

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

JANUARY 2021

GENERATIVE ADVERSARIAL NETWORKS IN COMPUTER VISION

APPLICATIONS

Semih ÖRNEK

Department of Electronics and Communication Engineering

Telecommunication Engineering Programme

Department of Electronics and Communication Engineering

Telecommunication Engineering Programme

JANUARY 2021

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

GENERATIVE ADVERSARIAL NETWORKS IN COMPUTER VISION

APPLICATIONS

M.Sc. THESIS

Semih ÖRNEK

 (504181332)

Thesis Advisor: Prof. Dr. Ender Mete EKŞİOĞLU

Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Telekomünikasyon Mühendisliği Programı

OCAK 2021

ISTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ

BİLGİSAYARLI GÖRÜ UYGULAMALARINDA ÇEKİŞMELİ ÜRETİCİ

AĞLAR

YÜKSEK LİSANS TEZİ

Semih ÖRNEK

(504181332)

Tez Danışmanı: Prof. Dr. Ender Mete EKŞİOĞLU

v

Thesis Advisor : Prof. Dr. Ender Mete EKŞİOĞLU

 İstanbul Technical University

Jury Members : Prof. Dr. Ahmet Hamdi KAYRAN

Istanbul Technical University

Prof. Dr. Aydın KIZILKAYA

Pamukkale University

Semih Örnek, a M.Sc. student of ITU Graduate School of Science Engineering and

Technology 504181332, successfully defended the thesis entitled “GENERATIVE

ADVERSARIAL NETWORKS IN COMPUTER VISION APPLICATIONS”, which

he prepared after fulfilling the requirements specified in the associated legislations,

before the jury whose signatures are below.

Date of Submission : 30 December 2020

Date of Defense : 28 January 2021

vi

vii

To my family and friends,

viii

ix

FOREWORD

First of all, I would like to thank my advisor, Prof. Dr. Ender Mete Ekşioğlu, for giving

me the opportunity to work on such a promising subject and providing me the

necessary hardware for my project.

I would like to thank Arçelik for giving me the time and respect to finish my Master

of Science degree.

Finally, I am very grateful to my family and friends for believing in me and helping

me through this long and difficult period while continuing my Master of Science

degree and working simultaneously at Arçelik.

December 2020

Semih ÖRNEK

(Software Engineer)

x

xi

TABLE OF CONTENTS

Page

FOREWORD ... ix
TABLE OF CONTENTS .. xi
ABBREVIATIONS ... xiii

SYMBOLS .. xv
LIST OF TABLES ... xvii

LIST OF FIGURES .. xix
SUMMARY ... xxi
ÖZET .. xxv

 INTRODUCTION .. 1
 Theoretical Background ... 1

 Machine learning ... 1

 Machine learning techniques .. 1
 Machine learning models .. 2
 Deep learning .. 3

1.1.4.1 Working of neural networks... 4
 Computer Vision Applications with GANs ... 4

 Super resolution on images ... 5
 Fake image generation .. 5

 Image denoising .. 6
 Tools and Technologies ... 6

 Thesis Overview ... 7
 GENERATIVE ADVERSARIAL NETWORKS .. 9

 Structure and Working Mechanics of GAN ... 9

 GAN Training .. 11
 Discriminator training ... 11
 Generator training ... 11

 GAN training as a whole ... 12
 SUPER RESOLUTION ON IMAGES ... 15

 Literature Review ... 15
 Dataset .. 16
 Neural Network Architecture ... 17

 Loss Functions and Optimizer .. 20
 FAKE IMAGE GENERATION ... 23

 Literature Review ... 23
 Dataset .. 24

 Neural Network Architectures ... 24
 Deep convolutional generative adversarial network 24
 BigGAN .. 25

 Loss Functions and Optimizer .. 28

 DCGAN loss function and optimizer .. 28
 BigGAN loss functions and optimizer .. 29

 IMAGE DENOISING .. 31

xii

 Literature Review ... 31

 Dataset .. 31

 Neural Network Architecture ... 32
 Loss Functions and Optimizer .. 33

 RESULTS .. 37
 Super Resolution on Images ... 37

 ESRGAN ... 37

 Nearest neighbour interpolation .. 41
 Fake Image Generation... 45

 DCGAN ... 45
 BigGAN .. 49

 Image Denoising ... 51

 Updated dcgan architecture ... 51
 Non-local means denoising ... 56

 CONCLUSION ... 61

REFERENCES ... 63
CURRICULUM VITAE .. 67

xiii

ABBREVIATIONS

AI : Artificial Intelligence

GAN : Generative Adversarial Network

CNN : Convolutional Neural Network

RNN : Recurrent Neural Network

DL : Deep Learning

OOP : Object-Oriented Programming

GPU : Graphical Processing Units

CPU : Central Processing Unit

TPU : Tensor Processing Unit

PIL : Python Imaging Library

SRGAN : Super Resolution Generative Adversarial Network

ESRGAN : Enhanced Super Resolution Generative Adversarial Network

RRDB : Residual-in-Residual Dense Block

DCGAN : Deep Convolutional Generative Adversarial Networks

CoGAN : Coupled Generative Adversarial Networks

SAGAN : Self-Attention Generative Adversarial Networks

NLM : Non-local Means

PSNR : Peak Signal-to-Noise Ratio

MSE : Mean Square Error

NLP : Natural Language Processing

ITU : Istanbul Technical University

xiv

xv

SYMBOLS

Imgsrc : Training dataset image

kernelbic : Bicubic kernel

Imgds : Downsampled image

Imghr : High-resolution image

Gloss : Generator Loss

Dloss : Discriminator Loss

Imgorg : Original Image

Imgdeg : Degraded Image

rows : Number of rows in image matrix

cols : Number of columns in image matrix

xvi

xvii

LIST OF TABLES

Page

Table 1.1 : Tools and Technologies. ... 7
Table 6.1 : PSNR Values of the Denoised Images with GAN. 56
Table 6.2 : PSNR Values of the Denoised Images with Non-local Means Denoising.

 .. 60

xviii

xix

LIST OF FIGURES

Page

Figure 1.1 : Neural Network Example. ... 4
Figure 2.1 : Training the Generative Adversarial Network. 10
Figure 2.2 : Testing the Generative Adversarial Network. 10

Figure 3.1 : Super Resolution GAN with Generator and Discriminator Network. ... 17
Figure 3.2 : RRDB in ESRGAN. .. 19

Figure 3.3 : Training the ESRGAN for Super Resolution. 19
Figure 3.4 : Testing the ESRGAN for Super Resolution. ... 20
Figure 4.1 : Generator of the DCGAN. ... 24
Figure 4.2 : (a) Generator of the BigGAN. (b) Residual Block in generator. (c)

Residual Block in discriminator. .. 26

Figure 4.3 : Training the DCGAN and BigGAN for Fake Image Generation. 27

Figure 4.4 : Testing the DCGAN and BigGAN for Fake Image Generation............ 27
Figure 5.1 : Training the Updated DCGAN for Image Denoising............................ 33
Figure 5.2 : Testing the Updated DCGAN for Image Denoising. 33

Figure 6.1 : First Example of Low-Resolution Images. .. 37
Figure 6.2 : First Example of Generated Output Images for every 2000 Iteration. .. 38

Figure 6.3 : Second Example of Low-Resolution Images. 38
Figure 6.4 : Second Example of Generated Output Images for every 2000 Iteration.

 .. 38
Figure 6.5 : Third Example of Low-Resolution Images. .. 39

Figure 6.6 : Third Example of Generated Output Images for every 2000 Iteration. 39
Figure 6.7 : Generator Loss for Super-resolving. ... 40
Figure 6.8 : Discriminator Loss for Super-resolving. ... 40

Figure 6.9 : First Example of Low-Resolution Images and Upsampled Images. 41
Figure 6.10 : First Example of Upsampled Images and Images Generated by GAN.

 .. 42

Figure 6.11 : Second Example of Low-Resolution Images and Upsampled Images.

 .. 43

Figure 6.12 : Second Example of Upsampled Images and Images Generated by

GAN. .. 43
Figure 6.13 : Third Example of Low-Resolution Images and Upsampled Images. .. 44

Figure 6.14 : Third Example of Upsampled Images and Images Generated by GAN.

 .. 45

Figure 6.15 : Input Image Examples with the Batch Size of 4 (CelebA). 46
Figure 6.16 : Generated Images with the Batch Size of 4 (CelebA). 46

Figure 6.17 : Generator Loss for Image Generation with the Batch Size of 4

(DCGAN). .. 46
Figure 6.18 : Discriminator Loss for Image Generation with the Batch Size of 4

(DCGAN). .. 47

Figure 6.19 : Input Image Example with the Batch Size of 1 (CelebA). 47
Figure 6.20 : Generated Image with the Batch Size of 1 (CelebA). 48

xx

Figure 6.21 : Generator Loss for Image Generation with the Batch Size of 1

(DCGAN). .. 48

Figure 6.22 : Discriminator Loss for Image Generation with the Batch Size of 1

(DCGAN). .. 49
Figure 6.23 : First Example for Images Generated by BigGAN. 50
Figure 6.24 : Second Example for Images Generated by BigGAN. 50
Figure 6.25 : Third Example for Images Generated by BigGAN. 51

Figure 6.26 : First Example of Ground Truth Images and Noisy Input Images. 52
Figure 6.27 : First Example of Denoised Images with GAN for every 7000 Iteration.

 .. 52
Figure 6.28 : Second Example of Ground Truth Images and Noisy Input Images. .. 53
Figure 6.29 : Second Example of Denoised Images with GAN for every 7000

Iteration. ... 53
Figure 6.30 : Third Example of Ground Truth Images and Noisy Input Images. 54

Figure 6.31 : Third Example of Denoised Images with GAN for every 7000

Iteration. ... 54
Figure 6.32 : Generator Loss for Image Denoising. .. 55
Figure 6.33 : Discriminator Loss for Image Denoising. ... 55
Figure 6.34 : First Example of Ground Truth Images, Noisy Input Images and

Denoised Images with NLM. ... 57
Figure 6.35 : First Example of Denoised Images with NLM and Denoised Images

with GAN. .. 57
Figure 6.36 : Second Example of Ground Truth Images, Noisy Input Images and

Denoised Images with NLM. ... 58

Figure 6.37 : Second Example of Denoised Images with NLM and Denoised Images

with GAN. .. 58

Figure 6.38 : Third Example of Ground Truth Images, Noisy Input Images and

Denoised Images with NLM. ... 59

Figure 6.39 : Third Example of Denoised Images with NLM and Denoised Images

with GAN. .. 59

xxi

GENERATIVE ADVERSARIAL NETWORKS IN COMPUTER VISION

APPLICATIONS

SUMMARY

Generative Adversarial Networks (GANs) are one of the examples of generative

modelling which uses deep learning (DL) based methods. It is considered that GANs

are the best way to train a generative model. GANs consist of two parts. The first one

is the generator and the second one is the discriminator. Generator’s mission is to

create fake data that is indistinguishable from the real data for the discriminator.

