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TSALLIS ENTROPY BASED
FEATURE EXTRACTION FROM INSOLE FORCE SENSOR DATA TO
DIAGNOSE VESTIBULAR SYSTEM DISORDERS

SUMMARY

The vestibular system plays a crucial role in maintaining an individual's ability to carry
out daily activities independently and safely. This study proposes a novel approach
using Tsallis entropy analysis of insole force sensor data to identify diseases associated
with vestibular system dysfunction. By analyzing Tsallis entropy values of the entire
gait cycle and change of Tsallis entropy from step-to-step, the study aims to
differentiate between individuals with good health and those with vestibular system-
related diseases.

A notable finding of the study is the observation that the histogram of normalized and
interpolated sensor data contains fewer bins for healthy subjects. This reduction in the
number of bins can be attributed to improved balance and coordination, which leads
to reduced fluctuation around the trend curve. Unlike previous studies that focus on
gait dynamics and require extensive walking time, this research takes a different
approach by directly processing instantaneous force values to extract features. One key
innovation of this research is the development of a specifically designed algorithm to
generate the trend curve. This algorithm enables the extraction of significant insights
even from relatively short walking sessions. By applying this algorithm, the study
successfully extracts a feature set from the force sensor data.

The extracted feature set is then inputted into fundamental classification algorithms.
Among these algorithms, the Support Vector Machine (SVM) demonstrates the
highest performance. It achieves an average accuracy of 95% in binary classification,
effectively distinguishing between healthy individuals and those suffering from
vestibular system-related diseases. This high accuracy indicates the potential of Tsallis
entropy analysis as a valuable tool in identifying diseases associated with vestibular
system dysfunction.

This study represents a significant milestone within a comprehensive project aimed at
identifying distinct vertigo syndromes associated with balance disorders and
determining their respective stages, if applicable. The exceptional performance
observed in this study serves as a compelling impetus for further exploration and
inquiry into this matter.

In conclusion, this study introduces a novel approach utilizing Tsallis entropy analysis
of insole force sensor data to identify diseases related to vestibular system dysfunction.
By extracting features and employing classification algorithms, the study successfully
distinguishes between healthy individuals and those with vestibular system-related
diseases with a high accuracy of 95%. This research presents a significant contribution
to the broader project of identifying vertigo syndromes and determining their stage,
showcasing the potential of Tsallis entropy analysis in understanding and addressing
balance disorders associated with the vestibular system.
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VESTIBULER SiSTEM BOZUKLUKLARININ
TANISI ICIN TABANLIK KUVVET ALGILAYICILARI VERILERINDEN
TSALLIS ENTROPiSi TABANLI OZNITELIiK CIKARIMI

OZET

Vestibiiler sistem, giinliikk yasantimizda denge ve mekansal yonelimi siirdiirmede
anahtar bir role sahiptir. I¢ kulakta yer alan bu kritik yapi, hareketlerimizi ve
etrafimizdaki diinyayr nasil algiladigimizi koordine eder. Ancak, bu sistemdeki
herhangi bir bozukluk, denge ve mekansal oryantasyon yeteneklerimizi ciddi sekilde
etkileyebilir. Bu tip bozukluklar, bireyin giinliilk hayattaki aktivitelerini ve sosyal
etkilesimlerini kisitlayabilir. Vestibiiler bozukluklarin hizla ve dogru bir sekilde
tanilanip etkin bir sekilde izlenmesinin kritik 6nemi bu baglamda daha da belirginlesir.
Bu tez, vestibiiler sistem bozukluklarindan kaynaklanabilecek denge sorunlarinin
tespit edilmesine odaklanmistir.

Arastirmada, vestibiiler sistem bozukluklart olan bireylerde yiirliylisiin nasil
etkilendigini anlamak i¢in yliriiyiis sirasinda ayak tabanina uygulanan kuvvetin analizi
ele alinmistir. Bu baglamda, kuvvet verilerini detaylica analiz etmek i¢in Tsallis
entropisi kullanilmistir. Tsallis entropisinin yiirliylis dinamiklerinin karmasikligin
aydinlatmada biiylik bir potansiyele sahip oldugu goézlemlenmistir. Uygulanan bu
yaklagimin, yliriiyiis oriintiilerindeki vestibiiler bozukluklardan kaynaklanan belirgin
degisiklikleri tanimlamada 6nemli bir arag¢ oldugu bulgusuna erisilmistir.

Entropi, dinamik bir sistemin ig¢sel diizensizligini ve rastgeleligini kantitatif olarak
degerlendirmek i¢in temel bir parametre olarak kabul edilmektedir. Shannon entropisi,
kisa vadeli mikroskobik korelasyonlara sahip sistemlerin yapisin1 tanimlamada
etkilidir. Tsallis entropisi, Shannon entropisinin genellestirilmis bir varyasyonu olarak,
sistem karmasiklig1 ve yapisal 6zelliklerin kantitatif analizinde 6nemli bir role sahiptir.
Uzun siireli etkilesim karakteristigi gosteren sistemlerde, Tsallis entropisinin
genellestirilmis yaklasimi, zaman serilerinin icerdigi gizli bilgilere detayl bir sekilde
erisebilir; bu, geleneksel yontemlerle elde edilemeyen 6nemli iggoriiler saglar.

Vestibiiler sistemle iligkili yiirliylis verisinin analizi, karmasik biyolojik sistemlerin
dogas1 geregi dogru bilgi ¢ikarimi i¢in karmasik analiz yontemlerine ihtiya¢ duyar.
Yiiriiylis parametrelerinin analizinde Tsallis entropisinin kullanilmasi, bu yontemin
biyolojik sistemlerdeki dogrusal olmayan ve uzun menzilli korelasyonlari ele alabilme
yeteneginden ileri gelmektedir. Tsallis entropisi, bu kompleks etkilesimleri esnek bir
sekilde karakterize edebilir. Bir 6rnek olarak, literatiirde elektroensefalografi (EEG)
sinyallerinin analizinde Tsallis entropisi yontemi kullanilmaktadir. Bu 6rnekte Tsallis
entropisi, anormal beyin aktivite modellerini tanimlamada ve farkli beyin durumlari
arasinda ayrim yapmada olumlu sonuglar saglamaktadir. Bu baglamda, Tsallis
entropisi yontemi, yiirliylis verisi analizi gibi karmasik sistemlerde bilgi igerigini
degerlendirme imkani saglar; bu da arastirmacilara yiiriiyiisiin 6zelliklerine ve farkli
durumlardaki bireylerdeki varyasyonlarina dair degerli bilgiler kazandirir.
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Literatiirde yer alan arastirmalara gore, yliriiylis verisinin analizlerinde, ayak
tabanlarindaki agirlik dagiliminin dort ana noktada belirgin bir etkisi oldugu tespit
edilmistir. Bu dort ana nokta gbéz Onilinde bulundurularak, tabanliklarda kuvvet
algilayicilart stratejik bir sekilde yerlestirilmistir. Yiiriiyiis sirasinda her bireyden, her
ayakta dort, toplamda ise sekiz algilayici kullanilarak veri alinmistir. Bu veri, tabanlik
kuvvet algilayilar aracilifiyla bir Arduino Mega {initesine kaydedilmis ve ardindan
bir HC-06 Bluetooth modiilii ile bir diz iistii bilgisayara aktarilmistir. Olciim
esnasinda, her algilayicidan saniyede 20 Ornek alinarak veri toplama
gerceklestirilmistir. Tiim bu siiregte, odyologlarin goriis ve Onerileri dogrultusunda
caligmalar yiiritilmiistiir. Katilan bireyler hakkinda agirlik, yas gibi ¢alismamiza
yonelik detayli bilgiler alinarak, hastaliklarinin dagilimi dikkatlice kaydedilip
degerlendirilmistir. Arastirma siirecinde katilimcilarin gizliligi titizlikle korunmus ve
etik ilkelere sikica riayet edilmistir.

Ozellikle yiiriiyiis verilerinin degerlendirilmesi gibi karmagik analizlerde, veri
islemenin rolii, detayli i¢gorii kazandirmak agisindan kritiktir. Bu baglamda, bu
calismanin kapsami dahilinde uygulanan veri isleme siireci, optimize edilmis alti
asamal1 bir siire¢ olarak tanimlanmustir. Ilk asama olan normalize etme asamasinda,
ham algilayic1 verileri, farkli bireyler arasinda karsilastirilabilir olmalar1 amaciyla
normalize edilmistir. Bu siirecte, analize uygun olmayan kisimlar veri setlerinden
cikarilmistir. Ikinci asamada adim analizi gergeklestirilmistir. Bu asamada, bireyin sag
ve sol ayagr icin algilayicilardan elde edilen wveriler iki grup halinde
degerlendirilmistir. Gelistirilen algoritmalar yardimiyla, ylirlime sirasinda ayagin
zeminle temas ettigi ve zeminden ayrildig1 anlar tespit edilmistir. Daha sonrasinda
sensOr verileri, yiirllylls adimlarina gore segmentlere ayrilmig, bu da ylriyiis
modelinin daha ayrmtili incelenmesine olanak saglamustir. Ugiincii asama olan
interpolasyon asamasinda oncelikle her sensor veri seti ayr1 ayri ele alinarak ayagin
zeminle temas etmedigi segmentler veri setlerinden ¢ikarilmistir. Daha sonra, sensor
verilerinin ¢oziinlirliigli yirmi kat artirilacak sekilde interpolasyona tabi tutulmustur.
Bu titiz siireg, sadece verilerin hassasiyetini optimize etmekle kalmayip, ayni zamanda
yeterli ornek sayisina sahip kutucuklari igceren histogram temsiline ulagsmayi da
kolaylastirmistir. Veri setine yeni degerler eklenirken, verinin dogru temsilini koruma
amaci giidiilerek lineer interpolasyon yontemi tercih edilmemistir. Bunun yerine,
verinin biitiinliiglinii koruyarak daha dogru ve piiriizsiiz bir temsil saglamasi nedeniyle
kiibik Hermite interpolasyon yontemi benimsenmistir. Bu yontem, bireylerin yiiriiytis
desenlerinin ¢oziiniirliiglinii artirirken, daha gercekei bir veri setinin elde edilmesini
miimkiin kilmistir. Dordiincii asama olan verinin trendden arindirilmasi (Detrending)
asamasinda, veri setlerinde yer alan trendlerin belirlenerek veri setlerinden
cikarilmasinit amaglanmistir. Bu yontem, trendden bagimsiz olarak ortaya cikan
degisiklikleri daha hassas bir sekilde degerlendirmeye olanak tanir. Bdylece, elde
edilen sonuglarin dogrulugunu artirarak daha giivenilir analiz sonuglarina ulasilmasina
katki saglar. Bu aragtirmanin 6nemli bir yeniligi, trend egrisini olusturan 6zel olarak
tasarlanmig bir algoritmanin gelistirilmesidir. Verinin trendden arindirilmasi
asamasinda, Onerilen algoritma adim verilerinin egilimini tespit eder. Bu algoritma,
bir adima iliskin her veri noktasini bir alfa katsayisiyla agirlikli ortalama alarak bir
onceki adima iliskin egilim egrisi ile birlestirir. Boylece bir trend egrisi olusturulur.
Bu yontem, agirlikli ortalama katsayisini iteratif olarak ayarlayarak hata miktarin
minimize eden bir yaklagim sunmaktadir. Belirli alfa ve hata esik degerlerinin kesin
bir bicimde belirlendigi bu yontem, yiiriiylis trendinin elde edilmesini ve bu trend
etrafindaki veri dalgalanmasinin ortaya ¢ikarilmasini saglar. Bu yaklagim, bireylerin
ylriiyiislerindeki 6zgiin dalgalanmalar1 yakalamay ve yiiriiyiis verilerini trendlerinden
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arindirmay1 hedefler. Besinci asamada, Tsallis entropisi degerleri hesaplamalari
gergeklestirilmistir. Tsallis entropisi, entropi degerini belirleyen 6nemli bir parametre
olan g'ya baghdir. Bu parametre, olasilik dagilimmin genis bir spektrumda
Olclilmesine ve sistem Ozelinde daha hassas analizlere imkan tanir. Q parametresi,
sistem Ozelliklerine gore ampirik yontemlerle belirlenir ve bu ¢alismada optimal q
parametresi ampirik yontemlerle 0.82 olarak belirlenmistir. Tsallis entropisi
hesaplamalar1 hem tiim ylriiylis i¢in hem de her bir adim igin ayr1 ayri
gergeklestirilmistir. Bu yaklasim, vestibiiler sistem bozuklugu olan bireylerin yliriiyiis
dinamiklerinin daha kapsamli degerlendirilmesini miimkiin kilmistir. Altinc1 ve son
asamada kisa yiiriiylis verilerinden elde edilen Tsallis entropisi degerleri kullanilarak
saglikli ve hastalikli bireyler arasinda ayirt edici Oznitelikler tespit edilmeye
calisilmistir. Bu asamanin soucunda makina 6grenimi i¢in iki O6znitelik seti elde
edilmektedir. Bu setlerden biri bireylerin yiirlislerinin tamamindan elde edilen her bir
algilayici i¢in Tsallis entropisi degerleridir; diger 6znitelik seti ise her bir adima ait
Tsallis entropisi degerlerinin sifirdan sapma degerleridir.

