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GENERATIVE ADVERSARIAL NETWORKS IN COMPUTER VISION
APPLICATIONS

SUMMARY

Generative Adversarial Networks (GANs) are one of the examples of generative
modelling which uses deep learning (DL) based methods. It is considered that GANs
are the best way to train a generative model. GANSs consist of two parts. The first one
is the generator and the second one is the discriminator. Generator’s mission is to
create fake data that is indistinguishable from the real data for the discriminator.
Discriminator’s mission is to distinguish the real data from the fake data that has been
generated by the generator.

Generative adversarial networks have two different neural network architectures to
train. GANSs should run discriminator training and generator training together. Because
the generator training and the discriminator training heavily rely on each other, they
are trained alternatingly in one iteration. Generative models are a branch of
unsupervised machine learning, but the training of the GAN architecture, which relies
on generative modelling, is considered as supervised machine learning.

This thesis demonstrates that generative adversarial network architectures can
effectively tackle important computer vision problems. These problems include the
generation of fake images, super-resolving images and denoising of noisy images.

In this thesis, we studied three different computer vision applications which use
generative adversarial networks for solution. The results indicate that GANs can be
very effectively used for these particular problems. Before GAN there were other
architectures which used generative modelling as well, but with the founding of GAN
those architectures that used generative modelling to solve the computer vision
problems became pretty much insufficient. Also, some of the image processing
techniques that were used to solve computer vision problems also fell out of use.

There were not many strategies to super-resolve images by using GANSs until the last
few years. Deep learning started to come handy for solving this task and the research
for this problem started to grow. The super-resolution models are created, and different
learning methods applied to these models to solve this task, but most of them failed on
real world images which are taken by devices such as smartphones. The most
widespread method for training the super-resolution deep learning models starts by
downscaling the images that are inside the dataset with methods like nearest neighbor
resampling, bicubic resampling and bilinear resampling. This process is applied in
order to make a dataset that contains high-resolution and low-resolution training image
pairs. The low-resolution images that are created by this process have almost no noise,
in other words the images are clean. The main purpose of these super-resolution deep
learning models is to increase the resolution of the images.

Enhanced Super Resolution Generative Adversarial Network (ESRGAN) has been
used as a GAN architecture for this problem. ESRGAN is an improved version of the
Super Resolution Generative Adversarial Network (SRGAN) architecture. As the
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name SRGAN suggests, it uses a deep neural architecture with an adversarial network.
Its main purpose is to super resolve the images to produce higher resolution images
compared to the input images.

Fake image generation subject was started by lan Goodfellow back in 2014. He and
his colleagues founded the Generative Adversarial Network theory. Images have been
generated from the datasets by using GAN architecture. These generated images look
as if they are from the training dataset, but they are unique on their own because there
are no such generated images in the training dataset. For this problem two different
GAN architecture have been used. In 2015, Deep Convolutional Generative
Adversarial Networks (DCGAN) were developed. It is a better version of the simple
GAN. One more important thing that had come with DCGAN is the fact that traversing
through the latent space of the generated image and changing the values in latent space
dimensions can change the generated image drastically. For example, with using
vector arithmetic in the latent space of the generated images, a new generated image
can be produced. In 2018, BigGAN model was proposed. ResNet GAN architecture
has been used for the BigGAN model. BigGAN benefitted from scaling and it provided
bigger generative adversarial networks and larger batch sizes. Neural networks have
been trained with two or four times more parameters and eight times more batch size
then the previous implementations. As a result, the generated images looked
indistinguishable from the real input images from the dataset that have been used to
train the GAN.

Deep learning methods have been used to tackle image processing problems for quite
some time. Denoising is one of the most known image processing problems to this
date. There are different methods to attack this problem. The most traditional ones are
the image processing methods. Denoising the images with the linear filters, non-linear
filters, adaptive filters can be given as an example for the traditional image processing
techniques. CNN architectures have been proposed to tackle this problem. In a recent
method, a GAN was trained to learn the noise distribution and then CNN was used to
denoise the images. In the literature there are no GAN architectures that are solely
adapted to image denoising problem. For this problem, using an SRGAN like
architecture was proposed. It has been understood that using the SRGAN like
architecture not only works for improving the image resolution but to denoise the
images as well. Also, it has been shown that DCGAN architecture can be used in more
than one image processing problem. It has been shown that this architecture can be
used not only for fake image generation, but also for problems such as image
denoising, super resolving the images and deblurring the images as well. Nowadays
deep learning methods are much more popular than the traditional image processing
techniques, because these methods can learn from the datasets, create their own
features, and preserve the image details better because of the learning aspect.

Updated form of the DCGAN architecture has been proposed and used for the
denoising problem as a GAN architecture. In the generator of the neural network
architecture some changes have been made to generate bigger images and also to reach
better performance. Image size is kept the same while going forward in the layers of
the generator but, the channel size is changed. An extra hidden layer was added to the
generator to make the neural network denser and to keep the image size the same.
Some changes have been made on the discriminator because of the changes in the
generator.
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From the practical standpoint, recent GAN architectures with the improved
optimization techniques are easy to train, and the results are getting more accurate.
The training, validation and testing parts are almost the same. The only differences are
the loss functions and the optimizers. The procedure for making the dataset ready for
training differs for each problem. Different pre-processing techniques and
normalization techniques are used on those datasets. Also, the GAN part looks the
same with two distinct networks, one being the generator and the other one being the
discriminator. Although these two architectures do the same job every time, where the
generator tries to generate fake images and the discriminator tries to distinguish the
generated fake images from the real images, these architectures get changed from one
problem to another to tackle the particular characteristics of the problem.
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BILGISAYARLI GORU UYGULAMALARINDA CEKISMELI URETICi
AGLAR

OZET

Cekigmeli tiretici aglar, derin 6grenme tabanli yontemler kullanan tUretken modelleme
metotlarindan biridir. Cekismeli tiretici aglarin tiretken modelleme egitme yontemleri
icinde en iyi basarim saglayan yontem oldugu diisiiniilmektedir. Cekigmeli tiretici
aglar iki agdan olusmaktadir. Birincisi iiretici ag, ikincisi ayristiric1 agdir. Uretici agin
misyonu, ayristirict ag i¢in ger¢ek verilerden ayirt edilemeyen sahte veriler
olusturmaktir. Ayristirict agin misyonu, gercek verileri tiretici ag tarafindan tiretilen
sahte verilerden ayirmaktir.

Cekismeli tiretici aglarda egitilmesi gereken iki farkli yapay sinir ag1 mimarisi vardir.
Cekigsmeli {retici aglar, ayristirict ag egitimini ve (retici ag egitimini birlikte
yurttmelidir. Uretici agin egitimi ve ayristirici agin egitimi birbirlerinden geri
bildirimler aldigindan, tek bir yinelemede doniisiimlii olarak egitim saglanmaktadir.
Uretken modeller, denetimsiz makine &greniminin bir dalidir. Ancak Uretken
modellemeye dayanan ¢ekismeli iiretici ag1 mimarisinin egitimi, denetimli makine
ogreniminin konusu olarak kabul edilir.

Bu tez, bilgisayarli gorii problemlerinin ¢6zimu igin birgok cekismeli iiretici ag
mimarisini incelemektedir. Bu bilgisayarli gorii problemleri sahte gdrlntilerin
uretimi, gorintilerin ¢ozlinirligiinin arttirilmas: ve goruntilerdeki gurdltilerin yok
edilmesidir.

Tezde, ¢ekismeli dretici aglar1 kullanan i¢ farkli bilgisayarli gori uygulamasi
incelenmistir. Sonuglar, ¢gekismeli tiretici aglarin bu belirli problemler icin ¢ok etkili
bir sekilde kullanilabilecegini gostermektedir. Cekismeli iiretici aglardan once,
tiretken modellemeyi kullanan bagka mimariler de sunulmustur. Ancak gekismeli
tiretici aglarin gelistirilmesiyle, bilgisayarl gort problemlerini ¢ozmek igin lretken
modellemeyi kullanan diger mimariler giderek popiilerligini yitirmistir ve ¢ekismeli
Uretici aglara gore daha etkisiz kalmiglardir. Ayrica, bilgisayarli gori problemlerini
¢ozmek icin kullanilan goriintii isleme tekniklerinden bazilari da kullanim disina
itilmistir.

