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ABSTRACT

CONTROL ELECTRONICS FOR MEMS GYROSCOPES AND ITS IMPLEMENTATION
IN A CMOS TECHNOLOGY

Eminoğlu, Burak

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Tayfun Akın

February 2011, 129 pages

This thesis, for the first time in literature, introduces a comprehensive study about analog

controller designs for MEMS vibratory gyroscopes. A controller of a MEMS gyroscope is

mandatory for robust operation, which is insensitive to sensor parameters and ambient con-

ditions. Errors in the controller design not only deteriorate transient performance, such as

settling time and overshoot, but also cause performance degradation due to stability problems.

Accordingly, true controller design for a gyroscope is critical work in terms of functionality

and system performance. This thesis gives details for modeling, analysis of closed-loop sys-

tems, and design procedure for drive and sense modes. Controller loops are implemented both

with discrete components and in a CMOS technology as an integrated circuit. Simulation and

test results verify the modeling, analysis, and design procedure discussed in this thesis.

Drive mode system developed previously at METU is optimized by taking circuit imperfec-

tions into account, which results in an improved transient performance of 50 msec settling

time with no overshoot for a 4µm drive mode oscillation amplitude. This system has a 60◦

phase margin with the help of the pole-zero cancellation technique. In addition, a new gener-
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ation and simple drive mode controller for tactical grade applications is designed and verified

with a moderate transient performance.

Two different sense mode controller design procedures are also developed according to a new

base-band equivalent model derived for mismatch operation, as a new contribution to the

literature. Firstly, a PID controller is designed for low frequency separation between the drive

and sense modes of the gyroscope. Secondly, an integral controller is used for moderate and

high mismatch amount. The controller system designed with the new base-band equivalent

model improves the linearity, angle random walk, and bias instability by factors of 4, 9, and

3, respectively.

Proposed drive and sense mode controllers are also designed and implemented using a 0.6µm

standard CMOS process. These chips are the first functional chips developed at METU de-

signed for MEMS gyroscopes. Functionality of the proposed three systems, i.e., conventional

drive mode controller, new generation drive mode controller, and sense mode controller, are

verified with tests. The first prototypes result in 0.033 ◦/
√

hr angle random walk and 3 ◦/hr

bias instability for open-loop operation, which is very promising and can be improved even

further in future designs.

Keywords: MEMS gyroscopes, drive mode controller, sense mode baseband equivalent model,

CMOS controller design, analog force feedback
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ÖZ

MEMS DÖNÜÖLÇERLER İÇİN KONTROL ELEKTRONİĞİ VE CMOS
TEKNOLOJİSİNDE GERÇEKLEŞTİRİLMESİ

Eminoğlu, Burak

Yüksek Lisans, Elektrik ve Elektronik Mühendisliğ Bölümü

Tez Yöneticisi : Prof. Dr. Tayfun Akın

Şubat 2011, 129 sayfa

Bu tez literatürde ilk defa MEMS dönüölçerler ile ilgili kapsamlı bir çalışmayı sunmaktadır.

MEMS dönü ölçerlerde kontrol, sensör parametrelerinden ve ortam koşullarında bağımsız

çalışma için zorunludur. Kontrolcü tasarımlarındaki hatalar sistemin geçiş zamanındaki per-

formansını etkilemek ile beraber kararsızlık gibi fonksiyonel sorunlara da yol açabilir. Buna

bağlı olarak, doğru kontrolcü tasarımı işlev ve sistem performansı acısından kritik rol al-

maktadır. Bu tez, sürüş ve algılama modu kapalı döngü sistemleri için modelleme, sis-

tem analizi ve kontrolcü tasarımı konularında detaylı bilgiler vermektedir. Kapalı döngüler

hem ayrık elemanları kullanarak, hem de CMOS teknolojisinde tümleşik devreler biçiminde

oluşturulmuştur. Simülasyon ve test sonuçları da tezde sunulan modelleme, analiz ve tasarım

çalışmalarını desteklemektedir.

ODTÜ’de daha önce gerçekleştirilmiş sürüş modu devrelerden gelen kusurlar da hesaba ka-

tılarak optimize edilmiştir. Bu optimizasyonla 4µm sürüş modu hareketi için 50 ms yatışma

zamanı ve 0 hedefi aşma sonuçlarına ulaşılmştır. 60◦ faz marjı kutup-sıfır çıkarma metodu ile

elde edilmiştir. Buna ek olarak, orta seviye geçiş performansı için yeni nesil ve basit sürüş
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modu kontrolcü sistemi taktik seviye uygulamaları için tasarlanmıştır.

Literatürde ilk defa sunulan algılama modunun ana-banttaki eşdeğer modeli kullanılarak, iki

çeşit kontrolcü tasarımı geliştirilmiştir. İlk olarak, orantılı-entegral-türetme kontrolcüsü düşük

eşlememe miktarı için tasarlanmıştır. İkinci olarak, entegral kontrolcüsü kullanılarak orta

ve yüksek miktardaki eşleşmeme miktarı için bir tasarım yapılmıştır. Ana-banttaki eşdeğer

model kullanılarak gerçekleştirilmiş olan tasarım ile, sabit kayma kararsızlığında, açı rastgele

yürüyüşünde ve doğrusalsızlıkta sırasıyla 3, 5 ve 9 katlık iyileşmeler görülmüştür.

Öne sürülen kontrol sistemleri 0.6µm standart CMOS prosesi için tasarlanmış ve bu tasarımlar

ürettirilmiştir. Bu üretilen yongalar ODTÜ’de geliştirilen MEMS dönüölçerler için yapılmış

ilk fonksiyonel devrelerdir. Geleneksel sürüş modu kontrolcüsü, yeni nesil sürüş modu kon-

trolcüsü ve algılama modu kontrolcüsü devrelerinin işlevselliği doğrulanmıştır. 0.033 ◦/
√

hr

açı rastgele yürüyüşü ve 3 ◦/hr sabit kayma kararsızlığı değerleri, açık döngü sistemi için

elde edilmiştir. Bu sonuçlar ilk prototipler için çok umut vericidir ve gelecekteki çalışmalarda

daha da iyileştirilecektir.

Anahtar Kelimeler: MEMS dönüölçer, sürüş modu kontrolcüsü, algılama modu anabandı

modellemesi, CMOS kontrolcü tasarımı, analog güç geri besleme
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I would like to express my gratitude to Dinçay Akçören, Cavid Musayev, Uğur Sönmez, Alp
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CHAPTER 1

INTRODUCTION

Understanding the behavior of accelerating systems is a big concern of classical and mod-

ern physics. All the laws developed for inertial frames are not valid for accelerating systems

which are called non-inertial frames. Human being in a non-inertial frame interprets the ef-

fects of acceleration as external forces which validate the laws of motions in these frames.

They are called fictitious forces, since in a non-accelerating system they do not exist. Most

popular example among these forces is gravitational force, (mg) which stems from gravita-

tional acceleration. Inertial sensors are used to detect these forces to characterize accelera-

tions. Characterization of accelerations provides tracking of the frame position by integrating

the acceleration data without taking any external reference. It is an invaluable work, because

external reference can be interrupted or corrupted with external effects, as in global position-

ing systems (GPS). On the other hand, operational principle of inertial sensors only use very

fundamental laws of universe: inertial sensors cannot be interfered by external sources.

In order to track the position, angle of rotation should be tracked besides the amount of trans-

lational displacement. Both of these rotational and translational motion cause the objects on

the corresponding frame feels a force. Amount of this force directly gives information about

these motions. Therefore, measuring these forces enable to extract the information about the

amount of translational and rotational motions. This can be accomplished by means of force

sensors. The sensor, used to measure a translational motion, is called accelerometer and force

used to measure a rotation is called gyroscope.

Gyroscopes are fundamental element for inertial measurement units (IMUs). There are dif-

ferent kinds of gyroscopes: mechanical, ring laser, fiber optic, and Micro-electro-mechanical

systems (MEMS) [1, 13, 17]. Even if performances of first three systems are very good, their
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cost is high, they consume large volume and they are susceptible to shock. On the other hand,

MEMS provides very simple solution for gyroscopes with low cost, very small size, and high

shock immunity. In recent decade, there were significant research on MEMS gyroscopes. Re-

cent results reach the limits of navigation level gyroscopes which can be used in north seeking

[16].

The rest of the chapter is organized as follow: Section 1.1 gives a review for MEMS gyro-

scopes. Section 1.2 gives the basics of Gyroscope theory. Section 1.3 gives front-end elec-

tronics of MEMS gyroscope. Section 1.4 explains the metrics of MEMS gyroscopes. Section

1.5 gives a review of control systems used in MEMS gyroscope which constitute the essence

of this thesis. Finally, Section 1.6 gives research objectives and organization of the thesis.

1.1 Review of MEMS Gyroscope

MEMS gyroscope history goes back to early 1980’s [13, 17]. According to the actuation

and sensing mechanisms, MEMS gyroscopes can be classified into several groups: capaci-

tive, optical, piezoresistive, piezoelectric, thermal, tunneling current, resonant, and magnetic

types [13, 18]. Capacitive type micro-machined gyroscopes are the most common type among

others, because of easy fabrication, high sensitivity, low temperature dependency, integrabil-

ity with standard CMOS technologies, and simple read-out electronic requirements [13]. In

1997, a tuning fork gyroscope, canceling linear acceleration, was published for automotive

applications [20]. In early 2000’s, there were significant improvements in mechanical design,

eliminating the coupling between the drive mode and sense modes [21]. Acar and Shkel in-

creased the drive mode bandwidth without sacrificing the gain to have a robust performance

in 2005 [22]. In addition to developments in sensor production and mechanical design, there

were significant improvements in the circuit and system levels [7, 8, 16, 19, 23], as well.

Sharma et al. introduced mode-matching circuit with 0.2◦/hr in 2009 [19]. In 2008, Ezewke

and Boser implemented a mode-matching Σ−∆ closed-loop system with a good performance

[7]. Sensonor presented a complete gyro system with a digital control and superior perfor-

mance which have north seeking capability [16]. Tatar and Alper implemented a complete

gyro system with a dynamic quadrature cancellation loop [23]. The recent trend in MEMS

is miniaturization of the complete system, combining control of the drive mode, sense mode,

quadrature cancellation, and mode matching in a digital processor [16, 32, 33].
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Researches at METU makes significant contributions to literature. Alper designed a fully

decoupled tuning fork gyroscope having a superior performance, meeting tactical grade spec-

ifications [1]. Temiz implemented a complete gyro system including drive amplitude control

and open-loop rate sensing [25]. Azgin reported development of a multi masses gyroscope

with low g-sensitivity [15]. K. Sahin firstly designed and tested double resonance sense sys-

tem having large mechanical bandwidth without compromising the sensitivity of the system

too much [24]. E. Sahin investigated different actuation mechanisms on the gyroscope per-

formance [2]. Finally, Tatar and Alper designed, implemented, and tested a fully decoupled,

tunning fork gyroscope with a quadrature cancellation capability. This gyroscope reached to

navigation levels of 0.9◦/hr/
√

Hz angle random walk and 0.35◦/hr bias instability [3].

1.2 Gyroscope Theory

Effects of rotation appears in different forms. Most known forms are centrifugal and Coriolis

forces. Centrifugal force is a fictitious force which pushes the objects from the center to

outward in the radial direction. The Coriolis force is another fictitious force which stems

from the interaction of radial and rotation motions. In this case, different radial positions

have different tangential velocities in a rotating platform, since it is proportional to the radius

of rotational motion. By the same token, change of the velocity vector due to rotation also

differs at diverse radial positions. Thus, if an object tries to move in radial direction, it tends to

deviate from this path because its inertia wants to preserve its initial states. On the other hand,

it must update its states due to its new radial position. This tendency can be considered as a

force which tries to deviate the object from radial path. Figure 1.1 visualizes this tendency

where an object tries to move in radial direction, but it departs from its original trajectory

indicated with solid line because of this phenomenon. The force causing this departure is

called the Coriolis force due to its inventor, Gustave Coriolis (1792 - 1843). The most popular

affect of this force is the direction difference of the water flowing through water dispel in the

south and north hemispheres. Detailed explanation of the Coriolis force is given in [15]. A

mathematical expression of this force can be written as:

FCoriolis = 2 · m ·
−→
ẋ ×
−→
Ω (1.1)

where,
−→
Ω is an angular velocity,

−→
ẋ is a radial velocity, and m is an object mass.
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Figure 1.1: Moving object in a rotating platform.

Resultant force’s direction is perpendicular to both the rotation and velocity vectors. More-

over, the magnitude of this force is directly proportional to the angular and radial velocity.

This result shows that angular velocity can be extracted by measuring the force if the radial

motion of the mass is under control; i.e., when its velocity is constant. Angular velocity can

also be obtained from measuring centrifugal force, but this force depends on the distance

between the object and center of the rotation. This distant is not under control, so it is not

feasible to measure the angular velocity by using the centrifugal force.

The gyroscope is a mechanical sensor measuring the angular rate by quantifying the Coriolis

force. As it has been mentioned, the Coriolis force is directly proportional to the angular

rate. In addition, Eq. 1.1 expresses that the sensor must have a velocity in radial direction in

order to induce the Coriolis force. Worded differently, object should move continuously in

the radial path to have a certain velocity. This can only be attained by an oscillating motion

within a limited area of a sensor. This dynamic of the sensor is called the drive mode of a

gyroscope.

After the Coriolis force is created with drive mode oscillations, this force can be detected

with a force detector. The force detector in MEMS is a basic structure used in different areas.

The most popular structure of a force detector is capacitive sensors. The operation principle

of this type of a force sensor is firstly based on generating a displacement due to the applied
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Figure 1.2: Mass-spring-damper behavior of force to displacement process in MEMS gyro-
scope.

force on a mass. The system characterizing the relation between force and displacement can

be considered as a simple mass-spring-damper system, as shown in Figure 1.2. This relation

can be expressed as:

F = m · ẍ + b · ẋ + k · x (1.2)

F(s)
x(s)

=
1
m
·

1

s2 +
b
m
· s +

k
m

(1.3)

where, F is the force, x is the displacement, m is the mass, b is the damping factor, and k is

the spring constant. In Eq. 1.2 shows a second order system characteristics. It is obvious

that if damping of the system (b) is low enough, the system has a very large gain at the

resonance frequency. This increase in the gain directly improves the sensitivity of the sensor;

therefore, the damping term is tried to be minimized with a proper mechanical design and

vacuum packaging. Quality of this low damping term is expressed by the quality factor (Q)

which is the ratio between the resonance frequency and the bandwidth of the system. The

resonance frequency (ω), bandwidth (β), and quality factor (Q) are expressed in the following

equations.

β =
b
m

(1.4)

ω =

√
k
m

(1.5)

Q =
ω

β
=

√
k · m
b2 (1.6)
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Figure 1.3: Displacement to current process in MEMS gyroscope.

The moving mass is connected to a plate of a capacitor which has a degree of freedom in

the axis of the motion to be detected. Other plate is fixed to an anchor which is used as a

read-out electrode. On that account, when the mass moves due to an applied force, one of

the capacitor plate moves. Owing to the this displacement, capacitance changes. Since the

voltage across the terminals is constant and capacitance changes, charge accumulated on the

capacitor is forced to change, as well. This change causes a current which can be converted

easily with a current-to-voltage converter such as a trans-impedance amplifier. The resultant

current expression is given in Eq. 1.8. This part of the gyroscope is called the sense mode.

Q = V ·C (1.7)

I =
dQ
dt

=
dV
dt
·C︸ ︷︷ ︸

0 for DC bias

+ V ·
dC
dx
·

dx
dt

(1.8)

where, Q is the charge, C is the capacitance, and V is the voltage across the capacitance. In

theory, force acting on the sense mass is only due to the Coriolis force; on the other hand, drive

mode motions also directly couples to the sense mode owing to the fabrication imperfections

[1, 3], even if there is no angular rate. The force generated by this coupling is called the

quadrature force. A mathematical expression of this force can be shown as followings:

FQ = kQ · x (1.9)

This force is directly proportional to the drive mode displacement, but the Coriolis force is

proportional to the velocity of the drive mode displacement. Thus, with a phase sensitive
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demodulation, it is possible to suppress this force in a considerable amount. Even if this force

is tried to be suppressed with a phase sensitive demodulation, there will still be an offset due

to the quadrature force. In fact, the offset can be canceled with a simple calibration, but the

quadrature force also drifts, which requires an on-line real time cancellation. Otherwise, drift

of this force degrades the system performance substantially. As it will be discussed in Chapter

4, it also increases the effect of the phase noise at the output. For this reason, cancellation of

this force is urgency for high performance gyroscopes.

Since response of a gyroscope is determined by two independent modes (i.e., drive and sense

modes), characteristics of them affect the performance together. The generated Coriolis force

is modulated at the drive mode oscillation frequency which is nothing but the drive mode

resonance frequency, as it will be discussed later. As a result, frequency of the input signal

at the sense mode equals to the drive mode resonance frequency. Since, the sense mode

itself behaves as a resonator, the frequency separation between the input and sense mode

resonance frequency directly affects the sense mode response. If this amount is very small,

the sensor gives a very sensitive response, which is called matched-operation, since the drive-

mode resonance frequency matches to the sense mode resonance frequency. If this amount is

high, then it is called the mis-matched operation. The sense mode resonance frequency can

be adjusted by a proof mass voltage [1], so there is no need to have different sensor designs

for mismatched and matched operations. In addition, the matched operation requires extra

control loops, since during the operation drifts in resonance frequencies directly affect the

overall system dynamics.

In both drive and sense modes, charge/current to voltage converter is necessary in order to pro-

cess the mechanical related signals in later stages. This task can be conducted with different

types of preamplifiers establishing front-end electronics.

1.3 Front-End Electronics

Amount of the static capacitance (CS ensor,static) between the feedback and sensing nodes is

very important in sensing of closed-loop systems. In these applications, the feedback voltage

of the sensor causes a current flow through the front-end electronics due to the static capac-

itance between the actuating and sensing electrodes, even if there is no physical input to the
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system. This response is a pure electrical response, and it is independent from the mechanical

response. This zero input response causes several problems. Firstly, there are always errors

due to the reading of the electrical response. Non-linearity of the front-end electronics and

noise on the actuation voltages are the major reasons for these errors. Amount of these errors

directly limit the amount of minimum detectable input of the sensor. Secondly, this electrical

response may cause an offset at the system output which decreases the maximum range. Fi-

nally, this electrical response also results in functionality problems in some applications. To

illustrate, if electrical response is high enough comparing with electro-mechanical response

of MEMS resonator, this will prevent the system from locking into the mechanical resonance

frequency. Thus, an AC-bridge type interface is used in order to solve these problems by

eliminating these errors [30]. This is attained by using an extra reference capacitor which

almost equals to CS ensor,static. This capacitance and sensor are fed with signals having a 180◦

phase difference. As a result, in theory at zero-force, the sensor and reference capacitance are

same and there is no signal flow to preamplifier including the noises on the actuating signal.

In this operation, it is assumed that the sensing node potential is low enough in order to have

the same response from the static and reference capacitor in magnitude wise. When a force

is applied to the sensor, resultant change in the capacitance yields charge injection, and only

this injected charge causes voltage at the preamplifier output. This operation significantly

increases the sensitivity of the system. Figure 1.4 shows the configuration of the AC bridge.

This configuration is half AC-bridge. In full AC bridge, two sense capacitance is used instead

of reference capacitor. On the other hand, in MEMS gyroscopes developed at METU, the

mechanical gain is much higher than the electrical response due to two major reasons. 1)

There is a large proof mass electrode between actuating and sensing nodes. This large elec-

trode behaves as a shielding, therefore static capacitance between sense and actuating node

is very small. 2) MEMS gyroscopes are operating at vacuum, which increases mechanical

responsitivity in a considerable amount. As a result, the AC-bridge type is not useful for

vibratory MEMS gyroscopes, and the injected current from the sensor is directly sent to the

preamplifier. Figure 1.5 shows the equivalent behavior for this case.

The most widespread type of preamplifiers, used in MEMS gyroscope, is the trans-impedance

amplifiers (TIA) [27]. These amplifiers convert sensor output current to voltages. The most

important advantage of this topology is very low input impedance such that the injected cur-

rent from the sensor directly enters the amplifier without any loss in capacitance at the node
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Figure 1.4: AC bridge configuration used in MEMS capacitive inertial sensors.

where preamplifier and sensor connect. This capacitance is mainly composed of the sensor

output capacitance, preamplifier input capacitance, and wire-bonding capacitances. Having

a low input impedance also ensures that the sensor output is at virtual ground, which is con-

sistent with the assumption of the constant biased sense capacitance in the above derivations.

Figure 1.6 shows a typical trans-impedance amplifier. This type of preamplifier can be either

capacitive or resistive. Former one is suitable for low noise applications due to lack of ther-

mal noise of resistor. On the other hand, in order to establish DC feedback path in order to

operate the Op-Amp in linear region, a large resistor is needed to be used. This is not an easy

implementation in ICs. As a result, resistive type TIAs are often used instead of capacitive

type TIAs in IC implementations.

Another preamplifier topology is voltage buffer/amplifier type [1, 26]. The injected current

from the sensor is converted to a voltage by means of a high impedance, and this voltage is

buffered/amplified by means of an Op-Amp. Its major advantage is being low noise if in-

jected current is converted to voltage through a capacitor [26]. In fact, this performance

is good comparing to resistive type trans-impedance amplifiers. On the other hand, if buffer

type-preamplifier is also implemented with capacitor, these both circuits have same noise

performance. In addition, this type of preamplifier has several drawbacks. First of all, para-

sitic capacitances and input capacitance of the Op-Amp directly degrades the gain and causes
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Figure 1.5: Direct injection without a reference capacitor.

Figure 1.6: Trans-impedance amplifier used in MEMS capacitive sensors.

phase-error which results in problems in signal processing stages. In addition, implementing

high-impedance node is not practical in CMOS. Figure 1.7 shows this type of preamplifier.

Switch capacitor type preamplifiers are often used in sampled-data system such as Σ − ∆

type controllers [26]. In fact, this topology is nothing but a capacitive type TIA. Contrary

to continuous time’s version, DC path is provided periodically by resetting the integration

capacitance instead of using huge resistances. Operation of this topology is simple: injected

current from the sensor is integrated within an integration time. Then, the integrator capac-

itor is reset. It is an effective method, but the kT/C noise is significant noise source in these

types since the sense capacitance used in integrator is pretty low. In order to alleviate this,
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Figure 1.7: Buffer type preamplifier used in MEMS capacitive sensors.

Figure 1.8: Switch-capacitor type pre-amplifier.

correlated-double-sampling (CDS) method is used. Figure 1.8 shows switch capacitor type

pre-amplifiers. For continuous time operation, first two types of system are the most com-

monly used blocks. Buffer type preamplifier has several drawbacks, but it has better noise

performance comparing with resistive type TIAs. On the other hand, off-chip resistors enable

using continuous time capacitive TIAs. In that, this type of preamplifier is the best candidate

for pure analog systems.
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Figure 1.9: Allan variance plot.

1.4 Metrics of MEMS Gyroscopes

Inertial sensors are essentially integrating sensors, and they have no external reference. This

property results in integration of instantaneous errors at the output. As a result, noise per-

formance of these sensors depends on the operation length. Expected deviation after this

integration also depends on type of noise process. For example, the deviation due to the white

noise process after the integration increase with square root of operation length; on the other

hand, drift due to Flicker (1/f) noise increases directly with operation length. In a generic sys-

tem several noise processes take role in the total drift. Especially, noise processes which are

effective in low frequency band are very important for long operation length. Therefore, char-

acterizing these noise sources is a valuable task. Use of Power Spectral Density (PSD) is not

an effective method to characterize them, because power of these noise source becomes very

large in very low frequency region which makes impossible separating the different noise pro-

cesses. In inertial sensors, Allan Variance is used to estimate the total drift after integration:

it directly shows estimated drift per operation length. In addition, it also provides character-

ization of slow noise processes which cannot be performed with standard PSD [28]. Figure

1.9 shows a typical Allan Variance plot.

