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Coklu lineer regresyon modelinde hatalara ve agiklayici degiskenlere iliskin
varsayimlar saglanmadigi zaman en kiiglik kareler uygun bir tahmin edici
olmamaktadir. Bu ¢alismada, hatalara iliskin varsayimlarin saglanmamasina neden
olan degisen varyans ve otokorelasyon tanitilmig, bunlarin belirlenmesine iliskin
testler verilmis ve hata yapilar1 incelenmistir. Acgiklayict degiskenlerin
bagimsizligmin ihlali olarak adlandirilan ¢oklu i¢ iligki problemi degisen varyans /
otokorelasyon altinda incelenmistir. Hem degisen varyans / otokorelasyon hemde
coklu iligki problemleri aym1 anda meydana geldiginde kullanabilecek
genellestirilmis en kiiglik kareler tahmin ediciye alternatif tahmin ediciler
tanitilmigtir ve bu tahmin edicilerin performanslart hata kareler ortalamasi ve
yanliliklar1 g6z oniinde bulundurularak degerlendirilmistir. Bu amag i¢in niimerik bir
ommek ve Monte Carlo yontemi ile simiilasyon c¢aligmalart Matlab programi
yardimiyla yapilmistir.

Anahtar Kelimeler: Degisen Varyans, Otokorelasyon, Coklu I¢ iliski, Yanli
Tahmin Ediciler
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When the assumptions on the errors and explanatory variables in the linear
regression model are not satisfied ordinary least squares estimator is not a suitable
estimator. In this study heteroskedasticity and autocorrelation which violate these
assumptions about the errors are introduced, test are given for determining them and
the error structure are examined. Multicollinearity problem see when the explanatory
variables are not independent is considered under the heteroskedasticity and
autocorrelation. When both heteroscedasticity /autocorrelation and multicollinearity
come true together, alternative estimators to generalized least squares estimator are
introduced and the performance of these estimators are considered under the mean
squared error and the bias criteria. These theoritical results are illustrated in a
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1. GIRIS

Regresyon, degiskenler arasindaki iliski ve bagintilarin incelenmesini
kapsayan bir kavram olarak bilinmektedir. Ilk kez, 1897 yilinda Galton’un kalitim
kuramu ile ilgili ¢calismalarinda adi gegcen bu kavram giiniimiizde birbirinden farkli
bircok alanda kullanilabilmektedir. Regresyon analizi, degiskenler arasindaki
bagintinin en iyi sekilde agiklandigi bir modele dayalidir. Cok sayida faktére baglh
olarak degisim gosteren sosyal, psikolojik ve ekonomik olaylarin gerisindeki sebep-
sonug iligkisini ortaya ¢ikarabilmek i¢in kullanilan istatistiksel yaklagimlardan biri,
coklu regresyon analizidir. Bu yaklasimda, bir veya daha ¢ok aciklayict degisken bir
yanit degisken ile birlikte segilerek, yanit degiskenin gergek olgtimleri ile agiklayici
degiskenler yardimiyla elde edilen tahmini 6l¢iimleri arasindaki mesafeyi minimum
kilan en kiiciikk kareler yontemi (EKK) ile regresyon katsayilari tahmin edilir.
Omeklemden elde edilen bu regresyon denklemi ile degiskenler arasinda var olan
sebep-sonug iligkisini belirlemenin yaninda gelecegin tahmini de daha giivenli bir
sekilde yapilabilmektedir. EKK teknigi, regresyon analizinde sabit varyans
(homoscedasticity) varsayiminin saglanmasi durumunda kullanilmasit uygun olan ve
degiskenler arasindaki fonksiyonel iligkiyi modellemede en ¢ok kullanilan
yontemlerden  biridir, ancak uygulamalarda hatalarin de8isen varyansh
(heteroscedasticity) olmasi durumu ile karsilasilabilir.

Coklu dogrusal regresyon modelinde degisen varyans problemi oldugunda
genellestirilmis en kiigiik kareler teknigi (GEKK), EKK teknigine alternatif olarak
gelistirilmigtir. Degisen varyans durumunda EKK tahminleri yansiz olmakta, ancak
varyans ve kovaryans tahminleri etkinligini (minimum varyansl) yitirdiginden
istatistiksel hipotez testleri gegerliligini kaybetmektedir. Ayrica belirli bir anlamlilik
diizeyindeki tahmin ve 6ngorii araliklar1 genislemektedir. Benzer sorunlar hatalarin
iligkisiz varsayimmin ihlaline dayanan ve otokorelasyon olarak adlandirilan
problemde de ortaya ¢ikmaktadir.

Coklu regresyon analizinde karsilagilan bir diger sorun ise agiklayict

degiskenlere iliskin bagimsizlik varsayiminin ihlalidir. Coklu i¢ iliski olarak
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adlandirilan bu sorunun varliginda, aciklayici degiskenlerin yanit degisken
tizerindeki kismi iliskilerini yorumlamakta giicliik cekilir.

Bu ¢alismada degisen varyans/otokorelasyon ve ¢oklu ig iliski problemlerinin
ayn1 anda meydana gelmesi durumlari ile ilgilenilecektir. Calismada, bu dogrultuda
Onerilen tahmin edicilerin matris hata kareler ortalamasi kriterine gore performanslari
dikkate alinarak karsilagtirmalara yer verilecektir. Degisen varyans ve
otokorelasyonlu hata modeli igin alternatif tahmin edicilerin performansini
simiilasyon {izerinde inceleyen bazi yazarlara paralel olarak c¢alismada bir
ekonometrik uygulamaya ve bir Monte Carlo simiilasyon ¢alismasina yer

verilecektir.
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2. OZDES KOVARYANS MATRISLI LINEER iSTATISTIKSEL MODEL

y=XpB+¢ (2.1)

¢oklu lineer regresyon modelinin oldugunu varsayalim. Burada y, nx1 tipinde yanit
degiskenlerin vektorii, X, nx p tipinde stokastik olmayan agiklayici degiskenlerin
gozlenen matrisi, £, px1 tipinde bilinmeyen regresyon parametrelerinin vektord,

&, €~N(0,06°1 ) olan nx1 tipinde rasgele hatalarin vektoriidiir.

2.1. Siradan En Kiiciik Kareler Yontemi

(2.1) olarak verilen ¢oklu lineer regresyon modelinde regresyon
parametrelerinin tahminleri EKK yontemi ile bulunur. Bilinmeyen parametre vektorii

p’nin EKK tahmin edicisi hata kareler toplami minimum yapilarak bulunur.

& =Y — X[ olmak iizere hata kareler toplami;

n
Y e=¢'e
i=1

=(Y=XB)(y-XB)=(y =B XNy~ Xp)
=YY=V X=X Y+ X KP

olarak elde edilir. g'X'y igin (B'X'y)'=y'X S’ dir. Buna gore hata kareler

toplamu;

e'e=y'y=-28'X'y+p' X' Xp

olur. g ’nin tahmin edicisi &' ’nu minimum yapar. O halde

d(e'e) . .
FEE) _ aX'y+2X'XB=0
op T d

X'XB=X"y

normal denklemi elde edilir. Buradan £ ’nin EKK tahmini edicisi
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b=(X'X)X"y
olarak elde edilir. b *nin ortalamast ve kovaryansi asagida verilmistir:

E()=(X"'X)*X'E(XB+¢)
=(X'X)IX'X S+0

Iy

=p
ve

Cov(b)= (X' X)X 'Cov(y)X (X 'X)™
= (X' X)X X (X'X)?!

)

=o?(X'X)™ 22)

EKK tahmin edicisi Gaus Markov teoremi geregince b~ N(0,6°(X'X)™) ile en iyi

lineer yansiz tahmin edicidir (BLUE). Yani herhangi bir lineer yansiz P tahmin

edicisi i¢in
Var(b,) <Var(b;), j=0.1...,p

esitsizligi saglanir.
2.2. EKK Yonteminin Varsayimlari

EKK tekniginin gerek degiskenler gerekse hata terimine ait bir takim
varsayimlar: bulunmaktadir. Bunlar temel varsayimlar ve ek varsayimlar olarak iki
grupta incelenebilir.

Temel varsayimlar,

(1) X, nxp tipinde p<n ile stokastik olmayan bir matristir.

(if) X matrisinin rank1 p ’dir yani, tam kolon ranklidir.
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(iii) nx1 tipindeki y  vektoriiniin  elemanlart  gozlemlenebilen rasgele

vektorlerdir.
(iv) nx1 tipindeki & vektoriiniin elemanlar1 gbzlenemeyen rasgele degiskenlerdir
oyle ki, o° >0 ile E(¢)=0 ve Cov(s)=c?l_ dir.
Ek varsayim,
(V) € vektorii n degiskenli normal dagilir.

Temel varsayimlara ilaveten ek varsayim da saglaniyorsa bu model “Klasik Lineer

Regresyon Modeli” olarak adlandirilir (Gro83, 2003).
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3. OZDES KOVARYANS MATRISLI LINEER ISTATISTIKSEL
MODELDE COKLU iC iLiSKi

3.1. Coklu i¢ Iliskinin Tanimlanmasi

Coklu ig¢ iligki, son yillarda ¢oklu regresyon analizinde iizerinde durulan bir
konudur. Bir ya da daha fazla agiklayicit degiskenin diger agiklayici degiskenlerin
dogrusal veya dogrusala yakin bir kombinasyonu olmasi durumunu ifade eder. Coklu
lineer regresyon modelinde, genellikle agiklayici degiskenlerin bagimsiz oldugu
varsayilir, ancak uygulamada bu varsayimin ihlali s6z konusu olabilir. Tam ¢oklu i¢
iligki, yakin coklu i¢ iliski ve ortogonallik, ¢oklu i¢ iliski konusunda oldukc¢a sik
karsilasilan temel kavramlardir.

Tam c¢oklu i¢ iligki, bir veya daha ¢ok aciklayici degiskenin digerlerinin
dogrusal bir kombinasyonu olmasi durumunda ortaya ¢ikar. X nxp tipinde

stokastik olmayan agiklayici degiskenlerin gozlenen matrisi, X,, bu matrisin i-nci

stitununu gostermek tizere tam ¢oklu i¢ iliski durumunda

Zp:tixi =0 (3.1)

esitligini saglayacak sekilde hepsi sifir olmayan t,, (i=12,..., p) sabitleri vardir. Bu
durumda X 'X matrisinin ranki p ’den kiigiik ve X 'X ’in 6zdegerlerinden en az biri

sifirdir.

Yakin ¢oklu i¢ iliski X nxp tipinde stokastik olmayan agiklayict

degiskenlerin gézlenen matrisi, X,, bu matrisin i-nci siitununu gostermek iizere

Zp:tiXi ~0
=

yakinsamasi saglayacak sekilde sifirdan farkli en az bir t; sabitinin var olmasi

durumunu ifade eder.
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Tam c¢oklu i¢ iliski durumunda X'X matrisi singliler oldugu i¢in EKK
tahmin edici kullanilamaz. Yakin ¢oklu i¢ iliski durumunda ise X'X matrisi
singiilere yakin olmakla birlikte tersi bulunabilecegi icin EKK yontemi kullanilabilir,
ancak X'X matrisinin 6zdegerlerinden en az biri sifira yakin olacagi i¢in EKK
tahminlerinin varyansi biiyiik olacaktir.

Ortogonallik, aciklayict degiskenler arasinda higbir baglantinin olmadigini

ifade eder. X'X =1, iken X matrisi ortogonal agiklayict degiskenleri igerir. Bu

durumda X 'X matrisinin tiim 6zdegerleri 1’e esittir. En az bir 6zdeger 1’den farkli
bulunuyorsa, ortogonallik bozulur. En kiiciik 6zdegerin 1°den kiiciik olmasi onun
stfira yakin oldugunu gostermez. Yani ortogonal olmama ¢oklu i¢ iliskinin varligini
gostermeyebilir, ancak ¢oklu i¢ iliski durumu ortoganalligin bozuldugunu ifade eder
(Vinod ve Ullah, 1981).

Coklu i¢ iliskinin pek ¢ok nedeni olabilir (Judge ve ark., 1985; Montgomery
ve ark., 2001). Bunlardan bazilart:

1) Uygulanan veri toplama metodu: Analizci (3.1) ile tanimli bir bolgenin
alt uzaymmdan oOrneklem almis ise ¢oklu i¢ iligki problemi ile
karsilagacaktir.

2) Modeldeki veya kitledeki zorunluluklar: Kitledeki zorunluluklar daha
cok, aciklayict degiskenlerin kimyasal veya {iretim proseslerinde ortaya
¢ikar. Bir kimyasal reaksiyonun gergeklesmesi igin belli i¢eriklerin sabit
oranlarda olmasi durumu 6rnek olarak verilebilir.

3) Modelin belirlenmesi: X degiskenlerinin degisim araligi kiigiik iken bir
regresyon modeline polinom terimin eklenmesi ¢oklu i¢ iliskiye neden
olabilir.

4) Modelin agir1 tanimlanmasi (overdefined): Degisken sayisinin gézlem
sayisindan biiyiik oldugu durumu tanimlar. Bu durum cogu kez ¢oklu i¢

iliskiye neden olur (Mason, Gunst ve Webster, 1975).
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3.2. Coklu i¢ liskinin Belirlenmesi

Var olan ¢oklu i¢ iliskinin ortaya ¢ikarilmasina yonelik birka¢ yontem
gelistirilmistir. Bunlardan en sik kullanilan 4 ydntem asagida verilmektedir (Ozkale,
2007).

1. Basit Korelasyon Katsayisi
Coklu i¢ iliskinin belirlenmesinde kullanilan en kolay yoldur.

Standartlastirilmis formda X'X matrisinin kdsegen disi elemanlart (r;) ¢oklu i¢

iliskinin belirlenmesinde kullamilir. Iki agiklayici degisken arasinda ¢oklu ig iliski
varsa aralarindaki korelasyon katsayisi (rij) mutlak degerce 1’e yakin olacaktir.
Ancak bu yontemde iki agiklayic1 degisken arasindaki lineer iliski
incelenebilmektedir. Eger ikiden fazla aciklayic1 degisken arasinda bir iliski varsa,
bu iliskinin basit korelasyon katsayilarina yansiyacagi konusunda kesin bir bilgi
yoktur (Montgomery ve ark., 2001).
2. Varyans Sisirme Faktorii

C=(X"'X)™" matrisinin kdsegen elemanlar1 ¢oklu i¢ iliski hakkinda bilgi
verir. ilk olarak Farrar ve Glauber (1967) tarafindan ¢oklu i iliskiyi belirlemek igin
kullanilmistir. Rjz, X aciklayici degiskeninin diger p—1 aciklayici degiskenler ile

regresyonundan elde edilen ¢oklu belirleyicilik katsayisi olmak tizere, C matrisinin j
-inci kosegen eleman1 C; =(1- RJ.Z)_l seklinde ifade edilir. Eger X; agiklayict
degiskeni ile diger aciklayici degiskenler arasinda dogrusal bir iligki yoksa Rj2 cok
kiigiik olacagindan C; I’e yaklagacaktir. Aksi durumda Rj2 1’e yakin degerler

alacagindan C; degeri ¢ok bilylik olacaktir. j-inci katsayisiin varyansi 0'2ij

oldugundan C ., aciklayici degiskenler arasindaki iliskiden dolay1 ﬁ ; ‘nin varyansini

i»
artiran bir faktor olarak goriildiiginden Marquardt (1970) tarafindan “Varyans
Sisirme Faktorii (Variance Inflation Factor=VIF )” olarak adlandirilmistir. Genelde 5
ve 10°dan biiyiik VIF degerleri, ilgili regresyon katsayisi tahmininin g¢oklu i¢

iligkiden dolay1 giivenli bir tahmin olmadigiin bir gostergesi olarak kabul edilir.
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Montgomery ve ark., (2001), 5 ve 10 degerinin arastirmacilar tarafindan denemeler
sonucu bulunan kesin degerler olmadiklarini belirtmistir.
3. X'X Matrisinin Ozdegerleri ve Kosul Sayis1

Coklu ig¢ iliskinin belirlenmesinde X 'X matrisinin karakteristik yapisindan
faydalanilmasi c¢alismalarda siklikla kullanilmaktadir. Coklu i¢ iliski problemini
ciddi anlamda calisan ilk arastirmaci Ragnar Frisch’dir. Frisch (1934) coklu i¢

iliskiyi 6zdegerlerle iligkilendirmigtir. X 'X matrisinin 6zdegerleri 4, 4,,..., 1, ve

Ozvektorleri t,t,.t, olmak flizere, ¢oklu i¢ iligki durumunda en az bir 6zdeger

p
sifira cok yakindir ve en az bir 6zvektor Ztij X; =0 esitligini saglar. Burada t;, j-
i=1

inci 6zvektoriin i-inci elemanini ve X, X matrisinin i-nci siitununu gostermektedir.
Ozdegerlerin tek tek incelenmesi pek fazla anlam tasimamaktadir. Bircok istatistikci
0zdegerlerin birbirleri ile kiyaslanmas1 yoluna giderek coklu i¢ iligskinin varligini ve
derecesini belirlemeye ¢aligmaktadir. Montgomery ve ark., (2001) kosul sayisint en

biiylik 6zdegerin en kiigiik 6zdegere orani olarak tanimlamiglardir: K :;Lﬂ. K

min

100°den kiiclikse cok ciddi boyutta ¢oklu i¢ iliski problemi olmadigi, 100-1000
arasinda ise kuvvetli ¢oklu ig¢ iliski oldugu, 1000’den biiyiikse veri igerisinde birden
fazla ¢oklu i¢ iliski problemi oldugu kabul edilmektedir. Ozdegerlerin toplami da
coklu i¢ iliski hakkinda bilgi verebilmektedir. Ozdegerlerin toplami1 ne kadar
biiyiikse ¢oklu ig iliskinin diizeyi o derece yiiksek kabul edilir (Pagel ve Lunneborg,
1985).
4. Diger tanilama (Diagnostics) metotlari

Belirtilen tekniklerin yan1 sira ¢oklu i¢ iliski pek ¢ok yontemle belirlenebilir.

X'X matrisinin determinantt ¢oklu i¢ iliskinin gostergesi olarak kullanilabilir.
Standartlastirilmis formda 0£|X'X|£1’dir. |X'X|=1 ise agiklayict degiskenler
ortogonaldir aksine |X'X|=0 iken tam coklu i¢ iliski vardir. |X'X| sifira

yaklastikca coklu ig¢ iligkinin siddeti artacaktir (Farrar ve Glauber, 1967). Bu gdsterge
kolayca kullanilabilir olmasina ragmen c¢oklu i¢ iliskinin kaynagi konusunda

herhangi bir bilgi vermez.

10
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3.3. Siradan En Kiiciik Kareler Tahmin Edicisine Alternatif Tahmin Ediciler

Coklu i¢ iliskinin var olmasi durumunda uygulanan EKK yontemi ile
parametre tahminlerinin standart hatalar1 biiyiimekte ve hipotez testlerinde ¢eliskili
sonuclar vermektedir. Bu problemi ortadan kaldirmak igin Onerilen tahmin
prosediirleri yanli tahmin edicilerin ortaya ¢ikmasina ve bunlarin incelenmesine
neden olmustur. Yanli tahmin yontemlerinin varsayimlar1 EKK varsayimlariyla
aynidir. Ancak yanli tahmin yontemlerinde giiven araliklar1 hesaplanmadigindan
normallik varsayimi yapilmamaktadir (Rawlings, 1998).

Bu béliimde yanli regresyon yontemlerinden sirasiyla ridge tahmin edici,
temel bilesenler tahmin edici, jackknifed ridge tahmin edici, shrunken tahmin edici

ve iterasyon tahmin edici incelenecektir.
3.3.1. Ridge Tahmin Edici

Ridge regresyon X'X matrisinin kotii kosullarindan dolayr kosegen
elemanlarina sabit bir k (k>0) ekleyerek iyilestirmeyi amaglayan bir yontemdir.
X'X matrisinin kosegen elemanlarma K sabitinin eklenmesindeki amag¢ kosul
sayisin1 6nemli dlgiide kiigiiltmektir. Buna gore Hoerl ve Kennard’in (1970) 6nerdigi

ridge tahmin edici,

b, =(X'X+kl) X'y, k>0
dir. X'y = X"'Xb olmasindan dolayr;
b =zb, Z =(X'X+kI)X"'X

ridge tahmin edicisi EKK tahmin edicisi cinsinden yazilabilir. EKK tahmin edicisi b
yansiz oldugundan dolay1 agik¢a goriiliiyor ki ridge tahmin edicisi Br yanl bir

tahmin edicidir. Ridge tahmin edicinin yanlligi,

11
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Bias(b,)=E(b,) -8
=(X'X+KNX'XB-P
=[(X'X +kDX "X ~1,18
= (X' X +KDX "X —(X'X +kI)]B
=—k(X'X +kD)™B

olarak elde edilir. Ridge tahmin edicinin kovaryans matrisi;

Cov(6r):(X "X +KID)™TX " Cov(y) X (X' X +KkI)™ (3.2)
Cov(y) =o”l, oldugundan dolayi (3.2) esitligi,

Cov(D,) =c(X "X +kI)EX" X(X'X +kl)™*
olarak yazilabilir. O halde ridge tahmin edicinin hata kareler ortalamasi,

MSE (b,, 8)= Cov(b. ) + Bias(b, ) Bias(b, )"
=a?(X' X +kI)TX" X(X'X +k)™
+K2(X X +KD) BB (XX +kI)

olarak elde edilir. 4, 4,,...,4,, X'X matrisinin dzdegerleri olmak {izere skaler hata

kareler ortalamasi,

SMSE (b, , 3)=trace[MSE (b,, 2)]
P 0-2,1|
= (4 +k)*

+K2 B (X' X +kI)? B

olur. Buradaki birinci terim b, vektorindeki parametrelerin varyanslar toplamu,

ikinci terim ise yanliligin karesidir. K ’ya bagl olarak, varyans-kovaryans terimi
K ’nin azalan bir fonksiyonu, yanlilik terimi ise K ’nin artan bir fonksiyonudur.
Boylece Kk artarken gergek parametreden sapmalar artacak ancak, tahmin edicinin
varyanst azalacaktir. Buna goére ridge regresyonun kullanilmasindaki amag,
varyanstaki azaligin yanlhiliktaki artistan daha biiyiik olmasini saglayan k yanlilik
parametresinin se¢imidir. kK 'nin stokastik olmayan se¢imine iliskin 4 yontem asagida

verilmistir.

12
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1. Ridge Trace

Ridge trace metodu Kk’ nin se¢imi i¢in Hoerl ve Kennard (1970) tarafindan
onerilmistir. Ridge trace k ya karst l:;r ’nin elemanlarinin grafiksel gosterimidir. Bu

grafiksel gosterimde dikkat edilmesi gereken bir konu, karisiklik olusturmamak igin
10’dan fazla regresyon katsayisinin grafiksel gosterime dahil edilmemesidir

(Marquardt ve Snee, 1975). k arttik¢a tahminler kiigiiliir ve belli bir k degerinden
sonra duragan (stable) hale gelirler. Br ’nin duragan oldugu en kiigiikk k degeri uygun

bir deger olarak alinir. Hoerl ve Kennard (1970) 0<k<1 araligimi onermislerdir.
Ridge trace’in en olumlu yani, uygulamaya yonelik ve gozlenen veriye dayali
olusudur (Myers, 1986). Tahminlerin duraganlastigi araliklarda Kk ’nin se¢imi
arastirmaciya birakildigindan dolayr bu durum bir dezavantaj olarak diisiiniilebilir.
Bu yilizden keyfi bir se¢cim yapmak yerine bir formiilasyon olusturma yoluna
gidilmektedir.
2. Hoerl ve Kennard ’1in (1970) 6nerdigi yanlilik parametresi

Hoerl ve Kennard (1970), ridge tahmin edicinin EKK’nin hata kareler
ortalamasindan daha kiiclik hata kareler ortalamasini saglayacak ridge tahmin edici

A2

~

icin yanlilik parametresini K, =

>— olarak onermislerdir. Burada «,,, kanonik

a

formda regresyon katsayisinin tahmininin maksimum degeridir. Eger o° ve «
biliniyorsa k,,, EKK’dan daha kiigiik MSE verecektir (Kibria, 2003).

3. Hoerl, Kennard ve Baldwin’in (1975) 6nerdigi yanlilik parametresi

2
Hoerl, Kennard ve Baldwin (1975), k, = 0—2 ‘nin (¢, : kanonik formda olan «
[0 A

regresyon parametresinin i-nci elemanini ifade etmektedir) harmonik ortalamasini

~ p&z

alarak farkli bir tahmin edici onermislerdir: K, = i Burada b, S ’nin EKK

tahmin edicisidir.

4. Lawless ve Wang’in (1976) 6nerdigi yanlilik parametresi

13
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Lawless ve Wang (1976), Bayesian yaklagimla yanlilik parametresinin

~2
tahminini k,,, = BS(O-XB olarak Onermislerdir. Burada b, /£ ’nin EKK tahmin

edicisidir.
3.3.2. Temel Bilesenler Tahmin Edici

Regresyon katsayilarinin yanli tahmin edicileri temel bilesenler regresyon
olarak bilinen bir prosediirii kullanarak elde edilebilir. Temel bilesenler tahmin edici
kisith en kiiglik kareler tahmin edicisinin ¢oklu i¢ iligkinin var oldugu durumlarda
kullanilan 6zel bir halidir. Parametre vektoriine uygun kisitlar koyarak EKK tahmin
edicisinin varyansinin biiylik oldugu durumlarda yeni bir tahmin ediciyi elde etmeyi

amagclar. Bunun igin X 'X matrisinin spektral ayrisimi goz dniine alinir.

X'X=UAU'

TR ELACA
=ULU)| A, )\,

Burada A, ana kosegen elemanlar1 X'X matrisinin r < p biyiik 6zdegerlerine
karsilik gelen rxr tipinde kdsegen matris ve A,, ana kosegen elemanlart X 'X
matrisinde geri kalan p—r 6zdegerlerine karsilik gelen (p—r)x(p—r) tipinde
matristir. px p tipindeki U =(U,,U,) matrisi U matrisinin ilk r siitununu igeren
U, =(u,,...,u,) ve U matrisinin geri kalan p—r siitununu igeren U, =(U,,,...,u,)
ile ortogonal bir matristir. Oyle ki, U,'U,=1, U,'U,=1_,, U,'U,=0,
UU, +UU," =1 ve (X' X)™ =UAU, +U,A;'U, " esitlikleri saglanir.

