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OZET
Doktora Tezi

NEWTONYEN OLMAYAN YENI BiR AKISKAN MODELINDE KARARSIZ
AKIS ICIN SINIR TABAKASI DENKLEMLERININ BENZERLIK
COZUMLERININ ARASTIRILMASI

Ali KECEBAS

Siileyman Demirel Universitesi
Fen Bilimleri Enstitiisii
Makina Miihendisligi Anabilim Dah

Danmisman: Prof. Dr. Mustafa BAYHAN

Bu ¢alismada, Newtonyen olmayan yeni bir akiskan modeli i¢in iki boyutlu, kararsiz akisl,
laminer sinir tabakasi denklemleri ele alinmistir. Bu model, Power-Law akiskan modeli ile
ikinci ve {iciincii derece akiskan modellerinin bir birlesimidir. Ik énce yeni modele ait genel
hareket denklemleri c¢ikartilmigtir. Sonra, sinir tabakasi yaklagimi kullanilarak ikinci
dereceden Power-Law ve ficlincii dereceden Power-Law akigkanlarma ait smir tabakasi
denklemleri elde edilmistir. Sonuglarin genel olabilmesi i¢in denklemler ve sinir sartlar
boyutsuzlastirilmistir.  Uciincii  dereceden Power-Law akigkanma ait smir tabakasi
denklemlerinin g¢oziimleri gergeklestirilmistir. Coziim igin denklemlere Lie Grup analizi
uygulanmistir. Lie Grup analizi uygulanarak denklemlerin kabul ettigi infinitesimal
jeneratorler bulunmustur. Olgekleme ve Oteleme simetrileri kullanarak denklemler iki
degiskenli kismi diferansiyel denklemlere donistiiriilmiistiir. Elde edilen bu denklemlere
yeniden Lie Grubu analizi uygulanmigtir. Elde edilen yeni simetriler ile denklemler iki farkli
adi diferansiyel denklem sistemine donilismiistiir. Sonucta bu iki farkli adi diferansiyel
denklem sistemi Runge-Kutta algoritmasi ile niimerik olarak c¢oziilmiistiir. Nimerik
¢ozlimlerde sinir deger problemi olarak hareketli yiizey tizerindeki emme-piiskiirtmeli akis
problemi incelenmistir. Coziimlerde iki farkli denklem sisteminde de ayni niimerik sonuglar
goriilmiigtiir. Kabaran veya incelen bir akiskanda Newtonyen olmayan etkiler arttiginda,
siir tabakasinin kalinlastigi sonucuna varilmistir. Newtonyen olmayan akiskan katsaymin
kiigiik degerlerinde Power-Law akiskaninin o6zellikleri de goriilmektedir. Tezin sonraki
boliimiinde ikinci dereceden Power-Law akiskanina ait sinir tabakasi denklemlerinin ¢6ziimi
yapilmistir. Bu akigkana ait sinir tabakasi denklemleri kismi diferansiyel denklem olup
benzerlik doniisiimleri ile denklemler adi diferansiyel denklem formuna indirgenmistir.
Klasik sinir tabakasi sartlari i¢in adi diferansiyel denklem sistemi, sonlu farklar algoritmasi
kullanilarak niimerik olarak ¢oziilmiistiir. Elde edilen ¢oziimlere gore ikinci derece katsayi
degerleri arttiginda sinir tabakasinin kalinlastig1 gézlenmektedir. Power-Law {issiiniin kayma
kalinlagmasi durumundaki degerleri arttik¢a sinir tabakasinin inceldigi goriilmiistiir. Halbuki,
Power-Law iissiiniin kayma incelmesi durumunda sinir tabakasinin kalinlastig1 goriilmiistiir.

Anahtar Kelimeler: Newtonyen olmayan akigkan, sinir tabakasi akisi, kararsiz akis,
benzerlik ¢6ziimii.

2011, 105 sayfa
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ABSTRACT
Ph.D. Thesis

INVESTIGATION OF SIMILARITY SOLUTIONS OF BOUNDARY LAYER
EQUATIONS FOR UNSTEADY FLOW IN A NEW NON-NEWTONIAN
FLUID MODEL

Ali KECEBAS

Siileyman Demirel University
Graduate School of Applied and Natural Sciences
Department of Mechanical Engineering

Supervisor: Prof. Mustafa BAYHAN

In this study, two dimensional, unsteady flow, laminar boundary layer equations for a new
non-Newtonian fluid model are treated. This model is a combination of Power-Law fluid
model, second and third grade fluid models. First of all, the general equations of motion
regarding this new model are derived. Then, by using boundary layer approach, the boundary
layer equations for Power-Law of second grade and Power-Law of third grade fluids are
obtained. To be able to generalize results, these equations and boundary conditions have
been made dimensionless. Solutions of the boundary layer equations for Power-Law of third
grade fluids are performed. For solution, the Lie Group analysis is applied. The infinitesimal
generators accepted by the equations are calculated by using Lie Group analysis. By using
scaling and translation symmetries, equations are transformed into partial differential
equations with two variables. Lie Groups are further applied to these equations obtained.
When using the infinitesimal generators of these equations, equations are transformed into
two different ordinary differential systems. Finally, two different ordinary differential
systems are solved with Runge-Kutta algorithm numerically. The flow over a moving
surface, with suction or injection is examined as the boundary value problem in numeric
solutions. For these two different systems from the solutions, it is seen in same numerical
results. It is seen that the boundary layer becomes thicker when the third grade fluid
coefficient increases. It is deduced that in a fluid exhibited shear thinning and shear
thickening behaviors, the boundary layer gets thicker when non-Newtonian effects increase.
In the minor values of non-Newtonian fluid coefficient, Power-Law fluid behaviors are also
seen. In the following of the theses, solutions of the boundary layer equations for Power-Law
of second grade fluids are performed. These equations are partial differential equation
system and are transformed into an ordinary differential equation system via similarity
transformation. For classical boundary layer conditions, these equations are solved by using
finite difference algorithm numerically. According to the obtained solutions, it is observed
that the boundary later gets thicker when the second grade fluid coefficient increases.
Thinning the boundary layer is observed for increasing values in shear thickening case of
Power-Law exponent. Whereas, in shear thinning case of its, thickening the boundary layer
is observed.

Key Words: Non-Newtonian fluid, boundary layer flow, unsteady flow, similarity
solution.

2011, 105 pages
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1. GIRIS

Gilintimiizde gelisen bilgi ve teknoloji ile akigkanlar mekaniginin 6neminin ne kadar
biiyiik oldugu goriilmektedir. Insandaki kan dolasimindan roketlere kadar ¢ok cesitli
alanlarla dogrudan dogruya ilgili olan akigkanlar mekanigi, biitiin miihendislik
alanlarinda ve bilim dallarinda kagiilmaz bir bilgi kaynagi durumuna gelmistir.
Yakin tarihe kadar akiskanlar mekanigi bilimi, hidrolik adi altinda ele alinmaktaydi.
Hidroligin genellikle su ile ugragmasi, kapsadigi akiskan sorunlarinin ¢ok sinirh
kalmasi ve deneysel sonuglarin matematik temelinden yoksun olmasi dolayisi ile
genellestirilememesi ve olaylarin nedenlerine inilememesi gibi gerekgeler nedeniyle
hidrolik bilimi hizla gelisen teknigin getirdigi sorunlara karsilik veremez duruma
gelmistir. Boylece akigkanlar mekanigi ve hidrolik bilimi kismen ayrilmistir.
Simdilerde ise akiskanlar mekanigi, diger bilim ve miihendislik dallarinda oldugu
gibi o kadar genislemistir ki akiskanlar mekanigi basl basma incelenebilecek bir

alana donlismiistiir.

Akiskan, giinliik hayatta her ne kadar konuldugu kabin seklini alan maddeler olarak
tarif edilse de bugiin teknik bilimde en kiigiik bir kayma gerilmesi uygulandiginda
stirekli deforme olan madde olarak tanimlanmaktadir. Yapilan ¢alismalar sonucunda
birgok gercek akiskanin, ozellikle diigiikk molekiiler agirliga sahip olanlarin mekanik
davraniglart Navier-Stokes teorisi tarafindan dogru olarak belirlenmektedir. Bu
teorinin uygulanabildigi akiskanlar Newtonyen akiskanlar olarak adlandirilmaktadir.
Kararli bir halde akan akiskanda, hiz degisimi ile uygulanan kayma gerilimi
arasindaki iligki lineer olan akiskanlar Newtonyen akigkanlar olarak da
tanimlanabilir. Newtonyen olmayan akiskanlarda ise hiz degisimi ile uygulanan
kayma gerilimi arasindaki iligki lineer degildir. Aldigimiz nefes, hava, su, siit ve
benzin Newtonyen akiskanlara 6rnek verilebilir. Bunun yaninda Newtonyen olmayan
akiskanlar da giinliik hayatta oldukca fazla karsilastigimz akiskanlardir. Ornek
olarak bal, hamur, sulandirilmis nisasta, yumurta aki, bitkisel yaglar bu gruba
girerler. Her yerde kullanilan boya ve giinliik hayatta olduk¢a sik rastladigimiz asfalt,

zift, tutkal gibi maddeler de Newtonyen olmayan akiskanlardir.



19. yiizyilin basinda aerodinamik alaninda yapilan c¢alismalara 6nem verilmesi
Newtonyen akiskanlara verilen 6nemin azalmasmna neden olmustur. Ozellikle
1904°te Lunding Prandtl tarafindan ortaya atilan sinir tabasi kavrami ve gelisen ugak
endiistrisi sayesinde bir cisim etrafinda hareket eden akis icin genis calismalar
yapilmistir. Sinir tabakasinin en 6nemli uygulamasi ise madde akisi ile molekiiler
yap1 arasinda iliski kurmak isteyen fiziksel kimyacilarin, polimerik malzeme iizerine
yapmis oldugu testler bu konuda 6ncii rolii oynamistir. Polimerik malzemelerin ticari
olarak 6nem kazanmasi bu konudaki arastirmalari arttirmistir. Madde akisim
inceleyen bir bilim dali olan reoloji, Newtonyen olmayan akiskanlar
siniflandirmigtir. Sinir tabakalar1 iizerine temel calismanin 6rnekleri Schlichting

(1951) tarafindan yazilan bir kitapta yer almistir.

Newtonyen olmayan akigkanlar genelde viskoelastik terimi ile ifade edilirler. Ciinkii
bu sivilar hem viskoziteli akiskan hem de elastik kat1 davranisini birlikte gosterirler.
Newtonyen akiskanlardan alisik oldugumuz bazi 6zellikleri bu akiskanlar
gostermezler. Bunlara birkag¢ 6rnek verilirse normalde asagiya dogru akan bir sivinin
cap1 yere yaklastikca momentum korunumundan dolay1 azalir. Halbuki Newtonyen
olmayan akiskanlarda tam tersi olmaktadir yani, ¢cap yere yaklastikca artmaktadir.
Bunun sebebi de elastik kuvvetlerin c¢ikista serbest kalmasi ve genlesmeyi
saglamasidir. Bu nedenle, Newtonyen olmayan akigkanlarin davranisini agiklamak
icin bircok kayma gerilmesi modeli Onerilmistir. Bunlar arasinda; Power-Law,

diferansiyel ve tlirev tipli modeller daha fazla kabul gormiislerdir.

Uygulamada olduk¢a sik kullanilan Newtonyen olmayan akiskanlarin basinda
Power-Law akiskan modeli gelmektedir. Bu akiskanlarda viskozite, hiz gradyaninin
iissel bir degisimi olarak goriilmektedir. Power-Law akigkan modeli kullanilarak
sinir tabakasi ile ilgili bir¢cok calisma yapilmistir. Bu ¢aligsmalardan bazilari, Acrivos
et al. (1960) ve Schowalter (1960)’in yaptig1 ¢aligmalardir. Acrivos et al. (1960) 1s1
transferi igeren yatay diiz bir plakadan akan akisi detayli olarak incelemistir.
Schowalter (1960) iki ve ii¢ boyutlu smir tabakasi denklemlerini gelistirmis ve
denklemlerin bazi benzerlik ¢oziimlerini bulmustur. Lee and Ames (1966)

calismalarinda Powell-Eyring ve Power-Law modellerine ayn1 ¢alismada yer vererek



kararli yapidaki sinir tabakasi denklemlerini ¢ézmiislerdir. Calismada 6lgekleme
dontistimii (Lie Grup doniisiimil) kullanilmistir. Denklemler kismi diferansiyel
denklemden doniisiim sayesinde adi diferansiyel denklem formuna indirilmis ve bu
denklemler niimerik olarak c¢oziilmiistir. Na and Hansen (1967) Power-Law
akiskanlarina ait ii¢ boyutlu smir tabakasi denklemlerinin benzerlik ¢ozlimlerini
ayrintilariyla incelemislerdir. Mansutti and Rajagopal (1991) Power-Law akiskanlari
icin gerilme biinye denklemini elde etmislerdir. Pakdemirli (1993) Power-Law
akiskanlari icin sinir tabakasi denklemlerini 6zel bir koordinat sistemi kullanarak
¢ikarmistir. Bu denklemleri, durgun nokta akis1 ve diiz plaka akisi durumlart igin
¢Ozmiistlir. Son zamanlarda ise kararsiz iki boyutlu sinir tabakasi durumunda Lie
Grup analizinin kullanilmasi incelenmistir (Yiirisoy and Pakdemirli, 1996). Yiirlisoy
(2006) kararsiz sinir tabakasi denklemlerini Power-Law modeli ic¢in ele alarak
¢Ozmistlir. Cozlim i¢in 6zel bir doniisiim kullanarak denklemleri adi diferansiyel
denklem bi¢imine indirgemistir. Keg¢ebas and Yiiriisoy (2006) ¢alismalarinda yine
kararsiz sinir tabakasi denklemini ele almislardir. Cok 6zel Lie Grup doniigiimleri
sayesinde denklemler iki alternatif ile adi diferansiyel denklem formuna indirgenmis
ve niimerik olarak ¢oziilmistiir. Bu c¢alismada da yine Power-Law modeli ele

alinmustir.

Diferansiyel tip akigkanlar i¢in sinir tabakalar1 {izerine ilk ¢alisma Srivastava (1985)
ve Rajaswari and Rathna (1962)’nin yaptigi c¢aligmalardir. Srivastava (1958)
Karmen-Pohlhausen metodunu kullanarak durgun nokta akisini incelemistir.
Rajaswari and Rathna (1962) ikinci derece akiskanlar icin smir tabakasi
denklemlerini tliretmistir. Tiirev tipli akiskanlar i¢in ilk ¢alisma Beard and Walters
(1964) ve Astin et al. (1973)’in c¢aligmalaridir. Beard and Walters (1964)
genellestirilmis bir Oldroyd B tipi akiskan i¢in sinir tabakasi esitlikleri gelistirmis ve

durgun nokta akisi durumu i¢in denklemleri niimerik olarak ¢6zmiislerdir.

Power-Law akiskan modelleri kullanilarak incelen (shear thinning) ve kabaran (shear
thickening) akiskanlar dogru olarak modellenebilmektedir. Ancak bu modeller
elastik  oOzellikler iceren baz1 akigkan tiplerinde akigkan1 tam olarak

modelleyememektedir. Mile tirmanma ve sifon etkisi gibi bazi fiziksel olaylar elastik



ozellikler igeren akiskanlarda meydana gelen durumlara 6rnektir. Bu tip az rastlanan
olaylarin modellenmesi olduk¢a ilging ¢alismalar1 beraberinde getirmistir. Bu
calismalardan baslicalar1 Reiner (1945), Rivlin (1948), Oldroyd (1950) ve Noll
(1955) tarafindan yapilan ¢alismalardir. Bahsedilen tipteki akiskan modellerinin en

onemlileri Coleman-Noll, Rivlin-Ericksen, Green-Rivlin ve Oldroy modelleridir.

Bahsedilen modellerden Rivlin-Ericksen modelinin 6zel bir tiirii, ikinci ve tiglincii
derece akigkan modelleridir. Bu modellerle ilgili kartezyen koordinatlarda yapilan
calismalar soyledir: Ikinci derece akiskanlar igin sinir tabakasi teorisinin
uygulanmasi ile ilgili ilk c¢alismalar, Karmen-Pohlhausen metodunu kullanarak
durgun nokta akisini incelemesiyle Srivastava (1958) ve Coleman and Noll
(1960)’un yaptig1 ¢caligmalardir. Durgun nokta akisinda ikinci derece akiskanlar i¢in
sinir tabakast denklemleri tlireten Rajeswari and Rathna (1962)’ya ait referanstir.
Dunn and Fosdick (1974) ikinci derece akiskanlar i¢in detayli termodinamik ve
stabilite analizleri yapmiglar ve bu akiskanin ¢6ziimlerinin termodinamikle uyumlu
ve c¢Ozlimlerin kararli olabilmesi i¢in baz1 sartlarin saglanmasi gerektigini
gostermiglerdir. Fosdick and Rajagopal (1978) daimi akim igin siiriklenmeyi
incelemistir. Mishra and Panda (1979) kanalin giris bolgesindeki enjeksiyonun akima

etkilerini incelemistir.

Ikinci derece akiskanlar i¢in smir tabakasi teorisi ve bu teoriye ait kisitlamalar
Rajagopal et al. (1980) tarafindan gosterilmistir. Rajagopal and Gupta (1981a) ikinci
derece akiskanlarin hareket denklemleri i¢in bazi tam ¢oziim siniflarim1 vermislerdir.
Yine Rajagopal and Gupta (1981b) cakisik olmayan eksenlerde donen iki paralel
plaka arasindaki akisi ve bu akigin kararliligini incelemislerdir. Rajagopal et al.
(1983) ikinci derece akiskanin kose akisina g¢alismis ve perturbasyon yaklagimi
kullanarak benzersizlik ¢O6ziimiinii elde etmislerdir. Rajagopal et al. (1984)
gerdirilmis plaka tizerindeki ikinci derece akiskana yaklasik bir ¢6ziim onermislerdir.
Siddiqui and Kaloni (1986) ikinci derece akigkanlar i¢in bazi ters c¢oziimleri
gostermislerdir. Mcleod and Rajagopal (1987) calismalarinda gerdirilmis plakadan
dolay1 olusan ikinci derece akiskanin hareketi ve Navier-Stokes ¢oziimlerinin teklik

durumlarini incelenmislerdir. Troy et al. (1987) klasik ikinci derece akigkanin tek



parametreye bagl ¢oziimler ailesini bulmuslardir. Emme-piiskiirtmenin Falkner-Skan
akisina olan etkilerini Massoidi and Ramezan (1989) incelemislerdir. Garg and
Rajagopal (1990) ikinci derece akiskanin durgun nokta akisini incelemisler ve kayma
gerilmesi ikinci derece olarak azaldiginda etkilerinin arttigin1 bulmuslardir. Garg and
Rajagopal (1991) kama etrafindaki ikinci derece akiskanlarin akisini incelemislerdir.
Pakdemirli and Suhubi (1992a) eslenmis asimtotik acilim yontemi kullanarak ikinci
derece akiskanlar i¢in smir tabakasi denklemlerini tiiretmislerdir. Cikarilan bu
denklemlerin simetri grubu Pakdemirli and Suhubi (1992b) tarafindan bulunmus ve

denklemler ¢oziilmiistiir.