In tactical grade applications, white noise process and Flicker noise process are two main

sources which dominate total drifts, since operation length is not so high. In inertial sensors,
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metrics for characterizing white noise and Flicker noise are angle random walk and bias insta-

bility, respectively. Unit of angle random walk is ◦/
√

hr, and unit for bias instability is ◦/hr.

Drifts due to these process can be found easily by multiplying bias instability with operation

length and angle random walk with square root of operation length. Relation between the

noise densities for different processes and Allan Variance plot are given in Table 1.1 [34, 35].

These relations are given for single sided PSD and continuous time Allan Variance.

Table 1.1: Allan Variance statistics for different noise processes [34].

Noise Process S Y ( f ) σ2(τ)

Angle Random Walk K0 · f 0 K0 ·
1
2τ

Bias Instability K−1 · f −1 K−1 · 2ln (2)

Rate Random Walk K−2 · f −2 K−2 ·
2π2τ

3

It was mentioned that the bias instability is the measure of the Flicker noise, but this statement

is not correct for a generic case. Bias instability is the minimum amount of drift per operation

length [36]. Therefore, other drift processes such as as rate random walk, may dominate

Flicker noise. Therefore, bias instability is the point in Allan Variance plot where drift due to

the slow noise processes (e.g., rate random walk) becomes comparable with drift due to the

fast noise processes (e.g., white noise). In Allan Variance plot, bias instability is the minimum

value of the curve. On the other hand, angle random walk is the value of the white noise trend

line at τ = 1sec, as Figure 1.9 shows.

Other significant metrics for MEMS gyroscopes are full scale range, non-linearity, settling

time, and bandwidth [29]. The full scale range tells the difference between the maximum

and minimum signals which can be read. Non-linearity describes the linearity of the relation

between the gyroscope output and angular rate. Settling time is another significant parameter

characterizing start-up time of a gyroscope. In some of the applications (e.g., tactical grade)

the operation length of time is just tens of seconds. As a result, the start-up time is important

for these applications. Finally, the bandwidth characterizes the maximum frequency of the

angle rate that system can give response.

MEMS gyroscopes can be classified into several groups according to their performances

which are briefly discussed above. Table 1.2 shows the major performance parameters for

these gyroscopes.
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Table 1.2: Different classes of gyroscopes [54].

Parameters Rate Grade Tactical Grade Inertial Grade
Bias Instability (◦/hr) 10-1000 0.1-10 <0.01
Angle Random Walk (◦/

√
hr) >0.5 0.5-0.05 <0.001

Full Scale Range (◦/sec) 50-1000 >500 >400
Bandwidth (Hz) 70 ∼100 ∼100

1.5 Controllers in MEMS Gyroscopes

Control of the drive and sense modes is a significant task in a MEMS gyroscope not only

for functionality, but also for a good performance. Since gyroscope is an electro-mechanical

system, feedback signal in the closed-loop system should be converted to force. This type

of feedback is called electrostatic feedback. The voltage-to-force conversion comes from the

conservation of energy, as it is shown in [1]. Expression between voltage and force can be

written as:

F = VPM ·
∂Cact

∂x
· Vact (1.10)

where, Cact is the capacitor used for actuation, and VPM is the proof mass voltage used to bias

the actuation and sensing capacitances.

Controllers in MEMS gyroscope need to carry out several tasks: self-oscillation in drive

mode, regulation of drive and sense motions.

Drive mode oscillations can be generated externally. Critical point is that amplitude of drive

oscillation is needed to be maximized in order to increase the sensitivity of the overall system.

This can be achieved by actuating drive mode with large voltages but this will increase the

electrical coupling to sense mode which will degrade the operation. Therefore, actuation of

drive mode is needed to be carried out with small signals. It cannot be attained if oscillation

frequency does not equal to the resonance frequency of drive mode dynamics expressed in

Eq. 1.11 [2].

Hdrive,OL(s) =
Vdrive,out

Vact
=

Kdrive · s
s2 + βD · s + ω2

D

(1.11)

As it will be discussed in Chapter 4, large quality factor improves noise performance of the

system. Thus, MEMS gyroscope are preferred to operate at vacuum. Gyroscopes used in this

thesis have a quality factor (ωD/βD) larger than 30000 for drive modes. This large value neces-
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Figure 1.10: Positive feedback loop used as a self-oscillation loop in the drive mode.

sitates very low bandwidth (βD). External matching, therefore, is not so easy and impractical.

Instead of external excitation, self-oscillation loop is constructed to lock into the drive mode

resonance frequency. Self-oscillation is performed by constructing a positive feedback with

a very large open-loop gain as shown in Figure (1.10). Mathematics of positive feedback can

be expressed as followings:

Hdrive,pos =
Vdrive,out

Vin
=

Hdrive,OL(s) · Kpos, f

1 − Hdrive,OL(s) · Kpos, f
=

Kdrive · Kpos, f · s

s2 +
(
βD − Kpos, f

)
· s + ω2

D

(1.12)

If the positive feedback gain (Kpos, f ) equals to the bandwidth of the drive mode (βD), then

system is at the edge of stability. In other words, it has a sustain oscillation at drive mode

resonance frequency. If positive feedback gain is larger than the bandwidth, system has a

growing oscillation until electronics saturate. Output of the feedback network is square wave

at saturation, but high-Q filter characteristic of drive mode rejects harmonics of the square

wave rather than fundamental harmonic at drive mode resonance frequency. After electronics

saturate, system has a sustain oscillation as in the former case. In fact, loop gain drops to

unity at saturation since gain of positive feedback network decreases: the ratio between input

and output of feedback network reduces. The easiest implementation of the positive feedback

network only requires a comparator which has a very large feedback gain before saturation.

In addition to the self-oscillation loop, velocity of the drive mode must be under control in

order to have a certain relation between angular rate and Coriolis force. Otherwise, actuating

the sensor with a constant voltage (saturation level of positive feedback network) yields an
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oscillation depending on sensor parameters and ambient conditions. In addition, settling time

of drive oscillation takes a plenty of time exceeding tens of seconds if drive mode oscillation is

not regulated. These requirements obligate drive mode control. By the same token, open-loop

rate sensing has several drawbacks. Firstly, performances of the sensor depend on sensor and

ambient conditions. This results in short and long term drifts. Secondly, sensing mechanism

of sense mode of gyroscope is non-linear: responsivity changes with larger displacement

[1]. Finally, bandwidth of the sense system needs to meet certain specifications for certain

applications. These three limitations of sense mode can be alleviated by means of a controller.

In summary, control must be performed for both drive and sense modes.

1.5.1 Drive Mode Controllers

Stability of the drive motion is very critical in terms of short and long term operations. Cori-

olis force directly depends on the amplitude of drive oscillation: any drift and instability on

drive oscillation cause drifts and instability at the output. In addition, settling time of drive

oscillations should be minimized to shorten the overall start-up time of MEMS gyroscope

system. Quality factor of the sensor is very high in order to have less mechanical noise. If

drive motions are not under control, settling time of the sensor will be above tens of seconds.

On the other hand, for tactical grade applications, settling time of the system should be kept

below a few hundreds of milliseconds. Regulation of the drive amplitude is also significant for

a good bias instability and robust scale factor which is independent from sensor parameters

and ambient conditions.

In literature, there are several approaches for drive mode control. Pure analog controllers are

often preferred due to their simple implementation and simple design procedure [3, 12, 21,

42, 47]. In these works, proportional-integrator (PI) controller is mostly used. Besides, for

these controllers it is concluded that there is a trade-off between fast settling and the stability

of the system because of the low frequency pole coming from the drive mode envelope model.

Stability of the system directly affects the overshoot and the ringing of the closed-loop system.

For this reason, in order to have a sufficient phase margin such that the overshoot of the system

is in a tolerable amount, loop gain is needed to be low for these systems. On the other hand,

this results in very large settling times. In literature, same design procedure is also applied

for a digital controller; settling time is a few hundreds of milliseconds for this system, as well
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[43]. In order to cope with this trade-off, there are modified drive mode controller systems

increasing the complexity. There is a semi-analog system whose settling process is carried

out by a large proportional controller [44]. Since there is no integrator, there is no important

stability problem. When the amplitude of the drive mode oscillation is around the vicinity

of the desired level, system switches to PI mode to have a good amplitude regulation due to

the zero steady state error of the systems including integrator. However, at steady state there

is an undesired oscillation because of switching dynamics. There is also a high performance

digital controller which uses active disturbance rejection control with an advanced controller

implemented in FPGA [45]. Settling time of this system is just a few tens of milliseconds,

but the proposed system is quite complex owing to its digital implementation. There are

also PLL-based self-oscillation loops reducing the phase errors and phase noise of the drive

mode system [42,46]. These deterministic and stochastic errors degrade the overall system

performance if they are not small enough. Finally, the Σ − ∆ modulator type controller is

also reported for the drive mode controller, but use of such a system is not practical for drive

mode [41]. Finally, there is a universal topology which can operate in a wide range of sensor

parameters and ambient conditions [31] by using a current commutating switching mixer.

Same complexity is valid for this system, as well.

Even if, there are a lot of works about analog drive mode controller designs for last two

decades, a complete and correct analytical design procedure has not been presented up to now.

Trade-off between settling time and overshoot mentioned in literature can be easily be tackled

with correct design procedure which will be discussed in details in Chapter 2. Therefore,

modified topologies increasing system complexity are not necessary for low settling time and

robust operation. Although supply limitations of the electronics are mentioned in [42], in

literature non-linear behavior of the electronics has not been analyzed in details. This topic is

also investigated in Chapter 2.

1.5.2 Sense Mode Controllers

Sense mode is the most significant portion of MEMS gyroscope, because rate information

flows through this loop. Any noise source and stability problems in this loop directly couple

to the output. Open-loop rate sensing is a simple solution for sense mode electronics; however,

linearity, bandwidth and settling controls are not possible for it. Furthermore, open-loop rate
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sensing is susceptible to sensor parameters which vary with sensors and ambient conditions.

This results in poor bias repeatability and bias instability for long term operations.

Closed-loop rate sensing is mandatory for high dynamic range, otherwise responsivity of

sense mode to angular rate changes considerably for large amount of angular rate due to the

highly non-linear characteristics of varying-gap type capacitive fingers in sense system. In

literature, there are basically three types of controllers in sense mode: 1) Pure analog con-

troller [2, 5, 6, 14]. 2) Σ − ∆ modulator type controllers [7, 8, 9]. 3) Digital controllers [11,

16, 33]. Firstly, pure analog system is a simple solution for sense control. Mature techniques

developed for continuous-time system provide analytical design procedures and very strong

verification environments for this method. Secondly, Σ−∆ modulator type controller is a very

common technique for MEMS inertial sensor control. In this technique, sense resonator is uti-

lized as a second order integrator of the Σ−∆ modulator. Its output is inherently digital that is

the most appealing side of this type of controller. A decimation filter is sufficient to extract the

angular rate information. Finally, digital controller provides smart controller implementation

that can be configured for a wide range of sensor parameters. Different types of control loops

can be embedded in one controller giving the optimum solution. In addition, it also enables

to insert signal conditioning algorithms into the micro-controller. These algorithms may im-

prove the system performance further. Unfortunately, this type of controller requires ADC,

DAC and a moderate performance micro-controllers. Design and implementation of such a

system are quite complex comparing with previous systems.

Among these three systems, Σ − ∆ modulator type controllers is the most prominent type

because of its simplicity and inherent digital output. In this type of controllers, feedback

signal is not analog, it is pulse density modulated (PDM) signal. This feedback is mandatory

for MEMS capacitive accelerometers, because feedback factor in these sensors is highly non-

linear: the amount of the feedback force directly depends on the square of the actuating

voltage. For this reason, analog force feedback cannot be used in capacitive type MEMS

accelerometers for a reasonable linearity. On the other hand, feedback factor is linear in

MEMS gyroscopes, and Σ − ∆ is not the only solution, as it was mentioned above.

MEMS vibratory gyroscope are operating at drive resonance frequency in contrary with ac-

celerometers working at base-band. This difference prevents use of low-pass Σ−∆ modulators

in MEMS gyroscope. Otherwise, sampling rate should reach very high frequencies to obtain
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high over-sampling ratio for having low quantization noise. In that, band of interest is itself

around 10 kHz for a typical MEMS gyroscope in literature. Band-pass type Σ−∆ modulators

are used in MEMS gyroscopes in order to relive this speed challenge in electronic design. In

that type of modulators, sharp magnitude characteristics of the band-pass filters, which can

be considered as resonators, rejects quantization noise in a considerable amount. Although,

over-sampling ratio is not high, this filtering provides high resolution. In MEMS, mechanical

sensor can be used as resonators. Nevertheless, its noise rejection performance is only valid

for a narrow band. Extra electronic resonators are necessary in order to obtain better quanti-

zation noise rejection in a sufficient band. These electronic filters reduce the integrated noise

before quantizer, as well, so that signal dependent gain of integrator increases. Correspond-

ingly, input referred noise decreases. If these resonators are not used, quantization noise will

result in poor performance. These electronic filters and mechanical resonator form Σ−∆ mod-

ulator. Mode-matching circuitry is required to utilize the mechanical sensor as a resonator,

otherwise all resonators must be implemented in electronic domain. There are good results

for systems using fourth order Σ−∆ modulators in sense control whose two order comes from

mechanical sensor and other two order comes from electronic implementation [19].

Problem of a Σ − ∆ modulator type controller is the lack of modeling of its exact behavior.

Design procedures of this type of controller rely on a set of rule of thumbs coming from

experimental results. There is no analytical design procedure, since this system is highly

non-linear. Because of analysis difficulty of Σ − ∆ modulators, careful simulations should

be performed for a true prediction of stability. Stability of MEMS gyroscope is not only

important for functionality, but also for settling performance which is critical for tactical grade

applications. In addition, stability of Σ−∆ modulators strictly depends on sensor parameters,

such that controller is needed to be updated carefully for each sensor. In brief, use of Σ − ∆

type controller has a few limitations in terms of controller design and implementations. On

the other hand, it is still a good candidate for being a controller owing to its digital output.

Analog force-feedback is a simple system and its output is at base-band. As a result, dig-

itization at analog output is much simpler at base-band than digitization at drive resonance

frequency. Over-sampling based analog-to-digital converters (ADC) can be used easily, since

bandwidth of the output is very low. Best candidate for this type of ADC is Σ − ∆ modulator

ADC. Low bandwidth allows simple Σ − ∆ architectures to digitize analog output with very

high accuracy. Thus, a hybrid system composed of analog controller and simple second or-
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der low-pass Σ − ∆ type ADC combines all the advantageous of analog controller and digital

output of Σ − ∆ type controllers. Robust and mature controller design procedures for ana-

log system enables the designer to understand the system in details and make optimizations

basing on analytical approaches. In addition, use of ADC provides digital output. Second

order electronic low-pass Σ−∆ type ADC topologies is simpler than the fourth order electro-

mechanical band-pass Σ − ∆ modulators. Therefore, complexity of this resultant system is

not more complex than complete higher order band-pass Σ−∆ type controllers. Furthermore,

this system eliminates all the disadvantageous of Σ−∆ type controllers coming from its com-

plex behavior. On the other hand, in this system Σ − ∆ ADC works after the controller, so

it has no effect on controller performance. Sensor dependency of the complete system can

be minimized with a true controller design. Σ − ∆ modulator for such a system is a pure

electronic modulator which is a mature topic in electronics, as well. Very high performance

with high over-sampling ratio can be obtained with even second order Σ−∆ modulators, since

bandwidth is low.

Analog controller can be applied with two different approaches: 1) wide band controller 2)

narrow band controller [49]. In the former controller, front-end electronics output, which is

around drive mode resonance frequency, directly feeds the controller. In this type, analog con-

troller operates around drive mode resonance frequency [2, 5, 49]. Even if implementation

is very simple, this architecture has several drawbacks. Firstly, regulation strength is poor,

since it is almost impossible to have a zero steady state error owing to the operation at drive

mode resonance frequency. Regulation strength can be improved by increasing proportional

controller gain; on the other hand, this will lead significant stability problems. In addition,

regulated signal is not only the Coriolis force, but it is a combination of quadrature and Cori-

olis force. As a result, feedback signal not only composed of rate signal, but also quadrature

signal. In a typical gyroscope, amount of quadrature signal reaches to a very high value which

is comparable with the maximum input rate signal. This will reduce the maximum detectable

rate in a substantial amount for wide band controller. Finally, any phase error in this loop

directly hardens to distinguish the rate signal from the quadrature signal [49]. In brief, this

type of controller is not effective, because control operation is not carried out in the band of

interest.

In narrow band controllers, control operation is performed in the band of interest [6,49]. In

addition, input of the control signal comes from the phase sensitive demodulation output;
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therefore, it is free of the quadrature signal. Effective controllers can be implemented, since

the input of the controller directly gives information about the sense mode motion. With these

controllers, it is possible to have a very good regulation of sense mode motion by using an

integrator based controller. In addition, this topology only includes an extra modulator which

is not necessary in the wide-band controller. This modulator can be implemented with simple

switches, as it will be shown in Chapter 4. In other words, implementation complexity is

almost same with the wide-band controller. To conclude, this type of controller is much more

effective comparing with the wide band controller.

Even if narrow band analog controller seems a simple and effective solution, sense system of

vibratory MEMS gyroscope is not linear-time-invariant (LTI). Sensor and front-end electron-

ics operate at the drive mode resonance frequency, whereas controller takes role at DC band.

In literature, there are studies for sense mode analog controller designs basing on modern

control theory. Most of these works focus on adaptive controllers [11, 50, 51] and robust con-

trollers [52, 53]. The fundamental scope of these controllers is to have a robust system which

is insensitive to fabrication imperfection and environmental variations. Design procedures

in modern control theory are very effective for non-linear systems, multi-input/multi-output

(MIMO) systems, and multi-loop systems [48]. On the other hand, proposed analysis and de-

sign procedures require careful modeling and design work. These design approaches prevent

developing an intuition for understanding the system dynamics. In addition, careful simula-

tion is needed to be carried out in order to identify systems in details [48]. These problems are

almost same as the problems encountered in Σ − ∆ modulator type controller. Furthermore,

implementation of these controllers with analog electronics is difficult.

On the other hand, it is possible to transform the sensor and front-end electronics dynamics

into base-band, as it is achieved in drive mode controller designs. Due to this transforma-

tion, the resulting system is completely LTI. LTI systems which is single-input/single-output

(SISO) and composed of single loop can be analyzed easily using classical control theory.

Moreover, simple, robust, and very effective design procedures can be developed by using

the mature techniques used in classical control theory. In this theory, frequency domain and

s-plane provides invaluable intuition for understanding the system dynamics in details [48].

In literature, base-band transformation has been carried out for gyroscopes operating at matched

conditions requiring advanced control; on the other hand, there is no detailed study for the
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controller design [6]. There is also a work giving a generic envelope behavior of MEMS

gyroscope [10]. Nevertheless, the proposed model is too generic, and it is not linear. Con-

troller design approach in this work necessitates complicated analyses, as well. To summa-

rize, in literature there is no simple and LTI model characterizing the envelope behavior of the

MEMS gyroscope operating at mismatched conditions. In addition, there is no analytical de-

sign procedure developed for LTI sense mode systems operating at matched and mismatched

conditions.

1.6 Research Objectives and Thesis Organization

The main goal of this study is to characterize the drive and sense mode closed-loops, design

controllers for them, and implement the controllers in a CMOS technology. The specific

objectives can be listed as follows:

1. Optimization of the drive mode controller. Transient performance of drive oscillation

is critical for tactical grade applications. The drive mode controller should work with

an enough safe margin at the steady state such that the system is robust to change in

ambient conditions and aging of the product. Controller design procedure should take

imperfections coming from the implementation into account for the optimum perfor-

mance.

2. Sense mode controller design. For a linear operation in a wide range, the sense mode

motion should be controlled. In addition, a correct design approach is needed to be

developed, otherwise system may have significant problems regarding functionality and

performance. Base-band equivalent models of the sense dynamics should be derived in

order to follow an analytical design procedure. For the best performance, closed-loop

rate sensing should be analyzed in details.

3. Performance analysis. Performance analysis should be carried out in details. Noise

characteristics of the non-linear elements such as switching modulators should be stud-

ied. Effects of the feedback on the system performance are needed to be analyzed.

4. Implementation and Tests: The proposed controller approaches should be verified with

tests. Effect of the control parameters over the system performance is needed to be in-
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vestigated. Functionality and noise performance of the implemented CMOS controllers

should be verified. Discrepancies should be discussed.

The organization of the thesis and the contents of the following chapters are as follows.

Chapter 2 introduces a complete design procedure for drive mode amplitude control. Circuit

imperfections are taken into account and resultant non-linear system is optimized. Finally, a

new simplified, moderate performance control loop is introduced. Simulations of that system

are conducted.

Chapter 3 gives, firstly in literature, base-band model for sense dynamics for mismatched

operation. Analytical design procedure is also developed using this model. Bandwidth and

transient performance are optimized. Models and analytical controller design procedures are

verified in simulations.

Chapter 4 gives the CMOS implementation of the controller. Detailed system level noise

analysis is performed. A non-linear effect of the modulator on the noise behavior of closed-

loop system is discussed. Output noise and input referred noise expressions are derived for

the closed-loop system, and secondary noise sources are studied.

Chapter 5 gives test results. Functionality of the CMOS chips are verified. Effects of the

controller design on the system performance are also discussed. In addition, performance of

the chips are given, and discrepancies are discussed in details.

Finally, Chapter 6 summarizes the complete work and future research topics are given.
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CHAPTER 2

DRIVE MODE CONTROLLER

The drive deflection directly affects the performance of a MEMS gyroscope because both

Coriolis and quadrature force are directly proportional to the drive mode displacement. There-

fore, stability of the drive motion is very critical for both short term and long term stabilities

such as the bias instability and scale factor repeatability, respectively. Drive mode of a MEMS

gyroscope is very high-Q system which can easily enter self oscillation with a positive feed-

back loop. Positive feedback limits the actuating voltage to a certain value, which determines

the amount of actuating force applying on the drive mode mass. Even if this force is not much

sensitive to ambient and process variations, the deflection of the mass due to the drive actuat-

ing force is very susceptible to vacuum level, temperature, and process variations. As a result,

the amount of the drive oscillation amplitude must be under control instead of controlling the

actuating voltage. Organization of this chapter is as follows. Section 2.1 discusses the closed-

loop drive mode system and develops a controller design procedure with an optimum transient

performance for an ideal LTI system. Section 2.2 explains the effects of circuit imperfections

on system behavior and modifies the design procedure according to these effects. Section 2.3

gives a new generation simplified drive mode controller. Section 2.4 summarizes this chapter.

2.1 Drive Mode Controller

The idea behind the conventional solution for the drive amplitude regulation loop is very

simple: amplitude of drive deflection is firstly detected by means of an envelope detector.

The amount of this voltage is then compared with a reference voltage and the error signal

feeds the controller. Finally, the output of the controller is modulated at the self-oscillation

frequency and this modulated voltage is fed back to mechanical sensor. At steady state, the
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Figure 2.1: Conventional drive mode system.

error signal goes to very low values; therefore, amount of the deflection is regulated by the

reference voltage. In fact, the regulated parameter is not drive displacement, but its derivative

which is the velocity of the drive motion. On the other hand, Coriolis force is proportional

to the velocity, not drive displacement. For this reason, regulation of the drive mode velocity

is more effective method instead of the regulation of the drive mode displacement: change in

frequency does not affect scale factor. On the other hand, bias is mainly determined by the

quadrature force that is proportional to the drive mode displacement in contrast to Coriolis

force. As a result, the instability of the frequency directly affects this parameter. This will

lead a significant problem in terms of bias instability for a typical gyroscope system, but

cancellation of quadrature force solves this problem [3].