Son birkag yila kadar ¢ekismeli iiretici aglari kullanarak gorunttlerin ¢ozundrligini
arttirmak i¢in fazla strateji yoktu. Derin 6grenmedeki gelismelere paralel olarak, bu
probleme yonelik arastirmalar giderek gelismeye basladi. Yeni stper ¢Ozuntrlik
modelleri olusturuldu ve bu modeller lizerinde farkli 6grenme yontemleri uygulandi.
Ancak bu 6ncul yontemler herhangi bir cihazin kamerasindan dogrudan alinan
goriintiilerde basarisiz oldu. Siper ¢6zundrluk icin derin 6grenme modellerini
egitmenin en yaygin yontemi, en yakin komsu yeniden 6rnekleme, ¢ift kiibik yeniden
ornekleme ve ¢ift dogrusal yeniden Ornekleme gibi yontemlerle veri kiimesinin
icindeki goriintiilerin Olgegini  kiigiiltmekle baslamaktadir. Bu islem, yliksek
¢Oziintirlikli ve diisiik ¢oziiniirliiklii egitim goriintii ¢iftleri igeren bir veri kiimesi
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olusturmay1 saglar. Bu islemden sonra elde edilen diisiik ¢ozlintirliikklii goriintiilerde
gurultd biiyiik miktarda azalir yani gérintiler ayni1 zamanda temizlenmis olur.

Siiper ¢oziiniirlikli derin 6grenme modellerinin  temel amaci goriintiilerin
¢Ozlinlirliglnii artirmaktir. Bu probleme yonelik olarak tez kapsaminda ¢ekismeli
uretici agi mimarilerinden olan ESRGAN gergeklenmistir. ESRGAN, SRGAN
mimarisinin gelistirilmis bir versiyonudur. Ana amaci, girig goriintiilerine kiyasla daha
yuksek ¢ozundrlikli gorintuler tretmek igin goruntilerin ¢ozlnirligiini arttirmaktir.

Cekismeli iiretici aglarla sahte goriintii iiretme konusu lan Goodfellow tarafindan 2014
yilinda ortaya atildi. Bu kapsamda cekismeli iretici ag egitim veri kimeleriyle
egiterek, verisetlerinde olmayan yeni gorintllerin iiretilmesi saglandi. Bu tretilmis
goriintiiler, egitim veri kiimesinden alimmis gibi goriinmesine ragmen aslinda
benzersizdirler ve tamamen sifirdan tiretilmislerdir.

Tez kapsaminda bu problem ig¢in iki farkli c¢ekismeli {iretici ag1 mimarisi
gerceklenmistir. Bu mimarilerden bir tanesi olan DCGAN, basit ¢ekismeli iiretici agi
yapisinin gelistirilmis bir versiyonudur. Tez kapsaminda sahte goriintii liretme igin
gergeklenen ikinci GAN tabanli yontem ise yontem BigGAN iretici agini
icermektedir. BigGAN ag mimarisi ResNet ag yapisina dayanmaktadir. BigGAN
mimarisi gorece olarak daha buyik c¢ekismeli iretici aglarin egitimini miimkiin
kilmaktadir. BigGAN mimarisinin kullanim1 aglarin énceki mimarilere gore dort kata
kadar daha fazla parametre ve sekiz kata kadar daha fazla yigin boyutu ile
egitilebilmesini miimkiin kilmistir. Sonug olarak Uretilen gorintller, ¢ekismeli liretici
ag1 egitmek i¢in kullanilan veri kiimesindeki gergek giris goruntiilerinden neredeyse
ayirt edilemez gorinmektedir.

Gurdlt giderme, en popller goriintii isleme problemlerinden bir tanesidir. Bu
problemi ¢ozmek igin ¢ok farkli yontemler sunulmustur. Goruntiilerde guralti
gidermeye yonelik olarak sunulmus ¢ok sayida geleneksel goriintii isleme yontemi
literatiirde yer almaktadir. Bunlar arasinda dogrusal filtreler, dogrusal olmayan
filtreler, uyarlanabilir filtreler ve yerel olmayan yontemler érnek olarak verilebilir.

Yakin zamanda literatiirde sunulan bir arastirmada, giiriilti dagilimini 6grenmek i¢in
bir ¢ekigmeli Uretici agin kullanimi Onerilmistir. Bu adimin ardindan goriintiileri
giiriiltiiden armdirmak igin klasik evrigimli sinir agir kullanilmigtir. Literatirde,
gorintulerde gurultt giderme problemine 6zel olarak uyarlanmis bir ¢ekismeli iiretici
ag1 mimarisi yer almamaktadir. Literatirde bu problem icin, SRGAN benzeri bir
mimarinin kullanilmasi 6nerilmistir. Sunulan benzetim sonuglart SRGAN mimarisinin
sadece goriintli ¢oziiniirligiini iyilestirmek i¢in degil, ayn1 zamanda goriintiilerdeki
gurultiyd giderme problemine yonelik olarakta iyi sonuglar verdigini gostermistir. Tez
kapsaminda ise DCGAN mimarisinin goriintiilerde giiriiltii giderme i¢in kullanimi
incelenmistir,. DCGAN mimarisi sahte goriinti  olusturma, goriintiilerin
¢cozlnlirliigliniin  arttirllmas1  ve goriintiilerin - bulanikliginin ~ giderilmesi  gibi
uygulamalarda kullanilmistir. Tez kapsaminda yapilan c¢alisma ile bu yapinin
goruntulerde gurultd giderme problemine yonelik olarak da kullanilabilecegi
anlasilmistir.

Giiniimiizde derin 6grenme yontemleri geleneksel goriintii isleme tekniklerinden daha
popdler hale gelmislerdir. Derin aglar ¢ok blyuk veri setleri kullanarak egitimi ve
analitik yontemlerle ulagilamayan 6zniteliklerin ¢ikarilmasini saglamaktadir.

Tez kapsaminda ti¢ farkli bilgisayarl gorii problemine yonelik olarak ¢ekismeli iiretici
ag derin 6grenme mimarilerinin kullanimi incelenmistir. Literatiire yeni kazandirilmis
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olan ¢ekismeli iiretici ag§ mimarilerinin egitilmesi goreceli olarak kolaydir. Cekismeli
tiretici aglar i¢in egitim, dogrulama ve test kisimlar1 ¢ok benzerdir. Bu kisimlarin
aralarindaki tek fark kullanilan kayip fonksiyonlar1 ve optimizasyon yontemleridir.
Tez kapsaminda yapilan gergeklemeler, goriintli ¢6ziiniirliik yilikseltme, sahte goriintii
uretme ve goruntilerde guriilti giderme uygulamalar igin gekismeli iiretici aglarin
basariyla kullanilabilecegini gostermistir.
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1. INTRODUCTION

In this chapter, the theoretical background of the thesis is explained from the general
subject to the specific subject, the aim of the thesis and the literature review are briefly

introduced.

1.1 Theoretical Background

1.1.1 Machine learning

Machine learning brings together statistics and computer science to enable computers

to learn how to do a given task without being programmed to do so.

What is really special about algorithms of machine learning is that they rely on the
data, not executing some code blocks for given conditions. And of course, the more

data the better the results.

The part of the statistics is for understanding dataset. The part of the computer science
IS to interpret and process this dataset in the most efficient way. Efficient algorithms
and large datasets are the keys for getting better results from machine learning.

1.1.2 Machine learning techniques

A very common problem for machine learning is to make a prediction with using a

model.

This requires couple of things such as: training dataset, which is used for training the
model. In these datasets, there are inputs such as images and output labels. Output
label shows what is inside the image. The other thing is model training, which consists
of three steps. Model is trained with the inputs from the training dataset, making the
model predict the output labels and correcting the model with optimizers and loss

functions.

There are four main machine learning techniques:



Supervised Learning: It is based on learning a mapping from inputs to the outputs
with the given labeled dataset [1].

The most common supervised learning problems are regression and classification.
Some of the algorithms that help us solve these problems are linear regression,

decision tree and random forest.

Unsupervised Learning: In this type of learning approach, there are only inputs.
In other meaning no outputs or labels. The goal is to find the undetected patterns

between the data inside the dataset.

In this kind of problems, we need to find the patterns and we cannot use any clear
loss function because we do not have a prediction label for the predicted output
[1]. The most common unsupervised learning problems are generative modeling,
dimensionality reduction and clustering. Some of the algorithms that help us solve
these problems are k-means clustering, generative adversarial networks and

principal component analysis.

Semi-Supervised Learning: It is a combination of both supervised learning and
unsupervised learning. The main purpose of this learning approach is to classify

unlabeled data using the labeled data [2].

Reinforcement Learning: In this learning approach, the machine learning model
learns to make a decision from the sequences of reinforcements. Reinforcement
learning is like a game. Artificial intelligence either gets a reward or a punishment
for the decision that it is making.

1.1.3 Machine learning models

Discriminative Models: These models are a branch of supervised machine
learning. Discriminative models discriminate the classes with a decision boundary

using the training dataset. They are used for regression and classification.

Generative Models: These models are a branch of unsupervised machine learning.
At first generative models tries to learn the distribution of the data from the training
dataset. Then using this data distribution as an input, new examples can be crated.

The goal here can be generating new examples that are indiscernible from the
examples inside the training dataset or decreasing the noise and increasing the

resolution of the images that are inside the testing dataset or in real world.



