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Çoklu lineer regresyon modelinde hatalara ve açıklayıcı değiĢkenlere iliĢkin 

varsayımlar sağlanmadığı zaman en küçük kareler uygun bir tahmin edici 

olmamaktadır. Bu çalıĢmada, hatalara iliĢkin varsayımların sağlanmamasına neden 

olan değiĢen varyans ve otokorelasyon tanıtılmıĢ, bunların belirlenmesine iliĢkin 

testler verilmiĢ ve hata yapıları incelenmiĢtir. Açıklayıcı değiĢkenlerin 

bağımsızlığının ihlali olarak adlandırılan çoklu iç iliĢki problemi değiĢen varyans / 

otokorelasyon altında incelenmiĢtir. Hem değiĢen varyans / otokorelasyon hemde 

çoklu iliĢki problemleri aynı anda meydana geldiğinde kullanabilecek 

genelleĢtirilmiĢ en küçük kareler tahmin ediciye alternatif tahmin ediciler 

tanıtılmıĢtır ve bu tahmin edicilerin performansları hata kareler ortalaması ve 

yanlılıkları göz önünde bulundurularak değerlendirilmiĢtir. Bu amaç için nümerik bir 

örnek ve Monte Carlo yöntemi ile simülasyon çalıĢmaları Matlab programı 

yardımıyla yapılmıĢtır. 
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When the assumptions on the errors and explanatory variables in the linear 

regression model are not satisfied ordinary least squares estimator is not a suitable 

estimator. In this study heteroskedasticity and autocorrelation which violate these 

assumptions about the errors are introduced, test are given for determining them and 

the error structure are examined. Multicollinearity problem see when the explanatory 

variables are not independent is considered under the heteroskedasticity and 

autocorrelation. When both heteroscedasticity /autocorrelation and multicollinearity 

come true together, alternative estimators to generalized least squares estimator are 

introduced and the performance of these estimators are considered under the mean 

squared error and the bias criteria. These theoritical results are illustrated in a 

numerical example and a Monte Carlo simulations study by using Matlab program. 
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1. GĠRĠġ 

 

Regresyon, değiĢkenler arasındaki iliĢki ve bağıntıların incelenmesini 

kapsayan bir kavram olarak bilinmektedir. Ġlk kez, 1897 yılında Galton‘un kalıtım 

kuramı ile ilgili çalıĢmalarında adı geçen bu kavram günümüzde birbirinden farklı 

birçok alanda kullanılabilmektedir. Regresyon analizi, değiĢkenler arasındaki 

bağıntının en iyi Ģekilde açıklandığı bir modele dayalıdır. Çok sayıda faktöre bağlı 

olarak değiĢim gösteren sosyal, psikolojik ve ekonomik olayların gerisindeki sebep-

sonuç iliĢkisini ortaya çıkarabilmek için kullanılan istatistiksel yaklaĢımlardan biri, 

çoklu regresyon analizidir. Bu yaklaĢımda, bir veya daha çok açıklayıcı değiĢken bir 

yanıt değiĢken ile birlikte seçilerek, yanıt değiĢkenin gerçek ölçümleri ile açıklayıcı 

değiĢkenler yardımıyla elde edilen tahmini ölçümleri arasındaki mesafeyi minimum 

kılan en küçük kareler yöntemi (EKK) ile regresyon katsayıları tahmin edilir. 

Örneklemden elde edilen bu regresyon denklemi ile değiĢkenler arasında var olan 

sebep-sonuç iliĢkisini belirlemenin yanında geleceğin tahmini de daha güvenli bir 

Ģekilde yapılabilmektedir. EKK tekniği, regresyon analizinde sabit varyans 

(homoscedasticity) varsayımının sağlanması durumunda kullanılması uygun olan ve 

değiĢkenler arasındaki fonksiyonel iliĢkiyi modellemede en çok kullanılan 

yöntemlerden biridir, ancak uygulamalarda hataların değiĢen varyanslı 

(heteroscedasticity) olması durumu ile karĢılaĢılabilir.  

Çoklu doğrusal regresyon modelinde değiĢen varyans problemi olduğunda 

genelleĢtirilmiĢ en küçük kareler tekniği (GEKK), EKK tekniğine alternatif olarak 

geliĢtirilmiĢtir. DeğiĢen varyans durumunda EKK tahminleri yansız olmakta, ancak 

varyans ve kovaryans tahminleri etkinliğini (minimum varyanslı) yitirdiğinden 

istatistiksel hipotez testleri geçerliliğini kaybetmektedir. Ayrıca belirli bir anlamlılık 

düzeyindeki tahmin ve öngörü aralıkları geniĢlemektedir. Benzer sorunlar hataların 

iliĢkisiz varsayımının ihlaline dayanan ve otokorelasyon olarak adlandırılan 

problemde de ortaya çıkmaktadır.  

Çoklu regresyon analizinde karĢılaĢılan bir diğer sorun ise açıklayıcı 

değiĢkenlere iliĢkin bağımsızlık varsayımının ihlalidir. Çoklu iç iliĢki olarak 
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adlandırılan bu sorunun varlığında, açıklayıcı değiĢkenlerin yanıt değiĢken 

üzerindeki kısmi iliĢkilerini yorumlamakta güçlük çekilir. 

Bu çalıĢmada değiĢen varyans/otokorelasyon ve çoklu iç iliĢki problemlerinin 

aynı anda meydana gelmesi durumları ile ilgilenilecektir. ÇalıĢmada, bu doğrultuda 

önerilen tahmin edicilerin matris hata kareler ortalaması kriterine göre performansları 

dikkate alınarak karĢılaĢtırmalara yer verilecektir. DeğiĢen varyans ve 

otokorelasyonlu hata modeli için alternatif tahmin edicilerin performansını 

simülasyon üzerinde inceleyen bazı yazarlara paralel olarak çalıĢmada bir 

ekonometrik uygulamaya ve bir Monte Carlo simülasyon çalıĢmasına yer 

verilecektir.  
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2. ÖZDEġ KOVARYANS MATRĠSLĠ LĠNEER ĠSTATĠSTĠKSEL MODEL 

 

y X                      (2.1) 

 

çoklu lineer regresyon modelinin olduğunu varsayalım. Burada y , 1n  tipinde yanıt 

değiĢkenlerin vektörü, X , n p  tipinde stokastik olmayan açıklayıcı değiĢkenlerin 

gözlenen matrisi,  , 1p  tipinde bilinmeyen regresyon parametrelerinin vektörü, 

 , 2(0, )nN I 
 
olan 1n  tipinde rasgele hataların vektörüdür. 

 

2.1.  Sıradan En Küçük Kareler Yöntemi  

 

(2.1) olarak verilen çoklu lineer regresyon modelinde regresyon 

parametrelerinin tahminleri EKK yöntemi ile bulunur. Bilinmeyen parametre vektörü 

 ‘nın EKK tahmin edicisi hata kareler toplamı minimum yapılarak bulunur. 

y X    olmak üzere hata kareler toplamı; 

 

2

1

'

( ) '( ) ( ' ' ')( )

' ' ' ' ' '

n

i

i

y X y X y X y X

y y y X X y X X

  

   

   





     

   



 

 

olarak elde edilir. ' 'X y  için ( ' ' ) ' 'X y y X  ‘dir. Buna göre hata kareler 

toplamı; 

 

' ' 2 ' ' ' 'y y X y X X        
 

olur.  ‘nın tahmin edicisi '  ‘nu minimum yapar. O halde  

 

( ' )
2 ' 2 ' 0X y X X

 





   

  

 

' 'X X X y   
 

normal denklemi elde edilir. Buradan  ‘nın EKK tahmini edicisi 
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1ˆ ( ' ) 'b X X X y  
 

olarak elde edilir. b̂ ‘nın ortalaması ve kovaryansı aĢağıda verilmiĢtir: 

 
1

1

ˆ( ) ( ' ) ' ( )

( ' ) ' 0

pI

E b X X X E X

X X X X

 









 

 



 
ve  

 
1 1

2 1 1

2 1

ˆ( ) ( ' ) ' ( ) ( ' )

( ' ) ' ( ' )

( ' ) .

pI

Cov b X X X Cov y X X X

X X X X X X

X X





 

 








                (2.2) 

 

EKK tahmin edicisi Gaus Markov teoremi gereğince 
2 1ˆ (0, ( ' ) )b N X X 

 ile en iyi 

lineer yansız tahmin edicidir (BLUE). Yani herhangi bir lineer yansız b  tahmin 

edicisi için  

 
ˆ( ) ( )j jVar b Var b , 0,1,...,j p   

 

eĢitsizliği sağlanır. 

 

2.2.  EKK Yönteminin Varsayımları 

 

EKK tekniğinin gerek değiĢkenler gerekse hata terimine ait bir takım 

varsayımları bulunmaktadır. Bunlar temel varsayımlar ve ek varsayımlar olarak iki 

grupta incelenebilir.  

Temel varsayımlar, 

(i) X , n p  tipinde p n  ile stokastik olmayan bir matristir. 

(ii) X  matrisinin rankı p ‘dir yani, tam kolon ranklıdır.  
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(iii) 1n  tipindeki y  vektörünün elemanları gözlemlenebilen rasgele 

vektörlerdir. 

(iv) 1n  tipindeki   vektörünün elemanları gözlenemeyen rasgele değiĢkenlerdir 

öyle ki, 
2 0   ile ( ) 0E    ve 2( ) nCov I   dir. 

Ek varsayım, 

(v)   vektörü n  değiĢkenli normal dağılır. 

Temel varsayımlara ilaveten ek varsayım da sağlanıyorsa bu model ―Klasik Lineer 

Regresyon Modeli‖ olarak adlandırılır (Groß, 2003). 
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3. ÖZDEġ KOVARYANS MATRĠSLĠ LĠNEER ĠSTATĠSTĠKSEL 

MODELDE ÇOKLU ĠÇ ĠLĠġKĠ 

 

3.1. Çoklu Ġç ĠliĢkinin Tanımlanması 

 

Çoklu iç iliĢki, son yıllarda çoklu regresyon analizinde üzerinde durulan bir 

konudur. Bir ya da daha fazla açıklayıcı değiĢkenin diğer açıklayıcı değiĢkenlerin 

doğrusal veya doğrusala yakın bir kombinasyonu olması durumunu ifade eder. Çoklu 

lineer regresyon modelinde, genellikle açıklayıcı değiĢkenlerin bağımsız olduğu 

varsayılır, ancak uygulamada bu varsayımın ihlali söz konusu olabilir. Tam çoklu iç 

iliĢki, yakın çoklu iç iliĢki ve ortogonallik, çoklu iç iliĢki konusunda oldukça sık 

karĢılaĢılan temel kavramlardır.  

Tam çoklu iç iliĢki, bir veya daha çok açıklayıcı değiĢkenin diğerlerinin 

doğrusal bir kombinasyonu olması durumunda ortaya çıkar. X , n p  tipinde 

stokastik olmayan açıklayıcı değiĢkenlerin gözlenen matrisi, iX , bu matrisin i-nci 

sütununu göstermek üzere tam çoklu iç iliĢki durumunda  

 

1

0
p

i i

i

t X



                  

 (3.1) 

 

eĢitliğini sağlayacak Ģekilde hepsi sıfır olmayan it , ( 1,2,..., )i p  sabitleri vardır. Bu 

durumda 'X X  matrisinin rankı p ‘den küçük ve 'X X ‘in özdeğerlerinden en az biri 

sıfırdır.  

Yakın çoklu iç iliĢki X , n p  tipinde stokastik olmayan açıklayıcı 

değiĢkenlerin gözlenen matrisi, iX , bu matrisin i-nci sütununu göstermek üzere  

 

1

0
p

i i

i

t X


  

 

yakınsamasını sağlayacak Ģekilde sıfırdan farklı en az bir it  
sabitinin var olması 

durumunu ifade eder.  
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Tam çoklu iç iliĢki durumunda 'X X  matrisi singüler olduğu için EKK 

tahmin edici kullanılamaz. Yakın çoklu iç iliĢki durumunda ise 'X X  matrisi 

singülere yakın olmakla birlikte tersi bulunabileceği için EKK yöntemi kullanılabilir, 

ancak 'X X  matrisinin özdeğerlerinden en az biri sıfıra yakın olacağı için EKK 

tahminlerinin varyansı büyük olacaktır.  

Ortogonallik, açıklayıcı değiĢkenler arasında hiçbir bağlantının olmadığını 

ifade eder. ' pX X I
 
iken X matrisi ortogonal açıklayıcı değiĢkenleri içerir. Bu 

durumda 'X X  matrisinin tüm özdeğerleri 1‘e eĢittir. En az bir özdeğer 1‘den farklı 

bulunuyorsa, ortogonallik bozulur. En küçük özdeğerin 1‘den küçük olması onun 

sıfıra yakın olduğunu göstermez. Yani ortogonal olmama çoklu iç iliĢkinin varlığını 

göstermeyebilir, ancak çoklu iç iliĢki durumu ortoganalliğin bozulduğunu ifade eder 

(Vinod ve Ullah, 1981).  

Çoklu iç iliĢkinin pek çok nedeni olabilir (Judge ve ark., 1985; Montgomery 

ve ark., 2001). Bunlardan bazıları: 

 

1)  Uygulanan veri toplama metodu: Analizci (3.1) ile tanımlı bir bölgenin 

alt uzayından örneklem almıĢ ise çoklu iç iliĢki problemi ile 

karĢılaĢacaktır. 

2) Modeldeki veya kitledeki zorunluluklar: Kitledeki zorunluluklar daha 

çok, açıklayıcı değiĢkenlerin kimyasal veya üretim proseslerinde ortaya 

çıkar. Bir kimyasal reaksiyonun gerçekleĢmesi için belli içeriklerin sabit 

oranlarda olması durumu örnek olarak verilebilir. 

3) Modelin belirlenmesi: X değiĢkenlerinin değiĢim aralığı küçük iken bir 

regresyon modeline polinom terimin eklenmesi çoklu iç iliĢkiye neden 

olabilir. 

4) Modelin aĢırı tanımlanması (overdefined): DeğiĢken sayısının gözlem 

sayısından büyük olduğu durumu tanımlar. Bu durum çoğu kez çoklu iç 

iliĢkiye neden olur (Mason, Gunst ve Webster, 1975). 
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3.2. Çoklu Ġç ĠliĢkinin Belirlenmesi 

 

Var olan çoklu iç iliĢkinin ortaya çıkarılmasına yönelik birkaç yöntem 

geliĢtirilmiĢtir. Bunlardan en sık kullanılan 4 yöntem aĢağıda verilmektedir (Özkale, 

2007). 

1. Basit Korelasyon Katsayısı 

Çoklu iç iliĢkinin belirlenmesinde kullanılan en kolay yoldur. 

StandartlaĢtırılmıĢ formda 'X X  matrisinin köĢegen dıĢı elemanları (
ijr ) çoklu iç 

iliĢkinin belirlenmesinde kullanılır. Ġki açıklayıcı değiĢken arasında çoklu iç iliĢki 

varsa aralarındaki korelasyon katsayısı (
ijr ) mutlak değerce 1‘e yakın olacaktır. 

Ancak bu yöntemde iki açıklayıcı değiĢken arasındaki lineer iliĢki 

incelenebilmektedir. Eğer ikiden fazla açıklayıcı değiĢken arasında bir iliĢki varsa, 

bu iliĢkinin basit korelasyon katsayılarına yansıyacağı konusunda kesin bir bilgi 

yoktur (Montgomery ve ark., 2001). 

2. Varyans ġiĢirme Faktörü 

1( ' )C X X   matrisinin köĢegen elemanları çoklu iç iliĢki hakkında bilgi 

verir. Ġlk olarak Farrar ve Glauber (1967) tarafından çoklu iç iliĢkiyi belirlemek için 

kullanılmıĢtır. 2

jR , 
jX  açıklayıcı değiĢkeninin diğer 1p   açıklayıcı değiĢkenler ile 

regresyonundan elde edilen çoklu belirleyicilik katsayısı olmak üzere, C  matrisinin j 

-inci köĢegen elemanı 2 1(1 )jj jC R    Ģeklinde ifade edilir. Eğer 
jX  açıklayıcı 

değiĢkeni ile diğer açıklayıcı değiĢkenler arasında doğrusal bir iliĢki yoksa 2

jR  çok 

küçük olacağından 
jjC  1‘e yaklaĢacaktır. Aksi durumda 2

jR
 

1‘e yakın değerler 

alacağından 
jjC  değeri çok büyük olacaktır. j -inci katsayısının varyansı 2

jjC  

olduğundan 
jjC , açıklayıcı değiĢkenler arasındaki iliĢkiden dolayı ˆ

j ‘nin varyansını 

artıran bir faktör olarak görüldüğünden Marquardt (1970) tarafından ―Varyans 

ġiĢirme Faktörü (Variance Inflation Factor=VIF )‖ olarak adlandırılmıĢtır. Genelde 5 

ve 10‘dan büyük VIF  değerleri, ilgili regresyon katsayısı tahmininin çoklu iç 

iliĢkiden dolayı güvenli bir tahmin olmadığının bir göstergesi olarak kabul edilir. 



3. ÖZDEġ KOVARYANS MATRĠSLĠ LĠNEER ĠSTATĠSTĠKSEL MODELDE  

ÇOKLU ĠÇ ĠLĠġKĠ                                                                            Tuğba SÖKÜT 

10 

Montgomery ve ark., (2001), 5 ve 10 değerinin araĢtırmacılar tarafından denemeler 

sonucu bulunan kesin değerler olmadıklarını belirtmiĢtir. 

3. 'X X  Matrisinin Özdeğerleri ve KoĢul Sayısı 

Çoklu iç iliĢkinin belirlenmesinde 'X X  matrisinin karakteristik yapısından 

faydalanılması çalıĢmalarda sıklıkla kullanılmaktadır. Çoklu iç iliĢki problemini 

ciddi anlamda çalıĢan ilk araĢtırmacı Ragnar Frisch‘dır. Frisch (1934) çoklu iç 

iliĢkiyi özdeğerlerle iliĢkilendirmiĢtir. 'X X  matrisinin özdeğerleri 
1 2, ,..., p  

 
ve 

özvektörleri 
1 2, ,..., pt t t

 
olmak üzere, çoklu iç iliĢki durumunda en az bir özdeğer 

sıfıra çok yakındır ve en az bir özvektör 
1

0
p

ij i

i

t X


  eĢitliğini sağlar. Burada 
i jt , j-

inci özvektörün i-inci elemanını ve iX , X matrisinin i-nci sütununu göstermektedir. 

Özdeğerlerin tek tek incelenmesi pek fazla anlam taĢımamaktadır. Birçok istatistikçi 

özdeğerlerin birbirleri ile kıyaslanması yoluna giderek çoklu iç iliĢkinin varlığını ve 

derecesini belirlemeye çalıĢmaktadır. Montgomery ve ark., (2001) koĢul sayısını en 

büyük özdeğerin en küçük özdeğere oranı olarak tanımlamıĢlardır: max

min

K



 . K , 

100‘den küçükse çok ciddi boyutta çoklu iç iliĢki problemi olmadığı, 100-1000 

arasında ise kuvvetli çoklu iç iliĢki olduğu, 1000‘den büyükse veri içerisinde birden 

fazla çoklu iç iliĢki problemi olduğu kabul edilmektedir. Özdeğerlerin toplamı da 

çoklu iç iliĢki hakkında bilgi verebilmektedir. Özdeğerlerin toplamı ne kadar 

büyükse çoklu iç iliĢkinin düzeyi o derece yüksek kabul edilir (Pagel ve Lunneborg, 

1985). 

4. Diğer tanılama (Diagnostics) metotları 

Belirtilen tekniklerin yanı sıra çoklu iç iliĢki pek çok yöntemle belirlenebilir. 

'X X  matrisinin determinantı çoklu iç iliĢkinin göstergesi olarak kullanılabilir. 

StandartlaĢtırılmıĢ formda 0 ' 1X X  ‘dir. ' 1X X   ise açıklayıcı değiĢkenler 

ortogonaldir aksine ' 0X X   iken tam çoklu iç iliĢki vardır. 'X X  sıfıra 

yaklaĢtıkça çoklu iç iliĢkinin Ģiddeti artacaktır (Farrar ve Glauber, 1967). Bu gösterge 

kolayca kullanılabilir olmasına rağmen çoklu iç iliĢkinin kaynağı konusunda 

herhangi bir bilgi vermez.  
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3.3. Sıradan En Küçük Kareler Tahmin Edicisine Alternatif Tahmin Ediciler 

 

Çoklu iç iliĢkinin var olması durumunda uygulanan EKK yöntemi ile 

parametre tahminlerinin standart hataları büyümekte ve hipotez testlerinde çeliĢkili 

sonuçlar vermektedir. Bu problemi ortadan kaldırmak için önerilen tahmin 

prosedürleri yanlı tahmin edicilerin ortaya çıkmasına ve bunların incelenmesine 

neden olmuĢtur. Yanlı tahmin yöntemlerinin varsayımları EKK varsayımlarıyla 

aynıdır. Ancak yanlı tahmin yöntemlerinde güven aralıkları hesaplanmadığından 

normallik varsayımı yapılmamaktadır (Rawlings, 1998). 

Bu bölümde yanlı regresyon yöntemlerinden sırasıyla ridge tahmin edici, 

temel bileĢenler tahmin edici, jackknifed ridge tahmin edici, shrunken tahmin edici 

ve iterasyon tahmin edici incelenecektir.  

 

3.3.1. Ridge Tahmin Edici 

 

Ridge regresyon 'X X  matrisinin kötü koĢullarından dolayı köĢegen 

elemanlarına sabit bir k  ( 0k  ) ekleyerek iyileĢtirmeyi amaçlayan bir yöntemdir. 

'X X  matrisinin köĢegen elemanlarına k  sabitinin eklenmesindeki amaç koĢul 

sayısını önemli ölçüde küçültmektir. Buna göre Hoerl ve Kennard‘ın (1970) önerdiği 

ridge tahmin edici, 

 
1ˆ ( ' ) 'rb X X kI X y  ,   0k      

 

dir. ˆ' 'X y X Xb  olmasından dolayı; 

 
ˆ ˆ
r kb Z b ,       1( ' ) 'kZ X X kI X X    

 

ridge tahmin edicisi EKK tahmin edicisi cinsinden yazılabilir. EKK tahmin edicisi b̂  

yansız olduğundan dolayı açıkça görülüyor ki ridge tahmin edicisi ˆ
rb
 

yanlı bir 

tahmin edicidir. Ridge tahmin edicinin yanlılığı, 
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1

1

1

1

ˆ ˆ( ) ( )

( ' ) '

[( ' ) ' ]

( ' ) [ ' ( ' )]

( ' )

r r

p

Bias b E b

X X kI X X

X X kI X X I

X X kI X X X X kI

k X X kI



 















 

  

  

   

  

 

 

olarak elde edilir. Ridge tahmin edicinin kovaryans matrisi; 

 
1 1ˆ( ) ( ' ) ' ( ) ( ' )rCov b X X kI X Cov y X X X kI                  (3.2) 

 
2( ) nCov y I  olduğundan dolayı (3.2) eĢitliği, 

 
2 1 1ˆ( ) ( ' ) ' ( ' )rCov b X X kI X X X X kI          

 

olarak yazılabilir. O halde ridge tahmin edicinin hata kareler ortalaması, 

 

2 1 1

2 1 1

ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) '

( ' ) ' ( ' )

( ' ) '( ' )

r r r rMSE b Cov b Bias b Bias b

X X kI X X X X kI

k X X kI X X kI







 

 

 

  

  
 

 

olarak elde edilir. 
1 2, ,..., p   , 'X X  matrisinin özdeğerleri olmak üzere skaler hata 

kareler ortalaması, 

 

2
2 2

2
1

ˆ ˆ( , ) [ ( , )]

' ( ' )
( )

r r

p

i

i i

sMSE b trace MSE b

k X X kI
k

 

 
 









  



 

 

olur. Buradaki birinci terim ˆ
rb
 

vektöründeki parametrelerin varyansları toplamı, 

ikinci terim ise yanlılığın karesidir. k ‘ya bağlı olarak, varyans-kovaryans terimi 

k ‘nın azalan bir fonksiyonu, yanlılık terimi ise k ‘nın artan bir fonksiyonudur. 

