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ABSTRACT

M. Sc. Thesis

DESIGN AND IMPLEMNTATION OF AN EDUCATIONAL AM RECEIVER
WITH FPGA USING SDR TECHNIQUES

Ali Ibrahim Khalifa HANDER

Karabiik University
Institute of Graduate Programs

Department of Electrical and Electronic Engineering

Thesis Advisor:
Assist. Prof. Dr. Bilgehan ERKAL
January 2021, 102 pages

In this study, an AM receiver is designed and implemented in FPGA using SDR
techniques. The main purpose of the study is to provide a cheap and simple FPGA
based platform for education of SDR basics. Firstly in the study, a simulation
environment is set using MATLAB scripts. A set of test signals are recorded and
used to generate an AM test signal using MATLAB scripts. The signal is used in
simulation and test of FPGA implementation. Simulation code is also used as a
framework in the VHDL design of the FPGA based SDR system. Another MATLAB
script is written to analyze the test and simulation results and make a comparison.
Where the results obtained from those tests on the two signals, it proved that the tests
with the signal Al are better than the tests with the signal A2, as the higher SNR
ratio means the better. When comparing the actual real-world values with the
simulations for each test signal, it is noted that the real-world SNR results are slightly

lower than the simulations SNR. Where test results provided a SNR higher than



20dB, which is an acceptable level for an AM receiver. Where, test and simulation
results prove FPGA AM RX system a useful candidate for AM demodulation and
reception. The designed and implemented FPGA AM RX system is also a good

utility in the education of basic SDR principles which is the main focus of this study.

Key Words : SDR, FPGA, VHDL, SNR, MATLAB, RX, AM.
Science Code : 90523



OZET

Yiiksek Lisans Tezi

SDR TEKNIiKLERINi KULLANARAK FPGA iLE EGiTiM AMACLI BiR
ALICININ TASARIMI VE UYGULANMASI

Ali Ibrahim Khalifa HANDER

Karabiik Universitesi
Lisansiistii Egitim Enstitiisii

Elektrik-Elektronik Miihendisligi Anabilim Dah

Tez Danismanai:
Dr. Ogr. Uyesi Bilgehan ERKAL
Ocak 2021, 102 sayfa

Bu calismada, bir AM alicisi, SDR teknikleri kullanilarak FPGA'da tasarlanmis ve
uygulanmigtir. Calismanin temel amaci, SDR temellerinin egitimi i¢in ucuz ve basit
bir FPGA tabanli platform saglamaktir. Ilk olarak calismada MATLAB betikleri
kullanilarak bir simiilasyon ortami olusturulmustur. MATLAB komut dosyalarini
kullanarak bir AM test sinyali olusturmak i¢in bir dizi test sinyali kaydedilir ve
kullanilir. Sinyal, FPGA uygulamasinin simiilasyonunda ve testinde kullanilir.
Simiilasyon kodu, FPGA tabanli SDR sisteminin VHDL tasariminda bir cerceve
olarak da kullanilir. Test ve simiilasyon sonuglarini analiz etmek ve bir karsilastirma
yapmak icin baska bir MATLAB betigi yazilmistir. Iki sinyal iizerinde yapilan bu
testlerden elde edilen sonuglar, daha yiiksek SNR orani daha iyi anlamina
geldiginden, sinyal Al ile yapilan testlerin A2 sinyali ile yapilan testlerden daha iyi
oldugunu kanitlamistir. Gergek gercek diinya degerleri her bir test sinyali igin

simiilasyonlarla karsilastirilirken, gercek diinya SNR sonuglarinin simiilasyon

Vi



SNR'sinden biraz daha diisiik oldugu not edilir. Test sonuglarinin, bir AM alicisi igin
kabul edilebilir bir diizey olan 20dB'den daha yiiksek bir SNR saglamasi durumunda.
Test ve simiilasyon sonuglari, FPGA AM RX sisteminin AM demodiilasyonu ve
alimi i¢in yararli bir aday oldugunu kanitladi. Tasarlanan ve uygulanan FPGA AM
RX sistemi, bu ¢aligmanin ana odak noktasi olan temel SDR ilkelerinin egitiminde de

iyi bir yardimci programdir.

Anahtar Kelimeler : SDR, FPGA, VHDL, SNR, MATLAB, RX, AM.
Bilim Kodu : 90523
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CHAPTER 1

INTRODUCTION

Since the emergence of cellular communication in the last two decades, wireless
communication channels gained more popularity. Currently, the development of
wireless applications and wireless technology needs flexibility in the hardware. It is
time-consuming and so expensive to make new radios in response to the change of
wireless applications and standards [1]. These problems can be solved through
software radio by moving the components of analogs to the digital domain. Functions
of radio can be implemented by using programmable logic devices including Field
Programmable Gate Arrays (FPGAS).

FPGAs offer the ability to implement functions in a cheap way which were
previously implemented by using the components of analog hardware. They are
constructed by one basic reconfigurable logic cell that doubled thousands of times.
FPGAs are used as co-processors to interact with DSPs and general-purpose
processors and offering lower cost and higher performance to the system. The
freedom to select where to implement the baseband-processing algorithms will add
another flexibility dimension when using Software Defined Radio (SDR) algorithms.
Therefore, with SDR, it is possible to implement simply the radio communitarian
process. We can say that SDR is better than the conventional radio communication

system because with SDR all hardware is removed and replaced by pure software.

Moreover, this flexibility gives an advantage to SDR receiver where it will be able to
decode the entire signals.

Besides, software radio permits a single device on receiving numerous and different
wireless transmissions. By the use of digital signal processing mechanisms of

FPGAs, the software radio may be accomplished in the digital systems. Nevertheless,



it is logical to focus on AM transmission rather than FM because constructing AM
receiver is very easy to be learned. This technique is beneficial because it develops
digital design mechanisms that can be applied in more advanced communication
systems. Besides, implementing AM receiver by the use of analog electronics is
always the base. Nevertheless, the development of digital systems allows the
emulation of analog with digital circuity easily. The digital AM Receiver is a digital
system that tries to accomplish the same analog AM receiver functions by using only

FPGA and a small number of analog electronics.

In general, AM is a technique that is used to modulate the wave based on
changing its amplitude based on changes in the frequency and amplitude together of
the associated modulating signal and keep the frequency of the wave constant. The
change in wave amplitude is directly associated with the change in the modulating
signal amplitude. The changes in the modulating signal determine the positive and
negative peaks of the wave change. Increase or decrease the modulating signal

amplitude causes an associated increase or decrease of the wave peaks amplitude [2].

1.1. LITERATURE REVIEW

In 1894-5, Marconi, Oliver Lodge and Alexander Popov invented the first radio
receiver by the use of a primitive radio wave detector named as a cohered and
invented in 1890 by Eduard Branly and improved by Lodge and Marconi [3]. At the
beginning, it has high resistance. When the voltage of radio frequency was applied to
the electrodes, its conducted electricity and resistance has been reduced. The coherer
in the receiver was directly connected between the ground and antenna. Moreover,
the coherer was connected to a DC circuit with a relay and battery besides its
connection to the antenna. When the coherer resistance is reduced by the incoming
radio wave, the current of battery flowed through it turning on the relay to ring a bell

or create a mark on the tape of paper in the siphon recorder.

For restoring the coherer to the previous no conducting status in order to receive the
next pulse of radio waves, it had to be tapped mechanically to disturb the metal

particles [4]. This has been performed by a "DE coherer”, and it is a clapper struck



the tube and operate by the electromagnet powered by a relay. In 1970, a researcher
coined the term of “digital receiver”’. The Gold Room Laboratory in California
generated an analysis of software baseband tool nhamed Midas that was of course a
software defined. In 1984, a team in Garland, Texas Division of E-Systems was
coined the term “Software Radio”. The same place witnessed the development of the
'Software Radio Proof-of-Concept' laboratory which published the software radio
inside many governmental organizations. This software radio which has been
invented in 1984 was a digital baseband receiver which offered programmable
interference cancellation and demodulation for broadband signals, typically with
thousands of adaptive filter taps by the use of many array processors retrieving
shared memory. In 1991, the term ‘software radio’ has been reinvented by Joe Mitola
independently in a plane to construct a GSM base station which may combine
between Ferdensi's digital receiver with E-Systems Melpar's which control digitally

the communications jammers to a true software-based transceiver.

The first main push in SDRs development is implemented by the use US military
paper called SpeakEasy. The main objective for SpeakEasy paper was to use the
programmable processing to simulate more than 10 presenting military radios which
operate in frequency bands between 2 and 2000 MHz. The other design goal was to
be able to easily include a new modulation and coding criteria in future. Therefore,
the military communication can keep pace with the developed modulation and
coding techniques. From 1992 to 1995, the main goal was to create a radio for the
U.S. Army which would operate from 2 MHz to 2 GHz with satellites, Naval Radios,

Air Force radios and ground force radios.

The main goal was to obtain a quicker reconfigurable architecture at open software
architecture with cross channel connectivity (the radio may bridge various protocols

of radio).

Harnani Hassan et al [5], from University Teknologi MARA implemented a low
complexity SDR using Simulink, Matlab and Xilinx environment based on FPGA.
Xilinx has been used as a platform used as a method for FPGA design whereas the

Matlab and Simulink has been used to create a random spectrum signal. The



methodology and mechanisms of the proposed transceiver design helped to design
the SDR by offering a quick method altering system with low complexity. As well
as, it opened the way to integrate cognitive radio aspect to wireless network
including 3G and 4G in the future. As well as, the proposed design accomplished the
goal and proved that it can be easily conducted by the use of Blockset, Xilinx DSP
and Simulink. This design method provide a benefit to designers on using either
HDL, Verilog or Matlab. As well as, it helped designers to determine the problems
and provide a quick method to alter the system.

Shahana K et al [6], designed and implementation of Low Frequency Trans-Receiver
on Spartan-3AN device. System Generator has been used to design and to simulate
system level models, and to get the timing and resources using results before
conducting the design on actual device. The primary idea behind this is to seek about
the feasibility to get the software close to the antenna as can as possible and
therefore, solve the problems of hardware by using software. The benefit of this
method is that the equipment is relatively cheap and more versatile. Also, the low
frequency trans-receiver based on FPGA is simple to be upgraded and offers high
flexibility in execution. The measured findings shown that the input of transmitter
matches with the output of receiver. Furthermore, Simulation of Matlab has been
implemented for further aware to the mentioned problem. The comprehensive
implementation is considered a perfect example to conduct the problem of hardware
in software. In addition, it offers low power solution and low cost. FPGA
implementation may further deliver flexibility to customize the design on different
data ratios, Carrier Frequency, Filter types, Modulation types, etc. which make the

design efficiently reconfigurable.

Jiang-tao Gong et al [7], from Hunan Railway Professional Technology College
presented the block diagram for FPGA to realize the distributed algorithm which can
implement the SDR channel processing, where it consists a multiple FIR filters bank
for various frequency bands because the radio system defined by a software need into
a series of different FIR filters to catch the equivalent signal. Through the distributed
algorithm depending on signal processing structure of FPGA and by Repeating

configure the FPGA, it may accomplish more FIR filter bank switching, in order to



accomplish different channel information receiving. It offers applicable processing

approaches and thoughts for radio channel switching defined by software.

In this study, an AM receiver using SDR techniques is designed and implemented in
FPGA on Spartan 6 FPGA Board with LM4550 Audio and 10 Breakout Board. The
basic notion behind is to seek provide a cheap and simple FPGA based platform for
teaching and learning of SDR basics. Where a simulation environment is set using
MATLAB scripts. And a set of test signals are recorded and used to generate an AM
test signal using MATLAB scripts. The signal is used in simulation and test of FPGA
implementation. Simulation code is also used as a framework in the VHDL design of
the FPGA based SDR system. Another MATLAB script is written to analyze the test

and simulation results and make a comparison.

Test and simulation results prove FPGA AM RX system a useful candidate for AM
demodulation and reception. Subsequently the designed FPGA AM RX system a
good in the education of basic SDR principles. Also it can be used in teaching the
radio signal processing techniques using FPGAs. The system is also suitable to be
used with any soundcard based SDR frontend.



CHAPTER 2

SOFTWARE DEFINED RADIO (SDR)

Radio development in the communication field which people need, comprising video
and voice communication and broadcasting messages, etc. Radio SRD is the
definition of system software that comprises the entire or many descriptors including
modification, extraction, and others. Wireless devices are used easily and cost less
business mission. Software-defined radio (SDR) provides many advantages where it
pushes forward the cost of communication and flexibility with several advantages
accomplished by the service providers to the end-users. You can obtain more than an
explanation for the software-defined Radio also called (SDR). Radio is a wireless
device that sends information and receives frequencies. Many issues must be solved
in order to access SDR including tuning the specification of the system according to
numerous applications. We may return some of all will be held including
modification, extraction and encoding. To end it, this information helps the

recognition of these specifications through the reception [8].

2.1. SDR ADVANTAGES

e Point and Click Control

e Easy Tuning

e A Computer Is Sharing the Workload
e Cheaper (In Some Cases)

e Smaller

e Visual look at a signal

e Open Platforms

e Custom Filtering Uses modern technology



2.2. SDR DISADVANTAGES

e Filtering Traded For Space

e Hard to run on old computers

e Sending is more expensive

e Dependent on Computer

e Software Limits

2.3. IDEAL SDR DESIGN

Software-defined radio system (SDR) is considered one of the most significant

contemporary techniques in supporting the communication in military service

insecurity, war and peace. SDR is used rather than the conventional radio and it

involves optimal radio frequency RF convertor wireless signal to an analog IF

properly used in conventional radio. Analog signal conversion to a digital frequency

(ADC) in IF and convert the signal from digital to analog FM frequency in the IF is
called (DAC) and shown in Figure 2.1.

The transfer of the signal routed by the converter sample rate by the interface (ADC)

and the treatment of hardware in the receiver. SDR may use the processing of

baseband with several digital devices including digital signal processors (DSP) and

field-programmable gate arrays (FPGA).

| I
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ADC

Rx
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Figure 2.1. Functional block diagram of wireless communication system.



There are many advantages to the use of digital devices such as low energy
consumption, high processor speed and flexibility. Nevertheless, there is a
comparison between the extreme flexibility degrees with the increase in consumption
of energy for DSP to minimum limit the flexibility and lower consumption of energy
than ASICs. FPGA provides astray consistent devices that cheap and less energy
consumption than DSP and ASICs flexibility FPGA and the redesign is made it
optimal of SDR [9].

2.4. MOTIVATION AND OBJECTIVES

SDR looks like many technologies in terms of its development and it is used in both
military and civilian applications and called Speakeasy. It is used in the naval forces
of the United Stated between 1991-1995. This technology accomplished great
success in the basic rules, knowledge, radio program, wireless communication and

programming. Currently, all SDR software is available at low prices [10].

2.5. SDR HARDWARE

2.5.1. Traditional Receiver

In addition to the classic demodulation, the traditional receiver and the three
processes to determine the sign in the carrier frequency setting of frequency shifting,
the candidate is filtering or separated from others. The compensation for transport
losses by enlargement is inserted enlargement by mass demodulation. Because of
carrying the signal to the demanded level circuit demodulation, most of the
conventional reception setups use different plans for about a century. Figure 2.2
shows the basic structure is significant to differentiate between the conventional and

reception by new SDR methods.
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Figure 2.2. Internal blocks of super heterodyne receiver.

Figure 2.2 clarifies the signal interference by the antenna. The signal is amplified
during RF phase that works in the frequency area of benefit only after passing the
reference to the mixer during the other input which receives the contribution
oscillator ornament and appointing local frequency oscillator. By tuning the radio
which is responsible to translate the frequency signal mediator (IF), the mixer is

responsible for shifting the frequency to the medium frequency IF.

