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ÖZET 
 

Doktora Tezi 
 

NEWTONYEN OLMAYAN YENİ BİR AKIŞKAN MODELİNDE KARARSIZ 
AKIŞ İÇİN SINIR TABAKASI DENKLEMLERİNİN BENZERLİK 

ÇÖZÜMLERİNİN ARAŞTIRILMASI 
 

Ali KEÇEBAŞ 
 

Süleyman Demirel Üniversitesi 
Fen Bilimleri Enstitüsü 

Makina Mühendisliği Anabilim Dalı 
 

Danışman:  Prof. Dr. Mustafa BAYHAN 
 
 

Bu çalışmada, Newtonyen olmayan yeni bir akışkan modeli için iki boyutlu, kararsız akışlı, 
laminer sınır tabakası denklemleri ele alınmıştır. Bu model, Power-Law akışkan modeli ile 
ikinci ve üçüncü derece akışkan modellerinin bir birleşimidir. İlk önce yeni modele ait genel 
hareket denklemleri çıkartılmıştır. Sonra, sınır tabakası yaklaşımı kullanılarak ikinci 
dereceden Power-Law ve üçüncü dereceden Power-Law akışkanlarına ait sınır tabakası 
denklemleri elde edilmiştir. Sonuçların genel olabilmesi için denklemler ve sınır şartları 
boyutsuzlaştırılmıştır. Üçüncü dereceden Power-Law akışkanına ait sınır tabakası 
denklemlerinin çözümleri gerçekleştirilmiştir. Çözüm için denklemlere Lie Grup analizi 
uygulanmıştır. Lie Grup analizi uygulanarak denklemlerin kabul ettiği infinitesimal 
jeneratörler bulunmuştur. Ölçekleme ve öteleme simetrileri kullanarak denklemler iki 
değişkenli kısmi diferansiyel denklemlere dönüştürülmüştür. Elde edilen bu denklemlere 
yeniden Lie Grubu analizi uygulanmıştır. Elde edilen yeni simetriler ile denklemler iki farklı 
adi diferansiyel denklem sistemine dönüşmüştür. Sonuçta bu iki farklı adi diferansiyel 
denklem sistemi Runge-Kutta algoritması ile nümerik olarak çözülmüştür. Nümerik 
çözümlerde sınır değer problemi olarak hareketli yüzey üzerindeki emme-püskürtmeli akış 
problemi incelenmiştir. Çözümlerde iki farklı denklem sisteminde de aynı nümerik sonuçlar 
görülmüştür. Kabaran veya incelen bir akışkanda Newtonyen olmayan etkiler arttığında, 
sınır tabakasının kalınlaştığı sonucuna varılmıştır. Newtonyen olmayan akışkan katsayının 
küçük değerlerinde Power-Law akışkanının özellikleri de görülmektedir. Tezin sonraki 
bölümünde ikinci dereceden Power-Law akışkanına ait sınır tabakası denklemlerinin çözümü 
yapılmıştır. Bu akışkana ait sınır tabakası denklemleri kısmi diferansiyel denklem olup 
benzerlik dönüşümleri ile denklemler adi diferansiyel denklem formuna indirgenmiştir. 
Klasik sınır tabakası şartları için adi diferansiyel denklem sistemi, sonlu farklar algoritması 
kullanılarak nümerik olarak çözülmüştür. Elde edilen çözümlere göre ikinci derece katsayı 
değerleri arttığında sınır tabakasının kalınlaştığı gözlenmektedir. Power-Law üssünün kayma 
kalınlaşması durumundaki değerleri arttıkça sınır tabakasının inceldiği görülmüştür. Halbuki, 
Power-Law üssünün kayma incelmesi durumunda sınır tabakasının kalınlaştığı görülmüştür. 
 
Anahtar Kelimeler: Newtonyen olmayan akışkan, sınır tabakası akışı, kararsız akış, 
benzerlik çözümü. 
 
2011, 105 sayfa 
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ABSTRACT 
 

Ph.D. Thesis 
 

INVESTIGATION OF SIMILARITY SOLUTIONS OF BOUNDARY LAYER 
EQUATIONS FOR UNSTEADY FLOW IN A NEW NON-NEWTONIAN 

FLUID MODEL 
 

Ali KEÇEBAŞ 
 

Süleyman Demirel University  
Graduate School of Applied and Natural Sciences 

Department of Mechanical Engineering 
 

Supervisor: Prof. Mustafa BAYHAN 
 
 
In this study, two dimensional, unsteady flow, laminar boundary layer equations for a new 
non-Newtonian fluid model are treated. This model is a combination of Power-Law fluid 
model, second and third grade fluid models. First of all, the general equations of motion 
regarding this new model are derived. Then, by using boundary layer approach, the boundary 
layer equations for Power-Law of second grade and Power-Law of third grade fluids are 
obtained. To be able to generalize results, these equations and boundary conditions have 
been made dimensionless. Solutions of the boundary layer equations for Power-Law of third 
grade fluids are performed. For solution, the Lie Group analysis is applied. The infinitesimal 
generators accepted by the equations are calculated by using Lie Group analysis. By using 
scaling and translation symmetries, equations are transformed into partial differential 
equations with two variables. Lie Groups are further applied to these equations obtained. 
When using the infinitesimal generators of these equations, equations are transformed into 
two different ordinary differential systems. Finally, two different ordinary differential 
systems are solved with Runge-Kutta algorithm numerically. The flow over a moving 
surface, with suction or injection is examined as the boundary value problem in numeric 
solutions. For these two different systems from the solutions, it is seen in same numerical 
results. It is seen that the boundary layer becomes thicker when the third grade fluid 
coefficient increases. It is deduced that in a fluid exhibited shear thinning and shear 
thickening behaviors, the boundary layer gets thicker when non-Newtonian effects increase. 
In the minor values of non-Newtonian fluid coefficient, Power-Law fluid behaviors are also 
seen. In the following of the theses, solutions of the boundary layer equations for Power-Law 
of second grade fluids are performed. These equations are partial differential equation 
system and are transformed into an ordinary differential equation system via similarity 
transformation. For classical boundary layer conditions, these equations are solved by using 
finite difference algorithm numerically. According to the obtained solutions, it is observed 
that the boundary later gets thicker when the second grade fluid coefficient increases. 
Thinning the boundary layer is observed for increasing values in shear thickening case of 
Power-Law exponent. Whereas, in shear thinning case of its, thickening the boundary layer 
is observed.  
 
Key Words: Non-Newtonian fluid, boundary layer flow, unsteady flow, similarity 
solution. 
 
2011, 105 pages 
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1. GİRİŞ 

  

Günümüzde gelişen bilgi ve teknoloji ile akışkanlar mekaniğinin öneminin ne kadar 

büyük olduğu görülmektedir. İnsandaki kan dolaşımından roketlere kadar çok çeşitli 

alanlarla doğrudan doğruya ilgili olan akışkanlar mekaniği, bütün mühendislik 

alanlarında ve bilim dallarında kaçınılmaz bir bilgi kaynağı durumuna gelmiştir. 

Yakın tarihe kadar akışkanlar mekaniği bilimi, hidrolik adı altında ele alınmaktaydı. 

Hidroliğin genellikle su ile uğraşması, kapsadığı akışkan sorunlarının çok sınırlı 

kalması ve deneysel sonuçların matematik temelinden yoksun olması dolayısı ile 

genelleştirilememesi ve olayların nedenlerine inilememesi gibi gerekçeler nedeniyle 

hidrolik bilimi hızla gelişen tekniğin getirdiği sorunlara karşılık veremez duruma 

gelmiştir. Böylece akışkanlar mekaniği ve hidrolik bilimi kısmen ayrılmıştır. 

Şimdilerde ise akışkanlar mekaniği, diğer bilim ve mühendislik dallarında olduğu 

gibi o kadar genişlemiştir ki akışkanlar mekaniği başlı başına incelenebilecek bir 

alana dönüşmüştür. 

 

Akışkan, günlük hayatta her ne kadar konulduğu kabın şeklini alan maddeler olarak 

tarif edilse de bugün teknik bilimde en küçük bir kayma gerilmesi uygulandığında 

sürekli deforme olan madde olarak tanımlanmaktadır. Yapılan çalışmalar sonucunda 

birçok gerçek akışkanın, özellikle düşük moleküler ağırlığa sahip olanların mekanik 

davranışları Navier-Stokes teorisi tarafından doğru olarak belirlenmektedir. Bu 

teorinin uygulanabildiği akışkanlar Newtonyen akışkanlar olarak adlandırılmaktadır. 

Kararlı bir halde akan akışkanda, hız değişimi ile uygulanan kayma gerilimi 

arasındaki ilişki lineer olan akışkanlar Newtonyen akışkanlar olarak da 

tanımlanabilir. Newtonyen olmayan akışkanlarda ise hız değişimi ile uygulanan 

kayma gerilimi arasındaki ilişki lineer değildir. Aldığımız nefes, hava, su, süt ve 

benzin Newtonyen akışkanlara örnek verilebilir. Bunun yanında Newtonyen olmayan 

akışkanlar da günlük hayatta oldukça fazla karşılaştığımız akışkanlardır. Örnek 

olarak bal, hamur, sulandırılmış nişasta, yumurta akı, bitkisel yağlar bu gruba 

girerler. Her yerde kullanılan boya ve günlük hayatta oldukça sık rastladığımız asfalt, 

zift, tutkal gibi maddeler de Newtonyen olmayan akışkanlardır. 
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19. yüzyılın başında aerodinamik alanında yapılan çalışmalara önem verilmesi 

Newtonyen akışkanlara verilen önemin azalmasına neden olmuştur. Özellikle 

1904’te Lunding Prandtl tarafından ortaya atılan sınır tabası kavramı ve gelişen uçak 

endüstrisi sayesinde bir cisim etrafında hareket eden akış için geniş çalışmalar 

yapılmıştır. Sınır tabakasının en önemli uygulaması ise madde akışı ile moleküler 

yapı arasında ilişki kurmak isteyen fiziksel kimyacıların, polimerik malzeme üzerine 

yapmış olduğu testler bu konuda öncü rolü oynamıştır. Polimerik malzemelerin ticari 

olarak önem kazanması bu konudaki araştırmaları arttırmıştır. Madde akışını 

inceleyen bir bilim dalı olan reoloji, Newtonyen olmayan akışkanları 

sınıflandırmıştır. Sınır tabakaları üzerine temel çalışmanın örnekleri Schlichting 

(1951) tarafından yazılan bir kitapta yer almıştır. 

 

Newtonyen olmayan akışkanlar genelde viskoelastik terimi ile ifade edilirler. Çünkü 

bu sıvılar hem viskoziteli akışkan hem de elastik katı davranışını birlikte gösterirler. 

Newtonyen akışkanlardan alışık olduğumuz bazı özellikleri bu akışkanlar 

göstermezler. Bunlara birkaç örnek verilirse normalde aşağıya doğru akan bir sıvının 

çapı yere yaklaştıkça momentum korunumundan dolayı azalır. Halbuki Newtonyen 

olmayan akışkanlarda tam tersi olmaktadır yani, çap yere yaklaştıkça artmaktadır. 

Bunun sebebi de elastik kuvvetlerin çıkışta serbest kalması ve genleşmeyi 

sağlamasıdır. Bu nedenle, Newtonyen olmayan akışkanların davranışını açıklamak 

için birçok kayma gerilmesi modeli önerilmiştir. Bunlar arasında; Power-Law, 

diferansiyel ve türev tipli modeller daha fazla kabul görmüşlerdir.  

 

Uygulamada oldukça sık kullanılan Newtonyen olmayan akışkanların başında 

Power-Law akışkan modeli gelmektedir. Bu akışkanlarda viskozite, hız gradyanının 

üssel bir değişimi olarak görülmektedir. Power-Law akışkan modeli kullanılarak 

sınır tabakası ile ilgili birçok çalışma yapılmıştır. Bu çalışmalardan bazıları, Acrivos 

et al. (1960) ve Schowalter (1960)’in yaptığı çalışmalardır. Acrivos et al. (1960) ısı 

transferi içeren yatay düz bir plakadan akan akışı detaylı olarak incelemiştir. 

Schowalter (1960) iki ve üç boyutlu sınır tabakası denklemlerini geliştirmiş ve 

denklemlerin bazı benzerlik çözümlerini bulmuştur. Lee and Ames (1966) 

çalışmalarında Powell-Eyring ve Power-Law modellerine aynı çalışmada yer vererek 
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kararlı yapıdaki sınır tabakası denklemlerini çözmüşlerdir. Çalışmada ölçekleme 

dönüşümü (Lie Grup dönüşümü) kullanılmıştır. Denklemler kısmi diferansiyel 

denklemden dönüşüm sayesinde adi diferansiyel denklem formuna indirilmiş ve bu 

denklemler nümerik olarak çözülmüştür. Na and Hansen (1967) Power-Law 

akışkanlarına ait üç boyutlu sınır tabakası denklemlerinin benzerlik çözümlerini 

ayrıntılarıyla incelemişlerdir. Mansutti and Rajagopal (1991) Power-Law akışkanları 

için gerilme bünye denklemini elde etmişlerdir. Pakdemirli (1993) Power-Law 

akışkanları için sınır tabakası denklemlerini özel bir koordinat sistemi kullanarak 

çıkarmıştır. Bu denklemleri, durgun nokta akışı ve düz plaka akışı durumları için 

çözmüştür. Son zamanlarda ise kararsız iki boyutlu sınır tabakası durumunda Lie 

Grup analizinin kullanılması incelenmiştir (Yürüsoy and Pakdemirli, 1996). Yürüsoy 

(2006) kararsız sınır tabakası denklemlerini Power-Law modeli için ele alarak 

çözmüştür. Çözüm için özel bir dönüşüm kullanarak denklemleri adi diferansiyel 

denklem biçimine indirgemiştir. Keçebaş and Yürüsoy (2006) çalışmalarında yine 

kararsız sınır tabakası denklemini ele almışlardır. Çok özel Lie Grup dönüşümleri 

sayesinde denklemler iki alternatif ile adi diferansiyel denklem formuna indirgenmiş 

ve nümerik olarak çözülmüştür. Bu çalışmada da yine Power-Law modeli ele 

alınmıştır. 

 

Diferansiyel tip akışkanlar için sınır tabakaları üzerine ilk çalışma Srivastava (1985) 

ve Rajaswari and Rathna (1962)’nın yaptığı çalışmalardır. Srivastava (1958) 

Karmen-Pohlhausen metodunu kullanarak durgun nokta akışını incelemiştir. 

Rajaswari and Rathna (1962) ikinci derece akışkanlar için sınır tabakası 

denklemlerini türetmiştir. Türev tipli akışkanlar için ilk çalışma Beard and Walters 

(1964) ve Astin et al. (1973)’ın çalışmalarıdır. Beard and Walters (1964) 

genelleştirilmiş bir Oldroyd B tipi akışkan için sınır tabakası eşitlikleri geliştirmiş ve 

durgun nokta akışı durumu için denklemleri nümerik olarak çözmüşlerdir. 

 

Power-Law akışkan modelleri kullanılarak incelen (shear thinning) ve kabaran (shear 

thickening) akışkanlar doğru olarak modellenebilmektedir. Ancak bu modeller 

elastik özellikler içeren bazı akışkan tiplerinde akışkanı tam olarak 

modelleyememektedir. Mile tırmanma ve sifon etkisi gibi bazı fiziksel olaylar elastik 
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özellikler içeren akışkanlarda meydana gelen durumlara örnektir. Bu tip az rastlanan 

olayların modellenmesi oldukça ilginç çalışmaları beraberinde getirmiştir. Bu 

çalışmalardan başlıcaları Reiner (1945), Rivlin (1948), Oldroyd (1950) ve Noll 

(1955) tarafından yapılan çalışmalardır. Bahsedilen tipteki akışkan modellerinin en 

önemlileri Coleman-Noll, Rivlin-Ericksen, Green-Rivlin ve Oldroy modelleridir. 