(2.1) modeli altinda Marquardt’in (1970) onerdigi S ’nin temel bilesenler

tahmnin edicisi,

b =U,(U,'X'XU,) U, X'y (3.3)

olarak yazilir. (3.3) esitligini (U,"'X'XU,)=A,’i kullanarak diizenlersek,

14
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b =U,AU," Xy
olur. (2.1) modeli altinda temel bilesenler tahmin edicinin yanliligi,

Bias(b™)=E(b")- B
=(UU,-1,)B
=-UU,'s

ve kovaryans matrisi,

Cov(b™)=Cov[U,A, U, ' X 'y]
—U,A, U, " X "Cov(y)XU,A, U,
=o’UA, U X XU AU,
A

=c’U,AU,"
olarak elde edilir. O halde temel bilesenler tahmin edicinin hata kareler ortalamasi,

MSE(B(r),ﬁ) — COV(B(F)) + BiaS(B(r))Bias(B(r)).
=c’UA, U+ UV, - 1) BB U, - 1)

UuU,-1=-UU," oldugundan dolay1
MSE(b™, B) = c?U,A, U, +U,U, "' BB'UU,"

olarak elde edilir.

Gunst ve Mason (1977) tarafindan yapilan simiilasyon ¢aligmasinda, ¢oklu i¢
iligski oldugu zaman temel bilesenler tahmin edicinin EKK*‘dan daha iyi sonug verdigi
gozlenmistir. Gunst ve Mason (1977), aym1 zamanda temel bilesenlerin diger bir
avantaji olarak kesin dagilim teorisi ve degisken se¢im prosediirlerinin mevcut

oldugunun altin1 ¢izmislerdir.
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3.3.3. Jackknifed Ridge Tahmin Edici

X'X matrisinin 6zdegerlerinin kdsegen matrisi A =diag(4,,...,4,) ve
Ozvektor matrisi T olmak tlizere (T'X'XT=A, T'T=TT'=1) (2.1) modelinin
kanonik formu tekil deger ayrisimi kullanilarak

y=Zy+¢
seklinde yazilabilir (Vinod ve Ullah, 1981). Burada Z = XT, y =T '/ dir.

y 'nin EKK tahmin edicisi
7=(2'2)"'Z2'y=N"Z"y (3.4)

olur. (3.4) esitligi ¥ =T'S ve T'T =1 oldugundan dolay1

~

B=Ty

olarak yazilabilir. Singh ve ark., (1986) jackknifed ridge tahmin ediciyi, ridge tahmin

edicinin lineer doniisiimii olarak

PO =[1+k(Z'Z+kI) ™ 7. (3.5)

seklinde 6nermislerdir. y, kanonik formda y ’nin ridge tahmin edicisi olmak {izere,
7.°yi 7. =[1-K(Z'Z+kI)™] 7 seklinde EKK tahmin edicisinin lineer doniisiimii

halinde yazilirsa (3.5) esitligi,

P =[1-k*(Z2'Z2+kI)?] 7 (3.6)

olarak yazilabilir. (3.6) esitligi jackknifed ridge tahmin edicinin kapali formu olarak
goriilebilir. y=T'S ve Z'Z=T'X'XT oldugundan (2.1) modeli i¢cin S ’nin

jackknifed ridge tahmin edici,

b =T7D =[1 —k?(X ' X +kI)?]b

olur. Burada 5, EKK tahmin edicisidir.

16



3. OZDES KOVARYANS MATRISLI LINEER ISTATISTIKSEL MODELDE
COKLU IC ILISKI Tugba SOKUT

(2.1) modeli altinda jackknifed ridge tahmin edicinin yanliligi,

Bias(b™)= E(b)- B
=[1—Kk?*(X'X +kI)2]E(b)- B
=—Kk2(X'X +kI)?B

ve Cov(b) =c?(X ' X)™* oldugundan dolay: kovaryans matrisi,

Cov(b@)=[1 —k2(X "X +kI)2JCov(D)[1 —k2(X ' X +kI)?]
=a’[I =K* (X" X +KDZ2](X " X) [ =K* (X' X +k1)?]

olarak elde edilebilir. O halde jackknifed ridge tahmin edicinin hata kareler

ortalamasi,

MSE(B®, B)= Cov(b™) + Bias(h*))Bias(6®)"
ZUZ[I —kZ(X "X +k|)‘2](x 'X)—l[l —kZ(X ™ +k|)_2]
+k* (XX +KDZ2 BB (XX +kI) 2

olarak elde edilir.
Jackknifed ridge tahmin edicinin yanliliginin normunun ridge tahmin edicinin

yanliliginin normundan daha kii¢iik oldugu gozlenmistir (Singh ve ark., 1986).
3.3.4. Shrunken Tahmin Edici

Mayer ve Willke’nin (1973) calismalarinda, koti kosullu lineer modelde
Hoerl ve Kennard (1970) tarafindan belirtilen ridge tahmin ediciye alternatif olarak
EKK tahmin edicilerinin lineer doniisiimlerinin bir alt sinifi olarak onerdikleri

shrunken tahmin edici, 0 <c <1 olmak tizere

b, =c(X' X)Xy

n (3.7)
=cb

dir. Burada b , EKK tahmin edicisidir. Shrunken tahmin edicisi (3.7) esitliginden de

gorildiigili gibi yanli bir tahmin edicidir. Shrunken tahmin edicinin yanliligi,
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Bias(b,)= E(b,) - 3
=(c-1)p

ve kovaryans matrisi,

Cov(b, )= c*Cov(b)
=c’o?(X'X)™*

olarak elde edilebilir. O halde shrunken tahmin edicinin hata kareler ortalamasi,

MSE (b,, )= Cov(b,) + Bias(b,)Bias(b, )’
=c?o? (X' X)) +(c-1)? BB

olarak elde edilir.
3.3.5. literasyon Tahmin Edici

Trenkler (1978), (2.1) modeli igin iterasyon tahmin ediciyi asagidaki gibi

Onermistir.

By =8> (1, =X X)Xy, 0<5<ﬁi m=01..
j=0

max
65'0 =0X'"y ve 55'00 =b olacagindan dolay1 iterasyon tahmin edicisi basitlestirilmis

ridge tahmin edicisi SX'y ve EKK tahmin edicisi b arasinda agirliklandirilmis

ortalama olarak goriilebilir. Bolim 2’de verilen temel varsayimlar altinda X'X

matrisinin ~ spektral ayrnisimn - UAU'  olsun.  iterasyon  tahmin edici,

T=6AY (1, ~M) =1, ~(1,-6A)"" olmak iizere,
=0

A~

by» =UTU'b

formunda yazilabilir. Iterasyon tahmin edicinin uygulamalari i¢in & ve m

parametrelerinin nasil segileceginin bilinmesi gerekir. ¢ 'nin farkli se¢cimleri m 'nin
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farkli seg¢imlerine yol agar. Parametreleri belirlemek i¢in bir segenek, ¢ ’y1 dnceden
sabitlemek ve sonra tahmin edicinin elemanlarini m’nin bir fonksiyonu olarak
¢izmektir. Bu Boliim 3.3.1°de verilen ridge trace methodu ile aymdir. Ancak ridge
trace’de yanlilik parametresi olan K ’nin artmasi ile trace sifira yaklasirken, iteratif

tahmin edicinin elemanlar1 6 X'y ’den baglar ve m tamsayisinin artan degerleri ile

EKK tahmin edicisi b "ya yakinsar.
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4. SKALER OZDES OLMAYAN KOVARYANS MATRISLI GENEL
LINEER iSTATISTIKSEL MODEL

(2.1) modeli igin & hata vektoriiniin 6zdes varyansli ve elemanlarinin iliskisiz
oldugunu temel varsayimlardan biliyoruz. Bu varsayim bazi ekonomik verilerde
tutarli olmasia ragmen bazi durumlarda varsayim saglanamayabilir. Ekonometrik
veriler zaman serisi verileri ve yatay kesit verileri olmak {izere iki ana baslik altinda
incelenebilir. Zaman serisi verileri degiskenlerin bir zaman aralig1 {izerindeki
degerlerinin elde edilmesine, yatay kesit verileri ise tek bir zaman noktasinda farkli
degiskenlerin incelenmesi istenen degerlerinin elde edilmesine dayanir. Yatay kesit
verisi iizerinden E(geg') = ol varsayiminin ihlaline drnek verecek olursak, bir firma
ya da ev kesit verisi tahmin edilmek istendiginde ev ya da firmanin yiliksek gelirli
olmasi durumu hatalar1 biiyiiltecek, az gelirli olmasi durumu ise hatalar
kiigiiltecektir. Yani hata terimlerinin varyansi gelir diizeyine bagli olarak
degisecektir. Bu durum degisen varyans olarak tanimlanan farkli varyansa sahip hata
terimlerinin var oldugunu ifade etmektedir. Diger benzer bir 6rnek hatalarin yanit
degisken iizerindeki etkisi tamamen anlik olmayan zaman serisi Verilerinden
verilebilir. Bu durumda ¢, hata terimleri iligkili olabilir. Son olarak y=Xpg+¢
modeli i¢in es zamanh farkli bireyler ya da firmalar i¢in esitlikler yazilabilir (Judge
ve ark., 1988).

Bu boliimde hata vektorii E[se]=® =o°V olan kovaryans matrisinin genel

durumlart {izerinde duracafiz. Burada V = bilinen pozitif taniml simetrik bir

matristir. Ilerleyen boliimlerde & ’nin sifir ortalamali ve E[es1=0c’V kovaryans

matrisli rasgele vektor olarak kabul edecegiz.

4.1. istatistiksel Model

y=XpB+e (4.1)
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coklu lineer regresyon modelinin oldugunu varsayalim. Burada, y, nx1 tipinde
yanit degiskenlerin vektori, X, nxp tipinde stokastik olmayan agiklayici
degiskenlerin  g6zlenen matrisi, £, px1 tipinde bilinmeyen regresyon
parametrelerinin vektorii, e, nx1 tipinde E[e]=0 ortalamali ve E[ee]=® =c?V
kovaryans matrisli rasgele hata vektoriidiir (e ~N(0,6V) ). Ayrica V, nxn
tipinde pozitif tanmimli simetrik bir matris ve o, bilinmeyen skalerdir. (4.1)
modelindeki hata terimleri (2.1)’de verilen modelin hata terimlerinden farkli
yapidadir, yani o’l  varsayimi o’V varsayimi olarak degismektedir. e rastgele
degiskenlerinin varyans1 6zdes degildir ve i+ j igin ¢ ve e; arasindaki kovaryans

sifir olmayabilir. Bundan sonraki boliimlerde yapacagimiz tahminler ve ¢ikarsamalar

(4.1) modeli altinda yapilacaktir.

4.2. En Kiiciik Kareler Tahmin Edicisinin Problemleri

Bu boliimde bilinmeyen p parametresi ve o”’nin tahminleri igin (2.1)

modeli altinda BLUE olan EKK tahmin edicisinin (4.1) modeli altinda en iyi olup
olmadigi incelenecektir. y, beklenen degeri E(y) =E(X+e)= X/ ve kovaryansi

E[(y—XB)(y—XB)1=® =05’V olan rasgele bir degiskendir.

(4.1) modeli altinda EKK tahmin edicisinin Bolim 2’de verilen EKK

tahminine benzer olarak,

b=(X'X)*X'y
X' X)X (X B +¢€)
XUX)EX X B+ (X X)X e

—~ ~

p

=B+(X'X)"X'e
elde edilir. (4.1) modeli altinda EKK tahmin edicisinin beklenen degeri,

E(b) = E[B+ (X' X)X €]
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E(e) =0 oldugundan dolay,

E(b) =5
olur ve kovaryans matrisi,
E[(b-A)(0-B)T= E[(B+ (X" X)X "e=B)(B+(X"X)*X e~ )]
= E[(X' X)X 'ee' X (X 'X)™]
=(X'X)"X "E[ee]X (X 'X)™
=o2(X X)XV X (X' X)™ 4.2)
olarak bulunur. Goérildiigi tizere, (4.1) modeli altinda da EKK tahmin edicisi £ ’nin

yansiz bir tahmin edicisidir ve V # | oldugundan dolay1 (4.2)’de verilen kovaryans
matrisi (2.2) esitliginde verilen kovaryans matrisi yapisindan farklidir. Bu yiizden
(4.1) modeline uygulanan EKK yontemi yansiz olmasina ragmen, varyansinda sisme
olmasindan dolay1 en iyi yansiz tahmin edici 6zelligini yitirmektedir. Bundan dolay1
EKK yo6nteminin uygulanmasi uygun degildir ve uygulanmasi durumunda kullanilan

standart regresyon hesaplari yanlis olacaktir.

4.3. Doniistiiriilmiis Model

E[ee] = 0’1, varsayiminin gegersiz yani E[ee'l=c’V oldugu zaman S ’nin
en iyi yansiz tahmini incelenecektir. Bunun i¢in yapilan ilk adim (4.1) modeli

tizerinde doniisiimler yapmaktir. Baslangig olarak nxn tipindeki V matrisinin
bilindigini varsayryoruz. V pozitif tanimhi oldugundan dolaytr P'P =V~ vyani
PVP' =1, esitliklerinin saglayan bir P matrisi her zaman vardir.

(4.1) modeli P matrisi ile ¢arpilarak dontistiiriilmiis model

Py =PX 3+ Pe
ya da

Y. = X.[B+e (4.3)
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olarak yazilabilir. Burada y. =Py, X.=PX ve e.=Pe’dir. Donistiiriilmiis model
icin hata yapisinin ortalamast,

E[e.]=E[Pe]=PE[e]=0
ve kovaryans matrisi,

Cov(e.)=E[e.e. T=E[Pee'P]
=PE[ee]P’
=Po’V P’
=02PVP'=02|n

olarak bulunmus olup doniistiiriilmiis model Bolim 2’de varsayilan ozellikleri
saglamaktadir.

4.4. Genellestirilmis En Kiiciik Kareler Tahmin Edici

(4.1)’de verilen model (4.3)’deki modele doniistiirildiigii zaman hatalara
iligkin varsayimlar saglandigindan dolayr déniistiiriilmiis modele uygulanan EKK
yontemi genellestirilmis en kiigiik kareler yontemi olarak adlandirilir (GEKK).

GEKK tahmin edicisi hata kareler toplamin1 minimum yapacak sekilde 6nerilmistir.

e.=V.—X.z
Del=e'e
i=1

=(Py—PXB)'(Py—PXB)=(y'=B' X )V (y—X )
=yVly—yVIXB-B'XVy+ B X VIXp

olarak elde edilir. #'X'V ™'y icin (B8'X'V'y)'=y'V X 3 dir. Buna gore hata

kareler toplama;
e.'e.=y'V'y-28'XV3'y+B'XVIXp

olur. £ ’nin tahmin edicisi €. 'e.’1 minimum yapar. O halde normal denklemleri,
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A& 8) _ oy v iy+2X VIXB=0

X'VIXp=X'V'y
olup buradan g ’nin GEKK tahmini
S =(X'VIX)IX 'V
olarak elde edilir. GEKK tahmin edicisinin beklenen degeri
E(f)= E[(X VX)X V]
=(X'V X)XV E(y)

=(X'VX)IX VX B

p

E(Bs)=2

olarak bulunmug Olup GEKK tahmin edicisi ﬂG , ﬁ ‘nin yansiz bir tahmin edicisidir.

Kovaryans matrisi,

Cov(f;)=Cov[(X VX)X 'V 1y]
= (X'V X)X 'V ICov(y)V X (X 'V IX) T
=2 (X'VIX)IX VIV VX (X 'V IX) T
h (4.4)

— UZ(X lv—lx)—l
olarak elde edilmis olup (4.3) modeli altinda GEKK tahmin edicisinin BLUE oldugu

goriilmiistiir (Judge, ve ark., 1988). (4.2) esitliginde O v yerine O ’I aliarak EKK

yontemi uygulanmasi durumunda tahmin edicinin varyansi1 gosterilmisti. (4.4)’deki

esitlikte ise O V' altinda elde edilen tahmin edicinin varyansinin (4.2)’dekinden daha

kiiglik oldugunu gostermektedir.
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4.5. o&°’nin Yansiz Tahmin Edicisi

4.1) modeli altinda EKK yéntemini kullanarak o'nin o’ igin yansiz olup
b

olmadigini inceleyelim.

2
EKK yénteminde © ’nin bilinen karasel formu;

52 _ (y=Xb) (y—Xb)
b n—p

seklindedir.

E(67)- E| = XB) (y=XbB)
b n—-p
:E'y'(l—X(X'X)*X')y}

I n-p

e'(1 =X (X 'X)™X e

L n-p

:m{ee'(l — X (X 'X)‘1X')}
n-p

_ 2 V(- X(X X)X ) Lo

n-p

=E

E(ﬁt;z) #oolur. 6V altinda EKK yontemi kullanildiginda © ®nin yansiz tahmini

elde edilememektedir.

2
GEKK yonteminde © ’nin tahmin edicisi

52 Y= XB)V Y- X )
fe -
n—=p (4.5)

seklindedir.

E(&; )=0" esitliginin gecerli olup olmadigimni inceleyelim.
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E(OA-;G): E|:(y_XﬂAG)IVl(y_XﬁAG)

=E

y=Xpf+e ve P'P =V "esitliklerini kullanirsak, €, = Pe oldugundan dolay:

E(6% )=E
—E
—E
—E
—E

n-p

n-p

Ce'(1 =V X (X VX)X WV = X (X VX)XV e

L n-=p
fe'Vie—e'VIX(X'V X)X 'V e

L n-p
[e'P'Pe—e'P'PX(X 'P'PX) "X 'P'Pe
L n-p

[e'P'(I, —PX (X 'P'PX)™X 'P")Pe

L n-p

e (1, = X, (X X)X, e,

L n-p

{y'(ln VX (XVEX)EX WL - X (X VX)XV )y }

|

elde edilir. (1, —X.(X.'X,)™X.") matrisi n—p rankli idempotent bir matris ve

e. ~N(0,6°1,) ol

A2\
E(Gﬁe)_tr
=0
=0

dugundan dolay1

£ e.'e (], — X (X' X)X
n-p

o tr(l, = XL (X X)X
n-p

2

oldugundan dolayr GEKK yéntemini kullanarak o ’nin yansiz tahmin edicisi elde

edilmis olur.
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4.6. Normal Lineer istatistiksel Model

Boliim 2’de verilen ek varsayimdan e hata vektoriiniin n degiskenli normal

dagilimdan geldigi varsayimini degerlendirecegiz. Bu varsayimi E(e)=0 ve
E[ee]=0?V varsaymmi altinda inceleyecegiz (V, nxn tipinde simetrik pozitif

tanimli bir matris). o*l  varsayimi altinda gdzlemlerin ortak yogunluk fonksiyonu

W1 _(Y=XpB)'(y-XpB)
f(y|X,B,0%)= (2m0?)™ eXp{ 202 }

= (270%) 2|1, | exp{_ (y=XB)"1,(y- X,B)}

20°

ve o’V varsayimi altinda gozlemlerin ortak yogunluk fonksiyonu

f(Y| X,ﬂ,UZ) — (272'62)_”/2 |V|_JJ2 exp|:_ (y_ Xﬂ);/o-_z(y_ Xﬁ):| (46)

seklindedir. Likelihood (olabilirlik) fonksiyonu kullanildiginda

ﬁ(ﬂvaz‘x, y) =(2ﬂ02)_n/2[\/|71/2 exp{_ (y_ Xﬂ)IV7 (y_ Xﬂ)j|

20°

yazilabilir ve buradan log olabilirlik fonksiyonu,

In¢(4,%y, X) :-2 In27z—g Inc? —% Inv|- (y_xﬁ);/j(y_xﬁ) 4.7)
o}

olarak elde edilir. g ve &2 maksimum olabilirlik tahmin edicilerini bulmak igin

(4.7) esitligini maksimum yapan B ve o ’yi bulmak gerekmektedir.

ani(,o’ly. X)| 1
oB oy

ML

| [X'V3y—(X'VX)A]=0,
V4

ve
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ain((B,0°|y, X) n 1 _ _
=— + —XB)'VH{y-XB)=0
Py 2 252 " 257 (Y=XB)V(y—=Xp)

Bow

olur ve dolayisiyla bilinmeyen parametreler i¢in maksimum olabilirlik tahmin

edicileri asagidaki gibi elde edilir:

L=(X"VIX)IX'Vy

ve

o2 _(Y=XB)V(y-Xp)

ML n

Maksimum olabilirlik tanmin edicisi 4, GEKK tahmin edicisi ﬁG ile aynidir. Ancak
o? ’nin maksimum olabilirlik tahmin edicisi 67, yanldir ve (4.5) esitliginde verilen

o’ *nin GEKK tahmin edicisi &7 *den farklidir.
4.7. B ve 6;. ’nin Ornekleme Dagilimlari

Maksimum olabilirlik tahmin edicisi # normal dagilima sahip rasgele y
vektoriiniin lineer bir fonksiyonudur. /3, ortalamas1 B ve kovaryanst (X 'V 'X)™
olan normal rasgele bir vektordiir. Bu nedenle f—/ ortalama vektorii sifir ve

kovaryansi (X 'V™X)™? olan normal rasgele bir vektor olur. Ozel bir B, igin

(k :1’21"'p)a

Bk _:Bk

olc®

ortalamasi sifir ve varyanst 1 olan normal dagilan bir rasgele degiskendir. Burada

¢, (X'VX)™ matrisinin k -nc1 kosegen elemanidir.
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A2
(n - p)U[;G

> karesel formunun dagilimini (4.3)’de verilen doniistliriilmiis

o

model tizerinden incelenebilir:

(=PG5 (y=XB)V(y-XAo)

0'2 O'2
_ = XB) (v = Xf)
0_2
YT = X (K X)X T
62 .

Burada, [I,—X.(X.'X.)™"X.7 ranki n—p olan idempotent bir matristir. Bu

(n-p)d; A
durumda o ;(nzfp olur. Ayrica S, —f=(X.'X.)"X.'e. oldugundan ve

2
o}

[, — X.(X.' X)X ] ve (X.'X.)'X.' matrislerinin garpimi sifir matrisine esit

olduklarindan dolay1 ﬁ’G ve (3'2 iliskisizdir.

4.8. f ve o’ *‘nin Aralik Tahminleri

Boliim 4.6’da verilen dagilm sonuglari geregince B ve o ‘nin arahik
tahminleri incelenecektir. R, 1x p tipinde bilinen bir vektdr olmak iizere R/,

ortalamasi R /A ve kovaryansi1 o’R(X'V*X)™R,' olan normal dagilima sahip

olsun. Boylece,

RlB_Rlﬂ ~N(0,1)
oyR,(X 'VX) R,

olan standart normal dagilima sahip olur. O halde & biliniyorken giiven aralig,

Pr=z,,, < RA-R.S <Z,ml=l-a (4.8)
oyJR.(X'VX) R’
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Alternatif olarak (4.8) esitsizligi o bilinmiyorken,

RlB_ Rlﬂ

Pri-t, .. <
T s RV X)) IR,

< t(n—p,oz/Z)] =l-a

(n-p)é?,

olur. o ’nin aralik tahmini i¢in = ~ ;(ffp oldugundan,

(n-p)é;
2 s 2
Pr[)(n—p,u-a/z) < TG < Zn—p,(a/Z)] =l-«a

olur.

4.9. Hipotez Testi

p ile ilgili genel lineer hipotez testlerini inceledigimizi varsayalim. R, Jx p

tipinde bilinen bir matris ve r, Jx1 tipinde bilinen bir vektér oldugunda

H, : R =r hipotezinin dogru oldugunu farz ederek genel hipotez testi

_(RB-NTRXV*X)'RT'(RE-T)

~2
Jog

A

(4.9)

olarak yazilabilir. Sifir hipotezi dogru ise (4.9) esitligi J ve n— p serbestlik dereceli

F dagilimina uyar.
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5. DEGISEN VARYANS

5.1. Degisen Varyansin Tanim

Dogrusal regresyon modelinin 6nemli varsayimlarindan biri Bolim 2.2°de

sabit varyanslilik olarak verilmisti. (4.1) genel lineer istatistiksel model igin,

E(e)=0 ve E[ee]=® =0V

oldugunda V ’nin kosegen elemanlarinin 6zdes olmadigi durum “Degisen Varyans”
olarak adlandirilir.

Ekonomik birimlerin zaman igerisinde verilen bir noktadan gdézlemlendigini,
diger bir ifade ile yatay kesit verilerini kullandigimizi varsayalim, 6rnegin, ekonomik
birimimizin bir firma ve endiistri maliyet fonksiyonunu tahmin etmek istedigimizi
varsayalim. Bunun tek yolu maliyet ilizerinden veri toplamak ve firma O6rneklem
ciktilarini  almaktir (Judge ve ark., 1988). Firmanin Orneklem ¢iktilarindan

faydalanarak endiistri maliyet fonksiyonunu tahmin etmek igin

Yo =Bt B + Box +& (5.1)

model varsayimi yapilsin. Y,, t-inci firmanin ortalama maliyeti ve X,, t-inci firmanin
ciktilaridir. Eger ortalama maliyet fonksiyonunun 2. dereceden polinom tipi seklinde
olmasint beklersek, (5.1)’deki gibi bir model uygun olabilir. Alternatif olarak (5.1)
modeli gida harcamalar1 ve gelir arasindaki iliski miktar1 i¢in uygun bir model
olabilir. Bu durumda hanelerin harcama ve gelirleri yatay kesit verilerinden olusur.