Rivlin-Ericksen modelinin diger 6zel bir tiirii olan {igiincii derece akiskan modelidir.
Bu modelle ilgili kartezyen koordinatlarda yapilan ¢aligmalar soyledir: Ugiincii
derece akigkanlar modeli Fosdick and Rajagopal (1980) tarafindan elde edilmistir.
Ayrica bu akigkanlar icin ise detayli termodinamik ve stabilite analizleri
yapmiglardir. Pakdemirli (1992c) tarafindan {igiincii derece akigkanlara ait sinir
tabakasi denklemleri 6zel bir koordinat sistemi kullanilarak ¢ikarilmistir. Pakdemirli
(1994) bu akigkanlara ait ¢ok katmanli sinir tabakasi denklemlerini incelemistir.
Yiirisoy and Pakdemirli (1999) iigiincii derece akiskanlara ait iki boyutlu sinir
tabakas1 denklemlerini Lie Grup analizini kullanarak denklemleri adi diferansiyel
denklem formuna indirgemislerdir. Adi tiirevli denklemler Runge-Kutta algoritmasi

kullanilarak niimerik olarak ¢oziilmiistiir.

Rivlin-Ericksen modelinin 6zel bir tiirli olan, diger bir adiyla ikinci derece akiskan
modeli, Newtonyen oOzellikteki viskozite ve elastik etkileri icerse de kabaran ve
incelen akigkanlari temsil etmekte yetersiz kalmaktadir. Bu akigkan modelinin
eksikligini gidermek icin Man and Sun (1987) tarafindan yeni bir model ortaya
atilmistir. Bu modelde, teorik olarak ele alman ve ifade edilen ikinci derece
akiskanlar ile deneysel sonuglarla ifade edilen Power-Law tipindeki akigkanlari
birlestirmek i¢in ugrasmislardir. Bu ¢aligsmalar 1s18inda bahsedilen modellerin buzul
biliminde uygulamasini bulmuslardir. Caligmalarinda “genellestirilmis ikinci derece

akigkan” ve “ikinci derece Power-Law akiskani” olarak farkli iki model



onermislerdir. Yani bu modellerde ikinci derece akiskan ile Power-Law tipindeki

akigkanlar birlestirilmistir.

Man (1992) tarafindan genellestirilmis ikinci derece akiskan modeli kararsiz kanal
akisinin varlik ve teklik durumlar1 ve asimptotik stabilite ¢oziimleri incelenmistir.
Genellestirilmis ikinci derece akiskan i¢in Gupta and Massoudi (1993) bu akiskan
modelini 1sitilmis plakalar arasindaki akis i¢in incelemislerdir. Massoudi and Phuoc
(2001) viskozitenin sicakliga bagli oldugu ayni akiskanmn isitilmis egik plakalar
arasindaki akigini incelemislerdir. Hayat and Khan (2005) akiskanin gézenekli plaka

tizerindeki akisini incelemislerdir.

Bu tez calismasinda {igiincii derece akigkanlar i¢in Fosdick and Rajagopal (1980)
tarafindan elde edilen modele ek olarak Power-Law modeli diisiiniilmiistiir. Bu
model, Power-Law modeli ile ikinci ve ti¢lincii derece akiskan modellerinin bir
bileskesidir. Cok yakin zamanda bu modele ait kararl akis i¢in sadece ikinci derece
akiskanlar ele alinarak, smir tabakasi denklemleri c¢ikartilmis ve ¢ozlilmiistiir.
Pakdemirli et al. (2008) tarafindan yapilmigs olan ikinci derece Power-Law
akiskanlar1 i¢in sinir tabakasi denklemlerine Lie Gruplar1 uygulanarak, denklemlerin
simetrileri bulunmustur. Bulunan bu simetriler sayesinde denklemler adi diferansiyel
denklem formuna indirgenmis ve sonlu farklar kullanilarak niimerik olarak
¢cozlilmiistiir. Abbasbandy et al. (2008) ayn1 denklemleri HAM (Homotopy Analiz
Metodu) metodu kullanarak ¢6zmiis ve sonuglar1 sonlu farklar yontemi ¢oziimleri ile

karsilagtirmistir. Sonuglarda miikemmel bir uyum goriilmiistiir.

Bu tez ¢alismasinda, Power-Law akiskan ile ikinci ve tigiincii derece akiskanlari
birlestiren Newtonyen olmayan bir akiskan modeline ait iki boyutlu ve kararsiz akisi
ifade eden sinir tabakasi denklemlerinin benzerlik ¢oziimleri yapilmistir. Boliim 2°de
Power-Law akiskan ile ikinci ve iicilincli derece akiskanlarini birlestiren modele ait
iki boyutlu ve kararsiz akisa ait sinir tabakasi denklemleri adi diferansiyel denklem
sekline doniistiiriilmiistiir. Burada Newtonyen olmayan yeni bir akiskan modeline ait
hareket denklemleri c¢ikartilmistir. Hareket denklemlerinin ¢ikisinda Rivlin-Ericksen

tensorleri kullanilmistir. Ivme terimleri, viskoz terimleri, ikinci ve iigiincii derece



akiskan terimlerinin ¢ikisi detayl olarak anlatilmistir. Daha sonra elde edilen hareket
denklemlerine, sinir tabakasi yaklasimi uygulanmis ve smir tabakasi denklemlerine
ait matematiksel modeller elde edilmistir. Elde edilen bu denklemler iki tane olup ilki
ikinci dereceden Power-Law ve digeri ise li¢iincii dereceden Power-Law akigkan
denklemleridir. Her iki denklem de zaman terimleri mevcut olup kararsiz akisi ifade

etmektedir.

[k once, iiciincii dereceden Power-Law akiskanina ait sinir tabakasi denklemleri ele
alimmistir. Bu denklemlerin adi diferansiyel denklem formuna indirgenebilmesi igin
Lie Grup analizi kullanilmistir. Lie Grup analizi ile ilgili daha detayli bilgi Bluman
and Kumei (1989) ve Stephani (1989) kaynaklarindan elde edilebilir. Lie Grup
analizi uygulanarak denklemlerin kabul ettigi simetriler bulunmustur. Lie Grup
analizinde Once denklemler i¢in invaryantlik sartlart yazilmis, sonra bu sartlar i¢in
gerekli olan infinitesimaller tiiretilmistir. Bu infinitesimaller, invaryantlik sartlarinda
yerine yazildiginda iki ayr1 denklem blogu elde edilmistir. Bu denklem bloklari
katsayilarina gore ayrigtirilarak bir kismi diferansiyel denklem sistemi elde
edilmistir. Bu denklem sistemi ¢oziilerek denklemlerin kabul ettigi simetriler
bulunmustur. Bulunan bu simetriler ile denklemler ve sinir sartlar1 ii¢ degiskenli
kismi diferansiyel denklemden iki degiskenli kismi diferansiyel denkleme
indirgenmistir. Indirgenen bu denklemler, Slcekleme ve Oteleme doniisiimleri
sayesinde iki tane bulunmustur. Elde edilen iki degiskenli bu iki ayr1 denklemlere
yeniden Lie Grubu analizi uygulanmistir. Boylece iki degiskenli kismi diferansiyel
denklemler, bir degiskenli adi diferansiyel denklemler formuna indirgenmistir.
Caligmada sinir deger problemi olarak hareketli yiizey tizerindeki emme-piiskiirtmeli
akis ele almmustir. Sonu¢ olarak ele alinan hareket denklemi, ii¢ bagimsiz
degiskenden olustugu i¢in iki defa Lie Grup analizi uygulamak sureti ile adi

diferansiyel denklem formuna indirgenmistir.

Daha sonra ikinci dereceden Power-Law akiskanina ait sinir tabakasi denklemleri adi
diferansiyel denklem sekline doniistiiriilmiistiir. Bu akiskana ait terimlerden elde
edilen zamana bagli kismi diferansiyel denklem sistemi iki bagimli ve {i¢ bagimsiz

degiskenden olusan bir kismi diferansiyel denklem sistemidir. Bagimsiz degiskenler



X, y ve t degiskenleridir. Bagimmli degiskenler ise u(x,y,t) ve v(x,y,t) hiz
degiskenleridir. Bu denklemlerin ¢oziimii i¢in Yiriisoy (2006)’un ¢alismasindaki
0zel bir doniisiim kullanilmistir. Bu doniisiim ilizerinde bazi kiiclik degisiklikler
yapilmis ve elde edilen yeni doniisiim, klasik smir sartlarinda denklemlere
uygulanmistir. Boylece denklemler adi diferansiyel formuna indirgenmistir. Bu

dontisiim, denklemleri ayn1 zamanda boyutsuzlastirmistir.

Boliim 3’te ikinci boliimde elde edilen tigiincii dereceden Power-Law akigkanin sinir
tabakasina ait adi diferansiyel denklemler Runge-Kutta algoritmasi kullanilarak
nlimerik olarak ¢oziilmistiir. Ayrica, ikinci dereceden Power-Law akiskanin sinir
tabakasina ait adi diferansiyel denklem sisteminin ¢oziimii i¢inde sonlu fark
algoritmasi ile calisan bir program yazilmistir. Ancak bu program sayesinde
denklemlerin niimerik ¢oziimleri miimkiin olmustur. Béliim sonunda denklemlerin
cOziimlerinde gerek Power-Law iissiiniin gerekse ikinci ve {igiincii dereceden akigkan
sabitlerinin sinir tabakasi iizerindeki etkisi agik¢a ¢ozlimlerde gosterilmistir. Ayrica
Newtonyen ile Newtonyen olmayan akigkanlara ait siir tabakalar1 arasindaki

degisim de gosterilmistir. Son boliimde ise ¢alisma ile ilgili sonuglar belirtilmistir.



2. MATERYAL VE YONTEM

2.1. Hareket Denklemleri

Calismada oOncelikle kartezyen koordinatlarda Power-Law akiskan ile ikinci ve
ticlincii derece akigkanlarini birlestiren bir modele ait iki boyutlu ve kararsiz akisi
ifade eden hareket denklemleri c¢ikartilacaktir. Denklemlerin ¢ikarilisinda Rivlin-
Ericksen tensorleri kullanilacaktir. Daha sonra bu denklemler vektorel formda ifade
edilecektir. Once ivme terimleri sonra viskoz terimler ve ikinci ve {iciincii derece
akiskan terimlerinin ¢ikis1 detayl olarak anlatilacaktir.

2.1.1. Tensorel Formda Hareket Denklemleri

Power-Law akigkan ile ikinci ve iigiincli derece akigkanlar1 birlestiren modele ait

hareket denklemi tensorel formda asagidaki gibi yazilmaktadir.
dv
— =divt+pb 2.1
Py p 2.1)

Burada; t gerilme tensorii, b birim kiitle bagina diisen dis kuvvet, p yogunluk, v hiz

vektorii ve ((11—: ivmedir. Sikistirllamaz akigkan kabulii ile siireklilik denklemi

divv=0 (2.2)
gibi ifade edilir.

Power-Law akigkan ile ikinci ve iiclincli derece akigkanlari birlestiren Newtonyen

olmayan akigkanlara ait biinye denklemi

t=—pl+I1™> (HA1 +a, A2+a2Af+B|A1|2.A1) (2.3)



seklindedir. Burada
12
Il = E tr Al (24)

bi¢cimindedir. p basing, I birim matrisi, p viskozite katsayisi, o,, o, ve [

Newtonyen olmayan akigkan sabitleri, m Power-Law akiskan sabiti olup, m<0
olmasi halinde incelen akiskanlari, m>0 olmasi durumunda ise kabaran akigkanlar
ifade eder. A; ve A, ilk iki Rivlin-Ericksen tensorleridir. Bu tensorler
A =L+L'
A,=A +AL+L"A, (2.5)
A = (Al)t +(gradA,)v

biciminde tanimlanmaktadir.

Denklem (2.5)’teki ifadelerde L =gradv olarak tanimlanmaktadir. Denklem

(2.3)’lin tiirevi alinirsa

m/2
divt = —gradp+div[%trA12j (uA1 +o, A, +0L,AT +[3|A1|2.A1)
| 2 (2.6)
+(5trA12j div(uAl + o, A, +0,A° +[3|A1|2.A1)

m/2
denklemi elde edilir. Burada, div[%tr Af} ifadesi asagidaki gibi de yazilabilir.

1 m/2 1 m/2
div(—trAfj = grad(—|A1|2j (2.7)
2 2
Ayrica tensorel formdaki hareket denkleminin ivme terimi vektorel olarak
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dv 1 2
—=v. +—grad|v| +@xvVv 2.8
=V erady (28)

seklinde yazilir. Burada, v, hizin zamana gore tiirevi ve @ = curlv ’dir.

Denklemler (2.6) ve (2.8) goz Oniine alinir ve b=0 yazilirsa baslangictaki hareket
denklemi (2.1) asagidaki gibi vektorel forma doniisiir.

m/2
p(vt +%grad|v|2 + @ % vj = —gradp + grad|:(%|Al|2j }

1 m/2
(LA, + oA, +oc2A12+B|A1|2.A1)+ (5|A1|2j
2.9)
[uV2v+ o, Vv, + OLI(VZ(DX V)+ o, grad(V.Vzv)
+%(2oc1 +oc2)grad|Al|2 +(oc1 +OL2){A1.V2V

+2div [(grad v)(grad v) T]}+ BAl.grad|A1|2 + B|A1|2.V2v]
Boylece hareket denklemleri vektorel formda elde edilmis oldu.
2.1.2. Kartezyen Koordinat Sistemine Gore Hareket Denklemleri
Calismanin bu kisminda kartezyen koordinat sistemine gore denklem (2.9) yeniden
yazilacaktir. Oncelikle denklem (2.9)’daki terimler asagidaki gibi tek tek

hesaplanacaktir.

Hiz ve gradyan operatorii asagidaki gibi tanimlanir.

v=u(x,y,t)i+ v(X,y,t)j (2.10)
0. 0O

V=—i,—j
[axl, ]j (2.11)

Hiz operatoriindeki u, x yoniindeki vektorel hiz1 ifade ederken; v, y yoniindeki hizi

ifade etmektedir.
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Hizin zamana gore tiirevi, v, ;

Vo=—i+—j (2.12)
gibi tanimlanir.

Denklem (2.9)’da hiz operatoriiniin karesi |V|2 asagidaki denklemde belirtildigi gibi

ifade edilmektedir.
|V|2 =u’+v° (2.13)
Denklem (2.13)’te yer alan |V|2 ifadesinin gradyani alinirsa
0 0
Vv = (w2 +v2 i+ —(u? + v?)j 214

ifadesi elde edilir ve bu ifade 2’ye boliiniirse

1 2 ou  0v), ou  oOv)|,
VIV =lu—+v_—it|u—+v_—|] (2.15)
2 ox  0Ox oy Oy
seklinde olur. o ifadesi ise agagidaki gibidir.
i j k
o o0 0 ov ou
o=rotv=— — —=|—-—Ik (2.16)
0x 0Oy o0z 0x 0Oy
u v 0

ox v ifadesi ise denklem (2.16) ile denklem (2.10)’un vektorel ¢arpimidir. Carpim

sonucu ise su sekildedir.
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i

i k
! . . ou 0v), ov  Ou),
oxv=0 0 o=-ovitouj=v—-v—|it|u—-u—|]j (2.17)
0 oy  0x ox 0Oy
v

u

Basing gradyani ise
op. . Op.
Vp=—"2i+ 2.18
P=3 J (2.18)
seklinde yazilir.

Simdi de denklem (2.9)’da yer alan |A1|2 ’sinin hesaplanmasi yapilacaktir. |A1 ’in

esiti asagidaki gibidir.
A, =L+L" =gradv+(gradv)" (2.19)

Yukaridaki ifade de L = gradv ’dir. L ve v, denklem (2.19)’da yerine yerlestirilirse

A | ’in esiti agagidaki gibi bulunur.

=l 5 au oy (2.20)

|A1 |2 ifadesi asagidaki gibi hesaplanir.

4(%}2 (av auj2 6u[8v 8uJ Gv(ﬁv 6uJ
— | +|=+= 2—| —+— [+2—| —+—
- ox ox  dy ox\ox  oy) oylox oy

b Gu{ﬁv 6uj av(av auJ [asz [av auJ2
2—| —+—|+2—| —+— 4—| +| —+—
ox\ox Oy Oy\o0x 0Oy oy Ox 0Oy

Carpim islemi yapilip kosegen elemanlar: toplanirsa |A1|2 asagidaki gibi bulunmusg

(2.21)
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olur.

A, =8[@J +2[@+@j (2.22)
ox ox oy

m/2
Buradan da [%|A1 |2j ’nin esiti asagidaki gibi bulunur.

m)2 2 5 m/2
[1|A1|2j = {4(@j + (@ + @j ] (2.23)
2 1)'¢ ox 0Oy

Denklem (2.23)’lin gradyani alinirsa

1 "2l (e} (ev ou) 2 ou 8%u
grad(—|Al|2] =— 4(—) +| —+— 8——
2 2 ox ox oy 0x Ox

0
+2(@+@](82‘; + O'u HHFQ 0’ +2(@+@] (2.24)
ox Oy )\ 0x° Oxoy Ox 0x0y ox Oy
[ o’v 62uﬂ,
+ > | 1J
oxdy 0Oy

ifadesi elde edilir.

Denklem (2.9)’da V*v terimi asagidaki gibi bulunur.

o ow .,

V2V=—rot(rotv)=—rotm=——i+—]
dy Ox
o’v  0%u o’v  0%u (2.25)
=| - + i+ + j
( Ox0y ﬁyzj (6){2 6x6y]

Siireklilik denklemi (2.2)’nin gradyani alinip denklem (2.25)’te yerine yazildiginda

asagidaki denklemi elde ederiz.
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Viy = 82u+82u . 82V+82v . (2.26)
8X2 8}’2 aXZ 8y2 J N
Denklem (2.9)’da V?*v, ’nin esiti, denklem (2.12) nin laplasyeni alinarak

3 3 3 3
Viy, = 62u N azu - 62\/ N 82\/ i 2.27)
ox“ot Oy ot Ox“ot Oy~ot

seklinde bulunur.

V’oxv teriminin esitini bulmak i¢in 6ncelikle V® ’in degeri bulunmustur. Bu

terimin degeri asagidaki gibidir.

Vo ——rot(rot(o)—(@zm 62(’3} _(53V o’u v du

ox +W ox’ - axzay + 8X8y2 - ayzjk (2.28)

Denklem (2.27)’de siireklilik denkleminden gelen —% yerine % yazildiginda

asagidaki denklemi elde ederiz.

3 3 3
Vie = 8\3’+2 avz—a? k (2.29)
)¢ oxoy® oy

Denklem (2.29) ile denklem (2.10) vektorel olarak ¢arpilirsa

) o’v o’v. 0’u), o’v o’v 0’u),
Voxv=-v +2 - i+u +2 - 2.30
3 2 3 3 2 3 J ( )

ox oxoy~ 0y ox oxoy~ oy

ifadesi olusur.

grad(V.VZV)’ln esitini bulmak i¢in 6nce v.V’v bulunmalidir ve bu terim degeri
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asagidaki gibidir.

2 o’u  o*u o°’v v
vwWiv=u P +W +v P +§ (2.31)

Denklem (2.31)’in gradyan1 alinirsa grad (V.V : v) “1n esiti

2 2 3
grad(V.Vzv)= @ 0 121+8 121 +u 0 131+ O’
ox \(Ox~ Oy ox®  oxoy’
ov (82V azv] (a% o'v H {&1(
+— st [tV 5+ 5 —
ox \0x° Oy ox°  0x0y oy

(aﬂl am} 8V(82V azvj ( v o H
+u +— |+ — + +V —
ox’dy oy’ ) oy\ox* oy’ ox*dy ay

seklinde ifade elde edilir.

j (2.32)

| >’In degeri, denklem (2.22)’nin gradyani alinarak bulunur

ve asagidaki gibi gosterilir.

