ 2

i ∇+
∂
∂

−=







∂
∂

+
∂
∂

+
∂
∂

+
∂
∂            (4.54.) 

 

Denklemde uuu ′+= , vvv ′+= , www ′+=  ve ppp ′+=  yazılırsa: 

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )
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Bu denklemin zamansal ortalamasını alalım. Örneğin, birinci terimin 

zamansal ortalaması 
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şeklinde yazılır. (4.56.) denkleminin ikinci ve üçüncü terimlerinin zamansal 

ortalamaları ∂u'/ ∂x ve u’ nün zamansal ortalaması sıfır olduğundan, sıfırdır. Böylece 

(4.55.) denklemindeki terimlerin zamansal ortalamaları aşağıdaki gibi bulunur: 
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( )
x
ppp

x ∂
∂

=′+
∂
∂                (4.58.) 

 

( ) uμuuμ 22 ∇=′+∇                (4.59.) 

 

Bu değerler (4.55.) denkleminde yerine yazılırsa, sıkışmayan, türbülanslı, 

Newtonien akışkan akımında Reynolds hareket denkleminin x bileşeni elde edilir: 
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böylece, Reynolds denkleminin üç doğrultu için bileşenleri aşağıdaki gibi yazılır: 
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veya vektör-tansör notasyonu ile: 

 

 [ ]ç2 .τVμPρK
dt
dVρ ∇+∇+∇−=              (4.62.) 

 

veya indis notasyonu ile: 
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 Bu denklemler, türbülanslı akım için Reynolds (1895) hareket denklemleri 

olarak anılır. Bu ifadeler Navier Stokes denklemlerine ilave olarak Reynolds (veya 

çalkantı) gerilmelerini içermektedir. Çalkantı gerilmeleri tansörü (Reynolds, 

turbulence or eddy stresses) aşağıdaki gibidir: 
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Reynolds denklemleri, lineer olmamaları yanında u, v, w, p ve 6 çalkantı 

gerilmesiyle birlikte 10 bilinmeyen içermektedir. Halbuki süreklilik denklemi ile 

birlikte 4 adet denklem vardır. Bazı varsayımlar ile Reynolds ifadeleri 

sadeleştirilerek bazı pratik akım problemleri için yaklaşık çözümler elde edilebilir. 

 Reynolds denklemlerinin sağ tarafında bulunan çalkantı gerilmeleri tansörü 

aslında du/dt, dv/dt, ve dw/dt’lerin zamansal ortalamalarının alınmasıyla ortaya 

çıkmış momentum terimleridir. Ancak (d’Alembert dinamik denge prensibine göre) 

denklemin sağ tarafına geçe bu terimlere, gerilme tansörünün ilave terimleri şeklinde 

bakılabilir. 

 Türbülanslı, Newtonien akışkan akımında Boussinesq yaklaşımına göre 

gerilme tansörü,  

 

 ijδVμdiv
3
2ε2μpδτ ijijij

r
& −+−=              (4.65.) 

 

(4.65.) bünye denklemine (4.64.) türbülans gerilme tansörünün eklenmesi ile 

aşağıdaki gibi yazılabilir.  

 

 çτδVμdiv
3
2ε2μpδτ ijijijij +−+−=

r
& veya,   
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(4.66.) bünye denkleminin (4.53.) hareket denkleminde kullanılması ile, örnek 

olarak, sıkışan türbülanslı, Newtonien akışkan akımında Reynolds denkleminin x 

bileşeni aşağıdaki gibi düzenlenebilir: 
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veya, 
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ve sonuç olarak, sıkışan Newtonien akışkan akımında Reynolds denkleminin x 

bileşeni: 
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şeklinde bulunur. (4.70.) denkleminde 0Vdiv =  yazılırsa sıkışmayan, Newtonien 

akışkan akımında Reynolds denkleminin x bileşeni elde edilir: 
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4.2. TÜRBÜLANS MODELLERİ 

 

 Kütlenin ve momentumun korunumunu idare eden hareket denklemleri 

kartezyen tansör notasyanunda aşağıdaki gibi yazılabilir:  
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Denklem (4.73.) ve (4.74.)’de ui hız bileşenlerini, p basıncı, µ akışkanın dinamik 

viskozitesini, ρ akışkanın yoğunluğunu, ρgxi yerçekiminin sebep olduğu kütlesel 

kuvveti, t zamanı, τij ise türbülans kayma (Reynolds) gerilmelerini ifade etmektedir. 

Reynolds gerilmeleri Boussinesq yaklaşımına göre aşağıdaki gibi ifade edilir: 
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denklemdeki u΄i ve u΄j ise türbülans hız sapınçlarını, µt, türbülans viskozitesi, ijδ  ise 

Kronecker delta olarak adlandırılır. Denklemin sağ tarafında bulunan ikinci terim, 

sıkışmayan akışlar için normal gerilmenin toplamının her zaman türbülans kinetik 

enerjisine eşit olabilmesini sağlama amacıyla bulunmaktadır (Eğer i=j ise ijδ =1). 

 Reynolds denklemlerinde üç boyutlu akışta bir basınç, üç hız bileşeni 

bulunur. Türbülans kayma gerilmelerinin işleme katılmasıyla birlikte üç boyutlu 

akışta 6 adet bilinmeyen bileşen de değişkenler arasına eklenmiş olmaktadır. Toplam 

10 bilinmeyen terime karşılık 4 denklem bulunduğundan denklem sisteminin çözümü 

mümkün olamayacaktır. Bir başka ifadeyle sistem kapatılamayacaktır. Reynolds 

gerilmelerinin neden olduğu bu duruma kapanma problemi (Closure Problem) adı 

verilmektedir. Türbülans modelleri, Denklem (4.71.)’ teki τij ’nin hesaplanması ve 

böylelikle de denklem sisteminin kapatılması görevini üstlenmektedirler. 

 

k-ε Türbülans Modelleri: İsminden de anlaşılacağı üzere k - ε  modellerinde, 

türbülans kinetik enerjisi (k) ve onun kayıp oranı “disipasyonu” (ε) için olmak üzere 

iki adet transport denklemi Navier-Stokes denklemlerine ek olarak çözülmektedir. ε 

’un gerçek transport denkleminin eldesi Navier-Stokes denklemlerinden mümkündür 

(Davidson, 2005). Ancak bu denklem son derece karmaşıktır ve pek çok bilinmeyeni 

içermektedir. Araştırmacılar bu denklem yerine çok daha sadeleştirilmiş bir hali olan 

modellenmiş ε denklemini türbülans modellerinde kullanılmak üzere adapte 

etmişlerdir. Elbette her modelde olduğu gibi bu modelde de pek çok yaklaşım, 

varsayım ve ihmal söz konusudur. Sonuç olarak, modellenmiş ε transport denklemi, 
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k transport denklemine çok benzer bir formda ve basitleştirilmiş biçimde 

kullanılmaktadır. 

 k-ε modellerinde türbülans viskozitesi, 

 

 
ε

kCρμ
2

μt =                 (4.75.) 

 

formunu almaktadır. μC  türbülans modeli sabitidir. 

 

Standart k-ε Türbülans Modeli (SKE): İki denklemli türbülans modelleri arasında 

ekonomikliği ve pek çok akış olayında kabul edilebilir doğrulukta sonuç vermesi 

açısından yaygın olarak kullanılan yarı ampirik bir modeldir. Türbülans kinetik 

enerjisi (k) ve kayıp oranı (ε) için yazılan iki adet transport denkleminin çözümü ve 

türbülans viskozitesinin hesabını içerir. Kaldırma kuvvetleri etkisi ihmal edildiğinde, 

bu transport denklemleri k ve ε için sırası ile  
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 şeklinde yazılabilir. Difüzivite terimleri,  

 

 







+=

ε

t
ε σ

μμΓ  ve 







+=

k

t
k σ

μμΓ              (4.78.) 

 



4. TEMEL DENKLEMLER VE TÜRBÜLANS MODELLERİ           Oğuz ŞİMŞEK 

34 

Hız gradyanından kaynaklanan türbülans kinetik enerjisini üretimini ifade eden terim 
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olup burada türbülans viskozitesi, türbülans kinetik enerjisi ve onun kayıp oranı 

cinsinden 

 

 
ε

kρCμ
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yazılabilir. Bu modelde R=0 olup, deneysel sabitleri 

1.44C1ε = , 1.92C2ε = , 0.09Cμ = ,k ve ε için türbülans Prandtl sayıları 

1.3σ1.0,σ εk == tür (Launder ve Spalding, 1972). Denklem (4.76.) ve denklem 

(3.80.) aşağıdaki gibi ifade edilebilir; 

 

RNG k-ε Türbülans Modeli (RNG): RNG k-ε türbülans modeli Yakhot ve Orszag 

(1986) tarafından düşünülmüş ve geliştirilmiş (Yakhot ve ark. 1992) yine iki 

denklemli bir model olup esas itibariyle Navier-Stokes denklemlerinden 

renormalization group teorisi kullanılarak elde edilmiştir. Bu modelde k ve ε için 

transport denklemleri denklem (4.76.) ve denklem (4.77.)’deki gibi yazılabilir. Temel 

farkı sabitlerin farklı olması ve ilave terimlerin gelmesidir. RNG k-ε türbülans 

modelinde (4.76.) ve (4.77.) eşitliklerinde bulunan difüzivite terimleri aşağıdaki gibi 

olur: 

 

 ,μαΓ eεε = ekk μαΓ =                (4.81.) 

