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TESEKKUR

Bu tez calismasinda, destegini hi¢cbir zaman esirgemeyen, bilgilerini benimle comertce
paylasan saygideger hocam Do¢. Dr. Naim CAGMAN’a minnettarligimi sunarim.
Ayrica, kiymetli zamanm ve fikirlerini esirgemeyen ¢aligmanin tamamlanmasinda ve

diizeltmelerinde emegi gegen diger tiim hocalarima ve arkadaglarima tesekkiir ederim.

Bu ¢aligmada bana destegini esirgemeyen esime ve yazdiklarimi siirekli silip ¢aligmay1

birak benimle oynamalisin diyen oglum Kayra Alp’e .
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1. GIRIS

Belirsizlik iceren problemlerle bazi klasik matematik yontemleri basa ¢ikamaz duruma
geldiginden zaman iginde bu tiir problemlerle ugrasmakicin yeni teoriler ortaya atilmstir.
Belirsiz iceen problemlerin ¢oziimii icin, aralik matematigi, olasilik teorisi, bulanik
kiimeler teorisi, yaklasimli kiimeler teorisi, esnek kiimeler teorisi gibi farkli teoriler
gelistirildi. Her bir teorinin giiclii oldugu uygulamalar bulunmaktadir. Bu teoriler
arasindan en goze ¢arpanlardan birisi, Zadeh (1965)’in bulanik kiimeler teorisidir. Buteori
hizla gelismesine ragmen baz1 yapisal zorluklara sahiptir. Bir bulanik kiime onun iiyelik
fonksiyonu yoluyla tanimlanir. Molodtsov (1999)’a gore iiyelik fonksiyonun dogasinin
fazlasiyla bireysel olmasindan dolayi, her bir durum i¢in bir iiyelik fonksiyonu insa etme
zorluguyla karsilagilir. Bu nedenle, tiyelik fonksiyonu insasindan bagimsiz bir kiimeler

teorisine thtiya¢ vardir.

Esnek kiimeler teorisi, Molodtsov (1999) tarafindan belirsizlikle basa ¢ikmak i¢in bir
matematiksel ara¢ olarak ortaya atildi. Molodtsov (1999), siirekli diferansiyellenebilir
fonksiyonlar, oyun teorisi, islem aragtirmalari, Riemann integrasyonu, Perron integrasyonu,

olasilik, Ol¢lim teorisi vb. alanlarda esnek kiime teorisini kullanarak, basarili caligmalar

yaptt.

Maji ve ark. (2002,2003), Pawlak (1982)’1n yaklasimli kiime teorisi yardimiyla, bir
karar verme probleminde esnek kiimelerin bir uygulamasimi sundu ve esnek
kiimelerde bazi islemleri tanimladi. Xiao ve ark. (2003) esnek kiime temelli is rekabet
kapasitesi i¢in yapay bir hesaplama metodu iizerine bir calisma yapti. Yang ve ark. (2004),
esnek kiimeler ve yaklagimli kiimelere dayali klinik teshisin karar analizi ve indiiksiyon
baglikli bir ¢aligma yapti. Chen ve ark. (2003,2005) ile Kong ve ark. (2008) esnek
kiimelerde parametre indirgemesi iizerine ¢calismalar yapti. Xiao ve ark. (2005) ile Pei ve
Miao (2005), esnek tabanli bilgi sistemleri {izerine ¢alismalar sundular. Mushrif ve ark.
(2006), esnek kiime temelli siniflandirmalar iizerine bir ¢alisma yapti. Zou ve Xiao (2008)
eksik bilgi altinda esnek kiimelerin veri analizi yaklasimini ortaya koydu. Bu yaklagimlar

esnek kiimelerde eksik verilerin mevcut durumlarini yansitmak i¢in tercih edilebilir.



Maji ve ark. (2001), bulanik esnek kiimeleri tanimladi. Daha sonra pek ¢ok aragtirmaci
bulanik esnek kiimeler {izerine ¢aligmalar yapti. Aktas ve Cagman (2007) esnek kiimeleri,
bulanik kiimeler ve yaklasimli kiimelerin ilgili kavramlariyla karsilastirdi. Roy ve Maji
(2007) bir karar verme probleminde bulanik esnek kiimelerin bir uygulamasi iizerinde
baz1 sonuclar ortaya koydu. Yang ve ark. (2007) bulanik esnek kiimelerde indirgemeyi
tanimlayarak, bulanik esnek kiimeler yoluyla bir karar verme problemini analiz etti.
Majumdar ve Samanta (2008) bulanik esnek kiimelerde benzerlik 6l¢ilimiinii ortaya atti.
Kong ve ark.(2008) ile Xiao ve ark. (2009), bulanik esnek kiime iizerine dayali bazi

yaklagimlar1 konu alan bir ¢calisma yapti.

Molodtsov ve ark. (2006) tarafindan, esnek kiime teorisi {izerine dayali bir analiz
gelistirerek, esnek sayi, esnek tiirev, esnek integral gibi kavramlar formiile edildi. Bu
analiz, Kovkov ve ark. (2007) tarafindan optimizasyon teorisi ile ilgili problemlere
uygulandi. Su anda, esnek kiime teorisi ve onun uygulamalari lizerine yapilan ¢aligmalar

hizla gelismektedir.

Ogrencilerin 6grenme basarilarinin degerlendirilmesi i¢in kullanilan uygun degerlendirme
sistemleri, egitimin amacin1 gergeklestirmek 6nemli araglardandir. Ogrencilerin 6grenme
basarilarini degerlendirme; egitim hedefleri dogrultusunda 6grencilerin performans seviye-
lerine karar verme siirecidir. Uygun bir degerlendirme sistemi, bireysel gelisim i¢in
ortam olusturur ve 6grencilerin giinlimiizde ve gelecekteki firsatlarin1 sinirlandirmamak
icin biitlin 6grencilerin en adil puan almalarin1 saglamalidir. Her degerlendirme sistemi,
diizenli olarak gézden gecirilmeli ve dogrulugu, giivenirligi ve 6grencilere faydas: garanti-

lenmek iizere gelistirilmelidir.

Hizla gelisen diinyada daha gelismis daha detayli degerlendirme yapilmahdir. Ogrencilerin
degerlendirilmesinde sorularin dogrulugunun yaninda, sorularin zorlugu, sorularin karma-
siklig1 ve sorularin ¢oziimiinde gosterilen caba, hava kosulu, zaman dilimi, heyecan, yas,
tecriibe, fiziksel yeterlilik, cevre gibi parametreler de degerlendirmede dikkate alinmasi
gereken Onemli etkenlerdir. Bu nedenlerle, bu calismada, daha objektif bir siralama
elde edebilmek i¢in sinavin sonucunu etkileyebilecek bazi parametrelerin etkisini hesaba

katarak ve bulanik parametreli bulanik esnek karar verme metodu kullanilarak yeni bir



degerlendirme yontemi 6nerecegiz. Biz burada yontemin daha kolay anlasilabilmesi i¢in

sadece dogruluk, zorluk, karmasiklik ve ¢aba parametrelerini dikkate alacagiz.

Bu tez ¢alismasinda, once senek kiimeler, bulanik parametreli esnek kiimeler, bulanik
parametreli bulanik esnek kiimeler ve bunlarin islemleri verilecek. Daha sonra bulanik
parametreli bulanik esnek karar verme metodu kullanilarak bir esnek sinav degerlendirme

yontemi gelistirilecek ve bu yontemin uygulamasi bir 6rnekle agiklanacak.



2. GENEL KAVRAMLAR

Bu béliimde ilk olarak, Maji ve ark. (2002, 2003)’nin esnek kiimeler teorisi {izerine
yaptiklar1 bazi tanimlar, daha islevsel olmalari i¢in Cagman ve ark. (2010a)’nin tarafindan
modifiye edildi. Bu yeni tanimlar kullanilarak esnek kiimelerin temel 6zelikleri ve esnek

kiime islemleri tanitildi.

2.1 Esnek Kiimeler

Esnek kiime kavrami, U evrensel kiimesinin alt kiimeler ailesinin parametrize edilmis
bir ailesidir. Bir esnek kiimede sirali ikililer, esnek kiimenin elemani veya {iyesi olarak
isimlendirilirler. Biz bu esnek kiimeleri Fy4, F,...,G 4, ... seklinde biiyiikk harfler ile

gosterecegiz.

Bir nesneler kiimesi iizerinde esnek kiime tanimlamak i¢in, nesneleri karakterize eden
ozelikleri ifade etmek zorundayi1z. Bu 6zelikleri ifade etmek icin kullanacagimiz parametrelerin
kiimesine parametre kiimesi denir. Birinci bilesende parametre, ikinci bilesende 6zeligi
saglayan nesnelerin kiimesi olacak sekilde yazilan sirali ikililerle bir esnek kiime yazabiliriz.

