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GENERATIVE ADVERSARIAL NETWORKS IN COMPUTER VISION 

APPLICATIONS 

SUMMARY 

Generative Adversarial Networks (GANs) are one of the examples of generative 

modelling which uses deep learning (DL) based methods. It is considered that GANs 

are the best way to train a generative model. GANs consist of two parts. The first one 

is the generator and the second one is the discriminator. Generator’s mission is to 

create fake data that is indistinguishable from the real data for the discriminator. 

Discriminator’s mission is to distinguish the real data from the fake data that has been 

generated by the generator. 

Generative adversarial networks have two different neural network architectures to 

train. GANs should run discriminator training and generator training together. Because 

the generator training and the discriminator training heavily rely on each other, they 

are trained alternatingly in one iteration. Generative models are a branch of 

unsupervised machine learning, but the training of the GAN architecture, which relies 

on generative modelling, is considered as supervised machine learning. 

This thesis demonstrates that generative adversarial network architectures can 

effectively tackle important computer vision problems. These problems include the 

generation of fake images, super-resolving images and denoising of noisy images. 

In this thesis, we studied three different computer vision applications which use 

generative adversarial networks for solution. The results indicate that GANs can be 

very effectively used for these particular problems. Before GAN there were other 

architectures which used generative modelling as well, but with the founding of GAN 

those architectures that used generative modelling to solve the computer vision 

problems became pretty much insufficient. Also, some of the image processing 

techniques that were used to solve computer vision problems also fell out of use. 

There were not many strategies to super-resolve images by using GANs until the last 

few years. Deep learning started to come handy for solving this task and the research 

for this problem started to grow. The super-resolution models are created, and different 

learning methods applied to these models to solve this task, but most of them failed on 

real world images which are taken by devices such as smartphones. The most 

widespread method for training the super-resolution deep learning models starts by 

downscaling the images that are inside the dataset with methods like nearest neighbor 

resampling, bicubic resampling and bilinear resampling. This process is applied in 

order to make a dataset that contains high-resolution and low-resolution training image 

pairs. The low-resolution images that are created by this process have almost no noise, 

in other words the images are clean. The main purpose of these super-resolution deep 

learning models is to increase the resolution of the images.  

Enhanced Super Resolution Generative Adversarial Network (ESRGAN) has been 

used as a GAN architecture for this problem. ESRGAN is an improved version of the 

Super Resolution Generative Adversarial Network (SRGAN) architecture. As the 
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name SRGAN suggests, it uses a deep neural architecture with an adversarial network. 

Its main purpose is to super resolve the images to produce higher resolution images 

compared to the input images. 

Fake image generation subject was started by Ian Goodfellow back in 2014. He and 

his colleagues founded the Generative Adversarial Network theory. Images have been 

generated from the datasets by using GAN architecture. These generated images look 

as if they are from the training dataset, but they are unique on their own because there 

are no such generated images in the training dataset. For this problem two different 

GAN architecture have been used. In 2015, Deep Convolutional Generative 

Adversarial Networks (DCGAN) were developed. It is a better version of the simple 

GAN. One more important thing that had come with DCGAN is the fact that traversing 

through the latent space of the generated image and changing the values in latent space 

dimensions can change the generated image drastically. For example, with using 

vector arithmetic in the latent space of the generated images, a new generated image 

can be produced. In 2018, BigGAN model was proposed. ResNet GAN architecture 

has been used for the BigGAN model. BigGAN benefitted from scaling and it provided 

bigger generative adversarial networks and larger batch sizes. Neural networks have 

been trained with two or four times more parameters and eight times more batch size 

then the previous implementations. As a result, the generated images looked 

indistinguishable from the real input images from the dataset that have been used to 

train the GAN. 

Deep learning methods have been used to tackle image processing problems for quite 

some time. Denoising is one of the most known image processing problems to this 

date.  There are different methods to attack this problem. The most traditional ones are 

the image processing methods. Denoising the images with the linear filters, non-linear 

filters, adaptive filters can be given as an example for the traditional image processing 

techniques. CNN architectures have been proposed to tackle this problem. In a recent 

method, a GAN was trained to learn the noise distribution and then CNN was used to 

denoise the images. In the literature there are no GAN architectures that are solely 

adapted to image denoising problem. For this problem, using an SRGAN like 

architecture was proposed. It has been understood that using the SRGAN like 

architecture not only works for improving the image resolution but to denoise the 

images as well. Also, it has been shown that DCGAN architecture can be used in more 

than one image processing problem. It has been shown that this architecture can be 

used not only for fake image generation, but also for problems such as image 

denoising, super resolving the images and deblurring the images as well. Nowadays 

deep learning methods are much more popular than the traditional image processing 

techniques, because these methods can learn from the datasets, create their own 

features, and preserve the image details better because of the learning aspect. 

Updated form of the DCGAN architecture has been proposed and used for the 

denoising problem as a GAN architecture. In the generator of the neural network 

architecture some changes have been made to generate bigger images and also to reach 

better performance. Image size is kept the same while going forward in the layers of 

the generator but, the channel size is changed. An extra hidden layer was added to the 

generator to make the neural network denser and to keep the image size the same. 

Some changes have been made on the discriminator because of the changes in the 

generator. 
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From the practical standpoint, recent GAN architectures with the improved 

optimization techniques are easy to train, and the results are getting more accurate. 

The training, validation and testing parts are almost the same. The only differences are 

the loss functions and the optimizers. The procedure for making the dataset ready for 

training differs for each problem. Different pre-processing techniques and 

normalization techniques are used on those datasets. Also, the GAN part looks the 

same with two distinct networks, one being the generator and the other one being the 

discriminator. Although these two architectures do the same job every time, where the 

generator tries to generate fake images and the discriminator tries to distinguish the 

generated fake images from the real images, these architectures get changed from one 

problem to another to tackle the particular characteristics of the problem. 
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BİLGİSAYARLI GÖRÜ UYGULAMALARINDA ÇEKİŞMELİ ÜRETİCİ 

AĞLAR 

ÖZET 

Çekişmeli üretici ağlar, derin öğrenme tabanlı yöntemler kullanan üretken modelleme 

metotlarından biridir. Çekişmeli üretici ağların üretken modelleme eğitme yöntemleri 

içinde en iyi başarım sağlayan yöntem olduğu düşünülmektedir. Çekişmeli üretici 

ağlar iki ağdan oluşmaktadır. Birincisi üretici ağ, ikincisi ayrıştırıcı ağdır. Üretici ağın 

misyonu, ayrıştırıcı ağ için gerçek verilerden ayırt edilemeyen sahte veriler 

oluşturmaktır. Ayrıştırıcı ağın misyonu, gerçek verileri üretici ağ tarafından üretilen 

sahte verilerden ayırmaktır. 

Çekişmeli üretici ağlarda eğitilmesi gereken iki farklı yapay sinir ağı mimarisi vardır. 

Çekişmeli üretici ağlar, ayrıştırıcı ağ eğitimini ve üretici ağ eğitimini birlikte 

yürütmelidir. Üretici ağın eğitimi ve ayrıştırıcı ağın eğitimi birbirlerinden geri 

bildirimler aldığından, tek bir yinelemede dönüşümlü olarak eğitim sağlanmaktadır. 

Üretken modeller, denetimsiz makine öğreniminin bir dalıdır. Ancak üretken 

modellemeye dayanan çekişmeli üretici ağı mimarisinin eğitimi, denetimli makine 

öğreniminin konusu olarak kabul edilir. 

Bu tez, bilgisayarlı görü problemlerinin çözümü için birçok çekişmeli üretici ağ 

mimarisini incelemektedir. Bu bilgisayarlı görü problemleri sahte görüntülerin 

üretimi, görüntülerin çözünürlüğünün arttırılması ve görüntülerdeki gürültülerin yok 

edilmesidir. 

Tezde, çekişmeli üretici ağları kullanan üç farklı bilgisayarlı görü uygulaması 

incelenmiştir. Sonuçlar, çekişmeli üretici ağların bu belirli problemler için çok etkili 

bir şekilde kullanılabileceğini göstermektedir. Çekişmeli üretici ağlardan önce, 

üretken modellemeyi kullanan başka mimariler de sunulmuştur. Ancak çekişmeli 

üretici ağların geliştirilmesiyle, bilgisayarlı görü problemlerini çözmek için üretken 

modellemeyi kullanan diğer mimariler giderek popülerliğini yitirmiştir ve çekişmeli 

üretici ağlara göre daha etkisiz kalmışlardır. Ayrıca, bilgisayarlı görü problemlerini 

çözmek için kullanılan görüntü işleme tekniklerinden bazıları da kullanım dışına 

itilmiştir. 

Son birkaç yıla kadar çekişmeli üretici ağları kullanarak görüntülerin çözünürlüğünü 

arttırmak için fazla strateji yoktu. Derin öğrenmedeki gelişmelere paralel olarak, bu 

probleme yönelik araştırmalar giderek gelişmeye başladı. Yeni süper çözünürlük 

modelleri oluşturuldu ve bu modeller üzerinde farklı öğrenme yöntemleri uygulandı. 