Makine ogrenimi algoritmalar1 ile, kuvvet verilerinden elde edilen Oznitelikler
kullanilarak, bireyler “saglikli” ve “vestibiiler sistem bozuklugu olan” kategorilerine
smiflandirilmistir. SVM (Gaussian cekirdekli), KNN (Cosine) ve Lojistik regresyon,
sirastyla %95, %95 ve %93,3'liik basar1 oranlari ile en iyi performansi gdsteren
siiflandiricilar olarak tespit edilmistir. Bu bulgular, Tsallis entropisi hesaplamalari ve
Oznitelik ¢ikarma yontemlerinin, vestibiiler sistem bozuklugu olan bireylerin tanisinda
etkili oldugunu gostermektedir. Sunulan metodoloji, vestibiiler sistem bozukluklarinin
tan1 ve izleme siireclerinde klinik uygulamalar i¢in potansiyel bir strateji teskil
etmektedir. Bu strateji, klinik degerlendirmelerin objektivitesini ve dogrulugunu
optimize edebilir. Bu ¢aligma, Tsallis entropisi hesaplamalarinin ve 6znitelik ¢ikarma
metodolojisinin, vestibiiler sistem bozuklugu olan bireylerin tanisinda degerli araglar
olabilecegini belirtmektedir. Bu yontemlerin daha genis Olcekli calismalarda
incelenmesi, vestibiiler rehabilitasyon pratigine ve denge bozukluklari olan bireylerin
yasam kalitesine olan olasi1 katkilarina daha fazla 151k tutabilir.

Caligmanin bulgular1, Tsallis entropisi hesaplamalarinin ve Oznitelik ¢ikarma
yontemlerinin yiiriiylis verisi analizinde yeni bir yaklasim sagladigini1 gostermektedir.
Bu objektif degerlendirme araci, vestibiiler sistem bozuklugunun tanisinda ve
izlenmesinde saglik profesyonellerine yardimer olabilir, daha iy1 tedavi ve yonetim
stratejilerinin gelistirilmesine katkida bulunabilir. Ayrica, ¢alisma, ylirliylis verilerinin
analizi lizerine yapilan arastirmalarinda entropi tabanli 6zniteliklerin vestibiiler sistem
bozukluklarinin tan1 ve degerlendirmesindeki onemini vurgulamaktadir. Bulgular,
entropi tabanli analizin ¢esitli klinik ortamlarda daha yaygin ve detayl bir sekilde
kesfedilmesi ve uygulanmasi i¢in firsatlar sunmaktadir.

Bu calisma ile elde edilen yontemlerin klinik uygulamaya entegre edilmesi, saglik
profesyonellerinin yliriiyiis Oriintiilerine iligkin kantitatif ve objektif ol¢iimler elde
etmelerine olanak taniyabilir. Bu yaklagim, vestibiiler sistem bozukluklarinin dogru
tanisim1 kolaylastirabilir, erken miidahale firsat1 sunabilir ve kisisellestirilmis tedavi
planlarinin olusturulmasini tesvik edebilir. Ayrica, entropi tabanli Ozniteliklerin
dogasimin tani siirecindeki 6znel degerlendirmeleri tamamlayarak daha kapsamli bir
ylirliylis Orlintlisii anlayisi saglamasimin yani sira tanilarin genel giivenilirligini
artirmast olasidir. Bu ¢alismada goézlenen yiiksek performans, bu konuda daha fazla
arastirma igin bir itici gii¢ olarak hizmet etmektedir. Bu arastirma, vestibiiler sistemle
iliskili denge bozukluklarini anlama ve ele alma konusunda Tsallis entropisi analizinin
potansiyelini gostererek, daha genis bir projeye dnemli bir katki sunmaktadir.
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1. INTRODUCTION

This thesis centers on the vestibular system, which plays a critical role in preserving
balance and spatial orientation abilities in daily human life. The initial section provides
an introduction to the fundamental functions of the vestibular system, its role in human
life, and how disorders within this system are identified. Following this, an
examination of the framework and contextual background will be undertaken. This
section will outline the primary motivations of the thesis, the research problems, and
how the objectives will be achieved. The subsequent literature review will delve into
the current approaches to the diagnosis of vestibular system disorders, the methods
employed, and the main challenges faced in this domain. Lastly, an evaluation will be

made on the principal hypotheses of this study and how these hypotheses will be tested.

1.1 Vestibular System

The vestibular system, a complex structure located within the inner ear, serves as the
body's primary system for detecting changes in motion and maintaining equilibrium.
It consists of two main components: the semicircular canals, which detect rotational
movements, and the otolithic organs, which sense linear accelerations. Together, these
structures relay vital information about body movements and position to the brain. This
information is then processed in conjunction with visual and proprioceptive inputs,
allowing humans to maintain balance, coordinate head and eye movements, and
navigate through their environment. A visual representation of these components and
their dynamic responses can be seen in Figure 1.1. Malfunctions or disorders within
the vestibular system can disrupt these vital processes, resulting in a range of
symptoms that profoundly affect an individual's ability to perform everyday tasks and

engage in social activities.

The vestibular system, essential for maintaining balance and spatial orientation in
humans, plays a pivotal role in daily activities and overall quality of life [1]. Disorders
affecting this system have significant implications and require accurate diagnosis and

effective monitoring for appropriate treatment. These disorders can manifest as



vertigo, dizziness, and imbalance, leading to increased risk of falls and reduced
mobility. Early detection and intervention are essential in managing vestibular system
disorders and improving overall patient outcomes. Analyzing gait data and extracting
meaningful features from it is an essential tool for assessing human locomotion. This
process is crucial in diagnosing and monitoring various medical conditions, such as
vestibular system disorders [2]. By understanding the intricacies of changes in gait
data within the context of vestibular system disorders, effective diagnostic and

therapeutic approaches can be developed.
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Figure 1.1: Visualization of the vestibular system components and their dynamic
responses during individual motion.

Gait data analysis involves the systematic study of an individual's walking dynamics
and patterns. This encompasses a detailed assessment of various attributes related to
walking, such as force exertion, rhythmicity, speed, and consistency across distinct
phases of the gait cycle. The gait cycle is intricately structured into two primary
segments: the stance phase, during which the foot makes contact with the ground, and
the swing phase, where the foot propels forward. Through comprehensive gait data
analysis, one can identify anomalies and discrepancies that diverge from the
standardized 'mormal’ gait parameters. Such variations may serve as markers for a

range of health concerns, spanning musculoskeletal to neurological conditions.



1.2 Research Framework and Contextual Background

In the following sub-sections, the focus shifts to the foundation of this research.
Initially, the background highlights the significance of the vestibular system in human
balance and spatial orientation. Subsequently, the purpose, existing gaps in research,
targeted objectives, research questions, and the significance of the study are

systematically presented.

1.2.1 Contextual background

The background of this research lies in the significance of the vestibular system and
its impact on balance and spatial orientation. Vestibular system disorders can result
from various causes, including trauma, infections, or degenerative conditions [3].
These disorders can lead to symptoms such as dizziness, vertigo, and unsteadiness.
Such symptoms can severely impair the quality of life, making even mundane tasks
challenging for the affected individuals. The repercussions of the disease extend
beyond medical implications to social and economic impacts. People with vestibular
dysfunctions often face challenges in their daily activities, which leads to reduced
work productivity and increased healthcare costs. Currently, the diagnosis of
vestibular system disorders relies heavily on subjective assessments and clinical
examinations. Therefore, there is a need to develop objective and reliable methods for

diagnosis and monitoring.

1.2.2 Purpose of thesis

This thesis aims to employ contemporary classification methods and analyze force data
from insoles to differentiate between healthy individuals and those with vestibular
system disorders. A novel approach is introduced, leveraging Tsallis entropy as the
key feature for analysis. The core objective is to explore the potential of gait data
combined with Tsallis entropy-based methods for diagnosing vestibular system
disorders. Through a detailed analysis of pressure patterns and extraction of relevant
features from sensor data, this research seeks to unveil indicators that can assist in an
objective assessment of vestibular system disorders. The outcomes of this study could
provide pivotal insights for creating innovative diagnostic and therapeutic tools for

individuals with VS disorders.



Traditional diagnostic methods for vestibular system disorders often involve time
consuming procedures, subjective interpretations, or lengthy assessment processes.
This study's approach hopes to overcome these challenges by using a non-invasive,
objective, and efficient method, hence potentially revolutionizing the current

diagnostic landscape.

1.2.3 Research gaps and rationale for the current study

Despite the importance of accurate diagnosis and monitoring of vestibular system
disorders, there is a research gap in the development of objective assessment tools.
Existing methods often rely on subjective assessments and qualitative observations,
which can introduce variability and limitations in the diagnostic process [4, 5].
Furthermore, the intersection of advanced data processing with gait analysis for
vestibular disorders is still nascent, presenting a clear research opportunity. This
research aims to bridge this gap by exploring the potential of gait data analysis and
data processing techniques in providing objective and quantitative measures for the

diagnosis and monitoring of vestibular system disorders.

Building upon the findings from the literature review, several research gaps emerge,
necessitating further investigation of vestibular system dysfunction-related balance
disorders. Despite numerous studies in various areas of the medical field, the detection
of vestibular disorders is an area that has not received sufficient attention yet. This
study aims to address these gaps by utilizing Tsallis entropy calculations and feature
extraction methods in the analysis of pressure data for individuals with vestibular
system disorders. By leveraging the advantages of Tsallis entropy, this study seeks to
develop a more comprehensive and objective approach for assessing gait patterns,
enabling improved diagnosis, monitoring, and treatment evaluation in vestibular

system disorders.

The primary objective is to achieve swift and accurate diagnosis of vestibular system
disorders through the analysis of rapidly collected sensor data. The utilization of
Tsallis entropy and advanced feature extraction methods is geared towards obtaining
high accuracy in the diagnosis process. This overarching goal emphasizes the need for
efficient and precise diagnostics using real-time sensor data, aligning with the ultimate

aim of enhancing the speed and accuracy of vestibular system disorder diagnosis.



Addressing these gaps will not only advance the scientific understanding of vestibular
system disorders but also offer tangible benefits to patients. Through enhanced
diagnostic techniques, patients can expect more precise treatments, potentially leading
to faster recovery times and improved overall quality of life. Moreover, the broader
medical community can benefit from streamlined processes, reducing the burden on
healthcare systems and professionals. The amalgamation of these research efforts
contributes to the ongoing pursuit of effective and objective tools for the assessment

and management of vestibular system disorders.
1.2.4 Research objectives

The primary objectives of this thesis are:

1. To rapidly acquire and accurately evaluate data for proper assessment of VS

dysfunctions.

2. To investigate the use of force data and determine if the identified gait features
from it can serve as reliable indicators for assessing, diagnosing, and

monitoring individuals with vestibular system disorders.

3. To employ data processing techniques, including Tsallis entropy calculations,

for feature extraction from force data obtained from insoles.

4. To identify potential classifiers for accurate classification of individuals with

vestibular system disorders based on the extracted features.

By achieving these objectives, this research aims to contribute to the development of
objective assessment tools and methods for diagnosing and monitoring vestibular

system disorders.

These research objectives are further elucidated by the following supporting research

questions:

1. What are the discernible differences in gait parameters and patterns between

healthy and VS diseased individuals?

2. Is using exponential polynomials sufficient to obtain the trend of gait data, or

is a more detailed technique needed?

3. Which classification algorithms show the best performance in distinguishing

between healthy and VS diseased individuals based on the extracted features?



These research questions guide the investigation and analysis conducted in this thesis.
By addressing these research questions, the study aims to shed light on the potential
of force data analysis and advanced data processing techniques in the field of
vestibular system disorders, ultimately improving diagnostic accuracy, treatment

planning, and therapeutic interventions for affected individuals.

1.2.5 Significance of the study

This study holds considerable significance in its potential to introduce objective and
quantitative tools for the diagnosis and monitoring of individuals with vestibular
system disorders. By utilizing data processing techniques, the study aims to identify
features that can differentiate between healthy individuals and those with vestibular
system disorders. The development of reliable assessment tools can lead to improved
accuracy in diagnosis, personalized treatment approaches, and enhanced monitoring

of the progression of vestibular system disorders.

The significance of this study lies in its potential to lead to innovative therapeutic
interventions for vestibular system disorders. By identifying and quantifying the
specific features of these disorders, the study provides valuable insights into the

underlying mechanisms and pathophysiology, benefiting researchers and clinicians.

Furthermore, by refining the diagnostic process, this approach could lead to substantial
cost savings in the healthcare sector. Early and accurate diagnosis can reduce the need
for repeated medical visits, decrease the chances of misdiagnosis, and eliminate the
costs associated with unnecessary treatments or interventions. On a broader scale, this
could translate to reduced economic burden on healthcare systems and improved

patient outcomes.

1.3 Literature review

This literature review segment provides a comprehensive examination of the vestibular
system disorder, shedding light on its clinical management and diagnostic processes.
Initial sections delve into the vestibular system's intrinsic complexities, established
methods of interpretation, and the analysis of gait data in relation to vestibular system
disorders. Attention is also devoted to gait data analysis in the context of other diseases
causing balance impairments. Subsequently, the focus shifts to Tsallis entropy,

exploring its potential in gait signal analysis and its application in the biomedical



signal analysis realm. Studies involving other entropy methods in gait data analysis
are also highlighted. Lastly, the section concludes by identifying pertinent research
gaps and underlining the rationale for the current study, which aspires to address these

identified areas of concern.

In summary, this literature review sets the stage for subsequent research by presenting
a comprehensive overview of the vestibular system and the significance of entropy

methods, providing a strong foundation for the study's objectives and methodology.