Diger bir deyisle bir esnek kiime bu sekilde 1y1 tanimli sirali ikililerin bir koleksiyonudur.

Tamm 2.1.1. U bir baslangig evreni; P(U), U’nun kuvvet kiimesi; F baslangi¢ evreninin
elemanlarini niteleyen tiim parametrelerin kiimesi ve A C E olsun. U iizerinde bir Fy

esnek kiimesi, siral1 ikililerin bir kiimesi ile asagidaki sekilde tanimlanir.

Fa={(e, fale)) : e € E, fale) € P(U)}, (2.1)
burada, f4: E — P(U) vee ¢ Aigin f4(e) = 0 seklindedir.
Burada, f4 yaklasim fonksiyonu olarak isimlendirilir. e € E parametreleri ile iliskili

nesneleri iceren F'4(e) kiimesi, e-yaklagim deger kiimesi veya e-yaklagim kiimesi olarak

adlandirilir.



Esnek kiimenin tanimina gore, bir F'4 esnek kiimesi bi¢imsel olarak onun iiyelik fonksiyonu
olan f,’ya esittir. Biz herhangi bir esnek kiimeyi onun iiyelik fonksiyonu ile belirliyoruz

ve bu iki kavrami birbiri ile yer degistirebilir olarak goriiyoruz.

Burada, f4 notasyonunda ki A alt indisi, f4’nin F4 esnek kiimesinin yaklagim fonksiyonu

oldugunu gosterir.

Eger (e, fa(e)), F4 esnek kiimesine aitse (e, fa(e)) € F4 aksi taktirde (e, fa(e)) & Fa
seklinde yazariz. Diger bir ifadeyle, her bir (e, f4(e)) eleman igin sadece bir olasilik

vardir. (e, fa(e)), ya fa esnek kiimesine dahildir ya da degildir.

Esnek kiime teorisindeki temel kavram yaklagimdir. ey, e € E igin fa(e1) C fa(ea) ise
e9 parametresinin yaklasim degeri e; parametresinin yaklasim degerinden daha biiytiktiir.

Bunun anlam, e;, U’da e; den daha fazla elemanla iliskilidir.

Bir esnek kiimeyi, onun elemanlarim listeleme yoluyla gosterebiliriz. Ornegin, U =
{u1,us,u3, uy, us} nesnelerin kiimesi, F = {ey, eq,€3,€4,€5,€6,€7}  parametrelerin
kiimesi ve A = {eg, e3,€5,¢5}, E’nin alt kiimesi olsun. Kabul edelim ki fa(ez) =
{ug, us}, fales) =0, fales) = {ur, ua} ve faleg) = {uz, us, us} seklinde belirtilsin. O

halde F'4 esnek kiimesi

Fy = {(ea, {ua, us}), (es, {u1, u2}), (€6, {ua, us, us)}

seklinde yazilir. Listelenmis olan elemanlarin siras1t 6nemli degildir. Yani,

{(e2, {ua, ua}), (€5, {u1,u2})} = {(e5, {ur, ua}), (e, {ua, us})}

esitligi dogrudur. Bunun yanisira bir eleman sadece bir defa listelenir.

{(eq, {ug, us}), (€5, {ur, ua}), (€2, {uz, us})} yerine {(ez, {ua, us}), (€5, {u1, u2})}

gosterimi kullaniriz.



Ayrica, bir esnek kiimeyi, onun elemanlar1 bir veya daha fazla ortak 6zelige sahip

oldugunda, bu 6zeligi kullanarak da gsterebiliriz. Ornegin,

Fa={(e, fal€)) : fale) =0, e € B}

Yukaridaki gosterimlerin yanisira, islenen verilerin daha rahat goriilebilmesi i¢in tablo
yontemi kullanilabilir. U bir evrensel kiime, E tiim parametrelerin kiimesi ve A C F
olsun. U iizerinde bir F4 esnek kiimesi i¢in, onun bilgi tablosu, ¢ = 1,2,...,m ve

7 =12,...,ni¢in

/)fA:UXE - {071}
1, }M € fA(@j)

hs, j) - 2 (i j):
o) = el =00 g e

yoluyla asagidaki gibi elde edilir.

pfA €1 €2 . . . ej

hi | pra(hiyer) pra(hies) o . o pri(ha,eg)
ho | pra(ha,er)  pra(hosea) o . pry(ha,e)
hi pfA(hi7€1) pfA(hi7€2) SR pfA(hi7€j>

Ornegin, yukarida insa ettigimiz F4 esnek kiimesi,

Pfa | €1 €2 €3 €4 €5 € €7 Pfa | €2 €5 €g
uy |0 0 0 O 1 0 O up |0 1 0
uwp [0 1 0 0 1 1 O up | 11 1

veya
us |0 0 O O O I O uz | 0 0 1
uy (0 1 0 0 0 0 O ug |10 0
us | O 0O O O O I O us | 0 0 1

seklinde gosterilebilir.



Tanim 2.1.2. F4, U lizerinde bir esnek kiime olsun. Eger e € Eigin f4(e) = D ise fa(e)
e-yaklagim kiimesine, f4’nin bos-degeri denir ve (e, f4(e)), F4’nin bos-elemani olarak

adlandirilir.

fa(e) = 0 olmasmin anlami1 U da ki elemanlarin higbirinin e € E parametresi ile iliskili
olmadigidir. Bu ylizden bu tiir parametrelerin gz 6niine alinmasi1 anlamsiz oldugu igin,

biz bdyle elemanlar1 bir esnek kiimede gostermeyecegiz.

Tanmim 2.1.3. Eger bir esnek kiimenin biitiin elemanlar1 bos ise o halde, esnek kiime bos
esnek kiime olarak adlandirilir ve Fi ile gosterilir. Agiktir ki her e € E igin fo(e) = 0
seklindedir.

Tamm 2.1.4. Fy, U iizerinde bir esnek kiime olsun.Eger ¢ € E igin fa(e) = U
oluyorsa, o halde f4(e) e-yaklagim kiimesine, f4’nin mutlak-degeri ve (e, fa(e)), F.a’nin

mutlak-elemani olarak adlandirilir.

fa(e) = U olmasinin anlami, U’nun biitiin elemanlarinin e € E parametresi ile ilgili

oldugudur.

Tanim 2.1.5. Eger bir /4 esnek kiimesinin tiim elemanlar1 mutlak ise, o halde bu esnek

kiime, mutlak esnek kiime olarak adlandirilir ve F'; ile gosterilir.

Eger A = E ise, mutlak esnek kiimeye, evrensel esnek kiime denir ve F'z ile gosterilir.

Ornek 2.1.6. U = {uy, us, ug, uyg, us } evrensel kiime, ' = {eq, es, €3, e, } ise parametreler

kiimesi olsun.

Eger A = {ez,e3,e4} ve fa(e2) = {uz,ua}, fales) = 0, fa(es) = U ise, o halde Fy
esnek kiimesi F'y = {(e2, {u2,u4}), (€4, U)} seklinde yazilir.

Eger B = {e1,e3} ve fp(er) =0, fp(es) = 0 ise, o halde F esnek kiimesi bog esnek
kiimedir. Yani F'z = F% seklindedir.

Eger C' = {ey,e2} ve fo(er) = U, fc(ex) = U ise, o halde F esnek kiimesi mutlak

esnek kiimedir. Yani Fio = F seklindedir.



Eger D = Evehere; € Ei=1,2,3,4i¢in fa(e;) = U ise, F)p esnek kiimesine evrensel

esnek kiime denir. Yani F'p = F'; seklindedir.

Tanmim 2.1.7. F4 ve Fg, U iizerinde iki esnek kiime olsun. Eger her e € £ igin

fa(e) € frle)

oluyorsa, F4’ya F'g’nin esnek alt kiimesidir denir ve F’ AEFB ile gosterilir.

Yorum 2.1.8. F4 §F 'z olmasi, F'4’nin her elemaninin F'z’nin eleman1 olmasi anlamina
gelmez. Bu yiizden, klasik alt kiime tanimi1 esnek alt kiime tanimu i¢in gegerli degildir.
Ornegin, U = {uy, us, u3, us} evrensel kiime ve E = {ey, ey, e3} tiim parametrelerin
kiimesi olsun. Eger A = {e;}, B = {ei,e3} ve Fa = {(e1,{uz,us})}, Fp =
{(e1, {ug, us, uqs}), (e3,{us,us})} ise, o halde her e € Fy igin f4(e) C fp(e) dogrudur.
Dolayisiyla F4CFp. Aciktir ki (e1, faler)) € Fy fakat (e1, fa(er)) ¢ Fp dir.