Discriminator’s mission is to distinguish the real data from the fake data that has been

generated by the generator.

Generative adversarial networks have two different neural network architectures to

train. GANs should run discriminator training and generator training together. Because

the generator training and the discriminator training heavily rely on each other, they

are trained alternatingly in one iteration. Generative models are a branch of

unsupervised machine learning, but the training of the GAN architecture, which relies

on generative modelling, is considered as supervised machine learning.

This thesis demonstrates that generative adversarial network architectures can

effectively tackle important computer vision problems. These problems include the

generation of fake images, super-resolving images and denoising of noisy images.

In this thesis, we studied three different computer vision applications which use

generative adversarial networks for solution. The results indicate that GANs can be

very effectively used for these particular problems. Before GAN there were other

architectures which used generative modelling as well, but with the founding of GAN

those architectures that used generative modelling to solve the computer vision

problems became pretty much insufficient. Also, some of the image processing

techniques that were used to solve computer vision problems also fell out of use.

There were not many strategies to super-resolve images by using GANs until the last

few years. Deep learning started to come handy for solving this task and the research

for this problem started to grow. The super-resolution models are created, and different

learning methods applied to these models to solve this task, but most of them failed on

real world images which are taken by devices such as smartphones. The most

widespread method for training the super-resolution deep learning models starts by

downscaling the images that are inside the dataset with methods like nearest neighbor

resampling, bicubic resampling and bilinear resampling. This process is applied in

order to make a dataset that contains high-resolution and low-resolution training image

pairs. The low-resolution images that are created by this process have almost no noise,

in other words the images are clean. The main purpose of these super-resolution deep

learning models is to increase the resolution of the images.

Enhanced Super Resolution Generative Adversarial Network (ESRGAN) has been

used as a GAN architecture for this problem. ESRGAN is an improved version of the

Super Resolution Generative Adversarial Network (SRGAN) architecture. As the

xxii

name SRGAN suggests, it uses a deep neural architecture with an adversarial network.

Its main purpose is to super resolve the images to produce higher resolution images

compared to the input images.

Fake image generation subject was started by Ian Goodfellow back in 2014. He and

his colleagues founded the Generative Adversarial Network theory. Images have been

generated from the datasets by using GAN architecture. These generated images look

as if they are from the training dataset, but they are unique on their own because there

are no such generated images in the training dataset. For this problem two different

GAN architecture have been used. In 2015, Deep Convolutional Generative

Adversarial Networks (DCGAN) were developed. It is a better version of the simple

GAN. One more important thing that had come with DCGAN is the fact that traversing

through the latent space of the generated image and changing the values in latent space

dimensions can change the generated image drastically. For example, with using

vector arithmetic in the latent space of the generated images, a new generated image

can be produced. In 2018, BigGAN model was proposed. ResNet GAN architecture

has been used for the BigGAN model. BigGAN benefitted from scaling and it provided

bigger generative adversarial networks and larger batch sizes. Neural networks have

been trained with two or four times more parameters and eight times more batch size

then the previous implementations. As a result, the generated images looked

indistinguishable from the real input images from the dataset that have been used to

train the GAN.

Deep learning methods have been used to tackle image processing problems for quite

some time. Denoising is one of the most known image processing problems to this

date. There are different methods to attack this problem. The most traditional ones are

the image processing methods. Denoising the images with the linear filters, non-linear

filters, adaptive filters can be given as an example for the traditional image processing

techniques. CNN architectures have been proposed to tackle this problem. In a recent

method, a GAN was trained to learn the noise distribution and then CNN was used to

denoise the images. In the literature there are no GAN architectures that are solely

adapted to image denoising problem. For this problem, using an SRGAN like

architecture was proposed. It has been understood that using the SRGAN like

architecture not only works for improving the image resolution but to denoise the

images as well. Also, it has been shown that DCGAN architecture can be used in more

than one image processing problem. It has been shown that this architecture can be

used not only for fake image generation, but also for problems such as image

denoising, super resolving the images and deblurring the images as well. Nowadays

deep learning methods are much more popular than the traditional image processing

techniques, because these methods can learn from the datasets, create their own

features, and preserve the image details better because of the learning aspect.

Updated form of the DCGAN architecture has been proposed and used for the

denoising problem as a GAN architecture. In the generator of the neural network

architecture some changes have been made to generate bigger images and also to reach

better performance. Image size is kept the same while going forward in the layers of

the generator but, the channel size is changed. An extra hidden layer was added to the

generator to make the neural network denser and to keep the image size the same.

Some changes have been made on the discriminator because of the changes in the

generator.

xxiii

From the practical standpoint, recent GAN architectures with the improved

optimization techniques are easy to train, and the results are getting more accurate.

The training, validation and testing parts are almost the same. The only differences are

the loss functions and the optimizers. The procedure for making the dataset ready for

training differs for each problem. Different pre-processing techniques and

normalization techniques are used on those datasets. Also, the GAN part looks the

same with two distinct networks, one being the generator and the other one being the

discriminator. Although these two architectures do the same job every time, where the

generator tries to generate fake images and the discriminator tries to distinguish the

generated fake images from the real images, these architectures get changed from one

problem to another to tackle the particular characteristics of the problem.

xxiv

xxv

BİLGİSAYARLI GÖRÜ UYGULAMALARINDA ÇEKİŞMELİ ÜRETİCİ

AĞLAR

ÖZET

Çekişmeli üretici ağlar, derin öğrenme tabanlı yöntemler kullanan üretken modelleme

metotlarından biridir. Çekişmeli üretici ağların üretken modelleme eğitme yöntemleri

içinde en iyi başarım sağlayan yöntem olduğu düşünülmektedir. Çekişmeli üretici

ağlar iki ağdan oluşmaktadır. Birincisi üretici ağ, ikincisi ayrıştırıcı ağdır. Üretici ağın

misyonu, ayrıştırıcı ağ için gerçek verilerden ayırt edilemeyen sahte veriler

oluşturmaktır. Ayrıştırıcı ağın misyonu, gerçek verileri üretici ağ tarafından üretilen

sahte verilerden ayırmaktır.

Çekişmeli üretici ağlarda eğitilmesi gereken iki farklı yapay sinir ağı mimarisi vardır.

Çekişmeli üretici ağlar, ayrıştırıcı ağ eğitimini ve üretici ağ eğitimini birlikte

yürütmelidir. Üretici ağın eğitimi ve ayrıştırıcı ağın eğitimi birbirlerinden geri

bildirimler aldığından, tek bir yinelemede dönüşümlü olarak eğitim sağlanmaktadır.

Üretken modeller, denetimsiz makine öğreniminin bir dalıdır. Ancak üretken

modellemeye dayanan çekişmeli üretici ağı mimarisinin eğitimi, denetimli makine

öğreniminin konusu olarak kabul edilir.

Bu tez, bilgisayarlı görü problemlerinin çözümü için birçok çekişmeli üretici ağ

mimarisini incelemektedir. Bu bilgisayarlı görü problemleri sahte görüntülerin

üretimi, görüntülerin çözünürlüğünün arttırılması ve görüntülerdeki gürültülerin yok

edilmesidir.

Tezde, çekişmeli üretici ağları kullanan üç farklı bilgisayarlı görü uygulaması

incelenmiştir. Sonuçlar, çekişmeli üretici ağların bu belirli problemler için çok etkili

bir şekilde kullanılabileceğini göstermektedir. Çekişmeli üretici ağlardan önce,

üretken modellemeyi kullanan başka mimariler de sunulmuştur. Ancak çekişmeli

üretici ağların geliştirilmesiyle, bilgisayarlı görü problemlerini çözmek için üretken

modellemeyi kullanan diğer mimariler giderek popülerliğini yitirmiştir ve çekişmeli

üretici ağlara göre daha etkisiz kalmışlardır. Ayrıca, bilgisayarlı görü problemlerini

çözmek için kullanılan görüntü işleme tekniklerinden bazıları da kullanım dışına

itilmiştir.

Son birkaç yıla kadar çekişmeli üretici ağları kullanarak görüntülerin çözünürlüğünü

arttırmak için fazla strateji yoktu. Derin öğrenmedeki gelişmelere paralel olarak, bu

probleme yönelik araştırmalar giderek gelişmeye başladı. Yeni süper çözünürlük

modelleri oluşturuldu ve bu modeller üzerinde farklı öğrenme yöntemleri uygulandı.

Ancak bu öncül yöntemler herhangi bir cihazın kamerasından doğrudan alınan

görüntülerde başarısız oldu. Süper çözünürlük için derin öğrenme modellerini

eğitmenin en yaygın yöntemi, en yakın komşu yeniden örnekleme, çift kübik yeniden

örnekleme ve çift doğrusal yeniden örnekleme gibi yöntemlerle veri kümesinin

içindeki görüntülerin ölçeğini küçültmekle başlamaktadır. Bu işlem, yüksek

çözünürlüklü ve düşük çözünürlüklü eğitim görüntü çiftleri içeren bir veri kümesi

xxvi

oluşturmayı sağlar. Bu işlemden sonra elde edilen düşük çözünürlüklü görüntülerde

gürültü büyük miktarda azalır yani görüntüler aynı zamanda temizlenmiş olur.

Süper çözünürlüklü derin öğrenme modellerinin temel amacı görüntülerin

çözünürlüğünü artırmaktır. Bu probleme yönelik olarak tez kapsamında çekişmeli

üretici ağı mimarilerinden olan ESRGAN gerçeklenmiştir. ESRGAN, SRGAN

mimarisinin geliştirilmiş bir versiyonudur. Ana amacı, giriş görüntülerine kıyasla daha

yüksek çözünürlüklü görüntüler üretmek için görüntülerin çözünürlüğünü arttırmaktır.

Çekişmeli üretici ağlarla sahte görüntü üretme konusu Ian Goodfellow tarafından 2014

yılında ortaya atıldı. Bu kapsamda çekişmeli üretici ağ eğitim veri kümeleriyle

eğiterek, verisetlerinde olmayan yeni görüntülerin üretilmesi sağlandı. Bu üretilmiş

görüntüler, eğitim veri kümesinden alınmış gibi görünmesine rağmen aslında

benzersizdirler ve tamamen sıfırdan üretilmişlerdir.

Tez kapsamında bu problem için iki farklı çekişmeli üretici ağı mimarisi

gerçeklenmiştir. Bu mimarilerden bir tanesi olan DCGAN, basit çekişmeli üretici ağı

yapısının geliştirilmiş bir versiyonudur. Tez kapsamında sahte görüntü üretme için

gerçeklenen ikinci GAN tabanlı yöntem ise yöntem BigGAN üretici ağını

içermektedir. BigGAN ağ mimarisi ResNet ağ yapısına dayanmaktadır. BigGAN

mimarisi görece olarak daha büyük çekişmeli üretici ağların eğitimini mümkün

kılmaktadır. BigGAN mimarisinin kullanımı ağların önceki mimarilere göre dört kata

kadar daha fazla parametre ve sekiz kata kadar daha fazla yığın boyutu ile

eğitilebilmesini mümkün kılmıştır. Sonuç olarak üretilen görüntüler, çekişmeli üretici

ağı eğitmek için kullanılan veri kümesindeki gerçek giriş görüntülerinden neredeyse

ayırt edilemez görünmektedir.