Controller design is very significant in terms of system stability. There are three significant

issues for the controller design: steady state error, over shoot and settling time. Firstly, steady

state error is critical for the drive amplitude regulation. The amount of the steady state er-

ror directly indicates the strength of the controller. In order to reduce this error, loop gain

is needed to be increased as much as possible. The best solution for reduction of steady

state error is using integrator based controller such that its gain at DC (steady state) is infi-

nite therefore steady state error is zero. Secondly, over shoot is another parameter for drive
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mode controller. This parameter is very important for the operation in which large drive dis-

placement is required for better performances. Since the sensitivity of MEMS gyroscope is

directly proportional to the drive mode oscillation amplitude, performance will be improved

with larger drive mode deflection. As a result, the maximum amount of deflection is limited

by the sensor design and over shoot. In other words, the amount of the over shoot is needed

to be minimized. Finally, the settling time of the drive mode oscillation should be minimized

for the tactical grade applications whose operation time may be needed be below a few tens

of seconds considering the possible delays coming from other loops.

Figure 2.1 shows the block diagram and Figure 2.2 shows the simplified circuit level diagram

of the conventional drive amplitude control system . The system portion between the modu-

lator and demodulator, which operates around the drive mode resonance frequency, but other

portion operates at baseband. In other words, the complete system is not a LTI system and

its analysis and controller design are not straightforward, owing to the lack of LTI analytical

analysis and design methods. On the other hand, only the envelope behavior of the modulated

system is under interest instead of its complete characteristics. Therefore, envelope model of

the modulated system is used instead of the complete system model as summarized in Figure

2.4. Derivation of the envelope model can be performed in either time domain or frequency

domain. Frequency domain envelope model derivation will be discussed in Chapter 3. En-

velope model derivation of a sense mode dynamics in time-domain for matched-condition is

given in [4]. This case is identical for the drive mode dynamics.

Drive mode system shown in Eq. 2.1 has the envelope model shown in Eq. 2.2

H(s) =
A · s

s2 + β · s + w2
D

(2.1)

H̃(s) =
1
4
·

A

s +
β

2

(2.2)

Open-loop gain of this system has a low frequency pole which degrades the bandwidth of

the closed-loop system. In fact, low bandwidth does not directly reduce the bandwidth of

the system. On the other hand, in order to increase the bandwidth of a closed loop system,

gain is needed to be increased. This gain causes instability because of the poles coming from

the envelope model, integrator used to have a zero state error, and low pass filter used in de-

modulator. Owing to the fact that, gain is increased to decrease settling time and phase drops
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Figure 2.2: Simplified circuit level diagram of the closed-loop drive mode system.
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Figure 2.3: Complete drive dynamics.

Figure 2.4: Envelope model of drive mode dynamics of MEMS gyroscope.

due to these poles, the phase of the open-loop system is very low at the unity gain frequency.

To illustrate, assume that bandwidth of the closed loop system is desired to be 50 Hz which

roughly corresponds to tens of millisecond settling time. Besides, phase contribution of the

low frequency pole coming from the envelope model, which is smaller than 1Hz for low set-

tling time, and integrator reaches 90◦ even for very low frequencies. Therefore, phase drop

of the open-loop system reaches 180◦ at unity gain frequency, that should be much higher

than 1Hz (envelope pole), excluding low pass filter phase contribution. Taking the effect of

the low pass filter into account, total phase drop exceeds 180◦, which is the critical value for

stability. This handicap for stability hinders using large loop gain for better settling time,

such that open loop gain should drop to unity around the envelope pole. Therefore, settling

time of the overall system cannot be smaller than hundreds of milliseconds with a sufficient

phase margin. In brief, a pure integrator is a poor controller in terms of transient response. To

improve the transient response to a step input, the low frequency pole coming from envelope

model should be canceled with pole-zero cancellation. PI controller is an effective method

to achieve it. With this controller, not only is the low frequency pole of the system envelope

canceled, but its integrator behavior reduces the steady state error to zero.

Controller design procedure; therefore, is mainly composed of two major steps: 1) Pole-zero
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cancellation to enable low settling time with sufficient phase margin. 2) Determination of the

controller gain for the precise control over the phase margin and bandwidth. The first step

is very trivial such that zero of the PI controller cancels the pole coming from the envelope

model. In other words, Eq.2.3 is needed to be met for pole-zero cancellation.

H̃(s) =
1
4
·

A
s + β/2

C(s) =
KP · s + KI

s

⇒ s +
KI

KP
= s +

β

2
⇒

KI

KP
=
β

2
(2.3)

After pole-zero cancellation step is performed, open-loop gain of the drive mode system is

needed to be adjusted such that bandwidth of the system is maximized with a sufficient phase

margin. Phase margin directly affects settling time and over-shoot, therefore optimum phase

margin is needed to be targeted in the designs. Drive mode is a 3rd order system after pole-zero

cancellation. One order comes from the integrator and two order comes from the low pass

filter. In addition, optimum phase margin for the second order systems is between 55◦ and

60◦. In drive-mode designs, same rule of thumb is applied, as well. After analytical design,

small adjustments are done according to simulation results. These results show that optimum

phase margin occurs between 65◦ and 70◦ for our system. At this phase margin, system is

near the critically damped case in which settling time is very sensitive to parameter variations.

As a result, 60◦ is targeted for the controller designs for drive modes even if this value is not

optimum. In order to have a 60◦ phase margin, phase contribution of the low pass filter is

needed to be 30◦. Therefore, taking the phase drop due to integrator into account, over-all

phase drop equals to 120◦ which corresponds to 60◦ phase margin. Frequency corresponding

to 30◦ phase contribution of the low pass filter is a certain value, since the circuit topology

used in drive mode system is fixed. As it will be shown in Chapter 4, multi-feedback type

Butterworth filter is used in our drive mode systems. Cut-off frequency of the low pass filter is

also fixed at 100Hz for a reasonable rejection of high frequency components which are around

20kHz. Frequency characteristics of this filter are shown in Figure 2.5. As this figure shows,

phase of the low pass filter drops −30◦ at 35Hz. As a result, unity gain frequency should

occur at 35Hz for 60◦ phase margin. Eq. 2.4 shows the second condition for a reasonable

phase margin with maximum bandwidth according to these results.
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Figure 2.5: Frequency characteristics of the low pass filter used in drive mode system.

KP · s + KI

s
·

Kenv

s + β/2
· F(s) = 1| f =35Hz

Kenv · KP

2 · π · 35
= 1

Kenv · KP = 220 (2.4)

where,

Kenv =
A
4
· Kpre−amp · Kmod · KLPF · Kdmod (2.5)

F(s) : Normalized transfer function of the low-pass filter (2.6)

In the above and below expressions, gain of the low pass filter is expressed in the envelope

model constant (Kenv).

Finally, the drive mode oscillation is needed to be maximized for a better performance. The

amount of the deflection is determined by the relation which Eq. 2.7 shows. For a certain

process, the gain between the output current of the sensor and displacement is almost con-
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Table 2.1: Drive Mode Loop Parameters.

A Numerator of the mechanical sensor’s transfer fucntion
Kpre−amp Pre-amplfier gain
Kmod Modulator gain
KLPF Low Pass Filter Gain
Kdmod Demodulator Gain

stant. In addition, current to voltage conversion gain is fixed with the preamplifier. Besides,

reference voltage should be a low noise and low drift signal for better bias instability. For

this reason, it is taken from a band-gap reference, so that this voltage is constant, as well. As

a result, low pass filter gain is needed to be fixed for a certain value of the drive deflection .

Eq. 2.8 shows the value for a desired drive displacement. For the current sensors, the amount

of the generated voltage per 1um is 190mV. This amount equals to the multiplication of the

gains between displacement-to-current gain in the sensor and current-to-voltage gain of the

preamplifier and following gain stage, as Eq. 2.7 shows.

Xdrive · KX/C · KC/V︸        ︷︷        ︸
KX/V =190mV

· Kmod · KLPF = Vre f (2.7)

KLPF = Vre f /Xdrive · KX/C · KC/V · Kmod

KLPF =
Vre f

Xdrive · KX/V · Kmod
(2.8)

Combining Eqs. 2.5, 2.4 and 2.8, Eq. 2.10 can be obtained. Using this relation and the

condition for pole zero cancellation, integrator coefficient can be found easily as Eq. 2.10

indicates. These both equations shows the controller values for a desired deflection amount

Xd and 60◦ phase margin. Unity-gain frequency of this system is fixed at 35 Hz which satifies

the 60◦ phase margin.

KP =
funity gain · 2π

Kenv
=

funity gain · 2π
A
4
· Kpre−amp · Kmod ·

Vre f

Xdrive · KX/V · Kmod
· Kdmod

(2.9)
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KP =
funity gain · 2π

Kenv
=

funity gain · 2π
A
4
· Kpre−amp ·

Vre f

Xdrive · KX/V
· Kdmod

KI = KP ·
β

2

(2.10)

Figure 2.6 shows settling of the system constructed with envelope model. Settling time is

21msec. In addition, complete system is also simulated. Figure 2.7 shows the modulator

input signal which gives direct information about the drive velocity. Envelope model carries

the characteristics between low pass filter output after demodulator and modulator input. This

low pass filter causes a delay between the modulator input and the peak detector output.

As a result, some slight discrepancy between the demodulator output and actual envelope

output is expected. This fact is shown in Figure 2.7: settling time is 18 msec. Moreover,

the regulated signal is the velocity of the drive mode motion, not the displacement. In other

words, preamplifier output is the derivative of the actual drive mode displacement. As a

result, settling of demodulator input does not show real settling of drive motion. Fortunately,

envelopes before and after differentiator are almost same. Envelope characteristics of the

differentiator can be found in time or Laplace domain as it will be done in Chapter 4. Time

domain analysis of such a simple system is much easier than analysis in Laplace domain.

Assuming the bandwidth of the message (envelope) signal is much smaller than the carrier

frequency, this signal, which is an input of the differentiator in our case, can be expressed in

Eq. 2.11.

Vdi f ,in = m(t) · cos(ω · t) (2.11)

Taking the derivative of this equation, Eq. 2.12 is obtained.

Vdi f ,out =
Vdi f ,in

dt
= ṁ(t) · cos(ωD · t) − m(t)ωD · sin(ωD · t). (2.12)

Second term is much stronger than the first term, since ṁ(t) can be maximum Ω ·m(t) where,

Ω is the maximum frequency (bandwidth) of the input signal. Therefore, output signal can be

expressed in Eq. 2.13.

Vdi f ,out = −m(t)ωD · sin(ωD · t) (2.13)

As a result, envelope of the signal after differentiator can be expressed in Eq. 2.14.

mO(t) = m(t) · ωD (2.14)
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In brief, differentiator only behaves as a gain stage for the envelope signals assuming envelope

signal bandwidth is much smaller than the drive mode resonance frequency. This condition is

mostly valid in gyroscope applications. Simulation results of drive displacement is completely

consistent with these results.

Figure 2.6: Settling of drive mode system constructed with the envelope model.

Figure 2.7: Settling of the complete drive mode system.
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2.2 Effects of Circuit Imperfections

In the above analysis, effect of the circuit imperfections are not taken into account. Just

after the system is powered up, output of the demodulator is around zero and instrumentation

amplifier directly gives the reference voltage value to the PI controller input. At these times,

capacitor is initially discharged and behaves as a short circuit. Therefore, PI controller is

simply an inverting amplifier whose gain equals to proportional controller gain, KP. In our

cases, this value is larger than 10. Consequently, Op-Amp used in PI controller saturates

because of this voltage gain and large input signal whose value is 2.048V. Since PI controller

output saturates, negative-feedback loop is broken and mechanical sensor operates in open-

loop. Furthermore, it is actuated with a very large force which is generated by modulated

signal with amplitudes around supply voltages of the Op-Amp used in PI controller. Until

negative feedback loop for the amplitude regulation is formed, system dynamics is completely

different than the classical system approach in which saturation of the controller is not taken

into account, as discussed above.

Figure 2.8: Drive mode system with broken feedback due to saturation of Op-Amp in the PI
controller.

Figure 2.8 shows the equivalent system until negative feedback loop forms. The instant where

Op-Amp cancels saturation and enters linear region is the time when the voltage of the invert-

ing terminal times the proportional gain equals to saturation level of the Op-Amp. After that

instant, closed-loop system discussed above starts to operate. As a result, the over-all system
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is needed to be optimized for the best performance instead of taking the only closed-loop sys-

tem into account. Open-loop system dynamics shown in the Figure 2.8 is quite different from

the closed-loop system. First of all, as it was mentioned above, system is actuated by a con-

stant force which is generated by a square wave having 2.5VPeak. This 2.5V is the saturation

level of the Op-Amp used in PI controller. Since this voltage is constant, sensor settles to its

steady state value in a slowly manner. Nevertheless, the input force is very large, so that the

steady state value is very high and the necessary voltage which cancels the Op-Amp from the

saturation can be reached in a small portion of the over-all settling process. In the open-loop,

output of the low pass filter can be expressed with Eq.2.15.

VLPF,OUT = VPI,Out · H̃(s) · F(s) (2.15)

where,

H̃(s) : Envelope Model =
1
4
·

KS ensor · KPre−Amp · KIns−Amp ·

4
π︷  ︸︸  ︷

KDemod ·

8
π︷︸︸︷

KMod · KLPF

s + β/2
F(s) : Normalized Low Pass Filter

(2.16)

In Eq. 2.15 pole coming from the envelope model is much smaller than the poles of the low

pass filter. Therefore, in this analysis low pass filter can be expressed as a single gain stage as

shown in Eq. 2.17 where Kenv is given in Eq. 2.5.

VLPF,OUT = VPI,Out ·
Kenv

s + β/2
(2.17)

The expression of this equation in time domain is simply an exponential decaying signal

whose relation is expressed in Eq. 2.18. Steady state level is much higher than the critical

voltage which starts closed-loop operation. Eq. 2.20 expresses this critical voltage which

provides the closed-loop operation. As a result of this significant ratio, low pass filter output

settles to the critical voltage almost linearly. Figure 2.9 shows this linear settling and Eq. 2.19

expresses its rate. As it was discussed before, the rate of change at the output is very high,

though over all settling time exceeds tens of seconds. For the current sensor design [3], speed

of the open loop settling can be found as approximately 45mV/msec. Time elapsed until low
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pass filter output reaches the critical voltage is expressed by Eq. 2.21.

Figure 2.9: Visualization of linear settling of the closed-loop drive mode system for non-ideal
case.

VLPF,OUT =

VPI,S upply︷ ︸︸ ︷
VPI,Out ·

Steady State Value︷     ︸︸     ︷
Kenv · 2/β · (1 − e−t· β2 ) (2.18)

νOL =
dVLPF,OUT

dt

∣∣∣∣∣
t→0

= VPI,S upply · Kenv (2.19)

VC = Vre f − VPI,S upply/KP (2.20)

tset,OL =
VC

νOL
=

Vre f − VPI,S upply/KP

VPI,S upply · Kenv
(2.21)

Since we want to minimize the overall settling, we should make optimization for the settling

time including the open-loop and the closed-loop dynamics. Settling process of the open-loop

system is simple, but the transient dynamics of the closed-loop system is quite complicated.

In order to simplify this analysis, dominant pole approximation can be done for the closed

loop system. In fact, this assumption makes sense especially for the under-damped system.

Closed-loop transfer function can be expressed as Eq. 2.22 shows. In this expression, effect of

the low pass filter is not taken into account assuming there is enough phase margin to satisfy
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the under-damped condition.

GOL(s) =
Kenv · KP

s

GCL(s) =
GOL(s)

1 + GOL(s)

GCL(s) =
Kenv · KP

s + Kenv · KP
(2.22)

Equation given in Eq.2.22 is defined between the reference terminal of the instrumentation

amplifier and output of the low pass filter. Since this system is a single pole system, low pass

filter output can easily be expressed with the exponential function as Eq. 2.23 shows.

VLPF,OUT = V f + (Vi − V f ) · e−t·Kenv·KP

where,

Vi: initial value of the output=VC

V f : steady state value of the output=Vre f

VLPF,OUT = Vre f + (VC − Vre f ) · e−t·Kenv·KP (2.23)

Elapsed time between the instant when the low pass filter output reaches the critical voltage

and final value for 1 % error band is expressed in Eq. 2.24.

tset,CL = ln
(

Vre f − VC

Vre f − Vre f · 0.99

)
·

1
Kenv · KP

tset,CL = ln
(
Vre f − VC

Vre f
· 100

)
·

1
Kenv · KP

(2.24)

where,

VC = Vre f −
VPI,S upply

KP
(2.25)

Combining Eqs. 2.24 and 2.21, overall settling time can be obtained.

tset = tset,OL + tset,CL

=
VC

VPI,S upply · Kenv
+ ln

(
Vre f − VC

Vre f
· 100

)
·

1
Kenv · KP

(2.26)
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In order to minimize settling time, Eq. 2.26’s derivative with respect to the proportional

controller parameter can be found as shown in Eq. 2.27.

dtset

dKP
= 0

1
Kenv · K2

P

−
ln(100 · VPI,S upply/Vre f )

Kenv · K2
P

+
ln(KP)

Kenv · K2
P

−
1

Kenv · K2
P

= 0

1
Kenv · K2

P

(
−ln

(
100 · VPI,S upply/Vre f

)
+ ln(KP)

)
= 0

KP,1 = 100 ·
VPI,S upply

Vre f
(2.27)

KP,2 → ∞ (2.28)

Eq. 2.27 shows that there is one finite solution for the critical point. The slope is negative for

KP smaller than KP,1 and positive for KP larger than KP,1. These results show that the critical

point is the minimum settling time. Note that, this minimum settling time is very large such

that system is unstable. Therefore, we can conclude that proportional controller should be

maximized in over-damped case. The maximized proportional controller in dominant-pole

approximated system is around 10. In fact, same situation may be available in under-damped

case. But, even if it is not true, since critical voltage is almost equal to the reference voltage,

settling of the drive-mode system is dominated by the open-loop dynamics as discussed above.

In other words, using larger values does not cause significant improvement in the settling time.

This is also verified with simulation results. Moreover, there is no over-shoot in the system

if the controller value is selected for the over-damped case. Even if this controller is selected

for the under-damped case, over-shoot will be very low due to the dominancy of the open-

loop dynamics over drive-settling. This new settling time, therefore, can be expressed as it is

defined for open-loop dynamics, shown in Eq. 2.24 for which critical voltage almost equals

to reference voltage. To conclude, according to this new analysis proportional controller can

be selected according to the same procedure as discussed for the closed-loop dynamics. In

addition, integrator coefficient should be selected to cancel the pole of the envelope model:

Although, settling of the system is dominated by open-loop dynamics, stability of the over-

all system is characterized by closed-loop dynamics. Besides, settling-time of the closed-

loop dynamics is still important if there is a disturbance during the operation. If it is not

fast enough, recovery of the system will take a plenty of time which will spoil the complete
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operation of the gyroscope.

tset = settling time ≈
Vre f

VPI,S upply · Kenv
(2.29)

In the current system implemented with discrete components, reference potential (Vre f ) is

2.048V, supply potential (VPI,S upply) of PI controller is 2.5V and Kenv is 17.5. Inserting these

parameters in Eq. 2.29, settling time is found 47msec. In simulations, 49msec settling time is

observed, as Figure 2.10 shows.

Figure 2.10: Settling of drive mode close-loop system including saturation of Op-Amps.

Settling time of this system is low enough for tactical grade applications. It can be decreased

more by increasing the ratio between reference voltage and Kenv but it decreases the oscilla-

tion amplitude in drive mode. As it was emphasized, this oscillation amplitude is the most

important parameter in drive mode. As drive mode oscillation amplitude increases, perfor-

mance of the complete system increases directly. In other words, there is a trade-off between

settling time and system performance. This trade-off is expressed in Eq. 2.30.

tset · ℘ = κ (2.30)

where, ℘: Noise performances (angle random walk and bias instability)

κ: Constant defining the metric for the optimum settling time and noise performances.

Latter constant includes several parameters such supply voltages of PI controller, noise sources
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in sense system, scale factor, and gyro parameters. This metric expresses that for a given drive

system optimum settling time can only be decreased by forfeiting the noise performance of

the complete system. Therefore, according to the application needs settling time and noise

performances are determined. In our system, settling time is below 50msec for a sufficient

amplitude, therefore we do not need to consider this trade-off in details.

Another important issue in the controller design is the repeatability of the controller param-

eters for different sensors. At the begging of this section, it is mentioned that pole-zero

cancellation is needed to be done for a good settling time and phase margin. On the other

hand, in order to achieve this cancellation, the ratio between integrator and proportional con-

troller gains should equal to the half of the drive mode system bandwidth. Unfortunately,

this bandwidth strictly depends on the vacuum level which varies between sensor to sensor,

so controller parameters are needed to be updated. Though pole-zero cancellation provides

an advantage in the design procedure, it is not mandatory for a good settling time and phase

margin. In controller design, zero of the controller should compensate the phase drop coming

from its pole before gain reaches the unity gain frequency. As a result, even if pole-zero can-

cellation is not performed but above condition is done, same transient performance with same

phase margin can be attained. In brief, same controller parameters can be used for different

sensors whose bandwidth can vary in a large range.

Usage of the integrator stems from zero steady-state error requirement. On the other hand, in

spite of excluding the integrator from the system, steady error is still very low since over-all

loop gain is large in order to have a good settling time. If same controller design procedure

mentioned above is applied, steady state error is in 0.4% error band. In fact, exclusion of this

integrator capacitor will provide some advantageous. If initial value of the integrator capaci-

tance is not zero before the system starts up, transient dynamics mentioned above will change

completely. In this context, time constants of the PI controller are quite large so that discharge

of the capacitor which can be considered as recovery time, will take a plenty of time. This

problem can be visualized as followings: If output of the PI controller is negative, positive

feedback path becomes negative feedback path since its polarity changes. Furthermore, be-

cause of very large high gain in the positive feedback loop due to the gain of the comparator

in the modulator, system becomes instable and locks to an electrical oscillation. Even in

this electrical oscillation, output of the peak detector circuitry gives positive signal since it

only detects the amplitude of a modulating wave. Therefore, instrumentation amplifier output
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gives negative voltage, because in this state amplitude of electrical oscillation is lower than

the reference voltage and reference voltage is connected to inverting terminal of the instru-

mentation amplifier. Negative voltage output of an instrumentation amplifier discharges the

capacitor in the PI controller because of inverting amplifier characteristics of this controller.

This discharge provides recovery of the system and enables it to lock into mechanical reso-

nance frequency. Unfortunately, this recovery time is large owing to the fact that resistors and

capacitor of the controller are very large. Maximum discharge current is around 10uA for a

typical system. As a result, recovery of this system can take hundreds of millisecond for a

1µF PI capacitor. If this PI capacitor is removed from the system, such a start-up problem will

be solved.

2.3 Modified Drive Mode Controller Circuit

In drive controller, regulation of the drive oscillation is important for a robust scale factor and

good bias instability. On the other hand, drive mode system includes several block operating

at DC frequencies. Since these blocks are operating at DC frequencies, they are susceptible to

offsets, their drifts and Flicker (1/f) noise. To put it differently, though system is insensitive to

drifts of the sensor, it is sensitive to circuit drifts and noises. High performance Op-Amps and

instrumentation amplifier solve this problem in a substantial amount but their implementation

in CMOS is quite difficult. For CMOS implementation, a new drive controller system is

proposed in this thesis. Figure 2.11 shows this system. This controller does not have a strong

regulation over the drive oscillation as the previous one performs. On the other hand, it

provides a simple, low noise solution and it is insensitive to offset drifts. In theory, settling

time of this system can be very low with no over-shoot. In addition, this transient performance

is same in a very wide range of quality factor. In practice, this fact is limited by the gain

bandwidth product of the Op-Amps used in the systems. In contrast with the low offset and

1/f noise Op-Amp design in CMOS, high-speed Op-Amp design is quite straight forward

which only conflicts with the current.