Y, ve X strasi ile t-inci hanenin gida harcamalar1 ve geliri olacaktir. X ’ler kiigiik

gdzlemlerden olustugu zaman E(Y,) = + 3, + %’ ortalamadan sapmalar kiigiik,

x’ler biiyiik gozlem degerleri aldigi zaman ortalama fonksiyonundan sapmalarda
biiyiik olacaktir. Ornegin, az gelirli hanelerde gida harcamalarinin gelir tarafindan
aciklanmas1 daha yiiksektir. Bununla birlikte yiiksek gelirli hanelerde gida

harcamalar1 gelir disinda bagka faktorlere de bagli olabilmektedir. Bu nedenle gida
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harcamalar1 haneden haneye degismektedir. Diger bir deyisle (€, ) hatalarin degeri,
kiigiik x, degerleri i¢in kiiciik, biiylik x, degerleri i¢in biiyiik olacaktir. Gelire ait
etki, e, hatalarmin farkli varyansh olasilik dagilimlarindan geldigi varsayimi altinda

hesaplanabilir. Bu nedenle,

E(e)=0 ve E(e*) =0,

oldugu varsayilir ve hata teriminin bu 6zelligi degisen varyans olarak tanimlanir.

Aksine her gézlem i¢in o,> sabit ise hata terimi sabit varyanshdir.

Density

— Bi+ B2 X;
Income—— x

Sekil 5.1. Tasarruf ve gelir 6rnegi i¢in hatalarin sabit varyansl olmasi1 durumu
(Gujarati, 2004).

Density

Savings y

- ____________________ -
e B+ B X;
fnco;-;-;;"--._____ v

Sekil 5.2. Tasarruf ve gelir 6rnegi igin hatalarin degisen varyansli olmasi durumu
(Gujarati, 2004).
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Basit dogrusal regresyon modelinde y, tasarruflari; x, geliri ifade etmek
tizere Sekil 5.1 ve 5.2 incelenebilir. Sekil 5.1°den X, ’in degerleri biiylidiikge Y, ‘nin
kosullu varyansiin degismedigi, Sekil 5.2°den ise X, ’in degerleri biiyiidiik¢e Y, ‘nin
kosullu varyansimin da biyiidiigli, yani Y, 'nin varyanslarinm ayni kalmadigi yani

degisen varyanslilik durumu goriilebilmektedir. Sabit varyanslilik varsayimina gore
tasarruflarin varyansinin, gelirin biitiin diizeylerinde ayn1 kalmasi beklenir. Sekil 5.2
de ise tasarruflarin varyansi gelirle birlikte artmistir yani yiiksek gelirli ailelerin
diistik gelirlilerden daha ¢ok masraf ettikleri ama tasarruflarinin degiskenliginin de

fazla oldugu anlasilmaktadir.

5.2. Degisen Varyansin Nedenleri

Degisen varyans sorunu daha 6nce bahsedildigi gibi zaman serileri ve/veya
yatay kesit verilerinde goriilebilmektedir. Fakat degisen varyans sorunu daha ¢ok
yatay kesit verilerinde karsilasilan bir sorun olarak goriilebilir. Degisen varyansin
ortaya ¢ikmasinin ¢esitli nedenleri sdyle Siralanabilir:

v" Onemli agiklayici degiskenlerin model disinda tutulmast,

v" Yatay Kesit verilerinin kullanilmasi

v Mevsimsellik goésteren zaman serisinin modelde yamit degisken olarak
kullanilmasi,

v Yamit degiskenin dl¢limiiniin veya taniminin yanlig yapilmasi ve bu hatanin
yanit degisken(ler)e gore degismesi,

v" Tiirdes olmayan Kitleler {izerinde ¢alisilmasi.

Regresyon analizinde modele alinmasi gereken énemli agiklayict degiskenler,
cogunlukla modeldeki degiskenlerle ayn1 yonde ve biiyiikliikte degismektedir. Bu
durum, modelde degisen varyans problemine yol agabilmektedir. Ornegin, bireysel
gelirin agiklayict degisken, seyahat harcamalarinin yanit degisken oldugu bir
regresyon modelinde degisen varyans sorununun ortaya ¢ikmasinin nedenlerinden
biri, bireysel seyahat harcamalarindaki grup ici degiskenliginin diisiik gelir

diizeylerinde az, yiiksek gelir diizeylerinde ise fazla olmasidir (Albayrak, 2008).
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Diger taraftan, arastirmalarda yatay kesit verilerinin kullanilmasi degisen varyans
sorununa neden olabilmektedir. Ornegin, gelir, tiiketim, tasarruf veya iicret gibi
genellikle grup ortalamalarindan olusan kesit verilerinden olusan fonksiyonlarla
calisilmas1 durumunda degisen varyans sorunuyla karsilasilmaktadir. Oyleki yiiksek
gelirli birimlerin tliketim aliskanliklarinin degiskenligi, diisiik gelirli birimlerin
tilketim aligkanliklariin varyansindan oldukga farkli olabilmektedir. Boylece diisiik
gelirli ailelerde tahmin hatalarinin varyansi ve biiytikliikleri daha diisiik iken, yliksek
gelirli birimlerde daha yiiksek ¢ikmaktadir. Degisen varyans problemi yatay Kesit,
zaman serisi ve panel verilerde gozlenebilmektedir. Fakat yamit ve agiklayici
degiskenlerin aym oranda degistigi zaman serilerinde goriilmemektedir. Ornegin,
gelir ve tiiketim gibi iki degisken zaman icerisinde ayni oranlarda artmaktadir. Fakat
mevsimsellik gosteren zaman serilerinde genellikle degisen varyans sorunuyla

karsilagilmaktadir.
5.3. Degisen Varyansin Yol Actig1 Sorunlar

Sabit varyans varsayiminin modelin anlamliligi veya her bir regresyon
katsayisinin anlamliligr testlerini yapabilmek ve giiven araliklarini olusturmak igin
gerekli oldugunu biliyoruz. Degisen varyans durumunda EKK tahminleri yansizlik
(unbiased) ve tutarlilik (consistent) 6zelligini korumakta, fakat minimum varyansl

veya etkinlik (efficient) olarak bilinen o6zelliklerini kaybetmektedir. Bu durumda
Var(ﬁj) giivenilir olmayan istatistiksel testlere neden olmaktadir. Regresyon
katsayilarinin tahminlerinin standart hatalar1 Se(/3 ;) dogrudan bu varyanslardan elde

edildigi i¢in, degisen varyans durumu varsa t istatistikleri ve genel F testleri
giivenilirliklerini  kaybetmektedir. Ayrica gelistirilen modelle gergeklestirilen

ongoriiler giivenilir olmamaktadir.
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5.4. Degisen Varyansin Belirlenmesi

Degisen varyansin bir modelde var olup olmadigi 2 farkli sekilde test
edilebilir. Bunlar sistematik olmayan (grafiksel) ve sistematik test yontemlerinin

kullanilmasi ile miimkindir.

5.4.1. Sistematik Olmayan Yoéntem

Degisen varyansin lineer bir modelde olup olmadigi rezidiilerin karesi ile
aciklayici veya yanit degisken degerlerinin sagilim grafigi lizerinden incelenebilir.
Degisen varyansin niteligine iliskin onsel ya da deneysel bilgi yoksa, uygulamada
regresyon analizi sabit varyans varsayimi altinda yapilir, daha sonra EKK yontemi

ile rezidiiler elde edilip rezidii karelerinin &’ diizenli bir yap1 sergileyip

sergilemediklerine bakilir.

=~
Fae LN

gy Lo N
rei0” NGy
157 .\
’/ AP

le®’1 .

0 X o X

(d) (e)

Sekil 5.3. Degisen varyansi belirlemek i¢in rezidiilerin karesi ile agiklayic1 degisken
degerlerinin Sagilim1 (Gujarati, 2004).

Sekil 5.3’de hesaplanan rezidii karelerinin agiklayici degisken ile olan sacgilim

grafikleri 6rnek olarak verilmistir. Sekil 5.3 (a)’da sabit varyans, (b)’de artan
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varyans, (c)’de lineer iliski, (d) ve (e)’de egrisel iliski goriilmektedir (Gujurati,
2004).

(d) (e)

Sekil 5.4. Degisen varyansi belirlemek igin rezidiilerin Karesi ile yanit degisken
degerlerinin sagilimi (Gujarati, 2004).

Sekil 5.4’de hesaplanan rezidii karelerinin yanit degiskenin regresyon
modelinden elde edilen tahmini degerleri ile olan sacilim grafikleri drnek olarak
verilmistir. Sekil 4.(a)’da sabit varyans, (b)’de artan varyans, (c¢)’de lineer iliski, (d)
ve (e)’de egrisel iligki gortilmektedir (Gujurati, 2004).

5.4.2. Sistematik Testler

5.4.2.1. Goldfeld-Quant Testi

Bu test 1965°de Goldfeld ve Quant tarafindan 6nerilmistir. ,” *nin regresyon

modelindeki agiklayici degiskenlerden birine paralel olarak (artan ve azalan) bagl
oldugunu varsayar.

Degisen varyans i¢in Goldfeld —Quant (G-Q) testinde izlenecek adimlar
asagidaki sekildedir.
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v' Yamt degisken ve agiklayici degiskenlere ait gozlenen veri, agiklayici
degiskenlerden her hangi birine gore en kiiciik degerinden en biiyiik degerine
dogru siralanir.

v Veriyi iki esit gézleme sahip iki alt gruba ayirabilmek i¢in kii¢iik ve biiyiik
degerler arasinda kalan gozlemlerden bir kismi (c) ¢ikarilir. Goldfeld-
Quant’in bazi denemelerinden elde edilen sonuglara gore, 30’dan biiyiik
orneklerde, testten cikarilacak orta bolgedeki en uygun gozlem sayisi, toplam
gbzlemlerin yaklasik dortte biri kadardir. Geriye kalan (n—c) sayida gozlem,
biri siralama yapilan agiklayici degiskenlerin biiyiik degerlerinin, digeri ise

kiigiik degerlerinin yer aldig: iki esit alt gruba ayrilir.
o N=C . n-c . .. . o
v Ik > gozlem ile son > gozlem EKK yontemi kullanilarak iki ayri

regresyon tahmin edilir ve her iki regresyona ait rezidii kareler toplamlart ayri
ayrt almir ve kiiciik degerleri iceren alt gruptan elde edilen rezidii kareler

toplam1 SS, ve biyiik degerleri ile yapilan regresyondan elde edilen rezidi
kareler toplam1 SS; hesaplanir.

v" Bir onceki agamada elde edilen SS, ’ler yardimiyla her bir hata terimine ait

varyansin ayni ya da esit oldugunu ifade eden ve

L2 2 . _
H, 0 =0,"=..=0
o

H,:0’<0,<..<

seklinde verilen hipotezi sinayabilmek igin iki model i¢in bulunan rezidi

kareler ortalamalar1 oranlanarak test istatistigi elde edilir:

MSE,
F=—2"
MSE,

(5.2)

v' n gozlem sayisini, ¢ iki gézlem arasinda kalan ve atilan gozlemleri ve p ’de
sabit terim icermeyen parametre sayisint gostermek iizere (5.2) ile verilen F,
istatistigi, hem payr hem de paydast (n—c—2p) serbestlik dereceli F

dagilimina sahiptir.
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v' Hesaplanan F, ile belirtilen serbestlik derecelerinde ve belli bir anlam
diizeyinde tabloda bulunan F, degeri karsilastirilir.
Eger F, > F, ise sabit varyanslilig1 ifade eden H hipotezi reddedilir ve hata

terimlerinin degisen varyansa sahip oldugu soylenir aksi durumda ise hata
terimlerinin sabit varyansli oldugu kararina varilir. Eger iki alt grup i¢in hesaplanan

varyans tahminleri birbirine esitse F, degeri 1’e yaklasir.

5.4.2.2. Breusch-Pagan Testi

G-Q testinin aksine Breusch-Pagan (B-P) testinde gozlemleri kiiglikten
biiylige dogru siralamak gerekmez. Ayrica bu testte degisen varyansliliga birden
fazla agiklayici degiskenin sebep olup olmadigi belirlenebilir.

G-Q smmamasinin basarisi yalnizca atilacak ortadaki gozlem sayist ¢ ’nin
degerine degil, aynm1 zamanda gozlemleri siralamada kullanilacak dogru x
degiskeninin se¢imine de baglidir.

H, hipotezi altinda verilen o,” *nin agagidaki gibi tanimlandigini diisiinelim:
o’ =h(z/a)=h(e, +7'a").

Burada h, t’nin herhangi bir bagimsiz fonksiyonu, z,'=(L2z")=( 2;,25,....2,)
agiklayict degiskenlerin  vektori ve a'=(q, @)= (a,@5,-..,x,)  bilinmeyen
katsayilarin vektoriidiir. o, =exp(z,'a) bu kosulun &zel bir durumudur. a =0 sifir
hipotezi ve &, ’nin normal dagildig1 varsayimi altinda izlenecek adimlar asagidaki
gibidir.

v" Verilere 6nce regresyon analizi uygulanir ve EKK rezidiileri (£,) elde

edilir.

v &? :Zn:
t=1

v’ Her bir rezidiiniin karesi alnip & *ye boliiniir.

degeri bulunur.
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é

N|—~ N

P= =7, 'a+V,

&
Asimtotik olarak ( p—1) serbeslik dereceli y* dagilir.
v P, yanit ve 7z, aciklayici degisken olarak alinarak regresyon analizi
uygulanir.

v Uygulanan regresyon analizi sonucu elde edilen regresyon kareler

toplamu (SS, ) hesaplanir.

reg

SSeg
2

kritik degeri ile karsilastirilir.

2

v Q, = degeri hesaplanir. Bu deger ( p—1) serbestlik dereceli y
Eger Q, > ;(ﬁfl ise sabit varyans oldugunu ifade eden sifir hipotezi reddedilir

ve degisen varyansin oldugu sonucuna varilir. Aksi durumda ise hata terimlerinin

sabit varyansli oldugu kararina varilir.
5.4.2.3. Glejser Testi

Bu testin en onemli 6zelligi, degisen varyansin bi¢imi yani o, =h(z,'a)
iliskisinin  sekli hakkinda bilgi vermesidir. Bu bilgi degisen varyansin
diizeltilmesinde kullanilir. Glejser testi degisen varyansi, hata terimlerinin varyansi

ile agiklayict degiskenler arasindaki farkli kaliptaki iliskilerle agiklamaktadir. X,

aciklayic1 degiskenleri arasindaki iliski Glejser testine gore cesitli fonksiyonel

sekillerle ele alinabilir. Bu testte hata teriminin varyansinin tahmini o,” yerine EKK
yontemi ile elde edilen rezidiilerin mutlak degeri (|<§t |) alinir. Baz1 olas1 fonksiyonel

modeller asagida verilmistir.

|m:&+ﬁﬁﬂk
t:&+&ﬁ;w

&
1
t=&+ﬂz+w

&
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1
:ﬂo +ﬂl_+ut

|‘§t| = ’\fﬂo +181Xt +U
|é’[| = \fﬂo +ﬂ1X12 +U,

&

=

|é‘t| ‘nin yanit, diger degiskenlerden birinin agiklayic1 degisken oldugu model EKK

ile tahmin edilip egim parametresinin anlamlilig1 incelenir. Eger egim parametresi
istatistiksel olarak anlamsizsa agiklayici degiskenlere gore degisen varyans yoktur.
Tersi durumda degisen varyans s6z konusudur. Coklu regresyonlarda degisen
varyans aciklayici degiskenlere gore ayr1 ayri incelenir.

Uygulamalarda ya da deneysel calismalarda kolaylik olsun diye Glejser
yaklagimi kullanilabilir. Glejser (1969), degisen varyansi belirlemede yukaridaki ilk
dort modelin biiyiik 6rneklemler i¢in genellikle iyi sonuglar verdigini bulmustur.

Uygulamada bu yontem biiyilik 6rneklemler igin kullanilabilir.
5.4.2.4. Park Testi

Park (1966), &, nin agiklayic1 degisken X, 'nin bir fonksiyonu oldugunu ileri

siirerek grafiksel yontemi formiiliize etmistir. Bu fonksiyonel sekli,

O_tZ — sztﬂ{;‘vt
yada
2 2
Inc,” = Inc” + BX, +V,

olarak vermistir. Burada v, stokastik hata terimidir. &> genelde bilinmediginden

Park (1966), onun yerine rezidii karelerini onermistir.

In&? = Inc” + BX, +V,
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Eger egim katsayis1 [ istatistiksel agidan anlamli ¢ikarsa, kullanilan veride degisen

varyans oldugu soylenebilir. Anlamsiz ¢ikarsa, sabit varyans varsayimi kabul edilir.
Oyleyse park testi iki asamalidir. Birinci asamada degisen varyansa aldirmaksizin
regresyon analizi yapilir, ikinci asamada hesaplanan rezidiilerle yukarida verilen

modele dayanan ilgili hesaplama yapilir.
5.4.2.5. White Genel Degisen Varyans Testi

White’in (1980) 6nerdigi genel degisen varyans testi normallik varsayimina

dayanmadigi gibi uygulanmasi da kolaydir. Bu testte o ’nin, modelde yer alan
aciklayict degiskenler, agiklayici degiskenlerin kareleri ve agiklayici degiskenlerin
birbirleriyle carpimlarindan etkilenip etkilenmedigi arastirilir.

Bu testi yapabilmek igin once tiim agiklayici degiskenlerin yer aldigi

regresyon modeli EKK yontemiyle tahmin edilir ve tahmin edilen modelde rezidii

kareleri (£7) hesaplanir. Daha sonra rezidii karelerinin yanit ve her agiklayict

degiskenin, her aciklayict degiskenin karesinin ve agiklayici degiskenlerin

birbirleriyle carpimlarinin yer aldigt model EKK yontemiyle tahmin edilir ve

modelin ¢oklu belirleyicilik katsayis1 (R?) bulunur.

W, =nR?

formiilii ile test istatistigi hesaplanir. Bu istatistik, ac¢iklayic1 degisken sayisini ifade

eden p serbestlik derecesinde y* dagilimina sahiptir.
Eger W, > ;(§ ise sabit varyanslilik reddedilir yani degisen varyans sorunu

vardir. Aksi halde, sabit varyanslilik kabul edilir.
5.5. Degisen Varyans Altinda Kovasyans Yapisi ve GEKK Tahmin edicisi

(4.1) modelinde genel kovaryans yapisinin sadece degisen varyanstan

kaynaklandigini diisiinelim. Yani,
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ol 0 0
0 ¢ ... 0| .

Elee]=®=| = 77 " |=diag(c?,0?,...0?)
0 0 ol

ol, t=(12,...,n) ve dolayistyla @ biliniyorsa S ’nin en iyi yansiz tahmin edicisi

olan GEKK tahmin edicisi,

B=(X'OIX)IX Dty
olarak elde edilir. Bu tahmin edici ® =c®V oldugundan dolayr Bolim 4.4’de

verilen ﬁG =(X'V X)X 'Vy tahmin edici ile aynidir:

ny7-1 -1 nys-1
(X I®71X)71X lq)fly :KX V2 X j X V2 y — (X lvflx)flx lvfly.
o o
Sonug olarak hata kovaryans matrisini bir sabitle ¢arpmak GEKK tahmin edicisini
degistirmeyecektir. Bolim 4’den P'P=®" olacak sekilde bir P matrisinin
oldugunu biliyoruz.
B,=(X'P'PX)*X"'P'Py
= (X X)X Y.
olarak yazilir. Burada uygun P matrisi,
P =diag(oc;",0,",....0;")

olur ve bu durumda doénistiiriilmiis gozlemler,
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Y Y,/ o
Y. = y;z* _ y2/:0'2
Yoo ) /oy
Xo) (o8 0 ... 0\ X" (X'o
X* = X, |0 o, ... 0| X, _ Xz'./cf2
X, 0 0 .. o')IX' X, 1o,

seklindedir. Burada X,. ve X,' sirasi ile doniistiiriilmiis ve orijinal agiklayict
degiskenlerin (1x p) tipinde olan t-nci satir vektorleridir. Doniistiiriilmiis model i¢in

t-nci gozlem,

Yo _ X 5 &
_:_ﬂ+_
Gt O-t O-t
Ve = X B+

olarak yazilir. Yani hata kovaryans matrisi kdsegen formda degisen varyansh oldugu
zaman yanit ve agiklayici degisken hatanin standart sapmasina boliinerek sabit
varyansl forma dontstiiriiliir. Dontistiiriilmiis gozlemlere bilinen EKK uygulanir. Bu
prosediir hatanin standart sapmanimn tersi ile agirliklandirildigindan dolay1

“Agirliklandirilmis En Kiigiik Kareler (AEKK)” olarak adlandirilir.

e. = — donistiiriilmiis hatanin varyanst,
O-t

Ele.?]=E [[3] ] - L Efe?1-1
Gt O-'[

olur ve gorildigl lizere, donistiiriilmiis hatanin varyansi bir ile sabittir. AEKK
2
tahmin edicisi, Z(iJ =(y=XB)'®'(y—Xp)’yi minimum yapar. Buradan
t=1 t

AEKK tahmin edicisinin bir diger formu,
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n 14
B :(Zatzxtxtj Zo-tizxtyt
t=1 t=1

olarak yazilabilir. ﬁA ‘nin kovaryansi,

Cov(B,)=(X"' X ) =(X'®dX)* = (iafxtxtj_

olarak elde edilir.
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6. OTOKORELASYON

6.1. Otokorelasyonun Tanimi

Boliim 4°de
y=Xp+e (6.1)

genel lineer istatistiksel modeli ele alinmisti. Bu modelin Boliim 2’de verilen (2.1)
modelden farkli olarak E[ee’]=® =o°V oldugu belirtilmisti. @ *nin tiim kosegen
elemanlar1 esit olmayan kosegen bir matris olarak varsayilmis ve bu kavram degisen
varyans olarak tamtilmisti. Bu bélimde E[ge=o’l, varsayiminin baska hangi

durumlarda saglanmayacag ile ilgilenmekteyiz. Ozellikle de zaman serisi verileri
olarak bilinen y gozlemleri ve X aciklayici degiskenlerinin zamanin farkli
noktalarinda meydana gelmesi durumu ile ilgilenecegiz. Bu tiir gozlemler firma ya
da hane gibi tek bir ekonomik birimler i¢in toplanmis olabilir ya da bir bdlge icin
biitiin nicelikler birlestirilmis olabilir. Ornegin tiiketim, yatirrm ve gelir iizerindeki
zaman serileri verileri tiiketim ve yatirnm gibi makro ekonomik iliskileri tahmin
etmekte siklikla kullanilir. Zaman iginde verinin durumunu anlamak i¢in (6.1)
modeli kullanildig1 zaman, iliskinin yapisi ortaya cikar. Ekonomik degiskenlerde
degisikligin etkisi anlik olmadigi zaman, bir model yardimiyla elde edilebilir. Bu
model asagidaki gibi olmalidir.

1. y,, kendi ge¢mis degerlerine baglidir.

2. X, bazi agiklayic1 degiskenlerin gecikmeli ve mevcut degerlerini igerir.

3. e, hata denklemi 6nceki hata degerlerine dayanr.
Ima edilen ilk kosul stokastiktir ve literatiirde “Gecikmesi Dagitilmis Model” adi
altinda incelenmektedir. Ikinci kosul EKK tahminleri icin daha fazla varsayim
yapmay1 gerektirmez. Bununla birlikte ¢ok fazla gecikmeli degisken varsa, katsayilar
iizerinden kisitlama yapmak avantajli olabilir. Uciincii kosul ise bu béliimde
ilgilenmek istedigimiz durumu ifade etmektedir ve bu durum “Otokorelasyon” olarak

tanimlanir. Rasgele hatanin toplam etkisinin sadece anlik olmadigin1 ayn1 zamanda
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gelecekte de etkisinin olabilecegini ima etmektedir. Bazi ekonomik iligkiler i¢in
uygun bir varsayim olarak goriilebilmektedir (Judge ve ark., 1988).
Otokorelasyona neden olan bazi1 durumlar asagida 6zetlenmistir.
v Zaman serileriyle, 6zellikle trend i¢eren zaman serileriyle tahmin yapilmasi
v Denklemde bulunmasi gerektigi halde bulunmayan agiklayici degiskenlerin
varligr (6zellikle bu degiskenlerden en az birinin otokorelasyona sahip
olmasi)
v" Modelin yanlis belirlenmesi
v' Yamit degiskende sistematik, yani rassal olmayan Olgme hatalarinin
bulunmasi

v Yapisal degisikligin varhig

6.2. Birinci Dereceden Otoregresif Hatalar

Otokorelasyonun bazi olasi formlar1 vardir ve her biri hata kovaryans matrisi
icin farkli yapilara yol agar. Otokorelasyonun en bilindik formu olarak 1. dereceden
otoregresif prosesin (AR(1)) bazi uygulamalarda yararli oldugu kanitlanmistir. Genel

lineer model, t=12,...,n olmak tizere,

Yo =X B+& (6.2)
e =p8,+U U ~N(0ac/]l) (6.3)

olarak wverilir. Burada y,, t zamanindaki yamit degiskenin gozlemi, X',
X' = (Xyq, X2+ %), 1x p tipinde p tane stokastik olmayan agiklayici degiskendeki
t-inci gozlemi ve £, px1 tipinde tahmin edilecek parametre vektoriidiir. p ve f
bilinmemektedir. (6.3)’den goriildiigii iizere, e, hata denklemi Onceki hata

degerlerine dayanir. (6.3) modelindeki diger hata terimi U, : akgiirtiltii serisidir:

E(u)=0, E[u’]=0,? ve E[u,u]=0, s=t.
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u'=(u,U,,..,u,) ise u akgirilti hatalarin 6zellikleri matris formunda asagidaki

gibidir:
E(u)=0 ve E[uul=0c/1,.

(6.3) modeli igin diger Onemli iki varsayimdan birincisi, | p| <1l ve
e, ~ N(0,6%/(1- p?)) kosulunun saglanmasidir. Bu varsayim duragan proses i¢in
gereklidir (Koopmans, 1942). Yani bu kosul saglandiginda e, hatalarin ortalamasi,
varyans ve kovaryansi zaman i¢inde degismemektedir.

Diger 6nemli kosul ise |p| <1 ve e, sabittir (ya da keyfi dagilimli u,,..u, den
bagimsizdir). Yani keyfi bir dagilim izleyen e ’e izin vererek duragan olmayan

prosesi goz oniine almaktir (Dufour, 1990).

Birgok yazar bu model icin ¢ikarim yontemlerini calismislardir. Ozellikle,
alternatif tahmin edicilerin etkilerinin karsilastirilmast i¢in olduk¢a 6nemli konulara
yer vermislerdir. Bu 6nemli ¢alismalara ragmen hipotez testleri ve giiven araliklar
asimtotik teorilere dayanmaktadir (Dufour, 1990).