Gürültü giderme, en popüler görüntü işleme problemlerinden bir tanesidir. Bu

problemi çözmek için çok farklı yöntemler sunulmuştur. Görüntülerde gürültü

gidermeye yönelik olarak sunulmuş çok sayıda geleneksel görüntü işleme yöntemi

literatürde yer almaktadır. Bunlar arasında doğrusal filtreler, doğrusal olmayan

filtreler, uyarlanabilir filtreler ve yerel olmayan yöntemler örnek olarak verilebilir.

Yakın zamanda literatürde sunulan bir araştırmada, gürültü dağılımını öğrenmek için

bir çekişmeli üretici ağın kullanımı önerilmiştir. Bu adımın ardından görüntüleri

gürültüden arındırmak için klasik evrişimli sinir ağı kullanılmıştır. Literatürde,

görüntülerde gürültü giderme problemine özel olarak uyarlanmış bir çekişmeli üretici

ağı mimarisi yer almamaktadır. Literatürde bu problem için, SRGAN benzeri bir

mimarinin kullanılması önerilmiştir. Sunulan benzetim sonuçları SRGAN mimarisinin

sadece görüntü çözünürlüğünü iyileştirmek için değil, aynı zamanda görüntülerdeki

gürültüyü giderme problemine yönelik olarakta iyi sonuçlar verdiğini göstermiştir. Tez

kapsamında ise DCGAN mimarisinin görüntülerde gürültü giderme için kullanımı

incelenmiştir. DCGAN mimarisi sahte görüntü oluşturma, görüntülerin

çözünürlüğünün arttırılması ve görüntülerin bulanıklığının giderilmesi gibi

uygulamalarda kullanılmıştır. Tez kapsamında yapılan çalışma ile bu yapının

görüntülerde gürültü giderme problemine yönelik olarak da kullanılabileceği

anlaşılmıştır.

Günümüzde derin öğrenme yöntemleri geleneksel görüntü işleme tekniklerinden daha

popüler hale gelmişlerdir. Derin ağlar çok büyük veri setleri kullanarak eğitimi ve

analitik yöntemlerle ulaşılamayan özniteliklerin çıkarılmasını sağlamaktadır.

Tez kapsamında üç farklı bilgisayarlı görü problemine yönelik olarak çekişmeli üretici

ağ derin öğrenme mimarilerinin kullanımı incelenmiştir. Literatüre yeni kazandırılmış

xxvii

olan çekişmeli üretici ağ mimarilerinin eğitilmesi göreceli olarak kolaydır. Çekişmeli

üretici ağlar için eğitim, doğrulama ve test kısımları çok benzerdir. Bu kısımların

aralarındaki tek fark kullanılan kayıp fonksiyonları ve optimizasyon yöntemleridir.

Tez kapsamında yapılan gerçeklemeler, görüntü çözünürlük yükseltme, sahte görüntü

üretme ve görüntülerde gürültü giderme uygulamaları için çekişmeli üretici ağların

başarıyla kullanılabileceğini göstermiştir.

xxviii

1

 INTRODUCTION

In this chapter, the theoretical background of the thesis is explained from the general

subject to the specific subject, the aim of the thesis and the literature review are briefly

introduced.

 Theoretical Background

Machine learning

Machine learning brings together statistics and computer science to enable computers

to learn how to do a given task without being programmed to do so.

What is really special about algorithms of machine learning is that they rely on the

data, not executing some code blocks for given conditions. And of course, the more

data the better the results.

The part of the statistics is for understanding dataset. The part of the computer science

is to interpret and process this dataset in the most efficient way. Efficient algorithms

and large datasets are the keys for getting better results from machine learning.

Machine learning techniques

A very common problem for machine learning is to make a prediction with using a

model.

This requires couple of things such as: training dataset, which is used for training the

model. In these datasets, there are inputs such as images and output labels. Output

label shows what is inside the image. The other thing is model training, which consists

of three steps. Model is trained with the inputs from the training dataset, making the

model predict the output labels and correcting the model with optimizers and loss

functions.

There are four main machine learning techniques:

2

• Supervised Learning: It is based on learning a mapping from inputs to the outputs

with the given labeled dataset [1].

The most common supervised learning problems are regression and classification.

Some of the algorithms that help us solve these problems are linear regression,

decision tree and random forest.

• Unsupervised Learning: In this type of learning approach, there are only inputs.

In other meaning no outputs or labels. The goal is to find the undetected patterns

between the data inside the dataset.

In this kind of problems, we need to find the patterns and we cannot use any clear

loss function because we do not have a prediction label for the predicted output

[1]. The most common unsupervised learning problems are generative modeling,

dimensionality reduction and clustering. Some of the algorithms that help us solve

these problems are k-means clustering, generative adversarial networks and

principal component analysis.

• Semi-Supervised Learning: It is a combination of both supervised learning and

unsupervised learning. The main purpose of this learning approach is to classify

unlabeled data using the labeled data [2].

• Reinforcement Learning: In this learning approach, the machine learning model

learns to make a decision from the sequences of reinforcements. Reinforcement

learning is like a game. Artificial intelligence either gets a reward or a punishment

for the decision that it is making.

Machine learning models

• Discriminative Models: These models are a branch of supervised machine

learning. Discriminative models discriminate the classes with a decision boundary

using the training dataset. They are used for regression and classification.

• Generative Models: These models are a branch of unsupervised machine learning.

At first generative models tries to learn the distribution of the data from the training

dataset. Then using this data distribution as an input, new examples can be crated.

The goal here can be generating new examples that are indiscernible from the

examples inside the training dataset or decreasing the noise and increasing the

resolution of the images that are inside the testing dataset or in real world.

3

Mathematically we know the marginal probability of the input “P(input)”. We need

to estimate the marginal probability of the output “P(output)” and conditional

probability distribution “P (input | output)” (conditional probability of the input

when output label is given) with generative modeling. Then by using the Bayes

rule:

 𝑃(𝑖𝑛𝑝𝑢𝑡)𝑃(𝑜𝑢𝑡𝑝𝑢𝑡|𝑖𝑛𝑝𝑢𝑡) = 𝑃(𝑜𝑢𝑡𝑝𝑢𝑡)𝑃(𝑖𝑛𝑝𝑢𝑡|𝑜𝑢𝑡𝑝𝑢𝑡) (1.1)

𝑃(𝑜𝑢𝑡𝑝𝑢𝑡|𝑖𝑛𝑝𝑢𝑡) = 𝑃(𝑜𝑢𝑡𝑝𝑢𝑡) 𝑃(𝑜𝑢𝑡𝑝𝑢𝑡|𝑖𝑛𝑝𝑢𝑡) / 𝑃(𝑖𝑛𝑝𝑢𝑡) (1.2)

From here, distribution of each class is modeled by finding the conditional probability

distribution “P (output | input)” (conditional probability of output when input is given).

New samples can be generated using this model.

Some of the examples for generative models are Naive Bayes, Deep Belief Network,

Variational Autoencoder, and the Generative Adversarial Network (GAN).

Deep learning

Deep learning is a subset of machine learning that relies on neural networks with using

large amounts of data. Structure of the neural networks is inspired by the human brain.

Some of the most common deep learning methods are Convolutional Neural Network

(CNN), Recurrent Neural Network (RNN), Autoencoder and GAN.

The features are chosen by the neural network without human intervention. Neurons,

the main asset of the neural networks, are the place that processing of information

takes place. Neural networks have an input layer, hidden layers, and an output layer.

As an example, the information which can be pixels of an image is given to the input

layer of the neural network. In the last layer, which is the output layer, there are

neurons that represent a digit. Between the input layer and output layer there are hidden

layers. The geometry of the neural network is illustrated on the Figure 1.1.

4

Figure 1.1 : Neural Network Example.

1.1.4.1 Working of neural networks

The information is transferred through the neural network layers with connecting

channels. Each channel has a weight, so we can call them weighted channels. All the

neurons may have its own bias. This bias value is added to the weighted sum of inputs

that reaches to the neuron of the current neural network layer. Then this computation

gets pass through the activation function. Activation function decides if the neuron

will be activated or not by multiplying it with either a positive value or 0. Every

activated neuron passes the information to the following layer. This continues until the

last hidden layer. The neuron that is activated in the output layer corresponds to the

inputs that is put through in input layer. The weights and biases are continuously

adjusted through the process of neural network training.

 Computer Vision Applications with GANs

In this thesis there are lots of generative adversarial network architectures and methods

to tackle computer vision problems. These problems are generating fake images,

super-resolving images and denoising the noisy images.

In this thesis, we studied three different computer vision applications which use

generative adversarial networks for solution. The results indicate that GANs can be

5

very effectively used for these particular problems. Before GAN there were other

architectures which used generative modelling as well, but with the founding of GAN

those architectures that used generative modelling to solve the computer vision

problems became pretty much insufficient. Also, some of the image processing

techniques that were used to solve computer vision problems also fell out of use.

From the practical standpoint, recent GAN architectures with the improved

optimization techniques are easy to train, and the results are getting more accurate.

The training, validation and testing parts are almost the same, the only differences are

the loss functions and the optimizers. The procedure for making the dataset ready for

training differs for each problem. Different pre-processing techniques and

normalization techniques are used on those datasets. Also, the GAN part looks the

same with two distinct networks, one being the generator the other one being the

discriminator. Although these two architectures do the same job every time, where the

generator tries to generate fake images and the discriminator tries to distinguish the

generated fake images from the real images, these architectures get changed from one

problem to another to tackle the particular characteristics of the problem.

Super resolution on images

GANs usage for this problem is to increase the resolution for the images and the

videos. It has been used for different purposes in many areas. Some of them are as

follows.

• Increasing the resolution for the old movies, commercials and shows to have better

experience watching them.

• Increasing the resolution for the images and videos that are recorded with cameras

that are not quite good to record high resolution images and videos. Mainly the cell

phone cameras can be given as an example.

• Increasing the resolution in medical imaging for better medical imaging analysis.

Fake image generation

GANs usage for this problem is to create fake images that have not existed before. It

has been used for different purposes in many areas. Some of them are as follows.

6

• Using fake image generation in the modeling agencies and commercial companies

in order to not pay for the models or actors and actresses.

• Creating fake places that are not existed before in movies, thus no time or money

is spent on finding new areas. In the future it is suggested that there will be no

actors or actresses in movies, these people will be generated by the GAN.

• Creating datasets for the problems that are lacking enough data to solve the

problem in artificial intelligence applications.

Image denoising

GANs usage for this problem is to denoise the images and the videos. It has been used

for different purposes in many areas and these areas are so similar to super resolution

problem. Some of them are as follows.