 

Burada akışkanın viskozitesi ile türbülans viskozitenin toplamı olan efektif viskozite 

 

 te μμμ +=                 (4.82.) 
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olup aşağıdaki adi diferansiyel denklemin çözümünden elde edilir. 
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Bu denklem düşük Re sayısı etkilerini hesaba katmayı sağlamaktadır. RNG k-ɛ 

modelinin, standart k-ɛ modeline göre en büyük farkı, ɛ denklemine ilave olarak 

gelen R terimidir. Bu terim, 
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ifadesiyle hesaplanır. Bu ifade denklem (3.77.)’de yerine konursa denklemin 

sağındaki 3. terim ile birleştirildiğinde transport denklemi, 

 

 
k
ερCG

k
εC

x
εΓ

x
)(

x
)(ρ

t

2

2ε
*

k1ε
j

ε
j

i
i

−+










∂
∂

∂
∂

=ρε
∂
∂

+ε
∂
∂           (4.85.) 

 

şekline dönüştürülür, bu durumda  
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olur. Bu denklemde η türbülans kinetik enerjisinin üretimi ve kayıp oranının 

fonksiyonu olup, 
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burada ijijS2SS =                 (4.88.) 
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şeklinde ifade edilir. Bu ilave terim, standart k-ɛ modelinde olmayan, yüksek kayma 

oranları ve akım çizgisi eğriliklerini göz önüne alması açısından önemlidir. Kayma 

oranının kuvvetli olduğu (yüksek η) durumlarda kayıp artmakta, bu da türbülans 

viskozitesini ve k değerini azaltmakta yani akıştan daha az enerji çekilmesine yol 

açmaktadır. Böylece sirkülasyon olan bölgelerde büyüklüğü deneysel verilere daha 

yakın çıkmaktadır. Bu modelde kullanılan sabitler C1ε=1.42, C2ε=1.68, Cv=100, 

η0=4.38, β=0.012, Cµ=0.0845 dir. 

 Denklem (4.78.)’de εk αveα  parametreleri k ve ε için efektif Prandtl 

sayılarının tersini göstermekte olup, RNG teorisinden analitik olarak türetilen 

 

ε

0.3679

0

0.6321

0 μ
μ

2.3929α
2.3929α

1.3929α
1.3929α

=
+
+

−
−             (4.90.)  

 

ifadesinden hesaplanmaktadır. Burada 0α =1 dir. Yüksek Reynolds sayılarında 

1.393αα1)(μμ/ εkε ≅=〈〈  olmaktadır.  

 

Realizable k-ε Türbülans Modeli (RKE): Standart türbülans viskozitesi modelinde 

bulunan Cµ sabitinin değeri ataletli sınır tabaka altı bölgede elde edilmiştir. Gerçekte 

bu sabit farklı akış bölgelerinde değişim göstermektedir. Üstelik türbülans 

viskozitesinin hesabında kullanılan modelin yüksek şekil değiştirme miktarlarında 

“anlamsız”(non-realizable) olduğu uzun zamandır bilinen bir gerçektir. Buna göre, 

3,7Sk/ε〉 olduğunda, normal gerilme negatif olabilmekte ve hatta Reynolds 

gerilmelerinde Scwartz eşitsizliği ihlal edilmektedir (Shin ve ark., 1995). RKE 
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modelinde bu problemlerin önüne geçebilmek için standart k-ε ve RNG k-ε 

modellerinde sabit olan Cµ katsayısı dinamik bir form almaktadır. Buna göre  

 

 

ε
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+
=                (4.91.) 

 

şeklinde tanımlanmıştır. Denklem (4.88.)’de bulunan terimler, 
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 ijijSSS~ =                 (4.96.) 

 

şeklinde ifade edilir. Burada ijΩ~ , kω  açısal hızıyla dönmekte olan bir referans 

sistemine göre ortalama dönme miktarı ve S~  ise gerime tansörünün ortalama 

modülüdür. RKE modelinde standart k-ε modelinden farklı olarak yeni bir kayıp 

miktarı denklemi de geliştirilmiştir; 
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Burada, 
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912 .C = şeklinde verilmektedir. Görüldüğü gibi ε’un oluşumu ve kayıbı tamamen 

farklı bir formda ele alınmış ve oluşumu bir fonksiyona bağlanmıştır. RKE modeli 

geliştirilmiş biçimi ile yüksek Reynolds sayısına sahip ve tamamen türbülanslı 

akışlar için uygundur. 

 

SST k-ω Türbülans Modeli (SST): Standart k-ω modeli (Wilcox, 1988) sınır 

tabaka akışlarında yüksek başarı sağlıyor olsa da, Menter (1992)’in ters basınç 

gradyanı içeren sınır tabaka akışları için yaptığı popüler türbülans modelleri 

karşılaştırmasında, standart k-ω modeliyle gerçekçi hız profillerinin yanı sıra, 

haddinden fazla kayma gerilmesi hesaplandığı belirtilmektedir. Söz konusu 

çalışmada Menter bunun nedeninin modelin kayma gerilmesinin taşınımının hesabını 

içermediği belirtilmekte ve türbülans viskozitesinin hesabında yaptığı küçük bir 

değişiklik ile sonuçların iyileştirilmesini sağlamıştır. Çalışmada türbülans 

viskozitesinin standart tanımının ters basınç gradyanın içeren akışlarda hatalı 

sonuçların kaynağı olduğu belirtilmektedir. Bu düşünce uyarınca Menter (1993) 

türbülans viskozitesinin hesabında pratik bir değişiklik yaparak kayma gerilmesinin 

0.3 (Bradshaw sabiti) k’den daha büyük çıkmamasını sağlamıştır. Ayrıca türbülans 

viskozitesinin hesabına akıllı bir fonksiyon ekleyerek bu değişikliğin yalnızca sınır 

tabaka bölgesinde kalmasını sağlamıştır. Buna göre türbülans viskozitesinin hesabı, 
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şeklinde değiştirilmiştir. Burada a1, 0.3’e eşit sabit sayıyı göstermektedir. Ω sınır 

tabaka içerisinde iki boyutlu bir akış için düşünülecek olursa 
y
u

∂
∂  türevini 

göstermekte, ancak genel kompleks akışlar için girdaplılık büyüklüğü olarak 

alınabilmektedir. F2 ise sınır tabaka içerisinde 1 ve dışında 0 olan, iki değer 

arasındaki geçişin yumuşak biçimde olmasını sağlayan akıllı bir fonksiyondur. Buna 

göre F2 fonksiyonu, 

 

 )tanh(argF 2
22 =              (4.100.) 
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0.09ω.
kmaxarg 22             (4.101.) 

 

şeklinde tanımlanmaktadır. Burada y ile duvardan normal yöndeki uzaklık ifade 

edilmektedir. 

 Wilcox (1991), standart k-ω modelinin özellikle serbest kayma akışlarında  

ω’nın giriş sınırındaki değerlerini aşırı derecede bağlı olduğunu ve türbülans 

viskozitesinin değerlerini iki kattan fazla değiştirebildiğini göstermiştir ve ω taşınım 

denklemine bazı eklentilerin yapılması gerekebileceğini belirtmiştir. Böylece Menter 

(1993), sınır tabaka içerisinde, bu bölgede çok başarılı olan orijinal k-ω modelini 

kullanıp serbest kayma akışlarında ise modelin serbest akım değerlerine 

bağlılığından kurtulmayı amaçlayarak ω taşınım denkleminde önemli değişiklik 

yapmıştır. Denklem standart k-ε modelinde kullanılan ε taşınım denkleminde 

değişken dönüşümü yapılarak kullanılmakta ve böylece standart k-ω modelinde 

kullanılan ω taşınım denklemine “çapraz difüzyon” adı verilen terim eklenmektedir. 

 Ancak bu terimin sınır tabakada çok başarılı olan orijinal formu etkilememesi 

için (-ki etkilemektedir) (Wilcox, 1998) akıllı bir fonksiyon ile bu terimin yalnızca 

serbest akışlarda ve sınır tabakanın üst bölgelerinde kullanılması sağlanmıştır. Buna 

göre SST k-ω modeli, türbülans viskozitesinin hesabında daha önce sözü edilen 

değişiklik dışında, sınır tabaka içerisinde orijinal k-ω modelini, serbest kayma 
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akışlarında ise standart k-ε modelini kullanmaktadır.  SST modelinde kullanılan 

türbülans kinetik enerjisi k ve spesifik kayıp ω, denklemleri, 
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şeklindedirler. ω denkleminde en sonda yer alan çapraz difüzyon terimi F1 

fonksiyonuna bağlanmıştır. Buna göre türbülans viskozitesinin hesabındaki mantığa 

benzer biçimde sınır tabaka içinde viskoz alt tabaka ve logaritmik tabakada 

fonksiyon 1 değerini almakta ve dışarıya doğru yavaşça 0’a doğru değişmektedir. F1 

fonksiyonu, 
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şeklinde tanımlanmaktadır. Fonksiyon temel olarak, logaritmik tabakadan sonra 

sürekli 1 değerini alabilmek için türbülans boy ölçeğinin çok küçüldüğü viskoz alt 

tabakada ikinci terimi devreye sokmaktadır. Ayrıca standart k-ε  modelinin, ω’nın 

serbest akım değerlerinden etkilenerek sınır tabaka dışındaki ω değerinin çok küçük 

hesaplama eğiliminin önüne geçebilmek için fonksiyondaki üçüncü terim vasıtası ile 
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fonksiyonun mümkün olduğunca daha küçük değerler alarak duvara daha yakın bir 

noktada 1 değerine ulaşması hedeflenmiştir. SST modelinin iki ayrı model arasında 

geçişi için katsayılar da yine F1 fonksiyonuna bağlanarak ϕ herhangi bir katsayıyı 

temsil etmek üzere,  

 

 2111 )φF(1φFφ −+=              (4.107.) 