Onerme 2.1.9. F, ve Fp, U iizerinde iki esnek kiime olsun. O halde asagidaki sonuglar

gecerlidir.

i. FuCF;
ii. FpCFy
iii. FACF,4
iv. FACFp ve FgCFo = FaCFe

Ispat . Ispatlari esnek kiimelerin yaklasim fonksiyonlari kullanilarak yapalim. Here € E

i¢in,

i. fale) € U oldugundan f4(e) C fz(e)
ii. 0 C fale) oldugundan fa(e) C fa(e)
iii. f(€) = fa(e) oldugundan fa(e) C fa(e)
v, fa(e) C fule) ve fa(e) C fole) = fale) C fele)

Onerme 2.1.10. U iizerinde asagidaki sonuglar gegerlidir.



1. Bos esnek kiime tektir.

ii. Evrensel esnek kiime tektir.
ispat. Tanim 2.1.3 ve 2.1.5’ten agiktr.

Tanim 2.1.11. Eger F AEF B i¢in, F'p’de I nin eleman1 olmayan en az bir eleman varsa,

Fy’ya Fp’nin 6z esnek alt kiimesi denir ve F4C Fj ile gosterilir.

Tanim 2.1.12. F4 ve Fp, U lizerinde iki esnek kiime olsun. Eger her e € E i¢in

fale) = f(e)

oluyorsa F'4 esnek kiimesi Fz esnek kiimesine esittir denir ve 'y = Fp ile gosterilir.

Onerme 2.1.13. Fy, Fp ve I, U lizerinde ii¢ esnek kiime olsun. O halde asagidaki

sonuclar gegerlidir.

1. FA:FBVCFB:FcﬁFA:FC
ii. FACFpve FgCFy < Fy=Fo

Ispat . Her ¢ € E igin, yaklasim fonksiyonlarin1 kullanarak ispatlayalim.

i. fale) = f(e) ve fp(e) = fole) & fale) = fele)
ii. fa(e) € fo(e) ve fz(e) C fale) & fale) = [fn(e)

Tamm 2.1.14. F'4 esnek kiimesinin tiim alt kiimelerinin kiimesine, F'4 esnek kiimesinin

kuvvet kiimesi denir.

Tanim 2.1.15. Fy, U iizerinde bir esnek kiime olsun. O halde F4 esnek kiimesinin F'§

ile gosterilen tiimleyeni

fae(e) = file), heree E,

yaklagim fonksiyonu yoluyla elde edilir. Burada f§(e) = U — fa(e) seklindedir.

«on we”

Karisiklig1 dnlemek igin, seklinde esnek tiimleyen ve seklinde klasik tiimleyen
kullandik. Burada,A° bir kiime islemi degildir. Bu sadece f4-’nin F4o esnek kiimesinin

yaklagim fonksiyonu oldugunu gdstermek icin kullanilan bir notasyondur.
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Onerme 2.1.16. F,, U iizerinde bir esnek kiime olsun. O halde asagidaki sonuglar

gecerlidir.

i (F3)° =Fy4
i, Fg =Fp

Ispat . ¢ € E igin esnek kiimelerin yaklasim fonksiyonlarii kullanarak ispati kolayca

yapabiliriz.

i. (fa(e))® = fale)
ii. f§5(e)=U—fo(e)=U—-0=U= fz(e)

Tanim 2.1.17. F4 ve F'g, U tizerinde iki esnek kiime olsun. F'4 ve F'g esnek kiimelerinin
birlesimi,

faep(e) = fa(e)U fp(e), herec E,

yaklasim fonksiyonu yoluyla tanimlanir ve F,UF} ile gosterilir.

Karigiklign 6nlamek icin, “U” seklinde esnek birlesim ve “U” seklinde klasik birlesim
kullandik. Burada, AUB bir kiime islemi degildir. Bu sadece f4ep’nin Fuep esnek

kiimesinin yaklasim fonksiyonu oldugunu gdstermek icin kullanilan bir notasyondur.

Onerme 2.1.18. F,, Fg ve Fg, U iizerinde ii¢ esnek kiime olsun. O halde asagidaki

sonuclar gegerlidir.

i. FAUFy = Fy
ii. FuUFp = Fy
iii. F4UF; = Fp

iv. F,UFS = Fj

<

. FAUFg = FgUF,4

V1. (FAOFB)OFC = FAO(FBOFC)
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Ispat . Her e € E igin, yaklasim fonksiyonlarin1 kullanarak ispatlayalim.

i. faeale) = fa(e) U fale) = fale)
ii. faeole) = fale)U fale) = fale)
iii. faep(e) = fale)U fzle) = fz(e)
iv. fa(e) U file) = fg(e)

=

faen(e) = fale) U fu(e) = frle) U fale) = freale)

vi. flaepjec(e) = faen(e) U fc(e)
= (fale) U f(e)) U fe(e)
= fa(e) U (fa(e) U fc(e))
= fale) U fpec(e)

= fA@(B@C)(e)

Tanim 2.1.19. F4 ve F'g, U tizerinde iki esnek kiime olsun. F'4 ve F'g esnek kiimelerinin
kesigimi,

faep(e) = fale)N fp(e), herec E,

yaklasim fonksiyonu yoluyla tanimlanir ve F4NFj ile gosterilir.

13

Karisikligi dnlemek igin, “1” seklinde esnek birlesim ve “N 7 seklinde klasik birlesim

kullandik. Burada, ANB bir kiime islemi degildir. Bu sadece f4ep’nin Fuep esnek

kiimesinin yaklasim fonksiyonu oldugunu gdstermek icin kullanilan bir notasyondur.

Onerme 2.1.20. Fy, Fp ve F¢, U lizerinde ii¢ esnek kiime olsun. O halde asagidaki

sonuclar gegerlidir.

i. FANFy = Fy
ii. FaNFp = Fp
iii. FuNFg = Fy

iv. FAﬁFj = Fq>
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V. FAﬁFB = FBﬁFA
V1. (FAﬁFB)ﬁFC = FAﬁ(FBﬁFC)

vii. FuCFp = FAUFg = Fgve F4NFg = Fy

Ispat . Her e € E igin, yaklasim fonksiyonlarini kullanarak ispatlayalim.

i. faea(e) = fale) N fale) = fale)
ii. faea(e) = fa(e) N fo(e) = fale)
iii. faep(e) = fale)N fale) = fale)
iv. fale) N file) = fole)
v faen(e) = fale) N fo(e) = fa(e) N fale) = freale)

vi. faesec(e) = faenle) N fele)
= (fale) N f(e)) N fe(e)
= fale) N (fa(e) N fele))
= fale) N fpec(e)
= fae(sec)(€)
vii. fa(e) € fple) = fa(e) U fu(e) = fr(e) ve fale) N fr(e) = fale)

Onerme 2.1.21. U iizerindeki F4 ve Fp esnek kiimeleri i¢in, De’Morgan kurallart

gecerlidir.

i. (FAUFR)° = F5NFy
ii. (FANFR)° = F3UF%

Ispat. Her e € F icin,

i. flaepye(e) = [fiep(e)
= (fa(e) U fz(e))
= (fa(e))* N (fs(e))
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i. flaenp(e) = [iap(€)
= (fale) N frle))
= (fa(e))°U (fp(e))

Onerme 2.1.22. F,, Fi ve F, U iizerinde ii¢ esnek kiime olsun. O halde, asagidaki

sonuclar gegerlidir.

i. FAU(FpNFg) = (FAUFR)N(FAUFG)
ii. FuN(FUFe) = (FANFR)U(F4NFE)

Ispat. Her e € F icin,

i. faegecy(e) = fale)U fpec(e)
= fale) U (fz(e) N fole))
= (fale)U fz(e)) N (fale) U fele))

= faen(€) N faec(e)

= flaepye(aec)(€)

ii. faepecy(e) = fale)N fpec(e)
= fale) N (fr(e) U fele))
= (fale)N fg(e)) U (fa(e) N fc(e)) Buradaki birlesim ve kesisim
= faen(e) U faec(e)

= f(AaB)g(AaC) (e)
islemleri, ikili islem olarak adlandirilir.

~— ~—

B

Tamm 2.1.23. F4 ve F'g, U {izerinde iki esnek kiime olsun. F'4 ve F'g esnek kiimelerinin

farki,
fA?B(e) = fale) \ fe(e), herec E,

yaklagim fonksiyonu yoluyla tanimlanir ve F' AA\VF p ile gosterilir.