The purpose of appointing a frequency oscillator is to confirm that the amount of
time difference frequency signal is equal to (IF). For instance, if the frequency at the
FM station is 100.7 MHz and IF was rumored to 10.7 MHz, the oscillator should be
adjusted to 90 MHz situation due to the low side transformation. The following
phase is the phase of weakening all the candidate wave signal but certainly a part of
the spectrum. The received signal of the band is prevented to display by the
bandwidth. At the end of the stage, the original signal modified is restored by the
demodulator through the loudspeaker IF it uses one substitute. To increase the
processing of the signal, it depends on the purpose through which its intended
recipient device. Cross of information learned to a loudspeaker connected to the
speaker [11, 12].



2.6. SDR RECEIVER

Digital Sample Digital Sample
Antenna at Intermediate Frequency at baseband
Analogic Signal
at Intermediate Frequencies DDC
RF Tuner ADC | D|g|tal Low_-Pass 4| Dpsp
Mixer Filter
Analogic Signal T
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Components Digital
0 Digital Osc.
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Figure 2.3. Block diagram of the SDR receiver.

Figure 2.3 for receiver signal SDR and be the first fund pass it RF tuner transfers the
analog signal to IF to be the same and conduct the process in the first three boxes of

the variant receiver device to the convergence point of the two systems [13].

Then cross-reference IF are changed frequency band by ADC is liable on change and
is fed into the next phase and be down the digital converter. DDC is a significant part

of the SDR system, it is cheap and consists of three main parts as follows:

e Digital local oscillator.
e Digital mixer.

e Finite pulsation response FIR low-scrolling IF filter.

Reference transfers to the corresponding baseband in our digital mixer at the counter
of phase elements by the analysis [14]. It is a modified digital local oscillator that the
reference is needed far or up to OHz and the difference with the bandwidth along and
be a low-pass filter and detects any receiver part is a suitable signal. Another
approach is represented by decreasing the sampling ratio or sampling frequency is
taken to new samples from the baseband and create from the split in the frequency of
the original sample through an N element. It is named the decimation element. The
ratio of the end sample may be less than double the higher-frequency elements by

Nyquist theory.
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The samples crossing to the baseband digital signal processing in a DSP box, finally,

for example decoding and demodulating [15].

2.7. SDR TRANSMITTER

As shown in Figure 2.4, DSP income generates the baseband signal to be sent by

SDR. The first box is DUC for digital transformation and translates the baseband

signal for IF by make its passband.

DAC send the samples to the field analog after the RF is moving towards the high-

frequency signal is later enlarged and the signal transmitted from the antenna DUC

Filter is responsible for the high sample ratio of the baseband signal which is

compatible with the operating of the elements followed by the so reverse process

arises at the reception frequency [14, 15].

Analogic Signal  Analogic Signal

at RadioFrequencies at RF Antenna
DUC
DSP _|, Interpolation | Digital 11 DAl | Reelg Power
Filter Mixer Conv. Conv. Amplifier

‘ ? ‘ g Digital

Diaital Components
Samples at Igita Digital Samples
Baseband at Intermediate Frequencies [ Analogic

Osc.

Components

Figure 2.4. Block diagram of a SDR transmitter.
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CHAPTER 3

FIELD PROGRAMMABLE GATE ARRAYS (FPGA)

FPGA can be described as a device that includes a matrix of reconfigurable gate
array logic circuitry. When FPGA is formed, the internal circuitry is connected in a
method that produces a hardware implementation of the software application.
FPGAs do not include an operating system and they use dedicated hardware to
process logic. The nature of FPGAs is parallel and therefore, different operations are
not competing for the same resources. Consequently, when adding additional

processing, one part of the application performance is not influenced.

Besides, many control loops can operate on a single FPGA device at different ratios.
The critical interlock logic can be enforced by FPGA-based control systems and can
be designed to inhibit I/O enforced by the operator. Nevertheless, = FPGA-based
systems are unlike the hard-wired printed circuit board designs that have stable
hardware resources where FPGA-based systems may rewire their inner circuitry to
help the reconfiguration when the control system deploys in the field.

FPGA offers the reliability and performance for the dedicated hardware circuity. By
the use of FPGA, it is possible to substitute thousands of discrete elements by
merging millions of logic gates in one integrated circuit (IC) chip. As shown in
Figure 3.1 the internal resources of FPGA chip include a matrix of configurable logic
blocks bounded by a periphery of I/O blocks. Inside the FPGA matrix, the signals are

routed by wire routes and programmable interconnect switches.
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Figure 3.1. Internal structure of FPGA.

3.1. FPGA ARCHITECTURE

The FPGA structure consists of many components as follows:

e Look-up table (LUT): This component conducts many logical operations.

e Flip-Flop (FF): This register component stores LUT result.

e Wires: These components connect components.

e Input/output (1/0) pads: These ports are physical and their mission is to get
data in and out of FPGA.

The collection of these components produce the basic structure of FPGA as clarified
in Figure 3.2. Despite the efficiency of this structure to implement any algorithm, the
proficiency of the resulting implementation is limited in terms of calculated output,

feasible clock frequency and demanded resources.
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Figure 3.2. Basic FPGA architecture.

The modern architecture of FPGA includes many basic components accompanied by
other computational and storage blocks which increase the effectiveness and
computational density of the device. The additional components which will be

discussed in the following sections are as follows:

e Embedded memories to store the distributed data.
e Phase-locked loops (PLLs) to drive the FPGA fabric at different clock ratios.
e High-speed serial transmitting and receiving devices.

e Off-chip memory controllers
The collection of these components gives FPGA the flexibility in implementing any

software algorithm running on processors and produce the modern FPGA
architecture shown in Figure 3.3.
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3.1.1. Logic Cells
The simple FPGA includes a large number of logical cells and each cell can be

configured to conduct many functions. Each logic cell has a unified number of

entries and exits. The logic cells used in FPGAs are as follows:

e Multiplexer based logic cells (e.g. Actel FPGAS)
e Memory-based logic cells (e.g. Xilinx FPGAS)

The basic internal structure of FPGA in a very wide sense is shown in Figure 3.4.
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As shown in Figure 3.4 that the internal structure of FPGA consists of programmable

interconnections and configurable logic cells.
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CHAPTER 4
AMPLITUDE MODULATION (AM)

The amplitude modulation occurs when high-frequency carrier wave amplitude
differs as a function of signal intensity. Figure 4.1 shows the principle of amplitude
modulation. We can realize that the amplitudes of positive and negative carrier wave
half-cycles differ in relation to the signal. This means that increasing the positive
sense results lead to an increase in the carrier wave amplitude whereas the opposed
happens for the negative half-cycle. In general, AM process is implemented by the

use of an electronic circuit which is called a modulator [16].

Amplitude
Message Signal

N |

Carrier Signal

Amplitude

Amplitude Amplitude Modulated

Amplitude

Figure 4.1. Representation of the AM principle.

The AM process includes an important consideration which is the modulation factor.
We can imagine this factor as the depth of modulation or change in carrier amplitude.

In other words, it represents the ratio between the change in carrier amplitude and the
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amplitude of normal carrier wave. The purpose of this factor is the determination of
strength and quality of transmitted signals respectively. The modulation of the carrier
in AM wave to a small degree produces a small change in carrier amplitude.
Therefore, the transmitted audio signal is not too strong. This means that the audio

signal is stronger and clearer when the modulation degree is great [16].

4.1. DOUBLE SIDE BAND AMPLITUDE MODULATION (DSB-AM)

One of the main types of AM technique is Double Side Band (DSB) where DSB
consists of two sidebands upper and lower with wave carrier suppressed. Practically,
DSB is consistent with SSB receivers where the last one is considered of the main
types of AM techniques in which the receiver rejects only the unwanted or redundant
sideband.

DSB signals are generated based on suppressing the carrier that results in the upper

and lower sideband. This generating method does not consist of waste in power.

DSB signal is generated based on modulating a carrier across the information signal
of a single-tone sine wave and signifies the summation of two sinusoidal sidebands.
Later, the carrier suppressed and the amplitude of the DSB sine wave signal changes
in the frequency of the carrier. The main features of DSB signal are the transition of
the stage that occurs at the wave lower amplitude slices. In general, DSB carrier
signals are generated by the balanced modulator circuit based on generating the
difference or summation between frequencies and to cancel or balance the carrier.
However, DSB signals are rarely used despite these features and both the low cost
and simple design because it is difficult to demodulate signals at the receiver. DSB
signals are used in many applications but the most important one is the transmitting

of information in television signals [17].

4.2. DSB-AM RECEIVERS

One of the oldest radio modulation technique is the amplitude modulation. The

receivers which are used to listen to DSB-AM are maybe the simplest receivers for
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any radio modulation technique that perhaps the reasons behind the use of this
versions of amplitude modulations until now. The super heterodyne type of receivers
is the most popular receivers in use currently. They comprise of Amplifier, Local
Oscillator and Mixer, IF Section, Antenna, and Detector RF amplifier. The need of
these systems can be noticed when we consider the simplest and inadequate TRF or
tuned radio frequency amplifier. Amplitude modulation happens when the carrier
wave amplitude is modulated in order to respond to the source signal. In amplitude

modulator, we have an equation which is look this:

Asignal(t) = A(t)sin (wt) (4.1)

As where the much simple form amplitude modulation modulator comprises of a
diode that is configured to represent a detector of envelop. Product detector is
considered another type of demodulator which provide better-quality demodulation

with further circuit complexity.

4.2.1. Modulation Spectrum

As treated previously, the beneficial modulation signal m(t) is frequently more
complicated than a single sine wave. Nevertheless, in accordance with Fourier
decomposition, m(t) can be convoyed as the set of sine wave sum for many stages,

frequencies and amplitudes.

By performing the multiplication of 1 + m(t) with c(t) as previously, the result
comprises a sum of sine waves. The carrier c(t) presents unchanged, but every
frequency element of m at fi has two sidebands at frequencies fc + fi and fc - fi.
The set of previous frequencies above the carrier frequency is called as upper
sideband and those lower configure the lower sideband. As clarified in upper of
Figure 2, the modulation m(t) can be considered to comprise an equal combination of
positive and negative frequency factors. The sideband can be viewed as the
modulation m(t) which is simply shifted in frequency by fc as showed at the bottom

from the right of Figure 2.
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Figure 4.2. Spectra of double-sided for AM signals and baseband.

4.2.2. Demodulation Methods

The simplest type of amplitude modulation comprises a diode that is configured to
represent an envelope detector. Product detector is considered other type of
demodulator that has the ability to offer better-quality demodulation with further

circuit complexity.

4.2.2.1. Envelope Detector

When there is an attempt to demodulate the modulation amplitude, it looks like a
good sense which only the amplitude of the signal need to be cheeked. By checking
only the amplitude of signal at specific time, it is possible to eliminate the carrier
signal from consideration and it is possible to check the original signal. The
amplitude of signal can be checked by using a tool in our toolbox (the envelop

detector).

The envelope detector is just a half wave rectifier followed by a low pass filter. It can
be imagine as electronic circuit which takes (comparatively) high-frequency
amplitude modulated signal as input and delivers an output that is the demodulated

envelop of the original signal as shown in Figure 4.3.
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The detector is placed after the IF section in case of commercial amplitude
modulator. In this point, the carrier is 455 kHz whereas the highest frequency of
envelop is only 5 kHz. Since the ripple element is about 100 times the frequency of
the maximum baseband signal and does not pass through any succeeding audio

amplifiers. We can see below the forms of AM or FM signal x(t) as follows:

x(t) = R(t) cos (wt + ¢(t)) 4.2)

In the case of AM, ¢(t) (the stage element of the signal) is constant and can be
neglected. Moreover, the carrier frequency w of amplitude modulator is also
constant. Therefore, the entire information of the amplitude modulator signal is
in R(t) where R(t) is known as the envelope of the signal. Thus, the amplitude

modulator signal is given by the function as follows:
x(t) = (C + (mt))cos (wt) (4.3)
C represents the carrier amplitude, (mt) represents the original audio frequency

message and R(t) equal to C + (mt). Consequently, the original message can be
recovered if the envelop of the amplitude modulator is extracted.
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Figure 4.4. A Signal and its envelope detector.
4.2.2.2. Square Law Detector

A square low detector of electronic signal processing is a device which create an
output relative to square of some input. For instance, in radio signal demodulation,
semiconductor diode is used as a square law detector which provide an output
existing relative to the square of the amplitude of the input voltage over some range
of input amplitudes. A square law detector offers an output directly relative to the
power of the input electrical signal. Moreover, square detector is a coherent or
synchronous detector. It avoids the problem to recreate the carrier by simply square
the signal of input. Basically, it uses the amplitude modulator signal itself as a range
of wideband carrier.  The multiplier output is the square of the input amplitude

modulator signal:

(egm)? = (sinw,t + % cos(w, + wpy) t — % cos(w, + wy)t)? (4.9)
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CHAPTER 5

VHDL -HARDWARE DESCRIPTION LANGUAGE

VHDL is a term that refers to the Very high speed integrated circuit (VHSIC)
Hardware Description Language (VHSIC). VHDL is a programming language used
to describe the logic circuit by functioning the behavior of data flow and/or the
structure.

The description of this hardware is used to configure a programmable logic device
(PLD) including a Field Programmable Gate Array (FPGA) with a convention logic
design. Also, VHDL is a formal language used to specify the structure and behavior

of the digital circuit.

5.1. VHDL CONCEPTS

The goal of VHDL is to describe a model of digital hardware device where this
model identifies the external view of the device and one or more of the inner views.
The external view of the device identifies the interface of the device which it can
communicate with many models in the same environment while the internal view of
the device identifies the structure or functionality.

5.1.1. Behavoaral Modelling

The most basic formula for the behavioral modeling of VHDL is the signal

assessment statement as shown in the following example:

a<=b;

The previous example means that a gets the value of b. This statement has an effect

which is signal a is replaced by signal b. When the value of signal b is changed, this
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statement is executed. The sensitivity list of this statement is signal b. The signal
statement is executed when a signal in the sensitivity list of a signal assignment
statement changes value. If the execution produced a new value that is different from
the present value of the signal, the event will be scheduled for the target signal.
Consequently, no event will be scheduled but the transaction is still generated if the
execution result value is the same. The event is scheduled by only the changes of the

value while the transaction is always generated when the model is assessed.

A transaction is always generated when a model is evaluated, but only signal value

changes cause events to be scheduled.

5.1.2. Structural Modelling

The structural description describes the logical elements of the system and thus, it is
a simulation of the system. The elements can be OR gate(s), AND gate(s), or it can
be at a higher logical level for example Processor Level or Register Transfer-Level
(RTL). The structural description is more traditionally used than the behavioral
description for the system which requires explicit design. If we want to operate A +
B=C. In behavioral design, we must write C = A + B and we have no choice on the

type of adders used to conduct this addition process.

The entire statements with the structural description are concurrent. The entire

statements that have an event conducted concurrently through any simulation time.

The main difference between VHDL and Verilog structural description is the
availability elements (particularly primitive gates) for the user. The whole primitive
gates including AND, OR, XOR, NOT and XNOR are recognized in Verilog. The
gates must be linked to library, packages or modules which have the description of

gates to be recognized by the VHDL packages.
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5.1.3. RTL (Register Transfer Level) Diagrams

Register-transfer level (RTL) that existed in the digital circuit design is modeling the
asynchronous digital circuit in terms of digital signals flow between the logical
operations conducted on those signals and hardware registers. Register-transfer level
abstraction is used hardware description languages (HDLs) such as Verilog and
VHDL to generate high-level illustrations of a circuit through which lower-level
representations and at the end actual wiring are derived. RTL design is considered a
distinctive practice for modern digital design [18].

In contrast with software complier design when register-transfer level intermediate
exemplification is the lowest level, RTL level is the ordinary input which designers
of circuit operate on there are various more level than it. Actually, in the synthesis of
the circuit, a transitional language is used between input register transfer level
representation and target netlist. Unlike in netlist, constructs for example cells,

functions and multi-bit registers are existed [18].