Böylece k  artarken gerçek parametreden sapmalar artacak ancak, tahmin edicinin 

varyansı azalacaktır. Buna göre ridge regresyonun kullanılmasındaki amaç, 

varyanstaki azalıĢın yanlılıktaki artıĢtan daha büyük olmasını sağlayan k  yanlılık 

parametresinin seçimidir. k ‘nın stokastik olmayan seçimine iliĢkin 4 yöntem aĢağıda 

verilmiĢtir. 
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1. Ridge Trace 

Ridge trace metodu k ‘ nın seçimi için Hoerl ve Kennard (1970) tarafından 

önerilmiĢtir. Ridge trace k  ya karĢı ˆ
rb ‘nin elemanlarının grafiksel gösterimidir. Bu 

grafiksel gösterimde dikkat edilmesi gereken bir konu, karıĢıklık oluĢturmamak için 

10‘dan fazla regresyon katsayısının grafiksel gösterime dâhil edilmemesidir 

(Marquardt ve Snee, 1975). k  arttıkça tahminler küçülür ve belli bir k  değerinden 

sonra durağan (stable) hale gelirler. ˆ
rb ‘nın durağan olduğu en küçük k  değeri uygun 

bir değer olarak alınır. Hoerl ve Kennard (1970) 0   1k   aralığını önermiĢlerdir. 

Ridge trace‘in en olumlu yanı, uygulamaya yönelik ve gözlenen veriye dayalı 

oluĢudur (Myers, 1986). Tahminlerin durağanlaĢtığı aralıklarda k ‘nın seçimi 

araĢtırmacıya bırakıldığından dolayı bu durum bir dezavantaj olarak düĢünülebilir. 

Bu yüzden keyfi bir seçim yapmak yerine bir formülasyon oluĢturma yoluna 

gidilmektedir. 

2. Hoerl ve Kennard ‘ın (1970) önerdiği yanlılık parametresi 

Hoerl ve Kennard (1970), ridge tahmin edicinin EKK‘nın hata kareler 

ortalamasından daha küçük hata kareler ortalamasını sağlayacak ridge tahmin edici 

için yanlılık parametresini 
2

2

max

ˆˆ
HKk






 

olarak önermiĢlerdir. Burada 
max  kanonik 

formda regresyon katsayısının tahmininin maksimum değeridir. Eğer 
2  ve   

biliniyorsa ˆ
HKk

 
EKK‘dan daha küçük MSE verecektir (Kibria, 2003). 

3. Hoerl, Kennard ve Baldwin‘in (1975) önerdiği yanlılık parametresi 

Hoerl, Kennard ve Baldwin (1975), 
2

2
ˆ
i

i

k



 ‘nin ( i : kanonik formda olan   

regresyon parametresinin i-nci elemanını ifade etmektedir) harmonik ortalamasını 

alarak farklı bir tahmin edici önermiĢlerdir: 
2ˆˆ

ˆ ˆ'
HKB

p
k

b b


 . Burada b̂ ,  ‘nın EKK 

tahmin edicisidir. 

4. Lawless ve Wang‘ın (1976) önerdiği yanlılık parametresi 
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Lawless ve Wang (1976), Bayesian yaklaĢımla yanlılık parametresinin 

tahminini 
2ˆˆ

ˆ ˆ' '
LW

p
k

b X Xb




 
olarak önermiĢlerdir. Burada b̂ ,  ‘nın EKK tahmin 

edicisidir. 

 

3.3.2. Temel BileĢenler Tahmin Edici 

 

Regresyon katsayılarının yanlı tahmin edicileri temel bileĢenler regresyon 

olarak bilinen bir prosedürü kullanarak elde edilebilir. Temel bileĢenler tahmin edici 

kısıtlı en küçük kareler tahmin edicisinin çoklu iç iliĢkinin var olduğu durumlarda 

kullanılan özel bir halidir. Parametre vektörüne uygun kısıtlar koyarak EKK tahmin 

edicisinin varyansının büyük olduğu durumlarda yeni bir tahmin ediciyi elde etmeyi 

amaçlar. Bunun için 'X X  matrisinin spektral ayrıĢımı göz önüne alınır. 

 

1 1

1 2

2 2

' '

0 '
( , )

0 '

X X U U

U
U U

U

 

  
   

  

    

 

Burada 1 , ana köĢegen elemanları 'X X  matrisinin r p  büyük özdeğerlerine 

karĢılık gelen r r  tipinde köĢegen matris ve 2 , ana köĢegen elemanları 'X X  

matrisinde geri kalan p r  özdeğerlerine karĢılık gelen    p r p r    tipinde 

matristir. p p  tipindeki 1 2( , )U U U  matrisi U  matrisinin ilk r  sütununu içeren 

1 1( ,..., )rU u u  ve U  matrisinin geri kalan p r  sütununu içeren 
2 1( ,..., )r pU u u  

ile ortogonal bir matristir. Öyle ki, 1 1' rU U I , 
2 2' p rU U I  , 1 2' 0U U  , 

1 1 2 2' ' pU U U U I   ve 1 1 1

1 1 1 2 2 2( ' ) ' 'X X U U U U       eĢitlikleri sağlanır. 

(2.1) modeli altında Marquardt‘ın (1970) önerdiği  ‘nın temel bileĢenler 

tahmnin edicisi, 

 
( ) 1

1 1 1 1
ˆ ( ' ' ) ' 'rb U U X XU U X y                 (3.3) 

 

olarak yazılır. (3.3) eĢitliğini 1 1 1( ' ' )U X XU   ‘i kullanarak düzenlersek, 
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( ) 1

1 1 1
ˆ ' 'rb U U X y        

 

olur. (2.1) modeli altında temel bileĢenler tahmin edicinin yanlılığı,  

 
( ) ( )

1 1

2 2

ˆ ˆ( ) ( )

( ' )

'

r r

r

Bias b E b

U U I

U U







 

 

 
 

 

ve kovaryans matrisi, 

 

1

( ) 1

1 1 1

1 1

1 1 1 1 1 1

2 1 1

1 1 1 1 1 1

2 1

1 1 1

ˆ( ) [ ' ' ]

' ' ( ) '

' ' '

'

rCov b Cov U U X y

U U X Cov y XU U

U U X XU U

U U







 

 





 

  

  

 

 

 

olarak elde edilir. O halde temel bileĢenler tahmin edicinin hata kareler ortalaması, 

 
( ) ( ) ( ) ( )

2 1

1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) '

' ( ' ) '( ' )

r r r rMSE b Cov b Bias b Bias b

U U U U I U U I



 

 

    
 

 

1 1 2 2' 'U U I U U    olduğundan dolayı 

 
( ) 2 1

1 1 1 2 2 2 2
ˆ( , ) ' ' ' 'rMSE b U U U U U U           

 

olarak elde edilir.  

Gunst ve Mason (1977) tarafından yapılan simülasyon çalıĢmasında, çoklu iç 

iliĢki olduğu zaman temel bileĢenler tahmin edicinin EKK‗dan daha iyi sonuç verdiği 

gözlenmiĢtir. Gunst ve Mason (1977), aynı zamanda temel bileĢenlerin diğer bir 

avantajı olarak kesin dağılım teorisi ve değiĢken seçim prosedürlerinin mevcut 

olduğunun altını çizmiĢlerdir. 
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3.3.3. Jackknifed Ridge Tahmin Edici 

 

'X X  matrisinin özdeğerlerinin köĢegen matrisi 
1( ,..., )pdiag     ve 

özvektör matrisi T  olmak üzere ( ' 'T X XT   , ' 'T T TT I  ) (2.1) modelinin 

kanonik formu tekil değer ayrıĢımı kullanılarak 

 

y Z              

 

Ģeklinde yazılabilir (Vinod ve Ullah, 1981). Burada Z XT , 'T   dir.  

 ‘nın EKK tahmin edicisi  

 
1 1ˆ ( ' ) ' 'Z Z Z y Z y                      (3.4) 

 

olur. (3.4) eĢitliği 'T   ve 'T T I  olduğundan dolayı 

 
ˆ ˆT    

 

olarak yazılabilir. Singh ve ark., (1986) jackknifed ridge tahmin ediciyi, ridge tahmin 

edicinin lineer dönüĢümü olarak 

 
( ) 1ˆ ˆ[ ( ' ) ]J

rI k Z Z kI                     (3.5) 

 

Ģeklinde önermiĢlerdir. ˆ
r  

kanonik formda  ‘nın ridge tahmin edicisi olmak üzere, 

ˆ
r ‘yi 1ˆ ˆ[ ( ' ) ]r I k Z Z kI   

 
Ģeklinde EKK tahmin edicisinin lineer dönüĢümü 

halinde yazılırsa (3.5) eĢitliği, 

 
( ) 2 2ˆ ˆ[ ( ' ) ]J I k Z Z kI                     (3.6) 

 

olarak yazılabilir. (3.6) eĢitliği jackknifed ridge tahmin edicinin kapalı formu olarak 

görülebilir. 'T   ve ' ' 'Z Z T X XT  olduğundan (2.1) modeli için  ‘nın 

jackknifed ridge tahmin edici, 

 
( ) ( )ˆ ˆJ Jb T 2 2 ˆ[ ( ' ) ]I k X X kI b          

 

olur. Burada b̂ , EKK tahmin edicisidir.  
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(2.1) modeli altında jackknifed ridge tahmin edicinin yanlılığı, 

 
( ) ( )

2 2

2 2

ˆ ˆ( ) ( )

ˆ[ ( ' ) ] ( )

( ' )

J JBias b E b

I k X X kI E b

k X X kI











 

   

  

 

 

ve 2 1ˆ( ) ( ' )Cov b X X   olduğundan dolayı kovaryans matrisi, 

 
( ) 2 2 2 2

2 2 2 1 2 2

ˆ ˆ( ) [ ( ' ) ] ( )[ ( ' ) ]

[ ( ' ) ]( ' ) [ ( ' ) ]

JCov b I k X X kI Cov b I k X X kI

I k X X kI X X I k X X kI

 

  

    

    
 

 

olarak elde edilebilir. O halde jackknifed ridge tahmin edicinin hata kareler 

ortalaması, 

 
( ) ( ) ( ) ( )

2 2 2 1 2 2

4 2 2

ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) '

[ ( ' ) ]( ' ) [ ( ' ) ]

( ' ) '( ' )

J J J JMSE b Cov b Bias b Bias b

I k X X kI X X I k X X kI

k X X kI X X kI







  

 

 

    

  

 

 

olarak elde edilir.  

Jackknifed ridge tahmin edicinin yanlılığının normunun ridge tahmin edicinin 

yanlılığının normundan daha küçük olduğu gözlenmiĢtir (Singh ve ark., 1986). 

 

3.3.4. Shrunken Tahmin Edici 

 

Mayer ve Willke‘nin (1973) çalıĢmalarında, kötü koĢullu lineer modelde 

Hoerl ve Kennard (1970) tarafından belirtilen ridge tahmin ediciye alternatif olarak 

EKK tahmin edicilerinin lineer dönüĢümlerinin bir alt sınıfı olarak önerdikleri 

shrunken tahmin edici, 0 1c   olmak üzere 

 
1ˆ ( ' ) '

ˆ

cb c X X X y

cb




                  

(3.7) 

 

dir. Burada b̂ , EKK tahmin edicisidir. Shrunken tahmin edicisi (3.7) eĢitliğinden de 

görüldüğü gibi yanlı bir tahmin edicidir. Shrunken tahmin edicinin yanlılığı, 
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ˆ ˆ( ) ( )

( 1)

c cBias b E b

c





 

 
 

 

ve kovaryans matrisi, 

 
2

2 2 1

ˆ ˆ( ) ( )

( ' )

cCov b c Cov b

c X X 




 

 

olarak elde edilebilir. O halde shrunken tahmin edicinin hata kareler ortalaması, 

 

2 2 1 2

ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) '

( ' ) ( 1) '

c c c cMSE b Cov b Bias b Bias b

c X X c



 

 

  
 

 

olarak elde edilir.  

 

3.3.5. Ġterasyon Tahmin Edici 

 

Trenkler (1978), (2.1) modeli için iterasyon tahmin ediciyi aĢağıdaki gibi 

önermiĢtir.  

 

,

0

ˆ ( ' ) '
m

j

m p

j

b I X X X y  


   , 
max

1
0 


   , 0,1,....m   

 

,0
ˆ 'b X y   ve ,

ˆ ˆb b    olacağından dolayı iterasyon tahmin edicisi basitleĢtirilmiĢ 

ridge tahmin edicisi 'X y  ve EKK tahmin edicisi b̂  arasında ağırlıklandırılmıĢ 

ortalama olarak görülebilir. Bölüm 2‘de verilen temel varsayımlar altında 'X X  

matrisinin spektral ayrıĢımı 'U U  olsun. Ġterasyon tahmin edici, 

 
1

0

( )
m

m
j

p p p

j

I I I  




          olmak üzere, 

 

,
ˆ ˆ'mb U U b    

 

formunda yazılabilir. Ġterasyon tahmin edicinin uygulamaları için   ve m  

parametrelerinin nasıl Ģeçileceğinin bilinmesi gerekir.  ‘nın farklı seçimleri m ‘nin 
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farklı seçimlerine yol açar. Parametreleri belirlemek için bir seçenek,  ‘yı önceden 

sabitlemek ve sonra tahmin edicinin elemanlarını m ‘nin bir fonksiyonu olarak 

çizmektir. Bu Bölüm 3.3.1‘de verilen ridge trace methodu ile aynıdır. Ancak ridge 

trace‘de yanlılık parametresi olan k ‘nın artması ile trace sıfıra yaklaĢırken, iteratif 

tahmin edicinin elemanları 'X y ‘den baĢlar ve m  tamsayısının artan değerleri ile 

EKK tahmin edicisi b̂ ‘ya yakınsar.  
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4. SKALER ÖZDEġ OLMAYAN KOVARYANS MATRĠSLĠ GENEL 

LĠNEER ĠSTATĠSTĠKSEL MODEL 

 

(2.1) modeli için   hata vektörünün özdeĢ varyanslı ve elemanlarının iliĢkisiz 

olduğunu temel varsayımlardan biliyoruz. Bu varsayım bazı ekonomik verilerde 

tutarlı olmasına rağmen bazı durumlarda varsayım sağlanamayabilir. Ekonometrik 

veriler zaman serisi verileri ve yatay kesit verileri olmak üzere iki ana baĢlık altında 

incelenebilir. Zaman serisi verileri değiĢkenlerin bir zaman aralığı üzerindeki 

değerlerinin elde edilmesine, yatay kesit verileri ise tek bir zaman noktasında farklı 

değiĢkenlerin incelenmesi istenen değerlerinin elde edilmesine dayanır. Yatay kesit 

verisi üzerinden 2( ') nE I 
 
varsayımının ihlaline örnek verecek olursak, bir firma 

ya da ev kesit verisi tahmin edilmek istendiğinde ev ya da firmanın yüksek gelirli 

olması durumu hataları büyültecek, az gelirli olması durumu ise hataları 

küçültecektir. Yani hata terimlerinin varyansı gelir düzeyine bağlı olarak 

değiĢecektir. Bu durum değiĢen varyans olarak tanımlanan farklı varyansa sahip hata 

terimlerinin var olduğunu ifade etmektedir. Diğer benzer bir örnek hataların yanıt 

değiĢken üzerindeki etkisi tamamen anlık olmayan zaman serisi verilerinden 

verilebilir. Bu durumda t  hata terimleri iliĢkili olabilir. Son olarak y X    

modeli için eĢ zamanlı farklı bireyler ya da firmalar için eĢitlikler yazılabilir (Judge 

ve ark., 1988). 

Bu bölümde hata vektörü 2[ ']E V    olan kovaryans matrisinin genel 

durumları üzerinde duracağız. Burada V , bilinen pozitif tanımlı simetrik bir 

matristir. Ġlerleyen bölümlerde  ‘nin sıfır ortalamalı ve 2[ ']E V   kovaryans 

matrisli rasgele vektör olarak kabul edeceğiz. 

 

4.1.  Ġstatistiksel Model  

 

y X e                                                                                                    (4.1)  
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çoklu lineer regresyon modelinin olduğunu varsayalım. Burada, y , 1n  tipinde 

yanıt değiĢkenlerin vektörü, X , n p  tipinde stokastik olmayan açıklayıcı 

değiĢkenlerin gözlenen matrisi,  , 1p  tipinde bilinmeyen regresyon 

parametrelerinin vektörü, e , 1n  tipinde [ ] 0E e   ortalamalı ve 2[ ']E ee V   

kovaryans matrisli rasgele hata vektörüdür ( 2(0, )e N V ). Ayrıca V , n n  

tipinde pozitif tanımlı simetrik bir matris ve 
2 , bilinmeyen skalerdir. (4.1) 

modelindeki hata  terimleri (2.1)‘de verilen modelin hata terimlerinden farklı 

yapıdadır, yani 2

nI  varsayımı 2V  varsayımı olarak değiĢmektedir. ie  rastgele 

değiĢkenlerinin varyansı özdeĢ değildir ve i j  için ie  ve 
je
 
arasındaki kovaryans 

sıfır olmayabilir. Bundan sonraki bölümlerde yapacağımız tahminler ve çıkarsamalar 

(4.1) modeli altında yapılacaktır. 

 

4.2.  En Küçük Kareler Tahmin Edicisinin Problemleri 

 

Bu bölümde bilinmeyen   parametresi ve 
2 ‘nin tahminleri için (2.1) 

modeli altında BLUE olan EKK tahmin edicisinin (4.1) modeli altında en iyi olup 

olmadığı incelenecektir. y , beklenen değeri ( ) ( )E y E X e X     ve kovaryansı 

2[( )( ) ']E y X y X V       olan rasgele bir değiĢkendir. 

(4.1) modeli altında EKK tahmin edicisinin Bölüm 2‘de verilen EKK 

tahminine benzer olarak, 

 
1

1

1 1

1

ˆ ( ' ) '

( ' ) '( )

( ' ) ' ( ' ) '

( ' ) '

pI

b X X X y

X X X X e

X X X X X X X e

X X X e











 





 

 

 

 

 

elde edilir. (4.1) modeli altında EKK tahmin edicisinin beklenen değeri, 

 
1ˆ( ) [ ( ' ) ' ]E b E X X X e    
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( ) 0E e   olduğundan dolayı, 

 
ˆ( )E b                            

 

olur ve kovaryans matrisi, 

 
1 1

1 1

1 1

2 1 1

ˆ ˆ[( )( ) '] [( ( ' ) ' )( ( ' ) ' ) ']

[( ' ) ' ' ( ' ) ]

( ' ) ' [ '] ( ' )

( ' ) ' ( ' )

E b b E X X X e X X X e

E X X X ee X X X

X X X E ee X X X

X X X V X X X

     



 

 

 

 

      





       (4.2)

 

 

olarak bulunur. Görüldüğü üzere, (4.1) modeli altında da EKK tahmin edicisi  ‘nın 

yansız bir tahmin edicisidir ve V I  olduğundan dolayı (4.2)‘de verilen kovaryans 

matrisi (2.2) eĢitliğinde verilen kovaryans matrisi yapısından farklıdır. Bu yüzden 

(4.1) modeline uygulanan EKK yöntemi yansız olmasına rağmen, varyansında ĢiĢme 

olmasından dolayı en iyi yansız tahmin edici özelliğini yitirmektedir. Bundan dolayı 

EKK yönteminin uygulanması uygun değildir ve uygulanması durumunda kullanılan 

standart regresyon hesapları yanlıĢ olacaktır. 

 

4.3.  DönüĢtürülmüĢ Model 

 

2[ '] nE I   varsayımının geçersiz yani 
2[ ']E ee V  olduğu zaman  ‘nın 

en iyi yansız tahmini incelenecektir. Bunun için yapılan ilk adım (4.1) modeli 

üzerinde dönüĢümler yapmaktır. BaĢlangıç olarak n n  tipindeki V  matrisinin 

bilindiğini varsayıyoruz. V  pozitif tanımlı olduğundan dolayı 
1'P P V   yani 

' nPVP I  eĢitliklerinin sağlayan bir P  matrisi her zaman vardır.  

(4.1) modeli P  matrisi ile çarpılarak dönüĢtürülmüĢ model 

 

Py PX Pe      

 

ya da 

 

* * *y X e 
                  

(4.3) 
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olarak yazılabilir. Burada *y Py , *X PX  ve  *e Pe ‘dir. DönüĢtürülmüĢ model 

için hata yapısının ortalaması, 

 

*[ ] [ ] [ ] 0E e E Pe P E e  
               

 

ve kovaryans matrisi, 

 

* * *

2

2 2

( ) [ '] [ ' ']

[ '] '

'

' n

Cov e E e e E Pee P

P E ee P

P V P

PV P I



 

 





 

 

 

olarak bulunmuĢ olup dönüĢtürülmüĢ model Bölüm 2‘de varsayılan özellikleri 

sağlamaktadır. 

 

4.4. GenelleĢtirilmiĢ En Küçük Kareler Tahmin Edici 

 

(4.1)‘de verilen model (4.3)‘deki modele dönüĢtürüldüğü zaman hatalara 

iliĢkin varsayımlar sağlandığından dolayı dönüĢtürülmüĢ modele uygulanan EKK 

yöntemi genelleĢtirilmiĢ en küçük kareler yöntemi olarak adlandırılır (GEKK). 

GEKK tahmin edicisi hata kareler toplamını minimum yapacak Ģekilde önerilmiĢtir. 

 

* * *e y X     

2

* * *

1

1

1 1 1 1

'

( ) '( ) ( ' ' ') ( )

' ' ' ' ' '

n

i

i

e e e

Py PX Py PX y X V y X

y V y y V X X V y X V X

   

   





   



     

   



  

 

olarak elde edilir. 1' 'X V y 

 için 1 1( ' ' ) ' 'X V y y V X   ‘dir. Buna göre hata 

kareler toplamı; 

 
1 1 1

* *' ' 2 ' ' ' 'e e y V y X V y X V X        
 

olur.  ‘nın tahmin edicisi * *'e e ‘ı minimum yapar. O halde normal denklemleri,  
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1 1* *( ' )
2 ' 2 ' 0

e e
X V y X V X



 
   


 

1 1' 'X V X X V y   
 

olup buradan  ‘nın GEKK tahmini 

 
1 1 1ˆ ( ' ) 'G X V X X V y   

 
 

olarak elde edilir. GEKK tahmin edicisinin beklenen değeri  

 
1 1 1

1 1 1

1 1 1

ˆ( ) [( ' ) ' ]

( ' ) ' ( )

( ' ) '

ˆ( )

p

G

I

G

E E X V X X V y

X V X X V E y

X V X X V X

E





 

  

  

  









 

 

olarak bulunmuĢ olup GEKK tahmin edicisi ˆ
G ,  ‘nın yansız bir tahmin edicisidir. 