(6.3) esitliginin ardigik olarak yerine yazilmasi ile,

2
e=u +pou_,+poU_,+..

= ipiupi (6.4)

elde edilir. Bu esitlik e, hatanin iligkisiz zaman serilerinin agirliklandirilmis toplami
olarak ifade edilebilir yani 6zdes dagilan u,, U, ,,U,_,,... rasgele hatalarinm 1, p, p*,...
ile agirliklandirildigini gosterir. Bu araliklar 0 < p <1 ise zamanla geometrik olarak
azalir. Bu durum Y ’yi etkileyen faktorlerin etkisini ima eder. e, hata terimi ilgili
olan u, 'nin etkisinden meydana gelir ve bu olayn etkisi bir periyod dnce ( pu, ,), iki
periyod &nce ( p°U,_,) seklinde olusur. (6.4) esitligi sonsuza kadar giderse alternatif

olarak su sekilde de yazilabilir:
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2
e =U +pU_, +pU,_,+..
2
€=Uy tOU +poU_, +..

2
€2 =U,, T oU, + 07U +...

P O,
1- p?

Eger |p|21 p°c,’ = ise daha 6ncede belirtildigi gibi duraganlik bozulur ve

e ’nin varyansi zaman iginde artar. e=(e,e,,...,6,)" icin ortalama ve kovaryans

(6.4)’1i goz oniinde bulundurarak inceleyelim.

E(e) =Y P'E(U, ) =0

E[ee1=®’nin  kosegen elemanlart  ig¢in  Var(e)’nin  bulunmasi

gerekmektedir. Proses duragan oldugundan ve varyansi zaman iginde
degismeyeceginden dolayr (6.3) esitliginin her iki tarafinin varyansimi alarak

yazalim.

Var(e) = pVar(e_,) +Var(u,)
ya da
GeZ :pZO_EZ +O_u2

buradan &, ’yi ¢ekersek,

o - =—1" (6.5)

olarak elde edilir. Bir donem araliginda iki hata arasindaki kovaryans,

Elee ,]= ,OE[etZ,l] +E[e_u,]

2
po,
g
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iki donem araliginda iki hata arasindaki kovaryans,

E[etet—z I= pE[et—let—Z] + E[et—Zut]
2 2
= pio2 =L
1-p

ve S donem araliginda iki hata arasindaki kovaryans

SU 2
Elee 1= pc,2 =2 % (6.6)
1-p

olarak elde edilir. S donem araliginda iki hata denklemi arasindaki iligkiyi

(korelasyonu) bulmak igin (6.6) esitligini (6.5) esitligine boleriz:

E[ee ] _ pso_uz /(1—P2) s 6.7)

(EE@)EE,))” a'l0-p)

(6.7) esitliginden goriildiigii tizere, donem araligi biiyiik olan iki hata arasindaki iligki
kiictik olacaktir.

(6.5) ve (6.7) arasinda verilen esitlikleri kullanarak, hata kovaryans matrisini

su sekilde yazabiliriz:
e12 eleZ elen
ee, € ee
E[ee v]= q) — l. 2 2 2. n
enel eneZ er?
1 p pZ pn—l
, | P 1 p P
— Uu 2 n-3
| P p 1 p
_pnfl pn72 pnf3 1 |

Boliim 4’de ®=0°V olarak tanimlamistik. Bu bolimde o?’yi o skaler gibi

tyilestirmek i¢in asagidaki yap1 uygun olacaktir.
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=0V

u

olarak yazabiliriz. Burada,

1 p p2 pnfl

1 p l p n-2

v :l—p2 P’ P 1 "
_pn—l pn—Z pn—S 1 |

dir.

6.3. Birinci Dereceden Hareketli Ortalamali Hatalar

Otokorelasyona alternatif yollardan biri 1. dereceden hareketli ortalama
(MA(1)) modelidir. (6.2) esiliginde verilen modeli goz oniine alalim. Hatalar MA(1)

yapisinda oldugundan dolay1 hatalar

e =U +7U_y, |7]<1

(6.8)

olarak formiile edilebilir. Burada u, ~(0,5,°) dir ve 7 bilinmemektedir. (6.8)

esitliginden faydalanarak e, 'nin varyansi

Var(e,) =Var(u,)+zVar(u,_,)
c’=0/+1’c}

c’=0c/1+7%)
olarak elde edilir. Bir donem araliginda iki hata arasindaki kovaryans,

E[etet—l] =T E[utz—l]

_ 2
=10,

iki ve S donem araliginda iki hata arasindaki kovaryans,

Elee ,]=0 ’ Elee ]1=0
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olur. (6.9) ve (6.10) esitliklerini kullanarak MA(1) hatalarina

matrisi

el eleZ e1en
2
€.e e e.e
E[ee |]: CD — 1. 2 2 2‘ n
2
enel ene2 en
1+ 72 T 0 0 0
T 1+7% ¢ 0 0
=0 2 .

olarak elde edilir. (6.9) esitliginden dolay1

1+ 72 T 0o .. 0 0

) T 1+ 72
o, ) .
2

1+7

N
- O
o

E[eel= : : : : :
0 0 0 .. 1+7° ¢
0 0 0 .. T 1+7°

olur. Bu durumda V matrisi asagidaki gibi elde edilir.

1+7° T 0 .. 0 0
r 1+ ¢ .. 0 0

:1+T2 . . . . 2 .
0 0 0 .. 1+7 T
0 0 0o .. T 1+7°

6.4. Otokorelasyon Katsayisimin Tahmini

Otokokerasyon katsayis1 p ve 7 genelde bilinmez.

iliskin kovaryans

Tahmin edilmis

(Feasible, Estimated) GEKK yontemi, (4.3)’de verilen doniistiiriilmiis modele V

bilinmediginden dolay1 p tahminin kullanilmasi ile elde edilen V  tahminini

kullanarak uygulanan yontemi ifade etmektedir:
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A~
N

ﬂG — (X '\771X)71X l\ifly

Buradaki problem p’yu tahmin etmektir. Bunun i¢in &, hatalar1 biliniyorsa (6.3)
modelinden p model katsayisi1 gibi diistiniiliir. &, hatalar1 bilinmiyorsa, (6.2)
modelinden EKK rezidiisii olan & =y, —x,'b ile giincellenerek & = pé,_, +U, olarak

p yazilabilir ve p ’nun tahmini i¢in uygun bir model elde edilir. Bu modelden p

i¢cin EKK tahmin edicisi su sekilde elde edilir.

= (6.11)

6.5. Birinci Dereceden Otoregresif Hatalarin Belirlenmesi

Ekonometrik bir iliskiyi tahmin etmek i¢in zaman serisi verileri
kullanildiginda birinci dereceden otoregresif hata varsayimlarmin uygun olup
olmadigini 6nceden bilmek zordur. Otokorelasyonun var olup olmadigint anlamak
icin H,:p=0 sifir hipotezi H,: p#0 alternatif hipotezine kars1 ¢ift yonlii olarak

test edilir. Asagida bunun igin {i¢ test 6nerilmistir.

6.5.1. Asimtotik Bir Test

2

Uygun varsayim altinda p tahmini, ortalamasi p ve varyansi ile

normale yakinsar. Boylece

A

p=p

N@-p*)In

=
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standart normal dagilima sahiptir. Eger H, hipotezi dogru ise bu istatistik, z = Jn yo,
olur ve sonug olarak 0.05 6nem diizeyinde iki yoOnlii test icin ‘\/ﬁ [)‘ >1.96 ise H,

hipotezi red edilir ve otokorelasyon sorunun var oldugu tespit edilir.
6.5.2. Durbin-Watson Testi

Asimtotik test, otokorelasyonun olabilirligini degerlendirmek igin hizli bir
prosediir olabilir ancak, sadece asimtotik test olmasindan dolayr sonlu 6rneklemlerde
uygun bir yol olmayabilir. Sonlu 6rneklemlerde alternatif olarak en yaygin kullanilan
“Durbin-Watson (DW)” testidir. Bu test Durbin ve Watson tarafindan gelistirilmistir
(Durbin ve Watson, 1950, 1951, 1971). DW istatistik degeri

n

a ~ 2

& — &, Ay n A
tZZ:(I I—l) _EAE

n A
2 &
24
t=1

d:

- (6.12)
&

formiilii ile hesaplanmaktadir. Burada &,, é=y— Xb vektoriinden elde edilen t-nci

EKK rezidiiyii ifade etmektedir. A matrisi ise (6.12) deki esitligin toplam formunu

actigimiz zaman elde edecegimiz Katsayilari ifade eden bir matristir:

1 -1 0 0 0
1 2 -1 0 0
e
0 0 0 2 -1
0 0 0 -1 1|

d "nin otokorelasyonun tespiti i¢in neden uygun bir test oldugunu gosterelim. (6.12)

esitligini agarsak,

55



6. OTOKORELASYON Tugba SOKUT

&'e
=2-21,p-7,
C A2
th—l 524 42
elde edilir. Burada, y, ==2— ve y, =—~——" dir ve n biiyiik oldugunda y, ~1 ve
& & &

7,~0 olur. Bu durum d~2-2p ya da [)zl—%d olur. d degerinin sifira

yaklagmasi pozitif otokorelasyonu gosterir. d degerinin 4’¢ yaklasmasi negatif

otokorelasyonu gosterir. d degerinin yaklasik olarak 2 olmasi ise otokorelasyonun
. 1 . e ..
olmadigin1 gosterir. Bazen 1—§d degeri p’nun alternatif bir tahmini olarak

kullanilmaktadir. p =0 hipotezine kars1 p >0 alternatif hipotezini test edersek, c

kritik deger olmak iizere d <c oldugunda sifir hipotezi red edilir. Eger alternatif

hipotez p <0 iken d > c ise sifir hipotezi red edilir. Uygun kritik degeri bulmak i¢in
p =0 varsayimi altinda d ’nin olasilik dagilimi bilgisine ihtiya¢ duyulmaktadir.
Bunun i¢in & hatalarin normal dagilan rasgele vektor oldugu varsayilir.

E=[1-X(X"'X)"*XNe=Me olmak iizere d istatistiginin diger bir formiilii,

&' MAM ¢
&'Meg

d

olur ve boylece d iki karesel formun orani olarak ifade edilir. Her iki karesel formda

& hata vektoriinii igerir. Pay ve payda bagimsiz olmadiklarindan bu iki karesel

formun oram ;(2 dagilimina sahip olmaz. 6,6,,...,0

) «» MAM ’nin sifir olmayan

karakteristik kokleri, z;, bagimsiz standart normal rasgele degiskenler olmak {iizere

d ’nin alternatif formu,
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d=1L (6.13)

olarak verilmistir (Judge ve ark., 1998). (6.13) esitligi € ile agirliklandirilmis
standart normal rasgele degiskenin karelerinin toplamimin agirliklandirilmamis
standart normal rasgele degiskenin karelerinin toplamina oranini ifade eder. 6,

agiklayict degiskenlere dayandigindan dolay: her olast X i¢in & ’nin farkl kiimesi,

d igin farkli olasilik dagilimi ve test i¢in farkli bir kritik deger ortaya ¢ikacaktir. Bu
durumda normal, t, > ya da F dagilimlarina dayal bilinen testlerin aksine kritik

degerleri tabloya dokmek imkansizdir. Bu sorunun ¢éziimii olan uygun bir program
SHAZAM’dir. Ancak, Durbin ve Watson testlerini ilk 6nerdiklerinde uygun kuyruk
olasiliklarmin otomatik hesaplanmasi igin yeterli gelismeler yoktu. Durbin ve

Watson (1971), kismi ¢oziim olarak agiklayict degiskenlere dayali olmayan d, ve
d, gibi iki istatistik gz Oniine almis ve bu iki istatistigin dagilimlarini elde
etmiglerdir. Bu iki istatistik igin d,~ ve d,” kritik degerlerini tablolastirmislardr.
Ornegin alternatif hipotez H,:p >0 ise ve 0.05 &nem diizeyinde test edilmek

istenirse d,” ved,” su sekilde olacaktir.

P[d, <d,]1=0.05 ve P[d, <d,']1=0.05
d, ve d, degerlerinin nasil yardimer olacagini gostermek i¢in H, : p =0 hipotezini

H, : p >0 alternatif hipotezine kars1 0.05 6nem diizeyinde test ettigimizi varsayalim.

P[d <d"]1=0.05 olan d” degerini bulmay1 amagliyoruz. Eger hesaplanan d <d” ise
sifir hipotezi red edilir aksi halde red edilemez. Bununla birlikte d,” ve d,” igin
tablolasmis degerleri “smir testi” olarak bilinen d,d,,d,arasindaki iliskiden

faydalanarak yapilir. Sinir testini tanimlamak i¢in d, <d <d; oldugundan dolayi,

P[d <d,"]<P[d <d"]=0.05<P[d <d,"]
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oldugunu gostermek miimkiindiir.

Pozitif Kararsizlik| P=0 Kararsizlik [Negatif
Otokorelasyor Otokorelasyon
Bolgesi Bolgesi
!
0 dy dy 2 4-dy 4-d;. 4

Sekil 6.1. DW testi i¢in karar semasi (Gujarati, 2004).

Eger hesaplanan test istatistiginin degeri kararsizlik bolgelerine denk
geliyorsa SHAZAM programini kullanma olanagi olmadiginda Durbin ve Watson’un

(1971) 6nerdikleri yaklagim kullanilabilir. Bu yaklagimda d *,

d =a+bd,”

formiiliinden hesaplanir. Burada a ve b,
E(d)=a+bE(d,)

ve
Var(d) =b?*var(d,)

olacak sekilde segilir. a ve b’yi hesaplamak i¢in E(d), E(d,), Var(d) ve
Var(d,) degerlerine ihtiya¢ vardir. Durbin ve Watson drneklem genisligi n ve
agiklayict degisken sayist K *nin farkli degerleri i¢in E(d,) ve Var(d,) degerlerini

de tablolastirmiglardir. E(d) wve Var(d) nicelikleri X matrisine dayanir ve

asagidaki sekilde hesaplanirlar.

P
E(d)=—-r:
()=
2

Var(d) = K —K+2) [¢—PE(d)]
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burada P =2(n—1) —tr[X'AX(X'X)™] ve
¢ =2(3n—4) =2t X ' A°X (X' X)'T+tr { X' AX (X 'X)‘l}zdir.
DW testinin alternatif hipotezi H, : p >0 seklinde ise test adimlari,
(1) b=(X'X)™*X'y EKK tahmin edicisi ve ilgili rezidiiler £=y—Xb elde
edilir.
(2) 1lgili DW istatistik degeri (6.12) esitliginden hesaplanur.
(3) Segilen dnem diizeyi i¢in tablo degerleri olan d,” ve d,,” degerleri elde
edilir.
(4) Eger d <d_~ ise H, red edilir aksi durumda red edilemez ve hipotez testi
sonuclanir.
(5) Eger d,” <d<d,” ise kararsizlk bolgesine diistiigiinden E(d,) ve
Var(d,) degerleri hesaplanir (a ve b ’yi hesaplamak igin).
(6) d”=a-+bd,” degeri hesaplanir.
(7) d<d” ise H, red edilir aksi durumda red edilemez ve hipotez testi
sonug¢lanmis olur.
DW testinin alternatif hipotezi H, : p <0 seklinde ise test adimlari,
(1) b=(X'X)™X'y EKK tahmin edicisi ve ilgili rezidiiler &=y—Xb
elde edilir.
(2) Ilgili DW istatistik degeri (6.12) esitliginden hesaplanur.
(3) Segilen énem diizeyi igin tablo degerleri olan d,” ve d,,” degerleri elde
edilir.
(4) Eger d >4—d, ise H, red edilir aksi durumda red edilemez ve hipotez
testi sonuglanir.
(5) Eger 4—d, <d <4-d,” ise kararsizlik bolgesine diistiigiinden E(d,)
ve Var(d,) degerleri hesaplanir (a ve b ’yi hesaplamak igin).

(6) d" =a+b(4—d,") degeri hesaplanir.
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(7) d>d” ise H, red edilir aksi durumda red edilemez ve hipotez testi

sonu¢lanmis olur.
DW istatistiginin bazi durumlarda dezavantaji vardir. X matrisi sabit terim
icermiyorsa ve stokastik olmama varsayimii saglamiyorsa, modelde agiklayici
degisken olarak aciklayici degiskenin gecikmeli degerleri yer aliyorsa ve

otokorelasyonun derecesi 1’den biiyiikse DW istatistiginin giicli azalmaktadir.
6.5.3. Durbin h Testi

Durbin h testi, yanit degiskenin gecikmeli degerlerinin agiklayic1 degisken
olarak kullanildigi durumlarda Durbin (1970) tarafindan Onerilmistir. Durbin, h

istatistigine dayal

h_ ) N 1/2
“Pl nVar(4,)

asimtotik testi gelistirmistir. Burada p, (6.11) esitliginden elde edilmektedir.
Var(,@l) , Y, , in katsayisinin varyansidir. Otokorelasyonun olmadigimi savunan sifir
hipotezi altinda h sifir ortalamali ve varyans sifira giden asimptotik olarak normal
dagilir. Eger nVar(,@l)Zl ise bu istatistigin degeri hesaplanamaz. Bu durumda
Durbin esdeger bir asimtotik test Onermistir. & yamt degisken, & _, aciklayic
degisken olarak alinarak yapilan regresyon analizi Sonrasinda &, ’in katsayisinin

onemliligi test edilir. Eger katsay1 anlamli ¢ikarsa otokorelasyonun olmadigini ifade

eden sifir hipotezi red edilir.
6.6. Otokorelasyon Altinda Hata Kovaryans Yapisi
Uygulamalarda genelde V bilinmez bu durumlarda V tahmin edilir. V

matrisinin tahminlerinin bazilar1 Trenkler (1984), Firinguetti (1989) ve Bayhan ve

Bayhan (1998) tarafindan verilmistir.
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Trenkler’in (1984) 6nerdigi V matrisi;

1+72 T 0 0 0
1 T 1+7° 1 0 0
V = > : : :
1+7 )
0 0 .. 1+7 T
0 0 0 .. T 1+7°

(6.14)

& =y +Tui—l’ |T| <1 yapisina yani MA(1)

olup burada hata vektoriiniin elamanlari
yapisina sahiptir.

Firinguetti’nin (1989) 6nerdigi V matrisi;

1 p pn—l
1 n-2
VI | 7
1-p
n-1 n-2
popt o (6.15)

burada hata vektdriinin elemanlari & = pg_, +U;, |p|<1 yapisina yani AR(1)

yapisina sahiptir. U, hata terimleri u, ~N(0,6°) olan normal dagilimdan

gelmektedir. Ayrica E(uu;) =0, Vi= j varsayimini saglamaktadur.

Bayhan ve Bayhan’in (1998) 6nerdigi Toeplitz formdaki V matrisi;

1 P P2 Paa
vl BT A e
pn—l pn—2 pn—3 1 (616)

olup burada #i

1L L .. C

C =HZ(5J- -&)(&;,,;—¢) i=01..,n-1 olmak iizere p, :CA—'
= ’

0

esitligi kullanilarak

tahmin edilen i-nci gecikme otokorelasyon katsayini ifade etmektedir.
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Hata kovaryans matrisinin en bilinen formu AR(1) modeline uygunluk

saglayan Firinguetti’nin 6nerdigi V matrisini kullanarak olusturulan matristir.
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7. GEKK’YE ALTERNATIF OLARAK ONERILEN YANLI TAHMIN
EDICILER

Bolim 3, 5 ve 6’da ele aliman c¢oklu i¢ iligki, degisen varyans ve

otokorelasyonun bu boliimde aym1 anda gergeklesmesi ile ilgilenecegiz.
E[ee]=0c’], varsayiminin gegersiz E[ee]=c’V varsayimmin gegerli oldugu
durumlarda V ’nin yapisim1 hem degisen varyans hemde otokorelasyon olmasi
durumunda inceledik. Ancak, alternatif tahmin edicilere gegmeden 6nce ¢oklu i¢
iliski probleminin E[ee']=0c?V varsaymmi altinda nasil belirlenecegini arastiralim.
E[ee1= 0’1, varsayiminin gegersiz oldugunu belirledikten sonra Bolim 4’de

anlatilan doniistirilmiis model yardimiyla ¢oklu i¢ iliskinin modelde var olup

olmadigmi belirleyebiliriz. Trenkler (1984) ve Ozkale (2008) déniistiiriilmiis
aciklayict degisken PX = X ’in rankinin X ’in rankina esit oldugundan dolay1 ¢oklu
i¢ iliski probleminin siddetini azaltmak icin modeli doniistiirmenin yeterli
olmadiklarini belirtmislerdir. Artik ¢oklu i¢ iliskinin doniistiiriilmiis modelde var
olup olmadig ile ilgilendigimizden dolay:, (X'V~'X) matrisinin karakteristik

yapisindan faydalanilmaktadir. X'V X matrisinin 6zdegerleri Ay Ay A, VE

ozvektorleri  t,t,,...,t, olmak iizere, ¢oklu i¢ iliskiyi belirlemek i¢in en biyik

max

0zdegerin en kiiglik 6zdegere orani olarak tamimlanan kosul sayisi K =

kullanilmaktadir. K 100’den kiiciikse ¢ok ciddi boyutta ¢oklu i¢ iliski problemi

olmadigi, 100-1000 arasinda ise kuvvetli ¢oklu i¢ iligki oldugu, 1000’den biiyiikse
veri i¢erisinde birden fazla ¢oklu i¢ iliski problemi oldugu kabul edilmektedir.

Hem E[eel=0?V varsayimmm gegerli oldugu hem de ¢oklu i¢ iliski

problemlerinin oldugu durumlarda yanli tahmin ediciler Firinguetti (1989), Trenkler
(1984), Ozkale (2008) gibi baz1 yazarlar tarafindan ¢alisilmistir.
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7.1. Ridge Tahmin Edici

Hoerl ve Kennard’in (1970) calismalarindan yola ¢ikarak Trenkler (1984)
E[ee]=0c?V altinda ridge tahmin ediciyi tanimlamistir. Bélim 4’de tanimlanan

dontistiiriilmiis model yardimiyla S ’nin ridge tahmin edicisi,
B= (XX +KDX, L
=(X'VIX+k)*X'Vy
olarak elde edilir. 3. ridge tahmin edici GEKK tahmin edici cinsinden yazilmak
istenirse,
B =(X'VIX+K) X VXS, =7, f3,
olur. E[ee']=c?V altinda ridge tahmin edici yanli bir tahmin edicidir. Yanlihg,

Bias(5,)=E(B.)- f
=[(X'VX +kD)™*X'VIX -1,18
=(X'VIX +K)X'VIX =X VX k1B
=—k(X'VX +kI)*'p

olarak elde edilir. Ridge tahmin edicinin kovaryans matrisi; Cov(y)=oc?V

oldugundan dolayz,

Cov(ﬁr)z (X'VEX +KD™X 'V Cov(y) (V) X (X 'V X +kI)™
= (X' VX +KD) X'V X(X'VX +kI)™

olarak yazilabilir. O halde ridge tahmin edicinin hata kareler ortalamasi,

MSE (5, B)=Cov(,) + Bias(3,)Bias(3,)’
=o?(X'VIX +KD)X'VEX(X VX k)™
+k2(X VX +k|)‘1/3’/3'(x 'V X +k|)‘1
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seklindedir. 21,22,...,%, X'V X matrisinin 0zdegerleri olmak iizere skaler hata

kareler ortalamasi

SMSE(., B)=trace[MSE (4., 8)]

:Zp:(;i/t)z LKA (XX +KI) 2B

seklindedir.

7.2. Temel Bilesenler Tahmin Edici

Marquardt’in (1970) 6nerdigi E[ee]=o?l, altindaki temel bilesenler tahmin
ediciyi Trenkler (1984), E[ee']=0c"V altinda tanimlamistir. Béliim 2.1.2°den farkli
olarak X'V ™X matrisinin spektral ayrisimini kullanarak Trenkler (1984) temel

bilesenler tahmin ediciyi ﬁ(r) =(X'V*X)IX'Vy olarak tamimlamistir. Burada r
ranki gdstermek iizere (X'V7'X)7, X'V7'X’in genellestirilmis tersidir. oI,
durumuna benzer sekilde o’V durumu icin temel bilesenler tahmin ediciyi,

AY=U, U, X VXU, U, XV Ty
olarak yazabiliriz. Burada,

X'VIX=UAU"
A, 0\ U/
=(U1 Uz) ' '
0 A, U,

seklindedir. Yani A, X'V ™'X ’in 6zdegerlerine karsilik gelen kdsegen matris ve U ,

bu o6zdegerlere karsilik gelen 6zvektorlerden olusan ortogonal matristir. Bolim
2.1.2’dekine benzer olarak (U,'X'V'XU,)=A,’i kullanirsak, temel bilesenler

tahmin edici,

BT =UAU,' X'V y
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olarak elde edilmis olur. E[ee]=0c?V altinda temel bilesenler tahmin edicinin

yanlilig1,
Bias(5")=E(5) - 5
—[U,(U,"X'VIXU,) U, XV IX - 118
X'V*X =U,AU, +U,AU, " esitligini yerine yazarsak,
Bias(4)=[U.A, U, UA U, +UA U, ) -1 ] 5
=[UAU, UAU, +U AU, 'UA U, - 1] B

=[U 1A1_1A1U1 —11B
=[UU,-1]18

ve kovaryans matrisi,

Cov(B™)= Cov[U,A, U, ' X 'Vy]
=U,A, U, "X 'V Cov(y)(V 1) XU,A, U,
=c’UA, U, X'V (V) XUA U,
=c’UA, U X'VIXU, AU,
A
=o?U,A U,

olarak elde edilir. O halde temel bilesenler tahmin edicinin hata kareler ortalamasi,

MSE(ﬂAU) , ,6’): COV(ﬂA(r)) + Bias(/?“))Bias(B”))'
=c’UA, U, +[UU, - 1188 TUU, 1]

ve UU, -1 =-U,U," oldugundan dolay1
MSE(3", f)= o?U,A, U, "+UU, " g8'UU, "

olarak elde edilir.
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7.3. Jackknifed Ridge Tahmin Edici

Singh ve ark.’nm (1986), E[se]=0c’l_ altinda 6nerdigi jackknifed ridge

tahmin ediciyi Ozkale (2008), E[ee'1=c"V altinda vermistir. Buna gére jackknifed
ridge tahmin edici doniistiiriilmiis model lizerinden asagidaki gibi elde edilmistir.