2 2
grad|A1|2— 16@812l 4 @+@ 2 \2/+ ou
0x 0X ox Oy )\ ox~ 0x0y
(2.33)
+16@82u @+@ o’v. 0’u)l.
< oxdy | ox oy )\ axay oy )|
A, V?v’mesiti, A, ile denklem (2.26) ¢arpilmasiyla bulunur. Carpim sonucu
ou(o*u o'u ov oul(o’v d’v
Tl o) o T\ Ty
A V=,
UV (av au)(otu | o%u) jav(dv o'y (234)
—+— —t— |[t2— ~t—
ox Oy )\ ox~ Oy Oy \0x~ 0Oy
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seklinde ifade edilir.

Simdi de denklem (2.9)’da div [(grad v)(grad V)T] terimini hesaplayalim. Ik énce

(grad V)(grad v)T teriminin degerleri yazilir ve matris ¢arpimi asagidaki gibi olusur.

(grad v)(gradv)" =

2222
222
2|2

] (2.35)

¥l Rl

2|2
+

E
|
E
ki
|

(2.36)

div [(grad v)(grad v)' | { . }

x oyllauoy oy (@)Z(@T

Bu ifadenin matris ¢arpimi yapilirsa

@Oqur@ o*u _I_@ 0*u +@62u

. O0x 0x° Ox 0x 0x 2
dlv[(gradv)(gradV)T]Z @EVV +g azavy +@ azavy +gg}zlv
Ox 0x* Oy Ox0y Ox 0xdy Oy Oy’

(2.37)

elde edilir.

Simdi ise denklem (2.9)’da Al.grad|A1 »>in degeri hesaplanacaktir. Bu ifade igin

denklem (2.20)’nin (2.33) ile skaler ¢arpilmasindan
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28u au ov
A A 2 2y 2
A grada | =| & o gQUOU, gV OV 4 VOV
du _ov.  ,0v ox 0x Oy Oxdy  0Ox 0x
dy ox y
LJ0ud vty audu oudu  avoty (2.38)
oy ox° 0x 6x5‘y Oy Oyox  Ox Oxdy Oy oy’
2 2 2 2
4@8 48u8 48\/ 8u2+4@8u2

Ox Ox0y Oy Ox0y  OX Ox0y 0y 0yoy

sekilde elde edilir. Matris ¢arpimi yapilirsa asagidaki ifade elde edilmis olur.
2 2 2
gradA [ =22 QU0 gV OV VOV O
ox | Ox 0x 8y 0x0y  Ox 0X 0y 0x
48V o’u 8u o*u +8@ﬁ
0x axé‘y 5‘y 8y8x 8x O0x0y Oy 0y’
2
4@8V+48uav+4@ 6u2+4@ 6u2 ;
Ox 0x0y Oy 0x0y  Ox Ox0y 0y 0yoy
(2.39)

au 8V ou 0*u ov 0%*v ov 0°v ou 0*v
+ 88— +8— +4— +4—
8y ox | ox ox Oy 0x0y  0x ox’ oy ox’
ov 0*u 8u o0*u ov(_ou o’u ov 0°v
+4— —| 8— +8——
Ox 0x0y oy oy

8x8x8y+ ayéyax oy

ov 0°v ou 0°v ov 0’u ou o*u ||,
+4— +4— +4— +4— 5
Ox Oxoy Oy Oxdy ~ Ox Oxdy’ Oy dydy

Hareket denkleminin elde edilmesi icin gereken en son terim olan |A |*.V2v nin

hesaplanmas1 yapilacaktir. Bu ifade de agikca gorildiigli gibi denklem (2.22) ile
(2.26)’nin ¢arpimu seklindedir. Carpim yapilirsa

|A1|2-V2V = (4[@j2 + 4(@J +2(@j2 + 2[@j +4— il auj( L 82121}
ox oy 0x oy Ox Oy dy
2 2 5 ) ) , (2.40)
{4(@) +4(@j +2(@) +2(@J +4@@j[(5‘2’ o' J
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elde edilir.

Hesaplanan biitiin terimler, denklem (2.9)’da yerlestirilir ve bu ifadelerin x ile y

bilesenleri i¢in ayristirilmasi sonucunda asagidaki denklemlere ulagilir.

x - yoniinde hareket denklemi:

ou 0w ou_ dp m@f (@@”2 {[g@az
ot ox oy ox 2_ Ox ox 0Oy Ox 0x
+2(8V &lj( ﬂ_zv@Jr [ 0’u +2u62u+2v 0’u
ox Oy 2 axay ox p oxot ox’ Ox0y
(&) 22553 (“ o)
+4 — — | +|=—+=—
ox ox Oy

azv ov oOu o*u  0%*v o*v  o*u
\ —+— + o + +u +
axé’y oy oyot  Oxot ox®  0Oxoy
0*

0’u 83u
6X26t ay ot

(2.41)

qu] [
oy p

o’u ou d*u
+13———

ox0y’ 0x 0x°

ou 0*u

o’v
v +
ox0oy’

V8y3
ou d*v

+
Ox8yot

ou 0°u ov d*v

+3

+3

55){2

v oy
0x 0x°

o*u (aujz
+8| —
ox’ Ox

+——+4—
ox oy’ ox 0x°

_( ou d*u
P

ox 0x>
&[«{@y
p ox

+2

du
oy
0%*u

8}/2

62

aXZ
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(5)

— +
dy Ox0y
ou 0%u

+2—

oy axdy

0*u

8y2

2 A2
+6(%) 121

ov o*u
ox O0x0y

ov o*u
O0x 0x0y




au) 8%v (avjz 8% dudu 8u _ du du d%v
2] B LY o T CV AT g AHA
oy ) oxdy \ox) oxoy ox dy xdy  0Ox Oy Ox>
oudv du  _Gudvoiv _ouodvolu  oudv BZVJ}
12 +4

YR RASCAL AN LA T | A LA S
Ox Ox 0xdy  Ox Ox Ox* Oy x dy> Oy Ox oxdy

y - yoniinde hareket denklemi:
o

ov v dv Gpm[aujzavﬁuzz ou 0%u

—+u—+v—=—"-+—4 +| —+— 8——

ot ox oy oy 2 ox ox 0oy 0x Ox

(av auj(ﬁv o’u m (av auj 1(aZu oV
+2| —+— — +
ox oy \ox® oxody dy oyot  oxot

o’v  0’u o’v  0’u Ovov . 0uodu
+u + +v + +2——+2——
ox>  OxOy oxdy 0y’

B (m@] 8(@)12 a_v&jz [qou 0%
p\\ox oy [0).4 ox 0Oy Ox 0x0y

ov ou)( o*v o*u\[. ov a,(.d% d*v
+2| —+— +— | 2v—+—|2 +2u
ox Oy )\ 0xdy 0Oy

+2V82—V+2@(@+@]+4(@j2 + 22 4[@J2
oy oy\ox dy oy p \dy
; @ﬂf LB, 8(@):2(&@}2

OX ay 8] ay ox ox ay
_(Gu)z (zw auﬂz{ [sz azvj al( v
+H 4 =+ =+ v +—|+—2
lox ox  dy ox> oy’ ) p | oylat

N v N o’u +u83V+u v iy o’v +V83V
8X28t axayat 8X3 6X8y2 8X26y ay3 (242)

=3

ou d’u  ov ov ou 0*u ov 0%*v
+td———+— +13— +3—
oy dy® Oy ox’ Ox OX0y 0x 0x0y

ovo'u ou j 2(8@ Ou  ,ovdlu
p

ox 0y? By Oxdy Ox Oxdy  Ox Oy’
Q0 SO v ava 5(40(8‘1j o
Oy 0y> Oy 0xdy  0x 0xdy ) p ox ) oy’
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&) 53] ( ) 5
+8| — ~+6| —
ox ) ox oy ) ox’
o) 2u ( ) PRy an
oy ) Oxoy Oy 0x Ox 0y 0x 0
2
140V oudu +24@@5 NOudu GOV v O
Ox Ox 0x’ 0x Oy Ox Oy 0y 8y8x
Siireklilik denklemi ise
@Jr@—o 243
" o (2.43)

seklindedir.

Elde edilen (2.41), (2.42) ve (2.43) ifadeleri, kartezyen koordinat sistemine gore
herhangi bir Power-Law ile ikinci ve ii¢lincli derece akigkanlarin hareketini
belirleyen denklemlerdir. Bu denklemlerden bir sonraki kisimda ikinci dereceden
Power-Law ve tigiincii dereceden Power-Law akiskanlarinin ayri ayri sinir tabakasi

denklemleri elde edilecektir.

2.2. Sinir Tabakasi Denklemleri

Sinir tabakasi teorisi ilk defa 1904 yilinda Prandtl tarafindan ortaya atilmistir. Bu
teori ile akigkanlar mekaniginde yeni bir ¢igir acilmistir. Kanat etrafindaki akis gibi
bir¢ok teknolojik problem, bu sayede daha kolay ¢oziilebilir hale gelmistir. Bu akista
sinir tabakasi igerisinde kalan akisin karakteristigi, simnir tabakasi disinda kalan
akistan farklidir. Bu sebeple kat1 yilizeyindeki akiskanin hizi kat1 ylizey durgunsa
sifir, kat1 yiizey hareketli ise kat1 ile ayn1 hizda olmaktadir. Akigkan, kat1 yiizey ile
temas ettigi noktadan (sinirdan) uzaklastik¢a akim serbest akim hizina dogru degisim
gosterir. Akiskan ve kati cismin temasindan dolay1 kat1 yiizeye ¢ok yakin bir bolgede
olusan akim, siir tabakasi akisi olarak bilinmektedir. Klasik bir sinir tabakasi akisi

Sekil 2.1°de goriilmektedir.
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Sekil 2.1. Sinir tabakasi akist

Prandtl’in teorisi Newtonyen akigkanlar icin gegerlidir. Bu teori sayesinde akiskan
hareket denklemleri (Navier-Stokes) basitlestirilip ¢oziilebilmesi kolaylastirilmistir.
Benzer bir yaklagimin Newtonyen olmayan akigkanlar mekanigine uygulamasi
1960’1ar da gerceklesmistir. Rivlin-Ericksen akiskanlari, Oldroy akiskanlari, Power-
Law akiskanlar1 vb. gibi degisik modeller i¢in sinir tabakasi denklemleri g¢ikartilip
¢Oziilmiistiir. Newtonyen olmayan akigkanin sinir tabakasi akisinin miihendislik
uygulamalarinda birgok ornekleri bulunmaktadir. Ornegin, bir kaliptan polimer
levhanin ekstriizyonu veya plastik filmlerin ¢ekilmesidir. Ayrica konveyor bantlar
tizerinde sicak islenmis malzemeler de sinir tabakasi akisina iyi bir ornektir. Bu
islemler sonunda iiretilen malzemenin mekanik ozellikleri gerilme ve sogutma

oranlarina bagl olmaktadir.

Sinir tabakasi i¢indeki akis i¢in hareket denklemleri (2.41), (2.42) ve (2.43) bazi
kabuller altinda basitlestirilecektir. Standart ikinci ve tigiincii derece akigkanlar i¢in
siir tabakasi denklemleri sirasiyla Dunn and Fosdick (1974) ve Rajagopal and
Fosdick (1980)’te detayli olarak incelenmislerdir. Bu tez ¢alismasinda akigkanlar
hem ikinci dereceden Power-Law hem de {iciincii dereceden Power-Law akiskani
olarak ele almacaktir. ik 6nce iiciincii dereceden Power-Law akiskanlar1 icin siir

tabakasi denklemleri ¢ikartilacaktir.

2.2.1. Uciincii Dereceden Power-Law Akiskanlar1 icin Simr Tabakasi
Denklemleri

Denklem (2.41) ve (2.42)’deki ikinci derece akiskani ifade eden katsay1 a,;=0 ve 0,=0
kabulii edilirse denklemler {igiincii dereceden Power-Law akigkanina ait hareket

denklemleri olacaktir. Sinir tabakasi i¢inde hareket denklemlerinin ve ¢dziimlerinin
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akiskanin fiziksel 6zelliklerinden bagimsiz olmasi ve elde edilen sonuglarin genel
olabilmesi i¢in boyutsuzlastirma islemi yapilacaktir. Boyutlu ve boyutsuz
biiytikliikler arasindaki iliski asagidaki gibi tanimlanir.

y t U p
) y=_-, t= ) U:_’ p= 2.44
L L/V, v, pV,’ (249

u= V=

u v
~, ~, 0
VO VO

Burada, V referans sabit hizi ve L referans uzunlugu ifade etmektedir. Denklem
(2.44)’teki ifadeler a;=0 ve a,=0 olarak kabul edilen denklem (2.41) ve (2.42)’de

yerine konulur ise boyutsuz denklemler asagidaki gibi elde edilmis olur.

Sureklilik denklemi:

—+—=0 (2.45)
X - yoniinde hareket denklemi:
du  ou  ou_ dp m“aujz (av amﬂzl
—tu—+Vv—=-—t |4 — | +| =+
ot ox oy  ox 2| \ox ox 0y
{ du 0%u (av %j(azv 62uﬂ
8— +2| —+— +
ox ox’ ox oy )\ ox*  oxoy
{28@%3[2@(8(@):2(@&) ﬂ
ox ox | \ox ox oy
R k)
+|8— +2 + gl —+—
ox oxdy \ox oy )\ oxdy oy’ )|
+g, (6v+8u] 8(@)2+2[@+@j
ox Oy o0x ox Oy (2:46)
o) (e ey
ox
+g{4o( ) +s(@j [ j
ox 2 oy’

82u o éu ? 82V 2 5%y du du 9*u

6X axé‘y 0x 0y 0x0y
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ou ou 0*v ou ov 0’u ou ov o’v ou ov 8*v
+8————+24—— +8—— +8———
0x 0y 0x 0x Oy 0x0y  Ox 0x 0x0y  OX OX OX

ou ovoiu . oudv 82Vj}
+4———-

+12—— —
Oy 0x oy’ 0y Ox 0x0y

y - yoniinde hareket denklemi:

& o v dp m[ [aujz (av au]T
—+tu—+vVv—=——7-+—4 — | +| —+—
o ox oy oy 2| \ox

{ du 6*u (av wj[azv o%u ﬂ v 6‘uJ
88— +2| —+— + g —+—
ox ox’ ox Oy )\ ox*  Oxdy ox Oy
[[zw auj[ [aujz (av aqu
+eyl | —+— || 8 — | +2| —+—
ox oy )| \ox ox oy
{ ou 0*u (GV auj( 0%y aqu
+[8— +2| —+— +
0x 0x0y ox 0Oy )\ oxdy oy’
{2a@+a3[2@{8(@]2+2(@+@j }} 2.47)
oy oy| \0x ox Oy
{ (aujz (av auﬂz{ (a% azv] [ (aujz o’y
+ 4 —| +| —+— € +—|+&| 40| — | —
ox ox oy ox> oy’ ox ) oy’
+8(@T 62V+6[@J azv+6(@j2 azv+2(@J ou
ox ) ox’ oy ) ox* ox ) ox’ oy ] Oxoy
(OVT o%u ouovo*v  duodv 0’u ov ou 8*u
+ 1 +4 +2421

_ + - - _
ox ) Oxo0y Oy ox ox° 0y Ox 0x0y 0x 0x 0x’
oudud’u  ovoudiu  ovov azuj}

+24—— + +
Ox dy 0x* Oy oy oy’ 9y ox Oy’

Burada ¢ ve g3 boyutsuz katsayilar asagidaki gibi tanimlanmistir.

g=—b (&)m g, =P:Vo (ﬁjm (2.48)
pV,L\L )~ 7 pl’ L L

Boyutsuzlastirilan ~ {liglincli  dereceden Power-Law  akiskanina ait  hareket
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denklemlerine (Denklem (2.45), (2.46) ve (2.47)) sinir tabakas1 yaklagimi uygulanir.
Sinir tabakasi igerisinde y koordinati, & sinir tabakasi kalinligina bolinerek

genisletilir.
Y = % (2.49)

Akim cizgileri boyunca x bileseni, u ve p mertebe olarak bir ve v ise 0o
mertebedendir. Bir i¢ ve bir dis destenin standart sinir tabakasi i¢in boyutsuz

katsayilar1 agagidaki gibi olmasi istenir.
g=38"", g, =k, 0™ (2.50)

Denklem (2.50)’deki kabuller, siireklilik ve x momentumda 1 mertebeli ve y

momentumda 1/6 mertebeli terimleri koruyarak asagidaki ifadeleri elde ederiz.

—+—=0 2.51
ox 0Y @51)
m o
@+u—+v@=—@+( +1)(@j 61;
ot ox 0Y ox oY) oY
A\ 2 (2.52)
u
+2(m+3)k,| —
(m+3) {8 j oY’
P _ (2.53)
oY
op/0Y = 0durumunda ise p = p(X,t) *dir. D1s a¢ilimla uyum saglamasi i¢in
@__u_,u 254

olmalidir. Sonra bulunan bu ifade denklem (2.52)’de yerine yazildiginda
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oY

ou ou ou 0JU ou ou )" d*u
—tu—+V—=""a+U—+(m+1
ot ox oY ot ox oY?

- 2.55)
+2(m+3)k3(@j ou

oY?

elde edilir.

Sinir tabakasit denklemlerini ¢ozmek i¢in (x,y) kartezyen koordinatlarinda simnir

sartlarinin ¢ikartilmasi gerekmektedir. x-y diizleminde ele alinan problem, Sekil

2.2°de gosterilmistir.

=
¥
=
e
>

Piiskiirtme

Y

— e s E————— -
Hareketli plaka

Emme

Sekil 2.2. Hareket eden emme veya piiskiirtmeli yatay plaka tizerinde akis

Bu simir deger problemi, hareket eden ylizeyin yani sira emme veya piiskiirtmeli
levhaya ait sinir tabakasi problemini de modelleyebilmektedir. Bu problem i¢in sinir

sartlar1 agagidaki gibidir.
u(x,0,t) = A(x,t), v(x,0,t) =FV(x,t), u(x,,t) = U(x,t) (2.56)

Burada; akiskanin {izerinde bulundugu yiizeyin A(x,t) hiz bileseni ile x yiiniindeki
hareketini ve iV(X,t) ylizeydeki emme veya piiskiirtme (eksi isaret emme, arti

isaret piiskiirtme) hizlarini ifade etmektedir. Sinir tabakasi denklemi, m=0 ig¢in
standart iigiincli derece akiskanini ve k;=0 icin ise Power-Law akiskanini ifade

etmektedir.
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2.2.2. ikinci Dereceden Power-Law Akiskanlari icin Smir Tabakas1 Denklemleri

Denklem (2.41) ve (2.42)’deki tigiincii derece akigkani ifade eden katsay1 f=0 kabulii
edilirse denklemler ikinci dereceden Power-Law akiskanina ait hareket denklemleri
olacaktir. Elde edilen ikinci dereceden Power-Law akigkanina ait hareket
denklemlerine smir tabakasi yaklasimini uygulayalim. Sinir tabakasi icerisinde y

koordinati ¢ sinir tabakasi kalinligina boliinerek genisletilir.

y
Y == 2.57
5 (2.57)
Akim cizgileri boyunca x bileseni, u ve p mertebe olarak bir ve v ise 0O

mertebedendir. Bir i¢ ve bir dis destenin standart sinir tabakasi i¢in boyutsuz

katsayilarin

v=v8"", o, =¢8"?, a,=¢,8"" (2.58)

gibi olmasi istenir.