7

Karigikligi 6nlemek igin, “Y” seklinde esnek birlesim ve “\ ” seklinde klasik birlesim
kullandik. Burada, AYB bir kiime islemi degildir. Bu sadece f A8 ‘nin £, A8B esnek

kiimesinin yaklasim fonksiyonu oldugunu gdstermek icin kullanilan bir notasyondur.



14

Onerme 2.1.24. Fy, Fp ve F¢, U lizerinde ii¢ esnek kiime olsun. O halde asagidaki

sonuclar gegerlidir.

i, FA\F = FANFS,
ii. FA\Fp = Fp < F4CFp
iii. ANB=10= F\\Fp = Fyve F5\Fa = Fp

Ispat . Her e € F igin,

i Faep(€) = Fa(e)\ fu(e) = fale) N fule)
ii. fa(€)\ fa(e) = fole) = 0 fa(e) C fa(e)
i, ANB =0 fa(e)\ f5(e) = fale) ve f5(e) \ fale) = fa(e)

Tanim 2.1.25. F4 ve I'g, U tizerinde iki esnek kiime olsun. F'4 ve F'g esnek kiimelerinin

FAAFB ile gosterilen simetrik farki,

fa(e)Afs(e) = (fale) \ fz(e) U (fa(e) \ fale))

yaklagim fonksiyonu yoluyla tanimlanir.

Tamim 2.1.26. F4 ve F'z esnek kiimeleri ayriktir ancak ve ancak £y N Fp = Fg olmasidir.

Simdi yukaridaki tanim ve 6nermeleri 6rnekleyelim;

Ornek 2.1.27. U = {uy,uy, u3, us,u5} evrensel kiime ve E = {ej, ey, e3,e4} tiim
parametreler kiimesi olsun. Kabul edelim ki A = {ej, e} ve B = {ey,e3,¢e4}, gibi
E’nin iki alt kiimesi i¢in Fq = {(eq, {u2,us}), (€2, {us,us})} ve Fp = {(e2, {u1,us}),
(es,{u1,us}), (es, U)} seklinde yazilsin. O halde biz bu esnek kiimeleri asagidaki gibi

yazabiliriz.
FIZ = {<€17 {u17 us, u5})7 (627 {Ug, Uy, U5}), (637 U)7 (647 U>}

FAOFB = {(617 {u27 U4}), (627 {ulv Uz, U3}), (637 {uh U4}), (647 U>}
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FAfFp = {(e2, {w:})}
(FaOF3)* = {(ex, {ur, us, us}), (€2, {us, us}), (es, {uz, us, us})} = F3NFG
(FanF3)° = {(e1, 1), (e2, {u, us, us, us}), (es, U), (es, U)} = F50Fg
FA\Fp = {(ex, {uz, us}), (e, {us})} = FaliFg

FAEFB = {(617 {Ug, U4}), (62’ {u27 Ug}), (637 {ulv U4}), (647 U)}

2.2 Bulanik Kiimeler

Bu alt boliimde Zadeh (1965)’in bulanik kiimeler, Maji ve ark. (2002;2003)’nin ve
Enginoglu (2008)’nun esnek kiimeler ve Cagman ve ark (2010a)’nin bulanik parametreli
esnek kiimelerdeki temel tanimlar verildi. Ayrica, tanimlar kullanilarak bulanik kiimeler,

esnek kiimeler ve bulanik parametreli esnek kiimelerin temel 6zelikleri verildi.

Tanim 2.2.28. U bir evrensel kiime olsun. U iizerinde bir X bulanik kiimesi
px U —[0,1]

fonksiyonu ile tanimlanir. Bu px fonksiyonuna X bulanik kiimesinin iiyelik fonksiyonu

denir.

px () degeri, x elemaninin X bulanik kiimesine ait olmasmin derecesini temsil eder. O

halde U iizerinde bir X bulanik kiimesi asagidaki gibi yazilabilir.

X = {(ux(@)/z) : @ € U, px () € [0,1]}.

Not: U tizerindeki tiim bulanik kiimeler F'(U) ile gosterilecek.

Tamim 2.2.29. X, Y € F(U) olsun. Her z € U i¢in pux(x) < py () ise X, Y nin bir alt
kiimesi yada X, Y tarafindan kapsaniyor denir ve X C Y seklinde gosterilir.
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Tanim 2.2.30. X,Y € F(U) olsun. Her z € U igin px(x) = py(z) ise X ve Y esittir
denir ve X =Y seklinde gosterilir.

X=Y & X CY Y C X oldugu agiktir.

Tanim 2.2.31. X, Y € F(U) olsun. O halde X ve Y nin kesigimi X NY ile gosterilir

ve bu kiimenin iiyelik fonksiyonu asagidaki gibi tanimlanir.

pxy = min{ux (z), py ()}

Tamim 2.2.32. X, Y € F(U) olsun. O halde X ve Y nin birlesimi X U Y ile gosterilir

ve bu kiimenin iiyelik fonksiyonu asagidaki gibi tanimlanir.

pxuy = max{pux (), py ()}

Tamim 2.2.33. X € F(U) olsun. O halde X in tiimleyeni X ¢ ile gosterilir ve bu kiimenin

tiyelik fonksiyonu asagidaki gibi tanimlanir.

pxe(x) =1 — px (@)

Onerme 2.2.34. XY, Z € F(U) olsun. O halde asagidaki 6zellikler gecerlidir.

L XUX=X,XNnX=X,

i, XUY=YUX,XNY=YnNX,

ii. ( XUY)UZ=XU{YUZ),XnNY)NZ=Xn(YNZ),

iv. XUXNY)=X,XN(XUY)=X,
v.XUYNZ)=(XUY)N(XUY),XNnYUZ) =(XnY)u(XnY),
vi. (X=X,

vii, (XUY)=XenYe (XNY)=XUYe
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2.3 Bulanik Parametreli Esnek Kiimeler

Bu béliimde Cagman ve ark. (2010a)’nin tanimladigi bulanik parametreli esnek kiime
tanimlarini ve islemlerini verecegiz. Burada, parametreler kiimesini £ ile gosterecegiz.
Onceki béliimde verilen esnek kiimelerde E’nin alt kiimeleri A, B, C, ... gibi biiyiik
harflerle gosterildi fakat bu boliimde sembol kargasasindan kaginmak i¢in £’nin bulanik

alt kiimelerini X, Y, Z, ... gibi harflerle gsterecegiz.

Tamim 2.3.35. U bir evrensel kiime, P(U)’da U’nun kuvvet kiimesi, F parametreler

kiimesi olmak {izere X, E iizerinde bir bulanik kiime olsun. O halde
fx E—PU)veux:E—][0,1]

ve px(z) = 0ise fx(z) = () sartlarin1 saglayan fonksiyonlar ile tanimli agagidaki siral

ikililerden olusan kiimeye

Fx ={(px(x)/z, fx(x)) : x € E, fx(x) € P(U), ux(z) € [0,1]},

U tizerinde bir bulanik parametreli esnek kiime (fps — kume) denir.

Burada fx fonksiyonuna F'y kiimesinin yaklasim fonksiyonu ve ;1 x fonksiyonuna da F'x

kiimesinin iiyelik fonksiyonu denir.

Not: Bundan sonra, U iizerindeki tim fps—kiimelerinin kiimesi £'P.S(U) ile gosterilecektir.

Tamim 2.3.36. F'x € FPS(U) olsun. O halde her = € E igin pux(x) = 0 oluyorsa F'x’e

bos fps-kiime denir ve Fy ile gosterilir.

Tamim 2.3.37. F'x € FPS(U) olsun. O halde her x € X igin pux(z) = 1ve fx(z) =U
ise F'x kiimesine X-evrensel fps—kiime denir ve F'; ile gosterilir.

X = I ise X-evrensel fps-kiimesine evrensel fps-kiime denir ve F'z ile gosterilir.

Ornek 2.3.38. Kabul edelim ki U = {uy, us, us3, uy, us, ug, u7} bir evrensel kiime ve

E = {x1, 29,13, 14, Ts, Tg+ bir parametre kiimesi olsun. A = {x, 29,24, % E’nin
1, L2y L3y L4, L5, L6 1y L2y L4y L6 [,



18

bir alt kiimesi ve A iizerinde bir X bulanik kiimesi; X = {0.5/21,0.3/x9,1/24,0.7/x¢}

ve fx(z1) = {ug,us,us}, fx(z2) = 0, fx(xs) = U, fx(we) = {u1,us,us} ise Fy,
fps—kiimesi asagidaki gibi yazilacaktir.

Fx = {(0.5/x1, {ug, uz,us}), (0.3/22,0), (1/x4,U), (0.7/ 26, {u1, us, us})}

Eger Y = () ise Fy, fps-kiimesi bir bos esnek kiimedir. Yani Fy = Fg.