 

şeklinde hesaplanmaktadır. Menter katsayılar üzerinde de hafifçe değişiklikler 

yapmıştır. Buna göre katsayılar, 
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şeklinde verilmektedir. Menter (1994), orijinal modelin hassas noktalarını 

vurgulayarak SST modeliyle karşılaştırmalara yer vermektedir.  

 

RSM Türbülans Modeli (RSM): “Reynolds Gerilmesi Modeli” (RSM) adını alan 

bu yöntem Reynolds gerilmelerinin ( ji u'u'ρ ) doğrudan transport denklemlerinin 

çözümüyle hesaplanması esasına dayanır (Gibson ve Launder, 1978; Launder, 1989). 

Reynolds gerilmesi taşınım denkleminin Navier-Stokes ve RANS denklemlerinden 

basit matematiksel manipülasyonlarla birkaç adımda elde edilmeleri mümkündür. 

Söz konusu denklem Reynolds gerilmelerinin her bileşeni için tüm taşınım 

mekanizmasının fiziğini içermektedir. Elde edilen denklemin terimleri fiziki 

anlamlarına uygun biçimde basitleştirilip modellenerek, her Reynolds gerilme 

bileşeni için ayrı bir denklem elde edilmektedir. RSM özellikle şekil değiştirmenin 
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karmaşık bir yapı sergilediği ve eğriselliğin olduğu akışlarda türbülans viskozitesi 

modellerine göre daha avantajlıdır (Davidson, 2005). Sonuç olarak, 6 adet Reynolds 

gerilmesi denklemi ve Reynolds gerilmesi taşınım denkleminde yer alan kayıp terimi 

için de 1 adet disipasyon taşınım denklemi ile birlikte üç boyulu simülasyonlarda 7 

adet ekstra denklem çözülmesi gerekmektedir. Tahmin edileceği üzere RSM, 

hesaplama açısından masraflı bir modeldir.  

 Kaldırma kuvvetlerinin etkisi ihmal edildiğinde bu transport denklemleri 

aşağıdaki formda yazılabilir: 
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denklemin sağ tarafındaki terimler sırası ile 

Türbülans difüzyon terimi:  
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Moleküler difüzyon terimi:   
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Türbülans gerilmeleri üretim terimi: 
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Basınç uzatma terimi:  
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Dissipasyon terimi: 
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Bu terimlerden ijijT, φ,D , ijε  ve terimleri yeni ve bilinmeyen korelasyonlar 

içermekte olup hesaplanabilmeleri için modellenmeleri gerekmektedir. 

Genelleştirilmiş gradyan difüzyon hipotezinin basitleştirilmiş formu kullanılarak 

türbülans gerilmelerinden kaynaklanan üretim terimi 
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şeklinde modellenebilir (Lien ve Leschziner, 1994). Lineer yaklaşım kullanılırsa 

basınç-uzama terimi üç bileşenin toplamı şeklinde yazılabilir. Bu bileşenler yavaş ve 

hızlı basınç-uzama bileşenleri ile cidar etkisini ifade eden wj,i,φ  bileşenidir (Gibson 

ve Launder, 1978; Launder, 1989). Buna göre basınç-uzama terimi 
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şeklinde yazılabilir. Burada C1=1.8, C2=0.6 alınmıştır.  

Dissipasyon terimi ise sıkıştırılabilirlik ihmal edilerek 

 

 ijij ρεδ
3
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alınmıştır. Bu denklemlerde geçen türbülans kinetik enerjisi /2uuk ii=  ifadesinden 

bulunabilirken bunun dissipasyonu olan ε fonksiyonu denklem (4.73.)’da R=0, 

C1ε=1.44, C2ε=1.92, σε=1.0 ve türbülans üretimi terimi Gk=0.05Pii alınarak elde 

edilir. 

 

4.2.1. Hız Dağılımı İçin Logaritmik Duvar Kanunu (law of the wall) 

 

 Sınır tabakasının türbülanslı iç bölgesinde hız dağılımı için von Karman-

Prandtl tarafından verilen ve duvar kanunu (law of the wall) olarak bilinen logaritmik 

hız dağılım ifadesi kullanılmaktadır. Bu ifade aşağıdaki gibi elde edilebilir. Viskoz 

alt tabaka ile türbülanslı iç bölge ara kesitinde, yani vδy =  için akım hızı (4.120.) ve 

(4.121.) denklemlerinden aşağıdaki gibi yazılabilir: 
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bu iki değer eşitlenirse, 
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Değeri (4.121.) denkleminde yerine yazılırsa: 
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Burada , A1
=

κ
 sayılarak sağ taraftaki ikinci terim logaritma terimi ile birleştirilirse: 
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şeklinde logaritmik kanunu olarak bilinen hız dağılım ifadesi elde edilir. 

Denklemdeki B yüzey pürüzlülüğüne bağlı bir sabittir. 

 Nikuradse’nin (1932) cilalı boru deneylerinde 2,5A =  ( 0,4κ = ) 5,5B =  

değerleri elde edilmiştir, buna göre logaritmik hız dağılımı: 
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Şeklindedir. Daha sonra çeşitli araştırmacılar tarafından yapılan deneylerde, bu 

sabitler için 2,52,43A −=  ve 74,7B −= aralıklarında değişen değerler 

bulunmuştur. 

 Kırkgöz (1989) tarafından pürüzsüz tabanlı açık kanal akımlarında yapılan 

laboratuvar deneylerinde 0,41κ =  bulunmuş ve (Reynolds sayısına bağlı olarak) 

600200y/vv8050 * −≤≤−  ve 0,50,6y/δ0,050,14 −≤≤−  koşulları için logaritmik 

hız dağılımı aşağıdaki gibi verilmiştir. 
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v
yv2,44ln

v
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4.2.2. Sonlu Hacimler Yöntemi 

 

 Reynolds ortalamalı Navier-Stokes denklemlerinin veya genel skaler 

transport denkleminin sayısal olarak çözülebilir cebrik denklemlere 

dönüştürülebilmesi için ayrıklaştırma işleminin gerçekleştirilmesi gerekmektedir. Bir 

denklemin ayrıklaştırılması, sonlu farklar, sonlu elemanlar veya sonlu hacim 

yöntemleri ile hesaplama bölgesinin ayrık nokta, eleman ya da hacimler ile ifade 

edilmesi ile gerçekleştirilebilir  (Ferziger ve Peric, 1999; Hoffman ve Chiang, 2000). 

Hesaplamalı çalışmada son yıllarda popülerliği çok artan ve pek çok yazılımda 

uygulanmış olan sonlu hacim ayrıklaştırması kullanılacaktır. 

 Akışkan akışını modelleyen taşınım denklemlerinin, uzayda sabit bir sonsuz 

küçük eleman ele alınarak, bu elemanın tüm yüzeylerinden yapılan momentum 

transferinin hesap edilmesi ile konservatif diferansiyel denklemler formunda eldesi 

mümkündür (Anderson, 1996). Sonlu hacim ayrıklaştırması, bu denklemlerin sonlu 

bir hacim boyunca entegre edilmesi esasına dayanmaktadır. Akışın ϕ gibi bir taşınım 

özeliğinin (örneğin sıcaklık) konveksiyon ve difüzyon taşınım denklemi kartezyen 

tansör notasyonunda, 
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şeklinde ifade edilebilir (Johnson, 1998). Burada; u üç ayrı yöndeki hızları, ϕ akışın 

herhangi bir taşınım özelliğini, Γ difüzyon katsayısını ve S kaynak terimini 

göstermektedir. Sade ve olabildiğince basit bir denklem formu elde etmek amacıyla, 

denklem daimi ve bir boyutlu formda yazılacak olursa, 

 

 ( ) S
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dφΓ
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d

dt
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
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Şekil 4.3. Hesaplamalı kontrol hacmi 

 

Bu denklem, Şekil 4.3.’de görülen kontrol hacmi boyunca integre edilirse, 

giriş ve çıkış yüzeylerinin birim değerde olduğu kabul edilelerek (Ae=Aw=1); 
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yazılabilir. Söz konusu denklemin sol tarafının integralden çıkarılması ile, 

 

 we

e

w

(ρρUφ(ρρUφ(UφUφ)
dx
dρ −=∫            (4.131.) 

 

ve sağ tarafının integralden çıkarılıp kaynak terimi bağımlı değişkenin fonksiyonu 

olarak lineerleştirilirse, 
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        (4.132.) 