Ancak bu öncül yöntemler herhangi bir cihazın kamerasından doğrudan alınan 

görüntülerde başarısız oldu. Süper çözünürlük için derin öğrenme modellerini 

eğitmenin en yaygın yöntemi, en yakın komşu yeniden örnekleme, çift kübik yeniden 

örnekleme ve çift doğrusal yeniden örnekleme gibi yöntemlerle veri kümesinin 

içindeki görüntülerin ölçeğini küçültmekle başlamaktadır. Bu işlem, yüksek 

çözünürlüklü ve düşük çözünürlüklü eğitim görüntü çiftleri içeren bir veri kümesi 
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oluşturmayı sağlar. Bu işlemden sonra elde edilen düşük çözünürlüklü görüntülerde 

gürültü büyük miktarda azalır yani görüntüler aynı zamanda temizlenmiş olur. 

Süper çözünürlüklü derin öğrenme modellerinin temel amacı görüntülerin 

çözünürlüğünü artırmaktır. Bu probleme yönelik olarak tez kapsamında çekişmeli 

üretici ağı mimarilerinden olan ESRGAN gerçeklenmiştir. ESRGAN, SRGAN 

mimarisinin geliştirilmiş bir versiyonudur. Ana amacı, giriş görüntülerine kıyasla daha 

yüksek çözünürlüklü görüntüler üretmek için görüntülerin çözünürlüğünü arttırmaktır. 

Çekişmeli üretici ağlarla sahte görüntü üretme konusu Ian Goodfellow tarafından 2014 

yılında ortaya atıldı. Bu kapsamda çekişmeli üretici ağ eğitim veri kümeleriyle 

eğiterek, verisetlerinde olmayan yeni görüntülerin üretilmesi sağlandı. Bu üretilmiş 

görüntüler, eğitim veri kümesinden alınmış gibi görünmesine rağmen aslında 

benzersizdirler ve tamamen sıfırdan üretilmişlerdir.  

Tez kapsamında bu problem için iki farklı çekişmeli üretici ağı mimarisi 

gerçeklenmiştir. Bu mimarilerden bir tanesi olan DCGAN, basit çekişmeli üretici ağı 

yapısının geliştirilmiş bir versiyonudur. Tez kapsamında sahte görüntü üretme için 

gerçeklenen ikinci GAN tabanlı yöntem ise yöntem BigGAN üretici ağını 

içermektedir. BigGAN ağ mimarisi ResNet ağ yapısına dayanmaktadır. BigGAN 

mimarisi görece olarak daha büyük çekişmeli üretici ağların eğitimini mümkün 

kılmaktadır. BigGAN mimarisinin kullanımı ağların önceki mimarilere göre dört kata 

kadar daha fazla parametre ve sekiz kata kadar daha fazla yığın boyutu ile 

eğitilebilmesini mümkün kılmıştır. Sonuç olarak üretilen görüntüler, çekişmeli üretici 

ağı eğitmek için kullanılan veri kümesindeki gerçek giriş görüntülerinden neredeyse 

ayırt edilemez görünmektedir. 

Gürültü giderme, en popüler görüntü işleme problemlerinden bir tanesidir. Bu 

problemi çözmek için çok farklı yöntemler sunulmuştur. Görüntülerde gürültü 

gidermeye yönelik olarak sunulmuş çok sayıda geleneksel görüntü işleme yöntemi 

literatürde yer almaktadır. Bunlar arasında doğrusal filtreler, doğrusal olmayan 

filtreler, uyarlanabilir filtreler ve yerel olmayan yöntemler örnek olarak verilebilir.  

Yakın zamanda literatürde sunulan bir araştırmada, gürültü dağılımını öğrenmek için 

bir çekişmeli üretici ağın kullanımı önerilmiştir. Bu adımın ardından görüntüleri 

gürültüden arındırmak için klasik evrişimli sinir ağı kullanılmıştır. Literatürde, 

görüntülerde gürültü giderme problemine özel olarak uyarlanmış bir çekişmeli üretici 

ağı mimarisi yer almamaktadır. Literatürde bu problem için, SRGAN benzeri bir 

mimarinin kullanılması önerilmiştir. Sunulan benzetim sonuçları SRGAN mimarisinin 

sadece görüntü çözünürlüğünü iyileştirmek için değil, aynı zamanda görüntülerdeki 

gürültüyü giderme problemine yönelik olarakta iyi sonuçlar verdiğini göstermiştir. Tez 

kapsamında ise DCGAN mimarisinin görüntülerde gürültü giderme için kullanımı 

incelenmiştir. DCGAN mimarisi sahte görüntü oluşturma, görüntülerin 

çözünürlüğünün arttırılması ve görüntülerin bulanıklığının giderilmesi gibi 

uygulamalarda kullanılmıştır. Tez kapsamında yapılan çalışma ile bu yapının 

görüntülerde gürültü giderme problemine yönelik olarak da kullanılabileceği 

anlaşılmıştır. 

Günümüzde derin öğrenme yöntemleri geleneksel görüntü işleme tekniklerinden daha 

popüler hale gelmişlerdir. Derin ağlar çok büyük veri setleri kullanarak eğitimi ve 

analitik yöntemlerle ulaşılamayan özniteliklerin çıkarılmasını sağlamaktadır. 

Tez kapsamında üç farklı bilgisayarlı görü problemine yönelik olarak çekişmeli üretici 

ağ derin öğrenme mimarilerinin kullanımı incelenmiştir. Literatüre yeni kazandırılmış 
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olan çekişmeli üretici ağ mimarilerinin eğitilmesi göreceli olarak kolaydır. Çekişmeli 

üretici ağlar için eğitim, doğrulama ve test kısımları çok benzerdir. Bu kısımların 

aralarındaki tek fark kullanılan kayıp fonksiyonları ve optimizasyon yöntemleridir. 

Tez kapsamında yapılan gerçeklemeler, görüntü çözünürlük yükseltme, sahte görüntü 

üretme ve görüntülerde gürültü giderme uygulamaları için çekişmeli üretici ağların 

başarıyla kullanılabileceğini göstermiştir. 
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 INTRODUCTION 

In this chapter, the theoretical background of the thesis is explained from the general 

subject to the specific subject, the aim of the thesis and the literature review are briefly 

introduced. 

 Theoretical Background 

Machine learning 

Machine learning brings together statistics and computer science to enable computers 

to learn how to do a given task without being programmed to do so. 

What is really special about algorithms of machine learning is that they rely on the 

data, not executing some code blocks for given conditions. And of course, the more 

data the better the results. 

The part of the statistics is for understanding dataset. The part of the computer science 

is to interpret and process this dataset in the most efficient way. Efficient algorithms 

and large datasets are the keys for getting better results from machine learning. 

Machine learning techniques 

A very common problem for machine learning is to make a prediction with using a 

model. 

This requires couple of things such as: training dataset, which is used for training the 

model. In these datasets, there are inputs such as images and output labels. Output 

label shows what is inside the image. The other thing is model training, which consists 

of three steps. Model is trained with the inputs from the training dataset, making the 

model predict the output labels and correcting the model with optimizers and loss 

functions.  

There are four main machine learning techniques: 
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• Supervised Learning: It is based on learning a mapping from inputs to the outputs 

with the given labeled dataset [1].  

The most common supervised learning problems are regression and classification. 

Some of the algorithms that help us solve these problems are linear regression, 

decision tree and random forest. 

• Unsupervised Learning: In this type of learning approach, there are only inputs. 

In other meaning no outputs or labels. The goal is to find the undetected patterns 

between the data inside the dataset.  

In this kind of problems, we need to find the patterns and we cannot use any clear 

loss function because we do not have a prediction label for the predicted output 

[1]. The most common unsupervised learning problems are generative modeling, 

dimensionality reduction and clustering. Some of the algorithms that help us solve 

these problems are k-means clustering, generative adversarial networks and 

principal component analysis. 

• Semi-Supervised Learning: It is a combination of both supervised learning and 

unsupervised learning. The main purpose of this learning approach is to classify 

unlabeled data using the labeled data [2]. 

• Reinforcement Learning:  In this learning approach, the machine learning model 

learns to make a decision from the sequences of reinforcements. Reinforcement 

learning is like a game. Artificial intelligence either gets a reward or a punishment 

for the decision that it is making. 

Machine learning models 

• Discriminative Models: These models are a branch of supervised machine 

learning. Discriminative models discriminate the classes with a decision boundary 

using the training dataset. They are used for regression and classification.  

• Generative Models: These models are a branch of unsupervised machine learning. 

At first generative models tries to learn the distribution of the data from the training 

dataset. Then using this data distribution as an input, new examples can be crated.  