Eger Z = {1/x1,1/x2} ve fz(x1) = U, fz(x2) = U ise Fy, fps-kiimesi bir Z-evrensel
fps-kiimedir. Yani F; = F}.

Eger X = E ve her z; € F igin fx(x;) = U , i = 1,2,3,4, ise F, fps-kiimesi bir
evrensel fps-kiimedir. Yani F'x = Fz.

Tamm 2.3.39. Fx, Fy € FPS(U) olsun. Her x; € E i¢in px(z) < py(x) ve fx(z) C

fv(x) ise Fx, Fy’ nin bir fps-alt kiimesidir denir ve F wCFy ile gosterilir.

Yorum 2.3.40. F'x éFy, klasik alt kiime tanimi1 gibi F'x’in her eleman1 Fy ’nin elemant
anlammna gelmez. Ornegin, kabul edelim ki U = {uy, uy, us, u4, us} nesnelerin bir
evrensel kiimesi olsun ve £ = {x, 29, x3, 24} de tim parametrelerin kiimesi olsun.
Eger X = {0.8/z2}, Y = {0.7/21,0.9/x2} ve Fx = {(0.8/x9, {ug, us, us,us})},
Fy = {(0.9/x1, {ug, us,us}),(0.9/22,U)}. O halde her x € E igin ux(x) < py(x) ve
fx(x) C fy(x) gegerlidir. Bu nedenle Fx CFy dir. Buradan (0.8 /2, {us, us, g, us}) €
Fx fakat (0.8/x9, {us, us, ug, us}) ¢ Fy oldugu agiktir.

Onerme 2.3.41. Eger Fiy, Fyy € FPS(U) ise asagidaki dzellikler saglanir.

i. FxCFj
ii. FpCFy
iii. FxCFy

1v. FxéFy ve FyiFZ = FXiFZ
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Tanim 2.3.42. F'y,Fy € FPS(U) olsun. O halde her z € E igin ux(z) = py(z)
ve fx(z) = fy(z) ise Fx ve Fy kiimelerine esit fps-kiimeleri denir ve Fx = Fy ile

gosterilir.

Onerme 2.3.43. Fx, Fy, F; € FPS(U). Asagidaki 6zellikler saglanur.

. Fix=Fyvely=F; Fx =1Iy
1. inFy ve FyiFX & Fy = Fy

Tamm 2.3.44. Fx € FPS(U) olsun. F’in timleyeni F'§ ile gosterilir. Bu tiimleyenin

yaklasim ve liyelik fonksiyonu asagidaki tanimlhdir,

jixe(@) = 1 — px (@) ve fxe(a) = U\ fx(2)

Onerme 2.3.45. Fx € FPS(U) olsun. Bu durumda, asagidaki dzellikler saglanir,

i, (F%)° = Fy
i, Fg=Fy
Tamim 2.3.46. Fx, Fyy € FPS(U) olsun. Fx ve Fy 'nin birlesimi FxUFy ile gosterilir.

Birlesim kiimesinin yaklasim ve iiyelik fonksiyonu asagidaki gibidir.

fixey (z) = max{px(z), py ()} ve fxey(z) = fx(z) U fy(z), herz € E
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Onerme 2.3.47. Fx, Fy, F; € FPS(U) olsun. Bu durumda,

i. FxUFx = Fx
ii. FxUFy = Fx
iii. FxUFg = Fj
iv. FxUFy = FyUFy
v. (FxUFy)UF, = FxU(FyUFy)
Tamim 2.3.48. F'yx, 'y € FPS(U) olsun. Fx ve Fy’nin kesisimi F'yNFy ile gosterilir.

Kesisim kiimesinin yaklasim ve iiyelik fonksiyonu asagidaki gibi tanimhidir.

fxey () = min{ux (z), py ()} ve fxey(r) = fx(z) N fy(x)

Onerme 2.3.49. Fyx, Fy, F; € FPS(U) olsun. Asagidaki dzellikler saglanir.

i. FxNFyx = Fx
ii. FxNFp = Fy
iii. FxNFz = Fx
iv. FxNFy = FyNFy
v. (FxNFy)NFy = FxN(FyNFyz)

Yorum 2.3.50. F'y € FPS(U) olsun. Eger Fiy # Fy yada Fy # Fj ise FxUF§ # Fz
ve FxNF v # Fg elde edilir.

Onerme 2.3.51. Fx, Fy, F; € FPS(U) olsun. O halde,

i. (FxUFy) = F¢NFS
ii. (FxNEFy)e = FEUFS
iii. FxU(FyNFy) = (FxUFy)N(FxUFy)

iv. FxN(FyUFy) = (FxNFy)J(FxNFy)



3. BULANIK PARAMETRELI BULANIK ESNEK KUMELER TEORISi

Bubéliimde,Bu bdliimde Cagman ve ark. (2010a)’nin tanimladig1 bulanik esnek kiimelerin
bulanik parametrelerini, uygulamalarini, fpfs-kiime islemleri ve fpfs-karar verme

metoduyla elde edilen daha gegerli sonuglar1 ve siire¢leri tanitacagiz.

3.1 Bulanik Parametreli Bulanik Esnek Kiimeler

Ikinci boliimde verilen esnek kiimeler, parametre kiimeleri ve yaklasim fonksiyonlari
klasik kiimelerdir. Fakat fp f s-kiimelerinde, parametre kiimeleri ve yaklagim fonksiyonlari
E ve U’nun bulanik alt kiimeleridir. Karisikligi onlemek igin fpfs-kiimeler i¢in, 'y,

I'y, I'z,..., bulanik yaklasim fonksiyonlar1 i¢in vx, 7y, 7z,..., vb kullanacagiz.

Tamim 3.1.1. U, bir baglangi¢ evreni; F'(U), U daki biitiin esnek kiimelerin kiimesi; £
biitiin parametrelerin kiimesi; X de £ de bir esnek kiime olsun. I'x, U nun bulanik esnek

kiimesidir ve

Ix ={(ux(z)/2,9x(2)) : © € E,7x(x) € F(U), px(x) € [0,1]},

seklinde gosterilir. 7y (x) bulanik kiimesi ise

x(7) = {va(x)(u)/u rueU, :u'yx(m)(u) € [0,1]}

Herz € Eiginyx(z) =0,z ¢ A.

fpfskimeleri U da FPFS(U) olarak gosterilir.

Tamim 3.1.2. I'x € FPFS(U) olsun. Ohalde her x € E i¢in px(x) = 0 oluyorsa , 'x

’e bos fpfs-kiime denir ve ['y ile gosterilir.

Tamim 3.1.3. 'y € FPFS(U) olsun. Ohalde her x € X i¢in ux(x) = 1 ve yx(z) =U

ise ,I'y kiimesine X-evrensel fpfs-kiime denir ve I ; ile gosterilir.

X = I, X-evrensel fpfs-kiimesine evrensel fpfs-kiime denir ve I'; ile gosterilir.
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Ornek 3.1.4. Kabul edelimki U = {u, uy, us, u4, us} bir evrensel kiime

E = {x4, 19, x3, 24} parametreler kiimesi olsun.

Eger X = {0.2/25,0.5/x3,1/x4} ve vx (22) = {0.5/uy,0.3/us}, vx (23) = 0,
ve vx(z4) = U, ise 'y, fpfs-kiimesi asagidaki gibi yazilacaktir.
FX = {(02/1’2, {O5/U1, O3/U5}), (1/[L’4, U)}

EgerY = {1/21,0.7/x4} ve yx(x1) = 0, vx(x4) = D ise 'y, fpfs-kiimesi bir bos esnek

kiimedir ve I'y = I'g dir.

Eger Z = {1/x1,1/x2},v2(x1) = U, veyz(x2) = Uise 'z, fpfs-kiimesi bir Z-evrensel
fpfs-kimedirvel'y =T dir.

Eger X = F ve her z; € E igin vx(z;) = U, i = 1,2,3,4 ise 'y, fpfs- kiimesi bir
evrensel fpfs-kiimedir. Yani I'y = I'; dir.

Tamim 3.1.5. I'x,I'y € FPFS(U) olsun. Her z € E igin px(z) < py(z) ve yx(z) C

vy (z) ise I'x’e, I'y” nin bir fpfs-alt kiimesidir denir ve I"x Cly ile gosterilir.

Onerme 3.1.6. I'x, 'y € FPFS(U) olsun.

@ TxCry

(i) ToCI'x

(i) TxCIx

(iv) I'xCIyvelyCI, = I'xCI', dir.

ispat . fpfs-kiime islemleri kullanarak ispatlar gosterilebilr.

Tamm 3.1.7. I'x, 'y € FPFS(U) olsun. Eger biitin z € E igin pux(z) = py(z) ve
vx(x) = vy (z) ise, I'x ve I'y fpfs kiimeleri esittir ve I'x = I'y seklindedir.