• Clearing the noises inside the video signals for the old movies, commercials and

shows to have better experience watching them.

• Denoising the images and videos that are recorded with cameras that are not quite

good to record noise free images and videos. The environment is also effective in

this problem too. Low light and high heat can be given as an example for the

environment problems. Mainly the cell phone cameras have this problem.

• Decreasing the noises in medical images for better medical imaging analysis.

 Tools and Technologies

• Language: Python 3.6.9 has been used for this project. Python is an object-

oriented programming (OOP) language which uses interpreter to turn the code into

a machine code. It is one of the most used high-level languages in the world. It is

used in web development, desktop application development, embedded software

development and mostly in applications that uses data science.

• Framework: PyTorch 1.6.0 has been used in this project. PyTorch is a deep

learning library mostly used for applications such as natural language processing

and computer vision. It uses graphical processing units (GPUs) and central

processing units (CPUs). Tensors are used in this library to make computation.

7

• Environment: Google Colab has been used to access all the technologies like

Python programming language, PyTorch framework, machine learning libraries

and GPUs like NVIDIA Tesla T4 GPU. Google Colab is an environment that

allows us to write, run, save, and share code in Google Drive. It is basically a

notebook which is composed of cells just like Jupyter Notebook. In those cells we

can contain code, images, and text. Colab makes a connection with the cloud-based

runtime with our notebook. Therefore, the Python code is executed without

anything required locally. It uses GPUs, CPUs, and tensor processing units (TPUs)

as a hardware accelerator.

• Libraries: NumPy and Python Imaging Library (PIL) are the third party-libraries

that have been used in this project. PIL is an image processing library that allows

us to open, manipulate and save images. NumPy is one of the most used libraries

for scientific computation in data science applications. It is a third-party Python

library that provides a multidimensional arrays and matrices, with a large

collection of mathematical, basic, and advanced programming functions [3].

Tools and technologies that have been used in this project is summarized in the Table

1.1.

Table 1.1 : Tools and Technologies.

Tools Tool Names

Programming Language Python

Deep Learning Framework PyTorch

Environment Google Colab

3rd Party Libraries PIL, NumPy

GPU NVIDIA Tesla T4 GPU

 Thesis Overview

This section provides an overview of the chapters within the thesis.

Chapter 1 is composed of theoretical background and tools and technologies. In the

theoretical background section, the theory behind the project is explained from general

to specific. In the tools and technologies section, the tools and technologies used in

this project are explained.

8

Chapter 2 is composed of Generative Adversarial Networks (GAN). Structure and

working mechanics of GAN are explained. Then the training of GAN parts and GAN

is explained.

Chapter 3, 4 and 5 are composed in the order of the subjects called Super Resolution

on Images, Fake Image Generation, and Image Denoising. Those chapters contain the

same section titles. In literature review section, related works and methodologies about

the application are explained briefly. In dataset section, the dataset used in training and

testing for the application is introduced and the pre-processing operations used in the

dataset are explained. In the neural network architecture section, the model used in

training and testing for the application is explained.

Chapter 6 is composed of results. The results from Chapter 3, 4 and 5 are shown and

explained here. In addition, the comparison of the results obtained from different

models and methodologies has been made here.

Chapter 7 is composed of conclusion. The conclusions from the other chapters are

explained here.

9

 GENERATIVE ADVERSARIAL NETWORKS

 Structure and Working Mechanics of GAN

Generative Adversarial Networks (GANs) are one of the examples of generative

modelling which uses deep learning (DL) based methods. It is considered that GANs

are the best way to train a generative model.

GANs consist of two parts. The first one is generator and the second one is

discriminator.

• Generator’s mission is to create fake data that is indistinguishable from the real

data for the discriminator. The generator uses feedback given by the discriminator

when generating these fake data. These fake data are used in the training part of

the discriminator.

• Discriminator’s mission is to distinguish the real data from the fake data that has

been generated by the generator. If the generated fake data can be distinguished

from the real data, then the discriminator gives a penalty to generator. The

discriminator can be viewed as classifier in our situation. By looking at the data

that the discriminator trying to classify, any deep learning based network

architecture can be selected.

At first phases of the training, the generator creates fake data, and the discriminator

learns easily to tell that the generated data from the generator is fake.

At the later stages of the training the generator starts to create fake data that can be

indistinguishable for the discriminator.

Lastly, if the generator training is going bad then the discriminator will easily

distinguish the real data from the generated fake data, but if the generator training goes

well, the discriminator will struggle to distinguish the generated fake data from the

real data and that can cause the discriminator to classify the generated fake data as a

real data instead of classifying it as a fake data. This will make the discriminator’s

accuracy decrease [4].

10

The working structure of training the GAN is in Figure 2.1 [5].

Figure 2.1 : Training the Generative Adversarial Network [5].

The working structure of testing the GAN is in Figure 2.2.

Figure 2.2 : Testing the Generative Adversarial Network.

In testing part of the GAN, generator loss and discriminator loss are not calculated

with loss functions, the generator network and discriminator network are not getting

optimized with the optimizer, discriminator does not distinguish the real data from the

fake data. Hence, there is no backpropagation nor weight update in the neurons of the

generator network and discriminator network. Only thing that happens in the testing

part of the GAN is generator generating new samples from the given input samples.

11

 GAN Training

In this section of the current chapter, the neural network training of the generative

adversarial network is explained. First, parts of the GAN training as the generator

training and the discriminator training, then the GAN training as a whole are explained

both theoretically and practically.

Discriminator training

For the discriminator training there are two different data samples. The first one is

called real data, which in our case images of the nature or people. The second one is

called fake or generated data, which is the data that has been generated by the

generator. Real data are called positive examples for the training of discriminator. Fake

or generated data are called negative examples for the training of the discriminator.

Discriminator training procedure is as follows:

• Discriminator network tries to classify both the real data sample and the sample

that has been generated by the generator.

• Loss function for the discriminator, calculates the losses for both real and fake data

samples. Then the discriminator network gets penalized for misclassification

between the real and generated samples by the loss function for the discriminator

[6].

• The whole discriminator network is backpropagated with respect to the

discriminator's loss function, and then the optimizer for the discriminator updates

the model parameters. In short, the weights in each layer of the discriminator

network is updated by backpropagation and optimization.

• Note: Different loss functions and optimizers can be used for the specific GAN

problem.

Generator training

For the generator training there is one data sample which is a random input. This

random input may be noise or a low-resolution image or a noisy image. If the random

input is noise, we can understand that the distribution of noise is not that important by

looking at the experiments, so choosing a distribution that is easy to sample is

12

preferable [7]. As an example, uniform distribution can be chosen as a distribution that

is easy to sample from.

Training the generator requires discriminator more than the discriminator training

requires generator.

Generator training procedure is as follows:

• A random input is sampled, or a low-resolution image is gathered.

• Generator network creates an output from the random input.

• Real data and the fake data are put through the discriminator network and the

validity predictions have been made as real and fake.

• Loss function for the generator, calculates the loss by using the classification made

by the discriminator. Then the generator network gets penalized for creating data

that cannot trick the discriminator.

• The whole generator network is backpropagated with respect to the generator loss

function, and then the optimizer for the generator updates the model parameters.

In short, the weights in each layer of the generator network is updated by

backpropagation and optimization.

• Note: Different loss functions and optimizers can be used for the specific GAN

problem.

GAN training as a whole

Generative adversarial networks have two different neural network architecture to

train. GANs should run discriminator training and generator training together. Because

the generator training and the discriminator training heavily rely on each other, they

are trained alternatingly in one iteration. Generative models are a branch of

unsupervised machine learning, but the training of the GAN architecture, which relies

on generative modelling, is considered as supervised machine learning.

GAN training procedure is as follows:

• Train the generator to provide a batch of generated samples to the discriminator.

• Train the discriminator with the generated batch of samples from the generator and

the real data samples.

13

• Repeat first 2 steps until the end of the all iterations in one epoch.

• Repeat the third step for one or more epochs.

There is a very common problem with GAN training, and it is called convergence of

GAN. This problem occurs when the generator performance improves, and the

discriminator performance decreases. This will cause the discriminator to hardly

distinguish the difference between the generated data from the generator and the real

data. In an ideal world, if the generator generates a batch of samples that are near

perfect, then the discriminator could end up with having a 50% accuracy. This is often

referred to as flipping a coin to make a prediction [8].

Therefore, the predictions of the discriminator lose its importance over the course of

the GAN training and if the training continues from there then the discriminator will

make completely random decisions and these decisions will return to the generator as

a bad feedback to train the generator network with. This may cause generator quality

to decrease as the training progresses to the later stages.

14

15

 SUPER RESOLUTION ON IMAGES

 Literature Review

There were not many strategies to super-resolve images by using GANs until the last

few years. Deep learning started to come handy for solving this task and the research

for this problem started to grow. The super-resolution models are created, and different

learning methods applied to these models to solve this task, but most of them failed on

real world images which are taken by devices such as smartphones.

The most widespread method for training the super-resolution deep learning models

starts by downscaling the images that are inside the dataset with methods like nearest

neighbor resampling, bicubic resampling and bilinear resampling. This process is

applied in order to make a dataset that contains high-resolution and low-resolution

training image pairs. The low-resolution images that are created by this process have

almost no noise, in other words the images are clean.

The main purpose of these super-resolution deep learning models is to clean the images

from the noises and increase the resolution of the images. But the given dataset for

training the model contains clean images or noise reduced images. This leads the

model to learn from the images that are almost noise-free.

After training super-resolution models with these strategies, the results are generally

poor if the model is tested with real-world images that do not have any image

processing methods applied by the developer, or in other words, images taken directly

from the camera. The model leaves significant artifacts on the test images that are

undesirable for super-resolving the images [9].

A real useful method that proposed in 2020 is real world super resolution with kernel

estimation and noise injection [10]. Gathering a good dataset is very important for this

problem, therefore a good strategy is proposed in this study.

• Clean Up: Bicubic downsampling was used for downsampling. The aim is to

remove the high frequency noises from the training dataset images. Thus, higher

resolution images were obtained in the training dataset [10, 11].

16

 𝐼𝑚𝑔ℎ𝑟 = (𝐼𝑚𝑔𝑠𝑟𝑐 ∗ 𝑘𝑒𝑟𝑛𝑒𝑙𝑏𝑖𝑐) ↓ 𝑠 (3.1)

 𝐼𝑚𝑔𝑠𝑟𝑐 is the training dataset image, 𝑘𝑒𝑟𝑛𝑒𝑙𝑏𝑖𝑐 is the bicubic kernel and s is the

downsampling ratio.

• Degradation: Degradation operation was applied to high resolution images taken

from the last step. The degradation operation was done using the KernelGAN [12].

Degradation pool was created with blur kernels in it. Then, a blur kernel was

randomly selected from this pool and applied to the images [10].