Kovaryans matrisi,  

 
1 1 1

1 1 1 1 1 1

2 1 1 1 1 1 1

2 1 1

ˆ( ) [( ' ) ' ]

( ' ) ' ( ) ( ' )

( ' ) ' ( ' )

( ' )

n

p

G

I

I

Cov Cov X V X X V y

X V X X V Cov y V X X V X

X V X X V V V X X V X

X V X







  

     

     

 









             (4.4)

 

 

olarak elde edilmiĢ olup (4.3) modeli altında GEKK tahmin edicisinin BLUE olduğu 

görülmüĢtür (Judge, ve ark., 1988). (4.2) eĢitliğinde 
2V  yerine 

2I  alınarak EKK 

yöntemi uygulanması durumunda tahmin edicinin varyansı gösterilmiĢti. (4.4)‘deki 

eĢitlikte ise 
2V  altında elde edilen tahmin edicinin varyansının (4.2)‘dekinden daha 

küçük olduğunu göstermektedir. 
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4.5.  2 ’nin Yansız Tahmin Edicisi 

 

(4.1) modeli altında EKK yöntemini kullanarak 2

b̂
 'nin 2  için yansız olup 

olmadığını inceleyelim. 

EKK yönteminde 
2 ‘nin bilinen karasel formu; 

 
'

2

ˆ

ˆ ˆ( ) ( )
ˆ

b

y Xb y Xb

n p


 


  

 

Ģeklindedir.  

 

2

ˆ

1

1

1

1
2 2

ˆ ˆ( ) '( )
ˆ( )

'( ( ' ) ')

'( ( ' ) ')

'( ( ' ) ')

( ( ' ) ')

b

y Xb y Xb
E E

n p

y I X X X X y
E

n p

e I X X X X e
E

n p

ee I X X X X
trE

n p

trV I X X X X

n p



 









  
  

 

 
  

 

 
  

 

 
  

 


 



 

 
2 2

ˆ
ˆ( )

b
E   olur. 

2V  altında EKK yöntemi kullanıldığında 
2 ‘nin yansız tahmini 

elde edilememektedir. 

GEKK yönteminde 
2 ‘nin tahmin edicisi 

 
1

2

ˆ

ˆ ˆ( ) ' ( )
ˆ

G

G Gy X V y X

n p

 


 


                            (4.5) 

 
Ģeklindedir.  

 
2 2

ˆ
ˆ( )

G

E


 
 
eĢitliğinin geçerli olup olmadığını inceleyelim. 
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1
2

ˆ

1 1 1 1 1 1 1

ˆ ˆ( ) ' ( )
ˆ( )

'( ( ' ) ') ( ( ' ) ' )

G

G G

n n

y X V y X
E E

n p

y I V X X V X X V I X X V X X V y
E

n p



 




      

  
  

 

  
  

   
 

y X e   ve 1'P P V  eĢitliklerini kullanırsak, *e Pe  olduğundan dolayı 

 
1 1 1 1 1 1 1

2

ˆ

1 1 1 1 1

1

1

* * *

'( ( ' ) ') ( ( ' ) ' )
ˆ( )

' ' ( ' ) '

' ' ' ' ( ' ' ) ' '

' '( ( ' ' ) ' ')

'( (

G

n n

n

n

e I V X X V X X V I X X V X X V e
E E

n p

e V e e V X X V X X V e
E

n p

e P Pe e P PX X P PX X P Pe
E

n p

e P I PX X P PX X P Pe
E

n p

e I X X
E




      

    





  
  

 

 
  

 

 
  

 

 
  

 




1

* * *' ) ') 'X X e

n p

 
 

 

 

 

elde edilir. 1

* * * *( ( ' ) ')nI X X X X  matrisi n p  ranklı idempotent bir matris ve 

2

* (0, )ne N I  olduğundan dolayı 

 
1

2 * * * * * *
ˆ

1
2 * * * *

2

' ( ( ' ) ')
ˆ( )

( ( ' ) ')

G

n

n

e e I X X X X
E trE

n p

tr I X X X X

n p












 
  

 

 
  

 



 

 

olduğundan dolayı GEKK yöntemini kullanarak 2 ‘nin yansız tahmin edicisi elde 

edilmiĢ olur. 
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4.6. Normal Lineer Ġstatistiksel Model 

 

Bölüm 2‘de verilen ek varsayımdan e  hata vektörünün n  değiĢkenli normal 

dağılımdan geldiği varsayımını değerlendireceğiz. Bu varsayımı ( ) 0E e   ve 

2[ ']E ee V  varsayımı altında inceleyeceğiz (V , n n  tipinde simetrik pozitif 

tanımlı bir matris). 2

nI  varsayımı altında gözlemlerin ortak yoğunluk fonksiyonu  

 

2

2 /2 2

1/22 /2

2

1 ( ) '( )
( , , ) exp

(2 ) 2

( ) ' ( )
(2 ) exp

2

n

n n
n

y X y X
f y X

y X I y X
I

 
 

 

 






  
  

 

  
  

 

 

 

ve 
2V  varsayımı altında gözlemlerin ortak yoğunluk fonksiyonu  

 
1

1/22 2 /2

2

( ) ' ( )
( , , ) (2 ) exp

2

n y X V y X
f y X V

 
  




   

  
 

            (4.6) 

 

Ģeklindedir. Likelihood (olabilirlik) fonksiyonu kullanıldığında 

 
1

1/22 2 /2

2

( ) ' ( )
( , , ) (2 ) exp

2

n y X V y X
X y V

 
  




   

  
   

 

yazılabilir ve buradan log olabilirlik fonksiyonu, 

 
1

2 2

2

1 ( ) ' ( )
( , , ) 2

2 2 2 2

n n y X V y X
In y X In In In V

 
   



 
        (4.7) 

 

olarak elde edilir.   ve 2

ML  maksimum olabilirlik tahmin edicilerini bulmak için 

(4.7) eĢitliğini maksimum yapan   ve 
2 ‘yi bulmak gerekmektedir.  

 
2

1 1

2

( , , ) 1
[ ' ( ' ) ] 0

ML

In y X
X V y X V X



 


 

 


  


, 

 

ve  

 



4. SKALER ÖZDEġ OLMAYAN KOVARYANS MATRĠSLĠ GENEL LĠNEER 

ĠSTATĠSTĠKSEL MODEL                                                               Tuğba SÖKÜT 

29 

2

2

1

2 2 4

,

( , , ) 1
( ) ' ( ) 0

2 2
ML

G G

In y X n
y X V y X

 

 
 

  




     


 
 

olur ve dolayısıyla bilinmeyen parametreler için maksimum olabilirlik tahmin 

edicileri aĢağıdaki gibi elde edilir: 

 
1 1 1( ' ) 'X V X X V y     

 

ve  

 
1

2 ( ) ' ( )
ML

y X V y X

n

 


 


 
 

Maksimum olabilirlik tahmin edicisi  , GEKK tahmin edicisi ˆ
G  ile aynıdır. Ancak 

2 ‘nin maksimum olabilirlik tahmin edicisi 2

ML  yanlıdır ve (4.5) eĢitliğinde verilen 

2 ‘nin GEKK tahmin edicisi 2

ˆ
ˆ

G
 ‘den farklıdır.  

 

4.7.   ve 2

ˆ
ˆ

G
 ’nin Örnekleme Dağılımları 

 

Maksimum olabilirlik tahmin edicisi   normal dağılıma sahip rasgele y  

vektörünün lineer bir fonksiyonudur.
 
 , ortalaması   ve kovaryansı 2 1 1( ' )X V X  

 

olan normal rasgele bir vektördür. Bu nedenle    ortalama vektörü sıfır ve 

kovaryansı 2 1 1( ' )X V X    olan normal rasgele bir vektör olur. Özel bir k  için 

( 1,2,...k p ), 

 

k k

kkc

 





 
 

ortalaması sıfır ve varyansı 1 olan normal dağılan bir rasgele değiĢkendir. Burada 

kkc , 1 1( ' )X V X   matrisinin k -ncı köĢegen elemanıdır. 
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2

ˆ

2

ˆ( )
G

n p







 karesel formunun dağılımını (4.3)‘de verilen dönüĢtürülmüĢ 

model üzerinden incelenebilir: 

 
2

1
ˆ

2 2

* * * *

2

1

* * * * * *

2

ˆ ˆ ˆ( ) ( ) ' ( )

ˆ ˆ( ) '( )

'[ ( ' ) ']
.

G G G

G G

n

n p y X V y X

y X y X

y I X X X X y


  

 

 









  


 





 

 

Burada, 1

* * * *[ ( ' ) ']nI X X X X  rankı n p  olan idempotent bir matristir. Bu 

durumda 

2

ˆ 2

2

ˆ( )
G

n p

n p









 olur. Ayrıca 1

* * * *
ˆ ( ' ) 'G X X X e     olduğundan ve 

1

* * * *[ ( ' ) ']nI X X X X  ve 1

* * *( ' ) 'X X X  matrislerinin çarpımı sıfır matrisine eĢit 

olduklarından dolayı ˆ
G  ve 2

ˆ
ˆ

G
  iliĢkisizdir. 

 

4.8.   ve 
2 ‘nin Aralık Tahminleri  

 

Bölüm 4.6‘da verilen dağılım sonuçları gereğince   ve 
2 ‗nin aralık 

tahminleri incelenecektir. 1R , 1 p  tipinde bilinen bir vektör olmak üzere 1R  , 

ortalaması 1R   ve kovaryansı 2 1 1

1 1( ' ) 'R X V X R    olan normal dağılıma sahip 

olsun. Böylece, 

 

1 1

1 1

1 1

(0,1)
( ' ) '

R R
N

R X V X R

 

  



 
 

olan standart normal dağılıma sahip olur. O halde 
2  biliniyorken güven aralığı, 

 

1 1
( /2) ( /2)

1 1

1 1

Pr[ ] 1
( ' ) '

R R
z z

R X V X R
 

 


  


                   (4.8) 
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Alternatif olarak (4.8) eĢitsizliği 
2  bilinmiyorken, 

 

1 1
( , /2) ( , /2)

1 1

1 1

Pr[ ] 1
ˆ ( ' ) '

n p n p

R R
t t

R X V X R
 

 



 

 


    

  
 

olur. 
2 ‘nin aralık tahmini için 

2

ˆ 2

2

ˆ( )
G

n p

n p









 olduğundan, 

 
2

ˆ2 2

,(1 /2) ,( /2)2

ˆ( )
Pr[ ] 1G

n p n p

n p


 


  


  


   

 
 

olur.  

 

4.9. Hipotez Testi  

 

  ile ilgili genel lineer hipotez testlerini incelediğimizi varsayalım. R , J p  

tipinde bilinen bir matris ve r , 1J   tipinde bilinen bir vektör olduğunda 

0 :H R r   hipotezinin doğru olduğunu farz ederek genel hipotez testi  

 
1 1 1

1 2

( ) '[ ( ' ) '] ( )

ˆ
G

R r R X V X R R r

J

 




   
                (4.9) 

 

olarak yazılabilir. Sıfır hipotezi doğru ise (4.9) eĢitliği J  ve n p  serbestlik dereceli 

F  dağılımına uyar. 
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5. DEĞĠġEN VARYANS 

 

5.1. DeğiĢen Varyansın Tanımı 

 

Doğrusal regresyon modelinin önemli varsayımlarından biri Bölüm 2.2‘de 

sabit varyanslılık olarak verilmiĢti. (4.1) genel lineer istatistiksel model için, 

 

( ) 0E e   ve 
2[ ']E ee V    

 

olduğunda V ‘nin köĢegen elemanlarının özdeĢ olmadığı durum ―DeğiĢen Varyans‖ 

olarak adlandırılır.  

Ekonomik birimlerin zaman içerisinde verilen bir noktadan gözlemlendiğini, 

diğer bir ifade ile yatay kesit verilerini kullandığımızı varsayalım, örneğin, ekonomik 

birimimizin bir firma ve endüstri maliyet fonksiyonunu tahmin etmek istediğimizi 

varsayalım. Bunun tek yolu maliyet üzerinden veri toplamak ve firma örneklem 

çıktılarını almaktır (Judge ve ark., 1988). Firmanın örneklem çıktılarından 

faydalanarak endüstri maliyet fonksiyonunu tahmin etmek için 

 
2

1 2 3t t t ty x x e     
                                                                            (5.1) 

 

model varsayımı yapılsın.
 ty , t-inci firmanın ortalama maliyeti ve tx , t-inci firmanın 

çıktılarıdır. Eğer ortalama maliyet fonksiyonunun 2. dereceden polinom tipi Ģeklinde 

olmasını beklersek, (5.1)‘deki gibi bir model uygun olabilir. Alternatif olarak (5.1) 

modeli gıda harcamaları ve gelir arasındaki iliĢki miktarı için uygun bir model 

olabilir. Bu durumda hanelerin harcama ve gelirleri yatay kesit verilerinden oluĢur. 

ty  ve tx  sırası ile t-inci hanenin gıda harcamaları ve geliri olacaktır. x ‘ler küçük 

gözlemlerden oluĢtuğu zaman 2

1 2 3( )t tE y x      ortalamadan sapmalar küçük, 

x ‘ler büyük gözlem değerleri aldığı zaman ortalama fonksiyonundan sapmalarda 

büyük olacaktır. Örneğin, az gelirli hanelerde gıda harcamalarının gelir tarafından 

açıklanması daha yüksektir. Bununla birlikte yüksek gelirli hanelerde gıda 

harcamaları gelir dıĢında baĢka faktörlere de bağlı olabilmektedir. Bu nedenle gıda 
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harcamaları haneden haneye değiĢmektedir. Diğer bir deyiĢle ( te ) hataların değeri, 

küçük tx
 
değerleri için küçük, büyük tx  değerleri için büyük olacaktır. Gelire ait 

etki, te  hatalarının farklı varyanslı olasılık dağılımlarından geldiği varsayımı altında 

hesaplanabilir. Bu nedenle, 

 

( ) 0tE e   ve 2 2( )t tE e      

 

olduğu varsayılır ve hata teriminin bu özelliği değiĢen varyans olarak tanımlanır. 

Aksine her gözlem için 2

t  sabit ise hata terimi sabit varyanslıdır.  

 

 
 

ġekil 5.1. Tasarruf ve gelir örneği için hataların sabit varyanslı olması durumu 

(Gujarati, 2004). 
 

 
ġekil 5.2. Tasarruf ve gelir örneği için hataların değiĢen varyanslı olması durumu 

(Gujarati, 2004). 
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Basit doğrusal regresyon modelinde y , tasarrufları; x , geliri ifade etmek 

üzere ġekil 5.1 ve 5.2 incelenebilir. ġekil 5.1‘den tx ‘in değerleri büyüdükçe ty ‘nin 

koĢullu varyansının değiĢmediği, ġekil 5.2‘den ise tx ‘in değerleri büyüdükçe ty ‘nin 

koĢullu varyansının da büyüdüğü, yani ty ‘nin varyanslarının aynı kalmadığı yani 

değiĢen varyanslılık durumu görülebilmektedir. Sabit varyanslılık varsayımına göre 

tasarrufların varyansının, gelirin bütün düzeylerinde aynı kalması beklenir. ġekil 5.2 

de ise tasarrufların varyansı gelirle birlikte artmıĢtır yani yüksek gelirli ailelerin 

düĢük gelirlilerden daha çok masraf ettikleri ama tasarruflarının değiĢkenliğinin de 

fazla olduğu anlaĢılmaktadır.  

 

5.2. DeğiĢen Varyansın Nedenleri 

 

DeğiĢen varyans sorunu daha önce bahsedildiği gibi zaman serileri ve/veya 

yatay kesit verilerinde görülebilmektedir. Fakat değiĢen varyans sorunu daha çok 

yatay kesit verilerinde karĢılaĢılan bir sorun olarak görülebilir. DeğiĢen varyansın 

ortaya çıkmasının çeĢitli nedenleri Ģöyle sıralanabilir:  

 Önemli açıklayıcı değiĢkenlerin model dıĢında tutulması,  

 Yatay kesit verilerinin kullanılması 

 Mevsimsellik gösteren zaman serisinin modelde yanıt değiĢken olarak 

kullanılması,  

  Yanıt değiĢkenin ölçümünün veya tanımının yanlıĢ yapılması ve bu hatanın 

yanıt değiĢken(ler)e göre değiĢmesi,  

 TürdeĢ olmayan kitleler üzerinde çalıĢılması.  

Regresyon analizinde modele alınması gereken önemli açıklayıcı değiĢkenler, 

çoğunlukla modeldeki değiĢkenlerle aynı yönde ve büyüklükte değiĢmektedir. Bu 

durum, modelde değiĢen varyans problemine yol açabilmektedir. Örneğin, bireysel 

gelirin açıklayıcı değiĢken, seyahat harcamalarının yanıt değiĢken olduğu bir 

regresyon modelinde değiĢen varyans sorununun ortaya çıkmasının nedenlerinden 

biri, bireysel seyahat harcamalarındaki grup içi değiĢkenliğinin düĢük gelir 

düzeylerinde az, yüksek gelir düzeylerinde ise fazla olmasıdır (Albayrak, 2008). 
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Diğer taraftan, araĢtırmalarda yatay kesit verilerinin kullanılması değiĢen varyans 

sorununa neden olabilmektedir. Örneğin, gelir, tüketim, tasarruf veya ücret gibi 

genellikle grup ortalamalarından oluĢan kesit verilerinden oluĢan fonksiyonlarla 

çalıĢılması durumunda değiĢen varyans sorunuyla karĢılaĢılmaktadır. Öyleki yüksek 

gelirli birimlerin tüketim alıĢkanlıklarının değiĢkenliği, düĢük gelirli birimlerin 

tüketim alıĢkanlıklarının varyansından oldukça farklı olabilmektedir. Böylece düĢük 

gelirli ailelerde tahmin hatalarının varyansı ve büyüklükleri daha düĢük iken, yüksek 

gelirli birimlerde daha yüksek çıkmaktadır. DeğiĢen varyans problemi yatay kesit, 

zaman serisi ve panel verilerde gözlenebilmektedir. Fakat yanıt ve açıklayıcı 

değiĢkenlerin aynı oranda değiĢtiği zaman serilerinde görülmemektedir. Örneğin, 

gelir ve tüketim gibi iki değiĢken zaman içerisinde aynı oranlarda artmaktadır. Fakat 

mevsimsellik gösteren zaman serilerinde genellikle değiĢen varyans sorunuyla 

karĢılaĢılmaktadır. 

 

5.3. DeğiĢen Varyansın Yol Açtığı Sorunlar 

 

Sabit varyans varsayımının modelin anlamlılığı veya her bir regresyon 

katsayısının anlamlılığı testlerini yapabilmek ve güven aralıklarını oluĢturmak için 

gerekli olduğunu biliyoruz. DeğiĢen varyans durumunda EKK tahminleri yansızlık 

(unbiased) ve tutarlılık (consistent) özelliğini korumakta, fakat minimum varyanslı 

veya etkinlik (efficient) olarak bilinen özelliklerini kaybetmektedir. Bu durumda 

ˆ( )jVar   güvenilir olmayan istatistiksel testlere neden olmaktadır. Regresyon 

katsayılarının tahminlerinin standart hataları ˆ( )jSe 
 
doğrudan bu varyanslardan elde 

edildiği için, değiĢen varyans durumu varsa t  istatistikleri ve genel F  testleri 

güvenilirliklerini kaybetmektedir. Ayrıca geliĢtirilen modelle gerçekleĢtirilen 

öngörüler güvenilir olmamaktadır.  
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5.4. DeğiĢen Varyansın Belirlenmesi 

 

DeğiĢen varyansın bir modelde var olup olmadığı 2 farklı Ģekilde test 

edilebilir. Bunlar sistematik olmayan (grafiksel) ve sistematik test yöntemlerinin 

kullanılması ile mümkündür.  

 

5.4.1. Sistematik Olmayan Yöntem 

 

DeğiĢen varyansın lineer bir modelde olup olmadığı rezidülerin karesi ile 

açıklayıcı veya yanıt değiĢken değerlerinin saçılım grafiği üzerinden incelenebilir. 

DeğiĢen varyansın niteliğine iliĢkin önsel ya da deneysel bilgi yoksa, uygulamada 

regresyon analizi sabit varyans varsayımı altında yapılır, daha sonra EKK yöntemi 

ile rezidüler elde edilip rezidü karelerinin 2

t  
düzenli bir yapı sergileyip 

sergilemediklerine bakılır.  

 

 
ġekil 5.3. DeğiĢen varyansı belirlemek için rezidülerin karesi ile açıklayıcı değiĢken 

değerlerinin saçılımı (Gujarati, 2004). 
 

ġekil 5.3‘de hesaplanan rezidü karelerinin açıklayıcı değiĢken ile olan saçılım 

grafikleri örnek olarak verilmiĢtir. ġekil 5.3 (a)‘da sabit varyans, (b)‘de artan 
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varyans, (c)‘de lineer iliĢki, (d) ve (e)‘de eğrisel iliĢki görülmektedir (Gujurati, 

2004). 

 

 

ġekil 5.4. DeğiĢen varyansı belirlemek için rezidülerin karesi ile yanıt değiĢken 

değerlerinin saçılımı (Gujarati, 2004). 
 

ġekil 5.4‘de hesaplanan rezidü karelerinin yanıt değiĢkenin regresyon 

modelinden elde edilen tahmini değerleri ile olan saçılım grafikleri örnek olarak 

verilmiĢtir. ġekil 4.(a)‘da sabit varyans, (b)‘de artan varyans, (c)‘de lineer iliĢki, (d) 

ve (e)‘de eğrisel iliĢki görülmektedir (Gujurati, 2004). 

 

5.4.2. Sistematik Testler 

 

5.4.2.1. Goldfeld-Quant Testi 

 

Bu test 1965‘de Goldfeld ve Quant tarafından önerilmiĢtir. 2

t ‘nin regresyon 

modelindeki açıklayıcı değiĢkenlerden birine paralel olarak (artan ve azalan) bağlı 

olduğunu varsayar.  

DeğiĢen varyans için Goldfeld –Quant (G-Q) testinde izlenecek adımlar 

aĢağıdaki Ģekildedir. 
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 Yanıt değiĢken ve açıklayıcı değiĢkenlere ait gözlenen veri, açıklayıcı 

değiĢkenlerden her hangi birine göre en küçük değerinden en büyük değerine 

doğru sıralanır.  