The goal here can be generating new examples that are indiscernible from the 

examples inside the training dataset or decreasing the noise and increasing the 

resolution of the images that are inside the testing dataset or in real world.  
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Mathematically we know the marginal probability of the input “P(input)”. We need 

to estimate the marginal probability of the output “P(output)” and conditional 

probability distribution “P (input | output)” (conditional probability of the input 

when output label is given) with generative modeling. Then by using the Bayes 

rule: 

 𝑃(𝑖𝑛𝑝𝑢𝑡)𝑃(𝑜𝑢𝑡𝑝𝑢𝑡|𝑖𝑛𝑝𝑢𝑡)  =  𝑃(𝑜𝑢𝑡𝑝𝑢𝑡)𝑃(𝑖𝑛𝑝𝑢𝑡|𝑜𝑢𝑡𝑝𝑢𝑡) (1.1) 

𝑃(𝑜𝑢𝑡𝑝𝑢𝑡|𝑖𝑛𝑝𝑢𝑡)  =  𝑃(𝑜𝑢𝑡𝑝𝑢𝑡) 𝑃(𝑜𝑢𝑡𝑝𝑢𝑡|𝑖𝑛𝑝𝑢𝑡) / 𝑃(𝑖𝑛𝑝𝑢𝑡) (1.2) 

From here, distribution of each class is modeled by finding the conditional probability 

distribution “P (output | input)” (conditional probability of output when input is given). 

New samples can be generated using this model.  

Some of the examples for generative models are Naive Bayes, Deep Belief Network, 

Variational Autoencoder, and the Generative Adversarial Network (GAN).  

Deep learning 

Deep learning is a subset of machine learning that relies on neural networks with using 

large amounts of data. Structure of the neural networks is inspired by the human brain. 

Some of the most common deep learning methods are Convolutional Neural Network 

(CNN), Recurrent Neural Network (RNN), Autoencoder and GAN. 

The features are chosen by the neural network without human intervention. Neurons, 

the main asset of the neural networks, are the place that processing of information 

takes place. Neural networks have an input layer, hidden layers, and an output layer. 

As an example, the information which can be pixels of an image is given to the input 

layer of the neural network. In the last layer, which is the output layer, there are 

neurons that represent a digit. Between the input layer and output layer there are hidden 

layers. The geometry of the neural network is illustrated on the Figure 1.1. 
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Figure 1.1 : Neural Network Example. 

1.1.4.1 Working of neural networks 

The information is transferred through the neural network layers with connecting 

channels. Each channel has a weight, so we can call them weighted channels. All the 

neurons may have its own bias. This bias value is added to the weighted sum of inputs 

that reaches to the neuron of the current neural network layer. Then this computation 

gets pass through the activation function. Activation function decides if the neuron 

will be activated or not by multiplying it with either a positive value or 0. Every 

activated neuron passes the information to the following layer. This continues until the 

last hidden layer. The neuron that is activated in the output layer corresponds to the 

inputs that is put through in input layer. The weights and biases are continuously 

adjusted through the process of neural network training. 

 Computer Vision Applications with GANs 

In this thesis there are lots of generative adversarial network architectures and methods 

to tackle computer vision problems. These problems are generating fake images, 

super-resolving images and denoising the noisy images. 

In this thesis, we studied three different computer vision applications which use 

generative adversarial networks for solution. The results indicate that GANs can be 
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very effectively used for these particular problems. Before GAN there were other 

architectures which used generative modelling as well, but with the founding of GAN 

those architectures that used generative modelling to solve the computer vision 

problems became pretty much insufficient. Also, some of the image processing 

techniques that were used to solve computer vision problems also fell out of use. 

From the practical standpoint, recent GAN architectures with the improved 

optimization techniques are easy to train, and the results are getting more accurate. 

The training, validation and testing parts are almost the same, the only differences are 

the loss functions and the optimizers. The procedure for making the dataset ready for 

training differs for each problem. Different pre-processing techniques and 

normalization techniques are used on those datasets. Also, the GAN part looks the 

same with two distinct networks, one being the generator the other one being the 

discriminator. Although these two architectures do the same job every time, where the 

generator tries to generate fake images and the discriminator tries to distinguish the 

generated fake images from the real images, these architectures get changed from one 

problem to another to tackle the particular characteristics of the problem. 

Super resolution on images 

GANs usage for this problem is to increase the resolution for the images and the 

videos. It has been used for different purposes in many areas. Some of them are as 

follows. 

• Increasing the resolution for the old movies, commercials and shows to have better 

experience watching them.  

• Increasing the resolution for the images and videos that are recorded with cameras 

that are not quite good to record high resolution images and videos. Mainly the cell 

phone cameras can be given as an example. 

• Increasing the resolution in medical imaging for better medical imaging analysis. 

Fake image generation 

GANs usage for this problem is to create fake images that have not existed before. It 

has been used for different purposes in many areas. Some of them are as follows. 
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• Using fake image generation in the modeling agencies and commercial companies 

in order to not pay for the models or actors and actresses. 

• Creating fake places that are not existed before in movies, thus no time or money 

is spent on finding new areas. In the future it is suggested that there will be no 

actors or actresses in movies, these people will be generated by the GAN. 

• Creating datasets for the problems that are lacking enough data to solve the 

problem in artificial intelligence applications. 

Image denoising 

GANs usage for this problem is to denoise the images and the videos. It has been used 

for different purposes in many areas and these areas are so similar to super resolution 

problem. Some of them are as follows. 

• Clearing the noises inside the video signals for the old movies, commercials and 

shows to have better experience watching them. 

• Denoising the images and videos that are recorded with cameras that are not quite 

good to record noise free images and videos. The environment is also effective in 

this problem too. Low light and high heat can be given as an example for the 

environment problems. Mainly the cell phone cameras have this problem. 

• Decreasing the noises in medical images for better medical imaging analysis. 

 Tools and Technologies 

• Language: Python 3.6.9 has been used for this project. Python is an object-

oriented programming (OOP) language which uses interpreter to turn the code into 

a machine code. It is one of the most used high-level languages in the world. It is 

used in web development, desktop application development, embedded software 

development and mostly in applications that uses data science. 

• Framework: PyTorch 1.6.0 has been used in this project. PyTorch is a deep 

learning library mostly used for applications such as natural language processing 

and computer vision. It uses graphical processing units (GPUs) and central 

processing units (CPUs). Tensors are used in this library to make computation. 
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• Environment: Google Colab has been used to access all the technologies like 

Python programming language, PyTorch framework, machine learning libraries 

and GPUs like NVIDIA Tesla T4 GPU. Google Colab is an environment that 

allows us to write, run, save, and share code in Google Drive. It is basically a 

notebook which is composed of cells just like Jupyter Notebook. In those cells we 

can contain code, images, and text. Colab makes a connection with the cloud-based 

runtime with our notebook. Therefore, the Python code is executed without 

anything required locally. It uses GPUs, CPUs, and tensor processing units (TPUs) 

as a hardware accelerator. 

• Libraries: NumPy and Python Imaging Library (PIL) are the third party-libraries 

that have been used in this project. PIL is an image processing library that allows 

us to open, manipulate and save images. NumPy is one of the most used libraries 

for scientific computation in data science applications. It is a third-party Python 

library that provides a multidimensional arrays and matrices, with a large 

collection of mathematical, basic, and advanced programming functions [3]. 

Tools and technologies that have been used in this project is summarized in the Table 

1.1. 

Table 1.1 : Tools and Technologies. 

Tools Tool Names 

Programming Language Python 

Deep Learning Framework PyTorch 

Environment Google Colab 

3rd Party Libraries PIL, NumPy 

GPU NVIDIA Tesla T4 GPU 

 Thesis Overview 

This section provides an overview of the chapters within the thesis. 

Chapter 1 is composed of theoretical background and tools and technologies. In the 

theoretical background section, the theory behind the project is explained from general 

to specific. In the tools and technologies section, the tools and technologies used in 

this project are explained. 
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Chapter 2 is composed of Generative Adversarial Networks (GAN). Structure and 

working mechanics of GAN are explained. Then the training of GAN parts and GAN 

is explained. 

Chapter 3, 4 and 5 are composed in the order of the subjects called Super Resolution 

on Images, Fake Image Generation, and Image Denoising. Those chapters contain the 

same section titles. In literature review section, related works and methodologies about 

the application are explained briefly. In dataset section, the dataset used in training and 

testing for the application is introduced and the pre-processing operations used in the 

dataset are explained. In the neural network architecture section, the model used in 

training and testing for the application is explained. 

Chapter 6 is composed of results. The results from Chapter 3, 4 and 5 are shown and 

explained here. In addition, the comparison of the results obtained from different 

models and methodologies has been made here. 

Chapter 7 is composed of conclusion. The conclusions from the other chapters are 

explained here.
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 GENERATIVE ADVERSARIAL NETWORKS 

 Structure and Working Mechanics of GAN 

Generative Adversarial Networks (GANs) are one of the examples of generative 

modelling which uses deep learning (DL) based methods. It is considered that GANs 

are the best way to train a generative model. 

GANs consist of two parts. The first one is generator and the second one is 

discriminator. 

• Generator’s mission is to create fake data that is indistinguishable from the real 

data for the discriminator. The generator uses feedback given by the discriminator 

when generating these fake data. These fake data are used in the training part of 

the discriminator. 

• Discriminator’s mission is to distinguish the real data from the fake data that has 

been generated by the generator. If the generated fake data can be distinguished 

from the real data, then the discriminator gives a penalty to generator. The 

discriminator can be viewed as classifier in our situation. By looking at the data 

that the discriminator trying to classify, any deep learning based network 

architecture can be selected. 

At first phases of the training, the generator creates fake data, and the discriminator 

learns easily to tell that the generated data from the generator is fake. 

At the later stages of the training the generator starts to create fake data that can be 

indistinguishable for the discriminator. 