5.2. VHDL DESIGN STAGES

5.2.1. Entity

Entire designs are expressed in terms of entities. The most basic building block of
design is the entity. The entity of VHDL determines the entity name, entity ports and
information related to the entity. Entire designs are created by the use of one or more
entities [19]. If the type of design is hierarchal, the description of the top-level will

include a description of the lower-level contained in it.

5.2.2. Architecture

The architecture description is included in all entities which can be simulated. The
behavior of the entity is described by the architecture. Multiple architectures are
included in a single entity .a single architecture might be structural while another

architecture might be a behavioral description of the design.

26



5.2.3. Package

The main goal of the package is to encapsulate the elements which can be shared
(globally) between two or more design units. A package is a popular storage unit that
can be used to hold data to be shared between many entities. Data can be shared
through packages where the declaration of data inside the package helps the data to

be referenced by further entities.

Each package includes two parts: a package body and a package declaration section.
The interface of the package is defined by the package declaration and looks like the
same method in which the entity defines the model interface. The actual behavior of
the package is specified by the package body in the same approach that the
architecture statement does for the model.

5.2.4. Process

The basic execution unit of VHDL is the process. The process can be categorized
into single and multiple processes in the entire operations that are conducted in a
simulation of a VHDL description.

5.3. VHDL MODELLING BASICS

5.3.1. Constants

The constant objects are names given to a particular value of type. Constants provide
the capability to have a well documented model and a model that is easy to update.
For example, constants are used when a model needs the same value for several

cases. The designer can change the value of the constant and compile which will

change the whole cases of instances to reflect the new value of the constant.

27



5.3.2. Signals

Models are formed by the connection of entities together by using signal objects. The
communication of dynamic data between entities is implemented by signals. A
declaration of the signal is written is as follows:

SIGNAL signal_name: signal_type [:= initial_value];

Signal name(s) is followed by the keyword SIGNAL. A new signal is created by
each signal name. A colon separates between the signal name and signal type. Type

of signal refers to the type of information on which the signal consists.

The signal can include an initial value specifier through which the value of the signal
can be initialized. It is possible to declare the signal in package declarations,
architecture declarations and entity declaration sections. Signals declared in the
package are referred to as global signals because they may be shared between

entities.

5.3.3. VHDL Operators

There are six categories of predefined operators in the language and these operators
can be described as follows:

e Additional operators

e Multiplication operators
o Relational operators

e Logical operators

e Shift operators

e Miscellaneous operators

Each operator has increased precedence starting from the category (1) to (5).

Operators located in the same classification have the same precedence and the
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evaluation is implemented from left to right. Left to right evaluation can be

overridden by the use of parentheses.

5.3.4. Concurrent Signal Assignments

Each assignment statement in a typical programming language including C and C++
implements one after the other in identified order. The statement order of the source
file determines the order of implementation. No specified ordering of the assignment
statements inside VHDL architecture. The implementation order inside VHDL
architecture is only specified by events occurring to signal which the assignment

statements are sensitive to.
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CHAPTER 6

FPGA BASED AM RECEIVER DESIGN AND IMPLEMENTATION

Design and Implementation of FPGA based AM receiver consists of three parts:
selection of hardware design components, algorithmic design and simulation of
software parts in MATLAB and actual implementation of VHDL source code in the

FPGA for actual real world tests.

6.1. HARDWARE COMPONENTS

There are mainly three components in hardware part. MIMAS FPGA board, LM4550
soundcard and 10 breakout board which adapts soundcard with PMOD connectors to
the FPGA main board. Other than these three hardware components, there are
interface cables: one USB-to-serial adapter cable for sending commands to the FPGA
board, one USB cable for FPGA programming and two audio extension cables for
connecting the analog sound input and outputs of LM4550 soundcard to the PC
soundcard. The general view of the system is shown in Figure 6.1.

AM Xmitter signal

-1 Mimas
PC ADC Spartan
Matlab 6pFPGA
Audacity N sound 1—s Develop-
HDSDR card K DAC ment
\L board
Demodulated
audio Cable to Connect

Figure 6.1. General view of FPGA AM receiver.
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In Figure 6.1, a modulated signal produced by the Audacity played back wav file
which is produced using Matlab codes which will be defined later, is sent through
PC’s soundcard line-output to the line-in of FPGA’s soundcard LM4550. The ADC
of the LM4550 digitizes these audio signals in 16-bit, 48KSps, stereo format. The
two channels of the stereo audio interface provides a means to represent a complex
signal. So, the efective bandwidth of the AM radio signal is +24KHz as Nyquist
criteria for sampling complex signals suggests. Thus the total bandwidth of the
processed complex signal will be 48KHz. This complex signal which incorporates
two DSB-AM stations where each one plays two 10 second duration of different
music on two different frequencies continously, is processed and demodulated by the
FPGA fabric which is programmed appropriately for this purpose. So, all the
processing of the signal after digitization is carried on by FPGA fabric which can be
redefined with software (VHDL in this case). Which of the two stations are selected
is determined by a frequency setting command sent through the serial link provided
by the virtual serial communication port. The demodulated signal is then sent
through the DAC part of the LM4550 soundcard at 16-bits, 48KSps stereo format.
Despite the fact that the uplink is a two channel stereo audio stream, the resulting
signal is a mono signal in real format and this mono signal is simply repeated in the
two channels. However, there is a source select module programmed in the FPGA,
which takes commands through built-in switches on the FPGA mainboard and thus
the stereo up-link is useful in representing the complex signals that the different part
of FPGA AM RX module has. The source select module diverts the inter block
signals to output according to the commands from the swtiches and gives the
opportunity of seeing the different processing stages of the signal. Also, there is a
clipping indicator module in the FPGA fabric, which shows the level (actually an
indication of whether clipping occurs or not) of the signal at the input of every signal
processing block in the AM receviver module. This indicator is useful in seeing that
the level of the signal at the input of that stage is healthy or not. The clipping
indicator module uses on-board LEDs for this purpose.

The resulting receiver signals are then monitored, recorded and analyzed at the PC
using MATLAB scripts and HDSDR program which is a third party free SDR

software used in amateur radio projects.
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Figure 6.2. Photo of the FPGA AM receiver.

Shown in Figure 6.2 is a photo of the actual working prototype of the system. Here,
connecting cables, LM4550 Audio extension card, 10 breakout board and main
FPGA board is clearly seen. Hardware components of the FPGA AM receiver are

given in the next sections in detail.

6.1.1. MIMAS - Spartan 6 FPGA Development Board

6.1.1.1. Introduction

Mimas is easy to use the Development of FPGA board presenting Xilinx Spartan-6
FPGA. Mimas has been designed to learn and experiment design of the system with

FPGA:s.

This developed board presenting Xilinx XC6SLX9 TQG144 FPGA with a maximum
of 70 user 10s.

The USB 2.0 interface offers easy and quick configuration download to the on-board

SPI flash. There is no need for a special downloader cable or programmer to

download a bitstream to the board [20].
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Figure 6.3. Mimas — spartan 6 FPGA development board.

6.1.1.2. Applications

Product Prototype Development
Home Networking

Signal Processing

Wireless and Wired Communication

An educational tool for university and school [20].

6.1.1.3. Board Features

FPGA: Spartan-6 XC6SLX9 in TQG144 package
Flash memory: 16 Mb SPI flash memory (M25P16)
100MHz CMOS oscillator

USB 2.0 interface for On-board flash programming
FPGA configuration via JTAG and USB

8 LEDs and four switches for user-defined purposes
70 10s for user-defined purposes

Onboard voltage regulators for single power rail operation [20].
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6.1.2. LM4550 Audio Expansion Module

6.1.2.1. Introduction

This Audio module features LM4550, an audio codec for PC systems that is
completely compliant and implements the analog concentrated functions of the
AC'97 Rev 2.1 architecture. LM4550 uses 18-bit Sigma-Delta ADCs and DACs to

create a high-quality stereo audio output [21].

Figure 6.4. LM4550 AC’97 audio expansion module.

6.1.2.2. Applications

e Product Prototype Development
e Audio Record/Playback Systems
e Media players [21].

6.1.2.3. Board Features

e One 2x6 pin Expansion connector

e AC'97 Rev 2.1 Compliant

e 90 dB Dynamic Range

e Stereo Headphone Amp With Separate Gain Control

e Dimension: 50mm x 46mm [21].
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6.1.3. 10 Breakout Board

6.1.3.1. Introduction

This product is an 10 breakout solution for Mimas Sparta6 development board. This
product helps Mimas I0s to be categorized into smaller 2x6 headers which may
enable easy attachment for the other peripheral expansion modules. It features four

2x6 extension connector [22].

Figure 6.5. 10 Breakout module for mimas.

6.1.3.2. Board Features

e Four 2x6 pin expansion connector.
e Can be connected to any side of Mimas.
e Dimension: 34.3mm X 88.1mm [22].

6.2. PROGRAMS

In this study, third party software packages are used in the various stages. These

programs and their role in the study are given in the next sections in detail.
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6.2.1. Matlab

The significance to use MATLAB in our study is that realistic implementation of
SDR must include some equipment, for example, a high-speed A/D converter, a
powerful signal processor. This equipment makes the hardware platform very
expensive for students who study radio communication. Therefore, we used Matlab
in our study and radio signal frequency is limited in the band of audio. One Matlab
session has been through the setup of the receiver. Also, Matlab is used to complete
all the modulation and demodulation studies. When this system is used, the user

needs to only select the modulation and demodulation and corresponding factors.

6.2.2. HDSDR

HDSDR is SDR program which is used to listen into radio, analysis of spectrum and
analyse the results. It enjoys by waterfall and varied range separated from each other
of the input and output signal. It prevent noise to accomplish the lower speed
waterfall spectrum and receive and transmit the signals prepared by similar Matlab
scripts. HDSDR monitors and records the waveform produced by PC's sound card.
As well as, it works to record and playback RF, IF and AF WAV files with recording
scheduler. Therefore, HDSDR software allows a user to enter the mode and global

offsets to sync properly the pitch between the radio and SDR audio.

6.2.3. Audacity

It is used as a recording and playback program. It can be used easily as a powerful
audio editing and recording package. It allows to record voices and edit recorded
voices to correct any mistakes in voices and to combine some sound recordings from
many resources including music, interviews, or other recording of sound. Audacity
allows to export the recordings in MP3 files format and because of this, it is suitable

to produce podcasts.
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6.3. MATLAB SIMULATIO CODES

In the first place the test signal used in the experiments, which is played through PC
soundcard using Audacity program is generated by the help of a MATLAB script.
The code is listed in Appendix B.1. The code is very straightforward and comments
in the code explains itself. The MATLAB program firstly takes two audio sample
files in wave format which are prepared as 10 second duration mono music sampled
at 8KSps format wave files. It up-samples and interpolates to 48KSps each and uses
in the modulation of two different AM stations whose frequency is determined by the
parameters in the code and so can be changeable. The resulting modulated waveform
is complex thus it is recorded in stereo format. This sample signal is then used in

both actual operational testing and MATLAB simulation of the system.

Another script is used to design filters used in the system and derived coefficients are
then transferred to the FIR filter IP component through a coefficient file. The
MATLAB script used for this purpose is listed in Appendix B.2. The program shows
the frequency response of the designed filter as a graphic and stores the coefficients
of the filter in a file which will be used in the FIR filter IP of the FPGA AM receiver.
Here, number of the coefficients, sampling rate and cut-off frequency of the filter can

be changed as desired.

The design of the algorithms underlying the principles of FPGA AM receiver and
simulation of the system is achieved using a MATLAB script. Then, the algorithms
are transferred to FPGA after recoded in VHDL. The VHDL codes of the FFGA AM
receiver will be discussed later. The listing of the simulation code is given in
Appendix B.3. This code is also very straight forward and explained by comment
lines well. It takes test signal in wave file format, demodulates one of the AM
stations whose frequency is set by a parameter in the code and using squaring
method (envelope detection) demodulates, filters and records the resulting signal as a
48KSps mono wave file so that it can be played back and listened later. Also,
products obtained at the various stages of demodulation process is recorded in
separate wave files for seeing the evolution of the signal and further analysis

purposes.
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Lastly a MATLAB script listed in Appendix B.4 is used to compare the original
modulating waveform with the demodulation result of the either simulation program
or FPGA AM receiver which is recorded by HDSDR and post processed with
Audacity to cut and synchronize with the original. The waveforms that will be
compared is thus recorded in one stereo wave file where left channel carries the
demodulated signal and right channel carries original modulating signal. The results

will be discussed on the chapter about Results and Discussion.

6.4. VHDL CODE AND BLOCK SCHEMA OF THE SYSTEM

All the VHDL code of the system is given in Appendix C. As with the MATLAB
codes, comments explain everything. The block schema given in Figure 6.6
summarize the functioning of the FFGA AM RX and show the relations between
different modules. Top module cnt is used as a wire loom for other sub-modules and
provides the interconnections between different modules of the system. Also, top
module contains necessary codes to arrange clocks and resets used by sub-modules

of the system.

FPGA AM RX BLOCK DIAGRAM

clk

16-bit
48 KHz reset-n complex 48KSps complex
multiplier = 4KHZ multiplier
from pc \|/ \|/ L I I out fe=4 P Squaring
sound card AC'9T FIR LPF AM Detector  FIR
ADC e N
b ADC @ | Qo | @ >
IN=y ™ @M4550) | R Q R 16-bit
4 Controller cos/T\ /T\ sin cos/T\ /1\ sin 48K Sps
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OUT= - 16-bit ~— | ncol o
0 48Ksps L 2 | £=+ 2z o g
sund card stereo phi_inc f=12KHz S
Hardware R 5
/‘\ L
commend AM RX source selector
Rom frequency MODULE ¢ ind
initiali calculator —
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oo | [ g

9600 bps 1% °X
FGPA board USB Host

Figure 6.6. Block schema of the FPGA AM RX system.
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All the basic AM receiver functions is contained in the AM_RX module. As seen on
Figure 6.6, AM_RX module can handle complex signals. Despite the output is also
two channels, it is not in complex form. The resulting demodulated signal can only
be in real format thus it is copied on both channels. The outputs of different sub-
modules in AM_RX module can be directed to the output and since many of them
provides complex output when they are selected, the output of the AM_RX module
is operated in complex mode. The selection is achieved by built-in switches of the
Mimas FPGA board. Also, every sub-module in the signal chain of AM_RX module
has its own clipping indicators and outputs of these indicators are directed to built-in
LEDs on the board.

Complex input to AM_RX module is firstly frequency shifted by an amount
controlled by the first NCO, whose frequency control input (phase increment input)
is driven by the frecalc module which in turn takes commands from sercomrx
module which provides frequency setting commands received from PC through a
USB-to-serial cable using a suitable terminal program such as Termite or PUTTY run
on the host PC. All serial data communication is handled by the sercomrx and
sercomtx modules in the FPGA design. The received commands by sercomrx module
are echoed through sercomtx module to host PC. The command format is
f<sign><frequency> where f represents that it is a frequency changing command,
sign is either + or — and frequency is a 5-digit integer number in the range 00000 —
23999 which is the absolute value of frequency in Hz. So, the frequency can only be

changed in 1Hz increments (frequency resolution is 1Hz).

The complex frequency down shifting operation sets the center frequency of the
received station to zero. The complex radio signal then low-pass filtered whose cut-
off frequency is set to 4KHz, which is compatible with the bandwidth of the
baseband modulating test signal used in the experiments. Then the signal is complex
up-shifted to 12KHz using a second fixed frequency NCO and a subsequent complex
multiplier IP. This last fixed upshifting operation is necessary for demodulation.

All the FIR filters, NCOs and complex and real multipliers are implemented using

ready-made Xilinx IPs which shortens design time extremely and provides high
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performance. Every IP used is configured and setup using respective wizards whose
use is very comprehensive but explained clearly in respective datasheets of every IP.

So, they will not be covered here in detail.

