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TSALLIS ENTROPY BASED 

FEATURE EXTRACTION FROM INSOLE FORCE SENSOR DATA TO 

DIAGNOSE VESTIBULAR SYSTEM DISORDERS 

SUMMARY 

The vestibular system plays a crucial role in maintaining an individual's ability to carry 

out daily activities independently and safely. This study proposes a novel approach 

using Tsallis entropy analysis of insole force sensor data to identify diseases associated 

with vestibular system dysfunction. By analyzing Tsallis entropy values of the entire 

gait cycle and change of Tsallis entropy from step-to-step, the study aims to 

differentiate between individuals with good health and those with vestibular system-

related diseases.  

A notable finding of the study is the observation that the histogram of normalized and 

interpolated sensor data contains fewer bins for healthy subjects. This reduction in the 

number of bins can be attributed to improved balance and coordination, which leads 

to reduced fluctuation around the trend curve. Unlike previous studies that focus on 

gait dynamics and require extensive walking time, this research takes a different 

approach by directly processing instantaneous force values to extract features. One key 

innovation of this research is the development of a specifically designed algorithm to 

generate the trend curve. This algorithm enables the extraction of significant insights 

even from relatively short walking sessions. By applying this algorithm, the study 

successfully extracts a feature set from the force sensor data. 

The extracted feature set is then inputted into fundamental classification algorithms. 

Among these algorithms, the Support Vector Machine (SVM) demonstrates the 

highest performance. It achieves an average accuracy of 95% in binary classification, 

effectively distinguishing between healthy individuals and those suffering from 

vestibular system-related diseases. This high accuracy indicates the potential of Tsallis 

entropy analysis as a valuable tool in identifying diseases associated with vestibular 

system dysfunction. 

This study represents a significant milestone within a comprehensive project aimed at 

identifying distinct vertigo syndromes associated with balance disorders and 

determining their respective stages, if applicable. The exceptional performance 

observed in this study serves as a compelling impetus for further exploration and 

inquiry into this matter. 

In conclusion, this study introduces a novel approach utilizing Tsallis entropy analysis 

of insole force sensor data to identify diseases related to vestibular system dysfunction. 

By extracting features and employing classification algorithms, the study successfully 

distinguishes between healthy individuals and those with vestibular system-related 

diseases with a high accuracy of 95%. This research presents a significant contribution 

to the broader project of identifying vertigo syndromes and determining their stage, 

showcasing the potential of Tsallis entropy analysis in understanding and addressing 

balance disorders associated with the vestibular system. 
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VESTİBÜLER SİSTEM BOZUKLUKLARININ 

TANISI İÇİN TABANLIK KUVVET ALGILAYICILARI VERİLERİNDEN 

TSALLİS ENTROPİSİ TABANLI ÖZNİTELİK ÇIKARIMI 

ÖZET 

Vestibüler sistem, günlük yaşantımızda denge ve mekansal yönelimi sürdürmede 

anahtar bir role sahiptir. İç kulakta yer alan bu kritik yapı, hareketlerimizi ve 

etrafımızdaki dünyayı nasıl algıladığımızı koordine eder. Ancak, bu sistemdeki 

herhangi bir bozukluk, denge ve mekansal oryantasyon yeteneklerimizi ciddi şekilde 

etkileyebilir. Bu tip bozukluklar, bireyin günlük hayattaki aktivitelerini ve sosyal 

etkileşimlerini kısıtlayabilir. Vestibüler bozuklukların hızla ve doğru bir şekilde 

tanılanıp etkin bir şekilde izlenmesinin kritik önemi bu bağlamda daha da belirginleşir. 

Bu tez, vestibüler sistem bozukluklarından kaynaklanabilecek denge sorunlarının 

tespit edilmesine odaklanmıştır. 

Araştırmada, vestibüler sistem bozuklukları olan bireylerde yürüyüşün nasıl 

etkilendiğini anlamak için yürüyüş sırasında ayak tabanına uygulanan kuvvetin analizi 

ele alınmıştır. Bu bağlamda, kuvvet verilerini detaylıca analiz etmek için Tsallis 

entropisi kullanılmıştır. Tsallis entropisinin yürüyüş dinamiklerinin karmaşıklığını 

aydınlatmada büyük bir potansiyele sahip olduğu gözlemlenmiştir. Uygulanan bu 

yaklaşımın, yürüyüş örüntülerindeki vestibüler bozukluklardan kaynaklanan belirgin 

değişiklikleri tanımlamada önemli bir araç olduğu bulgusuna erişilmiştir.  

Entropi, dinamik bir sistemin içsel düzensizliğini ve rastgeleliğini kantitatif olarak 

değerlendirmek için temel bir parametre olarak kabul edilmektedir. Shannon entropisi, 

kısa vadeli mikroskobik korelasyonlara sahip sistemlerin yapısını tanımlamada 

etkilidir. Tsallis entropisi, Shannon entropisinin genelleştirilmiş bir varyasyonu olarak, 

sistem karmaşıklığı ve yapısal özelliklerin kantitatif analizinde önemli bir role sahiptir. 

Uzun süreli etkileşim karakteristiği gösteren sistemlerde, Tsallis entropisinin 

genelleştirilmiş yaklaşımı, zaman serilerinin içerdiği gizli bilgilere detaylı bir şekilde 

erişebilir; bu, geleneksel yöntemlerle elde edilemeyen önemli içgörüler sağlar.  

Vestibüler sistemle ilişkili yürüyüş verisinin analizi, karmaşık biyolojik sistemlerin 

doğası gereği doğru bilgi çıkarımı için karmaşık analiz yöntemlerine ihtiyaç duyar. 

Yürüyüş parametrelerinin analizinde Tsallis entropisinin kullanılması, bu yöntemin 

biyolojik sistemlerdeki doğrusal olmayan ve uzun menzilli korelasyonları ele alabilme 

yeteneğinden ileri gelmektedir. Tsallis entropisi, bu kompleks etkileşimleri esnek bir 

şekilde karakterize edebilir. Bir örnek olarak, literatürde elektroensefalografi (EEG) 

sinyallerinin analizinde Tsallis entropisi yöntemi kullanılmaktadır. Bu örnekte Tsallis 

entropisi, anormal beyin aktivite modellerini tanımlamada ve farklı beyin durumları 

arasında ayrım yapmada olumlu sonuçlar sağlamaktadır. Bu bağlamda, Tsallis 

entropisi yöntemi, yürüyüş verisi analizi gibi karmaşık sistemlerde bilgi içeriğini 

değerlendirme imkânı sağlar; bu da araştırmacılara yürüyüşün özelliklerine ve farklı 

durumlardaki bireylerdeki varyasyonlarına dair değerli bilgiler kazandırır. 
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Literatürde yer alan araştırmalara göre, yürüyüş verisinin analizlerinde, ayak 

tabanlarındaki ağırlık dağılımının dört ana noktada belirgin bir etkisi olduğu tespit 

edilmiştir. Bu dört ana nokta göz önünde bulundurularak, tabanlıklarda kuvvet 

algılayıcıları stratejik bir şekilde yerleştirilmiştir. Yürüyüş sırasında her bireyden, her 

ayakta dört, toplamda ise sekiz algılayıcı kullanılarak veri alınmıştır. Bu veri, tabanlık 

kuvvet algılayıları aracılığıyla bir Arduino Mega ünitesine kaydedilmiş ve ardından 

bir HC-06 Bluetooth modülü ile bir diz üstü bilgisayara aktarılmıştır. Ölçüm 

esnasında, her algılayıcıdan saniyede 20 örnek alınarak veri toplama 

gerçekleştirilmiştir. Tüm bu süreçte, odyologların görüş ve önerileri doğrultusunda 

çalışmalar yürütülmüştür. Katılan bireyler hakkında ağırlık, yaş gibi çalışmamıza 

yönelik detaylı bilgiler alınarak, hastalıklarının dağılımı dikkatlice kaydedilip 

değerlendirilmiştir. Araştırma sürecinde katılımcıların gizliliği titizlikle korunmuş ve 

etik ilkelere sıkıca riayet edilmiştir. 

Özellikle yürüyüş verilerinin değerlendirilmesi gibi karmaşık analizlerde, veri 

işlemenin rolü, detaylı içgörü kazandırmak açısından kritiktir. Bu bağlamda, bu 

çalışmanın kapsamı dahilinde uygulanan veri işleme süreci, optimize edilmiş altı 

aşamalı bir süreç olarak tanımlanmıştır. İlk aşama olan normalize etme aşamasında, 

ham algılayıcı verileri, farklı bireyler arasında karşılaştırılabilir olmaları amacıyla 

normalize edilmiştir. Bu süreçte, analize uygun olmayan kısımlar veri setlerinden 

çıkarılmıştır. İkinci aşamada adım analizi gerçekleştirilmiştir. Bu aşamada, bireyin sağ 

ve sol ayağı için algılayıcılardan elde edilen veriler iki grup halinde 

değerlendirilmiştir. Geliştirilen algoritmalar yardımıyla, yürüme sırasında ayağın 

zeminle temas ettiği ve zeminden ayrıldığı anlar tespit edilmiştir. Daha sonrasında 

sensör verileri, yürüyüş adımlarına göre segmentlere ayrılmış, bu da yürüyüş 

modelinin daha ayrıntılı incelenmesine olanak sağlamıştır. Üçüncü aşama olan 

interpolasyon aşamasında öncelikle her sensör veri seti ayrı ayrı ele alınarak ayağın 

zeminle temas etmediği segmentler veri setlerinden çıkarılmıştır. Daha sonra, sensör 

verilerinin çözünürlüğü yirmi kat artırılacak şekilde interpolasyona tabi tutulmuştur. 

Bu titiz süreç, sadece verilerin hassasiyetini optimize etmekle kalmayıp, aynı zamanda 

yeterli örnek sayısına sahip kutucukları içeren histogram temsiline ulaşmayı da 

kolaylaştırmıştır. Veri setine yeni değerler eklenirken, verinin doğru temsilini koruma 

amacı güdülerek lineer interpolasyon yöntemi tercih edilmemiştir. Bunun yerine, 

verinin bütünlüğünü koruyarak daha doğru ve pürüzsüz bir temsil sağlaması nedeniyle 

kübik Hermite interpolasyon yöntemi benimsenmiştir. Bu yöntem, bireylerin yürüyüş 

desenlerinin çözünürlüğünü artırırken, daha gerçekçi bir veri setinin elde edilmesini 

mümkün kılmıştır. Dördüncü aşama olan verinin trendden arındırılması (Detrending) 

aşamasında, veri setlerinde yer alan trendlerin belirlenerek veri setlerinden 

çıkarılmasını amaçlanmıştır. Bu yöntem, trendden bağımsız olarak ortaya çıkan 

değişiklikleri daha hassas bir şekilde değerlendirmeye olanak tanır. Böylece, elde 

edilen sonuçların doğruluğunu artırarak daha güvenilir analiz sonuçlarına ulaşılmasına 

katkı sağlar. Bu araştırmanın önemli bir yeniliği, trend eğrisini oluşturan özel olarak 

tasarlanmış bir algoritmanın geliştirilmesidir. Verinin trendden arındırılması 

aşamasında, önerilen algoritma adım verilerinin eğilimini tespit eder. Bu algoritma, 

bir adıma ilişkin her veri noktasını bir alfa katsayısıyla ağırlıklı ortalama alarak bir 

önceki adıma ilişkin eğilim eğrisi ile birleştirir. Böylece bir trend eğrisi oluşturulur. 

Bu yöntem, ağırlıklı ortalama katsayısını iteratif olarak ayarlayarak hata miktarını 

minimize eden bir yaklaşım sunmaktadır. Belirli alfa ve hata eşik değerlerinin kesin 

bir biçimde belirlendiği bu yöntem, yürüyüş trendinin elde edilmesini ve bu trend 

etrafındaki veri dalgalanmasının ortaya çıkarılmasını sağlar. Bu yaklaşım, bireylerin 

yürüyüşlerindeki özgün dalgalanmaları yakalamayı ve yürüyüş verilerini trendlerinden 
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arındırmayı hedefler. Beşinci aşamada, Tsallis entropisi değerleri hesaplamaları 

gerçekleştirilmiştir. Tsallis entropisi, entropi değerini belirleyen önemli bir parametre 

olan q'ya bağlıdır. Bu parametre, olasılık dağılımının geniş bir spektrumda 

ölçülmesine ve sistem özelinde daha hassas analizlere imkân tanır. Q parametresi, 

sistem özelliklerine göre ampirik yöntemlerle belirlenir ve bu çalışmada optimal q 

parametresi ampirik yöntemlerle 0.82 olarak belirlenmiştir. Tsallis entropisi 

hesaplamaları hem tüm yürüyüş için hem de her bir adım için ayrı ayrı 

gerçekleştirilmiştir. Bu yaklaşım, vestibüler sistem bozukluğu olan bireylerin yürüyüş 

dinamiklerinin daha kapsamlı değerlendirilmesini mümkün kılmıştır. Altıncı ve son 

aşamada kısa yürüyüş verilerinden elde edilen Tsallis entropisi değerleri kullanılarak 

sağlıklı ve hastalıklı bireyler arasında ayırt edici öznitelikler tespit edilmeye 

çalışılmıştır. Bu aşamanın soucunda makina öğrenimi için iki öznitelik seti elde 

edilmektedir. Bu setlerden biri bireylerin yürüşlerinin tamamından elde edilen her bir 

algılayıcı için Tsallis entropisi değerleridir; diğer öznitelik seti ise her bir adıma ait 

Tsallis entropisi değerlerinin sıfırdan sapma değerleridir. 