Mathematically we know the marginal probability of the input “P(input)”. We need
to estimate the marginal probability of the output “P(output)” and conditional
probability distribution “P (input | output)” (conditional probability of the input

when output label is given) with generative modeling. Then by using the Bayes

rule:
P (input)P(output|input) = P(output)P (input|output) (1.2)
P(output|input) = P(output) P(output|input) / P(input) 1.2)

From here, distribution of each class is modeled by finding the conditional probability
distribution “P (output | input)” (conditional probability of output when input is given).
New samples can be generated using this model.

Some of the examples for generative models are Naive Bayes, Deep Belief Network,

Variational Autoencoder, and the Generative Adversarial Network (GAN).

1.1.4 Deep learning

Deep learning is a subset of machine learning that relies on neural networks with using

large amounts of data. Structure of the neural networks is inspired by the human brain.

Some of the most common deep learning methods are Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN), Autoencoder and GAN.

The features are chosen by the neural network without human intervention. Neurons,
the main asset of the neural networks, are the place that processing of information
takes place. Neural networks have an input layer, hidden layers, and an output layer.
As an example, the information which can be pixels of an image is given to the input
layer of the neural network. In the last layer, which is the output layer, there are
neurons that represent a digit. Between the input layer and output layer there are hidden

layers. The geometry of the neural network is illustrated on the Figure 1.1.
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Figure 1.1 : Neural Network Example.

1.1.4.1 Working of neural networks

The information is transferred through the neural network layers with connecting
channels. Each channel has a weight, so we can call them weighted channels. All the
neurons may have its own bias. This bias value is added to the weighted sum of inputs
that reaches to the neuron of the current neural network layer. Then this computation
gets pass through the activation function. Activation function decides if the neuron
will be activated or not by multiplying it with either a positive value or 0. Every
activated neuron passes the information to the following layer. This continues until the
last hidden layer. The neuron that is activated in the output layer corresponds to the
inputs that is put through in input layer. The weights and biases are continuously

adjusted through the process of neural network training.

1.2 Computer Vision Applications with GANs

In this thesis there are lots of generative adversarial network architectures and methods
to tackle computer vision problems. These problems are generating fake images,

super-resolving images and denoising the noisy images.

In this thesis, we studied three different computer vision applications which use

generative adversarial networks for solution. The results indicate that GANs can be



very effectively used for these particular problems. Before GAN there were other
architectures which used generative modelling as well, but with the founding of GAN
those architectures that used generative modelling to solve the computer vision
problems became pretty much insufficient. Also, some of the image processing

techniques that were used to solve computer vision problems also fell out of use.

From the practical standpoint, recent GAN architectures with the improved
optimization techniques are easy to train, and the results are getting more accurate.
The training, validation and testing parts are almost the same, the only differences are
the loss functions and the optimizers. The procedure for making the dataset ready for
training differs for each problem. Different pre-processing techniques and
normalization techniques are used on those datasets. Also, the GAN part looks the
same with two distinct networks, one being the generator the other one being the
discriminator. Although these two architectures do the same job every time, where the
generator tries to generate fake images and the discriminator tries to distinguish the
generated fake images from the real images, these architectures get changed from one

problem to another to tackle the particular characteristics of the problem.

1.2.1 Super resolution on images

GANs usage for this problem is to increase the resolution for the images and the
videos. It has been used for different purposes in many areas. Some of them are as

follows.

e Increasing the resolution for the old movies, commercials and shows to have better

experience watching them.

¢ Increasing the resolution for the images and videos that are recorded with cameras
that are not quite good to record high resolution images and videos. Mainly the cell

phone cameras can be given as an example.

¢ Increasing the resolution in medical imaging for better medical imaging analysis.

1.2.2 Fake image generation

GANs usage for this problem is to create fake images that have not existed before. It

has been used for different purposes in many areas. Some of them are as follows.



Using fake image generation in the modeling agencies and commercial companies

in order to not pay for the models or actors and actresses.

Creating fake places that are not existed before in movies, thus no time or money
Is spent on finding new areas. In the future it is suggested that there will be no
actors or actresses in movies, these people will be generated by the GAN.

Creating datasets for the problems that are lacking enough data to solve the

problem in artificial intelligence applications.

1.2.3 Image denoising

GANSs usage for this problem is to denoise the images and the videos. It has been used

for different purposes in many areas and these areas are so similar to super resolution

problem. Some of them are as follows.

Clearing the noises inside the video signals for the old movies, commercials and

shows to have better experience watching them.

Denoising the images and videos that are recorded with cameras that are not quite
good to record noise free images and videos. The environment is also effective in
this problem too. Low light and high heat can be given as an example for the

environment problems. Mainly the cell phone cameras have this problem.

Decreasing the noises in medical images for better medical imaging analysis.

1.3 Tools and Technologies

Language: Python 3.6.9 has been used for this project. Python is an object-
oriented programming (OOP) language which uses interpreter to turn the code into
a machine code. It is one of the most used high-level languages in the world. It is
used in web development, desktop application development, embedded software

development and mostly in applications that uses data science.

Framework: PyTorch 1.6.0 has been used in this project. PyTorch is a deep
learning library mostly used for applications such as natural language processing
and computer vision. It uses graphical processing units (GPUs) and central
processing units (CPUs). Tensors are used in this library to make computation.



Environment: Google Colab has been used to access all the technologies like
Python programming language, PyTorch framework, machine learning libraries
and GPUs like NVIDIA Tesla T4 GPU. Google Colab is an environment that
allows us to write, run, save, and share code in Google Drive. It is basically a
notebook which is composed of cells just like Jupyter Notebook. In those cells we
can contain code, images, and text. Colab makes a connection with the cloud-based
runtime with our notebook. Therefore, the Python code is executed without
anything required locally. It uses GPUs, CPUs, and tensor processing units (TPUS)

as a hardware accelerator.

Libraries: NumPy and Python Imaging Library (PIL) are the third party-libraries
that have been used in this project. PIL is an image processing library that allows
us to open, manipulate and save images. NumPy is one of the most used libraries
for scientific computation in data science applications. It is a third-party Python
library that provides a multidimensional arrays and matrices, with a large

collection of mathematical, basic, and advanced programming functions [3].

Tools and technologies that have been used in this project is summarized in the Table

1.1.

Table 1.1 : Tools and Technologies.

Tools Tool Names
Programming Language Python
Deep Learning Framework PyTorch
Environment Google Colab
3rd Party Libraries PIL, NumPy
GPU NVIDIA Tesla T4 GPU

1.4 Thesis Overview

This section provides an overview of the chapters within the thesis.

Chapter 1 is composed of theoretical background and tools and technologies. In the

theoretical background section, the theory behind the project is explained from general

to specific. In the tools and technologies section, the tools and technologies used in

this project are explained.



Chapter 2 is composed of Generative Adversarial Networks (GAN). Structure and
working mechanics of GAN are explained. Then the training of GAN parts and GAN

is explained.

Chapter 3, 4 and 5 are composed in the order of the subjects called Super Resolution
on Images, Fake Image Generation, and Image Denoising. Those chapters contain the
same section titles. In literature review section, related works and methodologies about
the application are explained briefly. In dataset section, the dataset used in training and
testing for the application is introduced and the pre-processing operations used in the
dataset are explained. In the neural network architecture section, the model used in

training and testing for the application is explained.

Chapter 6 is composed of results. The results from Chapter 3, 4 and 5 are shown and
explained here. In addition, the comparison of the results obtained from different

models and methodologies has been made here.

Chapter 7 is composed of conclusion. The conclusions from the other chapters are

explained here.



2. GENERATIVE ADVERSARIAL NETWORKS

2.1 Structure and Working Mechanics of GAN

Generative Adversarial Networks (GANs) are one of the examples of generative
modelling which uses deep learning (DL) based methods. It is considered that GANs
are the best way to train a generative model.

GANs consist of two parts. The first one is generator and the second one is

discriminator.

e Generator’s mission is to create fake data that is indistinguishable from the real
data for the discriminator. The generator uses feedback given by the discriminator
when generating these fake data. These fake data are used in the training part of

the discriminator.

e Discriminator’s mission is to distinguish the real data from the fake data that has
been generated by the generator. If the generated fake data can be distinguished
from the real data, then the discriminator gives a penalty to generator. The
discriminator can be viewed as classifier in our situation. By looking at the data
that the discriminator trying to classify, any deep learning based network

architecture can be selected.

At first phases of the training, the generator creates fake data, and the discriminator

learns easily to tell that the generated data from the generator is fake.

At the later stages of the training the generator starts to create fake data that can be

indistinguishable for the discriminator.