 

elde edilir. Burada SU daha sonra cebrik denklemin sağında kalacak olan kaynak 

terimden gelen sabit sayıyı ve bağımlı değişkenin SP sabit sayıdan gelen katsayısını 



4. TEMEL DENKLEMLER VE TÜRBÜLANS MODELLERİ           Oğuz ŞİMŞEK 

48 

göstermektedir. Difüzyon terimleri genel olarak merkezi farklar ile interpole 

edilmektedirler  (Versteeg ve Malalasekera, 1995). Merkezi farklar kullanılacak 

olursa denklem (4.129.)’ nin ilk bileşeni,   

 

 
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e xδ
φφΓ
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şeklini alır. Konvektif terimler için, birinci derece ileriye doğru (upwind), merkezi 

farklar, QUICK (Quadratic Upwind Interpolation for Convective Kinematics) 

(Versteeg ve Malalasekera, 1995), MUSCLE (Monoton Ustream-Centered Schemes 

for Conservation Laws) (Blazek, 2001) ve değişik şemaları karıştırarak kullanan 

melez yapıda olanlar gibi pek çok farklı özelliklerde ayrıklaştırma şeması mevcuttur 

(Ferziger ve Peric, 1999; Hoffman ve Chiang, 2000). Örnek olarak, hesaplamalı 

analizlerde sıkça kullanılmakta olan “ikinci derece ileriye doğru” interpolasyon 

şeması ele alınacak olursa (Davidson, 2005), xδxδxδ we == kabulü yapılarak,   
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şeklinde yüzeylerdeki ϕ  değerleri belirlenebilir. Bu noktada, ϕ değerlerinin 

katsayılarının ağ örgüsü aralıkları δx ’in eşit olmadığı durumda farklı değerler 

alacaktır. Yüzeylerdeki ϕ değerleri denklem (4.66.) ve denklem (4.67.)’de yerlerine 

yazılacak olursa, 
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bulunur. Böylece; 

 

 ∑ +=+−+=
km

UkmkmUWWWWEEWWPP SφaSφaφaφaφa         (4.137.) 

 

şeklinde lineer bir denklem sistemi elde edilmiş olur. Buradaki km indisi P hacmine 

komşu hacimleri göstermektedir.  

 

4.2.3. Akışkan Hacimleri Yöntemi 

 

 Su-hava arakesitine sahip serbest yüzeylerin belirlenmesi için yazılımda 

akışkan hacimleri (VOF: Volume of Fluid) yöntemi kullanılmaktadır (Hirt ve 

Nichols, 1981). VOF yöntemi ile hücrelerin boş, tam veya kısmen suyla dolu olduğu 

belirlenir. Bu yöntemde hesaplama alanı üzerinde bir akışkan hacmi (F) tanımlanır. 

Şayet bir hücre tamamen akışkan ile dolu ise 1 değeri, tamamen boş ise sıfır değeri 

ve kısmen dolu ise hücrede kapladığı yüzde değerini alır Şekil 4.4..  

 
Şekil 4.4. Akışkan hacminin ağ üzerindeki dağılımı 
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 Serbest yüzey, bir eğime sahip ise bir hücredeki yüzeyin yerini ve eğimini 

belirlemek için kendisini çevreleyen hücreleri dikkate alan bir algoritma 

kullanılmaktadır. VOF yöntemi ile serbest yüzeyin izlenmesi üç kısımdan oluşur. 

Öncelikle serbest yüzeyin yeri bulunur. Daha sonra bu yüzey, su ve hava arasında 

keskin bir arakesit olarak belirlenir. Son olarak bu arakesite sınır şartları uygulanır. 

Arakesit üzerinde sıfır kayma gerilmesi ve sabit basınç sınır koşulları 

uygulanmaktadır. Akışkan hacmi fonksiyonu F’nin değişimi aşağıdaki diferansiyel 

denklem ile verilmektedir.  
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bu denklem ile F değeri akışkan ile birlikte hareket etmektedir 

 

4.2.4. Ağ Yakınsama İndeksi (GCI- Grid Convergence Index) 

 

 Sayısal çözümlerde seçilen sonlu eleman ağının etkisini incelemek için 

ASME (American Society of Mechanical Engineering) tarafından önerilen (Çelik ve 

ark., 2008) GCI (Grid Convergence Index) metodu kullanılacaktır. GCI, model 

çözümlerinin sayısal ayrıklaşmalara (numerical discretizations) duyarlılığını ortaya 

koymak için ilk olarak Roache (1994), tarafından önerilmiştir Bu metot temelde, 

farklı çözümlerin karşılaştırılmasını içeren, genelleştirilmiş Richardson 

Ekstrapolasyon yaklaşımına dayanır. Çözüm ağı yakınsaması ve belirsizliğinin 

tahmini için en az üç sonlu eleman ağ yapısı gereklidir (Roache, 1998).  

Buna göre: 
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belirlenir. (4.140.)’de bulunan, u2: d2 aralığıyla tanımlanan orta hassasiyetli ağ ile 

elde edilen hız değeri, u3: d3 aralığıyla tanımlanan hassas ağ ile elde edilen hız 

değeri, p: doğruluk mertebesidir. Roache (1994)’e göre r23, r12 ≥ 1.10 olmalıdır. Üç 

veya daha fazla ağ yapısı için güvenlik faktörü, 1.25 olarak önerilmektedir (Roache, 

1997). 

 Çözümlerde hassas ağ yapısından elde edilen sonuçların daha iyi olacağı 

bekleneceğinden, sadece GCIfine hesaplanması yeterli olacaktır. 
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5. SAVAK AKIMININ HAD İLE MODELLENMESİ 

 

 Son yıllarda Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemlerinde 

kaydedilen gelişmeler ve bunlarla bağlantılı ticari yazılımların çoğalması ile İnşaat 

Mühendisliği kapsamında yer alan birçok su yapısının tasarımında önemli kolaylıklar 

sağlanmıştır. Su akımı ile yapı etkileşiminin fiziksel modeller ile laboratuvar 

ortamında test edilmesi, öngörülen performans ölçütlerinin sağlanıp sağlanmadığı 

hakkında önemli bilgilerin edinilmesine yardımcı olduğu aşikardır. Sayısal 

modelleme ile akımın, kısa sürede ve ekonomik olarak çözülmesi ve tasarım 

işlemlerinin farklı koşullar için hızlı biçimde tekrarlanması mümkündür. Ancak 

HAD modellemelerinden elde edilen verilerin ne kadar gerçekçi olduğu ve 

kullanılabilirliği konusu, güncel tartışma konularından birini oluşturmaktadır. Bu 

bakımdan, sayısal bulguların deneylerle doğrulanmasına yönelik çalışmaların 

çoğaltılmasına ihtiyaç duyulmaktadır. Hesaplamalı Akışkanlar Dinamiği kapsamında 

Flotran, Fluent, Cobalt, Flow 3D, STAR CFD, v.b. birçok ticari paket program 

geliştirilmiştir. Bu çalışmada temel denklemlerin sayısal çözümü için ANSYS.12.1 

paket programı içerisinde bulunan Fluent modülü kullanılmıştır.  

 

5.1. Çözüm Bölgesi ve Sınır Şartları  

  

 Eğrisel geniş başlıklı savak ile etkileşim halindeki açık kanal akımının sayısal 

çözümü için kullanılan modelin çözüm bölgesinin geometrisi ve boyutları Şekil 5.1.’ 

de görülmektedir. Kullanılan koordinat sisteminin orijini, çözüm bölgesinin sol alt 

köşesi olarak alınmıştır. Çözüm bölgesinin üst sınırı, memba su seviyesinin biraz 

üstünde, alt sınırı ise kanal tabanı ve savak yüzeyinden geçmektedir. Alt sınırda sıfır-

hız duvar sınır şartı, yani u=v=0 kabulü yapılmıştır. İki farklı debi durumu için 

yapılan sayısal modelde, giriş sınır şartı olarak Durum 1 için, deneysel olarak ölçülen 

hız profili kullanılırken, Durum 2 için ise kesit ortalama hızı üniform olarak tatbik 

edilmiştir. Böylece her iki durumda sayısal yöntemin gücü test edilmeye çalışılmıştır. 

Kanal sonundaki serbest dökülme kesiti olan çıkış sınırında ve çözüm bölgesinin üst 

sınırında, basınç şartı p=0 değeri kullanılmıştır. Ayrıca I türbülans şiddeti ile ilgili 
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giriş sınır şartı olarak deneylerden alınan 0.10 (%10), yani yüksek türbülans şiddeti 

koşulu tanımlanmıştır.  

 

 
 
 
 
 
 
 
 

 
 

Şekil 5.1. Sayısal hesaplama bölgesi ve sınır şartları 

 
Zamana bağlı çözüm sürecinde, başlangıç şartı olarak, çözüm bölgesinin giriş 

sınırında doluluk oranı F=1 alınmıştır. 