1.3.1 Vestibular system disorder-related literature

In this section, emphasis is placed on the vestibular system and its associated disorders.
The pathophysiology and clinical management of vestibular dysfunctions are initially
highlighted. Methods and techniques currently utilized for diagnosis and monitoring
are subsequently explored. A significant portion is devoted to the influence of
vestibular system disorders on gait patterns and the application of gait data analysis in
detecting other balance-impairing diseases. This segment aims to encapsulate the

critical role of the vestibular system in maintaining balance and coordination.

1.3.1.1 Pathophysiology and clinical management

The examination of vestibular system disorders is a matter that requires significant
emphasis. These disorders encompass a wide range of conditions that affect the inner

ear and its connections to the brain, leading to impairments in balance and coordination
[3].

Common vestibular system disorders include Meniere's disease, benign paroxysmal
positional vertigo (BPPV), and vestibular neuritis. Understanding the pathophysiology
and clinical manifestations of these disorders is crucial for comprehending their impact
on gait patterns [6]. Furthermore, the literature review also explores the diagnostic
methods and treatment options available for vestibular system disorders, highlighting
the importance of early detection and appropriate management in improving patients'

quality of life [3, 7].

Early diagnosis and intervention for these disorders are crucial, not only for mitigating
the immediate symptoms but also for preventing potential long-term complications
that can arise if left untreated, and delays in treatment can exacerbate the condition,

making recovery more challenging and prolonged.



1.3.1.2 Existing methods and techniques

Various methods are employed in the literature to identify the specific VS problem
while the most popular clinical method is still the computerized dynamic
posturography (CPD) [8]. While CPD offers detailed insights, it may not be easily
accessible in all clinical settings. On the other hand, wearable sensors provide the
advantage of real-world data collection but may sometimes lack the precision of
controlled, clinic-based tools. The state-of-the-art methods basically are based on
utilizing classification techniques following a machine learning step where the features
are extracted from gait data. The gait data are especially used to give information about
balance disorder. Within this context, analysis of gait data has emerged as a valuable
tool in the diagnosis and monitoring of balance disorder-causing diseases, providing

objective measures to assess motor impairments associated with these conditions.

Traditional approaches include visual observation and subjective rating scales, which
have inherent limitations in terms of objectivity and accuracy [9]. However,
advancements in sensor technology and computational methods have led to the
development of more sophisticated tools, such as wearable sensors and computerized

algorithms, enabling quantitative and objective analysis of gait data.

The utilization of wearable sensors, particularly insole sensors for analyzing force
data, facilitates the collection of gait data in individuals' daily lives, eliminating the
need for clinical environments. This approach allows data to be obtained in daily life,
helping the patient avoid the stress of the clinical environment and potentially
improving the accuracy of the diagnosis [10, 11]. Conversely, Individuals suffering
from balance disorders may exhibit abnormal gait patterns due to the awareness of
being observed, leading to deviations from the normal performance [12]. The analysis
of force values on insole sensors can provide insights into changes in foot behavior
during walking, enhancing accuracy and reducing stress associated with the diagnostic

process.

Despite the progress made in analysis of gait data techniques, there are still limitations
that need to be addressed. Current approaches often focus on a limited set of gait
parameters and may not fully capture the complex nature of gait disturbances in

vestibular system disorders. Furthermore, the lack of standardized protocols and the



influence of confounding factors pose challenges in interpreting and comparing gait

data across different studies.

1.3.1.3 Analysis of gait data in balance-impairing diseases

Analysis of gait data has emerged as a valuable tool in the diagnosis and monitoring
of balance disorder-causing diseases, providing objective measures to assess motor
impairments associated with these conditions. It has been extensively utilized in the
evaluation of diseases such as Parkinson's disease (PD), Huntington's disease (HD),
amyotrophic lateral sclerosis (ALS), and other related disorders. Numerous studies
have demonstrated the effectiveness of analyzing gait data in identifying disease-
specific gait abnormalities and distinguishing between different balance disorder-
causing diseases. For instance, Nir Giladi et al. proposes a new clinical classification
scheme for gait and posture and discusses the use of analysis of gait data in identifying
disease-specific gait abnormalities [13]. As another example, Bovonsunthonchai et al.
investigate the use of spatiotemporal gait variables in distinguishing between three
cognitive status groups and discusses the potential of gait data analysis as a tool for
early detection of imbalance-causing neurodegenerative conditions [14]. And, Guo
Yao et al. summarizes researche on the effectiveness and accuracy of different gait
related data analysis systems and machine learning algorithms in detecting Parkinson's

disease [15].

Analyzing data gathered during walking plays a crucial role in various fields, including
medical diagnostics and healthcare. In a study conducted by Ikizoglu and Heyderov
[16], they explore the significance of features extracted from IMU-sensor based data
to diagnose vestibular system disorders. By examining the data collected during
walking, they aim to identify patterns or abnormalities that can help in the early

detection and treatment of such disorders.

Research by Agrawal et al. [17] emphasizes the importance of analyzing data gathered
during walking to predict fall risks. They utilize wireless pressure sensors embedded
in insoles and employ machine learning models to analyze the collected data. Through
this approach, they are able to assess the likelihood of falls and provide early warnings

or interventions, thus improving the safety and well-being of individuals at risk.

Furthermore, Bustamante et al. [18] highlight the significance of monitoring and

assessing imbalance-causing neurodegenerative diseases using a portable wireless



pressure sensing device. By analyzing the data obtained during walking, they can track
changes in pressure patterns, gait abnormalities, and other relevant metrics. This
information aids in the early detection, evaluation, and management of imbalance-
causing diseases like neurodegenerative and VS-related diseases, ultimately improving

the quality of life for patients.

In conclusion, the analysis of data gathered during walking plays a pivotal role in
various areas, such as medical diagnostics, fall risk prediction, and monitoring of
imbalance-causing diseases. By leveraging advanced technologies and machine
learning models, researchers and healthcare professionals can extract valuable insights

from this data, leading to improved diagnosis, prevention, and treatment strategies.

1.3.1.4 Analysis of gait data in vestibular system disorders

Analysis of gait data provides clinicians with valuable information about the functional
limitations and compensatory mechanisms employed by individuals with vestibular
system disorders [19]. By examining gait patterns, healthcare professionals can tailor

treatment strategies and evaluate the effectiveness of interventions.

The subsequent examination primarily concentrates on the analysis of human
locomotion, specifically within the framework of vestibular system disorders. Analysis
of gait data yields significant revelations regarding the functional limitations induced
by these disorders, thereby facilitating their diagnosis, treatment, and monitoring. Gait
parameters, including stride length, step width, and cadence, frequently exhibit
alterations among individuals afflicted with vestibular system disorders [20]. The
quantitative analysis of such parameters enables an objective evaluation of the

disorder's severity and facilitates the tracking of temporal changes.

In the realm of vestibular system disorders, gait data provides a methodical exploration
of an individual's locomotion characteristics. This study delves deep into the nuances
of walking, examining elements like force application, walking rhythm, speed, and the
uniformity observed during the gait cycle's distinct phases. This cycle is primarily split
into two segments: the stance phase, where the foot is grounded, and the swing phase,
marking the foot's forward movement. An in-depth analysis of gait data can pinpoint
deviations from what's deemed as the 'normal' walking parameters. These deviations
potentially act as indicators of various health issues, from musculoskeletal anomalies

to neurological disorders.
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By examining gait parameters, insights have been gained into the impact of vestibular-
related impairments on balance control. This comprehensive analysis aids in early
detection, accurate diagnosis, and monitoring of these disorders. For example, studies
by Ratan Das et al. [21] provides a comprehensive review of the literature and
discusses how analysis of gait data can be used as a clinical tool to better diagnose and
manage gait and balance impairments. As another example, A. R. Wagner et al. [22]
discusses how analysis of gait data can be used to assess vestibular-related
impairments in older adults, and how these impairments can impact balance control.
In a study by Schmidheiny et al., the team delved into the discriminant validity and
test-retest reproducibility of gait assessments in patients with vestibular dysfunction
[23]. This research underscores the significance of an objective evaluation of gait in

individuals with vestibular disturbances.

1.3.2 Tsallis entropy-related literature

In this section, the spotlight is turned to Tsallis entropy and its applications within
biomedical signal analysis. Initially, an overview is provided on the role of Tsallis
entropy in gait signal analysis. This is followed by an exploration into its broader
applications in the realm of biomedical signals. Lastly, the section delves into how gait
data analysis has been approached using other entropy methods, offering a
comparative perspective. The aim of this segment is to delineate the emerging
prominence of Tsallis entropy in advancing diagnostic techniques, especially in the

context of gait data.

1.3.2.1 An overview of Tsallis entropy's role in gait signal analysis

Tsallis entropy offers a flexible framework for signal analysis, allowing the adjustment
of a parameter to control the emphasis on rare events or outliers. This adaptability
makes Tsallis entropy well-suited for capturing the intricate and non-linear nature of
gait signals affected by vestibular system disorders. In this context, Tsallis entropy is
an adaptable tool for analyzing gait signals, offering insights into their non-linear
nature and enabling the development of effective diagnostic and therapeutic

approaches.

Tsallis entropy has proven to be effective in diverse domains such as physics,
information theory, and economics, enabling a more comprehensive comprehension

of systems with long-range correlations and heavy-tailed distributions [24]. In this
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context, Tsallis entropy can capture long-range correlations within the data, offering a

richer and more nuanced understanding of gait dynamics.

1.3.2.2 Tsallis entropy in biomedical signal analysis

Based on prior research, this section examines the varied implementations of Tsallis
entropy in the analysis of biomedical signals. It emphasizes the effective utilization of
Tsallis entropy in quantifying intricacy, identifying anomalies, and discerning distinct
physiological conditions in diverse biomedical signals. The efficacy of Tsallis entropy
in offering fresh perspectives on analysis of gait data in vestibular system disorders is

apparent based on its successful utilization in alternative fields.

As an example of Applications of Tsallis entropy in biomedical signal analysis, Al-
Nuaimi et al. examine the application of Tsallis entropy as a promising approach for
assessing alterations in EEG signals among individuals diagnosed with dementia.
Their study investigates the capacity of Tsallis entropy to gauge variations in the
intricacy of EEG signals, emphasizing its potential as a biomarker for dementia [25].
As another example, Gao et al., in their publication, present a thorough examination
of Tsallis entropy-derived metrics in the context of biomedical signal analysis. They
explore the capacity of Tsallis entropy to effectively quantify the generation rate of
meaningful information within a dynamic system, while also highlighting its potential

applications across diverse biomedical signal analysis endeavors [26].

The use of Tsallis entropy in biomedical signal analysis underscores the ongoing
evolution of diagnostics, where computational tools are playing an increasingly pivotal
role. Leveraging such techniques can potentially revolutionize the accuracy and

efficiency of medical diagnoses, leading to more timely and targeted interventions.

1.3.2.3 Analysis of gait data with other entropy methods

This section reviews previous studies that have investigated the use of entropy methods
in assessment of locomotion data, specifically in the context of imbalance-causing
diseases such as neurodegenerative and VS-related diseases. These studies have
demonstrated the effectiveness of entropy methods in capturing subtle changes in gait
patterns and differentiating between healthy and diseased individuals. The findings
from these studies provide a strong rationale for further exploring the application of

Tsallis entropy in the current study.
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In their study, Kim et al. explore the utilization of analysis of gait data and machine
learning techniques in diagnosing vestibular neuritis. The findings of these studies
indicate that the application of multiscale approximate entropy (MAE) method and
other gait analysis techniques holds promise for facilitating the diagnosis and treatment
of neurodegenerative diseases [27]. As another example, Haid et al., in their article,
investigate the utilization of sample entropy (SaEn) for the analysis of postural control
among individuals diagnosed with Parkinson's disease. Their study aims to test the
hypothesis that sample entropy correlates with the complexity of postural movement
patterns. The findings demonstrate that sample entropy can successfully differentiate

between healthy individuals and those affected by Parkinson's disease [28].

1.4 Hypothesis

It is postulated that there are discernible differences in gait parameters and patterns
between healthy individuals and those diagnosed with vestibular system disorders,
which can be captured and quantified through the application of advanced data
processing techniques [12, 29]. In this context, it is hypothesized that Tsallis entropy
calculations, as a novel data processing method, can provide valuable insights into the
complexity and variability of gait patterns in individuals with vestibular system
disorders, further enhancing the differentiation between healthy individuals and those

with the disorder.

Based on preliminary evidence suggesting a link between vestibular system disorders
and alterations in gait patterns, it is postulated that Tsallis entropy calculations can
effectively quantify these differences. Specifically, we hypothesize that this method
will reveal discernible variations in gait parameters between healthy individuals and

those with vestibular system disorders.

1.4.1 Formulation of hypothesis

The hypothesis suggests distinguishable differences in force data and patterns between
healthy and VS diseased individuals. These differences can be captured and quantified
through the application of advanced data processing techniques, specifically Tsallis

entropy calculations.

As already mentioned in Section 1.1, Vestibular system disorders have a significant

impact on an individual's balance, coordination, and overall gait performance. Existing

13



literature indicates that the analysis of biomechanical data, such as force patterns
during walking, can play a crucial role in identifying alterations in gait. This study
proposes that when combined with Tsallis entropy calculations, this data might offer
a more comprehensive insight into the gait patterns associated with vestibular system
disorders. Building upon the existing body of literature, the hypothesis for this study

is articulated as follows:

"The utilization of Tsallis entropy calculations, as a novel data processing method, can
provide valuable insights into the complexity and variability of gait patterns in
individuals with vestibular system disorders, enhancing the differentiation between

healthy individuals and those with disorder."

