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ANALYSIS AND DESIGN OF GENERAL TYPE-2 FUZZY LOGIC 

CONTROLLERS 

SUMMARY 

This thesis presents new interpretations on the design parameters of the general type-

2 fuzzy logic controllers by investigating their internal structures, proposes novel 

systematic design approaches for the general type-2 fuzzy logic controllers based on 

comprehensive and comparative analyses, and validates theoretical findings as well as 

proposed tuning methods via simulation and real-time experiments. 

The fuzzy systems have been successfully realized in a wide variety of engineering 

areas such as controls, image processing, data processing, decision making, estimation, 

modeling, and robotics. The fuzzy logic systems provide complex mappings from 

inputs to outputs, and this benefit usually results in better performances in comparison 

to non-fuzzy counterparts. Due to this, the fuzzy logic controllers have been applied 

to numerous challenging control problems for decades. Nowadays, more attention has 

been given to a new research direction of the fuzzy sets and systems, the general type-

2 fuzzy logic controllers, which is the main motivation of this thesis. 

The internal structures of a class of Takagi-Sugeno-Kang type fuzzy logic controllers 

are first examined in detail. In this context, three fuzzy logic controller types (type-1, 

interval type-2, and general type 2) and two kinds of controller configurations (single-

input and double-input) are considered. The baseline controllers, i.e. type-1 and 

interval type-2 fuzzy logic controllers, are presented in the preliminaries section. The 

fuzzy sets, fuzzy relations, fuzzy rules, fuzzy operators, and PID forms of these fuzzy 

logic controllers are explained in detail. The design assumptions and design parameters 

are given, also the most common design approaches are listed. Afterward, the general 

type-2 fuzzy sets and the general type-2 fuzzy logic controllers are presented. The 

general type-2 fuzzy logic controllers are described with α-plane associated horizontal 

slices because the α-plane representation provides useful advantages on the handling 

of the secondary membership function of the general type-2 fuzzy sets and the 

calculation of the general type-2 fuzzy logic controller output. It is shown that the α-

plane based general type-2 fuzzy logic controller output calculation is accomplished 

through the well-known interval type-2 fuzzy logic computations. The secondary 

membership functions are further detailed in terms of their mathematical definitions 

and design options. 

The structure analysis on the general type-2 fuzzy sets shows the interactions between 

non-fuzzy, type-1 fuzzy, interval type-2 fuzzy, and general type-2 fuzzy sets happen 

in the secondary membership function. It is shown that the general type-2 fuzzy logic 

controller can easily transform into interval type-2 fuzzy, or type-1 fuzzy counterparts 

based on the secondary membership function definitions. As an outcome of this 

structural analysis, a new representation of the trapezoid secondary membership 

function is proposed based on a novel parameterization of the parameters that form the 

trapezoid shape. It is shown that the parameterized trapezoid secondary membership 



xx 

function is capable to construct trapezoid, triangle, interval, and singleton shapes so 

that the general type-2 fuzzy logic controllers are further capable to transform into 

interval type-2 fuzzy, or type-1 fuzzy counterparts. It is also shown that the proposed 

parameterization of the trapezoid secondary membership functions allows designing 

the control curves/surfaces of the general type-2 fuzzy logic controllers with a single 

tuning parameter. Moreover, the structural design suggestions are presented not only 

to construct fuzzy controllers in a straightforward manner but also to ease the design 

of the controllers with few design parameters. The design parameters of the general 

type-2 fuzzy logic controllers are grouped as the shape and the sensitivity design 

parameters with respect to their effects on the accuracy and the shape of the resulting 

fuzzy mapping. Accordingly, the tuning parameter of the secondary membership 

functions and the total number of α-planes are interpreted and as the sensitivity and 

shape design parameters, respectively. 

The shape analyses of the general type-2 fuzzy logic controllers show the effects of 

the proposed shape design parameter on the control curves/surfaces. In this context, 

the resulting fuzzy mappings of single input and double input general type-2 fuzzy 

logic controller structures are compared for various design settings of the shape design 

parameter. The comparative analyses provide interpretable and practical explanations 

on the potential advances of the shape design parameter. Based on the shape analyses, 

novel design approaches are proposed to tune the shape design parameter in a 

systematic way. In this context, it is suggested constructing the general type-2 fuzzy 

logic controllers over their type-1 and interval type-2 baselines and tuning them via 

the shape design parameter by providing a tunable tradeoff between robustness and 

performance. Therefore, it is aimed to combine benefits of baseline type-1 (relatively 

more aggressive control curves/surfaces better performance measures) and interval 

type 2 (relatively smoother control curves/surfaces, better robustness measures) fuzzy 

logic controllers. To enhance the control performance, two scheduling mechanisms are 

also proposed for online-tuning of the shape design parameter with respect to the 

steady-state operating points as well as transient-state dynamics. 

The sensitivity analyses of the general type-2 fuzzy logic controllers show the effects 

of the proposed sensitivity design parameter on the accuracy of the control curves/ 

surfaces. In this context, the resulting fuzzy mappings of single input and double input 

general type-2 fuzzy logic controller structures are also compared for various design 

settings of the sensitivity design parameter. The comparative sensitivity analyses show 

interpretable and practical explanations of the sensitivity design parameter in terms of 

calculation accuracy and computation burden. Therefore, it is suggested tuning the 

sensitivity design parameter by considering the limitations of hardware components 

such as resolution and processing speed. To accomplish the design in accordance with 

a tradeoff between sensitivity and computational time, a novel iterative algorithm is 

proposed to tune the sensitivity design parameter. 

The simulation and real-time experimental control studies validate the proposed design 

recommendations, systematic design approaches, and tuning methods for the general 

type-2 fuzzy logic controllers on benchmark control systems. In these control studies, 

the general type-2 fuzzy logic controllers are designed based on the proposed design 

methods. In order to show the performance improvements on the control systems, the 

general type-2 fuzzy logic controllers (tuned either online or offline) are compared 

with type-1 fuzzy and interval type-2 fuzzy counterparts. The performance measures 

clearly show that the online-tuned general type-2 fuzzy logic controllers outperform 

all general type-2, interval type-2, and type-1 counterparts on account of the proposed 
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scheduling mechanisms over the proposed systematic design rules. The results also 

show that the systematic design of the general type-2 fuzzy logic controllers is simply 

accomplished by following the proposed tuning steps of the shape and sensitivity 

design parameters.  
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GENEL TİP-2 BULANIK MANTIK KONTROLÖRLERİNİN ANALİZİ VE 

TASARIMI  

ÖZET 

Bu tez; bulanık kontrolörlerin iç yapılarını analiz ederek genel tip-2 bulanık mantık 

kontrolörlerinin tasarım parametreleri üzerine yeni yorumlar sunmakta; genel tip-2 

bulanık mantık kontrolörler için geniş kapsamlı ve karşılaştırmalı analizlere dayanan 

yeni sistematik tasarım yaklaşımları önermekte; elde edilen teorik bulgular ve önerilen 

ayarlama yöntemlerini benzetim ve gerçek zamanlı deneyler ile doğrulamaktadır. 

Bulanık mantık tabanlı sistemler, görüntü işleme, veri işleme, kontrol, karar verme, 

öngörü, tahmin, robotik ve modelleme gibi birçok mühendislik alanında başarıyla 

uygulanmaya devam etmektedir. Bulanık mantık sistemleri, girişleri ve çıkışları 

arasında gelişmiş üst düzey bir haritalama sağlamaktadır ve bu durum genellikle 

bulanık olmayan eşdeğerlerine kıyasla daha iyi performanslar ile sonuçlanmaktadır. 

Bu sebeple, bulanık mantık kontrolörleri, zorlu kontrol problemlerinde sıklıkla 

uygulanmıştır. Uzun yıllardan beri tip-1 bulanık mantık kontrolörleri birçok farklı 

uygulamada birçok farklı şekillerde uygulanmıştır. Yakın zamanda gösterilmiştir ki 

belirsizlikleri ve doğrusal olmayan sistemlerin ele alınmasında aralık değerli tip-2 

bulanık mantık kontrolörler daha iyi sonuçlar vermektedir. Aralık değerli tip-2 bulanık 

mantık kontrolörlerinin bu kazanımı, aralık değerli tip-2 üyelik fonksiyonlarında yer 

alan belirsizlerin izdüşümü elamanının getirdiği yeni tasarım parametreleri, serbestlik 

derecesi ve geniş tasarım esnekliği ile açıklanmıştır, çünkü aralık değerli tip-2 üyelik 

fonksiyonları, genel tip-2 bulanık kümelerin özel bir hali olan aralık değerli tip-2 

bulanık kümeler ile tanımlanmıştır. Günümüzde ise, bu tezin de ana motivasyonu olan, 

bulanık kümeler ve bulanık sistemlerin yeni bir araştırma alanı olan genel tip-2 bulanık 

mantık kontrolörlerine, daha fazla ilgi gösterilmektedir. 

Bu tez kapsamında Takagi-Sugeno-Kang tipi bulanık mantık kontrolörlerinin bir 

sınıfının iç yapıları detaylı bir şekilde incelenmiştir. Bu bağlamda, üç farklı bulanık 

mantık kontrolör tipi (tip-1, aralık değerli tip-2, ve genel tip-2) ve iki farklı kontrolör 

yapısı (tek girişli ve iki girişli) ele alınmıştır. Temel bulanık mantık kontrolörleri, diğer 

bir deyişle tip-1 ve aralık değerli tip-2 bulanık mantık kontrolörleri ön bilgiler 

kısmında sunulmuştur. Bu temel bulanık mantık kontrolörlerinin bulanık kümeleri, 

bulanık ilişkileri, bulanık kuralları, bulanık operatörleri ve PID kontrolör formları 

detaylı bir şekilde açıklanmıştır. Tasarım varsayımları ve tasarım parametreleri 

detaylıca verilmiş ve en çok kullanılan tasarım yöntemleri listelenmiştir. Daha sonra 

genel tip-2 bulanık kümeler ve genel tip-2 bulanık mantık kontrolörleri sunulmuştur. 

Genel tip-2 bulanık mantık kontrolörleri α-düzlemi ile ilişkili yatay dilimler ile ifade 

edilmiştir, çünkü α-düzlemi gösterimi, genel tip-2 bulanık kümelerin ikincil üyelik 

fonksiyonunun ve genel tip-2 bulanık mantık kontrolörünün çıkış hesaplanmasının ele 

alınmasında birçok avantaj sunmaktadır. Ayrıca α-düzlemi tabanlı genel tip-2 bulanık 

mantık kontrolörü çıkış hesaplaması, iyi bilinen (ve literatürde sıklıkla kullanılan) 

aralık değerli tip-2 bulanık mantık kontrolörüne ait hesaplamalar ile yapılabildiği 
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gösterilmiştir. Ayrıca genel tip-2 bulanık kümelerinin ikincil üyelik fonksiyonları da 

tanımları ve tasarım seçenekleri bakımından detaylandırılmıştır. 

Genel tip-2 bulanık kümlerinin yapı analizi, bulanık olmayan, tip-1 bulanık, aralık 

değerli tip-2 bulanık ve genel tip-2 bulanık kümeler arası etkileşimlerin (veya bir 

sınıftan diğerine geçişler) ikincil üyelik fonksiyonunda gerçekleştiğini göstermiştir. 

Genel tip-2 bulanık mantık kontrolörlerinin, ikincil üyelik fonksiyonu tanımlarına 

bağlı olarak, kolaylıkla aralık değerli tip-2 bulanık mantık veya tip-1 bulanık mantık 

kontrolörlere dönüşebilmektedir. Bu genel tip-2 bulanık kümelerinin yapı analizinin 

bir çıktısı olarak, yamuk şeklini oluşturan parametrelerin yeni özgün bir haritalama 

(diğer bir ifade ile yamuk tasarım parametrelerini eşleme) ile yamuk ikincil üyelik 

fonksiyonlarının yeni gösterimi önerilmiştir. Parametreleri eşlenmiş ikincil üyelik 

fonksiyonu yamuk, üçgen, aralık-değerli (dikdörtgen) ve tekil şekiller oluşturabildiği 

gösterilmiştir, ki bu sayede, genel tip-2 bulanık mantık kontrolörlerinin de aralık 

değerli tip-2 bulanık ve tip-1 bulanık mantık kontrolör eşdeğerlerine dönüşebildiği 

gösterilmiştir. Ayrıca, önerilen parametre eşlemeli ikincil üyelik fonksiyonları ile 

genel tip-2 bulanık mantık kontrolörlerinin kontrol eğrileri/yüzeyleri tasarımının tek 

bir ayarlama parametresi ile mümkün olduğu gösterilmiştir. Bu yapısal tasarım 

önerileri, sadece bulanık mantık kontrolörlerini açık bir biçimde oluşturmak için değil 

aynı zamanda daha az parametre ile bu kontrolörlerin tasarımının kolaylaştırma 

amacıyla da sunulmuştur. Genel tip-2 bulanık mantık kontrolörlerinin temel tasarım 

parametreleri, bu tasarım parametrelerin değerleri ile oluşacak olan bulanık giriş-çıkış 

haritalaması üzerindeki doğruluk (veya hassaslık) ve bulanık yüzey şekli üzerindeki 

etkilerine bağlı olarak, hassaslık ve şekil parametreleri olarak gruplanmıştır. Bu 

nedenle, α-düzlemlerinin toplam sayısı ve ikincil üyelik fonksiyonun tasarım 

parametresi, sırasıyla genel tip-2 bulanık mantık kontrolörlerinin hassaslık ve şekil 

tasarım parametreleri olarak adlandırılmıştır. 

Genel tip-2 bulanık mantık kontrolörlerinin şekil analizleri, önerilen şekil tasarım 

parametresinin kontrol eğrileri/yüzeyleri üzerindeki etkilerini göstermektedir. Bu 

bağlamda, tek girişli ve iki girişli genel tip-2 bulanık mantık kontrolör yapılarının 

çıkışı olan bulanık haritalar, şekil tasarım parametresinin farklı tasarım seçenekleri için 

karşılaştırılmıştır. Önerilen şekil tasarım parametresi [-2, 2] aralığında tanımlanmıştır 

ve karşılaştırmalı analizlerde adım aralıkları 0.5 olacak şekilde [-2, 2] değer aralığında 

dokuz nokta seçilmiştir. Bu karşılaştırmalı analizler, genel tip-2 bulanık mantık 

kontrolörlerinin şekil tasarım parametresinin olası getirileri hakkında yorumlanabilir 

ve pratik açıklamalar sunmuştur. Bu analizler ışığında, genel tip-2 bulanık mantık 

kontrolörlerinin şekil tasarım parametresini sistematik bir şekilde ayarlamak için 

özgün tasarım yaklaşımları önerilmiştir. Bu bağlamda, genel tip-2 bulanık mantık 

kontrolörlerinin, temel tip-1 ve temel aralık değerli tip-2 eşdeğerleri üzerinden 

oluşturulması ve şekil tasarım parametresinin, sistemi performansı ve dayanıklılığı 

arasındaki ayarlanabilir bir dengeye bağlı olarak seçilmesi önerilmiştir. Böylece temel 

tip-1 (göreceli agresif kontrol eğrisine/yüzeyine sahip, performans ölçütleri yüksek) 

ve temel aralık değerli tip-2 (göreceli yumuşak kontrol eğrisine/yüzeyine sahip, 

dayanıklılık ölçütleri yüksek) bulanık mantık kontrolörlerinin getirilerinden 

faydalanılması amaçlanmıştır. Ayrıca, kontrol sisteminin performansını arttırmak 

amacıyla, şekil tasarım parametresinin sürekli hal çalışma noktaları ve sistemin geçici 

hal dinamiklerine bağlı olarak çevrimiçi güncellenmesi için iki farklı programlama 

mekanizması da önerilmiştir. 

Genel tip-2 bulanık mantık kontrolörlerinin hassasiyet analizleri, önerilen hassasiyet 

tasarım parametresinin kontrol eğrileri/yüzeyleri üzerindeki hesaplama doğruluğunu 
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göstermektedir. Bu bağlamda, tek girişli ve iki girişli genel tip-2 bulanık mantık 

kontrolör yapılarının çıkışı olan bulanık haritalar, hassasiyet tasarım parametresinin 

farklı tasarım seçenekleri için karşılaştırılmıştır. Bu karşılaştırmalı analizler, genel tip-

2 bulanık mantık kontrolörlerinin hassasiyet tasarım parametresi hakkında, hesaplama 

doğruluğu ve hesaplama yükü bakımından, yorumlanabilir ve pratik açıklamalar 

sunmuştur. Analizler ışığında, hassasiyet tasarım parametresinin sistemdeki donamın 

bileşenlerin ölçekleme değeri ve işlem yapma hızı gibi yapısal limitleri göz önüne 

alınarak ayarlanması önerilmiştir. Bu bağlamda, hesaplama doğruluğu ve hesaplama 

zamanı arasındaki dengeye bağlı olarak genel tip-2 bulanık mantık kontrolörlerinin 

hassasiyet tasarım parametresini ayarlamak için yeni iteratif bir ayarlama algoritması 

önerilmiştir. 

Benzetim ve gerçek zamanlı deneysel kontrol çalışmaları, bu tez kapsamında önerilen 

genel tip-2 bulanık mantık kontrolörleri için sunulan tasarım varsayımları, sistematik 

tasarım yaklaşımları ve ayarlama yöntemlerini, kıyaslamaya uygun deneysel kontrol 

sistemleri üzerinde onaylamaktadır. Bu çalışmalarda, genel tip-2 bulanık mantık 

kontrolörleri tez kapsamında önerilen tasarım yöntemlerinde verilen adımlara göre 

oluşturulmuştur. Kontrol sisteminin performans iyileştirmelerini açıkça gösterebilmek 

amacıyla, çevrimiçi veya çevrimdışı ayarlanan genel tip-2 bulanık mantık 

kontrolörleri, tip-1 bulanık mantık ve aralık değerli tip-2 bulanık mantık eşdeğerleri 

ile karşılaştırılmıştır. Performans ölçümleri, çevrimiçi ayarlanan genel tip-2 bulanık 

mantık kontrolörlerinin, önerilen sistematik tasarım kurallarına göre belirlenen 

çevrimiçi programlama mekanizmaları sayesinde tüm genel tip-2, aralık tipi-2 ve tip-

1 benzerlerinden daha iyi performanslar gösterdiğini göstermiştir. Ayrıca elde edilen 

bu sonuçlar, genel tip-2 bulanık mantık kontrolörlerinin tasarımının sistematik bir 

şekilde, sadece şekil ve hassasiyet tasarım parametreleri vasıtasıyla önerilen ayarlama 

adımlarının izlenmesiyle gerçeklenebildiğini göstermektedir. 
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1. INTRODUCTION 

Fuzzy Logic Controllers (FLCs) have been successfully implemented in numerous 

engineering problems and applications including control, robotics, image processing, 

decision making, estimation, and modeling for more than 50 years [1-76]. A FLC is a 

complex system that provides a mapping from its input(s) to its output(s) based on 

fuzzy rules and fuzzy relations. That is why it is also called as Fuzzy Logic System 

(FLS) by researchers. A FLC computes Fuzzy Sets (FSs) instead of ordinary sets. The 

pioneering study on the FSs and their notations was introduced in 1965 [1] and the 

first study on the fuzzy rules and the FLC structure was presented in [2]. The pioneer 

industrial application of FLCs was accomplished in 1974. In this study, the linguistic 

control rules of a skilled human operator are expressed by a fuzzy inference [3-4]. The 

early fuzzy literature (in the 80s and 90s) focused on the theory of fuzzy logic, fuzzy 

sets, and fuzzy systems as well as fuzzy applications (in the 2000s) [3-21]. These 

studies were performed with ordinary FSs and FLCs, which are now called as Type-1 

(T1) FLCs in today’s fuzzy literature. After the 2000s, the fuzzy community began 

working on Interval Type-2 (IT2) FLCs as an extension of ordinary T1-FSs and T1-

FLCs, then in the 2000s and early 2010s, the fuzzy research interest dominantly 

focused on the theory of IT2-FLCs and real-time applications [22-59]. Nowadays, 

researchers have given more attention to a new research direction of the fuzzy sets and 

systems, General Type-2 (GT2) FLCs, which is the main motivation of this thesis. 

For more than four decades, T1-FLCs have been popular in fuzzy control applications 

and T1-FLCs have taken part in many studies [3-21]. In fuzzy literature, the most 

popular fuzzy systems are Mamdani fuzzy systems [2-3] and Takagi-Sugeno-Kang 

fuzzy systems [5-6]. These FLC structures are characterized by the same fuzzy IF-

THEN rules and the same FSs at the antecedent part, on the other hand, they differ in 

the part of consequents. As mentioned in [7], a Mamdani fuzzy system uses Zadeh 

rules [2] and Mamdani implications [3] in computations and employs FSs sets at the 

consequent part, whereas a Takagi-Sugeno-Kang (TSK) system uses singletons [5] or 

mathematical functions [6] at the consequent part. The TSK fuzzy systems are one of 
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the most well-known fuzzy structures and they have been widely used in control 

applications as the design and analysis of the fuzzy control system is relatively more 

interpretable than Mamdani fuzzy systems. In this context, numerous fuzzy control 

and fuzzy modeling papers implemented TSK fuzzy systems for various engineering 

problems associated with the systems where uncertainties and nonlinearities exist [7-

11]. In fuzzy control problems, the PID type fuzzy controllers, or simply Fuzzy PID 

(FPID) controllers are generally preferred, since, from the input-output mapping point 

of view, the FPID controllers are equivalent to conventional PID controllers [9-12]. 

The FPID controllers can be designed in many ways that the fuzzy inference either 

generates the control signal (which is applied to the system) [14] or tunes the PID 

controller gains [15]. In T1 fuzzy literature, there are also various studies that employ 

/ present online self-tuning structures with heuristic update rules [16-18], auto-tuning 

mechanisms for controller design [19], and online scheduling or self-tuning structures 

via optimization [19-21]. 

In the past decades, the fuzzy research has been mainly focused on IT2-FLCs, although 

the concept of Type-2 (T2) FSs were first introduced in 1975 [22]. Once the T1-FLCs 

have reached a high level of research maturity, then the popularity of T2-FSs starts 

increasing and this interest is sustained for more than 20 years [7]. A complete 

overview of the IT2 fuzzy systems (e.g. fuzzy sets, inference, operations) was first 

introduced in [23] and the theory and design were further investigated in [24-25]. The 

first IT2 fuzzy control applications [26-28] demonstrated that T1-FLCs might have 

limitations on the handling uncertainties and nonlinearities while IT2-FLCs are better 

to handle uncertainties and nonlinearities. This limitation is mostly occurred due to 

crisp membership grade values. It has been stated that T2-FSs are very useful in 

situations where the determination of an accurate membership function is relatively 

difficult with a T1 fuzzy set [7, 29].The IT2-FLCs have been also successfully 

implemented in various simulation studies and real-time control applications [26-45]; 

autonomous mobile robot control [26, 37], liquid-level control of coupled tank process 

[27, 28], linear system control [32, 33, 38], pH control of neutralization process [34-

36], position control of magnetic levitation system [39], load frequency control of 

power system [40], nonlinear system control [41, 42], velocity control of electric 

vehicle [43], position control of spherical robot control [44], control of flying drone 

[45]. 
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In the first years of the IT2-FLC studies, there were some theoretical drawbacks for 

applications; the computational complexity (or computational burden), and the lack of 

complete understanding of the internal structure of the IT2-FLCs [7, 30-31]. The 

computational burden bottleneck has been addressed by the type-reduction algorithms/ 

methods. The most known algorithm is Karnik-Mendel (KM) algorithm [46]. In the 

KM algorithm and its enhancements [7, 47-48], the type reduced set of the IT2-FLC 

(lower and upper bound of interval output set) is calculated based on the optimal left 

and right switching points which are determined iteratively [7]. Although there are 

many approximations of the KM-based type-reduction algorithm, the KM-based 

algorithms are the most popular type-reduction and defuzzification methods, since KM 

algorithms calculate precise IT2-FLC outputs [7, 49]. In order to answer the lack of a 

deeper understanding of the IT2-FLCs, the researchers have investigated the internal 

structure, stability, and analytic derivations of IT2-FLCs. The internal structure of the 

IT2-FLCs is also investigated in further studies by providing easier representations 

[50], IT2-FS mathematics (based on T1-FS mathematics) [51], new geometric 

representations [52], notation similarities between IT2-FLC and standard mathematics 

[53], the relationship between FSs [54], application-independent perspectives [55] as 

well as comprehensive fuzzy logic books [7, 30, 31]. The stability of the IT2 fuzzy 

systems is also examined in various studies [41, 56, 57]. Moreover, the analytical 

derivations are investigated in various studies; for example, the closed-form 

formulation of the single input fuzzy system was determined in [36] an [41], the 

controller gains around the origin were obtained in [38, 43] and [58, 59] derived IT2-

FLC outputs by dividing the input space to several sub-regions. 

The main superiority of the IT2-FLCs is preserved in the Footprint of Uncertainty 

(FOU) in their antecedent Membership Functions (MFs) as it covers uncertainties and 

nonlinearities in the secondary membership function layer [7, 30-31]. It has been 

illustrated that IT2-FLCs are better to handle uncertainties and nonlinearities in 

comparison to T1-FLC counterparts [26-33]. It is demonstrated that IT2-FLCs can 

achieve significant control performance improvements in comparison to their T1-FLC 

counterpart via a FOU design by extending T1-MFs into IT2-MFs [33, 41, 42]. It has 

been also shown that the IT2-FLCs are potentially more robust than T1 counterparts, 

as their Control Curves (CCs) / Control Surfaces (CSs) are usually smooth around the 

steady-state [26-28, 32-33, 41-45]. In [41] (for single input structures) and [43, 44] 
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(for double input structures), it is shown that both smooth or aggressive CCs/CSs can 

be generated by tuning the parameters that define the FOU. These performance and 

robustness improvements of IT2-FLCs occur due to the extra degree of freedom 

provided by the FOU in the antecedent MFs that are defined by IT2-FSs. Thus, the 

FOU parameters are categorized as the design parameters of the IT2-FLCs.  

Recently, in a wider perspective, [55] have sought an answer to the research question: 

“Why does improved performance occur as one goes from crisp, to T1, to IT2, to GT2 

fuzzy systems?”. It has stated that the performance improvement usually happens 

when structure changes from crisp system, to T1 fuzzy systems, and to IT2 fuzzy 

systems, by introducing three kinds of partitions: (1) Uncertainty partitions to 

distinguish T1-FSs from crisp sets, and IT2-FSs from T1-FSs; (2) First-and second-

order rule partitions that are results of uncertainty partitions and are associated with 

the rules that fired in corresponding regions of the state space and the changes in their 

mathematical formulae within those regions; and (3) Novelty partitions that can only 

occur in an IT2 fuzzy system that uses type-reduction [55]. The same research question 

has been also investigated for GT2-FLCs in [60] to show the first-order and second-

order rule partitions and novelty partitions of GT2-FLCs and provide new perspectives 

for the potentials of GT2-FLCs comparing to IT2, T1, and crisp counterparts. 

Nowadays, researchers have given more attention to GT2-FLCs, as it is a new research 

direction for the fuzzy community [7, 59-76]. A GT2-FS and a GT2-FLC are in fact a 

T2-FS and a T2-FLC respectively (“in the most general form”), but to distinguish them 

from IT2 counterparts, “General” notation is preferred by many researchers [7]. In 

early studies on GT2-FLCs [61-68], the internal structure of GT2-FLCs is investigated. 

One of the representations of GT2-FSs, α-plane representation, has been proposed in 

[61-62] so that the GT2-FLC calculations can be handled by existing T1 and IT2 FS 

mathematics. Another representation of GT2-FSs, zSlice representation, has been 

presented [63-64] with GT2 mathematics and one of the pioneer real-time control 

applications of GT2-FLCs. These two representations have been investigated further 

in [65-66], and as mentioned in [7, 67], these two novel representations are the same 

from a content point of view with a different view. These representations are quite 

important for further GT2-FLC studies since zSlice or α-plane representations make it 

possible to represent the output of GT2-FLC by aggregation of T1 and/or IT2 FLCs 

[7]. The studies have shown that GT2-FLCs can outperform their T1 and IT2 FLC 
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counterparts [7, 30, 31, 60, 62, 68-76]. This is due to the fact that GT2-FLCs have 

more parameters to be tuned in comparison to their IT2 and T1 counterparts, and it 

computes GT2-FSs, by employing zSlice or α-plane representations into Secondary 

MFs (SMFs) which are T1-FSs instead of interval FSs [7]. This is also connected to 

the FOU comment of IT2-FLCs (as it is a footprint of a collection of all SMFs at the 

secondary layer) since GT2-FSs differs from IT2 and T1 counterparts at the secondary 

layer of antecedent MFs. In [68], the impacts of the SMFs (in terms of size and shape) 

on the control system performance have been also investigated by employing zSlices 

representation. It has been marked that the design of GT2-FSs is relatively more 

complex than the IT2 ones due to the difficulty of tuning the parameters, on the other 

hand, the GT2-FLCs provide an acceptable tradeoff between system performance and 

robustness and by tuning the SMFs. As of 2020, the GT2-FLCs have been successfully 

implemented for various applications, including autonomous outdoor mobile robot 

control [62, 68], mobile robot control [69-70], water tank liquid level control [70, 73], 

control of ball and beam system [70], chaotic system control [71], traffic control [72], 

linear system control [74], and nonlinear system control [74, 75]. The research interest 

on the GT2-FLCs still continues to analyze the internal structures better and design 

more systematic controllers. 

In this thesis, new insights on the interpretations of GT2-FLCs’ design parameters and 

the novel systematic design and new tuning methods of GT2-FLCs are presented with 

comprehensive analyses, simulations, and a real-time experiment. 