After second frequency shift, the signal being bandlimited to +4KHz at the center
frequency of 12KHz is realized by an adder and then demodulated using a squaring
method which uses just a single multiplier. The resulting signal must be low-pass
filtered to get rid of the high frequency products generated in the non-linear squaring
process. After this the original modulating signal is obtained clearly.

All three FIR filters in the design are identical in input and output sampling rates
(48KSps), bit resolution (16-bits), number of coefficients (255), coefficient
resolutions (16-bits) and cut-off frequency (Fc=4KHz). So, after their coefficients
found using a MATLAB script, they are implemented using the FIR filter IP design

wizard and the resulting module is instantiated (copied) three times.

Signal digitization and reproduction is carried over by the LM4550 based soundcard.
So, signal exchange between PC and FPGA AM RX is through audio cables in
analog format. For the management of the LM4550 soundcard, a VHDL module is
written by the help of the respective datasheet. The management module resets, sets
up and configures the LM4550 chip prior usage and then handles the data streaming
between LM4550 and Spartan6 FPGA.

As said before frequency control is achieved through a USB-to-TTL serial cable and
using a terminal program in the PC. The serial link cable also provides the auxiliary
5V supply that the LM4550 soundcard necessitates since Mimas FPGA board only
supplies 3.3V.

According to the design utilization summary report generated in the synthesis
process by Xilinx ISE webpack suite, out of 1430 slices 702 is used which
corresponds to 49% utilization. Out of 32 RAMB16WER ram blocks 30 is used
which corresponds to 93% utilization. And lastly, out of 16 DSP48A1 DSP blocks 15

is used which corresponds to 93% utilization. So, in the light of these information the
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design is said to be RAM and DSP intensive. It is normal for a SDR design
implemented in FPGA because their signal chain usually requires RAM and DSP

intensive filter and multiplier operations.

6.5. RTL DIAGRAMS OF THE SYSTEM

RTL diagrams are useful in showing the internals of a design in FPGA. They provide
an easy and quick way of understanding the operation of the design. They are also
used as an alternative tool in the debugging process of the design. Most important
modules of the system are presented here to show their operation. These are top

module cnt and am_rx modules.
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Figure 6.7. RTL schematic of top module cnt.
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CHAPTER 7

RESULTS AND DISCUSSION

The system is simulated and tested using two 10s sound recordings firstly recorded at
8KSps and then upsampled to 48KSps to cope with the modulation process. Each
recording incorporates music which fill the 4KHz spectra in a normal distrubution so
that test signals provide a similar result with a white noise source. The recording is
used in the modulation of two AM stations put in different frequencies with the test
signal Al on fc=5KHz and A2 on fc=-15KHz in the complex signal at 48KSps.
Modulation is done using a MATLAB script whose listing given on Appendix B1.
This modulated complex test signal then used in the simulation of demodulation
using the code listed in Appendix B3. The test signal is also used in actual real world
experiments carried on FPGA AM RX system. This is achieved by playing the test
signal in a continuous loop outputted to the soundcard of PC using Audacity as the
player. After demodulation by the FPGA AM RX, the resulting waveform is
captured by the soundcard of the PC and monitored and recorded by the HDSDR
SDR program. The resulting waveforms from simulation and test are post-processed
before put into analysis using a MATLAB script which is listed on Appendix B4.
Post-processing incorporates normalizing and syncronization of the resulting
waveform to respective input test signal, either Al or A2. Post-processing is carried
on using Audacity. The post-process result is then recorded in 2-channel stereo
format in order to preserve the synchrocity. In this format the top signal (Left
channel) holds the demodulated waveform and the bottom signal (Right channel)
holds the original test signal. The analysis operation provides three results: wav
recording of difference signal between demodulation and original test signal, rms
level of error signal (obtained from difference waveform using a 10s window),
Signal-to-Noise Ratio (SNR) in dB calculated from the rms error and rms level of the
original test signal. Demodulation waveform, original test signal waveform and

difference waveform combined in a single graphic time plot for each test signals and
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for each of the simulation and test are presented in Figures 7.1-4. Also the analysis
results for each of the two test waveforms for each of the simulation and test is listed

in Table 7.1 for comparison.

05

1.0

Figure 7.1. FPGA AM RX system test results with Al test signal: top signal is output
demodulated waveform, middle test signal Al at the input and the bottom
signal is difference between two.

Figure 7.2. Matlab simulation results with Al test signal: top signal is output
demodulated waveform, middle test signal Al at the input and the
bottom signal is difference between two.
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Figure 7.3. FFGA AM RX system test results with A2 test signal: top signal is output
demodulated waveform, middle test signal A2 at the input and the bottom
signal is difference between two.

Figure 7.4. Matlab simulation results with A2 test signal: top signal is output
demodulated waveform, middle test signal A2 at the input and the
bottom signal is difference between two.

45



Table 7.1. Test results.

Test Signal Error (rms) SNR (dB)
Al_test 9.235118e-03 26.24
Al sim 4.700772e-03 31.14
A2_test 16.90000e-03 20.87
A2_sim 6.003603e-03 28.98

As it is seen from figures 7.1 and Table 7.1, simulation results are slightly better than
actual real world tests of FPGA AM RX system. This is normal because, actual real
world tests incorporate more noise coming from different sources namely: electrical
noise on the audio cables, inherent noise of ADCs and DACs of soundcards both PC
and LM4550 soundcards and samplerate differences between receiving and
transmitting pairs of ADCs and DACs. Also, there is noise coming from the
inaccurate normalization and synchronization processes done in the post-processing
of the results before analysis. As SNRs from each test run is compared, higher SNR
means better. Best performance is achieved in simulations done with the test signal
Al. Simulation with test signal A2 provided a lower performance compared to
simulation with test signal A2. This is also true for the actual real world tests. This is
attributed to the relatively low modulation depth used in the test signal A2. Usually
SNR decreases with decreasing modulation depth so this is normal. When actual real
world values are compared to simulations for each of the test signal it is seen that
real world SNR results are slightly lower than simulation SNRs. The difference
between SNRs for test signal Al is 4.9dB and for test signal A2 it is 8.11dB. Again
tests with Al is better than tests with A2.

Lastly, test results provide a SNR higher than 20dB, which is an acceptable level for

an AM receiver. So, the designed and implemented FPGA AM recevier can be

assumed successful in demodulation of AM signals.
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CHAPTER 8

CONCLUSION

In this study, an AM receiver using SDR techniques is designed and implemented in
FPGA. The main purpose of the study is to provide a cheap and simple FPGA based
platform for teaching and learning of SDR basics. Test and simulation results proved
on the signals Al and A2 that higher SNR means better. And through a comparison
between them, noted that A2 real world SNR results are slightly lower than Al

simulation SNRs.

Where, these results proved that tests with Al is better than tests with A2. This is
attributed to the relatively low modulation depth used in the test signal A2 and too
this is normal because, actual real world tests incorporate more noise coming from
different sources namely: electrical noise on the audio cables, inherent noise of
ADCs and DACs of soundcards both PC and LM4550 soundcards and sample rate
differences between receiving and transmitting pairs of ADCs and DACs.. Also, test
and simulation results prove FPGA AM RX system a useful candidate for AM
demodulation and reception. The designed and implemented FPGA AM RX system
is also a good utility in the education of basic SDR principles which is the focus of

this study.

So, the designed and implemented FPGA AM receiver can be assumed successful in
demodulation of AM signals. It can be used in teaching the radio signal processing
techniques using FPGAs. As the system is also suitable to be used with any
soundcard based SDR frontend such as Softrock Ensemble receiver for HF and SW
bands. It can be used in a standalone fashion if a microcontroller is used to send
commands or a user interface for this purpose may be designed in the FPGA. The
design costumes most of the RAM and DSP blocks but has unused logic slices

sufficient for enhancements like that.
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As a future work, other modulation types and methods can be added to this system to
show the principles behind them. A frontend and a user interface may be designed
for it to make it a more practical SDR system which can be used for amateur and

research purposes as well as in the education of communication engineering students.
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Al. Datasheet Spartan 6 (xc6sIx9-3tqg144)

i: XILINXR Spartan-6 Family Overview

DS460 (w2.0) October 25, 2014 Product Specification

General Description

The Spartan®-6 family provides leading system integration capabilies with the lowest total cost for high-volume applications. The
thirtesn-membear family dalivers expanded densities ranging from 3,840 10 147 443 logic cells, with half the power consumption of previous
Spartan families, and fastar, more comprehensive connectivity. Built on a mature 45 nm low-power copper process technology that
delivers the optimal balance of cost, power, and performance, the Spartan-6 family offers a new, more efficient, dual-register 6-input look-
up table (LUT) logic and a rich selection of buili-in system-level blocks. These include 18 Kb (2 x 9@ Kb) block RAMs, second generation
DSP42A1 slices, SDRAM memary controllers, enhanced mixed-mode clock management blocks, SaloctlO™ technology, power-
opfimized high-speed serial fransceiver blocks, PC! ExpressE compatible Endpoint blocks, advanced sysiem-level powar management
modas, auio-detect configuration options, and enhanced IP securify with AES and Device DMA profection. These features provide a low-
cost programmable atternative to custom ASIC products with unprecedented easo of use. Spartan-6 FPGAs offer the bost solution for
high-volume logic designs, consumer-oriented DSP designs, and cosi-sensitive embedded applications. Spartan-6 FPGAs are the
programmable silicon foundation for Targeted Design Platicrms that deliver integrated software and hardware components that enable
designers to focus on innovation as soon as their development cycle boegins.

Summary of Spartan-6 FPGA Features

Spartan-& Family: +=  Integrated Memory Controller blocks
=  Sparian-6 LX FPGA: Logic optimized = DDA, DDR2, DDR3, and LPDDA support
= Spartan-6 LXT FPGA: High-spead serial connectivity = Dala rates up to 800 Movs (12.8 Gbvs peak bandwidih)
= Designed for low cost =  Multi-port bus structure with indepandant FIFO to reduca
- Muitiple efficient infegrated blocks design timing issues
= Optimized selection of 11O standards *  Abundant logic resources with increasad logic capacity
=  Staggered pads =  Optional shift register or distnbuted RAM support
= High-volume plastic wire-bonded packages =  Efficient &-input LUTs improve performance and
+  Low static and dynamic powar minimize power o ) o
« 45 nm process optimized for cost and low power = LUT wrlh_ dual ﬂ_lp—flops for pipeline c:_enlnc applications
»  Hibernate power-cdown mode for zero power =  Block RAM with a wide range of granularity
=  Suspend mode maintains state and configuration with =  Fast block RAM with byte write enable
muiti-pin wake-up, control enhancement = 18 Kb blocks that can be opfionally programmed as two
= Lower-power 1.0V core voltage (LX FPGAs, -1L only) indepandant 2 Kb block RaMs
= High performance 1.2V core voltage (LX and LXT +  Clock Management Tile (CMT) for enhanced performance
FPGAs, -2, -3, and -3N speed grades) +  Low noise, flexible clocking
=  Multivoltage, multi-standard SelectiO™ intarface banks «  Digital Clock Managers (DCMs) eliminate clock skew
=  Upio 1,080 Mb's dafa transfer rate per difierential 180 and duty cycle distortion
=  Selectable output drive, up to 24 mA per pin =  Phase-Locked Loops (PLLs) for low-jitter clocking
= 2.3V to 1.2V 10 standards and protocols =  Frequency synthesis with simulttaneous multiplication,
=  Low-cost HSTL and SSTL memory interiaces division, and phase shifting
=  Hot swap compliance =  Sixteen low-skew glebal dock networks
= Adjustable 1O slew rates to improve signal integrity »  Simplified configuration, supports low-cost standards
=  High-spead GTP serial fransceivers in the LXT FPGAs »  2-pin auto-detect configuration
= Upto32Gh's =  Broad third-party SPI (up to x4) and NOR flash support
=  High-speead interfaces including: Serial ATA, Aurora, =  Feature rich Xilink Platform Flash with JTAG
1G Ethernet, PCI Express, OBSAl, CPRI, EPON, =  MuliBoot support for remofe upgrade with multiple
GPOM, DisplayPort, and XaAUI bitstreams, using watchdog profection
- Integrated Endpoint block for PC| Express designs (LXT) =  Emhanced security for design profection
=  Low-cost PCE2 technology support compatible with the =  Unigue Device DMA identifier for design authentication
33 MHz, 32- and B4-bit specification. =  AES bitstream encryption in the largar devices
» Cfficient DSP48A1 slices +  Faster embedded processing with enhanced, low cost,

«  High-performance arithmetic and signal processing MicroBlaze™ soft processar )

»  Fast 18 x 18 multiplier and 48-bit accumulator +  Industry-leading IP and reference designs
=  Pipelining and cascading capability

=  Pre-adder to assist fitter applications

& 20092011 Xiliror, Imc. Xiling, the Xilink logo, Art, |SE, Kirtex, Spartan, Virtex, Zyng, and other designated brands incuded henein are mdemarks of Xilingin $he United Statss
and other countries. PCI, PCle and PCI Exprass are trademarks of PCI-SIG and wsed under licerss. All other tmdemarks are the property of sheir respective ownss.

D5160 (v2.0) October 25, 2011 wwnw_xilinx.com
Product Specification 1
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£ XLINX Spartan-6 Family Overview

Spartan-6 FPGA Feature Summary
Table 1: Spartan-& FPGA Feature Summary by Device

Configurable Logic Blocks (CLEsS) Block RAM Blocks Mam
Lol — | oaenett | Enopaint | Maximum | Totsl | Max
Devics carf Max Ll ] ChITg(E) | CRETREEF | Blocks for GTP Vo | User
Slices] | Flip-Flops | Distibuted 18 Kbid) | Max (Kbj [Max]iE) PCI Express | Transcelvers | Banks | 10
RAM [Kb)
XCESLX4 3,840 60D 4,800 75 a i2 26 2 0 0 ] 4 | 132
XCESLXE 9,152 1,430 11,440 a0 16 32 576 2 2 0 ] 4 | 200
XCBSLX16 14570 | 2278 18,224 136 32 32 576 2 2 a L] 4 | 232
XCBSLX25 24 054 3,758 | 30,084 229 38 g2 936 2 2 a L] 4 | 266
XCBSLMAS 43 664 6822 | 54578 40 L] 116 2,088 4 2 1] ] 4 | 358
XCBSLYTE 74637 | 11662 | 93,296 692 132 172 3096 [ 4 1] ] & | 408
XCESLKA0D 104,264 | 15,822 | 126576 a7a 180 268 4,824 [ 4 0 ] & | 480
XCESLYARD 147,443 | 23038 | 184304 | 1355 180 268 4,624 [ 4 1] ] & | 576
XCBSLMAET 24,051 3,758 | 30,084 229 38 E2 936 2 2 1 2 4 | 280
XCBSLXAET 43 661 6822 | 54578 4 ] 118 2088 4 2 1 4 4 | 208
XCBSLYTET 74637 | 11662 | 93,296 692 132 172 3,006 [ 4 1 ] & | 348
XCESLXA00T | 104,261 | 15822 | 126576 a76 180 268 4,624 [ 4 1 ] & | 408
XCBSLXAS0T | 147443 | 23038 | 184304 | 1,355 180 268 4 624 [ 4 1 8 & | 540
Notes:
1. Spartan-& FPGA logic cell ratings reflect the increased logic cell capability ofiered by the new 6-input LUT architecture.
2. Each Spartan-8 FPGA slice contains four LUTs and sight flip-flops.
3. Each DSP48A1 slice contains an 18 x 18 multiplier, an adder, and an accumulator.
4. Block RAMsz are fundamentally 18 Kb in size. Each block can also be used as two indspendent 9 Kb blocks.
5. Each CMT contains two DCMs and one PLL.
6. Msamory Controller Blocks are not supported inthe -3M speed grade.
D&160 (v2.0) October 25, 2011 wiww_xilinx.com
Product Specification 2
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A2. Datasheet LM4550

i3 Texas
INSTRUMENTS

LM45506
SMNASITSG —MAY 2005-REVISED SEFTEMEER 2015

LM4550B AC 97 Rev 2.1 Multi-Channel Audio Codec With Stereo Headphone Amplifier,
Sample Rate Conversion and TI 3D Sound

1

Features

AC 9T Rev 2.1 Compliant

High Quality Sample Rate Conversion From 4 kHz
to 48 kHz in 1 Hz Increments

Supports up to § DAC Channel Systems With
Multiple LM4550Bs or With Other TI LM45xx
Codecs

Unigque Tl Chaining Function Shares a Single
Controller SDATA_IN Pin Among Multiple Codecs
Stereo Headphone Amp With Separate Gain
Control

TI's 3D Sound Stereo Enhancement Circuitry
Advanced Power Management Support

Extermnal Amplifier Power-Down (EAPD) Control

PC Beep Passthrough to Line Out During
Initialization or Cold Reset

Digital 3.3-V and 5-V Supply Options

Extended Temperature: -40°C = T, = B5°C

Key specifications

— Analog Mixer Dynamic Range, 97 dB (Typical)

— DAC Dynamic Range, B9 dB (Typical)

— ADC Dynamic Range, 90 dB (Typical)

— Headphone Amp THD+M at 50 mW, 0.02%
{Typical) into 320

2 Applications

* Desktop PC Audio Systems on PCI Cards, AMR
Cards, or With Motherboard Chips Sets Featuring
AC Link

* Portable PC Systems as on MDC Cards, or with a
Chipset or Accelerator Featuring AC Link

* General Audio Frequency Systems Reguiring 2, 4
or & DAC Channels andfor up to 8 ADC Channels

+  Automotive Telematics

3 Description

The LM4550B device i an audic codec for PC
systems which is fully PCS9 compliant and performs
the analeg intensive functions of the AC "97 Rev 2.1
architecture. Using 18-bit Sigma-Delta ADCs and
DACs, the LMA4550B provides 90 dB of Dynamic
Range.