 Veriyi iki eĢit gözleme sahip iki alt gruba ayırabilmek için küçük ve büyük 

değerler arasında kalan gözlemlerden bir kısmı ( c ) çıkarılır. Goldfeld-

Quant‘ın bazı denemelerinden elde edilen sonuçlara göre, 30‘dan büyük 

örneklerde, testten çıkarılacak orta bölgedeki en uygun gözlem sayısı, toplam 

gözlemlerin yaklaĢık dörtte biri kadardır. Geriye kalan ( n c ) sayıda gözlem, 

biri sıralama yapılan açıklayıcı değiĢkenlerin büyük değerlerinin, diğeri ise 

küçük değerlerinin yer aldığı iki eĢit alt gruba ayrılır. 

 Ġlk 
2

n c
 gözlem ile son 

2

n c

 
gözlem EKK yöntemi kullanılarak iki ayrı 

regresyon tahmin edilir ve her iki regresyona ait rezidü kareler toplamları ayrı 

ayrı alınır ve küçük değerleri içeren alt gruptan elde edilen rezidü kareler 

toplamı 
1r

SS  ve büyük değerleri ile yapılan regresyondan elde edilen rezidü 

kareler toplamı 
2r

SS  hesaplanır. 

 Bir önceki aĢamada elde edilen rSS ‘ler yardımıyla her bir hata terimine ait 

varyansın aynı ya da eĢit olduğunu ifade eden ve 

 
2 2 2

1 2

2 2 2

1 1 2

: ...

: ...

o n

n

H

H

  

  

  

  
 

 

Ģeklinde verilen hipotezi sınayabilmek için iki model için bulunan rezidü 

kareler ortalamaları oranlanarak test istatistiği elde edilir:  

 

2

1

r

h

r

MSE
F

MSE


                  

 (5.2) 

 

 n  gözlem sayısını, c  iki gözlem arasında kalan ve atılan gözlemleri ve p ‘de 

sabit terim içermeyen parametre sayısını göstermek üzere (5.2) ile verilen hF  

istatistiği, hem payı hem de paydası ( 2n c p  ) serbestlik dereceli F  

dağılımına sahiptir.  
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 Hesaplanan hF  ile belirtilen serbestlik derecelerinde ve belli bir anlam 

düzeyinde tabloda bulunan tF  değeri karĢılaĢtırılır.  

Eğer h tF F  ise sabit varyanslılığı ifade eden 0H  hipotezi reddedilir ve hata 

terimlerinin değiĢen varyansa sahip olduğu söylenir aksi durumda ise hata 

terimlerinin sabit varyanslı olduğu kararına varılır. Eğer iki alt grup için hesaplanan 

varyans tahminleri birbirine eĢitse hF  değeri 1‘e yaklaĢır. 

 

5.4.2.2. Breusch-Pagan Testi 

 

G-Q testinin aksine Breusch-Pagan (B-P) testinde gözlemleri küçükten 

büyüğe doğru sıralamak gerekmez. Ayrıca bu testte değiĢen varyanslılığa birden 

fazla açıklayıcı değiĢkenin sebep olup olmadığı belirlenebilir.  

G-Q sınamasının baĢarısı yalnızca atılacak ortadaki gözlem sayısı c ‘nin 

değerine değil, aynı zamanda gözlemleri sıralamada kullanılacak doğru x  

değiĢkeninin seçimine de bağlıdır.  

1H  hipotezi altında verilen 2

t ‘nin aĢağıdaki gibi tanımlandığını düĢünelim: 

 
2 * *

1( ' ) ( ' ).t t th z h z     
 

 

Burada h , t ‘nin herhangi bir bağımsız fonksiyonu, *

2 3' (1, ') (1, , ,..., )t t t t tpz z z z z   

açıklayıcı değiĢkenlerin vektörü ve *

1 1 2' ( , ') ( , ,..., )t p      
 

bilinmeyen 

katsayıların vektörüdür. 2 exp( ' )t tz   bu koĢulun özel bir durumudur. 
* 0   sıfır 

hipotezi ve t ‘nin normal dağıldığı varsayımı altında izlenecek adımlar aĢağıdaki 

gibidir. 

 Verilere önce regresyon analizi uygulanır ve EKK rezidüleri ( t̂ ) elde 

edilir. 

 
2

2

1

ˆn
t

t n






  değeri bulunur. 

 Her bir rezidünün karesi alnıp 
2 ‘ye bölünür. 
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2

2

ˆ
't

t t tP z v





  
 

 

Asimtotik olarak ( 1p  ) serbeslik dereceli 2  dağılır.  

 tP  yanıt ve tz  açıklayıcı değiĢken olarak alınarak regresyon analizi 

uygulanır. 

 Uygulanan regresyon analizi sonucu elde edilen regresyon kareler 

toplamı (
regSS ) hesaplanır.  

 
2

reg

h

SS
Q   değeri hesaplanır. Bu değer ( 1p  ) serbestlik dereceli 2  

kritik değeri ile karĢılaĢtırılır. 

Eğer 2

1h pQ    ise sabit varyans olduğunu ifade eden sıfır hipotezi reddedilir 

ve değiĢen varyansın olduğu sonucuna varılır. Aksi durumda ise hata terimlerinin 

sabit varyanslı olduğu kararına varılır. 

 

5.4.2.3. Glejser Testi 

 

Bu testin en önemli özelliği, değiĢen varyansın biçimi yani 2 ( ' )t th z 
 

iliĢkisinin Ģekli hakkında bilgi vermesidir. Bu bilgi değiĢen varyansın 

düzeltilmesinde kullanılır. Glejser testi değiĢen varyansı, hata terimlerinin varyansı 

ile açıklayıcı değiĢkenler arasındaki farklı kalıptaki iliĢkilerle açıklamaktadır. tx  

açıklayıcı değiĢkenleri arasındaki iliĢki Glejser testine göre çeĢitli fonksiyonel 

Ģekillerle ele alınabilir. Bu testte hata teriminin varyansının tahmini 2

t  yerine EKK 

yöntemi ile elde edilen rezidülerin mutlak değeri (
t̂ ) alınır. Bazı olası fonksiyonel 

modeller aĢağıda verilmiĢtir. 

 

1t̂ o t tx u      

1t̂ o t tx u      

1

1
t̂ o t

t

u
x

      
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1

1
t̂ o t

t

u
x

      

1t̂ o t tx u      

2

1t̂ o t tx u    
 

 

t̂ ‘nin yanıt, diğer değiĢkenlerden birinin açıklayıcı değiĢken olduğu model EKK 

ile tahmin edilip eğim parametresinin anlamlılığı incelenir. Eğer eğim parametresi 

istatistiksel olarak anlamsızsa açıklayıcı değiĢkenlere göre değiĢen varyans yoktur. 

Tersi durumda değiĢen varyans söz konusudur. Çoklu regresyonlarda değiĢen 

varyans açıklayıcı değiĢkenlere göre ayrı ayrı incelenir. 

Uygulamalarda ya da deneysel çalıĢmalarda kolaylık olsun diye Glejser 

yaklaĢımı kullanılabilir. Glejser (1969), değiĢen varyansı belirlemede yukarıdaki ilk 

dört modelin büyük örneklemler için genellikle iyi sonuçlar verdiğini bulmuĢtur. 

Uygulamada bu yöntem büyük örneklemler için kullanılabilir.  

 

5.4.2.4. Park Testi  

 

Park (1966), 2

t ‘nin açıklayıcı değiĢken tx ‘nin bir fonksiyonu olduğunu ileri 

sürerek grafiksel yöntemi formülüze etmiĢtir. Bu fonksiyonel Ģekli, 

 
2 2 tv

t tx  
 

 

yada 

 
2 2

t t tIn In x v    
 

 

olarak vermiĢtir. Burada tv
 
stokastik hata terimidir. 2

t  
genelde bilinmediğinden 

Park (1966), onun yerine rezidü karelerini önermiĢtir. 

 
2 2

t̂ t tIn In x v    
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Eğer eğim katsayısı   istatistiksel açıdan anlamlı çıkarsa, kullanılan veride değiĢen 

varyans olduğu söylenebilir. Anlamsız çıkarsa, sabit varyans varsayımı kabul edilir. 

Öyleyse park testi iki aĢamalıdır. Birinci aĢamada değiĢen varyansa aldırmaksızın 

regresyon analizi yapılır, ikinci aĢamada hesaplanan rezidülerle yukarıda verilen 

modele dayanan ilgili hesaplama yapılır.  

 

5.4.2.5. White Genel DeğiĢen Varyans Testi 

 

White‘ın (1980) önerdiği genel değiĢen varyans testi normallik varsayımına 

dayanmadığı gibi uygulanması da kolaydır. Bu testte 
2 ‘nin, modelde yer alan 

açıklayıcı değiĢkenler, açıklayıcı değiĢkenlerin kareleri ve açıklayıcı değiĢkenlerin 

birbirleriyle çarpımlarından etkilenip etkilenmediği araĢtırılır.  

Bu testi yapabilmek için önce tüm açıklayıcı değiĢkenlerin yer aldığı 

regresyon modeli EKK yöntemiyle tahmin edilir ve tahmin edilen modelde rezidü 

kareleri ( 2

î ) hesaplanır. Daha sonra rezidü karelerinin yanıt ve her açıklayıcı 

değiĢkenin, her açıklayıcı değiĢkenin karesinin ve açıklayıcı değiĢkenlerin 

birbirleriyle çarpımlarının yer aldığı model EKK yöntemiyle tahmin edilir ve 

modelin çoklu belirleyicilik katsayısı ( 2R ) bulunur. 

 
2

hW nR
 

 

formülü ile test istatistiği hesaplanır. Bu istatistik, açıklayıcı değiĢken sayısını ifade 

eden p  serbestlik derecesinde 2  dağılımına sahiptir. 

Eğer 2

h pW   ise sabit varyanslılık reddedilir yani değiĢen varyans sorunu 

vardır. Aksi halde, sabit varyanslılık kabul edilir. 

 

5.5. DeğiĢen Varyans Altında Kovasyans Yapısı ve GEKK Tahmin edicisi 

 

(4.1) modelinde genel kovaryans yapısının sadece değiĢen varyanstan 

kaynaklandığını düĢünelim. Yani, 
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2

1

2

2 2 22

1 2

2

0 0

0 0
[ '] ( , ,..., )

0 0

n

n

E ee diag




  



 
 
    
 
 
    

 
2

t , (1,2,..., )t n  ve dolayısıyla   biliniyorsa  ‘nın en iyi yansız tahmin edicisi 

olan GEKK tahmin edicisi, 

 
1 1 1ˆ ( ' ) 'A X X X y     

 
 

olarak elde edilir. Bu tahmin edici 
2V   olduğundan dolayı Bölüm 4.4‘de 

verilen 
1 1 1ˆ ( ' ) 'G X V X X V y   

 
tahmin edici ile aynıdır: 

 
1

1 1
1 1 1 1 1 1

2 2

' '
( ' ) ' ( ' ) ' .

X V X X V y
X X X y X V X X V y

 


 

      
    

   

 

Sonuç olarak hata kovaryans matrisini bir sabitle çarpmak GEKK tahmin edicisini 

değiĢtirmeyecektir. Bölüm 4‘den 1'P P   olacak Ģekilde bir P  matrisinin 

olduğunu biliyoruz.  

 
1

1

* * * *

ˆ ( ' ' ) ' '

( ' ) '

A X P PX X P Py

X X X y

 






 

 

olarak yazılır. Burada uygun P  matrisi, 

 
1 1 1

1 2( , ,..., )nP diag     
 

 

olur ve bu durumda dönüĢtürülmüĢ gözlemler, 
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1* 1 1

2* 2 2

*

*

' 1
1 11* 1 1

' 1
2 2* 2* 2 2

' 1

*

/

/

/

'/0 0 '

'/0 0 '

'/0 0 '

n n n

n nn n n

y y

y y
y

y y

XX X

XX X
X

XX X



















   
   
    
   
   
   

      
      
        
      
          

     

 

 

Ģeklindedir. Burada '

*tX  ve 'tX  sırası ile dönüĢtürülmüĢ ve orijinal açıklayıcı 

değiĢkenlerin (1 p ) tipinde olan t -nci satır vektörleridir. DönüĢtürülmüĢ model için 

t -nci gözlem, 

 

* * *

'

'

t t t

t t t

t t t

y X e

y X e


  



 

 

 

 

olarak yazılır. Yani hata kovaryans matrisi köĢegen formda değiĢen varyanslı olduğu 

zaman yanıt ve açıklayıcı değiĢken hatanın standart sapmasına bölünerek sabit 

varyanslı forma dönüĢtürülür. DönüĢtürülmüĢ gözlemlere bilinen EKK uygulanır. Bu 

prosedür hatanın standart sapmanın tersi ile ağırlıklandırıldığından dolayı 

―AğırlıklandırılmıĢ En Küçük Kareler (AEKK)‖ olarak adlandırılır.  

*
t

t

t

e
e


  dönüĢtürülmüĢ hatanın varyansı, 

 
2

2 2

* 2

1
[ ] [ ] 1t

t t

t t

e
E e E E e

 

  
    
     

 

olur ve görüldüğü üzere, dönüĢtürülmüĢ hatanın varyansı bir ile sabittir. AEKK 

tahmin edicisi, 

2

1

1

( ) ' ( )
n

t

t t

e
y X y X 







 
    

 
 ‘yi minimum yapar. Buradan 

AEKK tahmin edicisinin bir diğer formu, 

 



5. DEĞĠġEN VARYANS                                                                      Tuğba SÖKÜT 

46 

1

2 ' 2

1 1

ˆ
n n

A t t t t t t

t t

X X X y  



 

 

 
  
 
 

 
 

olarak yazılabilir. ˆ
A ‘nın kovaryansı, 

 
1

* * 1 1 1 2 '

1

ˆ( ) ( ' ) ( ' )
n

A t t t

t

Cov X X X X X X 



   



 
     

 


 
 

olarak elde edilir. 
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6.  OTOKORELASYON 

 

6.1. Otokorelasyonun Tanımı 

 

Bölüm 4‘de  

 

y X e                     (6.1) 

 

genel lineer istatistiksel modeli ele alınmıĢtı. Bu modelin Bölüm 2‘de verilen (2.1) 

modelden farklı olarak 2[ ']E ee V   olduğu belirtilmiĢti.  ‘nin tüm köĢegen 

elemanları eĢit olmayan köĢegen bir matris olarak varsayılmıĢ ve bu kavram değiĢen 

varyans olarak tanıtılmıĢtı. Bu bölümde 2[ '] nE I   varsayımının baĢka hangi 

durumlarda sağlanmayacağı ile ilgilenmekteyiz. Özellikle de zaman serisi verileri 

olarak bilinen y  gözlemleri ve X  açıklayıcı değiĢkenlerinin zamanın farklı 

noktalarında meydana gelmesi durumu ile ilgileneceğiz. Bu tür gözlemler firma ya 

da hane gibi tek bir ekonomik birimler için toplanmıĢ olabilir ya da bir bölge için 

bütün nicelikler birleĢtirilmiĢ olabilir. Örneğin tüketim, yatırım ve gelir üzerindeki 

zaman serileri verileri tüketim ve yatırım gibi makro ekonomik iliĢkileri tahmin 

etmekte sıklıkla kullanılır. Zaman içinde verinin durumunu anlamak için (6.1) 

modeli kullanıldığı zaman, iliĢkinin yapısı ortaya çıkar. Ekonomik değiĢkenlerde 

değiĢikliğin etkisi anlık olmadığı zaman, bir model yardımıyla elde edilebilir. Bu 

model aĢağıdaki gibi olmalıdır. 

1. ty , kendi geçmiĢ değerlerine bağlıdır. 

2. X , bazı açıklayıcı değiĢkenlerin gecikmeli ve mevcut değerlerini içerir. 

3. te , hata denklemi önceki hata değerlerine dayanır.  

Ġma edilen ilk koĢul stokastiktir ve literatürde ―Gecikmesi DağıtılmıĢ Model‖ adı 

altında incelenmektedir. Ġkinci koĢul EKK tahminleri için daha fazla varsayım 

yapmayı gerektirmez. Bununla birlikte çok fazla gecikmeli değiĢken varsa, katsayılar 

üzerinden kısıtlama yapmak avantajlı olabilir. Üçüncü koĢul ise bu bölümde 

ilgilenmek istediğimiz durumu ifade etmektedir ve bu durum ―Otokorelasyon‖ olarak 

tanımlanır. Rasgele hatanın toplam etkisinin sadece anlık olmadığını aynı zamanda 
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gelecekte de etkisinin olabileceğini ima etmektedir. Bazı ekonomik iliĢkiler için 

uygun bir varsayım olarak görülebilmektedir (Judge ve ark., 1988). 

Otokorelasyona neden olan bazı durumlar aĢağıda özetlenmiĢtir. 

 Zaman serileriyle, özellikle trend içeren zaman serileriyle tahmin yapılması 

 Denklemde bulunması gerektiği halde bulunmayan açıklayıcı değiĢkenlerin 

varlığı (özellikle bu değiĢkenlerden en az birinin otokorelasyona sahip 

olması)‏ 

 Modelin yanlıĢ belirlenmesi 

 Yanıt değiĢkende sistematik, yani rassal olmayan ölçme hatalarının 

bulunması 

 Yapısal değiĢikliğin varlığı 

 

6.2. Birinci Dereceden Otoregresif Hatalar 

 

Otokorelasyonun bazı olası formları vardır ve her biri hata kovaryans matrisi 

için farklı yapılara yol açar. Otokorelasyonun en bilindik formu olarak 1. dereceden 

otoregresif prosesin (AR(1)) bazı uygulamalarda yararlı olduğu kanıtlanmıĢtır. Genel 

lineer model, 1,2,...,t n  olmak üzere, 

 

't t ty x e 
                   

(6.2)  

1t t te e u         2(0, )t u nu N I
               

 (6.3) 

 

olarak verilir. Burada ty , t  zamanındaki yanıt değiĢkenin gözlemi, 'tx , 

1 2' ( , ,..., )t t t tpx x x x , 1 p  tipinde p  tane stokastik olmayan açıklayıcı değiĢkendeki 

t -inci gözlemi ve  , 1p  tipinde tahmin edilecek parametre vektörüdür.   ve   

bilinmemektedir. (6.3)‘den görüldüğü üzere, te
 

hata denklemi önceki hata 

değerlerine dayanır. (6.3) modelindeki diğer hata terimi tu : akgürültü serisidir: 

 

( ) 0tE u  , 2 2[ ]t uE u   ve [ , ] 0s tE u u  , s t . 
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1 2' ( , ,..., )nu u u u  ise u  akgürültü hataların özellikleri matris formunda aĢağıdaki 

gibidir: 

 

( ) 0E u   ve 2[ '] u nE uu I .  

 

(6.3) modeli için diğer önemli iki varsayımdan birincisi, 1   ve 

2 2

1 (0, / (1 ))e N  
 
koĢulunun sağlanmasıdır. Bu varsayım durağan proses için 

gereklidir (Koopmans, 1942). Yani bu koĢul sağlandığında te
 
hataların ortalaması, 

varyans ve kovaryansı zaman içinde değiĢmemektedir.  

Diğer önemli koĢul ise 1   ve 1e  
sabittir (ya da keyfi dağılımlı 2 ,.. nu u  den 

bağımsızdır). Yani keyfi bir dağılım izleyen 1e ‘e izin vererek durağan olmayan 

prosesi göz önüne almaktır (Dufour, 1990).  

Birçok yazar bu model için çıkarım yöntemlerini çalıĢmıĢlardır. Özellikle, 

alternatif tahmin edicilerin etkilerinin karĢılaĢtırılması için oldukça önemli konulara 

yer vermiĢlerdir. Bu önemli çalıĢmalara rağmen hipotez testleri ve güven aralıkları 

asimtotik teorilere dayanmaktadır (Dufour, 1990).  

(6.3) eĢitliğinin ardıĢık olarak yerine yazılması ile,  

 
2

1 2

0

...t t t t

i

t i

i

e u u u

u

 



 







   


.                

 (6.4)
 

 

elde edilir. Bu eĢitlik te  hatanın iliĢkisiz zaman serilerinin ağırlıklandırılmıĢ toplamı 

olarak ifade edilebilir yani özdeĢ dağılan 1 2, , ,...t t tu u u   rasgele hatalarının 21, , ,...   

ile ağırlıklandırıldığını gösterir. Bu aralıklar 0 1   ise zamanla geometrik olarak 

azalır. Bu durum y ‘yi etkileyen faktörlerin etkisini ima eder. te  hata terimi ilgili 

olan tu ‘nin etkisinden meydana gelir ve bu olayın etkisi bir periyod önce ( 1tu  ), iki 

periyod önce ( 2

2tu 
) Ģeklinde oluĢur. (6.4) eĢitliği sonsuza kadar giderse alternatif 

olarak Ģu Ģekilde de yazılabilir: 
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2

1 2

2

1 1 1

2

2 2 1

...

...

...

t t t t

t t t t

t t t t

e u u u

e u u u

e u u u

 

 

 

 

  

  

   

   

   
 

 

Eğer 1 
, 

2
2

21

S
S u

e

 
 




  

ise daha öncede belirtildiği gibi durağanlık bozulur ve 

te ‘nin varyansı zaman içinde artar. 1 2( , ,..., ) 'ne e e e  için ortalama ve kovaryans 

(6.4)‘ü göz önünde bulundurarak inceleyelim. 

 

0

( ) ( ) 0i

t t i

i

E e E u






               

 

 

[ ']E ee  ‘nın köĢegen elemanları için ( )tVar e ‘nin bulunması 

gerekmektedir. Proses durağan olduğundan ve varyansı zaman içinde 

değiĢmeyeceğinden dolayı (6.3) eĢitliğinin her iki tarafının varyansını alarak 

yazalım. 

 
2

1( ) ( ) ( )t t tVar e Var e Var u            

 

ya da 

 
2 2 2 2

e e u                   

 

buradan 2

e ‘yi çekersek, 

 
2

2

21

u
e








                   (6.5) 

 

olarak elde edilir. Bir dönem aralığında iki hata arasındaki kovaryans, 

 
2

1 1 1

2
2

2

[ ] [ ] [ ]

1

t t t t t

u
e

E e e E e E e u






   

 

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iki dönem aralığında iki hata arasındaki kovaryans, 

 

2 1 2 2

2 2
2 2

2

[ ] [ ] [ ]

1

t t t t t t

u
e

E e e E e e E e u

 
 



    

 


 

 

ve S  dönem aralığında iki hata arasındaki kovaryans 

 
2

2

2
[ ]

1

S
S u

t t S eE e e
 

 


  


                 (6.6) 

 

olarak elde edilir. S  dönem aralığında iki hata denklemi arasındaki iliĢkiyi 

(korelasyonu) bulmak için (6.6) eĢitliğini (6.5) eĢitliğine böleriz:  

 

 

2 2

1/2 2 22 2

[ ] / (1 )

/ (1 )( ) ( )

S
St t S u

ut t S

E e e

E e E e

  


 





 


                                   (6.7) 

 

(6.7) eĢitliğinden görüldüğü üzere, dönem aralığı büyük olan iki hata arasındaki iliĢki 

küçük olacaktır. 