Makine öğrenimi algoritmaları ile, kuvvet verilerinden elde edilen öznitelikler 

kullanılarak, bireyler “sağlıklı” ve “vestibüler sistem bozukluğu olan” kategorilerine 

sınıflandırılmıştır. SVM (Gaussian çekirdekli), KNN (Cosine) ve Lojistik regresyon, 

sırasıyla %95, %95 ve %93,3'lük başarı oranları ile en iyi performansı gösteren 

sınıflandırıcılar olarak tespit edilmiştir. Bu bulgular, Tsallis entropisi hesaplamaları ve 

öznitelik çıkarma yöntemlerinin, vestibüler sistem bozukluğu olan bireylerin tanısında 

etkili olduğunu göstermektedir. Sunulan metodoloji, vestibüler sistem bozukluklarının 

tanı ve izleme süreçlerinde klinik uygulamalar için potansiyel bir strateji teşkil 

etmektedir. Bu strateji, klinik değerlendirmelerin objektivitesini ve doğruluğunu 

optimize edebilir. Bu çalışma, Tsallis entropisi hesaplamalarının ve öznitelik çıkarma 

metodolojisinin, vestibüler sistem bozukluğu olan bireylerin tanısında değerli araçlar 

olabileceğini belirtmektedir. Bu yöntemlerin daha geniş ölçekli çalışmalarda 

incelenmesi, vestibüler rehabilitasyon pratiğine ve denge bozuklukları olan bireylerin 

yaşam kalitesine olan olası katkılarına daha fazla ışık tutabilir. 

Çalışmanın bulguları, Tsallis entropisi hesaplamalarının ve öznitelik çıkarma 

yöntemlerinin yürüyüş verisi analizinde yeni bir yaklaşım sağladığını göstermektedir. 

Bu objektif değerlendirme aracı, vestibüler sistem bozukluğunun tanısında ve 

izlenmesinde sağlık profesyonellerine yardımcı olabilir, daha iyi tedavi ve yönetim 

stratejilerinin geliştirilmesine katkıda bulunabilir. Ayrıca, çalışma, yürüyüş verilerinin 

analizi üzerine yapılan araştırmalarında entropi tabanlı özniteliklerin vestibüler sistem 

bozukluklarının tanı ve değerlendirmesindeki önemini vurgulamaktadır. Bulgular, 

entropi tabanlı analizin çeşitli klinik ortamlarda daha yaygın ve detaylı bir şekilde 

keşfedilmesi ve uygulanması için fırsatlar sunmaktadır. 

Bu çalışma ile elde edilen yöntemlerin klinik uygulamaya entegre edilmesi, sağlık 

profesyonellerinin yürüyüş örüntülerine ilişkin kantitatif ve objektif ölçümler elde 

etmelerine olanak tanıyabilir. Bu yaklaşım, vestibüler sistem bozukluklarının doğru 

tanısını kolaylaştırabilir, erken müdahale fırsatı sunabilir ve kişiselleştirilmiş tedavi 

planlarının oluşturulmasını teşvik edebilir. Ayrıca, entropi tabanlı özniteliklerin 

doğasının tanı sürecindeki öznel değerlendirmeleri tamamlayarak daha kapsamlı bir 

yürüyüş örüntüsü anlayışı sağlamasının yanı sıra tanıların genel güvenilirliğini 

artırması olasıdır. Bu çalışmada gözlenen yüksek performans, bu konuda daha fazla 

araştırma için bir itici güç olarak hizmet etmektedir. Bu araştırma, vestibüler sistemle 

ilişkili denge bozukluklarını anlama ve ele alma konusunda Tsallis entropisi analizinin 

potansiyelini göstererek, daha geniş bir projeye önemli bir katkı sunmaktadır. 
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1.  INTRODUCTION 

This thesis centers on the vestibular system, which plays a critical role in preserving 

balance and spatial orientation abilities in daily human life. The initial section provides 

an introduction to the fundamental functions of the vestibular system, its role in human 

life, and how disorders within this system are identified. Following this, an 

examination of the framework and contextual background will be undertaken. This 

section will outline the primary motivations of the thesis, the research problems, and 

how the objectives will be achieved. The subsequent literature review will delve into 

the current approaches to the diagnosis of vestibular system disorders, the methods 

employed, and the main challenges faced in this domain. Lastly, an evaluation will be 

made on the principal hypotheses of this study and how these hypotheses will be tested. 

1.1 Vestibular System 

The vestibular system, a complex structure located within the inner ear, serves as the 

body's primary system for detecting changes in motion and maintaining equilibrium. 

It consists of two main components: the semicircular canals, which detect rotational 

movements, and the otolithic organs, which sense linear accelerations. Together, these 

structures relay vital information about body movements and position to the brain. This 

information is then processed in conjunction with visual and proprioceptive inputs, 

allowing humans to maintain balance, coordinate head and eye movements, and 

navigate through their environment. A visual representation of these components and 

their dynamic responses can be seen in Figure 1.1. Malfunctions or disorders within 

the vestibular system can disrupt these vital processes, resulting in a range of 

symptoms that profoundly affect an individual's ability to perform everyday tasks and 

engage in social activities.  

The vestibular system, essential for maintaining balance and spatial orientation in 

humans, plays a pivotal role in daily activities and overall quality of life [1]. Disorders 

affecting this system have significant implications and require accurate diagnosis and 

effective monitoring for appropriate treatment. These disorders can manifest as 
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vertigo, dizziness, and imbalance, leading to increased risk of falls and reduced 

mobility. Early detection and intervention are essential in managing vestibular system 

disorders and improving overall patient outcomes. Analyzing gait data and extracting 

meaningful features from it is an essential tool for assessing human locomotion. This 

process is crucial in diagnosing and monitoring various medical conditions, such as 

vestibular system disorders [2]. By understanding the intricacies of changes in gait 

data within the context of vestibular system disorders, effective diagnostic and 

therapeutic approaches can be developed. 

 
Figure 1.1: Visualization of the vestibular system components and their dynamic 

responses during individual motion. 

Gait data analysis involves the systematic study of an individual's walking dynamics 

and patterns. This encompasses a detailed assessment of various attributes related to 

walking, such as force exertion, rhythmicity, speed, and consistency across distinct 

phases of the gait cycle. The gait cycle is intricately structured into two primary 

segments: the stance phase, during which the foot makes contact with the ground, and 

the swing phase, where the foot propels forward. Through comprehensive gait data 

analysis, one can identify anomalies and discrepancies that diverge from the 

standardized 'normal' gait parameters. Such variations may serve as markers for a 

range of health concerns, spanning musculoskeletal to neurological conditions. 
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1.2 Research Framework and Contextual Background 

In the following sub-sections, the focus shifts to the foundation of this research. 

Initially, the background highlights the significance of the vestibular system in human 

balance and spatial orientation. Subsequently, the purpose, existing gaps in research, 

targeted objectives, research questions, and the significance of the study are 

systematically presented. 

1.2.1 Contextual background 

The background of this research lies in the significance of the vestibular system and 

its impact on balance and spatial orientation. Vestibular system disorders can result 

from various causes, including trauma, infections, or degenerative conditions [3]. 

These disorders can lead to symptoms such as dizziness, vertigo, and unsteadiness. 

Such symptoms can severely impair the quality of life, making even mundane tasks 

challenging for the affected individuals. The repercussions of the disease extend 

beyond medical implications to social and economic impacts. People with vestibular 

dysfunctions often face challenges in their daily activities, which leads to reduced 

work productivity and increased healthcare costs. Currently, the diagnosis of 

vestibular system disorders relies heavily on subjective assessments and clinical 

examinations. Therefore, there is a need to develop objective and reliable methods for 

diagnosis and monitoring. 

1.2.2 Purpose of thesis 

This thesis aims to employ contemporary classification methods and analyze force data 

from insoles to differentiate between healthy individuals and those with vestibular 

system disorders. A novel approach is introduced, leveraging Tsallis entropy as the 

key feature for analysis. The core objective is to explore the potential of gait data 

combined with Tsallis entropy-based methods for diagnosing vestibular system 

disorders. Through a detailed analysis of pressure patterns and extraction of relevant 

features from sensor data, this research seeks to unveil indicators that can assist in an 

objective assessment of vestibular system disorders. The outcomes of this study could 

provide pivotal insights for creating innovative diagnostic and therapeutic tools for 

individuals with VS disorders. 
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Traditional diagnostic methods for vestibular system disorders often involve time 

consuming procedures, subjective interpretations, or lengthy assessment processes. 

This study's approach hopes to overcome these challenges by using a non-invasive, 

objective, and efficient method, hence potentially revolutionizing the current 

diagnostic landscape. 

1.2.3 Research gaps and rationale for the current study 

Despite the importance of accurate diagnosis and monitoring of vestibular system 

disorders, there is a research gap in the development of objective assessment tools. 

Existing methods often rely on subjective assessments and qualitative observations, 

which can introduce variability and limitations in the diagnostic process [4, 5]. 

Furthermore, the intersection of advanced data processing with gait analysis for 

vestibular disorders is still nascent, presenting a clear research opportunity. This 

research aims to bridge this gap by exploring the potential of gait data analysis and 

data processing techniques in providing objective and quantitative measures for the 

diagnosis and monitoring of vestibular system disorders. 

Building upon the findings from the literature review, several research gaps emerge, 

necessitating further investigation of vestibular system dysfunction-related balance 

disorders. Despite numerous studies in various areas of the medical field, the detection 

of vestibular disorders is an area that has not received sufficient attention yet. This 

study aims to address these gaps by utilizing Tsallis entropy calculations and feature 

extraction methods in the analysis of pressure data for individuals with vestibular 

system disorders. By leveraging the advantages of Tsallis entropy, this study seeks to 

develop a more comprehensive and objective approach for assessing gait patterns, 

enabling improved diagnosis, monitoring, and treatment evaluation in vestibular 

system disorders. 

The primary objective is to achieve swift and accurate diagnosis of vestibular system 

disorders through the analysis of rapidly collected sensor data. The utilization of 

Tsallis entropy and advanced feature extraction methods is geared towards obtaining 

high accuracy in the diagnosis process. This overarching goal emphasizes the need for 

efficient and precise diagnostics using real-time sensor data, aligning with the ultimate 

aim of enhancing the speed and accuracy of vestibular system disorder diagnosis. 
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Addressing these gaps will not only advance the scientific understanding of vestibular 

system disorders but also offer tangible benefits to patients. Through enhanced 

diagnostic techniques, patients can expect more precise treatments, potentially leading 

to faster recovery times and improved overall quality of life. Moreover, the broader 

medical community can benefit from streamlined processes, reducing the burden on 

healthcare systems and professionals. The amalgamation of these research efforts 

contributes to the ongoing pursuit of effective and objective tools for the assessment 

and management of vestibular system disorders. 

1.2.4 Research objectives 

The primary objectives of this thesis are: 

1. To rapidly acquire and accurately evaluate data for proper assessment of VS 

dysfunctions. 

2. To investigate the use of force data and determine if the identified gait features 

from it can serve as reliable indicators for assessing, diagnosing, and 

monitoring individuals with vestibular system disorders. 

3. To employ data processing techniques, including Tsallis entropy calculations, 

for feature extraction from force data obtained from insoles. 

4. To identify potential classifiers for accurate classification of individuals with 

vestibular system disorders based on the extracted features. 

By achieving these objectives, this research aims to contribute to the development of 

objective assessment tools and methods for diagnosing and monitoring vestibular 

system disorders. 

These research objectives are further elucidated by the following supporting research 

questions: 

1. What are the discernible differences in gait parameters and patterns between 

healthy and VS diseased individuals? 

2. Is using exponential polynomials sufficient to obtain the trend of gait data, or 

is a more detailed technique needed?  

3. Which classification algorithms show the best performance in distinguishing 

between healthy and VS diseased individuals based on the extracted features? 
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These research questions guide the investigation and analysis conducted in this thesis. 

By addressing these research questions, the study aims to shed light on the potential 

of force data analysis and advanced data processing techniques in the field of 

vestibular system disorders, ultimately improving diagnostic accuracy, treatment 

planning, and therapeutic interventions for affected individuals. 