Onerme 3.1.8. I'x,I'y, ', € FPFS(U) olsun. Asagidaki dzellikler saglanir.

(i) I'sx=Tyvely =Tz &I'x=14
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(i) TxClyvelyCl'y < 'y =Ty
ispat . ispatlar asikardir.

Tamm 3.1.9. I'x € FPFS(U) olsun. Ty, tiimleyeni I'§ seklinde gosterilir. Bu

tiimleyenin yaklasim ve iiyelik fonnksiyonlar1 agagidaki gibi tanimlanar.

pxe(x) =1 — px(x) ve yxe(z) = 7% (2), bitlinz € E,
dir ve yx (x) kiimesinin timleyeni 7% () dir. « € E i¢in 7% () = U \ 7x () seklindedir.

Onerme 3.1.10. I'x € FPFS(U) olsun.

@ [T%)°=TIx

@) I5=T5

Ispat. fpfs-kiimelerin bulanik fonksiyon yaklasimlari kullanilarak ispatlar ilerletilebilir.
Tamm 3.1.11. T'x, Iy € FPFS(U) olsun. T'x ve I'y *nin birlesimi, ' yUT'y, seklinde

gosterilir. Birlesim kiimesinin yaklasim ve iiyelik fonksiyonu asagidaki gibidir.

pxey () = max{px (z), py ()} ve yxey (#) = x () Uy (z), herz € E.

Onerme 3.1.12. I'x, 'y, I, € FPFS(U) olsun. Bu durumda

(i TI'xUI'y =Ty

() T'xUle=Tx

(i) [xUlz=Tj3

(iv) I'xUly =TyUl'y

(v) ([xUl'y)Ul'y =xU(IyUl'y)
dir.

Ispat. Tanim 3.1.11 kullanilarak ispatlar kolayca gosterilir.
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Tamm 3.1.13. T'x, Ty € FPFS(U) olsun. I'x ve I'y,’nin kesisimi ['xNI'y, seklinde

gosterilir. Kesisim kiimesinin yaklasim ve iiyelik fonksiyonu asagidaki gibi tanimlidir.

xey (2) = min{ux (), py (2)} ve vxey (2) = vx(2) Ny (v)her v € E
dir.

Onerme 3.1.14. T'x, Ty, T, € FPFS(U) olsun. Bu durumda

i TI'xMTy=Tx

() Txle =Ty

(i) TxNTz =Ty

(iv) T'xNly =TyNCx

(v) (CxNIy)NCz =TxN(IyNy)

dir.
Ispat . Tanim 3.1.13 kullanilarak ispatlar kolayca gosterilebilir.

Yorum 3.1.15. T'x € FPFS(U) olsun. T'x # 'y yada I'x # 'z, ise ['xUIl' # 'z ve
xS # I elde edilir.,

Onerme 3.1.16. I'x,I'y € FPFS(U) olsun. De Morgan kurallar

() (CxUly)" =T5A0

() (IxNly)¢=T%U0rs

seklindedir.

Ispat . Her z € E icin
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i pxey)y(r) = 1—pixey(w)
= 1 —max{pux(z), uy(x)}
= min{l — pux(x),1 — py(z)}
= min{pxe(x), pye(x)}

= MXcraYc(iU)

veE

V(XaY)E(x) = 7§(gy($)
= (1x(@) Uy ()
= (vx(@))" N (y(2))
= 7%(@) N (z)
= yxe(@) Nyye(z)

= Txéeye (45)

dir.Benzer olarak ii. ispatlanabilir.

Onerme 3.1.17. I'x, Ty, Tz € FPFS(U) olsun.

(i) TxUTyNIz) = (I'xUly)N(T'xUly)
(i) I'xN(['yUly) = (CxNTy)U(xNIy) dir.

Ispat. Her z € F i¢in

i. pxevez) () = max{ux(z),nyez(z)}
— max{px(2), min{py (@), jiz(2)}}
= min{max{px (2), py ()}, max{px (), pz(x)}}
= min{pxey (2), txez(2)}

= Hxev)e(Xez) (z)

veE
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Yxewer (T) = vx(7)Uyyez(x)

7x (@) U (v () Nyz(2))
= (x(@) Uy () N (yx(z) Uvz(z))
= Yxey(?) N Vxez(7)

= Y(xey)a(xez) (z)

dir.Benzer sekilde ii.’nin ispat1 yapilabilir.

3.2 fpfs-karar verme metodu

Bu boliimde fpfs-karar esnek kiimesini tanimlayacagiz ve fpfs-kiimesinin bulanik
fpfs-yaklasim islemini, bulanik parametreler kiimelerinden, fpfs- karar kiimelerinin

insa edilisini anlatacagiz.

Tanim 3.2.18. I'x € FPFS(U) olsun. fpfs-karar operatorii, F'PF'S,,, ile gosterilir ve
FPFS,y: F(E) x FPFS(U) — F(U), FPFS,,(X,Tx)=T%

dir
I = {pr (u)/u: u € U}

kiimeleri, U da bulanik kiimelerdir ve Iy , I'x’in bulanik karar kiimesidir.

pirs (u) = ﬁ D px ()t () (w)

zeFE

|E|, E’nin 6nemliligidir.

fpfs-kiimesinin karar kiimesi bulaniktir. F'PF'S, 4, bulanik kiimede ki iglemi; fp f s-kiimesinin
bulanik karar kiimesinin tek kiime haline gelmesi, fpfs yaklasimlar islevlerinin bir
¢ogunun birlesimi ve uygulamasi ile yapilandirilir . Biz fpfs- karar verme yontemini

asagidaki algoritmayla yapilandiracagiz.
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(i) U evreninde, 'x fpfs-kiimesini yapilandir ,
(i) I'%;I'x’in karar kiimesini bul,
(iif) max prs (u) bul.

Ornek 3.2.19. Kabul edelimki bir sirkete bir kisi alinacak olsun. Bu is i¢in 8 kisi
bagvursun, U evrensel kiimesi U = {uy, ug, us, uy, us, ug, u7, ug} seklindedir. Bu ise

almacak kiside olmasi geeken 5 segici parametre, £ = {1, x2, T3, 74,25} olsun. i =

nn LU | s

1,2,3,4,5, icin x; parametreleri sirasiyla "tecriibe", "bilgisayar bilme", "geng yas", "iyi

konusma" ve "ekip calismasi" olsun.

Alan uzmanlar tarafindan belirlenen E’nin X = {0.5/x5,0.9/x3,0.6/x4} alt kiimesine
gore her bir aday degerlendirilsin. Sonug olarak alan uzmanlar1 U {izerindeki fp f s-kiimesini

yapilandirirlar.

(i) I'x, fpfs-kiimesini bulalim,

FX = {(O5/I2, {O?)/UQ, 0.4/U3, 0.1/U4, O.9/U5, O7/U7}),
(0.9/23,{0.4/u1,0.4/us,0.9/us,0.3/us}),
(0.6/24,{0.2/u1,0.5/us,0.1/us, 0.7 Juz, 1/U8})}

(ii) Karar kiimesini bulalim.

% = {0.096/uy, 0.162/us, 0.202/us, 0.064 /1y, 0.102/us, 0.154 /uz, 0.12/ug}

(iii) Sonug degerini bulalim.

max g+ (u) = 0.202

Sonug olarak ise alinacak en uygun kisinin vz olduguna karar verilir .



4. ESNEK KUMELERIN EGITIM BILIMLERINE UYGULANMASI

Buboliimde dnce bilinen klasik sinav degerlendirme yontemini verdikten sonra fp f s-karar

verme metodunu egitim bilimlerine 6l¢me ve degerlendirme metudunu verecegiz.

4.1 Klasik Sinav Degerlendirme Yontemi

Bu alt boliimde, bilinen klasik sinav degerlendirme yonteminin temel tanimlarini verdikten

sonra bunlar1 bir 6rnekle agiklayacagiz.

Tanmim 4.1.1. Bir sinavda, 6gretmenin cevap anahtarinda sorulara verdigi puana sorularin

puan degeri denir.

Tanim 4.1.2. n tane 6grenci ve m tane cevaplanacak sorunun oldugu bir sinavin sorularinin

puan degerlerini matris formunda

A= [aij}mxl

bi¢iminde yazabiliriz. Bu matrise puan degeri matrisi denir. Burada, a;; bileseni, 7.

sorunun belirlenmis puan degerini géstermektedir.

Tanim 4.1.3. Ogrencinin bir soruya verdigi cevabindan aldi1 puanm o sorunun puan

degerinin oranina o sorunun dogruluk oran: denir.