Lastly, if the generator training is going bad then the discriminator will easily
distinguish the real data from the generated fake data, but if the generator training goes
well, the discriminator will struggle to distinguish the generated fake data from the
real data and that can cause the discriminator to classify the generated fake data as a
real data instead of classifying it as a fake data. This will make the discriminator’s

accuracy decrease [4].



The working structure of training the GAN is in Figure 2.1 [5].
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Figure 2.1 : Training the Generative Adversarial Network [5].

The working structure of testing the GAN is in Figure 2.2.
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Figure 2.2 : Testing the Generative Adversarial Network.

In testing part of the GAN, generator loss and discriminator loss are not calculated
with loss functions, the generator network and discriminator network are not getting
optimized with the optimizer, discriminator does not distinguish the real data from the
fake data. Hence, there is no backpropagation nor weight update in the neurons of the
generator network and discriminator network. Only thing that happens in the testing

part of the GAN is generator generating new samples from the given input samples.
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2.2 GAN Training

In this section of the current chapter, the neural network training of the generative
adversarial network is explained. First, parts of the GAN training as the generator
training and the discriminator training, then the GAN training as a whole are explained

both theoretically and practically.

2.2.1 Discriminator training

For the discriminator training there are two different data samples. The first one is
called real data, which in our case images of the nature or people. The second one is
called fake or generated data, which is the data that has been generated by the
generator. Real data are called positive examples for the training of discriminator. Fake

or generated data are called negative examples for the training of the discriminator.
Discriminator training procedure is as follows:

e Discriminator network tries to classify both the real data sample and the sample

that has been generated by the generator.

e Loss function for the discriminator, calculates the losses for both real and fake data
samples. Then the discriminator network gets penalized for misclassification

between the real and generated samples by the loss function for the discriminator
[6].

e The whole discriminator network is backpropagated with respect to the
discriminator's loss function, and then the optimizer for the discriminator updates
the model parameters. In short, the weights in each layer of the discriminator

network is updated by backpropagation and optimization.

e Note: Different loss functions and optimizers can be used for the specific GAN
problem.

2.2.2 Generator training

For the generator training there is one data sample which is a random input. This
random input may be noise or a low-resolution image or a noisy image. If the random
input is noise, we can understand that the distribution of noise is not that important by
looking at the experiments, so choosing a distribution that is easy to sample is

11



preferable [7]. As an example, uniform distribution can be chosen as a distribution that

IS easy to sample from.

Training the generator requires discriminator more than the discriminator training

requires generator.

Generator training procedure is as follows:

A random input is sampled, or a low-resolution image is gathered.
Generator network creates an output from the random input.

Real data and the fake data are put through the discriminator network and the

validity predictions have been made as real and fake.

Loss function for the generator, calculates the loss by using the classification made
by the discriminator. Then the generator network gets penalized for creating data

that cannot trick the discriminator.

The whole generator network is backpropagated with respect to the generator loss
function, and then the optimizer for the generator updates the model parameters.
In short, the weights in each layer of the generator network is updated by

backpropagation and optimization.

Note: Different loss functions and optimizers can be used for the specific GAN

problem.

2.2.3 GAN training as a whole

Generative adversarial networks have two different neural network architecture to

train. GANSs should run discriminator training and generator training together. Because

the generator training and the discriminator training heavily rely on each other, they

are trained alternatingly in one iteration. Generative models are a branch of

unsupervised machine learning, but the training of the GAN architecture, which relies

on generative modelling, is considered as supervised machine learning.

GAN training procedure is as follows:

Train the generator to provide a batch of generated samples to the discriminator.

Train the discriminator with the generated batch of samples from the generator and

the real data samples.

12



e Repeat first 2 steps until the end of the all iterations in one epoch.
e Repeat the third step for one or more epochs.

There is a very common problem with GAN training, and it is called convergence of
GAN. This problem occurs when the generator performance improves, and the
discriminator performance decreases. This will cause the discriminator to hardly
distinguish the difference between the generated data from the generator and the real
data. In an ideal world, if the generator generates a batch of samples that are near
perfect, then the discriminator could end up with having a 50% accuracy. This is often

referred to as flipping a coin to make a prediction [8].

Therefore, the predictions of the discriminator lose its importance over the course of
the GAN training and if the training continues from there then the discriminator will
make completely random decisions and these decisions will return to the generator as
a bad feedback to train the generator network with. This may cause generator quality

to decrease as the training progresses to the later stages.
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3. SUPER RESOLUTION ON IMAGES

3.1 Literature Review

There were not many strategies to super-resolve images by using GANs until the last
few years. Deep learning started to come handy for solving this task and the research
for this problem started to grow. The super-resolution models are created, and different
learning methods applied to these models to solve this task, but most of them failed on

real world images which are taken by devices such as smartphones.

The most widespread method for training the super-resolution deep learning models
starts by downscaling the images that are inside the dataset with methods like nearest
neighbor resampling, bicubic resampling and bilinear resampling. This process is
applied in order to make a dataset that contains high-resolution and low-resolution
training image pairs. The low-resolution images that are created by this process have

almost no noise, in other words the images are clean.

The main purpose of these super-resolution deep learning models is to clean the images
from the noises and increase the resolution of the images. But the given dataset for
training the model contains clean images or noise reduced images. This leads the

model to learn from the images that are almost noise-free.

After training super-resolution models with these strategies, the results are generally
poor if the model is tested with real-world images that do not have any image
processing methods applied by the developer, or in other words, images taken directly
from the camera. The model leaves significant artifacts on the test images that are

undesirable for super-resolving the images [9].

A real useful method that proposed in 2020 is real world super resolution with kernel
estimation and noise injection [10]. Gathering a good dataset is very important for this

problem, therefore a good strategy is proposed in this study.

e Clean Up: Bicubic downsampling was used for downsampling. The aim is to
remove the high frequency noises from the training dataset images. Thus, higher

resolution images were obtained in the training dataset [10, 11].

15



Img, = (Imgsyc * kernely;c) I s (3.1)

Imgg,. IS the training dataset image, kernely;. is the bicubic kernel and s is the

downsampling ratio.

e Degradation: Degradation operation was applied to high resolution images taken
from the last step. The degradation operation was done using the Kernel GAN [12].
Degradation pool was created with blur kernels in it. Then, a blur kernel was

randomly selected from this pool and applied to the images [10].

Img,s = (Imgy, * blur_kernel;) I s,i € {1,2,3,....k} (3.2

Img 1s the downsampled image.

e Noise Injection: While getting the high-resolution images, some of the
information were lost due to bicubic downsampling. Noise was added to the
downsampled images to create realistic low-resolution images. These noise
patches were collected from the training dataset images. After that, a filtering rule
was designed to pick the noise patches from a decided range. These patches were

then added to the downsampled images to obtain low-resolution images [10, 11].

Img,, = Imgys + noise; i € {1,2,3,....1} (3.3)

e Neural Network Training: Enhanced Super Resolution Generative Adversarial
Network (ESRGAN) [13] was used as a network architecture. Low resolution
images are the fake data, high resolution image are the real data. Pixel loss,

adversarial loss and perceptual loss were applied as loss functions for the training.

3.2 Dataset

For super resolution problem the dataset that has been used is Large-scale CelebFaces
Attributes (CelebA) Dataset [14]. This dataset contains more than 200,000 celebrity
images. The reason for using this dataset is, it is easier to train with small amounts of
training data to super-resolve the images in this dataset. Therefore, Google Colab can
be used easily. Google Drive only gives 15 GBs of space while working with Google

Colab and Google Colab only allows to work with datasets that our Google Drive
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contains. Therefore, to use the GPU and pre-installed machine learning and deep
learning libraries that Google Colab offers freely, Google Colab and Google Drive

need to be used.

3.3 Neural Network Architecture
In this part of the current chapter, the neural network architecture that has been used
to tackle the super-resolution problem is explained.

ESRGAN architecture [13] was created with using the SRGAN architecture [15] as
the starting point. The neural network architecture of the SRGAN is in the Figure 3.1
[15].
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Figure 3.1 : Super Resolution GAN with Generator and Discriminator Network [15].

As the name Super Resolution Generative Adversarial Network (SRGAN) suggests it
uses deep neural network with the adversarial network. Its main purpose is to super

resolve the images to produce higher resolution images compared to the input images.

From the Figure 3.1 [15], the neural network architecture can be explained concisely
as follows:

e Convolutional Layers: Convolutional layers are the main part of the
convolutional neural networks. They're doing CNN's main job. It convolves the
input, which can be image, with filter and bias and passes its result to the neurons
in the next layer.
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RELU: Rectified Linear Unit (RELU) is an activation function for the neural
networks. RELU outputs the negative values inside the neuron as 0 and outputs the
positive values inside the neurons as it is. It is good for the vanishing gradient

problem, but it might block gradient descent.