The LM4550B6 was designed specifically to provide a
high quality audio path and provide all analog
functicnality in a PC audio system. It features full
duplex stereo ADCs and DACs and analog mixers
with access to 4 stereo and 4 mono inputs.

Device Information!"
PART NUMBER PACKAGE BODY SIZE (NOM)
LWM5508 LQFF (48} 700 mm x 7.00 mm

(1} For all avadsble packages, see the orderable addendum at
the end of the data shest.

Simplified Block Diagram

R
A > E
ux c Headphone
v Jack
(o]
R
D + D
e i Audio
Microphone ek L v Processing #  Mono Out
] E
C
T
Linz In +
r
u
X #  Line Qut
Video: e

A An IMPORTANT NOTICE at the end of this data sheet addresses awaiability, warranty, changes, use in safety-critical applications,
A% intellectual property matters and other important disclaimers. PRODUCTION DATA
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i3 TExas
INSTRUMENTS
LM45R50B

waw_tl.com SMASITEGE —MAY 2005—-REVISED SEPTEMBER 2015

5 Description (continued)

Each mixer input has separate gain, attenuation and mute control and the mixers drive 1 mono and 2 stereo
outputs, each with attenuation and mute control. The LM4550B provides a stereo headphone amplifier as one of
its stereo outputs and also supports TI's 3D sound sterec enhancement and a comprehensive sample rate
conversion capability. The sample rate for the ADCs and DACs can be programmed separately with a resclution
of 1 Hz to convert any rate from 4 kHz to 45 kHz. Sample timing from the ADCs and sample request timing for
the DACs are completely deterministic to ease task scheduling and application software development. These
features together with an extended temperature range also make the LM4550B suitable for non-PC codec
applications.

The LM4550B features the ability to connect several codecs together in a system to provide up to 6 simultanecus
channels of streaming data on cutput frames (controller to codec) for surround sound applications. Such systems
can also support up to B simultaneous channels of streaming data on input frames {codec to controller). Multiple
codec systemns can be built either using the standard AC Link configuration (that is, of one serial data signal to
the coniroller per codec) or using a unique TI feature for chaining codecs together. This chain feature shares
only a single data signal to the controller among multiple codecs.

The AC 97 architecture separates the analog and digital functions of the PC audio system allowing both for
gystem design flexibility and increased performance.

Copyright € 2005-2015, Texas Instruments Incomporated Submi Documenfation Feedback 3
Product Felder Links: LA#5508
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MATLAB CODE LISTINGS
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B1. Modulation (Test Signal Generation)

% (DSB-WC) Mod. with MUSIC by B. ERKAL 2020
% AM transmitter code by Bilgehan ERKAL

% Karabuk 2020

clear all;

% sound file 1 loading (4Khz mono (8KSps))
[iff1, afs]=audioread('al.wav’);
[y1,~]=size(iff1),

% upsample x6 (8x6=48Khz)
yul=upsample(iffl,6);

% Baseband signal is filtered and normalized
yul=filter(firl(128,4e3/24e3),1,yul);
yul=yul./(1.01*max(abs(yul)));
audiowrite('al_48k.wav', yul, 48e3);

% sound file 2 loading (4Khz mono (8KSps))
[iff2 , afs]=audioread('a2.wav’);
[y1,~]=size(iff1);

% upsample x6 (8x6=48Khz)
yu2=upsample(iff2,6);

% Baseband signal is filtered and normalized
yu2=filter(fir1(128,4e3/24e3),1,yu2);
yu2=yu2./(1.01*max(abs(yu2)));
audiowrite('a2_48k.wav', yu2, 48e3);

fs=48e+3; % sampling frequency
ts=1/fs; % sampling interval
t=0:ts:10-ts; % time axis

% carrier parameters: amplitude, frequency and phase
C1=1; C2=1;

fctl=5e+3;

fct2=-15e+3;

tetac1=0*(pi/180);

tetac2=0*(pi/180);

% carrier signal
ctl=Cl*exp(2*1li*pi*fctl*t+tetacl);
ct2=C2*exp(2*Li*pi*fct2*t+tetac?);

% Complex AM (DSB-WC) signal
m=0.2*(yul'+3).*ct1+0.2*(yu2'+3).*ct2;

% IF signal is recorded in wav file

% IF normalized
m=m./(1.1*max(abs(m)));
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audiowrite('DSB_WC.waV', [real(m)’, imag(m)'], fs);

B2. Filter Design

clear all;
% filter cut at 4KHz 48KSps (24KHz)
no_coeff = 254; % number of taps (coefficients)

fc = 4e3; % cut-off frequency
nbw = 24e3; % nyqusit bandwidth (limit)
type ='low’; % type of the filter

% FIR filter structure

yu=firl(no_coeff,fc/nbw,type);

% Filter coefficients are cast in 16-bit signed integers for using in FIR IP in
FPGA

z=int16(32767*(yu./max(abs(yu))));

freqz(yu); % Bode-plot of frequency response

% coefficients of the designed filter are stored in a file

fid = fopen('exp.txt','w');

fprintf(fid,'%i ',2);

fclose(fid);

B3. Simulation

% (DSB-WC) Demod. with MUSIC by B. ERKAL 2020
% AM receiver code by Bilgehan ERKAL

% Karabuk 2020

clear all;

% complex IF file loading (48Khz stereo)
[iffl, afs]=audioread('DSB_WC.wav');
[y1l,~]=size(iffl);

% complex conversion
yul=iffl(1:y1,1)'+1i*iff1(1:y1,2)’;

% IF signal is normalized
yul=yul./(1.01*max(abs(yul)));

fs=afs; % sampling frequency

ts=1/fs; % sampling interval

t=0:ts:10-ts; % time axis

% carrier parameters: amplitude, frequency and phase
C1=0.1;

fctl=-5e+3;

tetac1=0*(pi/180);

% carrier signal
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ct1=Cl*exp(2*li*pi*fctl*t+tetacl);
ct2=Cl*exp(2*li*pi*12e3*t+tetacl);

% demodulation
% complex frequency downshift operation
iffc=yul.*ctl;

% zero IF cut at 4KHz
yu=filter(firl(255,4e3/(24e3)),1,iffc);

% complex result is normalized and recorded
yu=yu./(1.01*max(abs(yu)));
audiowrite('resl.wav', [real(yu)',imag(yu)], fs);

% AM detection

% complex upshifting for detector IF ofset
yu=yu.*ct2;

% complex result is normalized and recorded
yu=yu./(1.01*max(abs(yu)));
audiowrite('res2.wav', [real(yu)',imag(yu)], fs);

% AM demodulation using squaring method

% first complex IF is realized

dem=real(yu)+imag(yu);

% real IF is normalized and recorded
dem=dem./(1.01*max(abs(dem)));
audiowrite('res3.wav', dem, fs);

% actual demodulation of real IF signal is accomplished here
dem=dem.*dem;

% Raw demodulation result is normalized and recorded
dem=dem./(1.01*max(abs(dem)));
audiowrite('res4.wav', dem, fs);

% Filtered demodulation result is normalized and recorded
dem=filter(firl(255,4e3/(24e3)),1,dem);
dem=dem./(1.01*max(abs(dem)));

audiowrite('res5.wav', dem, fs);

B4. Analysis and Performance Evaluation

% Demod. performance analysis

% AM receiver analysis by Bilgehan ERKAL
% Karabuk 2020

clear all;

% stereo comparison file loading (48Khz stereo)

[iff1, afs]=audioread('a2_aligned_st_Lres5 Ra2.wav');
[y1,~]=size(iffl);

% channel seperation and gain error correction
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rec=1.0966*iff1(1:y1,1)";
al=1*iff1(1:y1,2)";

% Calculate rms error and rms signal

diff=(al-rec)/2;

err=(mean(diff.*2))"0.5;

al_rms=(mean(al.”2))"0.5;

fprintf(‘'rms error: %d \NSNR(dB): %d \n', err, 20*log10(err/al_rms));
audiowrite('diff.wav', diff, afs);
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C1. Top Module (cnt)

-- Company: KARABUK UNIVERSITY

-- Engineer: Bilgehan ERKAL — Ali HANDER
-- Create Date: 14:07:31 04/21/2020

-- Design Name: AM RX

-- Module Name: cnt - Behavioral

-- Project Name: AM RX

-- Target Devices: Spartan6-L X9

-- Tool versions:

-- Description: AM Receiver

-- Dependencies:

-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:

library IEEE;
use IEEE.STD_ LOGIC 1164.ALL,;
use IEEE.STD_LOGIC_UNSIGNED.ALL,;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity cnt is
Port ( SW :in STD_LOGIC_VECTOR(3 downto

0);

RX :in STD_LOGIC;--p4_1--green

TX . out STD_LOGIC;--p4_2--
white

LED : out STD_LOGIC_VECTOR(7
downto 0);

AUDIO :out STD_LOGIC;--p4_3

AC97_SDO : out STD_LOGIC;--p3_2--
mimas_pl 11

AC97_SDI : in STD_LOGIC;--p3_3--
mimas_pl 14

AC97_BIT_CLK in STD_LOGIC;--p3_4--
mimas_pl 13
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AC97 RESETN  : out STD_LOGIC;--p3_5--

mimas_pl 16

AC97 _SYNC : out STD_LOGIC;--p3_6--
mimas_pl 15

CLK_IN :in STD_LOGIC--100MHz on-
board clock

);
end cnt;

architecture Behavioral of cnt is

component pli2

port
(-- Clock in ports
CLK_IN1 -in std_logic;
-- Clock out ports
CLK OUT1 :out std_logic;
CLK_0OUT2 ;out std_logic
);

end component;

COMPONENT AC97_ADAC

PORT(
AC97_int_SDI : IN std_logic;
AC97_int_ BIT_CLK : IN std_logic;
DAC_L : INstd_logic_vector(17 downto 0);
DAC_R : IN std_logic_vector(17 downto 0);
clk 48 : IN std_logic;
AC97_int_SDO : OUT std_logic;
reset n: IN std_logic;
AC97_int_ SYNC : OUT std_logic;
ADC_L : OUT std_logic_vector(17 downto 0);
ADC_R : OUT std_logic_vector(17 downto 0)
);

END COMPONENT;

COMPONENT sercomrx
PORT(
bin5 : OUT std_logic_vector(7 downto 0);
bin4 : OUT std_logic_vector(7 downto 0);
bin3 : OUT std_logic_vector(7 downto 0);
bin2 : OUT std_logic_vector(7 downto 0);
binl : OUT std_logic_vector(7 downto 0);
bin0 : OUT std_logic_vector(7 downto 0);

level :OUT std_logic_vector(6 downto 0);
data_valid: OUT std_logic;

clk : IN std_logic;
serin  : IN std_logic;
reset_n - IN std_logic

63



);

END COMPONENT;

COMPONENT sercomtx

PORT(

bin5 : IN std_logic_vector(7 downto 0);

bin4 : IN std_logic_vector(7 downto 0);

bin3 : IN std_logic_vector(7 downto 0);

bin2 : IN std_logic_vector(7 downto 0);

binl : IN std_logic_vector(7 downto 0);

binO : IN std_logic_vector(7 downto 0);
data_valid : IN std_logic;

clk : IN std_logic;

reset n: IN std_logic;

binout5 : OUT std_logic_vector(7 downto 0);
binout4 : OUT std_logic_vector(7 downto 0);
binout3 : OUT std_logic_vector(7 downto 0);
binout2 : OUT std_logic_vector(7 downto 0);
binoutl : OUT std_logic_vector(7 downto 0);
binoutO : OUT std_logic_vector(7 downto 0);
serout : OUT std_logic

);

END COMPONENT;

COMPONENT frecalc

PORT(

digit_in : IN std_logic_vector(27 downto 0);
reset n: IN std_logic;

data_valid : IN std_logic;

clk : IN std_logic;

phi_inc_out : OUT std_logic_vector(31 downto 0)
);

END COMPONENT;

COMPONENT am_rx

PORTY(

phi_inc - IN std_logic_vector(31 downto 0);
| in . IN std_logic_vector(15 downto 0);
Q_in - IN std_logic_vector(15 downto 0);
s_sel - IN std_logic_vector(3 downto 0);
clk_48KHz : IN std_logic;

clk - IN std_logic;

clip_indicator : out std_logic_vector(7 downto 0);
| out :OUT std_logic_vector(15 downto 0);
Q_out : OUT std_logic_vector(15 downto 0)

);

END COMPONENT;

COMPONENT dac16
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PORT(
Clk : IN std_logic;
Data : IN std_logic_vector(15 downto 0);
PulseStream : OUT std_logic
)i
END COMPONENT;

-- serial communication module signals

-- command completion stage indicator

signal stage : std_logic_vector(6 downto 0) := (others =>'0");

signal sample : std_logic :="'0";

-- command data valid indicators

signal data_valid : std _logic :="0";

-- completed command data

signal dat5 : std_logic_vector(7 downto 0) := (others =>'0");

signal dat4 : std_logic_vector(7 downto 0) := (others =>'0");

signal dat3 : std_logic_vector(7 downto 0) := (others =>'0");

signal dat2 : std_logic_vector(7 downto 0) := (others =>'0");

signal datl : std_logic_vector(7 downto 0) := (others =>'0");

signal datO : std_logic_vector(7 downto 0) := (others =>'0");

-- command data application digits indicating control frequency data
signal dig5 : std_logic_vector(7 downto 0) := (others =>'0";

signal dig4 : std_logic_vector(7 downto 0) := (others =>'0");

signal dig3 : std_logic_vector(7 downto 0) := (others =>'0";

signal dig2 : std_logic_vector(7 downto 0) := (others =>'0");

signal digl : std_logic_vector(7 downto 0) := (others =>'0";

signal dig0 : std_logic_vector(7 downto 0) := (others =>'0");

-- AM receiver module signals

-- phase increment value necessary to steer frequency of primary nco of am
receiver

signal phi_inc : std_logic_vector(31 downto 0) := (others =>"'0");