 

5.2. Cidar Bölgesinin Modellenmesi 

 

Ansys-Fluent, cidar bölgesini modellemek için duvar fonksiyonu ve iki 

tabakalı bölge modeli seçeneklerini sunmaktadır. Bu çalışmada, cidara yakın 

bölgenin çözünürlüğü, yüksek ince ağ ile çözümlendiği iki tabakalı bölge modeli 

olarak ele alınmıştır. Kırkgöz ve Ardıçlıoğlu, y+ değerinin 10’dan küçük olması 

halinde hız dağılımının, viskoz alt tabakadaki lineer dağılıma uyduğunu rapor 

etmişlerdir. Bu kriter göz önünde bulundurularak, duvara yakın elemanların, y+≤10 

olacak şekilde boyutsuz cidar mesafesi değerlerine sahip olmalarına dikkat 

edilmiştir. Hata! Başvuru kaynağı bulunamadı..’de RNG türbülans modeli 

kullanılarak elde edilen y+ değerlerinin kanal boyunca değişimini göstermektedir. 

Şekilden de görüldüğü gibi, savak yapısının mansap yüzündeki bölge dışında, y+≤10 

durumu gerçekleşmiştir. 

 

  

Üst sınır  
p=0 

Çıkış sınırı 

p=0 
Alt sınır 

u=0, v=0 
Giriş sınırı 
u=u(y) 
v=0 m/s 
F=1 

y Çözüm bölgesi 

0.70 m   

 0.068 
0.70 1.00 m x 
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Şekil 5.2. RNG türbülans modeli ile elde edilen y+ değerinin kanal boyunca değişimi 

 

Standart k-ε ve RSM yöntemlerinde, katı sınırdaki kaymama koşulu ile 

birlikte, hareket ve süreklilik denklemlerinin duvara kadar integrasyonu, tatminkar 

olmayan sonuçlar vermektedir. Bu durumu aşabilmek için, iki tabakalı bölge modeli 

yaklaşımı yapılmaktadır. Bu modelde, türbülans viskozitesinin hesabı için, yüksek 

çözünürlükteki ağ yapısı ile birlikte, viskoziteden etkilenen bölgelerde (viskoz alt 

tabaka ve geçiş bölgesi) Jongen (1998) tarafından sunulan aşağıdaki denklem 

kullanılmaktadır: 

 

 layer2,ttenh,t )1( µλ−+µλ=µ εε                 (5.1.) 

 

Burada λε geçiş fonksiyonu olup türbülanslı bölge için 1, viskoz alt tabaka için 0 

değerine eşit olmaktadır. Ara bölgede ise aşağıdaki gibi hesap edilmektedir: 
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Burada )ky(Rey µρ=  cidar mesafesine dayalı Reynolds sayısı, 200Re*
y =  ve 

)98.0arctan(ReA y∆= . ∆Rey,  *
yRe  değerinin % 5 ila % 20 si arasında değişen 

değerler almaktadır. (5.1.) ifadesindeki µt, yüksek Reynolds bölgeleri için tanımlanan 

türbülans viskozitesidir. µt,2layer ise viskoziteden etkilenen bölgedeki türbülans 

viskozitesini temsil etmekte olup aşağıdaki gibi hesap edilmektedir (Wolfstein, 

1969): 
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kC mlayer2,t lµρ=µ                  (5.3.) 

 

(4.3.) denklemindeki ml  uzunluk ölçeği aşağıdaki şekilde ifade edilmektedir: 

 

)e1(yC ARe*
m

y µ−−= ll                       (5.4.) 

 

Burada Aµ= 70 ve 4/3* CC −
µκ=l . 

Viskoziteden etkilenen bölge için türbülans kinetik enerjisinin kayıp oranı ε ise 

aşağıdaki gibi belirlenmektedir: 

 

ε

=ε
l

2/3k                  (5.5.) 

 

(5.5.) ifadesinde yer alan εl  uzunluk skalası; 

 

)e1(yC ARe* y ε−
ε −= ll                  (5.6.) 

 

 şeklinde hesap edilmektedir ( Chen ve Patel, 1988). Burada *C2A l=ε  (Fluent 12.0). 

 

5.3. Sonlu Hacimler Hesap Ağı  

  

 Su-yapı etkileşiminin söz konusu olduğu akım problemlerinin sayısal 

hesaplamalarında, hesaplama ağı yapısının sonuçlar üzerinde etkili olduğu 

bilinmektedir. Bu çalışmadaki probleme uygun hesaplama ağının oluşturulmasında, 

edinilen deneyimlere bağlı olarak, katı sınırlara doğru ve yüzey profilinde hızlı 

değişimin söz konusu olduğu bölgelerde hesap ağı sıklaştırılmıştır. Akımın karakteri 

göz önüne alınarak, Şekil 5.1.’de verilen sayısal çözüm bölgesi, Hata! Başvuru 

kaynağı bulunamadı..’de görüldüğü gibi, 14 alt bölgeye ayrılmış, her bir alt bölgede 
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eleman sayısı yaklaşık olarak %50 ve %100 artırılmak suretiyle, lineer dörtgen 

elemanlardan oluşan 3 farklı yoğunluğa sahip ağ yapısı elde edilmiştir (Çizelge5.1.). 

 

 
Şekil 5.3. Sayısal modelin hesaplama ağında kullanılan alt bölgeler 

Çizelge 5.1. Üç farklı yoğunluktaki ağlar için bölgelerdeki eleman sayıları 
Bölge Ağ-1 Ağ-2 Ağ-3 Bölge Ağ-1 Ağ-2 Ağ-3 

I 40x50 60x75 80x100 VIII 50x100 75x150 100x200 

II 40x40 60x60 80x80 IX 10x50 15x75 20x100 

III, IV 25x40 40x60 50x80 X,XI 10x25 15x40 20x50 

V,VI 25x40 40x60 50x80 XII, XIII 10x25 15x40 20x50 

VII 40x40 60x60 80x80 XIV 10x100 15x150 20x200 

 

5.4. GCI (Ağ yakınsama indeksi) Uygulaması 

 

Çizelge 5.1., sayısal hesaplamalarda kullanılan üç farklı ağ yapısı için eleman 

sayılarını göstermektedir. Sayısal çözüm alanındaki ağ yapısının yeterli sıklıkta olup 

olmadığı, bir başka ifadeyle ağ yapısından bağımsızlaştırılmış sayısal çözümler elde 

etmek amacıyla ele alınan üçlü ağ sistemi itibariyle yapılan sıklaştırmanın 

uygunluğu, 3. bölümde anlatılan GCI (Grid convergence index - Ağ yakınsama 

indeksi) yöntemiyle test edilmiştir  

 Çözüm bölgesi içerisinde ağ yoğunluğunun uygun olup olmadığı farklı 

kesitlerde bulunan hız profilleri üzerinde uygulanmıştır. Savak membasında 0.6 m’ 

de, savak üzerinde 1.06 m’ de ve savak mansabında ise 1.70 m’ de bulunan hız 

profilleri üzerinde RNG türbülans modeli ile Çizelge 5.1. de verilen hesap ağları için 

çözüm yapılmıştır. Üç kesit için elde edilmiş GCI sonuçları, Çizelge 5.2., Çizelge 

5.3. ve Çizelge 5.4.’ de verilmiştir. 
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Çizelge 5.2. x=0.60 m için GCI uygulaması 
h(mm) 2 4 10 20 40 60 100 120 
d1 (m) 0.0010 0.0012 0.0020 0.0033 0.0053 0.0076 0.0033 0.0010 
d2 (m) 0.0007 0.0008 0.0013 0.0021 0.0037 0.0051 0.0023 0.0007 
d3 (m) 0.0005 0.0006 0.0010 0.0016 0.0027 0.0039 0.0017 0.0005 
u1 (m/s) 0.1685 0.1880 0.1988 0.2038 0.2086 0.2116 0.2150 0.2156 
u2 (m/s) 0.1685 0.1873 0.1984 0.2037 0.2087 0.2117 0.2151 0.2156 
u3 (m/s) 0.1693 0.1875 0.1984 0.2036 0.2086 0.2117 0.2152 0.2157 
e12 0.0000 0.0007 0.0004 0.0002 0.0001 0.0001 0.0001 0.0001 
e23 0.0009 0.0002 0.0000 0.0001 0.0001 0.0000 0.0001 0.0001 
r12 1.4953 1.5016 1.5142 1.5269 1.4222 1.4891 1.4103 1.4953 
r23 1.3313 1.3340 1.3394 1.3449 1.3782 1.3286 1.3726 1.3313 
p -16.893 3.3174 6.3193 1.1474 -0.4391 5.6836 1.3988 -1.9415 
GCIFine -0.0065 0.0007 0.0000 -0.0004 -0.0003 -0.0001 -0.0004 -0.0004 
 