𝐼𝑚𝑔𝑑𝑠 = (𝐼𝑚𝑔ℎ𝑟 ∗ 𝑏𝑙𝑢𝑟_𝑘𝑒𝑟𝑛𝑒𝑙𝑖) ↓ 𝑠, 𝑖 ∈ {1, 2, 3, … . k} (3.2)

𝐼𝑚𝑔𝑑𝑠 is the downsampled image.

• Noise Injection: While getting the high-resolution images, some of the

information were lost due to bicubic downsampling. Noise was added to the

downsampled images to create realistic low-resolution images. These noise

patches were collected from the training dataset images. After that, a filtering rule

was designed to pick the noise patches from a decided range. These patches were

then added to the downsampled images to obtain low-resolution images [10, 11].

𝐼𝑚𝑔𝑙𝑟 = 𝐼𝑚𝑔𝑑𝑠 + 𝑛𝑜𝑖𝑠𝑒𝑖 𝑖 ∈ {1, 2, 3, … . l} (3.3)

• Neural Network Training: Enhanced Super Resolution Generative Adversarial

Network (ESRGAN) [13] was used as a network architecture. Low resolution

images are the fake data, high resolution image are the real data. Pixel loss,

adversarial loss and perceptual loss were applied as loss functions for the training.

 Dataset

For super resolution problem the dataset that has been used is Large-scale CelebFaces

Attributes (CelebA) Dataset [14]. This dataset contains more than 200,000 celebrity

images. The reason for using this dataset is, it is easier to train with small amounts of

training data to super-resolve the images in this dataset. Therefore, Google Colab can

be used easily. Google Drive only gives 15 GBs of space while working with Google

Colab and Google Colab only allows to work with datasets that our Google Drive

17

contains. Therefore, to use the GPU and pre-installed machine learning and deep

learning libraries that Google Colab offers freely, Google Colab and Google Drive

need to be used.

 Neural Network Architecture

In this part of the current chapter, the neural network architecture that has been used

to tackle the super-resolution problem is explained.

ESRGAN architecture [13] was created with using the SRGAN architecture [15] as

the starting point. The neural network architecture of the SRGAN is in the Figure 3.1

[15].

Figure 3.1 : Super Resolution GAN with Generator and Discriminator Network [15].

As the name Super Resolution Generative Adversarial Network (SRGAN) suggests it

uses deep neural network with the adversarial network. Its main purpose is to super

resolve the images to produce higher resolution images compared to the input images.

From the Figure 3.1 [15], the neural network architecture can be explained concisely

as follows:

• Convolutional Layers: Convolutional layers are the main part of the

convolutional neural networks. They're doing CNN's main job. It convolves the

input, which can be image, with filter and bias and passes its result to the neurons

in the next layer.

18

• RELU: Rectified Linear Unit (RELU) is an activation function for the neural

networks. RELU outputs the negative values inside the neuron as 0 and outputs the

positive values inside the neurons as it is. It is good for the vanishing gradient

problem, but it might block gradient descent.

• Leaky RELU: To solve the gradient descent problem, Leaky Relu has been

introduced as a new activation function. Leaky Relu outputs the negative values

inside the neuron with multiplying with a constant and outputs the positive values

inside the neurons as it is. The constant gets small values like 0.01.

𝐿𝑒𝑎𝑘𝑦 𝑅𝐸𝐿𝑈(𝑥) = max(𝑎𝑥, 𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑎 > 0 (3.4)

• Parametric RELU: Leaky Relu made very small improvements on increasing the

accuracy of the model. To increase the accuracy of the model, Parametric Relu has

been introduced as another activation function. Parametric Relu outputs the

negative values inside the neuron with multiplying with a learnable parameter

during the training and outputs the positive values inside the neurons as it is.

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑅𝐸𝐿𝑈(𝑥) = max(0, 𝑥) + min 𝑎𝑖(0, 𝑥) (3.5)

• Batch Normalization: Batch normalization is a regularization function. It

increases the training speed by reducing the number of epochs for the training. It

stabilizes the neural network learning process.

• Residual Blocks: The residual blocks which is used for Deep Residual Learning

[16] are used for easing the generator network training and to make the neural

network deeper. These will result in an increase in neural network training

performance.

• Pixel Shuffler: It is a sub-pixel convolutional layer. It learns the upscaling filter

array during the training and upscales the map of low-resolution features to high

resolution [17].

• Dense Layer: It is known as fully connected layer too. The values inside the

neurons are multiplied by the weight of the channel and maybe if there is a bias, it

is added to the multiplication.

19

Note: k9n64s1 means a convolutional layer with 9 kernels, 64 channels and it strides

1 pixel in the specified directions.

In order to improve the resolution of the output images, ESRGAN architecture [13]

has been produced by making some modifications in SRGAN architecture [15].

In the generator architecture, all the batch normalization layers inside the residual

blocks were deleted, and this resulted as an increase in the training performance of the

architecture. Residual-in-Residual Dense Block (RRDB) was proposed instead of the

basic block, which made it even deeper neural network architecture for the generator.

The proposed method can be seen in the Figure 3.2 [13].

Figure 3.2 : RRDB in ESRGAN [13].

The working structure of training the ESRGAN [13] for super resolution is in Figure

3.3.

Figure 3.3 : Training the ESRGAN for Super Resolution.

The working structure of testing the ESRGAN [13] for super resolution is in Figure

3.4.

20

Figure 3.4 : Testing the ESRGAN for Super Resolution.

In both training and testing, the generator takes low resolution image as an input and

generates high resolution image as an output.

 Loss Functions and Optimizer

• L1 Loss Function: It means Least Absolute Deviations. L1 loss function [18]

calculates the mean absolute error (MAE) between the generated image and the

ground truth image.

• Adversarial Loss Function: For adversarial loss, a sigmoid layer combined with

binary cross entropy [19] was used. This loss function uses sigmoid layer for

activation function and then calculates the binary cross entropy between the output

and the desired target.

Three different loss functions were used for generator training.

The first one is pixel-wise loss. For pixel-wise loss, L1 loss function was used. L1 loss

function measured the pixel-wise loss between the generated high-resolution image

and the high-resolution image.

The second one is content loss. For content loss, L1 loss function was used. L1 loss

function measured the content loss between the extracted features of the generated

high-resolution image and the extracted features of the high-resolution image. For

feature extraction VGG19 model was used.

21

The third one is adversarial loss. For output parameter, high-resolution image and

generated high-resolution image were put through the discriminator network and the

validity predictions were made as real prediction and fake prediction. The difference

between the fake prediction and real prediction gives the output. The desired target is

a tensor filled with ones. Adversarial loss function used sigmoid layer for an activation

function and then calculated the binary cross entropy between the output and the

desired target.

The resulting loss function for the generator is as follows:

𝐺𝑙𝑜𝑠𝑠 = 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑙𝑜𝑠𝑠 + 5𝑒−3 ∗ 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝑙𝑜𝑠𝑠 + 𝑒−2 ∗ 𝑝𝑖𝑥𝑒𝑙 𝑙𝑜𝑠𝑠 (3.6)

Two same loss functions were used for discriminator training.

The first one is adversarial loss for high resolution images. For output parameter, high-

resolution image and generated high-resolution image were put through the

discriminator network and the validity predictions were made as real prediction and

fake prediction. The difference between the fake prediction and real prediction gives

the output. The desired target is a tensor filled with ones. Adversarial loss function

used sigmoid layer for an activation function and then calculated the binary cross

entropy between the output and the desired target.

The second one is adversarial loss for generated high-resolution images. For output

parameter, high-resolution image and generated high-resolution image were put

through the discriminator network and the validity predictions were made as real

prediction and fake prediction. The difference between the fake prediction and real

prediction gives the output. The desired target is a tensor filled with zeros. Adversarial

loss function used sigmoid layer for an activation function and then calculated the

binary cross entropy between the output and the desired target.

The resulting loss function for the discriminator is as follows:

𝐷𝑙𝑜𝑠𝑠 =
(𝑟𝑒𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠)

2
 (3.7)

For the optimizer, which is an optimization algorithm, Adam was used for both

generator network training and the discriminator network training.

22

23

 FAKE IMAGE GENERATION

 Literature Review

Fake image generation subject was started by Ian Goodfellow back in 2014. He and

his colleagues founded the Generative Adversarial Network theory. Images have been

generated from the datasets by using GAN architecture. These generated images look

as if they are from the training dataset, but they are unique on their own because there

are no such generated images in the training dataset.

In 2015, Deep Convolutional Generative Adversarial Networks (DCGAN) [21] were

developed. It is a better version of the simple GAN. One more important thing that had

come with DCGAN is the fact that traversing through the latent space of the generated

image and changing the values in latent space dimensions can change the generated

image drastically [21]. For example, with using vector arithmetic in the latent space of

the generated images, a new generated image can be produced.

In 2016, Coupled Generative Adversarial Networks (CoGAN) [22] were developed.

This GAN architecture consists of couple of GANs. Their responsibility is to generate

images in only one domain. During their training process GANs share couple of

parameters. As a result, GANs learn to generate similar images without the need of

supervision of correspondence.

In 2017, progressive growing of GAN [23] was proposed. The key part on this method

is the training methodology. Training is started with low resolution images and then

the resolution of the input images is increased progressively with adding new layers to

the generative adversarial network [23]. This method received a lot of attention at the

time, as the generated images looked very close to real images.

In 2018, BigGAN [24] model was proposed. ResNet GAN architecture [25] has been

used for the BigGAN model. BigGAN benefitted from scaling and it provided bigger

generative adversarial networks and larger batch sizes. Neural networks have been

trained with two or four times more parameters and eight times more batch size then

the previous implementations [24]. As a result, the generated images looked

24

indistinguishable from the real input images from the dataset that have been used to

train the GAN.

 Dataset

For fake image generation problem, two datasets have been used. The dataset, which

is used for DCGAN [21], is Large-scale CelebFaces Attributes (CelebA) Dataset [14].

This dataset contains more than 200,000 celebrity images. The reasons for using this

dataset are that there are lots of applications that uses this dataset and this dataset does

not take too much space. Therefore, Google Colab can be used easily. Google Drive

only gives 15 GBs of space while working with Google Colab and Google Colab only

allows to work with datasets that our Google Drive contains. Therefore, to use the

GPU and pre-installed machine learning and deep learning libraries that Google Colab

offers freely, Google Colab and Google Drive need to be used. The dataset, which is

used for BigGAN [24], is ImageNet dataset. This dataset contains more than

14,000,000 images. The reason for using this dataset is, this dataset is used with pre-

trained BigGAN [24] models.

 Neural Network Architectures

Two different generative adversarial network architectures have been implemented to

solve the fake image generation problem. The first one is Deep Convolutional

Generative Adversarial Networks (DCGAN) [21] and the second one is BigGAN [24].

Deep convolutional generative adversarial network

DCGAN architecture [21] was created with using the GAN architecture [20] for

starting point. Generator of the DCGAN architecture is in the Figure 4.1 [21].

Figure 4.1 : Generator of the DCGAN [21].

25

Previous generative model architectures were checked, and drastic rule changes were

made on them [21]. Those rules are as follows:

• Delete all the pooling layers and add strided deconvolutional layers on generator

and add strided convolutional layers on discriminator.