1.4.2 Supporting arguments for the hypothesis

As presented in the Results section, various aspects of this study highlight a connection
between gait data analysis and vestibular system disorders. Observations suggest that
the histogram of preprocessed sensor data contains more bins for individuals with
vestibular system disorders. This increase in the number of bins is attributed to
compromised balance and coordination, leading to greater fluctuation around the trend

curve.

Furthermore, Tsallis entropy calculations and feature extraction methods appear
promising in emphasizing the subtle alterations in gait patterns associated with
vestibular system disorders. By analyzing these entropy levels and the detailed step-
wise entropy changes, the complexity and variability of gait patterns can be quantified,

offering a comprehensive and objective assessment of the disorder.

The objective of this research is to deepen the understanding of vestibular system
disorders and to introduce a potentially significant diagnostic tool. By utilizing gait
parameter analysis combined with advanced data processing techniques, this study
aims to pave the way for improved diagnosis, monitoring, and treatment strategies for

individuals affected by vestibular system disorders.
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2. TSALLIS ENTROPY METHOD

Tsallis entropy, named after the physicist Constantino Tsallis, is a generalized form of
entropy that has found applications in various fields, including biomedical research. In
the context of biomedicine, the Tsallis entropy method has proven to be a valuable tool
for analyzing complex systems and understanding the dynamics of biological

Processces.

2.1 Entropy

Entropy is a property primarily used to measure the disorder or randomness within a
dynamic system. The well-known Shannon entropy (SE), formulated as equation 2.1,
is based on Boltzmann-Gibbs statistical mechanics and is capable of describing the

structure of extensive systems with short-term microscopic correlations [30, 31].

N
SE = _szpiln(pi) (2.1)
i=1

In equation 2.1, kg represents the Boltzmann constant, a fundamental physical
constant that delineates the relationship between temperature and energy. Historically,
the Boltzmann constant emerged as a proportionality factor in the microscopic
description of ideal gas laws, and it plays a pivotal role in bridging microscopic and
macroscopic views in thermodynamics. Specifically, it scales the average kinetic

energy of particles to the thermodynamic temperature of a system.

However, in numerous analytical situations, especially within information theory and
certain statistical mechanics contexts, it's conventional to normalize the Boltzmann
constant to unity. This normalization simplifies calculations without sacrificing the

conceptual underpinnings of the entropy measure.

N
SE'= =) piln(py) 2.2)
i=1
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Equation 2.2 embodies the Shannon entropy in scenarios where the Boltzmann
constant kp is taken as unity. In this framework, N is the total number of microstates

and p; delineates the probability associated with the i-th microstate.

For systems with long-term interactions, or systems that exhibit long-term memory
effects, the effectiveness of applying SE for the aforementioned purpose decreases
[32]. This is particularly true when dealing with complex systems that involve intricate
relationships and dependencies over extended periods. In such cases, a more
comprehensive approach is needed to capture the underlying dynamics and extract
meaningful information from the time series data. This is where the generalized
structure of Boltzmann-Gibbs statistics comes into play, incorporating the concept of
Tsallis entropy (TE) within the framework of non-extensive statistics [33]. By
considering the TE, we can delve deeper into the hidden information embedded in the
time series, unlocking valuable insights that might be overlooked by traditional
methods. The TE provides a powerful tool to explore the complexities and intricacies
of these long-term interacting systems, enabling a more nuanced understanding of their
behavior and uncovering previously undiscovered patterns. Therefore, incorporating
TE within the analysis of time series data proves to be a crucial step towards unraveling

the full potential and richness of information contained within these intricate systems.

2.2 Tsallis Entropy

The Tsallis entropy formula provides a powerful tool for quantifying the complexity
and structure of given dataset [11]. The parameter q in the Tsallis entropy formula
represents a dimensionless entropic index, adjusting the entropy metric to capture
specific features inherent in the analyzed dataset. By adjusting the value of g, the
entropy metric can be tailored to capture particular features inherent in the analyzed

dataset. The Tsallis entropy, denoted as S, is a generalization of the Shannon entropy

and is defined as equation 2.3 [34].

w
kg q
TE:Sq:q_1<1—Zpi> (2.3)

i=1

Here, S, represents the Tsallis entropy, kg is the Boltzmann constant, q serves as a
generalization parameter. Additionally, W signifies the total number of possible states,

while p; corresponds to the probability of the i-th state.
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In the context of Tsallis entropy, as in Shannon entropy, the Boltzmann constant is
frequently introduced. However, in disciplines such as information theory or data
analysis, the primary interest often lies in the relative behavior of the system rather
than its absolute scale. Therefore, it's customary to normalize kg to unity to simplify
analytical and computational processes.

Given this normalization, the Tsallis entropy is expressed as:

w
1
TE = 5, =ﬁ<1—2pf) 2.4)

i=1
By setting kg = 1, the role of the entropy in measuring the intrinsic properties of the
data is emphasized, abstracting from the physical dimensions that kg might introduce.
This dimensionless representation of entropy is found to be especially pertinent when
comparative analyses across diverse datasets are conducted.
In equation 2.4, q (qeR) can be considered as a parameter to indicate the degree of
non-additivity. This is because, in the context of two independent systems X and Y as
represented by equation 2.5, (1 — q) serves as a quantification of the deviation from

additivity.
TEX+Y)=TEX)+TE(Y)+ (1 —q)*TE(X)*TE(Y) (2.5)

In the calculation of Tsallis entropy, the selection of parameter g is based on the
specific characteristics of the dataset being analyzed. The value of g determines the
non-extensive behavior of the entropy and can be chosen accordingly, taking into

account the properties of the dataset [35].

Unlike Shannon entropy, which corresponds to g = 1, Tsallis entropy allows for a
more flexible representation of information content. By adjusting the value of q,
researchers can explore and quantify different aspects of the data distribution. For g <
1, Tsallis entropy emphasizes the contribution of rare events, making it more suitable
for capturing long-tail or heavy-tailed distributions. Conversely, for g > 1, Tsallis
entropy focuses on the more frequent events, which is useful for capturing data
distributions with prominent peaks or clusters [36, 37]. Briefly, while g > 1 pertains

to sub-extensive statistics, ¢ < 1 aligns with super-extensive statistics.

Furthermore, the Tsallis entropy formula is widely used in physics, information theory,

and data analysis. Its flexibility and adaptability make it a valuable tool for
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understanding complex systems. Tsallis entropy considers the non-extensive behavior
of entropy, providing a comprehensive perspective on data information content and
distribution. Its versatility enables the extraction of meaningful insights and the

discovery of hidden patterns and structures from diverse datasets.

2.3 Application of Tsallis Entropy in Data Analysis

The Tsallis entropy method has found applications in various fields, including data
analysis and pattern recognition. In the analysis of gait parameters, Tsallis entropy
provides a measure of the complexity and irregularity of gait patterns. By quantifying
the information content in gait data, it allows for the extraction of meaningful features

related to the dynamics of human locomotion.

In gait data analysis, Tsallis entropy is often calculated based on the histograms of
specific gait parameters, such as force amplitude, step length, step duration, or joint
angles. By examining the distribution of these parameters and applying the Tsallis
entropy formula, researchers can obtain a measure of the system's complexity and
irregularity. This measure can then be used to compare gait patterns between different

individuals, groups, or conditions.

As an example, application of Tsallis entropy in data analysis, in addition to examples
in Section 1.3.2.2, Zhang et al. propose a measure called Tsallis entropy area (TsEnA)
to quantify burst suppression (BS) activity in EEG data after brain injury,
demonstrating its correlation with neurological deficit scores and suggesting its
potential as a clinical tool for estimating the severity of brain damage following cardiac
arrest [38]. Again, Tong et al use TE of EEG signals as a measure of brain injury in
their study [37]. As another example, Thilagaraj et al. aimed to classify epileptic
seizures using EEG data segments from the University of Bonn database. They
introduced a novel feature related to Tsallis entropy and utilized five different
classifiers. Their method achieved high accuracy ranging from 92.67% to 100% using
a Decision tree classifier, while also having the fastest computation time compared to
other features in the literature. The authors proposed that their method can be easily
installed as a software tool and holds potential for real-time detection and prediction
of epileptic seizures [39]. Moreover, Redelico et al. compare different permutation
entropies as classifiers for EEG records of normal and pre-ictal states. Symbolization

techniques are used to derive discrete probability distribution functions, and the
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entropies are used as independent variables in logistic regression models. All
permutation entropies perform well, with high accuracy and sensitivity, suggesting

their potential for automatic EEG signal classification [40].

2.4 Advantages of Tsallis Entropy in Analysis of Gait Parameters

The use of Tsallis entropy in gait data analysis offers several advantages. First, it can
capture non-linear and non-Gaussian characteristics of gait data, which are often
present in complex systems such as human movement. This enables a more accurate

representation of gait dynamics compared to traditional entropy measures.

Additionally, Tsallis entropy allows for the customization of the entropy calculation
through the parameter q. By adjusting q, the method can adapt to different types of gait
patterns and provide insights into specific aspects of gait dynamics, such as regularity,
variability, or asymmetry. This flexibility makes it a valuable tool for analyzing and

comparing gait patterns in individuals with different conditions or disorders.

Furthermore, Tsallis entropy provides a robust and efficient method for feature
extraction in analysis of gait data. By quantifying the complexity and irregularity of
gait patterns, Tsallis entropy can identify distinctive features that differentiate
individuals or groups. These features can then be used in machine learning algorithms
or classification models to develop diagnostic or monitoring tools for gait-related

disorders.

One of the main advantages of the Tsallis entropy method is its ability to capture the
non-linear and long-range dependencies present in biological systems [32, 41].
Traditional entropy measures, such as Shannon entropy, assume that events are
independent and identically distributed, which is not always the case in biological
systems where interactions and correlations play crucial roles. Tsallis entropy, with its
parameter g, allows for a more flexible characterization of these complex interactions.
In biomedical research, the Tsallis entropy method has been applied to a wide range
of applications. One such application is in the analysis of electroencephalogram (EEG)
signals [39]. EEG is a non-invasive technique used to measure brain activity, and the
analysis of EEG signals can provide valuable insights into neurological disorders and
cognitive processes. By applying the Tsallis entropy method to EEG data, researchers
have been able to identify abnormal brain activity patterns and distinguish between

different brain states with higher accuracy than traditional entropy measures [37, 40].
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Overall, the Tsallis entropy method has proven to be a valuable tool in biomedical
research, enabling a more comprehensive analysis of complex biological systems. Its
ability to capture non-linear and long-range dependencies provides researchers with a
more accurate representation of biological processes and opens up new avenues for

understanding and addressing various biomedical challenges.

In conclusion, the Tsallis entropy method is a statistical approach that extends Shannon
entropy, providing a customized measure of information content in complex systems
like analysis of gait data. Its application in gait data analysis offers advantages in
capturing non-linear dynamics and providing customizable insights into gait patterns.
By utilizing Tsallis entropy, researchers can gain valuable insights into the

characteristics of gait and its variations in individuals with different conditions.
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3. DATA ACQUISITION AND PROCESSING

3.1 Data Acquisition

The examination of gait data analysis studies in the literature reveals that the
distribution of weight on the soles of the feet has a significant impact at four main
points, as depicted in Figure 3.1a [42-46]. The selection of sensor placement

mentioned above was determined based on previous studies.

3.1.1 Sensor placement

To ensure data collection without disturbing the natural walking patterns of the
participants, five pairs of insoles with different sizes (36, 38, 40, 42, 44 - according to
European Standards) were manufactured, and the sensors were placed in appropriate
positions. Prior to the commencement of the experiment, the correctly sized insoles
were inserted into the subjects' shoes. For the production of the insoles, a durable and
soft plastic material commonly employed in the manufacturing of orthopedic products

was utilized.

(a) (b)

Figure 3.1: (a) Sensor placement on the insole. (b) The numbering of the sensors SO
to S7 (Top view) [47].

Force-sensitive resistors (FSR) were chosen as force sensors, as they are widely used
in gait data analysis applications and offer several advantages [48]. Specifically, the
FSR402-Short tail model from Interlink was selected as it is highly suitable for
placement within insoles due to its physical dimensions. Additionally, this sensor

demonstrates acceptable repeatability error [49]. The characteristics of the sensor can
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be found in Table 3.1, and the numbering of the sensors on the insoles, from SO to S7,

is illustrated in figure 3.1b.

Table 3.1: Characteristics of The Sensor Fsr402-Short Tail

PARAMETER VALUE
Operation Range 0.2N-20N
fpad18.3mm,
Physical
fsens12.7mm
Dimensions thickness 0.46mm
Repeatability +0,02
Idle Resistance >10MQ
Hysteresis 10 % max.
Rising Time <3 pseconds

The sensor referenced in our study, as delineated in Table 3.1, is the FSR402-Short
Tail. It is capable of detecting forces ranging from as light as 0.2 Newtons to as robust
as 20 Newtons, within an operational range of 0.2N-20N. Regarding its physical
dimensions, the outermost layer or pad of the sensor boasts a diameter of 18.3mm,
while its force-sensitive area measures 12.7mm in diameter, and the entire unit
maintains a slim profile at a mere 0.46mm thickness. Repeatability, indicating the
sensor's consistency in readings, suggests that measurements under identical
conditions can differ by a maximum of 2% from their mean, underscoring its
reliability. Its idle resistance, denoting the resistance when devoid of force, exceeds 10
Megaohms. Another critical attribute, hysteresis, signals a potential 10% variation in
output based on the force's increasing or decreasing direction. The rise time, which
demarcates the time the sensor requires to alter its output from 10% to 90% of the end
value, underscores its brisk responsiveness with a rate of less than 3 microseconds.
Collectively, these specifications provide insight into the sensor's functionality and

capacity, ensuring a comprehensive grasp of its pivotal role in our research.