Tanim 4.1.4. n tane 6grenci ve m tane cevaplanacak sorunun oldugu bir sinavin sorularinin

dogruluk oran degerlerini matris formunda

B = [bij]mxn

bigiminde yazabiliriz. Bu matrise dogruluk oran matrisi denir. Burada, b;; bileseni, j.

Ogrencinin ¢. sorudan aldig1 dogruluk oranin1 géstermektedir.

Tanim 4.1.5. Puan deger matrisi A = [a;j]mx1 ve dogruluk oran matrisi B = [b;;]mxn

verilen bir sinavda 6grencilerin alacagi toplam punlar klasik yontemlerde asagidaki gibi
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hesaplanmaktadir;
S = BT . A = [Sj]nxl

Buradaki S matrsine klasik sonug¢ matrisi denir. Klasik sonu¢ matrisinde, s; bileseni j.

ogrencinin sinavdan aldig1 toplam puam gostermektedir.

Simdi yukarida verilen tanimlar1 bir 6rnek lizerinde gosterelim.

Ornek 4.1.6. 10 6grencinin katildig1 5 soruluk bir smavi gézoniine alalim. Bu sinavin

puan deger matrisi A ve dogruluk oran matrisi B sirasiyla asagidaki gibi olsun.

10
15
A=120
25
30

ve
059 035 1 066 0.11 0.08 0.84 0.23 0.04 0.24

0.01 0.27 0.14 0.04 0.88 0.16 0.04 0.22 0.81 0.53
B=10.77 069 0.97 071 0.17 0.86 0.87 042 091 0.74

0.73 0.72 0.18 0.16 0.5 0.02 032 092 09 0.25
| 0.93 049 0.08 0.81 0.65 0.93 0.39 0.51 0.97 0.61

Buradan 6grencilerin klasik toplam puanlarin1 gosteren sonu¢ matrisi asagidaki gibi elde

edilir.

ST =167.60 54.05 38.40 49.70 49.70 48.80 46.10 52.30 85.95 49.70

Sonug¢ matrisine gore dgrencilerin bu sinavdaki siralamalar asagidaki gibi elde edilir.

Sg > 81 > 89 > 88§ > S4 = S5 = S10 > Sg > S7 > S3

Yukaridaki 6rnekte de goriildiigii gibi s, = s5 = s1¢ ¢cikmustur.



30

4.2 Esnek Sinav Degerlendirme Yontemi

Hizla gelisen diinyada daha gelismis daha detayli degerlendirme yapilmalhidir. Ogrencilerin
degerlendirilmesinde sorularin dogrulugunun yaninda, sorularin zorlugu, sorularin karmasikligi
ve sorularin ¢ézlimiinde gosterilen ¢caba, hava kosulu, zaman dilimi, heyecan, yas, tecriibe,
fiziksel yeterlilik, cevre gibi parametreler de degerlendirmede dikkate alinmasi gereken
onemli etkenlerdir. Bu nedenlerle daha objektif bir siralama elde edebilmek i¢in sinavin
sonucunu etkileyebilecek bazi parametrelerin etkisini hesaba katarak ve fpfskarar verme
metoduyla yeni bir degerlendirme yontemi 6nerecegiz. Biz burada yontemin daha kolay
anlagilabilmesi i¢in sadece dogruluk, zorluk, karmagiklik ve caba parametrelerini dikkate

alacagiz.

Tanmim 4.2.7. n tane 6grenci ve m tane cevaplanacak sorunun oldugu bir sinavda 6grencilerin

sorulara verdigi cevaplardan aldigi puan degerlerini matris formunda

C = [¢ij|mxn matrisi,
Cij = bij - a;
bi¢iminde yazabiliriz. Bu matrise dogruluk puan matrisi denir. Burada, ¢;; bileseni, j.

Ogrencinin ¢. sorudan aldig1 dorguluk puanini géstermektedir.

Tamm 4.2.8. Ogrencinin bir soruya verdigi cevapta kullandigi zamanmn, o sorunun

cevaplanmasi i¢in verilen zamana oranina o sorunun zaman orani diyecegiz.

Tanim 4.2.9. n tane 6grenci ve m tane cevaplanacak sorunun oldugu bir sinavda, sorularin

zaman oran degerlerini matris formunda

Z = [Zij]mxn

bi¢iminde yazabiliriz. Bu matrise zaman puan matrisi diyecegiz. Burada z;; bileseni, j.

6grencinin ¢. sorudan aldig1 zaman puanini géstermektedir.

Tamim 4.2.10. U = {uy,us, ..., u, } bir sinava katilan n tane dgrencinin kiimesi, ) =
{¢1,q2, ..., ¢ } bu sinavda sorulan m tane sorunun kiimesi ve bu dgrencilerin sorulardan
aldiklar1 dogruluk degerleri kiimesi B = [b;;|mxn olsun. Ogrencilerin herbir sorudan

aldig1 dogruluk degerlerinin aritmetik ortalamasina, o sorunun ortalama dogruluk degeri
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diyecegiz. Buna gore, 1 < £ < m i¢in k. sorunun ortalama degeri asagidaki gibi

hesaplanir;

n

Odk =

Tamim 4.2.11. U = {uy, us, ..., u, } bir sinava katilan n tane dgrencinin kiimesi, ) =
{¢1, 42, ---, ¢} bu sinavda sorulan m tane sorunun kiimesi ve bu dgrencilerin sorulardan
aldiklart dogruluk degerler matrisi B = [b; ], x» olsun. Bir 6grencinin bir soruya verdigi
cevaptan aldig1 puanin, sorunun ortalama dogruluk degerine oranina o sorunun zorluk
puan degeri diyecegiz. Buna gore, 1 < k < mvel <t < n igin t. dgrencinin k.

sorudan aldig1 zorluk puani asagidaki gibi hesaplanir;

d, = 2t
kt od,

O halde, tiim 6grencilerin sorulardan aldiklar1 zorluk pauan degerlerini matris formunda
D = [dzy ]mxn

bi¢iminde yazabiliriz. Bu matrise zorluk puan matrisi denir. Burada d;; bileseni, j.

ogrencinin ¢. sorudan aldig1 zorluk puani gostermektedir.

Tamim 4.2.12. U = {uy, us, ..., u, } bir sinava katilan n tane dgrencinin kiimesi, ) =
{¢1, 92, ---, ¢} bu smavda sorulan m tane sorunun kiimesi ve zaman puan matrisi Z =
[Zij]mxn verilsin. (")grencilerin herbir sorunun ¢oziimiinde harcadiklar1 zamanin aritmetik
ortalamasina, o sorunun ortalama zaman degeri diyecegiz. Buna gore, 1 < k£ < m igin

k. sorunun ortalama zaman degeri asagidaki gibi hesaplanir;

Z?: 1 Zk]

n

02 =

Tamm 4.2.13. U = {uy,us, ..., u, } bir sinava Kkatilan n tane dgrencinin kiimesi, ) =
{¢1,92, ..., ¢m} bu sinavda sorulan m tane sorunun kiimesi ve dogruluk deger matrisi
B = [bij]mxn ve zaman deger matrisi Z = [z;;],ux, verilsin. Ogrencilerin bir soruyu
cevaplamak i¢in harcadigi ortalama zamanin, 6grencinin o soruyu cevaplamak ic¢in
harcadig1 zamana orani ile 6grencinin o sorudaki dogruluk oraninin ¢carpimina o sorunun

karmagiklik puan degeri diyecegiz. Buna gore, 1 < &k < mvel <t < n igin t.



32

ogrencinin k. sorudan aldig1 karmagiklik puan1 asagidaki gibi hesaplanir;

O halde, tiim O6grencilerin sorulardan aldiklar1 karmasiklik pauan degerlerini matris
formunda

K = [kij]mxn

bigiminde yazabiliriz. Bu matrise karmasiklik puan matrisi denir. Burada k;; bileseni, j.

ogrencinin ¢. sorudan aldig1 karmagiklik puanini gostermektedir.

Tamim 4.2.14. U = {uy,us, ..., u, } bir sinava katilan n tane dgrencinin kiimesi, Q) =
{@1, 92, .-, ¢ } bu sinavda sorulan m tane sorunun kiimesi ve bunlarin sorulardan aldiklar
dogruluk degerleri kiimesi B = [b;j|mxn,sorulart cevaplamada kullandiklari zamanin
kiimesi Z = [2ij|mxn olsun. Ogrencinin cevapladig1 bir sorunun dogruluk orani ile , o
sorunun cevaplanmasinda harcadigi zamanin aritmetik ortalamasina o sorunun ¢aba puan
degeri diyecegiz. Buna gore, 1 < k < mvel <t < nigin t. 6grencinin k. sorudan

aldig1 ¢aba puani asagidaki gibi hesaplanir;

bt + 2kt

B = —

O halde, tiim 6grencilerin sorulardan aldiklar1 ¢aba pauan degerlerini matris formunda

E = [eij]an

bi¢iminde yazabiliriz. Bu matrise ¢aba puan matrisi denir. Burada e;; bileseni,;.