 

Bahsedilen modellerden Rivlin-Ericksen modelinin özel bir türü, ikinci ve üçüncü 

derece akışkan modelleridir. Bu modellerle ilgili kartezyen koordinatlarda yapılan 

çalışmalar şöyledir: İkinci derece akışkanlar için sınır tabakası teorisinin 

uygulanması ile ilgili ilk çalışmalar, Karmen-Pohlhausen metodunu kullanarak 

durgun nokta akışını incelemesiyle Srivastava (1958) ve Coleman and Noll 

(1960)’un yaptığı çalışmalardır. Durgun nokta akışında ikinci derece akışkanlar için 

sınır tabakası denklemleri türeten Rajeswari and Rathna (1962)’ya ait referanstır. 

Dunn and Fosdick (1974) ikinci derece akışkanlar için detaylı termodinamik ve 

stabilite analizleri yapmışlar ve bu akışkanın çözümlerinin termodinamikle uyumlu 

ve çözümlerin kararlı olabilmesi için bazı şartların sağlanması gerektiğini 

göstermişlerdir. Fosdick and Rajagopal (1978) daimi akım için sürüklenmeyi 

incelemiştir. Mishra and Panda (1979) kanalın giriş bölgesindeki enjeksiyonun akıma 

etkilerini incelemiştir. 

 

İkinci derece akışkanlar için sınır tabakası teorisi ve bu teoriye ait kısıtlamalar 

Rajagopal et al. (1980) tarafından gösterilmiştir. Rajagopal and Gupta (1981a) ikinci 

derece akışkanların hareket denklemleri için bazı tam çözüm sınıflarını vermişlerdir. 

Yine Rajagopal and Gupta (1981b) çakışık olmayan eksenlerde dönen iki paralel 

plaka arasındaki akışı ve bu akışın kararlılığını incelemişlerdir. Rajagopal et al. 

(1983) ikinci derece akışkanın köşe akışına çalışmış ve perturbasyon yaklaşımı 

kullanarak benzersizlik çözümünü elde etmişlerdir. Rajagopal et al. (1984) 

gerdirilmiş plaka üzerindeki ikinci derece akışkana yaklaşık bir çözüm önermişlerdir. 

Siddiqui and Kaloni (1986) ikinci derece akışkanlar için bazı ters çözümleri 

göstermişlerdir. Mcleod and Rajagopal (1987) çalışmalarında gerdirilmiş plakadan 

dolayı oluşan ikinci derece akışkanın hareketi ve Navier-Stokes çözümlerinin teklik 

durumlarını incelenmişlerdir. Troy et al. (1987) klasik ikinci derece akışkanın tek 
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parametreye bağlı çözümler ailesini bulmuşlardır. Emme-püskürtmenin Falkner-Skan 

akışına olan etkilerini Massoidi and Ramezan (1989) incelemişlerdir. Garg and 

Rajagopal (1990) ikinci derece akışkanın durgun nokta akışını incelemişler ve kayma 

gerilmesi ikinci derece olarak azaldığında etkilerinin arttığını bulmuşlardır. Garg and 

Rajagopal (1991) kama etrafındaki ikinci derece akışkanların akışını incelemişlerdir. 

Pakdemirli and Suhubi (1992a) eşlenmiş asimtotik açılım yöntemi kullanarak ikinci 

derece akışkanlar için sınır tabakası denklemlerini türetmişlerdir. Çıkarılan bu 

denklemlerin simetri grubu Pakdemirli and Suhubi (1992b) tarafından bulunmuş ve 

denklemler çözülmüştür.  

 

Rivlin-Ericksen modelinin diğer özel bir türü olan üçüncü derece akışkan modelidir. 

Bu modelle ilgili kartezyen koordinatlarda yapılan çalışmalar şöyledir: Üçüncü 

derece akışkanlar modeli Fosdick and Rajagopal (1980) tarafından elde edilmiştir. 

Ayrıca bu akışkanlar için ise detaylı termodinamik ve stabilite analizleri 

yapmışlardır. Pakdemirli (1992c) tarafından üçüncü derece akışkanlara ait sınır 

tabakası denklemleri özel bir koordinat sistemi kullanılarak çıkarılmıştır. Pakdemirli 

(1994) bu akışkanlara ait çok katmanlı sınır tabakası denklemlerini incelemiştir. 

Yürüsoy and Pakdemirli (1999) üçüncü derece akışkanlara ait iki boyutlu sınır 

tabakası denklemlerini Lie Grup analizini kullanarak denklemleri adi diferansiyel 

denklem formuna indirgemişlerdir. Adi türevli denklemler Runge-Kutta algoritması 

kullanılarak nümerik olarak çözülmüştür. 

 

Rivlin-Ericksen modelinin özel bir türü olan, diğer bir adıyla ikinci derece akışkan 

modeli, Newtonyen özellikteki viskozite ve elastik etkileri içerse de kabaran ve 

incelen akışkanları temsil etmekte yetersiz kalmaktadır. Bu akışkan modelinin 

eksikliğini gidermek için Man and Sun (1987) tarafından yeni bir model ortaya 

atılmıştır. Bu modelde, teorik olarak ele alınan ve ifade edilen ikinci derece 

akışkanlar ile deneysel sonuçlarla ifade edilen Power-Law tipindeki akışkanları 

birleştirmek için uğraşmışlardır. Bu çalışmalar ışığında bahsedilen modellerin buzul 

biliminde uygulamasını bulmuşlardır. Çalışmalarında “genelleştirilmiş ikinci derece 

akışkan” ve “ikinci derece Power-Law akışkanı” olarak farklı iki model 
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önermişlerdir. Yani bu modellerde ikinci derece akışkan ile Power-Law tipindeki 

akışkanlar birleştirilmiştir. 

 

Man (1992) tarafından genelleştirilmiş ikinci derece akışkan modeli kararsız kanal 

akışının varlık ve teklik durumları ve asimptotik stabilite çözümleri incelenmiştir. 

Genelleştirilmiş ikinci derece akışkan için Gupta and Massoudi (1993) bu akışkan 

modelini ısıtılmış plakalar arasındaki akış için incelemişlerdir. Massoudi and Phuoc 

(2001) viskozitenin sıcaklığa bağlı olduğu aynı akışkanın ısıtılmış eğik plakalar 

arasındaki akışını incelemişlerdir. Hayat and Khan (2005) akışkanın gözenekli plaka 

üzerindeki akışını incelemişlerdir.  

 

Bu tez çalışmasında üçüncü derece akışkanlar için Fosdick and Rajagopal (1980) 

tarafından elde edilen modele ek olarak Power-Law modeli düşünülmüştür. Bu 

model, Power-Law modeli ile ikinci ve üçüncü derece akışkan modellerinin bir 

bileşkesidir. Çok yakın zamanda bu modele ait kararlı akış için sadece ikinci derece 

akışkanlar ele alınarak, sınır tabakası denklemleri çıkartılmış ve çözülmüştür. 

Pakdemirli et al. (2008) tarafından yapılmış olan ikinci derece Power-Law 

akışkanları için sınır tabakası denklemlerine Lie Grupları uygulanarak, denklemlerin 

simetrileri bulunmuştur. Bulunan bu simetriler sayesinde denklemler adi diferansiyel 

denklem formuna indirgenmiş ve sonlu farklar kullanılarak nümerik olarak 

çözülmüştür. Abbasbandy et al. (2008) aynı denklemleri HAM (Homotopy Analiz 

Metodu) metodu kullanarak çözmüş ve sonuçları sonlu farklar yöntemi çözümleri ile 

karşılaştırmıştır. Sonuçlarda mükemmel bir uyum görülmüştür. 

 

Bu tez çalışmasında, Power-Law akışkan ile ikinci ve üçüncü derece akışkanları 

birleştiren Newtonyen olmayan bir akışkan modeline ait iki boyutlu ve kararsız akışı 

ifade eden sınır tabakası denklemlerinin benzerlik çözümleri yapılmıştır. Bölüm 2’de 

Power-Law akışkan ile ikinci ve üçüncü derece akışkanlarını birleştiren modele ait 

iki boyutlu ve kararsız akışa ait sınır tabakası denklemleri adi diferansiyel denklem 

şekline dönüştürülmüştür. Burada Newtonyen olmayan yeni bir akışkan modeline ait 

hareket denklemleri çıkartılmıştır. Hareket denklemlerinin çıkışında Rivlin-Ericksen 

tensörleri kullanılmıştır. İvme terimleri, viskoz terimleri, ikinci ve üçüncü derece 
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akışkan terimlerinin çıkışı detaylı olarak anlatılmıştır. Daha sonra elde edilen hareket 

denklemlerine, sınır tabakası yaklaşımı uygulanmış ve sınır tabakası denklemlerine 

ait matematiksel modeller elde edilmiştir. Elde edilen bu denklemler iki tane olup ilki 

ikinci dereceden Power-Law ve diğeri ise üçüncü dereceden Power-Law akışkan 

denklemleridir. Her iki denklem de zaman terimleri mevcut olup kararsız akışı ifade 

etmektedir.  

 

İlk önce, üçüncü dereceden Power-Law akışkanına ait sınır tabakası denklemleri ele 

alınmıştır. Bu denklemlerin adi diferansiyel denklem formuna indirgenebilmesi için 

Lie Grup analizi kullanılmıştır. Lie Grup analizi ile ilgili daha detaylı bilgi Bluman 

and Kumei (1989) ve Stephani (1989) kaynaklarından elde edilebilir. Lie Grup 

analizi uygulanarak denklemlerin kabul ettiği simetriler bulunmuştur. Lie Grup 

analizinde önce denklemler için invaryantlık şartları yazılmış, sonra bu şartlar için 

gerekli olan infinitesimaller türetilmiştir. Bu infinitesimaller, invaryantlık şartlarında 

yerine yazıldığında iki ayrı denklem bloğu elde edilmiştir. Bu denklem blokları 

katsayılarına göre ayrıştırılarak bir kısmi diferansiyel denklem sistemi elde 

edilmiştir. Bu denklem sistemi çözülerek denklemlerin kabul ettiği simetriler 

bulunmuştur. Bulunan bu simetriler ile denklemler ve sınır şartları üç değişkenli 

kısmi diferansiyel denklemden iki değişkenli kısmi diferansiyel denkleme 

indirgenmiştir. İndirgenen bu denklemler, ölçekleme ve öteleme dönüşümleri 

sayesinde iki tane bulunmuştur. Elde edilen iki değişkenli bu iki ayrı denklemlere 

yeniden Lie Grubu analizi uygulanmıştır. Böylece iki değişkenli kısmi diferansiyel 

denklemler, bir değişkenli adi diferansiyel denklemler formuna indirgenmiştir. 

Çalışmada sınır değer problemi olarak hareketli yüzey üzerindeki emme-püskürtmeli 

akış ele alınmıştır. Sonuç olarak ele alınan hareket denklemi, üç bağımsız 

değişkenden oluştuğu için iki defa Lie Grup analizi uygulamak sureti ile adi 

diferansiyel denklem formuna indirgenmiştir.  

 

Daha sonra ikinci dereceden Power-Law akışkanına ait sınır tabakası denklemleri adi 

diferansiyel denklem şekline dönüştürülmüştür. Bu akışkana ait terimlerden elde 

edilen zamana bağlı kısmi diferansiyel denklem sistemi iki bağımlı ve üç bağımsız 

değişkenden oluşan bir kısmi diferansiyel denklem sistemidir. Bağımsız değişkenler 
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x, y ve t değişkenleridir. Bağımlı değişkenler ise u(x,y,t) ve v(x,y,t) hız 

değişkenleridir. Bu denklemlerin çözümü için Yürüsoy (2006)’un çalışmasındaki 

özel bir dönüşüm kullanılmıştır. Bu dönüşüm üzerinde bazı küçük değişiklikler 

yapılmış ve elde edilen yeni dönüşüm, klasik sınır şartlarında denklemlere 

uygulanmıştır. Böylece denklemler adi diferansiyel formuna indirgenmiştir. Bu 

dönüşüm, denklemleri aynı zamanda boyutsuzlaştırmıştır.  

 

Bölüm 3’te ikinci bölümde elde edilen üçüncü dereceden Power-Law akışkanın sınır 

tabakasına ait adi diferansiyel denklemler Runge-Kutta algoritması kullanılarak 

nümerik olarak çözülmüştür. Ayrıca, ikinci dereceden Power-Law akışkanın sınır 

tabakasına ait adi diferansiyel denklem sisteminin çözümü içinde sonlu fark 

algoritması ile çalışan bir program yazılmıştır. Ancak bu program sayesinde 

denklemlerin nümerik çözümleri mümkün olmuştur. Bölüm sonunda denklemlerin 

çözümlerinde gerek Power-Law üssünün gerekse ikinci ve üçüncü dereceden akışkan 

sabitlerinin sınır tabakası üzerindeki etkisi açıkça çözümlerde gösterilmiştir. Ayrıca 

Newtonyen ile Newtonyen olmayan akışkanlara ait sınır tabakaları arasındaki 

değişim de gösterilmiştir. Son bölümde ise çalışma ile ilgili sonuçlar belirtilmiştir. 
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2. MATERYAL VE YÖNTEM 

 

2.1. Hareket Denklemleri 

 

Çalışmada öncelikle kartezyen koordinatlarda Power-Law akışkan ile ikinci ve 

üçüncü derece akışkanlarını birleştiren bir modele ait iki boyutlu ve kararsız akışı 

ifade eden hareket denklemleri çıkartılacaktır. Denklemlerin çıkarılışında Rivlin-

Ericksen tensörleri kullanılacaktır. Daha sonra bu denklemler vektörel formda ifade 

edilecektir. Önce ivme terimleri sonra viskoz terimler ve ikinci ve üçüncü derece 

akışkan terimlerinin çıkışı detaylı olarak anlatılacaktır. 

 

2.1.1. Tensörel Formda Hareket Denklemleri 

 

Power-Law akışkan ile ikinci ve üçüncü derece akışkanları birleştiren modele ait 

hareket denklemi tensörel formda aşağıdaki gibi yazılmaktadır. 

 

btv
ρ+=ρ div

dt
d  (2.1)

 

Burada; t gerilme tensörü, b birim kütle başına düşen dış kuvvet, ρ yoğunluk, v hız 

vektörü ve 
dt
dv  ivmedir. Sıkıştırılamaz akışkan kabulü ile süreklilik denklemi 

 

0div =v  (2.2)
 

gibi ifade edilir. 

 

Power-Law akışkan ile ikinci ve üçüncü derece akışkanları birleştiren Newtonyen 

olmayan akışkanlara ait bünye denklemi 

 

( )1
2

1
2
12211

2m .p AAAAAIt β+α+α+μΠ+−=  (2.3)
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şeklindedir. Burada 

 

⎟
⎠
⎞

⎜
⎝
⎛=Π 2

1tr
2
1 A  (2.4)

 

biçimindedir. p basınç, I birim matrisi, μ viskozite katsayısı, 1α , 2α  ve β  

Newtonyen olmayan akışkan sabitleri, m Power-Law akışkan sabiti olup, m<0 

olması halinde incelen akışkanları, m>0 olması durumunda ise kabaran akışkanları 

ifade eder. A1 ve A2 ilk iki Rivlin-Ericksen tensörleridir. Bu tensörler  

 
T

1 LLA +=  
 

1
T

112 ALLAAA ++= &  
 

( ) ( )vAAA 1t11 grad+=&  

(2.5)

 

biçiminde tanımlanmaktadır.  

 

Denklem (2.5)’teki ifadelerde v L grad=  olarak tanımlanmaktadır. Denklem 

(2.3)’ün türevi alınırsa 

 

( )

( )1
2

1
2
12211

2m
2
1

1
2

1
2
12211

2m
2
1

.divtr
2
1

.tr
2
1divpgraddiv

AAAAAA

AAAAAAt

β+α+α+μ⎟
⎠
⎞

⎜
⎝
⎛+

β+α+α+μ⎟
⎠
⎞

⎜
⎝
⎛+−=

 (2.6)

 

denklemi elde edilir. Burada, 
2m

2
1tr

2
1div ⎟

⎠
⎞

⎜
⎝
⎛ A ifadesi aşağıdaki gibi de yazılabilir. 