-- AM receiver output

signal I_out : std_logic_vector(15 downto 0) := (others =>'0");
signal Q_out : std_logic_vector(15 downto 0) := (others =>"'0");

-- AM receiver input

signal |_in : std_logic_vector(15 downto 0) := (others =>'0");

signal Q _in : std_logic_vector(15 downto 0) := (others =>"'0");

-- FPGA master reset signal

signal res_count : std_logic_vector(24 downto 0) := (others =>'0");
signal reset_n : std_logic :='0";

-- ADAC (Audio card) reset signal

signal reset_n2 : std_logic :="0",

signal res_count?2 : std_logic_vector(10 downto 0) := (others =>'0");
-- clk_12288 12.288MHz clock live indicator

signal flash : std_logic_vector(22 downto 0) := (others =>'0");
signal clk_count : std_logic_vector(8 downto 0) := (others =>'0");

-- ADAC input and output signals

signal adata_ L :std_logic_vector(17 downto 0) := (others =>'0");
signal adata R :std_logic_vector(17 downto 0) := (others =>'0");
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signal dacdata_L : std_logic_vector(17 downto 0) := (others =>'0");
signal dacdata_R : std_logic_vector(17 downto 0) := (others =>'0");
-- clipping indicator

signal c_ind : std_logic_vector(7 downto 0);

--clock signals

signal clk - std_logic :='0";-- 36.684MHz master clock

signal clk_48KHz : std_logic :="'0";-- 48KHz sampling rate clock

signal clk_12288 : STD_LOGIC; -- 12.288MHz ADAC master
clock

signal clk_6144 :STD_LOGIC :='0";-- 6.144MHz plI2 input clock

signal clk_36864 : STD_LOGIC; -- 36.684MHz master clock
begin

-- master module connectors

clk <= clk_36864;

AC97 RESETN <= reset_n2;

--rx--p4_1 --> tx pin of usb2serial cable (green)

--tx--p4_2 --> rx pin of ush2serial cable (white)
--gnd--(black)

--audio--p4_3

-- ADAC connectors

--ADC outputs

|_in <=adata_L(17 downto 2);

Q_in <=adata_R(17 downto 2);

--DAC inputs

dacdata_L <=1_out(15) & I_out(15 downto 0) & "0";
dacdata_ R <= Q_out(15) & Q_out(15 downto 0) & "0";

-- led indicator connectors, uncomment necessary and

-- comment out unnecessary

--led(6 downto 0) <= stage(6 downto 0);--sercom completion levels
--led(7) <= flash(22);-- clock live indicator

led(7 downto 0) <= c_ind(7 downto 0);--clipping indicators

-- master clock generator
Inst_pll2 : pll2
port map
(-- Clock in ports
CLK_IN1=>clk 6144,
-- Clock out ports
CLK_OUT1 => clk_36864,
CLK OUT2 =>clk_12288
);
-- pl12 input reference frequency (6.144MHz) derivator
-- master reference used is half of ADAC Bit clock at 12.288MHz
clk_6144 proc:process(AC97_BIT_CLK)
begin
if rising_edge(AC97_BIT_CLK) then
clk 6144 <=not clk_6144;
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end if;
end process;

-- Sampling rate clock generator derived from 36.864MHz master clock
--36864/(384*2) = 48KHz
clk48KHz_proc:process(clk)
begin
if rising_edge(clk) then
if reset_n="1"then
if clk_count = 383 then
clk_48KHz <= not clk_48KHz;
clk_count <= (others =>'0");

else
clk_count <=clk_count + 1,
clk_48KHz <= clk_48KHz;
end if;
else
clk_count <= clk_count;
clk_48KHz <="0";
end if;

end if;
end process;

-- Master reset of FPGA fabric
reset_proc: process(AC97_BIT_CLK)
begin
if rising_edge(AC97_BIT_CLK) then
if res_count(24) ='1' then
res_count <= res_count;
else
res_count <=res_count + 1;
end if;
end if;
end process;

reset_n <=res_count(24);

-- ADAC reset generator, completed before master FPGA reset
-- It is solely derived from 100.00MHz FPGA master clock which is
-- the only live and stable clock before ADAC reset is completed
AC97_reset_proc: process(clk_in)
begin
if rising_edge(clk_in) then
if res_count2(10) ='1' then
res_count2 <= res_countz;
else
res_count2 <=res_count2 + 1;
end if;
end if;
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end process;
reset_n2 <=res_count2(10);

-- 12.288MHz clock live indicator
flash_proc: process(clk_12288)
begin
if rising_edge(clk_12288) then
flash <= not flash;
end if;
end process;

-- command data receive complete indicator
sample_proc: process(clk)
begin
if rising_edge(clk) then
if data_valid = '1' then
sample <= not sample;
else
sample <= sample;
end if;
end if;
end process;

-- ADAC module (AC97 soundcard module)

Inst. AC97_ADAC: AC97_ADAC PORT MAP(
AC97 _int_ SDO => AC97_SDO,
AC97_int_SDI => AC97_SDI,
AC97 int BIT CLK =>AC97 BIT _CLK,
reset_n=>reset n,

AC97 int_ SYNC => AC97_SYNC,
DAC L =>dacdata L,
DAC_R => dacdata_R,
ADC L =>adata L,
ADC R =>adata_R,
clk_48 => clk_48KHz
);

-- Serial communication receive module
-- This module is used to accept commands from PC at 9600bps
Inst_sercomrx: sercomrx PORT MAP(
bin5 => dat5,
bin4 => dat4,
bin3 => dat3,
bin2 => dat2,
binl => dat1,
bin0 => dat0,
level => stage,
data_valid => data_valid,
clk => clk,
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serin => rx,
reset_n =>reset_n

);

-- Serial communication transmit module
-- This module is used to echo received commands to PC at 9600bps
Inst_sercomtx: sercomtx PORT MAP(

binout5 => dig5,

binout4 => dig4,

binout3 => dig3,

binout2 => dig2,

binoutl => dig1l,

binout0 => dig0,

bin5 => dat5,

bin4 => dat4,

bin3 => dat3,

bin2 => dat2,

binl => dat1,

bin0 => dat0,

data_valid => data_valid,

clk => clk,

serout => tx,

reset_n =>reset_n

);

-- Frequency calculation module
-- Takes frequency data which comes from PC as input
-- and calculates phase increment factor necessary to steer
-- primary nco frequency used in the AM RX module
Inst_frecalc: frecalc PORT MAP(
digit_in => dig5 & dig4(3 downto 0) & dig3(3 downto 0) & dig2(3
downto 0) & dig1(3 downto 0) & dig0(3 downto 0),
phi_inc_out => phi_inc,
reset_n =>reset_n,
data_valid => data_valid,
clk =>clk
);

-- Actual AM receiver module
Inst_am_rx: am_rx PORT MAP(

phi_inc => phi_inc,
|_out=>1_out,
Q _out=>Q out,
| _in=>1_in,
Q in=>Q._in,
s_sel => SW,
clip_indicator => ¢ _ind,
clk_48KHz => clk_48KHz,
clk =>clk
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);

-- Auxilary analog output port as Sigma-Delta DAC
Inst_dacl6: dac16 PORT MAP(
Clk => clk,
Data => not |_out(15) & |_out(14 downto 0),
PulseStream => audio
);

end Behavioral;

C2. LM4550 Soundcard Controller Module (AC97_ADAC)

-- Company: KARABUK Un.

-- Engineer: Bilgehan ERKAL

-- Create Date: 11:26:16 04/28/2020

-- Design Name:

-- Module Name: AC97_ADAC - Behavioral
-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

-- Dependencies:

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

-- Refer to LMA4550 datasheet for details

library IEEE;
use IEEE.STD LOGIC_1164.ALL,;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL,;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

--library UNISIM,;

--use UNISIM.VComponents.all;

entity AC97_ADAC is

Port(
AC97_int_SDO :out STD_LOGIC;
AC97_int_SDI :in STD_LOGIC;
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AC97_int_ BIT_CLK:in STD_LOGIC;

reset_n :in STD_LOGIC;
AC97_int_SYNC :out STD_LOGIC;
DAC L : in
STD_LOGIC_VECTOR(17 downto 0);
DAC R in
STD_LOGIC_VECTOR(17 downto 0);
ADC_L out
STD_LOGIC_VECTOR(17 downto 0);
ADC_R out
STD_LOGIC_VECTOR(17 downto 0);
clk_48 :inSTD_LOGIC
);
end AC97_ADAC;
architecture Behavioral of AC97_ADAC is
COMPONENT comrom
PORT (
clka: IN STD_LOGIC;
addra: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
douta : OUT STD_LOGIC_VECTOR(23 DOWNTO 0)
);
END COMPONENT;
-- valid command present indicator signal
signal valbit :STD_LOGIC :="1"
-- output shift register for sending command and DAC data to soundcard
signal AC_97 out_sreg :std_logic_vector(255 downto 0) := (others =>'0");
-- input shift register for receiving command result data and ADC data
signal AC_97 in_sreg  :std_logic_vector(255 downto 0) := (others =>'0");
-- command data signal
signal comrom_data . std_logic_vector(23 downto 0) := (others =>
0);
-- command data row signal used to address command rom
signal comrom_adr . std_logic_vector(3 downto 0) := (others =>
07;
-- DAC input registers
signal DAC reg_ L . std_logic_vector(17 downto =
(others =>"'0");
signal DAC reg R . std_logic_vector(17 downto =

(others =>"'0");
-- ADC output registers

signal ADC reg L . std_logic_vector(17 downto
(others =>'0");
signal ADC reg R . std_logic_vector(17 downto

(others =>'0";
-- preloaders used to resample module input before sending out to DAC
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signal L_in . std_logic_vector(17 downto 0) := (others =>
0);

signal R_in . std_logic_vector(17 downto 0) := (others =>
0);

-- preregisters used to resample incoming ADC data before output by module
signal L_out . std_logic_vector(17 downto 0) := (others =>
07;

signal R_out . std_logic_vector(17 downto 0) := (others =>
07;

-- zero fill for output shift register

signal zero160 > std_logic_vector(159 downto 0) := (others =>
0);

-- synchronization signals
signal AC97_int SYNC reg : STD_LOGIC;
signal sync_count : std_logic_vector(7 downto 0) := (others =>'0");

begin
AC97_int_ SDO <= AC_97 out_sreg(255); -- DAC and command data output
AC97_int_ SYNC <= AC97_int_SYNC _reg; -- soundcard sync input
-- connectors for ADC
ADC_L <=L_out;
ADC_R<=R_out;
-- Soundacard sync process
-- Generates a 48KHz sync clock necessary for soundcard using bit clock
AC97_SYNC_proc:process(AC97_int_ BIT_CLK)
begin
if rising_edge(AC97_int_BIT_CLK) then
if reset_n ="1"then -- end of reset
sync_count <=sync_count + 1;
if sync_count = 0 then
AC97_int SYNC reg <= '1';-- start of sync

impulse
else
if sync_count = 16 then -- end of sync impulse
AC97_int SYNC reg <="0}
else
AC97_int_ SYNC reg <=
AC97_int_SYNC _reg;-- other times, conserve status
end if;
end if;

else -- reset conditions
sync_count <= (others =>'0";
AC97_int SYNC reg <="0}
end if;
end if;
end process;
-- command rom module
-- comrom holds initialization command data applied immediately after reset
Inst_comrom : comrom
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PORT MAP (

clka=> AC97_int BIT_CLK,
addra => comrom_adr,

douta => comrom_data

);

-- data and command data acquisition process
AC 97 ADAC proc:process(AC97_int_ BIT_CLK)
begin
if rising_edge(AC97_int_BIT_CLK) then
if reset_n="1"then -- end of reset
-- serial data input from soundcard is shifted in to input
shift register (ADC data)
AC 97 in_sreg <= AC_97 in_sreg(254 downto 0) &
AC97_int_SDlI;
-- start by the start of sync signal
if sync_count = 1 then
-- reload output shift register with fresh
command data from comrom and DAC data from DAC data loading registers
-- Slot0, Slot1, Slot2, Slot3-4 DAC data
AC 97 out sreg <= 'l' & valbit & valbit &
"11000" & X"00" & comrom_data(23 downto 16) & X"000" & comrom_data(15
downto 0) & X"0" & DAC reg_L(17 downto 0) & "00" & DAC reg R(17
downto 0) & "00" & zero160;
else
AC 97 out sreg <= AC 97 out_sreg(254
downto 0) & '0';-- other times animate shift register and send data to soundcard
end if;

-- Time to withdraw ADC data coming from soundcard
and loaded to input shift register
if sync_count = 2 then
ADC reg L <= AC_97_in_sreg(199 downto
182);--slot3 data to ADC data input register Left channel
ADC reg R <= AC_97 in_sreg(179 downto
162);--slot4 data to ADC data input register Right channel
else -- other times conserve ADC data input registers
ADC reg L <=ADC reg L;
ADC reg R <=ADC reg_R;
end if;

-- Time to load preloading output registers with fresh
data (DAC and command data)
if sync_count = 3 then
-- resampled module input loaded to preloading
output registers for DAC data
DAC reg L <=L_in;
DAC reg R<=R_in;
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-- if all the coomands listed in the command
rom is applied then enter wait state
if comrom_adr =5 then
comrom_adr <= comrom_adr; -- wait at
the last command
else
comrom_adr <= comrom_adr + 1; --
proceed with the new command in the list
end if;

-- if last command is applied then mark
repeating last command as invalid by clearing the command valid bits
if (comrom_adr = 4) or (comrom_adr = 5) then
valbit <= '0; -- invalid command
signaled
else
valbit <="1"; -- valid command signaled

end if;

else -- other times conserve status, enter wait state
DAC reg L <=DAC reg_L;
DAC reg R <=DAC reg_R;
comrom_adr <= comrom_adr;
valbit <= valbit;

end if;

else -- reset status

valbit <="1";

AC_97_out_sreg <= (others =>'0";

AC 97 in_sreg <= (others =>"'0");

comrom_adr <= (others =>"'0");

DAC reg_L <= (others =>"'0";

DAC _reg_R <= (others =>"'0");

ADC reg_L <= (others =>"'0";

ADC reg_R <= (others =>'0");

zerol60 <= (others =>'0");

end if;
end if;
end process;

-- Process for resampling input and output of ADAC module at 48KHz
AC97_sample_proc:process(clk_48)
begin
if rising_edge(clk_48) then
if reset_n="1"then -- end of reset
L in<=DAC _L;
R_in<=DAC_R;
L out<=ADC reg L;
R_out <= ADC _reg_R;
else -- reset in order, clear registers to inital values
L_in <= (others =>"'0");
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R_in <= (others =>'0");
L_out <= (others =>"'0");
R_out <= (others =>"'0");
end if;
end if;
end process;

end Behavioral;

C3. Serial RX Module (Sercomrx)

-- Company:

-- Engineer:

-- Create Date: 17:48:58 04/01/2020

-- Design Name:

-- Module Name: sercomrx - Behavioral
-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

-- Dependencies:

-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:

library IEEE;
use IEEE.STD _LOGIC_1164.ALL,;
use IEEE.STD LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity sercomrx is

Port(
bin5 : OUT std_logic_vector(7 downto 0);
bin4 : OUT std_logic_vector(7 downto 0);
bin3 : OUT std_logic_vector(7 downto 0);
bin2 : OUT std_logic_vector(7 downto 0);
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binl : OUT std_logic_vector(7 downto 0);
bin0 : OUT std_logic_vector(7 downto 0);
level :OUT std_logic_vector(6 downto 0);
data_valid: OUT std_logic;

clk - IN std_logic;
serin  : IN std_logic;
reset_n - IN std_logic

);

end sercomrx;
architecture Behavioral of sercomrx is

--Received data register

signal data : std_logic_vector(7 downto 0) := (others =>"0");