SO =[1 —k3(X VX +kI) 214,

burada f,, GEKK tahmin edicisidir. Jackknifed ridge tahmin edici yanli bir tahmin

edici olup yanliligi,

Bias(3")=E(8")-
=[1-k2(X VX +k)?E(B) - B
=—k2(X VX +kI)?B

ve kovaryans matrisi, Cov(4,) = o?(X 'V *X)™ oldugundan dolay:

Cov(BD)=[1 —k2(X 'V X +KkI)?1Cov( S, )[I —k*(X 'V X +kI)?]"
=?[1 K3 (X 'V X +KI)2](X 'V IX) I =k2(X 'V X +k1) 7]

veya
Cov(BV)=0 [ 1+K(X VX +KD)™ (X VX +K) X VX (X VX 4k

[ T+k(X VX +kI)™ ]

olarak elde edilebilir. E[ee]=0"V altinda jackknifed ridge tahmin edicinin hata

kareler ortalamasi

MSE (B, )= Cov(A) + Bias(4)Bias(3™)"
= o [1 —K2(X VX K ZI0CV ) K3 (X VX +kE) ]
AKXV XK BBI(X VX +KT)

olur.
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7.4. Shrunken Tahmin Edici

Mayer ve Willke’nin (1973) E[ec]=o?l, altinda &nerdigi shrunken tahmin

ediciyi Trenkler (1984), E[ee]1=0c?V altinda incelemistir. Déniistiiriilmiis model
tizerinde elde edilen shrunken tahmin ediciyi 0 < c <1 olmak {izere,
S=c(X VX)XV
= CﬁG

olarak Onermistir. Burada ﬁe, GEKK tahmin edicisidir. Shrunken yanli bir tahmin

edici olup yanliligi,

Bias(4,)=E(4.,)- 8
=(c-)p

ve kovaryans matrisi,

Cov(B,)=c’Cov(f)
=c’o?(X VX))

olarak bulunur. E[ee]=0c?V altinda shrunken tahmin edicinin hata kareler

ortalamasi

MSE(A,, B)=Cov(,) + Bias(4.)Bias(43,)’
=’ (X VX)) +(c-1)* BB

olarak elde edilir.
7.5. Iterasyon Tahmin Edici

Trenkler (1978) hata kovaryans yapisinin sabit oldugu durumda onerdigi

iterasyon tahmin ediciyi genel hata kovaryans yapisina uyarlamistir (Trenkler, 1984).
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(4.3) esitliginde verilen doniistiirilmiis model yardimiyla iterasyon tahmin edici,

A

max !

X'V X matrisinin en biiyiik 6zdegeri olmak iizere

(1—aX. X)X, y.

(1-aX VX)X Vty ,O<0¢<% m=01..

i=0 max
seklindedir. W =W, =ay (1-aX 'v-lx)ix 'VX olmak iizere Trenkler (1984)
i=0
iterasyon tahmin ediciyi GEKK tahmin edicisinin lineer doniigiimii olarak

/A?m,a =W ﬁ’G formunda vermistir.

7.6. Alternatif Tahmin Edicilerin Performanslarinin Karsilastirilmasi

Hem degisen varyans/otokorelasyon hemde ¢oklu i¢ iliski problemelerinin
aynt anda meydana gelmesi durumunda Onerilen alternatif tahmin edicilerin
performanslarinin teorik olarak karsilastirilmast hata kareler ortalamasit (MSE)
kriterine gore yapilmustir.

Teorem 1: Farebrother (1976). A:mxm tipinde simetrik pozitif tanimli bir matris,
a: mx1 tipinde bir vektor ve « : pozitif bir say1 olmak iizere, « A—aa' "niin pozitif

tanimli (pozitif yar1 tammli) olmasi icin gerek ve yeter kosul, a'A™a< ()«

esitsizliginin saglanmasidir.

Teorem 2: Trenkler ve Toutenburg (1990). ﬁj j=12 p’nin herhangi iki lineer
tahmin edicisi olsun. D =Cov(/,)—Cov(f,) kovaryans farklarmmn pozitif tammli
oldugunu varsayalim. O halde, A= MSE(,@l)—MSE(ﬁZ) farkinin negatif olmayan

tanimli olmast igin gerek ve yeter kosul b;, ,[3’ ; ‘nin yanlilik vektoriinii gostermek

iizere b, '(D+bb, )b, <1 esitsizliginin saglanmasidir.
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Teorem 3: Trenkler (1984). (4.1) lineer regresyon modeli altinda ridge tahmin

edicinin MSE kriterine gére GEKK’den iistiin olmasi i¢in gerek ve yeter kosul,

ﬂ{% I, +(X 'VlX)lI p<o’

olmasidir.
Ispat 3: A = MSE(,BG, p)— l\/ISE(ﬁA’r , ) hata kareler ortalamasi farkinin pozitif yar1

tanimli olmasi igin gerek ve yeter kosullar incelensin.

A=’ (X'VIX) T = (X VX +KD)X 'V X(X'V X +k)™?
—KZ(X'VIX +KD)TBB(X VX +kD) T

[G2(X VX +KD(X 'V X)X 'V X +KI)

=(X'V X +k)* (X'VIX +kI)*!
__GZ(X |V—1x)_ kzﬂﬂ'
2(X VX + 2K +K2 (X VX))
= (X'V X 4k o™ ( 2K+ )) (X VX +kl)™
_GZ(X |V—1x)_k2ﬁﬁ|
| Ay 'in pozitif yar: tanumli olmas igin bu par¢amin pozitif yar: tanimli olmasi gerek

olmak iizere, A=c?(2kI ot k?(X'V*X)™) pozitif tanimli matris ve a=k/ dersek,

Teorem 1 yardimuiyla,
B'K[o? (2K ot K2(X'VX) D kB <1

BIK[2KI +KZ(X 'V IX) KA < o2

ﬂ'[%lp +(X 'V‘1X)‘1] B<o’

esitsizliginin saglanmasi gerekir.
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Teorem 4: (4.1) lineer regresyon modeli altinda temel bilesenler tahmin edicinin

MSE kriterine gore GEKK’den {istiin olmasi i¢in gerek ve yeter kosul,

BUAN, <o

esitsizliginin saglanmasidir.
Ispat 4: A, = MSE(ﬁG,ﬂ)—MSE(ﬂA(r),ﬂ) hata kareler ortalamasi farkinin pozitif

yar1 tanimli olmasi igin gerek ve yeter kosul incelensin.

A, =c*(X'VX)'-c’UA, U, -U U, BBUU,"
(X'V*X)=U,(A) U, "+U,(A,) U, " esitligini kullanarak

A= U,AU,~U U, U,

=U, [O-ZAgl _U2|ﬂﬁluz]uz'

o’A;'-U,' BB'U, pozitif yari tanimli ise A, ’de pozitif yar1 tanimlidir. A=o?A}"
ve a=U,'S alinarak Teorem 1 uygulanirsa

B'U,'[A,T'U,'B<o?

B'UAM, ' p<o

esitsizligi elde edilir.
Teorem 5: Ozkale, (2008). (4.1) lineer regresyon modeli altinda jackknifed ridge
tahmin edicinin MSE kriterine gére GEKK’den iistiin olmasi i¢in gerek ve yeter

kosul,

K?B'[ 2(X 'V 7*X) + 4Kl +k* (X 'V’1X)’l]_lﬂ <o’

esitsizliginin saglanmasidir.
Ispat 5: A, = MSE(ﬁA’G,,B)—MSE(,BA(J),,B) hata kareler ortalamasi farkinin pozitif

yar1 taniml1 olmasi igin gerek ve yeter kosul incelensin.
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A= (X VXY = a?[1 —K?(X 'V X +kI) 2]
(X 'V X)L =K2(X VX k1) 2]
KXV X KD 2 BBI(X VX + kI

sagdan ve soldan (X 'V X +kl)™ parantezine alinsin.

[G2 XV X HK2(X VX)XV X KT
—G2(X VX K21 =KX VX +K1) D)

XX VX =KXV X KD )(XV X kY
KB

Ay =(X VX +KI)? (X'V X +kI)?

A, ’tin pozitif yar1 tanimli olmasi i¢in koseli parantez i¢indeki parcanin pozitif yar1

tanimli olmasi gerekmektedir. Gerekli diizeltmeler yapildiktan sonra bahsi gegen
ifade,

2k26? (X 'V X)X 'V TEX +KI)? =K e (X VX)) —k* BB
durumuna doniisiir.
A=2k*c*(X'V X)X 'V X +k1? —k*a? (X 'V X)) ™ dersek,

A=K20? (X 'V X) [ 2(X 'VX)? +4K(X 'V TX) + 2K 1 =K1 |
=k?o?[ 2(X 'V IX) + 4kl +K* (X 'V X) ]
olup A pozitif tanimli bir matris oldugundan Teorem 1’in kullanilmasi ile
kB[ 2(X 'V 7X)+ 4Kl +k*(X 'v-1X)-1]’1ﬁ <o’

esitsizligi elde edilir.
Teorem 6: (4.1) lineer regresyon modeli altinda shrunken tahmin edicinin MSE

kriterine gore GEKK’den ustiinliigii i¢in i¢in gerek ve yeter kosul,
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2
B'(X 'V‘lX)ﬂS M
1-c
esitsizliginin gegerli olmasidir.
Ispat 6: A, = MSE([;’G, S)— MSE(ﬁ’C, /) hata kareler ortalamasi farkinin pozitif yari

taniml1 olmasi igin gerek ve yeter kosul incelensin.

A=0?(XVIX)' =c??(X'VX) = (c-1)° BB"
=o’(1-c*)(X'VX) = (c-1)°*BB"
olur ve 0<c<1 oldugundan dolayr o*(1—c?)(X'V'X)™" pozitif tanimli bir

matristir. Dolayistyla Teorem 1’in sonucunun A,’e direkt uygulanmasi ile,

L'c-D[A-c*)o*(X'VX)' T Hc-)p<1
o’(c+1)

B(X'VX)p<——, 0<l-c<1
1-c
esitsizligi elde edilmis olur.
Teorem 7: Ozkale (2008). (4.1) lineer regresyon modeli altinda jackknifed ridge
tahmin edicinin yanlilig1 ridge tahmin edicinin yanliligindan daha kiigliktiir:

[Bias(3))| <|Bias(3)| . k>0,

ispat 7: Bias(f)=-k(X'VIX+kl)B ve Bias(B”)=—k*(X'VIX +kl)?2g

olmak tizere,

. A |12 . ~ 2
|Bias(8,)| - |Bias(3)| = p'cp
2
olur. Burada G =K*(X'V X +kI) ? —k*(X VX +kI) “dir ve G, & ?},(i' :)24—”
. T

kosegen elemanlari ile kdsegen bir matristir (4, X'V X ’in 6zdegerleridir). B'G/3

k >0 i¢in pozitif bir matristir.
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Teorem 8: Ozkale (2008). (4.1) lineer regresyon modeli altinda

ot +k B 20X VEX) 3Kk | (X VIX) 1B 20
esitsizli gecerli ise jackknifed ridge tahmin edici MSE kriterine gore ridge tahmin
ediciden daha tistiindiir.

Ispat 8: A, = MSE(,&, B)—MSE(BY, B) hata kareler ortalamasi farkiin pozitif

yar1 tanimli olmasi i¢in kosul incelensin.

D=(X'VX+k)™*X'V X(X'V*X +kI)™
1 =k*(X'VEX +KD)Z]XV X)) =KA(X 'V X +kD )

b =-k(X'V*X+kI)*B ve b, =—k*(X'V*X+kl)?B olmak iizere Teorem 2

yardimiyla A, farki A;=c’D+bb '~b,0," glarak yazilabilir, X 'V X =Z dersek,

As

(Z+k1)Z(Z +k)™

—(I =k*(Z+kl)Hz™

x(1 —k?(Z +kl)?

+kA(Z + KT BB(Z + K1)

L'k (Z +klI)? kK*(Z+kl)?p <o’

seklinde yazilabilir. k*(Z+kl)'BB'(Z+kl)™ pozitif tanimli oldugundan

esitsizlikten ¢ikartilabilir.

L'KA(Z +KDP[(Z +K)Z(Z k)T
—(1 =k*(Z+kD)?)Z( =K*(Z + kD 2T KX (Z +kI)* < o2

BK[(Z+KNZ(Z +KI)—[(Z +KI)* =k 1IZ[(Z +KI)* -K*1] |k*B< 07
ka2 V) 43K ] (X VIX) B <o’

o +K°B[ 2(X 'V X)+3K ]‘l (X'VX)1B20
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olur.

Teorem 9: (4.1) lineer regresyon modeli altinda Vi=12,...,p icin 4, X'V X ’in

Ozdegerleri olmak tizere, 4, < 1C—k iken,
—C

kB[ (€ =D)(X 'V *X) +2ke” | +¢°Kk* (X 'V’1X)’1)T,B§ o’

esitsizligi gegerli ise ridge tahmin edici MSE kriterine gore shrunken tahmin ediciden

daha tistiindiir.
Ispat 9: A, = MSE( ﬁc ) — l\/ISE(,Br , #) hata kareler ortalamasi farkinin pozitif yari

tanimli olmasi igin gerek ve yeter kosul incelensin.

D=c*(X'V*X)" = (X'V*X+KkD)*X'VX(X'V X +kI)™ b=(c-)p ve
b, =—k(X 'V X +kI)™" 3 olmak iizere A, =c’D+hb '~b,b," olur.
(c-1)*BB" pozitif tamml oldugundan dolay1 o®D—b,b," pozitif yar1 taniml ise

A ’da pozitif yar1 tanimlidir.

_CZ(X VX kDX VX))
(X VX KD = X'V
=(X'VIX +kI)* (€ -D)X VX +2ke’
y +C’k* (X VX))
=U[(*-DX'V X +2ke’l +¢?k*(X 'V X) U

D=(X 'V X +kl)™ }(x VX 4kl

(X 'V X +k)™?

U

olmak tlizere Teorem 1’in uygulanabilmesi i¢in D ’nin pozitif tanimli olmas1 gerekir.

O halde D’nin pozitif tanimliligi incelensin. D ’nin kdsegen elemanlari, 4,

X'V ~*X matrisinin 6zdegerleri olmak iizere,
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c’k?  (c®—1)A% +2kc* A, +c’k’
A

(A k)= A

A

2 Y
Ch+ky -4 >0 olmas1 gerekir.

(c* 1) A +2kc® +

dir. D ’nin pozitif taniml1 olmasi i¢in
1

c?(A4 +k)*—A? >0 olmasi igin ancak ve ancak c(A4 +k)> A veya c(A +k) <-4
olmast gerekir. 4 >0 oldugundan dolay1r c(A4 +Kk)<—A’nin saglanmasi

olanaksizdir. O halde D ’nin pozitif tanimli olmasi igin c(4 +K) > 4 ’nin saglanmasi
gerekir. Diger bir ifadeyle A <1(:—k iken D pozitif tanimli olur. D ’nin pozitif
—C

taniml1 olmasi igin gerek ve yeter kosul bulunduktan sonra Teorem 1’in uygulanmasi

ile °D—b,b, "’nun pozitif yari tanimli olmasi igin gerek ve yeter kosul

k2B (€ (X 'V EX)+2ke® | +7kP (X VX)) ] p<o?

olarak elde edilir.
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8. EKONOMETRIK BiR UYGULAMA

Bu boéliimde yapilan teorik karsilastirmalar gergek bir 6rnek {iizerinde
incelenecektir. Kullanilan veriler sampuan ve sabun iireten bir firmanin sampuan
satiglarinin haftalik degisimlerini ve bir sonraki hafta i¢in olusacak talebi tahmin
etmeyi amaglayan Bayhan ve Bayhan’in (1998) ¢alismalarindan alinmistir. Tablo 8.1
ve Tablo 8.2°de satislarin standartlagtirillmis 75 haftalik gozlemleri yiiksek ve

diizensiz enflasyon periyodunda verilmistir. Tablo 8.1 ve Tablo 8.2°de verilen y;, Y,
satilan sampuanlarin haftalik miktarlarini, X, X; haftalik fiyat listesini (tiriiniin
satis1 yapilan marketlerdeki fiyat ortalamasi) ve X, X;, sampuanin ikamesi olan

belli markada sabunun fiyat listesini ifade etmektedir.

Standartlastirilan degiskenler i¢in model

j=12,..,15

yj :ﬂlle+ﬂ2xj2+ej ) E(ej):O, E(ejej+k):O-2pk {k:0,1,2,...,14

olarak tanimlanmistir. Bu denklem matris formunda
y=Xp+e E(€)=0 E(ee)=0c%

seklinde gosterilebilir. Genel kovaryans matrisi bilinmediginden Tablo 8. 1°de
verilen ge¢mis veri yardimiyla V matrisi tahmin edilmis ve tahmin edilen V matrisi
Tablo 8. 2°de verilen mevcut veri i¢in kullanilmistir. Dolayisiyla gegmis veriden
tahmin edilen V matrisi, mevcut veri igin biliniyor kabul edilmistir. Gegmis veriden
tahmin edilecek V matrisi (6.15) esitliginde verilen Bayhan ve Bayhan (1998)’in
tanimlamis oldugu gecikmeli otokorelasyonlara bagli olan V' matrisi formundadir.

Tablo 8.3’de 14 gecikme i¢in tahmin edilen rezidiilerin otokorelasyonlart verilmistir.
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Tablo 8.1. Gegmis veri (Historical data) i¢in 60 haftalik fiyat ve sampuan
satiglarinin verisi

S:zlem Yi Xiy Xi2 s:zlem Yi Xiy Xi2

1 -0.2164 -0.2128  -0.2455 31 0.0050 0.0764  0.0448
2 -0.2089 -0.2128  -0.2455 32 0.0126 0.0813  0.0448
3 -0.2017 -0.1948  -0.2288 33 0.0194 0.0813  0.0448
4 -0.1942 -0.1948  -0.2288 34 0.0269 0.0241 0.0081
5 -0.1866 -0.2838  -0.2288 35 0.0347 0.0241 0.0081
6 -0.1799  -0.1883  -0.2288 36 0.0414  0.0510  0.0081
7 -0.1721  -0.1858 -0.2021 37 0.0490  0.0657  0.0382
8 -0.1650  -0.1393  -0.1821 38 0.0566  0.0649  0.0382
9 -0.1572  -0.1393  -0.1821 39 0.0643  0.1098  0.0815
10 -0.1570 -0.1393 -0.1821 40 0.0712 0.1098  0.0815
11 -0.1428 -0.1066  -0.1287 41 0.0784  0.1098  0.0815
12 -0.1352 -0.1066  -0.1287 42 0.0861 -0.0519 0.1016
13 -0.1279  -0.1066 -0.1287 43 0.0933  -0.0519 0.1016
14 -0.1203 -0.1883  -0.0920 44 0.1011 0.1327 0.1016
15 -0.1134 -0.0641  -0.0920 45 0.1080 0.1327 0.1016
16 -0.1721 -0.0641  -0.0920 46 0.1160 0.1327 0.1049
17 -0.0983 -0.0641 -0.0620 47 0.1225 0.1450  0.1049
18 -0.0912  -0.0641 -0.0620 48 0.1303  0.1450  0.1049
19 -0.0836  -0.0217 -0.0620 49 0.1380  0.0077  0.1850
20 -0.0760  -0.0217  -0.0620 50 0.1452  0.0077  0.2050
21 -0.0691 -0.0217  -0.0620 51 0.1523 0.1499 0.1416
22 -0.0612 -0.0217  0.0382 52 0.1597 0.1499 0.1416
23 -0.0544 0.0404  0.0382 53 0.1674  0.1499 0.1416
24 -0.0472 -0.0249  -0.0519 54 0.1747 0.1736  0.1416
25 -0.0393 -0.0249  -0.0519 55 0.1823 0.1736  0.1483
26 -0.0317  -0.1638 -0.0286 56 0.1890  0.1809  0.1483
27 -0.0241 -0.2210 -0.0286 57 0.1964  0.1809 0.1483
28 -0.0170 0.0412 -0.0152 58 0.2040 0.0012 0.1750
29 -0.0098  0.0412  0.0448 59 0.2117  0.2038  0.1750
30 -0.0027 0.0764  0.0448 60 0.2189 0.2160  0.1850
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Tablo 8.2. Mevcut veri (Fresh data) i¢in 15 haftalik fiyatlar ve sampuan

satiglarinin verisi

Gozlem Y, Xy Xj,

no

1 -0.0875 -0.4219 -0.4299
2 -0.1810 -0.3634 -0.3634
3 -0.2652 -0.3049 -0.2970
4 -0.3553 -0.2380 -0.2305
5 -0.3094 -0.1795 -0.1640
6 -0.2318 -0.1210 -0.1308
7 -0.1534 -0.0624 -0.0643
8 -0.0892 0.0463 0.0022
9 -0.0049 0.0546 0.0687
10 0.0801 0.1131 0.1352
11 0.1619 0.1800 0.1684
12 0.2411 0.2302 0.2349
13 0.3145 0.2971 0.3014
14 0.3905 0.3556 0.3679
15 0.4897 0.4141 0.4011

Tablo 8.3. Gegmis Veri rezidiileri i¢in tahmin edilen otokorelasyonlar

Gecikme D

1 0.7072
2 0.4165
3 0.2825
4 0.1676
5 0.1194
6 0.2127
7 0.2492
8 0.1624
9 0.1080
10 0.0824
11 0.0247
12 -0.0564
13 -0.1043
14 -0.1029

Mevcut veri i¢in ACF ve PACF grafikleri Sekil 8.1 ve 8.2’de verilmistir.

ACF ve PACF grafikleri incelendiginde hatalarin 1. dereceden veya 2. dereceden
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otoregresif olabilecekleri goriilmistiir. Bu sonu¢ Bayhan ve Bayhan’in (1998)

sonuglar1 ve Ozkale’nin (2009) sonuglar ile benzerlik gdstermektedir.

Sample Autocorrelation Function (ACF)
1 T T T T

08

06

04

-
L 0

Sample Autocorrelation
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L s Mt s st s
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P i i | | | i
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Sekil 8.1. Mevcut veri i¢in otokorelasyon grafigi

Sample Partial Autocorrelation Function
1 T T T T T T
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Sekil 8.2. Mevcut veri i¢in kismi otokorelasyon grafigi

Hatalarin degisen varyansli olup olmadigi belirlenmek istenmistir. Degisen

varyansin var olup olmadigini belirlemek icin sistematik bir test olan Goldfeld-Quant
testi kullamlmistir. Goldfeld-Quant testinde H,:of <o? <...<oj alternatif

hipotezini test edebilmek icin izlenen adimlar asagidaki gibidir.
Yanit ve agiklayic1 degiskenlere ait veri kiimesi, herhangi bir agiklayic1 degiskene

gore (X;, olsun) en kiigiik degerden en biiyiik degere dogru siralanmustir.
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I.  Veri kiimesini esit gozleme sahip iki alt gruba ayirabilmek icin kiigiik ve
biiyiilk gozlemler arasinda kalan r=3 tane gozlem veri kiimesinden
cikartilmigtir.

ii. Geriye kalan n—-r=15-3 gozlem biri agiklayici degiskenlerin biiyiik
degerlerinin biri de kiiclik degerlerinin yer aldig iki esit sayida alt kiimeye
ayrimistir.

TR Ulnl))
2

gbzlem ile son

n—-r
( 5 ) gbzleme ayr1 ayr1 EKK uygulanarak iki

ayr1 regresyon tahmin edilmis ve her iki regresyona ait rezidii kareler
toplamlar1 hesaplanmistir.
Iv.  Agciklayict degiskenlerin biiyiik degerlerini igeren rezidii kareler toplami

(S, =0.2653), agiklayict degiskenlerin kiigiik degerlerini igeren rezidii
kareler toplamma (S, =1.2204) oranlanmis ve F istatistik degeri

_0.2653 0.2174 olarak bulunmustur.

St 1.2204

V.  Hesaplanan istatistik degeri, 0.05 6nem diizeyinde ( n-r 2_ 2p , n- r2_ 2 pj

serbestlik dereceli F tablo degeri F,, =6.39’nden kigtik oldugu i¢in sifir

hipotezinin red edilemedigi gozlenmistir. Yani kullanilan veri kiimesi i¢in

hatalarin sabit varyansli oldugu sonucuna varilmstir.
Bolim 6’da E(ee)=® =0V genel kovaryans yapisinin otokorelasyonlu

olabileceginden bahsedilmisti. Kullanilan mevcut veri kiimesi i¢in otokorelasyonun

var olup olmadigini test etmek igin DW test istatistigi kullanilmis ve
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olarak hesaplanmistir. 0.05 6nem diizeyinde kritik degerler n=15 i¢in d, =0.95 ve
d, =1.54 olarak belirlenmistir. Boylece Tablo 8.2°deki veri i¢in hata terimleri

arasinda otokorelasyonun oldugu sonucuna varilmistir. Bu sonug¢ Giiler ve
Kagiranlar’in = (2009) c¢alismasi ile benzerlik gostermistir. PACF  grafigi
incelendiginde AR yapismin ikinci dereceden oldugundan siiphelenilmistir. AR
yapisinin daha yiiksek dereceden olmadigini Ozkale (2009) gostermistir. Dolayisiyla
hatalarin AR(1) yapisinda oldugu sonucuna varilmistir.