• Use batch normalization as a regularization function both in generator and

discriminator.

• For making the neural network architecture deeper, delete all the dense layers in

hidden layers.

• Use Relu as an activation function for each layer in the generator except the last

layer. In the output layer use Tanh as an activation function.

• Use LeakyRelu as an activation function for each layer in the discriminator.

In the last layer of the discriminator a sigmoid layer has been used.

• Sigmoid: Sigmoid is an activation function for the neural networks. Sigmoid

function is used because it outputs a value between 0 and 1. It is useful for the

discriminator because it predicts a probability as an output. If the output value is

close to 1, it means the data is real, if it is close to 0, it means the data is fake.

In the last layer of the generator a Tanh layer has been used.

• Tanh: Tanh is an activation function for the neural networks. Tanh function is like

sigmoid function. It outputs a value between -1 and 1, therefore the negative inputs

are also mapped too. It has been shown that using an activation function that is

bounded, makes the model learn faster.

BigGAN

BigGAN [24] model was created with using the Self-Attention Generative Adversarial

Networks (SAGAN) [25]. As the name suggests BigGAN's main focus is on bigger

generative adversarial network. Generator of the BigGAN’s neural network

architecture is in the Figure 4.2 [24].

26

Figure 4.2 : (a) Generator of the BigGAN. (b) Residual Block in generator. (c)

Residual Block in discriminator [24].

SAGAN architecture [25] was checked and drastic rule changes were made on them

[21]. Those rules are as follows:

• Improve the batch size. Experiments suggested increasing the batch size by

multiplying with 8 gives the best result [24].

• Increase the number of channels contained in each layer by about 50% [24].

• Utilize a one shared class embedding instead of using many in the generator.

Experiments suggested that it can improve the training performance of the

architecture by improving the training speed and reducing the memory usage and

computation. Its implementation was shown in the Figure 4.2 [24]. Split latent

vector, shown as z in the Figure 4.2 [24], into one stack per pixel. Concatenate

each stack to the shared class. Pass them to the residual blocks. From there pass it

to the linear layer and then to the batch norm layer.

In the residual block part, there are new layer types that are added to the architecture.

• Linear: Linear layer applies a linear transformation to the input data passing

through this layer. Input data is multiplied with the weight of the neuron and from

there the bias of the neuron is added to the result from the multiplication.

• Average Pooling: Average pooling layer is a pooling layer. Pooling layers are

added after the convolutional layers. Its function is to avoid the overfitting by

reducing the size of the neural network, in this way the computation in the neural

27

network training and the parameter amount is reduced. Average pooling layer

divides the input into pooling regions by performing down-sampling and computes

the average values of all the inputs in every single region [26].

The working structure of training the DCGAN [21] and BigGAN [24] for fake image

generation is in Figure 4.3.

Figure 4.3 : Training the DCGAN and BigGAN for Fake Image Generation.

The working structure of testing the DCGAN [21] and BigGAN [24] for fake image

generation is in Figure 4.4.

Figure 4.4 : Testing the DCGAN and BigGAN for Fake Image Generation.

28

In both training and testing, the generator takes a noise vector as an input and generates

fake image as an output.

 Loss Functions and Optimizer

In this part of the chapter, loss functions and the optimizer for the DCGAN [21] and

BigGAN [24] are explained.

DCGAN loss function and optimizer

• BCE Loss Function: It means binary cross entropy loss function [27]. BCE loss

function calculates the binary cross entropy between the output and the desired

target.

Two same loss functions were used for discriminator training.

First one is binary cross entropy loss for real images. For output parameter, real image

was put through the discriminator network and the validity prediction was made as real

or fake prediction. The desired target is a tensor filled with ones. Then, binary cross

entropy between the output and the desired target was calculated.

The second one is binary cross entropy loss for generated images. For output

parameter, generated image was put through the discriminator network and the validity

prediction was made as real or fake prediction. The desired target is a tensor filled with

zeros. Then, binary cross entropy between the output and the desired target was

calculated.

Gradients of the both two loss function were calculated separately. In other meaning,

whole discriminator network had to be backpropagated with respect to the

discriminator loss functions twice.

The resulting loss function for the discriminator is as follows:

𝐷𝑙𝑜𝑠𝑠 = (𝑟𝑒𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠) (4.1)

One loss function was used for generator training.

The loss function used for the generated images is the binary cross entropy loss. For

output parameter, generated image was put through the discriminator network and the

validity prediction was made as real or fake prediction. The desired target is a tensor

29

filled with zeros. Then, binary cross entropy between the output and the desired target

was calculated.

𝐺𝑙𝑜𝑠𝑠 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠 (4.2)

For the optimizer, which is an optimization algorithm, Adam was used for both

generator network training and the discriminator network training.

BigGAN loss functions and optimizer

• Hinge Loss Function: Hinge loss function is used for classification. This loss

function tries to find the best decision boundary for the classification task.

Two same loss functions were used for discriminator training.

First one is hinge loss for real images. Real image was put through the discriminator

network and the validity prediction was made as real or fake prediction. Hinge loss

function used the prediction as an input and calculated the real image loss.

The second one is hinge loss for generated images. Generated image was put through

the discriminator network and the validity prediction was made as real or fake

prediction. Hinge loss function used the prediction as an input and calculated the

generated image loss.

The resulting loss function for the discriminator is as follows:

𝐷𝑙𝑜𝑠𝑠 =
(𝑟𝑒𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠)

2
 (4.3)

One loss function was used for generator training.

The loss function used for the generated images is the hinge loss. Generated image

was put through the discriminator network and the validity prediction was made as real

or fake prediction. Hinge loss function used the prediction as an input and calculated

the generated image loss. The calculation of the generator loss is the same as for

DCGAN generator loss.

30

31

 IMAGE DENOISING

 Literature Review

Deep learning methods have been used to tackle image processing problems for quite

some time. Denoising is one of the most known image processing problems to this

date.

There are different methods to tackle this problem. The most traditional ones are the

image processing methods. Denoising the images with the linear filters, non-linear

filters, adaptive filters can be given as an example for the traditional image processing

techniques.

CNN architectures have been proposed to tackle this problem. In [28] a GAN was

trained to learn the noise distribution and then CNN was used to denoise the images.

In literature there are not GAN architectures that are solely adapted to image denoising

problem. For this problem, using an SRGAN [15] like architecture was proposed in

[29]. It has understood that using the SRGAN like architecture not only works for

improving the image resolution but to denoise the images as well. It has been shown

in [30] that the DCGAN architecture [21] can be used in more than one image

processing problem. It has been understood that this architecture can be used not only

for fake image generation, but also for problems such as image denoising, super

resolving the images and deblurring the images as well.

Nowadays, deep learning methods are much more popular than the traditional image

processing techniques because, these methods can learn from the datasets, create their

own features that people cannot understand and preserve the image details better

because of the learning aspect.

 Dataset

For image denoising problem the dataset that has been used is Large-scale CelebFaces

Attributes (CelebA) Dataset [14]. This dataset contains more than 200,000 celebrity

32

images. The reason for using this dataset is, it is easier to train with small amounts of

training data to denoise the images in this dataset. Therefore, Google Colab can be

used easily. Google Drive only gives 15 GBs of space while working with Google

Colab and Google Colab only allows to work with datasets that our Google Drive

contains. Therefore, to use the GPU and pre-installed machine learning and deep

learning libraries that Google Colab offers freely, Google Colab and Google Drive

need to be used.

 Neural Network Architecture

Updated form of the DCGAN [21] architecture has been proposed and used for the

denoising problem as a GAN architecture. In the generator of the neural network

architecture some changes have been made to generate bigger images and also to

generate slightly better images.

Generator of the DCGAN’s architecture is in the Figure 4.1 [21].

Here are the some of the changes that have been made on the DCGAN architecture

[21].

• Image size kept the same while going forward in the layers of the generator but,

the channel size had changed. To keep the image size the same; kernel size was set

to 2, striding was set to 1 and padding was set to 1 in first, third and fifth

convolutional layers and 0 in second, fourth and sixth convolutional layers.

• An extra hidden layer was added to the generator to make the neural network

denser and to keep the image size as the same. This hidden layer consists of

convolutional layer and batch normalization. Batch normalization has been used

as an activation function for the output of the convolutional layer.

• Some changes have been made on the discriminator because of the changes in the

generator.

The working structure of training the updated DCGAN [21] for image denoising is in

Figure 5.1.

33

Figure 5.1 : Training the Updated DCGAN for Image Denoising.

The working structure of testing the updated DCGAN [21] for image denoising is in

Figure 5.2.

Figure 5.2 : Testing the Updated DCGAN for Image Denoising.

In both training and testing, the generator takes noisy image as an input and generates

denoised image as an output.

 Loss Functions and Optimizer

Two same loss function were used for discriminator training.

First one is binary cross entropy loss for real images. For output parameter, real image

was put through the discriminator network and the validity prediction was made as real

or fake prediction. The desired target is a tensor filled with ones. Then, binary cross

entropy between the output and the desired target was calculated.

34

The second one is binary cross entropy loss for generated images. For output

parameter, generated image was put through the discriminator network and the validity

prediction was made as real or fake prediction. The desired target is a tensor filled with

zeros. Then, binary cross entropy between the output and the desired target was

calculated.

Gradients of the both two loss function were calculated separately. In other meaning,

whole discriminator network had to be backpropagated with respect to the

discriminator loss functions twice.

The resulting loss function for the discriminator is as follows:

𝐷𝑙𝑜𝑠𝑠 = (𝑟𝑒𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠) (5.1)

One loss function was used for generator training.

The loss function used for the generated images is the binary cross entropy loss. For

output parameter, generated image was put through the discriminator network and the

validity prediction was made as real or fake prediction. The desired target is a tensor

filled with zeros. Then, binary cross entropy between the output and the desired target

was calculated.

𝐺𝑙𝑜𝑠𝑠 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑙𝑜𝑠𝑠 (5.2)

For the optimizer, which is an optimization algorithm, Adam was used for both

generator network training and the discriminator network training.

In addition to the loss functions that were used during the training process, Peak signal-

to-noise ratio (PSNR) values were also calculated.

• Peak Signal-to-Noise Ratio: PSNR is the ratio between an image's highest

potential power and the power of corrupting noise that influences its representation

accuracy [31]. PSNR is used as a quality metric in image processing applications.

It is calculated between the clean image and the noisy image or clean image and

denoised image. PSNR is expressed in terms of the logarithmic decibel scale. To

calculate the PSNR, the mean square error (MSE) must be calculated first.

35

𝑀𝑆𝐸 =
1

𝑟𝑜𝑤𝑠 ∗ 𝑐𝑜𝑙𝑠
 ∑ ∑ (𝐼𝑚𝑔(𝑖, 𝑗)𝑜𝑟𝑔 − 𝐼𝑚𝑔(𝑖, 𝑗)𝑑𝑒𝑔)2

𝑐𝑜𝑙𝑠−1

𝑗=0

𝑟𝑜𝑤𝑠−1

𝑖=0

 (5.3)

Then the MSE is used in the PSNR calculation.