Yukaridaki kabuller, siireklilik ve x momentumda 1 mertebeli ve y momentumda 1/6

mertebeli terimleri koruyarak sonucta asagidaki ifadeler elde edilir.

T+ =0 (2.59)

m
ou ou ou  op m(au)“ (auf o%u
—+tUu—+V—=——+—| — 2¢e,| —
ot ox oY ox 2|lay oY ) oxaY

auﬁzu{_éu [azu ’u  o%u auauﬂ}
2 g \% +2

— vV—+ +u + ——
oY 0Y?| oY oYot  oxoY oY’ 0x OY

[Gu j‘“{_ o*u ( o’u o’u o’u  ou d*u
+ g

(2.60)

— v + +v +u +—
oY oY? oY*ot dY’®  ox0Y? 0x OY?
ou 0%u ou 0*u

+3— +2g, —
oY o0xoY oY 0x0Y
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8p ( au jm#—l 6211
0=——"—+(m+2)(2¢, +¢,)| — 2.61
7y ( )(2¢, +¢,) v ) oy (2.61)
Denklem (2.61)’in integrali alinirsa yeni bir basing fonksiyonu
au m+2
p=p—-Q¢, +¢&,)| — 2.62
p=p-(2¢ 2)( an (2.62)

elde edilir.

Bu durumda Jp/0Y =0 elde edilir. Yani, p=p(x,t)’dir. Dis agilimla uyum

saglamasi i¢in

R spad (2.63)

olmalidir.

Denklem (2.62), x’e gore tiiretilirse

p  op ou\"" &%u
P_P _(mi2)2 o 2.64
ox ~ax 2N 81+82)[ay) ox0Y (264)

ifadesi bulunur. Denklem (2.63), denklem (2.64)’lin i¢ersine yerlestirilirse

_@:5_U+U%]_(m+2)(2s1 +sz)(

(2.65)

Y ) oxoY

aujmﬂ azu
ox ot

elde edilir.

Sonra bulunan bu ifade denklem (2.60)’da yerine yazildiginda
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du ou ofu OU _oU _ ou)" o*u g (ou)"
—+u—+v—=—"-+U—+V(m+1)| — s+ —| —
oY: pl\oy

ou( d . o . du  ,dudu ou &%u
m Vo 42— | =2

+u + —
oY\oyet  oxdY  oY: “ox oY) \aY) oxoY

ou( ou o*u o*u ou 6'u du o%u
+—| —5—+Vv—=+u R
oY\ oY~“ot oY 0x0Y~ o0x0Y" 0Y oxodY

nihai sinir tabakasi1 denklemine ulasilmis olur.

(2.66)

Ikinci dereceden Power-Law akiskanina ait sinir tabakasi denklemleri, yiiksek non-

lineeriteye sahip kismi diferansiyel denklemler oldugundan ¢oziimleri ¢ok zordur. Bu

nedenle ¢ok iyi konumlanmis bir probleme sahip olmak i¢in sinir sartlarina ihtiyag

vardir. Sinir tabakasi denklemlerini ¢ézmek i¢in (X,y) kartezyen koordinatlarinda

sinir sartlarinin ¢ikartilmasi gerekmektedir. x-y diizleminde ele alinan problem Sekil

2.3’te gosterilmistir.

vk
: t)

=
=

Y

e S
Sabit plaka

Sekil 2.3. Sabit yatay plaka iizerinde akis

Bu problem i¢in sinir sartlar1 agagidaki gibidir.

a0, =0, v(x,0,0=0, u(x,m,t)=U(x1), %(x,w,t)w

(2.67)

Burada, U(x,t) sinir tabakasi disindaki hizdir. m=0 i¢in denklemler standart ikinci
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derece akiskanin sinir tabakasi ve £,=0 i¢in ise Power-Law akiskanin sinir tabakasini

ifade eder.

2.3. Uciincii Dereceden Power-Law Alskanma Ait Simr Tabakasi
Denklemlerinin Lie Grup Analizi

Lie Grup analizi, diferansiyel denklemlerin tam ¢ozlimlerini bulmakta kullanilan
genel bir metottur. Metodun uygulanmasi {izerine literatiirde c¢ok ¢alisma
bulunmaktadir. Pratik ve miihendislige uygun bir analiz de Bluman and Kumai
(1989)’nin caligmalarinda bulunmaktadir. Burada {igiincii dereceden Power-Law
akigskanina ait smir tabakasi denklemlerine Lie Grup analizi uygulanacaktir. Ele
alman smir tabakast denklemleri kismi diferansiyel denklemlerdir ve bu
denklemlerin ¢oziilmeleri olduk¢a zor ve ugrastiricidir. Bu denklemlerin ¢6ziimiinii
yapabilmek i¢in, denklemler adi diferansiyel denklem formuna indirgenecektir. Bu
indirgeme islemi i¢in denklem (2.51) ve (2.55)’e Lie Grup analizi uygulanmistir. Bu
analiz ile denklemlerin kabul ettigi simetriler bulunmustur. Lie Grup analizinde 6nce
denklemler icin invaryantlik sartlar1 yazilmis, sonra bu sartlar i¢cin gerekli olan
infinitesimaller tiiretilmistir. Bu infinitesimaller, invaryantlik sartlarinda yerine
yazildiginda iki ayr1 denklem sistemi elde edilmistir. Bu denklem sistemleri
katsayilarina gore ayristirilarak bir kismi diferansiyel denklem sistemi elde
edilmistir. Bu denklem sistemi ¢oziilerek denklemlerin kabul ettigi simetriler
bulunmustur. Bulunan bu simetriler ile denklemler ii¢ degiskenli kismi diferansiyel
denklemden, iki degiskenli kismi diferansiyel denkleme indirgenmistir. indirgeme
islemi Olgekleme ve Oteleme doniisiimleri ile saglanmistir. Yani iki ayri kismi
diferansiyel denklem sistemi elde edilmistir. Sinir sartlarinda en az kisitlayicilik,
hareketli yiizey iizerindeki emme-piiskiirtme durumu oldugu icin calismada bu
fiziksel problem ele alinmistir. Elde edilen bu iki bagimsiz degiskenli iki ayri
diferansiyel denklemlere ikinci kez Lie Grubu analizi uygulanmistir. Boylece iki
degiskenli kismi diferansiyel denklemler, bir degiskenli adi diferansiyel denklem

formuna indirgenmistir.
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2.3.1. Lie Grup Analizi

Lie Grubu analizini uygulamak i¢in 6nce denklem (2.51) ve (2.55)’teki terimler yeni

degiskenlerle asagidaki gibi tanimlanmustir.

X, =X, X, =Y, X, =t, u =u, u =v,
ou' . ou' , ou’ ou'
U, ==, 2 T~ U, =—> U; =—,
0X, 0X, 0X, )& (2.68)
al = o*u'
22
(axz)z
ou ou
fix,,x;)=U—+—
(x1,x5) o, (2.69)

Denklem (2.51) ve (2.55) yeni degiskenler cinsinden asagidaki cebirsel denklemlere

doniistiiriilmiis olur.
uj+ui=0 (2.70)

w+utu! +utul = ol (m 1)+ 2K, (m + 3t P+ £, x,) @71)

Denklemlerle irtibatl infinitesimal jenerator

(2.72)

seklinde yazilabilir. Tekrarli indisler iizerinde toplam uygulanacaktir. Denklem
(2.72) jeneratoriinii denklem (2.70) ve (2.71)’e uygulamak i¢in birinci ve ikinci

dereceye genisletilmesi (i, j=1, 2, 3; p=1, 2) gerekmektedir.

5
XV=g —+n'—+n* (2.73)
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0 0 0 0
X(Z) — &i + n“ + n(l)u + nSZ)H
J 61131 J auu

y

(2.74)

Coziimleri iiretecek olan bu infinitesimal jeneratorlerin denklem tarafindan kabul

edilebilmesi i¢in asagidaki bagintilar saglanmalidir.
X! +u2)=0 (2.75)

X!+ u'u + %) —[ud "l (-4 1)+ 2, (m+ 3 )~ £)=0 (2.76)

Denklem (2.73) ile (2.75)’te ve denklem (2.74) ile (2.76)’da gerekli islemler
yapildiginda asagidaki ifadeler elde edilir.

! +ny” =0 2.77)

2. (1)1

O puln +un® +uln® +un - mul, (m +1)+ 2k(m + 3)u) f)

M3
‘ulz‘m_l n(zl)l — ‘ulz‘m ((m +1)+ 2k, (m+ 3)(1112 )2 )"l(zzz)l (2.78)
—ak(m + " g, -, =

0X, 0X,

Denklem (2.77) ve (2.78)’de meveut olan n™', {2 q{" ' 1@ ifadelerinin &, ve

n" cinsinden ifade edilmeleri gerekmektedir. Bu ifadelerin hesaplanmasi ile ilgili

denklemler, Bluman and Kumei (1989)’de mevcuttur.

ni(l)” =Dmn" - (Digj)u? (2.79)

Denklem (2.79)’daki (D, ) tiirev operatdriiniin esiti

(2.80)

seklindedir.
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Denklem (2.79)’da tekrarli indisler {izerinde toplam oldugu goz Oniine alinarak i=1

ve u=1 alindiginda denklem (2.79) ve (2.80)’nin formiilasyonu

Tlfl)l = Dml _(Dlél)u} _(Dlaz)ulz _(D1§3 )uls (2.81)
0 0 0
D, = ox +u, o~ +uy o (2.82)

bi¢imini almaktadir.

Denklem (2.82), denklem (2.81)’in igine yerlestirilirse ngl)l ’in esiti su sekilde elde

edilmis olur.

q = on' +[8T]1 O, ]u1 + o' g, ul — o, ul — %, (ui)z

u
boax, lad' oox, ) et oex, ¢ oox, © au 2.83)
O& i oE O& 3& '
- Shulul - Shuu - Stulul - Sl - Sl

Benzer sekilde denklem (2.79) ve (2.80) kullanilarak diger birinci dereceye

genigletilmis infinitesimaller de asagidaki gibi bulunur.

(i

n,’ ifadesi igin
T](zl)l = Dznl _(D2§1)ui _(Dzaz )ulz _(D2§3 )u; (2.84)
d d d
D,=— +1, ~ +; o (2.85)
2
1 1 1

e e

x, \ou' &, ou x, ' ou du 2.56)
i ) Ok o€, & o€, '
_ﬁ(ulz) —au—iulzui —iué —E?ulzué - aui ulu;

seklinde elde edilir.
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n\” ifadesi igin

T](zl)z = sz - (Dz‘il)ulz - (ngz )ué _(Dz‘toz )u§

2
(21)2_671 +ailu12 3712_5»%2 u? %, 2 9, : aéiulzulz
0x, Ou ou”  0Xx, 0X, 0X, ou
o€, 0¢, o0&, > 0§ ¢,
— 2w = “Shuul Sl - ulul - =g
seklinde olur.
n\" ifadesi de
Tlgl)l =D’ _(Dsal)ui _(Dséz )ulz _(Dsés )u;
D, = 0 +ul al+u§ 62
0X, ou ou
1 1 1
g =0 +(a”1 - - BTy
ox, \Ou  0X, ou 0X 4 0X 4 ou
0, 0%, 0¢, o€, > 08
-t - St - S - B - S

olarak bulunmus olur.

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

Denklem (2.78) ifadesinde n(222)1 ’in degerinin bulunmasi gerekmektedir. Bunun i¢in

yine Bluman and Kumai (1989)’de verilen asagidaki formiil kullanilacaktir.

(k)

— (k=D)u _( )uu
LIEAE —Diknil,iz,...,ik,l Dikéj 3 sig i 1]
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Burada; k=2, i=i,=2, i1=2 ve p=1’dir. Bu degerler denklem (2.93)’te yerine

konulursa

1" =D,n" (D&, u!,

(2.94)

ifadesi elde edilir. Ayrica j indisi {izerinde toplam olacagi dikkate alinirsa ifadenin

acik sekli asagidaki gibi olur.
n(222)1 = Dzn(zl)l _(DZEA 121 _(Dzéz » _(D2E.~3 ”
Denklem (2.95)’teki (D,) tiirev operatorii

_ 0 ;0 » O ;0 1 0 » O >
D2_8X2 +u, 20 +u; Y +u,, aui +u,, au; +uj, auf +u5, au§

olarak tanimlanir.

(2.95)

(2.96)

Denklem (2.96) ve énceden bulunmus olan n\" ifadesi denklem (2.95)’te yerine

konup gerekli tiirevler alinirsa n(fz)l ’1n esiti asagidaki gibi olur.

2.1 2 .1 2 2 .1 2
@ = an2+[2 o' aa22]u12+2 o O
(6X2) 0x,0u (8X2) ou”0x, (5X2)

2 2 2 2.1
-2 o5, uuy —2 0 F’;{ uiui—(Z 0%, _ 67]2}(1112)2

ou'ox, ou’ox, ou'ox (au‘)
[ - S 2 e
e 2R )
. aizu ol E)Z—gf} Huh) -2 fjjialu;u; ;+(a:?;2 )
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a21 1,2\ 622122 623122 a11
B O . B e

(8u2)2 u\u,) — (8u2)2 u,\u, (8u2)2 us\u, o, U,
o € on' o o
~2Supul -2t D2 - St
_ % 1 1_2852 1 2_% 1 1_26‘23 1 i 11
T Unl, 2 Unth T rinls o, 23 T Uxnl,

g on' o o€ o
_28u; u123u§ +$u§2 _E;ugzui _Eiugzulz _E;ugzuls

Denklem (2.77) ve (2.78) i¢in gerekli ifadeler elde edilmis olur. Simdi denklem
(2.77)’deki siireklilik denkleminde bu ifadeler kullanilip ve siireklilik denklemindeki

u; goriilen yere —u, yazilirsa

1 2 1 2 1
on_ . on 5n1_6é1_5n2+8&2 ul + 8_112_& u?
ox, &, \ou' ox, ou’  ox, ou?  ox,

2
S ey )
ou  0X, 0X, ou Ou

(2.98)
o, g o o o
{_ﬁ_ auij 2 e T e o~ v
¢ ¢
—aiulzug +—>uu; =0

denklem blogu elde edilir. Denklem bloguna dikkat edilecek olur ise u' ve u”’nin
tiirevleri cinsinden bir polinom oldugu gorilir. Polinomun sifira esit olabilmesi
ancak ve ancak katsayilarin ayr1 ayr sifira esit olmasi ile miimkiindiir. Boylece

asagida yazilan denklem sistemlerini elde ederiz.

on' on’
2 (2.99)
o' 0 on® 0
n _0% _on n ‘32:() (2.100)

ou' ox, ou’ ox,
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o % _,

P (2.101)
%1?_2_3:0 (2.102)
_%_%:0 (2.103)
Z—ijzo (2.104)
_%:0 (2.105)
_%_o (2.106)
_;_éz_o (2.107)

Denklem (2.104)-(2.107)’den &, = &,(x,) olur. Geriye kalan denklem (2.99)-(2.103)

ise daha sonraki kisimda kullanilacaktir.

Momentum denklemi i¢in ise denklem (2.83), (2.86), (2.89), (2.92) ve (2.97) ikinci

invaryantlik  kosulu olan denklem (2.78)’e¢ yerlestirilir, uj=-u; ve

3 1.1 2.1
| u,+uu, +uu,—-f

Uy = ‘ulz‘m [(1’1’1 + 1)+ 21{3(1’11 + 3)(1112)2]

ifadeleri gerekli yerlerde kullanilir ve ayrica

&, = &,(x,) unutulmaz ise asagidaki denklem blogu elde edilir.
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1 1 1
on +{an & ]u;ﬁn B G B

ox, \au' ox,) e ox, ox, o
1 1
BT S O -~ Y PRSP B e O L WA T WY
o’ au' o’ ox, lau' ox,
1
g - Sy - Bl - B - 2 - %uéuf]
o> ox,  ou ou? ou! ou?

1 1 1
+u12n2+u2 on n on _‘%.\z u12+ o _52‘31 u}
ox, \ou' ox, ou’  0x,

] 1 1.1 2.1
+[@_%}J;u;+aal - % m{f]

ou’  ou' ou’ ou'

on' | on' oy | [on' _ag | 8§2+ ]
ox, \ou' ox, 0w’ ox,
L3y %y, } Pl 1)+ 26 3
ou’ ou'

aznl N 2 aznl B 82§2 u12+ 2 an aZ&l
oxf | oxar o)) | v @x))

2 2 2.1 2.1 2
—12 o€, n 0, ) om u}u12+ om ) JE, (u})z
ox,0u'  Ax,0u>  Au’du’ (ou?)  ox,0u?

ou’)
—2 aziz _ o' ](ulz)z_{(ﬁzil ) azgz }u}(ulz)z

(2.108)

ox,0u'  (ou') o'y auou!
SRy L S () S e SN
ouou! (6,111) (auz) (8u2)
a&al _2(9& ubu 12 _2%1112111} " u; +u1u} +u2u12 —f
6x2 ou' ou’ ‘u‘z‘m[m+1)+ 2k3(m+3)(u12)2]
on' . oE,) @ 0 d p
H@El _25‘)&;} 83 u, 3%112 2(;:3}4—6112 ;2 81(:;; usUu,

U, o, 2 1
—%u;ug}—4k3(m+3)(ulz uj +u'u} +u’ul —f on
o’ [(m+ 1)+ 20, (m+ 3)u P ] L ox,
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1 1
+ 6‘_111_8§2 uj + 57]2_% u{—[a—aiJr
ou' ox, ou’  ox, ou

08, ( 4 2} of of
_ —E — _E. — =0
51(112) ‘3151 ‘3333

Yukaridaki denklem blogunun karmasikligindan

ayriklasmaz. Ayrisan az sayidaki terimler sunlardir.

2%
0X,

1
u.u, —
172 2
ou

1

()

dolayr terimler kolayca

(2.109)

(2.110)

2.111)

(2.112)

(2.113)

Denklem (2.109)-(2.113)’ten &, ve m" fonksiyonlarinin bazi degiskenlere olan

bagimlilig1 ortadan kalkacaktir. Simdiye kadar elde edilen sonuglar

& :al(xlsxz.)a &, =§2(X13X25X33u1)s & = EJ3(X3)9

1 1 1 2 2 1 2
n =n (XI,XZ,X3,U ), n =N (XI,XZ,X3,U ,u )

seklinde Ozetlenir.