Çizelge 5.3. x=1.06 m için GCI uygulaması 
h(mm) 1.25 2 4.5 7 12 22 32 37 
d1 (m) 0.0004 0.0005 0.0006 0.0007 0.0010 0.0016 0.0021 0.0023 
d2 (m) 0.0003 0.0003 0.0004 0.0005 0.0007 0.0010 0.0014 0.0016 
d3 (m) 0.0002 0.0002 0.0003 0.0004 0.0005 0.0008 0.0011 0.0012 
u1 (m/s) 0.5921 0.6332 0.6668 0.6709 0.6721 0.6695 0.6650 0.6624 
u2 (m/s) 0.5930 0.6335 0.6667 0.6709 0.6721 0.6699 0.6658 0.6635 
u3 (m/s) 0.5948 0.6361 0.6673 0.6710 0.6719 0.6697 0.6657 0.6635 
e12 0.0009 0.0003 0.0000 0.0000 0.0001 0.0004 0.0009 0.0012 
e23 0.0018 0.0027 0.0005 0.0001 0.0002 0.0002 0.0002 0.0000 
r12 1.4432 1.4970 1.5279 1.4609 1.5078 1.5139 1.4910 1.4971 
r23 1.3453 1.3337 1.3467 1.3380 1.3369 1.3387 1.3281 1.3285 
p -2.6649 -7.7406 -9.5344 -3.8736 -3.9969 0.7373 3.6360 9.0635 
GCIFine 0.0070 -0.0059 -0.0011 -0.0001 -0.0004 -0.0004 -0.0003 -0.0001 
 

Çizelge 5.4. x=1.70 m için GCI uygulaması 
h(mm) 1 3 5 7 9 13 15 17.5 
d1 (m) 0.0003 0.0004 0.0006 0.0008 0.0009 0.0012 0.0014 0.0015 
d2 (m) 0.0002 0.0003 0.0004 0.0005 0.0006 0.0008 0.0009 0.0010 
d3 (m) 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 
u1 (m/s) 1.0171 1.2078 1.3026 1.3605 1.3933 1.4193 1.4233 1.4246 
u2 (m/s) 1.0153 1.2108 1.3062 1.3632 1.3957 1.4226 1.4274 1.4295 
u3 (m/s) 1.0131 1.2171 1.3104 1.3656 1.3974 1.4239 1.4286 1.4307 
e12 1.0170 1.2075 1.3023 1.3601 1.3929 1.4187 1.4226 1.4238 
e23 0.0019 0.0030 0.0037 0.0028 0.0024 0.0033 0.0041 0.0049 
r12 1.4559 1.5350 1.5382 1.5026 1.5041 1.5072 1.5087 1.4723 
r23 1.3138 1.2993 1.3006 1.3345 1.2863 1.3365 1.3371 1.3211 
p -1.4180 -3.8196 -1.8179 -0.5693 -0.2176 1.6138 2.5070 3.0021 
GCIFine -0.0082 -0.0066 -0.0039 -0.0022 -0.0014 -0.0012 -0.0010 -0.0011 
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Ağ 3 kullanılarak yapılan analizler sonucunda hesaplanan akım hızlarındaki 

hataların kabul edilebilir değerlere yakınsadığı görülmüş (%2’den küçük) ve böylece, 

hesaplama hassasiyetinin ağ yoğunluğundan bağımsızlaştığı kanaatine varılmıştır. 

Hesap ağının sıkı olması doğrudan sayısal modellemede kullanılan zaman adımını 

etkileyen bir faktördür. Ağ yapısının sıkı olması nedeniyle zaman adımı RSM hariç 

tüm türbülans modellerinde Δt=0.0001s, RSM türbülans modelinde Δt=0.00005s 

olarak seçilmiştir. Zaman adımı ve ağ yapısına bağlı olarak Quad Core 2.6 GHZ 

işlemcili 4GB RAM özelliklerine sahip bir bilgisayar ile 20 s çözüm elde etmek için 

geçen süre, yaklaşık 7 gün olmaktadır. Özellikle RSM türbülans modelinde bu süre 

15 güne kadar çıkabilmektedir. 
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6. BULGULAR VE TARTIŞMALAR 

 

6.1 Hesaplanan Hız Profilleri 

 

Türbülans modellerinin doğrulanması bağlamında, deneysel ve sayısal hesap 

bulgularının farklı modeller için niceliksel olarak karşılaştırılmasında Ortalama 

Karesel Hata (OKH) değeri ölçüt olarak kullanılmıştır: 

 

2
hd

N

1n
)uu(

N
1OKH −= ∑

=
                (6.1.) 

 

Burada, du ve hu  sırasıyla deneysel ve hesaplanan ortalama hız değerleri, N 

kesit derinliğindeki noktasal ölçüm sayısıdır. Çizelge 6.1. ve Çizelge 6.2., iki farklı 

debi durumu için, kanalın farklı kesitlerinde bu çalışmada kullanılan türbülans 

modelleri için hesaplanan OKH değerlerini göstermektedir. Çizelgelerde görülen 

parantez içindeki rakamlar, OKH değerleri baz alınarak, ilgili türbülans modeli 

bulgularının, deneysel bulgulara olan yakınlığı ile ilgili sıralamayı göstermektedir.  

Çizelge 6.l’den de görüldüğü gibi, küçük debi koşullarında,  RNG türbülans 

modeli, savak yapısının membasında ve mansabında yani kritik-altı ve kritik-üstü 

üniform akım bölgelerinde, diğer modellerden daha iyi sonuçlar vermektedir. Savak 

üzerindeki kesitlerde (x=0.8, 0.90, 0.95, 1.00, 1.05, 1.06, 1.10, 1.15, 1.20 ve 1.30 m) 

ise, yani, akımda hızlı şekil değiştirmelerin ve eğriselliğin baskın olduğu yerlerde, 

herhangi bir modelin belirgin şekilde üstünlük sağladığı görülmemektedir. Bununla 

birlikte SKE ve RNG türbülans modellerinden elde edilen sayısal bulguların, 

deneysel ölçümlere daha fazla yaklaştığını söylemek mümkündür.  

Büyük debi koşullarında, savak membasında yani kritik-altı üniform akım 

bölgesinde, RSM türbülans modelinin bariz üstünlüğü, Çizelge 6.2’de de 

görülmektedir. Ancak savak yapısı üzerinde ve kritik-üstü akım bölgesinde, herhangi 

bir türbülans modelinin belirgin bir üstünlüğünden söz etmek mümkün 

görünmemektedir. Bununla birlikte, ortalama karesel hatalarının ortalamaları göz 

önüne alındığında, savak yapısı üzerinde SKE türbülans modeli daha iyi görünürken; 
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savak mansabında yani kritik-üstü üniform akım bölgesinde RNG türbülans modeli 

daha iyi sonuçlar vermektedir. Bu çalışmada kullanılan türbülans modellerinin başarı 

durumları, Çizelge 6.3’te verilen ortalama OKH değerlerinden de görülebilir. Bu 

değerlerden, her iki debi koşullarında, kritik-altı rejimden kritik-üstü rejime geçişin 

söz konusu olduğu savak civarı karmaşık akım bölgesini de içine alan akım 

bölgesinin tümü için, RNG, RKE, SST, SKE ve RSM, şeklinde bir başarı sıralaması 

yapmak mümkündür. Diğer taraftan, literatürde eğri yörüngeli akımlarda daha iyi 

sonuç verdiği belirtilen RSM türbülans modelinin bu çalışmada kullanılan akım 

koşullarında beklenen ölçüde başarılı olmamasına karşın, SKE’den türetilmiş RNG 

ve RKE modellerinin genel olarak daha başarılı olduğu görülmektedir. 

Şekil 6.1. ve Şekil 6.2.’de, kanalın farklı kesitlerinde ölçülen yatay hız 

profilleri ile bu ölçümlere OKH değeri bakımından en yakın iki farklı türbülans 

modelinden hesaplanan hız profilleri verilmiştir. Şekilde görüldüğü gibi, her bir 

kesitte birinci sırada yer alan türbülans modeli bulguları, kanalın başlangıç kesitleri 

hariç, deneylerle gayet iyi uyum sağlamaktadır. Kanal başlangıcında söz konusu olan 

bu farklılıkların, sayısal hesaplamalarda giriş sınır şartı olarak deneyden alınan 

hızların ancak bir fonksiyon yardımıyla girilebilmesi yani noktasal olarak hız 

değerlerinin girilememesinden kaynaklanabileceği tahmin edilmektedir. Buna ilave 

olarak, hazneden kanala girişte, kanal tabanında yer alan düzensizliklerin, sayısal ve 

deneysel hız profilleri arasında farklılıkların oluşmasına neden olduğu da 

düşünülmektedir.  
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Çizelge 6.1. Durum 1 için farklı türbülans modellerine göre OKH değerleri 

Kesit yerleri, x (m) SKE RNG RKE SST RSM 

Membada 

0,3 0.00120(3) 0.00110(1) 0.00121(4) 0.00111(2) 0.00130(5) 

0,45 0.00079(3) 0.00064(1) 0.00082(4) 0.00068(2) 0.00110(5) 

0,6 0.00094(3) 0.00079(1) 0.00097(4) 0.00086(2) 0.0013(5) 

0,65 0.00088(3) 0.00071(1) 0.00090(4) 0.00079(2) 0.0013(5) 

0,7 0.00033(1) 0.00042(2) 0.00180(5) 0.00130(4) 0.00100(3) 

Ort. OKH  0.00083(2) 0.00073(1) 0.00114(4) 0.00095(3) 0.00120(5) 

Savak 

0,8 0.00015(2) 0.00014(1) 0.00024(4) 0.00019(3) 0.00067(5) 

0,9 0.00022(2) 0.00020(1) 0.00023(3) 0.00024(4) 0.00041(5) 

0,95 0.00007(2) 0.00006(1) 0.00009(4) 0.00008(3) 0.00052(5) 