First, a class of TSK FLCs is examined in Chapter 2 and Chapter 3, and the internal 

structures of the GT2-FLCs are presented after giving the preliminaries on the T1-FSs, 

T1-FLCs, IT2-FSs, and IT2-FLCs. In the preliminaries part that is given in Chapter 2, 

the internal structures of two kinds of FLC type (single input and double input) are 

presented along with their FPID configurations, the design parameters of these fuzzy 

controllers are listed, and the most common design parameters are summarized based 

on the design assumptions. The GT2-FS and GT2-FLC definitions are given in Chapter 

3; the GT2-FLCs are first represented with α-planes since this representation provides 

various benefits on the handling of the GT2-FSs, the mathematical definitions, and 

numerous design options for two types of T1-FSs (triangular and trapezoid) that are 

employed as the SMF of GT2-FLC are given, and the α-plane based output calculation 
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of the GT2-FLCs is explained in terms of well-known IT2-FLC computations with an 

illustrative numerical example. 

The comprehensive analyses on the GT2-FSs, SMFs, and GT2-FLCs are presented in 

Chapter 4. The interactions between GT2-FSs and IT2-FSs, T1-FSs, and crisp sets are 

first shown in terms of the SMF definitions at the antecedent part, and a novel 

representation and parameterization of the trapezoid SMF are proposed. It is shown 

that the trapezoid SMF allows constructing trapezoid, triangle, interval, and singleton 

shapes so that the GT2-FLC can behave like its IT2-FLC or T1-FLC counterpart as 

per design. Therefore, it is suggested the usage of trapezoid SMFs with the proposed 

parameterization of the trapezoid SMFs that accomplish the design with a single tuning 

parameter. Then, the general suggestions on the structural settings of GT2-FLCs are 

provided not only to construct GT2-FLCs straightforwardly but also to ease the design 

of the GT2-FLCs with few design parameters. The main design parameters of the GT2-

FLCs are presented and summarized by the given interpretations with respect to their 

effects on the shape and sensitivity of the resulting CCs/CSs. The total number of α-

planes is called as the sensitivity design parameter and the tuning parameter of the 

SMFs is called as the shape design parameter. 

In Chapter 5 and Chapter 6, comparative analyses/simulations on the single input and 

double input GT2-FLC structures (with numerous design settings) are conducted to 

validate the interpretations of the shape and sensitivity design parameters of the GT2-

FLCs respectively. In this context, new design methods are proposed for interpretable 

and practical selections of the shape and sensitivity design parameters towards a 

systematic controller design.  

The effects of the shape design parameter on the CCs/CSs are first investigated by 

comparing the resulting CCs/CSs of the GT2-FLCs in terms of comparison measures. 

These comparative studies provide a deeper understanding of the role of the shape 

design parameters and how this parameter improves the performance and robustness 

of the control system. In the light of the shape analyses, novel and systematic design 

recommendations are proposed on how to tune the shape design parameter by 

providing a tradeoff between robustness and performance. Moreover, two novel online 

scheduling mechanisms are proposed for online-tuning of the shape design parameter 

with respect to the steady-state operating points and transient-state dynamics. 
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The effects of the sensitivity design parameter on the CCs/CSs are also investigated 

by comparing the resulting CCs/CSs. These comparative studies provide practical 

insight on how to tune the sensitivity design parameter in terms of calculation accuracy 

and computation burden. Based on these analyses, it is suggested tuning the sensitivity 

design parameter by taking into account the limitations of hardware components such 

as quantization level (e.g. resolutions) and computational time (processing speed). 

Then, a novel iterative algorithm, which provides a compromise between sensitivity 

and computational time, is proposed to tune the sensitivity design parameter. 

In Chapter 7, simulation and real-time experimental control studies are presented to 

validate the proposed design recommendations and systematic design approaches for 

GT2-FLCs. In these simulation and real-time studies, the GT2-FLCs (online-tuned or 

offline-tuned) are compared with T1-FLC and IT2-FLC counterparts. In the simulation 

study on a second-order nonlinear system, the proposed tuning steps for the shape 

design parameter are followed, and a simple scheduling mechanism (steady-state 

operating point-based) is employed into PID type -FLCs. The real-time experiments 

are performed on a real-world drone that acts as a proof-of-concept benchmark control 

system. The real-time experimental study presents a comprehensive design (for both 

shape and sensitivity design parameters) and a comparative, as well as a complete 

application (among T1, IT2, and GT2 FLCs) to validate the proposed systematic 

design approaches (the tuning steps of shape and sensitivity design parameters) for the 

GT2-FLCs in real-time control applications. 

Chapter 8 presents the conclusions and discussions. 
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2. PRELIMINARIES ON FUZZY LOGIC CONTROLLERS 

2.1 Type-1 and Interval Type-2 Fuzzy Sets 

2.1.1 Type-1 fuzzy sets 

A Type-1 Fuzzy Set (𝐴) is defined as follows [7]: 

𝐴 = {(𝑥, 𝜇𝐴(𝑥)) | 𝑥 ∈ 𝑋} (2.1) 

where 𝑥 is the input variable, 𝑋 is the value set of the input variable 𝑥, and 𝜇𝐴(𝑥) is 

the MF of T1-FS 𝐴. In standard mathematical set notation, a T1-FS can be also 

described as follows [53]: 

𝜇𝐴: 𝑋 → [0,1] (2.2) 

In fuzzy set notation, a T1-FS (i.e. 𝐴) can be also described for the continuous universe 

(𝑋) and the discrete universe (𝑋𝑑) as follows [7]: 

𝐴 = ∫ 𝜇𝐴(𝑥) 𝑥⁄

𝑥∈𝑋

 (2.3) 

𝐴 = ∑ 𝜇𝐴(𝑥) 𝑥⁄

𝑥∈𝑋𝑑

 (2.4) 

in which 0 ≤ 𝜇𝐴(𝑥) ≤ 1. Here, “/ term” associates with the elements in 𝑋 and 𝑋𝑑 

universes, while ∫  and ∑ denote union over 𝑥 values for 𝑋 and 𝑋𝑑 universes, 

respectively. The value of 𝜇𝐴(𝑥) is called as the membership degree of the input 𝑥. In 

the fuzzy literature, the MFs are characterized by well-known geometric shapes such 

as triangle, trapezoid, sigmoid, or gaussian. The membership degree is calculated 

based on the shape of the employed MFs. Moreover, an α-cut of T1-FS is denoted as 

𝐴𝛼 and defined based on α-cut level (i.e. 𝛼 ∈ [0,1]) as follows [7]: 

𝐴𝛼 = {𝑥| 𝜇𝐴(𝑥) > 𝛼} (2.5) 
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A triangleT1-FS is defined as follows: 

𝜇𝐴(𝑥) =

{
 
 

 
 
𝑥 − 𝑎

𝑏 − 𝑎
𝑎 < 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 < 𝑥 ≤ 𝑐

0, otherwise

 (2.6) 

where 𝑎, 𝑏, and 𝑐 are left support, center, and right support points of the triangle shape, 

respectively. A simple illustration of a triangle T1-MF (e.g. 𝐴) is presented in Figure 

2.1. A triangle T1-MF can be also defined with min and max mathematical operator 

functions as follows: 

𝜇𝐴(𝑥) = max (min (
𝑥 − 𝑎

𝑏 − 𝑎
,
𝑐 − 𝑥

𝑐 − 𝑏
) , 0) (2.7) 

 

Figure 2.1 : Triangle T1-FS. 

A trapezoid T1-FS is defined as follows: 

𝜇𝐴(𝑥) =

{
 
 

 
 
𝑥 − 𝑎

𝑏 − 𝑎
𝑎 ≤ 𝑥 < 𝑏

1 𝑏 ≤ 𝑥 < 𝑐
𝑑 − 𝑥

𝑑 − 𝑐
𝑐 ≤ 𝑥 < 𝑑

0 otherwise

 (2.8) 

where 𝑎, 𝑏, 𝑐, and 𝑑 are left support, left center, right center, and right support points 

of the trapezoid shape, respectively. A simple illustration of a trapezoid T1-MF is 

given in Figure 2.2. Alternatively, a trapezoid T1-MF (e.g. 𝐴) can be defined with min 

and max mathematical operator functions as follows:  
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𝜇𝐴(𝑥) = max (min (
𝑥 − 𝑎

𝑏 − 𝑎
, 1,
𝑑 − 𝑥

𝑑 − 𝑐
) , 0) (2.9) 

 

Figure 2.2 : Trapezoid T1-FS. 

A Gaussian T1-FS is defined as follows: 

𝜇𝐴(𝑥) = 𝑒−
1
2
(
𝑥−𝑚
𝜎

)
2

 (2.10) 

where 𝑚 and 𝜎 are mean and standard deviation values of the Gaussian T1-MF, 

respectively. An illustration of a Gaussian T1-MF (e.g. 𝐴) is presented in Figure 2.3. 

2.1.2 Type-2 fuzzy sets 

A Type-2 Fuzzy Set (�̃�) is defined as follows [7]: 

�̃� = {(𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢) | 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈} (2.11) 

where 𝑥 is the input variable (also called as the primary variable of �̃�), 𝑋 is the universe 

of the primary variable 𝑥, 𝑢 is the secondary variable of �̃�, 𝑈 ≡ [0, 1] is the universe 

for the secondary variable 𝑢, and 𝜇�̃�(𝑥, 𝑢) is the T2-MF of the T2-FS �̃�. Here it is 

worth mentioning that the membership grade of T2-MF (i.e. 𝜇�̃�(𝑥, 𝑢)) is defined in the 

three-dimensional domain (𝑋 × 𝑈𝑋), while the membership grade of T1-MF (i.e. 

𝜇𝐴(𝑥)) is defined in the two-dimensional domain (𝑋). A T2-FS is also described in 

standard set notation as follows [53]: 

𝜇�̃�: 𝑋 × 𝑈 → [0,1]  (2.12) 
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Figure 2.3 : Gaussian T1-FS. 

Similar to its T1 counterpart, in fuzzy set notation, a T2-FS �̃� can be defined for the 

continuous universe (i.e. 𝑋 and 𝑈) and the discrete universe (i.e. 𝑋𝑑 and 𝑈𝑑) as: 

�̃� = ∫ ∫ 𝜇�̃�(𝑥, 𝑢) (𝑥, 𝑢)⁄

𝑢∈𝑈𝑥∈𝑋

or �̃� = ∫  ( ∫ 𝜇�̃�(𝑥, 𝑢) 𝑢⁄

𝑢∈𝑈

) 𝑥⁄

𝑥∈𝑋

 (2.13) 

�̃� = ∑ ∑ 𝜇�̃�(𝑥, 𝑢) (𝑥, 𝑢)⁄

𝑢∈𝑈𝑑𝑥∈𝑋𝑑

or �̃� = ∑  (∑ 𝜇�̃�(𝑥, 𝑢) 𝑢⁄

𝑢∈𝑈𝑑

) 𝑥⁄

𝑥∈𝑋𝑑

 (2.14) 

The membership grade (primary and/or secondary) of a T2-FS is described based on 

the primary membership of 𝑥 (i.e. 𝐽𝑥) and the SMF (𝜇�̃�(𝑥)(𝑢) or 𝜇�̃�(𝑥)) as follows: 

𝜇�̃�(𝑥)(𝑢) = 𝜇�̃�(𝑥) = 𝜇�̃�𝑥 = ∫
𝜇�̃�(𝑥, 𝑢)

(𝑢)
⁄

𝑢∈[0,1]

 (2.15) 

𝐽𝑥 = {(𝑥, 𝑢)|𝑢 ∈ [0,1], 𝜇�̃�(𝑥, 𝑢) > 0} (2.16) 

where �̃�(𝑥) and �̃�𝑥 denote the FS of the SMF. Here, if the employed SMF support (𝐼𝑥) 

is always closed such that 𝐽𝑥 ≡ {𝑥} × 𝐼𝑥, then 𝐽𝑥 is defined as follows [7]: 

𝐽𝑥 = [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)] (2.17) 

where 𝜇�̃�(𝑥) and 𝜇
�̃�
(𝑥) are Lower MF (LMF) and Upper MF (UMF), respectively. 

Here, 𝐽𝑥 is calculated based on the input variable 𝑥 at the primary level. The difference 
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between T1 and T2 MFs is that a T1-MF has a single membership degree (which means 

that 𝐽𝑥 is a value), while a T2-MF has uncountable membership degrees (which means 

that 𝐽𝑥 is a union set of these intervals). Moreover, the SMF is the distinguishing 

property of the T2-FSs, since it determines the output and categorizes the type of FS 

(i.e. type-1, interval type-2, or general type-2) as it is defined by a set (e.g. crisp, 

interval or type-1) at the secondary level. In the fuzzy literature, “GT2” is preferred to 

distinguish T2, IT2, and GT2 terms [7]. For the T1-FS case, there is no factual SMF 

since secondary grades are crisp values. For the IT2-FS case, the SMF is an interval 

set where all secondary grades are 1. For the GT2-FS case; the SMF is a T1-FS that is 

denoted as �̃�(𝑥) or �̃�𝑥, as indicated in equation 2.15. Another distinguishing property 

of T2-FSs is preserved in the FOU which is a collection of all primary memberships 

of the input 𝑥. The FOU of �̃� is drawn by shading the area where 𝜇�̃�(𝑥, 𝑢) > 0, and 

defined as follows: 

FOU(�̃�) =⋃𝐽𝑥
𝑥∈𝑋

= {(𝑥, 𝑢)|𝑥 ∈ 𝑋, 𝑢 ∈ [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)]} (2.18) 

Here, the LMF and the UMF are also defined on the primary level and characterize the 

lower and upper boundaries of the FOU(�̃�) as follows: 

𝜇�̃�(𝑥) = inf{𝑢|𝑢 ∈ [0,1],   𝜇�̃�(𝑥, 𝑢) > 0} (2.19) 

𝜇
�̃�
(𝑥) = sup{𝑢|𝑢 ∈ [0,1],   𝜇�̃�(𝑥, 𝑢) > 0} (2.20) 

2.1.3 Interval type-2 fuzzy sets 

As a special form of GT2-FSs, an IT2-FS is obtained when all secondary membership 

grades are 1 (i.e. 𝜇�̃�(𝑥, 𝑢) = 1) as follows [7]: 

�̃� = {(𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢) = 1 | 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈} (2.21) 

When an IT2-MF (instead of GT2-MF) is employed, an interval set (instead of T1-FS) 

is used at the secondary layer of SMF, 𝜇�̃�(𝑥)(𝑢), so that the IT2-MFs can be drawn in 

the 2D domain (similar to the T1 counterpart) with respect to LMF, UMF, and FOU. 

In this context, IT2 counterparts of T1-MF examples (triangle, trapezoid, and 

Gaussian) are given in Figures 2.4, 2.5, and 2.6. 
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Figure 2.4 : Triangle IT2-FS. 
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Figure 2.5 : Trapezoid IT2-FS. 
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Figure 2.6 : Gaussian IT2-FS. 
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Figure 2.7 : Secondary grade examples of T1 and T2 fuzzy sets. 

The differences between T1, IT2, and GT2-MFs at the secondary layer (in terms of the 

SMF) are illustrated in Figure 2.7. Here, the FOU does not exist for the T1-MF since 

the LMF and the UMF are overlapped at the value of 𝜇(𝑥). Accordingly, this provides 

a crisp secondary layer as shown in Figure 2.7a. On the other hand, the IT2-MF has a 

predefined interval set at the secondary layer thanks to its FOU bounded by the LMF 

(𝜇�̃�(𝑥)) and the UMF (𝜇
�̃�
(𝑥)). This provides additional design flexibility, whereas the 

SMF design is not possible as all secondary grades are 1 as shown in Figure 2.7b. On 

the contrary for the GT2-MF case, numerous SMF design is possible since the SMF is 

designed based on a T1-FS used at the secondary layer (Figure 2.7c shows only 

triangle example in this context). This provides extra design flexibility and opportunity 

to the designer. The selection of the SMFs and the effects on the controller/system 

performances will be investigated in the next chapters.  
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2.2 Type-1 and Interval Type-2 Fuzzy Logic Controllers 

A FLC is a complex system that provides a mapping from its input(s) to its output 

based on fuzzy rules in the rule table, which is used in many applications such as 

reasoning, decision making, modeling, and control [30, 31]. In fuzzy literature, the 

most popular FLC structures are Mamdani and Takagi-Sugeno-Kang [7]. Both FLC 

structures are characterized by IF-THEN rules and have the same antecedent part, on 

the other hand, they differ in the part of consequents. The Mamdani fuzzy systems use 

fuzzy sets at the consequent part of the rules, whereas the TSK fuzzy systems use 

mathematical functions or singletons at the consequent part of the rules. As the TSK 

FLCs are considered in this thesis, the consequents of all FLCs are defined by 

singletons, while the antecedent parts are defined by T1, IT2, and GT2 FSs for T1, 

IT2, and GT2 FLCs, respectively. 

2.2.1 Type-1 fuzzy logic controllers 

The T1-FLCs are constructed by four main parts [7]: fuzzifier, fuzzy rule base, 

inference engine, defuzzifier as shown in Figure 2.8. Here, the fuzzifier converts the 

crisp input into T1 fuzzy input sets. Then, the inference engine combines these T1 

fuzzy input sets through the fuzzy IF-THEN rules and accumulates T1 fuzzy output 

sets after calculating the corresponding firing levels of fuzzy rules. After combining 

these T1 output fuzzy sets, the defuzzifier generates the crisp output. 

 

Figure 2.8 : System block diagram of type-1 fuzzy logic controllers. 

A fuzzy rule of a T1-FLC is defined as follows [7]: 

𝑅𝑛: IF 𝑥1 𝑖𝑠 𝐴1,𝑖 and … and 𝑥𝐽 𝑖𝑠 𝐴𝐽,𝑖 THEN 𝑦𝑇1 is 𝐶𝑛 (2.22) 
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where 𝑥𝑗 (𝑗 ∈ {1,2, … , 𝐽}) is an input, 𝐴𝑗,𝑖 (𝑖 ∈ {1,2, … , 𝐼}) is an antecedent MF, 𝐽 is the 

total number of inputs, 𝐼 is the total number of antecedent MFs, 𝑅𝑛 (𝑛 ∈ {1,2, … ,𝑁}) 

is the nth rule of the rule table, 𝑁 is the total number of rules in the rule table, 𝑦𝑇1 is 

the output of T1-FLC, and 𝐶𝑛 is an output singleton consequent of the rule 𝑅𝑛. When 

the weighted average center-of-sets defuzzification method is applied, then the output 

of a T1-FLC (𝑦𝑇1) is defined as follows [7]: 

𝑦𝑇1 =
∑ 𝑓𝑛𝐶𝑛
𝑁
𝑛=1

∑ 𝑓𝑛
𝑁
𝑛=1

  (2.23) 

where 𝑓𝑛 is the firing strength of the rule 𝑅𝑛 and calculated as: 

𝑓𝑛 =∏ 𝜇𝐴𝑗,𝑖(𝑥𝑗)
𝐽

𝑗=1
= 𝜇𝐴1,𝑖(𝑥1) × …× 𝜇𝐴𝐽,𝑖(𝑥𝐽) (2.24) 

where × and Π terms indicate product t-norm operators. Here, 𝜇𝐴𝑗,𝑖(𝑥𝑗) is the 

membership degree of the corresponding T1-MF (i.e. 𝜇𝐴(𝑥)) and calculated according 

to T1-MF definitions and the value of the input 𝑥𝑗. 

2.2.2 Interval type-2 fuzzy logic controllers 

In addition to their T1 counterparts, the T2-FLCs have additional operation denoted as 

type-reduction as illustrated in Figure 2.9 [7]. The type reducer is essential for T2-

FLCs; it requires a computational cost which is assumed as the main bottleneck of T2-

FLCs [7], whereas it is required to complete the output calculation of T2-FLCs. The 

fuzzifier uses and processes the T2-FSs. The output of the inference becomes T2 fuzzy 

output sets. Then the type-reducer evaluates these T2 fuzzy output sets and converts 

them to a kind of type-1 fuzzy set denoted as type-reduced sets. The defuzzifier uses 

this type-reduced set for the defuzzification process. It is worth mentioning that there 

are several type-reduction algorithms in the literature, while the KM type reduction 

[46] is still the most commonly used type-reduction method [7]. Due to this reason in 

this thesis, the KM algorithm is employed as a type-reducer of T2-FLCs. Another 

remark is that the type-reduction methods are generally proposed for IT2-FLCs, where 

all secondary grades are 1. This is also GT2-FLC compatible from the calculation point 

of view since the output calculation of GT2-FLCs is handled in a way that all IT2-FLC 

fuzzy notations that are given in Figure 2.9 become also valid for the GT2-FLC 
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calculations [7]. The computation of a GT2-FLC will be explained in “Chapter 3 - 

General Type-2 Fuzzy Logic Controllers in detail. 

 

Figure 2.9 : System block diagram of interval type-2 fuzzy logic controllers. 

A fuzzy rule of an IT2-FLC is defined as follows [7]: 

𝑅𝑛: IF 𝑥1 𝑖𝑠 �̃�1,𝑖 and … and 𝑥𝐽 𝑖𝑠 �̃�𝐽,𝑖 THEN 𝑦𝐼𝑇2 is 𝐶𝑛 (2.25) 

where 𝑥𝑗 (𝑗 ∈ {1,2, … , 𝐽}) is an input, �̃�𝑗,𝑖 (𝑖 ∈ {1,2, … , 𝐼}) is an antecedent MF, 𝐽 is the 

total number of inputs, 𝐼 is the total number of antecedents MF, 𝑅𝑛 (𝑛 ∈ {1,2, … ,𝑁}) 

is the nth rule of the rule table, 𝑁 is the total number of rules in the rule table, 𝑦𝐼𝑇2 is 

the output of IT2-FLC, and 𝐶𝑛 is an output singleton consequent of the rule 𝑅𝑛. When 

a KM type reduction and center of set defuzzification method [46] is applied, then the 

output of an IT2-FLC (𝑦𝐼𝑇2) is defined as follows [7, 48, 49]: 

𝑦𝐼𝑇2 =
(𝑦𝐼𝑇2 + 𝑦𝐼𝑇2)

2
 (2.26) 

where 𝑦𝐼𝑇2 and 𝑦
𝐼𝑇2

 are left and right endpoints of the type-reduced set (i.e. T1 interval 

fuzzy numbers), respectively. The left and right endpoints of the type-reduced set are 

calculated as follows: 

𝑦𝐼𝑇2 =
∑ 𝑓𝑛𝐶𝑛 
𝐿
𝑛=1 + ∑ 𝑓𝑛𝐶𝑛 

𝑁
𝑛=𝐿+1

∑ 𝑓𝑛
𝐿
𝑛=1 + ∑ 𝑓𝑛

𝑁
𝑛=𝐿+1

 (2.27) 

𝑦
𝐼𝑇2

=
∑ 𝑓𝑛𝐶𝑛 
𝑅
𝑛=1 + ∑ 𝑓𝑛𝐶𝑛 

𝑁
𝑛=𝑅+1

∑ 𝑓𝑛
𝑅
𝑛=1 + ∑ 𝑓𝑛

𝑁
𝑛=𝑅+1

 (2.28) 
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where 𝐿 and 𝑅 are left and right switching points of the KM algorithm respectively [7, 

48, 49], 𝑓𝑛 and 𝑓𝑛 are the upper and lower firing strengths of the firing interval (𝐹𝐼𝑛) 

associated with the rule 𝑅𝑛. The firing interval is calculated as follows: 

𝐹𝐼𝑛 = [𝑓𝑛 𝑓𝑛] (2.29) 

where lower and upper bounds of the firing interval are calculated as: 

𝑓𝑛 =∏ 𝜇�̃�𝑗,𝑖(𝑥𝑗)
𝐽

𝑗=1
= 𝜇�̃�1,𝑖(𝑥1) × …× 𝜇�̃�𝐽,𝑖(𝑥𝐽) (2.30) 

𝑓𝑛 =∏ 𝜇
�̃�𝑗,𝑖
(𝑥𝑗)

𝐽

𝑗=1
= 𝜇

�̃�1,𝑖
(𝑥1) × …× 𝜇�̃�𝐽,𝑖

(𝑥𝐽) (2.31) 

where 𝜇�̃�𝑗,𝑖(𝑥𝑗) and 𝜇
�̃�𝑗,𝑖
(𝑥𝑗) are the membership degrees of the corresponding LMF 

and UMF (i.e. 𝜇�̃�(𝑥) and 𝜇
�̃�
(𝑥)), respectively. In this thesis, (as in previous works 

[40, 42-44, 49]), the UMFs and the LMFs are always defined with respect to their T1 

baseline and the design parameter denoted by 𝑀𝑗,𝑖 as follows: 

𝜇
�̃�𝑗,𝑖
(𝑥𝑗) = 𝜇𝐴𝑗,𝑖(𝑥𝑗) (2.32) 

𝜇�̃�𝑗,𝑖(𝑥𝑗) = 𝜇�̃�𝑗,𝑖
(𝑥𝑗) 𝑀𝑗,𝑖 = 𝜇𝐴𝑗,𝑖(𝑥𝑗) 𝑀𝑗,𝑖 (2.33) 

where 𝑀𝑗,𝑖 is the height of the LMF associated with the T2-FS �̃�𝑗,𝑖. The parameter 𝑀 

associated with an IT2-FLC �̃�, in the most generic form, is also called as the FOU 

design parameter of IT2-FLCs [36-45]. This design parameter defines the size of the 

FOU since it changes the shaded area. As illustrated in Figures 2.10-2.13, higher 𝑀 

values result in a smaller FOU as the shaded area shrinks when the LMF approaches 

towards the UMF. In a similar manner, lower 𝑀 values result in larger FOU since the 

shaded area enlarges. For example, the shaded FOU area of Figure 2.10 is much larger 

than the one for Figure 2.12, since the height values are 𝑀 = 0.2 and 𝑀 = 0.8, 

respectively. Moreover, as illustrated in Figure 2.13, when 𝑀 = 1 for all T2-FSs, then 

the FOU disappears so that the IT2-FLC reduces into its T1-FLC counterpart from the 

structure and calculation points of view. 
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Figure 2.10 : A triangle IT2 membership function for 𝑀 = 0.2 setting. 

 

Figure 2.11 : A triangle IT2 membership function for 𝑀 = 0.5 setting. 

 

Figure 2.12 : A triangle IT2 membership function for 𝑀 = 0.8 setting. 
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Figure 2.13 : A triangle IT2 membership function for 𝑀 = 1 setting. 

2.3 From FLC Mapping to Fuzzy PID Controllers 

The PID type fuzzy logic controllers, in other words, FPID controllers, are generally 

cited as an alternative to the classic PID controllers, as they are analogous to their 

conventional counterparts from their input-output mapping perspectives [9-11, 14-16]. 

The main difference between conventional and fuzzy controllers is that the 

conventional controller provides a linear mapping from input to output, while the FPID 

controller provides a nonlinear mapping. In some studies, this mapping is interpreted 

that the FPID controller is a conventional PID controller with a varying controller gain 

[19]. The FPID controller structures are generally constructed by the scaling factors 

(input and output) and a base FLC. In literature, various fuzzy controller structures are 

proposed [11-21].  

In this thesis; all fuzzy controllers are categorized based on their internal FLC type and 

the number of inputs. The generic FPID term is preferred to represent all possible 

configurations of FPID controllers (i.e. PID, PD, PI, and P) since this categorization 

happens with respect to the non-zero values of the scaling factors. Based on the FLC 

type, the following FPID controller structures are examined: 

• T1-FPID controller that employs T1-FLC, 

• IT2-FPID controller that employs IT2-FLC, 

• GT2-FPID controller that employs GT2-FLC; 
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while these fuzzy controllers (i.e. T1, IT2, and GT2 FPID controllers) are also 

categorized with respect to their number of inputs as follows: 

• Single-Input FLCs (SFLCs), 

• Double-Input FLCs (DFLCs). 

A fuzzy controller (either FLC or FPID) is generally constructed by choosing its inputs 

as the error signal (𝑒) and the derivative of the error signal (�̇�), while its output is the 

control signal (𝑢). Note that, in the fuzzy literature [14, 17, 21], inputs and outputs are 

sometimes defined in the discrete-time domain instead of the continuous-time domain 

by using the discrete error signal (𝑒[𝑘]) and the change of error signal (∆𝑒[𝑘]). But 

these expressions do not change the generic structure of the fuzzy controller since the 

fuzzy rule base and internal fuzzy inference calculations are the same. In this thesis, 

for the sake of consistency, the notion of (𝑒, ∆𝑒) is used to represent the error signal 

and the change of the error signal, respectively. Hence, the inputs of a fuzzy controller 

are defined as follows: 

𝑒 = 𝑟𝑠 − 𝑦𝑠 ≅ 𝑟[𝑘] − 𝑦𝑠[𝑘] (2.34) 

�̇� =
𝑑𝑒

𝑑𝑡
≅
∆𝑒

𝑇
 (2.35) 

∆𝑒 = 𝑒[𝑘] − 𝑒[𝑘 − 1] (2.36) 

where 𝑟𝑠 is the reference signal of the control system, 𝑦𝑠 is the output of the system to 

be controlled, and 𝑇 denotes the sample time of the discrete system. For all fuzzy 

controllers, the input scaling factors are used to normalize the inputs in the range of 

the universe of discourse [40]. The input scaling factors are denoted as 𝐾𝑒 and 𝐾𝛥𝑒 for 

the error and the change of error inputs, respectively. The input scaling factors 

normalize the inputs as follows: 

𝐸 = 𝐾𝑒 𝑒, 𝐸 ∈ [−1,1] (2.37) 

∆𝐸 = 𝐾Δe ∆𝑒, ∆𝐸 ∈ [−1,1] (2.38) 

where 𝐸 is the normalized error input and ∆𝐸 is the normalized change of error input. 

Here, the universe of discourse is defined in the range of [-1, 1], so inputs 𝐸 and ∆𝐸 

are bounded in this value interval employed in the FLC. Here it is worth underlying 
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that 𝑒 is the input of the conventional or fuzzy controller, while 𝐸 and ∆𝐸 are the inputs 

of the FLC that is used in the fuzzy controller. Moreover, the output of the fuzzy 

controller (𝑢), which is the control signal of the closed-loop system, is generated after 

the conversion of the FLC output by the output scaling factors, namely 𝐾𝑎 and 𝐾𝑏. 