 
2m

2
1

2m
2
1 2

1gradtr
2
1div ⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ AA  (2.7)

 

Ayrıca tensörel formdaki hareket denkleminin ivme terimi vektörel olarak 
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vωvvv
×++= 2

t grad
2
1

dt
d  (2.8)

 

şeklinde yazılır. Burada, tv  hızın zamana göre türevi ve vω curl= ’dir.  

 

Denklemler (2.6) ve (2.8) göz önüne alınır ve b=0 yazılırsa başlangıçtaki hareket 

denklemi (2.1) aşağıdaki gibi vektörel forma dönüşür. 

 

( )
( )[ ( )

( ) ( ){
( )( )[ ]} ]vAAAvv

vAA

vvvωvv

AAAAAA

Avωvv

22
1

2
11

T

2
121

2
121

2
1

2
1t

2
1

2

2m
2

11
2

1
2
12211

2m
2

1
2

t

.grad.gradgraddiv2

 .grad2
4
1

.grad
2
1.

2
1gradpgradgrad

2
1ρ

∇β+β++

∇α+α+α+α+

∇α+×∇α+∇α+∇μ

⎟
⎠
⎞

⎜
⎝
⎛+β+α+α+μ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+−=⎟

⎠
⎞

⎜
⎝
⎛ ×++

 
(2.9)

 

Böylece hareket denklemleri vektörel formda elde edilmiş oldu. 

 

2.1.2. Kartezyen Koordinat Sistemine Göre Hareket Denklemleri 

 

Çalışmanın bu kısmında kartezyen koordinat sistemine göre denklem (2.9) yeniden 

yazılacaktır. Öncelikle denklem (2.9)’daki terimler aşağıdaki gibi tek tek 

hesaplanacaktır. 

 

Hız ve gradyan operatörü aşağıdaki gibi tanımlanır. 

 
jiv )t,y,x(v)t,y,x(u +=  (2.10)

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=∇ ji
y

,
x

 (2.11)

 

Hız operatöründeki u, x yönündeki vektörel hızı ifade ederken; v, y yönündeki hızı 

ifade etmektedir.  
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Hızın zamana göre türevi, tv ; 

 

jiv
t
v

t
u

t ∂
∂

+
∂
∂

=  (2.12)

 

gibi tanımlanır. 

 

Denklem (2.9)’da hız operatörünün karesi 2v  aşağıdaki denklemde belirtildiği gibi 

ifade edilmektedir. 

 
222 vu +=v  (2.13)

 

Denklem (2.13)’te yer alan 2v ifadesinin gradyanı alınırsa 

 

( ) ( )jiv 22222 vu
y

vu
x

+
∂
∂

++
∂
∂

=∇  (2.14)

 

ifadesi elde edilir ve bu ifade 2’ye bölünürse 

 

jiv ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

=∇
y
vv

y
uu

x
vv

x
uu

2
1 2  (2.15)

 

şeklinde olur. ω  ifadesi ise aşağıdaki gibidir. 

 

k

kji

vω ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=
∂
∂

∂
∂

∂
∂

==
y
u

x
v

0vu
zyx

rot  (2.16)

 

vω×   ifadesi ise denklem (2.16) ile denklem (2.10)’un vektörel çarpımıdır. Çarpım 

sonucu ise şu şekildedir. 
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jiji
kji

vω ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=ω+ω−=ω=×
y
uu

x
vu

x
vv

y
uvuv

0vu
00  (2.17)

 

Basınç gradyanı ise 

 

ji
y
p

x
pp

∂
∂

+
∂
∂

=∇  (2.18)

 

şeklinde yazılır. 

 

Şimdi de denklem (2.9)’da yer alan 2
1A ’sinin hesaplanması yapılacaktır. 1A ’in 

eşiti aşağıdaki gibidir. 

 

( )TT
1 gradgrad vvLLA +=+=  (2.19)

 

Yukarıdaki ifade de vL grad= ’dir. L ve v, denklem (2.19)’da yerine yerleştirilirse 

1A ’in eşiti aşağıdaki gibi bulunur. 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=

y
v2

y
u

x
v

y
u

x
v

x
u2

1A  (2.20)

 

2
1A  ifadesi aşağıdaki gibi hesaplanır. 

 

⎥
⎥
⎥
⎥
⎥
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∂
∂
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∂
∂

⎟⎟
⎠

⎞
⎜⎜
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⎛
∂
∂

+
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= 22

22

2
1

y
u

x
v

y
v4

y
u

x
v

y
v2

y
u

x
v

x
u2

y
u

x
v

y
v2

y
u

x
v

x
u2

y
u

x
v

x
u4

A  (2.21)

 

Çarpım işlemi yapılıp köşegen elemanları toplanırsa 2
1A aşağıdaki gibi bulunmuş 
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olur. 

 
22

2
1 y

u
x
v2

x
u8 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=A  (2.22)

 

Buradan da 
2m

2
12

1
⎟
⎠
⎞

⎜
⎝
⎛ A ’nin eşiti aşağıdaki gibi bulunur. 

 
2m222m

2
1 y

u
x
v

x
u4

2
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛ A  (2.23)

 

Denklem (2.23)’ün gradyanı alınırsa 

 

⎪⎭
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2

22
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2

2

2
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2
m

222m
2
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u

x
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x
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x
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2
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2
1grad

 (2.24)

 

ifadesi elde edilir. 

 

Denklem (2.9)’da v2∇  terimi aşağıdaki gibi bulunur. 

 

( )

ji

jiωvv

⎟⎟
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⎞
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x
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y
u
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x
ω

y
ωrotrotrot

2

2

2

2

22

2

 (2.25)

 

Süreklilik denklemi (2.2)’nin gradyanı alınıp denklem (2.25)’te yerine yazıldığında 

aşağıdaki denklemi elde ederiz. 
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jiv ⎟⎟
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u  (2.26)

 

Denklem (2.9)’da t
2 v∇ ’nin eşiti, denklem (2.12)’nin laplasyeni alınarak 
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2  (2.27)

 

şeklinde bulunur. 

 

vω×∇2  teriminin eşitini bulmak için öncelikle ω2∇ ’ın değeri bulunmuştur. Bu 

terimin değeri aşağıdaki gibidir. 
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Denklem (2.27)’de süreklilik denkleminden gelen 
x
u
∂
∂

−  yerine 
y
v
∂
∂  yazıldığında 

aşağıdaki denklemi elde ederiz. 
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Denklem (2.29) ile denklem (2.10) vektörel olarak çarpılırsa  
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ifadesi oluşur. 

 

( )vv 2.grad ∇ ’ın eşitini bulmak için önce vv 2.∇  bulunmalıdır ve bu terim değeri 
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aşağıdaki gibidir. 
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Denklem (2.31)’in gradyanı alınırsa ( )vv 2.grad ∇ ’ın eşiti 
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 (2.32)

 

şeklinde ifade elde edilir. 

 

Denklem (2.9)’da 2
1grad A ’ın değeri, denklem (2.22)’nin gradyanı alınarak bulunur 

ve aşağıdaki gibi gösterilir. 
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vA 2
1.∇ ’ın eşiti, 1A  ile denklem (2.26) çarpılmasıyla bulunur. Çarpım sonucu 
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şeklinde ifade edilir. 
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Denklem (2.35)’in diverjansı alınırsa aşağıdaki ifade elde edilir. 
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Bu ifadenin matris çarpımı yapılırsa 
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elde edilir. 

 

Şimdi ise denklem (2.9)’da 2
11 grad A.A ’in değeri hesaplanacaktır. Bu ifade için 

denklem (2.20)’nin (2.33) ile skaler çarpılmasından 
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(2.38)

 

şekilde elde edilir. Matris çarpımı yapılırsa aşağıdaki ifade elde edilmiş olur. 
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 (2.39)

 

Hareket denkleminin elde edilmesi için gereken en son terim olan vA 22
1 .∇ ’nin 

hesaplanması yapılacaktır. Bu ifade de açıkça görüldüğü gibi denklem (2.22) ile 

(2.26)’nın çarpımı şeklindedir. Çarpım yapılırsa 
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elde edilir. 

 

Hesaplanan bütün terimler, denklem (2.9)’da yerleştirilir ve bu ifadelerin x ile y 

bileşenleri için ayrıştırılması sonucunda aşağıdaki denklemlere ulaşılır. 
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Süreklilik denklemi ise 

 

0
y
v

x
u

=
∂
∂

+
∂
∂  (2.43)

 

şeklindedir.  

 

Elde edilen (2.41), (2.42) ve (2.43) ifadeleri, kartezyen koordinat sistemine göre 

herhangi bir Power-Law ile ikinci ve üçüncü derece akışkanların hareketini 

belirleyen denklemlerdir. Bu denklemlerden bir sonraki kısımda ikinci dereceden 

Power-Law ve üçüncü dereceden Power-Law akışkanlarının ayrı ayrı sınır tabakası 

denklemleri elde edilecektir. 

 

2.2. Sınır Tabakası Denklemleri 

 

Sınır tabakası teorisi ilk defa 1904 yılında Prandtl tarafından ortaya atılmıştır. Bu 

teori ile akışkanlar mekaniğinde yeni bir çığır açılmıştır. Kanat etrafındaki akış gibi 

birçok teknolojik problem, bu sayede daha kolay çözülebilir hale gelmiştir. Bu akışta 

sınır tabakası içerisinde kalan akışın karakteristiği, sınır tabakası dışında kalan 

akıştan farklıdır. Bu sebeple katı yüzeyindeki akışkanın hızı katı yüzey durgunsa 

sıfır, katı yüzey hareketli ise katı ile aynı hızda olmaktadır. Akışkan, katı yüzey ile 

temas ettiği noktadan (sınırdan) uzaklaştıkça akım serbest akım hızına doğru değişim 

gösterir. Akışkan ve katı cismin temasından dolayı katı yüzeye çok yakın bir bölgede 

oluşan akım, sınır tabakası akışı olarak bilinmektedir. Klasik bir sınır tabakası akışı 

Şekil 2.1’de görülmektedir. 
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Şekil 2.1. Sınır tabakası akışı 

 

Prandtl’ın teorisi Newtonyen akışkanlar için geçerlidir. Bu teori sayesinde akışkan 

hareket denklemleri (Navier-Stokes) basitleştirilip çözülebilmesi kolaylaştırılmıştır. 

Benzer bir yaklaşımın Newtonyen olmayan akışkanlar mekaniğine uygulaması 

1960’lar da gerçekleşmiştir. Rivlin-Ericksen akışkanları, Oldroy akışkanları, Power-

Law akışkanları vb. gibi değişik modeller için sınır tabakası denklemleri çıkartılıp 

çözülmüştür. Newtonyen olmayan akışkanın sınır tabakası akışının mühendislik 

uygulamalarında birçok örnekleri bulunmaktadır. Örneğin, bir kalıptan polimer 

levhanın ekstrüzyonu veya plastik filmlerin çekilmesidir. Ayrıca konveyör bantları 

üzerinde sıcak işlenmiş malzemeler de sınır tabakası akışına iyi bir örnektir. Bu 

işlemler sonunda üretilen malzemenin mekanik özellikleri gerilme ve soğutma 

oranlarına bağlı olmaktadır. 

 

Sınır tabakası içindeki akış için hareket denklemleri (2.41), (2.42) ve (2.43) bazı 

kabuller altında basitleştirilecektir. Standart ikinci ve üçüncü derece akışkanlar için 

sınır tabakası denklemleri sırasıyla Dunn and Fosdick (1974) ve Rajagopal and 

Fosdick (1980)’te detaylı olarak incelenmişlerdir. Bu tez çalışmasında akışkanlar 

hem ikinci dereceden Power-Law hem de üçüncü dereceden Power-Law akışkanı 

olarak ele alınacaktır. İlk önce üçüncü dereceden Power-Law akışkanları için sınır 

tabakası denklemleri çıkartılacaktır. 

 

2.2.1. Üçüncü Dereceden Power-Law Akışkanları İçin Sınır Tabakası 
Denklemleri 

 

Denklem (2.41) ve (2.42)’deki ikinci derece akışkanı ifade eden katsayı α1=0 ve α2=0 

kabulü edilirse denklemler üçüncü dereceden Power-Law akışkanına ait hareket 

denklemleri olacaktır. Sınır tabakası içinde hareket denklemlerinin ve çözümlerinin 
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akışkanın fiziksel özelliklerinden bağımsız olması ve elde edilen sonuçların genel 

olabilmesi için boyutsuzlaştırma işlemi yapılacaktır. Boyutlu ve boyutsuz 

büyüklükler arasındaki ilişki aşağıdaki gibi tanımlanır. 
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Burada, V0 referans sabit hızı ve L referans uzunluğu ifade etmektedir. Denklem 

(2.44)’teki ifadeler α1=0 ve α2=0 olarak kabul edilen denklem (2.41) ve (2.42)’de 

yerine konulur ise boyutsuz denklemler aşağıdaki gibi elde edilmiş olur. 
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(2.47)

 

Burada ε ve ε3 boyutsuz katsayılar aşağıdaki gibi tanımlanmıştır. 
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Boyutsuzlaştırılan üçüncü dereceden Power-Law akışkanına ait hareket 
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denklemlerine (Denklem (2.45), (2.46) ve (2.47)) sınır tabakası yaklaşımı uygulanır. 

Sınır tabakası içerisinde y koordinatı, δ sınır tabakası kalınlığına bölünerek 

genişletilir. 

 

δ
=

yY  (2.49)

 

Akım çizgileri boyunca x bileşeni, u ve p mertebe olarak bir ve v ise δ 

mertebedendir. Bir iç ve bir dış destenin standart sınır tabakası için boyutsuz 

katsayıları aşağıdaki gibi olması istenir. 

 
4m

33
2m k, ++ δ=εδ=ε  (2.50)

 

Denklem (2.50)’deki kabuller, süreklilik ve x momentumda 1 mertebeli ve y 

momentumda 1/δ mertebeli terimleri koruyarak aşağıdaki ifadeleri elde ederiz. 
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0
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=

∂
∂  (2.53)

 

0Y/p =∂∂ durumunda ise )t,x(pp = ’dır. Dış açılımla uyum sağlaması için 
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olmalıdır. Sonra bulunan bu ifade denklem (2.52)’de yerine yazıldığında 
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elde edilir. 

 

Sınır tabakası denklemlerini çözmek için (x,y) kartezyen koordinatlarında sınır 

şartlarının çıkartılması gerekmektedir. x-y düzleminde ele alınan problem, Şekil 

2.2’de gösterilmiştir. 

 

 
 

Şekil 2.2. Hareket eden emme veya püskürtmeli yatay plaka üzerinde akış 

 

Bu sınır değer problemi, hareket eden yüzeyin yanı sıra emme veya püskürtmeli 

levhaya ait sınır tabakası problemini de modelleyebilmektedir. Bu problem için sınır 

şartları aşağıdaki gibidir. 

 

( ) ( ) )t,x(U)t,,x(u,t,xV)t,0,x(v,t,xA)t,0,x(u =∞== m  (2.56)
 

Burada; akışkanın üzerinde bulunduğu yüzeyin ( )tx,A  hız bileşeni ile x yünündeki 

hareketini ve ( )tx,Vm  yüzeydeki emme veya püskürtme (eksi işaret emme, artı 

işaret püskürtme) hızlarını ifade etmektedir. Sınır tabakası denklemi, m=0 için 

standart üçüncü derece akışkanını ve k3=0 için ise Power-Law akışkanını ifade 

etmektedir. 
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2.2.2. İkinci Dereceden Power-Law Akışkanları İçin Sınır Tabakası Denklemleri 

 

Denklem (2.41) ve (2.42)’deki üçüncü derece akışkanı ifade eden katsayı β=0 kabulü 

edilirse denklemler ikinci dereceden Power-Law akışkanına ait hareket denklemleri 

olacaktır. Elde edilen ikinci dereceden Power-Law akışkanına ait hareket 

denklemlerine sınır tabakası yaklaşımını uygulayalım. Sınır tabakası içerisinde y 

koordinatı δ sınır tabakası kalınlığına bölünerek genişletilir. 