1,00 0.00024(1) 0.00037(3) 0.00044(4) 0.00027(2) 0.00190(5) 

1,05 0.00035(1) 0.00046(3) 0.00066(4) 0.00044(2) 0.00190(5) 

1.06(hkr) 0.00143(1) 0.00160(3) 0.00164(4) 0.00145(2) 0.00270(5) 

1,10 0.00039(3) 0.00028(2) 0.00026(1) 0.00030(4) 0.00053(5) 

1,15 0.00180(5) 0.00150(2) 0.00151(3) 0.00130(1) 0.00152(4) 

1,20 0.00017(1) 0.00020(2) 0.00023(3) 0.00066(4) 0.00170(5) 

1,30 0.00370(1) 0.00375(3) 0.00373(2) 0.00600(5) 0.00390(4) 

Ort. OKH  0.00101(3) 0.00086(1) 0.00090(2) 0.00108(4) 0.00157(5) 

Mansapda 

1,40 0.00140(3) 0.00099(2) 0.00089(1) 0.00430(5) 0.00320(4) 

1,45 0.00110(4) 0.000913(2) 0.000863(1) 0.00320(5) 0.000941(3) 

1,50 0.00092(3) 0.00029(1) 0.00091(2) 0.00200(5) 0.00190(4) 

1,70 0.00170(4) 0.00059(1) 0.00088(2) 0.00120(3) 0.00260(5) 

1,90 0.00320(4) 0.00250(3) 0.00240(2) 0.00200(1) 0.00560(5) 

2,10 0.00370(4) 0.00046(1) 0.00077(2) 0.00120(3) 0.01800(5) 

2,20 0.00450(5) 0.00110(1) 0.00140(2) 0.00240(4) 0.00230(3) 

Ort. OKH  0.00236(4) 0.00098(1) 0.00116(2) 0.00233(3) 0.00493(5) 
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Çizelge 6.2. Durum 2 için farklı türbülans modellerine göre OKH değerleri 

Kesit yerleri, x (m) SKE RNG RKE SST RSM 

Membada 

0,3 0.00200(4) 0.00191(3) 0.00190(2) 0.00201(5) 0.00110(1) 

0,45 0.001732) 0.00161(2) 0.00160(1) 0.00170(3) 0.00171(4) 

0,6 0.00181(5) 0.00171(3) 0.00170(2) 0.00180(4) 0.00120(1) 

0,65 0.00460(3) 0.00440(2) 0.00470(4) 0.00471(5) 0.00270(1) 

0,7 0.00490(2) 0.00650(3) 0.00830(5) 0.00670(4) 0.00220(1) 

Ort. OKH  0.00301(2) 0.00323(3) 0.00364(5) 0.00338(4) 0.00178(1) 

Savak 

0,8 0.00760(2) 0.00761(3) 0.00764(4) 0.00767(5) 0.00740(1) 

0,9 0.01281(3) 0.01283(4) 0.01284(5) 0.0126(2) 0.01210(1) 

0,95 0.00610(3) 0.00619(5) 0.00612(4) 0.00580(2) 0.00560(1) 

1,00 0.00160(2) 0.00171(4) 0.00170(3) 0.00190(5) 0.00150(1) 

1,05 0.00230(1) 0.00243(3) 0.00248(4) 0.00231(2) 0.00390(5) 

1.06(hkr) 0.00240(1) 0.00260(3) 0.00250(2) 0.00270(4) 0.00350(5) 

1,10 0.00286(3) 0.00285(2) 0.00280(1) 0.00290(4) 0.00420(5) 

1,15 0.00220(3) 0.00230(5) 0.00223(4) 0.00155(1) 0.00160(2) 

1,20 0.00530(1) 0.00534(2) 0.00540(3) 0.00720(5) 0.00650(4) 

1,30 0.00390(1) 0.00393(3) 0.00391(2) 0.00640(5) 0.00396(4) 

Ort. OKH  0.00471(1) 0.00478(3) 0.00476(2) 0.00510(5) 0.00503(4) 

Mansapda 

1,40 0.00610(4) 0.00570(3) 0.00572(3) 0.00230(1) 0.00530(2) 

1,45 0.00900(4) 0.00850(3) 0.00920(5) 0.00540(1) 0.00760(2) 

1,50 0.00440(5) 0.00350(3) 0.00360(4) 0.00320(2) 0.00090(1) 

1,70 0.00990(5) 0.00710(3) 0.00713(4) 0.00520(2) 0.00480(1) 

1,90 0.00218(2) 0.00250(4) 0.00220(3) 0.00213(1) 0.00920(5) 

2,10 0.00370(1) 0.00460(3) 0.00450(2) 0.00560(4) 0.01270(5) 

2,20 0.00632(4) 0.00330(1) 0.00334(2) 0.00360(3) 0.00810(5) 

Ort. OKH  0.00594(4) 0.00491(1) 0.00510(3) 0.00495(2) 0.00694(5) 
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Çizelge 6.3. Tüm kanal boyunca türbülans modellerinin başarı sırası 
Durum Kesit SKE RNG RKE SST RSM 

Durum 1 
Memba 2 1 4 3 5 

Savak 3 1 2 4 5 
Mansap 4 1 2 3 5 

Durum 2 
Memba 2 3 5 4 1 
Savak 1 3 2 5 4 

Mansap 4 1 2 3 5 

Durum 1 Tüm Kesit 
4 1 2 3 5 

Durum 2 4 1 2 3 5 
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Şekil 6.11 Durum 1 için kanalın farklı kesitlerinde deneysel ve hesaplanan hız 

profilleri 
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Şekil 6.1. (Devam) 
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Şekil 6.1. (Devam)  
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Şekil 6.1. (Devam)  
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Şekil 6.1. (Devam)  
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Şekil 6.1. (Devam)  
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Şekil 6.12. Durum 2 için kanalın farklı kesitlerinde deneysel ve hesaplanan hız 

profilleri 
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Şekil 6.2. (Devam)  
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Şekil 6.2. (Devam)  
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Şekil 6.2. (Devam)  
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Şekil 6.2. (Devam)  
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Şekil 6.2. (Devam)  
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6.2. Hesaplanan Akım Çizgileri 

 

Şekil 6.3. ve Şekil 6.4’te, sırasıyla Durum 1 ve Durum 2 için, eğrisel geniş 

başlıklı savak akımının farklı türbülans modelleriyle yapılan sayısal 

hesaplamalarından elde edilen akım çizgileri görülmektedir. Bu çalışmada kullanılan 

türbülans modellerinden elde edilen akım çizgileri şekil itibariyle birbirlerine 

benzemektedirler. Savak yapısının hemen ön ve arkasında sınır tabakası ayrılması 

tüm modeller tarafından yakalanmakla birlikte, çok küçük boyutlarda olduğu için 

şekillerde görülememektedir. Akım çizgileri, hızının düşük olduğu kritik-altı bölgede 

seyrek iken, rölatif olarak hızın daha büyük olduğu kritik-üstü bölgede daha sık bir 

görünüme bürünmüştür. Akım çizgileri topolojisinden, savak yapısının hemen önü 

itibari ile iki boyutlu bir akımın söz konusu olduğu ve bunun savak yapısı bitimine 

kadar devam ettiği de görülebilmektedir.  
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(a) SKE 

 
(b) RNG 

 
(c) RKE 

 
(d) SST 

 
(e) RSM 

Şekil 6.13. Durum 1 için farklı türbülans modelleri ile hesaplanan akım çizgileri 
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(a) SKE 

 
(b) RKE 

 
(c) RNG 

 
(d)RSM

 
(e) SST 

Şekil 6.14.Durum 2 için farklı türbülans modelleri ile hesaplanan akım çizgileri 

 

6.3. Deneysel ve Hesaplanan Su Yüzü Profilleri 

 

Bu çalışmadaki sayısal hesaplamalarda, su yüzü profilinin belirlenmesinde 

Akışkan Hacimleri (VOF) yöntemi kullanılmıştır. Çizelge 6.4.’te, bu çalışmada 

kullanılan türbülans modelleriyle hesaplanan su yüzü profilleri için OKH değerleri 
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verilmiştir. Tablodaki değerlere göre, su yüzü profilinin sayısal hesaplamalarında 

kullanılan türbülans modelleri için elde edilen başarı sıralaması, akım hızlarının 

hesaplanmasındaki başarı sıralaması ile benzerlik göstermektedir. Şekil 6.5.’de ve 

Şekil 6.6.’da, sırasıyla Durum 1 ve Durum 2 için, en iyi üç modelden bulunan 

profillerin deney ile karşılaştırılması verilmiştir. Durum 1 için başarı sıralaması 

RNG, RKE, SKE iken Durum 2 için ise bu sıralama RNG, SKE, SST şeklindedir. 

Her iki akım koşulunda da RNG türbülans modeli en iyi model olarak gözükmekle 

birlikte, OKH değerleri incelendiğinde aralarındaki farkların çok küçük olması 

nedeniyle, tüm türbülans modellerinin su yüzü profili hesaplamalarında başarılı 

olduğu söylenebilir. 