Here, the output scaling factors convert the control signal into a real-time applicable 

signal range as the FLC provides output only in the universe of discourse. 

2.4 Single-Input Fuzzy PID Controllers 

A Single-input Fuzzy PID (SFPID) controller consists of a SFLC, an input scaling 

factor that is 𝐾𝑒, an output scaling factor that is 𝐾𝑎, and a conventional PID controller 

with 3 gain terms (𝐾𝑝, 𝐾𝑖, and 𝐾𝑑) [36, 41]. In the closed-loop control block diagram, 

the input of the SFPID controller is the error signal (𝑒), while the output is the control 

signal (𝑢) as given in Figure 2.14. 

 

Figure 2.14 : Closed-loop control block diagram of single-input FPID controllers. 

2.4.1 Type-1 single-input fuzzy PID controllers 

The T1-SFLC of a SFPID controller is constructed by selecting its single input as the 

normalized error signal (𝑥1 = 𝐸) and the output as 𝑦𝑇1 = 𝑈𝑇1 [36, 41]. It is worth 

marking that the fuzzy literature prefers “𝑦” term to express the output of the fuzzy 

mapping (from a fuzzy input 𝑥 to a fuzzy output 𝑦). In this thesis, the 𝑦 terms (e.g. 

𝑦𝑇1, 𝑦𝐼𝑇2, and 𝑦𝐺𝑇2) are used to represent a generic FLC output (like in equation 

(2.39)), while 𝑈 terms (e.g. 𝑈𝑇1, 𝑈𝐼𝑇2, and 𝑈𝐺𝑇2) are used for FLC output for control 

applications. Therefore, the fuzzy rule in equation (2.22) is arranged for T1-SFLCs 

employing T1-FSs (𝐴𝑗,𝑖) as follows: 

𝑅𝑛: IF 𝑥1 𝑖𝑠 𝐴1,𝑖 THEN 𝑦𝑇1 is 𝐶𝑛 (2.39) 
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where 𝑖 ∈ {1,… , 𝐼} and 𝑘 ∈ {1,… , 𝐾 = 𝐼} represent corresponding antecedent MFs 

that are defined in the rule 𝑅𝑛. Hence, the output of a T1-SFLC is calculated as given 

in equation (2.23), while the firing strength calculation is accomplished after 

redefining equation (2.24) as follows: 

𝑓𝑛 = 𝜇𝐴1,𝑖(𝑥1) = 𝜇𝐴1,𝑖(𝐸) (2.40) 

where 𝑥1 = 𝐸 is the single input of the T1-SFLC structure. This single input signal is 

obtained according to equation (2.37) in where the error signal (𝑒) is obtained as in 

equation (2.34). Then, the output scaling factor (𝐾𝑎) converts the SFLC output (𝑈𝑇1, 

also shown as 𝑈 in Figure 2.14) as follows: 

𝜑 = 𝐾𝑎 𝑈, 𝑈 ∈ [−1,1] (2.41) 

where 𝜑 is the denormalized output of the T1-SFLC mapping. Here, the value of 𝜑 is 

the input of the conventional part of the SFPID controller (as replacement of the error 

signal) as given in Figure 2. 14. Consequently, the output of the T1-SPID controller, 

namely the control signal (𝑢 = 𝑢𝑇1), is calculated as follows: 

𝑢 = 𝐾𝑝𝜑 + 𝐾𝑖∫𝜑(𝜉)𝑑𝜉

𝑡

0

+ 𝐾𝑑
𝑑𝜑

𝑑𝑡
 (2.42) 

It is worth underlying that the term “𝑢” is used as the control signal (for example as in 

equation (2.42)), in control applications as shown in Figure 2.14, while it is used as 

the secondary variable in T2-FS definitions (as given in equation (2.11). Also, the 𝑈 

term is used as the FLC output in control applications (for example as given in equation 

(2.41)) as shown in Figure 2.14, while it is used as the universe of discourse of the 

secondary variable (as given in equation (2.11)). In this thesis, the given both “𝑢 and 

𝑈” notations are followed for all FLC types (T1, IT2, and GT2) to have the same 

naming convention as in the literature. 

2.4.2 Interval type-2 single-input fuzzy PID controllers 

The IT2-SFLC of a SFPID controller is also constructed by selecting its single input 

as the normalized error signal (𝑥1 = 𝐸) and the output as 𝑦𝐼𝑇2 = 𝑈𝐼𝑇2 [36, 41]. The 

fuzzy rule in equation (2.25) is arranged for T2-SFLCs employing T2-FSs (�̃�𝑗,𝑖) as: 
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𝑅𝑛: IF 𝑥1 𝑖𝑠 �̃�1,𝑖 THEN 𝑦𝐼𝑇2 is 𝐶𝑛 (2.43) 

Like its T1 counterpart, the output of IT2-SFLC is calculated as given in equations 

(2.26), (2.27), and (2.28), while the lower and upper firing interval calculations in 

equations (2.30) and (2.31) are arranged, respectively as follows: 

𝑓𝑛 = 𝜇�̃�1,𝑖(𝑥1) = 𝜇�̃�1,𝑖(𝐸) (2.44) 

𝑓𝑛 = 𝜇
�̃�1,𝑖
(𝑥1) = 𝜇

�̃�1,𝑖
(𝐸) (2.45) 

where 𝑥1 = 𝐸 is also obtained according to equation (2.37) in where the error signal 

(𝑒) is obtained as in equation (2.34). The membership degrees of LMF and UMF are 

calculated as given in equations (2.32) and (2.33). The output scaling factor (𝐾𝑎) 

converts the IT2-SFLC output (𝑈𝐼𝑇2) as given in equation (2.41). Then the output of 

the IT2-SPID controller (where 𝑢 = 𝑢𝐼𝑇2), is calculated as given in equation (2.42). It 

is worth underlying that once the FLC output (i.e. 𝑈) is obtained, then the rest of the 

output calculations are the same for all FLCs. It only differs in the assignments of FLC 

output to the corresponding signals: 𝑦𝑇1, 𝑦𝐼𝑇2, and 𝑦𝐺𝑇2. Consequently, in the same 

manner, the output of the GT2-SFPID controller (where 𝑢 = 𝑢𝐺𝑇2), is calculated as in 

T1-FPID and IT2-FPID controllers. The output calculations of GT2-SFLCs will be 

presented in “Chapter 3 - General Type-2 Fuzzy Logic Controllers”. 

2.5 Double-Input Fuzzy PID Controllers 

A Double-input Fuzzy PID (DFPID) controller consists of a DFLC cascaded to two 

input scaling factors (𝐾𝑒 for 𝐸 input, and 𝐾Δ𝑒 for Δ𝐸 input), and two output scaling 

factors (𝐾𝑎 and 𝐾𝑏 with an integrator) [10, 19, 39-40, 42-44] as shown in the closed-

loop block diagram in Figure 2.15. 

 

Figure 2.15 : Closed-loop block diagram of double-input FPID controllers. 
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2.5.1 Type-1 double-input fuzzy PID controllers 

The T1-DFLC of a DFPID controller is constructed by selecting its inputs as the 

normalized error input (𝑥1 = 𝐸) and the normalized change of error input (𝑥2 = Δ𝐸) 

and the output as 𝑦𝑇1 = 𝑈𝑇1 [10, 19]. Therefore, the fuzzy rule in equation (2.22) is 

arranged for T1-DFLCs employing T1-FSs (𝐴𝑗,𝑖) as: 

𝑅𝑛: IF 𝑥1 𝑖𝑠 𝐴1,𝑖 and 𝑥2 𝑖𝑠 𝐴2,𝑘 THEN 𝑦𝑇1 is 𝐶𝑛 (2.46) 

The output of T1-DFLC is calculated as given in equation (2.23), and the firing 

strength calculation in equation (2.24) is arranged as follows: 

𝑓𝑛 = 𝜇𝐴1,𝑖(𝑥1) × 𝜇𝐴2,𝑘(𝑥2) = 𝜇𝐴1,𝑖(𝐸) × 𝜇𝐴2,𝑘(Δ𝐸) (2.47) 

where the inputs of the T1-DFLC structure (𝐸 and Δ𝐸) are obtained according to 

equations (2.37) and (2.38), respectively. Then, the output scaling factors convert the 

T1-DFLC output (𝑈 in Figure 2.15) as follows: 

𝑢 = 𝐾𝑎𝑈 + 𝐾𝑏∫𝑈(𝜉)𝑑𝜉

𝑡

0

, 𝑈 ∈ [−1,1] (2.48) 

where 𝑢 is the control signal of the closed-loop control system. Here it is also denoted 

as the output of the T1-SPID controller (i.e. 𝑢 = 𝑢𝑇1).  

It is worth noting again that the term “𝑢” is used as the control signal (i.e. as given in 

equation (2.48)), in control applications as shown in Figure 2.15, while it is used as 

the secondary variable in T2-FS definitions (as given in equation (2.11)). Moreover, 

the 𝑈 term is used as the FLC output in control applications (i.e. as given in equation 

(2.48)) as shown in Figure 2.15, while it is used as the universe of discourse of the 

secondary variable in T2-FS definitions (as given in equation (2.11)). In this thesis, 

the given both “𝑢 and 𝑈” notations are also followed for the sake of having the same 

naming convention as in the literature. 

2.5.2 Interval type-2 double-input fuzzy PID controllers 

The T2-DFLC of a DFPID controller is also constructed by selecting inputs as the 

normalized error input (𝑥1 = 𝐸) and the normalized change of error input (𝑥2 = Δ𝐸) 

and the output as 𝑦𝐼𝑇2 = 𝑈𝐼𝑇2 [10, 19, 39-40, 42-44]. The fuzzy rule in equation (2.25) 
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is arranged for IT2-DFLCs employing T2-FSs (�̃�𝑗,𝑖) and accordingly, the following 

fuzzy rule structure is obtained: 

𝑅𝑛: IF 𝑥1 𝑖𝑠 �̃�1,𝑖 and 𝑥2 𝑖𝑠 �̃�2,𝑘 THEN 𝑦𝐼𝑇2 is 𝐶𝑛 (2.49) 

Like its T1 counterpart, the output of IT2-SFLC is calculated as given in equations 

(2.26), (2.27), and (2.28), while the lower and upper firing interval calculations in 

equations (2.30) and (2.31) are arranged, respectively as follows: 

𝑓𝑛 = 𝜇�̃�1,𝑖(𝑥1) × 𝜇𝐴2,𝑘(𝑥2) = 𝜇�̃�1,𝑖(𝐸) × 𝜇𝐴2,𝑘(Δ𝐸) (2.50) 

𝑓𝑛 = 𝜇�̃�1,𝑖
(𝑥1) × 𝜇𝐴2,𝑘

(𝑥2) = 𝜇�̃�1,𝑖
(𝐸) × 𝜇

𝐴2,𝑘
(Δ𝐸) (2.51) 

where 𝑥1 = 𝐸 and 𝑥2 = Δ𝐸 are obtained according to firing interval calculations given 

in equations (2.37) and (2.38) respectively. Here, the membership degrees of LMF and 

UMF are calculated as given in equations (2.32) and (2.33), respectively. Then, the 

output scaling factors (𝐾𝑎 and 𝐾𝑏) convert the IT2-SFLC output (𝑈) into the control 

signal 𝑢 as illustrated in Figure 2.15. Therefore, the output of the IT2-SPID controller 

(i.e. 𝑢 = 𝑢𝐼𝑇2), is calculated as given in equation (2.48). 

Similar to the SFPID controller case, once the FLC output (i.e. 𝑈 in terms of 𝑈𝑇1, 𝑈𝐼𝑇2, 

𝑈𝐺𝑇2) is obtained, then the rest of the output calculations are the same for all FLCs. In 

other words, it only differs in the assignments of FLC output to the corresponding 

signals, in terms of type-1, interval type-2, or general type-2. Consequently, the output 

of the GT2-DPID controller (i.e. 𝑢 = 𝑢𝐺𝑇2) is calculated in the same manner. The 

output calculations of GT2-DFLCs will be presented in “Chapter 3 - General Type-2 

Fuzzy Logic Controllers”. 

2.6 Structural Design Recommendations  

Although, the FLCs provide a superior framework to handle complex/nonlinear 

systems thanks to their sophisticated input-output mappings, a proper or optimized 

design might be challenging as the design parameters can be assigned independently 

from each other, and the total number of the design parameters is also application-

dependent. To overcome this problem of the FLC design, some assumptions/rules are 
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followed such that the FLC design is accomplished in a reasonable effort [7, 30, 31, 

40, 41, 55]. In this thesis, the following common design assumptions are considered: 

1. The antecedent MFs (𝐴𝑗,𝑖 or �̃�𝑗,𝑖) are uniformly distributed over the universe 

(𝑋𝑖) of the corresponding input (𝑥𝑖). 

2. The antecedent MFs (𝐴𝑗,𝑖 or �̃�𝑗,𝑖) are constructed with triangle FSs. 

3. The total number of antecedent MFs (𝐼 or 𝐾) corresponds to the total number 

of rules in the rule table (𝑁). For SFLC and DFLC structures, the conditions 

are defined as 𝑁 = 𝐼 and 𝑁 = 𝐼 × 𝐾, respectively.  

4. The total number of rules (𝑁) is a structural setting parameter for all SFLC and 

DFLC structures. 

5. The Consequent MFs (𝐶𝑛) are constructed with singletons and each singleton 

(𝐶𝑛) corresponds to the fuzzy rule (𝑅𝑛) in the rule table. The output values of 

consequent MFs are assumed as design parameters for T1-FLCs. 

6. The UMFs of the IT2 antecedent MFs (�̃�𝑗,𝑖) are constructed over their T1 

counterparts by setting the UMFs as T1-FSs (𝐴𝑗,𝑖). 

7. The LMFs of the IT2 antecedent MFs (�̃�𝑗,𝑖) are constructed over their T1 

counterparts by weighting the T1-FSs (𝐴𝑗,𝑖) with a height variable (𝑀𝑗,𝑖). The 

height of the IT2 antecedent MFs (�̃�𝑗,𝑖) is assumed as a design parameter for 

IT2-FLCs. 

8. The scaling factors (𝐾𝑒, 𝐾Δ𝑒, 𝐾𝑎, and 𝐾𝑏), although they are common for all 

FLC types, are mostly assumed as design parameters of T1-FLCs. 

Table 2.1 : Design parameters of T1-SFLCs. 

Assumptions Total Number 

of Rules 

Known 

Structural 

Parameters 

Antecedent 

Design 

Parameters 

Consequent 

Design 

Parameters 

Total Number 

of Design 

Parameters 

− − − 𝐴1,𝑖 𝐶𝑛 ?1  

4 𝑁 − 𝐴1,𝑖 𝐶𝑛 ?2 

3-5 𝑁 𝐼 = 𝑁 𝐴1,𝑖 𝐶𝑛 ?3+ 𝑁 

2-5 𝑁 𝐼 = 𝑁 𝐴1,𝑖 𝐶𝑛 3𝑁 + 𝑁 

1-5 𝑁 𝐼 = 𝑁 −∗ 𝐶𝑛 𝑁∗ 

?1: Rule structure is not clear, since the total number of rules is undefined. 

?2: Rule structure is not clear, since the total number of antecedent MF is undefined. 

?3: Antecedent MF type is not clear. (It is 3𝑁 for triangle case, while it is 4𝑁 for trapezoid case). 

−∗ : There is no antecedent design parameter according to assumptions since all parameters are 

defined during distribution over the universe with respect to the total number of rules.  

𝑁∗ : The number reduces if a consequent is used in multiple rules. 
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Table 2.2 : Design parameters of T1-DFLCs. 

Assumptions Total Number 

of Rules 

Known 

Structural 

Parameters 

Antecedent 

Design 

Parameters 

Consequent 

Design 

Parameters 

Total Number 

of Design 

Parameters 

− − − 𝐴1,𝑖 , 𝐴2,𝑘 𝐶𝑛 ?1  

4 𝑁 − 𝐴1,𝑖 , 𝐴2,𝑘 𝐶𝑛 ?2 

3-5 𝑁 𝐼 × 𝐾 = 𝑁 𝐴1,𝑖 , 𝐴2,𝑘 𝐶𝑛 ?3+ 𝑁 

2-5 𝑁 𝐼 × 𝐾 = 𝑁 𝐴1,𝑖 , 𝐴2,𝑘 𝐶𝑛 3(𝐼 + 𝐾) + 𝑁 

1-5 𝑁 𝐼 × 𝐾 = 𝑁 −∗ 𝐶𝑛 𝑁∗ 

?1: Rule structure is not clear, since the total number of rules is undefined. 

?2: Rule structure is not clear, since the total number of antecedent MF is undefined. 

?3: Antecedent MF type is not clear. (For example, it is 4(𝐼 + 𝐾) for trapezoid case). 

−∗ : All parameters are defined according to assumptions. 

𝑁∗ : The number reduces if a consequent is used in multiple rules. 

Table 2.3 : Design parameters of IT2-SFLCs. 

Assumptions Total Number 

of Rules 

Known 

Structural 

Parameters 

Antecedent 

Design 

Parameters 

Consequent 

Design 

Parameters 

Total Number 

of Design 

Parameters 

− − − �̃�1,𝑖 𝐶𝑛 ?  

1-5 𝑁 𝐼 = 𝑁 �̃�1,𝑖 −𝑇1 6𝐼† 

1-6 𝑁 𝐼 = 𝑁 �̃�1,𝑖   −𝑇1 3𝐼‡ 

1-7 𝑁 𝐼 = 𝑁 𝑀1,𝑖    −𝑇1 𝐼• 

?: Rule structure is not clear. 

−𝑇1: T1-FLC baseline design. There is no IT2 design parameter. 

†: IT2 Antecedent MFs are designed from scratch (Separate LMF and UMF designs). 

‡: UMF is fixed according to assumptions. Only LMFs are designed from scratch. 

•: LMF and UMFs are defined according to assumptions. The parameter 𝑀1,𝑖 (𝑖 ∈ {1,2, … , 𝐼}) is the 

FOU design parameter. 

Table 2.4 : Design parameters of IT2-DFLCs. 

Assumptions Total 

Number 

of Rules 

Known 

Structural 

Parameters 

Antecedent 

Design 

Parameters 

Consequent 

Design 

Parameters 

Total Number 

of Design 

Parameters 

− − − �̃�1,𝑖 , �̃�2,𝑘 𝐶𝑛 ?  

1-5 𝑁 𝐼 × 𝐾 = 𝑁 �̃�1,𝑖 , �̃�2,𝑘 −𝑇1 (6𝐼 + 6𝐾)† 

1-6 𝑁 𝐼 × 𝐾 = 𝑁 �̃�1,𝑖, �̃�2,𝑘   − (3𝐼 + 3𝐾)† 

1-7 𝑁 𝐼 × 𝐾 = 𝑁 𝑀1,𝑖  , 𝑀2,𝑘   − (𝐼 + 𝐾)• 

?: Rule structure is not clear. 

−𝑇1: T1-FLC baseline design. There is no IT2 design parameter. 

†: IT2 Antecedent MFs are designed from scratch (Separate LMF and UMF designs). 

‡: UMF is fixed according to assumptions. Only LMFs are designed from scratch. 

•: LMF and UMFs are defined according to assumptions. The parameters 𝑀1,𝑖 (𝑖 ∈ {1,2, … , 𝐼}) and 

𝑀2,𝑘 (𝑘 ∈ {1,2, … , 𝐾}) are the FOU design parameters. 
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As a comprehensive summary of various T1 and IT2-FLC design options, the settings 

with the least design parameters (i.e. the last rows of the above tables) are summarized 

in Table 2.5. 

Table 2.5 : Summary of T1 and IT2 FLC design parameters. 

FLC Type Total 

Number 

of Rules 

Known 

Structural 

Parameters 

Antecedent 

Design 

Parameters 

Consequent 

Design 

Parameters 

Total Number 

of Design 

Parameters 

T1-SFLC 𝑁 𝐼 = 𝑁 − 𝐶𝑛 𝑁 

T1-DFLC 𝑁 𝐼 × 𝐾 = 𝑁 − 𝐶𝑛 𝑁 

IT2-SFLC 𝑁 𝐼 = 𝑁 𝑀1,𝑖    − 𝐼 

IT2-SFLC 𝑁 𝐼 × 𝐾 = 𝑁 𝑀1,𝑖  , 𝑀2,𝑘   − 𝐼 + 𝐾 

Finally, the design parameters of T1-FPID and IT2 FPID controllers are summarized 

in Table 2.6. Once the design is handled in a hierarchal order (first T1 fuzzy controller, 

then IT2fuzzy controller), only antecedent FOU parameters are additionally tuned 

during the IT2-FPID controller design. 

Table 2.6 : Design parameters of T1-FPID and IT2 FPID controllers. 

Controller 

Type 

Input 

Scaling 

Factors 

Antecedent 

Design 

Parameters 

Consequent 

Design 

Parameters 

Output 

Scaling 

Factors 

Additional 

Parameters 

(PID) 

T1-SFPID 𝐾𝑒 − 𝐶𝑛 𝐾𝑎 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 

T1-DFPID 𝐾𝑒, 𝐾Δ𝑒   − 𝐶𝑛 𝐾𝑎, 𝐾𝑏   − 

IT2-SFPID 𝐾𝑒 𝑀1,𝑖    𝐶𝑛 𝐾𝑎 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 

IT2-DFPID 𝐾𝑒, 𝐾Δ𝑒   𝑀1,𝑖, 𝑀2,𝑘    𝐶𝑛 𝐾𝑎, 𝐾𝑏   − 
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3. GENERAL TYPE-2 FUZZY LOGIC CONTROLLERS 

3.1 Introduction 

The GT2-FLCs are constructed by five main parts: fuzzifier, fuzzy rule base, inference 

engine, type-reducer, and defuzzifier [7]. As in the T1-FLC and IT2-FLC counterparts, 

the fuzzifier converts crisp input into GT2 fuzzy input sets, then the inference engine 

combines these GT2 fuzzy input sets through the fuzzy IF-THEN rules and 

accumulates the GT2 fuzzy output sets after calculating corresponding firing levels of 

each fuzzy rule. After combining these output fuzzy sets, the type reducer calculates 

them as type-reduced sets to be used in the defuzzification. Then the defuzzifier 

generates the crisp output. Although the system block diagram of GT2-FLC seems like 

its IT2 counterpart, the calculation steps are much more complex and additional 

computation operations are required to compute the GT2-FLC output. These additional 

operations and calculation steps will be given in the next sections. The system block 

diagram of GT2-FLCs is given in Figure 3.1 

 

Figure 3.1 : System block diagram of general type-2 fuzzy logic controllers. 

A fuzzy rule of a GT2-FLC is defined as follows [7]: 

𝑅𝑛: IF 𝑥1 𝑖𝑠 �̃�1,𝑖 and … and 𝑥𝐽  𝑖𝑠 �̃�𝐽,𝑖 THEN 𝑦𝐺𝑇2 is 𝐶𝑛 (3.1) 

where 𝑥𝑗 (𝑗 ∈ {1,2, … , 𝐽}) is an input, �̃�𝑗,𝑖 (𝑖 ∈ {1,2, … , 𝐼}) is an antecedent GT2-MF,  

𝐽 is the total number of inputs, 𝐼 is the total number of antecedent GT2-MFs, 𝑅𝑛 (𝑛 ∈
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{1,2, … ,𝑁}) is the nth rule of the rule table, 𝑁 is the total number of rules in the rule 

table, and 𝐶𝑛 is an output singleton consequent of the rule 𝑅𝑛, and 𝑦𝐺𝑇2 is the output 

of GT2-FLC. 

3.2 General Type-2 Fuzzy Sets 

The General Type-2 Fuzzy Set (GT2-FS) is the generic form of T2-FSs. Hence a GT2-

FS is also denoted as (�̃�) and it is defined as in equation (2.11). For completeness 

reasons, the definition of a GT2-FS (�̃�) is also given in this section as follows [7]: 

�̃� = {(𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢) | 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈} (3.2) 

where 𝑥 is the input variable (also called as the primary variable of �̃�), 𝑋 is the universe 

of the primary variable 𝑥, 𝑢 is the secondary variable of �̃�, 𝑈 is the universe for the 

secondary variable 𝑢, and 𝜇�̃�(𝑥, 𝑢) is theT2-MF of the T2-FS �̃�. In the continuous and 

the discrete domains, a GT2-FS (i.e. denoted as �̃�) is defined as follows: 

�̃� = ∫ ∫ 𝜇�̃�(𝑥, 𝑢) (𝑥, 𝑢)⁄

𝑢∈𝑈𝑥∈𝑋

or �̃� = ∫  ( ∫ 𝜇�̃�(𝑥, 𝑢) 𝑢⁄

𝑢∈𝑈

) 𝑥⁄

𝑥∈𝑋

 (3.3) 

�̃� = ∑ ∑ 𝜇�̃�(𝑥, 𝑢) (𝑥, 𝑢)⁄

𝑢∈𝑈𝑑𝑥∈𝑋𝑑

or �̃� = ∑  (∑ 𝜇�̃�(𝑥, 𝑢) 𝑢⁄

𝑢∈𝑈𝑑

) 𝑥⁄

𝑥∈𝑋𝑑

 (3.4) 

The membership grade (primary and/or secondary) of a GT2-FS is described based on 

the primary membership of 𝑥 (i.e. 𝐽𝑥) and the SMF (𝜇�̃�(𝑥)(𝑢) or 𝜇�̃�(𝑥)) Here, similar 

to the IT2 case, the SMF and the primary membership (𝐽𝑥) are also defined as: 

𝜇�̃�(𝑥) = 𝜇�̃�(𝑥)(𝑢) = ∫
𝜇�̃�(𝑥, 𝑢)

(𝑢)
⁄

𝑢∈[0,1]

 (3.5) 

𝐽𝑥 = {(𝑥, 𝑢)|𝑢 ∈ [0,1], 𝜇�̃�(𝑥, 𝑢) > 0} (3.6) 

The SMF (i.e. 𝜇�̃�(𝑥)) is a distinguishing property of the GT2-FSs since it determines 

the resulting output of the GT2-FLC [68]. The SMFs are generally defined with well-

known T1-FSs (triangle, trapezoid, and gauss) at the secondary layer [7]. In this 

context, GT2-FS counterparts of IT2-FSs (given in Figures 2.4, 2.5, and 2.6) and T1-
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FSs (given in Figures 2.1, 2.2, and 2.3) are illustrated in Figures 3.2-3.7. For easiness, 

the SMFs are selected as triangle, trapezoid, gaussian T1-FSs, respectively. 

 

Figure 3.2 : A triangle GT2-FS employing triangle SMF. 
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Figure 3.3 : A triangle GT2-FS employing triangle SMF. 
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Figure 3.4 : A trapezoid GT2-FS employing trapezoid SMF. 
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Figure 3.5 : A trapezoid GT2-FS employing trapezoid SMF. 
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Figure 3.6 : A Gaussian GT2-FS employing Gaussian SMF. 
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Figure 3.7 : A Gaussian GT2-FS employing Gaussian SMF. 
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As shown in Figures 3.2-3.7, the visual properties of the GT2-FSs are considerably 

more complex than their T1 and IT2 counterparts. In all figures, subplots (a) show 

GT2-FSs in the 3D representation domain where the x-y-z axes are defined by the 

primary input variable (i.e. 𝑥), the secondary variable (i.e. 𝑢), and the secondary 

membership grade (i.e. 𝜇�̃�(𝑥, 𝑢)), respectively. The FOU, LMF, and UMF are shown 

in Figures 3.2b, 3.4b, and 3.6b associated with their triangle, trapezoid, Gaussian T2-

FSs, respectively. In Figures 3.2c, 3.4c, and 3.6c, for a fixed input value (i.e. 𝑥𝑖), the 

resulting SMF support (i.e. 𝐽𝑥) and corresponding triangle, trapezoid, and Gaussian 

SMFs (i.e. 𝜇�̃�(𝑥)(𝑢)) are given respectively. The figure subplot pairs 3.3a-3.3b, 3.5a-

3.5b, and 3.7a-3.7b are the same from the content point of view, but they differ from 

the view rotation of the z-axis. In these figures, all subplots (b) are rotated on the z-

axis (i.e. 𝜇�̃�(𝑥, 𝑢)) until the data is projected into the “𝑥, 𝑢” domain. In Figures 3.3c, 

3.5c, and 3.7c, a set of the resulting triangle, trapezoid, and Gaussian T1-FSs of the 

SMFs are illustrated with blue markers, respectively. Here it is worth mentioning again 

that, if a collection of all individual T1-FSs of the SMFs (marked as blue in Figures 

3.3c, 3.5c, and 3.7c) are combined for all 𝑥 values (𝑥 ∈ 𝑋), then the GT2-FS (i.e. �̃�) is 

obtained over the values of SMF (i.e. 𝜇�̃�(𝑥)(𝑢)) as follows [7]: 

�̃� = ∫  (𝜇�̃�(𝑥)) 𝑥⁄

𝑥∈𝑋

, 𝜇�̃�(𝑥) = 𝜇�̃�(𝑥)(𝑢) = ∫ (𝑓𝑥(𝑢)) 𝑢⁄
𝜇�̃�(𝑥)

𝜇�̃�(𝑥)
 (3.7) 

where 𝑓𝑥(𝑢) denotes the secondary grade of input variable 𝑥 and it equals to 𝜇�̃�(𝑥, 𝑢). 

The secondary grade can be also defined by the employed T1-FSs, that depict SMFs, 

which are defined in the range of LMF and UMF values as follows: 

𝑓𝑥(𝑢) = 𝐴𝑥 , 𝐴𝑥 = {(𝑢, 𝜇𝐴𝑥(𝑢)) | 𝑢 ∈ [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)]} (3.8) 

where 𝐴𝑥 represents an individual T1-FS of a SMF. 