 

δ
=

yY  (2.57)

 

Akım çizgileri boyunca x bileşeni, u ve p mertebe olarak bir ve v ise δ 

mertebedendir. Bir iç ve bir dış destenin standart sınır tabakası için boyutsuz 

katsayıların  
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2m ,, +++ δε=αδε=αδν=ν  (2.58)

 

gibi olması istenir. 

 

Yukarıdaki kabuller, süreklilik ve x momentumda 1 mertebeli ve y momentumda 1/δ 

mertebeli terimleri koruyarak sonuçta aşağıdaki ifadeler elde edilir. 
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Denklem (2.61)’in integrali alınırsa yeni bir basınç fonksiyonu  
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elde edilir. 

 

Bu durumda 0Y/p =∂∂  elde edilir. Yani, )t,x(pp = ’dir. Dış açılımla uyum 

sağlaması için 
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olmalıdır. 

 

Denklem (2.62), x’e göre türetilirse 
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ifadesi bulunur. Denklem (2.63), denklem (2.64)’ün içersine yerleştirilirse 
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elde edilir.  

 

Sonra bulunan bu ifade denklem (2.60)’da yerine yazıldığında 
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nihai sınır tabakası denklemine ulaşılmış olur. 

 

İkinci dereceden Power-Law akışkanına ait sınır tabakası denklemleri, yüksek non-

lineeriteye sahip kısmi diferansiyel denklemler olduğundan çözümleri çok zordur. Bu 

nedenle çok iyi konumlanmış bir probleme sahip olmak için sınır şartlarına ihtiyaç 

vardır. Sınır tabakası denklemlerini çözmek için (x,y) kartezyen koordinatlarında 

sınır şartlarının çıkartılması gerekmektedir. x-y düzleminde ele alınan problem Şekil 

2.3’te gösterilmiştir. 

  

 
 

Şekil 2.3. Sabit yatay plaka üzerinde akış 

 

Bu problem için sınır şartları aşağıdaki gibidir.  

 

0)t,,x(
y
u),t,x(U)t,,x(u,0)t,0,x(v,0)t,0,x(u =∞
∂
∂

=∞==  (2.67)

 

Burada, U(x,t) sınır tabakası dışındaki hızdır. m=0 için denklemler standart ikinci 
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derece akışkanın sınır tabakası ve ε1=0 için ise Power-Law akışkanın sınır tabakasını 

ifade eder.  

 
2.3. Üçüncü Dereceden Power-Law Alışkanına Ait Sınır Tabakası 

Denklemlerinin Lie Grup Analizi 
 

Lie Grup analizi, diferansiyel denklemlerin tam çözümlerini bulmakta kullanılan 

genel bir metottur. Metodun uygulanması üzerine literatürde çok çalışma 

bulunmaktadır. Pratik ve mühendisliğe uygun bir analiz de Bluman and Kumai 

(1989)’nin çalışmalarında bulunmaktadır. Burada üçüncü dereceden Power-Law 

akışkanına ait sınır tabakası denklemlerine Lie Grup analizi uygulanacaktır. Ele 

alınan sınır tabakası denklemleri kısmi diferansiyel denklemlerdir ve bu 

denklemlerin çözülmeleri oldukça zor ve uğraştırıcıdır. Bu denklemlerin çözümünü 

yapabilmek için, denklemler adi diferansiyel denklem formuna indirgenecektir. Bu 

indirgeme işlemi için denklem (2.51) ve (2.55)’e Lie Grup analizi uygulanmıştır. Bu 

analiz ile denklemlerin kabul ettiği simetriler bulunmuştur. Lie Grup analizinde önce 

denklemler için invaryantlık şartları yazılmış, sonra bu şartlar için gerekli olan 

infinitesimaller türetilmiştir. Bu infinitesimaller, invaryantlık şartlarında yerine 

yazıldığında iki ayrı denklem sistemi elde edilmiştir. Bu denklem sistemleri 

katsayılarına göre ayrıştırılarak bir kısmi diferansiyel denklem sistemi elde 

edilmiştir. Bu denklem sistemi çözülerek denklemlerin kabul ettiği simetriler 

bulunmuştur. Bulunan bu simetriler ile denklemler üç değişkenli kısmi diferansiyel 

denklemden, iki değişkenli kısmi diferansiyel denkleme indirgenmiştir. İndirgeme 

işlemi ölçekleme ve öteleme dönüşümleri ile sağlanmıştır. Yani iki ayrı kısmi 

diferansiyel denklem sistemi elde edilmiştir. Sınır şartlarında en az kısıtlayıcılık, 

hareketli yüzey üzerindeki emme-püskürtme durumu olduğu için çalışmada bu 

fiziksel problem ele alınmıştır. Elde edilen bu iki bağımsız değişkenli iki ayrı 

diferansiyel denklemlere ikinci kez Lie Grubu analizi uygulanmıştır. Böylece iki 

değişkenli kısmi diferansiyel denklemler, bir değişkenli adi diferansiyel denklem 

formuna indirgenmiştir. 
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2.3.1. Lie Grup Analizi 

 

Lie Grubu analizini uygulamak için önce denklem (2.51) ve (2.55)’teki terimler yeni 

değişkenlerle aşağıdaki gibi tanımlanmıştır. 
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Denklem (2.51) ve (2.55) yeni değişkenler cinsinden aşağıdaki cebirsel denklemlere 

dönüştürülmüş olur. 
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Denklemlerle irtibatlı infinitesimal jeneratör 
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şeklinde yazılabilir. Tekrarlı indisler üzerinde toplam uygulanacaktır. Denklem 

(2.72) jeneratörünü denklem (2.70) ve (2.71)’e uygulamak için birinci ve ikinci 

dereceye genişletilmesi (i, j=1, 2, 3; µ=1, 2) gerekmektedir. 
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Çözümleri üretecek olan bu infinitesimal jeneratörlerin denklem tarafından kabul 

edilebilmesi için aşağıdaki bağıntılar sağlanmalıdır. 
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Denklem (2.73) ile (2.75)’te ve denklem (2.74) ile (2.76)’da gerekli işlemler 

yapıldığında aşağıdaki ifadeler elde edilir. 
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Denklem (2.77) ve (2.78)’de mevcut olan ( ) ( ) ( ) ( ) ( )12
22

11
2

11
3

21
2

11
1 ,,,, ηηηηη  ifadelerinin iξ  ve 

μη  cinsinden ifade edilmeleri gerekmektedir. Bu ifadelerin hesaplanması ile ilgili 

denklemler, Bluman and Kumei (1989)’de mevcuttur. 
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i uDD  (2.79)
 

Denklem (2.79)’daki ( iD ) türev operatörünün eşiti 

 

μ
μ

∂
∂

+
∂
∂

=
u

u
x

D i
i

i  (2.80)

 

şeklindedir. 
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Denklem (2.79)’da tekrarlı indisler üzerinde toplam olduğu göz önüne alınarak i=1 

ve µ=1 alındığında denklem (2.79) ve (2.80)’nin formülasyonu 
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=  (2.82)

 

biçimini almaktadır. 

 

Denklem (2.82), denklem (2.81)’in içine yerleştirilirse ( )11
1η ’in eşiti şu şekilde elde 

edilmiş olur. 
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Benzer şekilde denklem (2.79) ve (2.80) kullanılarak diğer birinci dereceye 

genişletilmiş infinitesimaller de aşağıdaki gibi bulunur. 

 
( )11
2η  ifadesi için 
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şeklinde elde edilir. 
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( )21
2η  ifadesi için 
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şeklinde olur. 
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3η  ifadesi de 

 
( ) ( ) ( ) ( ) 1

333
1
223

1
113

1
3

11
3 uDuDuDD ξ−ξ−ξ−η=η  (2.90)

 

2
2
31

1
3

3
3 u

u
u

u
x

D
∂
∂

+
∂
∂

+
∂
∂

=  (2.91)

 

( )

( ) 2
3

1
32

321
31

32
3

1
22

21
3

1
21

22
3

1
12

1

1
3

1
11

11
2

3

21
1

3

12
32

1
1
3

3

3
1

1

3

1
11

3

uu
u

u
u

uu
u

uu
u

uu
u

uu
u

u
x

u
x

u
u

u
xux

∂
ξ∂

−
∂
ξ∂

−
∂
ξ∂

−
∂
ξ∂

−
∂
ξ∂

−

∂
ξ∂

−
∂
ξ∂

−
∂
ξ∂

−
∂
η∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
ξ∂

−
∂
η∂

+
∂
η∂

=η
 (2.92)

 

olarak bulunmuş olur. 

 

Denklem (2.78) ifadesinde ( )12
22η ’ın değerinin bulunması gerekmektedir. Bunun için 

yine Bluman and Kumai (1989)’de verilen aşağıdaki formül kullanılacaktır. 

 
( ) ( ) ( ) μμ−μ

−−
ξ−η=η ji,...,i,iji

1k
i,...,i,ii

k
i,...,i,i 1k21k1k21kk21

uDD  (2.93)
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Burada; k=2, ik=i2=2, i1=2 ve μ=1’dir. Bu değerler denklem (2.93)’te yerine 

konulursa 

 
( ) ( ) ( ) 1
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22 uDD ξ−η=η  (2.94)
 

ifadesi elde edilir. Ayrıca j indisi üzerinde toplam olacağı dikkate alınırsa ifadenin 

açık şekli aşağıdaki gibi olur. 
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Denklem (2.95)’teki (D2) türev operatörü  
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olarak tanımlanır. 

 

Denklem (2.96) ve önceden bulunmuş olan ( )11
2η  ifadesi denklem (2.95)’te yerine 

konup gerekli türevler alınırsa ( )12
22η ’ın eşiti aşağıdaki gibi olur. 

 

( )

( ) ( ) ( )

( )
( )

( )

( )
( )

( )
( )

( )
( )

( )
( )

( )22
222

12
1
2

1
3

2
212

3
2

21
2

1
321

3
2

21
2

2
212

2
2

31
221

2
2

1
2

1
1

2
212

1
2

21
2

1
121

1
2

1
3

2
2

2
2

3
2

1
3

1
2

2
1

3
2

1
32

2

3
2

1
2

2
212

12

2
2

2
2

21
221

12

2
1

2
2

2
2

1
1

2
2

1
2

1
2

1
1

2
1

1
2

1
12

2

1
2

2
2

2
2

12
1
22

2

2
2

1
2

12

2
2

12
12

22

u
u

uuu
uu

2uu
u

uu
uu

2

u
u

uuu
uu

2uu
u

uu
xu

2

uu
xu

2u
x

uu
uu

2
xu

u
uxu

2uu
xu

2uu
xu

2

u
x

u
xu

2u
xux

2
x

∂

η∂
+

∂∂
ξ∂

−
∂

ξ∂
−

∂∂
ξ∂

−

∂

ξ∂
−

∂∂
ξ∂

−
∂

ξ∂
−

∂∂
ξ∂

−

∂∂
ξ∂

−
∂

ξ∂
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂∂
η∂

−
∂∂
ξ∂

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

η∂
−

∂∂
ξ∂

−
∂∂
ξ∂

−
∂∂
ξ∂

−

∂
ξ∂

−
∂∂
η∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
ξ∂

−
∂∂
η∂

+
∂
η∂

=η

 (2.97)
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Denklem (2.77) ve (2.78) için gerekli ifadeler elde edilmiş olur. Şimdi denklem 

(2.77)’deki süreklilik denkleminde bu ifadeler kullanılıp ve süreklilik denklemindeki 
2
2u  görülen yere 1

1u−  yazılırsa 
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 (2.98)

 

denklem bloğu elde edilir. Denklem bloğuna dikkat edilecek olur ise 1u  ve 2u ’nin 

türevleri cinsinden bir polinom olduğu görülür. Polinomun sıfıra eşit olabilmesi 

ancak ve ancak katsayıların ayrı ayrı sıfıra eşit olması ile mümkündür. Böylece 

aşağıda yazılan denklem sistemlerini elde ederiz. 
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0
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0
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0
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3 =
∂
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−  (2.105)

 

0
u2

3 =
∂
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−  (2.106)

 

0
x2

3 =
∂
ξ∂

−  (2.107)

 

Denklem (2.104)-(2.107)’den ( )333 xξ=ξ  olur. Geriye kalan denklem (2.99)-(2.103) 

ise daha sonraki kısımda kullanılacaktır. 

 

Momentum denklemi için ise denklem (2.83), (2.86), (2.89), (2.92) ve (2.97) ikinci 

invaryantlık koşulu olan denklem (2.78)’e yerleştirilir, 1
1

2
2 uu −=  ve 

( ) ( )( )[ ]21
23

m1
2

1
2

21
1

13
11

22

u3mk21mu

fuuuuuu
+++

−++
=  ifadeleri gerekli yerlerde kullanılır ve ayrıca 

( )333 xξ=ξ  unutulmaz ise aşağıdaki denklem bloğu elde edilir. 
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Yukarıdaki denklem bloğunun karmaşıklığından dolayı terimler kolayca 

ayrıklaşmaz. Ayrışan az sayıdaki terimler şunlardır. 
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Denklem (2.109)-(2.113)’ten iξ  ve μη  fonksiyonlarının bazı değişkenlere olan 

bağımlılığı ortadan kalkacaktır. Şimdiye kadar elde edilen sonuçlar  
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şeklinde özetlenir. 

 

Denklem (2.114)’teki kısıtlamalar kullanılarak denklem (2.108) aşağıdaki şekilde 

basitleşmiş olur. 
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Bu durumda denklem (2.115)’teki tüm terimlerin ayrışması sonucunda aşağıdaki 

terimler elde edilecektir. 
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Süreklilik denkleminden (2.99)-(2.103) ile momentum denkleminden (2.116)-
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(2.129)’u birlikte çözülür. 

 

Denklem (2.123), (2.126), (2.127) ve (2.129)’dan 
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kısıtları elde edilir. Denklem (2.125) ve (2.124) çözülürse 

 

( ) ( )312
1

311
1 x,xcux,xc +=η  (2.131)

 

( ) ( )31423132 x,xcxx,xc +=ξ  (2.132)
 

denklemleri elde edilir. Denklem (2.128) çözülürse 

 

( ) ( )313311 x,xcx,xc =  (2.133)
 

eşitliği bulunur ve denklem (2.132) yeniden yazılırsa  

 

( ) ( )31423112 x,xcxx,xc +=ξ  (2.134)
 

olur. Denklem (2.117) çözülürse 

 

( ) 53113 cxxc2 +=ξ  (2.135)
 

ifadesine ulaşılır. Denklem (2.118)’de 1u  ve sabit cinsinden bir polinom olduğu 

görülmektedir. Polinomun katsayıları sıfıra eşitlenirse aşağıdaki denklemler elde 

edilir.  

 

( ) ( )361311 xcxxc3 +=ξ  (2.136)
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Denklem (2.119) çözülürse 
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denklemi elde edilir. Şimdiye kadar elde edilen kısıtlar ve denklemler, denklem 

(2.120)-(2.122) ile süreklilik denkleminden (2.100)-(2.103)’ü sağlamaktadır. 