Operation of this circuit is simple comparing to the conventional drive controller system.

Positive feedback loop provides self-oscillation. Output of the preamplifier is fed back to the

sensor and it is mixed with the output of the positive feedback path. This path forms the nega-

tive feedback which regulates the drive oscillation amplitude. Actuating signal is nothing but
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Figure 2.11: Simplified block diagram of the modified drive controller.

their difference which can be considered as an error signal. If loop gain of the negative feed-

back is high enough, error signal is very low such that output of the negative feedback follows

the first harmonic of the positive feedback output. Accordingly, drive deflection is regulated,

because the relation between the drive oscillation amplitude and negative feedback output is

only a gain. Strength of the oscillation amplitude regulation strictly depends on the loop gain,

since system behaves as a simple proportional controller. In order to provide this loop gain,

feedback gain factor β can be increased. Nonetheless, the amount of the drive-oscillation am-

plitude decreases with increasing loop gain which reduces noise performance of the system.

This problem can be tackled with putting a gain stage behind the sensor instead of using large

feedback factor. This is a good solution but error signal is the difference between square wave

and sinusoidal wave which are in phase. The resultant wave, which is shown in Figure 2.11,

has very large edges even the first harmonic is very low. The peak of this signal equals to the

supply level of the comparator used in the positive feedback loop. Therefore, putting a gain

stage before the sensor is not possible, otherwise waveform spoils which will reduce the first

harmonic. In other words, oscillation amplitude decreases. Fortunately, increase in the loop
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gain is larger than the reduction of the first harmonic for small gains before the sensor, and the

overall loop gain can be increased by inserting this small gain stage preceding the gyroscope.

This improvement is around 2 and it cannot be improved further.

To improve system performance, output of the positive feedback should have slower transition

around zero crossings as in sinusoidal wave and triangular waveforms. Thus, error signal

peak is consistent with its first harmonic; peak value is low. In this configuration, a gain

stage before the sensor can be used. But, these will complicate the system, especially for pure

sinusoidal output of the feedback case. Triangular waveform can be generated easily using

simple digital blocks and integrator, but the error between the peak of the triangular wave and

its first harmonic equals 20% percentage of triangular waveform peak. As a consequence,

maximum gain before the sensor is around 5.

In addition to the regulation strength, the settling time also directly depends on the loop gain.

Eq. 2.39 and same limitations are valid for it but for a reasonable drive oscillation, settling

time can be kept below 100 msec which is sufficient in most of the applications. Correspond-

ingly, same loop gain can suppress the drifts of the sensor in 99 %: if gain of the sensor

decreases to half of its initial, drive deflection changes in an amount of 2%. Furthermore,

the drift of the drive deflection does not directly affect the output. Only a portion of it will

cause drift at the output and this portion is directly proportional to the quadrature amount. If

system is quadrature free, then drive deflection will not cause any drift in the system. Current

systems in our research has quadrature cancellation loop which provides this condition [3].

On the other hand, drive oscillation regulation is not necessary only for a good bias instability

but it is also necessary for a robust scale factor: Scale factor is desired to be insensitive to

parameter variations of different sensor such as quality factor and ambient conditions such as

temperature. But regulation mentioned above will be enough in most conditions. In fact, con-

sidering this drive loop’s offset and Flicker noise free operation, this system is better in terms

of scale factor repeatability than the conventional system implemented in CMOS. Mathemat-

ical description of this system is simpler than the conventional drive loop’s. Envelope model

of the sensor can also be used but it is not necessary for this system, because all the amplitude

control operation is performed in high frequency region, not in base-band. First of all, closed

loop gain be described as Eq. 2.33.
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GCL(s) =
H(s)

1 + H(s) · βF
(2.31)

where, βF : Feedback factor

A(s) =

Forward Gain: KFG︷                                ︸︸                                ︷
KS ensor · KPre−Amp · KIns−Amp · s

s2 + βs + ω2
D

(2.32)

GCL(s) =
KFG · s

s2 + (β + KFG · βF ·)s + ω2
D

(2.33)

(2.34)

In resonance frequency, the gain of the closed-loop system is expressed in 2.35. Using Tay-

lor’s series, steady state error percentage can be found as Eq. 2.38 expresses.

G| f = fD =
KFG

β + KFG · βF
(2.35)

=
1
βF
·

1

1 +
β

KFG · βF

(2.36)

≈
1
βF
· (1 −

β

KFG · βF
) (2.37)

eS S ,% =
β

KFG · βF
· 100 (2.38)

Amount of this error describes the strength of the regulation. It mainly depends on feedback

factor and forward gain. Especially, if this system is high-Q than system has almost perfect

amplitude regulation. In current works, quality factor larger than 100.000 is observed for

wafer-level vacuumed gyroscopes. For such levels, bandwidth of the system is 0.12 Hz which

corresponds to β =1 rad/sec. Typical value for forward gain, KGF is around ten. As a result,

if feedback factor is around 10, steady state error can be below 1% error as it was mentioned

above.

Closed-loop system is also a second order system whose envelope behavior can be expressed

with Eq. 2.2. As a result, this system settles to its steady state value in an exponential manner.

This is described in Eq. 2.39 for 1% error band.

tset = 4.5 · τ = 4.5 ·
2

β + KFG · βF
≈

9
KFG · βF

(2.39)
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This equation shows that if the feedback and forward gain factors are 10, settling time is

around 90 msec which is a good value in most of the applications. Figure 2.12 shows the

simulation results of the settling of the new generation drive mode controller. In addition,

this amount can further be improved with increasing loop gain. Only limitation is the speed

of the Op-Amps used in the system. This can be increased to 100MHz with a reasonable

power consumption for folded-cascode Op-Amps. Another limitation for this system is the

Figure 2.12: Settling of the new generation drive mode controller.

maximum drive oscillation amplitude: It decreases with increasing feedback factor. Likewise,

conventional drive controller has similar restriction which is expressed in Eq. 2.30. For

current design for this new drive system, κ is lower than conventional loop’s κ. But it can

be further be increased by putting a gain stage before the sensor and changing the output

waveform of the positive feedback which will complicate the over all system.

2.4 Summary

The drive mode transient performance is optimized with the pole-zero cancellation technique,

but transient performance is mainly limited by the circuit imperfections coming from the sat-

uration of electronics. Fortunately, it is derived that optimum solution for an ideal system also

gives the best solution for non-ideal case. Finally, a new drive controller is introduced. This

system has a very simple architecture, but the trade-off between the transient performance

and maximum drive oscillation amplitude is worse than the trade-off in the conventional drive

mode controller.
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CHAPTER 3

SENSE MODE MODELING AND ANALOG FORCE

FEEDBACK CONTROLLER DESIGN

In a MEMS gyroscope the open-loop systems have a sensitive and low noise operation, but

the linearity is a major problem for high ranges above a 100◦/sec. Besides, the responsiv-

ity of the system directly depends on the sensor parameters which are likely to vary with

ambient and time. These changes in the system operation worsen the repeatability of the

sensor without calibration. Finally, the speed of the overall system is out of control in open

loop operation. Especially the systems, working at matched mode and mismatched mode in

which the amount of mode separation is not high enough, speed is a significant restriction.

Closed-loop operation solves the above problems in a considerable amount. On the other

hand, system complexity and design procedure harden for a robust system. In literature there

are basically two kinds of closed-loop sense mode systems: analog force feedback and digital

force feedback. Analog force feedback simplifies the systems. Nevertheless, because of sig-

nal processing task is carried out in analog domain, the system is sensitive to environmental

noise and design is not flexible. For different sensors, the hardware is needed to be changed.

On the other hand, systems relying on the digital force feedback are complex but they are less

sensitive to environment and design of the controller is flexible. It can be re-programmed via

software. This chapter, firstly in literature, presents a comprehensive study on analog force

feedback. Section 3.1 explains the base-band equivalent model of sense dynamics. Section

3.2 gives a design procedure with PID controller. Section 3.3 explains the integrator based

controller design and its restrictions. Finally, Section 3.4 summarizes this chapter.
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3.1 Base-Band Equivalent Model of Sense Dynamics

In gyroscopes, rate information is at the amplitude of the Coriolis force. As a result, before

processing the rate data and feeding back to the sensor, demodulation is needed. Unfortu-

nately, the system dynamics are changed owing to this operation. Demodulation changes

the overall frequency response by its inherent frequency up/down conversion at sense output.

Therefore, it is not easy to follow a straightforward sense controller design procedure. On the

other hand, it is possible to develop a system mimicking the envelope behavior of the Cori-

olis force. In fact, envelope model for drive-mode dynamics is available which is discussed

in details in Chapter 2. But, such a simple model for sense mode operating at mismatched

conditions is not available in literature.

Figure 3.1: Generic configuration of open-loop sense system.

A generic open loop sense mode of MEMS gyroscope can be shown as in Figure 3.1. Modu-

lator in this system is not an electronic modulator; it can be considered as a mechanical one.

Rate signal is mixing with the drive oscillation which constitutes Coriolis force and sense

mass moves according to this force. Because of the fact that Coriolis force is proportional

to the velocity of drive motion, carrier of this mechanical modulator can be considered as a

signal which leads the drive oscillation: there is a 90◦ phase difference between drive oscil-

lation. By the same token, quadrature signal is also an input for the system shown in Figure

3.1. Here, only difference is the phase of the mechanical modulator carrier which is in phase

with drive mode oscillation. These both forces produces motion in sense mode and this mo-

tion is converted to current by the sensor, then voltage by the preamplifiers. This signal is a

modulated signal whose carrier is drive oscillation and it is composed of two out phase sig-

nals. In order to obtain rate information, phase sensitive demodulation must be carried out

instead of using peak detector whose carrier equals to its input as in drive mode system. In
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addition, carrier of the demodulator should be in-phase with the Coriolis component to obtain

rate information. The phase of this signal can be found easily by applying a DC rate to the

input. Phase contribution of the sensor changes whether it operates under matched condition

or mismatched condition. If system operates under matched condition, sensor gives in-phase

current to the preamplifier. Since capacitive preamplifier is used in sense mode for low noise

operation, output of the preamplifier will have 90◦ phase difference between Coriolis force.

So, resultant signal is out-phase with velocity of Drive mode oscillation. Since, drive mode

system preamplifier output is in phase with drive mode oscillation velocity, true carrier for

matched mode can be obtained by using a 90◦ phase shifter between drive preamplifier output

and demodulator carrier. In a similar way, for mismatched operation, the carrier of demodula-

tor in sense mode must be in-phase with drive preamplifier output. Since extra mode-matching

loop is needed to operate the sensor in matched-mode, control of sense mode is carried out in

mismatched condition.

Input and output of this system are in base-band but system between modulator and demod-

ulator is operating at carrier frequency. As a result, it is not possible to use this direct model

to express the relation between input and output. In addition, drive mode envelope model is

not valid for a generic sense system, since this model is derived for a second order modulated

system which is operating at its resonance frequency. It will be shown later that new derived

sense model converges to this drive model for matched condition, as well.

Derivation procedure can be performed in time domain or Laplace domain. Latter is easier

than former one. Eq. 3.1 shows the expression for Laplace transformation.

∫ ∞

0
e−s·t · g(t) · dt (3.1)

Relation between modulated signal, p(t) and input signal, x(t) is shown in Eq.3.2. Eq. 3.3

shows Laplace transform of this equation. This equation is obtained using shifting property

of Laplace transformation. The resultant signal is The Coriolis Force which makes the sense

mass move.

p(t) = x(t) · cos(ωDt) = x(t) ·
e jωDt + e− jωDt

2
(3.2)

P(s) = X(s) ∗
δ(s + jωD) + δ(s − jωD)

2
=

X(s + jωD) + X(s − jωD)
2

(3.3)

Output of this system equals to the multiplication of the input signal and transfer function of
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the sense mode of gyroscope.

R(s) = P(s) ·G(s) =
X(s + jωD) + X(s − jωD)

2
·G(s) (3.4)

Relation between demodulator output and gyroscope output is same as Eq. 3.3.

Z(s) =
R(s + jωD) + R(s − jωD)

2
(3.5)

Z(s) =
X(s + 2 jωD) + X(s)

4
·G(s + jωD) +

X(s) + X(s − 2 jωD)
4

·G(s − jωD) (3.6)

Demodulator output includes high frequency terms at two times of the drive mode resonance

frequency. These terms come from both input signal, rate and gyro sense mode transfer func-

tion. Since, the input signal is band-limited, which is expected to be lower than hundreds of

100 Hz, its expected power around two times of drive resonance frequency is almost negligi-

ble. Furthermore, in the closed-loop operation feedback does not allow to produce these high

frequency signals because of band-limiting blocks used in the loop. Due the fact that high

frequency components in Eq. 3.6 (X(s ± 2 jωD)) are cascaded with the low pass filter, only a

portion of these high frequency terms smaller than the cut-off frequency of the low pass filter

can pass through the filter. Since, input and feedback signals are band-limited, X(s ± 2 jωD)

has a negligible power in the band of the low pass filter. To put it differently, this part has no

effect at the output and it can be ignored. Therefore, this system is simplified to Eq. 3.7.

Y(s) = Z(s) · F(s)

= X(s) ·
G(s + jωD) + G(s − jωD)

4

+

(
X(s + 2 jωD)

2
·G(s + jωD) +

X(s − 2 jωD)
4

·G(s − jωD)
)

︸                                                                       ︷︷                                                                       ︸
Filtered out by the Low Pass Filter for band-limited input

· F(s)

� X(s) ·
G(s + jωD) + G(s − jωD)

4
(3.7)

The sense mode dynamics for capacitive preamplifier can be expressed in Eq. 3.8.

G(s) =
KS

s2 +
ωS

QS
· s + ω2

S

(3.8)

where,

KS =
∂CS ,act

∂x
· VPM︸           ︷︷           ︸

αV/F

·
∂CS ,sense

∂x
· VPM︸             ︷︷             ︸

αx/I

·
1

CPre−amp︸     ︷︷     ︸
αI/V

·
1

mS
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In the above equation, αV/F , αx/I , and αI/V are not the gains for different conversion processes,

but they are the scalar appearing in these processes. Eq. 3.8 can be expanded as Eq. 3.9 shows.

G(s) =
KS

2 jωS

√
1 − 1/4Q2

S

 1

s +
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S

−
1

s +
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S

 (3.9)

Inserting Eq. 3.9 into Eq. 3.7, Eq. Eq. 3.10 is obtained.

Y(s) = X(s) · F(s) ·
KS

8 jωS

√
1 −

1
4Q2

S

 1

s +
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S + jωD

+
1

s +
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S − jωD

−
1

s +
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S + jωD

−
1

s +
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S − jωD

 (3.10)

Combining the conjugate terms, Eq. 3.10 takes the following form.

Y(s) = X(s) · F(s) ·
KS

8 jωS

√
1 −

1
4Q2

S



2 j

ωS

√
1 −

1
4Q2

S

+ ωD


s2 +

ωS

QS
· s +

(
ωS

4QS

)2

+

ωS

√
1 −

1
4Q2

S

+ wD


2

︸                                       ︷︷                                       ︸
ω2

H

+

2 j

ωS

√
1 −

1
4Q2

S

− ωD


s2 +

ωS

QS
· s +

(
ωS

4QS

)2

+

ωS

√
1 −

1
4Q2

S

− wD


2

︸                                       ︷︷                                       ︸
ω2

L


(3.11)

This equation also shows two resonator system: one of them has a resonance frequency around

ωH and other has a resonance frequency around ωL. Second term, whose resonance frequency

is around ωL, is rejected by the low pass filter. Thus, over-all system is expressed by Eq.3.12.

50



Y(s) = X(s) · F(s) ·
KS

4
·

1 −
ωD

ωS

√
1 − 1/ (4QS )2

s2 +
ωS

QS︸︷︷︸
βS

· s + ω2
L

(3.12)

Moreover the gyroscope is operating at high vacuum levels. This fact allows us to neglect

1/4Q2
S expressions but for matched mode this assumption fails because this term becomes

comparable with frequency terms. For better approximation, it is better to use Taylor’s series

approximation.
1

√
1 − x

� 1 +
x
2
⇒

1√
1 −

1
4Q2

S

� 1 +
1

8Q2
S

(3.13)

Combining Eqs. 3.12 and 3.13, Eq. 3.14 can be obtained.

Y(s) = X(s) · F(s) ·
KS

4
·

1 −
ωD

ωS
−
ωD

ωS
·

1
8Q2

S

s2 + βS · s + ω2
L

(3.14)

ωL can be simplified for high vacuum levels as following equation shows.

ωL �

(
ωS

2QS

)2

+ (∆ω)2

where,

∆ω = ωS − ωD

In Eq. 3.14, there is a strict relation between input, X(s) and output, Y(s). This relation can

directly be used in system analysis. In fact, it is base-band equivalent model of a sense mode

of MEMS gyroscope whose demodulator carrier is in-phase with drive mode preamplifier

output. This model can also be considered as an envelope model and it is denoted by Genv(s).

Genv(s) = F(s) ·
KS

4
·

1 −
ωD

ωS
−
ωD

ωS
·

1
8Q2

S

s2 + βS · s + ω2
L

(3.15)

If system is operating at matched conditions, then above system can be expressed with Eq.

3.16.

Genv(s) = −F(s) ·
KS

32Q2
S

·
1(

s +
βS

2

)2 (3.16)

This result shows that if system mismatch amount is low, then response of this system is

inversely proportional to the square root of the drive/sense mode resonance frequency. For
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this reason, for mode-matched system demodulator carrier must have 90◦ phase difference

between drive deflection.

For mis-matched operation, 3.15 converges to simple relation shown in Eq. 3.17.

Genv(s) = F(s) ·
KS

4 · ωS
·

∆ω

s2 + βS + (∆ω)2 (3.17)

This base-band equivalent model is valid for a sense mode operating at mismatched condition

and having a sufficiently large quality factor.

Table 3.1 shows envelope models for four possible sense system shown in Figure 3.1. Enve-

lope model changes with the type of the preamplifier and relative phase difference between

mechanical modulator and electronic demodulator carriers, Φ. These types are capacitive in-

terface and in-phase carriers, capacitive interface and out-of phase carriers, resistive interface

and in-phase carriers and finally resistive interface and out-of phase carriers. Derivation for

the first case has been performed above and other’s derivations are available in the Appendix.

Transfer function for trans-resistive preamplifier is also given in Eq. 3.18. Step responses of

these four systems are shown in Figure 3.2. In these figures, both complete systems and their

envelope model simulations are performed.

G(s) =
KS · s

s2 + βS · s + ω2
S

(3.18)

Table 3.1: Envelope models of the sense mode of a MEMS gyroscope for the different pream-
plifiers and demodulator carriers.

Resistive Preamplifier Capacitive Preamplifier

Φ = 0◦
KS · F(s)

4
·

s +
ωS

2 · QS

s2 + βS · s + ω2
L

KS · F(s)
4ωS

·

∆ω −
ωD

8Q2
S

s2 + βS · s + ω2
L

Φ = 90◦
KS · F(s)

4
·

s
2 · QS

+ ∆ω +
ωD

8Q2
S

s2 + βS · s + ω2
L

−
KS · F(s)

4ωS
·

s +
ωS

2 · QS

s2 + βS · s + ω2
L
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(a) Capacitive preamplifier and Φ = 0◦.

(b) Capacitive preamplifier and Φ = 90◦.
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(c) Resistive preamplifier and Φ = 0◦.

(d) Resistive preamplifier and Φ = 90◦.

Figure 3.2: Open-loop simulation results for complete system and proposed base-band equiv-
alent models.
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where,

ω2
L =

(
ωS

2QS

)2

+ (∆ω)2

∆ω = ωS − ωD

βS =
ωS

QS
.

Open-loop simulation parameters for the system, shown in Figure 3.1, are given in Table

3.2. In this table, KS ,C is the numerator of sense mode transfer function with capacitive

preamplifier and KS ,R is the numerator for resistive type preamplifier. Simulation results show

that base-band equivalent models are completely consistent with complete system simulation.

These models can also be verified for other mismatch amount. Since, characteristics of the

proposed base-band models are same as the actual system characteristics, these models can

safely be used in analyzing envelope performance of gyro system and designing controllers.

These models provide several advantages: 1) Proposed models are LTI systems which enable

to use strong design methods developed for LTI systems. 2) System become much more

simple relieving analyze and design procedure. 3) New system is operating at base-band. On

the other hand, original system works in around drive resonance frequency. Time step of the

simulation must be low enough to characterize the system sufficiently but it took a plenty of

time comparing with simulation periods of base-band models.

Table 3.2: Open-loop simulation parameters.

ωS 10.1kHz · 2π
ωD 10kHz · 2π
βS 5Hz · 2π
KS ,C 107

KS ,R
107

ωD
= 160

ωLPF,−3dB 100Hz · 2π

In Table 3.1, there are only two assumptions: 1) Quality factor is high enough such that Eq.

3.19 holds. 2) Mismatch amount is much smaller than the resonance frequencies of drive and

sense modes. This condition is necessary to neglect resonator of the base-band equivalent

model with higher resonance frequency as shown in Eq. 3.10. This condition also simplifies

some of the base-band equivalent models more as it is shown in Appendix. Eq. 3.20 shows
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mathematical description of this assumption.

1
4Q2

S

� 1 (3.19)

∆ω � ωS + ωD (3.20)

This table also gives important information about what the correct phase is for different ap-

plications. Correct phase can be found by investigating the gain of the base-band equivalent

model for s=0. If it is very low such that its responsivity is inversely proportional to the

quality factor, system should be operated for the other phase. To illustrate, either capacitive

preamplifier with 0◦ phase or resistive preamplifier with 90◦ phase can be used for mismatch

operation.

Similarly, if rate sensing is desired to be performed at matched condition, then other cases

should be selected. Similar analysis can be done for quadrature detection. On the other

hand, in that case since modulator carrier is itself lags the drive preamplifier output with 90◦,

transfer functions given in the table are valid for the other phase. To illustrate, for quadrature

detection, mismatch sense system with capacitive preamplifier should have a carrier lagging

the drive preamplifier output in 90◦.

Using the results of Table 3.1, it is possible to obtain both base-band equivalent models for

matched and mismatched operation. For matched operation, ∆ω becomes zero and Table

Table 3.1 simplifies to Table 3.3. In this table, resistive preamplifier with 0◦ phase is same as

the envelope model used in drive mode. In fact, these conditions are same as the ones using

in drive amplitude control system. In addition, similar envelope model is seen for capacitive

preamplifier type with 90◦ phase. This model is useful in sense system, if mode-matching is

done. Other models have very low gains which are not functional in any loop.

Since, complicated mode matching control loop is required for mode-matched operation,

work in this thesis focus on systems operating at mismatched conditions. Therefore, Table

3.1 can be simplified as Table 3.4 shows.

In the above tables, there is a significant similarity between the cases which differ in pream-

plifier type and demodulator phase. Only difference comes from gain and polarity. The dif-

ference between gains stem from the current to voltage conversion process of the different

preamplifier types. Voltage to current conversion gain for capacitive type trans-impedance
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Table 3.3: Envelope models of the sense mode of a MEMS gyroscope for the matched opera-
tion.