3.3 Secondary Membership Functions 

As mentioned in the previous sections, the SMF (i.e. 𝜇�̃�(𝑥)(𝑢)) is constructed by an 

ordinary T1-FS, which is also called as 𝐴𝑥 to represent the T1-FS associated with a 

SMF slice. Therefore, the SMF definitions can be obtained by rearranging the T1-FS 

definitions based on the input value universe of the secondary variable (i.e. 𝑢). 
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3.3.1 Triangle secondary membership function 

A triangle SMF that employs triangle T1-FS is defined (after the arrangement of the 

triangle T1-FS definition in equation (2.6)) as follows: 

𝜇�̃�(𝑥)(𝑢)  =

{
 
 

 
 
𝑢 − 𝜌1

𝜌2 − 𝜌1
𝜌1 < 𝑢 ≤ 𝜌2

𝜌3 − 𝑢

𝜌3 − 𝜌2
, 𝜌2 < 𝑢 ≤ 𝜌3

0, otherwise

 (3.9) 

where 𝜌𝑠 ∈ [0, 1] (𝑠 ∈ {1, 2, 3}) defines the shape of the triangle. Here, 𝜌1, 𝜌2, and 𝜌3 

are left support, apex, and right support points of the triangle shape, respectively. 

These {𝜌1, 𝜌2, 𝜌3} parameters in equation (3.9) are corresponding counterparts of the 

T1-FS design parameters {𝑎, 𝑏, 𝑐} in equation (2.6). The SMF parameters (𝜌1, 𝜌2, and 

𝜌3) are defined in increasing order as 0 ≤ 𝜌1 ≤ 𝜌2 ≤ 𝜌3 ≤ 1. Based on the values of 

these parameters, it is possible to generate numerous SMFs with different shapes and 

supports. In the fuzzy literature, the researchers mainly preferred to locate the supports 

(𝜌1 and 𝜌3) on the values of LMF and UMF, such that the design of the SMF can be 

accomplished through a single parameter [7, 62, 65]. This design is alternatively called 

as the apex point design through a parameter Apex(𝑢|𝑥).  

Once the base parameters (𝜌1 𝜌2, and 𝜌3) are replaced with corresponding values of 

{𝜇�̃�(𝑥), Apex(𝑢|𝑥), 𝜇�̃�(𝑥)} as follows: 

𝜌1 = 𝜇�̃�(𝑥) 𝜌2 = Apex(𝑢|𝑥) 𝜌3 = 𝜇
�̃�
(𝑥) (3.10) 

then the triangle SMF can be defined as follows: 

𝜇�̃�(𝑥)(𝑢)  =

{
 
 

 
 

𝑢 − 𝜇�̃�(𝑥)

Apex(𝑢|𝑥), −𝜇�̃�(𝑥)
𝜇�̃�(𝑥) < 𝑢 ≤ Apex(𝑢|𝑥)

𝜇
�̃�
(𝑥) − 𝑢

𝜇
�̃�
(𝑥) − Apex(𝑢|𝑥),

, Apex(𝑢|𝑥) < 𝑢 ≤ 𝜇
�̃�
(𝑥)

0, otherwise

 (3.11) 

where the apex point (Apex(𝑢|𝑥)) is designed based on a single design parameter (𝑤) 

as 𝜇�̃�(𝑥) and 𝜇
�̃�
(𝑥) are straightforwardly calculated for any 𝑥 input value. The apex 

point is mapped as a function of this design parameter (𝑤) as follows: 
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Apex(𝑢|𝑥)  = 𝜇�̃�(𝑥) + 𝑤 (𝜇�̃�(𝑥) − 𝜇�̃�(𝑥)) (3.12) 

where 𝑤 ∈ [0,1] determines the location of the apex point in the range of [𝜇�̃�(𝑥), 

𝜇
�̃�
(𝑥)] as shown in Figure 3.8. Note that the parameter 𝑤 is denoted as the design 

parameter of triangle SMF and it is treated as the same for all vertical slices [65].  

 

Figure 3.8 : A triangle SMF and its apex point. 

 

Figure 3.9 : A triangle SMFs with different apex point settings. 

When the parameter is set to 𝑤 = 0, the apex point is located on the LMF (i.e. 𝜇�̃�(𝑥)) 

as a left perpendicular triangle is obtained. When the parameter is set to 𝑤 = 1, the 

apex point is located on the UMF (i.e. 𝜇
�̃�
(𝑥)) as a right perpendicular triangle is 

obtained. The resulting shapes of the triangle SMFs for different 𝑤 design parameter 

settings {0, 0.25, 0.5, 0.75, and 1} are illustrated in Figure 3.9. 
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It is worth underlying that the 𝑤-based parameterization provides a simple and useful 

mapping for the SMF design, while the 𝜌-based parameterization provides more 

design flexibility. For example, the support of the SMF is defined on a subset of the 

primary membership of 𝑥 ( 𝐽𝑥), when 𝜌1 > 0 or 𝜌3 < 1, which can be commented as 

a resizing of the FOU [76]. When 𝜌1 = 0 and 𝜌3 = 1; the support of the SMF, in other 

words, the horizontal line between 𝜌1 and 𝜌3, is defined on the primary membership 

of 𝑥 [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)]. The 𝜌-based parameterization covers the 𝑤-based one per design 

option. The 𝑤-based parameterization has a single design parameter (𝑤), while the 𝜌-

based parameterization has three design parameter (𝜌1, 𝜌2, and 𝜌3). 

3.3.2 Trapezoid secondary membership function 

A trapezoid SMF that employs trapezoid T1-FS is defined (after the arrangement of 

the trapezoid T1-FS definition in equation (2.8)) as follows: 

𝜇�̃�(𝑥)(𝑢)  =

{
 
 

 
 
𝑢 − 𝛿1

𝛿2 − 𝛿1
𝛿1 ≤ 𝑢 < 𝛿2

1 𝛿2 ≤ 𝑢 < 𝛿3

𝛿4 − 𝑢

𝛿4 − 𝛿3
𝛿3 ≤ 𝑢 < 𝛿4

0 otherwise

 (3.13) 

where 𝛿𝑡 ∈ [0, 1] (𝑡 ∈ {1, 2, 3,4}) defines the shape of the trapezoid. Here, 𝛿1, 𝛿2, 𝛿3, 

and 𝛿4 are left support, left core, right core, and right support points of the trapezoid 

shape, respectively. The parameters {𝛿1, 𝛿2, 𝛿3, 𝛿4} are corresponding counterparts 

of the T1-FS design parameters {𝑎, 𝑏, 𝑐, 𝑑} in equation (2.8). The SMF parameters 

(𝛿1, 𝛿2, 𝛿3, and 𝛿4) are defined in increasing order as 0 ≤ 𝛿1 ≤ 𝛿2 ≤ 𝛿3 ≤ 𝛿4 ≤ 1. 

Based on the values of these parameters, it is possible to generate numerous SMFs 

with different shapes and supports. In fuzzy literature, like the triangle case, 

researchers mainly preferred to locate the left and right supports (𝛿1 and 𝛿4) on the 

values of LMF and UMF, such that the design of the SMF can be accomplished with 

fewer design parameters [7]. This design can be alternatively called as the core line 

design through CoreL(𝑢|𝑥) and CoreR(𝑢|𝑥). These core points can be selected as 

symmetrical or non-symmetrical based on design preferences [7].  

Once the base parameters (𝛿1, 𝛿2, 𝛿3, and 𝛿4) are replaced with corresponding values 

of {𝜇�̃�(𝑥), CoreL(𝑢|𝑥), CoreR(𝑢|𝑥), 𝜇�̃�(𝑥)}, the triangle SMF is defined as follows: 
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𝜇�̃�(𝑥)(𝑢)  =

{
  
 

  
 

𝑢 − 𝜇�̃�(𝑥)

CoreL(𝑢|𝑥) − 𝜇�̃�(𝑥)
𝜇�̃�(𝑥) ≤ 𝑢 < CoreLeft(𝑢|𝑥)

1 CoreL(𝑢|𝑥) ≤ 𝑢 < CoreR(𝑢|𝑥)

𝜇
�̃�
(𝑥) − 𝑢

𝜇
�̃�
(𝑥) − CoreR(𝑢|𝑥)

CoreRight(𝑢|𝑥) ≤ 𝑢 < 𝜇
�̃�
(𝑥)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.14) 

where 

𝛿1 = 𝜇�̃�(𝑥) 𝛿2 = CoreL(𝑢|𝑥) 𝛿3 = CoreR(𝑢|𝑥) 𝛿4 = 𝜇
�̃�
(𝑥) (3.15) 

Here, the left and right core points (i.e. CoreL(𝑢|𝑥) and CoreR(𝑢|𝑥)) are determined 

based on the symmetrical or non-symmetrical design options. The core points are 

treated as the same for all vertical slices [7] and they are mapped based on two design 

parameters (𝑤𝐿 and 𝑤𝑅) as follows: 

CoreL(𝑢|𝑥)  = 𝜇�̃�(𝑥) + 𝑤𝐿 (𝜇�̃�(𝑥) − 𝜇�̃�(𝑥)) (3.16) 

CoreR(𝑢|𝑥)  = 𝜇�̃�(𝑥) + 𝑤𝑅 (𝜇�̃�(𝑥) − 𝜇�̃�(𝑥)) (3.17) 

where 𝑤𝐿 and 𝑤𝑅 determine the core points in the relative range of [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)]. 

 

Figure 3.10 : A trapezoid SMF and its support and core points. 

For the symmetrical trapezoid SMF design option, the design parameters (𝑤𝐿 and 𝑤𝑅) 

that determines the core points (CoreL(𝑢|𝑥) and CoreR(𝑢|𝑥)) are mapped based on a 

single design parameter (𝑤 ∈ [0, 0.5]) as follows [7]: 
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𝑤𝐿 = 𝑤 𝑤𝑅 = 1 − 𝑤 (3.18) 

For the non-symmetrical trapezoid SMF design option, the design parameters (𝑤𝐿, 𝑤𝑅) 

that determine the core points (CoreL(𝑢|𝑥) and CoreR(𝑢|𝑥)) are selected as [7]  

0 ≤ 𝑤𝐿 ≤ 𝑤𝑅 ≤ 1 (3.19) 

Symmetrical and non-symmetrical trapezoid SMF design examples are given in 

Figures 3.10 and 3.11, respectively. When 𝑤𝐿 = 0 and 𝑤𝑅 = 1, a rectangle shape is 

obtained, therefore GT2-FS reduces to IT2-FS. For the setting 𝑤𝐿 = 𝑤𝑅 = 𝑤 = 0.5 

setting, a triangle shape is obtained, therefore trapezoid SMF reduces to triangle SMF. 

The trapezoid SMFs will be also investigated in “Section 4.2 - Novel Representation 

of Trapezoid Secondary Membership Function”. 

 

Figure 3.11 : A trapezoid SMF and its support and core points. 

3.4 Horizontal Slice Representation based on α-Planes 

The GT2-FSs are represented with various methods; a) collection of all points, b) union 

of all (vertical) slices over for all 𝑥 values, c) union of wavy slices, d) union of all 

(horizontal) slices over the α levels (or z-slices) at the secondary layer (e.g. 𝜇�̃�(𝑥, 𝑢) 

axis) [7]. The collection of all points representation given in equation (3.2), is the 

initial definition for all other representations. The representation, namely union of all 

(vertical) slices over for all 𝑥 values, is defined in the previous section in equation 

(3.7). The vertical representation provides supportive features for the visualization of 

GT2-FSs. The most popular representation is the union of all horizontal slices. This 



47 

representation is also called as α-plane representation [61, 62] or z-slice representation 

[63, 64]. Although the definitions of α-plane and z-slice representations seem to be 

different, the resulting outputs are the same [65, 66, 76]. In this thesis, the “α-plane” 

term is used to express the horizontal slices. According to the α-plane representation, 

a GT2-FS (�̃�) is represented as a union collection of α-planes (�̃�
𝛼𝑝

) raised to the level 

𝛼𝑝 in various ways, as given in [60]: 

�̃� = ⋃ �̃�
𝛼𝑝

𝛼𝑝∈[0,1]
 (3.20) 

�̃�
𝛼𝑝 = {(𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢) > 𝛼𝑝 | 𝑥 ∈ 𝑋, 𝑢 ∈ [0,1]} (3.21) 

�̃�
𝛼𝑝 = ∫  ∫ {(𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢) > 𝛼𝑝}

𝑢∈[0,1]𝑥∈𝑋

 (3.22) 

where �̃�𝛼𝑝 is an α-plane of the GT2-FS �̃� that is associated with an α-plane (𝛼𝑝) (i.e. 

an α-plane raised to the level 𝛼𝑝). Here, an α-plane �̃�𝛼𝑝 also resembles an IT2-FS 

whose secondary grade equals to the level 𝛼𝑝 instead of 1. An α-plane is also defined 

as the union of all primary memberships whose secondary grades (i.e. 𝜇�̃�(𝑥, 𝑢)) are 

greater than or equal to the level 𝛼𝑝. Since the α-plane representation of T2-FSs is 

quite similar to the α-cut representation of T1-FSs, α-planes of GT2-FS can be 

obtained from α-cuts of the T1-FS employed in the SMF (𝜇�̃�(𝑥)(𝑢)) [7]. Based on this 

notation, an α-plane of the GT2-FS (i.e. �̃�𝛼𝑝) and α-cut of T1-FS employed in SMFs 

(i.e. �̃�𝑥
𝛼𝑝

) can be expressed as follows: 

�̃�𝑥
𝛼𝑝 = {𝑢|𝜇�̃�(𝑥)(𝑢) ≥ 𝛼𝑝} = {𝑢|𝜇�̃�𝑥 ≥ 𝛼𝑝} ≡ [𝜇�̃�𝛼𝑝(𝑥), 𝜇�̃�𝛼𝑝(𝑥)] (3.23) 

�̃�
𝛼𝑝 = ∫  �̃�𝑥

𝛼𝑝 𝑥⁄

𝑥∈𝑋

= ∫  [𝜇�̃�𝛼𝑝(𝑥), 𝜇�̃�𝛼𝑝(𝑥)] 𝑥⁄

𝑥∈𝑋

 (3.24) 

where 𝜇
�̃�
𝛼𝑝(𝑥) and 𝜇

�̃�
𝛼𝑝(𝑥) (or simply 𝜇

�̃�
𝛼𝑝  and 𝜇

�̃�
𝛼𝑝) are lower and upper MFs of 

�̃�𝛼𝑝, also called as α-plane associated LMF and UMF, respectively. The illustrative α-

plane examples for triangle and trapezoid FSs are given in Figure 3.12 and Figure 3.13, 

respectively. 
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Figure 3.12 : An α-plane of triangle GT2-FS employing triangle SMF. 
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Figure 3.13 : An α-plane of trapezoid GT2-FS employing trapezoid SMF. 
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The α-plane representations of triangle and trapezoid GT2-FS employing triangle and 

trapezoid SMFs are given in Figures 3.12 and 3.13, respectively. Here, the subplot (a) 

shows the SMF slice (marked as blue) for a fixed input value 𝑥 = 𝑥𝑖 on the FOU 

(marked as grey) at the α-plane level 𝛼𝑝 = 0. On this SMF slice, five α-plane levels 

𝛼𝑝 = {0, 0.25, 0.5, 0.75, 1} are illustrated with green lines. The bottom line, where 

𝛼𝑝 = 0 is the support of the SMF and stands on the FOU. In the subplot (b), the SMF 

and the α-plane level at 𝛼𝑝 = 0.5 are shown on the “𝑢, 𝜇�̃�(𝑥, 𝑢)” axis domain. Here, 

an α-plane level at 𝛼𝑝 = 0.5 also means an α-cut from the T1-FS of the SMF (𝜇�̃�𝑥, as 

marked with the blue triangle). In the subplot (b), based on the input value or slice 

value (𝑥𝑖), the lower and upper membership degrees for an α-plane (𝜇�̃�𝛼𝑝(𝑥𝑖) and 

𝜇
�̃�𝛼𝑝

(𝑥𝑖)) are illustrated. When these values are raised to the α-cut level (in other 

words, raised to the α level 𝛼𝑝), a rectangular shape, an interval set with the height 

𝜇�̃�(𝑥, 𝑢) = 𝛼𝑝, is obtained as marked with light green. This interval set is important 

since it is the same as the secondary grade of IT2-FSs, it only differs from the height. 

The subplot (c) shows the union of all α-planes raised to the level of 𝛼𝑝 over the input 

𝑥 ∈ 𝑋. Here, the resulting shape is a triangular prism with a fixed height of 𝛼𝑝 = 0.5, 

in other words, an IT2-FS with height 𝛼𝑝 = 0.5 and its LMF and UMF are defined by 

α-plane associated LMF and UMF (𝜇
�̃�
𝛼𝑝  and 𝜇

�̃�
𝛼𝑝), respectively. This view of α-planes 

is also important as the shape is an unnormal IT2-FS where 𝜇�̃�(𝑥, 𝑢) < 1. Here all IT2 

properties are preserved in the α-plane (�̃�𝛼𝑝) raised to the level of 𝛼𝑝. 

It is worth underlying that a horizontal slice (or zSlice) is obtained when an α-plane is 

raised to the level 𝛼𝑝. The benefit of this representation based on α-planes is that the 

computations developed for IT2 FSs can be applied to each horizontal slice [7].  

In a similar manner that the support of α-cut for T1-FS changes with respect to the α-

cut level and the base support of FS, the support of α-plane for GT2-FS, or in other 

words the support of α-cut for the SMF, which is T1-FS (�̃�(𝑥)), changes with respect 

to the α-plane level, and the primary membership that is the support of SMF. Hence, 

the size and shape of the FOU change for each α-plane level as shown in Figure 3.14. 

This α-plane associated FOU is called as 𝐹𝑂𝑈
𝛼𝑝

. For example, the size of the FOU at 

𝛼𝑝 = 0, 𝐹𝑂𝑈
𝛼𝑝=0

(or in simple notation 𝐹𝑂𝑈0 , marked as grey in figures) is larger 

than the one at 𝛼𝑝 = 0.5, 𝐹𝑂𝑈0.5. As the FOU is also defined by the LMF and UMF 
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(𝜇�̃� and 𝜇
�̃�

), an α-plane associated FOU (𝐹𝑂𝑈
𝛼𝑝

) can be defined by α-plane associated 

LMF (𝜇
�̃�
𝛼𝑝) and UMF (𝜇

�̃�
𝛼𝑝). As 𝐽𝑥

𝛼𝑝 = [𝜇
�̃�
𝛼𝑝(𝑥), 𝜇

�̃�
𝛼𝑝(𝑥)], the α-plane support, 

changes with respect to the degrees of α-plane associated LMF and UMF (𝜇�̃�𝛼𝑝  and 

𝜇
�̃�𝛼𝑝

), the α-plane support also changes with respect to the input value (through 𝜇�̃�(𝑥) 

and 𝜇
�̃�
(𝑥)) in addition to the definition of the SMF. Since this dependency is handled 

in LMF and UMF, α-plane associated ones are denoted as 𝜇�̃�𝛼𝑝  and 𝜇
�̃�𝛼𝑝

 respectively. 

 

Figure 3.14 : Illustration of varying FOU sizes for different α-planes. 

Also, Figure 3.15 shows the same triangular GT2-FS that is used in Figure 3.12, from 

another perspective. This view perspective shows various α-planes (�̃�𝛼𝑝) with respect 

to their α-plane levels. This figure provides a better visual understanding of how GT2-

FLC calculations are handled by the horizontal slice or the α-plane representation. 
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Figure 3.15 : Illustration of a horizontal-sliced GT2-FS by α-plane levels. 
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3.5 Computation of an α-Plane Output 

The main calculation steps for the computation of an α-plane output for GT2-FLC is 

similar to the calculation steps for the computation of an IT2-FLC output. As shown 

in Figure 3.15, each α-plane of GT2-FLC represents an α-plane associated T2-FLC, in 

short α-T2-FLC, where the height of the secondary membership is 𝛼𝑝. So, each α-T2-

FLC has its computations based on α-plane associated firing levels. Recalling Figure 

2.9, an IT2-FLC has 5 main operations (fuzzifier, rules, inference, type-reducer, and 

defuzzifier), so does α-T2-FLC. Here, IT2-FLC and α-T2-FLC only differ at the 

fuzzifier part, since membership degrees and firings are changing with respect to α-

plane levels. The system block diagram for α-T2-FLCs is given in Figure 3.16, where 

the fuzzifier is separated into two parts as Fuzzifier and Fuzzifierα to point out the α-

T2-FLC calculations. The sub-operator Fuzzifierα calculates an α-plane associated 

interval set of lower and upper membership degrees for further α-T2-FLC calculations 

which are the same as in IT2-FLC. This interval set can be alternatively interpreted as 

α-plane associated LMF and UMF, denoted as 𝜇�̃�
𝛼 and 𝜇

�̃�

𝛼
, respectively. 

 

Figure 3.16 : Block diagram of α-plane associated type-2 fuzzy logic controllers. 

For a triangle SMF defined in equation (3.9), the corresponding LMF and UMF of an 

α-T2-FLC (i.e. 𝜇�̃�𝛼𝑝  and 𝜇
�̃�𝛼𝑝

) are defined respectively as follows: 

𝜇
�̃�
𝛼𝑝 = 𝜇�̃� +𝑤 (𝜇�̃� − 𝜇�̃�)𝛼𝑝 (3.25) 

𝜇
�̃�
𝛼𝑝 = 𝜇

�̃�
− (1 − 𝑤) (𝜇

�̃�
− 𝜇�̃�)𝛼𝑝 (3.26) 

where 𝛼𝑝 is the α-plane level and 𝑤 is the apex point location of the triangle. 
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For a trapezoid SMF defined in equation (3.13), the corresponding LMF and UMF of 

an α-T2-FLC (i.e. 𝜇
�̃�
𝛼𝑝  and 𝜇

�̃�
𝛼𝑝) are defined as follows: 

𝜇
�̃�
𝛼𝑝 = 𝜇�̃� + 𝐶𝑜𝑟𝑒𝐿(𝑢|𝑥) (𝜇�̃� − 𝜇�̃�) (𝛼𝑝) (3.27) 

𝜇
�̃�
𝛼𝑝 = 𝜇�̃� − (1 − CoreR(𝑢|𝑥)) (𝜇�̃� − 𝜇�̃�) (𝛼𝑝) (3.28) 

Once the α-plane associated LMF (𝜇�̃�𝛼𝑝 ) and UMF (𝜇
�̃�𝛼𝑝

) are calculated, then the 

membership grades of each α-T2-FLC are obtained, so that the output of α-plane (i.e. 

α-T2-FLC) is calculated straightforwardly, as illustrated in Figure 3.16. 

3.6 Aggregation of α-Planes towards Fuzzy Logic Controller Output 

According to α-plane based horizontal slice representation, the output of a GT2-FLC 

(𝑦𝐺𝑇2) can be defined as a weighted average aggregation of α-plane associated T2-

FLC outputs over the α-planes as follows [7]: 

𝑦𝐺𝑇2 = (∑𝑦𝐺𝑇2
𝛼𝑝 𝛼𝑝

𝑃

𝑝=1

) (∑𝛼𝑝

𝑃

𝑝=1

)⁄  (3.29) 

where 𝑦𝐺𝑇2
𝛼𝑝

 is the output of α-T2-FLC, 𝛼𝑝 is the α-plane level, 𝑝 ∈ {1,… , 𝑃} denotes 

corresponding α-plane index, and 𝑃 (𝑝 = 1, … 𝑃) is the total number of α-planes.  

 

Figure 3.17 : Block diagram of the aggregation of α-plane based horizontal slices. 
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This representation allows defining the output of GT2-FLC (𝑦𝐺𝑇2) as an aggregation 

of α-plane outputs (𝑦𝐺𝑇2
𝛼𝑝

) in terms of α-T2-FLCs which are principally the resulting 

T1-FLC or IT2-FLCs that are derived for 𝛼𝑝 is the α-plane level [7, 75-76]. The 

weighted average aggregation of α-plane associated T2-FLC outputs is visualized in 

Figure 3.17. Here, the baseline IT2-FLC plane where 𝛼0 = 0 is excluded from the α-

plane list since it has no impact on the GT2-FLC output calculation which is given in 

equation (3.29) [64]. It is worth mentioning that once the total number of α-planes 

increases, then the α-axis is sampled better in terms of granularity so that the collection 

of the α-T2-FLC outputs will approach a uniformly sampled set of sets; on the other 

hand, this high number of α-plane samples increases computational complexity and 

computation time. 

3.7 Illustrative Numerical Example 

In this section, a numerical example for the output calculation of GT2-FLCs will be 

presented. For illustration purposes, a simple, single-input (𝑥), and 3-rule GT2-FLC 

structure that employs 5 α-planes (𝛼𝑝 = {0, 0.25, 0.5, 0.75,1}) is considered. So, the 

handled GT2-FSs are shaped similar to the example given in Figure 3.15. Here, the 

GT2-FLC is constructed with 3 antecedent and 3 consequent MFs. The antecedent part 

is defined with triangular GT2-FSs (�̃�1, �̃�2, �̃�3) with triangular SMFs (as the example 

given in Figure 3.12) and the consequent part is defined with singletons (𝐶1 = −1, 

𝐶2 = 0, 𝐶3 = 1). The rules are given in equations (3.30) – (3.32) and the rule table is 

given in Table 3.1. The heights of the LMFs are selected as (𝑀1 = 0.2, 𝑀2 = 0.6, 

𝑀3 = 0.2) and the apex point of the triangular SMF (Apex(𝑢|𝑥)) is set by the setting 

𝑤 = 0.6 as shown in Figure 3.18.  

𝑅1: IF 𝑥 is �̃�1 THEN 𝑦 is 𝐶1 (3.30) 

𝑅2: IF 𝑥 is �̃�2 THEN 𝑦 is 𝐶2 (3.31) 

𝑅3: IF 𝑥 is �̃�3 THEN 𝑦 is 𝐶3 (3.32) 

Table 3.1 : Rule base of the illustrative GT2-FLC. 

𝑥 �̃�1 �̃�2 �̃�3 

𝑦 𝐶1 = −1 𝐶2 = 0 𝐶3 = 1 
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Figure 3.18 : Block diagram of the aggregation of α-plane based horizontal slices. 

For illustration purposes, the input variable is applied as 𝑥 = 0.4. For each α-plane 

(𝛼𝑝 = {0, 0.25, 0.5, 0.75, 1}), α-T2-FLC calculations are performed according to α-

plane horizontal slice representation. In this context, 1) α-plane associated membership 

degrees (𝜇�̃�𝛼𝑝  and 𝜇
�̃�𝛼𝑝

), 2) α-plane associated firing intervals (𝑓𝑛
𝛼𝑝

 and 𝑓𝑛
𝛼𝑝

), 3) α-

plane associated left and right endpoints of the type-reduced sets (𝑦𝐿
𝛼𝑝

 and 𝑦𝑅
𝛼𝑝

) by 

employing the KM center of sets calculation method, 4) defuzzified outputs of α-T2-

FLCs (𝑦𝐺𝑇2
𝛼𝑝

), and finally, 5) final output of GT2-FLC (𝑦𝐺𝑇2) are calculated based on 

IT2 mathematics. The obtained numerical values are collected in Table 3.2. 
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Table 3.2 : Calculation steps of illustrative GT2-FLC. 

𝛼𝑝 

[
 
 
 
 
𝜇
𝐴1
𝛼𝑝 𝜇

�̃�1
𝛼𝑝

𝜇
𝐴2
𝛼𝑝 𝜇

�̃�2
𝛼𝑝

𝜇
𝐴3
𝛼𝑝 𝜇

�̃�3
𝛼𝑝]
 
 
 
 

 

[
 
 
 
 
 𝑓1

𝛼𝑝  𝑓1
𝛼𝑝

𝑓2
𝛼𝑝 𝑓2

𝛼𝑝

𝑓3
𝛼𝑝 𝑓3

𝛼𝑝

]
 
 
 
 
 

 [𝑦𝐿
𝛼𝑝 𝑦𝑅

𝛼𝑝] 𝑦𝐺𝑇2
𝛼𝑝

 

𝛼𝑝 = 0 [
0 0
0.36 0.6
0.08 0.4

] [
0 0
0.36 0.6
0.08 0.4

] [0.1176 0.5263] 0.3220 

𝛼𝑝 = 0.25 [
0 0

0.396 0.576
0.128 0.368

] [
0 0

0.396 0.576
0.128 0.368

] [0.1818 0.4817] 0.3317 

𝛼𝑝 = 0.5 [
0 0

0.432 0.552
0.176 0.336

] [
0 0

0.432 0.552
0.176 0.336

] [0.2418 0.4375] 0.3396 

𝛼𝑝 = 0.75 [
0 0

0.468 0.528
0.224 0.304

] [
0 0

0.468 0.528
0.224 0.304

] [0.2979 0.3938] 0.3458 

𝛼𝑝 = 1 [
0 0

0.504 0.504
0.272 0.272

] [
0 0

0.504 0.504
0.272 0.272

] [0.3505 0.3505] 0.3505 

Here, Table 3.2 is filled according to the following membership function definitions: 

𝜇
�̃�
𝑖

𝛼𝑝 = 𝜇�̃�𝑖 + 𝑤 (𝜇�̃�𝑖
− 𝜇�̃�𝑖)𝛼𝑝, 𝑖 = {1,2,3} (3.33) 

𝜇
�̃�
𝑖

𝛼𝑝 = 𝜇�̃�𝑖
− (1 − 𝑤) (𝜇

�̃�𝑖
− 𝜇�̃�𝑖)𝛼𝑝, 𝑖 = {1,2,3} (3.34) 

𝜇
�̃�1
= {

−𝑥 𝑥 ≤ 0
0 𝑥 > 0

, 𝜇�̃�1 = {
−𝑥 𝑀1 𝑥 ≤ 0
0 𝑥 > 0

 (3.35) 

𝜇
�̃�2
= {

1 + 𝑥 𝑥 ≤ 0
1 − 𝑥 𝑥 > 0

, 𝜇�̃�2 = {
(1 + 𝑥)𝑀2 𝑥 ≤ 0
(1 − 𝑥)𝑀2 𝑥 > 0

  (3.36) 

𝜇
�̃�3
= {

0 𝑥 < 0
𝑥 𝑥 ≥ 0

, 𝜇�̃�3 = {
0 𝑥 < 0

𝑥 𝑀3 𝑥 ≥ 0
  (3.37) 

It is worth noting that these membership degrees are the ones for α-T2-FLCs, including 

the base α-plane level (𝛼0 = 0). The secondary grades of the input value (𝑥 = 0.4) are 

shown with circles in Figure 3.19. Accordingly, the GT2-FLC output, which is also 

shown in Figure 3.19, is calculated as a weighted average of α-T2-FLC outputs as: 

𝑦𝐺𝑇2 = (∑𝑦𝐺𝑇2
𝛼𝑝 𝛼𝑝

𝑃

𝑝=1

) (∑𝛼𝑝

𝑃

𝑝=1

)⁄

=
0.3220 × 0 + 0.3317 × 0.25 + 0.3396 × 0.5 + 0.3458 × 0.75 + 0.3505 × 1

0 + 0.25 + 0.5 + 0.75 + 1
= 0.3451 

(3.38) 
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Figure 3.19 : Illustration of (a) antecedent MFs, (b) SMFs, (c) type-reduced sets. 
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As another example, if three α-planes (𝛼𝑃 = {0, 0.5, 1}) are considered for the output 

calculation then the results are slightly different as follows: 

𝑦𝐺𝑇2 = (∑𝑦𝐺𝑇2
𝛼𝑝 𝛼𝑝

𝑃

𝑝=1

) (∑𝛼𝑝

𝑃

𝑝=1

)⁄ =
0.3220 × 0 + 0.3396 × 0.5 + 0.3505 × 1

0 + 0.5 + 1
= 0.3469 (3.39) 

This example also shows the effect of the number and level of the α-planes. It is 

obvious that once the total number of slices increases (or α-plane grid fined down), 

then the calculation accuracy improves. Although it is not shown in this chapter, the 

computational time also rises with a high number of α-planes. In the literature, there 

is no unique methodology for the selection of α-planes, so the selection of alpha planes 

is still under investigation by the fuzzy community [7]. This topic will be addressed in 

the next chapters.  
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4. TOWARDS SYSTEMATIC DESIGN OF GENERAL TYPE-2 FUZZY 

LOGIC CONTROLLERS 

In this chapter, the structural settings of the GT2-FLCs are investigated in order to 

provide a better and clear understanding on the design parameters and interpretations 

of these design parameters towards systematic design approaches for GT2-FLCs. As 

explained in “Chapter 3 - General Type-2 Fuzzy Logic Controllers”, the SMFs are the 

promising feature of GT2-FLCs. The SMFs, comparing to T1 and IT2 counterparts of 

GT2-FLCs, provide extra design flexibility and more design options such that various 

sophisticated fuzzy mappings can be achieved. On the contrary to these advantages, 

the SMFs also brings a high level of design complexity as the effect of SMF design or 

design parameters are not obvious. 