Leaky RELU: To solve the gradient descent problem, Leaky Relu has been
introduced as a new activation function. Leaky Relu outputs the negative values
inside the neuron with multiplying with a constant and outputs the positive values

inside the neurons as it is. The constant gets small values like 0.01.

Leaky RELU(x) = max(ax, x), wherea > 0 (3.4)

Parametric RELU: Leaky Relu made very small improvements on increasing the
accuracy of the model. To increase the accuracy of the model, Parametric Relu has
been introduced as another activation function. Parametric Relu outputs the
negative values inside the neuron with multiplying with a learnable parameter

during the training and outputs the positive values inside the neurons as it is.

Parametric RELU(x) = max(0,x) + min a;(0, x) (3.5)

Batch Normalization: Batch normalization is a regularization function. It
increases the training speed by reducing the number of epochs for the training. It

stabilizes the neural network learning process.

Residual Blocks: The residual blocks which is used for Deep Residual Learning
[16] are used for easing the generator network training and to make the neural
network deeper. These will result in an increase in neural network training

performance.

Pixel Shuffler: It is a sub-pixel convolutional layer. It learns the upscaling filter
array during the training and upscales the map of low-resolution features to high

resolution [17].

Dense Layer: It is known as fully connected layer too. The values inside the
neurons are multiplied by the weight of the channel and maybe if there is a bias, it
is added to the multiplication.
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Note: k9n64s1 means a convolutional layer with 9 kernels, 64 channels and it strides

1 pixel in the specified directions.

In order to improve the resolution of the output images, ESRGAN architecture [13]

has been produced by making some modifications in SRGAN architecture [15].

In the generator architecture, all the batch normalization layers inside the residual
blocks were deleted, and this resulted as an increase in the training performance of the
architecture. Residual-in-Residual Dense Block (RRDB) was proposed instead of the
basic block, which made it even deeper neural network architecture for the generator.

The proposed method can be seen in the Figure 3.2 [13].

Residual Block (RB) Residual in Residual Dense Block (RRDB)

ReLU
Conv
Conv
RelLU
Conv

L

SRGAN RB w/0 BN

Figure 3.2 : RRDB in ESRGAN [13].

The working structure of training the ESRGAN [13] for super resolution is in Figure
3.3.
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Figure 3.3 : Training the ESRGAN for Super Resolution.

The working structure of testing the ESRGAN [13] for super resolution is in Figure
3.4.
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Figure 3.4 : Testing the ESRGAN for Super Resolution.

In both training and testing, the generator takes low resolution image as an input and
generates high resolution image as an output.

3.4 Loss Functions and Optimizer

e L1 Loss Function: It means Least Absolute Deviations. L1 loss function [18]
calculates the mean absolute error (MAE) between the generated image and the

ground truth image.

e Adversarial Loss Function: For adversarial loss, a sigmoid layer combined with
binary cross entropy [19] was used. This loss function uses sigmoid layer for
activation function and then calculates the binary cross entropy between the output

and the desired target.
Three different loss functions were used for generator training.

The first one is pixel-wise loss. For pixel-wise loss, L1 loss function was used. L1 loss
function measured the pixel-wise loss between the generated high-resolution image

and the high-resolution image.

The second one is content loss. For content loss, L1 loss function was used. L1 loss
function measured the content loss between the extracted features of the generated
high-resolution image and the extracted features of the high-resolution image. For

feature extraction VGG19 model was used.
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The third one is adversarial loss. For output parameter, high-resolution image and
generated high-resolution image were put through the discriminator network and the
validity predictions were made as real prediction and fake prediction. The difference
between the fake prediction and real prediction gives the output. The desired target is
a tensor filled with ones. Adversarial loss function used sigmoid layer for an activation
function and then calculated the binary cross entropy between the output and the

desired target.

The resulting loss function for the generator is as follows:

-3 2

Gioss = content loss + 5e™° x adversarial loss + e™“ x pixel loss (3.6)

Two same loss functions were used for discriminator training.

The first one is adversarial loss for high resolution images. For output parameter, high-
resolution image and generated high-resolution image were put through the
discriminator network and the validity predictions were made as real prediction and
fake prediction. The difference between the fake prediction and real prediction gives
the output. The desired target is a tensor filled with ones. Adversarial loss function
used sigmoid layer for an activation function and then calculated the binary cross

entropy between the output and the desired target.

The second one is adversarial loss for generated high-resolution images. For output
parameter, high-resolution image and generated high-resolution image were put
through the discriminator network and the validity predictions were made as real
prediction and fake prediction. The difference between the fake prediction and real
prediction gives the output. The desired target is a tensor filled with zeros. Adversarial
loss function used sigmoid layer for an activation function and then calculated the
binary cross entropy between the output and the desired target.

The resulting loss function for the discriminator is as follows:

(real image loss + generated image loss)
Dipss = J gz J (3.7)

For the optimizer, which is an optimization algorithm, Adam was used for both

generator network training and the discriminator network training.
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4. FAKE IMAGE GENERATION

4.1 Literature Review

Fake image generation subject was started by lan Goodfellow back in 2014. He and
his colleagues founded the Generative Adversarial Network theory. Images have been
generated from the datasets by using GAN architecture. These generated images look
as if they are from the training dataset, but they are unique on their own because there

are no such generated images in the training dataset.

In 2015, Deep Convolutional Generative Adversarial Networks (DCGAN) [21] were
developed. It is a better version of the simple GAN. One more important thing that had
come with DCGAN is the fact that traversing through the latent space of the generated
image and changing the values in latent space dimensions can change the generated
image drastically [21]. For example, with using vector arithmetic in the latent space of

the generated images, a new generated image can be produced.

In 2016, Coupled Generative Adversarial Networks (CoGAN) [22] were developed.
This GAN architecture consists of couple of GANSs. Their responsibility is to generate
images in only one domain. During their training process GANs share couple of
parameters. As a result, GANSs learn to generate similar images without the need of

supervision of correspondence.

In 2017, progressive growing of GAN [23] was proposed. The key part on this method
is the training methodology. Training is started with low resolution images and then
the resolution of the input images is increased progressively with adding new layers to
the generative adversarial network [23]. This method received a lot of attention at the

time, as the generated images looked very close to real images.

In 2018, BigGAN [24] model was proposed. ResNet GAN architecture [25] has been
used for the BigGAN model. BigGAN benefitted from scaling and it provided bigger
generative adversarial networks and larger batch sizes. Neural networks have been
trained with two or four times more parameters and eight times more batch size then

the previous implementations [24]. As a result, the generated images looked
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indistinguishable from the real input images from the dataset that have been used to
train the GAN.

4.2 Dataset

For fake image generation problem, two datasets have been used. The dataset, which
is used for DCGAN [21], is Large-scale CelebFaces Attributes (CelebA) Dataset [14].
This dataset contains more than 200,000 celebrity images. The reasons for using this
dataset are that there are lots of applications that uses this dataset and this dataset does
not take too much space. Therefore, Google Colab can be used easily. Google Drive
only gives 15 GBs of space while working with Google Colab and Google Colab only
allows to work with datasets that our Google Drive contains. Therefore, to use the
GPU and pre-installed machine learning and deep learning libraries that Google Colab
offers freely, Google Colab and Google Drive need to be used. The dataset, which is
used for BigGAN [24], is ImageNet dataset. This dataset contains more than
14,000,000 images. The reason for using this dataset is, this dataset is used with pre-
trained BigGAN [24] models.

4.3 Neural Network Architectures

Two different generative adversarial network architectures have been implemented to
solve the fake image generation problem. The first one is Deep Convolutional
Generative Adversarial Networks (DCGAN) [21] and the second one is BigGAN [24].

4.3.1 Deep convolutional generative adversarial network

DCGAN architecture [21] was created with using the GAN architecture [20] for
starting point. Generator of the DCGAN architecture is in the Figure 4.1 [21].
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Figure 4.1 : Generator of the DCGAN [21].
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Previous generative model architectures were checked, and drastic rule changes were

made on them [21]. Those rules are as follows:

Delete all the pooling layers and add strided deconvolutional layers on generator

and add strided convolutional layers on discriminator.

Use batch normalization as a regularization function both in generator and

discriminator.

For making the neural network architecture deeper, delete all the dense layers in

hidden layers.

Use Relu as an activation function for each layer in the generator except the last

layer. In the output layer use Tanh as an activation function.

Use LeakyRelu as an activation function for each layer in the discriminator.

In the last layer of the discriminator a sigmoid layer has been used.

Sigmoid: Sigmoid is an activation function for the neural networks. Sigmoid
function is used because it outputs a value between 0 and 1. It is useful for the
discriminator because it predicts a probability as an output. If the output value is
close to 1, it means the data is real, if it is close to 0, it means the data is fake.

In the last layer of the generator a Tanh layer has been used.