Lastly, if the generator training is going bad then the discriminator will easily 

distinguish the real data from the generated fake data, but if the generator training goes 

well, the discriminator will struggle to distinguish the generated fake data from the 

real data and that can cause the discriminator to classify the generated fake data as a 

real data instead of classifying it as a fake data. This will make the discriminator’s 

accuracy decrease [4]. 
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The working structure of training the GAN is in Figure 2.1 [5]. 

 

Figure 2.1 : Training the Generative Adversarial Network [5]. 

The working structure of testing the GAN is in Figure 2.2. 

 

Figure 2.2 : Testing the Generative Adversarial Network. 

In testing part of the GAN, generator loss and discriminator loss are not calculated 

with loss functions, the generator network and discriminator network are not getting 

optimized with the optimizer, discriminator does not distinguish the real data from the 

fake data. Hence, there is no backpropagation nor weight update in the neurons of the 

generator network and discriminator network. Only thing that happens in the testing 

part of the GAN is generator generating new samples from the given input samples. 
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 GAN Training 

In this section of the current chapter, the neural network training of the generative 

adversarial network is explained. First, parts of the GAN training as the generator 

training and the discriminator training, then the GAN training as a whole are explained 

both theoretically and practically. 

Discriminator training 

For the discriminator training there are two different data samples. The first one is 

called real data, which in our case images of the nature or people. The second one is 

called fake or generated data, which is the data that has been generated by the 

generator. Real data are called positive examples for the training of discriminator. Fake 

or generated data are called negative examples for the training of the discriminator. 

Discriminator training procedure is as follows: 

• Discriminator network tries to classify both the real data sample and the sample 

that has been generated by the generator. 

• Loss function for the discriminator, calculates the losses for both real and fake data 

samples. Then the discriminator network gets penalized for misclassification 

between the real and generated samples by the loss function for the discriminator 

[6]. 

• The whole discriminator network is backpropagated with respect to the 

discriminator's loss function, and then the optimizer for the discriminator updates 

the model parameters. In short, the weights in each layer of the discriminator 

network is updated by backpropagation and optimization. 

• Note: Different loss functions and optimizers can be used for the specific GAN 

problem. 

Generator training 

For the generator training there is one data sample which is a random input. This 

random input may be noise or a low-resolution image or a noisy image. If the random 

input is noise, we can understand that the distribution of noise is not that important by 

looking at the experiments, so choosing a distribution that is easy to sample is 
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preferable [7]. As an example, uniform distribution can be chosen as a distribution that 

is easy to sample from. 

Training the generator requires discriminator more than the discriminator training 

requires generator. 

Generator training procedure is as follows: 

• A random input is sampled, or a low-resolution image is gathered. 

• Generator network creates an output from the random input. 

• Real data and the fake data are put through the discriminator network and the 

validity predictions have been made as real and fake. 

• Loss function for the generator, calculates the loss by using the classification made 

by the discriminator. Then the generator network gets penalized for creating data 

that cannot trick the discriminator. 

• The whole generator network is backpropagated with respect to the generator loss 

function, and then the optimizer for the generator updates the model parameters. 

In short, the weights in each layer of the generator network is updated by 

backpropagation and optimization. 

• Note: Different loss functions and optimizers can be used for the specific GAN 

problem. 

GAN training as a whole 

Generative adversarial networks have two different neural network architecture to 

train. GANs should run discriminator training and generator training together. Because 

the generator training and the discriminator training heavily rely on each other, they 

are trained alternatingly in one iteration. Generative models are a branch of 

unsupervised machine learning, but the training of the GAN architecture, which relies 

on generative modelling, is considered as supervised machine learning. 

GAN training procedure is as follows: 

• Train the generator to provide a batch of generated samples to the discriminator. 

• Train the discriminator with the generated batch of samples from the generator and 

the real data samples. 
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• Repeat first 2 steps until the end of the all iterations in one epoch. 

• Repeat the third step for one or more epochs. 

There is a very common problem with GAN training, and it is called convergence of 

GAN. This problem occurs when the generator performance improves, and the 

discriminator performance decreases. This will cause the discriminator to hardly 

distinguish the difference between the generated data from the generator and the real 

data. In an ideal world, if the generator generates a batch of samples that are near 

perfect, then the discriminator could end up with having a 50% accuracy. This is often 

referred to as flipping a coin to make a prediction [8].  

Therefore, the predictions of the discriminator lose its importance over the course of 

the GAN training and if the training continues from there then the discriminator will 

make completely random decisions and these decisions will return to the generator as 

a bad feedback to train the generator network with. This may cause generator quality 

to decrease as the training progresses to the later stages.
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 SUPER RESOLUTION ON IMAGES 

 Literature Review 

There were not many strategies to super-resolve images by using GANs until the last 

few years. Deep learning started to come handy for solving this task and the research 

for this problem started to grow. The super-resolution models are created, and different 

learning methods applied to these models to solve this task, but most of them failed on 

real world images which are taken by devices such as smartphones.  

The most widespread method for training the super-resolution deep learning models 

starts by downscaling the images that are inside the dataset with methods like nearest 

neighbor resampling, bicubic resampling and bilinear resampling. This process is 

applied in order to make a dataset that contains high-resolution and low-resolution 

training image pairs. The low-resolution images that are created by this process have 

almost no noise, in other words the images are clean. 

The main purpose of these super-resolution deep learning models is to clean the images 

from the noises and increase the resolution of the images. But the given dataset for 

training the model contains clean images or noise reduced images. This leads the 

model to learn from the images that are almost noise-free. 

After training super-resolution models with these strategies, the results are generally 

poor if the model is tested with real-world images that do not have any image 

processing methods applied by the developer, or in other words, images taken directly 

from the camera. The model leaves significant artifacts on the test images that are 

undesirable for super-resolving the images [9]. 

A real useful method that proposed in 2020 is real world super resolution with kernel 

estimation and noise injection [10]. Gathering a good dataset is very important for this 

problem, therefore a good strategy is proposed in this study. 

• Clean Up: Bicubic downsampling was used for downsampling. The aim is to 

remove the high frequency noises from the training dataset images. Thus, higher 

resolution images were obtained in the training dataset [10, 11]. 
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 𝐼𝑚𝑔ℎ𝑟 =  (𝐼𝑚𝑔𝑠𝑟𝑐 ∗  𝑘𝑒𝑟𝑛𝑒𝑙𝑏𝑖𝑐) ↓ 𝑠 (3.1) 

 𝐼𝑚𝑔𝑠𝑟𝑐 is the training dataset image, 𝑘𝑒𝑟𝑛𝑒𝑙𝑏𝑖𝑐 is the bicubic kernel and s is the 

downsampling ratio. 

• Degradation: Degradation operation was applied to high resolution images taken 

from the last step. The degradation operation was done using the KernelGAN [12]. 

Degradation pool was created with blur kernels in it. Then, a blur kernel was 

randomly selected from this pool and applied to the images [10]. 

𝐼𝑚𝑔𝑑𝑠 = (𝐼𝑚𝑔ℎ𝑟 ∗  𝑏𝑙𝑢𝑟_𝑘𝑒𝑟𝑛𝑒𝑙𝑖) ↓ 𝑠, 𝑖 ∈ {1, 2, 3, … . k} (3.2) 

𝐼𝑚𝑔𝑑𝑠 is the downsampled image. 

• Noise Injection: While getting the high-resolution images, some of the 

information were lost due to bicubic downsampling. Noise was added to the 

downsampled images to create realistic low-resolution images. These noise 

patches were collected from the training dataset images. After that, a filtering rule 

was designed to pick the noise patches from a decided range. These patches were 

then added to the downsampled images to obtain low-resolution images [10, 11]. 

𝐼𝑚𝑔𝑙𝑟 = 𝐼𝑚𝑔𝑑𝑠 +  𝑛𝑜𝑖𝑠𝑒𝑖  𝑖 ∈ {1, 2, 3, … . l} (3.3) 

• Neural Network Training: Enhanced Super Resolution Generative Adversarial 

Network (ESRGAN) [13] was used as a network architecture. Low resolution 

images are the fake data, high resolution image are the real data. Pixel loss, 

adversarial loss and perceptual loss were applied as loss functions for the training. 

 Dataset 

For super resolution problem the dataset that has been used is Large-scale CelebFaces 

Attributes (CelebA) Dataset [14]. This dataset contains more than 200,000 celebrity 

images. The reason for using this dataset is, it is easier to train with small amounts of 

training data to super-resolve the images in this dataset. Therefore, Google Colab can 

be used easily. Google Drive only gives 15 GBs of space while working with Google 

Colab and Google Colab only allows to work with datasets that our Google Drive 
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contains. Therefore, to use the GPU and pre-installed machine learning and deep 

learning libraries that Google Colab offers freely, Google Colab and Google Drive 

need to be used. 

 Neural Network Architecture 

In this part of the current chapter, the neural network architecture that has been used 

to tackle the super-resolution problem is explained.  

ESRGAN architecture [13] was created with using the SRGAN architecture [15] as 

the starting point. The neural network architecture of the SRGAN is in the Figure 3.1 

[15]. 

 

Figure 3.1 : Super Resolution GAN with Generator and Discriminator Network [15]. 