(6.5) ve (6.7) arasında verilen eĢitlikleri kullanarak, hata kovaryans matrisini 

Ģu Ģekilde yazabiliriz: 

 
2

1 1 2 1

2

1 2 2 2

2

1 2

2 1

2

2

2 3

2

1 2 3

[ ']

1

1

1
1

1

n

n

n n n

n

n

u n

n n n

e e e e e

e e e e e
E ee

e e e e e

  

  


  


  







  

 
 
   
 
 
  

 
 
 
 

  
 
 
 

 

 

Bölüm 4‘de 
2V   olarak tanımlamıĢtık. Bu bölümde 2

u ‘yi 
2  skaler gibi 

iyileĢtirmek için aĢağıdaki yapı uygun olacaktır. 
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2

uV    

 

olarak yazabiliriz. Burada, 

 
2 1

2

2 3

2

1 2 3

1

1
1

1
1

1

n

n

n

n n n

V

  

  

  


  







  

 
 
 
 

  
 
 
                

 

dir.  

 

6.3. Birinci Dereceden Hareketli Ortalamalı Hatalar 

 

Otokorelasyona alternatif yollardan biri 1. dereceden hareketli ortalama 

(MA(1)) modelidir. (6.2) eĢiliğinde verilen modeli göz önüne alalım. Hatalar MA(1) 

yapısında olduğundan dolayı hatalar 

 

1t t te u u   ,  1                    (6.8) 

 

olarak formüle edilebilir. Burada 2(0, )t uu   dir ve   bilinmemektedir. (6.8) 

eĢitliğinden faydalanarak te ‘nin varyansı 

 
2

1( ) ( ) ( )t t tVar e Var u Var u    
2 2 2 2

2 2 2(1 )

e u u

e u

   

  

 

                              
 (6.9) 

 

olarak elde edilir. Bir dönem aralığında iki hata arasındaki kovaryans, 

 
2

1 1

2

[ ] [ ]t t t

u

E e e E u



 

                            (6.10) 

 

iki ve S  dönem aralığında iki hata arasındaki kovaryans, 

 

2[ ] 0t tE e e  
, 

[ ] 0t t SE e e  
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olur. (6.9) ve (6.10) eĢitliklerini kullanarak MA(1) hatalarına iliĢkin kovaryans 

matrisi 

 
2

1 1 2 1

2

1 2 2 2

2

1 2

2

2

2

2

2

[ ']

1 0 ... 0 0

1 ... 0 0

0 0 0 ... 1

0 0 0 ... 1

n

n

n n n

u

e e e e e

e e e e e
E ee

e e e e e

 

  



 

 

 
 
   
 
 
  

 
 

 
 
 

 
  

 

 

olarak elde edilir. (6.9) eĢitliğinden dolayı 

 
2

2

2

2

2

2

1 0 ... 0 0

1 ... 0 0

[ ']
1

0 0 0 ... 1

0 0 0 ... 1

eE ee

 

  



 

 

 
 

 
 

  
 

    
 

olur. Bu durumda V  matrisi aĢağıdaki gibi elde edilir. 

 
2

2

2

2

2

1 0 ... 0 0

1 ... 0 0
1

1
0 0 0 ... 1

0 0 0 ... 1

V

 

  


 

 

 
 

 
 

  
 

  

 

 

6.4. Otokorelasyon Katsayısının Tahmini 

 

Otokokerasyon katsayısı   ve   genelde bilinmez. Tahmin edilmiĢ 

(Feasible, Estimated) GEKK yöntemi, (4.3)‘de verilen dönüĢtürülmüĢ modele V  

bilinmediğinden dolayı ̂  tahminin kullanılması ile elde edilen V̂  tahminini 

kullanarak uygulanan yöntemi ifade etmektedir: 
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1 1 1ˆ̂ ˆ ˆ( ' ) 'G X V X X V y      

 

Buradaki problem  ‘yu tahmin etmektir. Bunun için t  hataları biliniyorsa (6.3) 

modelinden   model katsayısı gibi düĢünülür. t  hataları bilinmiyorsa, (6.2) 

modelinden EKK rezidüsü olan ˆˆ 't t ty x b    ile güncellenerek 1
ˆ ˆ ˆ
t t tu   

 
olarak 

 yazılabilir ve  ‘nun tahmini için uygun bir model elde edilir. Bu modelden 
 

için EKK tahmin edicisi Ģu Ģekilde elde edilir.
 

 
1

1

1

2

1

ˆ ˆ

ˆ

ˆ

n

t t

t

n

t

t

 

















                 (6.11)

 

 

6.5. Birinci Dereceden Otoregresif Hataların Belirlenmesi 

 

Ekonometrik bir iliĢkiyi tahmin etmek için zaman serisi verileri 

kullanıldığında birinci dereceden otoregresif hata varsayımlarının uygun olup 

olmadığını önceden bilmek zordur. Otokorelasyonun var olup olmadığını anlamak 

için 0 : 0H    sıfır hipotezi 1 : 0H  
 
alternatif hipotezine karĢı çift yönlü olarak 

test edilir. AĢağıda bunun için üç test önerilmiĢtir. 

 

6.5.1. Asimtotik Bir Test 

 

Uygun varsayım altında ̂  tahmini, ortalaması   ve varyansı 
21

n


 ile 

normale yakınsar. Böylece 

 

2

ˆ

(1 ) /
z

n

 







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standart normal dağılıma sahiptir. Eğer 0H  hipotezi doğru ise bu istatistik, ˆz n  

olur ve sonuç olarak 0.05 önem düzeyinde iki yönlü test için ˆ 1.96n   ise 0H  

hipotezi red edilir ve otokorelasyon sorunun var olduğu tespit edilir. 

 

6.5.2. Durbin-Watson Testi 

 

Asimtotik test, otokorelasyonun olabilirliğini değerlendirmek için hızlı bir 

prosedür olabilir ancak, sadece asimtotik test olmasından dolayı sonlu örneklemlerde 

uygun bir yol olmayabilir. Sonlu örneklemlerde alternatif olarak en yaygın kullanılan 

―Durbin-Watson (DW)‖ testidir. Bu test Durbin ve Watson tarafından geliĢtirilmiĢtir 

(Durbin ve Watson, 1950, 1951, 1971). DW istatistik değeri  

 

2

1

2

2

1

ˆ ˆ( )
ˆ ˆ'

ˆ ˆ'
ˆ

n

t t

t

n

t

t

A
d

 
 

 










 



               (6.12)  

 

formülü ile hesaplanmaktadır. Burada t̂ , ˆˆ y Xb    vektöründen elde edilen t -nci 

EKK rezidüyü ifade etmektedir. A  matrisi ise (6.12) deki eĢitliğin toplam formunu 

açtığımız zaman elde edeceğimiz katsayıları ifade eden bir matristir: 

 

1 1 0 0 0

1 2 1 0 0

0 1 2 0 0
.

0 0 0 2 1

0 0 0 1 1

A

 
 
 
 
 

  
 
 
 

   
 

d ‘nin otokorelasyonun tespiti için neden uygun bir test olduğunu gösterelim. (6.12) 

eĢitliğini açarsak,  
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2 2

1 1

2 2 2

2 2

1 1

2

1 2

ˆ ˆ ˆ ˆ2

ˆ ˆ'

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ' ' 2

ˆ ˆ'

ˆ2 2

n n n

t t t t

t t t

n

t t n

t

d

   

 

       

 

  

 

  





 



   



  

  


  

 

elde edilir. Burada, 

2

1

2
1

ˆ

ˆ ˆ'

n

t

t




 






 ve 
2 2

1
2

ˆ ˆ

ˆ ˆ'

n 


 


  dir ve n  büyük olduğunda 1 1   ve 

2 0   olur. Bu durum ˆ2 2d    ya da 
1

ˆ 1
2

d    olur. d  değerinin sıfıra 

yaklaĢması pozitif otokorelasyonu gösterir. d  değerinin 4‘e yaklaĢması negatif 

otokorelasyonu gösterir. d  değerinin yaklaĢık olarak 2 olması ise otokorelasyonun 

olmadığını gösterir. Bazen 
1

1
2

d  değeri  ‘nun alternatif bir tahmini olarak 

kullanılmaktadır. 0   hipotezine karĢı 0   alternatif hipotezini test edersek, c  

kritik değer olmak üzere d c  olduğunda sıfır hipotezi red edilir. Eğer alternatif 

hipotez 0   iken d c  ise sıfır hipotezi red edilir. Uygun kritik değeri bulmak için 

0   varsayımı altında d ‘nin olasılık dağılımı bilgisine ihtiyaç duyulmaktadır. 

Bunun için   hataların normal dağılan rasgele vektör olduğu varsayılır. 

1ˆ [ ( ' ) ']I X X X X M      olmak üzere d  istatistiğinin diğer bir formülü, 

 

'

'

MAM
d

M

 

 
   

 

olur ve böylece d  iki karesel formun oranı olarak ifade edilir. Her iki karesel formda 

  hata vektörünü içerir. Pay ve payda bağımsız olmadıklarından bu iki karesel 

formun oranı 2  dağılımına sahip olmaz. 1 2, ,..., n K    , MAM ‘nin sıfır olmayan 

karakteristik kökleri, iz , bağımsız standart normal rasgele değiĢkenler olmak üzere 

d ‘nin alternatif formu, 
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2

1

2

1

n K

i i

i

n K

i

i

z

d

z














                 (6.13) 

 

olarak verilmiĢtir (Judge ve ark., 1998). (6.13) eĢitliği i  ile ağırlıklandırılmıĢ 

standart normal rasgele değiĢkenin karelerinin toplamının ağırlıklandırılmamıĢ 

standart normal rasgele değiĢkenin karelerinin toplamına oranını ifade eder. i , 

açıklayıcı değiĢkenlere dayandığından dolayı her olası X  için i ‘nin farklı kümesi, 

d  için farklı olasılık dağılımı ve test için farklı bir kritik değer ortaya çıkacaktır. Bu 

durumda normal, t , 2  ya da F  dağılımlarına dayalı bilinen testlerin aksine kritik 

değerleri tabloya dökmek imkânsızdır. Bu sorunun çözümü olan uygun bir program 

SHAZAM‘dır. Ancak, Durbin ve Watson testlerini ilk önerdiklerinde uygun kuyruk 

olasılıklarının otomatik hesaplanması için yeterli geliĢmeler yoktu. Durbin ve 

Watson (1971), kısmi çözüm olarak açıklayıcı değiĢkenlere dayalı olmayan Ld  ve 

Ud  gibi iki istatistik göz önüne almıĢ ve bu iki istatistiğin dağılımlarını elde 

etmiĢlerdir. Bu iki istatistik için *

Ld  ve *

Ud  kritik değerlerini tablolaĢtırmıĢlardır. 

Örneğin alternatif hipotez 1 : 0H    ise ve 0.05 önem düzeyinde test edilmek 

istenirse *

Ld  ve *

Ud  Ģu Ģekilde olacaktır.  

 
*[ ] 0.05U UP d d   ve *[ ] 0.05L LP d d    

 

Ld  ve Ud  değerlerinin nasıl yardımcı olacağını göstermek için 0 : 0H    hipotezini 

1 : 0H    alternatif hipotezine karĢı 0.05 önem düzeyinde test ettiğimizi varsayalım.  

*[ ] 0.05P d d   olan *d  değerini bulmayı amaçlıyoruz. Eğer hesaplanan *d d  ise 

sıfır hipotezi red edilir aksi halde red edilemez. Bununla birlikte *

Ld  ve *

Ud  için 

tablolaĢmıĢ değerleri ―sınır testi‖ olarak bilinen , ,L Ud d d arasındaki iliĢkiden 

faydalanarak yapılır. Sınır testini tanımlamak için L Ud d d   olduğundan dolayı, 

 
* * *[ ] [ ] 0.05 [ ]L UP d d P d d P d d                  
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olduğunu göstermek mümkündür.  

 

 
ġekil 6.1. DW testi için karar Ģeması (Gujarati, 2004). 

 

Eğer hesaplanan test istatistiğinin değeri kararsızlık bölgelerine denk 

geliyorsa SHAZAM programını kullanma olanağı olmadığında Durbin ve Watson‘un 

(1971) önerdikleri yaklaĢım kullanılabilir. Bu yaklaĢımda *d , 

 
* *

Ud a bd 
 

 

formülünden hesaplanır. Burada a  ve b , 

 

( ) ( )UE d a bE d 
 

 

ve  

 
2( ) ( )UVar d b Var d

 
 

olacak Ģekilde seçilir. a  ve b ‘yi hesaplamak için ( )E d , ( )UE d , ( )Var d  ve 

( )UVar d  değerlerine ihtiyaç vardır. Durbin ve Watson örneklem geniĢliği n  ve 

açıklayıcı değiĢken sayısı k ‘nın farklı değerleri için ( )UE d  ve ( )UVar d  değerlerini 

de tablolaĢtırmıĢlardır. ( )E d  ve ( )Var d  nicelikleri X  matrisine dayanır ve 

aĢağıdaki Ģekilde hesaplanırlar. 

 

( )
P

E d
n K




 

2
( ) [ ( )]

( )( 2)
Var d PE d

n K n K
 

  
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burada 12( 1) [ ' ( ' ) ]P n tr X AX X X     ve 

 
2

2 1 12(3 4) 2 [ ' ( ' ) ] ' ( ' )n tr X A X X X tr X AX X X      dir. 
 

DW testinin alternatif hipotezi 1 : 0H    Ģeklinde ise test adımları, 

(1) 1ˆ ( ' ) 'b X X X y  EKK tahmin edicisi ve ilgili rezidüler ˆˆ y Xb    elde 

edilir. 

(2) Ġlgili DW istatistik değeri (6.12) eĢitliğinden hesaplanır. 

(3) Seçilen önem düzeyi için tablo değerleri olan *

Ld  ve *

Ud  değerleri elde 

edilir.  

(4) Eğer *

Ld d  ise 0H  red edilir aksi durumda red edilemez ve hipotez testi 

sonuçlanır. 

(5) Eğer * *

L Ud d d   ise kararsızlık bölgesine düĢtüğünden ( )UE d  ve 

( )UVar d  değerleri hesaplanır ( a  ve b ‘yi hesaplamak için). 

(6) * *

Ud a bd   değeri hesaplanır.  

(7) *d d  ise 0H  red edilir aksi durumda red edilemez ve hipotez testi 

sonuçlanmıĢ olur. 

DW testinin alternatif hipotezi 1 : 0H    Ģeklinde ise test adımları, 

(1) 1ˆ ( ' ) 'b X X X y  EKK tahmin edicisi ve ilgili rezidüler ˆˆ y Xb    

elde edilir. 

(2) Ġlgili DW istatistik değeri (6.12) eĢitliğinden hesaplanır. 

(3) Seçilen önem düzeyi için tablo değerleri olan *

Ld  ve *

Ud  değerleri elde 

edilir.  

(4) Eğer 4 Ld d   ise 0H  red edilir aksi durumda red edilemez ve hipotez 

testi sonuçlanır. 

(5) Eğer * *4 4U Ld d d     ise kararsızlık bölgesine düĢtüğünden ( )UE d  

ve ( )UVar d  değerleri hesaplanır ( a  ve b ‘yi hesaplamak için). 

(6) * *(4 )Ld a b d    değeri hesaplanır.  
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(7) *d d  ise 0H  red edilir aksi durumda red edilemez ve hipotez testi 

sonuçlanmıĢ olur. 

DW istatistiğinin bazı durumlarda dezavantajı vardır. X  matrisi sabit terim 

içermiyorsa ve stokastik olmama varsayımını sağlamıyorsa, modelde açıklayıcı 

değiĢken olarak açıklayıcı değiĢkenin gecikmeli değerleri yer alıyorsa ve 

otokorelasyonun derecesi 1‘den büyükse DW istatistiğinin gücü azalmaktadır. 

 

6.5.3. Durbin h Testi 

 

Durbin h testi, yanıt değiĢkenin gecikmeli değerlerinin açıklayıcı değiĢken 

olarak kullanıldığı durumlarda Durbin (1970) tarafından önerilmiĢtir. Durbin, h  

istatistiğine dayalı  

 
1/2

1

ˆ
ˆ1 ( )

n
h

nVar




 
      

 

asimtotik testi geliĢtirmiĢtir. Burada ̂ , (6.11) eĢitliğinden elde edilmektedir. 

1
ˆ( )Var 

,
 1ty  ‘in katsayısının varyansıdır. Otokorelasyonun olmadığını savunan sıfır 

hipotezi altında h  sıfır ortalamalı ve varyansı sıfıra giden asimptotik olarak normal 

dağılır. Eğer 
1
ˆ( ) 1nVar    ise bu istatistiğin değeri hesaplanamaz. Bu durumda 

Durbin eĢdeğer bir asimtotik test önermiĢtir. t̂  yanıt değiĢken, 1t̂   açıklayıcı 

değiĢken olarak alınarak yapılan regresyon analizi sonrasında 1t̂  ‘in katsayısının 

önemliliği test edilir. Eğer katsayı anlamlı çıkarsa otokorelasyonun olmadığını ifade 

eden sıfır hipotezi red edilir.  

 

6.6. Otokorelasyon Altında Hata Kovaryans Yapısı 

 

Uygulamalarda genelde V  bilinmez bu durumlarda V  tahmin edilir. V  

matrisinin tahminlerinin bazıları Trenkler (1984), Firinguetti (1989) ve Bayhan ve 

Bayhan (1998) tarafından verilmiĢtir.  
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Trenkler‘in (1984) önerdiği V matrisi; 

 
2

2

2

2

2

1 0 ... 0 0

1 ... 0 0
1

1
0 0 0 ... 1

0 0 0 ... 1

V

 

  


 

 

 
 

 
 

  
 

  

              (6.14) 

 

olup burada hata vektörünün elamanları 1i i iu u    , 1   yapısına yani MA(1) 

yapısına sahiptir.  

Firinguetti‘nin (1989) önerdiği V matrisi; 

 
1

2

2

1 2

1 ...

1 ...1

1

1

n

n

n n

V

 

 



 





 

 
 
 
 
  
                                                  (6.15)

 

 

burada hata vektörünün elemanları 1i i iu    , 1   yapısına yani AR(1) 

yapısına sahiptir. iu  hata terimleri 2(0, )iu N   olan normal dağılımdan 

gelmektedir. Ayrıca ( ) 0i jE u u  , i j  varsayımını sağlamaktadır. 

Bayhan ve Bayhan‘ın (1998) önerdiği Toeplitz formdaki V matrisi; 

 

1 2 1

1 1 2

1 2 3

1 ...

1 ...

... 1

n

n

n n n

V

  

  

  





  

 
 
 
 
 
                                                      (6.16) 

 

olup burada i , 

1

1ˆ ˆ ˆ( )( )
n i

i j j i

j

C
n

   






   , 0,1,..., 1i n   olmak üzere 
0

ˆ
ˆ

ˆ
i

i

C

C
   eĢitliği kullanılarak 

tahmin edilen i-nci gecikme otokorelasyon katsayını ifade etmektedir.  
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Hata kovaryans matrisinin en bilinen formu AR(1) modeline uygunluk 

sağlayan Firinguetti‘nin önerdiği V matrisini kullanarak oluĢturulan matristir. 
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7. GEKK’YE ALTERNATĠF OLARAK ÖNERĠLEN YANLI TAHMĠN 

EDĠCĠLER  

 

Bölüm 3, 5 ve 6‘da ele alınan çoklu iç iliĢki, değiĢen varyans ve 

otokorelasyonun bu bölümde aynı anda gerçekleĢmesi ile ilgileneceğiz. 

2[ '] nE I   varsayımının geçersiz 2[ ']E ee V  varsayımının geçerli olduğu 

durumlarda V ‘nin yapısını hem değiĢen varyans hemde otokorelasyon olması 

durumunda inceledik. Ancak, alternatif tahmin edicilere geçmeden önce çoklu iç 

iliĢki probleminin 2[ ']E ee V  varsayımı altında nasıl belirleneceğini araĢtıralım. 

2[ '] nE I   varsayımının geçersiz olduğunu belirledikten sonra Bölüm 4‘de 

anlatılan dönüĢtürülmüĢ model yardımıyla çoklu iç iliĢkinin modelde var olup 

olmadığını belirleyebiliriz. Trenkler (1984) ve Özkale (2008) dönüĢtürülmüĢ 

açıklayıcı değiĢken 
*PX X ‘ın rankının X ‘in rankına eĢit olduğundan dolayı çoklu 

iç iliĢki probleminin Ģiddetini azaltmak için modeli dönüĢtürmenin yeterli 

olmadıklarını belirtmiĢlerdir. Artık çoklu iç iliĢkinin dönüĢtürülmüĢ modelde var 

olup olmadığı ile ilgilendiğimizden dolayı, 1( ' )X V X  matrisinin karakteristik 

yapısından faydalanılmaktadır. 1'X V X  matrisinin özdeğerleri 
1 2, ,..., p  

 
ve 

özvektörleri 
1 2, ,..., pt t t

 
olmak üzere, çoklu iç iliĢkiyi belirlemek için en büyük 

özdeğerin en küçük özdeğere oranı olarak tanımlanan koĢul sayısı max

min

K





 

kullanılmaktadır. K , 100‘den küçükse çok ciddi boyutta çoklu iç iliĢki problemi 

olmadığı, 100-1000 arasında ise kuvvetli çoklu iç iliĢki olduğu, 1000‘den büyükse 

veri içerisinde birden fazla çoklu iç iliĢki problemi olduğu kabul edilmektedir.  

Hem 2[ ']E ee V  varsayımının geçerli olduğu hem de çoklu iç iliĢki 

problemlerinin olduğu durumlarda yanlı tahmin ediciler Firinguetti (1989), Trenkler 

(1984), Özkale (2008) gibi bazı yazarlar tarafından çalıĢılmıĢtır.  
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7.1. Ridge Tahmin Edici 

 

Hoerl ve Kennard‘ın (1970) çalıĢmalarından yola çıkarak Trenkler (1984) 

2[ ']E ee V  altında ridge tahmin ediciyi tanımlamıĢtır. Bölüm 4‘de tanımlanan 

dönüĢtürülmüĢ model yardımıyla  ‘nın ridge tahmin edicisi, 

 
1

* * * *

1 1 1

ˆ ( ' ) '

( ' ) '

r X X kI X y

X V X kI X V y

 

  

 

 
 

 

olarak elde edilir. ˆ
r  ridge tahmin edici GEKK tahmin edici cinsinden yazılmak 

istenirse, 

 
1 1 1ˆ ˆ ˆ( ' ) 'r G r GX V X kI X V X Z      

 
 

olur. 2[ ']E ee V  altında ridge tahmin edici yanlı bir tahmin edicidir. Yanlılığı, 

 

1 1 1

1 1 1 1

1 1

ˆ ˆ( ) ( )

[( ' ) ' ]

( ' ) [ ' ' )]

( ' )

r r

p

Bias E

X V X kI X V X I

X V X kI X V X X V X kI

k X V X kI

  







  

   

 

 

  

   

  

 

 

olarak elde edilir. Ridge tahmin edicinin kovaryans matrisi; 2( )Cov y V  

olduğundan dolayı, 

 
1 1 1 1 1 1

2 1 1 1 1 1

ˆ( ) ( ' ) ' ( ) ( ) ' ( ' )

( ' ) ' ( ' )

rCov X V X kI X V Cov y V X X V X kI

X V X kI X V X X V X kI





     

    

  

  
 

 

olarak yazılabilir. O halde ridge tahmin edicinin hata kareler ortalaması, 

 

2 1 1 1 1 1

2 1 1 1 1

ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) '

( ' ) ' ( ' )

( ' ) '( ' )

r r r rMSE Cov Bias Bias

X V X kI X V X X V X kI

k X V X kI X V X kI

    





    

   

 

  

  
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Ģeklindedir. 1 2, ,..., p   , 1'X V X  matrisinin özdeğerleri olmak üzere skaler hata 

kareler ortalaması
 

 

2
2 2

2
1

ˆ ˆ( , ) [ ( , )]

' ( ' )
( )

r r

p

i

i i

sMSE trace MSE

k X X kI
k

   

 
 









  



 

 

Ģeklindedir. 