4.1 Interactions between Fuzzy Logic Controllers 

The GT2, IT2, and T1 FLCs are defined with respect to GT2, IT2, and T1 FSs used in 

their fuzzy inferences, respectively. In the most generic representation, GT2-FSs / 

GT2-FLCs include/cover corresponding IT2 counterparts, while IT2-FSs / IT2-FLCs 

include /cover corresponding T1 counterparts, as illustrated in Figure 4.1 based on a 

visual representation. This representation provides a pseudo-answer for a famous 

design question [55, 60]: “Why does improved performance occur as one goes from 

crisp, to T1, to IT2, to GT2 fuzzy systems?”. As illustrated in Figure 4.1, the outer 

category inherits the inner one, so it can be commented that the performance of the 

outer category is potentially higher than its inner category, if the design is proper. 

 

Figure 4.1 : Inclusions and interactions of fuzzy sets. 
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When an interaction (conversion) is considered, it is also possible to represent an inner 

FS in terms of its outer FS [54]. This is also a very useful operation since FLC 

calculations can involve a mixture of T1, IT2, and GT2-FSs [7]. In this context, the 

definitions of GT2-FS, IT2-FS, T1-FS, and crisp set can be summarized as follows: 

• GT2-FS, the generic form, as defined in equations (2.11) and (3.2): 

�̃� = {(𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢) | 𝑥 ∈ 𝑋, 𝑢 = [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)] ∈ 𝑈 ≡ [0,1]} (4.1) 

• IT2-FS, where all secondary grades are 1: 

�̃� = {(𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢) = 1 | 𝑥 ∈ 𝑋, 𝑢 = [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)] ∈ 𝑈 ≡ [0,1]} (4.2) 

• T1-FS, where the primary grade is crisp value and secondary grade is 1: 

𝐴 → �̃� = {(𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢) = 1 | 𝑥 ∈ 𝑋, 𝑢 = 𝜇𝐴(𝑥) ∈ 𝑈 ≡ [0,1]} (4.3) 

• Crisp set, where the primary grade is 0 or 1 and secondary grade is 1: 

𝐴 → �̃� = {(𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢) = 1 | 𝑥 ∈ 𝑋, 𝑢 = 𝜇𝐴(𝑥) = {0,1}} (4.4) 

These interaction relations that are given in equations (4.1) – (4.4) are quite helpful to 

connect different FSs during FLC calculations since the most outer FS covers all inner 

counterparts. Therefore, a similar idea can be employed during the controller design 

steps of GT2-FLCs, IT2-FLCs, T1-FLCs, such that the T1-FLCs extends the 

performance of non-fuzzy counterparts, the IT2-FLCs increase the performance of T1 

counterparts, and the GT2-FLCs outperforms its IT2, T1 fuzzy counterparts.  

The interactions between GT2, IT2, and T1 FSs are preserved in the SMF of GT2-FSs 

since only secondary grades are different as given in equations (4.1) – (4.4). This 

difference can be also defined in terms of SMFs (i.e. 𝜇�̃�(𝑥)(𝑢)). A SMF is represented 

by a collection of a membership grade function 𝑓𝑥(𝑢) that is calculated based on the 

primary variable 𝑥 and the secondary variable 𝑢 as follows: 

𝜇�̃�(𝑥)(𝑢) = 𝜇�̃�(𝑥) = 𝜇�̃�𝑥 = ∫ 𝑓𝑥(𝑢) 𝑢⁄
𝜇�̃�(𝑥)

𝜇�̃�(𝑥)

 (4.5) 

where 𝑓𝑥(𝑢) is a slice from SMF and denoted as 𝐴𝑥. This function is defined for 
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• GT2-FSs with a T1-FS as denoted by 𝐴𝑥 in equation (3.8): 

𝐴𝑥 = {(𝑢, 𝜇𝐴𝑥(𝑢)) | 𝑢 ∈ [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)]} (4.6) 

• IT2-FSs with an interval set where all grades are 1: 

𝐴𝑥 = {(𝑢, 𝜇𝐴𝑥(𝑢) = 1) | 𝑢 ∈ [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)]} (4.7) 

• T1-FS with a crisp set at a single point where the grade is 1: 

𝐴𝑥 = {(𝑢, 𝜇𝐴𝑥(𝑢) = 1) | 𝑢 = 𝜇𝐴(𝑥) = 𝜇�̃�(𝑥) = 𝜇
�̃�
(𝑥)} (4.8) 

4.2 Novel Representation of Trapezoid Secondary Membership Function 

Based on FS and SMF interactions given in equations (4.1) - (4.4) and (4.5) - (4.8), the 

SMFs can be defined in such a way that all properties of GT2, IT2, and T1 FSs can be 

preserved. For this purpose, the basic trapezoid SMF definition given in the previous 

chapter is extended and a novel representation of trapezoid SMF is proposed. A 

trapezoid SMF and its design parameters are given in Figure 4.2. 

 

Figure 4.2 : Illustration of novel representation of trapezoid SMF. 
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In the design of GT2-FLCs, it is possible to obtain various FLC types based on the 

different shapes and supports of the trapezoid SMFs. The shape and support of the 

trapezoid SMF are determined by its left support (𝛿1), left core (𝛿2), right core (𝛿3), 

and right support (𝛿4) parameters. 

The support of the trapezoid SMF is defined on the primary membership (i.e. 𝐽𝑥), if 

the following design condition is satisfied: 

𝛿1 = 0 𝛿2 = free 𝛿3 = free 𝛿4 = 1 (4.9) 

where the condition 𝛿1 = 0 and 𝛿4 = 1 indicates that the supports of trapezoid SMF 

are defined in the range of LMF and UMF, as formulated in equation (3.15). 

The support of the trapezoid SMF is defined on a subset of the primary membership if 

one of the following design conditions is satisfied: 

𝛿1 > 0 𝛿2 = free 𝛿3 = free 𝛿4 = free (4.10) 

𝛿1 = free 𝛿2 = free 𝛿3 = free 𝛿4 < 1 (4.11) 

where the conditions 𝛿1 > 0 and 𝛿4 < 1 can be interpreted as resizing the FOU. 

As the generic form of the trapezoid SMF, a trapezoidal shape is obtained if all design 

parameters are free and the following condition is satisfied: 

0 ≤ 𝛿1 ≤ 𝛿2 ≤ 𝛿3 ≤ 𝛿4 ≤ 1 (4.12) 

As the interval form of the trapezoid SMF, a rectangular shape is obtained when the 

following condition is satisfied: 

𝛿1 = 0 𝛿2 = 0 𝛿3 = 1 𝛿4 = 1 (4.13) 

As the crisp form of the trapezoid SMF, a spike shape is obtained when the following 

condition is satisfied: 

𝛿1 = 𝜉, 𝛿2 = 𝜉, 𝛿3 = 𝜉, 𝛿4 = 𝜉 (4.14) 

where 𝜉 ∈ [0,1] is a free design parameter. If the parameter 𝜉 = 0, then the spike of 

the crisp SMF is located on the LMF. If the parameter 𝜉 = 1, then the spike of the 

crisp SMF is located on the UMF. 
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As the triangle form of the trapezoid SMF, which is also a triangle SMF, a triangular 

shape is obtained when the following condition is satisfied: 

𝛿1 = free 𝛿2 = 𝛿3 𝛿4 = free (4.15) 

Here, similar to the trapezoid case, the FOU resizing is also possible for the triangle 

SMFs based on the parameters 𝛿1 and 𝛿4. 

Even though the trapezoid T1-FSs provide more design options for the selection of the 

shape and support of the SMFs, the design is relatively more complex as there are 4 

design parameters to be tuned [75, 76]. To overcome this design complexity of the 

trapezoid SMF, a simple parameter mapping (parameterization) is proposed.  

The proposed novel parameterization determines the trapezoid SMF parameters (𝛿𝑡) 

with a single new design parameter as follows: 

𝛿1 = {
𝜃 − 1 1 ≤ 𝜃 ≤ 2
0 𝜃 < 1

 (4.16) 

𝛿2 = {
1 1 < 𝜃
𝜃 0 ≤ 𝜃 ≤ 1
0 𝜃 < 0

 (4.17) 

𝛿3 = {
1 0 < 𝜃

𝜃 + 1 −1 ≤ 𝜃 ≤ 0
0 𝜃 < −1

 (4.18) 

𝛿4 = {
1 −1 < 𝜃

𝜃 + 2 −2 ≤ 𝜃 ≤ −1
 (4.19) 

where 𝜃 ∈ [−2, 2] is the new design parameter of the trapezoid SMF. Once these 

parameter mapping equations are combined with respect to the design parameter value 

range (from -2 to 2), the following complete parameterization is obtained: 

[𝛿1 𝛿2 𝛿3 𝛿4] = {

[0        0  0 𝜃 + 2]
[0        0  𝜃 + 1         1]
[0        𝜃  1         1]
[𝜃 − 1 1  1         1]

     

−2 ≤ 𝜃 ≤ −1
−1 ≤ 𝜃 ≤ 0   
0 ≤ 𝜃 ≤ 1
1 ≤ 𝜃 ≤ 2

 (4.20) 

where [𝛿1 𝛿2 𝛿3 𝛿4] is a vector of SMF parameters. The effect of the parameter 

𝜃 on the shape of FSs as well as the shape and support of trapezoid SMFs for 9 design 

options is illustrated in Figures 4.3 - 4.12 (for 𝜃 = {-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2}). 
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Figure 4.3 : Trapezoid SMF parameters for the design setting 𝜃 = −2. 

 

Figure 4.4 : Trapezoid SMF parameters for the design setting 𝜃 = −1.5. 

 

Figure 4.5 : Trapezoid SMF parameters for the design setting 𝜃 = −1. 
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Figure 4.6 : Trapezoid SMF parameters for the design setting 𝜃 = −0.5. 

 

Figure 4.7 : Trapezoid SMF parameters for the design setting 𝜃 = 0. 

 

Figure 4.8 : Trapezoid SMF parameters for the design setting 𝜃 = 0.5. 
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Figure 4.9 : Trapezoid SMF parameters for the design setting 𝜃 = 1. 

 

Figure 4.10 : Trapezoid SMF parameters for the design setting 𝜃 = 1.5. 

 

Figure 4.11 : Trapezoid SMF parameters for the design setting 𝜃 = 2. 
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Although equation (4.20) gives a compact parameterization comparing to equations 

(4.16) – (4.19), it is not practical as it includes many piecewise if-else conditions. To 

eliminate these piecewise conditions, minimum and maximum functions are used so 

that the SMF parameterization can be handled by simple mapping functions (one 

function per design parameter) as follows [75, 76]: 

𝛿1 = min(max(𝜃 − 1, 0) , 1) 

𝛿2 = min(max(𝜃, 0), 1) 

𝛿3 = min(max(𝜃 + 1, 0), 1) 

𝛿4 = min(max(𝜃 + 2, 0), 1) 

(4.21) 

where 𝜃 ∈ [−2, 2] is the proposed new design parameter of the SMF. It is concluded 

that it is possible to obtain various SMFs with this representation. Once the proposed 

trapezoid SMF representation is applied, then corresponding α-plane associated LMF 

and UMF (𝜇
�̃�
𝛼𝑝  and 𝜇

�̃�
𝛼𝑝  respectively) for an α-T2-FLC (i.e. �̃�𝛼𝑝) are calculated as: 

𝜇
�̃�
𝛼𝑝 = 𝜇�̃� + (𝜇�̃� − 𝜇�̃�) ( 𝛿𝑗,𝑖

1 + 𝛼𝑝(𝛿𝑗,𝑖
2 − 𝛿𝑗,𝑖

1 ))  (4.22) 

𝜇
�̃�
𝛼𝑝 = 𝜇�̃� − (𝜇�̃� − 𝜇�̃�) (1 − 𝛿𝑗,𝑖

4 + 𝛼𝑝(𝛿𝑗,𝑖
4 − 𝛿𝑗,𝑖

3 ))  (4.23) 

Here α-plane associated membership degrees, given in equations (4.22) and (4.23), are 

used for the α-plane output calculations as explained in the previous chapters. 

4.3 Structural Design Recommendations and Design Parameters 

Since a GT2-FLC inherits its IT2 and T1 counterparts according to FLC interactions 

summarized in “Section 4.1 - Interactions between Fuzzy Logic Controllers”, it is 

suggested constructing the GT2-FLCs by designing first the base T1 and IT2 FLCs in 

this thesis. The internal structures of baseline FLCs (single- and double- input) are 

presented in “Chapter 2 - Preliminaries on Fuzzy Logic Controllers”. These initial 

design settings provide a convenient starting point for the GT2-FLC design since the 

parameters of baseline FLCs (T1-FLC and IT2-FLC) are distinguished from the GT2-

FLC ones. Therefore, in the design of GT2-FLCs, it is assumed that the baseline design 

parameters (the primary part of antecedent MFs and the consequents) and structural 

settings (rule base, aggregation/union operators, type-reduction) are tuned.  
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Figure 4.12 : Effect of shape design parameter on SMF shapes of GT2-FLCs. 
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The main design parameters of the GT2-FLCs are α-plane levels (𝛼𝑝), the total number 

of α-planes (𝑃), and the tuning parameters of the SMF. (Note: the design parameters 

of T1-FLCs and IT2-FLCs are summarized in Table 2.5 in “Chapter 2 - Preliminaries 

on Fuzzy Logic Controllers”). It is suggested handling these new GT2-FLC design 

parameters as follows: 

• As given in equation (3.29), the output of the GT2-FLC is obtained based on a 

weighted average calculation of α-T2-FLC outputs. This calculation depends 

on the total number of α-planes (𝑃) and α-plane levels (𝛼𝑝) of a-T2-FLCs. In 

this thesis, the α-plane levels (𝛼𝑝) are obtained with respect to the total number 

of α-planes (𝑃). The level of 𝑝𝑡ℎ α-plane (𝑝 = {1,… , 𝑃}) is calculated as: 

𝛼𝑝 = 𝑝/𝑃  (4.24) 

such that the α-plane levels (𝛼𝑝) excluded from the design parameters. 

• The GT2-FLC output calculation given in equation (3.29) can be interpreted as 

granulation of continuous integration with respect to the total number of α-

planes (𝑃) and α-plane levels (𝛼𝑝), which also depends on the total number of 

α-planes (𝑃). The input-output mapping of GT2-FLC becomes closer to its 

continuous counterpart in terms of sensitivity/accuracy when the design 

parameter 𝑃 increases. Therefore, it is concluded that the total number of α 

planes (P) is the sensitivity design parameter of the GT2-FLCs. 

• As given in equations (4.22) and (4.23), the membership degrees of α-T2-FLCs 

are defined with respect to the parameters that define the shape and support of 

the SMFs according to equations (4.9) - (4.15). This directly influences the 

output of α-T2-FLCs (𝑦𝐺𝑇2
𝛼𝑝

) and accordingly the output of the GT2-FLC (𝑦𝐺𝑇2) 

according to equation (3.29). Therefore, it is concluded that the parameters that 

define the SMF are the shape design parameters of the GT2-FLCs. 

The design parameters of the GT2-FLCs can be assigned in various ways (similar to 

design options of T1 and IT2 counterparts). In Tables 4.1 and 4.2, the SMF design 

parameters and the total number of design parameters are tabulated for possible design 

configurations (Note: it is assumed that the baseline T1-FLC and IT2-FLC designs are 

completed and all T1 and IT2-FLC design parameters are fixed.). 
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Table 4.1 : Design parameters of GT2-SFLCs. 

Assumptions Total 

Number of 

Rules 

Known 

Structural 

Parameters 

Shape 

Design 

Parameters 

Sensitivity 

Design 

Parameters 

Total Number 

of Design 

Parameters 

- − − − − ? 

Unique SMF for each �̃�1,𝑖 𝑁 𝐼 = 𝑁 𝛿1,𝑖
𝑡  𝑃 4𝑁 + 1 

Same SMF for all �̃�1,𝑖 𝑁 𝐼 = 𝑁 𝛿1,𝑖 𝑃 4 + 1 

Unique SMF for each �̃�1,𝑖 𝑁 𝐼 = 𝑁 𝜃1,𝑖 𝑃 𝑁 + 1 

Same SMF for all �̃�1,𝑖 𝑁 𝐼 = 𝑁 𝜃† 𝑃‡ 2 

?: Structure is not clear (too many design options). 

†: The shape design parameter 

‡: The sensitivity design parameter 

Table 4.2 : Design parameters of GT2-DFLCs. 

Assumptions Total 

Number of 

Rules 

Known 

Structural 

Parameters 

Shape 

Design 

Parameters 

Sensitivity 

Design 

Parameters 

Total Number 

of Design 

Parameters 

- − − − − ? 

Unique SMF for each �̃�𝑗,𝑖 𝑁 𝐼 × 𝐾 = 𝑁 𝛿1,𝑖
𝑡 , 𝛿2,𝑘

𝑡  𝑃 4(𝐼 + 𝐾) + 1 

Same SMF for all �̃�𝑗,𝑖 𝑁 𝐼 × 𝐾 = 𝑁 𝛿𝑗,𝑖
𝑡  𝑃 4 + 1 

Unique SMF for each �̃�𝑗,𝑖 𝑁 𝐼 × 𝐾 = 𝑁 𝜃1,𝑖, 𝜃2,𝑘 𝑃 (𝐼 + 𝐾) + 1 

Same SMF for all �̃�𝑗,𝑖 𝑁 𝐼 × 𝐾 = 𝑁 𝜃† 𝑃‡ 2 

?: Structure is not clear (too many design options). 

†: The shape design parameter. 

‡: The sensitivity design parameter 

As shown in Tables 4.1 and 4.2, the proposed trapezoid SMF representation is very 

promising for the GT2-FLC design. Here it is worth underlying that trapezoid SMFs 

(rather than triangle SMFs) are preferred in this thesis since the trapezoid SMFs cover 

the triangular SMFs and also provide the flexibility to convert GT2-FLCs into T1 or 

IT2 FLC. The proposed trapezoid SMF representation is also easy-to-implement since 

it not only reduces the total number of design parameters but also provides flexibility 

to construct various shapes of SMFs based on the proposed parameterization [76]. In 

this thesis, all antecedent FSs of the handled GT2-FLCs are defined with the same 

SMF, as stated in [7], this option reduces the design complexity/effort.  

According to these design recommendations, the GT2-FLCs can be designed (over the 

T1-FLC and IT2 FLC baselines), by simply tuning two design parameters: 

• 𝜃, the shape design parameter, 

• 𝑃, the sensitivity design parameter. 
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The summary of the design parameters and the total number of design parameters of 

T1, IT2, and GT2 FLCs are listed in Table 4.3. Here, the consequent design parameter 

(𝐶𝑛) is associated with T1-FLC design, the FOU design parameter (𝑀𝑗,𝑖) is related to 

IT2-FLC design, the SMF shape and sensitivity design parameters (𝜃 and 𝑃) are 

associated with GT2-FLC design, while the total number of design parameters is 

related to the total number of the rules (𝑁). In the next chapters, comprehensive 

comparative analyses are conducted to present the design recommendations/methods 

on how to tune the shape design parameter (𝜃) and the sensitivity design parameter (𝑃) 

of the GT2-FLCs. 

Table 4.3 : Summary of T1, IT2, and GT2 FLC design parameters. 

FLC Type Consequent 

Design 

Parameters 

FOU 

Design 

Parameters 

SMF Shape  

Design 

Parameters 

Sensitivity 

Design 

Parameters 

Total Number 

of Design 

Parameters 

T1-SFLC 𝐶𝑛 − − − 𝑁 

IT2-SFLC − 𝑀1,𝑖    − − 𝑁 

GT2-SFLC − −  𝜃 𝑃 2 

T1-DFLC 𝐶𝑛 − − − 𝑁 

IT2-DFLC − 𝑀1,𝑖  , 𝑀2,𝑘   − − 𝐼 + 𝐾 

GT2-DFLC − − 𝜃 𝑃 2 
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5. ANALYSIS AND DESIGN OF SHAPE DESIGN PARAMETER 

In this chapter, the effect of the shape design parameter, (i.e. 𝜃) on the control curve/ 

control surface generation will be presented, the design recommendations for the GT2-

FLCs are concluded, and new online scheduling mechanisms that tune the shape 

design parameter are proposed. 

5.1 Structural Change Analysis 

In this section, how the structure of the GT2-FLC changes with respect to the shape 

design parameter 𝜃 ∈ [−2,2] will be investigated. In this context, the structure 

switching values of the shape design parameter (𝜃 = {−2, 0, 2}) will be examined. 

• For the shape design parameter setting 𝜃 = 0, all α-plane associated lower and 

upper membership degrees (𝜇�̃�𝛼𝑝  and 𝜇
�̃�𝛼𝑝

) are equal for all α-planes slices as 

𝜇�̃�𝛼𝑝 = 𝜇�̃�𝛼0 = 𝜇�̃� and 𝜇
�̃�𝛼𝑝

= 𝜇
�̃�𝛼0

= 𝜇
�̃�

 respectively. Therefore, an interval 

SMF is obtained as illustrated in Figure 4.7. For this shape design parameter 

setting, the GT2-FLC transforms into its IT2-FLC counterpart from the input-

output mapping point of view. Thus, the GT2-FLC results with an identical 

CC/ CS with its IT2-FLC counterpart as follows: 

𝑈𝐺𝑇2 |  
𝜃=0

= 𝑈𝐼𝑇2 (5.1) 

• For the shape design parameter setting 𝜃 = −2, all α-plane associated lower 

and upper membership degrees (𝜇�̃�𝛼𝑝  and 𝜇
�̃�𝛼𝑝

) are equal to the one calculated 

for the LMF as 𝜇�̃�𝛼𝑝 = 𝜇
�̃�𝛼𝑝

= 𝜇�̃�𝛼0 = 𝜇�̃�. Therefore, a spike-shaped SMF is 

obtained as illustrated in Figure 4.3. For this shape design parameter setting, 

the GT2-FLC transforms into a particular T1-FLC that only utilizes the LMFs 

of the IT2-FSs. Thus, from the input-output mapping point of view, the GT2-

FLC results with the following CC/CS: 
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𝑈𝐺𝑇2 |  
𝜃=−2

=
∑ 𝑓𝑛𝐶𝑛
𝑁
𝑛=1

∑ 𝑓𝑛
𝑁
𝑛=1

 (5.2) 

• For the shape design parameter setting 𝜃 = 2, all α-plane associated lower and 

upper membership degrees (𝜇�̃�𝛼𝑝  and 𝜇
�̃�𝛼𝑝

) are equal to the one calculated for 

the UMF as 𝜇�̃�𝛼𝑝 = 𝜇�̃�𝛼𝑝 = 𝜇�̃�𝛼0 = 𝜇�̃�. Therefore, a spike-shaped SMF is 

obtained as illustrated in Figure 4.11. For this shape design parameter setting, 

the GT2-FLC reduces into its T1-FLC baseline from the input-output mapping 

point of view. Thus, the GT2-FLC results with the same CC/CS of its T1-FLC 

counterpart as follows: 

𝑈𝐺𝑇2 |  
𝜃=2

= 𝑈𝑇1 (5.3) 

It can be concluded that, in addition to numerous GT2-FLC design options, T1-FLC 

and IT2-FLC design options are also possible by simply adjusting the shape design 

parameter 𝜃. Here, the values of 𝜃 = {-2, 0, 2} are the structure switching values since 

they determine the resulting input-output mapping. The output of the GT2-FLC is over 

bounded by these structure switching values as follows:  

𝑈𝐺𝑇2 ≤ 𝑈𝐺𝑇2 ≤ 𝑈𝐺𝑇2 (5.4) 

where 

𝑈𝐺𝑇2 = min
𝜃={-2,0,2}

𝑈𝐺𝑇2 |  
𝜃
 (5.5) 

𝑈𝐺𝑇2 = max
𝜃={-2,0,2}

𝑈𝐺𝑇2 |  
𝜃

 (5.6) 

where 𝑈𝐺𝑇2 and 𝑈𝐺𝑇2 are the lower and upper bounds of the GT2-FLC output, 

respectively. 

5.2 Shape Analyses of Control Curves / Control Surfaces 

In this section, the CCs/CSs of the GT2-FLCs will be analyzed for various shape 

design parameter settings. For all CC/CS analyses, the sensitivity design parameter is 

fixed as 𝑃 = 10 (in other words the GT2-FLCs always employ 10 α-planes) and the 
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baseline FLCs (i.e. T1-FLC and IT2-FLC) are fixed as defined in Section 5.2.1, so that 

the resulting input-output mapping of the GT2-FLC is only determined by the shape 

design parameter 𝜃. For this purpose, the resulting CCs of the GT2-SFLCs and CSs of 

the GT2-DFLCs are examined for 9 different shape design parameter settings in the 

definition range of [-2, 2] as 𝜃 = {-2, -1.5, -1,-0.5, 0, 0.5, 1, 1.5, 2}. 

Moreover, for the demonstration of the potential impacts of the shape design parameter 

𝜃 on the CC/CS generation clearly, two measures are defined to analyze the impact of 

the shape design parameter 𝜃. The first measure is the Normalized Total Energy (𝑁𝑇𝐸) 

of the CC/CS which is defined as follows: 

𝑁𝑇𝐸 =
‖𝑈𝐺𝑇2‖2
‖𝑈𝑇1‖2

  (5.7) 

where ‖ ‖2 indicates the signal norm of FLC outputs, 𝑈𝐺𝑇2 and 𝑈𝑇1 are the outputs 

of GT2-FLC and T1-FLC, respectively. The 𝑁𝑇𝐸 measure provides useful information 

on the aggressiveness/smoothness of the CC/CS of GT2-FLC comparing to the T1 

counterpart. For instance, if 𝑁𝑇𝐸 > 1, then the CC/CS of the GT2-FLC is relatively 

more aggressive since it has more energy than its T1 counterpart, whereas the CC/CS 

surface of the GT2-FLC becomes smoother when 𝑁𝑇𝐸 < 1. For the CCs/CSs with the 

measure 𝑁𝑇𝐸 > 1, it is expected that the fuzzy control system achieves faster system 

responses in the transient state, but this aggressive action might result in overshoots/ 

oscillations. The second measure is the Noise Ratio (𝑁𝑅), which is defined to examine 

the robustness of the handled FLCs around the steady-state. The 𝑁𝑅 measure is 

calculated based on a zero-mean Gaussian noise input with a standard deviation of 

𝜎𝑖𝑛 = 0.2 as follows: 

𝑁𝑅 =
𝜎𝑜𝑢𝑡
2

𝜎𝑖𝑛
2   (5.8) 

where 𝜎𝑜𝑢𝑡 is the standard deviation of the GT2-FLC output. The 𝑁𝑅 measure provides 

useful information about how the GT2-FLC amplifies the zero-mean noise signal 

around the steady-state so that the system reaction of the GT2-FLC in terms of the 

control effort or the robustness against noises can be investigated in the time domain 

numerically. For instance; if 𝑁𝑅 = 1, then it means that the GT2-FLC has a unit 

mapping from input to output (e.g. 𝑦 = 𝑓(𝑥), where 𝑓(𝑥) = 𝑥); when 𝑁𝑅 < 1, the 



78 

GT2-FLC is potentially more robust against noises and uncertainties, since it does not 

amplify the noisy signal, if 𝑁𝑅 > 1, then the GT2-FLC potentially produces relatively 

more control action against noises and uncertainties around the state, which might end 

up with faster system response compromising overshoots/oscillations. 