--Received command completion data

signal stage : std_logic_vector(6 downto 0) := (others =>'0");
--Received data bins in ASCII form

signal dat5 : std_logic_vector(7 downto 0) := (others =>'0');--Sign (+/-)
signal dat4 : std_logic_vector(7 downto 0) := (others =>'0');--MSB
signal dat3 : std_logic_vector(7 downto 0) := (others =>'0");

signal dat2 : std_logic_vector(7 downto 0) := (others =>'0");

signal datl : std_logic_vector(7 downto 0) := (others =>'0");

signal datO : std_logic_vector(7 downto 0) := (others =>'0");--LSB
--Received bins counter

signal dat_count : std_logic_vector(2 downto 0) := (others =>'0");
--Serial input resample shift register

--Input is resampled 4 times in order to catch bits appropriately (10bits *4 =
40bits)

signal bits : std_logic_vector(39 downto 0) := (others =>'1");
--resampling clock divider

signal counter : std_logic_vector(9 downto 0) := (others =>'0");
--Received byte ok signal

signal byte_ok : std_logic :='0";

--Received byte ok signal delay registers

signal dat_ok1 : std_logic :='0";

signal dat_ok : std_logic :='0;

--Data valid signal, When dat_valid is active there is new and valid data at data
bin outputs

signal blink : std_logic :='0";

signal blink_del : std_logic :='0";

signal dat_valid : std_logic :='0";

begin
--calculate and generate byte ok signal (indicates that valid start-bit- 8-bit data
and stop-bit sequence in the bits resampling register)

byte_ok <= -- start-bit "0" bits(2:1) + LSB first, MSB last data bits (0:7) +
stopbit "0" bits(38:37)

76



(bits(38) and bits(37)) and (bits(34) xnor
bits(33)) and (bits(30) xnor bits(29)) and (bits(26) xnor bits(25)) and
(bits(22) xnor bits(21)) and (bits(18) xnor bits(17)) and
(bits(14) xnor bits(13)) and (bits(10) xnor bits(9)) and
(bits(6) xnor bits(5)) and (bits(2) nor bits(1));
--module connectors
bin5 <= dat5;
bin4 <= dat4;
bin3 <= dat3;
bin2 <= dat2;
binl <= datl;
bin0 <= dat0;
data_valid <= dat_valid;
level <= stage;
--serial communication process
ser_comm: process(clk)--ticks at 36864MHz
begin
if rising_edge(clk) then
if reset_n="1"then
if counter = 959 then --resampling clock at
36864/960 = 4* 9600 = 38400
bits <= serin & bits(39 downto 1);--
resample serial input, data comes as LSB first
counter <= (others => '0');--reset
counter
else
counter <= counter+1;--wait till next
sample
end if;
if byte_ok = '1' then-- there is valid data in bits
resample register transfer it to data register
data <= bits(34) & bits(30) & bits(26) &
bits(22) & bits(18) & bits(14) & bits(10) & bits(6);
bits <= (others => '1");--setup bits
register for next new data
end if;
else--reset in order
data(7 downto 0) <= (others =>"'0");
bits(39 downto 0) <= (others =>'1");
counter(9 downto 0) <= (others =>'0");
end if;
end if;
end process;
--byte ok signal delay process
dat_ok_proc: process(clk)
begin
if rising_edge(clk) then
dat_okl <= byte ok;
dat_ok <= dat_ok1,;
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end if;
end process;
--transfer valid data to apropriate data bin process
--a FSM is used to track the next data bin to reload
-- if data is not valid for the actual data bin
-- all data located in the data bins so far is discarded
-- and the process starts from the beginning
dat_xfer_proc: process(clk)
begin
if rising_edge(clk) then
if reset_n="1"then
if dat_ok ='1' then
CASE dat_count(2 downto 0) IS
WHEN "000" => --test data for
f-command
dat5 <= dat5;
dat4 <= dat4;
dat3 <= dat3;
dat2 <= dat2;
datl <= datl;
dat0 <= dat0;
blink <= blink;
if data = 102 then--
character "f" is received, next incoming data must be sign(+ or -)
stage(0) <= '1';--
first stage is completed successfully
dat_count <=
dat_count + 1;--proceed with next data
else
dat_count <=
(others => '0");-- received data is not valid (other than "f" character), start from
beginning
stage <= (others
=>'0");-- clear all stages
end if;
WHEN "001" => --test data for
sign
dat4 <= dat4;
dat3 <= dat3;
dat2 <= dat2;
datl <= datl,;
dat0 <= datO;
blink <= blink;
if ((data = 43) or (data =
45)) then--data is plus or minus character
stage(1) <="'1}
dat5 <= data;--
record it in first data bin from left
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dat_count <=

dat_count + 1;
else--start all over again

dat_count <=
(others =>'0");

stage <= (others
=>"0);

dat5 <= dat5;

end if;
WHEN "010" =>--test for msb
(it must be either a "0", "1" or "2")
dat5 <= dat5;
dat3 <= dat3;
dat2 <= dat2;
datl <= datl;
dat0 <= datO;
blink <= blink;
if ((data > 47) and (data
< 51)) then--it is a "0", "1" or "2"
stage(2) <="1},
dat4 <= data;--
then register it
dat_count <=
dat_count + 1;
else--start all over again
dat_count <=
(others =>'0";
stage <= (others
=>'0");
dat4 <= dat4;
end if;
WHEN "011" =>--test for
second msb (it must be either a "0", "1", "2" or "3" if first msb is "2" otherwise 0-
9)
dat5 <= datb;
dat4 <= dat4;
dat2 <= dat2;
datl <= datl;
dat0 <= datO;
blink <= blink;
if dat4 = 50 then--first
msb is "2"
if ((data > 47)
and (data < 52)) then
stage(3)
<='1}
dat3 <=
data;
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<=dat_count + 1;
again

<= (others =>'0");
(others =>'0";

dat3;

and (data < 58)) then
<= '1';

data;

<=dat_count + 1;
again

<= (others =>'0");
(others =>'0";

dat3;

can be 0-9)

< 58)) then

dat_count + 1;

(others =>'0";

=>'0);

dat_count
else--start all over
dat_count
stage <=
dat3 <=
end if;
else-- firstmsbisO or 1
if ((data > 47)
stage(3)
dat3 <=
dat_count
else--start all over
dat_count
stage <=
dat3 <=
end if;
end if;

WHEN "100" =>--third msb (it
datb <= dat5;
dat4 <= dat4;
dat3 <= dat3;
datl <= datl;
dat0 <= datO;
blink <= blink;

if ((data > 47) and (data
stage(4) <="1}
dat2 <= data;

dat_count <=

else--start all over again
dat_count <=

stage <= (others
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(0-9)

< 58)) then

dat_count + 1;

(others =>'0");

=> 'O');

'0");--start at the beginning for new data

< 58)) then

blink;--changeover blink

=>'0');

over again

(others =>'0";
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dat2 <= dat2;
end if;
WHEN "101" =>-- fourth msb

dat5 <= dat5;
dat4 <= dat4;
dat3 <= dat3;
dat2 <= dat2;
dat0 <= datO;
blink <= blink;

if ((data > 47) and (data

stage(5) <="'1};
datl <= data;
dat_count <=

else--start all over again
dat_count <=

stage <= (others

datl <= datl;
end if;
WHEN "110" =>--Isb (0-9)
dat5 <= dat5;
dat4 <= dat4;
dat3 <= dat3;
dat2 <= dat2;
datl <= datl;
dat_count <= (others =>

if ((data > 47) and (data

stage(6) <="'1";
dat0 <= data;
blink <= not

else--start all over again
stage <= (others

blink <= blink;
dat0 <= datO;
end if;
WHEN OTHERS =>--start all

dat_count <=

datb <= dat5;
dat4 <= dat4;



dat3 <= dat3;

dat2 <= dat2;
datl <= datl;
datO <= datO;
blink <= blink;
stage <= (others
=>"0);
END CASE;
else-- there is no valid new data so wait for one
to come
dat_count <= dat_count;
dat5 <= dat5;
dat4 <= dat4;
dat3 <= dat3;
dat2 <= dat2;
datl <= datl;
datO <= datO;
blink <= blink;
stage <= stage;

end if;
else-- reset in order
dat_count <= (others =>'0");
dat5 <= (others =>'0");
dat4 <= (others =>'0";
dat3 <= (others =>'0");
dat2 <= (others =>"'0");
datl <= (others =>'0");
dat0 <= (others =>'0";
blink <="'0"
stage <= (others =>'0");
end if;
end if;
end process;
-- data valid signal process
dat_valid_proc: process(clk)
begin
if rising_edge(clk) then
if reset_n="1"then
dat_valid <= blink xor blink_del;--there is
changeover in blink so there is new valid data
blink_del <= blink;-- delay blink signal so that
data valid signal is active for only one clock cycle
else--reset in order
dat_valid <="0",
blink_del <="0;
end if;
end if;
end process;
end Behavioral,
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C4. Serial TX Module (Sercomtx)

-- Company:
-- Engineer:

-- Create Date: 17:48:58 04/01/2020

-- Design Name:
-- Module Name:
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:

-- Dependencies:

-- Revision:

sercomrx - Behavioral

-- Revision 0.01 - File Created

-- Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL,;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity sercomtx is

Port(
binout5
binout4
binout3
binout2
binoutl
binout0
bin5
bin4
bin3
bin2
binl
bin0

: OUT std_logic_vector(7 downto 0);
: OUT std_logic_vector(7 downto 0);
: OUT std_logic_vector(7 downto 0);
: OUT std_logic_vector(7 downto 0);
: OUT std_logic_vector(7 downto 0);
: OUT std_logic_vector(7 downto 0);

- IN std_logic_vector(7 downto 0);
- IN std_logic_vector(7 downto 0);
- IN std_logic_vector(7 downto 0);
- IN std_logic_vector(7 downto 0);
- IN std_logic_vector(7 downto 0);

IN std_logic_vector(7 downto 0);

data_valid: IN std_logic;
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clk - IN std_logic;
serout : OUT std_logic;
reset_n - IN std_logic

);

end sercomtx;
architecture Behavioral of sercomtx is

COMPONENT text_rom
PORT (
clka: IN STD_LOGIC;
addra: IN STD_LOGIC_VECTOR(5 DOWNTO 0);
douta : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
);
END COMPONENT;
-- output digit data registers
signal dig5 : std_logic_vector(7 downto 0) := (others =>'0";
signal dig4 : std_logic_vector(7 downto 0) := (others =>'0");
signal dig3 : std_logic_vector(7 downto 0) := (others =>'0";
signal dig2 : std_logic_vector(7 downto 0) := (others =>'0");
signal digl : std_logic_vector(7 downto 0) := (others =>'0";
signal dig0 : std_logic_vector(7 downto 0) := (others =>"'0);
-- serial data transfer registers
signal busyshiftreg : std_logic_vector(9 downto 0) := (others =>'0");
signal datashiftreg : std_logic_vector(9 downto 0) := (others =>'1");
-- clock divider counter
signal txcounter : std_logic_vector(12 downto 0) := (others =>'0";
-- data register, reloading register for serial data transfer register
signal data : std_logic_vector(7 downto 0) := (others =>'0");
-- caption text rom signals
signal rom_counter : std_logic_vector(7 downto 0) := (others =>'0";
signal douta : std_logic_vector(7 downto 0) := (others =>'0");
-- internal control signals
signal state_counter : std_logic_vector(3 downto 0) := (others =>"'0");
signal timer : std_logic_vector(1 downto 0) := (others =>'0");
signal valid_data : std_logic :='0";
signal data2send : std_logic :="'0";

begin
--caption text rom
Inst_romtext : text_rom
PORT MAP (
clka => clk,
addra => rom_counter(5 downto 0),
douta => douta
);
-- module connectors
serout <= datashiftreg(0);--data shifted as LSB first MSB last
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data2send <= (valid_data);
binout5 <= dig5;
binout4 <= dig4;
binout3 <= dig3;
binout2 <= dig2;
binoutl <=dig1;
binout0 <= dig0;
-- main serial communication process
ser_comm_tx: process(clk)
begin
if rising_edge(clk) then
if reset_n="1"then
if data2send = '1' then--there is data waiting to
be sent
if busyshiftreg(0) = '0' then--sender is
not busy then reload new data from data register to data shift register
busyshiftreg <= (others =>'1");--
set busy signal to prevent unintended reloading of data shift register
txcounter <= (others => '0");--
clear tx counter for the timing of new transfer
datashiftreg <="1"' & data & '0';--
reload datashift register with fresh data and also include start and stop bits
else
if txcounter = 3839 then--bit
clock = 36864/3840 = 9.6kbps
datashiftreg <= '1' &
datashiftreg(9 downto 1);--time to shift out a new bit
busyshiftreg <= '0' &
busyshiftreg(9 downto 1);--count sent bits when complete busy signal is made
inactive automatically
txcounter <= (others =>
'0");-- clear clock divider
else--wait till next bit to out

txcounter <=
txcounter+1,
datashiftreg <=
datashiftreg;
busyshiftreg <=
busyshiftreg;
end if;
end if;
else--there is no new data so wait in ready state
(not busy)

busyshiftreg <= (others =>'0");
txcounter <= (others =>'0");
datashiftreg <= (others =>"'1");

end if;
else-- reset in order
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busyshiftreg <= (others =>'0");
txcounter <= (others =>'0");
datashiftreg <= (others =>"'1");
end if;
end if;
end process;
-- outgoing data reloading process
data_proc: process(clk)
begin
if rising_edge(clk) then
if reset_n="1"then
CASE state_counter(3 downto 0) IS
WHEN "0000" =>-- caption text state,
withdraw text data from rom
if (rom_counter = 64) and
(busyshiftreg(0) = '0") then-- end of rom data so proceed with sending out
incoming data (echo received data)
state_counter <=
state_counter + 1;
valid_data <="0";
rom_counter <=
rom_counter;
data <= data;
else--withdraw text data from
rom
state_counter <=
state_counter;
valid_data <="1";
if busyshiftreg(0) = 'O’
then-- serial transmitter is ready for new data
rom_counter <=
rom_counter + 1;--proceed with next line
data <= douta;--
reload new data
else--serial  xmitter is
busy so wait until not busy
rom_counter <=
rom_counter;
data <= data;
end if;
end if;
WHEN "0001" =>--xmit sign of
incoming data
data <= dig5;
if (timer = "11") and
(busyshiftreg(0) = '0") then--data accepted for xmit so proceed next state and wait
till xmitter is ready to accept new data
state_counter <=
state _counter + 1,
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state_counter;

incoming data

(busyshiftreg(0) = '0") then

state_counter + 1;

state_counter;

(busyshiftreg(0) ='0") then

state _counter + 1;

State counter;
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valid_data <="'0";
timer <="00";

else--xmitter is not ready so wait

end if;

state_counter <=

valid_data <="1";
if timer = "11" then

timer <= timer;
else

timer <= timer +

end if;

WHEN "0010" =>--xmit first msb of

data <= dig4;

if  (timer =

"11")  and
State_counter <=

valid_data <="'0";

timer <="00";
else
state_counter <=
valid_data <="1";
if timer ="11" then
timer <= timer;
else
timer <= timer +
end if;
end if;
WHEN "0011" =>--xmit second msb
data <= dig3;
if (timer = "11") and
state_counter <=

else

valid_data <="'0";
timer <="00";

state_counter <=

valid_data <="'1"

if timer = "11" then
timer <= timer;

else



(busyshiftreg(0) ='0") then

state_counter + 1,

state_counter;

(busyshiftreg(0) ='0") then

state_counter + 1;

State counter;

(busyshiftreg(0) ='0") then

state_counter + 1,

88

timer <= timer +

end if;

end if;

WHEN "0100" =>--xmit third msb

data <= dig2;

if (timer = "11") and
state_counter <=
valid_data <="'0";
timer <="00";

else
state_counter <=
valid_data <="1";
if timer = "11" then

timer <= timer;
else
timer <= timer +

end if;

end if;