Resistive Preamplifier Capacitive Preamplifier

Φ = 0◦
KS · F(s)

4
·

1

s +
βS

2

−
KS · F(s)

32Q2
S

·
1(

s +
βS

2

)2

Φ = 90◦
KS · F(s)

32Q2
S

·
ωD(

s +
βS

2

)2 −
KS · F(s)

4ωS
·

1

s +
βS

2

Table 3.4: Envelope models of the sense mode of a MEMS gyroscope for the mis-matched
operation.

Resistive Preamplifier Capacitive Preamplifier

Φ = 0◦
KS · F(s)

4
·

s +
ωS

2 · QS

s2 + βS · s + (∆ω)2

KS · F(s)
4ωS

·
∆ω

s2 + βS · s + (∆ω)2

Φ = 90◦
KS · F(s)

4
·

∆ω

s2 + βS · s + (∆ω)2 −
KS · F(s)

4ωS
·

s +
ωS

2 · QS

s2 + βS · s + (∆ω)2

amplifiers, is inversely proportional to operation frequency since impedance of the capacitor

equals to 1/ ( jω). On the other hand, gain of the resistive type preamplifier does not depend

on frequency. The scalar, KS for both cases does not include any frequency term. For this

reason, frequency parameter of the current-to-voltage conversion process appears in the en-

velope model. Therefore, constants in these tables can be interpreted as multiplication of

the numerator for the sense mode, electronics gains and scaling coming from modulation-

demodulation. Last term is due to the multiplication of two sinusoidal signals. There are two

mixing operation resulting in scaling with 0.25. This fact is shown in Eq. 3.2.

Genv(s) =

KG︷                  ︸︸                  ︷
KS ense · KElectronics

4
· E(s)︸                           ︷︷                           ︸

G̃(s)

· F(s) (3.21)

where,
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KS ense: Numerator of sense mode of MEMS Gyroscope

KElectronics: Electronic Gain between sensor and modulator

E(s): Base-band equivalent model core

F(s): Low Pass Filter.

G̃(s): Envelope model excluding low pass filter.

Table 3.4 show all possible base-band equivalent model cores. Models marked with † can be

used in gyroscope systems. Gains of other models are very low, so they cannot take role in

any gyroscope control loops.

Table 3.5: Envelope model cores.

Operation Φ Resistive Preamplifier Capacitive Preamplifier

Matched

0◦
1

s +
βS

2

† −
ωS

32Q2
S ·

(
s +

βS

2

)2

90◦
ωS

32Q2
S ·

(
s +

βS

2

)2 −
1

s +
βS

2

†

Mis-matched

0◦
s +

ωS

2 · QS

s2 + βS · s + (∆ω)2

∆ω

s2 + βS · s + (∆ω)2 †

90◦
∆ω

s2 + βS · s + (∆ω)2 † −

s +
ωS

2 · QS

s2 + βS · s + (∆ω)2

Using Table 3.5 and Eq. 3.2 any system in vibratory MEMS gyroscope can be transformed

to base-band easily. As it was mentioned before, because of the additional control loop re-

quirement of mode-matched operation, force-feedback loop is implemented for mis-matched

operations. In addition, capacitive type trans-impedance amplifier is used in sense electronics

because of its lower noise performance comparing with trans-resistance amplifier. Therefore,

in preceding works only the base-band equivalent model, which Figure 3.3 shows, will be
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used in controller design.

Figure 3.3: Base-band equivalent model of sense mode for capacitive type preamplifier and
mis-matched operation.

3.2 Controller Design-Type I

Idea behind sense control is almost same as in the drive mode controller design. Figure 3.4

shows system level, and Figure 3.5 shows the circuit level descriptions of the sense mode

controller. First of all, rate information is needed to be extracted by means of phase sensitive

demodulation. After the envelope of the sense motion is obtained, resultant signal is sent to a

controller. Aim of this controller is to regulate the motion of the sense mode such that sense

mass does not move. To conduct this task, controller applies an actuating voltage generating

electrostatic force. This force re-balances the Coriolis force to stabilize the sense mass. As

it was mentioned at the beginning of this chapter, this enhances overall linearity. The reason

for the non-linearity is the non-linear relation between the force and displacement for varying

gap type capacitive fingers. On the other hand, using such a controller sense displacement in

response to the Coriolis force is eliminated.

The strength of the improvement in the linearity strictly depends on the amount of the error

signal. The significance of this signal is much more comparing to the error signal in drive

mode. Therefore, sense mode controller should include an integrator to completely remove

errors signal. In other words, use of an integrator based controller completely ensures that
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very good linearity values.

Figure 3.4: Simplified close-loop sense mode system.

In addition, bandwidth of the sense system is another significant parameter in a typical ap-

plication. Especially, bandwidth of a gyroscope should be at least 100Hz for tactical grade

gyroscopes. On the other hand, mismatch amount should be minimized as possible to reduce

to contribution of electronics noise at the output as it will be shown in Chapter 4. Both of

these tasks conflicts with each other. Over all bandwidth of the system can be extended using

more gain in the controller but this will reduce the phase margin. Phase of the open-loop

system is mainly contributed by three items. 1) Use of integrator based controller cause 90◦

phase drop. 2) Low pass filter contributes phase drop. 3) Envelope model shows that system

behaves as a resonator with fS − fD resonance frequency. There is a sudden phase drop around

this frequency. Phase contribution of the sense system dynamics (its envelope characteristics)

becomes especially important, if mismatch amount is low. Correspondingly, maximum gain is

restricted by the phase contribution of the sense mode envelope model. Fortunately, this phase

drop can be compensated using PID (proportional-integral-gain) controller such that numera-

tor of this system cancels the denominator of the envelope model. As a result, sense dynamics

will behave as a simple gain stage since its poles are canceled. This will completely simplify

the system and now sense loop characteristics completely converge to the loop characteristics

of drive mode.
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Figure 3.5: Simplified circuit level diagram of the sense mode system.
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Controller design procedure is almost same as the design procedure in drive mode controller:

1) Determine the ratio between PID parameters to cancel to sense mode base-band equivalent

model poles. 2) Determine the optimum phase margin for the best bandwidth. 3) Determine

the derivative gain, KP, of the controller to satisfy the phase margin found in the second step.

4) Find other controller parameters, KP and KI according to the ratios found in the first step.

First step can be performed by equalizing the poles of the base-band equivalent model of

sense dynamics and zeros of a PID controller. Eq. 3.22 shows the mathematics of this step.

C(s) = KD · s + KP +
KI

s

C(s) =
KD · s2 + KP · s + KI

s

G̃(s) =
KG · ∆ω

s2 + βS · s + (∆ω)2

s2 + βS · s + ω2
S = KD · s2 + KP · s + KI (3.22)

KG in the base-band equivalent model is a scalar which is shown in Eq. . Eqs. 3.23 and 3.23

indicate the relations between controller parameters:

KP

KD
= βS

KI

KD
= (∆ω)2 (3.23)

(3.24)

In the second step, safe phase margin should be at least 45◦. For the system including a MFB

(multi-feedback) single ended Buttorworth low pass filter having 100Hz cutoff frequency,

optimum phase margin in terms of the best bandwidth is also obtained around 45◦ phase

margin with 90Hz bandwidth. On the other hand, settling time of the sense system should

also be investigated since this settling time will affect over all start-up time. It is observed

that this amount is around 25 msec for 45◦ phase margin and 22 msec for 60◦ phase margin.

In fact, it can be improved further up to nearly 10 msec but system becomes very susceptible

to variations in controller and system parameters. Accordingly, 45◦ phase margin seems the

best solution considering both bandwidth and settling time.

In order to obtain this settling time, overall loop gain must be equal to unity at the frequency

where overall phase of open-loop system drops to −135◦. Since −90◦ out of −135◦ comes

from the controller pole (at 0), frequency where the phase contribution of the low pass filter
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is −45◦ must be the unity-gain frequency. This frequency almost equals to 50Hz. Eq. 3.25

shows the mathematical relations for unity-gain frequency.

|S OL|s= j·2π· funity gain =
∣∣∣G̃(s) · Kmod · Kdmod · F(s) ·C(s)

∣∣∣
s= j·2π· funity gain

= 1∣∣∣∣∣∣∣∣∣∣∣
KG · ∆ω

s2 + βS · s + ∆ωS
2 · Kmod · Kdmod · F(s) · KD ·

s2 +
KP

KD
· s +

KI

KD

s

∣∣∣∣∣∣∣∣∣∣∣
s= j·2π· funity gain

= 1

(3.25)

Low pass filter’s gain is for 50Hz equals to its DC gain. In addition, denominator of the

envelope model is canceled by the zeros of the controller. Therefore, Eq. 3.25 simplifies to

Eq. 3.26.
KG · ∆ω · Kmod · Kdmod · KLPF · KD

2π · funity gain
= 1 (3.26)

Therefore, derivative controller can be found using Eq. 3.27.

KD =
2 · π · funity gain

KG · ∆ω · Kmod · Kdmod · KLPF
(3.27)

Combining Eqs. 3.27 with the result of Eq. 3.23 and Eq. 3.23, Eqs. 3.28 are obtained.

KD =
2 · π · funity gain

KG · ∆ω · Kmod · Kdmod · KLPF

KP = βS · KD

KI = (∆ω)2 · KD

(3.28)

These equations give controller parameters for PID controller providing 85 Hz bandwidth, 25

msec settling time with 45◦ phase margin.

Figure 3.6 shows the open-loop bode plot of the system for the designed controller as Eqs.

3.28 indicates. Parameters of the gyroscope sense system is given in Table 3.6. Owing to

the fact that modulators and demodulators used in sense controllers are switching modulators,

they can be considered as multiplication block with square wave. Sensor and system rejects

higher harmonics, so only the first harmonic of the square wave will be under interest. In

addition, demodulator itself has a gain of 2. Similarly, sensor is actuating with differential

electrodes which is fed by two modulators whose output are inverse of each other. In other

words, modulation process has also 2 extra gains as in demodulation.
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Table 3.6: Gyroscope sense system parameters.

Sensor Module Parameters
KS Sense Mode Constant 108

ωS Sense mode resonance frequency 13.783kHz · 2π
ωD Drive mode resonance frequency 13.683kHz · 2π
βS Bandwidth of the sense dynamics 30 rad/sec

System Parameters

KG Envelope model Constant =
KS

4ωS
290

∆ω Mismatch amount 100Hz · 2π
Kdemod Demodulator Gain 4/pi · 2
KLPF Low pass filter gain Gain 6.5
Kmod Modulator Gain 4/pi · 2

Figure 3.6: Open-loop bode plot of sense system.

Close-loop bode plot of this system is shown in Figure 3.7. It shows that bandwidth of the
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system is around 85 Hz which is a good value for most of the tactical grade applications. In

fact, this bandwidth can easily be improved by increasing the cut-off frequency of the low

pass filter. This action, on the other hand, deteriorates suppression of high harmonics of

demodulator at the output. Moreover, there is a small peak around 65 Hz. This peak comes

from the under-damped characteristics of the system which is designed for 45◦ phase margin.

Step response of this system is also shown in Figure 3.8. This figure shows that settling time

is around 25 msec.

These results are also verified with complete system simulations in Simulink. Figure 3.9

shows the gyroscope output as the frequency of the input varies linearly with time. Since this

system is not a LTI system, conventional tools for analyzing LTI systems cannot be used such

as Bode plots and step response. In order to obtain frequency characteristics, a chirp signal

is applied to the input of this complete system. Its frequency changes with time, so that it is

possible to observe the frequency characteristics of such a non-LTI system.

Figure 3.7: Close-loop bode plot of sense system.
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Figure 3.8: Step response of simplified sense system.

Figure 3.9: Step response of complete sysem.

Figure 3.10 shows step response of the complete system. These simulation results are com-

pletely consistent with the ones using LTI blocks including proposed envelope model. Figure

3.11 also shows the modulator input which is output of the instrumentation amplifier after the

preamplifier. This signal directly gives information about sense motion. There is a significant

displacement before system reaches its steady state. But amount of this signal is not critical,

because output which carries information settles in a short period of time.
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Figure 3.10: Frequency characteristics of the complete sysem.

Figure 3.11: Signal regarding sense motion at the start-up.

3.3 Controller Design-Type II

If mismatch amount is high comparing to the desired bandwidth of the system, then con-

tribution of the envelope model can be ignored since it will be very low in the open loop.
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In other words, envelope model only behaves as a simple gain stage which does not require

phase compensation using PID controller. In fact, pure integrator (C(s) = KI/s) is enough

for such a system which has only phase drops due to the integrator and low pass filter in the

band of interest. Gain of the system can either be found by evaluating the sense mode transfer

function at drive oscillation frequency or evaluating the envelope model at s = 0. Eq. 3.29

expresses this gain. Since frequency dependency of sense base-band behavior disappears for

high mismatches, above controller design procedure and its implementation simplify. There

is an only integrator gain parameter in the controller whose gain expression is given in Eq.

3.30 for 45◦ phase margin and low pass filter with 100 Hz cut-off frequency.

KS Gain = G̃(s)
∣∣∣
s=0 =

KG · ∆ω

(∆ω)2 (3.29)

KI =
2 · π · funity gain

KS Gain · Kmod · Kdmod · KLPF

KI =
2 · π · funity gain · ∆ω

KG · Kmod · Kdmod · KLPF
(3.30)

Although low mismatched operation is required for better noise performance, sensitivity of

the mismatch amount with respect to the proof mass voltages is very large. Correspondingly,

mismatch amount below 200 Hz is not used in current control loops. For this reason, pure

integrator is used in our current designs instead of using PID controllers. This will also

simplify the implementation of the controller: integrator can be implemented with a single

Op-Amp but PID controllers need 4 Op-Amps as it is shown in Chapter 4.

Second controller design approach does not take the phase contribution of the envelope model

into account: sensor dynamics are modeled with a simple gain stage. To be able to take the

sensor dynamics as a simple gain stage, it is needed to guarantee that the gain and phase

responses of the envelope model are almost flat. In other words, envelope model should

behave as a simple gain stage in the desired bandwidth in open-loop configuration. Phase of

this system can be written as:
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∠G̃(s)
∣∣∣
s= jωunity

= ∠

(
1

s2 + βS · s + (∆ω)2

)
s= jωunity

= −tan−1

 βS · ωunity

(∆ω)2 − ω2
unity

 (3.31)

For 1◦ phase error, term inside the inverse tangent function should be 0.02. This condition

results in the following equation:

(∆ω)2 =

√
50 · βSωLPF + ω2

LPF (3.32)

In addition, gain of this envelope at the low pass filter cut off frequency can also be written

as: ∣∣∣∣∣∣ 1
s2 + βS · s + (∆ω)2

∣∣∣∣∣∣
s= jωLPF

=

√√
1(

(∆ω)2 − ω2
LPF

)2
+ (βS · ωLPF)2

(3.33)

Second term in the denominator is very small comparing with the first term under the phase

assumption. At DC frequency, gain can be expressed as:∣∣∣∣∣∣ 1
s2 + βS · s + (∆ω)2

∣∣∣∣∣∣
s=0

=
1

(∆ω)2 (3.34)

Eq.3.35 shows 10% gain error condition.

ω2
LPF = 0.09 · (∆ω)2 ⇒ ∆ω = 3.3 · ωLPF (3.35)

These both equations indicate the minimum mismatch amount to ignore the phase and gain

changes depending on frequency. According to these results, frequency dependency of gain is

negligible if mismatch amount is sufficiently higher than the low pass filter cut-off frequency.

On the other hand, frequency dependency of phase not only depends on the low pass cut-off

frequency but also sense mode bandwidth. This result shows that if bandwidth is low enough,

mismatch amount can decrease to low pass cut-off frequency. Nevertheless, gain condition

for mismatch express that mismatch amount should be larger than approximately 3 times of

the low pass filter cut-off frequency. Correspondingly, if bandwidth is low enough, mismatch

amount can roughly be taken as 3 times of the low-pass filter cut-off frequency.

Above analysis say that even quality factor is infinite, if condition for gain is satisfied, enve-

lope model can be taken as a simple gain stage and controller can be designed according this

loop. This conclusion is wrong. Though, frequency characteristics of the sense dynamics do

69



not affect the system in the desired bandwidth, it will cause significant stability problems for

high frequencies. This problem occurs if gain increase at resonance is not compensated by the

integrator and low pass filter. Otherwise, over-all loop gain exceeds 0 dB. At this frequency,

there is also sudden phase drop around 180◦ that ensures open-loop phase is much smaller

than −180◦. In Bode plot analysis, this fact tells that system is instable. In fact, system may

not be instable since Bode plot analysis for stability is valid for simple systems such as analog

amplifiers. More powerful tools, such as Nyquist plots, should be used for stability. Besides,

even Bode plot analysis does not give direct information about system stability, it can be

used a rough analysis. In simulations, it is observed that if gain increase due to resonance

characteristics of envelope model is suppressed by the low-pass filter and integrator, transient

performance is almost same as the designed results. Otherwise, close-loop settling perfor-

mance becomes very poor; it can even be instable. Therefore, preventing the loop gain from

reaching 0dB at resonance is a good method to have a system with a proper transient perfor-

mance and safe stability margin. It can be attained, if the gain at envelope model at resonance

is suppressed by the low pass filter and integrator in a substantial amount. After suppressing

the increase of loop gain at envelope resonance, sense dynamics can now be modeled as a

simple gain stage and pure integrator can be used a controller.

Mathematics of this condition is simple. Firstly, condition of taking sense envelope model as

a gain stage implies that its characteristics in the band are flat. On the other hand, after the

cut-off frequency of the system, there is a sudden gain increase which will cause significant

stability problems. For low frequency values, gain of the envelope model is given in Eq. 3.36

and gain at resonance is given in Eq. Eq. 3.37. Eq. 3.38 expresses the amount of this increase.

∣∣∣G̃(s)
∣∣∣
s= j0 =

KG · ∆ω

(∆ω)2 (3.36)∣∣∣G̃(s)
∣∣∣
s= j∆ω =

KG · ∆ω

βS · ∆ω
(3.37)

GInc =
∆ω

βS
(3.38)

This increase should be suppressed by the integrator and low-pass filter for a meaningful gain

margin. The suppression amount at resonance can simply be expressed in Eq. 3.39. First

term of this equation shows the gain drop due to integrator and latter term shows the gain

drop due to low pass filter. Unity gain frequency is selected as a reference because for 45◦, it
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is a constant value for a given low pass filter: it is independent from sensor parameters.

GDec =
∆ω

ωunity
·

(
∆ω

ωLPF

)2

(3.39)

Critical amount of mismtach, then, can be found by equalizing 3.39 and 3.38. In order to have

a safe stability margin, gain decrease should be larger than the gain increase coming from the

sense dynamics.

GDec ≥ GInc ⇒
∆ω

βS
≥

∆ω

ωunity
·

(
∆ω

ωLPF

)2

(3.40)

Therefore, minimum mismatch amount can be expressed as:

∆ωmin = ωLPF ·

√
ωunity

βS
(3.41)

Eq. 3.41 indicates that minimum mismatch amount increases with decreasing bandwidth.

Lower bandwidth means higher quality factors, and higher quality factor is better in terms

of better noise performance as it will be shown in Chapter 4. For the current system shown

in Table 3.6, this critical amount of mismatch equals to approximately 320 Hz. Figure 3.12

shows Bode plot of open-loop system designed with pure integrator for the critical mismatch

expressed by Eq. 3.41. Results are completely consistent with analytical work. Step response

is given in Figure 3.13. Step response is almost identical with the system designed for PID

controller. Furthermore, there is decaying ringing that is not observed in previous case. Rea-

son for this ringing is the uncompensated envelope response. If mismatch amount is lowered,

amplitude of ringing will increase and become dominant in settling. After some point, system

becomes instable. This ringing shows the importance of the condition for second controller

design approach. Finally, Figure 3.14 shows closed-loop bode plot of sense system. Band-

width of this system is around 80Hz which is enough for tactical grade applications. Step

response and bandwidth simulations are also repeated with complete system and these results

are completely consistent with the results obtained using base-band equivalent model.
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Figure 3.13: Step response for sense system with ∆ f = 320Hz.

Figure 3.12: Open-loop Bode plot for sense system with ∆ f = 320Hz.
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Figure 3.14: Closed-loop Bode plot for sense system with ∆ f = 320Hz.

3.4 Summary

The true controller design procedure is vital in terms of the functionality and the system

performance. Since the architecture of the sense control loop is not LTI, it is difficult to

follow an analytical design procedure. This chapter gives the base-equivalent model of sense

dynamics and develops an analytical design procedure for PID controller and pure integrator

controller. It is concluded that former controller is a powerful solution for a generic case, but

if the resonance frequency separation between the drive and sense modes is high enough, pure

integrator can be used. In that controller design approach, the sense dynamics can be modeled

as a single gain stage. Minimum mismatch amount, which allows this design procedure in a

safe manner, is also discussed in details.
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CHAPTER 4

PERFORMANCE ANALYSIS AND CMOS

IMPLEMENTATION

The discrete implementation of the analog controller consumes large volume. In addition,

some necessary compensates used in the discrete implementation are quite expensive. CMOS

provides a good solution for the miniaturization of the system and the cost reduction. On the

other hand, reaching the performance of each discrete component is not an easy task in CMOS

implementation, but it is possible to reach the overall performance of the system implemented

with the discrete components with a proper system design in CMOS. The system limitations

should be known for a good system design. Noise sources and their effects on the system

performance should be analyzed carefully. This chapter gives a detailed work on the noise

analysis introducing noise folding concept which increases electronics noise in a substantial

amount. The rest of the chapter is organized as follows: Section 5.1 gives a brief information

about the front-end electronics. Section 5.2 explains the basic blocks used in sense and drive

controller discussed in Chapter 2 and Chapter 3. Section 5.3 analyzes the limitations coming

from the circuit imperfections. Section 5.4 analyzes secondary noise effects quantitatively

and qualitatively. Section 5.5 summarizes the chapter.

4.1 Front-end Electronics

In this thesis, the front-end electronics are implemented with the discrete electronics. Details

of this part can be found in [3]. Circuit level diagram of the front-end electronics for the

sense mode is shown in Figure 4.1. In this system, Cint is the integration capacitor, RDC is the

DC feedback resistor providing the DC bias of the Op-Amp. In sense mode, capacitive type
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TIA is selected because of its high gain and low noise operation. This type of preamplifier

gives the displacement information. Therefore, the regulated parameter in the sense mode

is displacement of the sense motion. Drive mode front-end electronics is almost same with

the front-end electronics of the sense mode. In the drive mode, there is only one read out

electrode, so the second terminal of the instrumentation amplifier is grounded. In addition,

resistive TIA is used for velocity regulation, since the Coriolis force is proportional to the

drive mode velocity. In addition, use of the resistive type TIA does not require a phase shifter

in the self-oscillation loop (positive feedback path), but capacitive type does.

Figure 4.1: Circuit diagram of front-end electronics.

4.2 CMOS Design for Analog Controllers

Standard CMOS 0.6 µm process of X-Fab is used for the CMOS implementations of the

analog controllers. The analog controller for the proposed systems mentioned in Chapter 2

and Chapter 3 are composed of a demodulator, a low-pass filter, an instrumentation amplifier,

a controller (PI in drive mode and PID in sense mode), and a modulator. The implementations
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of these blocks are very easy, and there is no difference between the CMOS and discrete

implementation. Core element of these blocks is Op-Amp. Maximum frequency of the signal

which is processed in the controller does not exceed 15kHz in typical gyroscopes. As a result,

there is no significant bandwidth challenging for Op-Amp design. Noise and offset are the two

significant limitations for circuits of analog processing blocks. Especially, blocks operating

at the base-band are very susceptible to offset and 1/f noise. Special topologies, such as

Chopper stabilized and offset nullifying circuits, can solve both of these problems. However,

it increases the implementation difficulty. Scope of this design is to verify the functionality

instead of getting better performance. In 2007, it is observed that the input referred offset

is higher than the predicted values indicated in process sheet [25]. Therefore, an external

offset is necessary in order to operate the system to prevent the saturation of Op-Amps in

later stages. Furthermore, an Op-Amp of X-Fab is used for this system. In the following

subsections, blocks of the analog controller are going to be discussed.