As the name Super Resolution Generative Adversarial Network (SRGAN) suggests it 

uses deep neural network with the adversarial network. Its main purpose is to super 

resolve the images to produce higher resolution images compared to the input images. 

From the Figure 3.1 [15], the neural network architecture can be explained concisely 

as follows: 

• Convolutional Layers: Convolutional layers are the main part of the 

convolutional neural networks. They're doing CNN's main job. It convolves the 

input, which can be image, with filter and bias and passes its result to the neurons 

in the next layer. 
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• RELU: Rectified Linear Unit (RELU) is an activation function for the neural 

networks. RELU outputs the negative values inside the neuron as 0 and outputs the 

positive values inside the neurons as it is. It is good for the vanishing gradient 

problem, but it might block gradient descent.  

• Leaky RELU: To solve the gradient descent problem, Leaky Relu has been 

introduced as a new activation function. Leaky Relu outputs the negative values 

inside the neuron with multiplying with a constant and outputs the positive values 

inside the neurons as it is. The constant gets small values like 0.01. 

𝐿𝑒𝑎𝑘𝑦 𝑅𝐸𝐿𝑈(𝑥) = max(𝑎𝑥, 𝑥),  𝑤ℎ𝑒𝑟𝑒 𝑎 > 0 (3.4) 

• Parametric RELU: Leaky Relu made very small improvements on increasing the 

accuracy of the model. To increase the accuracy of the model, Parametric Relu has 

been introduced as another activation function. Parametric Relu outputs the 

negative values inside the neuron with multiplying with a learnable parameter 

during the training and outputs the positive values inside the neurons as it is. 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑅𝐸𝐿𝑈(𝑥) = max(0, 𝑥) + min 𝑎𝑖(0, 𝑥) (3.5) 

• Batch Normalization: Batch normalization is a regularization function. It 

increases the training speed by reducing the number of epochs for the training. It 

stabilizes the neural network learning process. 

• Residual Blocks: The residual blocks which is used for Deep Residual Learning 

[16] are used for easing the generator network training and to make the neural 

network deeper. These will result in an increase in neural network training 

performance. 

• Pixel Shuffler: It is a sub-pixel convolutional layer. It learns the upscaling filter 

array during the training and upscales the map of low-resolution features to high 

resolution [17]. 

• Dense Layer: It is known as fully connected layer too. The values inside the 

neurons are multiplied by the weight of the channel and maybe if there is a bias, it 

is added to the multiplication. 
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Note: k9n64s1 means a convolutional layer with 9 kernels, 64 channels and it strides 

1 pixel in the specified directions. 

In order to improve the resolution of the output images, ESRGAN architecture [13] 

has been produced by making some modifications in SRGAN architecture [15]. 

In the generator architecture, all the batch normalization layers inside the residual 

blocks were deleted, and this resulted as an increase in the training performance of the 

architecture. Residual-in-Residual Dense Block (RRDB) was proposed instead of the 

basic block, which made it even deeper neural network architecture for the generator. 

The proposed method can be seen in the Figure 3.2 [13]. 

 

Figure 3.2 : RRDB in ESRGAN [13]. 

The working structure of training the ESRGAN [13] for super resolution is in Figure 

3.3. 

 

Figure 3.3 : Training the ESRGAN for Super Resolution. 

The working structure of testing the ESRGAN [13] for super resolution is in Figure 

3.4. 
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Figure 3.4 : Testing the ESRGAN for Super Resolution. 

In both training and testing, the generator takes low resolution image as an input and 

generates high resolution image as an output. 

 Loss Functions and Optimizer 

• L1 Loss Function: It means Least Absolute Deviations. L1 loss function [18] 

calculates the mean absolute error (MAE) between the generated image and the 

ground truth image. 

• Adversarial Loss Function: For adversarial loss, a sigmoid layer combined with 

binary cross entropy [19] was used. This loss function uses sigmoid layer for 

activation function and then calculates the binary cross entropy between the output 

and the desired target. 

Three different loss functions were used for generator training. 

The first one is pixel-wise loss. For pixel-wise loss, L1 loss function was used. L1 loss 

function measured the pixel-wise loss between the generated high-resolution image 

and the high-resolution image. 

The second one is content loss. For content loss, L1 loss function was used. L1 loss 

function measured the content loss between the extracted features of the generated 

high-resolution image and the extracted features of the high-resolution image. For 

feature extraction VGG19 model was used. 
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The third one is adversarial loss. For output parameter, high-resolution image and 

generated high-resolution image were put through the discriminator network and the 

validity predictions were made as real prediction and fake prediction. The difference 

between the fake prediction and real prediction gives the output. The desired target is 

a tensor filled with ones. Adversarial loss function used sigmoid layer for an activation 

function and then calculated the binary cross entropy between the output and the 

desired target. 

The resulting loss function for the generator is as follows: 

𝐺𝑙𝑜𝑠𝑠 = 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑙𝑜𝑠𝑠 + 5𝑒−3 ∗ 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝑙𝑜𝑠𝑠 + 𝑒−2 ∗ 𝑝𝑖𝑥𝑒𝑙 𝑙𝑜𝑠𝑠 (3.6) 

Two same loss functions were used for discriminator training. 

The first one is adversarial loss for high resolution images. For output parameter, high-

resolution image and generated high-resolution image were put through the 

discriminator network and the validity predictions were made as real prediction and 

fake prediction. The difference between the fake prediction and real prediction gives 

the output. The desired target is a tensor filled with ones. Adversarial loss function 

used sigmoid layer for an activation function and then calculated the binary cross 

entropy between the output and the desired target. 

The second one is adversarial loss for generated high-resolution images. For output 

parameter, high-resolution image and generated high-resolution image were put 

through the discriminator network and the validity predictions were made as real 

prediction and fake prediction. The difference between the fake prediction and real 

prediction gives the output. The desired target is a tensor filled with zeros. Adversarial 

loss function used sigmoid layer for an activation function and then calculated the 

binary cross entropy between the output and the desired target. 

The resulting loss function for the discriminator is as follows: 

𝐷𝑙𝑜𝑠𝑠 =
(𝑟𝑒𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠)

2
 (3.7) 

For the optimizer, which is an optimization algorithm, Adam was used for both 

generator network training and the discriminator network training.
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 FAKE IMAGE GENERATION 

 Literature Review 

Fake image generation subject was started by Ian Goodfellow back in 2014. He and 

his colleagues founded the Generative Adversarial Network theory. Images have been 

generated from the datasets by using GAN architecture. These generated images look 

as if they are from the training dataset, but they are unique on their own because there 

are no such generated images in the training dataset. 

In 2015, Deep Convolutional Generative Adversarial Networks (DCGAN) [21] were 

developed. It is a better version of the simple GAN. One more important thing that had 

come with DCGAN is the fact that traversing through the latent space of the generated 

image and changing the values in latent space dimensions can change the generated 

image drastically [21]. For example, with using vector arithmetic in the latent space of 

the generated images, a new generated image can be produced.  

In 2016, Coupled Generative Adversarial Networks (CoGAN) [22] were developed. 

This GAN architecture consists of couple of GANs. Their responsibility is to generate 

images in only one domain. During their training process GANs share couple of 

parameters. As a result, GANs learn to generate similar images without the need of 

supervision of correspondence. 

In 2017, progressive growing of GAN [23] was proposed. The key part on this method 

is the training methodology. Training is started with low resolution images and then 

the resolution of the input images is increased progressively with adding new layers to 

the generative adversarial network [23]. This method received a lot of attention at the 

time, as the generated images looked very close to real images. 

In 2018, BigGAN [24] model was proposed. ResNet GAN architecture [25] has been 

used for the BigGAN model. BigGAN benefitted from scaling and it provided bigger 

generative adversarial networks and larger batch sizes. Neural networks have been 

trained with two or four times more parameters and eight times more batch size then 

the previous implementations [24]. As a result, the generated images looked 
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indistinguishable from the real input images from the dataset that have been used to 

train the GAN. 

 Dataset 

For fake image generation problem, two datasets have been used. The dataset, which 

is used for DCGAN [21], is Large-scale CelebFaces Attributes (CelebA) Dataset [14]. 

This dataset contains more than 200,000 celebrity images. The reasons for using this 

dataset are that there are lots of applications that uses this dataset and this dataset does 

not take too much space. Therefore, Google Colab can be used easily. Google Drive 

only gives 15 GBs of space while working with Google Colab and Google Colab only 

allows to work with datasets that our Google Drive contains. Therefore, to use the 

GPU and pre-installed machine learning and deep learning libraries that Google Colab 

offers freely, Google Colab and Google Drive need to be used. The dataset, which is 

used for BigGAN [24], is ImageNet dataset. This dataset contains more than 

14,000,000 images. The reason for using this dataset is, this dataset is used with pre-

trained BigGAN [24] models. 

 Neural Network Architectures 

Two different generative adversarial network architectures have been implemented to 

solve the fake image generation problem. The first one is Deep Convolutional 

Generative Adversarial Networks (DCGAN) [21] and the second one is BigGAN [24]. 

Deep convolutional generative adversarial network 

DCGAN architecture [21] was created with using the GAN architecture [20] for 

starting point. Generator of the DCGAN architecture is in the Figure 4.1 [21]. 