Süreklilik denkleminden kalan denklem (2.98)’de çözülürse 

 

ac1 =  (2.139)
 

gibi bir sabite eşit olduğu bulunur. Son olarak momentum denkleminden denklem 

(2.116)’da çözülürse 
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ifadesi bulunur. Sonuçta bulunan bu ifadelerde ( )36 xc  yerine ( )th1 , ( )314 x,xc  

yerine ( )t,xh 2  ve c5 yerine b yazılırsa aşağıdaki ifadeler elde edilir 

 

( )thax3 11 +=ξ  (2.141)
 

( )t,xhay 22 +=ξ  (2.142)
bat23 +=ξ  (2.143)
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1 ′+=η  (2.144)
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f fonksiyonun yapısını veren denklem ise 
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x
fthax3afth 11 ∂
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++=′′  (2.146)

 

şeklindedir. Elde edilen ifadeler incelendiğinde denklemlerin a ve b parametrelerine 

bağlı olarak iki parametreli Lie Grup dönüşümünü kabul ettiği görülmektedir. Ayrıca 

( )th1  ve ( )t,xh2 ’ye karşılık gelen sonsuz parametre Lie Grup dönüşümleri de 

bulunmaktadır. a parametresi ölçekleme dönüşümünü ve b parametresi ise t 

koordinatlarındaki ötelemeyi gösterir. 

 

Bu sınır tabakası problemine ait sınır şartları aşağıdaki gibidir. 

 

( ) ( ) ( ) ( ) ( ) ( )t,xUt,,xu,t,xVt,0,xv,t,xAt,0,xu =∞== m  (2.147)
 

Sınır şartlarının infinitesimal jeneratöre ne gibi kısıtlamalar getirdiğinin tespit 

edilmesi gerekmektedir.  İnfinitesimal jeneratör ise aşağıdaki gibi yazılır. 
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Jeneratörü sınır değerlerine ve sınır şartlarına uygulayalım. 

 

0y = ’da [ ]0yX =   

 

( ) 0t,xh 2 =  (2.149)
 

∞=y ’da [ ]∞=yX  

 

Herhangi bir kısıtlama gelmemiştir. 
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Böylece sınır şartlarının infinitesimal jeneratöre ne gibi kısıtlamalar getirdiğini tespit 

etmiş olduk. Denklem (2.141)-(2.146) aşağıdaki hali almıştır. 

 

( )thax3 11 +=ξ  (2.153)
 

ay2 =ξ  (2.154)
 

bat23 +=ξ  (2.155)
 

( )thau 1
1 ′+=η  (2.156)

 

av2 −=η  (2.157)
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Denklem (2.153)-(2.158)’deki simetriler kullanılarak denklemlerin bağımsız 

değişken sayısında indirgemeye gidilecektir. İki değişik indirgeme yapılacaktır. 
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Birincisinde a parametresine ait ölçekleme jeneratörü, ikincisinde b ve ( )th1  

parametrelerine ait öteleme jeneratörü kullanılacaktır. 

 

2.3.1.1. Ölçekleme Dönüşümü 

 

Denklem (2.153)-(2.157)’de 1a =  ve ( ) 0thb 1 ==  alındığında jeneratör ile ilgili 

invaryant çözümleri veren denklem sistemini aşağıdaki şekilde yazmak mümkündür. 

 

v
dv

u
du
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dy

x3
dx

t2
dt

−
====  (2.159)

 

Denklem sistemi (2.159) çözülürse benzerlik değişkenleri ve fonksiyonları aşağıdaki 

gibi elde edilir. 

 

( ) ( )βδ=βδ==β=δ − ,Qtv,,Ptu,
t
y,

t
x 2121

2123  (2.160)

 

( )t,xA  fonksiyonunun benzerlik dönüşümlerini kabul edebilmesi için gerekli yapı 

denklem (2.150)’de verilmiştir. Bu yapı 1a =  ve ( ) 0thb 1 ==  altında aşağıdaki 

formu alır. 

 

t
At2

x
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Denklem (2.161)’deki ifade birinci mertebeden lineer kısmi türevli denklem 

olduğundan dolayı 

 

t2
dt

x3
dx

A
dA

==  (2.162)

 

şeklinde ifade edilir. Denklem (2.162) çözülürse A fonksiyonunun yapısı aşağıdaki 

gibi bulunur. 



47 
 

( )δ= AtA 21  (2.163)
 

( )t,xV  fonksiyonunun yapısını veren denklem (2.151), 1a =  ve ( ) 0thb 1 ==  altında 

şu şekle dönüşür. 

 

t
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=−  (2.164)

 

Denklem (2.164)’te ki ifade 

 

t2
dt
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dx

V
dV

==
−

 (2.165)

 

şeklini alır ve bu denklem çözülürse V fonksiyonunun yapısı  

 

( )δ= − VtV 21  (2.166)
 

şeklinde bulunur. 

 

( )t,xU  fonksiyonunun yapısını veren denklem (2.152) ise ölçekleme dönüşümü ile 

aşağıdaki gibi olur. 

 

t
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Denklem (2.167)  

 

t2
dt

x3
dx

U
dU

==  (2.168)

 

şeklinde yazılır ve çözülürse, U fonksiyonunun yapısı aşağıdaki gibi bulunmuş olur. 
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( )δ= UtU 21  (2.169)
 

( )t,xf  fonksiyonunun yapısı, denklem (2.158)’in 1a =  ve ( ) 0thb 1 ==  ölçekleme 

dönüşümü altında 

 

t
ft2

x
fx3f

∂
∂

+
∂
∂

=−  (2.170)

 

şeklini alır. Denklem (2.170) aşağıdaki gibi de yazılır. 

 

t2
dt

x3
dx

f
df

==
−

 (2.171)

 

Denklem (2.171) çözüldüğünde 

 

( )δ= − ftf 21  (2.172)
 

yapısı bu şekilde elde edilmiş olur. 

 

( )t,xA , ( )t,xV , ( )t,xU  ve ( )t,xf  fonksiyonlarının 1a =  ve ( ) 0thb 1 ==  ölçekleme 

dönüşümü altında benzerlik fonksiyonları aşağıda yeniden yazılmıştır. 

 

( ) ( ) ( ) ( )δ=δ=δ=δ= −− ftf,AtA,VtV,UtU 21212121  (2.173)
 

Denklem (2.160) ve (2.173) kullanılarak denklem (2.51) ve (2.55)’te değişken 

sayısında indirgemeye gidilecektir. Bunun içinde denklemlerde bulunan türevler 

hesap edilmelidir. 

 

t
yP

2
1

t
xP

2
3

t
P

2
1

t
u

221 β∂
∂

−
δ∂
∂

−=
∂
∂  (2.174)
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t
1P

x
u

δ∂
∂

=
∂
∂  (2.175)

 

β∂
∂

=
∂
∂ P
y
u  (2.176)

 

212

2

2

2

t
1P

y
u

β∂
∂

=
∂
∂  (2.177)

 

t
1Q

y
v

β∂
∂

=
∂
∂  (2.178)

 

Türevler alındıktan sonra ifadeler denklem (2.51) ve (2.55)’te yerine konulursa yeni 

denklemler  

 

0QP =+ βδ  (2.179)
 

( ) ( )( )
( )δ+

+++=++β−δ−
+

βββββδβδ

f

P3mk2P1mPQPPPP
2
1P

2
3P

2
1 2m

3
m

 (2.180)

 

şeklinde elde edilir. Denklem (2.147)’deki sınır şartları, denklem (2.160) ve (2.173) 

kullanılarak 

 

( ) ( ) ( )δ=∞δδ=δδ=δ U),(P,V)0,(Q,A)0,(P m  (2.181)
 

şekline dönüşmüş ve ( )δf  ile ( )δU  arasındaki ilişki ise 

 

( ) ( ) ( ) ( ) ( )δ′δ+δ′δ−δ=δ UUU
2
3U

2
1f  (2.182)

 

şeklinde elde edilmiştir. 
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2.3.1.2. Öteleme Dönüşümü 

 

Şimdi ise denklem (2.153)-(2.157)’yi öteleme dönüşümü altında indirgeyelim. 

Bunun için 0a =  ve ( ) 1thb 1 ==  alındığında jeneratör ile ilgili invaryant çözümleri 

veren denklem sistemini aşağıdaki şekilde yazmak mümkündür. 

 

0
dv

0
du

0
dy

1
dx

1
dt

====  (2.183)

 

Denklem sistemi (2.183) çözülürse benzerlik değişkenleri ve fonksiyonları aşağıdaki 

gibi bulunur. 

 

( ) ( )λγ=λγ==λ−=γ ,Sv,,Ru,y,tx  (2.184)
 

( )t,xA , ( )t,xV , ( )t,xU  ve ( )t,xf  fonksiyonlarının benzerlik dönüşümlerini kabul 

edebilmesi için gerekli yapılar, denklem (2.150)-(2.153) ve (2.158)’de verilmiştir. Bu 

yapılar 0a =  ve ( ) 1thb 1 ==  öteleme dönüşümü altında benzerlik fonksiyonları  

 

( ) ( ) ( ) ( )γ=γ=γ=γ= ff,AA,VV,UU  (2.185)
 

gibi elde edilmiştir. Bu benzerlik fonksiyonlarının bulunuşu ölçekleme dönüşümünde 

yapılan işlemlerin aynısıdır. Denklem (2.184) ve (2.185) kullanılarak denklem (2.51) 

ve (2.55)’te değişken sayısında indirgemeye gidilecektir. Bunun içinde denklemde 

bulunan türevler hesap edilmelidir. 

 

γ∂
∂

−=
∂
∂ R

t
u  (2.186)

 

γ∂
∂

=
∂
∂ R
x
u  (2.187)

 

λ∂
∂

=
∂
∂ R
y
u  (2.188)
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2

2

2

2 R
y
u

λ∂
∂

=
∂
∂  (2.189)

 

λ∂
∂

=
∂
∂ S
y
v  (2.190)

 

Türevler alındıktan sonra denklem (2.51) ve (2.55)’te yerine konulursa yeni 

denklemler şu şekilde elde edilir. 

 

0SR =+ λγ  (2.191)
 

( ) ( )( ) ( )γ++++=++− +
λλλλλγγ fR3mk2R1mRSRRRR 2m

3
m  (2.192)

 

Denklem (2.184) ve (2.185) kullanılarak, denklem (2.147)’de ki sınır şartları  

 

( ) ( ) ( )γ=∞γγ=γγ=γ U),(R,V)0,(S,A)0,(R m  (2.193)
 

elde edilir ve ( )γf  ile ( )γU  arasındaki ilişki ise 

 

( ) ( ) ( ) ( )γ′γ+γ′−=γ UUUf  (2.194)
 

şeklindedir. 

 

Üçüncü dereceden Power-Law akışkanlarına ait sınır tabakası denklemleri ölçekleme 

ve öteleme dönüşümü (Lie Grup analizi) altında üç değişkenli kısmi diferansiyel 

denklemden, iki değişkenli kısmi diferansiyel denklem sistemine indirgenmiştir. Bu 

denklem sistemlerini adi diferansiyel denklem sistemine dönüştürmek için her iki 

denklem sistemine yeniden Lie Grup analizi uygulanacaktır. 

 

2.3.2. İkinci Defa Lie Grup Analizi 

 

Yukarıda ölçekleme (denklem (2.179) ve (2.180)) ve öteleme (denklem (2.191) ve 
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(2.192)) dönüşümlerinden elde edilen iki değişkenli kısmi diferansiyel denklem 

sistemlerine tekrar Lie Grup analizi uygulanacaktır. Bu sayede, bu iki farklı kısmi 

diferansiyel denklem sistemleri adi diferansiyel denklem sistemlerine 

indirgenecektir. İlk önce, ölçekleme dönüşümünden elde edilen denklem sistemine 

Lie Grup analizi uygulanacaktır. 

 

Denklemlerle irtibatlı infinitesimal jeneratör ise aşağıdaki gibi yazılır. 

 

QP
Y 21

21 ∂
∂

η+
∂
∂

η+
β∂
∂

ξ+
δ∂
∂

ξ=  (2.195)

 

Ölçekleme dönüşümünden elde edilen iki değişkenli kısmi diferansiyel denklem 

sistemi (2.179) ve (2.180)’e tekrar Lie Grup analizi uygulanmış ve denklemlerin 

kabul ettiği en genel infinitesimal jeneratörler şöyle elde edilmiştir. 

 

( ) ( ) ( ) ( )δ′−δ+δ′=η=ηδ=ξ=ξ ha3hPh2,a3,h2,a2 21
221  (2.196)

 

f fonksiyonun yapısını veren denklem ise 

 

( ) b
4
3f +δ=δ  (2.197)

 

şeklindedir.  

 

Bu sınır tabakası problemine ait sınır şartları aşağıdaki gibidir. 

 

( ) ( ) ( ) ( ) ( ) ( )δ=∞δδ=δδ=δ U,u,V0,Q,A0,P m  (2.198)
 

Jeneratörü sınır değerlerine ve sınır şartlarına uygulayalım. Böylece sınır şartlarının 

infinitesimal jeneratöre ne gibi kısıtlamalar getirdiği tespit edilmiş olur. Bu durumda 

denklem (2.196) aşağıdaki hali alır. 
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0,a3,0,a2 21
21 =η=η=ξ=ξ  (2.199)

 

Denklem (2.199)’da 1a =  alındığında jeneratör ile ilgili invaryant çözümleri veren 

denklem sistemini, aşağıdaki şekilde yazmak mümkündür. 

 

0
dQ

P3
dP

0
d

2
d

==
β

=
δ
δ  (2.200)

 

Denklem sistemi (2.200) çözülürse benzerlik değişkenleri ve fonksiyonları aşağıdaki 

gibi bulunur. 

 

( ) ( )μ=μ+δ=μ=β NQ,M
2
3P,  (2.201)

 

( )δA , ( )δV , ( )δU  ve ( )δf  fonksiyonlarının 1a =  altında benzerlik fonksiyonlarının 

yapıları aşağıdaki gibi elde edilir. 

 

2
bc,c

2
3U,cV,c

2
3A 3321 =+δ==+δ=  (2.202)

 

Denklem (2.179) ve (2.180)’de değişken sayısında indirgemeye gidilecektir. Bunun 

içinde denklemde bulunan türevleri hesap edelim. 

 

2
3P

=
δ∂
∂  (2.203)

 

NQ ′=
η∂

∂  (2.204)

 

MP ′=
η∂
∂  (2.205)

 

( )
MP

2

2

′′=
η∂
∂  (2.206)
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Türevler alındıktan sonra elde edilen denklem (2.203)-(2.206), denklem (2.179) ve 

(2.180)’de yerine konulursa yeni denklemler şu şekilde elde edilir. 

 

0
2
3N =+′  (2.207)

 

( ) ( )( ) 3
2m

3
m c2M3mk2M1mM

2
1NMM2 +′++′+′′=⎟

⎠
⎞

⎜
⎝
⎛ μ−′+ +  (2.208)

 

Sınır şartları ise 

 

321 c)(M,c)0(N,c)0(M =∞== m  (2.209)
 

şeklinde bulunur. Denklem (2.209)’daki sınır şartlarıyla birlikte denklem (2.207) 

çözüldüğünde aşağıdaki ifade elde edilir. 

 

2c
2
3N mμ−=  (2.210)

 

Denklem (2.208)’in içine denklem (2.210) yerleştirildiğinde aşağıdaki denklem ve 

sınır şartları elde edilir. 

 

( ) ( ) ( )( ) 3
2m

3
m

2 c2M3mk2M1mMc2MM2 +′++′+′′=μ−′+ +
m  (2.211)

 

31 c)(M,c)0(M =∞=  (2.212)
 

Sonuçta üçüncü dereceden Power-Law akışkanlarına ait sınır tabakası denklemlerine 

iki kez Lie Grup analizi uygulanarak denklem (2.211)’deki adi diferansiyel denklem 

ve denklem (2.212)’deki sınır şartları elde edilmiş olur. 