1.2.5 Significance of the study 

This study holds considerable significance in its potential to introduce objective and 

quantitative tools for the diagnosis and monitoring of individuals with vestibular 

system disorders. By utilizing data processing techniques, the study aims to identify 

features that can differentiate between healthy individuals and those with vestibular 

system disorders. The development of reliable assessment tools can lead to improved 

accuracy in diagnosis, personalized treatment approaches, and enhanced monitoring 

of the progression of vestibular system disorders.  

The significance of this study lies in its potential to lead to innovative therapeutic 

interventions for vestibular system disorders. By identifying and quantifying the 

specific features of these disorders, the study provides valuable insights into the 

underlying mechanisms and pathophysiology, benefiting researchers and clinicians. 

Furthermore, by refining the diagnostic process, this approach could lead to substantial 

cost savings in the healthcare sector. Early and accurate diagnosis can reduce the need 

for repeated medical visits, decrease the chances of misdiagnosis, and eliminate the 

costs associated with unnecessary treatments or interventions. On a broader scale, this 

could translate to reduced economic burden on healthcare systems and improved 

patient outcomes. 

1.3 Literature review 

This literature review segment provides a comprehensive examination of the vestibular 

system disorder, shedding light on its clinical management and diagnostic processes. 

Initial sections delve into the vestibular system's intrinsic complexities, established 

methods of interpretation, and the analysis of gait data in relation to vestibular system 

disorders. Attention is also devoted to gait data analysis in the context of other diseases 

causing balance impairments. Subsequently, the focus shifts to Tsallis entropy, 

exploring its potential in gait signal analysis and its application in the biomedical 
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signal analysis realm. Studies involving other entropy methods in gait data analysis 

are also highlighted. Lastly, the section concludes by identifying pertinent research 

gaps and underlining the rationale for the current study, which aspires to address these 

identified areas of concern. 

In summary, this literature review sets the stage for subsequent research by presenting 

a comprehensive overview of the vestibular system and the significance of entropy 

methods, providing a strong foundation for the study's objectives and methodology. 

1.3.1 Vestibular system disorder-related literature 

In this section, emphasis is placed on the vestibular system and its associated disorders. 

The pathophysiology and clinical management of vestibular dysfunctions are initially 

highlighted. Methods and techniques currently utilized for diagnosis and monitoring 

are subsequently explored. A significant portion is devoted to the influence of 

vestibular system disorders on gait patterns and the application of gait data analysis in 

detecting other balance-impairing diseases. This segment aims to encapsulate the 

critical role of the vestibular system in maintaining balance and coordination.  

1.3.1.1 Pathophysiology and clinical management 

The examination of vestibular system disorders is a matter that requires significant 

emphasis. These disorders encompass a wide range of conditions that affect the inner 

ear and its connections to the brain, leading to impairments in balance and coordination 

[3].  

Common vestibular system disorders include Meniere's disease, benign paroxysmal 

positional vertigo (BPPV), and vestibular neuritis. Understanding the pathophysiology 

and clinical manifestations of these disorders is crucial for comprehending their impact 

on gait patterns [6]. Furthermore, the literature review also explores the diagnostic 

methods and treatment options available for vestibular system disorders, highlighting 

the importance of early detection and appropriate management in improving patients' 

quality of life [3, 7].  

Early diagnosis and intervention for these disorders are crucial, not only for mitigating 

the immediate symptoms but also for preventing potential long-term complications 

that can arise if left untreated, and delays in treatment can exacerbate the condition, 

making recovery more challenging and prolonged.  
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1.3.1.2 Existing methods and techniques 

Various methods are employed in the literature to identify the specific VS problem 

while the most popular clinical method is still the computerized dynamic 

posturography (CPD) [8]. While CPD offers detailed insights, it may not be easily 

accessible in all clinical settings. On the other hand, wearable sensors provide the 

advantage of real-world data collection but may sometimes lack the precision of 

controlled, clinic-based tools. The state-of-the-art methods basically are based on 

utilizing classification techniques following a machine learning step where the features 

are extracted from gait data. The gait data are especially used to give information about 

balance disorder. Within this context, analysis of gait data has emerged as a valuable 

tool in the diagnosis and monitoring of balance disorder-causing diseases, providing 

objective measures to assess motor impairments associated with these conditions. 

Traditional approaches include visual observation and subjective rating scales, which 

have inherent limitations in terms of objectivity and accuracy [9]. However, 

advancements in sensor technology and computational methods have led to the 

development of more sophisticated tools, such as wearable sensors and computerized 

algorithms, enabling quantitative and objective analysis of gait data. 

The utilization of wearable sensors, particularly insole sensors for analyzing force 

data, facilitates the collection of gait data in individuals' daily lives, eliminating the 

need for clinical environments. This approach allows data to be obtained in daily life, 

helping the patient avoid the stress of the clinical environment and potentially 

improving the accuracy of the diagnosis [10, 11]. Conversely, Individuals suffering 

from balance disorders may exhibit abnormal gait patterns due to the awareness of 

being observed, leading to deviations from the normal performance [12]. The analysis 

of force values on insole sensors can provide insights into changes in foot behavior 

during walking, enhancing accuracy and reducing stress associated with the diagnostic 

process. 

Despite the progress made in analysis of gait data techniques, there are still limitations 

that need to be addressed. Current approaches often focus on a limited set of gait 

parameters and may not fully capture the complex nature of gait disturbances in 

vestibular system disorders. Furthermore, the lack of standardized protocols and the 



9 

influence of confounding factors pose challenges in interpreting and comparing gait 

data across different studies. 

1.3.1.3 Analysis of gait data in balance-impairing diseases 

Analysis of gait data has emerged as a valuable tool in the diagnosis and monitoring 

of balance disorder-causing diseases, providing objective measures to assess motor 

impairments associated with these conditions. It has been extensively utilized in the 

evaluation of diseases such as Parkinson's disease (PD), Huntington's disease (HD), 

amyotrophic lateral sclerosis (ALS), and other related disorders. Numerous studies 

have demonstrated the effectiveness of analyzing gait data in identifying disease-

specific gait abnormalities and distinguishing between different balance disorder-

causing diseases. For instance, Nir Giladi et al. proposes a new clinical classification 

scheme for gait and posture and discusses the use of analysis of gait data in identifying 

disease-specific gait abnormalities [13]. As another example, Bovonsunthonchai et al. 

investigate the use of spatiotemporal gait variables in distinguishing between three 

cognitive status groups and discusses the potential of gait data analysis as a tool for 

early detection of imbalance-causing neurodegenerative conditions [14]. And, Guo 

Yao et al. summarizes researche on the effectiveness and accuracy of different gait 

related data analysis systems and machine learning algorithms in detecting Parkinson's 

disease [15]. 

Analyzing data gathered during walking plays a crucial role in various fields, including 

medical diagnostics and healthcare. In a study conducted by Ikizoğlu and Heyderov 

[16], they explore the significance of features extracted from IMU-sensor based data 

to diagnose vestibular system disorders. By examining the data collected during 

walking, they aim to identify patterns or abnormalities that can help in the early 

detection and treatment of such disorders. 

Research by Agrawal et al. [17] emphasizes the importance of analyzing data gathered 

during walking to predict fall risks. They utilize wireless pressure sensors embedded 

in insoles and employ machine learning models to analyze the collected data. Through 

this approach, they are able to assess the likelihood of falls and provide early warnings 

or interventions, thus improving the safety and well-being of individuals at risk. 

Furthermore, Bustamante et al. [18] highlight the significance of monitoring and 

assessing imbalance-causing neurodegenerative diseases using a portable wireless 
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pressure sensing device. By analyzing the data obtained during walking, they can track 

changes in pressure patterns, gait abnormalities, and other relevant metrics. This 

information aids in the early detection, evaluation, and management of imbalance-

causing diseases like neurodegenerative and VS-related diseases, ultimately improving 

the quality of life for patients. 

In conclusion, the analysis of data gathered during walking plays a pivotal role in 

various areas, such as medical diagnostics, fall risk prediction, and monitoring of 

imbalance-causing diseases. By leveraging advanced technologies and machine 

learning models, researchers and healthcare professionals can extract valuable insights 

from this data, leading to improved diagnosis, prevention, and treatment strategies. 

1.3.1.4 Analysis of gait data in vestibular system disorders 

Analysis of gait data provides clinicians with valuable information about the functional 

limitations and compensatory mechanisms employed by individuals with vestibular 

system disorders [19]. By examining gait patterns, healthcare professionals can tailor 

treatment strategies and evaluate the effectiveness of interventions. 

The subsequent examination primarily concentrates on the analysis of human 

locomotion, specifically within the framework of vestibular system disorders. Analysis 

of gait data yields significant revelations regarding the functional limitations induced 

by these disorders, thereby facilitating their diagnosis, treatment, and monitoring. Gait 

parameters, including stride length, step width, and cadence, frequently exhibit 

alterations among individuals afflicted with vestibular system disorders [20]. The 

quantitative analysis of such parameters enables an objective evaluation of the 

disorder's severity and facilitates the tracking of temporal changes.  

In the realm of vestibular system disorders, gait data provides a methodical exploration 

of an individual's locomotion characteristics. This study delves deep into the nuances 

of walking, examining elements like force application, walking rhythm, speed, and the 

uniformity observed during the gait cycle's distinct phases. This cycle is primarily split 

into two segments: the stance phase, where the foot is grounded, and the swing phase, 

marking the foot's forward movement. An in-depth analysis of gait data can pinpoint 

deviations from what's deemed as the 'normal' walking parameters. These deviations 

potentially act as indicators of various health issues, from musculoskeletal anomalies 

to neurological disorders. 
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By examining gait parameters, insights have been gained into the impact of vestibular-

related impairments on balance control. This comprehensive analysis aids in early 

detection, accurate diagnosis, and monitoring of these disorders. For example, studies 

by Ratan Das et al. [21] provides a comprehensive review of the literature and 

discusses how analysis of gait data can be used as a clinical tool to better diagnose and 

manage gait and balance impairments. As another example, A. R. Wagner et al. [22] 

discusses how analysis of gait data can be used to assess vestibular-related 

impairments in older adults, and how these impairments can impact balance control. 

In a study by Schmidheiny et al., the team delved into the discriminant validity and 

test-retest reproducibility of gait assessments in patients with vestibular dysfunction 

[23]. This research underscores the significance of an objective evaluation of gait in 

individuals with vestibular disturbances. 

1.3.2 Tsallis entropy-related literature 

In this section, the spotlight is turned to Tsallis entropy and its applications within 

biomedical signal analysis. Initially, an overview is provided on the role of Tsallis 

entropy in gait signal analysis. This is followed by an exploration into its broader 

applications in the realm of biomedical signals. Lastly, the section delves into how gait 

data analysis has been approached using other entropy methods, offering a 

comparative perspective. The aim of this segment is to delineate the emerging 

prominence of Tsallis entropy in advancing diagnostic techniques, especially in the 

context of gait data. 

1.3.2.1 An overview of Tsallis entropy's role in gait signal analysis 

Tsallis entropy offers a flexible framework for signal analysis, allowing the adjustment 

of a parameter to control the emphasis on rare events or outliers. This adaptability 

makes Tsallis entropy well-suited for capturing the intricate and non-linear nature of 

gait signals affected by vestibular system disorders. In this context, Tsallis entropy is 

an adaptable tool for analyzing gait signals, offering insights into their non-linear 

nature and enabling the development of effective diagnostic and therapeutic 

approaches.  

Tsallis entropy has proven to be effective in diverse domains such as physics, 

information theory, and economics, enabling a more comprehensive comprehension 

of systems with long-range correlations and heavy-tailed distributions [24]. In this 
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context, Tsallis entropy can capture long-range correlations within the data, offering a 

richer and more nuanced understanding of gait dynamics.  

1.3.2.2 Tsallis entropy in biomedical signal analysis 

Based on prior research, this section examines the varied implementations of Tsallis 

entropy in the analysis of biomedical signals. It emphasizes the effective utilization of 

Tsallis entropy in quantifying intricacy, identifying anomalies, and discerning distinct 

physiological conditions in diverse biomedical signals. The efficacy of Tsallis entropy 

in offering fresh perspectives on analysis of gait data in vestibular system disorders is 

apparent based on its successful utilization in alternative fields. 

As an example of Applications of Tsallis entropy in biomedical signal analysis, Al-

Nuaimi et al. examine the application of Tsallis entropy as a promising approach for 

assessing alterations in EEG signals among individuals diagnosed with dementia. 

Their study investigates the capacity of Tsallis entropy to gauge variations in the 

intricacy of EEG signals, emphasizing its potential as a biomarker for dementia [25]. 

As another example, Gao et al., in their publication, present a thorough examination 

of Tsallis entropy-derived metrics in the context of biomedical signal analysis. They 

explore the capacity of Tsallis entropy to effectively quantify the generation rate of 

meaningful information within a dynamic system, while also highlighting its potential 

applications across diverse biomedical signal analysis endeavors [26].  

The use of Tsallis entropy in biomedical signal analysis underscores the ongoing 

evolution of diagnostics, where computational tools are playing an increasingly pivotal 

role. Leveraging such techniques can potentially revolutionize the accuracy and 

efficiency of medical diagnoses, leading to more timely and targeted interventions. 