4.2.1 Modulator

The modulator and demodulator used in this work is a simple switching modulator [25].

The Idea behind this type of a modulator is mixing square wave with the message signal.

In demodulator, it is almost equivalent to multiplication with sinusoidal signal, since higher

harmonics are rejected with the low-pass filter following the demodulator. Mathematics of

this demodulation is expressed in Eq. 4.1.

V ′out = Vm · sin(ω · t) ·
4
π
·
∑∞

k=1
sin ((2k − 1) · ω · t)

2k − 1

V ′out = Vm · sin(ω · t) ·
4
π
· sin(ω · t) + Vm · sin(ω · t) ·

4
π
·
∑∞

k=2
sin ((2k − 1) · ω · t)

2k − 1

V ′out = Vm · sin(ω · t) ·
4
π
· sin(ω · t) + Vm ·

2
π
·

∞∑
k=2

cos ((2k − 2) · ω · t) − cos (2k · ω · t)
2k − 1︸                                                           ︷︷                                                           ︸

High frequency terms which are rejected by the low pass filter

(4.1)

The implementation of this circuit is easy. A 2x1 analog multiplexer which switches between

the input and inverted input performs this operation. The clock of this analog multiplexer is

the carrier signal. Circuit configuration is shown in Figure 4.2.
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Figure 4.2: Circuit diagram of the modulator.

4.2.2 Low Pass Filter

The low pass filter is used to reject higher the harmonics coming from the demodulation.

Low pass filters can be implemented with passive elements, but required capacitance and

resistance values are quite high. Active filters do not require such high values, and they can

give gains. Most popular active filter types are multi feedback topology (MFB) and Sallen

Key filters. Main advantage of these filters is their component tolerance. In the drive and

sense modes, different types of low pass filters are used. In the drive mode, gain of the low

pass filter is critical, since it determines the amount of the deflection. For this reason, low

pass filter gain programmability provides changing of the drive mode oscillation amplitude.

With gain configuration, the MFB is simpler than the Sallen Key type low pass filter (it needs

four passive components). On the other hand, the low pass filter gain only increases the loop

gain, and this can also be achieved with the controller gain. To put differently, the gain of

the low pass filter is not critical in the sense mode. In this case, Sallen Key configuration is

simpler than MFB topology. For this reason, MFB is used in the drive mode controllers, and

Sallen Key is used in the sense mode controllers. Figure 4.4 shows the circuit of the MFB

type low pass filter. Eqs.4.2,4.3,4.4 show the transfer function, bandwidth, and gain of the

MFB topology, respectively. Figure 4.3 shows the circuit of the Sallen Key type low pass

filter. Eqs.4.5,4.6 show the transfer function and bandwidth, respectively for the Sallen-Key

topology.

HS K(s) = −
1

A · s2 + B · s + C
(4.2)
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Figure 4.3: Sallen Key type low-pass filter.

where,

A = R1 · R3 ·C1 ·C2

B = C2 (R1 + R3) +
R1 · R3 ·C2

R2

C =
R2

R1

fC =
1

2π ·
√

R2 · R3 ·C1 ·C2
(4.3)

KMFB =
R2

R1
(4.4)

HS K(s) =
A

s2 + B · s + C
(4.5)

where,

A = C =
1

R1 · R2 ·C1 ·C2

B =
1

(R1//R2) ·C2

fC =
1

2π ·
√

R1 · R2 ·C1 ·C2
(4.6)

4.2.3 Instrumentation Amplifier

The instrumentation amplifier is a difference amplifier. The main advantage of this topology

is that it has a very high common mode rejection ratio (CMRR) which is satisfied by match-

ing of resistors even if the CMRR of the Op-Amp is not sufficiently high. Its gain can be
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Figure 4.4: MFB type low-pass filter.

Figure 4.5: Circuit diagram of instrumentation amplifier.

programmed with a single resistor, as well. The circuit diagram is shown in Figure 4.5, and

the gain expression is given in Eq. 4.7.

KInsAmp =
2R1 + RGAIN

RGAIN
(4.7)
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Figure 4.6: Circuit diagram of PI controller.

4.2.4 PI Controller

A single Op-Amp, one capacitor, and two resistors are enough for a PI controller as Figure

4.6 shows. Its parameters are expressed in Eq. 4.8 and Eq. 4.9.

KP = −
R2

R1
(4.8)

KI = −
1

C · R1
(4.9)

4.2.5 PID Controller

The PID controller needs four Op-Amps if it is desired to set PID parameters independently.

The circuit configuration is shown in Figure 4.7. Its parameters are expressed in Eq. 4.10,

Eq. 4.11, and Eq. 4.12. In Figure 4.7, RC is the compensation resistor which limits the

gain for high frequencies. This resistance reduces noise and improves the stability of the PID

controller.

KP =
RP2

RP1
·

RGAIN

R1
(4.10)

KI =
1

RI ·CI
·

RGAIN

R1
(4.11)

KD = RD ·CD ·
RGAIN

R1
(4.12)
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Figure 4.7: Circuit diagram of PID controller.

4.3 Performance Analysis

Major noise source of a gyroscope system is composed of electronics noise and a mechanical

Brownian noise. The effect of the drive mode system has a negligible effect on the noise

performance of the complete system. For this reason, in the first order analysis of the noise,

sense mode will be analyzed. The effect of the noise sources can be investigated in the sense

mode closed-loop with the following procedures. 1) Find out the input referred force noise of

the sensor which is nothing but the Brownian noise. 2) Find out the output referred noise of

the preamplifier. Output-referred noise is preferred, because preamplifier carries out current-

to-voltage conversion and current noise is critical if the input current noise of the Op-Amp

is not low enough. In other words, there are two dominant noise sources of the preamplifier

Op-Amp. These noise sources can be combined at the output. 3) Find out each individual

input referred noise of the circuit blocks of the controller. Since, all of the blocks in the

controller process voltages, feedback loop is conducted in the voltage domain. As a result,

the input referred voltage noise is enough for characterizing the over-all system performance.

4) Find out noise gains of each individual noise sources at the system output. Then, divide

this amount with the closed-loop gain in order to characterize input-referred rate-equivalent

noise. First and second steps are performed in [3]. In this section, noise contributions of the

controller at the output block will be, firstly, discussed.
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Figure 4.8: Noise sources of sense system.

Loop gain for each noise source is different. Difference comes from the feed-forward gain.

Noise transfer function for a generic noise source, vi can be written as:

Hnoise,i(s) =
Ai(s)

1 + S OL(s)
(4.13)

where, open-loop transfer function can simply be expressed for the compensated system with

45◦ phase margin combining 3.25 and 3.26. Table 4.1 shows feed-forward gains of the noise

sources shown in Figure 4.8.

S OL(s) = 2π ·

50 Hz︷    ︸︸    ︷
funity,gain · F(s) ·

1
s

= 314 · F(s) ·
1
s

(4.14)

In fact, even if the noise analysis can be performed by treating the noise as a signal, it results

in some discrepancies with the actual system performance. In the operation of the switch-

ing modulators, it is assumed that the input of the modulated system is band-limited. In a

typical operation, this assumption is true, because open-loop itself behaves as a low pass fil-

ter that does not allow the high frequency components exist in the loop. On the other hand,

the injected noise of the electronic components is not needed to be band-limited and this in-
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Table 4.1: Feed-forward gains of the noise sources.

vi Description of the noise source Forward Gain, Ai(s)
vn1 Output referred noise of the pre-amplifier Kdmod · F(s) ·C(s)

and subsequent gain stage
vn2 Input referred noise of the demodulator Kdmod · F(s) ·C(s)
vn3 Input referred noise of the low-pass filter F(s) ·C(s)
vn4 Input referred noise of the controller C(s)
vn5 Input referred noise of the modulator G̃(s) · Kdmod · F(s) ·C(s)
vn6 Input referred force-equivalent G̃(s)/KV/F · Kdmod · F(s) ·C(s)

noise of sense mode of gyroscope

jected noise cause failure of the above assumption even if the feedback signal is band-limited.

Failure of this assumption comes from the noise folding of the switching systems, such as

sample and hold circuits. In the following section, the noise folding of the modulators and

demodulators will be discussed in details.

4.3.1 Noise Folding in Modulator and Demodulator

In the previous works, the modulator is simply modeled as a simple gain stage in finding the

output noise of the gyro sense system [2, 3, 47]. However, the signal gain is different than the

noise gain because of noise folding in the switching modulator. The noise folding due to the

demodulator comes from the modulation property in the frequency domain. In the operational

principle of the switching modulator, it is assumed that the input of the demodulator is band-

limited. This is correct for the rate signal, but noise is spread into a complete band. In fact,

the feedback signal coming from the sensor is filtered by the mechanical resonator. By the

same token, the low pass filter and the controller reject higher frequency components, as well.

On the other hand, the electronic noise contribution of the preamplifier and the following

gain stage directly feeds the modulator input. Since, the feedback is very weak for higher

frequencies, the noise at the demodulator input is directly composed of its own input referred

noise and the front-end electronics noise. This input referred noise is folded into the band

under interest which increases the noise density in this band. This folding is visualized in

Figure 4.9.

It is seen that each segment, whose bandwidth equals to the sampling frequency, is multiplied

by the Fourier coefficient of the square wave which demodulates the corresponding segment
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Figure 4.9: Visualization of noise folding in demodulator.

to the base-band. The amount of the new density depends on the noise bandwidth at the de-

modulator input and the folding amount. The noise at the demodulator input is composed of

the front-end electronics noise and the demodulator’s input referred noise. The noise contribu-

tion of the demodulator is mainly composed of the Op-Amps used in buffering and inverting

stages. On the other hand, same amount of the noise is also valid for the preceding stages

constituting the front-end electronics. Since these noises are increased with the significant

gain of the preamplifier and secondary gain stage, the contributions of these noise sources is

much larger than the noise of the demodulator itself. In addition, since the noise is determined

by these stages, the noise band is nothing but the bandwidth of the front-end electronics. As a

result, a rough analysis can be performed to determine the amount of the folding. Neglecting

the noise at the out of the band of electronics, effect of the ith segment is:

vni = w ·
4

π · (2i − 1)
(4.15)

where, w is the white noise density. Folding of the Flicker noise is negligible, because this
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noise source is only effective in lower frequencies. For higher frequencies, white noise is

dominant, thus the folding of the white noise source is much more than folding of Flicker

noise.

vn =

i=k∑
i=1

vni = w ·
i=k∑
i=1

4
π · (2i − 1)

(4.16)

where, k =
BW

2 · fd
neglecting the noise out of the noise band, BW.

Summation in Eq.4.16 can be approximated using Riemann sum by excluding the some of the

first terms. Eq. 4.16 can be written in the following generic form using Riemann summation.

vn = w ·
4
π


i=k0−1∑

i=1

1
2i − 1

+

i=k∑
i=k0

1
2i − 1︸      ︷︷      ︸∫ x=k+1

x=k0
dx

2x−1


(4.17)

k0 should be determined in order to minimize the error resulting from the Riemann sum-

mation. If the difference between 1/(2k0 − 1) and the integration from k0 to k0 + 1 is small

enough, then the overall percentage error is guaranteed to be small enough, as well. 10% error

is a fair error for noise analysis. Therefore, if the difference mentioned above corresponds to

the 10% of the term 1/(2k0 − 1), overall error will be smaller than 10%. Using this approach,

the following equation can be obtained.

0.9 ·
1

2k0 − 1
=

∫ x=k0+1

x=k0

dx
2x − 1

= 0.5 · ln
(
2k0 + 1
2k0 − 1

)
(4.18)

Rearranging the terms, following equation can be obtained.

1.8 = ln
(
2k0 + 1
2k0 − 1

)
· (2k0 − 1) (4.19)

Solving Eq. 4.19, k0=5 is obtained. As a result, can be written as followings.

vn = w ·
4
π

 i=4∑
i=1

1
2i − 1

+ 0.5 · ln
(
2k + 1

9

)
= w ·

4
π

(
1 + 0.676 + 0.5 · ln

(
2k + 1

9

))
(4.20)

In current system, bandwidth of the second gain stage is 700kHz (for 20 gain) [37]. In addi-

tion, the resonance frequency of the drive mode is around 10kHz, therefore k is approximately

85



35. Then, Eq. 4.3.1 becomes:

vn = w ·
4
π
· (1 + 1.71)︸          ︷︷          ︸
Noise Gain

(4.21)

This equation shows that even if the signal gain of demodulation equals to 4/π, noise gain

for white noise is approximately 2.71 times of this value. As it has been mentioned before,

this folding is not valid for Flicker noise. In fact, Flicker noise also folds, but white noise

dominates this amount. Thus, gain equals to signal gain at demodulator for Flicker noise.

As a final note, noise contribution of the front-end electronics includes not only white noise,

but also the band-limited noise coming from the current noise of the preamplifier Op-Amps

and biasing resistor. Since, preamplifier is nothing but an integrator filtering high frequency

noises, the folding amount of these current noises is negligible.

Same case is also true for modulator. Noise folds to the band of interest which is around drive

resonance frequency. Fortunately, its input noise is band-limited due to the filter character-

istics of the controller and low-pass filter. On the other hand, input stages of the modulator

have a wide band white noise. Eq. 4.21 can be used to determine the noise gain of the input

referred white noise of modulator. The bandwidth of the input stages is expected to be 1MHz,

so that noise gain is roughly 2.9. Folding of its Flicker noise is again negligible, so modulator

noise gain for Flicker noise equals to the signal gain, as well.

Even if the gain of the white noise increases due to the folding, noise at the output of the low

pass filter, after the demodulator is at the base-band. For this reason, the noise increase due to

the folding at the output can be interpreted as the increase of the input referred noise of the de-

modulator in the band of the interest. This new noise is different than the actual input referred

white voltage noise density w, so this new input referred noise is called effective white noise

density, we f f . Similar interpretation can also be made for the modulator. This interpretation

of the noise folding enables us to follow the same procedure of the signal analysis in the noise

analysis. Figure 4.10 and Eq. 4.22 visualize this approach. In Eq. 4.22, K f old is the ratio

between the noise gain and signal gain of the modulator and demodulator.

vn,out,mod = w · K f old︸    ︷︷    ︸
we f f

· Ai − vout,n · βi (4.22)

Result of Eq. 4.22 enables to use the system proposed in Chapter 3 in the noise analysis, as

well. To put it differently, effective white noise (we f f ), is the base-band equivalent noise of the
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Figure 4.10: Effect of folding on input referred noise.

modulators/demodulators. Following section is going to analyze the amount of electronics’

noise.

4.3.2 Noise Sources

The front-end electronics noise performance is discussed in [3]. Noise expression of an output

of the second gain stage, which is made up with an instrumentation amplifier, is expressed as:

vn1 =

2 · i2n,preamp ·

(
1

sCint

)2

· 2 + i2n,RDC ·

(
1

sCint

)2

+2 · v2
n,preamp ·

(
1 +

Cin,e f f

Cint

)2

+ v2
n,insamp

0.5

·Ginsamp (4.23)

where, in,preamp is the input referred current noise of the preamplifier Op-Amp, in,RDC is the

current noise of the feedback resistance to set DC operating points of the amplifier, vn,preamp is

the input referred voltage noise of the preamplifier Op-Amp, and vinsamp is the input referred

voltage noise of the second gain stage. Cint is the integration capacitance of the preamplifier,

and Cin,e f f is the total capacitance between preamplifier input and ground. This capacitance

is composed of the static capacitance of the sensor and input capacitance of the preamplifier.

2 in noise expression comes from the differential reading of the sense mode. Noise of the

second gain (instrumentation amplifier) stage is gain dependent, since noise of the last stage

87



of the instrumentation amplifier and resistances used in it have less affect with increasing

gain. If gain is sufficiently high, then input referred noise of the instrumentation amplifier

is composed of two times of the input referred voltage noise of the Op-Amps used in the

first stage (since there are two Op-Amps) and voltage noise of the gain resistance. Flicker

noise of this part is neglected; Flicker dominated portion is out of the band of interest after

demodulation.

As it was mentioned before, current noises of the Op-Amps cause a band-limited noise at the

second gain stage output. As a result, the folding of these noise sources due to modulation

has a negligible effect. On the other hand, other noise sources are white noise in a wide band,

therefore folding of them is important.

Input referred noise of the demodulator is only composed of the noise of the Op-Amps used

for the buffering and inverting stages. Since similar gained version of these noise amounts

also come from the preceding front-end electronics, contributions of these noise sources can

be neglected. On the other hand, the output of the demodulator is now at base-band, so it

suffers from the Flicker noise, and offset drifts in a significant amount. This contribution can

be decreased by increasing the gain before demodulation. This is equivalent to the increase in

βi. Noise contribution of the following stages, which is dominated by the Flicker noise, can

be minimized in a similar manner.

Therefore, it can be concluded that system noise is dominated by noise of the front-end elec-

tronics. Effective input referred white noise density can be found by using Eq. 4.23 and noise

folding property shown in Eq. 4.21. This effective white noise density can be written as:

we f f =

√
2 · v2

n,preamp ·

(
1 +

Cin,e f f

Cint

)2

+ v2
n,insamp ·Ginsamp · K f old (4.24)

Even current noises are shaped by the integrator, its response is flat for the system band. As a

result, this noise source behaves as a white noise, as well. Note that the folding of this noise

source is less than the folding of voltage noises, so its folding effect is ignored. Combining

this result with Eq. 4.24, equivalent voltage noise density coming from the front-electronics

can be found as:

vn1 =

√
w2

e f f + v2
n,insamp ·Ginsamp (4.25)

Although the effect of the Flicker noise can be minimized by increasing the gain before the

demodulation, its effect still dominates the complete system performance if operation length is
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long. To put it differently, Flicker noise determines the bias instability. Therefore, for the other

noise sources, even if white noise contributions are neglected, Flicker noise contributions

should be taken into account. Eq. 4.26 shows the input referred voltage noise of demodulator.

This noise source is mainly composed of the Flicker noise of the output buffer of demodulator.

Note that noise of the output buffer is divided by signal gain to obtain the input referred value.

vn2 = vn,Flicker ·
1

Kdmod
=

√
K1/ f

K2
dmod

1
f

(4.26)

where, K1/ f is the constant for Flicker (1/f) noise. By the same token, vn3 can be written as in

terms of Flicker noise of the Op-Amp. Since, Flicker noise is dominant noise source for lower

frequencies, in the low pass filters capacitors can be taken as open-circuit to determine input

referred voltage noise of the low pass filter. In that configuration, Sallen-Key low pass filter

behaves as a buffer. Thus, input referred voltage noise of the low pass filter can be expressed

as:

vn3 = vn,Flicker =

√
K1/ f

f
(4.27)

Similar work can be conducted for controller. Controller includes 4 Op-Amps. Effect of last

summer stage is very low, since preceding stages gives huge gain to low frequency signals

including input referred voltage noise of the input Op-Amps. As a result, they dominate

the noise performance of controller. Taking the Flicker noise of these three Op-Amps into

account, following equation can be obtained:

vn4 =
√

3 · vn,Flicker =
√

3 ·

√
K1/ f

f
(4.28)

Because of the filtering characteristics of the controller, most of the noises coming from the

former stages are rejected. Therefore, it is not true to neglect white noise contribution of the

noise sources after the controller. For that reason, the input referred noise is composed of

both Flicker and white noise. Using the folding property of the modulator and combining it

with the Flicker noise, Eq. 4.29 and Eq. 4.30 are obtained. In Eq.4.30 there are three white

noise sources, two of them are input Op-Amps used in the modulator. Their noise folds to the

base-band, so their effective value is larger than the actual density values. On the other hand,

output noise of the Op-Amp is not folded. In order to refer it in input, its value is divided by
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the signal gain.

vn5,1/ f =

√
K1/ f

K2
dmod

1
f

(4.29)

vn5,white = vn,Op−Amp

√(
1

Kdmod

)2

+ 2 · K2
f old,mod (4.30)

(4.31)

The noise of the mechanical sensor is also a white noise (Brownian noise) which is defined in

terms of force. It is expressed in the following equation.

Fn6 =

√
4kT

mS · ωS

Qs
(4.32)

In the following section, total noise is going to be derived using individual noise sources

discussed in this section.

4.3.3 Total Output Noise Coming From Sense Mode Electronics

The gain of each individual noise sources is given in Eq.4.14 and Table 4.1. If the loop gain

of the system is sufficiently high in the system band, then analysis becomes much simpler. In

fact, the loop gain starts to decrease at higher frequencies before the system bandwidth. On

the other hand, this assumption holds in a big portion of the total bandwidth. In addition, it

is also possible to increase the closed-loop bandwidth larger than the desired bandwidth such

that the loop gain is high enough in the complete band of interest. This can easily be achieved

by increasing the low pass cut-off filter frequency. In a generic case, assuming that the loop

gain is much higher than the unity gain in the closed-loop bandwidth is fair. Because of this

assumption, the noise gain of the individual noise sources are simplified as Eq. 4.33 indicates.

Hnoise =
Ai

1 + S OL(s)
=

Ai

1 + βi · Ai
=

1
βi

(4.33)

Eq. 4.33 tells that the noise follows the path between the node at which it is identified and the

output as Figure 4.11 shows. In fact, all the electronics blocks have flat gains for the system

band excluding sensor response. The controller also does not have flat response, but it does

not exist in any feedback path. The sensor gain is dependent on frequency, and actual affect

of the sensor can be analyzed using envelope model. Because of the resonance characteristics

of the envelope model, white noise is shaped. This shaping characteristic becomes affective
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especially for the low mismatch operation. If the mismatch amount is not low, then the fre-

quency dependent characteristics of the system is negligible, and βi becomes a simple gain

stage. Thus, white effect of white noise can be found by dividing the noises by this scalar.

These scalar feedback factors are shown in Table 4.2.

Figure 4.11: Noise paths between the noise sources and the output.

Table 4.2: Feed-back factors for noise sources.

vi βi

vn1 KG · Kmod/ (∆ω · Kdmod)
vn2 KG · Kmod/ (∆ω · Kdmod)
vn3 KG · Kmod/ (∆ω)
vn4 Kmod/ (∆ω) · KLPF

vn5 1
Fn6 KV/F

Combining these results, it is possible to determine the white noise density and the Flicker

noise constant. In order to achieve it, it is needed to superpose them in the power domain,

since they are uncorrelated noise sources.
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vout,total,white =

√(
vn1

β1

)2

+

(
vn5,white

β5

)2

+

(
Fn6

β6

)2

(4.34)

vout,total,1/ f =

√(
vn2

β2

)2

+

(
vn3

β3

)2

+

(
vn4

β4

)2

+

(
vn5,1/ f

β5

)2

(4.35)

Table 4.3 shows the parameters for noise densities derived in previous section for discrete

front-end electronics, discrete and IC controllers. Datasheets for discrete modulator chip

(AD630) does not include any information for noise densities. Effective input capacitance in

the below table is composed of not only sensor output capacitance, 5.4pF but also input capac-

itance of the preamplifier Op-Amp (AD8608) which is 11.4pF and wire bonding capacitance

that equals to approximately 1pF. Therefore, resultant effective input capacitance reaches to

approximately 18pF. Table 4.4 shows the feedback factor values for each noise source. Table

Table 4.3: Noise density parameters [37, 38, 39, 40].