𝑃𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10(
𝑚𝑎𝑥 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

√𝑀𝑆𝐸
) (5.4)

Max intensity can be taken as 255 because, 255 is the maximum pixel value.

PSNR values were calculated only in the testing part.

In the GAN method, PSNR calculations were made between the generated images and

the ground truth images and also between the noisy input images and the ground truth

images.

In the image processing method, PSNR calculations were made between the denoised

images and the ground truth images and also between the noisy input images and the

ground truth images.

36

37

 RESULTS

In this chapter, the results for all the GAN problems in this thesis were shown and

discussed. These results contain input images from the dataset, generated output

images from the input images, model, and method comparisons, and plottings of the

training loss curves.

 Super Resolution on Images

For super resolution two different methods were used. The first one is ESRGAN [13],

trained to generate high-resolution images from the low-resolution images. The second

one is nearest neighbour interpolation algorithm, used to upsample the low-resolution

images.

ESRGAN

Input images were used in neural network training with four images per batch in one

iteration. Only two images per one batch were shown below.

In Figure 6.1 the first examples of low-resolution images have been given. In Figure

6.2, generated output images for every 2000 iteration have been given. Generated

output images have been created from the low-resolution images in Figure 6.1.

Figure 6.1 : First Example of Low-Resolution Images.

38

Figure 6.2 : First Example of Generated Output Images for every 2000 Iteration.

In Figure 6.3 the second examples of low-resolution images have been given. In Figure

6.4 generated output images for every 2000 iteration have been given. Generated

output images have been created from the low-resolution images in Figure 6.3.

Figure 6.3 : Second Example of Low-Resolution Images.

Figure 6.4 : Second Example of Generated Output Images for every 2000 Iteration.

39

In Figure 6.5 the third examples of low-resolution images have been given. In Figure

6.6 generated output images for every 2000 iteration have been given. Generated

output images have been created from the low-resolution images in Figure 6.5.

Figure 6.5 : Third Example of Low-Resolution Images.

Figure 6.6 : Third Example of Generated Output Images for every 2000 Iteration.

From the images above, it can be observed that the results get better as the training

continues.

Plotting of the generator’s training loss curve is in the Figure 6.7.

40

Figure 6.7 : Generator Loss for Super-resolving.

Plotting of the discriminator’s training loss curve is in the Figure 6.8.

Figure 6.8 : Discriminator Loss for Super-resolving.

First epoch’s iterations are considered as warm-up iterations and only the pixel-wise

loss gets calculated and the whole generator network is backpropagated with respect

to the pixel-wise loss function. Then the optimizer for the generator, updates the model

parameters. During warm-up iterations, discriminator network never gets to

backpropagate with respect to any loss function and never updates its model

parameters. In the results above warm-up iterations have not shown.

41

Nearest neighbour interpolation

This is an image processing technique to up sample the low-resolution images.

Therefore, there are no loss functions for this part.

In Figure 6.9 the first examples of low-resolution images and the upsampled images

with nearest neighbour interpolation algorithm have been given. In Figure 6.10,

upsampled images and generated output images have been given. Upsampled images

and generated output images have been created from the low-resolution images in

Figure 6.9.

Figure 6.9 : First Example of Low-Resolution Images and Upsampled Images.

42

Figure 6.10 : First Example of Upsampled Images and Images Generated by GAN.

In Figure 6.11 the second examples of low-resolution images and the upsampled

images with nearest neighbour interpolation algorithm have been given. In Figure 6.12,

upsampled images and generated output images have been given. Upsampled images

and generated output images have been created from the low-resolution images in

Figure 6.11.

43

Figure 6.11 : Second Example of Low-Resolution Images and Upsampled Images.

Figure 6.12 : Second Example of Upsampled Images and Images Generated by

GAN.

44

In Figure 6.13 the third examples of low-resolution images and the upsampled images

with nearest neighbour interpolation algorithm have been given. In Figure 6.14,

upsampled images and generated output images have been given. Upsampled images

and generated output images have been created from the low-resolution images in

Figure 6.13.

Figure 6.13 : Third Example of Low-Resolution Images and Upsampled Images.

45

Figure 6.14 : Third Example of Upsampled Images and Images Generated by GAN.

As it has shown above in the figures, ESRGAN [13] increased the resolution of the

images better than the nearest neighbour interpolation algorithm. As for the result it

can be understood that GAN performed better than the image processing technique.

 Fake Image Generation

For fake image generation two different models were used. The first model, which is

DCGAN [21], trained with different batch sizes to generate fake images. For the

second model, which is BigGAN [24], a pre-trained model was used to generate fake

images.

DCGAN

Input images were used in neural network training with four images per batch in one

iteration and one image per batch in one iteration.

For the training with four images per one batch, input images and the generated output

images were shown below in the following Figure 6.15 and Figure 6.16.

46

Figure 6.15 : Input Image Examples with the Batch Size of 4 (CelebA).

Figure 6.16 : Generated Images with the Batch Size of 4 (CelebA).

Plotting of the generator’s training loss curve with the batch size of 4 is in the Figure

6.17.

Figure 6.17 : Generator Loss for Image Generation with the Batch Size of 4

(DCGAN).

Plotting of the discriminator’s training loss curve with the batch size of 4 is in the

Figure 6.18.

47

Figure 6.18 : Discriminator Loss for Image Generation with the Batch Size of 4

(DCGAN).

For the training with one image per one batch, input image and the generated output

image were shown below in the following Figure 6.19 and Figure 6.20.

Figure 6.19 : Input Image Example with the Batch Size of 1 (CelebA).

48

Figure 6.20 : Generated Image with the Batch Size of 1 (CelebA).

Plotting of the generator’s training loss curve with the batch size of 1 is in the Figure

6.21.

Figure 6.21 : Generator Loss for Image Generation with the Batch Size of 1

(DCGAN).

Plotting of the discriminator’s training loss curve with the batch size of 1 is in the

Figure 6.22.

49

Figure 6.22 : Discriminator Loss for Image Generation with the Batch Size of 1

(DCGAN).

As it was shown above training with the batch size of one compared to training with

the batch size of four, gives the best result for generating fake images with using

DCGAN architecture as a model [21]. This statement can also be understood by

looking at the discriminator’s loss curves being more stable in training with the batch

size of 1.

BigGAN

For BigGAN [24], a pre-trained model was used to generate fake images. Therefore,

there are no input images and loss functions for this part.

Generated output images are shown below in the following Figure 6.23, Figure 6.24,

and Figure 6.25. The network was trained by using images from the ImageNet dataset.

50

Figure 6.23 : First Example for Images Generated by BigGAN.

Figure 6.24 : Second Example for Images Generated by BigGAN.

51

Figure 6.25 : Third Example for Images Generated by BigGAN.

As it was shown above BigGAN architecture [24] generated more realistic images than

DCGAN architecture [21].

 Image Denoising

For image denoising two different methods were used. The first one is an updated form

of the DCGAN [21] architecture, trained to generate a denoised version of the input

images. The second one is Non-local Means (NLM) Denoising algorithm, used to

clean the noises inside images.

The noise added to the input images is salt and pepper noise. Salt and pepper noise

replace some of the random pixel values in all the channels of the image with a 1 or 0.

Salt noise and pepper noise ratio was kept equal. The noise density was chosen as 0.05.

This value shows that the added noise effects only 5% of the pixel values of the image.

Updated dcgan architecture

Input images were used in neural network training with two images per batch in one

iteration.

In Figure 6.26 the first examples of ground truth images and first examples of noisy

input images have been given. In Figure 6.27, denoised images with GAN for every

52

7000 iteration have been given. Denoised images with GAN have been created from

the noisy input images in Figure 6.26.

Figure 6.26 : First Example of Ground Truth Images and Noisy Input Images.

Figure 6.27 : First Example of Denoised Images with GAN for every 7000 Iteration.

In Figure 6.28 the second examples of ground truth images and second examples of

noisy input images have been given. In Figure 6.29, denoised images with GAN for

every 7000 iteration have been given. Denoised images with GAN have been created

from the noisy input images in Figure 6.28.

53

Figure 6.28 : Second Example of Ground Truth Images and Noisy Input Images.

Figure 6.29 : Second Example of Denoised Images with GAN for every 7000

Iteration.

In Figure 6.30 the third examples of ground truth images and third examples of noisy

input images have been given. In Figure 6.31, denoised images with GAN for every

7000 iteration have been given. Denoised images with GAN have been created from

the noisy input images in Figure 6.30.

54

Figure 6.30 : Third Example of Ground Truth Images and Noisy Input Images.

Figure 6.31 : Third Example of Denoised Images with GAN for every 7000

Iteration.

From the images above, it can be observed that the results get better as the training

continues.

Plotting of the generator’s training loss curve is in the Figure 6.32.

55

Figure 6.32 : Generator Loss for Image Denoising.

Plotting of the discriminator’s training loss curve is in the Figure 6.33.

Figure 6.33 : Discriminator Loss for Image Denoising.

As it was shown above as the training progresses to the later stages, the denoised

images with GAN looked more plausible. This statement can also be understood by

looking at the discriminator’s and generator’s loss curves being stable in the training

progress. This stability shows convergence of GAN has been prevented.

56

Peak signal-to-noise ratio (PSNR) values of the denoised images with GAN and noisy

input images that can be seen in the Figure 6.26, Figure 6.27, Figure 6.28, Figure 6.29,

Figure 6.30 and Figure 6.31 compared to the ground truth images are in the Table 6.1.

Table 6.1 : PSNR Values of the Denoised Images with GAN.

Example

No

Denoised Images with GAN/Ground-

truth Image

Input Image/Ground-truth

Image

1 29.92 dB 40.86 dB

2 28.44 dB 41.26 dB

3 29.32 dB 41.15 dB

It can be seen from Table 6.1 that the PSNR values between the denoised images with

GAN and the ground truth images are lower than the PSNR values between the noisy

input images and ground truth images. Even though the results from the GAN show

lower PSNR values, denoised images with GAN look more appealing than the noisy

input images.

From there, it can be understood that evaluation of the problems like super-resolution

and image denoising can be done by human perception in a better way than the

generator and discriminator loss function results and the PSNR values between the

denoised images and the ground truth images.

Non-local means denoising

This is an image processing technique to remove the noises in the noisy images.

Therefore, there are no loss functions for this part.

In Figure 6.34 the first examples of ground truth images, first examples of noisy input

images and the denoised images with non-local means denoising algorithm have been

given. In Figure 6.35, denoised images with NLM and denoised images with GAN

have been given. Denoised images with NLM and denoised images with GAN have

been created from the noisy input images in Figure 6.34.

57

Figure 6.34 : First Example of Ground Truth Images, Noisy Input Images and

Denoised Images with NLM.

Figure 6.35 : First Example of Denoised Images with NLM and Denoised Images

with GAN.