3.1.2 Data acquisition procedure

The data collection was carried out in the clinical setting of the Audiology Department
at Cerrahpasa Medical School, Istanbul University in Istanbul, Tiirkiye. The process
was conducted in compliance with the principles outlined in the Helsinki Declaration.

Prior to the start of the process, approval was obtained from the Istanbul University
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Ethics Committee (Approval number: A-57/07.07.2015). In addition, informed
consent was taken from all subjects to participate in the study. For individuals with VS
problems, their conditions had already been diagnosed by the audiologists using

conventional systems, such as Computerized Dynamic Posturography.

Data collection occurred on weekends to minimize subject stress and prevent
interference from other devices in the environment. The subjects walked along a 12-
meter track inside the clinic, and they were asked to walk the path twice. The first walk
aimed to help them become familiar with the environment and reduce any possible
stress, while the data from the second walk were used for analysis in general. In some
cases, subjects walked a third time when needed as a result of the audiologists'
observations. The data collection was optimized to a short span of 10-15 seconds,

which is considerably shorter than most experiments in the literature.

3.1.3 Data acquisition system

The gait data was collected using insole force sensors, offering a detailed and reliable
source of information. The force sensor data were initially captured by an Arduino
Mega unit carried by each subject and then wirelessly transferred to a nearby laptop
via an HC-06 Bluetooth module. Sampling was conducted at a rate of twenty samples

per second from each sensor, simultaneously from all sensors.

In order to convert the force to voltage, a voltage divider was created using a 1k ohm
resistor connected in series with the force sensor. The voltage divider was supplied
with a 5V DC input. While the force sensor utilized in the study demonstrated high
repeatability, its force-resistance characteristic was non-linear. Consequently, the
device underwent calibration in the laboratory using known weights. As a result, the
equation of the regression curve was obtained as equation 3.1.
v,+0.2245
w = e 09265 3.1

Here, w represents the relationship between the weight/force in Newtons and v, is the
output voltage of the voltage divider in volts. Ten percent deviation from the values
obtained by equation 3.1 was taken as the criterion that would require the relevant

sensor not to be used in the experiments.

The calibration process was performed individually for each sensor utilized in the

experiments. This individual calibration ensured that each sensor operated at its
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optimum performance level, accounting for any inherent variances or manufacturing
discrepancies. As a result, we were able to maintain consistency in data acquisition,
thereby minimizing potential errors and achieving more reliable results.

3.1.4 Participants’ information

Regarding the subjects who participated in the study, detailed information is provided

in Table 3.2.

Table 3.2: Information About the Subjects

Physical Healthy (30) Diseased (30)
Characteristics Male (15) Female (15) Male (13) Female (17)
Age 54,3485 55,147.9 54,5+8,5 55,7+8.4
Mass [kg] 66,6+9,8 65,1+8,8 65,9£10,2 63,9+8,6
Height [cm] 169,2+10,0 164,0+6,2 170,3+8,8 162,7+6,3

The distribution of diseases among the subjects’ experiencing discomfort was
analyzed using computerized dynamic posturography, which was conducted under the
supervision of audiologists. The distribution of the subjects whose specific disease was
detected by computerized dynamic posturography by audiologists is given in Table
3.3. The data obtained through this rigorous methodology provides valuable insights
into the distribution and incidence rates of these diseases, contributing to our

understanding of their impact on postural stability.

Table 3.3: The Distribution of The Diseases of Suffering Subjects

Vestibular Disorders Male Female
BPPV* 6 8
UVw#* 3 4
Meniere 3 3
Vestibular Neuritis 1 3

* BPPV- Benign paroxysmal positional vertigo, UVW-Unilateral vestibular
weakness.

3.1.5 Ethical considerations

In order to uphold the confidentiality and privacy of all participants, their identities
have been anonymized for the purpose of this article. This precautionary measure is
implemented to protect the individuals involved and to maintain the integrity of the

study's findings. By anonymizing the participants' identities, their personal

24



information and any potential identifying details have been removed, ensuring their

anonymity throughout the publication process.

This ethical practice serves to safeguard the rights and well-being of the participants,
aligning with the principles of research ethics. By maintaining confidentiality, the
study promotes a secure environment for participants to share their experiences and
data without fear of retribution or breach of privacy. Anonymization also contributes
to the overall reliability and credibility of the research, as it allows for unbiased

analysis and interpretation of the collected information.

3.2 Data Processing

In the field of data analysis and signal processing, the preprocessing of captured data
plays a crucial role in extracting meaningful insights and information. This is
particularly important in complex domains such as analysis of gait data, where raw
sensor data poses challenges and limitations when directly applying analytical
methods [50]. Therefore, in order to enhance the comprehensibility and effectiveness
of the data, a well-defined data processing pipeline is employed. This section
introduces the key stages involved in the data processing approach used in the thesis,

aiming to make the data more concise and suitable for further analysis.

Therefore, in order to make the data more concise and comprehensible, the application

process of the method has been divided into six stages.

3.2.1 Stage 1 — normalization

The first stage in the data processing pipeline is normalization, where the captured raw
data is transformed to a common scale for each subject. This step ensures that the data
is comparable across different individuals and allows for meaningful comparisons to
be made. Additionally, during normalization, the regions of interest associated with
the portions where walking occurs are identified and framed., while irrelevant areas
are removed from the dataset. This initial processing step is crucial for focusing the
analysis of gait data on the parts where gait occurs and excluding incomplete or

inaccurate data from the overall analysis.
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Data are normalized for each subject to a range of 0 — 1. Then, the parts suitable for
the data analysis, in other words, the parts where the gait takes place are framed and

marked in the datasets.

X = Xmin
X =— 3.2
norm Xmax _ Xmln ( )

Here, X is the original/raw data, X,,,,, stands for the normalized data. X,,,;;, and X,

represent minimum and maximum values, respectively.

Subsequently, the data was visualized. The areas suitable for data analysis in the
images, i.e., the regions where the gait took place, were outlined and the remaining
areas were removed from the dataset. These processes are visualized for a sample
subject in figure 3.2. During this stage, data corresponding to the first and last steps
were excluded from the overall gait data. These steps were omitted as they do not

provide accurate information due to their incomplete dynamic behavior.

The normalization stage is followed by the step analysis phase, where the data
undergoes further refinement. In this phase, the captured data is examined in detail to
identify the regions that correspond to individual steps within the gait cycle. By
accurately delineating each step, the subsequent analysis can focus on the relevant gait
parameters and discard any incomplete or erroneous data associated with the
transitional phases between steps. Removing the data from the first and last steps,
which exhibit incomplete dynamic behavior, ensures that the subsequent analysis is
based on reliable and consistent gait patterns. The step analysis stage enhances the
overall quality of the gait data and contributes to a more precise and accurate

assessment of individuals with vestibular system disorder.

NORMALIZATION OF RAW DATASET
VS Subject Number 30

Time ( t [secs] )

Figure 3.2: Normalization of raw sensor data and the framing of suitable segments
for data analysis.
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3.2.2 Stage 2 — step analysis

The subsequent stage is step analysis, which involves analyzing the data from each
sensor separately for the subject's right and left feet. Algorithms are employed to detect
the contact and lift-off phases of the foot during walking. The data from each sensor
is segmented into parts corresponding to walking steps, enabling a more detailed

analysis of the gait pattern.

For each subject, the data from each sensor were analyzed separately according to the
data obtained from the subject's right and left feet. The areas where the foot makes
contact with the ground and where the foot is lifted off the ground are detected by an

algorithm.

The next stage involves analyzing data from each sensor separately for the subject's
right and left feet. Algorithms detect the contact and lift-off phases of the foot during
walking, enabling a detailed analysis of the gait pattern. Each sensor's data is
segmented into walking steps for a more comprehensive examination. The dataset of
a subject, consisting of eight lines, is decomposed into four-line datasets for the right
and left feet. The data is then combined with the maximum operation by calculating
the maximum values for each column of this four-row dataset. The combination of the
data obtained from a subject's feet using the maximum operator can be represented by

equation 3.3.

Srmax = Max(So, 51,52, 53)

Stmax = max(Sy, Ss, Se, S7) 3.3)
Here, Spimax, Simax Stand for the time-series data that contains the maximum values of
each column of the sensors data of the right (Sgpmax) and left (Spmnax) foot.

So,S1 -+ Sg, S7 represent the time series data of the sensors on the insoles.

By calculating the differential of the datasets obtained from equation 3.3, it is possible
to detect and cluster the steps of the subject's right foot. Subsequently, the same
operations are applied to the sensor data obtained from the left foot. These processes
enable the data from each sensor to be segmented into parts according to walking steps.

These processes are visualized for a sample subject in figure 3.3.
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STEP ANALYSIS OF NORMALIZED DATA
VS Subject Number 30
Right Foot || Avg. Press Time : 0.788 sec || Avg. Period : 1,093 sec

3 4 5

Time ( t[sec] )

Left Foot || Avg. Press Time : 0.788 sec || Avg. Period : 1,093 sec || Avg. Shift : -1.25 deg
I
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Time ( t[sec] )
Figure 3.3: Segmentation of sensor data into sets of four rows for each foot,
followed by combining these sets using the maximum operator and subsequently
conducting step analysis.

3.2.3 Stage 3 — interpolation

At this stage, the interpolated normalized data undergoes individual processing for
each sensor, eliminating segments that do not involve foot-ground contact.
Subsequently, the data sequences are further refined by interpolating the sensor data
to increase the resolution by a factor of 20. The rigorous process not only enhances the
precision of data analysis but also facilitates obtaining a meaningful histogram
representation with an adequate number of bins, each containing a sufficient number
of samples, as depicted in Figure 3.4. The mentioned steps are demonstrated for a

representative subject.

Linear interpolation was not preferred when adding new values to the dataset through
interpolation in order to maintain accuracy without compromising the representation
of the data. Instead, the cubic Hermite interpolation method was chosen as a preferred
interpolation technique. This method provides a smoother and more accurate

representation of the data while preserving its integrity [51].

Interpolation enhances the granularity of the data reveals subtle details that might be
obscured at a lower resolution. Such an increase in resolution enables the detection of
minute changes or deviations in gait patterns. By choosing the cubic Hermite
interpolation over the linear method, we're prioritizing not just quantity but quality;

the resulting data is a more genuine representation of the subjects' walking patterns.
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INTERPOLATION OF NORMALIZED DATASET
VS Subject Number 30
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Figure 3.4: Removal of segments where the feet do not make contact with the ground from the data sequences, followed by interpolation applied
to the data sequence.
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3.2.4 Stage 4 — detrending

For each step, the trend of the interpolated data is calculated, and then the data is

detrended based on these trend values.

Each sensor generates data during each step. However, the fact that the foot touches
the ground does not mean that every sensor on the sole will generate data
simultaneously. For instance, when data occur in the sensor located in the heel part of
the insole, the sensor in the toe area may not yet generate any data. This phenomenon
is clearly depicted in figure 3.4. Therefore, the starting and ending points of each step

data are determined for each sensor data.

3.2.4.1 The proposed algoritm

In the study conducted, the aim was to extract features from various parameters.
Therefore, the trend of the step data is derived by combining the previous trend curve
with the step data itself. For the first step data in the interpolated data set, the trend
curve is calculated as equivalent to itself since no trend has been identified before. This
ensures that the entropy calculation of the detrended data is not affected by the first
step. The process for the subsequent step data in the data array is as follows: The
detrend curve of the previous step is scaled on the x-axis using the "Nearest-neighbor
interpolation" method according to the specific step data. This process equalizes the
data length of the previous trend curve and the length of the step data itself. Then, a
trend curve is created for the specific step data by taking the weighted average of each
data point with the alpha coefficient.
T, = F; i=1
T, =aF;+(1—a)T;_; i=12..n (3.4)

Here, T; is the current-step trend data, and F; stands for the current step data. T denotes
the trend data whose length is scaled, and « is a coefficient indicating the degree to
which the previous trend curve is approximated to the current step data set. In Figure
3.5, amax represents the maximum rate of change that each data point of the trend
curve can exhibit from one step to the next, for which the value 0.23 was statistically
determined, considering data from healthy subjects. We note that a,,,, serves as a
parameter to achieve a balance between flexibility in trend curve adaptation and

avoiding overfitting, and although it has a role in shaping the trend curve, the key
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features of our analysis remain relatively insensitive to its exact value. The process is
terminated when the a value reaches «,,,, or the error value defined as € =
mean {|T; — F;|} falls below a threshold so that it is considered negligible. The
threshold level is set as 107°. The visual representation of the algorithm can be found

in figure 3.5, and the outputs can be seen in figure 3.6.
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Figure 3.5: Flowchart of a specifically designed algorithm for generating the trend
curve.