(2.114)

Denklem (2.114)’teki kisitlamalar kullanilarak denklem (2.108) asagidaki sekilde

basitlesmis olur.
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1 1
on + on _ 0€, ug_ _ ok, u} _ %, u12 —%u}ug —&u
ox, \ou' ox, 0X, 0X, ou' ou'

1 1
+umn' +§& of +&, of +u' n + on _ % u}—%ul2
X, 0x, ox, \ou'  ox, X,

11
2U3

1 1
—%u}u;}+u;n2+u2 on + n _ %, ulz—a(toz (ulz)2

ou' ox, (ou' ox, ou'

m[ul3 +u1u} +u_2ul2 f]{@nl } {81,]1 ~ 0, ]ulz _%(ulz)z

! ox, \ou'  ox, ou'

u,

(2.115)
2.1

i+ 1)+ 2k (m )l -4 2
(8"2)2 8x28u1 (axz)2

—|2 azéz _ 52111 (ulz)z_ azéz (u12)3
ox,ou' (ou') (ou')

1
- [ué +u'y; +u’u) —f o _ 2 %, _ 3 %, u) ¢ — 4k, (m+ 3)(u12)
o' ox, ou

ut +u'ul +uul —f on' |on' @ 0 2
3 I 2 — { n E{nl &2}112 élz(u}) -0
[(m+1)+ 2k3(m+3)(u2)] ox, (ou' o, ou

Bu durumda denklem (2.115)teki tiim terimlerin ayrismasi sonucunda asagidaki

terimler elde edilecektir.

1 1 1 1 1
al+alul+(l—rn)alu2+mf 8_711_% +f 6—111—2%
0x, 0%, 0X, ou  0x, ou 0X,

e (2.116)
—E — . — =0
&laxl §38X3
on' o o' o o' _,90
N % o ) (o %), 2.117)
ou' ox, ou' ox,) \ou  ox,

1 1 1
SN WG S W= MU W= MU S
8X3 8u 5X1 au aXZ au axg
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1 1
I SRR (- - T SN . 4
0x;, Ox, ou  0x, ou ou  0x,
1
_fag?_ 5”1—28&2 u2—3f‘3—§§=0
ou' o Tox, ou
_08 08 408

ou' ou' ou'

S,

—%ul ergul +3%=0

1

—%uz +ma—&fu2 +36—§f20

:

(2.119)

(2.120)

(2.121)

(2.122)

(2.123)

(2.124)

(2.125)

(2.126)

(2.127)

(2.128)

(2.129)

Siireklilik denkleminden (2.99)-(2.103) ile momentum denkleminden (2.116)-
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(2.129)’u birlikte ¢oziiliir.

Denklem (2.123), (2.126), (2.127) ve (2.129)’dan

& =&(x,.%,), &, =&, (x,,%,,%;), &, =E&(x,),
nlznl(xl,XS,ul), nzznz(xl,xz,XS,ul,uz) (2-130)
kisitlar1 elde edilir. Denklem (2.125) ve (2.124) ¢6ziillirse
N =c,(x,,x;)u' +¢,(x,,x,) (2.131)
€, =c,(x,,X;)x, +¢,(x,,X5) (2.132)
denklemleri elde edilir. Denklem (2.128) ¢oziiliirse
Cl(xl,x3)=c3(x1,x3) (2.133)
esitligi bulunur ve denklem (2.132) yeniden yazilirsa
£, =c,(x,,x5)x, +¢,(x;,X;) (2.134)
olur. Denklem (2.117) ¢oziiliirse
& =2¢,(x,)x, +c, (2.135)

ifadesine ulasilir. Denklem (2.118)’de u' ve sabit cinsinden bir polinom oldugu
goriilmektedir. Polinomun katsayilar1 sifira esitlenirse asagidaki denklemler elde

edilir.

& :301(X3)X1 +C6(X3) (2.136)
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oc,(x oc
c,(x,,%x5)=3 81>(< 1)leraX6 (2.137)
3 3

Denklem (2.119) ¢oziiliirse

n? I—CI(XI,X3)UZ+|:8CI(X3)X +ac4(x3):|ul+acl(xl)x +8C4(X1) (2.138)

x, &, ox, ° 0x,

denklemi elde edilir. Simdiye kadar elde edilen kisitlar ve denklemler, denklem
(2.120)-(2.122) ile stireklilik denkleminden (2.100)-(2.103)’ii saglamaktadir.
Stireklilik denkleminden kalan denklem (2.98)’de ¢oziiliirse

c,=a (2.139)

gibi bir sabite esit oldugu bulunur. Son olarak momentum denkleminden denklem

(2.116)’da ¢oziiliirse

2
0 Cg :af+&1ﬁ+{;3i
0X X, X

(2.140)

ifadesi bulunur. Sonugta bulunan bu ifadelerde c,(x;) yerine h,(t), c,(x,,X;)

yerine h,(x,t) ve cs yerine b yazilirsa asagidaki ifadeler elde edilir

g, =3ax+h,(t) (2.141)
g, =ay+h,(x,t) (2.142)
g, =2at+b (2.143)
n' =au+h/(t) (2.144)

oh oh
P=—av+—2u+—= 2.145
n o P ( )
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f fonksiyonun yapisini veren denklem ise

h!(t)=af + [3ax + h, (t)]% +[2at + b]% (2.146)

seklindedir. Elde edilen ifadeler incelendiginde denklemlerin a ve b parametrelerine
bagli olarak iki parametreli Lie Grup doniigiimiinii kabul ettigi goriilmektedir. Ayrica
h,(t) ve h,(x,t)’ye karsihk gelen sonsuz parametre Lie Grup doniisiimleri de

bulunmaktadir. a parametresi Ol¢ekleme donilisiimiinii ve b parametresi ise t
koordinatlarindaki 6telemeyi gosterir.
Bu sinir tabakasi problemine ait sinir sartlar1 agagidaki gibidir.

u(x,O, t) = A(x, t), V(X,O, t) = -T-V(x, t), u(x, 0, t) = U(x, t) (2.147)

Sinir sartlarimin infinitesimal jeneratore ne gibi kisitlamalar getirdiginin tespit

edilmesi gerekmektedir. Infinitesimal jeneratdr ise asagidaki gibi yazilir.

o o . 0 8 B
X=é18—x+ézg+§35+n‘a+nzg (2.148)

Jeneratorii sinir degerlerine ve sinir sartlarina uygulayalim.
y=0’da X[y=0]
h,(x,t)=0 (2.149)

y =o’da X[y:oo]

Herhangi bir kisitlama gelmemistir.
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y=0 ve u(x,0,t)= A(x,t)’de

A 16, 2 Veya am + (1) =Bax +h, (1) 2 + Rat+ ]2 (2.150)
0x ot OX ot

n =g
y=0 ve v(x,0,t)=FV(x,t)’de

ov _
—F
ox

g, % veya —aV = 1[3ax+h;(t)]%¢ [2at+b]% (2.151)

n’ =7F¢
y =00 ve u(x, o0, t) = U(X,t) ’de

- %U +é3%_[j veya aU +hi(t)= [3ax+h1(t)]%+[2at+b]%—lj (2.152)

Boylece sinir sartlarinin infinitesimal jeneratore ne gibi kisitlamalar getirdigini tespit

etmis olduk. Denklem (2.141)-(2.146) asagidaki hali almistir.

g, =3ax+h,(t) (2.153)

&, =ay (2.154)

& =2at+b (2.155)

n' =au+hi(t) (2.156)

n’=-av (2.157)
af+[3ax+h1(t)]%+[2at+b]% =0 (2.158)

Denklem (2.153)-(2.158)’deki simetriler kullanilarak denklemlerin bagimsiz
degisken sayisinda indirgemeye gidilecektir. Iki degisik indirgeme yapilacaktir.
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Birincisinde a parametresine ait olgekleme jeneratorii, ikincisinde b ve h,(t)

parametrelerine ait 6teleme jeneratorii kullanilacaktir.
2.3.1.1. Ol¢ekleme Déniisiimii

Denklem (2.153)-(2.157)’de a=1 ve b=h,(t)=0 alindiginda jenerator ile ilgili

invaryant ¢oziimleri veren denklem sistemini agsagidaki sekilde yazmak miimkiindiir.

d_dx_dy_du_dv

2t 3x y u -—-v 2.159)

Denklem sistemi (2.159) ¢oziillirse benzerlik degiskenleri ve fonksiyonlar1 asagidaki

gibi elde edilir.
§ = X _y —t2p(s —t20(s
= P=gm u=t (5.8), v=t"2Q(5,B) (2.160)

A(x,t) fonksiyonunun benzerlik doniisiimlerini kabul edebilmesi i¢in gerekli yap1
denklem (2.150)’de verilmistir. Bu yap1 a=1 ve b=hl(t)=0 altinda asagidaki

formu alir.

A=3x A %A (2.161)
Ox ot

Denklem (2.161)’deki ifade birinci mertebeden lineer kismi tiirevli denklem

oldugundan dolay1

dA _dx _dt

=— = 2.162
A 3x 2t ( )

seklinde ifade edilir. Denklem (2.162) ¢oziiliirse A fonksiyonunun yapisi agagidaki

gibi bulunur.
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A=t"A(3) (2.163)

V(x,t) fonksiyonunun yapisini veren denklem (2.151), a=1 ve b= hl(t) =0 altinda

su sekle dontistir.

—V=3xa—v+2ta—V (2.164)
ox ot
Denklem (2.164)’te ki ifade
dv  dx dt
a & _ & (2.165)
-V 3x 2t
seklini alir ve bu denklem ¢oziiliirse V fonksiyonunun yapist
V=t"V(3) (2.166)

seklinde bulunur.

U(x,t) fonksiyonunun yapisini veren denklem (2.152) ise 6lgekleme dontisiimii ile

asagidaki gibi olur.
U:3xa—U+2ta—U (2.167)
ox ot
Denklem (2.167)
dU dx dt
a_ax_d (2.168)
U 3x 2t

seklinde yazilir ve ¢oziiliirse, U fonksiyonunun yapis1 asagidaki gibi bulunmus olur.
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U =t"U(5) (2.169)

f (x,t) fonksiyonunun yapisi, denklem (2.158)’in a=1 ve b= hl(t): 0 olgcekleme

doniistimii altinda

P L L (2.170)
ox ot

seklini alir. Denklem (2.170) asagidaki gibi de yazilir.

df dx dt
a _&x_a (2.171)
-f 3x 2t
Denklem (2.171) ¢oziildiigiinde
f=t"£(3) (2.172)

yapisi bu sekilde elde edilmis olur.

A(x,t), V(x,t), U(x,t) ve f(x,t) fonksiyonlarmn a =1 ve b=nh,(t)=0 &lgekleme

doniisiimii altinda benzerlik fonksiyonlar1 agagida yeniden yazilmastir.
U=t"U@B), Vv=t"V(s), A=t"A(), f=t"f(5) (2.173)

Denklem (2.160) ve (2.173) kullanilarak denklem (2.51) ve (2.55)’te degisken
sayisinda indirgemeye gidilecektir. Bunun i¢inde denklemlerde bulunan tiirevler

hesap edilmelidir.

u_1P 30Px 10Py 2174
ot 2t 205t 20Bt (2.174)
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PP (2.175)
ou  oP

526_[3 (2.176)
o'u 0P 1
(%y‘;‘:(,i—[}ztIT 2.177)
ov 0Q1

g=a—(§¥ (2.178)

Tiirevler alindiktan sonra ifadeler denklem (2.51) ve (2.55)’te yerine konulursa yeni

denklemler

Py +Q, =0 (2.179)

%P - %SP5 — % BP, + PP, + QP, =Py, ((m +1)[Py|" + 2k, (m +3)[P,

+£(3)

2) (2.180)

seklinde elde edilir. Denklem (2.147)’deki sinir sartlari, denklem (2.160) ve (2.173)

kullanilarak
P(3,0)=A(8), Q(3,00=FV(5), P(8,00)=U(3) (2.181)

sekline doniismiis ve () ile U(8) arasindaki iliski ise
f(8)==U(8)- %6U'(6)+ u(d)u(s) (2.182)

seklinde elde edilmistir.
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2.3.1.2. Oteleme Doniisiimii

Simdi ise denklem (2.153)-(2.157)’yi Oteleme doniisiimii altinda indirgeyelim.
Bunun i¢in a=0 ve b= hl(t) =1 alindiginda jenerator ile ilgili invaryant ¢oziimleri

veren denklem sistemini asagidaki sekilde yazmak miimkiindiir.

dt_dx _dy_du_dv (2.183)

Denklem sistemi (2.183) ¢oziiliirse benzerlik degiskenleri ve fonksiyonlar1 asagidaki

gibi bulunur.
y=x-t, A=y, u=R(y,A), v=S(y,1) (2.184)

A(x, t), V(x, t), U(x, t) ve f (x, t) fonksiyonlariin benzerlik doniisiimlerini kabul
edebilmesi i¢in gerekli yapilar, denklem (2.150)-(2.153) ve (2.158)’de verilmistir. Bu

yapilar a=0 ve b=h, (t) =1 oteleme doniisiimii altinda benzerlik fonksiyonlari

U=U(y) V=Vl A=Aly), f=f(y) (2.185)

gibi elde edilmistir. Bu benzerlik fonksiyonlarimin bulunusu 6lgekleme dontisiimiinde
yapilan islemlerin aynisidir. Denklem (2.184) ve (2.185) kullanilarak denklem (2.51)
ve (2.55)’te degisken sayisinda indirgemeye gidilecektir. Bunun i¢inde denklemde

bulunan tiirevler hesap edilmelidir.

= 2.186
ot ay (' )
— = 2.187
0x Gy 2. )
= 2.188
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8_}/2 = (2.189)
ov oS
g = an (2.190)

Tiirevler alindiktan sonra denklem (2.51) ve (2.55)’te yerine konulursa yeni

denklemler su sekilde elde edilir.
R, +S; =0 (2.191)

-R, +RR_ +SR, =R, ((m +1)R,|" + 2k;(m + 3)|Rk|‘“*2)+ f(y) (2.192)
Denklem (2.184) ve (2.185) kullanilarak, denklem (2.147)’de ki sinir sartlar
R0 =Alr). S0 =FV(y), R(r.2)=U(y) (2.193)

elde edilir ve f (y) ile U(y) arasindaki iligki ise

£(y)=-U'(r)+ Uy )U'(r) (2.194)
seklindedir.
Uciincii dereceden Power-Law akiskanlarina ait smir tabakasi denklemleri 6lcekleme
ve Oteleme doniisiimii (Lie Grup analizi) altinda li¢ degiskenli kismi diferansiyel
denklemden, iki degiskenli kismi diferansiyel denklem sistemine indirgenmistir. Bu
denklem sistemlerini adi diferansiyel denklem sistemine doniistiirmek i¢in her iki
denklem sistemine yeniden Lie Grup analizi uygulanacaktir.

2.3.2. Ikinci Defa Lie Grup Analizi

Yukarida 6l¢ekleme (denklem (2.179) ve (2.180)) ve 6teleme (denklem (2.191) ve
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(2.192)) doniistimlerinden elde edilen iki degiskenli kismi diferansiyel denklem
sistemlerine tekrar Lie Grup analizi uygulanacaktir. Bu sayede, bu iki farkli kismi
diferansiyel denklem sistemleri adi diferansiyel denklem sistemlerine
indirgenecektir. Ik énce, dlcekleme déniisiimiinden elde edilen denklem sistemine

Lie Grup analizi uygulanacaktir.

Denklemlerle irtibatli infinitesimal jenerator ise asagidaki gibi yazilir.

o o ,0 ,0
Y=§ —+&,—+nN —+n" —
ﬁlaa izaﬁ Mt 0 (2.195)

Olgekleme doniisiimiinden elde edilen iki degiskenli kismi diferansiyel denklem
sistemi (2.179) ve (2.180)’e tekrar Lie Grup analizi uygulanmis ve denklemlerin

kabul ettigi en genel infinitesimal jeneratorler sdyle elde edilmistir.
g, =2a, & =2h,(8), n' =3a, n? =2h'(8)P +h(8)—3ah’(5) (2.196)
f fonksiyonun yapisini veren denklem ise

£(8)= %8+b (2.197)

seklindedir.
Bu sinir tabakasi problemine ait sinir sartlar1 agagidaki gibidir.
P(8,0)= A(3), Q(8,0)=FV(3),  u(8,0)=U(3) (2.198)

Jeneratorii sinir degerlerine ve sinir sartlarina uygulayalim. Boylece sinir sartlarinin
infinitesimal jeneratére ne gibi kisitlamalar getirdigi tespit edilmis olur. Bu durumda

denklem (2.196) asagidaki hali alir.
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g, =2a, g, =0, n' =3a, N’ =0 (2.199)

Denklem (2.199)’da a =1 alindiginda jenerator ile ilgili invaryant ¢oziimleri veren

denklem sistemini, asagidaki sekilde yazmak miimkiindiir.

dd dp dP d
ds_dp_dP_dQ (2.200)
26 0 3P O

Denklem sistemi (2.200) ¢oziiliirse benzerlik degiskenleri ve fonksiyonlar1 asagidaki

gibi bulunur.

B =y, P= %5 +M(u), Q=N(u) (2.201)

A(S), V(S), U(S) ve f (6) fonksiyonlarmin a =1 altinda benzerlik fonksiyonlarinin
yapilar asagidaki gibi elde edilir.

(2.202)

A:§6+cl, V=c,, U226+C3, c3=E
2 2 2

Denklem (2.179) ve (2.180)’de degisken sayisinda indirgemeye gidilecektir. Bunun

icinde denklemde bulunan tiirevleri hesap edelim.

8—1; =% (2.203)
2—3 =N’ (2.204)
Z—E =M (2.205)
821)2 =M" (2.206)
(on)
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Tirevler alindiktan sonra elde edilen denklem (2.203)-(2.206), denklem (2.179) ve
(2.180)’de yerine konulursa yeni denklemler su sekilde elde edilir.

N’ +% =0 (2.207)
2M + M’(N - é “) =M’ ((m +D)M" + 2k (m +3) M )+ 2c, (2.208)

Sinir sartlari ise
M(@0)=c,, N(0)=+c,, M(xo)=c, (2.209)

seklinde bulunur. Denklem (2.209)’daki smir sartlariyla birlikte denklem (2.207)
¢oziildiiglinde asagidaki ifade elde edilir.

N:—%ch (2.210)

Denklem (2.208)’in i¢ine denklem (2.210) yerlestirildiginde asagidaki denklem ve

sinir sartlari elde edilir.
IM -+ M'(= 2 F ¢y) =M ((m + DM + 2k, (m + 3)M" )+ 2c, 2.211)
M(@0)=c,, M(»)=c, (2.212)
Sonugta tiglincii dereceden Power-Law akiskanlarina ait sinir tabakasi denklemlerine
iki kez Lie Grup analizi uygulanarak denklem (2.211)’deki adi diferansiyel denklem

ve denklem (2.212)’deki sinir sartlar1 elde edilmis olur.

Simdi ise Oteleme doniisimiinden elde edilen iki degiskenli kismi diferansiyel

denklem sistemi i¢in infinitesimal jenerator
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0 o .0 ,0
Z=§ —+& —+n —+n —
él(}y g, 2TV R o5 (2.213)

seklinde yazilir. Denklem (2.191) ve (2.192)’ye tekrar Lie Grup analizi uygulanmis

ve denklemlerin kabul ettigi en genel infinitesimal jeneratorler
g =3ay+b, & =akl+h(y), n' =a(R-1), n> =—aS+(R -1)h'(y) (2.214)
formda elde edilmistir. Sinir tabakasi problemine ait sinir sartlar1 asagidaki gibidir.
R(r.0)=Aly). S(r.0)=FV(y). R(y.%)=U(r) (2:215)
Jeneratorii sinir degerlerine ve siir sartlarina uygulayalim. Boylece sinir sartlarinin

infinitesimal jeneratore ne gibi kisitlamalar getirdigi tespit edilmis olur. Bu durumda,

denklem (2.214) asagidaki hali alir.
& =3ay+b, &, =ak, n' =a(R—-1), n* = -aS (2.216)

Denklem (2.216)’da a=1 ve b=0 alindiginda jeneratdr ile ilgili invaryant

¢oziimleri veren denklem sistemini asagidaki gibi yazmak miimkiindiir.