 

7.2. Temel BileĢenler Tahmin Edici 

 

Marquardt‘ın (1970) önerdiği 2[ '] nE I   altındaki temel bileĢenler tahmin 

ediciyi Trenkler (1984), 2[ ']E ee V  altında tanımlamıĢtır. Bölüm 2.1.2‘den farklı 

olarak 1'X V X  matrisinin spektral ayrıĢımını kullanarak Trenkler (1984) temel 

bileĢenler tahmin ediciyi ( ) 1 1ˆ ( ' ) 'r

rX V X X V y     olarak tanımlamıĢtır. Burada r  

rankı göstermek üzere 1( ' )rX V X  , 1'X V X ‘in genelleĢtirilmiĢ tersidir. 2

nI  

durumuna benzer Ģekilde 2V  durumu için temel bileĢenler tahmin ediciyi, 

 
( ) 1 1 1

1 1 1 1
ˆ ( ' ' ) ' 'r U U X V XU U X V y   

 
 

olarak yazabiliriz. Burada,  

 
1

1 1

1 2

2 2

' '

0 '
( )

0 '

X V X U U

U
U U

U

  

  
   

  

  

 

Ģeklindedir. Yani  , 1'X V X ‘in özdeğerlerine karĢılık gelen köĢegen matris ve U , 

bu özdeğerlere karĢılık gelen özvektörlerden oluĢan ortogonal matristir. Bölüm 

2.1.2‘dekine benzer olarak 
1

1 1 1( ' ' )U X V XU   ‘i kullanırsak, temel bileĢenler 

tahmin edici, 

 
( ) 1 1

1 1 1
ˆ ' 'r U U X V y   
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olarak elde edilmiĢ olur. 2[ ']E ee V  altında temel bileĢenler tahmin edicinin 

yanlılığı, 

 
( ) ( )

1 1 1

1 1 1 1

ˆ ˆ( ) ( )

[ ( ' ' ) ' ' ]

r rBias E

U U X V XU U X V X I

  

  

 

 
 

 
1

1 1 1 2 2 2' ' 'X V X U U U U      eĢitliğini yerine yazarsak, 

 
( ) 1

1 1 1 1 1 1 2 2 2

1 1

1 1 1 1 1 1 1 1 1 2 2 2

1

1 1 1 1

1 1

ˆ( ) '( ' ')

' ' ' '

[ ' ]

[ ' ]

rBias U U U U U U I

U U U U U U U U I

U U I

U U I

 









 



       

        

   

 

  

ve kovaryans matrisi, 

 

1

( ) 1 1

1 1 1

1 1 1 1

1 1 1 1 1 1

2 1 1 1 1

1 1 1 1 1 1

2 1 1 1

1 1 1 1 1 1

2 1

1 1 1

ˆ( ) [ ' ' ]

' ' ( )( ) ' '

' ' ( ) ' '

' ' '

'

rCov Cov U U X V y

U U X V Cov y V XU U

U U X V V V XU U

U U X V XU U

U U









 

   

   

  





 

  

  

  

 

 

 

olarak elde edilir. O halde temel bileĢenler tahmin edicinin hata kareler ortalaması, 

 
( ) ( ) ( ) ( )

2 1

1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) '

' [ ' ] '[ ' ]

r r r rMSE Cov Bias Bias

U U U U I U U I

    

 

 

    
 

 

ve 1 1 2 2' 'U U I U U    olduğundan dolayı 

 
( ) 2 1

1 1 1 2 2 2 2
ˆ( , ) ' ' ' 'rMSE U U U U U U        

 

olarak elde edilir.  
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7.3. Jackknifed Ridge Tahmin Edici 

 

Singh ve ark.‘nın (1986), 2[ '] nE I   altında önerdiği jackknifed ridge 

tahmin ediciyi Özkale (2008), 2[ ']E ee V  altında vermiĢtir. Buna göre jackknifed 

ridge tahmin edici dönüĢtürülmüĢ model üzerinden aĢağıdaki gibi elde edilmiĢtir. 

 
( ) 2 1 2ˆ ˆ[ ( ' ) ]J

GI k X V X kI    
 

 

burada ˆ
G , GEKK tahmin edicisidir. Jackknifed ridge tahmin edici yanlı bir tahmin 

edici olup yanlılığı, 

 
( ) ( )

2 1 2

2 1 2

ˆ ˆ( ) ( )

ˆ[ ( ' ) ] ( )

( ' )

J JBias E

I k X V X kI E

k X V X kI

  

 



 

 

 

   

  

 

 

ve kovaryans matrisi, 2 1 1ˆ( ) ( ' )GCov X V X     olduğundan dolayı  

 

 

veya  

 
( ) 2 1 1 1 1 1 1 1

1 1

ˆ( ) ( ' ) ( ' ) ' ( ' )

( ' )

JCov I k X V X kI X V X kI X V X X V X kI

I k X V X kI

        

 

      

    

 

olarak elde edilebilir. 2[ ']E ee V  altında jackknifed ridge tahmin edicinin hata 

kareler ortalaması 

 
( ) ( ) ( ) ( )

2 2 1 2 1 1 2 1 2

4 1 2 1 2

ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) '

[ ( ' ) ]( ' ) [ ( ' ) ]

( ' ) '( ' )

J J J JMSE Cov Bias Bias

I k X V X kI X V X I k X V X kI

k X V X kI X V X kI

    





     

   

 

    

  

 

olur. 

 

( ) 2 1 2 2 1 2

2 2 1 2 1 1 2 1 2

ˆ ˆ( ) [ ( ' ) ] ( )[ ( ' ) ]'

[ ( ' ) ]( ' ) [ ( ' ) ]

J

GCov I k X V X kI Cov I k X V X kI

I k X V X kI X V X I k X V X kI

 



   

     

    

    
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7.4. Shrunken Tahmin Edici 

 

Mayer ve Willke‘nin (1973) 2[ '] nE I   altında önerdiği shrunken tahmin 

ediciyi Trenkler (1984), 2[ ']E ee V  altında incelemiĢtir. DönüĢtürülmüĢ model 

üzerinde elde edilen shrunken tahmin ediciyi 0 1c   olmak üzere, 

 
1 1 1ˆ ( ' ) '

ˆ

c

G

c X V X X V y

c





  

  

 

olarak önermiĢtir. Burada ˆ
G , GEKK tahmin edicisidir. Shrunken yanlı bir tahmin 

edici olup yanlılığı, 

 

ˆ ˆ( ) ( )

( 1)

c cBias E

c

  



 

   

 

ve kovaryans matrisi, 

 
2

2 2 1 1

ˆ ˆ( ) ( )

( ' )

c GCov c Cov

c X V X

 

  




 

 

olarak bulunur. 2[ ']E ee V  altında shrunken tahmin edicinin hata kareler 

ortalaması  

 

2 2 1 1 2

ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) '

( ' ) ( 1) '

c c c cMSE Cov Bias Bias

c X V X c

    

  

 

  
 

 

olarak elde edilir.  

 

7.5. Ġterasyon Tahmin Edici 

 

Trenkler (1978) hata kovaryans yapısının sabit olduğu durumda önerdiği 

iterasyon tahmin ediciyi genel hata kovaryans yapısına uyarlamıĢtır (Trenkler, 1984). 
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(4.3) eĢitliğinde verilen dönüĢtürülmüĢ model yardımıyla iterasyon tahmin edici, 

1

max , 'X V X   matrisinin en büyük özdeğeri olmak üzere 

 

 

 

, * * * *

0

1 1

0 max

ˆ ' '

1
' ' ,0 , 0,1,...

m
i

m

i

m
i

i

I X X X y

I X V X X V y m

  

  




 



 

    




 

 

Ģeklindedir.  1 1

,

0

' '
m

i

m

i

W W I X V X X V X    



  
 

olmak üzere Trenkler (1984) 

iterasyon tahmin ediciyi GEKK tahmin edicisinin lineer dönüĢümü olarak 

,
ˆ ˆ
m GW 

 
formunda vermiĢtir. 

 

7.6. Alternatif Tahmin Edicilerin Performanslarının KarĢılaĢtırılması 

 

Hem değiĢen varyans/otokorelasyon hemde çoklu iç iliĢki problemelerinin 

aynı anda meydana gelmesi durumunda önerilen alternatif tahmin edicilerin 

performanslarının teorik olarak karĢılaĢtırılması hata kareler ortalaması (MSE) 

kriterine göre yapılmıĢtır. 

Teorem 1: Farebrother (1976). A : m m  tipinde simetrik pozitif tanımlı bir matris, 

a : 1m  tipinde bir vektör ve  : pozitif bir sayı olmak üzere, 'A aa  ‘nün pozitif 

tanımlı (pozitif yarı tanımlı) olması için gerek ve yeter koĢul, 1' ( )a A a     

eĢitsizliğinin sağlanmasıdır. 

Teorem 2: Trenkler ve Toutenburg (1990). ˆ
j  1,2j    ‘nın herhangi iki lineer 

tahmin edicisi olsun. 
1 2
ˆ ˆ( ) ( )D Cov Cov    kovaryans farklarının pozitif tanımlı 

olduğunu varsayalım. O halde, 
1 2
ˆ ˆ( ) ( )MSE MSE     farkının negatif olmayan 

tanımlı olması için gerek ve yeter koĢul jb , ˆ
j ‘nin yanlılık vektörünü göstermek

  

üzere 
1

2 1 1 2'( ') 1b D bb b   eĢitsizliğinin sağlanmasıdır.  
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Teorem 3: Trenkler (1984). (4.1) lineer regresyon modeli altında ridge tahmin 

edicinin MSE kriterine göre GEKK‘den üstün olması için gerek ve yeter koĢul, 

 
1

1 1 22
' ( ' )pI X V X

k
  



  
  

 
 

 

olmasıdır. 

Ġspat 3: 1
ˆ ˆ( , ) ( , )G rMSE MSE     

 
hata kareler ortalaması farkının pozitif yarı 

tanımlı olması için gerek ve yeter koĢullar incelensin. 

 
2 1 1 2 1 1 1 1 1

1

2 1 1 1 1

2 1 1 1 1

1 1 1 1

2 1 2

1 2
1 1

( ' ) ( ' ) ' ( ' )

( ' ) '( ' )

( ' )( ' ) ( ' )
( ' ) ( ' )

( ' ) '

2( ' 2 ( '
( ' )

X V X X V X kI X V X X V X kI

k X V X kI X V X kI

X V X kI X V X X V X kI
X V X kI X V X kI

X V X k

X V X kI k X V
X V X kI

 





 



      

   

   

   




 

    

  

  
   

  

 
 

1

1 1
1 1

2 1 2

' tan tan

) )
( ' )

( ' ) '

in pozitif yarı ımlı olması için bu parçanın pozitif yarı ımlı olması gerek

X
X V X kI

X V X k 

 
 





 
 
  
  
 
 

 

olmak üzere, 2 2 1 1(2 ( ' ) )pA kI k X V X     pozitif tanımlı matris ve a k  dersek, 

Teorem 1 yardımıyla, 

 

2 2 1 1 1

2 1 1 1 2

1

1 1 2

' [ (2 ( ' ) )] 1

' [2 ( ' ) ]

2
' ( ' )

p

p

p

k kI k X V X k

k kI k X V X k

I X V X
k

  

  

  

  

  



 

 

 

 
  

 

 

 

eĢitsizliğinin sağlanması gerekir. 
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Teorem 4: (4.1) lineer regresyon modeli altında temel bileĢenler tahmin edicinin 

MSE kriterine göre GEKK‘den üstün olması için gerek ve yeter koĢul, 

 
2

2 2 2' 'U U   
 

 

eĢitsizliğinin sağlanmasıdır.  

Ġspat 4: 
( )

2
ˆ ˆ( , ) ( , )r

GMSE MSE     
 
hata kareler ortalaması farkının pozitif 

yarı tanımlı olması için gerek ve yeter koĢul incelensin. 

 
2 1 1 2 1

2 1 1 1 2 2 2 2( ' ) ' ' ' 'X V X U U U U U U        
 

 
1 1 1

1 1 1 2 2 2( ' ) ( ) ' ( ) 'X V X U U U U       eĢitliğini kullanarak 

 
2 1

2 2 2 2 2 2 2 2

2 1

2 2 2 2 2

' ' '

' ' '

U U U U U U

U U U U

 

 





   

      
 

2 1

2 2 2' 'U U    pozitif yarı tanımlı ise 2 ‘de pozitif yarı tanımlıdır. 2 1

2A     

ve 2'a U   alınarak Teorem 1 uygulanırsa 

 
1 1 2

2 2 2

2

2 2 2

' '[ ] '

' '

U U

U U

  

  

  

 

 

 

eĢitsizliği elde edilir.  

Teorem 5: Özkale, (2008). (4.1) lineer regresyon modeli altında jackknifed ridge 

tahmin edicinin MSE kriterine göre GEKK‘den üstün olması için gerek ve yeter 

koĢul, 

 
1

2 1 2 1 1 2' 2( ' ) 4 ( ' )k X V X kI k X V X  


      
  

eĢitsizliğinin sağlanmasıdır. 

Ġspat 5: 
( )

3
ˆ ˆ( , ) ( , )J

GMSE MSE     
 
hata kareler ortalaması farkının pozitif 

yarı tanımlı olması için gerek ve yeter koĢul incelensin. 
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2 1 1 2 2 1 2

3

1 1 2 1 2

4 1 2 1 2

( ' ) [ ( ' ) ]

( ' ) [ ( ' ) ]

( ' ) '( ' )

X V X I k X V X kI

X V X I k X V X kI

k X V X kI X V X kI

 



   

   

   

    

  

    

 

sağdan ve soldan 1 2( ' )X V X kI   parantezine alınsın. 

 
2 1 2 1 1 1 2

2 1 2 2 1 2

1 2 1 2

3 1 1 2 1 2 1 2

4

( ' ) ( ' ) ( ' )

( ' ) ( ( ' ) )
( ' ) ( ' )

( ' ) ( ( ' ) )( ' )

'

X V X kI X V X X V X kI

X V X kI I k X V X kI
X V X kI X V X kI

X V X I k X V X kI X V X kI

k







   

  

   

    

  
 
    

   
    
 
    

 

3 ‘ün pozitif yarı tanımlı olması için köĢeli parantez içindeki parçanın pozitif yarı 

tanımlı olması gerekmektedir. Gerekli düzeltmeler yapıldıktan sonra bahsi geçen 

ifade, 

 
2 2 1 1 1 2 4 2 1 1 42 ( ' ) ( ' ) ( ' ) 'k X V X X V X kI k X V X k          

 

durumuna dönüĢür. 

 

2 2 1 1 1 2 4 2 1 12 ( ' ) ( ' ) ( ' )A k X V X X V X kI k X V X         dersek,  

 
2 2 1 1 2 1 2 2

2 2 1 2 1 1

( ' ) 2( ' ) 4 ( ' ) 2

2( ' ) 4 ( ' )

A k X V X X VX k X V X k I k I

k X V X kI k X V X





  

  

     

    

 

  

olup A  pozitif tanımlı bir matris olduğundan Teorem 1‘in kullanılması ile 

 
1

2 1 2 1 1 2' 2( ' ) 4 ( ' )k X V X kI k X V X  


        
 

eĢitsizliği elde edilir. 

Teorem 6: (4.1) lineer regresyon modeli altında shrunken tahmin edicinin MSE 

kriterine göre GEKK‘den üstünlüğü için için gerek ve yeter koĢul, 
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2
1 ( 1)

'( ' )
1

c
X V X

c


  


  

 

eĢitsizliğinin geçerli olmasıdır. 

Ġspat 6: 4
ˆ ˆ( , ) ( , )G cMSE MSE     

 
hata kareler ortalaması farkının pozitif yarı 

tanımlı olması için gerek ve yeter koĢul incelensin. 

 
2 1 1 2 2 1 1 2

4

2 2 1 1 2

( ' ) ( ' ) ( 1) '

(1 )( ' ) ( 1) '

X V X c X V X c

c X V X c

  

 

   

 

    

     

 

olur ve 0 1c   olduğundan dolayı 2 2 1 1(1 )( ' )c X V X    pozitif tanımlı bir 

matristir. Dolayısıyla Teorem 1‘in sonucunun 4 ‘e direkt uygulanması ile, 

 

 

2 2 1 1 1

2
1

'( 1)[(1 ) ( ' ) ] ( 1) 1

( 1)
'( ' ) , 0 1 1

1

c c X V X c

c
X V X c

c

  


 

  



   


   



 

 

eĢitsizliği elde edilmiĢ olur.  

Teorem 7: Özkale (2008). (4.1) lineer regresyon modeli altında jackknifed ridge 

tahmin edicinin yanlılığı ridge tahmin edicinin yanlılığından daha küçüktür: 

 
2 2

( )ˆ ˆ( ) ( )J

rBias Bias   , 0k  . 

 

Ġspat 7: 1 1ˆ( ) ( ' )rBias k X V X kI      ve ( ) 2 1 2ˆ( ) ( ' )JBias k X V X kI      

olmak üzere, 

 
2 2

( )ˆ ˆ( ) ( ) 'J

rBias Bias G      

 

olur. Burada 2 1 2 4 1 4( ' ) ( ' )G k X V X kI k X V X kI       ‘dir ve G , 
2

4

( 2 )

( )

i i

i

k k

k

 






 

köĢegen elemanları ile köĢegen bir matristir ( i , 1'X V X ‘in özdeğerleridir). 'G   

0k   için pozitif bir matristir. 
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Teorem 8: Özkale (2008). (4.1) lineer regresyon modeli altında  

 
1

2 3 1 1 1' 2( ' ) 3 ( ' ) 0k X V X kI X V X  


        

 

eĢitsizli geçerli ise jackknifed ridge tahmin edici MSE kriterine göre ridge tahmin 

ediciden daha üstündür. 

Ġspat 8: 
( )

5
ˆ ˆ( , ) ( , )j

rMSE MSE     
 
hata kareler ortalaması farkının pozitif 

yarı tanımlı olması için koĢul incelensin. 

 
1 1 1 1 1

2 1 2 1 1 2 1 2

( ' ) ' ( ' )

[ ( ' ) ]( ' ) [ ( ' ) ]

D X V X kI X V X X V X kI

I k X V X kI X V X I k X V X kI

    

     

  

     ,  

 
1 1

1 ( ' )b k X V X kI      ve 2 1 2

2 ( ' )b k X V X kI      olmak üzere Teorem 2 

yardımıyla 5  farkı 
2

5 1 1 2 2' 'D bb b b     olarak yazılabilir. 
1'X V X Z   dersek, 

5  

 
1

1 1

2 2 1

2 2 2 2 2

2 2

2 1 1

( ) ( )

( ( ) )
' ( ) ( )

( ( )

( ) '( )

Z kI Z Z kI

I k Z kI Z
k Z kI k Z kI

I k Z kI

k Z kI Z kI

  




 

 

 



 

  
 
   

  
   
 
    

 

 

Ģeklinde yazılabilir. 2 1 1( ) '( )k Z kI Z kI    pozitif tanımlı olduğundan 

eĢitsizlikten çıkartılabilir. 

 

2 2 1 1

2 2 1 2 2 1 2 2 2

' ( ) [( ) ( )

( ( ) ) ( ( ) ] ( )

k Z kI Z kI Z Z kI

I k Z kI Z I k Z kI k Z kI



 

  

    

  

      

 2 2 2 1 2 2 2 2' ( ) ( ) [( ) ] [( ) ]k Z kI Z Z kI Z kI k I Z Z kI k I k           

 

1
3 1 1 1 2' 2( ' ) 3 ( ' )k X V X kI X V X  


      

 

1
2 3 1 1 1' 2( ' ) 3 ( ' ) 0k X V X kI X V X  


        
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olur. 

Teorem 9: (4.1) lineer regresyon modeli altında 1,2,...,i p   için i , 1'X V X ‘in 

özdeğerleri olmak üzere, 
1

i

ck

c
 


 iken, 

 
1

2 2 1 2 2 2 1 1 2' ( 1)( ' ) 2 ( ' ) )k c X V X kc I c k X V X  


         

 

eĢitsizliği geçerli ise ridge tahmin edici MSE kriterine göre shrunken tahmin ediciden 

daha üstündür. 

Ġspat 9: 6
ˆ ˆ( , ) ( , )c rMSE MSE     

 
hata kareler ortalaması farkının pozitif yarı 

tanımlı olması için gerek ve yeter koĢul incelensin.  

 
2 1 1 1 1 1 1 1( ' ) ( ' ) ' ( ' )D c X V X X V X kI X V X X V X kI          , 1 ( 1)b c    ve 

1 1

2 ( ' )b k X V X kI      olmak üzere 
2

6 1 1 2 2' 'D bb b b     olur.  

2( 1) 'c   pozitif tanımlı olduğundan dolayı 2

2 2 'D b b   pozitif yarı tanımlı ise 

6 ‘da pozitif yarı tanımlıdır.  

 
2 1 1 1

1 1 1 1

1 1

2 1 2

1 1 1 1

2 2 1 1

'

2 1 2 2 2 1 1

( ' )( ' )
( ' ) ( ' )

( ' ) '

( 1) ' 2
( ' ) ( ' )

( ' )

( 1) ' 2 ( ' ) '

U U

c X V X kI X V X
D X V X kI X V X kI

X V X kI X V X

c X V X kc I
X V X kI X V X kI

c k X V X

U c X V X kc I c k X V X U

  

   

 



   

 

  

 
   

   

  
   

 

     

 

 

olmak üzere Teorem 1‘in uygulanabilmesi için D ‘nin pozitif tanımlı olması gerekir. 

O halde D ‘nin pozitif tanımlılığı incelensin. D ‘nin köĢegen elemanları, i , 

1'X V X  matrisinin özdeğerleri olmak üzere, 
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2 2 2 2 22 2
2 2

2 2 2

( 1) 2
( 1) 2

( )

i i
i

i i

i i

i

c kc c kc k
c kc

c k

 


 

 



  
   

 


 

dir. D ‘nin pozitif tanımlı olması için 
2 2 2( )

0i i

i

c k 



 
  olması gerekir.  