1.3.2.3 Analysis of gait data with other entropy methods 

This section reviews previous studies that have investigated the use of entropy methods 

in assessment of locomotion data, specifically in the context of imbalance-causing 

diseases such as neurodegenerative and VS-related diseases. These studies have 

demonstrated the effectiveness of entropy methods in capturing subtle changes in gait 

patterns and differentiating between healthy and diseased individuals. The findings 

from these studies provide a strong rationale for further exploring the application of 

Tsallis entropy in the current study. 
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In their study, Kim et al. explore the utilization of analysis of gait data and machine 

learning techniques in diagnosing vestibular neuritis. The findings of these studies 

indicate that the application of multiscale approximate entropy (MAE) method and 

other gait analysis techniques holds promise for facilitating the diagnosis and treatment 

of neurodegenerative diseases [27]. As another example, Haid et al., in their article, 

investigate the utilization of sample entropy (SaEn) for the analysis of postural control 

among individuals diagnosed with Parkinson's disease. Their study aims to test the 

hypothesis that sample entropy correlates with the complexity of postural movement 

patterns. The findings demonstrate that sample entropy can successfully differentiate 

between healthy individuals and those affected by Parkinson's disease [28]. 

1.4 Hypothesis 

It is postulated that there are discernible differences in gait parameters and patterns 

between healthy individuals and those diagnosed with vestibular system disorders, 

which can be captured and quantified through the application of advanced data 

processing techniques [12, 29]. In this context, it is hypothesized that Tsallis entropy 

calculations, as a novel data processing method, can provide valuable insights into the 

complexity and variability of gait patterns in individuals with vestibular system 

disorders, further enhancing the differentiation between healthy individuals and those 

with the disorder. 

Based on preliminary evidence suggesting a link between vestibular system disorders 

and alterations in gait patterns, it is postulated that Tsallis entropy calculations can 

effectively quantify these differences. Specifically, we hypothesize that this method 

will reveal discernible variations in gait parameters between healthy individuals and 

those with vestibular system disorders. 

1.4.1 Formulation of hypothesis 

The hypothesis suggests distinguishable differences in force data and patterns between 

healthy and VS diseased individuals. These differences can be captured and quantified 

through the application of advanced data processing techniques, specifically Tsallis 

entropy calculations. 

As already mentioned in Section 1.1, Vestibular system disorders have a significant 

impact on an individual's balance, coordination, and overall gait performance. Existing 
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literature indicates that the analysis of biomechanical data, such as force patterns 

during walking, can play a crucial role in identifying alterations in gait. This study 

proposes that when combined with Tsallis entropy calculations, this data might offer 

a more comprehensive insight into the gait patterns associated with vestibular system 

disorders. Building upon the existing body of literature, the hypothesis for this study 

is articulated as follows:  

"The utilization of Tsallis entropy calculations, as a novel data processing method, can 

provide valuable insights into the complexity and variability of gait patterns in 

individuals with vestibular system disorders, enhancing the differentiation between 

healthy individuals and those with disorder." 

1.4.2 Supporting arguments for the hypothesis 

As presented in the Results section, various aspects of this study highlight a connection 

between gait data analysis and vestibular system disorders. Observations suggest that 

the histogram of preprocessed sensor data contains more bins for individuals with 

vestibular system disorders. This increase in the number of bins is attributed to 

compromised balance and coordination, leading to greater fluctuation around the trend 

curve. 

Furthermore, Tsallis entropy calculations and feature extraction methods appear 

promising in emphasizing the subtle alterations in gait patterns associated with 

vestibular system disorders. By analyzing these entropy levels and the detailed step-

wise entropy changes, the complexity and variability of gait patterns can be quantified, 

offering a comprehensive and objective assessment of the disorder. 

The objective of this research is to deepen the understanding of vestibular system 

disorders and to introduce a potentially significant diagnostic tool. By utilizing gait 

parameter analysis combined with advanced data processing techniques, this study 

aims to pave the way for improved diagnosis, monitoring, and treatment strategies for 

individuals affected by vestibular system disorders. 
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2.  TSALLIS ENTROPY METHOD  

Tsallis entropy, named after the physicist Constantino Tsallis, is a generalized form of 

entropy that has found applications in various fields, including biomedical research. In 

the context of biomedicine, the Tsallis entropy method has proven to be a valuable tool 

for analyzing complex systems and understanding the dynamics of biological 

processes. 

2.1 Entropy 

Entropy is a property primarily used to measure the disorder or randomness within a 

dynamic system. The well-known Shannon entropy (SE), formulated as equation 2.1, 

is based on Boltzmann-Gibbs statistical mechanics and is capable of describing the 

structure of extensive systems with short-term microscopic correlations [30, 31]. 

𝑆𝐸 =  −𝑘𝐵 ∑ 𝑝𝑖𝑙𝑛(𝑝𝑖)

𝑁

𝑖=1

 (2.1) 

In equation 2.1, 𝑘𝐵 represents the Boltzmann constant, a fundamental physical 

constant that delineates the relationship between temperature and energy. Historically, 

the Boltzmann constant emerged as a proportionality factor in the microscopic 

description of ideal gas laws, and it plays a pivotal role in bridging microscopic and 

macroscopic views in thermodynamics. Specifically, it scales the average kinetic 

energy of particles to the thermodynamic temperature of a system. 

However, in numerous analytical situations, especially within information theory and 

certain statistical mechanics contexts, it's conventional to normalize the Boltzmann 

constant to unity. This normalization simplifies calculations without sacrificing the 

conceptual underpinnings of the entropy measure. 

𝑆𝐸′ =  − ∑ 𝑝𝑖𝑙𝑛(𝑝𝑖)

𝑁

𝑖=1

 (2.2) 
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Equation 2.2 embodies the Shannon entropy in scenarios where the Boltzmann 

constant 𝑘𝐵 is taken as unity. In this framework, 𝑁 is the total number of microstates 

and 𝑝𝑖 delineates the probability associated with the 𝑖-th microstate. 

For systems with long-term interactions, or systems that exhibit long-term memory 

effects, the effectiveness of applying SE for the aforementioned purpose decreases 

[32]. This is particularly true when dealing with complex systems that involve intricate 

relationships and dependencies over extended periods. In such cases, a more 

comprehensive approach is needed to capture the underlying dynamics and extract 

meaningful information from the time series data. This is where the generalized 

structure of Boltzmann-Gibbs statistics comes into play, incorporating the concept of 

Tsallis entropy (TE) within the framework of non-extensive statistics [33]. By 

considering the TE, we can delve deeper into the hidden information embedded in the 

time series, unlocking valuable insights that might be overlooked by traditional 

methods. The TE provides a powerful tool to explore the complexities and intricacies 

of these long-term interacting systems, enabling a more nuanced understanding of their 

behavior and uncovering previously undiscovered patterns. Therefore, incorporating 

TE within the analysis of time series data proves to be a crucial step towards unraveling 

the full potential and richness of information contained within these intricate systems. 

2.2 Tsallis Entropy 

The Tsallis entropy formula provides a powerful tool for quantifying the complexity 

and structure of given dataset [11]. The parameter q in the Tsallis entropy formula 

represents a dimensionless entropic index, adjusting the entropy metric to capture 

specific features inherent in the analyzed dataset. By adjusting the value of 𝑞, the 

entropy metric can be tailored to capture particular features inherent in the analyzed 

dataset. The Tsallis entropy, denoted as 𝑆𝑞, is a generalization of the Shannon entropy 

and is defined as equation 2.3 [34].  

𝑇𝐸 = 𝑆𝑞 =
𝑘𝐵

𝑞 − 1
(1 − ∑ 𝑝𝑖

𝑞

𝑊

𝑖=1

) (2.3) 

Here, 𝑆𝑞 represents the Tsallis entropy, 𝑘𝐵 is the Boltzmann constant, 𝑞 serves as a 

generalization parameter. Additionally, 𝑊 signifies the total number of possible states, 

while 𝑝𝑖 corresponds to the probability of the 𝑖-th state. 
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In the context of Tsallis entropy, as in Shannon entropy, the Boltzmann constant is 

frequently introduced. However, in disciplines such as information theory or data 

analysis, the primary interest often lies in the relative behavior of the system rather 

than its absolute scale. Therefore, it's customary to normalize 𝑘𝐵 to unity to simplify 

analytical and computational processes. 

Given this normalization, the Tsallis entropy is expressed as: 

𝑇𝐸 = 𝑆𝑞 =
1

𝑞 − 1
(1 − ∑ 𝑝𝑖

𝑞

𝑊

𝑖=1

) (2.4) 

By setting 𝑘𝐵 = 1, the role of the entropy in measuring the intrinsic properties of the 

data is emphasized, abstracting from the physical dimensions that 𝑘𝐵 might introduce. 

This dimensionless representation of entropy is found to be especially pertinent when 

comparative analyses across diverse datasets are conducted. 

In equation 2.4, 𝑞 (𝑞𝜖ℛ) can be considered as a parameter to indicate the degree of 

non-additivity. This is because, in the context of two independent systems 𝑋 and 𝑌 as 

represented by equation 2.5, (1 − 𝑞) serves as a quantification of the deviation from 

additivity. 

𝑇𝐸(𝑋 + 𝑌) = 𝑇𝐸(𝑋) + 𝑇𝐸(𝑌) + (1 − 𝑞) ∗ 𝑇𝐸(𝑋) ∗ 𝑇𝐸(𝑌) (2.5) 

In the calculation of Tsallis entropy, the selection of parameter 𝑞 is based on the 

specific characteristics of the dataset being analyzed. The value of 𝑞 determines the 

non-extensive behavior of the entropy and can be chosen accordingly, taking into 

account the properties of the dataset [35]. 

Unlike Shannon entropy, which corresponds to  𝑞 = 1, Tsallis entropy allows for a 

more flexible representation of information content. By adjusting the value of 𝑞, 

researchers can explore and quantify different aspects of the data distribution. For 𝑞 <

1, Tsallis entropy emphasizes the contribution of rare events, making it more suitable 

for capturing long-tail or heavy-tailed distributions. Conversely, for 𝑞 > 1, Tsallis 

entropy focuses on the more frequent events, which is useful for capturing data 

distributions with prominent peaks or clusters [36, 37].  Briefly, while 𝑞 > 1 pertains 

to sub-extensive statistics, 𝑞 < 1 aligns with super-extensive statistics. 

Furthermore, the Tsallis entropy formula is widely used in physics, information theory, 

and data analysis. Its flexibility and adaptability make it a valuable tool for 
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understanding complex systems. Tsallis entropy considers the non-extensive behavior 

of entropy, providing a comprehensive perspective on data information content and 

distribution. Its versatility enables the extraction of meaningful insights and the 

discovery of hidden patterns and structures from diverse datasets. 

2.3 Application of Tsallis Entropy in Data Analysis 

The Tsallis entropy method has found applications in various fields, including data 

analysis and pattern recognition. In the analysis of gait parameters, Tsallis entropy 

provides a measure of the complexity and irregularity of gait patterns. By quantifying 

the information content in gait data, it allows for the extraction of meaningful features 

related to the dynamics of human locomotion. 

In gait data analysis, Tsallis entropy is often calculated based on the histograms of 

specific gait parameters, such as force amplitude, step length, step duration, or joint 

angles. By examining the distribution of these parameters and applying the Tsallis 

entropy formula, researchers can obtain a measure of the system's complexity and 

irregularity. This measure can then be used to compare gait patterns between different 

individuals, groups, or conditions. 

As an example, application of Tsallis entropy in data analysis, in addition to examples 

in Section 1.3.2.2, Zhang et al. propose a measure called Tsallis entropy area (TsEnA) 

to quantify burst suppression (BS) activity in EEG data after brain injury, 

demonstrating its correlation with neurological deficit scores and suggesting its 

potential as a clinical tool for estimating the severity of brain damage following cardiac 

arrest [38]. Again, Tong et al use TE of EEG signals as a measure of brain injury in 

their study [37]. As another example, Thilagaraj et al. aimed to classify epileptic 

seizures using EEG data segments from the University of Bonn database. They 

introduced a novel feature related to Tsallis entropy and utilized five different 

classifiers. Their method achieved high accuracy ranging from 92.67% to 100% using 

a Decision tree classifier, while also having the fastest computation time compared to 

other features in the literature. The authors proposed that their method can be easily 

installed as a software tool and holds potential for real-time detection and prediction 

of epileptic seizures [39]. Moreover, Redelico et al. compare different permutation 

entropies as classifiers for EEG records of normal and pre-ictal states. Symbolization 

techniques are used to derive discrete probability distribution functions, and the 
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entropies are used as independent variables in logistic regression models. All 

permutation entropies perform well, with high accuracy and sensitivity, suggesting 

their potential for automatic EEG signal classification [40]. 