&_d_dR _dS

W= A TRol S (2.217)

Denklem sistemi ¢oziiliirse benzerlik degiskenleri ve fonksiyonlar1 asagidaki gibi

bulunur.

iy ]
= R =y"K(a)+1, S=y" L(a) (2.218)

A(3), V(3), U(5) ve f(5) fonksiyonlarmin a=1 ve b=0 altinda benzerlik

fonksiyonlarimin yapilar1 asagidaki gibi elde edilmistir.
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A=cy”+1, V=c,y*, U=c,y+1, f=c,y " (2.219)

Denklem (2.191) ve (2.192)’de degisken sayisinda indirgemeye gidilecektir. Bunun

i¢in denklemde bulunan tiirevleri hesap edelim.

OR 1 _ _ 1 _, A
2—1; ~K' 2.221)
R, 1
oS , 1
n =L sz (4.223)

Tiirevler alindiktan sonra denklem (2.220)-(2.223), denklem (2.191) ve (2.192)’de

yerine konulursa yeni denklemler su sekilde elde edilir.

K-oK'+3L' =0 (2.224)
K* —aKK'+3LK'=3 K"((m + DK™ + 2k, (m +3)[K|™" )+ c,’ (2.225)

Sinir sartlari ise
K(0)=c,, L(0)=Fc,, K(x)=c, (2.226)

seklindedir. Boylece iki farkli yoldan iki degiskenli kismi diferansiyel denklem

sistemi, adi diferansiyel denklem sistemine basarili bir sekilde doniistiiriilmiis oldu.

2.4. Ikinci Dereceden Power-Law Akiskanmma Ait Smr Tabakasi
Denklemlerinin Benzerlik Coziimleri

Tezin bu kisminda ikinci dereceden Power-Law akigkanlarina ait sinir tabakasi
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denklemlerinin benzerlik ¢dziimleri yapilacaktir. Ikinci dereceden Power-Law
akiskanlarina ait sinir tabakasi denklemleri iki bagimli ve ii¢ bagimsiz degiskenden
olusan bir kismi diferansiyel denklem sistemidir. Bu sistem, benzerlik ¢oziimii
sayesinde adi diferansiyel denklemlere doniistiiriilecektir. Bagimsiz degiskenler x, y

ve t ve bagimli degiskenler ise u ve v hiz degiskenleridir.

Bir denklemin kabul edebildigi genel benzerlik dontisiimleri Lie Grup analizi ile
bulunmaktadir. Bircok denklemde iyi sonuglar veren &zel doniisiimler de
bulunmaktadir. Bu doniisiimler; 1) 6lgekleme, ii) oteleme, iii) spiral grup, ve iv) bu
dontistimleri iceren 6zel bir doniisiimdiir. Bu doniisiimler sayesinde smir tabakasi
akisin1 ifade eden kismi diferansiyel denklem sistemi, adi diferansiyel denklem
sistemine donistiiriiliir. Bu ¢alismada ise Yiirlisoy (2006)’un ¢alismasindaki 6zel bir
doniigiim kullanilmigtir. Bu doniisiim tizerinde bazi kiigiik degisiklikler yapilmis ve
sinir tabakasi denklemleri (2.59) ve (2.66)’ya uygulanmistir. Ayrica, bu doniisiim

sayesinde denklemler boyutsuzlagsmistir.
2.4.1. Benzerlik Doniisiimii

Ikinci dereceden Power-Law akiskanina ait smir tabakasi denklemleri (2.59) ve
(2.66)’nin ¢ozlimii yapilacaktir. Fakat denklemlerin kismi diferansiyel denklemler
oldugu goriilmekte ve boyle denklemlerin ¢oziimleri olduk¢a zor olmaktadir. Bu
calismada oncelikle denklemler adi diferansiyel denklem sekline doniistiiriilecektir.
Sinir tabakasi denklemlerimize Yiiriisoy (2006)’un ¢alismasindaki 6zel bir doniisiim
uygulanmustir. Bu doniisiim {izerinde baz1 kiiciik degisiklikler yapilmustir. Ikinci
dereceden Power-Law akigkanina ait sinir tabakasi denklemleri bu doniisiim
sayesinde boyutsuz hale gelmistir. Elde edilen yeni doniisiim i¢in benzerlik degiskeni

ve benzerlik fonksiyonlar1 agagidaki gibi tanimlanmigtir.

1 m-1 m 1 2m+1 m

E=v m2gm2y EY, u= %f(&)’ V= th‘mxmg@’
(2.227)

U=r>
t
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Burada, A sabittir. Bu doniisiim iki boyutlu ve kararsiz ikinci dereceden Power-Law

akigkaninin sinir tabakasi denklemleri i¢in kullanilmustir.

Denklem (2.59) ve (2.66)’nin kismi tiirevli terimlerinin tek tek hesaplanmasi

gerekmektedir.
N
% = %f —(mri zjv_ml*zt_“izx_mrszf’
Ny
oY
% — v_ﬁt_ﬁxﬁf!
gzg g magmiag g
Y
231’; — Vﬁéti;njxfn—gfm
Y
i

1 3 _m
jv m+2t m+2X m+2f’_( m

o*u _( 2
0x0Y m+2 +2

=

2 6 2-m
jv m+2t m+2Xm+2Yf”

_ 2 m+4 B 2
jv m+2tm+2x m+2Yf”

PE 4) > -6 Zm 1) - m7 222m
u (1’1’1— jv m+2¢ m+2Xm+2fﬂ+(m_ )V m+2 ¢ mi2 g m+2 Yf

8t8Y2: m+2 m+2
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(2.229)

(2.230)

(2.231)

(2.232)

(5.233)

(2.234)

(2.235)

(2.236)



8311 2—-m 2 2m m-4 3 2m5 3
5 = V m+2tm+2xm+2f” _ V m+2t m+2 X m+2Yfm (2237)
ox0Y m+ 2 m4+2
ou
o ‘k% (2.238)
ou A
E (2.239)

Bulunan bu denklemler, denklem (2.59) ve (2.66)’ya yerlestirilirse asagidaki adi

diferansiyel denklem sistemi elde edilmis olur.

f_m

g =0 (2.240)

e m-—1

EF 462 —— D Eff +gf = (m+ D" £'F”
m+2 m+2
2

| m=1 ren mZ —m.g .., ren m "
+k | [-2ff H——E  2m A DE T - EF (2.241)

2m+1 m

fr3 +gflfm_ m &fflfm-i- _; éf’fm:|—7\,+7\,2
+

+mgf"* -2
m+2 m+2 m

Burada; istler, & benzerlik degiskenine gore tiirevi ifade eder ve k, =¢,/pvt

boyutsuz ikinci derece parametredir.

Ikinci dereceden akiskanlara ait smir tabakas1 denklemlerine benzerlik doniisiimleri
uygulanarak adi diferansiyel denklemlere doniistiiriilmiistiir. Elde edilen denklemleri

¢Ozebilmek i¢in asagida verilen klasik sinir sartlar1 kullanilmistir.
ou
u(x,0,t)=0, v(x,0,t)=0, u(x,,t)=U(x,t), 5(){,00, t)=0 (2.242)

Bu denklemlerin ¢oziimleri icin de simir sartlarinda yeni degiskenler ile ifade

edilmesi gerekmektedir. Benzerlik doniisiimleri altinda uygun sinir sartlar1 asagidaki
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gibi olmaktadir.

f(0)=0, g(0)=0, f(o0)=1, f'(0)=0 (2.243)

Boylece ikinci dereceden Power-Law akiskanlarina ait simir tabakasi denklemleri,

yiiksek non-lineriteye sahip adi diferansiyel denklem sistemi olarak elde edilmis

oldu.
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3. ARASTIRMA BULGULARI VE TARTISMA

Bu boliimde, iiglincli dereceden Power-Law ile ikinci dereceden Power-Law
akiskanlarma ait siir tabakas1 denklemlerinin niimerik ¢dziimleri yapilmistir. Ikinci
boliimde iiglincli dereceden Power-Law akiskanina ait sinir tabakast denklemleri adi
diferansiyel denklem haline donistiiriilmiistiir. Ortaya c¢ikan adi diferansiyel
denklemler (6l¢ekleme doniisiimii ile (2.207) ve (2.208); oteleme doniisiimii ile
(2.224) ve (2.225)) Runge-Kutta algoritmas1 kullanilarak ¢dziilmiistiir. Iki farkl
dontistimle (6lgekleme ve oteleme) elde edilen denklemlerin niimerik ¢dziimleri
yorumlanmustir. Coziimler tgilincii derece akiskan katsayist ve Power-Law iissiiniin
pozitif ve negatif degerleri i¢in yapilmistir. Analiz sonucunda Power-Law {issiiniin
pozitif ve negatif olarak artmasi1 sonucunda sinir tabakasinin nasil degisim gosterdigi
grafiklerle ifade edilmistir. Sonra yine ikinci bolimde benzerlik doniisiimleri
kullanilarak ikinci dereceden Power-Law akiskanlarina ait sinir tabakasi denklemleri
adi diferansiyel denklem haline donistliriilmistiir. Elde edilen adi diferansiyel
denklem sistemi ((2.240) ve (2.241)) sonlu farklar algoritmasi kullanilarak niimerik
olarak c¢oziilecektir. Elde edilen ¢oziimler ile ikinci derece akigkan katsayist ve
Power-Law {isstintin farkli degerleri icin sinir tabakasinin nasil degistigi grafiklerle

gosterilmistir.

3.1. Ugiincii Dereceden Power-Law Akiskana Ait Smmr Tabakasi
Denklemlerinin Niimerik Coziimleri

Olgekleme doniisiimii sonucu elde edilen denklem (2.207) ve (2.208), denklem
(2.209)’daki sinir sartlarina uygun olarak Runge-Kutta algoritmasi ile ¢oziilecektir.
Bunun i¢in 6ncelikle denklem (2.207) ve (2.208)’in birinci mertebeden denklemlere

indirgenmesi gerekmektedir.

f, () = M(w) 3.1)
£,(1)=N(w) (32)
fy(w)=M'(n) (3.3)
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Bu ifadeler denklem (2.207) ve (2.208)‘e yerlestirilirse

f1’:f3
! 3
f2 :—5
t
o + f{fz - j 2,

£, = 2

m+1+2k.(m+3)t° e |"

3 3 3

ifadeleri elde edilir. Baslangi¢ ve sinir sartlar ise asagidaki gibidir.

f, (0)= &
fz(O): +c,
fa(oo): Cs

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

Yukaridaki ifadeler MATLAB programinda EK-1’deki gibi yazilarak niimerik

¢oziimler yapilmistir. Coziimlerde c¢;=1 ve c3=2 degerleri alinmistir. Niimerik

¢cozlimlerin sonsuzda sinir sartini1 saglayip saglamadigi kontrol edilmistir. Bunun igin

M’(O)’ln uygun bir degerini bulana kadar isleme devam edilmistir. Elde edilen

coziimler Sekiller 3.1-3.14’te gosterilmis ve grafiklerde k3 degeri k olarak ifade

edilmistir.
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2,
m=0
1.8+ m=0.4 4
m=0.8
1.6+ R
M
1.4+ R
1.2+ 8
1 L L L L
0 2 4 6 8 10

Sekil 3.1. Farkli pozitif m degerleri i¢in p ile M fonksiyonun degisimi
(k=0.5, 01:1, szl, C3=2)

m=0, 0.4, 0.8

1.8¢

m=0, 0.4, 0.8

1.61 :

14

1.2 a

Sekil 3.2. Farkli pozitif m degerleri i¢in p ile M fonksiyonun degisimi
(kZO, C1:1, C2:-1, C3:2)
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2,
m=0
1.8+ m=0.4 B
m=0.8
1.61 —
M
1.4+ .
1.2r —
l | | | |
0 2 4 6 8 10

Sekil 3.3. Farkli pozitif m degerleri i¢in p ile M fonksiyonun degisimi
(k=3, ¢1=1, co=-1, c3=2)

m=0.8 ]
m=0.4

m=0

Sekil 3.4. Farkli pozitif m degerleri i¢in p ile M’ fonksiyonun degisimi
(k=0.5, 01:1, 02:1, C3:2)
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Sekil 3.5. Farkli negatif m degerleri i¢in p ile M fonksiyonun degisimi
(k=0, C1:1, C2:1, C3:2)

m=0

1.8
m=-0.8

m=-0.6
1.6¢ g

1.4

0 2 4 6 8 10

Sekil 3.6. Farkli negatif m degerleri i¢in p ile M fonksiyonun degisimi
(k=0.5, 01:1, szl, C3=2)

65



2,
m=-0.8
1.8 m=-0.6 1
m=0
1.61 B
M
1.4 B
1.2+ —
l | | | |
0 2 4 6 8 10

Sekil 3.7. Farkli negatif m degerleri i¢in p ile M fonksiyonun degisimi
(k=3, ¢1=1, co=1, c3=2)

©
N

0 2 4 6 8 10

Sekil 3.8. Farkli negatif m degerleri i¢in p ile M’ fonksiyonun degisimi
(k=0.5, 01:1, 02:1, C3:2)
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—
|

1.8
e |/ ,
14r / b

1.2*/ A

Sekil 3.9. Farkli ¢, degerleri i¢in p ile M fonksiyonun degisimi
(k=0.5, m=0.6, c;=1,c3=2; co=1 (_ ), co=1( )

1.4 b

1.2 b

Sekil 3.10. Farkli ¢, degerleri i¢in p ile M fonksiyonun degisimi
(k=0.5, m=-0.6, ¢c;=1,c3=2; co=1 (), co=-1¢( )
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1.8 =< k=3,2,10 ]

1.6+ 1

1.2- 1

0 2 4 6 8 10

Sekil 3.11. Farkli k degerleri i¢in p ile M fonksiyonun degisimi
(m=0.4, 01:1, 02:1, C3:2)

1.8 < k=3,21,0 |

1.4 b

12

0 2 4 6 8 10

Sekil 3.12. Farkli k degerleri i¢in p ile M fonksiyonun degisimi
(m=-0.4, C1:1, 02:1, C3:2)
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Sekil 3.13. Farkli k degerleri i¢in p ile M fonksiyonun degisimi
(m=0.4, c;=1, c,=-1, ¢3=2)

k=3,210

Sekil 3.14. Farkl1 k degerleri i¢in p ile M fonksiyonun degisimi
(1’1’1:-0.4, C]ZI, C2:-1, C3:2)
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Sekil 3.1, 3.2, 3.3 ve 3.4’te m’nin pozitif degerleri (m>0) i¢in hiz profilleri
cizilmistir. Sekil 3.1°de piiskiirtme durumu i¢in M hizinin benzerlik degiskenine gore
degisimi cizdirilmistir. Grafikten m’nin pozitif degerleri arttikca sinir tabakasi
kalinliginin azaldig1 goriilmektedir. Sekil 3.2’de emme durumu i¢in M hizinin
benzerlik degiskenine goére degisimi gosterilmistir. Grafige dikkat edilirse hiz
profilleri yaklasik u=1.4 degeri civarinda kesismektedir. 1.4<u<10 arasinda m’nin
artan degerleri i¢in sinir tabakasinin inceldigi goriilmektedir. Bu durum Sekil 3.3’te
goriildiigii gibi k’nin 3 degerinde diizelmektedir. Grafik 3.3’te de m’nin artan pozitif
degerlerinde simir tabakasinin inceldigi goriilmektedir. Sekil 3.4’te ise M ’nin

tirevinin (M") benzerlik degiskenine gore degisimi ¢izdirilmistir.

Sekil 3.5, 3.6, 3.7 ve 3.8’de m’nin negatif degerleri (m<0) icin sinir tabakasi
profilleri elde edilmistir. Sekil 3.5’te piiskiirtme durumu i¢in M hizinin benzerlik
degiskenine gore degisimi goriilmektedir. Grafige dikkat edilirse Power-Law
akiskani (k=0) i¢in hiz profilleri birbirleriyle kesismistir. Sekil 3.6’dan bu durumun
k’nin 0.5 degeri i¢in de devam etmekte oldugu goriilmektedir. Fakat Sekil 3.7°de ise
k’nin 3 degeri i¢in hiz profillerinin kesismedigi gozlenmektedir. Grafikten m’nin
negatif degerleri mutlak olarak arttikga sinir tabakasinin kalinlagtigi goriilmektedir.
Burada bahsedilen durum, emme durumu iginde benzer sekilde gerceklesmektedir.

Sekil 3.8’te M’ nin benzerlik degiskenine gore degisim grafikleri goriilmektedir.

Sekil 3.9°’da m=0.6 degerinde piliskiirtme ve emme smir sartlar1 icin M hizinin
benzerlik degiskeni ile degisimi gosterilmistir. Sekil 3.10 ise m=-0.6 degeri i¢in
cizdirilmistir. Her iki sekilde de piiskiirtme sinir sartindaki sinir tabakasi kalinligi,

emme sinir sartindakinden daha kalin oldugu gozlenmistir.
Sekil 3.11-14’te farklh k degerleri i¢cin M hizinin benzerlik degiskeni ile degisimi
cizdirilmistir. Grafiklerden k degerleri arttikca sinir tabakasinin kalinlagtig

goriilmektedir.

Tezin bundan sonraki kisminda ise Oteleme doniisiimii sonucunda elde edilen

denklemlerin ((2.224), (2.225)) niimerik ¢oziimleri ve yorumlar1 yapilacaktir. Bu
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denklemler asagidaki gibi birinci mertebeden denklemlere indirgenmistir.