Tanh: Tanh is an activation function for the neural networks. Tanh function is like
sigmoid function. It outputs a value between -1 and 1, therefore the negative inputs
are also mapped too. It has been shown that using an activation function that is

bounded, makes the model learn faster.

4.3.2 BigGAN

BigGAN [24] model was created with using the Self-Attention Generative Adversarial

Networks (SAGAN) [25]. As the name suggests BigGAN's main focus is on bigger

generative adversarial network. Generator of the BigGAN’s neural network

architecture is in the Figure 4.2 [24].
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Figure 4.2 : (a) Generator of the BigGAN. (b) Residual Block in generator. (c)
Residual Block in discriminator [24].

SAGAN architecture [25] was checked and drastic rule changes were made on them

[21]. Those rules are as follows:

Improve the batch size. Experiments suggested increasing the batch size by
multiplying with 8 gives the best result [24].

Increase the number of channels contained in each layer by about 50% [24].

Utilize a one shared class embedding instead of using many in the generator.
Experiments suggested that it can improve the training performance of the
architecture by improving the training speed and reducing the memory usage and
computation. Its implementation was shown in the Figure 4.2 [24]. Split latent
vector, shown as z in the Figure 4.2 [24], into one stack per pixel. Concatenate
each stack to the shared class. Pass them to the residual blocks. From there pass it

to the linear layer and then to the batch norm layer.

In the residual block part, there are new layer types that are added to the architecture.

Linear: Linear layer applies a linear transformation to the input data passing
through this layer. Input data is multiplied with the weight of the neuron and from

there the bias of the neuron is added to the result from the multiplication.

Average Pooling: Average pooling layer is a pooling layer. Pooling layers are
added after the convolutional layers. Its function is to avoid the overfitting by

reducing the size of the neural network, in this way the computation in the neural
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network training and the parameter amount is reduced. Average pooling layer
divides the input into pooling regions by performing down-sampling and computes

the average values of all the inputs in every single region [26].

The working structure of training the DCGAN [21] and BigGAN [24] for fake image
generation is in Figure 4.3.
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Figure 4.3 : Training the DCGAN and BigGAN for Fake Image Generation.

The working structure of testing the DCGAN [21] and BigGAN [24] for fake image

generation is in Figure 4.4.
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Figure 4.4 : Testing the DCGAN and BigGAN for Fake Image Generation.
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In both training and testing, the generator takes a noise vector as an input and generates

fake image as an output.

4.4 Loss Functions and Optimizer

In this part of the chapter, loss functions and the optimizer for the DCGAN [21] and
BigGAN [24] are explained.

4.4.1 DCGAN loss function and optimizer

e BCE Loss Function: It means binary cross entropy loss function [27]. BCE loss
function calculates the binary cross entropy between the output and the desired

target.
Two same loss functions were used for discriminator training.

First one is binary cross entropy loss for real images. For output parameter, real image
was put through the discriminator network and the validity prediction was made as real
or fake prediction. The desired target is a tensor filled with ones. Then, binary cross

entropy between the output and the desired target was calculated.

The second one is binary cross entropy loss for generated images. For output
parameter, generated image was put through the discriminator network and the validity
prediction was made as real or fake prediction. The desired target is a tensor filled with
zeros. Then, binary cross entropy between the output and the desired target was

calculated.

Gradients of the both two loss function were calculated separately. In other meaning,
whole discriminator network had to be backpropagated with respect to the

discriminator loss functions twice.

The resulting loss function for the discriminator is as follows:

Dyyss = (real image loss + generated image loss) (4.2)

One loss function was used for generator training.

The loss function used for the generated images is the binary cross entropy loss. For
output parameter, generated image was put through the discriminator network and the
validity prediction was made as real or fake prediction. The desired target is a tensor
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filled with zeros. Then, binary cross entropy between the output and the desired target

was calculated.
Gioss = generated image loss (4.2)

For the optimizer, which is an optimization algorithm, Adam was used for both

generator network training and the discriminator network training.

4.4.2 BigGAN loss functions and optimizer

e Hinge Loss Function: Hinge loss function is used for classification. This loss

function tries to find the best decision boundary for the classification task.
Two same loss functions were used for discriminator training.

First one is hinge loss for real images. Real image was put through the discriminator
network and the validity prediction was made as real or fake prediction. Hinge loss
function used the prediction as an input and calculated the real image loss.

The second one is hinge loss for generated images. Generated image was put through
the discriminator network and the validity prediction was made as real or fake
prediction. Hinge loss function used the prediction as an input and calculated the
generated image loss.

The resulting loss function for the discriminator is as follows:

_ (realimage loss + generated image loss)

loss — 2 (4.3)

One loss function was used for generator training.

The loss function used for the generated images is the hinge loss. Generated image
was put through the discriminator network and the validity prediction was made as real
or fake prediction. Hinge loss function used the prediction as an input and calculated
the generated image loss. The calculation of the generator loss is the same as for
DCGAN generator loss.
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5. IMAGE DENOISING

5.1 Literature Review

Deep learning methods have been used to tackle image processing problems for quite
some time. Denoising is one of the most known image processing problems to this
date.

There are different methods to tackle this problem. The most traditional ones are the
image processing methods. Denoising the images with the linear filters, non-linear
filters, adaptive filters can be given as an example for the traditional image processing

techniques.

CNN architectures have been proposed to tackle this problem. In [28] a GAN was

trained to learn the noise distribution and then CNN was used to denoise the images.

In literature there are not GAN architectures that are solely adapted to image denoising
problem. For this problem, using an SRGAN [15] like architecture was proposed in
[29]. It has understood that using the SRGAN like architecture not only works for
improving the image resolution but to denoise the images as well. It has been shown
in [30] that the DCGAN architecture [21] can be used in more than one image
processing problem. It has been understood that this architecture can be used not only
for fake image generation, but also for problems such as image denoising, super

resolving the images and deblurring the images as well.

Nowadays, deep learning methods are much more popular than the traditional image
processing techniques because, these methods can learn from the datasets, create their
own features that people cannot understand and preserve the image details better

because of the learning aspect.

5.2 Dataset

For image denoising problem the dataset that has been used is Large-scale CelebFaces
Attributes (CelebA) Dataset [14]. This dataset contains more than 200,000 celebrity
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images. The reason for using this dataset is, it is easier to train with small amounts of
training data to denoise the images in this dataset. Therefore, Google Colab can be
used easily. Google Drive only gives 15 GBs of space while working with Google
Colab and Google Colab only allows to work with datasets that our Google Drive
contains. Therefore, to use the GPU and pre-installed machine learning and deep
learning libraries that Google Colab offers freely, Google Colab and Google Drive

need to be used.

5.3 Neural Network Architecture

Updated form of the DCGAN [21] architecture has been proposed and used for the
denoising problem as a GAN architecture. In the generator of the neural network
architecture some changes have been made to generate bigger images and also to

generate slightly better images.
Generator of the DCGAN’s architecture is in the Figure 4.1 [21].

Here are the some of the changes that have been made on the DCGAN architecture
[21].

¢ Image size kept the same while going forward in the layers of the generator but,
the channel size had changed. To keep the image size the same; kernel size was set
to 2, striding was set to 1 and padding was set to 1 in first, third and fifth
convolutional layers and 0 in second, fourth and sixth convolutional layers.

e An extra hidden layer was added to the generator to make the neural network
denser and to keep the image size as the same. This hidden layer consists of
convolutional layer and batch normalization. Batch normalization has been used

as an activation function for the output of the convolutional layer.

e Some changes have been made on the discriminator because of the changes in the

generator.

The working structure of training the updated DCGAN [21] for image denoising is in
Figure 5.1.
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Figure 5.1 : Training the Updated DCGAN for Image Denoising.

The working structure of testing the updated DCGAN [21] for image denoising is in
Figure 5.2.
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Figure 5.2 : Testing the Updated DCGAN for Image Denoising.

In both training and testing, the generator takes noisy image as an input and generates

denoised image as an output.

5.4 Loss Functions and Optimizer

Two same loss function were used for discriminator training.

First one is binary cross entropy loss for real images. For output parameter, real image
was put through the discriminator network and the validity prediction was made as real
or fake prediction. The desired target is a tensor filled with ones. Then, binary cross

entropy between the output and the desired target was calculated.
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The second one is binary cross entropy loss for generated images. For output
parameter, generated image was put through the discriminator network and the validity
prediction was made as real or fake prediction. The desired target is a tensor filled with
zeros. Then, binary cross entropy between the output and the desired target was

calculated.

Gradients of the both two loss function were calculated separately. In other meaning,
whole discriminator network had to be backpropagated with respect to the

discriminator loss functions twice.

The resulting loss function for the discriminator is as follows:

Dyyss = (real image loss + generated image loss) (5.1)

One loss function was used for generator training.