Detrending refines raw gait data into discernible patterns. Considering the unique
activation timing of each sensor, we've devised an algorithm, showcased in figure 3.5,
that blends past and present data trends for a holistic view. The heart of this method
lies in the iterative adjustment of the weighted average coefficient (o) to minimize
error. This adjustment starts from zero and tapers with each cycle until a peaks or the
error reduction becomes trivial. With clear thresholds for a and error magnitude, our
approach achieves a balance between precision and computational efficiency, ensuring
the trend curve's adaptability and sensitivity to subtle gait changes. Consequently, we
aim to capture the genuine intricacies of an individual's gait, filtering out any redundant

data. The application of the resulting trend curves for detrending can be seen in figure
3.6.
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Figure 3.6: Detection of step data and calculation of (a) trend curves as well as (b) curves of detrended dataset for a sample VS-diseased subject.
(Red vertical lines indicate the active stepping intervals of the foot; blue vertical lines indicate the active usage intervals of the relevant sensor).
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3.2.5 Stage S — Tsallis entropy calculations

In this stage, the Tsallis entropy calculation was performed not only for the entire
sensor data but also for each individual step within the entirety of the gait data. This
approach allowed for a more detailed analysis of the step data and their relationship
with the trend curve. By calculating the Tsallis entropy based on the detrended data,
the study aimed to capture the information contained in the vertical displacements
between the step data and the trend curve. The detrended data represented these
distances, taking into account their magnitude and displacements. The absolute values
of the detrended data were used to group data points with the same magnitude but
different signs into the same histogram bin, enabling the calculation of probabilities
and subsequent entropy measurements. Figure 3.7 provides a visual representation of
the resulting histogram generated for all the detrended data taken from a VS diseased

subject, demonstrating the distribution of data around the trend.

The choice of the number of bins in a histogram significantly impacts the level of detail
and granularity in representing the data distribution. To achieve the desired resolution,
a maximum of 25 bins was used in this study. Determining the maximum number of
histogram bins was based on examining the detrended data of all subjects and
identifying the maximum detrended size. By dividing the maximum detrended size by
the maximum number of histogram bins, the precision of the range represented by each
histogram bin was established. This approach ensured that the histogram effectively
captured the variations in the detrended data and provided a comprehensive

representation of the sensor data.

As explained in section 2.1, the value of the q parameter plays a crucial role in
determining the nature of the entropy measurement. An empirical method was
employed to determine the most suitable q value for feature extraction from the
obtained datasets. Through extensive calculations and evaluations, a value of 0.82 was
identified as the optimal q parameter. The success rates of the learning models were
calculated for different Tsallis parameters (q values), using the specific classification
models outlined in Stage 6 and employing a 10-fold cross-validation technique. The
ratios of models achieving the highest success rates were used as the benchmark for
determining the effectiveness of the Tsallis entropy method. These ratios are visually
presented in figure 3.8, offering insights into the performance of different Tsallis

parameters in classifying individuals with vestibular system disorder.
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Figure 3.7: For a sample diseased subject (no. 30): (a) Absolute values of the detrended data are illustrated in Figure 5b, and the step-by-step TE
values are presented (Black bars indicate the segments where there is no data, representing them as a restricted area). The entropy values are
calculated for each step; (b) Histograms derived from the entire gait data are plotted, with inactive sensor intervals removed.
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Figure 3.8: Correlation between learning success and varying Tsallis parameter (q)
values.

Moreover, it is worth noting that the determination of the optimal q parameter value
through empirical methods and subsequent evaluation of its impact on the performance
of the learning models highlight the significance of parameter selection in entropy-

based feature extraction.

At the completion of this stage, the study obtained Tsallis entropy values for all
detrended data of each sensor, as well as the Tsallis entropy values calculated for each
step within this detrended data. These entropy values provide quantitative measures of
the complexity and information content of the gait patterns exhibited by individuals
with vestibular system disorder. The incorporation of Tsallis entropy calculations and
the examination of both sensor data and individual step data offer a comprehensive
analysis of the gait dynamics, enabling a deeper understanding of the distinct

characteristics of individuals with vestibular system disorder.

3.2.6 Stage 6 — feature extraction

The objective is to utilize the Tsallis entropy method on relatively short walking data
in order to identify distinctive features that separate healthy individuals from those
with diseases. The current stage involves establishing significant associations between
the Tsallis entropy values of the overall gait for each sensor and the Tsallis entropy
values calculated for the step data within each sensor data.

Obtaining a feature that indicates the distribution of entropy values from step to step
is of great importance due to its capability to facilitate the identification and analysis
of discrepancies, trends, and irregularities within a given data. However, considering
that features were attempted to be extracted from relatively short gait and the number

of steps were around ten in general, it was concluded that analysis methods yielding
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reliable results in a large number of data entries should be avoided. Therefore, the
calculation of the deviation of the entropy values from a referance value from step to
step was performed.

In the analysis of a flawless gait, the entropy levels and entropy change levels from
step to step should be closer to zero compared to a flawed gait. For this reason, the
deviation of the entropy values from step to step was calculated, with the goal of
measuring how far they deviate from zero. The dataset containing the entropy values
from step to step was augmented with the negation of all data values, and the standard
deviation of the newly created dataset was calculated. This approach allows us to
quantitatively measure the dispersion of the entropy values by calculating the standard
deviation of the augmented dataset. It provides valuable insights into the extent to
which the gait deviates from the desired zero entropy levels. The aforementioned
procedures are expressed mathematically within equation 3.5.

E = {ej, e ...,en} Wwheree, ER for k € Z*

A
E' ={ei, ey ..., —€1,—€2, ..., —€1}

1 &
g(E') = |=—+ Z X; — 1)?

(E) = | . (x; — ) (3.5)

=1

Here, ey, is Tsallis entropy value of k-th order step data. E' denotes the ordered set of
entropy values calculated step by step. E’ symbolizes augmenting E with negative
counterparts. o(E") represents the standard deviation of set E'. x; stands for each
element in set E'. u signifies the mean of set E'. n is the total number of elements in

set E.

3.2.7 Training of classifier models

In this final stage, machine learning was performed using sixteen features for each
subject. These features comprised of eight total entropy levels for each sensor and
eight deviations from zero values of entropies from step to step for each sensor.

The classifiers with the highest performances were determined using the Matlab
R2021b Classification Learner Tool (on MSI GE75 Raider 10875H). The 10-fold cross
validation technique was applied, where approximately 25% of the data (from 15
subjects) was used for testing, and the remaining data (from 45 subjects) was used for

training.
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The process of classification training involved utilizing nine different model categories
provided by the Classification Learner Tool. These model categories utilized in this
process include: Decision trees (DT), discriminant analysis, logistic regression, naive
bayes, support vector machine (SVM), nearest neighbors (KNN), kernel
approximation, ensemble and neural networks. There are a total of thirty-two models
in these model categories. For example, in the decision tree category, there are three
models according to the maximum number of splits (Course: 4, Medium: 20, Fine:

100).

Among the all classifiers examined, SVM (with a Gaussian kernel), KNN(Cosine),
and Logistic regression demonstrated superior performance. Brief explanations of
these classifiers can be provided as follows: The KNN algorithm determines the class
membership of an object/vector by examining its k nearest neighbors [52]. Logistic
regression is a statistical model used to predict the probability of a dependent variable
belonging to two or more classes in a dataset [53]. SVM seeks to find an optimal
hyperplane to separate data clusters [54]. These three algorithms are commonly

utilized in the literature when working with biomedical signals [55-60].
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4. RESULTS AND CONCLUSIONS

The present study aimed to investigate the potential of Tsallis entropy calculations and
feature extraction methods for diagnosing individuals with vestibular system
disorders. The data processing methods employed in this study, including
normalization, step analysis, interpolation, detrending, and Tsallis entropy
calculations, were applied to obtain meaningful features from relatively short gait. By
comparing the analysis data of VS diseased and healthy individuals, notable
differences were observed, particularly in the feature extraction stage. The results
indicated significant variations in entropy levels and step-wise entropy changes,
suggesting the potential of these entropy-based features as objective indicators for the

assessment of vestibular system disorders.

In the final stage of the study, machine learning techniques were utilized to classify
the force data using the extracted features. SVM (Gaussian kernel), KNN (Cosine),
and Logistic regression were identified as the classifiers that demonstrated the best

performance, with success rates of 95%, 95%, and 93.3% respectively.

The findings of this study underscore the potential of Tsallis entropy calculations and
feature extraction methods in diagnosing individuals with vestibular system (VS)
disorders. This approach not only introduces a novel perspective for diagnosis and
monitoring but also aims to enhance the accuracy and objectivity of assessments in
clinical settings. Moreover, the results advocate for their integration in clinical
scenarios for improved diagnosis, monitoring, and treatment evaluation. With further
research and refinement, these techniques could lead to significant advancements in
vestibular rehabilitation, ultimately elevating the quality of life for those with balance

impairments.

4.1 Comprehensive Results Presentation

In this section, a comparative analysis will be conducted between the data collected

from individuals with a disorder in the Vestibular system and that obtained from
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healthy subjects. The comparison will commence from the fourth stage of a sensor
data, as described in the section 3.2 section. This comparative approach is integral to

understanding the nuances and intricacies of the sensory data and how it reflects the

physiological disparities between the two groups.
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Figure 4.1: (a, ¢) Visualization of interpolated sensory data and the trend curve of
healthy and VS diseased subjects. (b) Visualization of detrended data from a healthy
subject. (d) Visualization of detrended data from a subject with a vestibular system
disorder.

Figure 4.1 facilitates the observation of discernible variations in the behavior of sensor
S3 when comparing healthy and VS diseased individuals. Additionally, it visually
presents the detrended data, which represents the disparity between step data and the

trend curve.

Furthermore, figure 4.1 provides a comprehensive visual analysis of sensor S3,
enabling the identification of significant differences between healthy and VS diseased
individuals. The graphical representation depicted in figure 4.2 illustrates a notable
distinction in the bin distributions of histogram between a healthy individual and an

individual diagnosed with a vestibular system disorder.
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Figure 4.2: (a) and (c¢) Visualization of absolute expressions of the detrend data,
restricting of the data-free segments from the dataset, and step-by-step entropy
values of a healthy subject and VS diseased subject. (b) and (d) Visualization of a
histogram depicting the absolute expression of detrended data obtained from a
healthy subject and VS diseased subject.
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These visual representations provided by figure 4.1 and figure 4.2 enable a
comprehensive analysis of gait patterns and sensor behavior in individuals with
vestibular system disorders compared to healthy individuals. By examining the
discernible variations in sensor S3's behavior in figure 4.1, one can gain insights into
the impact of vestibular system disorders on locomotion. Moreover, figure 4.2 further
highlights the significant disparity in bin distributions of the histogram, emphasizing
the distinct characteristics between a healthy individual and someone diagnosed with
a vestibular system disorder. Such visual analyses are pivotal as they translate intricate
numerical data into more digestible visual formats. This facilitates quicker decision-
making processes for clinicians and provides researchers with a clearer direction for
subsequent investigations. Together, these graphical representations offer valuable
visual cues for understanding and comparing the effects of vestibular system disorders

on gait and sensor data.

In Figure 4.2, the detrended data graphs, derived from figures 4.1b and 4.1d, are
presented with their absolute values. The histograms generated from these graphs can
also be observed. Notably, in Figures 4.2a and 4.2c¢, the black bars signify the inactive

durations associated with the respective sensor.

Based on the selected sample subjects and their corresponding sensor data from the
research study, the maximum incremental change in the TE value was observed to be
0.63 for a healthy participant. Conversely, a value of 0.99 was recorded for an
individual diagnosed with a vestibular system disorder. For the entire gait cycle, the
comprehensive TE value was determined to be 1.243 for the healthy individual, while
a value of 2.356 was registered for the affected party. All TE values for these sample
subjects, based on the sensor data, are tabulated in Table 4.1. A consolidated
visualization of the TE values for the entire gait cycle across all participants is

presented in figure 4.3.

Table 4.1: TE values calculated from each sensor’s data for sample subjects.

Healthy Subject (no. 22) VS Subject (no. 30)
Sensor Entire Gait Stepwise Max Entire Gait Stepwise Max
SO 1.39 0.98 1.29 0.80
S1 2.15 0.83 2.10 1.02
S2 1.38 0.72 1.58 1.03
S3 1.24 0.63 2.36 0.99
S4 1.08 0.87 1.61 1.08
S5 1.38 0.79 1.96 0.67
S6 1.36 0.82 1.64 0.17
S7 1.54 0.86 1.98 1.56
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Figure 4.3: Box plot of the entire-gait TE values for all participants. S: sensor, H:
healthy, VS: diseased.

As delineated in section 3.2.7, thirty-two classifiers from Matlab's Classification
Learner Tool were trained using sixteen features per subject. This training process
employed sixteen distinctive features for each individual subject. Notably, these
features were constituted by eight distinct total entropy levels, one for each sensor.
Additionally, there were eight deviations from the zero values of entropies, which were
measured from one step to the next for every sensor in the set. The average accuracies
of the principal classification algorithms are catalogued in table 4.2. For deeper
insights, table 4.3 showcases the confusion matrices, while figure 4.4 offers a visual
representation through the corresponding Receiver Operating Characteristic (ROC)
curves. These are particularly for one of the ten training-test set pairs that represent the

top-performing three classifiers.

Table 4.2: Accuracy of Major Classification Algorithms

Algorithm Accuracy (%)
SVM (Gaussian) 95.0
Logistic Regression 95.0
KNN (Cosine) 93.3
Neural Network (Wide)  93.3
Kernel (SVM) 91.7

Ensemble (Bagged Tree) 88.3
Naive Bayes (Kernel) 86.7
Quadratic Discriminant ~ 78.3
Decision Tree (Fine) 73.3
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Table 4.3: Confusion Matrices for One Of The Ten Training-Test Set Pairs

Predicted SVM (Gaussian) Logistic Regression KNN (Cosine)
Class H D H D H D
H 30 0 29 1 28 2
D 3 27 2 27 2 28
H — Healthy, D — Diseased
L @ | Jtedem  (b) | e @
i

AUC =090 2 AUC = 0.09 2 AUG =099

True posilive rate

0 02 0.
False posilive rate

04
False positive rate False positive rate

Figure 4.4: ROC curves associated with (a) the support vector machine (SVM)
model with Gaussian kernel, (b) logistic regression, and (c) the k-nearest neighbors
(KNN) algorithm using cosine similarity in Table 4.3.