2.4 Advantages of Tsallis Entropy in Analysis of Gait Parameters 

The use of Tsallis entropy in gait data analysis offers several advantages. First, it can 

capture non-linear and non-Gaussian characteristics of gait data, which are often 

present in complex systems such as human movement. This enables a more accurate 

representation of gait dynamics compared to traditional entropy measures. 

Additionally, Tsallis entropy allows for the customization of the entropy calculation 

through the parameter q. By adjusting q, the method can adapt to different types of gait 

patterns and provide insights into specific aspects of gait dynamics, such as regularity, 

variability, or asymmetry. This flexibility makes it a valuable tool for analyzing and 

comparing gait patterns in individuals with different conditions or disorders. 

Furthermore, Tsallis entropy provides a robust and efficient method for feature 

extraction in analysis of gait data. By quantifying the complexity and irregularity of 

gait patterns, Tsallis entropy can identify distinctive features that differentiate 

individuals or groups. These features can then be used in machine learning algorithms 

or classification models to develop diagnostic or monitoring tools for gait-related 

disorders. 

One of the main advantages of the Tsallis entropy method is its ability to capture the 

non-linear and long-range dependencies present in biological systems [32, 41]. 

Traditional entropy measures, such as Shannon entropy, assume that events are 

independent and identically distributed, which is not always the case in biological 

systems where interactions and correlations play crucial roles. Tsallis entropy, with its 

parameter q, allows for a more flexible characterization of these complex interactions. 

In biomedical research, the Tsallis entropy method has been applied to a wide range 

of applications. One such application is in the analysis of electroencephalogram (EEG) 

signals [39]. EEG is a non-invasive technique used to measure brain activity, and the 

analysis of EEG signals can provide valuable insights into neurological disorders and 

cognitive processes. By applying the Tsallis entropy method to EEG data, researchers 

have been able to identify abnormal brain activity patterns and distinguish between 

different brain states with higher accuracy than traditional entropy measures [37, 40]. 
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Overall, the Tsallis entropy method has proven to be a valuable tool in biomedical 

research, enabling a more comprehensive analysis of complex biological systems. Its 

ability to capture non-linear and long-range dependencies provides researchers with a 

more accurate representation of biological processes and opens up new avenues for 

understanding and addressing various biomedical challenges. 

In conclusion, the Tsallis entropy method is a statistical approach that extends Shannon 

entropy, providing a customized measure of information content in complex systems 

like analysis of gait data. Its application in gait data analysis offers advantages in 

capturing non-linear dynamics and providing customizable insights into gait patterns. 

By utilizing Tsallis entropy, researchers can gain valuable insights into the 

characteristics of gait and its variations in individuals with different conditions. 
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3.  DATA ACQUISITION AND PROCESSING 

3.1 Data Acquisition 

The examination of gait data analysis studies in the literature reveals that the 

distribution of weight on the soles of the feet has a significant impact at four main 

points, as depicted in Figure 3.1a [42-46]. The selection of sensor placement 

mentioned above was determined based on previous studies. 

3.1.1 Sensor placement 

To ensure data collection without disturbing the natural walking patterns of the 

participants, five pairs of insoles with different sizes (36, 38, 40, 42, 44 - according to 

European Standards) were manufactured, and the sensors were placed in appropriate 

positions. Prior to the commencement of the experiment, the correctly sized insoles 

were inserted into the subjects' shoes. For the production of the insoles, a durable and 

soft plastic material commonly employed in the manufacturing of orthopedic products 

was utilized. 

  
(a) (b) 

Figure 3.1: (a) Sensor placement on the insole. (b) The numbering of the sensors S0 

to S7 (Top view) [47]. 

 

Force-sensitive resistors (FSR) were chosen as force sensors, as they are widely used 

in gait data analysis applications and offer several advantages [48]. Specifically, the 

FSR402-Short tail model from Interlink was selected as it is highly suitable for 

placement within insoles due to its physical dimensions. Additionally, this sensor 

demonstrates acceptable repeatability error [49]. The characteristics of the sensor can 



22 

be found in Table 3.1, and the numbering of the sensors on the insoles, from S0 to S7, 

is illustrated in figure 3.1b. 

Table 3.1: Characteristics of The Sensor Fsr402-Short Tail 

PARAMETER VALUE 

Operation Range 0.2N-20N 

Physical 
fpad18.3mm, 

fsens12.7mm 

Dimensions thickness 0.46mm 

Repeatability ±0,02 

Idle Resistance >10MΩ 

Hysteresis 10 % max. 

Rising Time <3 µseconds 

The sensor referenced in our study, as delineated in Table 3.1, is the FSR402-Short 

Tail. It is capable of detecting forces ranging from as light as 0.2 Newtons to as robust 

as 20 Newtons, within an operational range of 0.2N-20N. Regarding its physical 

dimensions, the outermost layer or pad of the sensor boasts a diameter of 18.3mm, 

while its force-sensitive area measures 12.7mm in diameter, and the entire unit 

maintains a slim profile at a mere 0.46mm thickness. Repeatability, indicating the 

sensor's consistency in readings, suggests that measurements under identical 

conditions can differ by a maximum of 2% from their mean, underscoring its 

reliability. Its idle resistance, denoting the resistance when devoid of force, exceeds 10 

Megaohms. Another critical attribute, hysteresis, signals a potential 10% variation in 

output based on the force's increasing or decreasing direction. The rise time, which 

demarcates the time the sensor requires to alter its output from 10% to 90% of the end 

value, underscores its brisk responsiveness with a rate of less than 3 microseconds. 

Collectively, these specifications provide insight into the sensor's functionality and 

capacity, ensuring a comprehensive grasp of its pivotal role in our research. 

3.1.2 Data acquisition procedure 

The data collection was carried out in the clinical setting of the Audiology Department 

at Cerrahpaşa Medical School, Istanbul University in Istanbul, Türkiye. The process 

was conducted in compliance with the principles outlined in the Helsinki Declaration. 

Prior to the start of the process, approval was obtained from the Istanbul University 
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Ethics Committee (Approval number: A-57/07.07.2015). In addition, informed 

consent was taken from all subjects to participate in the study. For individuals with VS 

problems, their conditions had already been diagnosed by the audiologists using 

conventional systems, such as Computerized Dynamic Posturography. 

Data collection occurred on weekends to minimize subject stress and prevent 

interference from other devices in the environment. The subjects walked along a 12-

meter track inside the clinic, and they were asked to walk the path twice. The first walk 

aimed to help them become familiar with the environment and reduce any possible 

stress, while the data from the second walk were used for analysis in general.  In some 

cases, subjects walked a third time when needed as a result of the audiologists' 

observations. The data collection was optimized to a short span of 10-15 seconds, 

which is considerably shorter than most experiments in the literature. 

3.1.3 Data acquisition system 

The gait data was collected using insole force sensors, offering a detailed and reliable 

source of information. The force sensor data were initially captured by an Arduino 

Mega unit carried by each subject and then wirelessly transferred to a nearby laptop 

via an HC-06 Bluetooth module. Sampling was conducted at a rate of twenty samples 

per second from each sensor, simultaneously from all sensors.  

In order to convert the force to voltage, a voltage divider was created using a 1k ohm 

resistor connected in series with the force sensor. The voltage divider was supplied 

with a 5V DC input. While the force sensor utilized in the study demonstrated high 

repeatability, its force-resistance characteristic was non-linear. Consequently, the 

device underwent calibration in the laboratory using known weights. As a result, the 

equation of the regression curve was obtained as equation 3.1. 

𝑤 = 𝑒
𝑣𝑜+0.2245

0.9265  (3.1) 

Here, 𝑤 represents the relationship between the weight/force in Newtons and 𝑣𝑜 is the 

output voltage of the voltage divider in volts. Ten percent deviation from the values 

obtained by equation 3.1 was taken as the criterion that would require the relevant 

sensor not to be used in the experiments. 

The calibration process was performed individually for each sensor utilized in the 

experiments. This individual calibration ensured that each sensor operated at its 
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optimum performance level, accounting for any inherent variances or manufacturing 

discrepancies. As a result, we were able to maintain consistency in data acquisition, 

thereby minimizing potential errors and achieving more reliable results. 

3.1.4 Participants’ information 

Regarding the subjects who participated in the study, detailed information is provided 

in Table 3.2. 

Table 3.2: Information About the Subjects 

Physical 

Characteristics 

Healthy (30) Diseased (30) 

Male (15) Female (15) Male (13) Female (17) 

Age 54,3±8,5 55,1±7,9 54,5±8,5 55,7±8,4 

Mass [kg] 66,6±9,8 65,1±8,8 65,9±10,2 63,9±8,6 

Height [cm] 169,2±10,0 164,0±6,2 170,3±8,8 162,7±6,3 

The distribution of diseases among the subjects’ experiencing discomfort was 

analyzed using computerized dynamic posturography, which was conducted under the 

supervision of audiologists. The distribution of the subjects whose specific disease was 

detected by computerized dynamic posturography by audiologists is given in Table 

3.3. The data obtained through this rigorous methodology provides valuable insights 

into the distribution and incidence rates of these diseases, contributing to our 

understanding of their impact on postural stability. 

Table 3.3: The Distribution of The Diseases of Suffering Subjects 

Vestibular Disorders Male Female 

BPPV* 6 8 

UVW* 3 4 

Meniere 3 3 

Vestibular Neuritis 1 3 

* BPPV- Benign paroxysmal positional vertigo, UVW-Unilateral vestibular 

weakness. 

3.1.5 Ethical considerations 

In order to uphold the confidentiality and privacy of all participants, their identities 

have been anonymized for the purpose of this article. This precautionary measure is 

implemented to protect the individuals involved and to maintain the integrity of the 

study's findings. By anonymizing the participants' identities, their personal 
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information and any potential identifying details have been removed, ensuring their 

anonymity throughout the publication process. 

This ethical practice serves to safeguard the rights and well-being of the participants, 

aligning with the principles of research ethics. By maintaining confidentiality, the 

study promotes a secure environment for participants to share their experiences and 

data without fear of retribution or breach of privacy. Anonymization also contributes 

to the overall reliability and credibility of the research, as it allows for unbiased 

analysis and interpretation of the collected information. 

3.2 Data Processing 

In the field of data analysis and signal processing, the preprocessing of captured data 

plays a crucial role in extracting meaningful insights and information. This is 

particularly important in complex domains such as analysis of gait data, where raw 

sensor data poses challenges and limitations when directly applying analytical 

methods [50]. Therefore, in order to enhance the comprehensibility and effectiveness 

of the data, a well-defined data processing pipeline is employed. This section 

introduces the key stages involved in the data processing approach used in the thesis, 

aiming to make the data more concise and suitable for further analysis. 

Therefore, in order to make the data more concise and comprehensible, the application 

process of the method has been divided into six stages.  

3.2.1 Stage 1 – normalization 

The first stage in the data processing pipeline is normalization, where the captured raw 

data is transformed to a common scale for each subject. This step ensures that the data 

is comparable across different individuals and allows for meaningful comparisons to 

be made. Additionally, during normalization, the regions of interest associated with 

the portions where walking occurs are identified and framed., while irrelevant areas 

are removed from the dataset. This initial processing step is crucial for focusing the 

analysis of gait data on the parts where gait occurs and excluding incomplete or 

inaccurate data from the overall analysis. 
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Data are normalized for each subject to a range of 0 – 1. Then, the parts suitable for 

the data analysis, in other words, the parts where the gait takes place are framed and 

marked in the datasets.  

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (3.2) 

Here, 𝑋 is the original/raw data, 𝑋𝑛𝑜𝑟𝑚 stands for the normalized data. 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥  

represent minimum and maximum values, respectively. 

Subsequently, the data was visualized. The areas suitable for data analysis in the 

images, i.e., the regions where the gait took place, were outlined and the remaining 

areas were removed from the dataset. These processes are visualized for a sample 

subject in figure 3.2. During this stage, data corresponding to the first and last steps 

were excluded from the overall gait data. These steps were omitted as they do not 

provide accurate information due to their incomplete dynamic behavior.  

The normalization stage is followed by the step analysis phase, where the data 

undergoes further refinement. In this phase, the captured data is examined in detail to 

identify the regions that correspond to individual steps within the gait cycle. By 

accurately delineating each step, the subsequent analysis can focus on the relevant gait 

parameters and discard any incomplete or erroneous data associated with the 

transitional phases between steps. Removing the data from the first and last steps, 

which exhibit incomplete dynamic behavior, ensures that the subsequent analysis is 

based on reliable and consistent gait patterns. The step analysis stage enhances the 

overall quality of the gait data and contributes to a more precise and accurate 

assessment of individuals with vestibular system disorder. 

 
Figure 3.2: Normalization of raw sensor data and the framing of suitable segments 

for data analysis. 

 



27 

3.2.2 Stage 2 – step analysis 

The subsequent stage is step analysis, which involves analyzing the data from each 

sensor separately for the subject's right and left feet. Algorithms are employed to detect 

the contact and lift-off phases of the foot during walking. The data from each sensor 

is segmented into parts corresponding to walking steps, enabling a more detailed 

analysis of the gait pattern. 