The loss function used for the generated images is the binary cross entropy loss. For
output parameter, generated image was put through the discriminator network and the
validity prediction was made as real or fake prediction. The desired target is a tensor
filled with zeros. Then, binary cross entropy between the output and the desired target

was calculated.

Goss = generated image loss (5.2)

For the optimizer, which is an optimization algorithm, Adam was used for both

generator network training and the discriminator network training.

In addition to the loss functions that were used during the training process, Peak signal-

to-noise ratio (PSNR) values were also calculated.

e Peak Signal-to-Noise Ratio: PSNR is the ratio between an image's highest
potential power and the power of corrupting noise that influences its representation
accuracy [31]. PSNR is used as a quality metric in image processing applications.
It is calculated between the clean image and the noisy image or clean image and
denoised image. PSNR is expressed in terms of the logarithmic decibel scale. To

calculate the PSNR, the mean square error (MSE) must be calculated first.

34



rows—1 cols—1

1
MSE = —————— z Z (Img(i;j)org - Img(i;j)deg)z (5-3)
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Then the MSE is used in the PSNR calculation.

PSNR = 201 (max intensity) (5.4)
= 0 .
910 VSE

Max intensity can be taken as 255 because, 255 is the maximum pixel value.
PSNR values were calculated only in the testing part.

In the GAN method, PSNR calculations were made between the generated images and
the ground truth images and also between the noisy input images and the ground truth

images.

In the image processing method, PSNR calculations were made between the denoised
images and the ground truth images and also between the noisy input images and the

ground truth images.
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6. RESULTS

In this chapter, the results for all the GAN problems in this thesis were shown and
discussed. These results contain input images from the dataset, generated output
images from the input images, model, and method comparisons, and plottings of the

training loss curves.

6.1 Super Resolution on Images

For super resolution two different methods were used. The first one is ESRGAN [13],
trained to generate high-resolution images from the low-resolution images. The second
one is nearest neighbour interpolation algorithm, used to upsample the low-resolution

images.

6.1.1 ESRGAN

Input images were used in neural network training with four images per batch in one

iteration. Only two images per one batch were shown below.

In Figure 6.1 the first examples of low-resolution images have been given. In Figure
6.2, generated output images for every 2000 iteration have been given. Generated

output images have been created from the low-resolution images in Figure 6.1.

Figure 6.1 : First Example of Low-Resolution Images.
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Generated Images Generated Images Generated Images

Generated Images Generated Images
at 6000th Iteration at 8000th Iteration at 10000th Iteration

at 2000th Iteration at 4000th Iteration

Figure 6.2 : First Example of Generated Output Images for every 2000 Iteration.

In Figure 6.3 the second examples of low-resolution images have been given. In Figure
6.4 generated output images for every 2000 iteration have been given. Generated

output images have been created from the low-resolution images in Figure 6.3.

Generated Images. Generated Images Generated Images.
at 10000th Iteration

Generated Images

Generated Images
at 4000th Iteration at 6000th Iteration at 8000th Iteration

at 2000th Iteration

Figure 6.4 : Second Example of Generated Output Images for every 2000 Iteration.
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In Figure 6.5 the third examples of low-resolution images have been given. In Figure
6.6 generated output images for every 2000 iteration have been given. Generated

output images have been created from the low-resolution images in Figure 6.5.

Generated Images Generated Images
at 8000th Iteration at 10000th Iteration

Figure 6.6 : Third Example of Generated Output Images for every 2000 Iteration.

From the images above, it can be observed that the results get better as the training

continues.

Plotting of the generator’s training loss curve is in the Figure 6.7.
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Figure 6.7 : Generator Loss for Super-resolving.

Plotting of the discriminator’s training loss curve is in the Figure 6.8.

Discriminator Loss During Training
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Figure 6.8 : Discriminator Loss for Super-resolving.

First epoch’s iterations are considered as warm-up iterations and only the pixel-wise
loss gets calculated and the whole generator network is backpropagated with respect
to the pixel-wise loss function. Then the optimizer for the generator, updates the model
parameters. During warm-up iterations, discriminator network never gets to
backpropagate with respect to any loss function and never updates its model

parameters. In the results above warm-up iterations have not shown.
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6.1.2 Nearest neighbour interpolation

This is an image processing technique to up sample the low-resolution images.

Therefore, there are no loss functions for this part.

In Figure 6.9 the first examples of low-resolution images and the upsampled images
with nearest neighbour interpolation algorithm have been given. In Figure 6.10,
upsampled images and generated output images have been given. Upsampled images
and generated output images have been created from the low-resolution images in

Figure 6.9.

Low Resolution Images

Upsampled Images

Figure 6.9 : First Example of Low-Resolution Images and Upsampled Images.
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Upsampled Images Generated Images

Figure 6.10 : First Example of Upsampled Images and Images Generated by GAN.

In Figure 6.11 the second examples of low-resolution images and the upsampled
images with nearest neighbour interpolation algorithm have been given. In Figure 6.12,
upsampled images and generated output images have been given. Upsampled images
and generated output images have been created from the low-resolution images in

Figure 6.11.

42



Low Resolution Images

Upsampled Images

Figure 6.11 : Second Example of Low-Resolution Images and Upsampled Images.

Upsampled Images Generated Images

Figure 6.12 : Second Example of Upsampled Images and Images Generated by
GAN.
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In Figure 6.13 the third examples of low-resolution images and the upsampled images
with nearest neighbour interpolation algorithm have been given. In Figure 6.14,
upsampled images and generated output images have been given. Upsampled images
and generated output images have been created from the low-resolution images in

Figure 6.13.

Low Resolution Images

Upsampled Images

Figure 6.13 : Third Example of Low-Resolution Images and Upsampled Images.
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Upsampled Images Generated Images

Figure 6.14 : Third Example of Upsampled Images and Images Generated by GAN.

As it has shown above in the figures, ESRGAN [13] increased the resolution of the
images better than the nearest neighbour interpolation algorithm. As for the result it

can be understood that GAN performed better than the image processing technique.

6.2 Fake Image Generation

For fake image generation two different models were used. The first model, which is
DCGAN [21], trained with different batch sizes to generate fake images. For the
second model, which is BigGAN [24], a pre-trained model was used to generate fake

images.

6.2.1 DCGAN

Input images were used in neural network training with four images per batch in one

iteration and one image per batch in one iteration.

For the training with four images per one batch, input images and the generated output
images were shown below in the following Figure 6.15 and Figure 6.16.
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Real Images

Figure 6.16 : Generated Images with the Batch Size of 4 (CelebA).

Plotting of the generator’s training loss curve with the batch size of 4 is in the Figure

6.17.
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Figure 6.17 : Generator Loss for Image Generation with the Batch Size of 4
(DCGAN).

Plotting of the discriminator’s training loss curve with the batch size of 4 is in the

Figure 6.18.
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Figure 6.18 : Discriminator Loss for Image Generation with the Batch Size of 4
(DCGAN).

For the training with one image per one batch, input image and the generated output

image were shown below in the following Figure 6.19 and Figure 6.20.

Real Images

Figure 6.19 : Input Image Example with the Batch Size of 1 (CelebA).
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Fake Images
-

Figure 6.20 : Generated Image with the Batch Size of 1 (CelebA).

Plotting of the generator’s training loss curve with the batch size of 1 is in the Figure
6.21.
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Figure 6.21 : Generator Loss for Image Generation with the Batch Size of 1
(DCGAN).

Plotting of the discriminator’s training loss curve with the batch size of 1 is in the

Figure 6.22.
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Figure 6.22 : Discriminator Loss for Image Generation with the Batch Size of 1
(DCGAN).

As it was shown above training with the batch size of one compared to training with
the batch size of four, gives the best result for generating fake images with using
DCGAN architecture as a model [21]. This statement can also be understood by
looking at the discriminator’s loss curves being more stable in training with the batch

size of 1.

6.2.2 BigGAN

For BigGAN [24], a pre-trained model was used to generate fake images. Therefore,
there are no input images and loss functions for this part.

Generated output images are shown below in the following Figure 6.23, Figure 6.24,

and Figure 6.25. The network was trained by using images from the ImageNet dataset.
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Figure 6.24 : Second Example for Images Generated by BigGAN.
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Figure 6.25 : Third Example for Images Generated by BigGAN.

As it was shown above BigGAN architecture [24] generated more realistic images than
DCGAN architecture [21].

6.3 Image Denoising

For image denoising two different methods were used. The first one is an updated form
of the DCGAN [21] architecture, trained to generate a denoised version of the input
images. The second one is Non-local Means (NLM) Denoising algorithm, used to

clean the noises inside images.

The noise added to the input images is salt and pepper noise. Salt and pepper noise
replace some of the random pixel values in all the channels of the image with a 1 or 0.
Salt noise and pepper noise ratio was kept equal. The noise density was chosen as 0.05.

This value shows that the added noise effects only 5% of the pixel values of the image.