 

Figure 4.1 : Generator of the DCGAN [21]. 
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Previous generative model architectures were checked, and drastic rule changes were 

made on them [21]. Those rules are as follows: 

• Delete all the pooling layers and add strided deconvolutional layers on generator 

and add strided convolutional layers on discriminator. 

• Use batch normalization as a regularization function both in generator and 

discriminator. 

• For making the neural network architecture deeper, delete all the dense layers in 

hidden layers. 

• Use Relu as an activation function for each layer in the generator except the last 

layer. In the output layer use Tanh as an activation function. 

• Use LeakyRelu as an activation function for each layer in the discriminator. 

In the last layer of the discriminator a sigmoid layer has been used. 

• Sigmoid: Sigmoid is an activation function for the neural networks. Sigmoid 

function is used because it outputs a value between 0 and 1. It is useful for the 

discriminator because it predicts a probability as an output. If the output value is 

close to 1, it means the data is real, if it is close to 0, it means the data is fake. 

In the last layer of the generator a Tanh layer has been used. 

• Tanh: Tanh is an activation function for the neural networks. Tanh function is like 

sigmoid function. It outputs a value between -1 and 1, therefore the negative inputs 

are also mapped too. It has been shown that using an activation function that is 

bounded, makes the model learn faster. 

BigGAN 

BigGAN [24] model was created with using the Self-Attention Generative Adversarial 

Networks (SAGAN) [25]. As the name suggests BigGAN's main focus is on bigger 

generative adversarial network. Generator of the BigGAN’s neural network 

architecture is in the Figure 4.2 [24]. 
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Figure 4.2 : (a) Generator of the BigGAN. (b) Residual Block in generator. (c) 

Residual Block in discriminator [24]. 

SAGAN architecture [25] was checked and drastic rule changes were made on them 

[21]. Those rules are as follows: 

• Improve the batch size. Experiments suggested increasing the batch size by 

multiplying with 8 gives the best result [24]. 

• Increase the number of channels contained in each layer by about 50% [24]. 

• Utilize a one shared class embedding instead of using many in the generator. 

Experiments suggested that it can improve the training performance of the 

architecture by improving the training speed and reducing the memory usage and 

computation. Its implementation was shown in the Figure 4.2 [24]. Split latent 

vector, shown as z in the Figure 4.2 [24], into one stack per pixel. Concatenate 

each stack to the shared class. Pass them to the residual blocks. From there pass it 

to the linear layer and then to the batch norm layer.  

In the residual block part, there are new layer types that are added to the architecture. 

• Linear: Linear layer applies a linear transformation to the input data passing 

through this layer. Input data is multiplied with the weight of the neuron and from 

there the bias of the neuron is added to the result from the multiplication. 

• Average Pooling: Average pooling layer is a pooling layer. Pooling layers are 

added after the convolutional layers. Its function is to avoid the overfitting by 

reducing the size of the neural network, in this way the computation in the neural 
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network training and the parameter amount is reduced. Average pooling layer 

divides the input into pooling regions by performing down-sampling and computes 

the average values of all the inputs in every single region [26]. 

The working structure of training the DCGAN [21] and BigGAN [24] for fake image 

generation is in Figure 4.3. 

 

Figure 4.3 : Training the DCGAN and BigGAN for Fake Image Generation. 

The working structure of testing the DCGAN [21] and BigGAN [24] for fake image 

generation is in Figure 4.4. 

 

Figure 4.4 : Testing the DCGAN and BigGAN for Fake Image Generation. 
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In both training and testing, the generator takes a noise vector as an input and generates 

fake image as an output. 

 Loss Functions and Optimizer 

In this part of the chapter, loss functions and the optimizer for the DCGAN [21] and 

BigGAN [24] are explained. 

DCGAN loss function and optimizer 

• BCE Loss Function: It means binary cross entropy loss function [27]. BCE loss 

function calculates the binary cross entropy between the output and the desired 

target. 

Two same loss functions were used for discriminator training. 

First one is binary cross entropy loss for real images. For output parameter, real image 

was put through the discriminator network and the validity prediction was made as real 

or fake prediction. The desired target is a tensor filled with ones. Then, binary cross 

entropy between the output and the desired target was calculated. 

The second one is binary cross entropy loss for generated images. For output 

parameter, generated image was put through the discriminator network and the validity 

prediction was made as real or fake prediction. The desired target is a tensor filled with 

zeros. Then, binary cross entropy between the output and the desired target was 

calculated. 

Gradients of the both two loss function were calculated separately. In other meaning, 

whole discriminator network had to be backpropagated with respect to the 

discriminator loss functions twice. 

The resulting loss function for the discriminator is as follows: 

𝐷𝑙𝑜𝑠𝑠 =  (𝑟𝑒𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠) (4.1) 

One loss function was used for generator training. 

The loss function used for the generated images is the binary cross entropy loss. For 

output parameter, generated image was put through the discriminator network and the 

validity prediction was made as real or fake prediction. The desired target is a tensor 
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filled with zeros. Then, binary cross entropy between the output and the desired target 

was calculated. 

𝐺𝑙𝑜𝑠𝑠 =  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠 (4.2) 

For the optimizer, which is an optimization algorithm, Adam was used for both 

generator network training and the discriminator network training. 

BigGAN loss functions and optimizer 

• Hinge Loss Function: Hinge loss function is used for classification. This loss 

function tries to find the best decision boundary for the classification task. 

Two same loss functions were used for discriminator training. 

First one is hinge loss for real images. Real image was put through the discriminator 

network and the validity prediction was made as real or fake prediction. Hinge loss 

function used the prediction as an input and calculated the real image loss. 

The second one is hinge loss for generated images. Generated image was put through 

the discriminator network and the validity prediction was made as real or fake 

prediction. Hinge loss function used the prediction as an input and calculated the 

generated image loss. 

The resulting loss function for the discriminator is as follows: 

𝐷𝑙𝑜𝑠𝑠 =
(𝑟𝑒𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠)

2
 (4.3) 

One loss function was used for generator training. 

The loss function used for the generated images is the hinge loss. Generated image 

was put through the discriminator network and the validity prediction was made as real 

or fake prediction. Hinge loss function used the prediction as an input and calculated 

the generated image loss. The calculation of the generator loss is the same as for 

DCGAN generator loss.
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 IMAGE DENOISING 

 Literature Review 

Deep learning methods have been used to tackle image processing problems for quite 

some time. Denoising is one of the most known image processing problems to this 

date.  

There are different methods to tackle this problem. The most traditional ones are the 

image processing methods. Denoising the images with the linear filters, non-linear 

filters, adaptive filters can be given as an example for the traditional image processing 

techniques. 

CNN architectures have been proposed to tackle this problem. In [28] a GAN was 

trained to learn the noise distribution and then CNN was used to denoise the images. 

In literature there are not GAN architectures that are solely adapted to image denoising 

problem. For this problem, using an SRGAN [15] like architecture was proposed in 

[29]. It has understood that using the SRGAN like architecture not only works for 

improving the image resolution but to denoise the images as well. It has been shown 

in [30] that the DCGAN architecture [21] can be used in more than one image 

processing problem. It has been understood that this architecture can be used not only 

for fake image generation, but also for problems such as image denoising, super 

resolving the images and deblurring the images as well. 

Nowadays, deep learning methods are much more popular than the traditional image 

processing techniques because, these methods can learn from the datasets, create their 

own features that people cannot understand and preserve the image details better 

because of the learning aspect. 

 Dataset 

For image denoising problem the dataset that has been used is Large-scale CelebFaces 

Attributes (CelebA) Dataset [14]. This dataset contains more than 200,000 celebrity 
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images. The reason for using this dataset is, it is easier to train with small amounts of 

training data to denoise the images in this dataset. Therefore, Google Colab can be 

used easily. Google Drive only gives 15 GBs of space while working with Google 

Colab and Google Colab only allows to work with datasets that our Google Drive 

contains. Therefore, to use the GPU and pre-installed machine learning and deep 

learning libraries that Google Colab offers freely, Google Colab and Google Drive 

need to be used. 

 Neural Network Architecture 

Updated form of the DCGAN [21] architecture has been proposed and used for the 

denoising problem as a GAN architecture. In the generator of the neural network 

architecture some changes have been made to generate bigger images and also to 

generate slightly better images. 

Generator of the DCGAN’s architecture is in the Figure 4.1 [21]. 

Here are the some of the changes that have been made on the DCGAN architecture 

[21]. 

• Image size kept the same while going forward in the layers of the generator but, 

the channel size had changed. To keep the image size the same; kernel size was set 

to 2, striding was set to 1 and padding was set to 1 in first, third and fifth 

convolutional layers and 0 in second, fourth and sixth convolutional layers. 

• An extra hidden layer was added to the generator to make the neural network 

denser and to keep the image size as the same. This hidden layer consists of 

convolutional layer and batch normalization. Batch normalization has been used 

as an activation function for the output of the convolutional layer. 

• Some changes have been made on the discriminator because of the changes in the 

generator.  

The working structure of training the updated DCGAN [21] for image denoising is in 

Figure 5.1. 
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Figure 5.1 : Training the Updated DCGAN for Image Denoising. 