For each subject, the data from each sensor were analyzed separately according to the 

data obtained from the subject's right and left feet. The areas where the foot makes 

contact with the ground and where the foot is lifted off the ground are detected by an 

algorithm.  

The next stage involves analyzing data from each sensor separately for the subject's 

right and left feet. Algorithms detect the contact and lift-off phases of the foot during 

walking, enabling a detailed analysis of the gait pattern. Each sensor's data is 

segmented into walking steps for a more comprehensive examination. The dataset of 

a subject, consisting of eight lines, is decomposed into four-line datasets for the right 

and left feet. The data is then combined with the maximum operation by calculating 

the maximum values for each column of this four-row dataset. The combination of the 

data obtained from a subject's feet using the maximum operator can be represented by 

equation 3.3. 

𝑆𝑅𝑚𝑎𝑥 =  max(𝑆0, 𝑆1, 𝑆2, 𝑆3) 

𝑆𝐿𝑚𝑎𝑥 =  max(𝑆4, 𝑆5, 𝑆6, 𝑆7) 

 

(3.3) 

Here, 𝑆𝑅𝑚𝑎𝑥, 𝑆𝐿𝑚𝑎𝑥 stand for the time-series data that contains the maximum values of 

each column of the sensors data of the right (𝑆𝑅𝑚𝑎𝑥) and left ( 𝑆𝐿𝑚𝑎𝑥) foot. 

𝑆0, 𝑆1 … 𝑆6, 𝑆7 represent the time series data of the sensors on the insoles. 

By calculating the differential of the datasets obtained from equation 3.3, it is possible 

to detect and cluster the steps of the subject's right foot. Subsequently, the same 

operations are applied to the sensor data obtained from the left foot. These processes 

enable the data from each sensor to be segmented into parts according to walking steps. 

These processes are visualized for a sample subject in figure 3.3. 
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Figure 3.3: Segmentation of sensor data into sets of four rows for each foot, 

followed by combining these sets using the maximum operator and subsequently 

conducting step analysis. 

3.2.3 Stage 3 – interpolation 

At this stage, the interpolated normalized data undergoes individual processing for 

each sensor, eliminating segments that do not involve foot-ground contact. 

Subsequently, the data sequences are further refined by interpolating the sensor data 

to increase the resolution by a factor of 20. The rigorous process not only enhances the 

precision of data analysis but also facilitates obtaining a meaningful histogram 

representation with an adequate number of bins, each containing a sufficient number 

of samples, as depicted in Figure 3.4. The mentioned steps are demonstrated for a 

representative subject. 

Linear interpolation was not preferred when adding new values to the dataset through 

interpolation in order to maintain accuracy without compromising the representation 

of the data. Instead, the cubic Hermite interpolation method was chosen as a preferred 

interpolation technique. This method provides a smoother and more accurate 

representation of the data while preserving its integrity [51]. 

Interpolation enhances the granularity of the data reveals subtle details that might be 

obscured at a lower resolution. Such an increase in resolution enables the detection of 

minute changes or deviations in gait patterns. By choosing the cubic Hermite 

interpolation over the linear method, we're prioritizing not just quantity but quality; 

the resulting data is a more genuine representation of the subjects' walking patterns. 
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Figure 3.4: Removal of segments where the feet do not make contact with the ground from the data sequences, followed by interpolation applied 

to the data sequence. 
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3.2.4 Stage 4 – detrending 

For each step, the trend of the interpolated data is calculated, and then the data is 

detrended based on these trend values.  

Each sensor generates data during each step. However, the fact that the foot touches 

the ground does not mean that every sensor on the sole will generate data 

simultaneously. For instance, when data occur in the sensor located in the heel part of 

the insole, the sensor in the toe area may not yet generate any data. This phenomenon 

is clearly depicted in figure 3.4. Therefore, the starting and ending points of each step 

data are determined for each sensor data. 

3.2.4.1 The proposed algoritm 

In the study conducted, the aim was to extract features from various parameters. 

Therefore, the trend of the step data is derived by combining the previous trend curve 

with the step data itself. For the first step data in the interpolated data set, the trend 

curve is calculated as equivalent to itself since no trend has been identified before. This 

ensures that the entropy calculation of the detrended data is not affected by the first 

step. The process for the subsequent step data in the data array is as follows: The 

detrend curve of the previous step is scaled on the x-axis using the "Nearest-neighbor 

interpolation" method according to the specific step data. This process equalizes the 

data length of the previous trend curve and the length of the step data itself. Then, a 

trend curve is created for the specific step data by taking the weighted average of each 

data point with the alpha coefficient. 

𝑇𝑖 = 𝐹𝑖                                               𝑖 = 1 

𝑇𝑖 = 𝛼𝐹𝑖 + (1 − 𝛼)𝑇̌𝑖−1                            𝑖 = 1, 2 … 𝑛 

 

(3.4) 

Here, 𝑇𝑖 is the current-step trend data, and 𝐹𝑖 stands for the current step data. 𝑇̌ denotes 

the trend data whose length is scaled, and 𝛼 is a coefficient indicating the degree to 

which the previous trend curve is approximated to the current step data set. In Figure 

3.5, 𝛼𝑚𝑎𝑥 represents the maximum rate of change that each data point of the trend 

curve can exhibit from one step to the next, for which the value 0.23 was statistically 

determined, considering data from healthy subjects. We note that 𝛼𝑚𝑎𝑥 serves as a 

parameter to achieve a balance between flexibility in trend curve adaptation and 

avoiding overfitting, and although it has a role in shaping the trend curve, the key 
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features of our analysis remain relatively insensitive to its exact value. The process is 

terminated when the 𝛼 value reaches 𝛼𝑚𝑎𝑥 or the error value defined as 𝜀 =

𝑚𝑒𝑎𝑛 {|𝑇𝑖 − 𝐹𝑖|} falls below a threshold so that it is considered negligible. The 

threshold level is set as 10−6. The visual representation of the algorithm can be found 

in figure 3.5, and the outputs can be seen in figure 3.6. 

 
Figure 3.5: Flowchart of a specifically designed algorithm for generating the trend 

curve. 

Detrending refines raw gait data into discernible patterns. Considering the unique 

activation timing of each sensor, we've devised an algorithm, showcased in figure 3.5, 

that blends past and present data trends for a holistic view. The heart of this method 

lies in the iterative adjustment of the weighted average coefficient (α) to minimize 

error. This adjustment starts from zero and tapers with each cycle until α peaks or the 

error reduction becomes trivial. With clear thresholds for α and error magnitude, our 

approach achieves a balance between precision and computational efficiency, ensuring 

the trend curve's adaptability and sensitivity to subtle gait changes. Consequently, we 

aim to capture the genuine intricacies of an individual's gait, filtering out any redundant 

data. The application of the resulting trend curves for detrending can be seen in figure 

3.6. 
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(a) (b) 

Figure 3.6: Detection of step data and calculation of (a) trend curves as well as (b) curves of detrended dataset for a sample VS-diseased subject. 

(Red vertical lines indicate the active stepping intervals of the foot; blue vertical lines indicate the active usage intervals of the relevant sensor).
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3.2.5 Stage 5 – Tsallis entropy calculations 

In this stage, the Tsallis entropy calculation was performed not only for the entire 

sensor data but also for each individual step within the entirety of the gait data. This 

approach allowed for a more detailed analysis of the step data and their relationship 

with the trend curve. By calculating the Tsallis entropy based on the detrended data, 

the study aimed to capture the information contained in the vertical displacements 

between the step data and the trend curve. The detrended data represented these 

distances, taking into account their magnitude and displacements. The absolute values 

of the detrended data were used to group data points with the same magnitude but 

different signs into the same histogram bin, enabling the calculation of probabilities 

and subsequent entropy measurements. Figure 3.7 provides a visual representation of 

the resulting histogram generated for all the detrended data taken from a VS diseased 

subject, demonstrating the distribution of data around the trend. 

The choice of the number of bins in a histogram significantly impacts the level of detail 

and granularity in representing the data distribution. To achieve the desired resolution, 

a maximum of 25 bins was used in this study. Determining the maximum number of 

histogram bins was based on examining the detrended data of all subjects and 

identifying the maximum detrended size. By dividing the maximum detrended size by 

the maximum number of histogram bins, the precision of the range represented by each 

histogram bin was established. This approach ensured that the histogram effectively 

captured the variations in the detrended data and provided a comprehensive 

representation of the sensor data. 

As explained in section 2.1, the value of the q parameter plays a crucial role in 

determining the nature of the entropy measurement. An empirical method was 

employed to determine the most suitable q value for feature extraction from the 

obtained datasets. Through extensive calculations and evaluations, a value of 0.82 was 

identified as the optimal q parameter. The success rates of the learning models were 

calculated for different Tsallis parameters (q values), using the specific classification 

models outlined in Stage 6 and employing a 10-fold cross-validation technique. The 

ratios of models achieving the highest success rates were used as the benchmark for 

determining the effectiveness of the Tsallis entropy method. These ratios are visually 

presented in figure 3.8, offering insights into the performance of different Tsallis 

parameters in classifying individuals with vestibular system disorder.
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(a) (b) 

Figure 3.7: For a sample diseased subject (no. 30): (a) Absolute values of the detrended data are illustrated in Figure 5b, and the step-by-step TE 

values are presented (Black bars indicate the segments where there is no data, representing them as a restricted area). The entropy values are 

calculated for each step; (b) Histograms derived from the entire gait data are plotted, with inactive sensor intervals removed. 
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Figure 3.8: Correlation between learning success and varying Tsallis parameter (q) 

values. 

 

Moreover, it is worth noting that the determination of the optimal q parameter value 

through empirical methods and subsequent evaluation of its impact on the performance 

of the learning models highlight the significance of parameter selection in entropy-

based feature extraction. 

At the completion of this stage, the study obtained Tsallis entropy values for all 

detrended data of each sensor, as well as the Tsallis entropy values calculated for each 

step within this detrended data. These entropy values provide quantitative measures of 

the complexity and information content of the gait patterns exhibited by individuals 

with vestibular system disorder. The incorporation of Tsallis entropy calculations and 

the examination of both sensor data and individual step data offer a comprehensive 

analysis of the gait dynamics, enabling a deeper understanding of the distinct 

characteristics of individuals with vestibular system disorder. 

3.2.6 Stage 6 – feature extraction 

The objective is to utilize the Tsallis entropy method on relatively short walking data 

in order to identify distinctive features that separate healthy individuals from those 

with diseases. The current stage involves establishing significant associations between 

the Tsallis entropy values of the overall gait for each sensor and the Tsallis entropy 

values calculated for the step data within each sensor data. 

Obtaining a feature that indicates the distribution of entropy values from step to step 

is of great importance due to its capability to facilitate the identification and analysis 

of discrepancies, trends, and irregularities within a given data. However, considering 

that features were attempted to be extracted from relatively short gait and the number 

of steps were around ten in general, it was concluded that analysis methods yielding 
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reliable results in a large number of data entries should be avoided. Therefore, the 

calculation of the deviation of the entropy values from a referance value from step to 

step was performed.  

In the analysis of a flawless gait, the entropy levels and entropy change levels from 

step to step should be closer to zero compared to a flawed gait. For this reason, the 

deviation of the entropy values from step to step was calculated, with the goal of 

measuring how far they deviate from zero. The dataset containing the entropy values 

from step to step was augmented with the negation of all data values, and the standard 

deviation of the newly created dataset was calculated. This approach allows us to 

quantitatively measure the dispersion of the entropy values by calculating the standard 

deviation of the augmented dataset. It provides valuable insights into the extent to 

which the gait deviates from the desired zero entropy levels. The aforementioned 

procedures are expressed mathematically within equation 3.5. 

𝐸 =  {𝑒1, 𝑒2, … , 𝑒𝑛} 𝑤ℎ𝑒𝑟𝑒 𝑒𝑘 ∈ ℝ  𝑓𝑜𝑟  𝑘 ∈ ℤ+ 

𝐸′ = {𝑒1, 𝑒2, … , 𝑒𝑛, −𝑒1, −𝑒2, … , −𝑒𝑛} 

𝜎(𝐸′) = √
1

2𝑛
∗ ∑(𝑥𝑖 − 𝜇)2

2𝑛

𝑖=1

 

 

 

 

 

(3.5) 

Here, 𝑒𝑘 is Tsallis entropy value of k-th order step data. 𝐸 denotes the ordered set of 

entropy values calculated step by step. 𝐸′ symbolizes augmenting 𝐸 with negative 

counterparts. 𝜎(𝐸′) represents the standard deviation of set 𝐸′. 𝑥𝑖 stands for each 

element in set 𝐸′. 𝜇 signifies the mean of set 𝐸′. 𝑛 is the total number of elements in 

set 𝐸. 

3.2.7 Training of classifier models 

In this final stage, machine learning was performed using sixteen features for each 

subject. These features comprised of eight total entropy levels for each sensor and 

eight deviations from zero values of entropies from step to step for each sensor. 