In Figure 6.36 the second examples of ground truth images, second examples of noisy

input images and the denoised images with non-local means denoising algorithm have

been given. In Figure 6.37, denoised images with NLM and denoised images with

GAN have been given. Denoised images with NLM and denoised images with GAN

have been created from the noisy input images in Figure 6.36.

58

Figure 6.36 : Second Example of Ground Truth Images, Noisy Input Images and

Denoised Images with NLM.

Figure 6.37 : Second Example of Denoised Images with NLM and Denoised Images

with GAN.

In Figure 6.38 the third examples of ground truth images, third examples of noisy input

images and the denoised images with non-local means denoising algorithm have been

given. In Figure 6.39, denoised images with NLM and denoised images with GAN

have been given. Denoised images with NLM and denoised images with GAN have

been created from the noisy input images in Figure 6.38.

59

Figure 6.38 : Third Example of Ground Truth Images, Noisy Input Images and

Denoised Images with NLM.

Figure 6.39 : Third Example of Denoised Images with NLM and Denoised Images

with GAN.

As it was shown above in the figures, an updated form of the DCGAN [21] architecture

denoised the images better than the non-local means denoising. As for the result it can

be understood that GAN performed better than the image processing technique.

Peak signal-to-noise ratio (PSNR) values of the denoised images with NLM and noisy

input images that can be seen in the Figure 6.34, Figure 6.35, Figure 6.36, Figure 6.37,

Figure 6.38 and Figure 6.39 compared to the ground truth images are in the Table 6.2.

60

Table 6.2 : PSNR Values of the Denoised Images with Non-local Means Denoising.

Example

No

Denoised Image with NLM/Ground-

truth Image

 Input Image/Ground-truth

Image

1 33.43 dB 40.86 dB

2 33.26 dB 41.26 dB

3 33.38 dB 41.15 dB

It can be seen from Table 6.2 that the PSNR values between the denoised images with

NLM and the ground truth images are lower than the PSNR values between the noisy

input images and ground truth images. Even though the results from the non-local

means denoising algorithm show lower PSNR values, denoised images with non-local

means denoising algorithm look more appealing than the noisy input images.

As it was shown above in the Table 6.1 and Table 6.2, PSNR values between the

denoised images with GAN and the ground truth images are lower than the PSNR

values between the denoised images with non-local means denoising and the ground

truth images. Even though the results from the GAN show lower PSNR values in

contrast to the image processing method, denoised images with GAN look more

appealing than the denoised images with non-local means denoising algorithm.

Therefore, the PSNR value is not a feasible metric to make a comparison with different

methods while one of these methods is GAN.

61

 CONCLUSION

This thesis demonstrated that generative adversarial network architectures can

effectively tackle important computer vision problems. These problems can vary from

generating fake images to super-resolving images and denoising of noisy images. This

thesis contains some of the popular GAN architectures in computer vision applications,

but there are other GAN architectures which are used in other fields of machine

learning. Image to image translation, text to image synthesis, text to speech translation

etc. can be given as possible examples. Hence, it can be understood that GAN is not

only used in the computer vision applications but also in natural language processing

(NLP).

In this thesis, we studied three different computer vision applications which use

generative adversarial networks for solution. The results indicate that GANs can be

very effectively used for these particular problems. Before GAN there were other

architectures which used generative modelling as well, but with the founding of GAN

[20] those architectures that used generative modelling to solve the computer vision

problems became pretty much insufficient. Also, some of the image processing

techniques that were used to solve computer vision problems also fell out of use.

From the practical standpoint, recent GAN architectures with the improved

optimization techniques are easy to train, and the results are getting more accurate.

The training, validation and testing parts are almost the same, the only differences are

the loss functions and the optimizers. The procedure for making the dataset ready for

training differs for each problem. Different pre-processing techniques and

normalization techniques are used on those datasets. Also, the GAN part looks the

same with two distinct networks, one being the generator the other one being the

discriminator. Although these two architectures do the same job every time, where the

generator tries to generate fake images and the discriminator tries to distinguish the

generated fake images from the real images, these architectures get changed from one

problem to another to tackle the particular characteristics of the problem.

62

63

REFERENCES

[1] K. P. Murphy (2013) Machine Learning: A Probabilistic Perspective 1st edition.

Moorpark, CA: Cram101.

[2] Rodriguez, J. (2017). Understanding Semi-supervised Learning. Medium.

Retrieved September 20, 2020, from

https://medium.com/@jrodthoughts/understanding-semi-supervised-

learning-a6437c070c87

[3] What is NumPy?. (n.d.). Retrieved October 18, 2020, from

https://numpy.org/doc/stable/user/whatisnumpy.html

[4] Overview of GAN Structure | Generative Adversarial Networks. (n.d.). Retrieved

October 3, 2020, from https://developers.google.com/machine-

learning/gan/gan_structure

[5] Explore the Possibilities of Generative Modeling. (2018, June 22). Retrieved

October 3, 2020, from

https://software.intel.com/content/www/us/en/develop/articles/explore

-the-possibilities-of-generative-modeling.html

[6] The Discriminator | Generative Adversarial Networks. (n.d.). Retrieved October

24, 2020, from https://developers.google.com/machine-

learning/gan/discriminator

[7] The Generator | Generative Adversarial Networks | Google Developers. (n.d.).

Retrieved October 30, 2020, from

https://developers.google.com/machine-learning/gan/generator

[8] GAN Training | Generative Adversarial Networks | Google Developers. (n.d.).

Retrieved October 31, 2020, from

https://developers.google.com/machine-learning/gan/training

[9] Competition. (n.d.). Retrieved October 11, 2020, from

https://competitions.codalab.org/competitions/22220#learn_the_detail

s

[10] Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., & Huang, F. (2020). Real-World

Super-Resolution via Kernel Estimation and Noise Injection. 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW). doi:10.1109/cvprw50498.2020.00241

[11] Lugmayr, A., Danelljan, M., Timofte, R., Ahn, N., Bai, D., Cai, J., Zou,

X. (2020). NTIRE 2020 Challenge on Real-World Image Super-

Resolution: Methods and Results. 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW).

doi:10.1109/cvprw50498.2020.00255

https://medium.com/@jrodthoughts/understanding-semi-supervised-learning-a6437c070c87
https://medium.com/@jrodthoughts/understanding-semi-supervised-learning-a6437c070c87
https://numpy.org/doc/stable/user/whatisnumpy.html
https://developers.google.com/machine-learning/gan/gan_structure
https://developers.google.com/machine-learning/gan/gan_structure
https://software.intel.com/content/www/us/en/develop/articles/explore-the-possibilities-of-generative-modeling.html
https://software.intel.com/content/www/us/en/develop/articles/explore-the-possibilities-of-generative-modeling.html
https://developers.google.com/machine-learning/gan/discriminator
https://developers.google.com/machine-learning/gan/discriminator
https://developers.google.com/machine-learning/gan/generator
https://developers.google.com/machine-learning/gan/training
https://competitions.codalab.org/competitions/22220#learn_the_details
https://competitions.codalab.org/competitions/22220#learn_the_details

64

[12] Sefi Bell-Kligler, Assaf Shocher, and Michal Irani. (2019) Blind super-

resolution kernel estimation using an internal-gan. In NeurIPS, pages

284–293, 2019.

[13] Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., . . . Loy, C. C. (2019).

ESRGAN: Enhanced Super-Resolution Generative Adversarial

Networks. Lecture Notes in Computer Science Computer Vision –

ECCV 2018 Workshops, 63-79. doi:10.1007/978-3-030-11021-5_5

[14] Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep Learning Face Attributes

in the Wild. In Proceedings of International Conference on Computer

Vision (ICCV).

[15] Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., .

. . Shi, W. (2017). Photo-Realistic Single Image Super-Resolution

Using a Generative Adversarial Network. 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

doi:10.1109/cvpr.2017.19

[16] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image

Recognition. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). doi:10.1109/cvpr.2016.90

[17] Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A. P., Bishop, R., . . .

Wang, Z. (2016). Real-Time Single Image and Video Super-

Resolution Using an Efficient Sub-Pixel Convolutional Neural

Network. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). doi:10.1109/cvpr.2016.207

[18] L1Loss. (n.d.). Retrieved November 4, 2020, from

https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html

[19] BCEWithLogitsLoss. (n.d.). Retrieved November 4, 2020, from

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLos

s.html

[20] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., . . . Bengio, Y. (2020). Generative adversarial networks.

Communications of the ACM, 63(11), 139-144. doi:10.1145/3422622

[21] Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation

Learning with Deep Convolutional Generative Adversarial Networks.

CoRR, abs/1511.06434.

[22] Liu, M., & Tuzel, O. (2016). Coupled Generative Adversarial Networks. NIPS.

[23] Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018). Progressive Growing of

GANs for Improved Quality, Stability, and Variation. ArXiv,

abs/1710.10196.

[24] Brock, A., Donahue, J., & Simonyan, K. (2019). Large Scale GAN Training for

High Fidelity Natural Image Synthesis. ArXiv, abs/1809.11096.

[25] Zhang, H., Goodfellow, I.J., Metaxas, D., & Odena, A. (2019). Self-Attention

Generative Adversarial Networks. ArXiv, abs/1805.08318.

[26] Average pooling layer - MATLAB. (n.d.). MathWorks. Retrieved November 18,

2020, from

https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

65

https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.ave

ragepooling2dlayer.html

[27] BCELoss. (n.d.). Retrieved November 18, 2020, from

https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html

[28] Chen, J., Chen, J., Chao, H., & Yang, M. (2018). Image Blind Denoising with

Generative Adversarial Network Based Noise Modeling. 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition.

doi:10.1109/cvpr.2018.00333

[29] Alsaiari, A., Rustagi, R., Alhakamy, A., Thomas, M. M., & Forbes, A. G.

(2019). Image Denoising Using A Generative Adversarial Network.

2019 IEEE 2nd International Conference on Information and Computer

Technologies (ICICT). doi:10.1109/infoct.2019.8710893

[30] Yan, Q., Wang, W. (2017). DCGANs for image super-resolution, denoising and

debluring.

[31] Saha, A. (2020). Python: Peak Signal-to-Noise Ratio (PSNR). Retrieved

December 12, 2020, from https://www.geeksforgeeks.org/python-

peak-signal-to-noise-ratio-psnr/

https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.averagepooling2dlayer.html
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.averagepooling2dlayer.html

66

67

CURRICULUM VITAE

Name Surname : Semih Örnek

Place and Date of Birth : Eskişehir 23.07.1995

E-Mail : ornek18@itu.com

EDUCATION :

• B.Sc. : 2018, Anadolu University, Faculty of Engineering,

Electrical - Electronics Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

• February 2021 – Present Software Engineer at Arçelik A.Ş

• April 2019 – January 2021 Project Engineer at Arçelik A.Ş.

• June 2018 –September 2018 Embedded Software Engineer at Piton Ar-Ge ve

Yazılım Evi

• 2018 Graduated as Honor Student at Anadolu University

budak
Rectangle