2 2 2( ) 0i ic k     olması için ancak ve ancak ( )i ic k    veya ( )i ic k     

olması gerekir. 0i   olduğundan dolayı ( )i ic k    ‘nın sağlanması 

olanaksızdır. O halde D ‘nin pozitif tanımlı olması için ( )i ic k   ‘nin sağlanması 

gerekir. Diğer bir ifadeyle 
1

i

ck

c
 


 iken D  pozitif tanımlı olur. D ‘nin pozitif 

tanımlı olması için gerek ve yeter koĢul bulunduktan sonra Teorem 1‘in uygulanması 

ile 2

2 2 'D b b  ‘nun pozitif yarı tanımlı olması için gerek ve yeter koĢul  

 
1

2 2 1 2 2 2 1 1 2' ( 1)( ' ) 2 ( ' ) )k c X V X kc I c k X V X  


       
  

olarak elde edilir. 
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8. EKONOMETRĠK BĠR UYGULAMA  

 

Bu bölümde yapılan teorik karĢılaĢtırmalar gerçek bir örnek üzerinde 

incelenecektir. Kullanılan veriler Ģampuan ve sabun üreten bir firmanın Ģampuan 

satıĢlarının haftalık değiĢimlerini ve bir sonraki hafta için oluĢacak talebi tahmin 

etmeyi amaçlayan Bayhan ve Bayhan‘ın (1998) çalıĢmalarından alınmıĢtır. Tablo 8.1 

ve Tablo 8.2‘de satıĢların standartlaĢtırılmıĢ 75 haftalık gözlemleri yüksek ve 

düzensiz enflasyon periyodunda verilmiĢtir. Tablo 8.1 ve Tablo 8.2‘de verilen iy , 
jy
 

satılan Ģampuanların haftalık miktarlarını, 1ix , 
1jx  haftalık fiyat listesini (ürünün 

satıĢı yapılan marketlerdeki fiyat ortalaması) ve 2ix
, 2jx

 
Ģampuanın ikamesi olan 

belli markada sabunun fiyat listesini ifade etmektedir.  

StandartlaĢtırılan değiĢkenler için model 

 

1 1 2 2j j j jy x x e     , ( ) 0jE e  , 
2

1,2,...,15
( )

0,1,2,...,14
j j k k

j
E e e

k
 


 


 

 

olarak tanımlanmıĢtır. Bu denklem matris formunda  

 

y X e      ( ) 0E e      2( ')E ee V                        

 

Ģeklinde gösterilebilir. Genel kovaryans matrisi bilinmediğinden Tablo 8. 1‘de 

verilen geçmiĢ veri yardımıyla V  matrisi tahmin edilmiĢ ve tahmin edilen V  matrisi 

Tablo 8. 2‘de verilen mevcut veri için kullanılmıĢtır. Dolayısıyla geçmiĢ veriden 

tahmin edilen V  matrisi, mevcut veri için biliniyor kabul edilmiĢtir. GeçmiĢ veriden 

tahmin edilecek V  matrisi (6.15) eĢitliğinde verilen Bayhan ve Bayhan (1998)‘ın 

tanımlamıĢ olduğu gecikmeli otokorelasyonlara bağlı olan V  matrisi formundadır. 

Tablo 8.3‘de 14 gecikme için tahmin edilen rezidülerin otokorelasyonları verilmiĢtir.  
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Tablo 8.1. GeçmiĢ veri (Historical data) için 60 haftalık fiyat ve Ģampuan 

satıĢlarının verisi 
Gözlem 
no 

iy  1ix  2ix  Gözlem 
no 

iy  1ix  2ix  

1 -0.2164 -0.2128 -0.2455 31 0.0050 0.0764 0.0448 

2 -0.2089 -0.2128 -0.2455 32 0.0126 0.0813 0.0448 

3 -0.2017 -0.1948 -0.2288 33 0.0194 0.0813 0.0448 

4 -0.1942 -0.1948 -0.2288 34 0.0269 0.0241 0.0081 

5 -0.1866 -0.2838 -0.2288 35 0.0347 0.0241 0.0081 

6 -0.1799 -0.1883 -0.2288 36 0.0414 0.0510 0.0081 

7 -0.1721 -0.1858 -0.2021 37 0.0490 0.0657 0.0382 

8 -0.1650 -0.1393 -0.1821 38 0.0566 0.0649 0.0382 

9 -0.1572 -0.1393 -0.1821 39 0.0643 0.1098 0.0815 

10 -0.1570 -0.1393 -0.1821 40 0.0712 0.1098 0.0815 

11 -0.1428 -0.1066 -0.1287 41 0.0784 0.1098 0.0815 

12 -0.1352 -0.1066 -0.1287 42 0.0861 -0.0519 0.1016 

13 -0.1279 -0.1066 -0.1287 43 0.0933 -0.0519 0.1016 

14 -0.1203 -0.1883 -0.0920 44 0.1011 0.1327 0.1016 

15 -0.1134 -0.0641 -0.0920 45 0.1080 0.1327 0.1016 

16 -0.1721 -0.0641 -0.0920 46 0.1160 0.1327 0.1049 

17 -0.0983 -0.0641 -0.0620 47 0.1225 0.1450 0.1049 

18 -0.0912 -0.0641 -0.0620 48 0.1303 0.1450 0.1049 

19 -0.0836 -0.0217 -0.0620 49 0.1380 0.0077 0.1850 

20 -0.0760 -0.0217 -0.0620 50 0.1452 0.0077 0.2050 

21 -0.0691 -0.0217 -0.0620 51 0.1523 0.1499 0.1416 

22 -0.0612 -0.0217 0.0382 52 0.1597 0.1499 0.1416 

23 -0.0544 0.0404 0.0382 53 0.1674 0.1499 0.1416 

24 -0.0472 -0.0249 -0.0519 54 0.1747 0.1736 0.1416 

25 -0.0393 -0.0249 -0.0519 55 0.1823 0.1736 0.1483 

26 -0.0317 -0.1638 -0.0286 56 0.1890 0.1809 0.1483 

27 -0.0241 -0.2210 -0.0286 57 0.1964 0.1809 0.1483 

28 -0.0170 0.0412 -0.0152 58 0.2040 0.0012 0.1750 

29 -0.0098 0.0412 0.0448 59 0.2117 0.2038 0.1750 

30 -0.0027 0.0764 0.0448 60 0.2189 0.2160 0.1850 
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Tablo 8.2. Mevcut veri (Fresh data) için 15 haftalık fiyatlar ve Ģampuan    

satıĢlarının verisi 

Gözlem 

no 
jy  

1jx  
2jx  

1 -0.0875 -0.4219 -0.4299 

2 -0.1810 -0.3634 -0.3634 

3 -0.2652 -0.3049 -0.2970 

4 -0.3553 -0.2380 -0.2305 

5 -0.3094 -0.1795 -0.1640 

6 -0.2318 -0.1210 -0.1308 

7 -0.1534 -0.0624 -0.0643 

8 -0.0892 0.0463 0.0022 

9 -0.0049 0.0546 0.0687 

10 0.0801 0.1131 0.1352 

11 0.1619 0.1800 0.1684 

12 0.2411 0.2302 0.2349 

13 0.3145 0.2971 0.3014 

14 0.3905 0.3556 0.3679 

15 0.4897 0.4141 0.4011 

 

 

Tablo 8.3. GeçmiĢ veri rezidüleri için tahmin edilen otokorelasyonlar 
 

Gecikme  ˆ
k  

1 0.7072 

2 0.4165 

3 0.2825 

4 0.1676 

5 0.1194 

6 0.2127 

7 0.2492 

8 0.1624 

9 0.1080 

10 0.0824 

11 0.0247 

12 -0.0564 

13 -0.1043 

14 -0.1029 

 

 

Mevcut veri için ACF ve PACF grafikleri ġekil 8.1 ve 8.2‘de verilmiĢtir. 

ACF ve PACF grafikleri incelendiğinde hataların 1. dereceden veya 2. dereceden 
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otoregresif olabilecekleri görülmüĢtür. Bu sonuç Bayhan ve Bayhan‘ın (1998) 

sonuçları ve Özkale‘nin (2009) sonuçları ile benzerlik göstermektedir. 

 

 

ġekil 8.1. Mevcut veri için otokorelasyon grafiği 
 

 
ġekil 8.2. Mevcut veri için kısmi otokorelasyon grafiği 

 

Hataların değiĢen varyanslı olup olmadığı belirlenmek istenmiĢtir. DeğiĢen 

varyansın var olup olmadığını belirlemek için sistematik bir test olan Goldfeld-Quant 

testi kullanılmıĢtır. Goldfeld-Quant testinde 2 2 2

1 1 2 15: ....H       alternatif 

hipotezini test edebilmek için izlenen adımlar aĢağıdaki gibidir.  

Yanıt ve açıklayıcı değiĢkenlere ait veri kümesi, herhangi bir açıklayıcı değiĢkene 

göre ( 1jx  olsun) en küçük değerden en büyük değere doğru sıralanmıĢtır.  
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i. Veri kümesini eĢit gözleme sahip iki alt gruba ayırabilmek için küçük ve 

büyük gözlemler arasında kalan 3r   tane gözlem veri kümesinden 

çıkartılmıĢtır. 

ii. Geriye kalan 15 3n r    gözlem biri açıklayıcı değiĢkenlerin büyük 

değerlerinin biri de küçük değerlerinin yer aldığı iki eĢit sayıda alt kümeye 

ayrılmıĢtır. 

iii. Ġlk 
( )

2

n r
 gözlem ile son 

( )

2

n r
 gözleme ayrı ayrı EKK uygulanarak iki 

ayrı regresyon tahmin edilmiĢ ve her iki regresyona ait rezidü kareler 

toplamları hesaplanmıĢtır. 

iv. Açıklayıcı değiĢkenlerin büyük değerlerini içeren rezidü kareler toplamı 

2( 0.2653)S  , açıklayıcı değiĢkenlerin küçük değerlerini içeren rezidü 

kareler toplamına 1( 1.2204)S   oranlanmıĢ ve F istatistik değeri 

0.2653
0.2174

1.2204
istF    olarak bulunmuĢtur.  

v. Hesaplanan istatistik değeri, 0.05 önem düzeyinde 
2 2

,
2 2

n r p n r p    
 
 

 

serbestlik dereceli F tablo değeri (4,4) 6.39F  ‘nden küçük olduğu için sıfır 

hipotezinin red edilemediği gözlenmiĢtir. Yani kullanılan veri kümesi için 

hataların sabit varyanslı olduğu sonucuna varılmıĢtır.  

 

Bölüm 6‘da 2( ')E ee V   genel kovaryans yapısının otokorelasyonlu 

olabileceğinden bahsedilmiĢti. Kullanılan mevcut veri kümesi için otokorelasyonun 

var olup olmadığını test etmek için DW test istatistiği kullanılmıĢ ve  

 
15

2

1

2

15
2

1

ˆ ˆ( )

ˆ

i i

i

i

i

d

 















0.3533
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olarak hesaplanmıĢtır. 0.05 önem düzeyinde kritik değerler n=15 için 0.95Ld   ve 

1.54Ud   olarak belirlenmiĢtir. Böylece Tablo 8.2‘deki veri için hata terimleri 

arasında otokorelasyonun olduğu sonucuna varılmıĢtır. Bu sonuç Güler ve 

Kaçıranlar‘ın (2009) çalıĢması ile benzerlik göstermiĢtir. PACF grafiği 

incelendiğinde AR yapısının ikinci dereceden olduğundan ĢüphelenilmiĢtir. AR 

yapısının daha yüksek dereceden olmadığını Özkale (2009) göstermiĢtir. Dolayısıyla 

hataların AR(1) yapısında olduğu sonucuna varılmıĢtır. 

Mevcut veride açıklayıcı değiĢkenler arasında bir iliĢkinin var olup 

olmadığını belirlemek için ilk adım olarak Tablo 8.2‘de verilen mevcut veri için 

1'X V X
 matrisinin özdeğeri hesaplanmıĢtır. (6.15) eĢitliğinde verilen Toeplitz 

formunda V  matrisini kullanarak, 
1'X V X

 matrisinin özdeğerleri 1 0.7941 
 

2 0.0086   olarak bulunmuĢtur. Bu durumda koĢul sayısı max
1

min

92.3372K



   

olarak hesaplanmıĢtır. (6.16) eĢitliğinde verilen AR(1) yapısında V  matrisini 

kullanarak 1'X V X  matrisinin özdeğerleri 1 0.7706  , 2 0.0065   olarak 

bulunmuĢtur. Bu durumda koĢul sayısı max
2

min

119.2944K



   olarak hesaplanmıĢtır. 

Toeplitz formunu kullanarak 1K  koĢul sayısı 100‘e yakın olduğu için açıklayıcı 

değiĢkenler arasında orta Ģiddetli çoklu iç iliĢkinin olduğu görülmüĢtür. AR(1) 

yapısında ise 2K  koĢul sayısı 100‘den büyük olduğu için açıklayıcı değiĢkenler 

arasında Ģiddetli çoklu iç iliĢkinin olduğu görülmüĢtür Mevcut veride hem açıklayıcı 

değiĢkenler arasında çoklu iliĢki hem de hatalar arasında iliĢki tespit edilmiĢtir. 

Bölüm 7‘de belirtilen alternatif tahmin ediciler incelenerek bu sorunlar aĢılmaya 

çalıĢılmıĢtır.  

GEKK tahmin edicisi ve GEKK‘ye alternatif tahmin ediciler incelenmiĢtir. 

Otokorelasyonlu hataya ve çoklu iç iliĢkili açıklayıcı değiĢkenlere sahip olan  

 

y X e  , ( ) 0E e  , 2( ')E ee V   
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modelde 1V , Toeplitz formda V  matrisi ve 2V , AR(1) yapısında V  matrisi olmak 

üzere 

1

15 15

1.0000    

 0.7072 1.0000

 0.4165 0.7072 1.0000

   -0.1043   -0.0564 1.0000

-0.1029  -0.1043  0.7072 1.0000

V



 
 
 
 

  
 
 
  
   

ve  

2

15 15

1.0000    

 0.7195 1.0000

 0.5176 0.7195 1.0000

   0.0138   0.0192 1.0000

0.0100  0.0138  0.7195 1.0000

V



 
 
 
 

  
 
 
  
   

 

modelin GEKK tahmin edicisi 

 

1

1 1 1

1 1

1

ˆ ( ' ) '

0.4060 0.3927 0.3223 0.3473

0.3927 0.3967 0.3196 0.4617

G X V X X V y   





     
      
       

 

ve 

 

2

1 1 1

2 2

1

ˆ ( ' ) '

0.3918 0.3821 0.2935 0.7227

 0.3821 0.3853 0.2866 0.0272

G X V X X V y   





     
      
       

 

olarak elde edilmiĢtir.  

 

1 1

1

1

12

ˆ

ˆ ˆ( ) ' ( )
ˆ 0.0173

G

G Gy X V y X

n p

 


 
 


,  
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2 2

2

1

22

ˆ

ˆ ˆ( ) ' ( )
ˆ 0.0140

G

G Gy X V y X

n p

 


 
 

  

 

olmak üzere, GEKK tahmin edicisinin kovaryans matrisi Toeplitz formunda olan 1V  

ve AR(1) yapısında olan 2V  için, 

 

1
1

2 1 1

ˆ 1
ˆ ˆ( ) ( ' )

1.0098 -0.9997

-0.9997 1.0334

G
GCov X V X


   

 
  
 

 

 

ve  

 

 

2
2

2 1 1

ˆ 2
ˆ ˆ( ) ( ' )

1.0834 -1.0743

-1.0743 1.1017

G
GCov X V X


   

 
  
   

 

olarak hesaplanmıĢ olup genelleĢtirilmiĢ en küçük kareler tahmin edici yansız 

olduğundan 1V  için skaler hata kareler ortalaması 
1

ˆ 2.0432
G

sMSE



 

ve 2V  için 

skaler hata kareler ortalaması 
2

ˆ 2.1851
G

sMSE



 
olarak tahmin edilmiĢtir. 

V2  durumunda GEKK‘ye alternatif olarak Trenkler (1984) tarafından 

önerilen shrunken tahmin edici özel olarak 0.5c   için  

 

1 1

1 1 1

1 1

1

ˆ ˆ ( ' ) '

0.4060 0.3927 0.3223 0.1737
0.5

0.3927 0.3967 0.3196 0.2309

c Gc c X V X X V y    



 

     
      

       

ve 

 

2 2

1 1 1

2 2

1

ˆ ˆ ( ' ) '

0.3918 0.3821 0.2935 0.3614
0.5

0.3821 0.3853 0.2866 0.0136

c Gc c X V X X V y    



 

     
      

     
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olarak elde edilmiĢtir. Shrunken tahmin edicinin kovaryans matrisi Toeplitz 

formunda olan 1V  ve AR(1) yapısında olan 2V  için, 

 

1
1

2 2 1 1

ˆ 1
ˆ ˆ( ) ( ' )

 0.2524 -0.2499

-0.2499 0.2583

G
cCov c X V X


   

 
  
   

ve

 

2
2

2 2 1 1

ˆ 2
ˆ ˆ( ) ( ' )

 0.2709 -0.2686

-0.2686 0.2754

G
cCov c X V X


   

 
  
   

 

olarak hesaplanmıĢtır. ˆ
iG , Toeplitz veya AR(1) yapısında V  matrisini kullanarak 

tahmin edilen GEKK tahmin edicileri olmak üzere Shrunken tahmin edici 

ˆ ˆ( ) ( 1)
i iGbias c    ( 1,2i  ) ile yanlı bir tahmin edici olduğu için skaler hata 

kareler ortalaması, 

 

1 1 1
1

ˆ
ˆ ˆ ˆ( ) ( ) ( ) ' 0.5942

c
c c csMSE trace Cov Bias Bias


     

    
 

2 2 2
2

ˆ
ˆ ˆ ˆ( ) ( ) ( ) ' 0.6770

c
c c csMSE trace Cov Bias Bias


     

   
 

olarak bulunur. Shrunken parametresi c ‘nin 0-1 arasındaki farklı değerleri ile 

shrunken tahmin edicinin katsayıları ve skaler hata kareler ortalamaları 1V  ve 2V  için 

sırasıyla Tablo 8.4 ve Tablo 8.5‘de verilmiĢtir.
 

 

Trenkler ‗in (1984) önerdiği ridge tahmin ediciyi inceleyelim. Mevcut veri 

için ridge parametresi k ‘nın seçimi Firinguetti‘nin (1989) çalıĢmasına benzer olarak 

Hoerl, Kennard ve Baldwin‘in (1975) önerdiği yanlılık parametresine göre 

 

1

1 1

2

ˆ

1

ˆ
0.1038

ˆ ˆ'

G

G G

p
k




 
  , 

2

2 2

2

ˆ

2

ˆ
  0.0535

ˆ ˆ'

G

G G

p
k




 
   
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olarak elde edilmiĢtir. Burada 
1

ˆ
G , ve 

2

ˆ
G sırası ile 1V  ve 2V  kullanarak elde edilen 

GEKK tahmin edicisidir.  

 

1

1 1 1

1 1 1

1

ˆ ( ' ) '

0.5098 0.3927 0.3223

0.3927 0.5005 0.3196

0.3550

0.3599

r X V X k I X V y   



 

   
    
   

 
  
   

ve  

 

2

1 1 1

2 2 2

1

ˆ ( ' ) '

0.4453 0.3821 0.2935

0.3821 0.4388 0.2866

0.3906

0.3131

r X V X k I X V y   



 

   
    
   

 
  
 

 

 

olarak hesaplanır. Ridge tahmin edicinin kovaryans matrisi Toeplitz formunda olan 

1V  ve AR(1) yapısında olan 2V  için, 

 

1
1

2 1 1 1 1 1

ˆ 1 1 1 1 1
ˆ ˆ( ) ( ' ) ' ( ' )

0.0144 0.0027

0.0027 0.0144

G
r p pCov X V X k I X V X X V X k I


        

 
  
   

ve

 

2
2

2 1 1 1 1 1

ˆ 2 2 2 2 2
ˆ ˆ( ) ( ' ) ' ( ' )

0.0205 -0.0046

-0.0046 0.0205

G
r p pCov X V X k I X V X X V X k I


        

 
  
   

 

olarak elde edilmiĢtir. Ridge yanlı bir tahmin edici olduğundan dolayı skaler hata 

kareler ortalaması 

 

1 1 11
ˆ

ˆ ˆ ˆ( ) ( ) ( ) ' 0.0393
r

r r rsMSE trace Cov Bias Bias


     
      
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2 2 2
2

ˆ
ˆ ˆ ˆ( ) ( ) ( ) ' 0.2330

r
r r rsMSE trace Cov Bias Bias


     

   
 

olarak bulunmuĢtur. Ayrıca yanlılık parametresinin seçimi Lawless ve Wang‘ın 

(1976) önerdiği 

2

ˆ

1

ˆ

ˆ ˆ' '

G

LW

G G

p
k

X V X




 


‘ya göre de yapılmıĢ olup sonuçları Tablo 8.4 

ve Tablo 8.5‘de verilmiĢtir. 

1 0.1038k   ve 2 0.0535k   için jackknifed ridge tahmin edici, 

 

1

( ) 2 1 2

1 1 1 1
ˆ ˆ[ ( ' ) ]

0.5716 0.4199 0.3473

0.4199 0.5617 0.4617

0.3924

 0.4052

J

GI k X V X k I    

  
   
  

 
  
 

 

 
ve  
 

2

( ) 2 1 2

2 2 2 2
ˆ ˆ[ ( ' ) ]

0.6031 0.3960 0.7227

0.3960 0.5964 0.0272

0.4467

 0.3024

J

GI k X V X k I    

  
   
  

 
  
 

 

 

olarak bulunmuĢtur. Jackknifed ridge tahmin edicinin kovaryans matrisi Toeplitz  

formunda olan 1V  ve AR(1) yapısında olan 2V  için, 

 

1

( ) 2 2 -1 -2

ˆ1 1 1 1

-1 -1 2 -1 -2

1 1 1 1

ˆ ˆ( ) [ - ( ' ) ]

( ' ) [ - ( ' ) ]

0.0323 -0.0111

-0.0111 0.0325

G

JCov I k X V X k I

X V X I k X V X k I


  

 

 
  
 

ve 

2

( ) 2 2 1 2

ˆ2 2 2 2

1 1 2 1 2

2 2 2 2

ˆ ˆ( ) [ ( ' ) ]

( ' ) [ ( ' ) ]

0.0537 -0.0360

-0.0360 0.0543

G

JCov I k X V X k I

X V X I k X V X k I


   

   

  

  

 
  
 
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olarak hesaplanmıĢtır. Burada 
1

2

ˆ
ˆ

G
 ve 

2

2

ˆ
ˆ

G
 , GEKK yöntemine göre 

2 ‘nin yansız 

tahminleridir. 

Jackknifed ridge yanlı bir tahmin edici olduğundan dolayı skaler hata kareler 

ortalaması 

 

( )
1

( ) ( ) ( )

ˆ 1 1 1
ˆ ˆ ˆ( ) ( ) ( ) '  0.0700J

J J JsMSE trace Cov Bias Bias


     
    

( )
2

( ) ( ) ( )

ˆ 2 2 2
ˆ ˆ ˆ( ) ( ) ( ) '  0.2599J

J J JsMSE trace Cov Bias Bias


     
     

 

olarak elde edilmiĢtir. Jackknifed ridge tahmin edicinin LWk  yanlılık parametresine 

göre tahmini sonuçları 1V  ve 2V  için sırası ile Tablo 8.4 ve Tablo 8.5‘de verilmiĢtir. 