PR it 11 R et
"3 14 2K, (m o+ 32

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

elde edilir. Bu denklem sistemi i¢in de Olgcekleme donilisiimdeki baslangic ve sinir

sartlar1 (3.7)-(3.9) gegerli olmustur. ifadeler MATLAB programinda EK-1’deki gibi

yazilarak niimerik olarak ¢oziimler yapilmistir. Coziimlerde ¢;=1 ve c3=2 degerleri

almmustir. Elde edilen ¢oziimler Sekil 3.15-3.36’da gosterilmis ve grafiklerde kj

degeri k olarak ifade edilmistir.
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6 8 10

Sekil 3.15. Farkli pozitif m degerleri i¢in a ile K fonksiyonun degisimi
(k:O.S, 01:1, 02:1, C3:2)

m=0, 0.4, 0.8

1.8

m=0, 0.4, 0.8

1.6

1.4

1.2

0 2 4 6 8 10

Sekil 3.16. Farkli pozitif m degerleri i¢in a ile K fonksiyonun degisimi
(kZO, 01:1, 02:-1, C3:2)
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2,
m=0
1.8¢ m=0.4 —
m=0.8
1.6r —
K
1.4+ .
1.2+ .
1 | | | |
0 2 4 6 8 10

Sekil 3.17. Farkli pozitif m degerleri i¢in a ile K fonksiyonun degisimi
(k=3, ¢1=1, co=-1, c3=2)

L 21 m=0.8

0 2 4 6 8 10

Sekil 3.18. Farkli pozitif m degerleri i¢in a ile L fonksiyonun degisimi
(k=0.5, 01:1, 02:1, C3:2)
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m=0.8 7
m=0.4

m=0

0 2 4 6 8 10

Sekil 3.19. Farkli pozitif m degerleri igin a ile K’ fonksiyonun degisimi
(k:O.S, 01:1, C2:1, 0322)

0 2 4 6 8 10

Sekil 3.20. Farkli negatif m degerleri i¢in a ile K fonksiyonun degisimi
(k=0, C1:1, C2:1, C3:2)
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m=0
1.8¢ m=-0.8 E
m=-0.6

1.6¢ q

1.2+ b

0 2 4 6 8 10

Sekil 3.21. Farkli negatif m degerleri icin a ile K fonksiyonun degisimi
(k:O.S, 01:1, C2:1, 0322)

2 [
m=-0.8
1.8+ m=-0.6 _
m=0
1.6¢ -
K
1.4¢ -
1.2+ -
1 | | | |
0 2 4 6 8 10
o

Sekil 3.22. Farkli negatif m degerleri icin a ile K fonksiyonun degisimi
(k=3, ¢1=1, co=1, ¢3=2)
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L -1.8 m=-0.8

Sekil 3.23. Farkli negatif m degerleri i¢in a ile L fonksiyonun degisimi
(k=0.5, 01:1, 02:1, C3:2)

0.8

o
-

0 2 4 6 8 10

Sekil 3.24. Farkli negatif m degerleri i¢in a ile K' fonksiyonun degisimi
(k=0.5, 01:1, szl, C3=2)
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1.4 /

0 2 4 6 8 10

Sekil 3.25. Farkli ¢, degerleri icin a ile K fonksiyonun degisimi
(k=0.5, m=0.6, c;=1,c5=2;¢c=1 (), co=-1(__ )

e[/ |

T
—
1

1.4

12| f

Sekil 3.26. Farkli ¢, degerleri icin a ile K fonksiyonun degisimi
(k=0.5, m=-0.6, c;=1,c3=2; co=1 (), co=-1( )
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Sekil 3.27. Farkli ¢, degerleri icin a ile L fonksiyonun degisimi
(k=0.5, m=0.6, c;=1,c3=2; co=1 (_ ), co=-1( )

Sekil 3.28. Farkli ¢, degerleri i¢in a ile L fonksiyonun degisimi
(k=0.5, m=-0.6, c;=1,c3=2;co=1 (), co=-1(__ )
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1.8 < k=3,210

161

1.4+

1.2r

Sekil 3.29. Farkli k degerleri i¢in a ile K fonksiyonun degisimi
(m=0.4, c;=1, c,=1, c3=2)

10

18 < k=3,2,1,0

1.67

1.4

1.2+

Sekil 3.30. Farkli k degerleri i¢in a ile K fonksiyonun degisimi
(m=-0.4, C1:1, 02:1, C3:2)
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1gl < k=3,21,0 |

1.67 1

1.2r 1

Sekil 3.31. Farkli k degerleri i¢in a ile K fonksiyonun degisimi
(m:O.4, 01:1, C2:-1, C3:2)

2,
k=3,2,10 i
1O 2 4 6 8 10

Sekil 3.32. Farkli k degerleri icin a ile K fonksiyonun degisimi
(m=-0.4, ¢;=1, c,=-1, ¢3=2)
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k=0,1,2,3

Sekil 3.33. Farkli k degerleri icin a ile L fonksiyonun degisimi
(m=0.4, c;=1, c,=1, c3=2)

k=0,1,2,3

Sekil 3.34. Farkli k degerleri icin a ile L fonksiyonun degisimi
(m=-0.4, ¢;=1, c,=1, ¢3=2)
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k=0,1,2,3

Sekil 3.35. Farkli k degerleri icin a ile L fonksiyonun degisimi
(m=0.4, c;=1, c,=-1, ¢3=2)

k=01,23

Sekil 3.36. Farkli k degerleri icin a ile L fonksiyonun degisimi
(m=-0.4, ¢;=1, c,=-1, ¢3=2)
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Sekil 3.15-3.19°da m’nin pozitif degerleri (m>0) i¢in hiz profilleri elde edilmistir.
Sekil 3.15’te pliskiirtme durumu i¢in K hizinin benzerlik degiskenine gore degisimi
goriilmektedir. Sekilde m’nin pozitif degerleri arttikga sinir tabakasi kalinliginin
azaldig1 goriilmektedir. Sekil 3.16°da ise emme durumu i¢in K hizinin benzerlik
degiskenine gore degisimi gosterilmistir. Grafige dikkatle bakilirsa hiz profillerinin
yaklagik u=1.5 degeri civarinda kesistigi goézlenmistir. 1.5<u<10 arasinda m’nin
artan degerlerinde sinir tabakasinin inceldigi goriilmektedir. Bu durum Sekil 3.17°de
goriildiigii gibi k’nin 3 degerinde diizelmektedir. Bu grafikten de m’nin pozitif
degerleri arttikca siir tabakasinin inceldigi goriilmektedir. Sekil 3.18’de L hizinin
benzerlik degiskeni ile degisimi gosterilmistir. Sekil 3.19°da ise K’nin tiirevinin (K" )

benzerlik degiskeni ile degisimi ¢izdirilmistir.

Sekil 3.20-3.24’te m’nin negatif degerleri (m<0) icin smur tabakasi profilleri
goriilmektedir. Sekil 3.20°de piiskiirtme durumu i¢in K hizinin benzerlik degiskenine
gore degisimi ¢izdirilmistir. Grafikte Power-Law akiskani (k=0) i¢in hiz profillerinin
kesistigi goriilmektedir. Sekil 3.21°den bu durumun k=0.5 degeri i¢in de devam
etmekte oldugu goriilmektedir. Ancak Sekil 3.22°de ise k=3 degeri i¢in bu durum
diizelmistir. Bu grafikten m’nin negatif degerleri mutlak olarak arttikga sinir
tabakasinin kalinlastigi goriilmektedir. Burada bahsedilen durum, emme durumu
icinde benzer sekilde gerceklesmektedir. Sekil 3.23, L hizinin benzerlik degiskenine
gore degisimini gostermektedir. Sekil 3.24’de ise K' ’niin benzerlik degiskenine gére

degisimini veren grafikler verilmistir.

Sekil 3.25’te m’nin 0.6 degerinde piliskiirtme ve emme sinir sartlar i¢in K hizinin
benzerlik degiskeni ile degisimi gosterilmistir. Sekil 3.26’da ise m’nin -0.6 degeri
icin c¢izdirilmistir. Her iki sekilde de piiskiirtme siir sartindaki smir tabakasi
kalinligi, emme sinir sartindakinden daha kalin oldugu gézlenmistir. Sekiller 3.27 ve
3.28’de sirasiyla piiskiirtme ve emme durumlari i¢in L hizinin benzerlik degiskeni ile

degisimi gosterilmistir.

Sekil 3.29-32°de farkli k degerleri i¢in K hizinin benzerlik degiskeni ile degisimi

cizdirilmigtir. Grafiklerden k degerleri arttikca sinir tabakasinin kalinlagtig
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goriilmektedir. Sekil 3.33-3.36’da ise L hizinin benzerlik degiskenine gore degisimi

gosterilmistir.

Sonug olarak ii¢ilincii dereceden Power-Law akiskana ait sinir tabakasi denklemlerine
Lie Grup analizi uygulannustir. {lk uygulanan Lie grup analizi ile denklemler, iki
degiskenli kismi diferansiyel denklemler big¢imine indirgenmistir. indirgenen bu
denklemler Olgekleme ve Oteleme doniisiimleri i¢in ayr1 ayr1 olup iki tanedir.
Sonrasinda bu iki kismi diferansiyel denklem sistemine ikinci kez Lie Grup analizi
uygulanarak bulunan yeni simetriler ile denklemler adi diferansiyel denklem formuna
indirgenmistir. Bu sayede ii¢ degiskenli kismi diferansiyel denklem sistemi, iki ayri
adi diferansiyel denklem sistemine doniistiiriilmiistiir. Bu iki ayr1 denklem sistemi
sinir sartlar1 altinda Runge-Kutta algoritmasi ile niimerik olarak c¢ozlilmustiir.
Cozlimler sonucunda bu iki ayr1 denklem sisteminde de ayni niimerik sonuglar
goriilmiistiir. SOyle ki; {liclincli derece akigkan katsayisinin artan degerlerinde sinir
tabakasmin kalilagtign gériilmiistiir. Ugiincii derece akiskan katsayisini yami sira
Power-Law {issiliniin sinir tabakasina etkileri de gosterilmeye calisilmistir. Piiskiirtme
durumu i¢in Power-Law iissiiniin artan pozitif degerlerinde sinir tabakasinin inceldigi
goriilmiistiir. Emme durumunda ise {i¢iincli derece akiskan katsayisinin 3’ten biiyiik
degerlerlerinde sinir tabakasi incelmektedir. Power-Law {issiiniin negatif degerleri
mutlak olarak arttiginda smir tabakasinin kalinlagtigi gozlenmistir. Ancak sinir
tabakasindaki kalinlasma {glinci derece akigkan katsayisinin  3’ten  biiylik
degerlerinde olmustur. Bu durum, hem piiskiirtme hem de emme durumunda da
goriilmektedir. Buradan, kabaran (shear thickening) veya incelen (shear thinning) bir
akigkanda Newtonyen olmayan etkiler arttiginda sinir tabakasinin kalinlastigi
sonucuna varilabilir. Ancak Newtonyen olmayan akiskan katsayisinin kiigiik

degerlerinde Power-Law akiskaninin 6zellikleri goriilmektedir.

3.2. ikinci Dereceden Power-Law Akiskana Ait Simir Tabakas1 Denklemlerinin
Niimerik Coziimleri

Newtonyen olmayan akigkanlara ait benzerlik doniistimleri ile elde edilen adi
diferansiyel denklemleri ¢6zmek oldukg¢a zor ve ¢cok zaman almaktadir. Bu tiirden

denklemlerin analitik ¢6ziimii i¢in Perturbasyon teknikleri, Laplace doniisiimleri ve
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Homotopy analiz (HAM) gibi metotlar tavsiye edilebilir. Niimerik ¢oztimler olarak
da sonlu farklar, Runge-Kutta algoritmasi ve shooting metodu gibi teknikler siklikla
kullanilmaktadir. Birgok diferansiyel denklem analitik metotlarla ¢oziilemedikleri
icin niimerik teknikler kullanilmaktadir. Bu ¢alismada, denklem (2.243)’teki sinir
sartlarina bagl olarak denklem (2.240) ve (2.241)’de verilen yiiksek non-lineeriteye

sahip adi diferansiyel denklemin ¢6ziimiinde sonlu farklar metodu kullanilmastir.

Sonlu farklar metodu siirekli bir sistem olarak tanimlanan sinir deger problemini,
diigiim noktas1 olarak adlandirilan N tane noktaya bolerek kesikli bir sistem haline
dontstiiriir. Boylelikle diferansiyel denklem esitligi olarak tanimlanan sinir deger

problemi, bir grup ¢dziilmesi gereken cebirsel esitlik haline gelir.

Sonlu farklar metodunda ilk olarak yapilmasi gereken, problemin tanim araligi olan
[a,b] araliginda, araligin siir degerleri de dahil olmak iizere adim araliklar
h=(b—a)/(N—1) olan N adet esit aralikli nokta (tj) belirlemektir. Bu noktalar
belirlendikten sonra, diferansiyel denklemde bulunan tiirev ifadeleri Taylor serileri
kullanilarak elde edilen ve merkezi, ileri, geri sonlu fark boliimleri olarak

adlandirilan yaklasik deger ifadeleri ile degistirilir.
Sonlu fark tiirevleri kullanilarak elde edilen yaklasik sonug esitligi, ti noktalarina
uygulanarak sonlu sayida bilinmeyenden olusan bir denklem sistemi elde edilir. Bu

sistem ¢oziilerek t; noktalarindaki yaklasik ¢6ziim degerleri bulunmus olur.

Bu tez calismasinda kullanilan merkezi fark tiirevleri

f., -t
fi’: 1+12h i-1 (316)
f.,, —2f +1
fi”:1+1h—21+1—1 (3.17)
w L, —2f, +2f  —f_
f'=—2 12h3 = (3.18)
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seklindedir. Denklem (2.240) ve (2.241)’deki tiirev ifadeleri yerlerine denklem
(3.16)-(3.18)’de bulunan ifadeler yerlestirilmistir. Elde edilen ifadeler kullanilarak
MATLAB programinda EK-2’deki gibi sonlu fark tabanli bir kod yazilmistir. Bu
kod sayesinde adi diferansiyel denklem sisteminin niimerik ¢oziimii yapilmistir.
Hesaplamada, yiiz diigiim noktasi i¢in & = [0,10] ve h=0.1 olarak alinmistir. Elde
edilen ¢ozlimler Sekil 3.37-3.42°de verilmis ve grafiklerde k; degeri k olarak ifade

edilmistir.

0.9

0.8~ k=05

0.7¢ k=0 b

0.4+ 8

0.3r |

0.2

&

Sekil 3.37. x bilesenindeki hizla ilgili olan benzerlik fonksiyonu iizerine k ikinci
derece katsayisinin etkisi (m=0.1)
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Sekil 3.38. Y bilesenindeki hizla ilgili olan benzerlik fonksiyonu iizerine k ikinci
derece katsayisinin etkisi (m=0.1)

1,
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Sekil 3.39. x bilesenindeki hizla ilgili olan benzerlik fonksiyonu iizerine m pozitif
Power-Law {issiiniin etkisi (k=1)
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Sekil 3.40. Y bilesenindeki hizla ilgili olan benzerlik fonksiyonu {lizerine m pozitif
Power-Law {issiiniin etkisi (k=1)

1,
0.9¢ m=0,-0.1,-0.2 ]
0.8; i
0.7; ]
m=0,-0.1, -0.2
0.6r m=0,-0.1,-0.2 ]
0.91
f 05" i
0.4r f 09 7
0.3¢ .
0.89 ]
0.2F m=0,-01,-02 |
0.1 16 17 18 |
§
0 | | | |
0 ¢ 10

Sekil 3.41. x bilesenindeki hizla ilgili olan benzerlik fonksiyonu iizerine m negatif
Power-Law tissiiniin etkisi (k=0.2)
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Sekil 3.42. Y bilesenindeki hizla ilgili olan benzerlik fonksiyonu iizerine m negatif
Power-Law {issiiniin etkisi (k=0.2)

Sekil 3.37°de farkli k degerleri i¢in hizin x bileseni ile ilgili olan f fonksiyonun
benzerlik degiskeni ile degisimi ¢izdirilmistir. Burada Power-Law {iissii 0.1 olarak
alimmistir. Grafikten k degerleri arttik¢a sinir tabakasinin kalinlastigi goriilmektedir.
Sekil 3.38’de ise hizin Y bileseni ile ilgili olan g fonksiyonun benzerlik degiskenine
gore degisimi gosterilmistir. Bu sekilden k degerlerinin artan degerlerinde g hizinin

arttig1 goriilmektedir.

Sekil 3.39 ve 3.40’da, m’nin pozitif degerleri (m>0) i¢in sinir tabakasi profilleri elde
edilmistir. Sekil 3.39’da ikinci derece akiskan katsayisinin 1 degeri i¢in f hizinin
benzerlik degiskenine goére degisimi c¢izdirilmistir. Grafige dikkat edilirse hiz
profilleri yaklasik & =1.7 degeri civarinda kesismektedir. Benzerlik degiskenin
1.7<€<0 arasinda m degerlerinin artmasiyla sinir tabakasinin inceldigi
goriilmektedir. Sekil 3.40’da ise g hizinin benzerlik degiskeni ile degisimi
gosterilmigtir.  Grafikten m’nin artan pozitif degerlerinde g hizimin arttig1

gozlenmistir.
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Sekil 3.41-3.42°de, m’nin negatif degerleri (m<0) i¢in hiz profilleri ¢izdirilmistir.
Sekil 3.41°de ikinci derece akigkan katsayisinin 0.2 degeri i¢in f hizinin benzerlik
degiskeni ile degisimi gosterilmistir. Sekilden hiz profillerinin yaklasik & =1.8 degeri
civarinda kesistigi goriilmektedir. 1.8<€<co arasinda m degerlerinin mutlak olarak
artmastyla smir tabakasmin kalinlastigi goriilmektedir. Sekil 3.42 ise g hizinin
benzerlik degiskenine gore degisimini gostermektedir. Grafige dikkat edilirse Power-
Law {ssliniin negatif degerleri mutlak olarak artttkca g hizinin azaldig

goriilmektedir.

Sonug olarak ikinci dereceden Power-Law akiskanina ait sinir tabakasi denklemleri
benzerlik doniisiimii ile adi diferansiyel denklem haline indirgenmistir. Daha sonra
sonlu fark algoritmasi ile ¢alisan bir kod yazilmis ve bu kod sayesinde elde edilen adi
diferansiyel denklem sistemi niimerik olarak c¢oziilmiistiir. Cozlimler sonucunda
ikinci derece akigkan katsayisinin artan degerlerinde, sinir tabakasinin kalinlagtig
goriilmiistiir. Benzerlik degiskeninin 1.7 degerinden sonraki degerleri icin Power-
Law issiiniin artan pozitif degerlerinde sinir tabakasinin inceldigi goézlenmistir.
Benzerlik degiskeninin 1.8’den sonraki degerleri i¢in Power-Law {issliniin negatif

degerleri mutlak olarak arttiginda ise sinir tabakasinin kalinlagtig1 goriilmiistiir.
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4. SONUC

Bu tez calismasinda yeni bir Newtonyen olmayan akiskan modeli ele alinarak bu
modele ait kararsiz akis i¢in siir tabakasi denklemleri elde edilmis ve bu
denklemlerin ¢oziimleri yapilmistir. Ele alinan model, Power-Law akiskan ile ikinci
ve Ugclincli derece akigkan modelinin birlesimi bigimindedir. Daha 6nce yapilan
calismalar incelendiginde bu ¢aligmalarin sadece Power-Law akiskan modeli, ikinci
veya liclincii derece akiskan modeli gibi modeller iizerinde yapildigi goriilmektedir.
Literatiirde bu ii¢ Newtonyen olmayan akigkan modeli ile ilgili bir¢ok c¢alisma

yapilmistir. Degisik akis problemleri ele alinip incelenmistir.

Tez c¢alismasinda, akiskanlar mekaniginde ¢ok ©nemli bir yere sahip olan sinir
tabakasi akiglar1 bu yeni model i¢in ele alinip incelenmistir. Tezde oncelikle akiskan
modeline ait en genel hareket denklemleri ¢ikartilmistir. Ivme terimleri, viskoz
terimler, Power-Law terimi, ikinci ve {li¢iincii derece akigkan terimleri ayr1 ayri elde
edilmistir. Bu hareket denklemlerinde iigiincii derece akiskan katsayist sifir (f=0)
alindiginda denklemler sadece Power-Law iissii ve ikinci dereceden akiskan terimini
ihtiva eden hareket denklemlerine doniismektedir. Eger denklemlerde ikinci derece
akiskan katsayilar1 sifir (o;=0,=0) alinir ise hareket denklemleri Power-Law {issii ve
liclincii dereceden akiskan terimini ihtiva eden denklemler haline gelmektedir. Tiim
Newtonyen olmayan katsayilar sifir (o;=0,=p=0) kabul edilir ise denklemler Power-
Law akiskanin hareket denklemleri haline doniismektedir. Eger a;=0,=p=0 ve m=0
alinir ise hareket denklemleri Newtonyen akigkanlara indirgenmis olmaktadir. Tezin
sonraki kisminda ise sinir tabakasi yaklasimi kullanilarak ikinci dereceden Power-
Law ve ligiincii dereceden Power-Law akiskanlarina ait iki boyutlu ve kararsiz akis
i¢cin smir tabakas1 denklemleri elde edilmistir. Sinir tabakasi yaklagiminda t zamana,
p basing terimi, x koordinati ve bu yondeki u hizi bir mertebesinde, y koordinati ve
bu yondeki v hizi & mertebesinde alinmistir. Bu yaklagim ile sinir tabakasi

denklemleri elde edilmistir.