Ogrencinin ¢. sorudan aldig1 ¢aba puanini gostermektedir.

Bu yeni yonteme esnek sinav degerlendirme metodu denir. Simdi bu metodun algoritmasini

verelim:

Metodun Algoritmasi:
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Adim 1: C dogruluk puan matrisini bul

Adim 2: Z zaman puan matrisini bul

Adim 3: D zorluk puan matrisini bul

Adim 4: K karmagiklik puan matrisini bul

Adim 5: E ¢aba puan matrisini bul

Adim 6: I'x, fpfs-kiimesini yapilandir

Adim 7: Toplamsal bulanik kiimeleri bul

Adim 8: Sonug puanlarini bul.

Ornek4.2.15. U = {uy, ug, us, ug, us, Ug, U7, Us, Ug, Uro } baglangig evreni, Q = {q1, ¢o, ..., @5 }
bu sinavda sorulan sorularin kiimesi, £ = {x1, 29, 23,24} parametreler kiimesi ve
1 =1,2,3,4, x; icin parametreler sirasiyla "dogruluk", "zorluk", "karmasiklik" ve "caba"
olsun. Paramaetrelerin alan uzmani tarafindan belirlenen agirlik degerleri z; = 1,29 =
0.1,z3 = 0.1, 74 = 0.1 olsun. Esnek sinav degerlendindirme yontemini 6nce esit puanh
ogrencilere uyguladigimizda , 6grencilerin puan ve dereceleri yeniden yapilandirilir.
Ornek 1.0.6 da verilen klasik degerlendirme igin yukarida ki algoritmaya gore esnek

degerlendirmeyi bir uygulamayla ac¢iklayalim.

Adim :1

Ornek 1.0.6 daki A ve B matrislerini kullanarak ve tamim 1.0.7’yi kullanarak C' dogruluk

puan matrisi agagidaki gibi elde edilir. C' dogruluk puan matrisi olsun. C' = [a;; - g;] ve
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1=1,2,3,....mvej=1,23,.. ndir

9 35 10 66 11 08 84 23 04 24
0.15 405 21 06 132 24 06 3.3 1215 7.95
C=1| 154 138 194 142 34 172 174 84 184 1438
1825 18 45 4 125 05 8 23 225 6.25
2719 147 24 243 195 279 11.7 153 29.1 183 |

Adim 2:

Tanim 1.0.9°u kullanilarak Z zaman puan matrisi asagidaki gibi elde edilir.

[ 0.7 04 01 1 07 02 0.7 0.6 04 09 |
1 0 0903 1 030208 0 03
Z=10 01 0 01 09 1 02 03 0.1 04
02 01 0 1 1 03 04 08 0.7 05
0 01 1 1 06 1 08 02 08 0.2

Adim 3:

Tanim 1.0.10 ve 1.0.11 kullanilarak D zorluk puan matrisi asagidaki gibi elde edilir.

[ 131 078 222 147 024 0.17 117 051 0.09 0.53 |
0.03 0.87 0.45 0.13 2.84 0.52 0.13 0.71 2.61 1.71
D=1108 097 137 1 024 121 123 059 1.28 1.04
1.55 1.53 0.38 0.34 1.06 0.04 0.68 196 191 0.53
| 145 077 0.13 127 1.02 1.45 0.61 0.8 1.52 0.95

Adim 4:
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Tanim 1.0.12 ve 1.0.13 kullanilarak K karmagiklik puan matrisi asagidaki gibi elde edilir.

[ 018 021 09 0 03 064 025 0.09 0.02 0.02 ]
0 027 0.01 003 0 011 0.03 0.04 081 0.37
K=1077 062 097 063 0.02 0 070 0.29 0.82 0.44
0.58 0.65 0.18 O 0 0.01 019 0.18 0.27 0.13
| 0.7 044 0 0 026 0 008 041 0.19 0.49 |

Adim 5:

Tanim 1.0.14 kullanilarak £ ¢aba puan matrisi asagidaki gibi elde edilir.

[ 0.65 0.38 0.55 0.83 0.44 0.14 077 042 022 0.57 ]
0.51 0.14 0.52 0.17 094 0.23 0.12 0.51 0.41 0.42
E=1039 04 049 054 0.54 093 0.54 0.36 0.51 0.57
047 041 0.09 059 0.75 0.16 0.36 086 0.8 0.38
| 0.47 0.3 054 054 0.63 097 06 036 0.89 0.41 |

Adim 6: I'x, fpfs-kiimesini yapilandiralim.

FA4 == {(1/[E1, {66/U1, 0.6/U2, 142/%3, 4/1,64, 243/U5})7
(01/1‘2, {147/U1, 013/“2, ]_/U,g, 034/U47 127/U5}),
(0-1/.773, {O/ula 003/162, 063/'&3, 0/“47 O/u5}>7
(0.1/24,{0.83/uy, 0.17 /us, 0.54 /us, 0.59 /uy, 0, 54/u5})}

FAS = {(1/[E1, {11/U17 132/U2, 3.4/%3, 125/U47 195/U5}),

(01/1‘2, {024/U1, 284/’LL2, 024/7,1137 106/U4, 102/165}),
(0.1/x3,{0.3/u1,0/us,0.02/us,0/u4,0.26 /us}),
(0.1/x4,{0.44/uy,0.94/us,0.54 /us,0.75/uy, 0, 63/u5})}
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FAIO = {(1/1‘1, {24/@61, 795/U2, 148/%3, 625/U4, 183/U5}),
(0.1/25, {0.53/uy, 1.71 /us, 1.04/us, 0.53 /1y, 0.95 /us ),
(0.1/x3, {0.02/uy, 0.37 /ug, 0.44 /us, 0.13 /ug, 0.49 /us}),
(0.1/24, {0.57/u1, 0.42/us, 0.57 /us, 0.38 uy, 0, 41/u5})}

Adim 7:Toplamsal bulanik kiimeler,

6.6 06 142 4 243
147 013 1 034 127
0 003 063 0 0

| 0.83 017 0.54 0.59 0.54 |

I, =1|10101 01|

[, = | 6.83 0.66 14.42 4.09 24.48

1.1 132 34 125 195 |
0.24 2.84 0.24 1.06 1.02
03 0 002 0 026
| 044 0.94 054 075 0.63 |

.=1|101 01 01|

[, = | 1.2 1358 3.5 12.68 19.69]

24 795 14.8 6.25 183 |
053 1.71 1.04 0.53 0.95
0.02 0.37 0.44 0.13 0.49
| 057 0.42 057 038 041 |

M= |1 0,1 0,1 0.1

[, =1]251 82 15 635 18.49
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Adim 8: Esit puanl 6grencilerin yeni puan ve dereceleri asagidaki gibidir.

Sq = 50.78, 55 = 50.65, S1p = 50.55

Ss > S > 94

Klasik degerlendirme yontemiyle esit puan olan 6grencilere esnek sinav degerlendirme
yontemini uyguladigimizda esitlik durumlariin bozuldugu goriilmektedir. Buise yontemi
bir ¢ok secim probleminde kullanabilecegimizi géstermektedir. Bu yontemi tiim 6grencilere

uyguladigimizda 6grencilerin yeni dereceleri asagidaki gibi elde edilir.

Sg>Sl>SQ>Sg>S5>Slo>S4>SG>S7>Sg

elde edilir. Buda klasik degerlendirmeyle ortiismekte ve daha detayli bir degerlendirme

yapmamiza imkan saglamaktadir.



5. SONUC

Bu calismada, esnek kiimeler, bulanik kiimeler, bulanik parametreli esnek kiimeler,
bulanik parametreli bulanik esnek kiimeler, fpfs-karar metodu tanitildi. Son olarak da
yeni bir sinav degerlendirme yontemi olarak esnek sinav degerlendirme yontemi ortaya
atildi ve klasik sinav degerlendirme yontemiyle karsilastirmali olarak bir uygulamasi
yapildi. Sonug olarak ortaya atilan yeni yontem, 6grencilerin sadece bilgisini dlgerken,
dogruluk parametresinin yaninda sonucu etkileyecek diger parametreleri de hasaba katarak
daha opjektif bir degerlendirme yapmaktadir. Bu metodun her ne kadar uygulanmasi zor

goziiksede, uygulanabilirligini kolaylastirmak icin metodun bilgisayar programi yapilabilir.
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