The classifiers with the highest performances were determined using the Matlab 

R2021b Classification Learner Tool (on MSI GE75 Raider 10875H). The 10-fold cross 

validation technique was applied, where approximately 25% of the data (from 15 

subjects) was used for testing, and the remaining data (from 45 subjects) was used for 

training. 
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The process of classification training involved utilizing nine different model categories 

provided by the Classification Learner Tool. These model categories utilized in this 

process include: Decision trees (DT), discriminant analysis, logistic regression, naïve 

bayes, support vector machine (SVM), nearest neighbors (KNN), kernel 

approximation, ensemble and neural networks. There are a total of thirty-two models 

in these model categories. For example, in the decision tree category, there are three 

models according to the maximum number of splits (Course: 4, Medium: 20, Fine: 

100).  

Among the all classifiers examined, SVM (with a Gaussian kernel), KNN(Cosine), 

and Logistic regression demonstrated superior performance. Brief explanations of 

these classifiers can be provided as follows: The KNN algorithm determines the class 

membership of an object/vector by examining its k nearest neighbors [52]. Logistic 

regression is a statistical model used to predict the probability of a dependent variable 

belonging to two or more classes in a dataset [53]. SVM seeks to find an optimal 

hyperplane to separate data clusters [54]. These three algorithms are commonly 

utilized in the literature when working with biomedical signals [55-60]. 
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4.  RESULTS AND CONCLUSIONS 

The present study aimed to investigate the potential of Tsallis entropy calculations and 

feature extraction methods for diagnosing individuals with vestibular system 

disorders. The data processing methods employed in this study, including 

normalization, step analysis, interpolation, detrending, and Tsallis entropy 

calculations, were applied to obtain meaningful features from relatively short gait. By 

comparing the analysis data of VS diseased and healthy individuals, notable 

differences were observed, particularly in the feature extraction stage. The results 

indicated significant variations in entropy levels and step-wise entropy changes, 

suggesting the potential of these entropy-based features as objective indicators for the 

assessment of vestibular system disorders. 

In the final stage of the study, machine learning techniques were utilized to classify 

the force data using the extracted features. SVM (Gaussian kernel), KNN (Cosine), 

and Logistic regression were identified as the classifiers that demonstrated the best 

performance, with success rates of 95%, 95%, and 93.3% respectively. 

The findings of this study underscore the potential of Tsallis entropy calculations and 

feature extraction methods in diagnosing individuals with vestibular system (VS) 

disorders. This approach not only introduces a novel perspective for diagnosis and 

monitoring but also aims to enhance the accuracy and objectivity of assessments in 

clinical settings. Moreover, the results advocate for their integration in clinical 

scenarios for improved diagnosis, monitoring, and treatment evaluation. With further 

research and refinement, these techniques could lead to significant advancements in 

vestibular rehabilitation, ultimately elevating the quality of life for those with balance 

impairments. 

4.1 Comprehensive Results Presentation 

In this section, a comparative analysis will be conducted between the data collected 

from individuals with a disorder in the Vestibular system and that obtained from 
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healthy subjects. The comparison will commence from the fourth stage of a sensor 

data, as described in the section 3.2 section. This comparative approach is integral to 

understanding the nuances and intricacies of the sensory data and how it reflects the 

physiological disparities between the two groups. 

  
(a) (b) 

  
(c) (d) 

Figure 4.1: (a, c) Visualization of interpolated sensory data and the trend curve of 

healthy and VS diseased subjects. (b) Visualization of detrended data from a healthy 

subject. (d) Visualization of detrended data from a subject with a vestibular system 

disorder. 

Figure 4.1 facilitates the observation of discernible variations in the behavior of sensor 

S3 when comparing healthy and VS diseased individuals. Additionally, it visually 

presents the detrended data, which represents the disparity between step data and the 

trend curve.  

Furthermore, figure 4.1 provides a comprehensive visual analysis of sensor S3, 

enabling the identification of significant differences between healthy and VS diseased 

individuals. The graphical representation depicted in figure 4.2 illustrates a notable 

distinction in the bin distributions of histogram between a healthy individual and an 

individual diagnosed with a vestibular system disorder. 

  
(a) (b) 

  
(c) (d) 

Figure 4.2: (a) and (c) Visualization of absolute expressions of the detrend data, 

restricting of the data-free segments from the dataset, and step-by-step entropy 

values of a healthy subject and VS diseased subject. (b) and (d) Visualization of a 

histogram depicting the absolute expression of detrended data obtained from a 

healthy subject and VS diseased subject.  
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These visual representations provided by figure 4.1 and figure 4.2 enable a 

comprehensive analysis of gait patterns and sensor behavior in individuals with 

vestibular system disorders compared to healthy individuals. By examining the 

discernible variations in sensor S3's behavior in figure 4.1, one can gain insights into 

the impact of vestibular system disorders on locomotion. Moreover, figure 4.2 further 

highlights the significant disparity in bin distributions of the histogram, emphasizing 

the distinct characteristics between a healthy individual and someone diagnosed with 

a vestibular system disorder. Such visual analyses are pivotal as they translate intricate 

numerical data into more digestible visual formats. This facilitates quicker decision-

making processes for clinicians and provides researchers with a clearer direction for 

subsequent investigations. Together, these graphical representations offer valuable 

visual cues for understanding and comparing the effects of vestibular system disorders 

on gait and sensor data. 

In Figure 4.2, the detrended data graphs, derived from figures 4.1b and 4.1d, are 

presented with their absolute values. The histograms generated from these graphs can 

also be observed. Notably, in Figures 4.2a and 4.2c, the black bars signify the inactive 

durations associated with the respective sensor. 

Based on the selected sample subjects and their corresponding sensor data from the 

research study, the maximum incremental change in the TE value was observed to be 

0.63 for a healthy participant. Conversely, a value of 0.99 was recorded for an 

individual diagnosed with a vestibular system disorder. For the entire gait cycle, the 

comprehensive TE value was determined to be 1.243 for the healthy individual, while 

a value of 2.356 was registered for the affected party. All TE values for these sample 

subjects, based on the sensor data, are tabulated in Table 4.1. A consolidated 

visualization of the TE values for the entire gait cycle across all participants is 

presented in figure 4.3. 

Table 4.1: TE values calculated from each sensor’s data for sample subjects. 

 Healthy Subject (no. 22) VS Subject (no. 30) 

Sensor Entire Gait Stepwise Max Entire Gait Stepwise Max 

S0 1.39 0.98 1.29 0.80 

S1 2.15 0.83 2.10 1.02 

S2 1.38 0.72 1.58 1.03 

S3 1.24 0.63 2.36 0.99 

S4 1.08 0.87 1.61 1.08 

S5 1.38 0.79 1.96 0.67 

S6 1.36 0.82 1.64 0.17 

S7 1.54 0.86 1.98 1.56 
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Figure 4.3: Box plot of the entire-gait TE values for all participants. S: sensor, H: 

healthy, VS: diseased. 

 

As delineated in section 3.2.7, thirty-two classifiers from Matlab's Classification 

Learner Tool were trained using sixteen features per subject. This training process 

employed sixteen distinctive features for each individual subject. Notably, these 

features were constituted by eight distinct total entropy levels, one for each sensor. 

Additionally, there were eight deviations from the zero values of entropies, which were 

measured from one step to the next for every sensor in the set. The average accuracies 

of the principal classification algorithms are catalogued in table 4.2. For deeper 

insights, table 4.3 showcases the confusion matrices, while figure 4.4 offers a visual 

representation through the corresponding Receiver Operating Characteristic (ROC) 

curves. These are particularly for one of the ten training-test set pairs that represent the 

top-performing three classifiers. 

Table 4.2: Accuracy of Major Classification Algorithms 

Algorithm Accuracy (%) 
SVM (Gaussian) 95.0 
Logistic Regression 95.0 

KNN (Cosine) 93.3 
Neural Network (Wide) 93.3 
Kernel (SVM) 91.7 
Ensemble (Bagged Tree) 88.3 
Naïve Bayes (Kernel) 86.7 
Quadratic Discriminant 78.3 
Decision Tree (Fine) 73.3 
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Table 4.3: Confusion Matrices for One Of The Ten Training-Test Set Pairs 

Predicted 

Class 

SVM (Gaussian) Logistic Regression KNN (Cosine) 

H D H D H D 

H 30 0 29 1 28 2 

D 3 27 2 27 2 28 

H – Healthy, D – Diseased 

 

 

Figure 4.4: ROC curves associated with (a) the support vector machine (SVM) 

model with Gaussian kernel, (b) logistic regression, and (c) the k-nearest neighbors 

(KNN) algorithm using cosine similarity in Table 4.3. 

Table 4.4 offers an intricate exploration into the efficacy and reliability of the top two 

classification algorithms. This in-depth tabulation serves as an instrumental tool in 

quantifying the performance metrics of these algorithms. The need for such a 

comprehensive table stems from earlier observations that highlighted distinct 

variations in sensor behaviors between healthy individuals and those diagnosed with 

vestibular system disorders. Such variations underscore the intricacies and 

complexities of the underlying data patterns. Given this context, it becomes imperative 

to not just rely on surface-level observations but to delve deeper into performance 

metrics. Moreover, in the evolving realm of data science and medical diagnosis, 

leveraging advanced algorithms is key to ensuring accurate and timely patient 

assessment. This ensures that the classification algorithms employed are not just 

theoretically apt, but they also demonstrate empirical effectiveness in differentiating 

between the two distinct groups. By scrutinizing these metrics, researchers and 

practitioners can achieve a heightened confidence in the algorithms' capacity to discern 

and categorize data, thereby solidifying the scientific robustness of the study. 

The metrics highlighted in Table 4.4 not only validate the robustness and precision of 

the SVM (Gaussian) and Logistic Regression algorithms, but they also emphasize their 

ability to effectively distinguish between the unique sensor patterns of the two studied 

groups. 
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Table 4.4: Some statistical data about the top two classification algorithms. 

Statistical Property SVM (Gaussian) Logistic Regression 

accuracy (%) 95.0 95.0 

sensitivity (%) 91.6 94.0 

specificity (%) 97.9 95.1 

F1 Score 0.945 0.943 

MCC 0.899 0.891 

4.2 Performance Evaluation of the Proposed Algorithm 

The comparison of various trend generation algorithms in machine learning is 

paramount to understanding the efficacy of the algorithms being developed. For the 

purpose of this study, and to ascertain the effect of the proposed trending algorithm, 

trend curves were meticulously created using 2nd, 3rd, and 4th-degree curve-fitting 

polynomials. Subsequently, their influence on the performance and success rates of 

machine learning models was critically evaluated. The success percentages, along with 

classification accuracies achieved using these distinct trend generation methods, are 

comprehensively presented in Table 4.4.  

Table 4.5: Classification accuracies with different trend generation methods. 

Classification 

Model 
Proposed 

Algorithm 

Fourth 

Degree 

Polynomial 

Third Degree 

Polynomial 

Second Degree 

Polynomial 

SVM – 

Gaussian 
95.0% 81.7% 76.3% 71.7% 

Logistic 

Regression(LR) 
95.0% 76.3% 78.3% 63.3% 

KNN – Cosine 93.3% 78.3% 70.0% 66.7% 

Best Method 
95.0% 

(with SVM-

G & LR) 

86.7% 

(with 

Ensemble 

Subsp. 

Discr.) 

83.3% 

(with Decision 

Trees-

Fine/Medium) 

83.3% 

(with 

Ensemble-

Bagged Trees) 

The results of this comparison highlight the significance of the proposed trend 

generation algorithm. By developing an algorithm specifically tailored for trend 

generation in the context of the analyzed data, it is possible to achieve higher success 

percentages in machine learning tasks compared to using traditional polynomial-based 

approaches. This demonstrates the effectiveness of the developed algorithm in 

capturing the underlying trends and patterns present in the data.  
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The ability to accurately capture trends is crucial in machine learning as it directly 

impacts the performance and predictive capabilities of the models. By employing the 

proposed algorithm, which is designed to generate trend curves optimized for the 

characteristics of the dataset, the machine learning models can better capture and 

utilize the inherent trends in the data, leading to improved accuracy. 

Overall, the proposed trend generation algorithm plays a crucial role in enhancing the 

performance of machine learning models by accurately capturing the underlying trends 

in the data. Its effectiveness, adaptability, and ability to outperform traditional 

polynomial-based approaches highlight its importance and its potential for improving 

various applications, ranging from data analysis to predictive modeling. 

4.3 Visual Comparison of Gait Processing 

In this section, a comparative analysis is presented, based on force data derived from 

two groups: healthy individuals and those diagnosed with vestibular system disorders. 

The analysis leverages data processing techniques and feature extraction methods to 

reveal distinct differences in gait patterns between these groups. These findings are 

significant, as they demonstrate the effectiveness of these methods in identifying 

variations in gait, which is crucial for diagnosing and monitoring vestibular system 

disorders. This analysis offers healthcare professionals a valuable tool for the 

assessment and management of such conditions. 