System Portior Noise Source Values

Front-end Electronics

vn,preamp 6.5nV/
√

Hz
vin,insamp 8nV/

√
Hz

Ginsamp 20
Cin,e f f 18pF
Cint 3.9pF
K f old 2.7
in,preamp 10 f A/

√
Hz

in,RDC
√

4kT/470M = 18nV/
√

Hz

Discrete Electronics

vn,Op−Amp 22nV/
√

Hz
K1/ f 60nV2

K f old,mod 2.7nV/
√

Hz
vn2,n5 Not available (taken as 0)

CMOS Controller
vn,Op−Amp 10nV/

√
Hz

K1/ f 800nV2

K f old,mod 2.9

Sensor
mS 8.34 · 10−8kg
ωS 13000 · 2π = 82000rad/sec
QS 3000

4.5 shows the expected densities and values of feedback factors using the relations Eqs. 4.25,

4.26, 4.27, 4.28, 4.29, 4.32, and Table 4.4.

Using the values in Table 4.4, total output noise densities are expressed in Table 4.6. Output

noise is important, but the input referred noise values express the minimum detectable signals.
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Table 4.4: Noise densities.

System Portion Feedback Factor Values

Front-end Electronics+Sensor
KV/F 16µN/V
KG 290
∆ω 300Hz · 2π

Discrete Electronics
KLPF 6.5
Kdmod 8/π
Kmod 8/π

Discrete Electronics
KLPF 1
Kdmod 4/π
Kmod 4/π

Table 4.5: Noise densities and feedback factors for each individual noise sources.

System Portion Noise Densities Values βi

Discrete Electronics Electronics

vn1 1.97µV/
√

Hz 0.4
vn2 0 0.4
vn3 60nV/

√
f 1

vn4 60nV/
√

f 6.5
vn5,white 0 1
vn5,1/ f 0 1

CMOS Controller

vn1 1.97µV/
√

Hz 0.4
vn2 630nV/

√
f 0.4

vn3 800nV/
√

f 0.510
vn4 1.4µV/

√
f 0.510

vn5,white 10nV/
√

Hz 1
vn5,1/ f 800nV/

√
f 1

Sensor Fn6 200 f N/
√

Hz 62500

For that reason, rate-equivalent input referred noises are needed to be found to determine the

minimum detectable signals. Signal gain from rate to output, which is called scale factor, in

closed-loop system is expressed in Eq. 4.36.

Vout = FCoriolis ·
1
β6

FCoriolis = Ω · 2XD · mPM · ωD

S F =
Vout

Ω
=

2XD · mPM · ωD

KV/F
(4.36)

Rate equivalent input referred noise can be found by dividing the output noise with scale

factor. The overall procedure for finding out the input referred noise can also be visualized in

93



Table 4.6: Output voltage noise densities.

Controller Electronics Output Noise Densities Values

Discrete Electronics
vout,total,white 5µ/

√
Hz

vout,total,1/ f 60nV/
√

f

CMOS Electronics
vout,total,white 5µ/

√
Hz

vout,total,1/ f 3.6µV/
√

f

Figure 4.11. It is a robust parameter in the closed-loop which directly depends on mechanical

features of the sensor and proof mass voltage affecting the voltage-to-force conversion. The

scale factor for the current sensors for 10V proof mass voltages is around 7.5mV/◦/sec. This

value corresponds to 2.1µV/◦/hour. Resultant input referred noise is same as the open-loop

noise values. This can be seen by investigating the resultant expressions shown Table 4.2. In

Chapter 1, relations between the Flicker noise constant and the bias instability (BI); the white

noise density and the angle random walk (ARW) are given. These relations are given in the

following equations:

BI = Flicker Noise Density Constant ·

1.18︷      ︸︸      ︷√
2 · ln(2) (4.37)

ARW = White Noise Density ·
√

0.5︸︷︷︸
0.71

(4.38)

Table 4.7 gives rate-equivalent noise values. Table 4.7 shows rate-equivalent noise densities

and Allan deviations. It is observed that angle random walk is the same for the controller

Table 4.7: Rate-equivalent input referred noise densities and Allan Deviations.

Controller Electronics Output Noise Densities Values Allan Deviations

Discrete Electronics
Ωin,total,white 2.5◦/hr/

√
Hz ARW = 0.03◦/

√
hour

Ωout,total,1/ f 28.8m◦/hr/
√

f BI = 0.034◦/hour

CMOS Electronics
Ωout,total,white 2.5◦/hr/

√
Hz ARW = 0.03◦/

√
hour

Ωout,total,1/ f 1.7◦/hr/
√

f BI = 2◦/hour

implementation for both CMOS and discrete electronics. In fact, this reason is the dominant

behavior of the front-end electronics. Its contribution can be decreased either by using lower

noise Op-Amps and decreasing mismatch. Later work increases the feedback factor, which re-

duces the noise gain for front-end electronics. Mismatch can be lowered up to approximately

94



100Hz, if PID controller design procedure is applied. In that case, noise shaping of the sense

mode resonator becomes dominant. This changes the above analysis in a certain amount.

In addition, in CMOS low noise Op-Amp design is a straightforward work and CMOS pro-

vides a lot of advantageous in low noise CMOS Op-Amp design. 1) Input referred voltage

noise can be decreased by increasing dissipated DC current and increasing the transistor di-

mensions. The most dominant transistor with respect to their noise contributions are input

transistors. On the other hand, increasing their dimension increases input capacitance which

results in increasing noise gain. An optimization can be performed in order to obtain the best

dimensions. 2) If no-protection diode is used in the sense-mode, there will be no noise current

of the Op-Amp. Protection diodes prevent unrecoverable damages due to the contact of the

proof mass voltage and the preamplifier input. This is a serious problem in drive mode, but it

is less probable in sense mode.

In contrary to the advantageous of CMOS implementation for angle random, bias instability

significantly suffers from high Flicker noise owing to inherent high 1/f noise of CMOS Op-

Amps. In addition, offset drifts also affects bias instability in a considerable amount. Effect of

these noise sources can also be suppressed by increasing transistor areas. In addition, offset

cancellation techniques can be used which will enhance the bias instability in a substantial

amount. In bias instability, sensor drifts also take role but its contribution significantly de-

creases with quadrature nulling [3].

Voltage densities give valuable information for the selection/design of ADC constituting back-

end electronics. Integrating the white noise and Flicker noise densities in between 0.1Hz and

100Hz band gives approximately 25µVrms noise. For 3.3V CMOS process, it corresponds to

17-bit dynamic range. The best candidate for such a dynamic range for 100Hz bandwidth is

Sigma-Delta type ADC as it was mentioned in Chapter 1. In addition, implementation of such

an ADC is simple in CMOS.

4.4 Secondary Noise Sources

Dominant noise sources are discussed in details for closed-loop sense mode. On the other

hand, there are secondary noise sources which significantly decrease the performance of the

gyroscope if they are completely ignored in the design procedure. These noise sources are
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mainly phase noise, noise of the proof mass voltage, and noise of the electronic reference

voltage.

4.4.1 Phase Noise

In the sense mode, it is assumed that there is a perfect phase-sensitive demodulation. Never-

theless, there are always a certain amount of error between the carrier and input signal. These

errors can be both deterministic and stochastic. The latter term is nothing but a phase noise.

Assuming that, the carrier signal is a pure sinusoidal signal having a phase noise φn with re-

spect to the input signal. Then, mathematical expressions of the input and the carrier signal

can be written as the followings:

c(t) = Carrier Signal = cos(ωDt + φn) (4.39)

x(t) = Input Signal = r(t) · cos(ωDt) + q(t) · sin(ωDt) (4.40)

where, r(t) is the rate signal, and q(t) is the quadrature signal.

y(t) = Output Signal = (c(t) · x(t)) ∗ f (t)

=
1
2

(r(t) · (cos(2ωDt + φn) + cos(φn)) + q(t) · (sin(2ωDt + φn) − sin(φn))) ∗ f (t) (4.41)

where, f (t) is the impulse response function of the low pass filter. In the above equation, high

frequency signals are suppressed by the low-pass filter. Therefore, output takes the following

form.

y(t) = r(t) ·
cos(φn)

2
− q(t) ·

sin(φn)
2

(4.42)

Using Taylor’s series expansion, output can be expressed as:

y(t) = r(t) ·
1
2
− r(t) ·

φ2
n

2
+ q(t) ·

φn

2
(4.43)

First term in Eq. 4.43 is the desired rate dependent signal. Latter terms are noise components

due to the phase noise. This part is expressed in Eq. 4.45.

yn(t) = −r(t) ·
φ2

n

2
+ q(t) ·

φn

2
(4.44)

This noise source can be incorporated into the vn2 in Figure 4.8 which is the effective input re-

ferred noise of the demodulator. In the above analysis, demodulator gain is taken as unity, but
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whatever the demodulator gain, input referred noise value will be the same. Correspondingly,

above equation can be written as:

Vdmod,in,n(t) = −r(t) ·
φ2

n

2
+ q(t) ·

φn

2
(4.45)

In addition, affect of the deterministic phase error can be investigated using the same relation

in Eq. 4.45. In this case, it is seen that there will be offset due to the phase error and quadrature

signal. Therefore, if it drifts, output also drifts will worsen bias instability.

In Eq. 4.45, it is clear that noise is mixed with rate signal and quadrature signal. Former is

a weak signal, since rate signal is multiplied with square of the phase noise. If phase noise

is not dramatically high, then this portion can be neglected. In fact, for zero rate, this term

is completely negligible, assuming that there is no electrical offset in the system. On the

other hand, it is seen that phase noise directly multiplies with the quadrature signal. This fact

tells that the quadrature signal does not only cause drifts at the output, but also increases the

effect of the phase noise at the output. This is why the quadrature cancellation improves angle

random walk [3]. So, if quadrature signal is minimized with an initial calibration or a real

time cancellation, effect of the phase noise of the demodulator can be canceled.

In the above analysis, effect of the phase noise at the demodulator is investigated. Similarly,

phase-noise of the modulator is also important. In fact, it is very critical, since noise gain

of the modulator is unity and it cannot be improved by decreasing mismatch. Again assume

that the carrier signal is pure sinusoidal. Therefore, output the modulator can be expressed as

followings:

Vout,mod = Vin · cos(ωDt + φn) = Vin · cos(ωDt) · cos(φn) − Vin · sin(ωDt) · sin(φn) (4.46)

Using the Taylor’s series expansion, above expression can be written as followings:

Vout,mod = Vin · cos(ωDt + φn)

= Vin · cos(ωDt) − Vin · cos(ωDt)
φ2

n

2
− Vin · sin(ωDt) · φn (4.47)

First term in Eq. 4.47 is nothing but an offset. Second term is very low unless phase noise is

very large. The most effective noise component is the final value. In this expression, it is seen

that if there is no input coming from the controller output, there will be noise. On the other

hand, if there are some offsets, then the noise increases with increasing offset. Fortunately,

this term is also filtered in the loop because of the phase sensitive demodulation, but because
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of the phase errors, a portion of this noise contributes to the output noise. The effective phase

noise of the modulator can be found easily by multiplying the third term in Eq. 4.47 with

the carrier of the demodulator including a phase error, φe. This result can also be reached

by finding out the effect of the phase noise of the modulator at the modulator input and then

dividing the resultant value with the gain between the modulator and demodulator output.

In the first step, the output noise equals to the multiplication of the input phase noise of the

modulator with the carrier of the demodulator and the gain used in the second step. For this

reason, gains cancel each other in these both two steps.

Vmod,in,n = Vin · φn · φe (4.48)

Phase error is includes both offset (φo f f ) and random error (φn,dmod). The random error in

demodulator and phase noise are correlated, and in a typical case they are expected to be

equal to each other. Therefore, the above equation can also be written as followings:

Vmod,in,n = Vin · φn · φo f f + Vin · φn · φn,dmod (4.49)

Second term in Eq. 4.49 is very low comparing with the first term. Consequently, Eq.4.49 is

simpified to Eq. 4.50.

Vmod,in,n = Vin · φn · φo f f (4.50)

This result expresses that two non-ideal behavior of the sense mode system increases the effect

of the phase noise at the output in a considerable amount. These non-ideal behaviors are DC

errors in the sense mode system and phase error at the demodulator. Therefore, in CMOS

designs blocks operating at DC should have a very low DC offsets, and phase errors should

be minimized. Furthermore, it is very obvious that phase errors should be under control by

using a PLL based actuation for the optimum performance.

Finally, in the controller designs phase of the demodulator is determined for the mismatched

case. However, decreasing the mismatch amount will increase the phase error, therefore in-

crease the effect of the modulator phase noise. This conflicts with the result which tells that

decreasing mismatch improves the overall system performance. Unfortunately, input referred

phase noise cannot be improved by decreasing mismatch, because of the its unity noise gain as

expressed above. For this reason, for a high performance system phase noise and DC offsets

should be minimized, since there is always a phase error for low mis-match amount which is

necessary to reduce noise contribution of other electronics.
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4.4.2 Noise of the Proof Mass Voltage and Analog Reference Voltage

Noise of the proof mass voltage affects the system noise from two paths: 1) Electrical cou-

pling from the static capacitance between the proof mass and sense electrode. 2) Electro-

mechanical coupling due to the effect of the proof mass voltages on the voltage-to-force and

displacement-to-current processes.

Electrical coupling is due to the electrical path through the static capacitance between sense

electrode and proof mass. The effect of this noise can be written as in the following equation.

Vpreamp,out = VPM,n ·
Cstatic

Cint
(4.51)

where, Cint is the integration capacitance of the preamplifier, and Cstatic is the static capaci-

tance between the proof mass and the sense node. In sense mode, there is differential reading;

therefore, output of the preamplifier can be written as followings:

Vins−amp,out = VPM,n ·
∆Cstatic

Cint
(4.52)

where, Kins is the gain of the instrumentation amplifier, and ∆Cstatic is the mismatch amount

of the static capacitances for the two sense electrodes. Eq. 4.52 shows that effect of the

proof mass noise is zero if the static capacitance is matched perfectly. Moreover, proof mass

voltage can be filtered with a simple low pass filter. Since, the band of interest in the front-

end electronics is around the carrier frequencies, filter will remove the noise in the band of

interest. Here, the important result is that electrical coupling is almost insensitive to the drifts

of the supply.

Electro-mechanical coupling is the second path between the proof mass noise and gyroscope

output. Output of the gyroscope is composed of the rate and quadrature terms. Rate and output

relation is determined by the closed-loop dynamics, but quadrature and output relation is

determined by the open-loop dynamics. The reason is that loop-gain is very low for quadrature

signal due to the phase sensitive demodulation. Therefore, output of the sense mode system

can be written as:

Vout = Ω · KΩ/F ·
1

KV/F
+ FQ · KF/x · Kx/I · α (4.53)

where, α is the inverse of the feedback factor between the sensor output and controller output

of the sense mode. In the above equation, voltage-to-force constant and displacement-to-

current scalars are proportional to the proof mass voltage. Besides, rate-to-force constant
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KΩ/F and FQ depends on the drive mode displacement. In drive mode dynamics it is shown

that drive mode displacement is inversely proportional to the displacement-to-current conver-

sion gain which is proportional to the proof mass voltage. As a result, 4.53 can be written as

followings in terms of the proof mass voltage:

Vout =
Ω · a1

V2
PM

+ kQ · a2 (4.54)

In Eq. 4.54, kQ is the scalar indicating the relation between the force and drive mode displace-

ment. Eq. 4.54 shows that proof mass noise only mixed with the rate. Therefore, if there is

no rate, proof mass noise cannot be coupled to the output due to this electro-mechanical path.

By writing proof mass voltage in terms of a constant bias and small signal deviation, output

noise can be written as:

Vout,VPMn =
Ω · a1(

VPM0 + VPM,n
)2 =

Ω · a1

VPM02 ·

(
1 +

VPM,n

VPM0

)2 (4.55)

Using Taylor’s series expansion above expression can be written as:

Vout,VPMn =
Ω · 2 · a1

V3
PM0

· VPM,n (4.56)

If there is no electrical offset, this noise is zero. If there is an offset, this will increase the effect

of this noise source. The important point in the above equation is that this path is sensitive to

the drifts of the proof mass voltages which cannot be filtered with low pass filter in contrary

to the electrical path.

If single supply is wanted to use in the gyroscope system, reference voltage of the analog

blocks (i.e., non-inverting terminal of the preamplifier, reference terminal of the instrumenta-

tion amplifier), cannot be grounded. Therefore, noise of the voltage feeding these reference

terminals directly affect the output. In most of the blocks, this noise has the same gain as the

input referred voltage noise of the Op-Amps. In order to have a good performance, reference

generator, which is typically a band-gap reference, should be low-noise. Besides, its noise

should be filtered. Therefore, its affect for the blocks operating at higher frequencies can be

suppressed. It will decrease the overall noise contribution coming from the reference volt-

age generator in a significant amount, since filter especially decreases the effect of this noise

source on the front-end electronics.
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4.5 Summary

The controller implementation with CMOS electronics miniaturizes the complete system. It

is observed that CMOS electronics can reach the angle random walk performance of the

discrete electronics. On the other hand, in order to improve the bias instability, offset and the

Flicker noise cancellation techniques can be used to eliminate the Flicker noise contributions,

and offset drifts. In addition, the noise folding of the switching demodulator increases the

effective white noise density of the overall system in a substantial amount. Finally, it is shown

that DC offsets in the sense mode increases the effect of the phase noise which contributes to

the angle random walk and the bias instability.
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CHAPTER 5

TEST RESULTS

This chapter presents the test results of a complete gyroscope system including the drive and

sense mode controllers. Proposed analytical design procedures are verified with test results.

Section 6.1 describes the system set-up. Section 6.2 gives test results of the two type of

the drive mode controllers implemented in the CMOS technology: the conventional system

with the improved controller design procedure and the new generation simplified drive mode

controller. Section 6.3 gives test results verifying the accuracy of the proposed base-band

equivalent model for the mismatch operation. In addition, it also includes test results showing

the importance of the accurate controller design on the system performance. Section 6.4

verifies the operation of the CMOS system, and gives performance results for the open-loop

and the closed-loop configuration. Section 6.5 concludes this chapter.

5.1 System Setup

The tests of MEMS gyroscopes include two major steps: scale factor test, and noise test. A

scale factor test is needed to determine the gyroscope responsivity, linearity and range. Second

test gives information about minimum detectable angle rate levels for different integration

times. These results also give information about the noise densities. Output noise values are

divided by the scale factor in order to refer the output noise to the input, .

The controllers are implemented with the discrete electronics and the CMOS electronics.

Figure 5.1 shows the die photograph of the CMOS chip including drive and sense mode

controllers. The new generation simplified controller is used in the performance tests, because

of its simplicity. A PCB has been designed combining the CMOS electronics and the sensor
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module which is a vacuumed packaged including the preamplifier and the second gain stage.

In addition, this PCB also includes a voltage regulator, output buffer and quadrature nulling

Op-Amps. The Last circuitry inverts the DC potential for the quadrature calibration, since

the quadrature nulling requires two voltages having opposite polarities [3]. This part only

minimizes the quadrature signal: it does not carry out dynamic quadrature cancellation with

a feedback loop. Though, the CMOS chip includes both the drive and sense systems, two

CMOS chips are used for each control. One of the controller for each chip is blocked. The

reason is to isolate these systems: if one of them fails, the other one can continue its operation.

This is practical for such a prototype work. Figure 5.2 shows the PCB photograph.

Figure 5.1: Photograph of the CMOS chips (a) conventional drive mode controller (b) new
generation drive mode controller and sense mode controller.
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Figure 5.2: Photograph of the PCB.

Figure 5.3: Photograph of the set-up.
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Figure 5.3 shows the system set-up. Test set-up is composed of two voltage supplies, an

oscilloscope, a rate table, and a computer including data acquisition (DAQ) card. Two supplies

are necessary to set the drive mode oscillation amplitude, the quadrature calibration, and the

DC supplies of the system. The scale factor tests are performed with the rate table with which

sensor responsivity is measured. A control of the rate table is conducted with the computer.

This computer is also used for the acquisition of the analog output coming from the gyroscope.

5.2 Drive Mode Controller Test Results

The classic drive mode controller has been optimized according to its non-linear settling and

LTI steady-state characteristics. Test results of the optimization of the classic drive mode

controller has been performed with the system implemented with discrete electronics. Figure

5.4 shows settling of the classic drive mode controller.

Figure 5.4: Settling of the conventional drive mode controller with the new design controller
approach.
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The settling of the system is approximately 50 msec which is completely consistent with the

simulation result. In previous works, the best value is around 100 msec [3]. In fact, LTI

optimization, discussed in Chapter 2, is applied to this system. In previous works, the settling

time even exceeds a few seconds with a considerable overshoot. The sensor model used in

the simulation is different than the device under test, but controller parameters are updated

according to the design procedure discussed in Chapter 2. There are two signals in Figure

5.4. The below signal is used for triggering the drive mode settling. This triggering signal is

the negative supply of the CMOS chips. Note that there is a delay between system-power-up

and start-up of the self-oscillation. This is due to the settling of the complete system including

the external electronics. In addition to the external electronics, limited start-up time of the DC

supplies contributes this delay. The peak-to-peak voltage measured in this test corresponds to

approximately a 4µm drive mode oscillation amplitude.

Figure 5.5: Steady state signals of the conventional drive mode controller.

Figure 5.5 verifies the functionality of the conventional CMOS controller. There are three

signals on the oscilloscope screen. First waveform is the demodulator input which is nothing

but the sensor module output: output of the secondary gain stage. Second waveform is the de-
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modulator output. The carrier and message inputs of this demodulator are same, so observed

output is a rectified signal. Third waveform shows the feedback voltage actuating the sensor.

Ratio between the sensor module output and first harmonic of the actuating voltage gives the

resonance gain of the corresponding sensor module. It is almost equal to the 14dB which is

the typical measured gains for the current designs with 10V proof mass voltage which is the

case in this test.

In this design, offset calibrations are necessary because of the unexpected offsets coming from

the Op-Amps used from the XFAB library. Firstly, the demodulator input cannot be rectified

properly if the incoming signal from the sensor module has no DC. For this reason, loop gain

decreases due to the reduction of the conversion gain between the amplitude to the DC in

the demodulator. An offset is given to that incoming signal with a simple RC network which

directly couples the AC signal to the demodulator input in order to obtain a perfect full-wave

rectified signal. Secondly, the negative saturation level of the Op-Amps used in the CMOS

chips is around -1.5V which is bigger than the reference level (-1.55V). Accordingly, this part

does not work properly at the steady state, since the low pass filter cannot give the desired

steady state voltage which equals to the reference level, and it enters saturation resulting in

the breaking of the feedback. In order to solve this problem, an offset is given to the output of

the instrumentation amplifier. This offset decreases the targeted steady state value of the low

pass filter output, so it can operate perfectly. In fact, the reference value is also buffered with

an Op-Amp; therefore, the buffer Op-Amp also enters the saturation region, and it cannot give

the reference value: its output is the negative saturation level. Fortunately, this does not yield

a functionality problem.

Figure 5.6 shows the steady state signals of the new generation drive mode controller. The

square wave signal comes from the positive feedback and the sinusoidal signal is the negative

feedback output. Latter signal should equal to the first harmonic of the former signal. Due to

the delays of the system, there is an error, but it is still fair for the drive mode regulation. The

regulation strength can be increased by sacrificing the drive mode oscillation amplitude.
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Figure 5.6: Steady state signals of new generation simplified drive mode controller.

Figure 5.7 shows the settling of the new generation drive mode system. Because of the low

loop gain, the settling time is around 300 msec. On the other hand, as Figure 5.8 shows this

amount can further be improved up to 27 msec. The first conventional drive mode system with

the new controller design approach, settling performance of this system is much better than

the new generation simplified drive mode controller for large displacements. On the other

hand, the second system is much simpler than the former one, and it can be used in several

applications. In fact, its settling time is still much lower than the settling time reported in

previous works [2, 25].