Trenkler‘in (1984) önerdiği temel bileĢenler tahmin edici için toplam 

varyansın %80‘ini açıklayan bileĢenler alınmıĢtır. Elde edilen iki özdeğerden küçük 

olan özdeğere karĢılık gelen değiĢken modelden atılmıĢtır (Rencher, 2002). 

 
( ) 1 1 1

1 1 1
ˆ ( ' ' ) ' '

0.4066

0.4018

r Tr Tr X V XTr Tr X V y   

 
  
   

ve 

 
( ) 1 1 1

2 2 2
ˆ ( ' ' ) ' '

 0.3780

0.3748

r Tr Tr X V XTr Tr X V y   

 
  
   

 

olarak hesaplanmıĢ ve kovaryans matrisi Toeplitz formunda olan 1V  ve AR(1) 

yapısında olan 2V  için; 

 

1

( ) 2 -1 -1

ˆ1 1
ˆ ˆ( ) ( ' ' ) '

0.0110 0.0109

0.0109 0.0108

G

rCov Tr Tr X V XTr Tr


 

 
  
   

ve 
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2

( ) 2 -1 -1

ˆ2 2
ˆ ˆ( ) ( ' ' ) '

0.0092 0.0091

0.0091 0.0090

G

rCov Tr Tr X V XTr Tr


 

 
  
 

 

 

olarak elde edilmiĢtir. Temel bileĢenler tahmin edici yanlı olduğundan dolayı skaler 

hata kareler ortalaması 

 

( )
1

( ) ( ) ( )

ˆ 1 1 1
ˆ ˆ ˆ( ) ( ) ( ) ' 0.0289r

r r rsMSE trace Cov Bias Bias


     
      

( )
2

( ) ( ) ( )

ˆ 2 2 2
ˆ ˆ ˆ( ) ( ) ( ) ' 0.2578r

r r rsMSE trace Cov Bias Bias


     
   

 

olarak bulunmuĢtur. 

 

Tablo 8.4. Mevcut veri için alternatif tahmin edicilerin Toeplitz formunda V  matrisi 

altında 0.1038HKBk  , 0.1335LWk  , 1 0.25c  , 2 0.50c  , 3 0.75c   ve 

4 0.90c   ile tahmin edilen parametre katsayıları ve skaler hata kareler 

ortalamalarının karĢılaĢtırılması 
 

1̂  2̂  
Bias SMSE 

GEKK 0.3473 0.4617 - 2.0432 

S
h
ru

n
k
e

n
 

1c  0.0868 0.1154 0.1878 0.3155 

2c  0.1737 0.2309 0.0835 0.5492 

3c  0.2605 0.3463 0.0209 1.1701 

4c  0.3126 0.4155 0.0033 1.6583 

Ridge 
HKBk  0.3550 0.3599 0.0104 0.0393 

LWk  0.3445 0.3476 0.0130 0.0364 

Jackknifed 
Ridge 

HKBk  0.3924 0.4052 0.0052 0.0700 

LWk  0.3912 0.4005 0.0057 0.0543 

Temel Bileşenler 0.4066 0.4018 0.0071 0.0289 

 

Tablo 8.4‘den elde edilen sonuçlara göre, shrunken tahmin edicinin farklı 

parametre değerleri için SMSE değerleri GEKK tahmin edicisinin SMSE‘sinden 

oldukça küçüktür. Ancak shrunken parametresi c ‘nin artan değerleri için SMSE'si 

GEKK‘nın SMSE değerine yakınsamaktadır. c ‘nin artan değerleri için shrunken 

tahmin edicinin yanlılığı azalmaktadır. Ridge ve jackknifed ridge tahmin edicilerin 

SMSE değerleri k parametresinin farklı değeleri için verilmiĢtir. LWk  parametresini 

kullanarak yapılan tahminlerin HKBk parametresini kullanarak yapılan tahminlere göre 
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daha küçük skaler hata kareler ortalaması verdiği gözlenmiĢtir. Jackknifed ridge 

tahmin edicinin yanlılığı ridge tahmin edicinin yanlılığından daha küçüktür. En 

küçük SMSE değerini temel bileĢenler tahmin edici vermektedir ve dolayısıyla temel 

bileĢenler tahmin edici en iyi performansı göstermektedir. 

k ‘nın 0-1 arasında artan değerlerine karĢılık ridge ve jackknifed ridge tahmin 

edicinin SMSE değerleri GEKK ve temel bileĢenler tahmin edicinin SMSE değeri ile 

birlikte ġekil 8.3‘de verilmiĢtir. c ‘nin 0-1 arasındaki artan değerlerine karĢılık 

hesaplanan shrunken tahmin edicinin SMSE değerleri ile GEKK tahmin edicisinin 

SMSE değeri ġekil 8.4‘de verilmiĢtir.  
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ġekil 8.3. Toeplitz formunda V  matrisi için k 'ya karĢı tahmin edicilerin SMSE 

değerleri 
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ġekil 8.4. Toeplitz formunda V  matrisi için c ‘ye karĢı Shrunken tahmin edicinin ve 

GEKK tahmin edicinin SMSE değerleri 

 

ġekil 8.3‘den görüldüğü üzere yanlılık parametresi k  arttıkça ridge ve 

jackknifed ridge tahmin edicilerinin skaler hata kareler ortalaması azalmaktadır. 

0 0.15k   iken ridge tahmin edicinin SMSE değerleri jackknifed ridge tahmin 

edicinin SMSE değerlerinden daha küçüktür. Ancak 0.15 1k   aralığındaki 

yanlılık parametresi için ridge ve jackknifed ridge tahmin edicilerin SMSE değerleri 

birbirine çok yakındır. Teorem 8‘de verilen 

1
2 3 1 1 1' 2( ' ) 3 ( ' ) 0k X V X kI X V X  


        koĢulu 2  yerine 2

ˆ
ˆ

G
  ve   yerine 

ˆ
G  alınarak 0.15k   için 0.0202>0  olarak bulunmuĢ olup koĢulun sağlandığı 

gözlenmiĢtir. 

GEKK yanlılık parametresine bağlı olmadığından sabit kalmakta ve temel 

bileĢenler tahmin edici her durumda en iyi performansı göstermektedir. 

ġekil 8.4‘den görüldüğü üzere, c ‘nin artan değerleri için shrunken tahmin 

edicinin SMSE'si, GEKK‘nın SMSE değerine yaklaĢmaktadır. 1c   için shrunken 

tahmin edicinin SMSE‘si GEKK tahmin edicinin SMSE‘sine eĢit olmaktadır. 
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Tablo 8. 5. Mevcut veri için alternatif tahmin edicilerin AR(1) yapısında V  matrisi 

altında 0.0535HKBk  , 0.1273LWk  , 1 0.25c  , 2 0.50c  , 3 0.75c   ve 

4 0.90c   ile tahmin edilen parametre katsayıları ve skaler hata kareler 

ortalamalarının karĢılaĢtırılması 

 
1̂  2̂  

Bias SMSE 

GEKK 0.7227 0.0272 - 2,1851 

S
h
ru

n
k
e

n
 

1c  0.1807 0.0068 0.2942 0.4308 

2c  0.3614 0.0136 0.1308 0.6770 

3c  0.5420 0.0204 0.0327 1.2618 

4c  0.6505 0.0245 0.0052 1.7752 

Ridge 
HKBk  0.3906 0.3131 0.1920 0.2330 

LWk  0.3411 0.3049 0.2228 0.2412 

Jackknifed 
Ridge 

HKBk  0.4467 0.3024 0.1519 0.2599 

LWk  0.4029 0.3345 0.1967 0.2334 

Temel Bileşenler 0.3780 0.3748 0.2397 0.2578 

 

Tablo 8.5‘den elde edilen sonuçlara göre, AR(1) yapısında V  matrisi için 

shrunken tahmin edicinin farklı parametre değerleri için SMSE değerleri GEKK 

tahmin edicisinin SMSE‘sinden oldukça küçüktür. Ancak shrunken parametresi 

c ‘nin artan değerleri için SMSE'si GEKK‘nın SMSE değerine yakınsamaktadır. 

c ‘nin artan değerleri için shrunken tahmin edicinin yanlılığı azalmaktadır. Ridge 

tahmin edicinin HKBk  yanlılık parametresini kullanarak bulunan skaler hata kareler 

ortalamasının LWk
 

yanlılık parametresini kullanarak bulunan skaler hata kareler 

ortalamasına göre daha küçük olduğu gözlenmiĢtir.Jackknifed ridge tahmin edicinin 

LWk  parametresini kullanarak bulunan skaler hata kareler ortalamasının HKBk
 

parametresini kullanarak bulunan skaler hata kareler ortalamasına göre daha küçük 

olduğu gözlenmiĢtir. Jackknifed ridge tahmin edicinin yanlılığı ridge tahmin edicinin 

yanlılığından daha küçüktür. En küçük SMSE değerini HKBk
 
yanlılık parametresini 

kullanan ridge tahmin edici vermiĢtir. 

k ‘nın 0-1 arasında artan değerlerine karĢılık AR(1) yapısında olan V  matrisi 

ile ridge ve jackknifed ridge tahmin edicinin SMSE değerleri GEKK ve temel 

bileĢenler tahmin edicinin SMSE değeri ile birlikte ġekil 8.5‘de verilmiĢtir. c ‘nin 0-
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1 arasındaki artan değerlerine karĢılık hesaplanan AR(1) yapısında olan V  matrisi ile 

shrunken tahmin edicinin SMSE değerleri ve GEKK tahmin edicisinin SMSE değeri 

ġekil 8.6‘da verilmiĢtir.  
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ġekil 8.5. AR(1) yapısında V  matrisi için k 'ya karĢı tahmin edicilerin  

SMSE değerleri 
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ġekil 8.6. AR(1) yapısında V  matrisi için c ‘ye karĢı Shrunken tahmin edicinin ve 

GEKK tahmin edicinin SMSE değerleri 
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ġekil 8.5‘den görüldüğü üzere. 0 0.05k   iken ridge tahmin edicinin SMSE 

değerleri jackknifed ridge tahmin edicinin SMSE değerlerinden daha küçüktür. 

Ancak 0.05 1k   aralığındaki yanlılık parametresi için ridge ve jackknifed ridge 

tahmin edicilerin SMSE değerleri birbirine çok yakındır. Teorem 8‘de verilen 

1
2 3 1 1 1' 2( ' ) 3 ( ' ) 0k X V X kI X V X  


        koĢulu 2  yerine 2

ˆ
ˆ

G
  ve   yerine 

ˆ
G  alınarak 0.05k   için 0.0425>0  olarak bulunuĢ olup koĢulun sağlandığı 

gözlenmiĢtir. 

ġekil 8.6‘dan görüldüğü üzere, c ‘nin artan değerleri için shrunken tahmin 

edicinin SMSE'si, GEKK‘nın SMSE değerine yaklaĢmaktadır. 
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9. MONTE CARLO SĠMÜLASYON UYGULAMASI 

 

Bu bölümde, değiĢen varyans/otokorelasyon ve çoklu iç iliĢkinin aynı anda 

meydana gelmesi durumunda alternatif tahmin edicilerin hata kareler ortalamasına 

göre performansları Monte Carlo simülasyon çalıĢması ile karĢılaĢtırılmıĢtır. Sabit 

varyans ve hataların iliĢkisiz olması varsayımı altında bazı simülasyonlar McDonald 

ve Galarneau‘dan (1975) sonra sıklıkla çalıĢılmıĢtır. Hatalar değiĢen varyanslı ve / 

veya otokorelasyonlu olduğu zaman bazı tahmin edicilerin performanslarının 

simülasyon üzerinden karĢılaĢtırılmaları Firinguetti (1989), Gosling ve Puterman 

(1985) ve Özkale (2008) tarafından çalıĢılmıĢtır. McDonald ve Galarneau (1975), 

Gibbons (1981), Kibria (2003), Firinguetti (1989), Özkale (2008), Güler ve 

Kaçıranlar (2009), Alheety ve Kibria (2009) ve diğer yazarlar simülasyon 

çalıĢmalarında açıklayıcı değiĢkenleri üretmek için aĢağıdaki eĢitliği kullanmıĢlardır.  

 
2 1/2

1(1 )ij ij ipx z z       1,2,...,i n 1,2,...,j p  
 

Burada, ijz  standart normal dağılıma sahip yapay rasgele (pseude random) sayılardır. 

  belirtilen herhangi iki açıklayıcı değiĢken arasındaki iliĢkiyi ifade etmektedir. 

Ayrıca açıklayıcı değiĢkenler standartlaĢtırılmıĢtır. Yani 'X X  korelasyon matrisi 

formundadır.  

Bu çalıĢmada da açıklayıcı değiĢkenler arasında Ģiddetli iliĢki olması 

istendiğinden dolayı 0.90  , 0.95  ve 0.99  alınmıĢtır. ÇalıĢma, yeni hata 

terimlerini üreterek 5000 deneme üzerinden gerçekleĢtirilmiĢtir. Açıklayıcı 

değiĢkenler denemenin baĢında üretilmiĢ ve deneme boyunca sabitlenmiĢtir. Deneme 

boyunca değiĢken sayısı 4p   ve örneklem geniĢliği 100n   olarak alınmıĢtır. 

Newhouse ve Oman (1971) ve McDonald ve Galarneau (1975)  ‘ yı 'X X  

matrisinin en büyük özdeğerine karĢılık gelen normalleĢtirilmiĢ özvektör olarak 

alındığında MSE‘nin mimimum olduğunu belirtmiĢtir. Özkale (2008) ve Firinguetti 

(1989) benzer olarak katsayı vektörünü 
1'X V X

 matrisinin en büyük özdeğerine 

karĢılık gelecek Ģekilde üretmiĢlerdir. Yanıt değiĢkene dayalı gözlemler  
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1 1 2 2 3 3 1 4i i i i i iy x x x x e        , 1,2,...,i n  
 

eĢitliğinden elde edildikten sonra standartlaĢtırılmıĢ forma dönüĢtürülmüĢtür. Burada 

ie , birinci dereceden AR ve MA yapıları göz önünde bulundurularak üretilmiĢtir.
  

 

1i i ie e u    , 1      AR(1) 

1i i ie u u    , 1       MA(1) 

 

AR(1) ve MA(1) yapısı için önerilen V  matrisleri Bölüm 6‘da verilen (6.13) ve 

(6.14) eĢitliklerindeki gibi alınmıĢtır.   ve  değerleri  0.99, 0.90, 0.70, 0.50, 0.30, 

0.10 olarak belirlenmiĢtir. ‘nın değerleri 0.1, 1 ve 10 olarak seçilmiĢtir.  

Ridge ve jackknifed ridge tahmin edicilerinin yanlılık parametresi olarak 

Hoerl, Kennard ve Baldwin‘in (1975) önerdiği 
2ˆ

ˆ ˆ'

G

G G

p
k



 
  alınmıĢtır.  

Daha sonra regresyon katsayıları orijinal modele dönüĢtürülmüĢtür. 

Shrunken tahmin edici için tahminler c ‘nin uç değerleri olan 0.10 ve 0.90 

değerleri alınarak yapılmıĢtır. 

Firinguetti‘nin (1989) ve Özkale‘nin (2008) çalıĢmalarına benzer olarak 

tahmin edicilerin performanslarının karĢılaĢtırması MSE ve mutlak yanlılık 

hesaplanarak gerçekleĢtirilmiĢtir. Herhangi bir   tahmin edicisi için bu ölçümler 

aĢağıdaki gibi tanımlanmıĢtır. 

 
5000

( ) ( )

1

1
( ) ( ) '( )

5000
r r

r

MSE     


    

4

1

( ) j j

j

ABİAS   


   , 
5000

( )

1

1

5000
j j r

r

 


 
 

 

Burada 
( )j r  denemenin r -inci çıktısında j ‘nin tahminidir.  

Simülasyon sonuçları AR(1) ve MA(1) yapısında incelenmiĢ olup sonuçlar 

sırası ile Ek Tablo A1-A12 ve Ek Tablo B1-B12‘de verilmiĢtir. Simülasyon 

çalıĢması sonucu elde edilen bulgular aĢağıda özetlenmiĢtir. 
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(i) AR(1) ve MA(1) yapısında üretilen hatalar ile yapılan tahminlerde   ve 

çoklu iç iliĢkinin Ģiddeti ( ) artıkça genel olarak tahmin edicilerin skaler 

hata kareler ortalamasının (SMSE) artıĢ gösterdiği gözlenmiĢtir. 

(ii) AR(1) yapısında 0.99   için 0.90, 0.95   ve 0.99 ‘da 0.1   için 

jackknifed ridge, 1   için ridge ve 10   için 0,1 ile shrunken tahmin 

edici SMSE kriterine göre daha iyi performans göstermiĢtir. 

(iii) AR(1) yapısında 0.90   için 0.90   ve 0.95‘de 0.1   için 

jackknifed ridge, 1   için ridge ve 10   için 0,1 ile shrunken tahmin 

edici SMSE kriterine göre daha iyi performans gösterirken, 0.99  ‘da 

temel bileĢenler tahmin edici daha iyi performans göstermiĢtir. 

(iv) AR(1) yapısında 0.70, 0.50, 0.30, 0.10  için 0.90  ‘da 0.1   

için jackknifed ridge tahmin edici SMSE kriterine göre daha iyi performans 

gösterirken   ve   artıkça temel bileĢenler tahmin edicinin daha iyi olduğu 

gözlenmiĢtir. 

(v) MA(1) yapısında 0.99   için 0.90   iken 0.1   ve 1 için ridge 

tahmin edici SMSE kriterine göre daha iyi performans gösterirken, 

0.10  ‘da 0.1 ile shrunken tahmin edicinini daha iyi performans 

gösterdiği gözlenmiĢtir. 0.95   0.99 ‘da ise 0.1   için ridge tahmin 

edici daha iyi performans gösterirken   arttıkça 0.1 ile shrunken tahmin 

edicinin daha iyi performans gösterdiği gözlenmiĢtir. 

(vi) MA(1) yapısında 0.90   için 0.90   ‗da 0.1   ve 1 iken temel 

bileĢenler tahmin edici SMSE kriterine göre daha iyi performans 

gösterirken, 10   için 0.1 ile shrunken tahmin edicinin daha iyi 

performans gösterdiği gözlenmiĢtir. Çoklu iç iliĢkinin Ģiddeti arttıkça temel 

bileĢenler tahmin edicinin daha iyi olduğu gözlenmiĢtir. 

(vii)  MA(1) yapısında 0.70, 0.50, 0.30   için 0.90  ‘da 0.1   için 

jackknifed ridge tahmin edici SMSE kriterine göre daha iyi performans 

gösterirken,   ve   arttıkça temel bileĢenler tahmin edicinin daha iyi 

olduğu gözlenmiĢtir. 
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(viii) MA(1) yapısında 0.10, 0.30    için temel bileĢenler tahmin edicinin 

daha iyi performans gösterdiği gözlenmiĢtir. 

(ix) MA(1) yapısında 0.90    için 0.90  ‘da 10   için 0.1 ile shrunken 

tahmin edici SMSE kriterine göre daha iyi performans gösterirken, diğer 

durumlar için temel bileĢenler tahmin edicinin daha iyi olduğu gözlenmiĢtir. 

(x) MA(1) yapısında 0.99    için 0.90  ‘da 0.1   ve 1   için ridge 

tahmin edici SMSE kriterine göre daha iyi performans gösterirken, 

10  ‘da 0.1 ile shrunken tahmin edici iyi performans göstermiĢtir. 

0.95  ‘de 0.1   için ridge, 1   için temel bileĢenler ve 10   için 

0.1 ile shrunken tahmin edicinin iyi performans gösterdiği gözlenmiĢtir. 

0.99   için temel bileĢenler tahmin edicinin daha iyi olduğu gözlenmiĢtir. 
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10. SONUÇLAR VE ÖNERĠLER 

 

Bu çalıĢmada ilk olarak lineer regresyon modeline EKK uygulamak için 

gerekli olan varsayımlar verilmiĢtir. Açıklayıcı değiĢkenlerin bağımsızlığı 

varsayımının ihlali olan çoklu iç iliĢki sorunu hataların sabit varyanslı ve iliĢkisiz 

olduğu durumda incelenmiĢtir.  

Hatalara iliĢkin varsayımların ihlaline neden olan değiĢen varyans ve 

otokorelasyon sorunu tanımlanmıĢ ve lineer bir regresyon modelinde bu problemin 

belirlenmesine yönelik önerilen testlere yer verilmiĢtir. Lineer bir regresyon 

modelinde değiĢen varyans ve otokorelasyon sorunu olduğunda hata yapıları 

kovaryans matrisi üzerinden incelenmiĢtir.  

Çoklu iç iliĢki sorunu hataların değiĢen varyanslı ve otokorelasyonlu olması 

durumunda incelenmiĢtir. DeğiĢen varyans/otokorelasyon ve çoklu iliĢki 

problemlerinin aynı anda meydana gelmesi durumunda önerilen alternatif tahmin 

ediciler incelenmiĢtir. Bu çalıĢmada, alternatif tahmin edicilerden yansız olan 

genelleĢtirilmiĢ en küçük kareler tahmin edicisi ve yanlı tahmin edicilerden ridge, 

jackknifed ridge, temel bileĢenler, shrunken ve iterasyon tahmin edicisi ele alınmıĢ 

ve bazı özellikleri incelenmiĢtir. Bu tahmin edicilerden bazılarının performansları 

hata kareler ortalaması kriterine göre teorik olarak karĢılaĢtırılmıĢtır. Ayrıca 

alternatif tahmin edicilerin hata kareler ortalamasına göre performanslarının 

karĢılaĢtırılması hem ekonometrik bir örnek hemde simülasyon çalıĢması üzerinden 

gözlenmeye çalıĢılmıĢtır.  

Ekonometrik uygulama sonucunda Bayhan ve Bayhan‘ın (1988) önerdikleri 

Toeplitz formunda V  matrisi için genel olarak temel bileĢenler tahmin edicinin en 

küçük hata kareler ortalamasını verdiği gözlenmiĢtir. Firinguetti‘nin (1989) önerdiği 

AR(1) yapısında V  matrisi için yanlılık parametresi Hoerl, Kennard ve Baldwin‘e 

(1975) göre Ģeçildiğinde ridge tahmin edicinin, yanlılık parametresi Lawless ve 

Wang‘a (1976) göre seçildiğinde ise jackknifed ridge tahmin edicinin en küçük hata 

kareler ortalamasını verdiği gözlenmiĢtir. Simülasyon uygulaması sonucunda ise  , 

otokorelasyon katsayısı ( ,  ) ve çoklu iç iliĢkinin Ģiddetine ( ) bağlı olarak tahmin 

edicilerin performanslarının değiĢtiği ancak, otokorelasyon katsayısı düĢtükçe temel 
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bileĢenler tahmin edicinin diğer tahmin edicilere göre performansının daha iyi 

olduğu gözlenmiĢtir. 

Lineer regresyon modelinde bu çalıĢmada değinilmeyen tahmin edicilerin 

özellikleri hataların değiĢen varyanslı ve otokorelasyonlu olması durumunda 

incelenebilir. Bu sorunların aĢılmasını sağlayacak yeni tahmin yöntemleri 

geliĢtirilebilir. Bu problemler tam, eĢitsizlik ve stokastik önsel bilginin olması 

durumuna geniĢletilebilir.  
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