The working structure of testing the updated DCGAN [21] for image denoising is in 

Figure 5.2. 

 

Figure 5.2 : Testing the Updated DCGAN for Image Denoising. 

In both training and testing, the generator takes noisy image as an input and generates 

denoised image as an output. 

 Loss Functions and Optimizer 

Two same loss function were used for discriminator training. 

First one is binary cross entropy loss for real images. For output parameter, real image 

was put through the discriminator network and the validity prediction was made as real 

or fake prediction. The desired target is a tensor filled with ones. Then, binary cross 

entropy between the output and the desired target was calculated. 
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The second one is binary cross entropy loss for generated images. For output 

parameter, generated image was put through the discriminator network and the validity 

prediction was made as real or fake prediction. The desired target is a tensor filled with 

zeros. Then, binary cross entropy between the output and the desired target was 

calculated. 

Gradients of the both two loss function were calculated separately. In other meaning, 

whole discriminator network had to be backpropagated with respect to the 

discriminator loss functions twice. 

The resulting loss function for the discriminator is as follows: 

𝐷𝑙𝑜𝑠𝑠 =  (𝑟𝑒𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠) (5.1) 

One loss function was used for generator training. 

The loss function used for the generated images is the binary cross entropy loss. For 

output parameter, generated image was put through the discriminator network and the 

validity prediction was made as real or fake prediction. The desired target is a tensor 

filled with zeros. Then, binary cross entropy between the output and the desired target 

was calculated. 

𝐺𝑙𝑜𝑠𝑠 =  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠 (5.2) 

For the optimizer, which is an optimization algorithm, Adam was used for both 

generator network training and the discriminator network training. 

In addition to the loss functions that were used during the training process, Peak signal-

to-noise ratio (PSNR) values were also calculated. 

• Peak Signal-to-Noise Ratio: PSNR is the ratio between an image's highest 

potential power and the power of corrupting noise that influences its representation 

accuracy [31]. PSNR is used as a quality metric in image processing applications. 

It is calculated between the clean image and the noisy image or clean image and 

denoised image. PSNR is expressed in terms of the logarithmic decibel scale. To 

calculate the PSNR, the mean square error (MSE) must be calculated first. 
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𝑀𝑆𝐸 =
1

𝑟𝑜𝑤𝑠 ∗ 𝑐𝑜𝑙𝑠
  ∑ ∑ (𝐼𝑚𝑔(𝑖, 𝑗)𝑜𝑟𝑔 −  𝐼𝑚𝑔(𝑖, 𝑗)𝑑𝑒𝑔)2

𝑐𝑜𝑙𝑠−1

𝑗=0

𝑟𝑜𝑤𝑠−1

𝑖=0

 (5.3) 

Then the MSE is used in the PSNR calculation. 

𝑃𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10(
𝑚𝑎𝑥 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

√𝑀𝑆𝐸
) (5.4) 

Max intensity can be taken as 255 because, 255 is the maximum pixel value. 

PSNR values were calculated only in the testing part. 

In the GAN method, PSNR calculations were made between the generated images and 

the ground truth images and also between the noisy input images and the ground truth 

images. 

In the image processing method, PSNR calculations were made between the denoised 

images and the ground truth images and also between the noisy input images and the 

ground truth images.
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 RESULTS 

In this chapter, the results for all the GAN problems in this thesis were shown and 

discussed. These results contain input images from the dataset, generated output 

images from the input images, model, and method comparisons, and plottings of the 

training loss curves. 

 Super Resolution on Images 

For super resolution two different methods were used. The first one is ESRGAN [13], 

trained to generate high-resolution images from the low-resolution images. The second 

one is nearest neighbour interpolation algorithm, used to upsample the low-resolution 

images. 

ESRGAN 

Input images were used in neural network training with four images per batch in one 

iteration. Only two images per one batch were shown below. 

In Figure 6.1 the first examples of low-resolution images have been given. In Figure 

6.2, generated output images for every 2000 iteration have been given. Generated 

output images have been created from the low-resolution images in Figure 6.1. 

 

Figure 6.1 : First Example of Low-Resolution Images. 
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Figure 6.2 : First Example of Generated Output Images for every 2000 Iteration. 

In Figure 6.3 the second examples of low-resolution images have been given. In Figure 

6.4 generated output images for every 2000 iteration have been given. Generated 

output images have been created from the low-resolution images in Figure 6.3. 

 

Figure 6.3 : Second Example of Low-Resolution Images. 

 

 

Figure 6.4 : Second Example of Generated Output Images for every 2000 Iteration. 
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In Figure 6.5 the third examples of low-resolution images have been given. In Figure 

6.6 generated output images for every 2000 iteration have been given. Generated 

output images have been created from the low-resolution images in Figure 6.5. 

 

Figure 6.5 : Third Example of Low-Resolution Images. 

 

 

Figure 6.6 : Third Example of Generated Output Images for every 2000 Iteration. 

From the images above, it can be observed that the results get better as the training 

continues. 

Plotting of the generator’s training loss curve is in the Figure 6.7. 
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Figure 6.7 : Generator Loss for Super-resolving. 

Plotting of the discriminator’s training loss curve is in the Figure 6.8. 

 

Figure 6.8 : Discriminator Loss for Super-resolving. 

First epoch’s iterations are considered as warm-up iterations and only the pixel-wise 

loss gets calculated and the whole generator network is backpropagated with respect 

to the pixel-wise loss function. Then the optimizer for the generator, updates the model 

parameters. During warm-up iterations, discriminator network never gets to 

backpropagate with respect to any loss function and never updates its model 

parameters. In the results above warm-up iterations have not shown. 
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Nearest neighbour interpolation 

This is an image processing technique to up sample the low-resolution images. 

Therefore, there are no loss functions for this part. 

In Figure 6.9 the first examples of low-resolution images and the upsampled images 

with nearest neighbour interpolation algorithm have been given. In Figure 6.10, 

upsampled images and generated output images have been given. Upsampled images 

and generated output images have been created from the low-resolution images in 

Figure 6.9. 

 

Figure 6.9 : First Example of Low-Resolution Images and Upsampled Images. 
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Figure 6.10 : First Example of Upsampled Images and Images Generated by GAN. 

In Figure 6.11 the second examples of low-resolution images and the upsampled 

images with nearest neighbour interpolation algorithm have been given. In Figure 6.12, 

upsampled images and generated output images have been given. Upsampled images 

and generated output images have been created from the low-resolution images in 

Figure 6.11. 
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Figure 6.11 : Second Example of Low-Resolution Images and Upsampled Images. 

 

Figure 6.12 : Second Example of Upsampled Images and Images Generated by 

GAN. 
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In Figure 6.13 the third examples of low-resolution images and the upsampled images 

with nearest neighbour interpolation algorithm have been given. In Figure 6.14, 

upsampled images and generated output images have been given. Upsampled images 

and generated output images have been created from the low-resolution images in 

Figure 6.13. 

 

Figure 6.13 : Third Example of Low-Resolution Images and Upsampled Images. 
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Figure 6.14 : Third Example of Upsampled Images and Images Generated by GAN. 

As it has shown above in the figures, ESRGAN [13] increased the resolution of the 

images better than the nearest neighbour interpolation algorithm. As for the result it 

can be understood that GAN performed better than the image processing technique. 

 Fake Image Generation 

For fake image generation two different models were used. The first model, which is 

DCGAN [21], trained with different batch sizes to generate fake images. For the 

second model, which is BigGAN [24], a pre-trained model was used to generate fake 

images. 

DCGAN 

Input images were used in neural network training with four images per batch in one 

iteration and one image per batch in one iteration. 

For the training with four images per one batch, input images and the generated output 

images were shown below in the following Figure 6.15 and Figure 6.16. 
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Figure 6.15 : Input Image Examples with the Batch Size of 4 (CelebA). 

 

 

Figure 6.16 : Generated Images with the Batch Size of 4 (CelebA). 

Plotting of the generator’s training loss curve with the batch size of 4 is in the Figure 

6.17. 

 

Figure 6.17 : Generator Loss for Image Generation with the Batch Size of 4 

(DCGAN). 

Plotting of the discriminator’s training loss curve with the batch size of 4 is in the 

Figure 6.18. 
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Figure 6.18 : Discriminator Loss for Image Generation with the Batch Size of 4 

(DCGAN). 

For the training with one image per one batch, input image and the generated output 

image were shown below in the following Figure 6.19 and Figure 6.20. 

 

Figure 6.19 : Input Image Example with the Batch Size of 1 (CelebA). 
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Figure 6.20 : Generated Image with the Batch Size of 1 (CelebA). 

Plotting of the generator’s training loss curve with the batch size of 1 is in the Figure 

6.21. 

 

Figure 6.21 : Generator Loss for Image Generation with the Batch Size of 1 

(DCGAN). 

Plotting of the discriminator’s training loss curve with the batch size of 1 is in the 

Figure 6.22. 
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Figure 6.22 : Discriminator Loss for Image Generation with the Batch Size of 1 

(DCGAN). 

As it was shown above training with the batch size of one compared to training with 

the batch size of four, gives the best result for generating fake images with using 

DCGAN architecture as a model [21]. This statement can also be understood by 

looking at the discriminator’s loss curves being more stable in training with the batch 

size of 1. 