5.3 Sense Mode Controller Test Results

Accuracy of the sense mode base-band equivalent models is verified by investigating the sta-

bility limit of the closed-loop system. Stability limits are found firstly in the simulations of the

closed-loop system which are constructed with complete model, base-band equivalent model,

and simplified base-band equivalent model which only includes the gain characteristics of the
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Figure 5.7: Settling of new generation simplified drive mode controller.

Figure 5.8: Settling of new generation simplified drive mode controller with larger loop gain.
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sense mode. A pure integrator is used as a controller. Table 5.1 shows the controller values

for which the system is stable. If the controller value exceeds this limit, system has a sustain

oscillation. The gain for this oscillation corresponds to the stability limit.

Table 5.1: Comparison of predicted stability region for over-simplified and new baseband
models, and the measured stable region of the actual system.

Integrator Gain
Predicted by Over-Simplified Model Predicted by Over-Simplified Model Measured

<8.7 <2.9 <2.8

Table 5.1 shows that the base-band equivalent model has high accuracy. It is seen that this

model can safely be used in real systems. On the other hand, ignoring frequency dependent

characteristics causes significant problems in terms of the stability. Even if the system is sta-

ble, there is a significant deviation in the transient performance of the system and bandwidth.

Figure 5.9: Measured angular rate response and non-linearity of a MEMS gyroscope with
controllers based on over-simplified.

In addition, the operation at the stability limit also results in substantial performance degra-

dation. Figure 5.9 and 5.10 present the measured angular rate response, linearity, and noise

performance of the gyroscope when operated with different controller parameters using both

the over-simplified and new baseband models. Design basing on the simplified-model causes

an operation near to the stability limit. It is observed that linearity, angle random walk, and

bias instability performance improves by factors of 4, 9 and 3, respectively, for the system
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designed with the new baseband model, verifying the improvement with the proposed model.

Figure 5.10: Measured noise performance of a MEMS gyroscope with controllers based on
over-simplified and baseband equivalent models.

5.4 Performance Results obtained with CMOS chip

Both open-loop and closed-loop operations are performed with the CMOS chip. In the open-

loop operation, it is observed that the Flicker noise highly dominates the system response.

Flat characteristics of the Allan deviation stem from the Flicker noise. As it was mentioned

in Chapter 4, increasing the gain before the Flicker noise sources will directly decreases the

effect of these noise sources. This gain increase decreases both the angle random walk and

the bias instability from 7.1◦/hr/
√

Hz to 2.2◦/hr/
√

Hz and 3.3◦/hr to 3◦/hr, respectively.

Figure 5.11 and Figure 5.12 show these results. Second angle random walk is very near to

the theoretical limit which is around 2◦/hr/
√

Hz for 4µm drive displacement. In these Allan

variance curves, the trend of the noise level decreases as τ decreases due to the low pass filter

characteristics of the closed-loop sense mode: lower τ corresponds to the high frequency

noises, and they are rejected by the closed-loop dynamics.
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Figure 5.11: Allan Variance plots for open-loop sense mode system with default gains.

Figure 5.12: Allan Variance plots for open-loop sense mode system with larger gains before
demodulator.
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In the closed-loop operation, system operates perfectly. It has a robust scale factor which

is almost independent from the sensor parameters and ambient conditions. In addition, it is

verified that the sense output of the gyro module is almost 0. On the other hand, noise results

of closed-lop system deteriorates as Figure 5.13 shows.

Figure 5.13: Allan Variance plots for closed-loop sense mode system.

In fact, if the feedback network noise is negligible, then noise degradation is not expected.

This is observed in the closed-loop systems implemented with discrete electronics. On the

other hand, there is a performance degradation in CMOS controllers . The reason is likely

to be the extra noise injection coming from the feedback network which is dominated by the

modulator noise. In Chapter 4, it is seen that the noise contribution of the modulator is very

small comparing with the front-end electronics’ noise contribution. In that analysis, secondary

noise effects such as phase noise are neglected. On the other hand, analysis of the secondary

noise sources show that phase noise of the modulator becomes effective if there is a phase

error at the demodulator and DC offset in the modulator input due to the offset of the Op-

Amps. In discrete implementation, special Op-Amps (chopper stabilized Op-Amps) are used.

Thus, there is no offset in zero rate condition if quadrature force is canceled with an initial
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calibration, or an on-line cancellation. This is why in discrete implementations, modulator

noise is negligible. On the other hand, in the CMOS system there is a significant amount of

offset which increases the effect of the phase noise. This fact is also verified by observing the

noise performance of the system with decreasing the mismatch. In the closed-loop operation,

it is expected that the system performance improves with decreasing the mismatch. On the

other hand, if overall noise is dominated by the phase noise of modulator, then it will directly

refer to the output. Decreasing mismatch does not suppress the effect of this noise source.

In contrary to reduction of noise at the output, it increases in tests. This result is totally

consistent with the discussion in Chapter 4: decreasing mismatch amount increases the phase

error between the demodulator carrier and incoming signal, so effect of the phase noise at the

output increases if there is a DC offset at the modulator input. To conclude, in order to obtain

better performance, it is needed to minimize the DC offset and decrease the phase noise by

using a PLL.

5.5 Summary

In this chapter, the new control design procedure for the conventional drive mode controller

is applied and very good results are obtained. In addition, the base-band equivalent model

is verified with the test results by observing the stability limits. The effect of the closed-

loop on the linearity is also verified. Importance of the true controller design on the system

performance is demonstrated, as well. Finally, the complete CMOS controller is tested, and it

is seen that there is an unexpected performance degradation in the closed-loop. It is concluded

that the reason for this performance reduction is the phase-noise of the modulator.

114



CHAPTER 6

CONCLUSION AND FUTURE WORK

This work presents a comprehensive study on the controller design and its implementation in

a CMOS technology. Both the drive and sense mode closed-loop systems are discussed in

details, and they are optimized for the best settling time and bandwidth. The new base-band

equivalent model for the sense mode system is derived, and the controller design procedure is

presented. Accomplishments and results of this research can be listed as follows:

1. The detailed system level analysis has been carried out for the drive mode system.

Firstly, the drive mode system has been optimized for the settling time. Pole-zero can-

cellation technique is used for the compensation of the low frequency pole coming from

the envelope model. Settling of the drive mode system has been reduced up to 20 msec

in the simulations. This value can further be improved by increasing the cut-off fre-

quency of the low pass filter. Nevertheless, increasing the cut-off frequency degrades

the filter’s suppression of the high harmonics of the drive mode oscillation frequency.

In addition, this settling time has been obtained with a 60◦ phase margin ensuring a

robust operation.

2. The circuit imperfections coming from the implementation have been taken into ac-

count, and optimization has been done for the settling time. It is observed that there is

a significant discrepancy between the simulation results and measured values if drive

mode system is forced to have a low settling time. It is concluded that the saturation of

the Op-Amp in the PI controller causes this discrepancy. This non-linear behavior of

the controller is analyzed, and the transient performance of the drive mode is optimized

again. The optimization results show that the proposed design procedure gives also the

best solution for the actual drive mode system, but the resultant performance is worse
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than the ones obtained with the idealized system. The accuracy of the analysis per-

formed for this non-ideal case has been verified with the test results. 50 msec settling

time has been achieved with no overshoot. This result demonstrates the best value in

literature among the gyroscopes whose control is carried out by the analog electronics.

3. The new generation drive mode controller topology is introduced. This system promises

very high performance in terms of the drive mode transient performance. On the other

hand, there is a strict trade-off between the drive mode displacement and settling time.

4. The base-band equivalent model for sense dynamics has been derived. The base-band

equivalent model for sense system is, firstly presented in literature, for mismatch op-

eration. The analytical design procedure is developed using this model. This compre-

hensive study basing on the simple control theories is firstly reported, as well. Two

methods are discussed in details: PID controller and integral controller. The former

one provides a strong control which can be used in either low or high frequency mis-

match amounts. On the other hand, the second controller is effective for high mismatch

amounts. It is shown that sense dynamics can be modeled as a simple gain stage if

mismatch amount is high enough. The minimum mismatch amount enabling the use

of this simple method is analyzed in details. Controller design approaches are verified

with the system level simulations.

5. Performance analysis has been conducted for the analog sense mode controller. The

noise folding of the modulator and demodulator is firstly presented for these systems.

It is seen that this feature of the modulator/demodulators increases the electronic noise

power of the system by a factor of 2.5. Minimum attainable angle random walk and

bias instability values are found for the controllers implemented with the discrete and

CMOS electronics. Secondary noise sources are also investigated. It is observed that

the circuit imperfections, such as the DC offsets and phase errors, increase the effect of

the phase noise at the output in a substantial amount.

6. The CMOS implementation of the proposed controllers has been carried out. These are

the first functional ASIC chips for the MEMS gyroscopes developed at METU. This

work provides a low cost and low volume solution for the controller implementation.

The open-loop configuration has been resulted in a 2.2◦/hr/
√

Hz angle random walk

and 3◦/hr bias instability. Angle random walk result is very close to the theoretical
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value. The closed-loop results are also promising for the tactical grade applications, but

there is a performance degradation for the closed-loop sense mode system. Reasons for

this discrepancy are discussed. It is concluded that the DC offsets considerably increase

the effect of the phase noise of the modulator, which is not available in the open-loop

system. This extra noise of the modulator increases the noise of the closed-loop system.

Major achievement of this thesis is the development of effective and simple design procedures

for the analog control of the MEMS gyroscopes. The analog controller is implemented in a

CMOS technology. Functionality of these chips are verified, but there are limitations in their

performances. To increase the performance further, some of the future research topics are

listed below:

1. A complete gyroscope ASIC should be designed including the front-end electronics,

drive mode control, sense mode control, and the quadrature cancellation. Circuits of

this new ASIC should be carried out according to the well defined system requirements.

In addition, better technology, such as 0.35µm CMOS process should be used for robust

and high performance circuits. X-Fab 0.35µm CMOS process has been used for a new

preamplifier topology implemented with custom circuit blocks, such as band-gap ref-

erence and Op-Amps, instead of available blocks in the library of the IC manufacturer.

The first results show that this process is very good in terms matching and robustness.

In the new ASIC, circuits operating at the DC band should have offset nullifying prop-

erty to suppress the Flicker noise, offset drifts, and the effect of the phase noise at the

output.

2. The feedback network noise should be minimized by reducing the phase noise of the

drive mode system. PLL can be used to reject the phase noise, but this will complicate

the design.

3. The analog to digital conversion should be as close as possible to the CMOS system.

Firstly, an external ADC should be combined with CMOS electronics. In later works,

this ASIC should be integrated with other electronics in a single CMOS chip.

4. A digital control should be performed for a smart system combining several loops. It

requires a careful circuit and system level designs, but these systems are today’s trend

which promise very high performances.
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Appendix A

Derivations of Base-band Equivalent Models

A.1 Capacitive Interface, Φ = 90◦

p(t) = x(t) · cos(ωDt) = x(t) ·
e jωDt + e− jωDt

2
(A.1)

P(s) = X(s) ∗
δ(s + jωD) + δ(s − jωD)

2
=

X(s + jωD) + X(s − jωD)
2

(A.2)

Output of this system equals to the multiplication of the input signal and transfer function of

the sense mode of gyroscope.

R(s) = P(s) ·G(s) =
X(s + jωD) + X(s − jωD)

2
·G(s) (A.3)

Relation between demodulator output and gyroscope output is similar to the Eq. A.2. In this

case, input is multiplied with sine signal, instead of cosine signal.

Z(s) =
R(s + jωD) − R(s − jωD)

2 j
(A.4)

Z(s) =
X(s + 2 jωD) + X(s)

4 j
·G(s + jωD) −

X(s) + X(s − 2 jωD)
4 j

·G(s − jωD) (A.5)

Y(s) = Z(s) · F(s)

= X(s) ·
G(s + jωD) −G(s − jωD)

4 j

+

(
X(s + 2 jωD)

4 j
·G(s + jωD) −

X(s − 2 jωD)
4 j

·G(s − jωD)
)

︸                                                                       ︷︷                                                                       ︸
Filtered out by the Low Pass Filter for band-limited input

· F(s)

� X(s) ·
G(s + jωD) −G(s − jωD)

4 j
(A.6)

Sense mode dynamics for capacitive preamplifier can be expressed in Eq. A.7.

G(s) =
KS

s2 +
ωS

QS
· s + ω2

S

(A.7)
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where,

KS =
∂CS ,act

∂x
· VPM︸           ︷︷           ︸

αV/F

·
∂CS ,sense

∂x
· VPM︸             ︷︷             ︸

αx/I

·
1

CPre−amp︸     ︷︷     ︸
αI/V

·
1

mS

Eq. A.7 can be expanded as Eq. A.8 shows.

G(s) =
KS

2 jωS

√
1 − 1/4Q2

S

 1

s +
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S

−
1

s +
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S

 (A.8)

Inserting Eq. A.8 into Eq. A.6, Eq. A.9 is obtained.

Y(s) = X(s) · F(s) ·
KS

−8ωS

√
1 −

1
4Q2

S

 1

s +
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S + jωD

−
1

s +
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S − jωD

−
1

s +
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S + jωD

+
1

s +
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S − jωD

 (A.9)

Combining the conjugate terms, Eq. A.9 takes the following form.

Y(s) = X(s) · F(s) ·
KS

−8ωS

√
1 −

1
4Q2

S



2
(
s +

ωS

2 · QS

)

s2 +
ωS

QS
· s +

(
ωS

4QS

)2

+

ωS

√
1 −

1
4Q2

S

+ wD


2

︸                                       ︷︷                                       ︸
ω2

H

−

2
(
s +

ωS

2 · QS

)

s2 +
ωS

QS
· s +

(
ωS

4QS

)2

+

ωS

√
1 −

1
4Q2

S

− wD


2

︸                                       ︷︷                                       ︸
ω2

L


(A.10)
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This equation also shows two resonator system: one of them has a resonance frequency around

ωH and other has a resonance frequency around ωL. Second term, whose resonance frequency

is around ωL, is rejected by the low pass filter. Thus, over-all system is expressed by Eq.A.11.

Y(s) = X(s) · F(s) ·
−KS

4ωS

√
1 −

1
4Q2

S

·

s +
ωS

2 · QS

s2 +
ωS

QS︸︷︷︸
βS

· s + ω2
L

(A.11)

Moreover the gyroscope is operating at high vacuum levels. This fact allows us to neglect

1/4Q2
S expression in the above equation.

Genv(s) = −
KS · F(s)

4ωS
·

s +
ωS

2 · QS

s2 + βS · s + ω2
L

(A.12)

A.2 Resistive Interface, Φ = 0◦

p(t) = x(t) · cos(ωDt) = x(t) ·
e jωDt + e− jωDt

2
(A.13)

P(s) = X(s) ∗
δ(s + jωD) + δ(s − jωD)

2
=

X(s + jωD) + X(s − jωD)
2

(A.14)

Output of this system equals to the multiplication of the input signal and transfer function of

the sense mode of gyroscope.

R(s) = P(s) ·G(s) =
X(s + jωD) + X(s − jωD)

2
·G(s) (A.15)

Relation between demodulator output and gyroscope output is same as Eq. A.14.

Z(s) =
R(s + jωD) + R(s − jωD)

2
(A.16)

Z(s) =
X(s + 2 jωD) + X(s)

4
·G(s + jωD) +

X(s) + X(s − 2 jωD)
4

·G(s − jωD) (A.17)

Y(s) = Z(s) · F(s)

= X(s) ·
G(s + jωD) + G(s − jωD)

4

+

(
X(s + 2 jωD)

2
·G(s + jωD) +

X(s − 2 jωD)
4

·G(s − jωD)
)

︸                                                                       ︷︷                                                                       ︸
Filtered out by the Low Pass Filter for band-limited input

· F(s)

� X(s) ·
G(s + jωD) + G(s − jωD)

4
(A.18)
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Sense mode dynamics for resistive preamplifier can be expressed in Eq. A.19.

G(s) =
KS · s

s2 +
ωS

QS
· s + ω2

S

(A.19)

where,

KS =
∂CS ,act

∂x
· VPM︸           ︷︷           ︸

αV/F

·
∂CS ,sense

∂x
· VPM︸             ︷︷             ︸

αx/I

· RPre−amp︸    ︷︷    ︸
αI/V

·
1

mS

Eq. A.19 can be expanded as Eq. A.20 shows.

G(s) =
KS

2 jωS

√
1 − 1/4Q2

S


−

ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S

s +
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S

−

−
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S

s +
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S

 (A.20)

Inserting Eq. A.35 into Eq. A.33, Eq.A.21 is obtained.

Y(s) = X(s) · F(s) ·
KS

8 jωS

√
1 −

1
4Q2

S


−

ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S

s +
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S + jωD

−

−
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S

s +
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S − jωD

+

−
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S

s +
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S + jωD

−

−
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S

s +
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S − jωD

 (A.21)
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Combining the conjugate terms, Eq. A.21 takes the following form.

Y(s) =X(s) · F(s) ·
KS

8 jωS

√
1 −

1
4Q2

S

(A.22)

·



−2 jωS

(
1

2 · QS
·

(
ωS

√
1 − 1/4Q2

S + ωD

)
+

(
s +

ωS

2 · QS

) √
1 − 1/4Q2

S

)

s2 +
ωS

QS
· s +

(
ωS

4QS

)2

+

ωS

√
1 −

1
4Q2

S

+ wD


2

︸                                       ︷︷                                       ︸
ω2

H

−

−2 jωS

(
1

2 · QS
·

(
ωS

√
1 − 1/4Q2

S − ωD

)
+

(
s +

ωS

2 · QS

) √
1 − 1/4Q2

S

)

s2 +
ωS

QS
· s +

(
ωS

4QS

)2

+

ωS

√
1 −

1
4Q2

S

− wD


2

︸                                       ︷︷                                       ︸
ω2

L


(A.23)

This equation also shows two resonator system: one of them has a resonance frequency around

ωH and other has a resonance frequency around ωL. Second term, whose resonance frequency

is around ωL, is rejected by the low pass filter. Thus, over-all system is expressed by Eq.A.25.

Y(s) =X(s) · F(s) ·
KS

8 jωS

√
1 −

1
4Q2

S

(A.24)

·

−2 jωS

(
1

2 · QS
·

(
ωS

√
1 − 1/4Q2

S − ωD

)
+

(
s +

ωS

2 · QS

) √
1 − 1/4Q2

S

)

s2 +
ωS

QS
· s +

(
ωS

4QS

)2

+

ωS

√
1 −

1
4Q2

S

− wD

2 (A.25)

Assuming, sense and drive mode resonance frequencies are much higher than the frequency

separation and quality factor is high, above expression is simplified as followings:

Y(s) = X(s) ·
KS · F(s)

4
·

s +
ωS

2 · QS

s2 + βS · s + ω2
L

(A.26)
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Therefore, base-band equivalent model can be found as:

Genv(s) =
KS · F(s)

4
·

s +
ωS

2 · QS

s2 + βS · s + ω2
L

(A.27)

A.3 Resistive Interface, Φ = 90◦

p(t) = x(t) · cos(ωDt) = x(t) ·
e jωDt + e− jωDt

2
(A.28)

P(s) = X(s) ∗
δ(s + jωD) + δ(s − jωD)

2
=

X(s + jωD) + X(s − jωD)
2

(A.29)

Output of this system equals to the multiplication of the input signal and transfer function of

the sense mode of gyroscope.

R(s) = P(s) ·G(s) =
X(s + jωD) + X(s − jωD)

2
·G(s) (A.30)

Relation between demodulator output and gyroscope output is similar to the Eq. A.29. In this

case, input is multiplied with sine signal, instead of cosine signal.

Z(s) =
R(s + jωD) − R(s − jωD)

2 j
(A.31)

Z(s) =
X(s + 2 jωD) + X(s)

4 j
·G(s + jωD) −

X(s) + X(s − 2 jωD)
4 j

·G(s − jωD) (A.32)

Y(s) = Z(s) · F(s)

= X(s) ·
G(s + jωD) −G(s − jωD)

4 j

+

(
X(s + 2 jωD)

4 j
·G(s + jωD) −

X(s − 2 jωD)
4 j

·G(s − jωD)
)

︸                                                                       ︷︷                                                                       ︸
Filtered out by the Low Pass Filter for band-limited input

· F(s)

� X(s) ·
G(s + jωD) −G(s − jωD)

4 j
(A.33)

As it is given above, sense mode dynamics for resistive preamplifier can be expressed in Eq.

A.34.

G(s) =
KS · s

s2 +
ωS

QS
· s + ω2

S

(A.34)

where,

KS =
∂CS ,act

∂x
· VPM︸           ︷︷           ︸

αV/F

·
∂CS ,sense

∂x
· VPM︸             ︷︷             ︸

αx/I

· RPre−amp︸    ︷︷    ︸
αI/V

·
1

mS
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Eq. A.34 can be expanded as Eq. A.35 shows.

G(s) =
KS

2 jωS

√
1 − 1/4Q2

S


−

ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S

s +
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S

−

−
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S

s +
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S

 (A.35)

Inserting Eq. A.35 into Eq. A.33, Eq. A.36 is obtained.

Y(s) = X(s) · F(s) ·
KS

−8ωS

√
1 −

1
4Q2

S


−

ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S

s +
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S + jωD

−

−
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S

s +
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S − jωD

−

−
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S

s +
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S + jωD

+

−
ωS

2 · QS
− jωS

√
1 − 1/4Q2

S

s +
ωS

2 · QS
+ jωS

√
1 − 1/4Q2

S − jωD

 (A.36)

Combining the conjugate terms, Eq. A.36 takes the following form.

Y(s) =X(s) · F(s) ·
KS

−8ωS

√
1 −

1
4Q2

S

(A.37)

·



−
ωS

QS
· s −

ω2
S

2 · Q2
S

+ 2 · ωS ·

√
1 −

1
4Q2

S

·

ωD +

√
1 −

1
4Q2

S

· ωS


s2 +

ωS

QS
· s +

(
ωS

4QS

)2

+

ωS

√
1 −

1
4Q2

S

+ wD


2

︸                                       ︷︷                                       ︸
ω2

H

−

−
ωS

QS
· s −

ω2
S

2 · Q2
S

+ 2 · ωS ·

√
1 −

1
4Q2

S

·

ωD −

√
1 −

1
4Q2

S

· ωS


s2 +

ωS

QS
· s +

(
ωS

4QS

)2

+

ωS

√
1 −

1
4Q2

S

− wD


2

︸                                       ︷︷                                       ︸
ω2

L


(A.38)
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This equation also shows two resonator system: one of them has a resonance frequency around

ωH and other has a resonance frequency around ωL. Second term, whose resonance frequency

is around ωL, is rejected by the low pass filter. Thus, over-all system is expressed by Eq.A.40.

Y(s) =X(s) · F(s) ·
KS

−8ωS

√
1 −

1
4Q2

S

(A.39)

·

−
ωS

QS
· s −

ω2
S

2 · Q2
S

+ 2 · ωS ·

√
1 −

1
4Q2

S

·

ωD −

√
1 −

1
4Q2

S

· ωS


s2 +

ωS

QS
· s +

(
ωS

4QS

)2

+

ωS

√
1 −

1
4Q2

S

− wD

2 (A.40)

Using Taylor’s series approximation, numerator can be simplified as followings:

√
1 − x � 1 −

x
2
⇒

√
1 −

1
4Q2

S

� 1 −
1

8Q2
S

(A.41)

With the assumption of a high quality factor, Eq. A.40 is simplified to:

Y(s) = X(s) · F(s) ·
KS

4
·

s
2 · QS

+ ∆ω +
ωD

8Q2
S

s2 + βS · s + ω2
L

(A.42)

Therefore, base-band equivalent model can be found as:

Genv(s) =
KS · F(s)

4
·

s
2 · QS

+ ∆ω +
ωD

8Q2
S

s2 + βS · s + ω2
L

(A.43)
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