5.2.1 Baseline FLCs used in shape analyses 

In this section, the baseline FLCs which are examined in the analyses of the next 

chapters (single/double-input T1/IT2-FLCs), will be presented. These employed 

controllers; particularly T1-SFLC, T1-DFLC, IT2-SFLC, and IT2-DFLC, are assumed 

as the baselines for the GT2-FLC design, as explained in previous sections. For this 

purpose, the CCs of SFLCs and the CSs of DFLCs are wisely constructed for the sake 

of clear GT2-FLC design. 

The T1-SFLC and T1-DFLC are designed in a way that an aggressive CC and CS can 

be achieved, respectively. The T1-FLC design aims to obtain a faster system response 

in the transient state, although this might result in overshoot in some cases. To this 

end, the T1-FLCs are determined based on the consequent design parameters (𝐶𝑛) by 

excluding the scaling factors which are set according to the control application. The 

baseline T1-SFLC and baseline T1-DFLC are determined according to the comments 

in [41, 40] via the consequent design parameter settings, which are denoted as CONS-

1 and CONS-2 respectively, as follows: 

• CONS-1:  𝐶1 = −1, 𝐶2 = 0, 𝐶3 = 1. 

• CONS-2:  𝐶1 = −1, 𝐶2 − 0.8, 𝐶3 = 0, 

𝐶4 = −0.8, 𝐶5 = 0, 𝐶6 = 0.8, 

𝐶7 = 0, 𝐶8 = 0.8, 𝐶9 = 1. 

The IT2-SFLC and IT2-DFLC can be designed in numerous ways such that smooth or 

aggressive CCs and CSs can be achieved, respectively. To this end, four IT2-FLCs are 

designed in this thesis; a smooth IT2-SFLC that employs FOU-1 which results with 

relatively smoother CC than T1 counterpart, an aggressive IT2-SFLC that employs 

FOU-2 which results with relatively more aggressive CC, a smooth IT2-DFLC that 

employs FOU-3 which results with relatively smoother CS around the origin, an 

aggressive IT2-SFLC that employs FOU-4 which results with relatively more 

aggressive CS around the origin. For the IT2-SFLC designs, the recommendations in 
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[41] are followed. For the IT2-DFLC designs, the analyses in previous works [40, 43, 

44] are considered. The design parameters of the baseline IT2-FLCs are as follows: 

• FOU-1:  𝑀1,1 = 0.2, 𝑀1,2 = 0.9, 𝑀1,3 = 0.2. 

• FOU-2:  𝑀1,1 = 0.9, 𝑀1,2 = 0.2, 𝑀1,3 = 0.9. 

• FOU-3:  𝑀1,1 = 0.2, 𝑀1,2 = 0.9, 𝑀1,3 = 0.2,  

𝑀2,1 = 0.2, 𝑀2,2 = 0.9, 𝑀2,3 = 0.2. 

• FOU-4:  𝑀1,1 = 0.9, 𝑀1,2 = 0.3, 𝑀1,3 = 0.9,  

𝑀2,1 = 0.9, 𝑀2,2 = 0.3, 𝑀2,3 = 0.9. 

5.2.1.1 Baseline type-1 single-input FLC 

The internal structure of the baseline T1-SFLC is constructed according to Section 2.4 

and the baseline T1-SFLC is composed of 𝑁 = 3 rules. The T1-SFLC employs the 

design parameter setting CONS-1 in its rule base as shown in Table 5.1.  

Table 5.1 : Rule base of baseline T1-SFLC. 

𝑥1 = 𝐸 𝐴1,1 𝐴1,2 𝐴1,3 

 𝐶1 = −1 𝐶2 = 0 𝐶3 = 1 

The antecedent MFs (𝐴1,1, 𝐴1,2, and 𝐴1,3) are defined with triangle FSs and the cores 

are selected as 𝑐1,1 = −1, 𝑐1,2 = 0, and 𝑐1,3 = 1. Here, the cores are represented with 

𝑐𝑗,𝑖 instead of 𝑏 (as given in equation (2.6)) in order to have a similar label convention 

with the MF 𝐴𝑗,𝑖. The antecedent MFs and resulting CC of the baseline T1-SFLC are 

given in Figure 5.1 and Figure 5.2 in comparison with IT2 counterparts. 

5.2.1.2 Baseline smooth interval type-2 single-input FLC 

The internal structure of the baseline smooth IT2-SFLC is constructed according to 

Section 2.4. The IT2-SFLC shares the same rule of its T1 counterpart as given in Table 

5.2, it only differs that the IT2- SFLC uses IT2-FSs instead of T1-FSs. 

Table 5.2 : Rule base of baseline IT2-SFLCs. 

𝑥1 = 𝐸 �̃�1,1 �̃�1,2 �̃�1,3 

 𝐶1 = −1 𝐶2 = 0 𝐶3 = 1 
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The antecedent MFs (�̃�1,1, �̃�1,2, and �̃�1,3) are defined with triangle IT2-FSs and the 

core points of these antecedent MFs are selected as the ones used for T1 counterpart 

(𝑐1,1 = −1, 𝑐1,2 = 0, and 𝑐1,3 = 1), while the FOU design parameters of the baseline 

smooth IT2-SFLC are set to FOU-1. The antecedent MFs and resulting CC of the 

baseline smooth IT2-SFLC are illustrated in Figure 5.1. 

 

Figure 5.1 : Baseline T1-SFLC and baseline IT2-SFLC employing FOU-1. 
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5.2.1.3 Baseline aggressive interval type-2 single-input FLC 

The internal structure of the baseline aggressive IT2-SFLC is constructed according to 

Section 2.4 and it employs the same rule base and antecedent MFs of its smooth 

counterpart (given in Table 5.2). It only differs on the FOU design, as the baseline 

aggressive IT2-SFLC employs the parameter setting FOU-2, while the smooth IT2-

SFLC employs the parameter setting FOU-1. As shown in [36, 41], an aggressive or a 

smooth CC can be achieved by proper tuning of the FOU design parameters. The 

antecedent MFs and resulting CC of the baseline aggressive IT2-SFLC are illustrated 

in Figure 5.2 in comparison with the T1 counterpart. 

 

Figure 5.2 : Baseline T1-SFLC and baseline IT2-SFLC employing FOU-2. 
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5.2.1.4 Baseline type-1 double-input FLC 

The internal structure of the T1-DFLC is constructed according to Section 2.5 and the 

T1-SFLC, which is used for the analyses in this thesis, is composed of 𝑁 = 3 × 3 = 9 

rules. The T1-DFLC employs the design parameter setting CONS-2 as in Table 5.3.  

Table 5.3 : Rule base of baseline T1-DFLC. 

𝑥2 = Δ𝐸 \ 𝑥1 = 𝐸 𝐴1,1 𝐴1,2 𝐴1,3 

𝐴2,1 𝐶1 = −1 𝐶2 = −0.8 𝐶3 = 0 

𝐴2,2 𝐶4 = −0.8 𝐶5 = 0 𝐶6 = 0.8 

𝐴2,3 𝐶7 = 0 𝐶8 = 0.8 𝐶9 = 1 

The antecedent MFs (𝐴1,1, 𝐴1,2, 𝐴1,3, 𝐴2,1, 𝐴2,2, and 𝐴2,3) are defined with triangle FSs 

and the core points are 𝑐1,1 = 𝑐2,1 = −1, 𝑐1,2 = 𝑐2,2 = 0, and 𝑐1,3 = 𝑐2,3 = 1. The 

resulting CS differences between the baseline T1-DFLC and the baseline smooth IT2-

FLCs is given in Figure 5.3, and the differences between the baseline T1-DFLC and 

the baseline aggressive IT2-FLC is given in Figure 5.4. 

5.2.1.5 Baseline smooth interval type-2 double-input FLC 

The internal structure of the smooth IT2-DFLC is constructed according to Section 2.5 

and the baseline smooth IT2-DFLC is composed of 𝑁 = 3 × 3 = 9 rules. Similar to 

its T1 counterpart, the smooth baseline IT2-DFLC also employs the design parameter 

setting CONS-2 as shown in Table 5.4.  

Table 5.4 : Rule base of baseline IT2-DFLCs. 

𝑥2 = Δ𝐸 \ 𝑥1 = 𝐸 �̃�1,1 �̃�1,2  �̃�1,3 

�̃�2,1 𝐶1 = −1 𝐶2 = −0.8 𝐶3 = 0 

�̃�2,2 𝐶4 = −0.8 𝐶5 = 0 𝐶6 = 0.8 

�̃�2,3 𝐶7 = 0 𝐶8 = 0.8 𝐶9 = 1 

The antecedent MFs (�̃�1,1, �̃�1,2, �̃�1,3, �̃�2,1, �̃�2,2, and �̃�2,3) are defined with triangle 

IT2-FSs and the core points are the same as the T1 counterparts; 𝑐1,1 = 𝑐2,1 = −1, 

𝑐1,2 = 𝑐2,2 = 0, and 𝑐1,3 = 𝑐2,3 = 1. Here, the baseline smooth IT2-DFLC employs 

the design parameter setting FOU-1, which provides a smoother CS in comparison to 

its T1 counterpart (as shown in previous analyses works [42-44]). The antecedent MFs 

of the IT2-FLC and the CS differences between the baseline T1-DFLC, and the 

baseline smooth IT2-SFLC (i.e. 𝑦𝑇1 − 𝑦𝐼𝑇2) are illustrated in Figure 5.3. 
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Figure 5.3 : Baseline T1-DFLC and baseline IT2-DFLC employing FOU-3. 

5.2.1.6 Baseline aggressive interval type-2 double-input FLC 

The internal structure of the baseline aggressive IT2-DFLC is constructed according 

to Section 2.5. The baseline aggressive IT2-DFLC employs 𝑁 = 3 × 3 = 9 rules and 

the design parameter setting CONS-2 as shown in Table 5.4. The antecedent MFs are 

selected as the ones used for the smooth IT2 counterpart, and the baseline aggressive 

IT2-DFLC uses the design parameter setting FOU-4, which provides an aggressive 

CS. As it is shown in previous analyses works [42-44], it is possible to generate both 

smooth and aggressive IT2 CS via proper FOU parameter design. The antecedent MFs 
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of the IT2-FLC and the CS differences between the baseline T1 and the baseline 

aggressive IT2 DFLCs (i.e. 𝑦𝑇1 − 𝑦𝐼𝑇2) are illustrated in Figure 5.4. 

 

Figure 5.4 : Baseline T1-DFLC and baseline IT2-DFLC employing FOU-4. 

5.2.2 Control curves of GT2-SFLCs 

In this section, the shape analyses over the CCs of the GT2-SFLCs are presented for 9 

shape design parameter settings, 𝜃 = {-2, -1.5, -1,-0.5, 0, 0.5, 1, 1.5, 2}. In this context, 

the resulting CCs of the GT2-SFLCs are firstly calculated for each shape design 

parameter configuration, and the CCs of the handled GT2-SFLCs with FOU-1 and 

FOU-2 are illustrated in Fig. 5.5 and Fig. 5.6, respectively. For easier understanding 
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of how the shape design parameter affects the CCs, the CCs are given in two-fold; the 

CC window where 𝐸 ∈ [0, 1] and the complete CC where 𝐸 ∈ [1, 1]. 

 

 

Figure 5.5 : Effect of shape design parameter on CCs of GT2-SFLCs with FOU-1. 
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Figure 5.6 : Effect of shape design parameter on CCs of GT2-SFLCs with FOU-2. 

As illustrated in Figure 5.5 and Figure 5.6, the shape design parameter 𝜃 not only 

defines the shape of the SMF (as explained in Section 4.2) but also shapes the resulting 
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CC of the GT2-SFLC. The numerical 𝑁𝑇𝐸 and 𝑁𝑅 measures are tabulated in Table 

5.5. For the smooth design option FOU-1, as shown in Figure 5.5, the resulting CC 

becomes smoother when the shape design parameter 𝜃 decreases from 2 to -2. Here, 

the shape design parameter settings 𝜃 = 2 and 𝜃 = 0 result with the baseline T1-SFLC 

and the baseline smooth IT2-SFLC, which are defined in Section 5.2.1, respectively. 

By decreasing the shape design parameter 𝜃, the CC of the GT2-SFLC transforms 

from an aggressive mapping (the mapping of T1 counterpart) to a smoother mapping. 

This coincides with the 𝑁𝑇𝐸 and 𝑁𝑅 measures. For this design, the lowest 𝑁𝑅 value 

is achieved for the GT2-SFLC with 𝜃 = −2 design. Therefore, the GT2-SFLC with 

𝜃 = −2 design setting is potentially more robust since it is less sensitive to the noise 

in comparison to its GT2 counterparts. The 𝑁𝑇𝐸 values are always less than 1, so it 

can be interpreted that any GT2-SFLC design ends up with a potentially smoother 

fuzzy controller than its T1-SFLC counterpart. For the aggressive design option FOU-

2, as shown in Figure 5.6, the resulting CC becomes more aggressive when the shape 

design parameter 𝜃 decreases from 2 to -2. Here, the shape design parameter settings 

𝜃 = 2 and 𝜃 = 0 result with the baseline T1-FLC and the baseline aggressive IT2-

FLC, which are defined in Section 5.2.1, respectively. By decreasing the shape design 

parameter 𝜃, the CC of the GT2-SFLC transforms from the mapping of its T1 

counterpart to a more aggressive mapping. This also coincides with the 𝑁𝑇𝐸 and 𝑁𝑅 

measures. For this design, the highest 𝑁𝑇𝐸 value is obtained for the GT2-SFLC with 

𝜃 = −2 design. Therefore, the resulting GT2-SFLC with 𝜃 = −2 design setting has 

the potential to improve transient system response as its CC is aggressive. 

Table 5.5 : Performance measures of shape analyses for GT2-SFLCs. 

 FOU-1 FOU-2 

𝜽 𝑵𝑻𝑬 𝑵𝑹 𝑵𝑻𝑬 𝑵𝑹 

-2 0.633 0.093 1.341 5.272 

-1.5 0.679 0.141 1.297 4.420 

-1 0.707 0.189 1.266 3.978 

-0.5 0.772 0.324 1.199 3.091 

0 0.805 0.455 1.156 2.733 

0.5 0.910 0.658 1.079 1.627 

1 0.963 0.841 1.033 1.230 

1.5 0.985 0.925 1.015 1.088 

2 1.000 1.000 1.000 1.000 
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5.2.3 Control surfaces of GT2-DFLCs 

In this section, the shape analyses over the CSs of the GT2-DFLCs are presented for 9 

shape design parameter settings, 𝜃 = {-2, -1.5, -1,-0.5, 0, 0.5, 1, 1.5, 2}. In this context, 

the resulting CSs of the GT2-DFLCs with FOU-3 and FOU-4 are firstly calculated for 

each shape design parameter configuration. The CSs of the GT2-DFLCs with FOU-3 

and FOU-4 are illustrated in Fig. 5.7 and Fig. 5.8, respectively. As the analysis on the 

shapes of resulting CSs is not straightforward as the one for CCs; the CS differences 

between the GT2-FLC and the baseline T1-FLC (i.e. 𝑈𝐺𝑇2 − 𝑈𝑇1), and the CS 

differences between GT2-FLC and baseline IT2-FLCs (i.e. 𝑈𝐺𝑇2 − 𝑈𝐼𝑇2) are examined 

by varying the shape design parameter 𝜃, for FOU-3 and FOU-4 settings respectively. 

 

Figure 5.7 : Effect of shape design parameter on CSs of GT2-DFLCs with FOU-3. 
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Figure 5.8 : Effect of shape design parameter on CSs of GT2-DFLCs with FOU-4. 

For the smooth design option FOU-3, the CS differences between the GT2-DFLC and 

the baseline T1-DFLC (𝑈𝐺𝑇2 − 𝑈𝑇1) is presented in Figure 5.9, and the CS differences 

between the GT2-DFLC and the baseline smooth IT2-DFLC (i.e. 𝑈𝐺𝑇2 − 𝑈𝐼𝑇2) is 

presented in Figure 5.10. For the aggressive design option FOU-4, the CS differences 

between the GT2-DFLC and the baseline T1-DFLC (𝑈𝐺𝑇2 − 𝑈𝑇1) is presented in 

Figure 5.11, and the CS differences between the GT2-DFLC and the baseline 

aggressive IT2-DFLC (i.e. 𝑈𝐺𝑇2 − 𝑈𝐼𝑇2) is presented in Figure 5.12. The calculated 

numerical 𝑁𝑇𝐸 and 𝑁𝑅 measures for the employed GT2-DFLCs are tabulated in Table 

5.6. 
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Figure 5.9 : CS differences between GT2 and T1 FLCs with FOU-3. 

 

Figure 5.10 : CS differences between GT2 and IT2 FLCs with FOU-3. 
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Figure 5.11 : CS differences between GT2 and T1 FLCs with FOU-4. 

 

Figure 5.12 : CS differences between GT2 and IT2 FLCs with FOU-4. 



92 

Table 5.6 : Performance measures of shape analyses for GT2-DFLCs. 

 FOU-3 FOU-4 

𝜽 𝑵𝑻𝑬 𝑵𝑹 𝑵𝑻𝑬 𝑵𝑹 

-2 0.736 0.344 1.143 6.638 

-1.5 0.770 0.485 1.125 5.970 

-1 0.787 0.609 1.106 5.502 

-0.5 0.829 0.948 1.065 4.542 

0 0.846 1.230 1.028 4.063 

0.5 0.935 1.743 1.025 3.308 

1 0.974 2.154 1.012 2.818 

1.5 0.990 2.337 1.007 2.633 

2 1.000 2.491 1.000 2.491 

As illustrated in Figures 5.7 – 5.12 and listed in Table 5.6, the shape design parameter 

𝜃 not only defines the shape of the SMF (as explained in Section 4.2) but also shapes 

the resulting CS of the GT2-DFLC, similar to its SFLC counterpart.  

For the smooth design option FOU-3, the resulting CS becomes smoother when the 

shape design parameter 𝜃 decreases from 2 to -2. Here, the shape design parameter 

settings 𝜃 = 2 and 𝜃 = 0 result with the baseline T1-DFLC and the baseline smooth 

IT2-DFLC, which are defined in Section 5.2.1, respectively. By decreasing the shape 

design parameter 𝜃, the CC of the GT2-SFLC transforms from an aggressive mapping 

(the mapping of its T1 counterpart) to a smoother mapping (a mapping smoother than 

its smooth IT2 counterpart). This coincides with the 𝑁𝑇𝐸 and 𝑁𝑅 measures. For this 

design, the lowest 𝑁𝑇𝐸 and 𝑁𝑅 values are achieved for the GT2-DFLC with 𝜃 = −2. 

Thus, the performance of the resulting GT2-DFLC is potentially more robust than its 

counterparts as it is more capable to mitigate the noise. For the aggressive design 

option FOU-4, the resulting CS becomes more aggressive when the shape design 

parameter 𝜃 decreases from 2 to -2. Here, the shape design parameter settings 𝜃 = 2 

and 𝜃 = 0 result with the baseline T1-FLC and the baseline aggressive IT2-FLC, 

which are defined in Section 5.2.1, respectively. By decreasing the shape design 

parameter 𝜃, the CC of the GT2-DFLC transforms from the mapping of its aggressive 

T1 counterpart to a more aggressive mapping. This also coincides with the 𝑁𝑇𝐸 and 

𝑁𝑅 measures. For this design, the highest 𝑁𝑇𝐸 value is achieved for the GT2-SFLC 

with 𝜃 = −2 design. Therefore, the resulting CS of the GT2-DFLC with 𝜃 = −2 is 

aggressive and the fuzzy controller has the opportunity to improve system response, 

although the robustness level of the resulting GT2-DFLC might reduce against noise, 

as the 𝑁𝑅 value increases. 
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5.3 Comments and Suggestions on Shape Design Parameter 

In this section, in the light of the structural change analysis that is given in Section 5.1 

and the shape analyses that are given in Section 5.2, the design comments and 

suggestions on the shape design parameter 𝜃 will be given for the sake of systematic 

GT2-FLC design.  

It is observed from previous analyses that the shape design parameter 𝜃 defines the 

resulting CC/CS of the GT2-FLC. In this context, the tuning of this parameter might 

be an efficient and convenient technique to design GT2-FLCs, as the properties of the 

baseline T1 and IT2 FLCs can be conserved. Since the impact of the shape design 

parameter on the CC/CS generation is strongly connected to the baseline T1 and IT2 

FLCs (in terms of smooth or aggressive design options as mentioned in Section 5.2.1), 

this starting point (or design baseline) should be considered for the GT2-FLC design 

too. In this context, it is suggested designing the T1-FLC first, then the IT2-FLC, and 

finally the GT2-FLC, by introducing new design parameters to improve the previous 

results of the base FLC. 

In the design of the GT2-FLC, it is suggested designing the T1 and IT2 FLC baselines 

(i.e. 𝑈𝐺𝑇2 |  
𝜃=2

= 𝑈𝑇1 and 𝑈𝐺𝑇2 |  
𝜃=0

= 𝑈𝐼𝑇2) with aggressive and smooth CCs/CSs, 

respectively. Here, the design of the baseline IT2-FLC is constructed over its T1-FLC 

counterpart, so that the baseline IT2-FLC has additional FOU design parameters than 

its T1 counterpart. This design setting is very convenient as usually followed in various 

fuzzy control studies [6, 7, 10, 12, 40-44] since the performance of IT2-FLC mostly 

outperforms its T1 counterpart thanks to the extra degree of freedom provided by the 

FOU. Thus, this initial design of “Aggressive T1-FLC & Smooth IT2-FLC” provides 

a useful condition |𝑈𝐼𝑇2| < |𝑈𝑇1| for all input values (or almost all), and then the 

boundaries of structure switch conditions, given in (5.4), can be revisited as follows: 

|𝑈𝐺𝑇2 |  
𝜃=−2

| ≤ |𝑈𝐺𝑇2| ≤ |𝑈𝐺𝑇2 |  
𝜃=2

| (5.9) 

which can be also observed from Figure 5.5, in which the CCs of the GT2-SFLCs with 

FOU-1 are illustrated for different shape design parameter settings. For example, the 

GT2-SFLC employing 𝜃 = −2 generates the smoothest curve since the magnitude of 

the signal is lower than its counterparts. Although the aggressive IT2-FLC design is 
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not followed in this thesis, similar observations can be made for this design option. In 

this case, the boundaries of structure switch conditions, given in (5.4), transforms to: 

|𝑈𝐺𝑇2 |  
𝜃=2

| ≤ |𝑈𝐺𝑇2| ≤ |𝑈𝐺𝑇2 |  
𝜃=−2

| (5.10) 

which can be also observed in Figure 5.6. 

For the suggested baseline design setting; “Aggressive T1-FLC & Smooth IT2-FLC”, 

the following comments can be made: 

• A change in the shape design parameter 𝜃 from 2 to 0 converts the CC/CS of 

the GT2-FLC from the baseline T1-FLC to the baseline IT2-FLC, since the 

shape of the SMF transforms from a crisp value to an interval set (as explained 

in Section 4.2). Thus, the performance and robustness of the GT2-FLC with a 

shape design parameter setting in the range of 𝜃 ∈ [0, 2] will always lie 

between the baseline T1-FLC and the baseline IT2-FLC. 

• A change in the shape design parameter 𝜃 from 0 to -2 converts the CC/CS of 

the GT2-FLC from the baseline IT2-FLC to a T1-FLC that only executes the 

LMFs as defined in equation (5.2). Thus, the design of a GT2-FLC with a shape 

design parameter setting in the range of 𝜃 ∈ [−2, 0) gives a chance to construct 

GT2-FLCs that are relatively more robust than its IT2-FLC baseline according 

to the boundaries of structure switch condition in equation (5.9). 

In conclusion, it can be underlined that “the shape design parameter 𝜃 ∈ [−2, 2] 

provides not only a design simplicity as only baseline T1 and IT2 FLCs are needed, 

but also convenient design flexibility since various GT2 CCs / CSs can be generated 

straightforwardly by simply tuning a single parameter θ” [76]. The following sections 

will provide the proposed tuning steps with a systematic design perspective. 

5.4 Systematic Tuning of Shape Design Parameter 

In this section, the proposed systematic tuning methods for the shape design parameter 

will be presented. In this context, in the light of the structural change analysis given in 

Section 5.1, the shape analyses that are given in Section 5.2, and the design comments 

and suggestions on the shape design parameter (given in Section 5.3), the tuning steps 

of the shape design parameter is summarized in Table 5.7. The systematic design of 
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the CC/CS of the GT2-FLC, in other words, a systematic GT2-FLC design from the 

baseline FLCs towards a desired CC/CS generation, can be achieved by following 

three tuning steps. In Step-1, the baseline T1-FLC is designed such that the system 

response is fast and satisfactory (i.e. the baseline T1-FLC has an aggressive CC/CS). 

This can be accomplished by the selections of 1) the type of FLC (single or double), 

2) the number of rules (𝑁), 3) the antecedent MFs (𝐴𝑗,𝑖), 4) the consequent MFs (𝐶𝑛), 

5) the rules in rule base (𝑅𝑛), and the fuzzy operators. For this purpose, the structural 

design recommendations given in Section 2.6, where the design parameters of the T1-

FLCs are also summarized in Table 2.5, can be followed. In Step-2, the baseline IT2-

FLC is designed by converting the baseline T1-FLC to the baseline IT2-FLC by tuning 

the FOU design parameters (𝑀𝑗,𝑖) to result in a potentially robust controller (i.e. the 

baseline IT2-FLC has a smooth CC/CS). For this purpose, the structural design 

recommendations that are given in Section 2.6 and the guidelines/suggestions in [12, 

18-20, 40-44] can be followed. In Step-3, the GT2-FLC is designed over the baseline 

FLCs. For this purpose, the baseline T1-FLC (from Step-1) and the baseline IT2- FLC 

(from Step-2) are considered as initial settings to construct the GT2-FLC. Then, the 

shape design parameter 𝜃 (in online or offline manner) is tuned based on a compromise 

between robustness (i.e. like IT2-FLC) and control system performance (i.e. like T1-

FLC). The tuning steps of the shape design parameter are summarized in Table 5.7. 

Table 5.7 : Tuning steps of the shape design parameter. 

Step-1: Design a baseline T1-FLC such that the system response is fast 

and satisfactory (i.e. aggressive CC/CS).  

Step-2: Convert the baseline T1-FLC to a baseline IT2-FLC by tuning the 

FOU design parameters (𝑀𝑗,𝑖) to end up with a potentially robust 

controller (i.e. smooth CC/CS).  

Step-3: Use the designed baseline T1-FLC (from Step-1) and the designed 

baseline IT2- FLC (from Step-2) as initial settings to construct the 

GT2-FLC. Then, tune the shape design parameter 𝜃 (in online or 

offline manner) by providing a tradeoff between robustness (i.e. 

like IT2-FLC) and control system performance (i.e. like T1-FLC). 
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5.5 Online Scheduling Mechanisms for Shape Design Parameter 

In this section, two online scheduling mechanisms will be proposed to tune the shape 

design parameter in an online manner. The generic design steps for the tuning of the 

shape design parameter (given in Table 5.7) can be easily accomplished in an offline 

manner by numerous design options such as; prior knowledge of system experts or 

optimization-based design via neural networks or genetic algorithms. However, the 

resulting control system performance (in transient and steady states) of the GT2-FLC 

for a fixed shape design parameter 𝜃 value closely depends on the operating points in 

which the system is controlled/designed/optimized, especially for nonlinear systems. 

Thus, the performance of a fuzzy control system might be optimal or satisfactory at a 

certain operating point where the GT2-FLC is tuned, yet its performance might be 

unacceptable at other points. This is expected since the dynamics of nonlinear systems 

might change at different operating points and/or environmental conditions. In control 

theory, this problem is usually addressed by gain-scheduled controllers designed at 

various operating points and schedule a collection of controllers at the corresponding 

steady-states [76]. Thus, on top of the offline-tuning of the shape design parameter, it 

is proposed tuning the shape design parameter in an online manner by providing a 

tradeoff between performance and robustness. This online update of the shape design 

parameter can be easily achieved by the proposed SMF parameterization in Section 

4.2 since the shape of the CC/CS of GT2-FLC is changed by the shape design 

parameter as given in Sections 5.2 and 5.3. 

The first proposed scheduling mechanism is denoted as SM-1 and it tunes the shape 

design parameter in an online manner with respect to the steady-state operating points. 

In this context, the SM-1 determines the shape design parameter values (𝜃𝑟) that are 

associated with steady-state operating points or references (𝑟). Accordingly, the SM-

1 calculates the value of the shape design parameter as follows: 

SM-1: 𝜃 = 𝜃𝑟 = 𝑓𝑟(𝑟) (5.11) 

where 𝑓𝑟(𝑟) is a mapping (i.e. 𝑟 → 𝜃𝑟) that provides the updated value of the shape 

design parameter (𝜃𝑟) with respect to the reference signal (𝑟) of the operating point. 

Here, if there is only one operating point, then the SM-1 is not required so that the 

GT2-FLC design can be accomplished as explained in Table 5.7. If there are multiple 

steady-state operating points, the values of the shape design parameters are stored in 
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the shape design parameter vector 𝜃𝑟 = [𝜃𝑟1 , 𝜃𝑟2 , … , 𝜃𝑟𝑘] with respect to the reference 

signal vector 𝑟 = [𝑟1, 𝑟2, … , 𝑟𝑘]. For each operating point (i.e. 𝑟𝑘), the corresponding 

value of the shape design parameter (i.e. 𝜃𝑘) is defined. To accomplish this goal in 

terms of the systematic way of the GT2-FLC design, the Step-3 of Table 5.7 can be 

followed to determine the appropriate values (𝜃𝑟𝑘) of the shape design parameter. 

Besides, if an interpolation method for the mapping function 𝑓𝑟(𝑟) is defined, then the 

GT2-FLC can also work for the intermediate operating points of the control system. 