Table 4.4 offers an intricate exploration into the efficacy and reliability of the top two
classification algorithms. This in-depth tabulation serves as an instrumental tool in
quantifying the performance metrics of these algorithms. The need for such a
comprehensive table stems from earlier observations that highlighted distinct
variations in sensor behaviors between healthy individuals and those diagnosed with
vestibular system disorders. Such variations underscore the intricacies and
complexities of the underlying data patterns. Given this context, it becomes imperative
to not just rely on surface-level observations but to delve deeper into performance
metrics. Moreover, in the evolving realm of data science and medical diagnosis,
leveraging advanced algorithms is key to ensuring accurate and timely patient
assessment. This ensures that the classification algorithms employed are not just
theoretically apt, but they also demonstrate empirical effectiveness in differentiating
between the two distinct groups. By scrutinizing these metrics, researchers and
practitioners can achieve a heightened confidence in the algorithms' capacity to discern

and categorize data, thereby solidifying the scientific robustness of the study.

The metrics highlighted in Table 4.4 not only validate the robustness and precision of
the SVM (Gaussian) and Logistic Regression algorithms, but they also emphasize their
ability to effectively distinguish between the unique sensor patterns of the two studied

groups.
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Table 4.4: Some statistical data about the top two classification algorithms.

Statistical Property SVM (Gaussian) Logistic Regression
accuracy (%) 95.0 95.0
sensitivity (%) 91.6 94.0
specificity (%) 97.9 95.1
F1 Score 0.945 0.943
MCC 0.899 0.891

4.2 Performance Evaluation of the Proposed Algorithm

The comparison of various trend generation algorithms in machine learning is
paramount to understanding the efficacy of the algorithms being developed. For the
purpose of this study, and to ascertain the effect of the proposed trending algorithm,
trend curves were meticulously created using 2nd, 3rd, and 4th-degree curve-fitting
polynomials. Subsequently, their influence on the performance and success rates of
machine learning models was critically evaluated. The success percentages, along with
classification accuracies achieved using these distinct trend generation methods, are

comprehensively presented in Table 4.4.

Table 4.5: Classification accuracies with different trend generation methods.

Classification Proposed gzui}; Third Degree  Second Degree
Model Algorithm Poly r%omial Polynomial Polynomial
oM 95.0% 81.7% 76.3% 71.7%
Logistic o o 0 o
Regression(LR) 95.0% 76.3% 78.3% 63.3%
KNN - Cosine 93.3% 78.3% 70.0% 66.7%
0
05 0% S&Zﬂf’ 83.3% 83.3%
Best Method (with SVM- Ensemble (with Decision (with
G & LR) Subsp ‘ Trees-. Ensemble-
Discr ) Fine/Medium) Bagged Trees)

The results of this comparison highlight the significance of the proposed trend
generation algorithm. By developing an algorithm specifically tailored for trend
generation in the context of the analyzed data, it is possible to achieve higher success
percentages in machine learning tasks compared to using traditional polynomial-based
approaches. This demonstrates the effectiveness of the developed algorithm in

capturing the underlying trends and patterns present in the data.
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The ability to accurately capture trends is crucial in machine learning as it directly
impacts the performance and predictive capabilities of the models. By employing the
proposed algorithm, which is designed to generate trend curves optimized for the
characteristics of the dataset, the machine learning models can better capture and

utilize the inherent trends in the data, leading to improved accuracy.

Overall, the proposed trend generation algorithm plays a crucial role in enhancing the
performance of machine learning models by accurately capturing the underlying trends
in the data. Its effectiveness, adaptability, and ability to outperform traditional
polynomial-based approaches highlight its importance and its potential for improving

various applications, ranging from data analysis to predictive modeling.

4.3 Visual Comparison of Gait Processing

In this section, a comparative analysis is presented, based on force data derived from
two groups: healthy individuals and those diagnosed with vestibular system disorders.
The analysis leverages data processing techniques and feature extraction methods to
reveal distinct differences in gait patterns between these groups. These findings are
significant, as they demonstrate the effectiveness of these methods in identifying
variations in gait, which is crucial for diagnosing and monitoring vestibular system
disorders. This analysis offers healthcare professionals a valuable tool for the

assessment and management of such conditions.

To provide a comprehensive understanding, the section includes a series of figures in
Appendix A, labelled from Figure A.1 to A.7. Each figure visually represents the
differences in gait patterns between the two groups, illustrating the impact of each data
processing step. This visual representation aids in highlighting the nuanced differences

in gait patterns, further supporting the findings of the comparative analysis.

4.4 Summary of Findings

The findings of this study demonstrate the effectiveness of Tsallis entropy calculations
and feature extraction methods in analysis of gait data for individuals with vestibular
system disorders. The gait data was collected using insole force sensors, offering a
detailed and reliable source of information. The data collection was optimized to a

short span of 10-15 seconds, which is considerably shorter than most experiments in
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the literature. The data processing pipeline successfully generated meaningful features
that captured distinctive gait patterns in individuals with vestibular system disorders.
Through machine learning classification, the study achieved high accuracy in
differentiating between healthy individuals and those with vestibular system disorders.
This highlights the potential of entropy-based features as objective indicators for the

diagnosis and monitoring of vestibular system disorders.

4.5 Final Conclusion and Key Insights

In conclusion, this study provides evidence supporting the use of Tsallis entropy
calculations and feature extraction methods as potential tools for analysis of gait data
in individuals with vestibular system disorder. The comprehensive data processing
approach employed in this research facilitated the identification of significant
differences in pressure analysis data between healthy individuals and those with
vestibular system disorder. The extracted entropy-based features demonstrated their

potential as objective indicators for the assessment of vestibular system disorders.

Moreover, the classification results obtained through machine learning techniques
underscored the discriminative power of these features. SVM (Gaussian kernel), KNN
(Cosine), and Logistic regression emerged as the top-performing classifiers, further
supporting the utility of entropy-based features in distinguishing between healthy

individuals and those with vestibular system disorder.

These findings hold implications for clinical practice, suggesting the integration of
Tsallis entropy calculations, machine learning algorithms, and longitudinal monitoring
in the diagnosis and monitoring of vestibular system disorders. By adopting these
recommendations, clinicians can enhance their understanding of gait patterns, improve

diagnostic accuracy, and make informed treatment decisions.

Employing Tsallis entropy in gait data analysis reveals intricate nuances of gait
patterns specific to individuals with vestibular system disorders. Furthermore, the
integration of machine learning, especially classifiers like SVM, KNN, and Logistic
regression, adds substantial value; these tools adeptly discern subtle differences in gait
patterns, presenting a notable advancement in diagnostic methodologies. By

synergizing Tsallis entropy with machine learning, this research proposes a more
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objective and data-driven approach in diagnosing and monitoring vestibular system

disorders.

Further research involving larger-scale studies and diverse populations is warranted to
validate the findings and explore the applicability of these methods in different disease
conditions. Continued advancements in gait data analysis techniques offer promising
avenues for improving the assessment, diagnosis, and management of vestibular

system disorders, ultimately leading to better patient outcomes.
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5. DISCUSSION AND RECOMMENDATIONS

This thesis presents the key findings and implications of a study investigating the
potential applications of Tsallis entropy calculations and feature extraction methods in
the diagnosis and monitoring of individuals with vestibular system disorders. The
study employed a comprehensive data processing pipeline to analyze gait data and
extract meaningful features for characterizing gait patterns. Machine learning
techniques were utilized to classify individuals as healthy or having a vestibular system
disorder based on the extracted features. The results highlight the significance of
entropy-based features in distinguishing between the two groups. This conclusion
section summarizes the main findings, discusses the implications of the study, explores
potential applications in vestibular system disorder diagnosis, addresses limitations,

and suggests future research directions.

5.1 Discussion on Entropy-Based Findings

This study aims to discover novel features for the identification of diseases related to
the vestibular system, with the objective of enhancing detection accuracy and reducing
the duration of data acquisition. In this direction, the objective is to utilize the Tsallis
entropy method on relatively short walking data to extract features that can
differentiate between healthy and diseased individuals. Based on the results of this
study, noticeable differences were shown in gait data. Feature extraction using Tsallis
entropy calculations obtained through data processing methods has emerged as a
potential tool for the diagnosis and monitoring of individuals with vestibular system
disorder.

The data processing methods used in this study aim to obtain meaningful features from
relatively short gait. Six stages, namely normalization, step analysis, interpolation,
detrending, Tsallis entropy calculations, and feature extraction, were employed to
process the data and perform a detailed analysis. These stages were applied to present

the dataset in a more understandable and concise manner. These features play a
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significant role in identifying the characteristics of gait patterns in individuals with
vestibular system disorder during pressure analysis.

Tsallis entropy calculations were performed based on the histograms of detrended data.
The aim was to establish meaningful connections using the total entropy levels for
each sensor and the deviations of step-wise entropy changes from zero. The
measurement of how much the step-wise deviations of entropy values deviate from
zero was used for feature extraction. The results indicate notable differences,
particularly in the feature extraction stage where Tsallis entropy calculations and step-
wise entropy changes were evaluated. Compared to healthy individuals, the entropy
levels and step-wise entropy changes in pressure analysis data of individuals with
vestibular system disorder show significant variations. These findings highlight the
importance of entropy-based features that can be used as potential indicators for the
objective assessment of vestibular system disorders.

In the final stage, machine learning was performed using sixteen features for each
subject through classification learning. The aim was to identify classifiers capable of
distinguishing between healthy individuals and those with vestibular system disorder.
SVM (Gaussian kernel), KNN (Cosine), and Logistic regression were identified as
classifiers that showed the best performance.

Based on the results of this study, Tsallis entropy calculations and feature extraction
methods appear to be potential tools for analysis of gait data in individuals diagnosed
with vestibular system disorder. This approach, used to detect differences between
healthy individuals and those with vestibular system disorder, may offer a new

perspective for the diagnosis and monitoring of vestibular system disorders.

5.2 Implications of the Study

The implications of this study are twofold. Firstly, the utilization of Tsallis entropy
calculations and feature extraction methods provides a new approach for analyzing
gait data in individuals with vestibular system disorders. This objective assessment
tool can assist healthcare professionals in diagnosing and monitoring the condition,
leading to improved treatment and management strategies. Secondly, the study
highlights the importance of entropy-based features in gait data analysis research, not

only for vestibular system disorders but also for other related neurological conditions.
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The findings open doors for further exploration and application of entropy-based

analysis in various clinical settings.

5.3 Limitations

While this study provides valuable insights into the potential of Tsallis entropy
calculations and feature extraction methods, there are limitations to consider. Firstly,
the study focused on a specific group of individuals with vestibular system disorders,
limiting the generalizability of the findings to broader populations. Future research
should include larger sample sizes and consider individuals with various types and
severities of vestibular system disorders. Additionally, the study did not explore the
influence of factors such as stress or comorbidities on results, which could be potential

areas for further investigation.

Furthermore, the study primarily compared data from VS diseased individuals to
healthy individuals. Future studies should explore the differentiation of specific
vestibular disorders and compare the results to relevant clinical measures. Moreover,
the study solely focused on analysis of force data; future research could investigate the
potential of Tsallis entropy calculations in other aspects of vestibular system
assessment, such as balance and posture analysis. Nonetheless, the findings of this
study provide valuable insights into the potential utility of Tsallis entropy calculations
and feature extraction methods for diagnosis VS diseased individuals, opening up new

possibilities for enhanced diagnosis and treatment strategies in this population.

Further research with larger-scale studies and a broader range of disease conditions is
needed to address these limitations and enhance the validity and applicability of the

proposed methods.

5.4 Future Study

The current study provides a foundation for future research in the field of gait data
analysis for vestibular system disorders. Further investigations should focus on
validating the effectiveness of Tsallis entropy calculations and feature extraction
methods using larger and more diverse participant groups. Additionally, the
application of these methods to different disease conditions within the realm of

vestibular dysfunction would enhance the understanding of the underlying gait
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abnormalities. Longitudinal studies tracking the progression of vestibular system
disorders and the evaluation of treatment outcomes using these methods could provide

valuable insights into disease management and rehabilitation strategies.

5.5 Potential Applications in Vestibular System Disorder Diagnosis

In this study, an innovative algorithm was developed to determine the trend curve at
each step, which showed superior performance in comparison to other curve fitting
methods. This can enhance the analysis and accuracy of gait patterns in clinical

practice.

The potential applications of Tsallis entropy calculations and feature extraction
methods in vestibular system disorder diagnosis are significant. By incorporating these
methods into clinical practice, healthcare professionals can obtain quantitative and
objective measurements of gait patterns. This can aid in the accurate diagnosis of
vestibular system disorders, allowing for early intervention and personalized treatment
plans. Additionally, the objective nature of entropy-based features reduces subjectivity

in the diagnosis process and enhances the overall reliability of assessments.

5.6 Recommendations for Clinical Practice

The findings of this study have significant implications for clinical practice in the
diagnosis and monitoring of individuals with vestibular system disorder. The
utilization of Tsallis entropy calculations and feature extraction methods can provide
valuable insights into gait patterns and serve as objective assessment tools. These
techniques can aid clinicians in the accurate diagnosis and ongoing monitoring of
vestibular system disorders. Based on the results, we recommend the following

practices for clinical application:

1. Incorporating Tsallis entropy calculations: Clinicians should consider
integrating Tsallis entropy calculations into their assessment protocols for gait
data analysis. This approach can provide additional quantitative measures to
complement subjective evaluations, enabling a more comprehensive

understanding of gait patterns.