Mevcut veride agiklayict degiskenler arasinda bir iligkinin var olup

olmadigin1 belirlemek i¢in ilk adim olarak Tablo 8.2’de verilen mevcut veri igin
X'V X matrisinin 6zdegeri hesaplanmustir. (6.15) esitliginde verilen Toeplitz

formunda V matrisini kullanarak, X'V ™*X atrisinin dzdegerleri 4 =0.7941

A, =0.0086 olarak bulunmustur. Bu durumda kosul sayisi K1=;1Lmax =92.3372

olarak hesaplanmistir. (6.16) esitliginde verilen AR(1) yapisinda V  matrisini
kullanarak X'V™'X matrisinin 6zdegerleri A, =0.7706, A, =0.0065 olarak

bulunmustur. Bu durumda kosul sayis1 K, = A =119.2944 olarak hesaplanmistir.

min

Toeplitz formunu kullanarak K; kosul sayist 100’e yakin oldugu igin agiklayici

degiskenler arasinda orta siddetli ¢oklu i¢ iliskinin oldugu goriilmiistir. AR(1)
yapisinda ise K, kosul sayist 100’den biiyiik oldugu i¢in aciklayici degiskenler
arasinda siddetli ¢oklu i¢ iliskinin oldugu goriilmiistiir Mevcut veride hem agiklayici
degiskenler arasinda ¢oklu iliski hem de hatalar arasinda iligski tespit edilmistir.
Bolim 7°de belirtilen alternatif tahmin ediciler incelenerek bu sorunlar asilmaya
caligilmistir.

GEKK tahmin edicisi ve GEKK’ye alternatif tahmin ediciler incelenmistir.

Otokorelasyonlu hataya ve ¢oklu i¢ iliskili agiklayic1 degiskenlere sahip olan

y=Xﬂ+e’ E(€)=0, E(ee')=c?V
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modelde V,, Toeplitz formda V matrisi ve V,, AR(1) yapisinda V matrisi olmak
uzere

1.0000
0.7072 1.0000
0.4165 0.7072 1.0000
Vl: : :
-0.1043 -0.0564 ... 1.0000
-0.1029 -0.1043 ... 0.7072 1.0000), ..
Ve
1.0000
0.7195 1.0000
0.5176  0.7195 1.0000
V2: : :
0.0138 0.0192 ... 1.0000
0.0100 0.0138 ... 0.7195 1.0000

15x15

modelin GEKK tahmin edicisi

B, = (X VX)XV My

~(0.4060 0.3927 003223 (0.3473

- 10.3927 0.3967) (0.3196) |0.4617
ve

:éez =(X 'Vz_lx )_1 X IVz_ly

(03918 0.3821)(0.2935) (0.7227

-1 0.3821 0.3853) (0.2866) (0.0272
olarak elde edilmistir.

o (V=X BV =X By)

6t = =0.0173,
ﬁGl n— p
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=0.0140

2 =X Be) V(Y= X Bs)
Bs, n-p
olmak tizere, GEKK tahmin edicisinin kovaryans matrisi Toeplitz formunda olan V,

ve AR(1) yapisinda olan V, igin,

Cov(f3, )= &;Gl(x VX))

1.0098 -0.9997
-0.9997 1.0334

ve

Cov(fis, =65 (X'V,"X)"

(1.0834 -1.0743
1 -1.0743 1.1017

olarak hesaplanmis olup genellestirilmis en kiiglik kareler tahmin edici yansiz

oldugundan V, igin skaler hata kareler ortalamasi SMSE, =2.0432 ve V, i¢in
G

skaler hata kareler ortalamas1 SMSE ., =2.1851 olarak tahmin edilmistir.

o’V durumunda GEKK’ye alternatif olarak Trenkler (1984) tarafindan

onerilen shrunken tahmin edici 6zel olarak ¢=0.5 i¢in
B. =Cchs =c(X 'V, X)XV, Yy

_ 5[ 04060 0.3927)7(0.3223) _(0.1737
- 77103927 0.3967) (0.3196) (0.2309

ve

:écz = C:éez =c(X IVz_lx)_lx IVz_ly
05 0.3918 0.3821) '(0.2935 _(0.3614
~ 77103821 0.3853) (0.2866) |0.0136
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olarak elde edilmistir. Shrunken tahmin edicinin kovaryans matrisi Toeplitz

formunda olan V, ve AR(1) yapisinda olan V, igin,

P 212 nys-1 -1
Cov(B, )=c aﬁq(x V,"X)

(02524 -0.2499
1 -0.2499 0.2583

ve
Cov(B, )= 026'262 (X 'V, X)™

~(0.2709 -0.2686
1 -0.2686 0.2754

olarak hesaplanmustir. Bei , Toeplitz veya AR(1) yapisinda V matrisini kullanarak
tahmin edilen GEKK tahmin edicileri olmak iizere Shrunken tahmin edici
bias(ﬁ}i)=(c—1),3Gi (i=1,2) ile yanli bir tahmin edici oldugu i¢in skaler hata

kareler ortalamasi,
SMSE :trace[Cov([}’cl) +Bias(/3, )Bias(4, ) J =0.5942

SMSE,, =trace[Cov(5’cz)+ Bias(, )Bias(ﬁ’cz)'} =0.6770

olarak bulunur. Shrunken parametresi c’nin 0-1 arasindaki farkli degerleri ile

shrunken tahmin edicinin katsayilar1 ve skaler hata kareler ortalamalar1 V, ve V, i¢in

sirastyla Tablo 8.4 ve Tablo 8.5’de verilmistir.

Trenkler ‘in (1984) 6nerdigi ridge tahmin ediciyi inceleyelim. Mevcut veri
icin ridge parametresi K nin se¢imi Firinguetti’nin (1989) calismasina benzer olarak

Hoerl, Kennard ve Baldwin’in (1975) 6nerdigi yanlilik parametresine gore

pé; pé;
k, = =—2-=0.1038, k, =<2 = 0.0535
B B, Bs, B,
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olarak elde edilmistir. Burada j; , ve f3 swrast ile V, ve V, kullanarak elde edilen

GEKK tahmin edicisidir.

/311 = (X VX +k D)XV Yy
0.5098 0.3927) '(0.3223
0.3927 0.5005) |0.3196

~(0.3550
1 0.3599

B, = (X 'V, X k1) XV, Ty
0.4453 0.3821) '(0.2935
0.3821 0.4388) |0.2866

~(0.3906
103131

olarak hesaplanir. Ridge tahmin edicinin kovaryans matrisi Toeplitz formunda olan

ve

V, ve AR(1) yapisinda olan V, igin,
COV(ﬁA’rl )= 6-12?91 (X'V, X + ki p)’1X VXXV X+ p)’1

~(0.0144 0.0027
~10.0027 0.0144
ve

Cov(f, )= 62 (X VX kol )XV X (X OV, X Al )

0.0205 -0.0046
-0.0046  0.0205

olarak elde edilmistir. Ridge yanli bir tahmin edici oldugundan dolay: skaler hata

kareler ortalamasi

SMSE,, = trace [Cov(ﬁrl) +Bias(/3,)Bias(j3,) ] =0.0393
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SMSE, =trace [Cov(,@rz )+Bias(/3, )Bias(8, ) J =0.2330

olarak bulunmustur. Ayrica yanlilik parametresinin se¢imi Lawless ve Wang’in

~2
o
P Bs

(1976) onerdigi v BG' X'V*X ﬁG “ya gore de yapilmis olup sonuglar1 Tablo 8.4
ve Tablo 8.5’de verilmistir.

k, =0.1038 ve k, =0.0535 i¢in jackknifed ridge tahmin edici,
A==k (X VX + k) #15,
(05716 0.4199)(0.3473
- 10.4199 0.5617 )| 0.4617
_(0.3924
~ 0.4052
ve
ﬁz(J): [l _kzz(x IVz_lx + kzl)_z]lée2
~{0.6031 0.3960)(0.7227
~10.3960 0.5964 ) 0.0272
_(0.4467
| 0.3024
olarak bulunmustur. Jackknifed ridge tahmin edicinin kovaryans matrisi Toeplitz
formunda olan V, ve AR(1) yapisinda olan V, igin,

Cov(3)= &;@ [1-k2(X V)X +k, )]

(X VX)L - K2 (X VX +k 1)
(00323 -0.0111
1 -0.0111 0.0325

Cov(B,7)= 6% 1=k, (X V"X +k,1) 7]

ve

(X 'V, ) = k,2(X 'V, X +ky1) 7
(10,0537 -0.0360
~1-0.0360 0.0543

87



8. EKONOMETRIK BIR UYGULAMA Tugba SOKUT

olarak hesaplanmistir. Burada &. *ve & A 2 GEKK yéntemine gore o ’nin yansiz
G1 G2

tahminleridir.

Jackknifed ridge yanli bir tahmin edici oldugundan dolay1 skaler hata kareler

ortalamasi
SMSE ., = trace [Cov(,[}l“)) +Bias(3")Bias(4") } = 0.0700
SMSE =trace[Cov(ﬁ2(”)+ Bias(Bz(J))Bias(Bz(”)'} = 0.2599

olarak elde edilmistir. Jackknifed ridge tahmin edicinin k;, yanlilik parametresine
gore tahmini sonuglar1 V, ve V, i¢in sirast ile Tablo 8.4 ve Tablo 8.5’de verilmistir.

Trenkler’in (1984) onerdigi temel bilesenler tahmin edici igin toplam
varyansin %80’ini agiklayan bilesenler alinmistir. Elde edilen iki 6zdegerden kiiciik

olan 6zdegere karsilik gelen degisken modelden atilmistir (Rencher, 2002).
BO=Tr(Tr X VXTr)™Tr X v,y
_(0.4066
~0.4018
ve

BUO=Tr(Tr' X 'V, XTr)Tr' X 'V, y
_( 0.3780
10.3748
olarak hesaplanmis ve kovaryans matrisi Toeplitz formunda olan V, ve AR(1)

yapisinda olan V, igin;

Cov(B")= 67 Tr(Tr X 'V *XTr) *Tr’

~(0.0110 0.0109
~10.0109 0.0108

ve
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Cov(B, "= 67 Tr(Tr X 'V, " XTr)*Tr’

0.0092 0.0091
0.0091 0.0090

olarak elde edilmistir. Temel bilesenler tahmin edici yanli oldugundan dolay1 skaler

hata kareler ortalamasi

SMSE ,,, =trace [Cov(ﬁlm) +Bias(3"”)Bias(4") } =0.0289

SMSE,, =trace [Cov(ﬁz(”) +Bias(4,")Bias(5,") } =0.2578

olarak bulunmustur.

Tablo 8.4. Mevcut veri i¢in alternatif tahmin edicilerin Toeplitz formunda V matrisi
altinda k., =0.1038, k , =0.1335, ¢, =0.25, ¢,=0.50, c,=0.75 ve

¢, =0.90 ile tahmin edilen parametre Katsayilar1 ve skaler hata kareler
ortalamalarinin Karsilagtirilmasi

2 A Bias SMSE
By P,
GEKK 0.3473 0.4617 - 2.0432
C, 0.0868 0.1154 0.1878 0.3155
c c, 0.1737 0.2309 0.0835 0.5492
]
E c, 0.2605 0.3463 0.0209 1.1701
% C 0.3126 0.4155 0.0033 1.6583
A
Ridge k 0.3550 0.3599 0.0104 0.0393
HKB
Kiw 0.3445 0.3476 0.0130 0.0364
Jackknifed Ko 0.3924 0.4052 0.0052 0.0700
Ridge
%9 Kiw 0.3912 0.4005 0.0057 0.0543
Temel Bilegenler 0.4066 0.4018 0.0071 0.0289

Tablo 8.4’den elde edilen sonuglara gore, shrunken tahmin edicinin farkli
parametre degerleri icin SMSE degerleri GEKK tahmin edicisinin SMSE’sinden
oldukca kiigiiktiir. Ancak shrunken parametresi C’nin artan degerleri i¢in SMSE'si
GEKK’nin SMSE degerine yakinsamaktadir. C’nin artan degerleri i¢in shrunken
tahmin edicinin yanlilig1 azalmaktadir. Ridge ve jackknifed ridge tahmin edicilerin

SMSE degerleri k parametresinin farkli degeleri i¢in verilmistir. k ,, parametresini

kullanarak yapilan tahminlerin K, parametresini kullanarak yapilan tahminlere gore
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daha kiiciik skaler hata kareler ortalamasi verdigi gozlenmistir. Jackknifed ridge
tahmin edicinin yanlili1 ridge tahmin edicinin yanlilifindan daha kii¢liktiir. En
kiigiik SMSE degerini temel bilesenler tahmin edici vermektedir ve dolayisiyla temel
bilesenler tahmin edici en iyi performansi gostermektedir.

k ’nin 0-1 arasinda artan degerlerine karsilik ridge ve jackknifed ridge tahmin
edicinin SMSE degerleri GEKK ve temel bilesenler tahmin edicinin SMSE degeri ile
birlikte Sekil 8.3’de verilmistir. C’nin 0-1 arasindaki artan degerlerine karsilik
hesaplanan shrunken tahmin edicinin SMSE degerleri ile GEKK tahmin edicisinin
SMSE degeri Sekil 8.4’de verilmistir.

— Ridge

== Jackknifed Ridge
1 =~+=-Temel Bilegenler

02 03 04 05 06 07 08 09 1
k

Sekil 8.3. Toeplitz formunda V matrisi i¢in k'ya kars1 tahmin edicilerin SMSE
degerleri
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Sekil 8.4. Toeplitz formunda V matrisi igin C ’ye kars1 Shrunken tahmin edicinin ve
GEKK tahmin edicinin SMSE degerleri

Sekil 8.3’den goriildiigii iizere yanlilik parametresi k arttikga ridge ve
jackknifed ridge tahmin edicilerinin skaler hata kareler ortalamasi azalmaktadir.
0<k <0.15 iken ridge tahmin edicinin SMSE degerleri jackknifed ridge tahmin
edicinin SMSE degerlerinden daha kiigliktiir. Ancak 0.15<k <1 araligindaki
yanlilik parametresi i¢in ridge ve jackknifed ridge tahmin edicilerin SMSE degerleri

birbirine cok yakindir. Teorem 8’de verilen

o + kB[ 2(X VX)) + 3K ]’l(x VX)?A>0 kosulu o* yerine 6% ve A yerine

ﬁG alinarak k =0.15 i¢in 0.0202>0 olarak bulunmus olup kosulun saglandigi

gozlenmistir.

GEKK yanlilik parametresine bagli olmadigindan sabit kalmakta ve temel
bilesenler tahmin edici her durumda en iyi performans: gostermektedir.

Sekil 8.4’den goriildiigli lizere, C’nin artan degerleri i¢in shrunken tahmin
edicinin SMSE'si, GEKK’nin SMSE degerine yaklagmaktadir. ¢ =1 i¢in shrunken
tahmin edicinin SMSE’si GEKK tahmin edicinin SMSE’sine esit olmaktadir.
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Tablo 8. 5. Mevcut veri igin alternatif tahmin edicilerin AR(1) yapisinda V matrisi
altinda k., =0.0535, k,, =0.1273, ¢, =0.25, ¢, =0.50, ¢, =0.75 ve

¢, =0.90 ile tahmin edilen parametre katsayilar1 ve skaler hata kareler
ortalamalarinin Karsilastirilmasi

2 2 Bias SMSE
By p,
GEKK 0.7227 0.0272 - 2,1851
C, 0.1807 0.0068 0.2942 0.4308
c c, 0.3614 0.0136 0.1308 0.6770
Q
§ C, 0.5420 0.0204 0.0327 1.2618
5 c 0.6505 0.0245 0.0052 1.7752
4
Ridge k 0.3906 0.3131 0.1920 0.2330
HKB
kLW 0.3411 0.3049 0.2228 0.2412
Jackknifed Ko 0.4467 0.3024 0.1519 0.2599
Ridge
g kLW 0.4029 0.3345 0.1967 0.2334
Temel Bilesenler 0.3780 0.3748 0.2397 0.2578

Tablo 8.5’den elde edilen sonuglara gore, AR(1) yapisinda V matrisi i¢in
shrunken tahmin edicinin farkli parametre degerleri i¢in SMSE degerleri GEKK
tahmin edicisinin SMSE’sinden olduk¢a kiigiiktiir. Ancak shrunken parametresi
C’nin artan degerleri igin SMSE'si GEKK’nin SMSE degerine yakinsamaktadir.
C’nin artan degerleri i¢in shrunken tahmin edicinin yanliligi azalmaktadir. Ridge
tahmin edicinin k., yanllik parametresini kullanarak bulunan skaler hata kareler
ortalamasinin K, yanlilik parametresini kullanarak bulunan skaler hata kareler
ortalamasina gore daha kiigiik oldugu gozlenmistir.Jackknifed ridge tahmin edicinin
K, parametresini kullanarak bulunan skaler hata kareler ortalamasinin Kg

parametresini kullanarak bulunan skaler hata kareler ortalamasina gore daha kii¢iik
oldugu gozlenmistir. Jackknifed ridge tahmin edicinin yanliligi ridge tahmin edicinin
yanliligindan daha kiigiiktiir. En kiicik SMSE degerini K, yanlilik parametresini
kullanan ridge tahmin edici vermistir.

K ’nin 0-1 arasinda artan degerlerine karsilik AR(1) yapisinda olan V matrisi
ile ridge ve jackknifed ridge tahmin edicinin SMSE degerleri GEKK ve temel
bilesenler tahmin edicinin SMSE degeri ile birlikte Sekil 8.5’de verilmistir. € *nin O-
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1 arasindaki artan degerlerine karsilik hesaplanan AR(1) yapisinda olan V matrisi ile
shrunken tahmin edicinin SMSE degerleri ve GEKK tahmin edicisinin SMSE degeri
Sekil 8.6’da verilmistir.

25 0 0 I I I 0 0 0 \
——Ridge
-------- GEKK
----- Jackknifed Ridge
2 — Temel Bilegenler ||
15 !
w
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. \
fi
i
n
I
0541 i
\\
N,
0 [ [ [ [ [ [ [ [ [
0 01 02 03 04 05 0.6 07 08 09 1
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Sekil 8.5. AR(1) yapisinda V matrisi i¢in k 'ya kars1 tahmin edicilerin
SMSE degerleri
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Sekil 8.6. AR(1) yapisinda V matrisi i¢in C’ye Kars1 Shrunken tahmin edicinin ve
GEKK tahmin edicinin SMSE degerleri
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Sekil 8.5’den goriildiigii iizere. 0 <k <0.05 iken ridge tahmin edicinin SMSE
degerleri jackknifed ridge tahmin edicinin SMSE degerlerinden daha kiiciiktiir.
Ancak 0.05<k <1 araligindaki yanlilik parametresi i¢in ridge ve jackknifed ridge
tahmin edicilerin SMSE degerleri birbirine ¢ok yakindir. Teorem 8’de verilen
o’ +K° B[ 2(X 'V X) +3K ]’l(x VX)?£20 kosulu o® yerine 6% ve 4 yerine

oy

p, almarak k=0.05 i¢in 0.0425>0 olarak bulunus olup kosulun saglandigi

gozlenmistir.

Sekil 8.6’dan gorildiigi tizere, C’nin artan degerleri igin shrunken tahmin

edicinin SMSE'si, GEKK’nin SMSE degerine yaklagsmaktadir.
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9. MONTE CARLO SIMULASYON UYGULAMASI

Bu béliimde, degisen varyans/otokorelasyon ve ¢oklu i¢ iliskinin ayni anda
meydana gelmesi durumunda alternatif tahmin edicilerin hata kareler ortalamasina
gore performanslart Monte Carlo simiilasyon ¢alismasi ile karsilagtirilmistir. Sabit
varyans ve hatalarin iligkisiz olmas1 varsayimi altinda bazi simiilasyonlar McDonald
ve Galarneau’dan (1975) sonra siklikla caligilmistir. Hatalar degisen varyansh ve /
veya otokorelasyonlu oldugu zaman bazi tahmin edicilerin performanslarinin
simiilasyon tizerinden karsilagtirilmalar1 Firinguetti (1989), Gosling ve Puterman
(1985) ve Ozkale (2008) tarafindan calisilmistir. McDonald ve Galarneau (1975),
Gibbons (1981), Kibria (2003), Firinguetti (1989), Ozkale (2008), Giiler ve
Kagiranlar (2009), Alheety ve Kibria (2009) ve diger yazarlar simiilasyon

calismalarinda agiklayici degiskenleri iiretmek icin asagidaki esitligi kullanmislardir.

X; = @a— )2 Zy + 72, =120 j=12,.,p

Burada, z; standart normal dagilima sahip yapay rasgele (pseude random) sayilardir.

y Dbelirtilen herhangi iki ag¢iklayici degisken arasindaki iliskiyi ifade etmektedir.
Ayrica agiklayict degiskenler standartlastirilmistir. Yani X 'X korelasyon matrisi
formundadir.

Bu c¢alismada da aciklayici degiskenler arasinda siddetli iligki olmasi
istendiginden dolay1 y=0.90,0.95 ve 0.99 alimmustir. Calisma, yeni hata
terimlerini  tireterek 5000 deneme ftizerinden gergeklestirilmistir. Agiklayict
degiskenler denemenin basinda iiretilmis ve deneme boyunca sabitlenmistir. Deneme
boyunca degisken sayisi p=4 ve 6rneklem genisligi n=100 olarak alimmustir.
Newhouse ve Oman (1971) ve McDonald ve Galarneau (1975) g’ y1 X'X
matrisinin en biiyiik 6zdegerine karsilik gelen normallestirilmis 6zvektor olarak
alindiginda MSE’nin mimimum oldugunu belirtmistir. Ozkale (2008) ve Firinguetti
(1989) benzer olarak katsayr vektdriinii X'V "X matrisinin en biiyiik 6zdegerine

karsilik gelecek sekilde tiretmislerdir. Yanit degiskene dayali gézlemler
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Yi = BXy + BoXiy + BXis + BXi, +6, 1=12,.,0

esitliginden elde edildikten sonra standartlastirilmisg forma doniistiiriilmiistiir. Burada

e, birinci dereceden AR ve MA yapilar1 goz 6niinde bulundurularak tiretilmistir.

e =pe,+U , |p|<1l AR(Q)
e =Uu+7Uu_,|7[]<l MAQ)

AR(1) ve MA(1) yapist igin Onerilen V matrisleri Boliim 6’da verilen (6.13) ve
(6.14) esitliklerindeki gibi alinmistir. p ve 7 degerleri F0.99, 0.90, 0.70, 0.50, 0.30,

0.10 olarak belirlenmistir. o 'nin degerleri 0.1, 1 ve 10 olarak secilmistir.

Ridge ve jackknifed ridge tahmin edicilerinin yanlilik parametresi olarak
pde

G G

Hoerl, Kennard ve Baldwin’in (1975) 6nerdigi k = — alimmustir.

Daha sonra regresyon katsayilari orijinal modele dontistiiriilmiistiir.

Shrunken tahmin edici i¢in tahminler ¢ ’nin ug¢ degerleri olan 0.10 ve 0.90
degerleri alinarak yapilmistir.

Firinguetti’nin (1989) ve Ozkale’nin (2008) c¢alismalarma benzer olarak

tahmin edicilerin performanslarinin karsllastlrmam MSE ve mutlak yanhlik

asagidaki gibi tanimlanmistir.

5000

MSE(,&) = 5000 Z(ﬁ(r) B) (ﬂ(r) B)

5000

J 5000 Zﬂl(r)

Burada $3.,., denemenin r -inci ¢iktisinda B; nin tahminidir.

i(r)
Simiilasyon sonuglari AR(1) ve MA(1) yapisinda incelenmis olup sonuglar
siras1 ile EK Tablo A1-Al2 ve Ek Tablo B1-B12’de verilmistir. Simiilasyon

calismasi sonucu elde edilen bulgular asagida 6zetlenmistir.
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(1) AR(1) ve MA(1) yapisinda iiretilen hatalar ile yapilan tahminlerde o ve
coklu i¢ iliskinin siddeti () artikca genel olarak tahmin edicilerin skaler
hata kareler ortalamasinin (SMSE) artis gosterdigi gozlenmistir.

(i) AR(1) yapisinda p=70.99 i¢in »=0.90, 0.95 ve 0.99°’da o=0.1 igin
jackknifed ridge, o =1 i¢in ridge ve o =10 igin 0,1 ile shrunken tahmin
edici SMSE kriterine gore daha iyi performans gostermistir.

(iii) AR(1) yapisinda p=70.90 icin »=0.90 ve 0.95°’de o=0.1 igin
jackknifed ridge, o =1 ig¢in ridge ve o =10 i¢in 0,1 ile shrunken tahmin
edici SMSE kriterine gore daha iyi performans gosterirken, y =0.99 ’da
temel bilesenler tahmin edici daha iyi performans gdstermistir.

(iv) AR(1) yapisinda p=70.70, 0.50, 0.30, 0.10 igin y»=0.90’da o=0.1
icin jackknifed ridge tahmin edici SMSE kriterine gore daha iyi performans
gosterirken o ve y artik¢a temel bilesenler tahmin edicinin daha iyi oldugu
gozlenmistir.

(v) MA(1) yapisinda 7=0.99 i¢in y=0.90 iken o=0.1 ve 1 i¢in ridge
tahmin edici SMSE kriterine gore daha iyi performans gosterirken,
0=0.10°da 0.1 ile shrunken tahmin edicinini daha 1yi performans
gosterdigi gozlenmistir. y =0.95 0.99°da ise o0=0.1 i¢in ridge tahmin
edici daha iyi performans gosterirken o arttik¢a 0.1 ile shrunken tahmin
edicinin daha 1yi performans gosterdigi gozlenmistir.

(vi) MA(1) yapisinda 7=0.90 i¢in »=0.90 ‘da o0=0.1 ve 1 iken temel
bilesenler tahmin edici SMSE kriterine gore daha 1iyi performans
gosteritken, =10 i¢in 0.1 ile shrunken tahmin edicinin daha iy1
performans gosterdigi gozlenmistir. Coklu i¢ iligkinin siddeti arttikga temel
bilesenler tahmin edicinin daha 1yi oldugu gozlenmistir.

(vii) MA(1) yapisinda 7=750.70,¥0.50,0.30 i¢cin ¥=0.90da o=0.1 igin
jackknifed ridge tahmin edici SMSE kriterine gore daha iyi performans
gosterirken, o ve y arttikga temel bilesenler tahmin edicinin daha iyi

oldugu gozlenmistir.
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(viii) MA(1) yapisinda 7 =70.10, —0.30 igin temel bilesenler tahmin edicinin
daha iyi performans gosterdigi gézlenmistir.

(ix) MA(1) yapisinda 7=-0.90 i¢in y=0.90’da o =10 igin 0.1 ile shrunken
tahmin edici SMSE kriterine gore daha iyi performans gosterirken, diger
durumlar i¢in temel bilesenler tahmin edicinin daha iyi oldugu goézlenmistir.