 

Şimdi ise öteleme dönüşümünden elde edilen iki değişkenli kısmi diferansiyel 

denklem sistemi için infinitesimal jeneratör 
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SR
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21 ∂
∂

η+
∂
∂

η+
λ∂
∂

ξ+
γ∂
∂

ξ=  (2.213)

 

şeklinde yazılır. Denklem (2.191) ve (2.192)’ye tekrar Lie Grup analizi uygulanmış 

ve denklemlerin kabul ettiği en genel infinitesimal jeneratörler 

 

( ) ( ) ( ) ( )γ′−+−=η−=ηγ+λ=ξ+γ=ξ h1RaS,1Ra,ha,ba3 21
21  (2.214)

 

formda elde edilmiştir. Sınır tabakası problemine ait sınır şartları aşağıdaki gibidir. 

 

( ) ( ) ( )γ=∞γγ=γγ=γ U),(R,V)0,(S,A)0,(R m  (2.215)
 

Jeneratörü sınır değerlerine ve sınır şartlarına uygulayalım. Böylece sınır şartlarının 

infinitesimal jeneratöre ne gibi kısıtlamalar getirdiği tespit edilmiş olur. Bu durumda, 

denklem (2.214) aşağıdaki hali alır. 

 

( ) aS,1Ra,a,ba3 21
21 −=η−=ηλ=ξ+γ=ξ  (2.216)

 

Denklem (2.216)’da 1a =  ve 0b =  alındığında jeneratör ile ilgili invaryant 

çözümleri veren denklem sistemini aşağıdaki gibi yazmak mümkündür. 

 

S
dS

1R
dRd

3
d

−
=

−
=

λ
λ

=
γ
γ  (2.217)

 

Denklem sistemi çözülürse benzerlik değişkenleri ve fonksiyonları aşağıdaki gibi 

bulunur. 

( ) ( )αγ=+αγ=
γ
λ

=α − LS,1KR, 3131
23  (2.218)

 

( )δA , ( )δV , ( )δU  ve ( )δf  fonksiyonlarının 1a =  ve 0b =  altında benzerlik 

fonksiyonlarının yapıları aşağıdaki gibi elde edilmiştir. 
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31
4

31
3

31
2

31
1 cf,1cU,cV,1cA −− γ=+γ=γ=+γ=  (2.219)

 

Denklem (2.191) ve (2.192)’de değişken sayısında indirgemeye gidilecektir. Bunun 

için denklemde bulunan türevleri hesap edelim. 

 

γ
λ′−γ=

γ∂
∂ − K

3
1K

3
1R 32  (2.220)

 

KR ′=
λ∂

∂  (2.221)

 

( ) 312

2 1KR
γ
′′=

λ∂
∂  (2.222)

 

32
1LS
γ
′=

λ∂
∂  (4.223)

 

Türevler alındıktan sonra denklem (2.220)-(2.223), denklem (2.191) ve (2.192)’de 

yerine konulursa yeni denklemler şu şekilde elde edilir. 

 

0L3KK =′+′α−  (2.224)
 

( ) ( )( ) 2
3

2m
3

m2 cK3mk2K1mK3KL3KKK +′++′+′′=′+′α− +  (2.225)
 

Sınır şartları ise 

 

321 c)(K,c)0(L,c)0(K =∞== m  (2.226)
şeklindedir. Böylece iki farklı yoldan iki değişkenli kısmi diferansiyel denklem 

sistemi, adi diferansiyel denklem sistemine başarılı bir şekilde dönüştürülmüş oldu. 

 

2.4. İkinci Dereceden Power-Law Akışkanına Ait Sınır Tabakası 
Denklemlerinin Benzerlik Çözümleri 

 

Tezin bu kısmında ikinci dereceden Power-Law akışkanlarına ait sınır tabakası 
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denklemlerinin benzerlik çözümleri yapılacaktır. İkinci dereceden Power-Law 

akışkanlarına ait sınır tabakası denklemleri iki bağımlı ve üç bağımsız değişkenden 

oluşan bir kısmi diferansiyel denklem sistemidir. Bu sistem, benzerlik çözümü 

sayesinde adi diferansiyel denklemlere dönüştürülecektir. Bağımsız değişkenler x, y 

ve t ve bağımlı değişkenler ise u ve v hız değişkenleridir. 

 

Bir denklemin kabul edebildiği genel benzerlik dönüşümleri Lie Grup analizi ile 

bulunmaktadır. Birçok denklemde iyi sonuçlar veren özel dönüşümler de 

bulunmaktadır. Bu dönüşümler; i) ölçekleme, ii) öteleme, iii) spiral grup, ve iv) bu 

dönüşümleri içeren özel bir dönüşümdür. Bu dönüşümler sayesinde sınır tabakası 

akışını ifade eden kısmi diferansiyel denklem sistemi, adi diferansiyel denklem 

sistemine dönüştürülür. Bu çalışmada ise Yürüsoy (2006)’un çalışmasındaki özel bir 

dönüşüm kullanılmıştır. Bu dönüşüm üzerinde bazı küçük değişiklikler yapılmış ve 

sınır tabakası denklemleri (2.59) ve (2.66)’ya uygulanmıştır. Ayrıca, bu dönüşüm 

sayesinde denklemler boyutsuzlaşmıştır. 

 

2.4.1. Benzerlik Dönüşümü 

 

İkinci dereceden Power-Law akışkanına ait sınır tabakası denklemleri (2.59) ve 

(2.66)’nın çözümü yapılacaktır. Fakat denklemlerin kısmi diferansiyel denklemler 

olduğu görülmekte ve böyle denklemlerin çözümleri oldukça zor olmaktadır. Bu 

çalışmada öncelikle denklemler adi diferansiyel denklem şekline dönüştürülecektir. 

Sınır tabakası denklemlerimize Yürüsoy (2006)’un çalışmasındaki özel bir dönüşüm 

uygulanmıştır. Bu dönüşüm üzerinde bazı küçük değişiklikler yapılmıştır. İkinci 

dereceden Power-Law akışkanına ait sınır tabakası denklemleri bu dönüşüm 

sayesinde boyutsuz hale gelmiştir. Elde edilen yeni dönüşüm için benzerlik değişkeni 

ve benzerlik fonksiyonları aşağıdaki gibi tanımlanmıştır.  
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 (2.227)
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Burada, λ sabittir. Bu dönüşüm iki boyutlu ve kararsız ikinci dereceden Power-Law 

akışkanının sınır tabakası denklemleri için kullanılmıştır. 

 

Denklem (2.59) ve (2.66)’nın kısmi türevli terimlerinin tek tek hesaplanması 

gerekmektedir. 
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 (2.228)
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 (2.234)
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 (2.237)

 

2t
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t
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λ−=
∂
∂  (2.238)

 

tx
U λ
=

∂
∂  (2.239)

 

Bulunan bu denklemler, denklem (2.59) ve (2.66)’ya yerleştirilirse aşağıdaki adi 

diferansiyel denklem sistemi elde edilmiş olur. 
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Burada; üstler, ξ  benzerlik değişkenine göre türevi ifade eder ve tk 11 νρε=  

boyutsuz ikinci derece parametredir. 

 

İkinci dereceden akışkanlara ait sınır tabakası denklemlerine benzerlik dönüşümleri 

uygulanarak adi diferansiyel denklemlere dönüştürülmüştür. Elde edilen denklemleri 

çözebilmek için aşağıda verilen klasik sınır şartları kullanılmıştır. 

 

0)t,,x(
y
u),t,x(U)t,,x(u,0)t,0,x(v,0)t,0,x(u =∞
∂
∂

=∞==  (2.242)

 

Bu denklemlerin çözümleri için de sınır şartlarında yeni değişkenler ile ifade 

edilmesi gerekmektedir. Benzerlik dönüşümleri altında uygun sınır şartları aşağıdaki 
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gibi olmaktadır. 

 

0)(f,)(f,0)0(g,0)0(f =∞′λ=∞==  (2.243)
 

Böylece ikinci dereceden Power-Law akışkanlarına ait sınır tabakası denklemleri, 

yüksek non-lineriteye sahip adi diferansiyel denklem sistemi olarak elde edilmiş 

oldu. 
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3. ARAŞTIRMA BULGULARI VE TARTIŞMA 
 

Bu bölümde, üçüncü dereceden Power-Law ile ikinci dereceden Power-Law 

akışkanlarına ait sınır tabakası denklemlerinin nümerik çözümleri yapılmıştır. İkinci 

bölümde üçüncü dereceden Power-Law akışkanına ait sınır tabakası denklemleri adi 

diferansiyel denklem haline dönüştürülmüştür. Ortaya çıkan adi diferansiyel 

denklemler (ölçekleme dönüşümü ile (2.207) ve (2.208); öteleme dönüşümü ile 

(2.224) ve (2.225)) Runge-Kutta algoritması kullanılarak çözülmüştür. İki farklı 

dönüşümle (ölçekleme ve öteleme) elde edilen denklemlerin nümerik çözümleri 

yorumlanmıştır. Çözümler üçüncü derece akışkan katsayısı ve Power-Law üssünün 

pozitif ve negatif değerleri için yapılmıştır. Analiz sonucunda Power-Law üssünün 

pozitif ve negatif olarak artması sonucunda sınır tabakasının nasıl değişim gösterdiği 

grafiklerle ifade edilmiştir. Sonra yine ikinci bölümde benzerlik dönüşümleri 

kullanılarak ikinci dereceden Power-Law akışkanlarına ait sınır tabakası denklemleri 

adi diferansiyel denklem haline dönüştürülmüştür. Elde edilen adi diferansiyel 

denklem sistemi ((2.240) ve (2.241)) sonlu farklar algoritması kullanılarak nümerik 

olarak çözülecektir. Elde edilen çözümler ile ikinci derece akışkan katsayısı ve 

Power-Law üssünün farklı değerleri için sınır tabakasının nasıl değiştiği grafiklerle 

gösterilmiştir. 

 

3.1. Üçüncü Dereceden Power-Law Akışkana Ait Sınır Tabakası 
Denklemlerinin Nümerik Çözümleri 

 

Ölçekleme dönüşümü sonucu elde edilen denklem (2.207) ve (2.208), denklem 

(2.209)’daki sınır şartlarına uygun olarak Runge-Kutta algoritması ile çözülecektir. 

Bunun için öncelikle denklem (2.207) ve (2.208)’in birinci mertebeden denklemlere 

indirgenmesi gerekmektedir. 

 

( ) ( )μ=μ Mf1  (3.1)
 

( ) ( )μ=μ Nf2  (3.2)
 

( ) ( )μ′=μ Mf3  (3.3)
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 Bu ifadeler denklem (2.207) ve (2.208)‘e yerleştirilirse 

 

31 ff =′  (3.4)
 

2
3f2 −=′  (3.5)

 

( )( ) m
3

2
33

3231

3
ff3mk21m

c2
2

tfff2
f

+++

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=′  (3.6)

 

ifadeleri elde edilir. Başlangıç ve sınır şartları ise aşağıdaki gibidir. 

 

( ) 11 c0f =  (3.7)
 

( ) 22 c0f m=  (3.8)
 

( ) 33 cf =∞  (3.9)
 

Yukarıdaki ifadeler MATLAB programında EK-1’deki gibi yazılarak nümerik 

çözümler yapılmıştır. Çözümlerde c1=1 ve c3=2 değerleri alınmıştır. Nümerik 

çözümlerin sonsuzda sınır şartını sağlayıp sağlamadığı kontrol edilmiştir. Bunun için 

( )0M′ ’ın uygun bir değerini bulana kadar işleme devam edilmiştir. Elde edilen 

çözümler Şekiller 3.1-3.14’te gösterilmiş ve grafiklerde k3 değeri k olarak ifade 

edilmiştir. 
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Şekil 3.1. Farklı pozitif m değerleri için µ ile M fonksiyonun değişimi 
(k=0.5, c1=1, c2=1, c3=2) 

 

 
 

Şekil 3.2. Farklı pozitif m değerleri için µ ile M fonksiyonun değişimi  
(k=0, c1=1, c2=-1, c3=2) 
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Şekil 3.3. Farklı pozitif m değerleri için µ ile M fonksiyonun değişimi 
(k=3, c1=1, c2=-1, c3=2) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Şekil 3.4. Farklı pozitif m değerleri için µ ile M′  fonksiyonun değişimi 
(k=0.5, c1=1, c2=1, c3=2) 
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Şekil 3.5. Farklı negatif m değerleri için µ ile M fonksiyonun değişimi 
(k=0, c1=1, c2=1, c3=2) 

 

 
 

Şekil 3.6. Farklı negatif m değerleri için µ ile M fonksiyonun değişimi 
(k=0.5, c1=1, c2=1, c3=2) 
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Şekil 3.7. Farklı negatif m değerleri için µ ile M fonksiyonun değişimi 
(k=3, c1=1, c2=1, c3=2) 

 

 
 

Şekil 3.8. Farklı negatif m değerleri için µ ile M′  fonksiyonun değişimi 
(k=0.5, c1=1, c2=1, c3=2) 
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Şekil 3.9. Farklı c2 değerleri için µ ile M fonksiyonun değişimi  
(k=0.5, m=0.6, c1=1, c3=2; c2=1 ( _ _ _ ), c2=-1 ( ____ )) 

 

 
 

Şekil 3.10. Farklı c2 değerleri için µ ile M fonksiyonun değişimi  
(k=0.5, m=-0.6, c1=1, c3=2; c2=1 ( _ _ _ ), c2=-1 ( ____ )) 
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Şekil 3.11. Farklı k değerleri için µ ile M fonksiyonun değişimi 
(m=0.4, c1=1, c2=1, c3=2) 

 

 
 

Şekil 3.12. Farklı k değerleri için µ ile M fonksiyonun değişimi 
(m=-0.4, c1=1, c2=1, c3=2) 
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Şekil 3.13. Farklı k değerleri için µ ile M fonksiyonun değişimi 
(m=0.4, c1=1, c2=-1, c3=2) 

 

 
 

Şekil 3.14. Farklı k değerleri için µ ile M fonksiyonun değişimi 
(m=-0.4, c1=1, c2=-1, c3=2) 
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Şekil 3.1, 3.2, 3.3 ve 3.4’te m’nin pozitif değerleri (m>0) için hız profilleri 

çizilmiştir. Şekil 3.1’de püskürtme durumu için M hızının benzerlik değişkenine göre 

değişimi çizdirilmiştir. Grafikten m’nin pozitif değerleri arttıkça sınır tabakası 

kalınlığının azaldığı görülmektedir. Şekil 3.2’de emme durumu için M hızının 

benzerlik değişkenine göre değişimi gösterilmiştir. Grafiğe dikkat edilirse hız 

profilleri yaklaşık µ=1.4 değeri civarında kesişmektedir. 1.4<µ<10 arasında m’nin 

artan değerleri için sınır tabakasının inceldiği görülmektedir. Bu durum Şekil 3.3’te 

görüldüğü gibi k’nın 3 değerinde düzelmektedir. Grafik 3.3’te de m’nin artan pozitif 

değerlerinde sınır tabakasının inceldiği görülmektedir. Şekil 3.4’te ise M ’nin 

türevinin ( M′ ) benzerlik değişkenine göre değişimi çizdirilmiştir. 

 

Şekil 3.5, 3.6, 3.7 ve 3.8’de m’nin negatif değerleri (m<0) için sınır tabakası 

profilleri elde edilmiştir. Şekil 3.5’te püskürtme durumu için M hızının benzerlik 

değişkenine göre değişimi görülmektedir. Grafiğe dikkat edilirse Power-Law 

akışkanı (k=0) için hız profilleri birbirleriyle kesişmiştir. Şekil 3.6’dan bu durumun 

k’nın 0.5 değeri için de devam etmekte olduğu görülmektedir. Fakat Şekil 3.7’de ise 

k’nın 3 değeri için hız profillerinin kesişmediği gözlenmektedir. Grafikten m’nin 

negatif değerleri mutlak olarak arttıkça sınır tabakasının kalınlaştığı görülmektedir. 

Burada bahsedilen durum, emme durumu içinde benzer şekilde gerçekleşmektedir. 

Şekil 3.8’te M′ ’nin benzerlik değişkenine göre değişim grafikleri görülmektedir. 