BigGAN 

For BigGAN [24], a pre-trained model was used to generate fake images. Therefore, 

there are no input images and loss functions for this part. 

Generated output images are shown below in the following Figure 6.23, Figure 6.24, 

and Figure 6.25. The network was trained by using images from the ImageNet dataset. 
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Figure 6.23 : First Example for Images Generated by BigGAN. 

 

Figure 6.24 : Second Example for Images Generated by BigGAN. 
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Figure 6.25 : Third Example for Images Generated by BigGAN. 

As it was shown above BigGAN architecture [24] generated more realistic images than 

DCGAN architecture [21]. 

 Image Denoising 

For image denoising two different methods were used. The first one is an updated form 

of the DCGAN [21] architecture, trained to generate a denoised version of the input 

images. The second one is Non-local Means (NLM) Denoising algorithm, used to 

clean the noises inside images. 

The noise added to the input images is salt and pepper noise. Salt and pepper noise 

replace some of the random pixel values in all the channels of the image with a 1 or 0. 

Salt noise and pepper noise ratio was kept equal. The noise density was chosen as 0.05. 

This value shows that the added noise effects only 5% of the pixel values of the image. 

Updated dcgan architecture 

Input images were used in neural network training with two images per batch in one 

iteration. 

In Figure 6.26 the first examples of ground truth images and first examples of noisy 

input images have been given. In Figure 6.27, denoised images with GAN for every 
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7000 iteration have been given. Denoised images with GAN have been created from 

the noisy input images in Figure 6.26. 

 

Figure 6.26 : First Example of Ground Truth Images and Noisy Input Images. 

 

 

Figure 6.27 : First Example of Denoised Images with GAN for every 7000 Iteration. 

In Figure 6.28 the second examples of ground truth images and second examples of 

noisy input images have been given. In Figure 6.29, denoised images with GAN for 

every 7000 iteration have been given. Denoised images with GAN have been created 

from the noisy input images in Figure 6.28. 
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Figure 6.28 : Second Example of Ground Truth Images and Noisy Input Images. 

 

 

Figure 6.29 : Second Example of Denoised Images with GAN for every 7000 

Iteration. 

In Figure 6.30 the third examples of ground truth images and third examples of noisy 

input images have been given. In Figure 6.31, denoised images with GAN for every 

7000 iteration have been given. Denoised images with GAN have been created from 

the noisy input images in Figure 6.30. 
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Figure 6.30 : Third Example of Ground Truth Images and Noisy Input Images. 

 

 

Figure 6.31 : Third Example of Denoised Images with GAN for every 7000 

Iteration. 

From the images above, it can be observed that the results get better as the training 

continues. 

Plotting of the generator’s training loss curve is in the Figure 6.32. 
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Figure 6.32 : Generator Loss for Image Denoising. 

Plotting of the discriminator’s training loss curve is in the Figure 6.33. 

 

Figure 6.33 : Discriminator Loss for Image Denoising. 

As it was shown above as the training progresses to the later stages, the denoised 

images with GAN looked more plausible. This statement can also be understood by 

looking at the discriminator’s and generator’s loss curves being stable in the training 

progress. This stability shows convergence of GAN has been prevented. 
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Peak signal-to-noise ratio (PSNR) values of the denoised images with GAN and noisy 

input images that can be seen in the Figure 6.26, Figure 6.27, Figure 6.28, Figure 6.29, 

Figure 6.30 and Figure 6.31 compared to the ground truth images are in the Table 6.1. 

Table 6.1 : PSNR Values of the Denoised Images with GAN. 

Example 

No 

Denoised Images with GAN/Ground-

truth Image 

Input Image/Ground-truth 

Image 

1 29.92 dB 40.86 dB 

2 28.44 dB 41.26 dB 

3 29.32 dB 41.15 dB 

It can be seen from Table 6.1 that the PSNR values between the denoised images with 

GAN and the ground truth images are lower than the PSNR values between the noisy 

input images and ground truth images. Even though the results from the GAN show 

lower PSNR values, denoised images with GAN look more appealing than the noisy 

input images. 

From there, it can be understood that evaluation of the problems like super-resolution 

and image denoising can be done by human perception in a better way than the 

generator and discriminator loss function results and the PSNR values between the 

denoised images and the ground truth images. 

Non-local means denoising 

This is an image processing technique to remove the noises in the noisy images. 

Therefore, there are no loss functions for this part. 

In Figure 6.34 the first examples of ground truth images, first examples of noisy input 

images and the denoised images with non-local means denoising algorithm have been 

given. In Figure 6.35, denoised images with NLM and denoised images with GAN 

have been given. Denoised images with NLM and denoised images with GAN have 

been created from the noisy input images in Figure 6.34. 
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Figure 6.34 : First Example of Ground Truth Images, Noisy Input Images and 

Denoised Images with NLM. 

 

 

Figure 6.35 : First Example of Denoised Images with NLM and Denoised Images 

with GAN. 

In Figure 6.36 the second examples of ground truth images, second examples of noisy 

input images and the denoised images with non-local means denoising algorithm have 

been given. In Figure 6.37, denoised images with NLM and denoised images with 

GAN have been given. Denoised images with NLM and denoised images with GAN 

have been created from the noisy input images in Figure 6.36. 
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Figure 6.36 : Second Example of Ground Truth Images, Noisy Input Images and 

Denoised Images with NLM. 

 

 

Figure 6.37 : Second Example of Denoised Images with NLM and Denoised Images 

with GAN. 

In Figure 6.38 the third examples of ground truth images, third examples of noisy input 

images and the denoised images with non-local means denoising algorithm have been 

given. In Figure 6.39, denoised images with NLM and denoised images with GAN 

have been given. Denoised images with NLM and denoised images with GAN have 

been created from the noisy input images in Figure 6.38. 
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Figure 6.38 : Third Example of Ground Truth Images, Noisy Input Images and 

Denoised Images with NLM. 

 

 

Figure 6.39 : Third Example of Denoised Images with NLM and Denoised Images 

with GAN. 

As it was shown above in the figures, an updated form of the DCGAN [21] architecture 

denoised the images better than the non-local means denoising. As for the result it can 

be understood that GAN performed better than the image processing technique. 

Peak signal-to-noise ratio (PSNR) values of the denoised images with NLM and noisy 

input images that can be seen in the Figure 6.34, Figure 6.35, Figure 6.36, Figure 6.37, 

Figure 6.38 and Figure 6.39 compared to the ground truth images are in the Table 6.2. 
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Table 6.2 : PSNR Values of the Denoised Images with Non-local Means Denoising. 

Example 

No 

Denoised Image with NLM/Ground-

truth Image 

 Input Image/Ground-truth 

Image 

1 33.43 dB  40.86 dB 

2 33.26 dB  41.26 dB 

3 33.38 dB  41.15 dB 

It can be seen from Table 6.2 that the PSNR values between the denoised images with 

NLM and the ground truth images are lower than the PSNR values between the noisy 

input images and ground truth images. Even though the results from the non-local 

means denoising algorithm show lower PSNR values, denoised images with non-local 

means denoising algorithm look more appealing than the noisy input images. 

As it was shown above in the Table 6.1 and Table 6.2, PSNR values between the 

denoised images with GAN and the ground truth images are lower than the PSNR 

values between the denoised images with non-local means denoising and the ground 

truth images. Even though the results from the GAN show lower PSNR values in 

contrast to the image processing method, denoised images with GAN look more 

appealing than the denoised images with non-local means denoising algorithm.  

Therefore, the PSNR value is not a feasible metric to make a comparison with different 

methods while one of these methods is GAN. 
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 CONCLUSION 

This thesis demonstrated that generative adversarial network architectures can 

effectively tackle important computer vision problems. These problems can vary from 

generating fake images to super-resolving images and denoising of noisy images. This 

thesis contains some of the popular GAN architectures in computer vision applications, 

but there are other GAN architectures which are used in other fields of machine 

learning. Image to image translation, text to image synthesis, text to speech translation 

etc. can be given as possible examples.  Hence, it can be understood that GAN is not 

only used in the computer vision applications but also in natural language processing 

(NLP). 

In this thesis, we studied three different computer vision applications which use 

generative adversarial networks for solution. The results indicate that GANs can be 

very effectively used for these particular problems. Before GAN there were other 

architectures which used generative modelling as well, but with the founding of GAN 

[20] those architectures that used generative modelling to solve the computer vision 

problems became pretty much insufficient. Also, some of the image processing 

techniques that were used to solve computer vision problems also fell out of use. 

From the practical standpoint, recent GAN architectures with the improved 

optimization techniques are easy to train, and the results are getting more accurate. 

The training, validation and testing parts are almost the same, the only differences are 

the loss functions and the optimizers. The procedure for making the dataset ready for 

training differs for each problem. Different pre-processing techniques and 

normalization techniques are used on those datasets. Also, the GAN part looks the 

same with two distinct networks, one being the generator the other one being the 

discriminator. Although these two architectures do the same job every time, where the 

generator tries to generate fake images and the discriminator tries to distinguish the 

generated fake images from the real images, these architectures get changed from one 

problem to another to tackle the particular characteristics of the problem. 
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