Sinir tabakasi yaklagim ile elde edilen ikinci dereceden Power-Law ve fligiincii

dereceden Power-Law akigkanlarna ait sinir tabakasi denklemlerinin ¢oziimiine
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gecilmistir. Oncelikle {igiincii dereceden Power-Law akiskanina ait smir tabakasi
denklemlerinin ¢oziimleri yapilmistir. Bu akisa ait sinir tabakasi denklemleri kismi
diferansiyel denklem sistemi bi¢gimindedir. Bu denklemlerin ¢oziilmeleri olduk¢a zor
ve ugrastiricidir.  Bu nedenle, denklemlerin ¢6zliimiinii yapabilmek ig¢in
denklemlerimiz adi diferansiyel denklem formuna indirgenmistir. indirgeme islemi
icin Lie Grup analizi kullanmilmistir. Lie Grup analizinde once denklemler igin
invaryantlik sartlar1 yazilmigtir. Sonrasinda ise bu sartlar i¢in gerekli olan
infinitesimaller tiiretilmistir. Bu infinitesimaller, invaryantlik sartlarinda yerine
yazildiginda iki ayri denklem sistemi elde edilmistir. Bu denklem sistemleri
katsayilarina gore ayristirilarak bir kismi diferansiyel denklem sistemi elde
edilmistir. Bu denklem sistemi ¢oziilerek denklemlerin kabul ettigi simetriler
bulunmugtur. Bulunan bu simetriler ile denklemler ii¢ degiskenli kismi diferansiyel
denklem sisteminden, iki degiskenli kismi diferansiyel denklem sistemine
doniistiiriilmiistiir. Indirgeme islemi olgekleme ve &teleme doniisiimleri ile
saglanmistir. Yani iki farkli kismi diferansiyel denklem sistemi elde edilmistir. Sinir
sartlarinda en az kisitlayicilik, hareketli yiizey lizerindeki emme-piiskiirtme durumu
oldugu i¢in bu fiziksel problem ele alinmistir. Elde edilen bu iki bagimsiz degiskenli
iki ayr1 kismi diferansiyel denklem sistemlerine ikinci kez Lie Grubu analizi
uygulanmistir. Boylece iki degiskenli kismi diferansiyel denklemler, bir degiskenli
adi diferansiyel denklem formuna indirgenmistir. Olgekleme doniisiimii sayesinde
olusan denklemlerde x koordinati yoniindeki hiz fonksiyonu M, y koordinati
yoniindeki hiz fonksiyonu N olarak belirlenmistir. N fonksiyonu analitik olarak
¢dziilmiis olup dogrusal bir degisim gdstermistir. Oteleme déniisiimii sonucunda ise
x koordinatindaki hiz fonksiyonu K, y koordinatindaki hiz fonksiyonu ise L olarak

verilmigtir.

Tez ¢alismasinda sinir tabakasi yaklasimi ile elde edilen ikinci dereceden Power-Law
akiskanina ait smir tabakasi denklemlerinin ¢oziimleri de yapilmistir. Bu
denklemlere ait sinir sart1 olarak literatiirde de ¢ok sik yer alan klasik sinir sartlar
kullanilmistir. Denklemlerin ¢6ziimii i¢in dncelikle, denklemlerimiz adi diferansiyel
denklem haline getirilmistir. Bunun i¢in Yiiriisoy (2006)’un c¢alismasindaki 6zel bir

dontisiim kullanilmigtir. Bu doniisiim tizerinde bazi kiigiik degisiklikler yapilmis ve
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sinir tabakasi denklemlerine uygulanmistir. Bu yeni degiskenler, denklemde
yerlerine yazilarak kismi diferansiyel denklem sisteminin adi diferansiyel denklem
sistemine donistiiriilmesi saglanmistir. Denklemler adi diferansiyel denklem
formuna inerken sinir sartlar1 da basari ile adi diferansiyel forma indirgenmistir. Bu
doniistim kullanilarak denklemin ¢6ziimii i¢in biiylik bir avantaj elde edilmistir.
Ciinkii her zaman i¢in bir kismi diferansiyel denklemi ¢6zmek bir adi diferansiyel
denklemi ¢6zmekten zordur. Bu doniisiim sayesinde denklemler hem adi diferansiyel
denklemlere doniistiiriilmiis hem de boyutsuzlastirilmistir. Elde edilen adi
diferansiyel denklemlerde x koordinati yoniindeki hiz fonksiyonu f, y koordinati

yoniindeki hiz fonksiyonu g olarak belirlenmistir.

Bundan sonraki kisimda, {igiincii dereceden Power-Law akigskanina ait sinir tabakasi
icin elde edilen iki ayr1 adi diferansiyel denklem sistemlerinin niimerik ¢oziimleri
yapilmistir. Niimerik ¢dziim i¢in Runge-Kutta algoritmas1 kullamlmustir. iki farkl
dontistimle (6lgekleme ve oteleme) elde edilen denklemlerin niimerik ¢oziimleri
grafiklerle ifade edilmis ve yorumlanmistir. Grafiklerde power-law {issiiniin ve
liclincli derece akiskan katsayisinin ¢esitli degerleri i¢in hiz fonksiyonlarinin

degisimi gosterilmistir.

Grafiklerden anlagildigi gibi bu iki ayri denklem sisteminde de ayni niimerik
sonuglar elde edilmistir. Ugiincii derece akiskan katsayisinin artan degerlerinde sinir
tabakasinin kalinlastig1 goriilmiistiir. Power-Law {issiiniin sinir tabakasina etkileri de
gosterilmistir. Piiskiirtme durumu i¢in Power-Law {issiiniin artan pozitif degerlerinde
sinir tabakasinin inceldigi goriilmiistiir. Emme durumunda ise ii¢ilincii derece akiskan
katsayisinin 3’ten biiyiik degerlerlerinde sinir tabakasi incelmektedir. Power-Law
tisstinlin negatif degerleri mutlak olarak arttiginda, sinir tabakasinin kalinlastigi
gbézlenmistir. Ancak sinir tabakasindaki kalinlasma {igiincii derece akigskan
katsayisinin 3’ten biiyiik degerlerinde olmustur. Bu durum hem piiskiirtme hem de
emme durumunda da goriilmektedir. Buradan, kabaran (shear thickening) veya
incelen (shear thinning) bir akiskanda Newtonyen olmayan etkiler arttiginda, siir
tabakasinin kalinlastig1 sonucuna varilmistir. Newtonyen olmayan akiskan katsayinin

kiiclik degerlerinde Power-Law akigskaninin 6zellikleri de goriilmektedir. Ayrica M
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ve K fonksiyonunun tiirevlerine ait grafiklere de yer verilmistir. Bu grafikler kayma

gerilmesinin hesap edilmesinde kullanilmaktadir.

Tezin bu asamasinda ikinci dereceden Power-Law akigkanin sinir tabakasi icin elde
edilen adi diferansiyel denklem sisteminin ¢oziimleri tizerinde durulmustur. Coziim
icin sonlu farklar metodu tercih edilmistir. 100 diglim noktast i¢in ¢oziim
yapilmistir. MATLAB programinda sonlu farklar tabanli bir kod yazilmistir. Bu kod
sayesinde adi diferansiyel denklem sistemi basar1 ile ¢oziilmiistiir. Elde edilen
sonuclar grafiklerle ifade edilmistir. Grafikler power-law {ssiiniin ve ikinci derece
akigkan katsayisinin gesitli degerleri icin hiz fonksiyonlarmin degisimini

gostermektedir.

Ikinci dereceden akiskan katsayismin gesitli degerleri icin elde edilen ¢oziimler
incelendiginde, artan ikinci derece katsayir degerlerine karsilik sinir tabakasinin
kalinlastigi gozlenmektedir. Kabaran (shear thickening) akis icin elde edilen
cozlimler incelendiginde Power-Law issiiniin artan pozitif degerlerinde, sinir
tabakasmin inceldigi gdzlenmistir. Incelen (shear thinning) akis icin elde edilen
¢Oziimler incelendiginde ise Power-Law iissiiniin negatif degerleri mutlak olarak

arttiginda, sinir tabakasinin kalinlagtig1 goriilmiistiir.

94



5. KAYNAKLAR

Abbasbandy, S., Yirisoy, M., Pakdemirli, M., 2008. The analysis approach of
boundary layer equations of Power-Law fluids of second grade. Zeitschrift
Fur Naturforschung Section A-A Journal of Physical Sciences, 63 (9), 564-
570.

Acrivos, A.M., Shah, J., Petersen, E., 1960. Momentum and heat transfer in laminar
boundary-layer flows of non-Newtonian fluids past external surfaces.
American Institute of Chemical Engineers, 6 (2), 312-317.

Astin, J., Jones, R.S., Lockyer, P., 1973. Boundary layers in non-Newtonian fluids.
Journal de Mécanique, 12, 527-539.

Beard, D.W., Walters, K., 1964. Elastico-viscous boundary layer flows.
Mathematical Proceedings of the Cambridge Philosophical Society, 60 (3),
667-674.

Bluman, G.W., Kumei, S., 1989. Symmetries and differential equations. Springer
Verlag, New York.

Coleman, B.D., Noll, W., 1960. An approximation theorem for functionals with
applications in continuum mechanics. Archive for Rational Mechanics and
Analysis, 6 (1), 355-370

Dunn, J.E., Fosdick, R.L., 1974. Thermodynamics stability and boundedness of
fluids of complexity 2 and fluids of second grade. Archive for Rational
Mechanics and Analysis, 56 (3), 191-252.

Fosdick, R.L., Rajagopal, K.R., 1978. Uniqueness and drag for fluids of second
grade in steady motion. International Journal of Non-Linear Mechanics, 13
(3), 131-137.

Fosdick, R.L., Rajagopal, K.R., 1980. Thermodynamics and stability of fluids of
third grade. Proceedings of the Royal Society of London Series A -
Mathematical Physical and Engineering Sciences, 339 (1738), 352-377.

Garg, V.K., Rajagopal, K.R., 1990. Stagnation point flow of a non-Newtonian fluid.
Mechanics Research Communications, 17 (6), 415-442.

Garg, V.K., Rajagopal, K.R., 1991. Flow of a non-Newtonian fluid past a wedge.
Acta Mechanica, 88 (1-2), 113-123.

Gupta, G., Massoudi, M., 1993. Flow of a generalized second grade fluid between
heated plates. Acta Mechanica, 99 (1-4), 21-33.

Hayat, T., Khan, M., 2005. Homotopy solutions for a generalized second-grade fluid
past a porous plate. Nonlinear Dynamics, 42 (4), 395-405.

Kegebas, A., Yiirlisoy, M., 2006. Similarity solution of unsteady boundary layer
equations of a special third grade fluid. International Journal of Engineering
Science, 44 (11-12), 721-7209.

Lee, S.Y., Ames, W.F., 1966. Similarity solutions for non-Newtonian fluids.
American Institute of Chemical Engineers, 12 (4), 700-708.

95



Man, C.S., Sun, Q.X., 1987. On the significance of normal stress effects in the flow
of glaciers. Journal of Glaciology, 33 (115), 268-273.

Man, C.S., 1992. Nonsteady channel flow of ice as a modified second-order fluid
with power-law viscosity. Archive for Rational Mechanics and Analysis, 119
(1), 35-57.

Mansutti, D., Rajagopal, K.R., 1991. Flow of a shear thinning fluid between
intersecting planes. International Journal of Non-Linear Mechanics, 26, (5)
769-775.

Massoudi, M., Phuoc, T.X., 2001. Fully developed flow of a modified second grade
fluid with temperature dependent viscosity. Acta Mechanica, 150 (1-2), 23-
37.

Massoidi, M., Ramezan, M., 1989. Effect of injection or suction on the Falkner-Skan
flows of second grade fluids. International Journal of Non-Linear Mechanics,
24 (3), 221-227.

McLeod, J.B., Rajagopal, K.R., 1987. On the uniqueness of flow of the Navier-
Stokes fluid due to a stretching boundary. Archive for Rational Mechanics
and Analysis, 98 (4), 385-393.

Mishra, S.P., Panda, T.CH., 1979. Effect of injection on the flow of second order
fluid in the inlet region of a channel. Acta Mechanica, 32 (1-3), 11-17.

Na ,T.Y., Hansen, A.G., 1967. Similarity solutions of a class of laminar three
dimensional boundary layer equations of power-law fluids. International
Journal of Non-Linear Mechanics, 2 (4), 373-385.

Noll, W., 1955. On the continuity of the solid and fluid states. Journal of Rational
Mechanics and Analysis, 4, 3-81.

Oldroyd, J.G., 1950. On the formulation of rhological equations of state. Proceedings
of the Royal Society of London Series A - Mathematical Physical and
Engineering Sciences, 200 (1063), 523-541.

Pakdemirli, M., Suhubi, E.S., 1992a. Boundary layer theory for second order fluids.
International Journal of Engineering Science, 30 (4), 523-532

Pakdemirli, M., Suhubi, E.S., 1992b. Similarity solutions of boundary layer
equations for second order fluids. International Journal of Engineering
Science, 30 (5), 611-629.

Pakdemirli, M., 1992. The boundary layer equations of third grade fluids.
International Journal of Non-Linear Mechanics, 27 (5), 785-793.

Pakdemirli, M., 1993. Boundary layer flow of power-law fluids past arbitrary
profiles. IMA Journal of Applied Mathematics, 50 (2), 133-148.

Pakdemirli, M., 1994. Conventional and multiple deck boundary layer approach to
second and third grade fluids. International Journal of Engineering Science,
32 (1), 141-154.

Pakdemirli, M., Aksoy, Y., Yiiriisoy, M., Khalique, C.M., 2008. Symmetries of
boundary layer equations of power-law fluids of second grade. Acta
Mechanica Sinica, 24 (6), 661-670.

96



Rajagopal, K.R., Gupta, A.S., Wineman, A.S., 1980. On a boundary layer theory for
non-Newtonian fluids. International Journal of Engineering Science, 18 (6),
875-883.

Rajagopal, K.R., Gupta, A.S., 1981a. On a class of exact solutions to the equations of
motion of a second grade fluid. International Journal of Engineering Science,
19 (7), 1009-1014.

Rajagopal, K.R., Gupta, A.S., 1981b. Flow and stability of a second grade fluid
between two paralel plates rotating about noncoincident axes. International
Journal of Engineering Science, 19 (11), 1401-1409.

Rajagopal, K.R., Gupta, A.S., Na, T.Y., 1983. A note on the Falkner-Skan flow of a
non-Newtonian fluid. International Journal of Non-Linear Mechanics, 18 (4),
313-319.

Rajagopal, K.R., Na, T.Y., Gupta, A.S., 1984. Flow of a viscoelastic fluid over a
stretching sheet. Rheologica Acta, 23 (2), 213-215.

Rajagopal, K.R., Szeri, A.Z., Troy, W., 1986. An existence theorem for the flow of a
non- Newtonian fluid past an infinite porous plate. International Journal of
Non-Linear Mechanics, 21 (4), 279- 289.

Rajesvari, G.K., Rathna, S.L., 1962. Flow of a particular class of non-Newtonian
visco-elastic and visco-inelastic fluids near a stagnation point. ZAMP, 13 (1),
43-57.

Reiner, M., 1945. Mathematical Theory of Dilatancy. Am J. Math., 67, 350-362

Rivlin, R.L., 1948. The hydrodynamics of non-Newtonian fluids. Proc R. Soc.
London A., 193, 260-281.

Prater, K.R., 1969. A boundary layer in an elastico-viscous fluid. ZAMP, 20 (5),
712-721.

Schlichting, H.,1951. Boundary-Layer Theory. McGraw Hill, New York.

Schowalter, W.R., 1960. The application of boundary layer theory to power-law
pseudoplastic fluids: Similarity solutions. American Institute of Chemical
Engineers, 6 (1), 24-28.

Siddiqui, A.M., Kaloni, P.N., 1986. Certain inverse solutions of a non-Newtonian
fluid. Mechanics International Journal of Non-Linear Mechanics, 21 (6), 459-
473.

Srivastava, A.C., 1958. The flow of a non-Newtonian liquid near a stagnation point.
ZAMP, 9 (1), 80-84.

Stephani, H., 1989. Differential equations: Their solution using symmetries.
Cambridge University Press, New York.

Troy, W.C., Overman, E.A., Ermentrout, G.B., Keener J.P., 1987. Uniqueness of a
flow a second order fluid past a stretching sheet. Quarterly Of Applied
Mathematics, 44 (4), 753-755

Yiiriisoy, M., Pakdemirli, M., 1996. Group-theoric approach to unsteady boundary
layer equations of some non-Newtonian fluids. Modern Group Analysis VI,
Johannesburg, South Africa.

97



Yiirlisoy, M., Pakdemirli, M., 1999. Exact solutions of boundary layer equations of a
special non-Newtonian fluid over a stretching sheet. Mechanics Research
Communications, 26 (2), 171-175.

Yiiriisoy, M., 2006. Unsteady boundary layer flow of power-law fluid on stretching
sheet surface. International Journal of Engineering Science, 44 (5-6), 325-
332.

98



EKLER

99



EK-1

RUNGE-KUTTA ALGORITMASINI KULLANAN PROGRAMLAR

M ve N hizlari i¢in

function fdot = MNhizlari(t,T)

m=-0.8;

k=1;

c3=2;

fdot=[T(3);(-372); (2*T(L)+F()*(Ff(2)-1/2*t)-

2*c3)/ (((+1)+2*k*(m+3)*(F(3))"(2))*(abs(F(3)))"(M)H)1]1;

clear all

t0=0;tf=10;

fO=[1 1 1.9065]";
[t,fO]=ode45("MNhizlari®,t0,tf,f0);
f11=F0(:,1);

hold on

plot(t,f11,"b")

K ve L hizlar1 igin

function fdot = KLhizlari(t,T)

m=-0.8;

k=1;

c=2;

fdot=[F(3); ((-F(1)+t*F(3))/3) ; (((F(1))"2-
(CF(1)*F(3))+(B*F(2)*F(3))-
c"2)/(B*((m+1)+2*k*(m+3)*(F(3))"(2))*(abs(F(3)))*(M))1:

clear all

t0=0;tf=10;

fO=[1 1 0.7864]";
[t,fO0]=0oded45("KLhizlari",t0,tf,f0);
f11=F0(:,1);

hold on

plot(t,f11,"r")
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EK-2

SONLU FARKLAR METODUNU KULLANAN PROGRAM
clear all
h=0.1;

f0=[0:1/98:1 0:-5/98:-5];

options=optimset("Display”, "iter","TolFun",1e35, "MaxFunEvals”,1e8, "M
axlter®,30,"TolX",1e38, "LargeScale”, "on", "PrecondBandWidth",inf);
[f,fval,exitflag,output,JAC] = fsolve(@doktora,f0,options);

for 1=1:99
p1(i, )=F(i);

end

for 1=100:198
r1(i-99, :)=Ff(i);
end

t1=0:0.1:9.8;
figure(l)
plot(tl,pl, "k")
hold on
figure(2)

plot(tl,rl, "k")
hold on
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