(X) MA(1) yapisinda 7=-0.99 i¢in y=0.90’da 0 =0.1 ve o =1 igin ridge
tahmin edici SMSE kriterine gore daha iyi performans gdosterirken,
0=10’da 0.1 ile shrunken tahmin edici iyi performans gostermistir.
y=0.95"de 0=0.1 i¢in ridge, o =1 i¢in temel bilesenler ve o =10 i¢in
0.1 ile shrunken tahmin edicinin iyi performans gosterdigi gozlenmistir.

y =0.99 icin temel bilesenler tahmin edicinin daha iyi oldugu gozlenmistir.
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10. SONUCLAR VE ONERILER

Bu calismada ilk olarak lineer regresyon modeline EKK uygulamak igin
gerekli olan varsayimlar verilmistir. Aciklayic1 degiskenlerin  bagimsizlig
varsayiminin ihlali olan ¢oklu i¢ iliski sorunu hatalarin sabit varyansh ve iligkisiz
oldugu durumda incelenmistir.

Hatalara iligkin varsayimlarin ihlaline neden olan degisen varyans ve
otokorelasyon sorunu tanimlanmis ve lineer bir regresyon modelinde bu problemin
belirlenmesine yonelik Onerilen testlere yer verilmistir. Lineer bir regresyon
modelinde degisen varyans ve otokorelasyon sorunu oldugunda hata yapilarn
kovaryans matrisi tizerinden incelenmistir.

Coklu i¢ iligki sorunu hatalarin degisen varyansli ve otokorelasyonlu olmasi
durumunda incelenmistir. Degisen varyans/otokorelasyon ve c¢oklu iliski
problemlerinin ayni anda meydana gelmesi durumunda Onerilen alternatif tahmin
ediciler incelenmistir. Bu calismada, alternatif tahmin edicilerden yansiz olan
genellestirilmis en kiiglik kareler tahmin edicisi ve yanl tahmin edicilerden ridge,
jackknifed ridge, temel bilesenler, shrunken ve iterasyon tahmin edicisi ele alinmig
ve bazi Ozellikleri incelenmistir. Bu tahmin edicilerden bazilarimin performanslari
hata kareler ortalamasi kriterine gore teorik olarak karsilagtirllmistir. Ayrica
alternatif tahmin edicilerin hata kareler ortalamasina gore performanslarmin
karsilastirilmas1 hem ekonometrik bir 6rnek hemde simiilasyon g¢alismasi iizerinden
gozlenmeye calisiimigtir.

Ekonometrik uygulama sonucunda Bayhan ve Bayhan’in (1988) onerdikleri
Toeplitz formunda V matrisi i¢in genel olarak temel bilesenler tahmin edicinin en
kiiclik hata kareler ortalamasin1 verdigi gézlenmistir. Firinguetti’nin (1989) 6nerdigi
AR(1) yapisinda V matrisi i¢in yanlilik parametresi Hoerl, Kennard ve Baldwin’e
(1975) gore secildiginde ridge tahmin edicinin, yanlilik parametresi Lawless ve
Wang’a (1976) gore secildiginde ise jackknifed ridge tahmin edicinin en kiiciik hata
kareler ortalamasini verdigi gozlenmistir. Simiilasyon uygulamasi sonucunda ise o,
otokorelasyon katsayisi ( p,7) ve ¢oklu ig iligskinin siddetine () bagli olarak tahmin

PR

edicilerin performanslarinin degistigi ancak, otokorelasyon katsayis1 diistiikk¢ce temel
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bilesenler tahmin edicinin diger tahmin edicilere gore performansinin daha iyi
oldugu gozlenmistir.

Lineer regresyon modelinde bu calismada deginilmeyen tahmin edicilerin
Ozellikleri hatalarin degisen varyansli ve otokorelasyonlu olmasi durumunda
incelenebilir. Bu sorunlarin asilmasini saglayacak yeni tahmin yontemleri
gelistirilebilir. Bu problemler tam, esitsizlik ve stokastik onsel bilginin olmasi

durumuna genisletilebilir.
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EKLER

EKA
Tablo A.1.n=100. p=4. p =099 AR(l) yapismda olan V matrisi ile tahminler
y=050 ¥=0.95 y=059
[ 0 1 10 01 1 10 01 1 10
GEKK AMSE 0.0771 77055 7705486 0.1483 14.8307 | 1.4831e | 07183 | 718314 7.1831e
+003 +003
09 AMSE 1.0636 ¥.2597 6253337 1.1188 13.0277 | 1.2025e | 15733 | 59.1596 5.8192e
+003 +003
E ABIAS 2.0005 42841 39.7684 1.9992 57419 551342 | 21310 | 122390 [ 121.3115
%: 01 AMSE 80.9459 | 81.0393 88.8388 80.7497 | 809127 | 95.7568 | 80451 | 81.1468 | 152.1070
0
T
% ABIAS | 17.9867 | 17.9887 18.0111 17.9684 | 17.9703 | 18.0366 | 17.937 | 17.9356 204810
4
Ridge AMSE 01813 3.1883 626.6371 0.1844 34312 11767e | 01540 | 41121 5.5426e
+003 +003
ABIAS 07427 2.8267 39.1210 07483 2.8095 532312 | 07196 29229 1145110
Jackknifed | AMSE 0.0588 5.6620 7512105 0.0754 7.5650 1.4344e | 0.0520 | 12.0608 6.8773e
Ridge +003 +003
ABIAS 0.3862 37715 433940 04384 43141 59.7668 | 0.3638 5.0219 130.1769
Temel AMSE 0.0771 7.7055 770.5486 0.1483 14.8307 | 1.4831e | 07183 | 71.8314 7.1831e
Bilegenler +003 +003
ABIAS 0.4415 4.4150 441501 0.6124 6.1236 61.2359 | 13477 | 134773 | 1347731
Tablo A.2. n=100, p=4, p =050, AR(1) yapssmda olan V matrisi ile tahminler
y=090 y=095 ¥=0.99
a 0.1 1 10 0.1 1 10 0.1 1 10
GEKK AMSE | 0.0840 [ 84040 | 8404026 | 01618 | 16.1751 | 1.6175e | 0.7834 | 783434 | 7.8343e
+)03 +003
09 | AMSE | 1.0694 | 7.8264 | 6819240 | 11298 | 141175 | 1.3114e | 16260 | 64.4336| G6.34GGe
z +)03 +003
¢ ABIAS | 2.0006 | 4.4567 415304 | 1.9997 | 59780 575893 | 21548 [ 127725 126.7192
=
% 01 | AMSE [ 809475 81.0485| 895472 | BO7507 | 809277 | 97.1098 | B0.4517 | 812114 | 1586121
% ABIAS | 17.9867 [ 17.9888 [ 18.0133 | 17.9684 | 17.9704 | 18.0572 | 179374 179350 | 20.8293
Ridge AMSE | 01838 [ 35192 | 6892363 | 01869 | 3.8423 1.2967e | 0.1549 [ 4.8883 6.1211e
+)03 +003
ABIAS | 0.7453 [ 2.9679 41.0632 | 0.7510 | 3.0631 559656 | 0.7194 [ 3.1693 | 1206011
Jackknifed | AMSE | 0.0638 | 62375 [ 8208326 | 0.0816 | 84383 1.5686e | 0.0561 [ 142053 | 7.5280e
Ridge +)03 +003
ABIAS | 0.4026 [ 3.9570 453749 | 0.4561 45526 625468 | 0.3773 | 54372 | 136.3716
Temel AMSE | 0.0840 | 8.4040 [ 8404026 | 0.0859 | 47849 | 4746886 | 0.0191 [ 0.1580 | 14.0549
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Tablo A.3. n=100, p=4, p=0.70, AR(1) yapssinda olan V matrisi ile tahminler

y=090 y=095 7=099
(o) 0.1 1 10 01 1 10 01 1 10
GEKK AMSE | 01013 | 101523 | 1.0132e | 0.1954 | 19.5396 | 1.9540e | 0.9464 | 94.6397 | 9.4640e
+003 +003 +003
0.9 | AMSE | 1.0838 | 9.2445 | 823.5554 | 1.1572 | 16.8443 | 1.563% | 1.7578 | 77.6322 | 7.666Ge
z +003 +003
% ABIAS | 2.0009 | 4.8426 | 45.6366 | 2.0017 | 6.5322 | 632907 | 22163 | 14.0239 | 139.2885
2
% |01 [ AMSE | 80.9565 | 810765 | 91.3223 | 80.7554 | 80.9672 | 100.4948 | 804540 | 813737 | 174.8947
@ ABIAS | 17.9670 | 17.9693 | 18.0213 | 17.9686 | 17.9707 | 181268 | 17.9374 | 17.9354 | 21.6948
Ridge AMSE | 01904 | 43419 | 846.3342 | 0.1932 | 48798 | 1.338%e | 01575 | 7.0284 | 7.573%e
+003 +003
ABIAS | 0.7527 | 3.2918 | 455861 | 0.7586 | 34398 | 622976 | 0.7200 | 3.7602 | 134.6780
Jackknifed | AMSE | 0.0766 | 7.6623 | 995.0466 | 0.0973 | 10.6146 | 1.9042¢ | 0.0662 | 19.9515 | 93.1347e
Ridge +003 +003
ABIAS | 04412 | 4.3831 | 49.9656 | 04977 | 5.0971 | 68.9833 | 04092 | 64133 | 150.6988
Temel AMSE | 01595 | 0.3501 | 19.4033 | 0.0858 | 0.2631 | 17.998% | 0.0194 | 0.1883 | 17.0768
Bilesenler | ABIAS | 0.7134 | 09580 | 7.0197 | 05228 | 08246 | 67591 | 02439 | 06923 6.5620
Tablo A4. n=100, p=4, p =050, AR(1) yapisinda olan V matrisi ile tahminler
y=090 y=095 y=099
g 0.1 1 10 0.1 1 10 0.1 1 10
GEKK AMSE | 01208 | 12.0794 | 1.2079% | 0.2325 | 23.2473 | 2.3247e | 11259 | 1125934 | 1.125%
+003 +003 +004
0.9 | AMSE | 1.0998 | 10.8063 | 979.6641 | 1.1875 | 19.8488 | 1.8842e | 1.9032 | 921739 | 9.120%
z +003 +003
% ABIAS | 2.0012 | 5.2373 | 49.8154 | 2.0052 | 7.0930 | 69.0942 | 22846 | 15.2846 | 152.0598
% 0.1 | AMSE | 80.9765 | 81.1167 | 93.2816 | 80.7652 | 81.0146 | 104.2224 | 804574 | 81.5541 | 192.8416
n ABIAS | 17.9877 | 17.9901 | 18.0360 | 17.9689 | 17.9711 | 18.2291 | 17.9374 | 17.9354 | 22.6305
Ridge AMSE | 01976 | 5.2628 | 1.0200e | 0.2002 | 6.0708 | 1.9310e | 0.1604 | 9.7487 | 9.1763e
+003 +003 +003
ABIAS | 0.7610 | 3.6199 | 501590 | 0.7670 | 3.8247 | 68.7002 | 0.7213 | 43949 | 148.8540
Jackknifed | AMSE | 0.0907 | 9.2404 | 1.1870e | 0.1145 | 13.0624 | 2.2738e | 0.0774 | 26.9866 | 1.0945
Ridge +003 +003 +004
ABIAS | 04800 | 4.8133 | 54.6657 | 0.5398 | 56482 | 735171 | 04418 | 74393 | 165.1638
Temel AMSE | 0.1593 | 0.3874 | 23.1965 | 0.0859 | 0.2980 | 21.5023 | 0.0197 | 0.2212 | 20.3747
Bilegenler | ABIAS | 0.7132 | 1.0051 | 76751 | 05229 | 0.8758 | 7.3889 | 02449 | 0.7508 71921
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Tablo A 5.n=100, p=4. p=030. AR(1) vapismda oclan V matrisi ile tahminler

7=0.90 7=095 7=099
o K] T 10 K] 7 10 K] 7 10
GEKK AMSE | 01397 | 130080 | 13908 | 02676 | 26.7625 | 26763 | 12060 | 1295092 | 123606
+003 +003 +004
— [09 |AMSE | 11150 | 12288 | 1.1278¢ | 12162 | 226965 | 21600¢ | 20410 | 105,048 | 1.0498e
i +003 +003 +004
< ABIAS | 20076 | 55874 | 534521 | 20700 | 75000 | 741319 | 23404 | 1638971 | 1631654
% 01 | AMSE | 81.0706 | 51.1600 | 95.1450 | 807813 | 51.0655 | 107.7528 | B0 4620 | 817273 | 2008533
Z ABIAS | 17.9884 | 170907 | 18.0562 | 170683 | 179715 | 163427 | 179375 | 178355 | 234779
Ridge AMSE | 02047 | 6.1583 | 1.1840¢ | 02065 | 72520 | 2.2466e | 0.1631 | 126546 | 1.0606e
+003 +003 +004
ABIAS | 07600 | 3.9732 | 541251 | 0.7750 | 4.1698 | 742196 | 0.7223 | 4.9803 | 1610801
Jackknifed | AMSE | 0.1040 | 107532 | 136978 | 0.1307 | 154415 | 2.6238e | 0.0877 | 342574 | 126388
Ridge +003 +003 +004
ABIAS | 05740 | 51900 | 58.7251 | 05763 | 6.1327 | 811611 | 04700 | 83695 | 1776810
Temel AMSE | 01586 | 04221 | 26.7730 | 00858 | 03302 | 247642 | 00198 | 02513 | 233805
Bilesenler [ABIAS | 07125 | 1.0471 | 8.2533 | 05226 | 0.9215 | 7.9388 | 0.2457 | 08090 | 77155
Tablo A.6. n=100, p=4, p=0.10, AR(1) yapisinda olan V matrisi ile tahminler
7=090 y=093 y=099
g 0.1 1 10 01 1 10 01 10
GEKK AMSE | 01519 | 151907 | 1.51%1e | 0.2922 | 29.2221 | 2.9222¢ | 14145 | 1414547 | 1.414%
+003 +003 +004
0.9 | AMSE | 11258 | 13.3264 | 1.2317e | 1.2362 | 24.6870 | 2.3682e | 2.1373 | 115.5538 | 1.145%
i +003 +003 +004
% ABIAS | 2.0017 | 5.8232 | 55.8434 | 2.0139 | 79184 | 77.4580 | 23920 | 17.1169 | 170.5014
2
x 0.1 | AMSE | 81.0581 | 81.2276 | 96.4582 | 80.8032 | 81.1101 | 110.2139 | 80.4672 | 81.8316 | 221.7318
@ ABIAS | 17.9880 | 17.9901 | 18.0726 | 17.9694 | 17.9714 | 184333 | 17.9376 | 179356 | 24.0939
Ridge AMSE | 02084 | 6.7885 | 1.3002¢ | 02104 | 8.0816 | 24660e | 01647 | 14761 1.1750e
+003 +003 +004
ABIAS | 0.7740 | 41034 | 56.6900 | 0.7800 | 43911 | 77.7961 | 0.7240 | 353578 169.0651
Jackknifed | AMSE | 0.1132 | 11.8126 | 14966e | 0.1414 | 17.0976 | 2.8680e | 0.0938 | 394216 1.3815
Ridge +003 +003 +004
ABIAS | 03357 | 54341 | 61.3820 | 05991 | 6.4442 | B4.8678 | 04867 | 8.9655 185.9058
Temel AMSE | 01570 | 0.4441 | 29.1532 | 0.0855 | 0.3506 | 26.8693 | 0.0201 | 0.2698 25.2463
Bilegenler | ABIAS | 0.7108 | 1.0744 | B.6257 | 05219 | 09506 | 8.2863 | 0.2461 | 0.8315 8.0364
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Tablo A.7. n=100, p=4, p=-0.10, AR(1) yapisinda olan V matrisi ile tahminler

y=090 y=095 7=099
) 01 1 10 01 1 10 0.1 1 10
GEKK AMSE | 01550 | 15.4964 | 1.549%e | 02980 | 29.7953 | 2.97%%e | 14414 | 1441402 | 1.4414e
+003 +003 +004
09| AMSE | 11286 | 135711 | 1.2564e | 12408 | 251480 | 24146e | 21594 | 1177326 | 1.1676e
ﬁ +003 +003 +004
% ABIAS | 2.0011 | 5.8832 | 56.3777 | 20145 | 79985 | 781741 | 24010 | 17.2543 | 171.9515
% 0.1| AMSE | 81.1113 | 81.2807 | 96.7816 | 80.8271 | 81.1365 | 110.7781 | 80.4720 | 818862 | 2244564
0 ABIAS | 17.9855 | 17.9673 | 16.0712 | 179688 | 17.9703 | 18.4522 | 179376 | 179362 | 24.1938
Ridge AMSE | 0.2084 | 6.9084 | 13265 | 02101 | 8.2046 | 25141e | 01645 | 149914 | 1.1976e

+003 +003 +004

ABIAS | 0.7733 | 41391 | 57.2365 | 0.7793 | 44219 | 785055 | 07239 | 53931 | 170.6025

Jackknifed | AMSE | 0.1149 | 12.0330 | 1.3266e | 0.1425 | 17.3742 | 2.9240e | 0.0933 | 40.0276 | 1.407%
Ridge +003 +003 +004

ABIAS | 05395 | 54814 | 61.9650 | 0.6010 | 6.4902 | 85.6451 | 0.4856 | 9.0215 | 187.3365

Temel AMSE | 01548 | 04446 | 204236 | 0.0847 | 03912 | 27.0000 | 0.0200 | 0.2694 | 25.2116

Bilegenler | ABIAS | 0.7083 | 1.0771 | 86750 | 05206 | 0.9527 | B8.3191 | 02458 | 08326 | 80523

Tablo A.8. n1=100, p=4, p=-030, AR(1) yapisinda olan V matrisi ile tahminler

=090 7=095 7=099
a 01 1 10 0.1 1 10 01 1 10
GEKK AMSE | 01471 | 14.7065 | 1.4707e | 0.2826 | 28.2602 | 2.8260e | 1.3662 | 136.6171 | 1.3662e
+003 +003 +004
09 | AMSE | 11197 | 129012 | 1.1921e | 1.2281 | 23.9003 | 2.2002¢ | 2.0990 | 111.6432 | 1.1067e
+003 +003 +004
E ABIAS | 19976 | 5.7071 | 54.8881 [ 2.0110 | 7.7979 | 76.1039 | 2.3727 | 16.7943 | 167.2884
% 0.1 | AMSE | 81.1560 | §1.2899 | 95.7326 | 60.8479 | 81.1381 | 109.2193 | 80.4753 | 81.8189 | 216.9799
3
% ABIAS | 17.9810 [ 17.9798 | 16.0168 | 17.9675 | 17.9686 | 18.3847 | 17.9375 | 17.9366 | 238142
in
Ridge AMSE | 0.2027 | 6.4406 | 1.2515% | 0.2057 | 75006 | 2.3714e | 0.1626 | 131824 | 1.1281e

+003 +003 +104

ABIAS | 0.7631 | 39939 | 55.5880 | 0.7730 | 42473 | 76.1625 | 07226 | 5.0624 | 165.3164

Jackknifed | AMSE | 0.1081 | 11.3087 | 1.4473e | 01334 | 16.12%4 [ 2.76%% | 0.0862 | 35.6773 | 1.3324e
Ridge +003 +003 +004

ABIAS | 05237 | 53177 | 60.3303 | 0.5818 | 62560 | 83.2970 | 04672 | 85124 | 1622303

Temel AMSE | 01524 | 0.4228 | 27.4649 | 0.0838 | 0.3315 | 25.0979 | 0.0198 | 0.2503 | 23.2985

Bilegenler ["ABIAS [ 0.7055 | 1.0510 | 8.3897 | 05192 | 00267 | 80341 |02450 | 08028 | 7.7520
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Tablo A.9. =100, p=4, p=-0.50, AR(1) yapisinda olan V matrisi ile tahminler

y=090 y=095 ¥=0.99
a 0.1 1 10 01 1 10 01 1 10
GEKK AMSE | 01311 | 131136 | 1.3114e | 0.2519 | 251871 | 25187 [ 1.2169 | 1216909 | 1.216%
+003 +003 +004
09 | AMSE | 11077 | 116161 | 1.0631e | 12030 | 214069 [ 2.0412e | 19785 | 99.5571 | 9.857%
prd +003 +003 +003
% ABIAS | 19972 | 54228 | 518822 | 20056 | 737686 | 718849 | 23171 | 158643 [ 1579131
% 0.1 | AMSE | 81.1899 | 813124 [ 94.2211 | 80.8620 | 81.1177 [ 106.1165 | 80.4767 | 81.6762 | 202.0974
r
% ABIAS | 17.9768 | 17.9761 [ 17.9996 | 179662 | 17.9668 | 18.2696 | 17.9375 | 17.9369 | 23.0745
Ridge AMSE | 01958 | 5.6133 | 1.1068e | 0.1986 | 64106 | 2.0906e | 01598 | 10.2865 | 9.9243¢
+003 +003 +003
ABIAS | 07545 | 37374 | 522708 | 07635 | 39282 | 714561 | 0.7211 44951 | 154.7937
Jackknifed | AMSE | 0.0957 | 99370 | 1.2884e | 01177 | 13.8804 | 24627e | 00753 | 284914 | 1.1831e
Ridge +003 +003 +004
ABIAS | 04932 | 49924 | 569506 | 05471 | 58155 | 78.5453 | 043N 76199 | 1715996
Temel AMSE | 01504 | 0.3872 | 24.0656 | 0.0830 | 0.2992 | 21.9199 | 0.0194 | 0.2198 | 20.2568
Bilesenler [ ARJAS | 0.7033 | 1.0086 | 78664 | 05180 | 0.B816 | 75154 | 0.243% | (0.7526 72275
Tablo A.10. n=100. p=4, p=-070. AR(1) vapismda olan V matisi ile tahminler
=090 =095 =099
a 0.1 1 10 0.1 1 10 0.1 1 10
GEKK AMSE | 01120 | 111955 | 1.1195e | 0.2150 | 21.4972 | 2.1497e | 1.0383 | 103.8275 | 1.0383e
+003 +003 +004
= 0.9 | AMSE | 1.0928 | 100667 | 9077953 | 11728 [ 184144 | 1.7423e | 1.8342 [ 85.0911 | 8.4110e
L +003 +003
% ABIAS | 1.9970 | 5.0556 | 47.9885 | 2.0010 | 6.8436 | 66.4828 | 2.2492 | 14.6832 | 146.0297
% 0.1 | AMSE | 81.2083 | 81.3154 | 92.3614 | 80.8692 | 81.0850 | 102.3976 | 804765 [ 815022 | 184 2688
w ABIAS | 17.9740 | 17.9737 | 17.9852 | 17.9652 | 17.9655 | 15.1552 [ 17.9374 | 17.9372 | 221603
Ridge AMSE | 0.1881 | 46706 | 9331127 ( 01911 | 51703 | 1.755%e [ 01569 | 7.4191 | 8.3111e
+003 +003
ABIAS | 0.7454 | 34186 | 47.9669 | 0.7538 | 3.5439 | 654307 [ 0.7198 | 3.8507 | 141.4340
Jackknifed | AMSE | 0.0814 | 8.3351 | 1.0971e | 0.1000 | 11.3541 [ 2.0940e | 0.0639 | 21.1045 | 1.0045e
Ridge +003 +003 +004
ABIAS | 0.4549 [ 45791 | 525719 | 050583 | 52771 | 724496 | 04029 | 65837 | 15B.1108
Temel AMSE | 0.1490 | 0.3480 | 20.2538 | 0.0823 | 0.2637 | 18.4065 | 0.0191 | 0.1868 | 16.9591
Bilesenler | ABIAS | 0.7018 | 08603 | 7.2156 | 05172 | 0.8282 | 6.8815 | 0.2427 | 0.6928 6.6027
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Tablo A.11. n=100, p=4, p=-090, AR(1) yapisinda olan V matrisi ile tahminler

=090 7=095 7=0.99
o 01 1 10 0.1 1 10 0.1 1 10
GEKK AMSE | 0.0933 | 9.3340 [ 9334021 | 01792 | 179212 | 17921 | 0.8654 | 86.5441 | B.6544e
+003 +003
0.9 | AMSE | 1.0781 | 85620 | 757.0465 | 1.1436 | 195152 | 1.4526e | 1.6944 | 71.0941 | 7.0111e
+003 +003
- ABIAS | 1.9970 | 46707 | 43.8649 | 1.9980 | 6.2763 | G0.7987 | 2.1844 | 13.4432 | 133.4810
L
% 0.1 | AMSE | 81.2147 | 81.3060 | 90.5361 | 80.8711 | 81.0491 | 98.7970 | 80.4754 | 81.3321 | 167.0101
]
% ABIAS | 17.9728 | 17.9728 | 17.9779 | 17.9648 | 17.9648 | 18.0660 | 17.9374 | 17.9375 | 21.2520
w
Ridge AMSE | 01811 | 3.7825 | 7652898 | 01843 | 4.0485 | 14338e | 01944 | 51064 | 6.7997e

+003 +003

ABIAS | 07375 | 30847 | 434051 | 07454 | 31481 | 58.0239 | 0191 | 32330 | 127.2224

Jackknifed | AMSE | 0.0678 | 6.8008 | 911.5105 | 0.0672 | 9.0052 | 17366e | 0.0539 | 1483997 | 8.3154e
Ridge +003 +003

ABIAS | 04154 | 41424 | 479353 | 04625 | 47139 | 65.9773 | 03700 | 5.5616 | 143.7766

Temel AMSE | 0.0933 | 93340 | 933.4021 | 0.0837 | 4.815% | 479.6932 | 0.0188 | 0.1567 | 13.9533

Bilesenler | ABIAS | 04871 | 48706 | 487055 | 04076 | 3.0395 | 302674 | 02418 | 0.6340 | 59819