 

Şekil 3.9’da m=0.6 değerinde püskürtme ve emme sınır şartları için M hızının 

benzerlik değişkeni ile değişimi gösterilmiştir. Şekil 3.10 ise m=-0.6 değeri için 

çizdirilmiştir. Her iki şekilde de püskürtme sınır şartındaki sınır tabakası kalınlığı, 

emme sınır şartındakinden daha kalın olduğu gözlenmiştir. 

 

Şekil 3.11-14’te farklı k değerleri için M hızının benzerlik değişkeni ile değişimi 

çizdirilmiştir. Grafiklerden k değerleri arttıkça sınır tabakasının kalınlaştığı 

görülmektedir. 

 

Tezin bundan sonraki kısmında ise öteleme dönüşümü sonucunda elde edilen 

denklemlerin ((2.224), (2.225)) nümerik çözümleri ve yorumları yapılacaktır. Bu 
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denklemler aşağıdaki gibi birinci mertebeden denklemlere indirgenmiştir. 

 

( ) ( )α=α Kf1  (3.10)
 

( ) ( )α=α Lf2  (3.11)
 

( ) ( )α′=α Kf3  (3.12)
 

Denklem (3.10)-(3.12), denklem (2.224) ve (2.225)’e yerleştirilirse 

 

31 ff =′  (3.13)
 

312 tf
3
1f

3
1f +−=′  (3.14)

 

( )( ) m
3

2
33

2
33231

2
1

3
ff3mk21m3

cff3ftfff
+++

−+−
=′  (3.15)

 

elde edilir. Bu denklem sistemi için de ölçekleme dönüşümdeki başlangıç ve sınır 

şartları (3.7)-(3.9) geçerli olmuştur. İfadeler MATLAB programında EK-1’deki gibi 

yazılarak nümerik olarak çözümler yapılmıştır. Çözümlerde c1=1 ve c3=2 değerleri 

alınmıştır. Elde edilen çözümler Şekil 3.15-3.36’da gösterilmiş ve grafiklerde k3 

değeri k olarak ifade edilmiştir. 
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Şekil 3.15. Farklı pozitif m değerleri için α ile K fonksiyonun değişimi 
(k=0.5, c1=1, c2=1, c3=2) 

 

 
 

Şekil 3.16. Farklı pozitif m değerleri için α ile K fonksiyonun değişimi 
(k=0, c1=1, c2=-1, c3=2) 
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Şekil 3.17. Farklı pozitif m değerleri için α ile K fonksiyonun değişimi 
(k=3, c1=1, c2=-1, c3=2) 

 

 
 

Şekil 3.18. Farklı pozitif m değerleri için α ile L fonksiyonun değişimi 
(k=0.5, c1=1, c2=1, c3=2) 
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Şekil 3.19. Farklı pozitif m değerleri için α ile K′ fonksiyonun değişimi 
(k=0.5, c1=1, c2=1, c3=2) 

 

 
 

Şekil 3.20. Farklı negatif m değerleri için α ile K fonksiyonun değişimi 
(k=0, c1=1, c2=1, c3=2) 
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Şekil 3.21. Farklı negatif m değerleri için α ile K fonksiyonun değişimi 
(k=0.5, c1=1, c2=1, c3=2) 

 

 
 

Şekil 3.22. Farklı negatif m değerleri için α ile K fonksiyonun değişimi 
(k=3, c1=1, c2=1, c3=2) 

 

0 2 4 6 8 10
1

1.2

1.4

1.6

1.8

2

m=0

m=-0.8

m=-0.6

K

α

0 2 4 6 8 10
1

1.2

1.4

1.6

1.8

2

m=-0.8

m=-0.6

m=0

K

α



76 
 

 
 

Şekil 3.23. Farklı negatif m değerleri için α ile L fonksiyonun değişimi 
(k=0.5, c1=1, c2=1, c3=2) 

 

 
 

Şekil 3.24. Farklı negatif m değerleri için α ile K′  fonksiyonun değişimi 
(k=0.5, c1=1, c2=1, c3=2) 
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Şekil 3.25. Farklı c2 değerleri için α ile K fonksiyonun değişimi 
(k=0.5, m=0.6, c1=1, c3=2; c2=1 ( _ _ _  ), c2=-1 ( ____ )) 

 

 
 

Şekil 3.26. Farklı c2 değerleri için α ile K fonksiyonun değişimi 
(k=0.5, m=-0.6, c1=1, c3=2; c2=1 ( _ _ _ ), c2=-1 ( ____ )) 
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Şekil 3.27. Farklı c2 değerleri için α ile L fonksiyonun değişimi 
(k=0.5, m=0.6, c1=1, c3=2; c2=1 ( _ _ _ ), c2=-1 ( ____ )) 

 

  
 

Şekil 3.28. Farklı c2 değerleri için α ile L fonksiyonun değişimi 
(k=0.5, m=-0.6, c1=1, c3=2; c2=1 ( _ _ _ ), c2=-1 ( ____ )) 
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Şekil 3.29. Farklı k değerleri için α ile K fonksiyonun değişimi 
(m=0.4, c1=1, c2=1, c3=2) 

 

 
 

Şekil 3.30. Farklı k değerleri için α ile K fonksiyonun değişimi 
(m=-0.4, c1=1, c2=1, c3=2) 
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Şekil 3.31. Farklı k değerleri için α ile K fonksiyonun değişimi 
(m=0.4, c1=1, c2=-1, c3=2) 

 

 
Şekil 3.32. Farklı k değerleri için α ile K fonksiyonun değişimi 
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Şekil 3.33. Farklı k değerleri için α ile L fonksiyonun değişimi 
(m=0.4, c1=1, c2=1, c3=2) 

 

 
 

Şekil 3.34. Farklı k değerleri için α ile L fonksiyonun değişimi 
(m=-0.4, c1=1, c2=1, c3=2) 
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Şekil 3.35. Farklı k değerleri için α ile L fonksiyonun değişimi 
(m=0.4, c1=1, c2=-1, c3=2) 

 

 
 

Şekil 3.36. Farklı k değerleri için α ile L fonksiyonun değişimi 
(m=-0.4, c1=1, c2=-1, c3=2) 
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Şekil 3.15-3.19’da m’nin pozitif değerleri (m>0) için hız profilleri elde edilmiştir. 

Şekil 3.15’te püskürtme durumu için K hızının benzerlik değişkenine göre değişimi 

görülmektedir. Şekilde m’nin pozitif değerleri arttıkça sınır tabakası kalınlığının 

azaldığı görülmektedir. Şekil 3.16’da ise emme durumu için K hızının benzerlik 

değişkenine göre değişimi gösterilmiştir. Grafiğe dikkatle bakılırsa hız profillerinin 

yaklaşık µ=1.5 değeri civarında kesiştiği gözlenmiştir. 1.5<µ<10 arasında m’nin 

artan değerlerinde sınır tabakasının inceldiği görülmektedir. Bu durum Şekil 3.17’de 

görüldüğü gibi k’nın 3 değerinde düzelmektedir. Bu grafikten de m’nin pozitif 

değerleri arttıkça sınır tabakasının inceldiği görülmektedir. Şekil 3.18’de L hızının 

benzerlik değişkeni ile değişimi gösterilmiştir. Şekil 3.19’da ise K’nın türevinin ( K′ ) 

benzerlik değişkeni ile değişimi çizdirilmiştir.  

 

Şekil 3.20-3.24’te m’nin negatif değerleri (m<0) için sınır tabakası profilleri 

görülmektedir. Şekil 3.20’de püskürtme durumu için K hızının benzerlik değişkenine 

göre değişimi çizdirilmiştir. Grafikte Power-Law akışkanı (k=0) için hız profillerinin 

kesiştiği görülmektedir. Şekil 3.21’den bu durumun k=0.5 değeri için de devam 

etmekte olduğu görülmektedir. Ancak Şekil 3.22’de ise k=3 değeri için bu durum 

düzelmiştir. Bu grafikten m’nin negatif değerleri mutlak olarak arttıkça sınır 

tabakasının kalınlaştığı görülmektedir. Burada bahsedilen durum, emme durumu 

içinde benzer şekilde gerçekleşmektedir. Şekil 3.23, L hızının benzerlik değişkenine 

göre değişimini göstermektedir. Şekil 3.24’de ise K′ ’nün benzerlik değişkenine göre 

değişimini veren grafikler verilmiştir. 

 

Şekil 3.25’te m’nin 0.6 değerinde püskürtme ve emme sınır şartları için K hızının 

benzerlik değişkeni ile değişimi gösterilmiştir. Şekil 3.26’da ise m’nin -0.6 değeri 

için çizdirilmiştir. Her iki şekilde de püskürtme sınır şartındaki sınır tabakası 

kalınlığı, emme sınır şartındakinden daha kalın olduğu gözlenmiştir. Şekiller 3.27 ve 

3.28’de sırasıyla püskürtme ve emme durumları için L hızının benzerlik değişkeni ile 

değişimi gösterilmiştir.  

 

Şekil 3.29-32’de farklı k değerleri için K hızının benzerlik değişkeni ile değişimi 

çizdirilmiştir. Grafiklerden k değerleri arttıkça sınır tabakasının kalınlaştığı 
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görülmektedir. Şekil 3.33-3.36’da ise L hızının benzerlik değişkenine göre değişimi 

gösterilmiştir. 

 

Sonuç olarak üçüncü dereceden Power-Law akışkana ait sınır tabakası denklemlerine 

Lie Grup analizi uygulanmıştır. İlk uygulanan Lie grup analizi ile denklemler, iki 

değişkenli kısmi diferansiyel denklemler biçimine indirgenmiştir. İndirgenen bu 

denklemler ölçekleme ve öteleme dönüşümleri için ayrı ayrı olup iki tanedir. 

Sonrasında bu iki kısmi diferansiyel denklem sistemine ikinci kez Lie Grup analizi 

uygulanarak bulunan yeni simetriler ile denklemler adi diferansiyel denklem formuna 

indirgenmiştir. Bu sayede üç değişkenli kısmi diferansiyel denklem sistemi, iki ayrı 

adi diferansiyel denklem sistemine dönüştürülmüştür. Bu iki ayrı denklem sistemi 

sınır şartları altında Runge-Kutta algoritması ile nümerik olarak çözülmüştür. 

Çözümler sonucunda bu iki ayrı denklem sisteminde de aynı nümerik sonuçlar 

görülmüştür. Şöyle ki; üçüncü derece akışkan katsayısının artan değerlerinde sınır 

tabakasının kalınlaştığı görülmüştür. Üçüncü derece akışkan katsayısının yanı sıra 

Power-Law üssünün sınır tabakasına etkileri de gösterilmeye çalışılmıştır. Püskürtme 

durumu için Power-Law üssünün artan pozitif değerlerinde sınır tabakasının inceldiği 

görülmüştür. Emme durumunda ise üçüncü derece akışkan katsayısının 3’ten büyük 

değerlerlerinde sınır tabakası incelmektedir. Power-Law üssünün negatif değerleri 

mutlak olarak arttığında sınır tabakasının kalınlaştığı gözlenmiştir. Ancak sınır 

tabakasındaki kalınlaşma üçüncü derece akışkan katsayısının 3’ten büyük 

değerlerinde olmuştur. Bu durum, hem püskürtme hem de emme durumunda da 

görülmektedir. Buradan, kabaran (shear thickening) veya incelen (shear thinning) bir 

akışkanda Newtonyen olmayan etkiler arttığında sınır tabakasının kalınlaştığı 

sonucuna varılabilir. Ancak Newtonyen olmayan akışkan katsayısının küçük 

değerlerinde Power-Law akışkanının özellikleri görülmektedir. 

 

3.2. İkinci Dereceden Power-Law Akışkana Ait Sınır Tabakası Denklemlerinin 
Nümerik Çözümleri 

 

Newtonyen olmayan akışkanlara ait benzerlik dönüşümleri ile elde edilen adi 

diferansiyel denklemleri çözmek oldukça zor ve çok zaman almaktadır. Bu türden 

denklemlerin analitik çözümü için Perturbasyon teknikleri, Laplace dönüşümleri ve 
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Homotopy analiz  (HAM) gibi metotlar tavsiye edilebilir.  Nümerik çözümler olarak 

da sonlu farklar, Runge-Kutta algoritması ve shooting metodu gibi teknikler sıklıkla 

kullanılmaktadır. Birçok diferansiyel denklem analitik metotlarla çözülemedikleri 

için nümerik teknikler kullanılmaktadır. Bu çalışmada, denklem (2.243)’teki sınır 

şartlarına bağlı olarak denklem (2.240) ve (2.241)’de verilen yüksek non-lineeriteye 

sahip adi diferansiyel denklemin çözümünde sonlu farklar metodu kullanılmıştır.  

 

Sonlu farklar metodu sürekli bir sistem olarak tanımlanan sınır değer problemini, 

düğüm noktası olarak adlandırılan N tane noktaya bölerek kesikli bir sistem haline 

dönüştürür. Böylelikle diferansiyel denklem eşitliği olarak tanımlanan sınır değer 

problemi, bir grup çözülmesi gereken cebirsel eşitlik haline gelir. 

 

Sonlu farklar metodunda ilk olarak yapılması gereken, problemin tanım aralığı olan 

[a,b] aralığında, aralığın sınır değerleri de dahil olmak üzere adım aralıkları 

h=(b−a)/(N−1) olan N adet eşit aralıklı nokta (ti) belirlemektir. Bu noktalar 

belirlendikten sonra, diferansiyel denklemde bulunan türev ifadeleri Taylor serileri 

kullanılarak elde edilen ve merkezi, ileri, geri sonlu fark bölümleri olarak 

adlandırılan yaklaşık değer ifadeleri ile değiştirilir. 

 

Sonlu fark türevleri kullanılarak elde edilen yaklaşık sonuç eşitliği, ti noktalarına 

uygulanarak sonlu sayıda bilinmeyenden oluşan bir denklem sistemi elde edilir. Bu 

sistem çözülerek ti noktalarındaki yaklaşık çözüm değerleri bulunmuş olur. 

 

Bu tez çalışmasında kullanılan merkezi fark türevleri 
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şeklindedir. Denklem (2.240) ve (2.241)’deki türev ifadeleri yerlerine denklem 

(3.16)-(3.18)’de bulunan ifadeler yerleştirilmiştir. Elde edilen ifadeler kullanılarak 

MATLAB programında EK-2’deki gibi sonlu fark tabanlı bir kod yazılmıştır. Bu 

kod sayesinde adi diferansiyel denklem sisteminin nümerik çözümü yapılmıştır. 

Hesaplamada, yüz düğüm noktası için [ ]10,0=ξ  ve h=0.1 olarak alınmıştır. Elde 

edilen çözümler Şekil 3.37-3.42’de verilmiş ve grafiklerde k1 değeri k olarak ifade 

edilmiştir.  

 

 
 

Şekil 3.37. x bileşenindeki hızla ilgili olan benzerlik fonksiyonu üzerine k ikinci 
derece katsayısının etkisi (m=0.1) 

 

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k = 0

k = 0.5

k = 1

ξ

f



87 
 

 
 

Şekil 3.38. Y bileşenindeki hızla ilgili olan benzerlik fonksiyonu üzerine k ikinci 
derece katsayısının etkisi (m=0.1) 

 

 
 

Şekil 3.39. x bileşenindeki hızla ilgili olan benzerlik fonksiyonu üzerine m pozitif 
Power-Law üssünün etkisi (k=1) 
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Şekil 3.40. Y bileşenindeki hızla ilgili olan benzerlik fonksiyonu üzerine m pozitif 
Power-Law üssünün etkisi (k=1) 

 

 
 

Şekil 3.41. x bileşenindeki hızla ilgili olan benzerlik fonksiyonu üzerine m negatif 
Power-Law üssünün etkisi (k=0.2) 
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Şekil 3.42. Y bileşenindeki hızla ilgili olan benzerlik fonksiyonu üzerine m negatif 
Power-Law üssünün etkisi (k=0.2) 

 

Şekil 3.37’de farklı k değerleri için hızın x bileşeni ile ilgili olan f fonksiyonun 

benzerlik değişkeni ile değişimi çizdirilmiştir. Burada Power-Law üssü 0.1 olarak 

alınmıştır. Grafikten k değerleri arttıkça sınır tabakasının kalınlaştığı görülmektedir. 