6.3.1 Updated dcgan architecture

Input images were used in neural network training with two images per batch in one

iteration.

In Figure 6.26 the first examples of ground truth images and first examples of noisy

input images have been given. In Figure 6.27, denoised images with GAN for every
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7000 iteration have been given. Denoised images with GAN have been created from

the noisy input images in Figure 6.26.

Ground Truth Images Noisy Input Images

Figure 6.26 : First Example of Ground Truth Images and Noisy Input Images.

Generated Images
at 35000th Iteration

Generated Images Generated Images Generated Images Generated Images
at 7000th Iteration at 14000th Iteration at 21000th Iteration at 28000th Iteration

Figure 6.27 : First Example of Denoised Images with GAN for every 7000 Iteration.

In Figure 6.28 the second examples of ground truth images and second examples of
noisy input images have been given. In Figure 6.29, denoised images with GAN for

every 7000 iteration have been given. Denoised images with GAN have been created

from the noisy input images in Figure 6.28.
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Ground Truth Images Noisy Input Images

Figure 6.28 : Second Example of Ground Truth Images and Noisy Input Images.

Generated Images Generated Images
at 35000th Iteration

Generated Images Generated Images Generated Images
at 7000th Iteration at 14000th Iteration at 21000th Iteration at 28000th Iteration

Figure 6.29 : Second Example of Denoised Images with GAN for every 7000
Iteration.

In Figure 6.30 the third examples of ground truth images and third examples of noisy
input images have been given. In Figure 6.31, denoised images with GAN for every

7000 iteration have been given. Denoised images with GAN have been created from

the noisy input images in Figure 6.30.
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Ground Truth Images Noisy Input Images

Figure 6.30 : Third Example of Ground Truth Images and Noisy Input Images.

Generated Images Generated Images Generated Images Generated Images Generated Images
at 7000th Iteration at 14000th Iteration at 21000th Iteration at 28000th Iteration at 35000th Iteration

Figure 6.31 : Third Example of Denoised Images with GAN for every 7000
Iteration.

From the images above, it can be observed that the results get better as the training

continues.

Plotting of the generator’s training loss curve is in the Figure 6.32.
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Figure 6.32 : Generator Loss for Image Denoising.
Plotting of the discriminator’s training loss curve is in the Figure 6.33.

Discriminator Loss During Training

— Discriminator
B 4
5 4
wi
Wi
Sa
2 4
ﬂ 4
0 5000 10000 15000 20000 75000 30000 35000
iterations

Figure 6.33 : Discriminator Loss for Image Denoising.

As it was shown above as the training progresses to the later stages, the denoised
images with GAN looked more plausible. This statement can also be understood by
looking at the discriminator’s and generator’s loss curves being stable in the training

progress. This stability shows convergence of GAN has been prevented.
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Peak signal-to-noise ratio (PSNR) values of the denoised images with GAN and noisy
input images that can be seen in the Figure 6.26, Figure 6.27, Figure 6.28, Figure 6.29,
Figure 6.30 and Figure 6.31 compared to the ground truth images are in the Table 6.1.

Table 6.1 : PSNR Values of the Denoised Images with GAN.

Example Denoised Images with GAN/Ground-  Input Image/Ground-truth

No truth Image Image
1 29.92 dB 40.86 dB
2 28.44 dB 41.26 dB
3 29.32 dB 41.15 dB

It can be seen from Table 6.1 that the PSNR values between the denoised images with
GAN and the ground truth images are lower than the PSNR values between the noisy
input images and ground truth images. Even though the results from the GAN show
lower PSNR values, denoised images with GAN look more appealing than the noisy

input images.

From there, it can be understood that evaluation of the problems like super-resolution
and image denoising can be done by human perception in a better way than the
generator and discriminator loss function results and the PSNR values between the

denoised images and the ground truth images.

6.3.2 Non-local means denoising

This is an image processing technique to remove the noises in the noisy images.
Therefore, there are no loss functions for this part.

In Figure 6.34 the first examples of ground truth images, first examples of noisy input
images and the denoised images with non-local means denoising algorithm have been
given. In Figure 6.35, denoised images with NLM and denoised images with GAN
have been given. Denoised images with NLM and denoised images with GAN have
been created from the noisy input images in Figure 6.34.
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Ground Truth Images Noisy Input Images Denoised Images

Figure 6.34 : First Example of Ground Truth Images, Noisy Input Images and
Denoised Images with NLM.

Denoised Images with NLM Denoised Images with GAN

Figure 6.35 : First Example of Denoised Images with NLM and Denoised Images
with GAN.

In Figure 6.36 the second examples of ground truth images, second examples of noisy
input images and the denoised images with non-local means denoising algorithm have
been given. In Figure 6.37, denoised images with NLM and denoised images with
GAN have been given. Denoised images with NLM and denoised images with GAN

have been created from the noisy input images in Figure 6.36.
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Denoised Images

Ground Truth Images Noisy Input Images

Figure 6.36 : Second Example of Ground Truth Images, Noisy Input Images and
Denoised Images with NLM.

Denoised Images with NLM Denoised Images with GAN

Figure 6.37 : Second Example of Denoised Images with NLM and Denoised Images
with GAN.

In Figure 6.38 the third examples of ground truth images, third examples of noisy input
images and the denoised images with non-local means denoising algorithm have been
given. In Figure 6.39, denoised images with NLM and denoised images with GAN
have been given. Denoised images with NLM and denoised images with GAN have

been created from the noisy input images in Figure 6.38.
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Ground Truth Images Noisy Input Images Denoised Images

Figure 6.38 : Third Example of Ground Truth Images, Noisy Input Images and
Denoised Images with NLM.

Denoised Images with NLM Denoised Images with GAN

Figure 6.39 : Third Example of Denoised Images with NLM and Denoised Images
with GAN.

As it was shown above in the figures, an updated form of the DCGAN [21] architecture
denoised the images better than the non-local means denoising. As for the result it can
be understood that GAN performed better than the image processing technique.

Peak signal-to-noise ratio (PSNR) values of the denoised images with NLM and noisy
input images that can be seen in the Figure 6.34, Figure 6.35, Figure 6.36, Figure 6.37,
Figure 6.38 and Figure 6.39 compared to the ground truth images are in the Table 6.2.
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Table 6.2 : PSNR Values of the Denoised Images with Non-local Means Denoising.

Example  Denoised Image with NLM/Ground- Input Image/Ground-truth
No truth Image Image
1 33.43dB 40.86 dB
2 33.26 dB 41.26 dB
3 33.38 dB 41.15 dB

It can be seen from Table 6.2 that the PSNR values between the denoised images with
NLM and the ground truth images are lower than the PSNR values between the noisy
input images and ground truth images. Even though the results from the non-local
means denoising algorithm show lower PSNR values, denoised images with non-local

means denoising algorithm look more appealing than the noisy input images.

As it was shown above in the Table 6.1 and Table 6.2, PSNR values between the
denoised images with GAN and the ground truth images are lower than the PSNR
values between the denoised images with non-local means denoising and the ground
truth images. Even though the results from the GAN show lower PSNR values in
contrast to the image processing method, denoised images with GAN look more
appealing than the denoised images with non-local means denoising algorithm.
Therefore, the PSNR value is not a feasible metric to make a comparison with different

methods while one of these methods is GAN.
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7. CONCLUSION

This thesis demonstrated that generative adversarial network architectures can
effectively tackle important computer vision problems. These problems can vary from
generating fake images to super-resolving images and denoising of noisy images. This
thesis contains some of the popular GAN architectures in computer vision applications,
but there are other GAN architectures which are used in other fields of machine
learning. Image to image translation, text to image synthesis, text to speech translation
etc. can be given as possible examples. Hence, it can be understood that GAN is not
only used in the computer vision applications but also in natural language processing
(NLP).

In this thesis, we studied three different computer vision applications which use
generative adversarial networks for solution. The results indicate that GANs can be
very effectively used for these particular problems. Before GAN there were other
architectures which used generative modelling as well, but with the founding of GAN
[20] those architectures that used generative modelling to solve the computer vision
problems became pretty much insufficient. Also, some of the image processing

techniques that were used to solve computer vision problems also fell out of use.

From the practical standpoint, recent GAN architectures with the improved
optimization techniques are easy to train, and the results are getting more accurate.
The training, validation and testing parts are almost the same, the only differences are
the loss functions and the optimizers. The procedure for making the dataset ready for
training differs for each problem. Different pre-processing techniques and
normalization techniques are used on those datasets. Also, the GAN part looks the
same with two distinct networks, one being the generator the other one being the
discriminator. Although these two architectures do the same job every time, where the
generator tries to generate fake images and the discriminator tries to distinguish the
generated fake images from the real images, these architectures get changed from one

problem to another to tackle the particular characteristics of the problem.
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