WHEN "0101" =>--xmit fourth msb

data <= dig1;

if (timer = "11") and
state_counter <=
valid_data <="0";
timer <="00";

else
state_counter <=

valid_data <="'1",
if timer ="11" then
timer <= timer;

else
timer <= timer +

end if;

end if;

WHEN "0110" =>--xmit Isb

data <= dig0;

if (timer = "11") and
state_counter <=

valid_data <="'0";



timer <="00";
else
state_counter <=
state_counter;
valid_data <="'1",
if timer ="11" then
timer <= timer;
else
timer <= timer +

end if;
end if;
WHEN "0111" =>--xmit CR
data <= X"0D";
if (timer = "11") and
(busyshiftreg(0) ='0") then
state_counter <=
state_counter + 1,
valid_data <="'0";
timer <="00";
else
state_counter <=
state_counter;
valid_data <="1";
if timer ="11" then
timer <= timer,
else
timer <= timer +

end if;
end if;
WHEN "1000" =>--xmit LF so proceed
new data with new line

data <= X"0A";
if (timer = "11") and
(busyshiftreg(0) ='0") then
state_counter <=

state_counter + 1;
valid_data <="'0";
timer <="00",;
else
state_counter <=
state_counter;
valid_data <="1",
if timer ="11" then
timer <= timer;
else
timer <= timer +
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end if;
end if;
WHEN OTHERS =>--start from
sending sign of new data (echo incoming data forever as there is new valid data)
if data_valid = '1' then--
there is new valid data waiting to be echoed out
state_counter <=
"0001";
else--wait for new data
state_counter <=
state_counter;
end if;
timer <="00";
valid_data <="0";
rom_counter <=
rom_counter;
data <= data;
END CASE;
else--reset in order
valid_data <="0";
rom_counter <= (others =>'0");
state_counter <= (others =>'0");
timer <= (others =>'0");
data <= X"61";
end if;
end if;
end process;
-- sample incoming data process
update_digit_proc: process(clk)
begin
if rising_edge(clk) then
if reset_n="1"then
if data_valid = '1' then--there is valid data
waiting to be echoed
dig5 <= bin5;
dig4 <= hin4;
dig3 <= bin3;
dig2 <= hin2;
digl <= binl;
dig0 <= bin0;
else--wait
dig5 <= dig5;
dig4 <= dig4;
dig3 <=dig3;
dig2 <= dig2;
digl <=digl;
dig0 <=dig0;
end if;
else--reset state (initial value -15000)
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digs <= X"2D";
dig4 <= X"31";
dig3 <= X"35";
dig2 <= X"30";
digl <= X"30"
dig0 <= X"30";
end if;
end if;
end process;

end Behavioral;

C5. Phase Increment Calculator Module (frecalc)

-- Company:

-- Engineer:

-- Create Date: 17:46:16 04/28/2020
-- Design Name:

-- Module Name: frecalc - Behavioral
-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

-- Dependencies:

-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:

library IEEE;
use IEEE.STD LOGIC_1164.ALL,;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL,;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

--library UNISIM,;

--use UNISIM.VComponents.all;

entity frecalc is

Port(
digit_in :in STD_LOGIC_VECTOR(27 downto 0);
phi_inc_out - out std_logic_vector(31 downto 0) := (others =>'0");
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reset n :in STD_LOGIC,;

data_valid :in STD_LOGIC;
clk - in std_logic
)i

end frecalc;

architecture Behavioral of frecalc is

COMPONENT FREQ
PORT(
bin : IN std_logic_vector(27 downto 0);
pinc : OUT std_logic_vector(31 downto 0)
);
END COMPONENT;

signal phi_inc : std_logic_vector(31 downto 0) := (others => '0');--calculated
phase increment

signal freq_counter : std_logic_vector(7 downto 0) := (others => '0");--wait
counter

signal pinc : std_logic_vector(31 downto 0) := (others => '0');--precalculation
register

signal bin : STD_LOGIC_VECTOR(27 downto 0);--input frequency data in
BCD format + sign data

begin
phi_inc_out <= phi_inc;

Inst_FREQ: FREQ PORT MAP(

bin => digit_in,
pinc => pinc
);
freq_proc:process(clk)
begin

if rising_edge(clk) then
if reset_n="1"then
if freq_counter = X"00" then--wait for new data
phi_inc <= phi_inc;
if data_valid = '1' then--there is new
data so start calculation
freq_counter <= freq_counter +
1
else
freq_counter <= freq_counter;
end if;
else-- calculation in progress
freq_counter <= freq_counter + 1;
if freq_counter = X"FF" then--
calculation is complete
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phi_inc <= pinc;--update phase
increment output with new one
else--wait till calculation is complete
phi_inc <= phi_inc;
end if;
end if;
else--reset state
freq_counter <= X"01";
phi_inc <= (others =>"0");

end if;
end if;
end process;

end Behavioral;

C6. AM Receiver Module (am_rx)

-- Company: KARABUK UNIVERSITY

-- Engineer: Bilgehan ERKAL -Ali HANDER
-- Create Date: 18:24:23 04/28/2020

-- Design Name:

-- Module Name: am_rx - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

-- Dependencies:

-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL,;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;
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entity am_rx is
Port (
phi_inc : in std_logic_vector(31 downto 0);
|_out :outstd logic_vector(15 downto 0);
Q out - out std_logic_vector(15 downto 0);
I_in :instd_logic_vector(15 downto 0);
Q_in :instd_logic_vector(15 downto 0);
s sel :instd_logic_vector(3 downto 0);
clip_indicator : out std_logic_vector(7 downto 0);
clk 48KHz:in STD_LOGIC;
clk -in STD_LOGIC

);

end am_rx;
architecture Behavioral of am_rx is

COMPONENT clipping_indicator_multi_channel
PORT(
clip_in_I : IN std_logic_vector(15 downto 0);
clip_in_Q : IN std_logic_vector(15 downto 0);
clk : IN std_logic;
clip_out : OUT std_logic
);
END COMPONENT;

component comp_multl
port (
ar: in std_logic_vector(15 downto 0);
ai: in std_logic_vector(15 downto 0);
br: in std_logic_vector(15 downto 0);
bi: in std_logic_vector(15 downto 0);
clk: in std_logic;
pr: out std_logic_vector(32 downto 0);
pi: out std_logic_vector(32 downto 0));
end component;

COMPONENT ncol
PORT (

clk : INSTD_LOGIC;

pinc_in : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

cosine : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);

sine : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);
END COMPONENT;

component firl

port (
clk: in std_logic;
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rfd: out std_logic;

rdy: out std_logic;

din: in std_logic_vector(15 downto 0);

dout: out std_logic_vector(34 downto 0));
end component;

COMPONENT nco2
PORT (
clk: INSTD_LOGIC;
cosine : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
sine : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);
END COMPONENT;

COMPONENT mult

PORT (
clk: INSTD_LOGIC;
a:INSTD LOGIC VECTOR(15 DOWNTO 0);
b:INSTD_LOGIC VECTOR(15 DOWNTO 0);
p:OUT STD_LOGIC_VECTOR(31 DOWNTO 0)

);
END COMPONENT;

-- first complex multiplier and nco signals

signal cos : std_logic_vector(15 downto 0) := (others =>'0");

signal sin : std_logic_vector(15 downto 0) := (others =>"'0");

signal cmult_loutl : std_logic_vector(32 downto 0) := (others =>'0");
signal cmult_Qoutl : std_logic_vector(32 downto 0) := (others =>"'0");

-- first LPF signals

signal Ipf_1_din: std_logic_vector(15 downto 0) := (others =>'0");
signal Ipf_Q_din : std_logic_vector(15 downto 0) := (others =>'0");
signal Ipf_1_dout : std_logic_vector(34 downto 0) := (others =>'0");
signal Ipf_Q_dout : std_logic_vector(34 downto 0) := (others =>'0');

-- second complex multiplier and nco signals

signal 1_in2 : std_logic_vector(15 downto 0) := (others =>"'0";

signal Q_in2 : std_logic_vector(15 downto 0) := (others =>"'0");

signal cos?2 : std_logic_vector(15 downto 0) := (others =>'0");

signal sin2 : std_logic_vector(15 downto 0) := (others =>"'0");

signal cmult_lout2 : std_logic_vector(32 downto 0) := (others =>'0");
signal cmult_Qout?2 : std_logic_vector(32 downto 0) := (others =>"'0");

-- realizer circuit signals

signal adder_1_in : std_logic_vector(15 downto 0) := (others =>'0");
signal adder_Q _in : std_logic_vector(15 downto 0) := (others =>'0");
signal adder_out : std_logic_vector(15 downto 0) := (others =>'0");

-- Squaring type AM demodulator signals
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signal squarer_in : std_logic_vector(15 downto 0) := (others =>'0");
signal squarer_out : std_logic_vector(31 downto 0) := (others =>'0");

-- Output LPF signals
signal Ipf_out_din : std_logic_vector(15 downto 0) := (others =>'0");
signal Ipf_out_dout : std_logic_vector(34 downto 0) := (others =>'0");

-- module outputs
signal I_out_x : std_logic_vector(15 downto 0) := (others =>'0");
signal Q_out_x : std_logic_vector(15 downto 0) := (others =>'0");

begin

-- intercomponent coarse level adjustment connectors

-- First LPF inputs

Ipf_I_din <= cmult_lout1(32) & cmult_lout1(28 downto 14);
Ipf_Q_din <=cmult_Qout1(32) & cmult_Qout1(28 downto 14);
--Second complex multiplier inputs

I_in2 <= Ipf_I_dout(34) & Ipf_I_dout(31 downto 17);

Q_in2 <= Ipf_Q_dout(34) & Ipf_Q_dout(31 downto 17);
--Realizer inputs

adder_1_in <=cmult_lout2(32) & cmult_lout2(28 downto 14);
adder_Q_in <= cmult_Qout2(32) & cmult_Qout2(28 downto 14);
-- AM Demodulator input

squarer_in <= adder_out(15) & adder_out(14 downto 0);

-- Output (final) LPF inputs

Ipf_out_din <= squarer_out(31) & squarer_out(30 downto 16);
-- Module outputs (Despite 2-ch complex it is real in fact)
|_out x <= Ipf_out_dout(34) & Ipf_out_dout(30 downto 16);
Q_out x <= Ipf_out_dout(34) & Ipf_out_dout(30 downto 16);

-- Source selector process
s_sel_proc: process(clk)
begin
if rising_edge(clk) then
CASE s_sel(3 downto 0) IS
WHEN "1111" =>-- Demodulated final output

|_out<=1_out x;
Q out<=Q out x;

WHEN "1110" =>-- Module input (first complex
multiplier input)
| out<=1_in;
Q out<=Q_in;

WHEN "1101" =>-- Fist complex multiplier output,
First LPF input
|_out <= Ipf_I_din;
Q_out <= Ipf_Q_din;
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WHEN "1011" =>-- First LPF output, second complex
multiplier input
| out<=1_in2;
Q out<=Q_in2;

WHEN "0111" =>-- Second complex multiplier output,
realizer input
|_out <=adder_I_in;
Q_out <=adder_Q _in;

WHEN "1100" =>-- Realizer output, AM demodulator

input
|_out <= squarer_in;
Q_out <=squarer_in;
WHEN "1010" =>-- AM demodulator output, Output
LPF input

|_out <= Ipf_out_din;
Q_out <= Ipf_out_din;

WHEN "0110" =>-- Output LPF output, module output
|_out <=1_out_x;
Q out<=Q out_x;

WHEN OTHERS =>-- module output
|_out <=1_out_x;
Q out<=Q out_x;

END CASE;
end if;
end process;
-- Module input (first complex multiplier input) clipping indicator
cindO: clipping_indicator_multi_channel PORT MAP(
clip_in_I=>1_in,
clip_in_Q=>0Q_in,
clip_out => clip_indicator(0),
clk =>clk
);
-- First LPF input clipping indicator
cindl: clipping_indicator_multi_channel PORT MAP(
clip_in_I =>Ipf I _din,
clip_in_Q => Ipf_Q_din,
clip_out => clip_indicator(1),
clk =>clk
)i
-- Second complex multiplier input clipping indicator
cind2: clipping_indicator_multi_channel PORT MAP(
clip_in_I=>1_in2,
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clip_in_Q =>Q_in2,
clip_out => clip_indicator(2),
clk =>clk
);
-- Realizer input clipping indicator
cind3: clipping_indicator_multi_channel PORT MAP(
clip_in_I =>adder_I_in,
clip_in_Q =>adder_Q _in,
clip_out => clip_indicator(3),
clk => clk
);
-- AM demodulator input clipping indicator
cind4: clipping_indicator_multi_channel PORT MAP(
clip_in_I => squarer _in,
clip_in_Q => squarer_in,
clip_out => clip_indicator(4),
clk =>clk
);
-- Output LPF input clipping indicator
cind5: clipping_indicator_multi_channel PORT MAP(
clip_in_I => Ipf_out_din,
clip_in_Q => Ipf_out_din,
clip_out => clip_indicator(5),
clk => clk
);
-- Module output (Output LPF output) clipping indicator
cind6: clipping_indicator_multi_channel PORT MAP(
clip_in_I =>1_out_x,
clip_in_Q =>Q out_x,
clip_out => clip_indicator(6),
clk =>clk
);
-- Empty indicator (reserved for future use)
clip_indicator(7) <="'0";

-- First complex multiplier
Inst_comp_multl : comp_multl

port map (
ar=>1_in,
ai=>Q_in,

br => cos,--x"7FFF",--c0s,--
bi => sin,--x"0000",--sin,--
clk => clk_48KHz,

pr =>cmult_loutl,

pi =>cmult_Qoutl

);

-- First NCO (steered by Phase increment value calculated from PC input
frequency data)
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Inst_ncol : ncol
PORT MAP (
clk => clk_48KHz,
pinc_in => phi_inc,

cosine => cos,
sine => sin
);
-- First LPF (255 coefficient FIR, fs=48KHz, fc=4KHz)
-- I-channel
Ipf_I: firl
port map (
clk => clk,
rfd => open,
rdy => open,
din => Ipf_I_din,
dout => Ipf_|_dout
);
-- Q-channel
Ipf_Q: firl
port map (
clk => clk,
rfd => open,
rdy => open,
din => Ipf_Q _din,
dout => Ipf_Q_dout
);

-- Second complex multiplier
Inst_ comp_mult2 : comp_multl
port map (
ar=>1_in2,
ai =>Q_in2,
br => cos2,
bi => sin2,
clk => clk_48KHz,
pr => cmult_lout2,
pi => cmult_Qout2

);

-- Second NCO (fixed upshift at 12KHz)
Inst_nco2 : nco2
PORT MAP (
clk => clk_48KHz,
cosine => c0s2,
sine => sin2

);

-- Realizer circuit
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adder_proc:process(clk_48KHz)
begin
if rising_edge(clk_48KHz) then
adder_out <= adder_|_in + adder_Q _in;
end if;
end process;

-- Squarer circuit (AM Demodulator)
Inst_mult : mult
PORT MAP (
clk => clk_48KHz,
a => squarer_in,
b => squarer_in,
p => squarer_out

);

-- Output LPF (255 coefficient FIR, fs=48KHz, fc=4KHz)
Ipf_out : firl
port map (
clk => clk,
rfd => open,
rdy => open,
din => Ipf_out_din,
dout => Ipf_out_dout
);

end Behavioral;
C7. Auxiliary 16-bit DAC (dac16) -not used

library IEEE;
use IEEE.STD_LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity dacl6 is
Port (CIk : in STD_LOGIC;
Data: in STD_LOGIC_VECTOR (15 downto 0);
PulseStream : out STD_LOGIC);
end dacl6;
architecture Behavioral of dacl16 is
signal sum : STD_LOGIC_VECTOR (16 downto 0);
begin
PulseStream <= sum(16);
process (clk, sum)
begin
if rising_edge(CIk) then
sum <= ("0" & sum(15 downto 0)) + ("0" & data);
end if;
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end process;
end Behavioral;
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