The design steps of the SM-1 are summarized in Table 5.8.  

Table 5.8 : Design steps of the online SM-1. 

Step-1: Define the steady-state operating points/references of the control 

system as 𝑟 = [𝑟1, 𝑟2, … , 𝑟𝑘]. 

Step-2: For each operating point (i.e. 𝑟𝑘), determine the corresponding 

shape design parameter value (i.e. 𝜃𝑟𝑘). For this purpose, the Step-

3 of Table 5.7 can be followed to tune the GT2-FLCs.  

Step-3: Define an interpolation method (e.g. linear, cubic, polynomial, 

fuzzy) for the mapping function 𝑓𝑟(𝑟).  

Although tuning the shape design parameter as given in (5.11) is a simple method, the 

scheduling sometimes might not be adequate to achieve a good transient-state control 

performance because only steady-state operating points are considered. To overcome 

this, the handling of the transient system dynamics during reference changes might be 

an efficient way to update the shape design parameter. In this context, the second 

online scheduling mechanism (SM-2) is proposed to update the shape design 

parameter in an online manner with respect to the transient states of the control system 

as well as the steady-state operating points, as follows: 

SM-2: 𝜃 = 𝜃𝑟 + 𝛾𝜃𝑡 (5.12) 

where 𝛾 is a weighting coefficient and 𝜃𝑡 is the varying parameter during the transient 

state to enhance the performance of the GT2-FLC while the control system approaches 

the steady-state operating point. Here, the value of 𝜃𝑟 is determined with respect to the 

steady-state operating points (𝑟), as explained in the SM-1 part, while the value 𝜃𝑡 is 
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updated based on the transient states of the control system. As a transient state, various 

signal information can be processed; for example, the error signal, the change of the 

error signal, the rate of the control signal, the system output, etc. In this thesis, the 

following design guidelines are followed to shape the value of 𝜃𝑡: 

• If the transient state response is fast, then the control signal or control action 

should be smoothened to prevent overshoots and oscillations. Hence, the value 

of the varying parameter (𝜃𝑡) is set to 𝜃𝑡 < 0, so that the value of the shape 

design parameter 𝜃 decreases, according to SM-2 definition in equation (5.12). 

With this design option, the CC/CS of the GT2-FLC becomes smoother as it 

bends towards its boundary T1-FLC defined in equation (5.2).  

• If the transient state response is slow, then the aggressiveness of the control 

signal should be increased to increase the convergence speed of the control 

system. Therefore, the value of the varying parameter (𝜃𝑡) is set to 𝜃𝑡 > 0, so 

that the value of the shape design parameter 𝜃 increases, based on SM-2 

definition in equation (5.12). With this design option, the CC/CS of the GT2-

FLC becomes more aggressive as it bends towards its boundary baseline T1-

FLC defined in equation (5.3).  

• At the steady-state of the control system, the value of the varying parameter 

(𝜃𝑡) should be set to 𝜃𝑡 = 0 in order to assign the shape design parameter 𝜃 to 

its nominal value 𝜃𝑟 at the steady-state operating point 𝑟. 

Since these online scheduling mechanism design guidelines can be easily transformed 

into fuzzy rules, as a part of SM-2, a fuzzy scheduling mechanism, denoted as 𝑓𝑡(ℎ), 

is also proposed. This fuzzy scheduling mechanism provides a mapping (i.e. ℎ → 𝜃𝑡) 

that generates the 𝜃𝑡 as follows: 

 𝜃𝑡 = 𝑓𝑡(ℎ) (5.13) 

where ℎ denotes the inputs of the fuzzy mapping 𝑓𝑡(ℎ), and it indicates the transient 

state signals of the system. In this thesis, these signals are selected as ℎ = [𝐸, Δ𝐸] (the 

error signal and the change of error signal) to process the transient state dynamics of 

the control system, as it has been widely done in self-tuning FLC structures [16, 18, 

22]. Here, the fuzzy scheduling mechanism is defined with the same antecedent MFs 

and the fuzzy rules of the T1-DFLC presented in Section 5.2.1. According to the given 
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design guidelines for the scheduling mechanisms, the rule base of the 𝑓𝑡(ℎ) fuzzy 

mapping is constructed as given in Table 5.9. As given in Table 5.9, the rules are 

symmetric on the left diagonal axis so that a symmetric CS is obtained, while the rule 

consequents are mostly set to 0 and -1 values, to avoid the risk of overshoots and 

oscillations. At the steady-state where 𝐸 = Δ𝐸 = 0, only the rule 𝑅5 is activated with 

𝐶5 = 0, and this provides the fuzzy mapping output becomes 𝜃𝑡 = 0 and 𝜃 = 𝜃𝑟, so 

the value of the shape design parameter converges to its nominal value. It is worth 

underlying that the consequents are the design parameters of the fuzzy scheduling 

mechanism 𝑓𝑡(ℎ), and these parameters are suggested tuning according to the transient 

dynamics of the control system. In this thesis, the following rule table is used as it has 

resulted in satisfactory enhancements in experiments. 

Table 5.9 : Rule table of fuzzy mapping of online SM-2. 

𝑥2 = Δ𝐸 \ 𝑥1 = 𝐸 𝐴1,1 𝐴1,2 𝐴1,3 

𝐴2,1 𝐶1 = 1 𝐶2 = 0 𝐶3 = −1 

𝐴2,2 𝐶4 = 0 𝐶5 = 0 𝐶6 = −1 

𝐴2,3 𝐶7 = −1 𝐶8 = −1 𝐶9 = −1 

 

Figure 5.13 : Surface of fuzzy mapping of online SM-2. 
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6. ANALYSIS AND DESIGN OF SENSITIVITY DESIGN PARAMETER 

In this chapter, the effect of the sensitivity design parameter (i.e. 𝑃) on the control 

curve and control surface generation will be investigated, and a practical tuning 

algorithm is proposed for the selection of the sensitivity design parameter 𝑃. 

6.1 Sensitivity Analyses of Control Curves / Control Surfaces 

In this section, the CCs/CSs of the GT2-FLCs will be analyzed for various sensitivity 

design parameter settings in order to provide a practical insight into how to tune the 

sensitivity design parameter 𝑃. In this context, the sensitivity/accuracy of the resulting 

CCs/CSs and their computation burden are examined. For all CC/CS generation and 

time analyses, the shape design parameters are fixed, which means that the shapes of 

the CCs/CSs of the GT2-FLCs are fixed, so that any difference that occurs on the 

resulting input-output mapping of the GT2-FLC is only related to the different settings 

of the sensitivity design parameter 𝑃 that is the total number of α-planes. For this 

purpose, the results of the GT2-FLCs employing different number of α-planes are 

analyzed for the settings 𝑃 = {2, 3, 4, 10, 25, 100} in terms of three measures; the 

Maximum Value of Errors (𝑀𝑉𝐸) and the Mean Absolute Error (𝑀𝐴𝐸) and the 

average Computation Time (CT). These comparison measures are defined as: 

𝑀𝑉𝐸(휀𝑎
𝑏) = max

𝑣=1,…,𝑉
(휀𝑎
𝑏[𝑣]) (6.1) 

𝑀𝐴𝐸(휀𝑎
𝑏) =∑|휀𝑎

𝑏[𝑣]|/𝑉

𝑉

𝑣=1

  (6.2) 

휀𝑎
𝑏[𝑣] = 𝑈𝑎[𝑣] − 𝑈𝑏[𝑣] (6.3) 

Here, 𝑉 is the total number of samples, 𝑈𝑎[𝑣] and 𝑈𝑏[𝑣] denote samples from 𝑈𝑎 and 

𝑈𝑏 outputs of the GT2-FLCs employing 𝑃 = 𝑎 and 𝑃 = 𝑏 α-planes, respectively. As 

a part of the sensitivity analyses, the average CT values are calculated over 10 trials, 

by changing the input variables with 0.001 and 0.01 step sizes for GT2-SFLC and 
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GT2-DFLC, respectively. The CT values are calculated with tic and toc functions of 

the MATLAB. Similar to the shape analyses, the sensitivity analyses are performed 

for the CC of the GT2-SFLC and the CS of the GT2-DFLC separately. During these 

analyses, the following GT2-FLCs are considered;  

• GT2-SFLC with FOU-2 and 𝜃 = −1, 

• GT2-DFLC with FOU-3 and 𝜃 = −1. 

In the comparisons, it is assumed that the output of a continuous GT2-FLC (𝑈𝐶) can 

be approximated with a GT2-FLC employing 𝑃=1000 α-planes (i.e. 𝑈1000). This high 

number of α-planes provides a high level of granularity on the GT2-FLC computations 

as mentioned in Section 3.6. Thus, for the comparative sensitivity analyses on the CCs/ 

CSs of the GT2-FLCs, it is assumed that 𝑈𝐶 = 𝑈1000. The effect of the sensitivity 

design parameter 𝑃 is firstly examined by comparing the outputs of the handled GT2-

SFLCs and GT2-DFLCs with the continuous ones. The resulting CCs of the GT2-

SFLCs and the CC differences to continuous the GT2-SFLC are illustrated in Figures 

6.1 and Figure 6.2, while the CS differences between the GT2-DFLCs and the 

continuous one is given in Figure 6.3. The comparison measures are given in Tables 

6.1 and 6.2 for GT2-SFLCs and GT2-DFLCs, respectively. 

 

Figure 6.1 : Effect of sensitivity design parameter on CCs of GT2-SFLCs. 
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Figure 6.2 : CC differences between 𝑈𝐶 and 𝑈𝑃 for 𝑃 = {2, 3, 4, 10, 25, 100}. 

As illustrated in Figure 6.1 and Figure 6.2, the input-output mappings of the GT2-

SFLCs are almost identical, although the sensitivity design parameter 𝑃 varies through 

a wide range from 2 to 1000, and the CS differences of the GT2-DFLCs are relatively 

low as illustrated in Figure 6.3. These can be numerically observed from Table 6.1 for 

the GT2-SFLCs and from Table 6.2 for the GT2-DFLCs.  

It is worth underlying that the employed GT2-FLCs resulted in relatively low 𝑀𝑉𝐸 

and 𝑀𝐴𝐸 measures, independent from the value of the sensitivity design parameter 𝑃. 

However, the total number of α-planes, in order words the sensitivity design parameter 

𝑃, has a significant effect on the average CT as expected. Accordingly, it can be argued 

that the realization of a GT2-FLC (in a hardware element such as microcontroller) 

employing high values of 𝑃 (constructing by high numbers of α-planes) might be a 

challenging problem in real-time applications that usually require a short computation 

window (due to the high sampling frequencies). For instance, when the value of the 

sensitivity design parameter 𝑃 increases from 10 to 100, which means that the GT2-

SFLC employs 90 α-planes more, then the 𝑀𝑉𝐸 measure of the GT2-SFLC reduces 

from 8.925×10-3 to 0.798×10-3 but accordingly the average CT value increases 

approximately 9 times. 
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Table 6.1 : Sensitivity measures for GT2-SFLCs. 

𝑷 𝑴𝑽𝑬(𝜺𝑷
𝑪) 𝑴𝑨𝑬(𝜺𝑷

𝑪) 
Average 

CT (ms) 
𝑴𝑽𝑬(𝜺𝑷

𝑷+𝟏) 𝑴𝑨𝑬(𝜺𝑷
𝑷+𝟏) 

2 46.067 28.120 0.039±0.001 15.435 9.406 

3 30.632 18.714 0.052±0.001 7.798 4.743 

5 18.167 11.128 0.076±0.003 3.099 1.890 

10 8.925 5.483 0.133±0.003 0.831 0.509 

25 3.482 2.143 0.315±0.016 0.138 0.0805 

100 0.798 0.492 1.257±0.077 0.009 0.006 

* The sensitivity measures (𝑀𝑉𝐸 and 𝑀𝐴𝐸) values are normalized by 10-3. 

 

Figure 6.3 : Effect of sensitivity design parameter on GT2-FLCs’ 휀𝑃
𝐶 values. 



105 

In the second part of the sensitivity analyses, how the sensitivity of the CCs/CSs 

changes with respect to the increments of the number of α-planes, (i.e. the increment 

of the sensitivity design parameter from 𝑃 to 𝑃 + 1) is analyzed. In this context, the 

resulting CC/CS differences between 𝑈𝑝 (a GT2-FLC employing 𝑃 α-planes) and 𝑈𝑃+1 

(a GT2-FLC employing 𝑃+1 α-planes) are examined and the sensitivity measures; 

𝑀𝑉𝐸𝑃
𝑃+1 and 𝑀𝐴𝐸𝑃

𝑃+1, are calculated. These differences are illustrated in Figure 6.4 

for GT2-SFLCs and Figure 6.5 for GT2-DFLCs. The sensitivity measures are given in 

Table 6.1 and Table 6.2 for GT2-SFLCs and GT2-DFLCs, respectively. Similar to the 

first part of the analyses, the CCs/CSs are almost identical for various sensitivity 

design parameter settings. On the other hand, increasing the value of the sensitivity 

design parameter from 𝑃 = 3 to 𝑃 = 4 resulted in a relatively bigger improvement in 

terms of the 𝑀𝑉𝐸 and 𝑀𝐴𝐸 measures when it is compared to the results in which the 

value of 𝑃 is increased from 𝑃 = 100 to 𝑃 = 101. The levels of the differences are 

relatively lower than the differences to the continuous CC/CS. Thus, it can be 

concluded that the relative CC/CS difference per increment on the 𝑃 value decreases 

when the total number of α-planes (or the value of the sensitivity design parameter) is 

getting bigger. 

 

Figure 6.4 : CC differences between 𝑈𝑃+1 and 𝑈𝑃 for 𝑃 = {2, 3, 4, 10, 25, 100}. 
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Table 6.2 : Sensitivity measures for GT2-DFLCs. 

𝑷 𝑴𝑽𝑬(𝜺𝑷
𝑪) 𝑴𝑨𝑬(𝜺𝑷

𝑪) 
Average 

CT (ms) 
𝑴𝑽𝑬(𝜺𝑷

𝑷+𝟏) 𝑴𝑨𝑬(𝜺𝑷
𝑷+𝟏) 

2 48.577 23.783 0.133±0.012 16.295 7.975 

3 32.281 15.814 0.147±0.014 8.342 4.022 

5 19.140 9.393 0.169±0.014 3.299 1.598 

10 9.407 4.625 0.224±0.015 0.878 0.430 

25 3.701 1.808 0.356±0.017 0.146 0.072 

100 0.860 0.415 1.017±0.051 0.010 0.005 

* The sensitivity measures (𝑀𝑉𝐸 and 𝑀𝐴𝐸) values are normalized by 10-3. 

 

Figure 6.5 : Effect of sensitivity design parameter on GT2-FLCs’ 휀𝑃
𝑃+1 values. 
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6.2 Comments and Suggestions on the Sensitivity Design Parameter 

In this section, in the light of the sensitivity analyses given in Section 6.1, the design 

comments and suggestions on the sensitivity design parameter 𝑃 will be given for the 

sake of systematic and practical GT2-FLC design. The performed sensitivity analyses 

clearly demonstrated that the sensitivity design parameter does not change the shape 

of the CC/CS alike its shape design parameter counterpart, but it closely defines the 

CC/CS accuracy/sensitivity of the GT2-FLCs. The results also demonstrate that there 

is a strong tradeoff between computational time and CC/CS precision. In other words, 

a high number of α-planes means accurate precision on the computation of the control 

signal of the GT2 fuzzy system, but a huge computation burden at the same time. Thus, 

a practical technique is necessary to balance the time compromise of the CC/CS 

sensitivity of the GT2-FLCs to be deployed. 

In real-time control applications, the designed GT2-FLCs are usually implemented on 

microcontroller-based hardware components that have finite precision (e.g. fixed or 

floating data types) and limited processing power (e.g. function execution time) in 

practice. Moreover, the GT2-FLCs do not only process quantized/sampled signals 

from the environment, but also generate quantized/sampled signals to be deployed to 

the actuators in the environment. This is due to fact that the feedback signals of the 

system are captured by sensing elements (like resolvers, voltage/speed/position 

sensors, cameras, IMUs, …), while the control signal of the control system is realized 

by physical actuators (like engines, electric machines, charging units, heaters, …). In 

this context, a continuous signal 𝑆, used in real-time applications, is usually defined 

by a quantization operation as follows: 

�̂� = ⌊𝑆/Δ⌋Δ (6.4) 

where �̂� is the quantized/sampled signal that is derived from the continuous signal 𝑆, 

Δ is quantization level (or quantization interval) and ⌊ ⌋ denotes floor function happens 

during the quantization. Then the quantization error (𝑄𝑆) is defined as follows: 

𝑄𝑆 = �̂� − 𝑆 (6.5) 

Here, it is worth underlying that the quantization error might happen at the inputs and 

outputs of GT2-FLCs in real-time applications. So, the magnitude and characteristic 
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of the quantization error have an impact on the real-time control performance of the 

GT2-FLC, since it changes the accuracy of the designed CC/CS of the GT2-FLC. 

Thus, the quantization intervals or quantization errors of the fuzzy control system 

should be considered in the design of GT2-FLCs. In this context, it is suggested 

adjusting the sensitivity design parameter 𝑃 by considering the quantization level Δ 

and the required computational time on the target hardware element. 

6.3 Tuning of Sensitivity Design Parameter 

In this section, how the sensitivity design parameter 𝑃 can be tuned from a practical 

real-time implementation perspective is presented. Based on the sensitivity analyses 

given in Section 6.1, and the design comments and suggestions on the sensitivity 

design parameter 𝑃 given in Section 6.2, a novel iterative tuning algorithm for the 

sensitivity design parameter is proposed. The new algorithm determines the sensitivity 

design parameter so that it addresses the problem of the selection of α-planes.  

The proposed tuning algorithm of the sensitivity design parameter takes into account 

the hardware limits of the real-time control system; quantization intervals that occur 

in input/output signals, in terms of the sensitivity measures. The aim of the proposed 

tuning algorithm is to determine the best 𝑃 value, the number of α-planes, in a way 

that the designed CC/CS can be realized with a reasonable compromise from the 

sensitivity and the computation time. It is worth noting that the hardware limits are 

very important factors for real-time control problems, in which the sensitivity and the 

computational time are limited. The pseudo-code of the proposed tuning algorithm is 

given in Table 6.3. The proposed tuning algorithm is constructed with two main steps: 

Forward Calculation and Backward Calculation, as follows: 

1. Forward Calculation: The goal of the forward calculation is to find the best 

(in terms of sensitivity/accuracy) GT2-FLC output under given sensitivity 

constraints and quantization levels of the input/output signals. In the forward 

calculation step, the value of 𝑃 is increased by 1 in each iteration step, until the 

improvement per increment is lower than a stopping threshold. In this context, 

the CC/CS differences of two consecutive GT2-FLCs (i.e. 𝑈𝑃: the GT2-FLC 

employing 𝑃 α-planes and 𝑈𝑃+1: the GT2-FLC employing 𝑃 + 1 α-planes) are 

calculated in the search space [𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥] where 𝑃𝑚𝑖𝑛 = 2 and 𝑃𝑚𝑎𝑥 is defined 
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by the designer. The algorithm updates the candidate solution of the forward 

calculation (𝑃∗ = 𝑃) until the following stopping condition is satisfied: 

𝑀𝐴𝐸(휀𝑃
𝑃−1) < 휀1 (6.6) 

where 휀1 is the threshold value that defines the improvement limit per α-plane 

increment. Since a chattering effect is highly possible, when a floor operator is 

executed for the quantization of a signal; then it is verified if the stopping 

condition in equation (6.6) is satisfied in the next 𝑃𝑓 iteration for the interval 

of  [𝑃∗, 𝑃∗ + 𝑃𝑓], so that the iteration can be stopped at the point 𝑃∗as it is the 

solution of the forward calculation. This extra procedure is a kind of local 

search mechanism to handle the chattering effects on the 𝑀𝐴𝐸 measure. Then 

the solution 𝑃∗ is stored to be used in the next step. Here it should be noted that 

if the resulting CTs of the GT2-FLC employing 𝑃∗ α-planes is suitable for the 

real-time application (in terms of the time), the next step can be skipped. 

2. Backward Calculation: The goal of the backward calculation is to find the 

best (in terms of sensitivity and time) GT2-FLC output under given constraints 

of the signals, as well as the computation time limits of the hardware elements. 

As mentioned the calculated 𝑃∗ solution in the forward calculation might result 

in a GT2-FLC with a very high computation time which may not be practicable 

for a realization. In order to handle this bottleneck, an error threshold (휀2), 

which defines the precision tolerance, is defined to reduce the total number of 

α-planes which unsurprisingly reduces the average CT measure (as shown in 

Section 6.2). This is accomplished by decreasing the value of 𝑃∗ by 1 in each 

iteration step until the 𝑀𝑉𝐸 value satisfies the following stopping condition: 

𝑀𝑉𝐸(휀𝑃
𝑃∗) > 휀2 (6.7) 

Here, the backward iteration stops at 𝑃∗∗, when the condition (6.7) cannot be 

satisfied anymore. This condition gives a compromise (between sensitivity and 

computation time) by finding a solution satisfying 𝑃∗∗ < 𝑃∗. Note that, if there 

is no feasible solution for the real-time application (e.g. the average CT of the 

GT2-FLC employing 𝑃∗∗ α -planes is too high), then the threshold 휀2 should 

be increased and the backward calculation should be re-executed. 
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Table 6.3 : Tuning algorithm of the sensitivity design parameter. 

Forward Calculation 

Define input and output quantization levels: Δ𝑖𝑛 and Δ𝑜𝑢𝑡  

Quantize input values based on Δ𝑖𝑛 according to (6.4) 

Define hyperparameter 휀1 to be used in the stopping criteria 

Define hyperparameters 𝑃𝑓, 𝑃𝑚𝑖𝑛, and 𝑃𝑚𝑎𝑥  to be used for iteration limits 

Initialize the parameters used in iteration loops as: 𝑃𝑖 = 0 and 𝑃∗ = 𝑃𝑚𝑎𝑥  

Start iteration 

FOR   𝑃 = 𝑃𝑚𝑖𝑛: 1: 𝑃𝑚𝑎𝑥    

Calculate the input-output mapping of the GT2-FLC employing 𝑃 α-planes 

(i.e. 𝑈𝑃 by gridding the inputs) considering the input quantization level Δ𝑖𝑛 

Calculate the quantized output signal of the GT2-FLC (i.e. �̂�𝑃) via (6.4) 

considering the output quantization level Δ𝑜𝑢𝑡  

IF   𝑃 > 2 

Calculate the measure 𝑀𝐴𝐸(휀𝑃
𝑃−1 ) with �̂�𝑃 and �̂�𝑃−1 using (6.2) 

IF   𝑀𝐴𝐸(휀𝑃
𝑃−1 ) < 휀1 

IF   𝑃𝑖 == 𝑃𝑓 

𝑃∗ = 𝑃 − 𝑃𝑓  

BREAK 

END 

𝑃𝑖 = 𝑃𝑖 + 1  

ELSE 

𝑃𝑖 = 0  

END 

END 

END 

Backward Calculation 

Take 𝑃∗ and �̂�𝑃
∗  as calculated in the Forward Calculation step 

Define hyperparameter 휀2 to be used in the stopping criteria 

Initialize the parameters used in iteration loops as: 𝑃∗∗ = 𝑃𝑚𝑖𝑛 

FOR   𝑃 = 𝑃∗ − 1:−1: 𝑃𝑚𝑖𝑛 

Calculate the input-output mapping of the GT2-FLC employing 𝑃 α-planes 

(i.e. 𝑈𝑃 by gridding the inputs) considering the input quantization level Δ𝑖𝑛 

Calculate the quantized output signal of the GT2-FLC (i.e. �̂�𝑃) via (6.4) 

considering the output quantization level Δ𝑜𝑢𝑡  

Calculate the measure 𝑀𝑉𝐸(휀𝑃
𝑃∗) with �̂�𝑃 and �̂�𝑃∗ using (6.1) 

IF   𝑀𝑉𝐸(휀𝑃
𝑃∗) > 휀2 

𝑃∗∗ = 𝑃 + 1  

BREAK 

END 

END 

In this section, a numerical example will be also presented in order to clearly show the 

forward and backward calculation steps of the proposed tuning algorithm In this 

context, a GT2-DFLC is constructed over the rule base defined in Table 5.4 and by 

employing the FOU design parameters as 𝑀1,1 = 0.05, 𝑀1,2 = 0.95, 𝑀1,3 = 0.05, 
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𝑀2,1 = 0.15, 𝑀2,2 = 0.85, 𝑀2,3 = 0.15, and the shape design parameter as 𝜃 = 0.1. 

The quantization intervals of the inputs and output are defined as Δ𝑖𝑛 = 0.01 and 

Δ𝑜𝑢𝑡 = 0.001, respectively. The hyperparameters used in iterations of the proposed 

tuning algorithm as 𝑃𝑚𝑖𝑛 = 2, 𝑃𝑚𝑎𝑥 = 100, and 𝑃𝑓 = 20. The error thresholds of the 

stopping conditions are selected as 휀1 = 0.025 × 10
−3 and 휀2 = 0.01. The variation 

of the 𝑀𝐴𝐸 measure with respect to the sensitivity design parameter 𝑃 (or the total 

number α-planes) is illustrated in Figure 6.6, the calculated execution times during the 

iterations are illustrated in Figure 6.7, and the variation of the 𝑀𝑉𝐸 measure with 

respect to the sensitivity design parameter 𝑃 is illustrated in Figure 6.8. 

In the forward calculation step of the proposed tuning algorithm, the iteration starts by 

varying the sensitivity design parameter from 𝑃𝑚𝑖𝑛 = 2 to 𝑃𝑚𝑎𝑥 = 100. The forward 

calculation iteration stops at the iteration 𝑃 = 43 with the solution 𝑃∗ = 23, since the 

improvement on the 𝑀𝐴𝐸(휀𝑃
𝑃−1) the measure becomes less than the 휀1 stopping 

condition for more than 𝑃𝑓 trials, which are executed to handle the chattering effect. 

 

Figure 6.6 : Variation of 𝑀𝐴𝐸 measure with respect to the 𝑃 values. 
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Figure 6.7 : Variation of execution time with respect to the 𝑃 values. 

 

Figure 6.8 : Variation of 𝑀𝑉𝐸 measure with respect to the 𝑃 values. 
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In the backward calculation step of the proposed tuning algorithm, the iteration starts 

from the solution of the forward calculation 𝑃∗ = 23 towards the 𝑃𝑚𝑖𝑛 = 2. Then the 

backward calculation iteration stops at the solution 𝑃∗∗ = 4, since the value of the 

𝑀𝐴𝐸(휀𝑃
𝑃∗ ) measure reaches the level of the 휀2 stopping condition. The variation of 

the 𝑀𝑉𝐸 measure with respect to the sensitivity design parameter 𝑃 (or the total 

number α-planes) and the final solution of the proposed tuning algorithm are illustrated 

in Figure 6.8. In order to show the effects of other candidate solutions, the differences 

between GT2-FLCs are illustrated in terms of the difference 휀𝑎
𝑃∗[𝑣] for each data 

sample of the handled GT2-DFLCs in Figure 6.9. Here the total number of samples is 

𝑉 = 40401 = 201 × 201, since the inputs are sampled with Δ𝑖𝑛 = 0.01 quantization 

interval such that 201 points are obtained for each input. As it is shown, the error values 

for the solution 𝑃∗∗ = 4 is always below the 휀2 = 0.01 boundary.  

 

Figure 6.9 : Output differences of GT2-FLCs with different P values. 
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7. SIMULATION STUDIES AND REAL-TIME APPLICATIONS 

In this chapter, simulation studies and real-time applications will be presented in order 

to evaluate the effectiveness and the impact of the proposed interpretations, design 

recommendations, and tuning methods for the GT2-FLCs. 

7.1 Simulation Study on a Second-Order Nonlinear System 

In this section, a simulation study [75] on a second-order nonlinear benchmark control 

system will be presented to show how the GT2-FLC design can be accomplished based 

on the proposed guides for a control problem. 

7.1.1 Simulation environment 

The benchmark control system, second-order nonlinear process model [14, 75] is 

defined as follows: 

𝑑2𝑦

𝑑𝑡2
+
𝑑𝑦

𝑑𝑡
+
𝑦2

4
= 𝑢(𝑡 − 𝐿) (7.1) 

where 𝑦 is the output of the system, 𝑢 is the input of the system, and 𝐿 is the time delay 

which is 𝐿 = 0.5𝑠. Here, the gain of the second-order nonlinear system changes with 

respect to the output of the system (i.e. 𝑦), so the system dynamic varies at different 

operating points. When the system output is relatively low, then the gain of the 

nonlinear process increases so that the system response is relatively faster; whereas if 

the system output is relatively high, then the gain of the nonlinear process decreases 

so that the system response is relatively slower. Due to this challenging nature of the 

nonlinear system, a controller might result in very satisfactory performances for an 

operating point, but this performance cannot be maintained for other operating points. 

For the designs of the DFLCs, four steady-state operating points 𝒓 = [𝑟1, 𝑟2, 𝑟3, 𝑟4] =

[0.6, 0.8, 1, 1.2] are considered, and these references are applied in sorted order 

during the simulation. Moreover, the PID type DFLC structure (given in Section 2.5) 

is used for all fuzzy controllers during the simulation study. 
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7.1.2 Controller design 

In the design of the T1, IT2, and GT2 FLCs, the systematic tuning steps presented in 

Section 5.4 are followed and the controllers are tuned according to three performance 

measures; the rise time (Tr), the settling time (Ts), and the overshoot (OS%). In this 

context, according to Step-1 of Table 5.7, the baseline T1-FLC is first designed for the 

reference change from 𝑟3 to 𝑟4. The baseline T1-FLC is constructed with the fuzzy rule 

base given in Table 5.3 and the design parameters T1-FLC, the scaling factors of the 

T1-FPID controller structure are selected as 

• T1-FLC: 𝐾𝑒 = 1, 𝐾Δ𝑒 = 0.8, 𝐾𝑎 = 0.15, 𝐾𝑏 = 2.5  

such that desired system performance (aggressive transient response) can be achieved 

in terms of Tr, Ts, and OS% performance measures. Then, according to Step-2 of Table 

5.7, the baseline IT2-DFLC is designed for the reference change from 𝑟1 to 𝑟2. The 

IT2-FPID controller is constructed by using the same design parameters of the T1-

FPID counterpart and the FOU design parameters are selected as  

• IT2-FLC: 𝑀1,1 = 0.02, 𝑀1,2 = 0.90, 𝑀1,3 = 0.02,  

𝑀2,1 = 0.30, 𝑀2,2 = 0.80, 𝑀2,3 = 0.30  

such that desired system performance (smooth transient response) can be achieved in 

terms of Tr, Ts, and OS% performance measures. Then, as the last step of Table 5.7, 

the GT2-DFLCs are designed; the GT2-DFLC with a fixed 𝜃 value (called as GT2-

DFLC in simulation), the GT2-DFLC with online SM-1 (called as GT2-DFLC-SM). 