Şekil 3.38’de ise hızın Y bileşeni ile ilgili olan g fonksiyonun benzerlik değişkenine 

göre değişimi gösterilmiştir. Bu şekilden k değerlerinin artan değerlerinde g hızının 

arttığı görülmektedir. 

 

Şekil 3.39 ve 3.40’da, m’nin pozitif değerleri (m>0) için sınır tabakası profilleri elde 

edilmiştir. Şekil 3.39’da ikinci derece akışkan katsayısının 1 değeri için f hızının 

benzerlik değişkenine göre değişimi çizdirilmiştir. Grafiğe dikkat edilirse hız 

profilleri yaklaşık ξ =1.7 değeri civarında kesişmektedir. Benzerlik değişkenin 

1.7<ξ<∞ arasında m değerlerinin artmasıyla sınır tabakasının inceldiği 

görülmektedir. Şekil 3.40’da ise g hızının benzerlik değişkeni ile değişimi 

gösterilmiştir. Grafikten m’nin artan pozitif değerlerinde g hızının arttığı 

gözlenmiştir.   
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Şekil 3.41-3.42’de, m’nin negatif değerleri (m<0) için hız profilleri çizdirilmiştir. 

Şekil 3.41’de ikinci derece akışkan katsayısının 0.2 değeri için f hızının benzerlik 

değişkeni ile değişimi gösterilmiştir. Şekilden hız profillerinin yaklaşık ξ =1.8 değeri 

civarında kesiştiği görülmektedir. 1.8<ξ<∞ arasında m değerlerinin mutlak olarak 

artmasıyla sınır tabakasının kalınlaştığı görülmektedir. Şekil 3.42 ise g hızının 

benzerlik değişkenine göre değişimini göstermektedir. Grafiğe dikkat edilirse Power-

Law üssünün negatif değerleri mutlak olarak arttıkça g hızının azaldığı 

görülmektedir. 

 

Sonuç olarak ikinci dereceden Power-Law akışkanına ait sınır tabakası denklemleri 

benzerlik dönüşümü ile adi diferansiyel denklem haline indirgenmiştir. Daha sonra 

sonlu fark algoritması ile çalışan bir kod yazılmış ve bu kod sayesinde elde edilen adi 

diferansiyel denklem sistemi nümerik olarak çözülmüştür. Çözümler sonucunda 

ikinci derece akışkan katsayısının artan değerlerinde, sınır tabakasının kalınlaştığı 

görülmüştür. Benzerlik değişkeninin 1.7 değerinden sonraki değerleri için Power-

Law üssünün artan pozitif değerlerinde sınır tabakasının inceldiği gözlenmiştir. 

Benzerlik değişkeninin 1.8’den sonraki değerleri için Power-Law üssünün negatif 

değerleri mutlak olarak arttığında ise sınır tabakasının kalınlaştığı görülmüştür. 
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4. SONUÇ 

 

Bu tez çalışmasında yeni bir Newtonyen olmayan akışkan modeli ele alınarak bu 

modele ait kararsız akış için sınır tabakası denklemleri elde edilmiş ve bu 

denklemlerin çözümleri yapılmıştır. Ele alınan model, Power-Law akışkan ile ikinci 

ve üçüncü derece akışkan modelinin birleşimi biçimindedir. Daha önce yapılan 

çalışmalar incelendiğinde bu çalışmaların sadece Power-Law akışkan modeli, ikinci 

veya üçüncü derece akışkan modeli gibi modeller üzerinde yapıldığı görülmektedir. 

Literatürde bu üç Newtonyen olmayan akışkan modeli ile ilgili birçok çalışma 

yapılmıştır. Değişik akış problemleri ele alınıp incelenmiştir.  

 

Tez çalışmasında, akışkanlar mekaniğinde çok önemli bir yere sahip olan sınır 

tabakası akışları bu yeni model için ele alınıp incelenmiştir. Tezde öncelikle akışkan 

modeline ait en genel hareket denklemleri çıkartılmıştır. İvme terimleri, viskoz 

terimler, Power-Law terimi, ikinci ve üçüncü derece akışkan terimleri ayrı ayrı elde 

edilmiştir. Bu hareket denklemlerinde üçüncü derece akışkan katsayısı sıfır (β=0) 

alındığında denklemler sadece Power-Law üssü ve ikinci dereceden akışkan terimini 

ihtiva eden hareket denklemlerine dönüşmektedir. Eğer denklemlerde ikinci derece 

akışkan katsayıları sıfır (α1=α2=0) alınır ise hareket denklemleri Power-Law üssü ve 

üçüncü dereceden akışkan terimini ihtiva eden denklemler haline gelmektedir. Tüm 

Newtonyen olmayan katsayılar sıfır (α1=α2=β=0) kabul edilir ise denklemler Power-

Law akışkanın hareket denklemleri haline dönüşmektedir. Eğer α1=α2=β=0 ve m=0 

alınır ise hareket denklemleri Newtonyen akışkanlara indirgenmiş olmaktadır. Tezin 

sonraki kısmında ise sınır tabakası yaklaşımı kullanılarak ikinci dereceden Power-

Law ve üçüncü dereceden Power-Law akışkanlarına ait iki boyutlu ve kararsız akış 

için sınır tabakası denklemleri elde edilmiştir. Sınır tabakası yaklaşımında t zamanı, 

p basınç terimi, x koordinatı ve bu yöndeki u hızı bir mertebesinde, y koordinatı ve 

bu yöndeki v hızı δ mertebesinde alınmıştır. Bu yaklaşım ile sınır tabakası 

denklemleri elde edilmiştir.  

 

Sınır tabakası yaklaşım ile elde edilen ikinci dereceden Power-Law ve üçüncü 

dereceden Power-Law akışkanlarına ait sınır tabakası denklemlerinin çözümüne 
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geçilmiştir. Öncelikle üçüncü dereceden Power-Law akışkanına ait sınır tabakası 

denklemlerinin çözümleri yapılmıştır. Bu akışa ait sınır tabakası denklemleri kısmi 

diferansiyel denklem sistemi biçimindedir. Bu denklemlerin çözülmeleri oldukça zor 

ve uğraştırıcıdır. Bu nedenle, denklemlerin çözümünü yapabilmek için 

denklemlerimiz adi diferansiyel denklem formuna indirgenmiştir. İndirgeme işlemi 

için Lie Grup analizi kullanılmıştır. Lie Grup analizinde önce denklemler için 

invaryantlık şartları yazılmıştır. Sonrasında ise bu şartlar için gerekli olan 

infinitesimaller türetilmiştir. Bu infinitesimaller, invaryantlık şartlarında yerine 

yazıldığında iki ayrı denklem sistemi elde edilmiştir. Bu denklem sistemleri 

katsayılarına göre ayrıştırılarak bir kısmi diferansiyel denklem sistemi elde 

edilmiştir. Bu denklem sistemi çözülerek denklemlerin kabul ettiği simetriler 

bulunmuştur. Bulunan bu simetriler ile denklemler üç değişkenli kısmi diferansiyel 

denklem sisteminden, iki değişkenli kısmi diferansiyel denklem sistemine 

dönüştürülmüştür. İndirgeme işlemi ölçekleme ve öteleme dönüşümleri ile 

sağlanmıştır. Yani iki farklı kısmi diferansiyel denklem sistemi elde edilmiştir. Sınır 

şartlarında en az kısıtlayıcılık, hareketli yüzey üzerindeki emme-püskürtme durumu 

olduğu için bu fiziksel problem ele alınmıştır. Elde edilen bu iki bağımsız değişkenli 

iki ayrı kısmi diferansiyel denklem sistemlerine ikinci kez Lie Grubu analizi 

uygulanmıştır. Böylece iki değişkenli kısmi diferansiyel denklemler, bir değişkenli 

adi diferansiyel denklem formuna indirgenmiştir. Ölçekleme dönüşümü sayesinde 

oluşan denklemlerde x koordinatı yönündeki hız fonksiyonu M, y koordinatı 

yönündeki hız fonksiyonu N olarak belirlenmiştir. N fonksiyonu analitik olarak 

çözülmüş olup doğrusal bir değişim göstermiştir. Öteleme dönüşümü sonucunda ise 

x koordinatındaki hız fonksiyonu K, y koordinatındaki hız fonksiyonu ise L olarak 

verilmiştir. 

 

Tez çalışmasında sınır tabakası yaklaşımı ile elde edilen ikinci dereceden Power-Law 

akışkanına ait sınır tabakası denklemlerinin çözümleri de yapılmıştır. Bu 

denklemlere ait sınır şartı olarak literatürde de çok sık yer alan klasik sınır şartları 

kullanılmıştır. Denklemlerin çözümü için öncelikle, denklemlerimiz adi diferansiyel 

denklem haline getirilmiştir. Bunun için Yürüsoy (2006)’un çalışmasındaki özel bir 

dönüşüm kullanılmıştır. Bu dönüşüm üzerinde bazı küçük değişiklikler yapılmış ve 
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sınır tabakası denklemlerine uygulanmıştır. Bu yeni değişkenler, denklemde 

yerlerine yazılarak kısmi diferansiyel denklem sisteminin adi diferansiyel denklem 

sistemine dönüştürülmesi sağlanmıştır. Denklemler adi diferansiyel denklem 

formuna inerken sınır şartları da başarı ile adi diferansiyel forma indirgenmiştir. Bu 

dönüşüm kullanılarak denklemin çözümü için büyük bir avantaj elde edilmiştir. 

Çünkü her zaman için bir kısmi diferansiyel denklemi çözmek bir adi diferansiyel 

denklemi çözmekten zordur. Bu dönüşüm sayesinde denklemler hem adi diferansiyel 

denklemlere dönüştürülmüş hem de boyutsuzlaştırılmıştır. Elde edilen adi 

diferansiyel denklemlerde x koordinatı yönündeki hız fonksiyonu f, y koordinatı 

yönündeki hız fonksiyonu g olarak belirlenmiştir.  

 

Bundan sonraki kısımda, üçüncü dereceden Power-Law akışkanına ait sınır tabakası 

için elde edilen iki ayrı adi diferansiyel denklem sistemlerinin nümerik çözümleri 

yapılmıştır. Nümerik çözüm için Runge-Kutta algoritması kullanılmıştır. İki farklı 

dönüşümle (ölçekleme ve öteleme) elde edilen denklemlerin nümerik çözümleri 

grafiklerle ifade edilmiş ve yorumlanmıştır. Grafiklerde power-law üssünün ve 

üçüncü derece akışkan katsayısının çeşitli değerleri için hız fonksiyonlarının 

değişimi gösterilmiştir.  

 

Grafiklerden anlaşıldığı gibi bu iki ayrı denklem sisteminde de aynı nümerik 

sonuçlar elde edilmiştir. Üçüncü derece akışkan katsayısının artan değerlerinde sınır 

tabakasının kalınlaştığı görülmüştür. Power-Law üssünün sınır tabakasına etkileri de 

gösterilmiştir. Püskürtme durumu için Power-Law üssünün artan pozitif değerlerinde 

sınır tabakasının inceldiği görülmüştür. Emme durumunda ise üçüncü derece akışkan 

katsayısının 3’ten büyük değerlerlerinde sınır tabakası incelmektedir. Power-Law 

üssünün negatif değerleri mutlak olarak arttığında, sınır tabakasının kalınlaştığı 

gözlenmiştir. Ancak sınır tabakasındaki kalınlaşma üçüncü derece akışkan 

katsayısının 3’ten büyük değerlerinde olmuştur. Bu durum hem püskürtme hem de 

emme durumunda da görülmektedir. Buradan, kabaran (shear thickening) veya 

incelen (shear thinning) bir akışkanda Newtonyen olmayan etkiler arttığında, sınır 

tabakasının kalınlaştığı sonucuna varılmıştır. Newtonyen olmayan akışkan katsayının 

küçük değerlerinde Power-Law akışkanının özellikleri de görülmektedir. Ayrıca M 



94 
 

ve K fonksiyonunun türevlerine ait grafiklere de yer verilmiştir. Bu grafikler kayma 

gerilmesinin hesap edilmesinde kullanılmaktadır. 

 

Tezin bu aşamasında ikinci dereceden Power-Law akışkanın sınır tabakası için elde 

edilen adi diferansiyel denklem sisteminin çözümleri üzerinde durulmuştur. Çözüm 

için sonlu farklar metodu tercih edilmiştir. 100 düğüm noktası için çözüm 

yapılmıştır. MATLAB programında sonlu farklar tabanlı bir kod yazılmıştır. Bu kod 

sayesinde adi diferansiyel denklem sistemi başarı ile çözülmüştür. Elde edilen 

sonuçlar grafiklerle ifade edilmiştir. Grafikler power-law üssünün ve ikinci derece 

akışkan katsayısının çeşitli değerleri için hız fonksiyonlarının değişimini 

göstermektedir.  

 

İkinci dereceden akışkan katsayısının çeşitli değerleri için elde edilen çözümler 

incelendiğinde, artan ikinci derece katsayı değerlerine karşılık sınır tabakasının 

kalınlaştığı gözlenmektedir. Kabaran (shear thickening) akış için elde edilen 

çözümler incelendiğinde Power-Law üssünün artan pozitif değerlerinde, sınır 

tabakasının inceldiği gözlenmiştir. İncelen (shear thinning) akış için elde edilen 

çözümler incelendiğinde ise Power-Law üssünün negatif değerleri mutlak olarak 

arttığında, sınır tabakasının kalınlaştığı görülmüştür.  
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EK-1 
 
RUNGE-KUTTA ALGORİTMASINI KULLANAN PROGRAMLAR 
 
 
M ve N hızları için 
 
function fdot = MNhizlari(t,f) 
m=-0.8; 
k=1; 
c3=2; 
fdot=[f(3);(-3/2);((2*f(1)+f(3)*(f(2)-1/2*t)-
2*c3)/(((m+1)+2*k*(m+3)*(f(3))^(2))*(abs(f(3)))^(m)))]; 
 
 
clear all 
t0=0;tf=10; 
f0=[1 1 1.9065]'; 
[t,f0]=ode45('MNhizlari',t0,tf,f0); 
f11=f0(:,1); 
hold on 
plot(t,f11,'b') 
 
 
 
 
K ve L hızları için 
 
function fdot = KLhizlari(t,f) 
m=-0.8; 
k=1; 
c=2; 
fdot=[f(3);((-f(1)+t*f(3))/3);(((f(1))^2-
(t*f(1)*f(3))+(3*f(2)*f(3))-
c^2)/(3*((m+1)+2*k*(m+3)*(f(3))^(2))*(abs(f(3)))^(m)))]; 
 
clear all 
t0=0;tf=10; 
f0=[1 1 0.7864]'; 
[t,f0]=ode45('KLhizlari',t0,tf,f0); 
f11=f0(:,1); 
hold on 
plot(t,f11,'r') 
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EK-2 
 
SONLU FARKLAR METODUNU KULLANAN PROGRAM 
 
clear all 
 
h=0.1; 
 
f0=[0:1/98:1 0:-5/98:-5]; 
options=optimset('Display','iter','TolFun',1e35,'MaxFunEvals',1e8,'M
axIter',30,'TolX',1e38,'LargeScale','on','PrecondBandWidth',inf); 
[f,fval,exitflag,output,JAC] = fsolve(@doktora,f0,options); 
  
for i=1:99 
    p1(i,:)=f(i); 
end 
 
for i=100:198 
    r1(i-99,:)=f(i); 
end 
 
t1=0:0.1:9.8; 
  
figure(1) 
plot(t1,p1,'k') 
hold on 
  
figure(2) 
plot(t1,r1,'k') 
hold on 
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