2. Integration of machine learning algorithms: The utilization of machine learning

algorithms, such as SVM (Gaussian kernel), KNN (Cosine), and Logistic
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regression, can enhance the diagnostic accuracy and efficiency of analysis of
gait data in individuals with vestibular system disorder. Clinicians should
familiarize themselves with these algorithms and consider their

implementation in clinical settings.

Longitudinal monitoring: Given the potential of entropy-based features in
tracking changes in gait patterns, longitudinal monitoring of individuals with
vestibular system disorder is recommended. Regular assessments using Tsallis
entropy calculations and feature extraction methods can help evaluate the
effectiveness of interventions, track disease progression, and inform treatment

decisions.
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APPENDIX A: Comparative Figures for All Stages of Data Processing and Analysis.
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Figure A.1: Normalization and cropping of raw sensor data (Stage 1) for (a) healthy and (b) subject with vestibular system dysfunction.
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Figure A.2: Step Analysis (Stage 2) of (a) healthy and (b) subject with vestibular system dysfunction.
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Figure A.3: Interpolation of raw sensor data (Stage 3) of (a) healthy and (b) subject with vestibular system dysfunction.
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Figure A.4: Trend curve of each step data in the interpolated data (Stage 4) of (a) healthy and (b) subject with vestibular system dysfunction.
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Figure A.5: Obtaining the detrend data (Stage 4) of (a) healthy and (b) subject with vestibular system dysfunction.
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Figure A.6: Absolute value of detrended data and step-wise entropy values (Stage 5) of (a) healthy and (b) subject with vestibular system
dysfunction.
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Figure A.7: Histogram graph and total entropy values (Stage 5) of (a) healthy and (b) subject with vestibular system dysfunction.
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APPENDIX B: Matlab Codes for All Stages of Data Processing and Analysis.

Stage 1 — Data Normalization and Cropping

The primary objective of this document is to standardize the accessible data by removing
unsuitable sections for gait analysis. It involves visualizing these procedures and
generating normalized and cropped datasets as output.

» A) Importing Raw Datasets

» B) Important Variables

» C) Trimming & Plotting of Raw Data
V¥V D) Processing of Data

Utilizes eight time-series sensor data collected from the designated participant. Firstly,
the dataset is normalized within the range of 0 to 1. Subsequently, the segments relevant
for gait analysis are identified and annotated within the datasets. Notifications are
generated for any sensor data that could not be obtained. These procedures result in the
creation of .png files, which are stored in individual folders corresponding to each
participant. The normalized and cropped datasets are then consolidated into a single .mat
file, which is saved in the designated folder.

o Dataset_: Raw datasets of all participants as type of struct.

e Frames_: All Frames as type of cell array, specifying sections that are
suitable for data analysis.

e HEVS: Indication of Healthy or VS participants. 1: Healthy 2: VS

e No: Participant Number 1 to 30.

¢ Hide: Hide participants' names in plots.

e [NDS]: Normalized & cropped dataset of related participant.

function [NDS] = ProcessData(Dataset_, Frames_, HEVS, No)

frames = cell2mat(Frames_(HEVS, No));

% Normalization to range of © - 1
min_val = min(min(Data));

Data = Data - min_val;

max_val = max(max(Data));

Data = Data / max_val;

% Cropping the dataset from the frame boundaries
NDS = Data(:, Frames(1):Frames (2));

end

69



Stage 2 — Step Analysis

The purpose of this file is to perform the necessary pre-processing steps on the sensor
data prior to interpolation. These steps include separating the sensor data into left and
right feet, identifying the start and end points of each step, and capturing various
attributes such as step duration and foot pressure duration.

» A) Importing Normalized Datasets
» B) Important Variables

» C) Step Analysis

V¥V D) Processing of Data

In this section, the sensor data is initially segregated based on the feet. Subsequently,
the fixed data sensors are identified. Next, the individual steps taken by each foot are
determined. The push time, repetition time, and position of these steps within the
normalized dataset are computed. Finally, all of these procedures are visually depicted
and saved in a designated folder for inspection.

o Dataset_: Normalized datasets of all participants as type of struct.

e Threshold_: Threshold value for detecting abnormal steps.

o HEVS: Indication of Healthy or VS participants. 1: Healthy 2: VS

e No: Participant Number 1 to 30.

e Plot_: Plot and export result. (Significantly affects processing time.)

¢ [info]: contains the positions of the starting and ending points of right

and left steps in the normalized dataset. It also includes calculated

values such as step times, periods...
function [info] = ProcessData(Dataset , Threshold , HEVS, No, plot )

th_ns_r = Threshold (1); % Non-step treshold value right
th_ns_1 = Threshold (2); % Non-step treshold value left
7 conornr s RIGHT FOOT ~nammmanammnnnn

% Combining four sensor data of a foot with the maximum operator.
maxin = max(Data(1:4,:));

% A series of loop operations to detect steps.
for i = 2:1length(maxin)

end

% Contact Time and Step Period Calculation
Contact_Time_Right = Step_Right(2,:) - Step_Right(1,:);
for i = 2:1length(Step_Right(1,Step Right(1,:)>0);)

Period _Right(i-1) = Step_Right(1,i) - Step_ Right(1,i-1);
end

end
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Stage 3 — Interpolation

The objective of this file is to merge the step data acquired in the preceding stage and
execute the interpolation of said data. Since these procedures are conducted for every
participant, it may take approximately 5-10 minutes. Consequently, we will carry out the
creation of the histogram in the subsequent phase.

» A) Importing Normalized Datasets
» B) Important Variables
» C) Interpolation of Sensor Data

V¥V D) Processing of Data

In this section, the sensor data is initially segregated based on the feet. Subsequently, the
fixed data sensors are identified. Next, the individual steps taken by each foot are
determined. The push time, repetition time, and position of these steps within the
normalized dataset are computed. Finally, all of these procedures are visually depicted
and saved in a designated folder for inspection.

o Dataset_: Normalized & Clipped datasets with step information of all
participants as type of struct.

e HEVS: Indication of Healthy or VS participants. 1: Healthy 2: VS

e No: Participant Number 1 to 30.

¢ Method: Interpolation method.

e Coeff: Resolution enhancement coefficient.

e Plot_: Plot and export result. (Significantly affects processing time.)

e [Processed_Dataset]: Output containing the interpolated and non-
interpolated right and left foot sensors added one after the other when
the foot touches the ground.

function [Right_Step, Left_Step] = ProcessData(Dataset_, HEVS, No,
Method, Coeff, plot )

rsl = 0.05; % Raw Data Resolution [sn/data]

cof = 1/Coeff; % Interpolated Data Cooefficent. It means new resolution
is rsl*cof [sn/data]

t = 1:total length;

t = t¥*rsl;

tnew = 1:cof:total_length;

tnew = tnew*rsl;

inter = interpl(t, AllSteps, tnew, Method);

end
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Stage 4 — Detrending of Interpolated Dataset

The primary objective of the present document is to eliminate the inherent trend observed
within the interpolated data. Throughout the execution of this procedure, the ultimate goal
is to visually represent the computed polynomial for every iterative step undertaken.

» A) Importing Interpolated Datasets
» B) Important Variables
» C) Detrending of Interpolated Data
V¥V D) Processing of Data

In this section, firstly, all the information and dataset obtained in the previous stages are
imported. In the initial step, the interpolated data is reconstructed using a simplified
approach. In the second step, a threshold level for this dataset is determined, and a
quadratic detrend polynomial is calculated for each fluctuation step within the dataset.
These detrend polynomials are then plotted on the graph. Subsequently, the detrended
data is visualized in its new form, and the output of all the work is saved in the designated
folder.

o Dataset_: All the information & dataset obtained in the last stages.

e HEVS: Indication of Healthy or VS participants. (1:Healthy, 2:VS)

e No: Participant Number 1 to 30.

o Affinity: Trend variation coefficient - affinity coefficient.

e Thresh_: Degree of trend polynomial equation.

e Plot_: Plot and export result. (Significantly affects processing time.)

e [StepR_Data_S2]: Detrended Dataset of Right Foot.

e [StepL_Data_S2]: Detrended Dataset of Left Foot.
function [StepR_Data_S2, SteplL_Data_S2] = ProcessData(Dataset_, HEVS,
No, Affinity, Thresh_, Plot )

Trend = imresize(Last_Trend_Curve, [1 length(fluctuation)], 'nearest');
old error = mean(abs(fluctuation - Trend)); step = 0.001; found = 9;
yon = @; Distance = 0;

while ~found

predicted_trend = Trend * (1 - Distance) + C * Distance;

error = mean(abs(fluctuation - predicted_trend));

if error > old_error; yon = ~yon; step = step/2; end

old_error=error;

if abs(Distance) >= aff_coef || step < 0.00001; found = 1; end
end
Last_Trend_Curve = predicted_trend; Trend = predicted_trend;
Detrend = fluctuation - Trend;

end
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Stage 5 — Entropy Calculations

The primary objective of this document is to generate a graphical representation,
specifically a histogram, of the data that has undergone both detrending and interpolation
processes. Subsequently, the calculation of Tsallis entropy will be carried out on the
aforementioned data.

» A) Importing Dataset

» B) Important Variables

» C) Histogram and Entropy Study
V D) Processing of Data

In this section, initially, all the information and dataset obtained in the preceding stages
are imported. In the first stage, the detrended interpolated data is regraphed using a
straightforward approach. In the second stage, histograms of these data are analyzed and
plotted. Finally, the entropy calculation is executed, and the visual representation of the
analysis is saved to the designated folder.

o Dataset_: All the information & dataset obtained in the last stages.

e HEVS: Indication of Healthy or VS participants. 1: Healthy 2: VS

e No: Participant Number 1 to 30.

e Bin_Width: Bin width of histogram.

e Method: Entropy calculation method.

¢ Param: Parameter of entropy calculation method if there is any.

e Plot_: Plot and export result. (Significantly affects processing time.)

e [Probability]: Probability values in the Histogram.

e [Entropy]: Calculated entropy values.

e [EES]: Entropy values for each steps.

function [Probability, Entropy, EES] = ProcessData(Dataset_, HEVS, No,
Bin_Width, Method, Param, Plot )

subplot(8,2,2*i);

Hs = histogram(Detrended_Data, rsl_his, Normalization="probability",
FaceColor=colors_(i), EdgeColor='k', BinWidth = 1/rsl_his);
Probability(i,1:length(Hs.Values)) = Hs.Values; % Probabilities
Entropy(i,1) = tsallisEntropy(Probability,Param);

end

function entropy = tsallisEntropy(probabilities, parameter)

q = parameter; % Tsallis parameter
entropy = (1 - sum(Prob_nonzero.”q)) / (q - 1);

end
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Stage 6 — Feature Extraction

In order to facilitate the process of feature extraction for machine learning, employing the
acquired data is imperative. This entails identifying and isolating relevant attributes or
characteristics from the data set that can serve as inputs for subsequent machine learning
algorithms.

» A) Importing Dataset

» B) Feature Extraction

V¥ C) Processing of Data

In this section, firstly, all the information & dataset obtained in the last stages is imported.

For a better understanding of the obtained data, operations such as standard deviation
are applied. It is then tabulated and clustered as inputs/outputs.

e Dataset_: All the information & dataset obtained in the last stages.
e [Inputs]: Inputs for machine learning.
e [Outputs]: Outputs for machine learning.

function [Inputs, Outputs] = ProcessData(Dataset )

for p = 1:2 % Min-Max 1:2
for g = 1:30 % Min-Max 1:30

ifp==1
Ent = Dataset .Healthy(q).Entropy';
SSER = cell2mat(Dataset_ .Healthy(q).EES(1));
SSEL = cell2mat(Dataset_ .Healthy(q).EES(2));

else
Ent = Dataset .VS(q).Entropy';
SSER = cell2mat(Dataset .VS(q).EES(1));
SSEL = cell2mat(Dataset .VS(q).EES(2));

end

for r =1 : 4; StSER(30*(p-1) + q,r )
for r =5 : 8; StSEL(30*(p-1) + q,r-4)
Total _Entropy(30*(p-1) + q ,:) = Ent;
end

end

Evaluate(SSER(r ,:)); end
Evaluate(SSEL(r-4,:)); end

End
function [result] = Evaluate(SSE_)
SSE (1) = []; % Removing entropy value of first step

result = std([SSE_ -SSE_]); % Calculation of deviation from zero
end

74



CURRICULUM VITAE

Name Surname : Harun Yasar KOSE
EDUCATION:
e B.Sc. : 2015, Kocaeli University, Engineering Faculty,

Department of Mechatronics Engineering

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

Kose, H.Y.; Ikizoglu, S. Development of An Entropy-Based Method for
Determining the Balance Problem in Individuals, 8" International Battalgazi
Scientific Studies Congress, Sep 3, 2023 Malatya, p14-24. ISBN: 978-625-367-
296-6 (Congress Presentation & Publication)

Kose, H.Y.; Ikizoglu, S. Nonadditive Entropy Application to Detrended Force
Sensor Data to Indicate Balance Disorder of Patients with Vestibular System
Dysfunction. Entropy 2023, 25, 1385. https://doi.org/10.3390/e25101385
(Article)

75


https://doi.org/10.3390/e25101385