 

Çizelge 6.4. Farklı türbülans modelleriyle hesaplanan su yüzü profili için OKH 
değerleri 

Türbülans 
modeli SKE RNG RKE SST RSM 

Durum 1  5.10x10-6 4.88x10-6 4.98x10-6 6.73x10-6 1.7x10-5 

Durum 2  5.45x10-6 5.24x10-6 5.57x10-6 5.48x10-6 6.04x10-6 

 

 

 

 
Şekil 6.15. Durum 1 için deneysel ve hesaplanan su yüzü profilleri 

 



6.BULGULAR VE TARTIŞMALAR                                 Oğuz ŞİMŞEK 

82 

 

 

 
Şekil 6.16. Durum 2 için deneysel ve hesaplanan su yüzü profilleri 

 

6.4. Deneysel Hız Profilleri 

Şekil 6.7. ve Şekil 6.8.’de, sırasıyla Durum 1 ve Durum 2 için, Lazer Doppler 

Anemometre ile elde edilen kanal boyunca farklı kesitlerdeki yatay hız bileşeninin 

derinlik boyunca değişimi ile farklı derinliklerdeki anlık hız değerlerinin zamana 

bağlı değişimleri sunulmuştur. Bu çalışmada, anlık hız değerlerinin kayıt süresi, daha 

önce de ifade edildiği gibi, 60 s olarak seçilmiştir. Bu şekillerden, aşağıda maddeler 

halinde sunulan sonuçlar çıkarılmıştır: 

• Anlık hızların zamana bağlı değişimlerindeki genliklerin yüksek 

olması(hız sapınçlarının büyük olması) türbülans şiddetinin fazla, küçük olması 

(hız sapınçlarının küçük olması) ise türbülans şiddetinin düşük olmasını 

göstermektedir. 

• Savak yapısının memba ve mansabındaki anlık hız değişimlerinin 

zamana bağlı değişimlerindeki genliklerin karşılaştırılmasından, akım hızının 

yüksek olduğu kritik-üstü bölgede türbülans şiddetinin daha yüksek ve viskoz alt 

tabakanın daha ince olduğunu; mansap bölgesinde ise bunun tersi durumun söz 

konusu olduğunu göstermektedir. 

• Herhangi bir kesit için anlık hızların derinlik boyunca değişimleri göz 

önüne alındığında, katı sınıra yakın bölgedeki bir noktada türbülans şiddeti 
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maksimum bir değere ulaşmakta ve su yüzüne doğru ilerledikçe türbülans 

şiddetinin azalmakta olduğu görülebilmektedir.  

• Yine katı sınıra yakın bölgelerde, anlık hızların zamana bağlı 

değişimlerinden, geçiş bölgesinde kararsız bir durumun yani hem türbülans hem 

de moleküler viskozitenin etkili olduğu söylenebilir. Su yüzüne doğru ilerledikçe 

türbülanslı ve kararlı bir bölgeye doğru ilerlenmiş olmaktadır. Ortalama çizgisi 

üzerindeki salınımsız (hız sapınçlarının görülmediği) bölgeler, moleküler 

viskozitenin hakim olduğu, yani akımın laminer karakterde olduğu bölgelerdir. 

• Anlık hız dağılımlarının zamana bağlı değişimlerinin 

karşılaştırılmasından, Durum 2’deki türbülans şiddetleri Durum 1’dekilere 

kıyasla daha büyüktür. Bu, kritik-altı rejimden kritik-üstü rejime geçişin söz 

konusu olduğu savak bölgesini de içine alan akım bölgesinin tümü için geçerlidir.  
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Şekil 6.17. Durum 1 için kanalın farklı kesitlerindeki deneysel hız profilleri ile anlık 

hız değerlerinin zamansal değişimleri 
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Şekil 6.7. (Devam)  
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Şekil 6.7. (Devam)  
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Şekil 6.7. (Devam)  
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Şekil 6.7. (Devam)  
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Şekil 6.7. (Devam)  
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Şekil 6.7. (Devam)  
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Şekil 6.18. Durum 2 için kanalın farklı kesitlerindeki deneysel hız profilleri ile anlık 

hız değerlerinin zamansal değişimleri 
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Şekil 6.8. (Devam)  
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Şekil 6.8. (Devam)  
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Şekil 6.8. (Devam)  
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Şekil 6.8. (Devam)  
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Şekil 6.8. (Devam)  

 



6.BULGULAR VE TARTIŞMALAR                                 Oğuz ŞİMŞEK 

97 

 

 

Şekil 6.8. (Devam)  
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6.5. Logaritmik Hız Dağılımı 

 

Şekil 6.9. ve Şekil 6.10.’da sırasıyla Durum 1 ve Durum 2 için eğrisel geniş 

başlıklı savak mansabında, x=1.45, 1.50, 1.70, 1.90, 2.10 ve 2.20 m kesitlerinde 

ölçülen akım hızlarının logaritmik bölgedeki dağılımı gösterilmiştir. Gelişmekte olan 

akım bölgesi için ölçülmüş deneysel dataların, sınır tabakasının türbülanslı iç 

bölgesinde, von Karman-Prandtl tarafından verilen ve duvar kanunu (law of the wall) 

olarak bilinen logaritmik hız dağılımı ile uyumlu olduğu görülmektedir. Bu durum 

her iki akım koşulu için de geçerlidir. u*y/ν≤10 olduğu yani lineer hız dağılımının 

söz konusu olduğu bölgede, LDA ile ölçümler gerçekleştirilemediğinden bu bölge 

için deneysel dataların dağılımı sunulamamıştır.  

 

Şekil 6.19. Durum 1 için logaritmik duvar kanunu dağılımı 
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Şekil 6.20. Durum 2 için logaritmik duvar kanunu dağılımı 
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7. SONUÇLAR VE ÖNERİLER 

 

Eğrisel geniş başlıklı savak akımını idare eden temel denklemler, SKE, RNG, 

RKE, SST ve RSM türbülans modelleri kullanılarak, sonlu hacimler yöntemine 

dayalı ANSYS-Fluent paket programı ile çözülmüştür. Serbest su yüzünün profili 

akışkan hacimleri (VOF) yöntemi ile hesaplanmıştır. İki farklı akım koşulları için 

hesaplanan akım hızları ve su yüzü profilleri, deneysel bulgularla karşılaştırılmıştır. 

Deneysel hız alanı, bir boyutlu Lazer Doppler Anemometresi (LDA) ile ölçülmüştür. 

Ortalama OKH değerlerine göre, her iki debi koşullarında, kritik-altı rejimden 

kritik-üstü rejime geçişin söz konusu olduğu savak civarı karmaşık akım bölgesini de 

içine alan akım bölgesinin tümü için, sayısal hızların deneysel ölçümlere yakınlığı 

bağlamında, RNG, RKE, SST, SKE ve RSM, şeklinde bir başarı sıralaması yapmak 

mümkündür. Bu çalışmada kullanılan türbülans modellerinden elde edilen akım 

çizgileri şekil itibariyle birbirlerine benzemektedirler. 

VOF yöntemi kullanılarak elde edilen hesaplanan su yüzü profilinin sayısal 

hesaplamalarında kullanılan türbülans modelleri için elde edilen başarı sıralaması, 

akım hızlarının hesaplanmasındaki başarı sıralaması ile benzerlik göstermektedir. 

Her iki akım koşulunda da RNG türbülans modeli en iyi model olarak gözükmekle 

birlikte, su yüzü profili için hesaplanmış OKH değerleri incelendiğinde, tüm 

türbülans modellerinin su yüzü profili hesaplamalarında başarılı olduğu söylenebilir. 

Sayısal çözüm alanındaki ağ yapısının yeterli sıklıkta olup olmadığı, bir başka 

ifadeyle ağ yapısından bağımsız sayısal çözümler elde etmek amacıyla ele alınan 

üçlü ağ sisteminde yapılan sıklaştırmanın uygunluğu, GCI (Grid convergence index-

Ağ yakınsama indeksi) yöntemiyle test edilmiştir. Sayısal modellemede, katı sınır 

sürtünmelerinden etkilenen yerlerde ve yüzey profilinde hızlı değişimin görüldüğü 

bölgelerde ağ yapısında uygulanan sıklaştırmaların, sayısal hesap bulgularını olumlu 

yönde etkilediği de görülmüştür 

Anlık hızların derinlik boyunca değişimleri göz önüne alındığında, türbülans 

şiddetinin maksimum değere katı sınıra yakın bölgedeki bir noktada ulaştığı ve su 

yüzüne doğru ilerledikçe türbülans şiddetinin azaldığı görülmüştür. Bununla birlikte 

katı sınıra yakın bölgelerde, hem türbülans hem de viskozite etkilerinin görüldüğü 
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geçiş bölgesi söz konusu iken, su yüzüne doğru ilerledikçe, bunun yerini kararlı ve 

türbülanslı bir akım yapısı almaktadır. Ayrıca türbülans şiddeti, eğrisel geniş başlıklı 

savak yapısının membasından mansabına doğru gidildikçe, türbülans şiddeti 

artmaktadır. Benzer şekilde, akımın debisi arttıkça türbülans şiddeti de artmaktadır. 

Savak mansabında gelişmekte olan akım koşulları için ölçülen deneysel 

dataların, sınır tabakasının türbülanslı iç bölgesinde, duvar kanunu olarak bilinen 

logaritmik hız dağılımı ile uyumlu olduğu görülmüştür. 
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