Tablo A.12. n=100, p=4, p=-099, AR(1) yapisinda olan V matrisi ile tahminler

=090 =095 =099
a 0.1 1 10 0.1 1 10 0.1 1 10
GEKK AMSE | 0.0857 | 85717 | 8571731 | 0.1646 | 16.4576 | 1.6458e | 07947 | 794750 | 7.947%
+003 +003
0.9 [ AMSE | 1.0721 | 79456 | 6953111 | 11317 | 14.3288 | 1.3341e | 16372 | 65.3689 | 6.438%e
+003 +003
E ABIAS | 19971 | 45021 | 42.0460 | 1.9971 | 6.0295 | 58.2291 | 21582 | 12.8951 | 127.9390
§ 0.1 | AMSE | 612148 | 812995 | 89.7639 | 80.8708 | 81.0335 | 97.3244 | 804748 | 81.2622 | 159.9488
-
% ABIAS | 17.9727 | 17.9726 | 17.9765 | 17.9648 | 17.9646 | 18.0386 | 17.9374 | 17.9375 | 208791
n
Ridge AMSE | 01791 | 33925 | 6966429 | 01824 | 3.5596 | 13022e | 01541 | 41961 | 6.1268e

+003 +003

ABIAS | 0.7364 | 29248 | 413789 | 0.7439 | 29569 | 561773 | 07207 | 29490 | 120.8937

Jackknifed | AMSE | 0.0623 | 6.1356 | 8354387 | 0.0770 | 75771 | 15902e | 0.0498 | 12.3851 | 7.606%
Ridge +003 +003

ABIAS | 0.3980 | 3.9357 | 456613 | 04440 | 44401 | 631050 | 03559 | 5.0809 | 137.3982

Temel AMBE | 0.0837 | 85717 | 8371731 | 01646 | 164576 | 1.6458e | (0.7947 | 79.4730 | 7.9475e
Bilegenler +003 +003

ABIAS | 0.4668 | 4.6679 | 46.67806 | 0.6466 | 64683 | 64.6632 | 14214 | 14.2136 | 1421383
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EKB

Tablo B.1. n=100, p=4,

=099, MA(1) yapssinda olan V matrisi ile tahminler

#
¥=0.90 7=0.95 ¥=0.99
a . 10 01 1 10 01 1 10
GEKK AMSE | 1.0541 | 1054121 | 1.0541e | 20538 | 2003756 | 20538 | 99801 | 998.0144 | 9.980%e
+004 +004 +004
09| AMSE | 18655 | 864008 | 853%e | 26687 | 1673704 | 16637e | 9.0811 | 809.4128 | 6.0840e
g +003 004 +004
% ABIAS | 21561 | 147037 | 146.3088 | 25855 | 204854 | 2043411 | 47688 | 450953 | 4506875
= 0.1 AMSE | 819070 | 829560 | 187.3678 | 813367 | 83.3810 | 286.8133 | 806624 | 90.5666 | 1.0788e
I +003
o ABIAS | 15,1135 | 151162 | 215384 | 16.2896 | 16.2924 | 26,7215 | 176260 | 176452 | 519750
Ridge AMSE | 0.7210 | 723641 | 86492¢ | 11399 | 1439410 | 1.7132e | 2.9570 | 709.2156 | B.4807e
+003 +104 +004
ABIAS | 12884 | 129383 | 146.7309 | 16305 | 18.2590 | 207.0287 | 25843 | 404090 | 461.7321
Jackknifed | AMSE | 0.8509 | 94.7577 | 1022de | 15533 | 183.8477 | 20024e | 53642 | 903.0249 | 9.7685e
Ridge +004 +004 1004
ABIAS | 14402 | 151796 | 199.9738 | 19396 | 21.2526 | 2241336 | 35219 | 46.6357 | 495.5336
Temel AMSE | 1.0541 | 1054121 | 1.0541e | 17223 | 168.3472 | 16831e | 59144 | 569.7145 | 5.8970e
Bilegenler +004 +104 +004
ABIAS | 16256 | 162560 | 1625599 | 20422 | 20.0865 | 2008300 | 36895 | 368085 | 368.0719
Tablo B.2. n=100, p=4, r=090, MA(1) vapisinda olan V matrisi ile tahminler
y=050 y=0895 ¥=099
a 01 1 10 01 1 10 0.1 1 10
GEKK AMSE 04323 | 432309 | 4.3231e | 08368 [ 836845 | B.3684e | 4.0697 | 406.9671( 4.0697e
+003 +003 +004
0.9 [ AMSE 1.3512 | 359988 | 3.5025e | 1.6741 [ 687599 [ 6.7792e | 4.2924 | 330.6619 [ 3.2966e
E +003 +003 +004
x ABIAS | 2.0150 | 95365 [ 94.0178 | 21657 | 13.1855 | 130.8539 | 3.3145 | 28.9180 [ 2BB.Y535
§ 01 | AMSE | 812578 | 81.6665 | 124.2728 | B0.89Z3 | 81.7000 | 164.3399 | 805137 | 84.5653 | 487.6883
% ABIAS | 17.6849 | 17.6822 | 18.8032 | 178549 | 17.8522 | 21.0347 | 179218 | 17.9245 | 352218
Ridge AMSE 03753 | 282223 | 38822e | 04422 [ 466202 | 75049e | 0.3980 | 176.0878 [ 3.6507e
+003 +003 +004
ABIAS | 09765 | B3096 | 986155 | 1.0681 | 104947 | 137.0563 | 1.0024 [ 19.2551 | 3022550
Jackknifed | AMSE 03747 | 398264 | 42958e | 05857 | 722341 | B3138e | 07958 | 3034172 40429
Ridge +003 +003 +004
ABIAS | 09718 | 997471 [ 104.0665 | 1.2137 [ 133191 [ 144.7971 | 1.3965 | 26.3040 | 319.4421
Temel AMSE 0.2236 | 12.9900 | 1.2896e | 0.0881 | 0.9153 | 83.6329 | 0.0241 0.7107 | 69.3720
Bilesenler +003
ABIAS | 07830 | 55977 [ 557374 | 05219 | 15288 | 145906 | 02612 13550 | 13.3981
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Tablo B.3. n=100, p=4, 7=0.70, MA(1) yapisinda olan V matrisi ile tahminler

=090 7=0.95 =099
a 0.1 1 10 0.1 1 10 0.1 1 10
GEKK | AMSE | 01776 | 177564 | 17756e | 03418 | 341835 | 34184 | 16584 | 1654400 | 1 65de
+003 +003 +004
0.9 |[AMSE | 11455 | 154051 | 1.4395e | 1.2760 | 26.7080 | 2.7701e | 23354 [ 135.0215 ( 1.3402e
+003 +003 +004
z ABIAS | 2.0023 | 6.2339 | 60.2045 | 20234 | 85096 | 6835434 | 24941 | 184576 | 183.8973
% 0.1 | AMSE | 80.9496 | 81.1461 | 98.9327 | 80.7537 | 81.1123 | 1151959 | 804648 | 821224 | 2461043
|
o ABIAS | 179760 | 179787 | 181950 | 179650 | 179675 | 186433 | 179374 | 179398 | 252993
wn
Ridge AMSE | 02288 | 9.4152 | 1.5558e | 02398 | 125239 | 2.9677e | 0.1905 | 28.7759 1.4246e
+003 +003 +004
ABIAS | 0.7946 | 48223 | 62.0836 | 0.8096 | 54607 | 85.5489 | 0.7469 | 7.5319 186.9873
Jackknifed | AMSE | 0.1445 | 15.0335 | 1.7576e | 0.2001 | 23.8646 | 3.3766e | 01733 | 68.2542 1.6303e
Ridge +003 +003 +004
ABIAS | 0.6041 | 61226 | 66.4188 | 0.7117 | 7.6231 | 92.0148 | 0.6608 | 11.9738 | 202.0551
Temel AMSE | 01625 | 0.4651 | 30.7211 | 0.0870 | 0.3680 | 28.4729 | 0.0203 | 0.2662 21.07193
Bilegenler | ABIAS | 0.7203 | 1.0999 | 6.8802 | 05255 | 0.9745 | 85570 | 0.2476 | 0.8610 8.3491
Tablo B.4. n=100, p=4, 7=0.50, MA(1) yapisinda olan V matrisi ile tahminler
7=090 y=093 7=099
g 0.1 1 10 0.1 1 10 0.1 1 10
GEKK AMSE | 0.1535 | 135502 | 1.3550e | 0.2994 | 29.9370 | 2.9937e | 14488 | 144.8762 | 1.4468e
+003 +(03 +004
0.9 | AMSE [ 11276 | 13.6185 | 1.2608e | 1.2417 | 25.2681 | 2.426%e | 21646 | 118.3236 | 1.173Ge
z +003 +003 +004
¥ ABIAS | 20020 | 58660 | 56.2822 | 2.0154 | 79835 | 78.1059 | 24094 | 172634 | 171.9293
£ [01 [ AVSE [ 80.9610 | 81.130 | 96.7410 | 60.7606 | 61.0768 | 110.9136 | 604602 | 818757 | 2251168
% ABIAS | 17.9867 | 17.9891 | 16.0783 | 17.9687 | 17.9710 | 16.4770 | 17.9374 | 179352 | 24.2521
Ridge AMSE | 0.2178 | 7.6349 | 1.3503e | 0.2250 | 9.9647 | 2.569%e | 0.1767 | 204588 | 1.2269e
+003 +003 +004
ABIAS | 07802 | 43911 | 576728 | 07901 | 48598 | 79.3372 | 07292 | 62991 | 1727578
Jackknifed | AMSE [ 0.1243 | 128433 | 15368e | 01675 | 19.7114 | 29505 | 0.1329 | 51.0481 | 14224e
Ridge +003 +003 +004
ABIAS | 05594 | 56487 | 62.0043 | 06500 | 6.9099 | 858486 | 0.5749 | 10.2530 | 188.2861
Temel AMSE | 01617 | 04157 | 25.8220 | 0.0867 | 0.3244 | 24.0924 | 0.0200 | 0.2480 | 23.0556
Bilegenler | ABIAS | 0.7188 | 1.0404 | 81277 | 05250 | 0.9146 | 78490 | 02459 |0.7966 | 7.6769
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Tablo B.5. n=100, p=4, 7=030, MA(1) vapismda olan V matrisi ile tahminler

7=090 7=095 7=099
) 0.1 1 10 0.1 1 10 0.1 1 10
GEKK | AMSE | 01760 | 175004 | 17500 | 03388 | 336804 | 338808 | 106380 | 1636603 | 106380e
+003 +003 +004
~ [ 00 | AMISE | 1.1450 | 152760 | 14268 | 12739 | 284622 | 274558 | 23185 | 1336908 | 13273¢
i +003 +003 +004
z ABIAS | 20032 | 62038 | 507610 | 20237 | 84596 | 829313 | 24825 | 183002 | 1824848
|01 AMSE | 51017 | 812067 | 08.8307 | B0.78% | 511405 | 1145778 | 804660 | 820700 | 2441107
@ ABIAS | 77.9881 | 170004 | 16.1226 | 170600 | 17.0712 | 186342 | 17.9374 | 170354 | 251602
Ridge ANGSE | 02283 | 00586 | 15367 | 0.2363 | 117675 | 2.9267e | 0.1825 | 26.1804 | 1307%e
+003 +003 +004
ABIAS | 07970 | 46060 | 614280 | 08014 | 52404 | 845471 | 07328 | 7.0324 | 1842074
Jackknifed | AMSE | 01410 | 146639 [ 1.7407e | 01906 | 228292 | 3.3427e | 01529 | 62.8652 | 1.6112e
Ridge +003 +003 +004
ABIAS | 05040 | 6.07165 | 658751 | 06800 | 73080 | 912213 | 06126 | 112047 | 2000874
Temel ANGE | 01603 | 04284 | 27.2452 | 0.0865 | 03374 | 254321 | 00201 | 02612 | 243747
Bilesenler | ADIAS | 07974 | 10550 | 83401 | 05246 | 00323 | B.0541 | 02463 | 08160 | 78804
Tablo B.6. n=100, p=4, r=0.10, MA(1) yapssinda olan V matrisi ile tahminler
7=0.90 y=0.95 7=0.99
g 0.1 1 10 0.1 1 10 0.1 1 10
GEKK AMSE | 02591 | 259143 | 25%15e | 04986 | 49.8794 | 49679 | 24055 | 2405502 | 24035
+003 +003 +004
0.9 | AMSE | 1.2087 | 21.9699 | 2.09%% | 13998 | 41.3797 | 4.0410e | 29437 | 195.6573 | 1.94G6e
2 +003 +003 +004
¥ ABIAS | 20087 | 7.3157 | 71.3896 | 2.0611 | 100316 | 99.0740 | 27584 | 21.8337 | 217.8634
£ |07 [AMSE | 81.0832 | 81.3200 | 106.7782 | 80.8245 | 51.3001 | 130.4970 | 80.4376 | 62.8860 | 321.2001
% ABIAS | 17.9643 | 17.9822 | 18.3089 | 17.9654 | 17.9634 | 19.3172 | 17.9366 | 179384 | 28.5322
Ridge AMSE | 02859 | 15.9641 | 22999 | 0.3153 | 237219 | 4.3947e | 0.2555 | 71.6450 | 2.1063e
+003 +003 +004
ABIAS | 08538 | 6.0632 | 74.1479 | 08867 | 71754 | 1022949 | 08137 | 11.2426 | 223.6%67
Jackknifed | AMSE | 02219 | 23.0851 | 2.5690e | 0.3294 | 391267 | 4.9372e | 03673 | 137.8730 | 2.3773e
Ridge +003 +003 +004
ABIAS | 0.7304 | 74098 | 78.8600 | 0.8841 | 94802 | 109.2789 | 0.8037 | 16.4874 | 239.8380
Temel AMSE | 01608 | 0.4572 | 30.0936 | 0.0670 | 0.3763 | 29.3004 | 0.0207 | 0.3186 | 30.1115
Bilegenler | ABIAS | 0.7229 | 1.0885 | B8.7612 | 05267 | 09835 | 86421 | 0.2485 | 08032 | 87694
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Tablo B.7. n=100, p=4, r=-0.10, MA(1) yapisinda olan V matrisi ile tahminler

=090 y=095 y=0.99
a 0.1 1 10 0.1 1 10 0.1 1 10
GEKK AMSE | 4.0901 | 409.0116 | 4.0901e | 7.7380 | 7737998 | 7./380e | 354908 [ 3.54%91e | 35491
+004 +004 +003 +005
0.9 | AMSE | 43156 | 3323173 | 33131e | 7.2667 | 6277901 | 62679 | 29.7420 | 28758 | 28748
z +004 +004 +003 +005
v ABIAS | 31653 | 24.9316 | 2483906 | 39644 | 342859 | 3421560 | 7.6408 | 73.6142 | 735.7646
£ |01 [ AMSE | 81.1193 | 85.1837 | 490.2572 | 80.8740 | 88.5479 | 854.7423 | 80.8067 | 113.9539 | 3.6297e
[ +003
o ABIAS | 179836 | 17.9866 | 32.8766 | 17.9653 | 18.0004 | 421486 | 17.9362 | 19.0329 | 83.84%9
Ridge AMSE | 236235 | 2.1883e | 38576e | 2.7288 | 13352e | 14722¢ | 09693 | 4.3398e | 3.6158e
+005 +004 +007 +005 +007 +005
ABIAS | 51061 | 100.7006 | 270.8337 | 2.0420 | 219.6235 | 382.2779 | 1.1881 | 5504492 | 811.7992
Jackknifed | AMSE | 1.1746e | 32230e | 6.2599¢ | 18.1277 | 3.7626e | 7.7258e | 4.2363 | 3.6308e | 9.591%
Ridge +003 +012 +005 +015 +010 +015 +008
ABIAS | 20.8585 | 5.0030e | 307.1003 | 4.7480 | 14682¢ | 7.1946e | 2.0487 | 1.8112e | 1.8493e
+004 +006 +003 +006 +003
Temel AMSE | 0.1518 | 04502 | 30.2920 | 0.0837 | 0.3779 | 29.8011 | 0.0205 | 0.3360 | 31.8805
Bilesenler | ABIAS | 06372 | 1.0831 88113 | 05160 | 09856 | 87386 | 02477 | 09266 | 90258
Tablo B.8. n=100, p=4, 7=-0.30, MA(!) vapisinda olan V matrisi ile tahminler
=090 y=095 =099
a 0.1 1 10 01 1 10 01 1 10
GEKK AMSE | 03759 | 375931 37503e | 07292 [ 729157 | 72916e | 35711 | 357.1102 | 35711e
+003 +003 +004
= |09 | AMSE | 13074 | 314644 | 3.0462e | 15875 | 600489 | 59071e | 38868 | 2002617 | 2.8927e
i +)03 +003 +004
% ABIAS | 2.0423 | 85311 | 836559 | 2.1507 [ 11.7650 | 116.4189 | 3.0976 | 258338 | 2577464
% 0.1 | AMSE | 81.1426 | 815258 | 118.8530 | B0.8365 | 815487 | 153.6380 | 80.4954 | 84.0390 | 4376601
® ABIAS | 17.9806 | 179818 | 188051 | 17.9664 | 17.9653 | 205780 | 179374 | 17.9383 | 324997
Ridge AMSE | 02430 | 142883 | 3.2728e | 02307 | 19.2161 | 6.2966e | 01676 | 57.0672 | 3.0631e
+103 +003 +004
ABIAS | 08043 | 56180 | 857155 | 07940 [ 62602 | 1184242 | 07194 | 95172 | 2608875
Jackknifed | AMSE | 02080 | 266050 | 3.7146e | 02173 | 406878 | 7.1898e | 01200 | 1349944 | 35163e
Ridge +)03 +003 +004
ABIAS | 07053 | 77204 | 921226 | 07314 | 92788 | 1279193 | 05452 | 152509 | 2826683
Temel AMSE | 01510 | 04270 | 28.0252 | 0.0833 | 03397 | 25.9800 | 0.0199 | 0.2645 | 24.7342
Bilesenler | ABIAS | 07017 | 1.0575 | 84745 | 05771 | 09363 | 8.7646 | 02453 | 08240 | 79656
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Tablo B.9. n=100, p=4, 7=-0350, MA(1) yapisinda olan V matrisi ile tahminler

=090 =095 =099
[o) 0.1 1 10 0.1 1 10 0.1 1 10
GEKK AMSE | 0.1881 | 18.8081 | 1.8808e | 0.3624 | 36.2378 | 3.6238e | 1.7571 | 1757125 | 1.7571e
+003 +003 +004

0.9 | AMSE | 11554 | 162434 | 1524% | 1.2923 | 30.3%62 | 2.9363e | 24171 | 1433246 | 1.4234e
+003 +003 +(04

ABIAS | 2.0002 | 6.3900 [ 61.8241 | 20247 | 8.7255 | 85.7661 | 25298 | 18.9485 | 188.8209

AMSE | 81.1940 | 81.3861 [ 100.0644 | 80.6603 | 81.2233 | 170475 | 80.4617 | 62.2250 | 236.2173

ABIAS | 17.9741 | 17.9746 | 18.0992 | 17.9648 | 17.9652 | 18.6900 | 17.9372 | 17.9375 | 25.7704

1 SHRUNKEM
L]

AMSE | 02093 | 74203 | 15391e | 02079 | B.7518 [ 3.0399¢ ([ 0.1627 | 17.2526 | 1.4562e
+003 +003 +(04

-

o
Ir=

[1=]

ABIAS | 0.7693 | 4.2814 [ 625767 | 0.7737 | 45492 | 859201 | 07223 | 57462 | 187.2174

Jackknifed | AMSE | 0.1246 | 13.5695 | 1.8499% | 01447 | 191526 | 3.5512¢ | 0.0861 | 46.1354 | 1.7152e
Ridge +003 +003 +004

ABIAS | 0.5623 | 58046 [ 67.9113 | 06070 | 6.7820 | 939053 | 04729 | 9.6048 | 205.9038

Temel AMSE | 01486 | 0.4196 | 27.5183 | 0.0826 | 0.3319 | 25.251 | 0.0197 | 0.253 | 23.6210

Bilegenler | ABIAS | 0.6989 | 1.0480 | B8.3883 | 05164 | 09259 | B.0388 | 02448 | 08056 | 7.7743

Tablo B.10. n=100, p=4, r=-0.70, MA(1) yapssinda olan V matrisi ile tahminler

7=090 =095 =099

a 0.1 1 10 0.1 1 10 0.1 1 10

GEKK AMSE | 0.1869 | 18.6925 | 1.8692e | 0.3595 | 35.9474 | 3.5%7e | 1.7401 | 174.0100 | 1.7401e

+003 +003 +004

0.9 | AMSE | 11548 | 16.1453 | 1.5151e | 12899 [ 301163 | 2.9127 | 2.4029 | 141.9408 | 1.409e

+003 +003 +004

ABIAS | 19976 | 6.4132 | 621376 | 2.0206 | 8.7572 | B6.1245 | 25239 | 19.0022 | 189.3709

é 0.1 | AMSE | 81.2715 | 614575 | 99.9725 | 80.68970 | 81.2531 | 116.6429 | B80.4876 | 62.2098 | 254 4728
z

@ ABIAS | 17.9636 | 17.9634 | 18.0688 | 17.9619 | 17.9615 | 18.6419 | 17.9370 | 17.9365 | 25.7225
o

Ridge AMSE | 0.2083 | 7.0905 | 1.5717e | 02070 | 8.2565 | 2.9786e | 0.1622 | 158891 | 14231

+003 +003 +004

ABIAS | 0.7725 | 4.2050 | 624724 | 07772 | 44408 | 856265 | 0.7238 | 5.5637 | 186.2230

Jackknifed | AMSE | 01212 | 13.0636 | 1.6325e | 0.1398 | 16.1430 | 3.5086e | 0.0853 | 42.6943 | 1.6907e
Ridge +003 +003 +004

ABIAS | 0.5570 | 57303 | 66.1083 | 0.5978 | 6.6360 | 94.0367 | 04637 | 9.3044 | 205.6219

Temel AMSE | 0.1431 | 0.4860 | 34.5709 | 0.0822 | 0.3926 | 31.4557 | 0.0202 | 0.3077 | 29.0579

Bilegenler | ABIAS | 0.6917 | 11230 [ 93656 | 0.5145 | 1.0029 | 69386 | 0.2463 | 0.8841 | 8.5913
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Tablo B.11. n=100, p=4, 7=-0.90, MA(1) yapisinda olan V matrisi ile tahminler

=090 /=095 =099
g 0.1 1 10 0.1 1 10 0.1 1 10
GEKK AMSE | 0.3651 | 36.5078 | 3.6508e | 0.7013 | 701252 | 7.012%e | 3.3866 | 33B.6614 | 3.3BGbe
+003 +003 +004
0.9 | AMSE | 1.3002 | 30.5669 | 2.9561e | 1.5669 | 57.7929 | 5.6811e | 3.7359 | 275.3005 | 2.7432e
- +003 +003 +004
u ABIAS | 2.0166 | 6.8090 | 86.5604 | 21216 | 12.1065 | 119.9047 | 31052 | 26.3965 | 263.3462
z 0.1 | AMSE | 81.4283 | 81.7629 | 117.8570 | 80.9811 | 81.6680 | 151.0186 | 80.5199 | 83.8646 | 419.05%4
x ABIAS | 17.9184 | 17.9168 | 18.6451 | 17.9453 | 17.9437 | 203488 | 17.9346 | 17.9331 | 32.7686
n
Ridge AMSE | 0.2466 | 12.9422 | 3.0748e | 0.2401 | 171307 | 5.836%e | 0.1736 | 48.0477 | 2.810%e
+003 +003 +004
ABIAS | 0.8314 | 55697 | 67.2090 | 0.8290 | 6.2170 | 120.0123 | 0.7382 | 9.4767 | 262.0997
Jackknifed | AMSE | 02012 | 239015 | 3.5728e | 02249 | 358223 | 6.8443e | 01414 | 114.0149 | 3.2981e
Ridge +003 +003 +004
ABIAS | 0.7126 | 7.6463 | 947804 | 0.7502 | 9.1420 | 130.9642 | 0.5876 | 15.0786 | 286.9458
Temel AMSE | 0.1399 | 95224 | 9477813 | 0.0813 | 0.5880 | 51.2557 | 0.0218 | 0.4874 | 47.0467
Bilesenler | ABIAS | 0.5993 | 42607 | 423933 | 05093 | 1.2243 | 113864 | 02513 | 11115 | 10.9129
Tablo B.12. n=100, p=4, 7=-099, MA(1) yapisinda olan V matrisi ile tahminler
7=090 y=095 7=099
g 0.1 1 10 0.1 1 10 0.1 1 10
GEKK AMSE | 11936 | 119.3608 | 1.1936e | 22957 | 229.5668 | 2.2957e | 11.0395 | 1.103% | 1.103%
+004 +004 +003 +005
> 0.9 |AMSE | 19742 | 97.6797 | 9.66%1e | 2.6599 | 186.9393 | 1.829Ge | 9.9349 | 6951786 | 5.9420e
w +003 +004 +004
% ABIAS | 2.2680 | 15.2215 | 1313380 | 26776 | 21.0020 | 2093283 | 4.6754 | 458529 | 458.1524
2 |01 [AMSE | 817026 | 826742 | 2009400 | 811438 | 834084 | 310.5776 | 80.6253 | 91.3480 | 1.1844e
I +003
@ ABIAS | 17.7378 | 17.7304 | 224724 | 178687 | 17.8665 | 276083 | 17.9214 | 17.9516 | 53.0809
Ridge AMSE | 04704 | 57.5589 | 1.0412e | 0.4662 | 100.0463 | 1.996%e | 0.3309 | 410.9804 | 9.5756e
1004 +004 +04
ABIAS | 1.0762 | 11.9540 | 136.4888 | 1.0766 | 14.3721 | 215.9892 | 0.9185 | 27.6270 | 471.8618
Jackknifed | AMSE | 06614 | 95.3744 | 1.1794e | 0.7756 | 167.9391 | 2.2669¢ | 0.6806 | 7216541 | 1.089%
Ridge +004 +004 +05
ABIAS | 1.2684 | 14.7383 | 166.9686 | 13722 | 19.1369 | 2306103 | 1.2382 | 38.1300 | 504.5868
Temel AMSE | 05780 | 60.0377 | 5.7956e | 0.5528 | 53.6161 | 53599 | 0.0257 | 0.9207 | 90.4211
Bilesenler +003 +003
ABIAS | 11981 | 114764 | 1193392 | 1.0147 | 94836 | 947686 | 0.2663 | 15330 | 15.1828

118