The GT2-DFLC is first designed for the reference change from 𝑟2 to 𝑟3, and the shape 

design parameter of the GT2-DFLC is selected as  

• GT2-DFLC: 𝜃 = 0.1 

such that a tradeoff between performance and robustness (i.e., a tradeoff between an 

aggressive T1-FPID controller and a smooth IT2-FPID controller) is obtained by 

reducing the Tr and Ts measures while compromising from OS% performance within 

acceptable limits. Then, in the design of GT2-DFLC-SM, according to the tuning steps 

in Table 5.8, the shape design parameters (𝜽𝒓 = [𝜃1, 𝜃2, 𝜃3, 𝜃4]) that are associated 

with the target references (𝒓 = [𝑟1, 𝑟2, 𝑟3, 𝑟4] = [0.6, 0.8, 1, 1.2]) are obtained as 

• GT2-DFLC-SM: 𝜃1 = −1.2, 𝜃2 = −0.8, 𝜃3 = 0.1, 𝜃4 = 0.4 

such that different system responses can be achieved for each operating point. 
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7.1.3 Simulation results 

The simulation results of the employed T1-DFLC, IT2-DFLC, GT2-DFLC, and GT2-

DFLC-SM are compared with respect to performance measures: the rise time (Tr), the 

settling time (Ts), and the overshoot (OS%). The results are illustrated in Figure 7.1 

and the performance measures are given in Table 7.1. The outcomes of the simulations 

showed that an acceptable tradeoff between robustness and system performance can 

be achieved by tuning the shape design parameter 𝜃. Besides, the proposed online 

scheduling mechanism SM-1 provides an opportunity to improve the overall system 

performance since the shape design parameter 𝜃 is effectively online-adjusted with 

respect to the operating points. 

 

Figure 7.1 : Control performances of T1, IT2, and GT2 FLCs. 
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As shown in Figure 7.1, the GT2-FLC-SM ended up with a robust system response for 

the reference variation to the operating point 𝑟1 = 0.6, since it obtained the best OS% 

value without oscillations but the highest Tr value in contrast. For the reference 

variation to the operating point 𝑟4 = 1.2, the online scheduling mechanism tuned the 

value of the shape design parameter from 0.1 to 0.4 at 80s such that the aggressiveness 

of the control surface is increased which eventually speeds up the system response. 

The resulting Tr value is smaller than its IT2 and GT2 counterparts. For the reference 

variation to the operating point 𝑟2 = 0.8 where the baseline IT2-FLC was designed, 

the GT2-FLC-SM reduced the Ts and OS% performance measures by employing the 

shape design parameter 𝜃 value to -0.8. In summary, it can be concluded that the 

proposed online tuning mechanism is highly efficient in the tuning of the shape design 

parameter to enhance the control system performance. 

Table 7.1 : Performance measures of T1, IT2, and GT2 FLCs. 

Operating 

Point 

Performance 

Measure 
T1-FLC IT2-FLC GT2-FLC GT2-FLC-SM 

𝒓𝟏 

Tr 1.538 1.962 1.776 2.221 

Ts 14.98 10.98 10.86 12.96 

OS% 34.35 21.67 26.38 15.08 

𝒓𝟐 

Tr 1.587 2.095 1.869 2.189 

Ts 11.78 9.967 9.916 7.484 

OS% 25.90 11.75 16.37 8.196 

𝒓𝟑 

Tr 1.648 2.268 1.983 1.983 

Ts 10.90 9.456 9.335 9.335 

OS% 18.05 3.380 7.915 7.915 

𝒓𝟒 

Tr 1.721 2.552 2.143 1.863 

Ts 8.256 9.490 9.212 8.880 

OS% 10.99 0.0 0.514 6.241 

7.2 Real-Time Application on Parrot Mambo Drone 

In this section, the real-time experimental results [76] will be presented to validate the 

proposed design interpretations, design recommendations, and tuning methods.  

7.2.1 Experimental setup 

The real-time experiments are conducted on the Parrot Mambo drone that is a 

commercial product equipped with sophisticated software/hardware ingredients such 

as an ARM 9 416 MHz processor, 6-degree of freedom IMU, pressure and ultrasonic 
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sensors, and a downward-facing camera with a 60 FPS measurement [76]. The Parrot 

Mambo drone has a MATLAB/Simulink support package that makes the system as a 

proof-of-concept experimental setup. This drone has an efficient built-in preliminary 

flight control structure, which contains low-level PID controllers and state estimators, 

to stabilize the attitude and altitude dynamics, and the sampling time of this flight 

control system is defined as 𝑇 = 5 𝑚𝑠, so that the flight control algorithms run in every 

5ms cycle. The Parrot Mambo drone is illustrated in Figure 7.2 

 

Figure 7.2 : Illustration of Parrot Mambo drone. 

For the real-time control experiments on the drone, the controllers are designed for the 

x-axis position tracking problem. In this context, the y-axis reference is set to 0m, and 

the yaw angle reference is set to 0° and the z-axis altitude reference is set to 1m from 

the ground, moreover the low-level built-in controllers are utilized for the control of 

physical actuators. Then the DFLCs are designed to generate the pitch angle reference 

signal with respect to the x-axis position reference changes. It is preferred to use a PI 

type fuzzy controller that is formed by a DFLC (i.e. T1, IT2, or GT2) with an integrator 

[3, 9] as explained in Section 2.5. In the PI type DFLC structure, there are two input 

scaling factors used to normalize the inputs (𝐾𝑒, 𝐾𝛥𝑒) and one output scaling factor 

(𝐾𝑏) to denormalize the output of the DFLC. The x-axis reference positions are 

considered as 𝒓 = [𝑟1, 𝑟2, 𝑟3] = [1 𝑚, 0.75 𝑚, 1.5 𝑚]. 

7.2.2 Design of the shape design parameter 

In the design of the shape design parameter (𝜃), the systematic tuning steps presented 

in Section 5.4 are followed. In this context, according to Step-1 and Step-2 of Table 

5.7, the baseline DFLCs are first designed for the first x-axis reference, which is the 

steady-state operating point 𝑟1 = 1 𝑚. According to Step-1 of Table 5.7, the baseline 
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T1-DFLC is designed by employing the fuzzy rule base given in Table 5.3 and the 

remaining design parameters (i.e. input/output scaling factors) are selected as 

• T1-DFLC: 𝐾𝑒 = 1, 𝐾Δ𝑒 = 0.68, 𝐾𝑏 = 2.5 

such that an aggressive CS is obtained. Then, based on Step-2 of Table 5.7, the baseline 

IT2-DFLC is designed by using the same design parameters of its T1 counterpart and 

assigning the remaining FOU design parameters as  

• IT2-DFLC: 𝑀1,1 = 0.05, 𝑀1,2 = 0.95, 𝑀1,3 = 0.05,  

𝑀2,1 = 0.15, 𝑀2,2 = 0.85, 𝑀2,3 = 0.15  

such that a smooth CS is achieved. As the last step of Table 5.7, the GT2-DFLCs are 

designed in 3 ways; the GT2-DFLC with a fixed 𝜃 value (called as GT2-DFLC in order 

to distinguish from the online-tuned counterparts), the GT2-DFLC with SM-1 (called 

as GT2-DFLC-SM-1), and the GT2-DFLC with SM-2 (called as GT2-DFLC-SM-2). 

The GT2-DFLC, similar to its T1 and IT2 counterparts, is designed for the steady-state 

operating point 𝑟1 = 1 𝑚 by providing a tradeoff between the aggressive T1-DFLC 

baseline and the smooth IT2-DFLC baseline. The shape design parameter of the GT2-

DFLC is founded experimentally as 

• GT2-DFLC: 𝜃 = 0.1 

such that a tradeoff between performance and robustness is obtained. Then, the GT2-

DFLC-SM-1 is designed for each steady-state operating point, where 𝒓 = [𝑟1, 𝑟2, 𝑟3] =

[1 𝑚, 0.75 𝑚, 1.5 𝑚], by following the tuning steps in Table 5.8 (besides the generic 

GT2-FLC design steps given in Table 5.7). The shape design parameters associated 

with an operating point (𝜽𝒓 = [𝜃1, 𝜃2, 𝜃3]) is obtained as 

• GT2-DFLC-SM1: 𝜃1 = 0.1, 𝜃2 = −0.8, 𝜃3 = 1 

such that moderate, smooth, and aggressive CSs can be achieved for the operating 

points 𝑟1, 𝑟2, and 𝑟3, respectively. The linear interpolation is used to define the mapping 

given in equation (5.11). Then, the GT2-DFLC-SM-2 is designed for the same steady-

state operating points of its SM-1 counterpart (𝒓 = [𝑟1, 𝑟2, 𝑟3]) by using the same 

steady-state shape design parameters (𝜽𝒓 = [𝜃1, 𝜃2, 𝜃3]) and further employing the 

online update rule given in equation (5.12). Here, the transient part of the shape design 

parameter (i.e. the parameter 𝜃𝑡) is handled by the fuzzy mapping defined in equation 

(5.13) and Table 5.9 with the weighting coefficient 𝛾 = 0.5. 
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7.2.3 Comments on the control surfaces of the designed DFLCs 

In this section, the CSs of the DFLCs that are employed for the real-time experiments 

will be examined to provide a better understanding of how the proposed design 

methods result. The resulting CSs of the designed DFLCs are illustrated in Figure 7.3. 

The CS differences between “IT2-DFLC versus T1-DFLC, GT2-DFLC versus T1-

DFLC, and GT2-DFLC versus IT2-DFLC” are also examined in Figure 7.4. 

 

Figure 7.3 : The CSs of the designed T1, IT2, and GT2 DFLCs. 

 

Figure 7.4 : The CS differences between the designed T1, IT2, and GT2 DFLCs. 
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The CS differences between GT2-DFLC and baseline controllers are illustrated in 

Figure 7.4. In subfigures of Figure 7.4, the CS differences are shown by subtracting 

the controller outputs which means that the CS differences calculated by “𝑈𝐼𝑇2 − 𝑈𝑇1”, 

“𝑈𝐺𝑇2 − 𝑈𝑇1”, and “𝑈𝐺𝑇2 − 𝑈𝐼𝑇2” in subplots (a), (b), and (c), respectively. Here, as 

the baseline fuzzy controllers (T1-DFLC and IT2 DFLC) are designed with smooth 

and aggressive CSs, there are larger and deeper blue and red areas in Figure 7.4a (the 

blue area for the region where 𝐸 > 0 and Δ𝐸 > 0, and the red area for the region where 

𝐸 < 0 and Δ𝐸 < 0). This is an expected outcome of the prior design because IT2-

DFLC generates a relatively lower control signal due to its smooth CS. Figure 7.4b 

and Figure 7.4c also show that the designed GT2-DFLC is relatively smoother and 

more aggressive than its T1 and IT2 baseline counterparts, respectively. 

The CSs of the designed online controllers (i.e. GT2-DFLC-SM-1 and GT2-DFLC-

SM-2) are compared with their fixed T1, IT2, and GT2 DFLC counterparts for each 

operating point. The CS differences for GT2-DFLC-SM-1 and GT2-DFLC-SM-2 (in 

comparison to T1, IT2, and GT2 DFLCs) are illustrated in Figures 7.5 – 7.7 and 

Figures 7.8 – 7.10, respectively. 

 

Figure 7.5 : OP 𝑟1: CS differences between SM-1 and (a) T1 (b) IT2 (c) GT2. 

 

Figure 7.6 : OP 𝑟2: CS differences between SM-1 and (a) T1, (b) IT2, (c) GT2. 
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Figure 7.7 : OP 𝑟3: CS differences between SM-1 and (a) T1, (b) IT2, (c) GT2. 

 

Figure 7.8 : OP 𝑟1: CS differences between SM-2 and (a) T1, (b) IT2, (c) GT2. 

 

Figure 7.9 : OP 𝑟2: CS differences between SM-2 and (a) T1, (b) IT2, (c) GT2. 

 

Figure 7.10 : OP 𝑟3: CS differences between SM-2 and (a) T1, (b) IT2, (c) GT2. 
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It can be commented that the CSs of the GT2-DFLC-SM-1 and the GT2-DFLC-SM-2 

can transform both smoother CS (for example in Figures 7.6c and 7.9c for the 

operating point 𝑟2) and more aggressive CS (for example in Figures 7.7c and 7.10c for 

the operating point 𝑟3) for different operating points. This also coincides with the 

corresponding NTE and NR values given in Table 7.2. It is observed that: 

• For the first operating point 𝑟1, the GT2-DFLC-SM-2 has a relatively high NTE 

value and a NR value that is close to the baseline IT2 counterpart. So, without 

comprising the robustness property of the designed IT2-DFLC around the 

steady-state significantly, the SM-2 structure will increase the response of the 

system in comparison to its IT2 and GT2 DFLC counterparts. 

• For the second operating point 𝑟2, the GT2-DFLC-SM-2 has the lowest NR 

value and thus the robustness around the steady-state is risen by transforming 

the CS of the GT2-DFLC that is smoother than its baseline IT2-DFLC. This is 

an expected design to result in a system response without oscillations.  

• For the third operating point 𝑟3, the GT2-DFLC-SM-2 has a high NTE value, 

which is close to its baseline T1-DFLCcounterpart, and a relatively lower NR 

value. Thus, the SM-2 structure will smoothen CS around the steady-state to 

eliminate overshoots while increasing the aggressiveness of the CS to speed up 

the system response like its T1 fuzzy counterpart. 

Table 7.2 : Performance measures of the designed CSs of the DFLCs. 

Controller OP NTE NR 

T1-DFLC 𝑟1, 𝑟2, 𝑟3 1.000 2.491 

IT2-DFLC 𝑟1, 𝑟2, 𝑟3 0.820 1.044 

GT2-DFLC 𝑟1, 𝑟2, 𝑟3 0.858 1.175 

GT2-DFLC-SM-1 

𝑟1 0.858 1.175 

𝑟2 0.795 0.547 

𝑟3 0.975 2.107 

GT2-DFLC-SM-2 

𝑟1 0.876 1.108 

𝑟2 0.804 0.484 

𝑟3 0.978 1.999 

As mentioned in the previous sections, that tuning the shape design parameter with 

respect to the operating points via the proposed SMs in an online manner gives the 

opportunity to provide a good tradeoff between robustness and performance. 
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7.2.4 Design of the sensitivity design parameter 

In the design of the shape design parameter (𝑃), the systematic tuning steps presented 

in Section 6.3 are followed. In this context, the hardware limits of the real-time Parrot 

Mambo drone experimental setup are considered in terms of quantization levels (i.e. 

Δ) and computational time. These two terms are quite essential for an effective real-

time application on a flying drone since it is equipped with various sensors with 

different scalings and available resources of the onboard computation power. Then the 

average quantization levels of the real-time application are assumed as Δ𝑖𝑛 = 0.01 and 

𝛥𝑜𝑢𝑡 = 0.001 approximately. In order to verify the feasibility of the designed GT2-

DFLCs, the average computational time of the built-in controllers of the Parrot Mambo 

drone is examined by using the MATLAB Simulink Profiler toolbox. Then the average 

computational time is found as 𝑇𝐹𝐶 ≈ 3.7 𝑚𝑠, which lefts 𝑇 − 𝑇𝐹𝐶 ≈ 1.3 𝑚𝑠 for the 

computations of the designed GT2-DFLCs. Based on this system information, the 

iterative algorithm given in Table 6.3 is employed. The forward calculation is stopped 

at 𝑃∗ = 23 for the stopping criteria and hyperparameter setting 휀1 = 0.025 × 10−3, 

𝑃𝑓 = 20, and 𝑃𝑚𝑎𝑥 = 100 (The numerical example that is given in Section 6.3 can be 

visited for further details, as it uses the same GT2-DFLC structure.). Then, in order to 

conclude if the obtained forward calculation result, 𝑃∗ = 23, is feasible for the real-

time application, the average computation time of the GT2-DFLC with 𝑃∗ = 23 α-

planes is examined. In this context, the average computation time on the computer’s 

processor, which is used for DFLC designs, is firstly calculated and then this value is 

projected into the microprocessor of the drone by multiplying by 6.25 which is the 

clock speed ratio between the computer (2.6 GHz) and the Parrot Mambo drone (416 

MHz). Here, a buffer time (𝑇𝐵 = 0.3 𝑚𝑠) is also considered for computational time 

calculation, since this rough conversion might include some errors. The average 

computation time of the GT2-DFLC with 𝑃∗ = 23 α-planes on the computer (𝑇𝐺𝑇2
𝐶𝑜𝑚𝑝

) 

and the drone (𝑇𝐺𝑇2) are calculated as 𝑇𝐺𝑇2
𝐶𝑜𝑚𝑝 = 0.348 𝑚𝑠 and 𝑇𝐺𝑇2 = 2.176 𝑚𝑠, 

respectively. Then it is concluded that the solution of the forward calculation (𝑃∗ =

23) is not feasible for the target real-time application, since the total required time is 

higher than the sampling time of the Parrot Mambo drone (𝑇𝐹𝐶 + 𝑇𝐺𝑇2 + 𝑇𝐵 >  𝑇 =

5 𝑚𝑠). Thus, the backward calculation of Table 6.3 is performed, and the iteration is 

stopped at 𝑃∗∗ = 4 for the stopping criteria setting 휀2 = 0.01 (The numerical example 

that is given in Section 6.3 can be visited for further details, as it uses the same GT2-
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DFLC structure.). The average calculation time of the GT2-DFLC with 𝑃∗∗ = 4 for is 

calculated as in the forward calculation and obtained as 𝑇𝐺𝑇2 = 0.978 𝑚𝑠. 

Accordingly, it is concluded that the solution 𝑃∗∗ = 4 is feasible for the real-time 

application on the drone so that all GT2-DFLCs are constructed with 4 α-planes 

(excluding 𝛼0 = 0) as 𝛼1 = 0.25, 𝛼2 = 0.5, 𝛼3 = 0.75, and 𝛼4 = 1. 

7.2.5 Experimental results 

The experimental result performances of the employed T1, IT2, and GT2 fuzzy PI 

controllers are compared with respect to three performance measures: the rise time 

(Tr), the settling time (Ts), and the overshoot (OS%). The performances of the fuzzy 

controllers are compared in two parts; the GT2-DFLC is first compared with the 

baseline T1 and IT2 DFLCs (for this case, all design parameters are tuned and fixed in 

an offline manner) in Figure 7.11, then the performance improvements of the proposed 

online SMs, which change the shape design parameter during the flight, are compared 

with the fixed GT2-DFLC in Figures 7.12,7.13, and 7.14 for the operating points 𝑟1, 

𝑟2, and 𝑟3, respectively. The performance measures are given in Table 7.2. 

Table 7.3 : Performance measures of T1, IT2, and GT2 FLCs. 

Operating 

Point 

Performance 

Measure 
T1-FLC IT2-FLC GT2-FLC 

GT2-FLC-

SM-1 

GT2-FLC-

SM-2 

OP-1 

𝒓𝟏 

Tr 0.79 1.12 0.85 0.85 0.88 

Ts 3.54 2.01 2.44 2.44 1.79 

OS% 10.13 1.39 7.22 7.22 3.39 

OP-2 

𝒓𝟐 

Tr 0.65 0.79 0.75 0.69 0.74 

Ts 5.85 4.86 3.75 5.78 4.05 

OS% 30.47 9.38 15.87 9.39 6.64 

OP-3 

𝒓𝟑 

Tr 1.23 1.64 1.39 1.18 1.15 

Ts 2.25 2.84 2.54 2.16 2.16 

OS% 4.80 0.92 2.20 4.84 2.91 

It is observed that the lowest OS% measures are obtained for the IT2-DFLC that is 

designed as the smooth baseline with a smooth CS, whereas the lowest Tr measure is 

calculated for the T1-DFLC that is designed as the aggressive baseline with an 

aggressive CS. As shown in Figure 7.4, the designed GT2-DFLC has a CS that is 

smoother and aggressive than its T1 and IT2 baselines respectively, so the resulting 

controller behavior lies in between these baselines. As a result of the shape design 

parameter setting the value of 𝜃 = 0.1 for the steady-state operating point 𝑟1, the GT2- 
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Figure 7.11 : Real-time experiment results of the T1, IT2 and GT2 DFLCs. 

DFLC improves the Tr performance measure of the baseline IT2-DFLC by 0.27s by 

compromising the OS% value by 5.83%, on the other side, the GT2-DFLC improves 

the OS% performance measure of the baseline T1-DFLC by 2.91% by compromising 

0.06 s from the Tr value. Moreover, for the steady-state operating point 𝑟2, the 

performances of the baseline T1 and IT2 DFLCs (given in Figure 7.11b) decrease in 

comparison to the results for the first operating point 𝑟1 (given in Figure 7.11a), so the 

performance of the GT2-DFLC is also degraded for this operating point. This is an 
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expected outcome of the proposed systematic controller design since the GT2-DFLC 

combines the outputs of the baseline T1 and IT2 DFLCs, so the GT2 fuzzy controller 

performance also depends on the performances of the initial baseline controllers. For 

the steady-state operating 𝑟3, the GT2-DFLC performs a moderate and superior system 

response which results in among the performances of the baseline T1 and IT2-DFLCs 

in terms of performance measures; Ts, Tr, and OS%. 

The system responses of the GT2-DFLCs with SMs are compared with the GT2-DFLC 

with a fixed shape design parameter 𝜃 = 0.1 in Figures 7.12, 7.13, and 7.14 for the 

operating points 𝑟1, 𝑟2, and 𝑟3 respectively. It is observed that the online update of the 

shape design parameter 𝜃 (per the steady-state operating points) ends up with very 

efficient system responses in terms of control performance and robustness. 

As illustrated in Figure 7.12, the online tuning mechanism SM-2 changes the shape 

design parameter dynamically based on the transient states (𝐸 and Δ𝐸) of the control 

system. Accordingly, the GT2-DFLC-SM-2 changes the shape design parameter from 

-0.4 to a nominal design value 𝜃1 = 0.1 according to the fuzzy scheduling mechanism 

defined in Table 5.9 and the update rule defined in equation (5.12). 

 

Figure 7.12 : Real-time experiment results of the GT2 DFLCs for 𝑟1. 
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Figure 7.13 : Real-time experiment results of the GT2 DFLCs for 𝑟2. 

 

Figure 7.14 : Real-time experiment results of the GT2 DFLCs for 𝑟3. 
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As illustrated in Figure 7.13, the SM-2 reduces the shape design parameter 𝜃 value to 

-1.3 (i.e. the smoothness of the CS is increased) and then dynamically increases the 

value of the shape design parameter 𝜃 to its nominal design value 𝜃2 = −0.8 at the 

operating point 𝑟2 = 0.75 𝑚. As given in Table 7.3, this ends up with non-oscillating 

performance and less overshoot comparing to its T1, IT2, and GT2 counterparts. For 

example, the GT2-DFLC-SM-2 reduces the values of OS% and Ts performance 

measures by 2.64% and 0.81s respectively, because the online SM transforms the CS 

as smoother than its baseline IT2 counterpart. As illustrated in Figure 7.14 for the 

steady-state operating point 𝑟3 = 1.5 𝑚, the shape design parameter of the GT2-

DFLC-SM-2 is changed from 0.5 to 𝜃3 = 1 gradually, and thus the aggressiveness of 

the GT2 CS is increased gradually to result in a faster transient system response in 

comparison to the GT2-DFLC with a fixed shape design parameter.  

In conclusion, it is worth underlying that both online SMs; SM-1 and SM-2, enhance 

the control system performance, while SM-2, which considers the transient state 

dynamics and operating points to tune the shape design parameter, is capable to 

achieve superior control performances for operating points in overall. 
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8. CONCLUSIONS 

In this thesis, the internal structures of GT2-FLCs are examined, the design parameters 

are analyzed to provide new interpretations for these GT2-FLC design parameters, the 

systematic controller design approaches for GT2-FLCs are presented and novel tuning 

methods/algorithms are proposed. This thesis also shows new perceptions of how the 

design of GT2-FSs affect the CC/CS of GT2-FLCs and how the design of GT2-FLCs 

can be accomplished in straightforward and practical manners. 

As the first part of the structural analyses, the GT2-FSs are investigated. It is shown 

that a GT2-FS can transform into its IT2 fuzzy, T1 fuzzy, or crisp counterparts based 

on the settings of the SMF of the antecedent GT2-FS. This structural analysis on the 

types of FSs clearly shows that the superiority of the GT2-FLCs mostly lies in the 

definitions of the SMFs of the GT2-FSs. It is shown that the trapezoid SMF has design 

superiorities over its counterparts since the trapezoid SMF allows constructing not 

only trapezoid but also triangle, interval, and singleton shapes. A new parameterization 

is also proposed to represent/tune the trapezoid SMFs with a single parameter. Hence, 

it is suggested the usage of trapezoid SMFs with the proposed parameterization of the 

trapezoid SMFs such that the GT2-FS design can be accomplished with a single 

parameter. Then, the general suggestions on the structural settings of GT2-FLCs are 

provided not only to construct GT2-FLCs straightforwardly but also to ease the design 

of the GT2-FLCs with few design parameters. The main design parameters of the GT2-

FLCs are presented as the shape design parameter and the sensitivity design parameter 

with respect to their interpretable effects on the resulting CCs/CSs of the GT2-FLCs. 

The tuning parameter of the GT2-FLCs is interpreted as the shape design parameter 

and the total number of α-planes is interpreted as the sensitivity design parameter. It is 

suggested to initialize GT2-FLCs over their T1 and IT2 counterparts by tuning the new 

GT2-FLC design parameters. 

The role of the shape design parameter is investigated via the shape analyses conducted 

for two types of GT2-FLC structure with various design options. The effects of the 

shape design parameter on the CCs/CSs of the GT2-FLCs show that the shape design 
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parameter changes the shape of the fuzzy input-output mapping remarkably. This 

observation provides explanations on the role of the shape design parameters on the 

potential improvements to performance and robustness. It is shown that the GT2-FLCs 

can achieve much complex CCs/CSs than their baseline T1 and IT2 counterparts in 

terms of aggressiveness and smoothness of the fuzzy system. Therefore, it is suggested 

to tune the CCs/CSs of the GT2-FLCs (via the shape design parameter) based on the 

tradeoff between robustness and performance. It is concluded that the shape design 

parameter provides not only design simplicity as only baseline T1 and IT2 FLCs are 

needed, but also convenient design flexibility as the tradeoff between performance 

(like T1-FLC) and robustness (like IT2-FLC) can be fulfilled. In order to accomplish 

the controller design task in a systematic way, the design recommendations are given 

for the easy design of the shape parameter. Two novel online scheduling mechanisms 

are also proposed for online-adjustment of the shape design parameter to enhance the 

system performance for different steady-state operating points and transient-state 

dynamics of the control system.  

The role of the sensitivity design parameter is investigated via the sensitivity analyses 

conducted for two GT2-FLC structures with various design options. The effects of the 

sensitivity design parameter on the CCs/CSs of the GT2-FLCs show that the sensitivity 

design parameter has a minor impact on the shape of the fuzzy mapping but has a 

major impact on the accuracy of the mapping and computational time. This provides 

practical explanations on the role of the sensitivity design parameters on the 

calculation accuracy and the computational time. It is shown that the GT2-FLCs result 

in almost identical CCs/CSs, although the sensitivity design parameter changes in a 

wide range. Consequently, it is suggested tuning the sensitivity design parameter by 

considering the limitations of hardware components such as quantization level (e.g. 

resolutions) and processing speed. It is shown that this design approach provides a 

compromise between the calculation accuracy and computational time. It is shown that 

the proposed iterative algorithm provides a practical solution to tune the sensitivity 

design parameter, especially for real-time applications. 

The simulation and real-time applications show the deployment of the proposed design 

approaches on benchmark control systems, while the controller design phases validate 

that the design of the GT2-FLCs is accomplished by simply following the proposed 

design methods. These control applications also show that the presented analyses and 
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the proposed design methods are applicable for different control problems. The real-

time experiments present a comprehensive design (for both shape and sensitivity 

design parameters) and a comparative, as well as a complete application (among T1, 

IT2, and GT2 FLCs) to evaluate the proposed systematic design approaches (the tuning 

steps of shape and sensitivity design parameters) for the GT2-FLCs. The results of the 

real-time control application show that the GT2-FLCs achieve better performance 

measures comparing to the T1 and IT2 counterparts. This is an expected outcome of 

the proposed GT2-FLC designs since the GT2-FLCs use a collection of T1 and IT2 

FLCs. The real-time application results also show the proposed online tuning methods 

for the shape design parameter provides satisfactory performances for all operating 

conditions (since the shape design parameter is updated in an online manner), while 

the proposed tuning method for the sensitivity design parameter provides a practical 

solution to real-time applications. 

It is believed that this thesis will open the doors for wider usage of GT2-FLCs in real-

time applications thanks to the presented interpretations on the design parameters of 

the GT2-FLCs, the proposed design and tuning approaches for the GT2-FLCs, and the 

presented analyses of the design parameters on the GT2-FLC’s performance, 

robustness, sensitivity, and computational time. 
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