To provide a comprehensive understanding, the section includes a series of figures in 

Appendix A, labelled from Figure A.1 to A.7. Each figure visually represents the 

differences in gait patterns between the two groups, illustrating the impact of each data 

processing step. This visual representation aids in highlighting the nuanced differences 

in gait patterns, further supporting the findings of the comparative analysis.  

4.4 Summary of Findings 

The findings of this study demonstrate the effectiveness of Tsallis entropy calculations 

and feature extraction methods in analysis of gait data for individuals with vestibular 

system disorders. The gait data was collected using insole force sensors, offering a 

detailed and reliable source of information. The data collection was optimized to a 

short span of 10-15 seconds, which is considerably shorter than most experiments in 



46 

the literature. The data processing pipeline successfully generated meaningful features 

that captured distinctive gait patterns in individuals with vestibular system disorders. 

Through machine learning classification, the study achieved high accuracy in 

differentiating between healthy individuals and those with vestibular system disorders. 

This highlights the potential of entropy-based features as objective indicators for the 

diagnosis and monitoring of vestibular system disorders.  

4.5 Final Conclusion and Key Insights 

In conclusion, this study provides evidence supporting the use of Tsallis entropy 

calculations and feature extraction methods as potential tools for analysis of gait data 

in individuals with vestibular system disorder. The comprehensive data processing 

approach employed in this research facilitated the identification of significant 

differences in pressure analysis data between healthy individuals and those with 

vestibular system disorder. The extracted entropy-based features demonstrated their 

potential as objective indicators for the assessment of vestibular system disorders. 

Moreover, the classification results obtained through machine learning techniques 

underscored the discriminative power of these features. SVM (Gaussian kernel), KNN 

(Cosine), and Logistic regression emerged as the top-performing classifiers, further 

supporting the utility of entropy-based features in distinguishing between healthy 

individuals and those with vestibular system disorder. 

These findings hold implications for clinical practice, suggesting the integration of 

Tsallis entropy calculations, machine learning algorithms, and longitudinal monitoring 

in the diagnosis and monitoring of vestibular system disorders. By adopting these 

recommendations, clinicians can enhance their understanding of gait patterns, improve 

diagnostic accuracy, and make informed treatment decisions. 

Employing Tsallis entropy in gait data analysis reveals intricate nuances of gait 

patterns specific to individuals with vestibular system disorders. Furthermore, the 

integration of machine learning, especially classifiers like SVM, KNN, and Logistic 

regression, adds substantial value; these tools adeptly discern subtle differences in gait 

patterns, presenting a notable advancement in diagnostic methodologies. By 

synergizing Tsallis entropy with machine learning, this research proposes a more 
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objective and data-driven approach in diagnosing and monitoring vestibular system 

disorders. 

Further research involving larger-scale studies and diverse populations is warranted to 

validate the findings and explore the applicability of these methods in different disease 

conditions. Continued advancements in gait data analysis techniques offer promising 

avenues for improving the assessment, diagnosis, and management of vestibular 

system disorders, ultimately leading to better patient outcomes. 
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5.  DISCUSSION AND RECOMMENDATIONS  

This thesis presents the key findings and implications of a study investigating the 

potential applications of Tsallis entropy calculations and feature extraction methods in 

the diagnosis and monitoring of individuals with vestibular system disorders. The 

study employed a comprehensive data processing pipeline to analyze gait data and 

extract meaningful features for characterizing gait patterns. Machine learning 

techniques were utilized to classify individuals as healthy or having a vestibular system 

disorder based on the extracted features. The results highlight the significance of 

entropy-based features in distinguishing between the two groups. This conclusion 

section summarizes the main findings, discusses the implications of the study, explores 

potential applications in vestibular system disorder diagnosis, addresses limitations, 

and suggests future research directions. 

5.1 Discussion on Entropy-Based Findings 

This study aims to discover novel features for the identification of diseases related to 

the vestibular system, with the objective of enhancing detection accuracy and reducing 

the duration of data acquisition. In this direction, the objective is to utilize the Tsallis 

entropy method on relatively short walking data to extract features that can 

differentiate between healthy and diseased individuals. Based on the results of this 

study, noticeable differences were shown in gait data. Feature extraction using Tsallis 

entropy calculations obtained through data processing methods has emerged as a 

potential tool for the diagnosis and monitoring of individuals with vestibular system 

disorder. 

The data processing methods used in this study aim to obtain meaningful features from 

relatively short gait. Six stages, namely normalization, step analysis, interpolation, 

detrending, Tsallis entropy calculations, and feature extraction, were employed to 

process the data and perform a detailed analysis. These stages were applied to present 

the dataset in a more understandable and concise manner. These features play a 
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significant role in identifying the characteristics of gait patterns in individuals with 

vestibular system disorder during pressure analysis. 

Tsallis entropy calculations were performed based on the histograms of detrended data. 

The aim was to establish meaningful connections using the total entropy levels for 

each sensor and the deviations of step-wise entropy changes from zero. The 

measurement of how much the step-wise deviations of entropy values deviate from 

zero was used for feature extraction. The results indicate notable differences, 

particularly in the feature extraction stage where Tsallis entropy calculations and step-

wise entropy changes were evaluated. Compared to healthy individuals, the entropy 

levels and step-wise entropy changes in pressure analysis data of individuals with 

vestibular system disorder show significant variations. These findings highlight the 

importance of entropy-based features that can be used as potential indicators for the 

objective assessment of vestibular system disorders. 

In the final stage, machine learning was performed using sixteen features for each 

subject through classification learning. The aim was to identify classifiers capable of 

distinguishing between healthy individuals and those with vestibular system disorder. 

SVM (Gaussian kernel), KNN (Cosine), and Logistic regression were identified as 

classifiers that showed the best performance. 

Based on the results of this study, Tsallis entropy calculations and feature extraction 

methods appear to be potential tools for analysis of gait data in individuals diagnosed 

with vestibular system disorder. This approach, used to detect differences between 

healthy individuals and those with vestibular system disorder, may offer a new 

perspective for the diagnosis and monitoring of vestibular system disorders. 

5.2 Implications of the Study 

The implications of this study are twofold. Firstly, the utilization of Tsallis entropy 

calculations and feature extraction methods provides a new approach for analyzing 

gait data in individuals with vestibular system disorders. This objective assessment 

tool can assist healthcare professionals in diagnosing and monitoring the condition, 

leading to improved treatment and management strategies. Secondly, the study 

highlights the importance of entropy-based features in gait data analysis research, not 

only for vestibular system disorders but also for other related neurological conditions. 
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The findings open doors for further exploration and application of entropy-based 

analysis in various clinical settings.  

5.3 Limitations 

While this study provides valuable insights into the potential of Tsallis entropy 

calculations and feature extraction methods, there are limitations to consider. Firstly, 

the study focused on a specific group of individuals with vestibular system disorders, 

limiting the generalizability of the findings to broader populations. Future research 

should include larger sample sizes and consider individuals with various types and 

severities of vestibular system disorders. Additionally, the study did not explore the 

influence of factors such as stress or comorbidities on results, which could be potential 

areas for further investigation. 

Furthermore, the study primarily compared data from VS diseased individuals to 

healthy individuals. Future studies should explore the differentiation of specific 

vestibular disorders and compare the results to relevant clinical measures. Moreover, 

the study solely focused on analysis of force data; future research could investigate the 

potential of Tsallis entropy calculations in other aspects of vestibular system 

assessment, such as balance and posture analysis. Nonetheless, the findings of this 

study provide valuable insights into the potential utility of Tsallis entropy calculations 

and feature extraction methods for diagnosis VS diseased individuals, opening up new 

possibilities for enhanced diagnosis and treatment strategies in this population. 

Further research with larger-scale studies and a broader range of disease conditions is 

needed to address these limitations and enhance the validity and applicability of the 

proposed methods. 

5.4 Future Study 

The current study provides a foundation for future research in the field of gait data 

analysis for vestibular system disorders. Further investigations should focus on 

validating the effectiveness of Tsallis entropy calculations and feature extraction 

methods using larger and more diverse participant groups. Additionally, the 

application of these methods to different disease conditions within the realm of 

vestibular dysfunction would enhance the understanding of the underlying gait 
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abnormalities. Longitudinal studies tracking the progression of vestibular system 

disorders and the evaluation of treatment outcomes using these methods could provide 

valuable insights into disease management and rehabilitation strategies. 

5.5 Potential Applications in Vestibular System Disorder Diagnosis 

In this study, an innovative algorithm was developed to determine the trend curve at 

each step, which showed superior performance in comparison to other curve fitting 

methods. This can enhance the analysis and accuracy of gait patterns in clinical 

practice. 

The potential applications of Tsallis entropy calculations and feature extraction 

methods in vestibular system disorder diagnosis are significant. By incorporating these 

methods into clinical practice, healthcare professionals can obtain quantitative and 

objective measurements of gait patterns. This can aid in the accurate diagnosis of 

vestibular system disorders, allowing for early intervention and personalized treatment 

plans. Additionally, the objective nature of entropy-based features reduces subjectivity 

in the diagnosis process and enhances the overall reliability of assessments.  

5.6 Recommendations for Clinical Practice 

The findings of this study have significant implications for clinical practice in the 

diagnosis and monitoring of individuals with vestibular system disorder. The 

utilization of Tsallis entropy calculations and feature extraction methods can provide 

valuable insights into gait patterns and serve as objective assessment tools. These 

techniques can aid clinicians in the accurate diagnosis and ongoing monitoring of 

vestibular system disorders. Based on the results, we recommend the following 

practices for clinical application: 

1. Incorporating Tsallis entropy calculations: Clinicians should consider 

integrating Tsallis entropy calculations into their assessment protocols for gait 

data analysis. This approach can provide additional quantitative measures to 

complement subjective evaluations, enabling a more comprehensive 

understanding of gait patterns. 

2. Integration of machine learning algorithms: The utilization of machine learning 

algorithms, such as SVM (Gaussian kernel), KNN (Cosine), and Logistic 
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regression, can enhance the diagnostic accuracy and efficiency of analysis of 

gait data in individuals with vestibular system disorder. Clinicians should 

familiarize themselves with these algorithms and consider their 

implementation in clinical settings. 

3. Longitudinal monitoring: Given the potential of entropy-based features in 

tracking changes in gait patterns, longitudinal monitoring of individuals with 

vestibular system disorder is recommended. Regular assessments using Tsallis 

entropy calculations and feature extraction methods can help evaluate the 

effectiveness of interventions, track disease progression, and inform treatment 

decisions. 
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APPENDICES 

APPENDIX A: Comparative Figures for All Stages of Data Processing and Analysis 

APPENDIX B: Matlab Codes for All Stages of Data Processing and Analysis. 
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APPENDIX A:  Comparative Figures for All Stages of Data Processing and Analysis. 

 

Figure A.1: Normalization and cropping of raw sensor data (Stage 1) for (a) healthy and (b) subject with vestibular system dysfunction. 
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Figure A.2: Step Analysis (Stage 2) of (a) healthy and (b) subject with vestibular system dysfunction. 
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Figure A.3: Interpolation of raw sensor data (Stage 3) of (a) healthy and (b) subject with vestibular system dysfunction. 
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Figure A.4: Trend curve of each step data in the interpolated data (Stage 4) of (a) healthy and (b) subject with vestibular system dysfunction. 
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Figure A.5: Obtaining the detrend data (Stage 4) of (a) healthy and (b) subject with vestibular system dysfunction. 
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Figure A.6: Absolute value of detrended data and step-wise entropy values (Stage 5) of (a) healthy and (b) subject with vestibular system 

dysfunction. 
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Figure A.7: Histogram graph and total entropy values (Stage 5) of (a) healthy and (b) subject with vestibular system dysfunction. 
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APPENDIX B: Matlab Codes for All Stages of Data Processing and Analysis. 

Stage 1 – Data Normalization and Cropping 

The primary objective of this document is to standardize the accessible data by removing 

unsuitable sections for gait analysis. It involves visualizing these procedures and 

generating normalized and cropped datasets as output.  

▶ A) Importing Raw Datasets 

▶ B) Important Variables 

▶ C) Trimming & Plotting of Raw Data 

▼ D) Processing of Data 

Utilizes eight time-series sensor data collected from the designated participant. Firstly, 

the dataset is normalized within the range of 0 to 1. Subsequently, the segments relevant 

for gait analysis are identified and annotated within the datasets. Notifications are 

generated for any sensor data that could not be obtained. These procedures result in the 

creation of .png files, which are stored in individual folders corresponding to each 

participant. The normalized and cropped datasets are then consolidated into a single .mat 

file, which is saved in the designated folder. 

• Dataset_: Raw datasets of all participants as type of struct. 

• Frames_: All Frames as type of cell array, specifying sections that are 

suitable for data analysis. 

• HEVS: Indication of Healthy or VS participants. 1: Healthy 2: VS 

• No: Participant Number 1 to 30. 

• Hide: Hide participants' names in plots. 

• [NDS]: Normalized & cropped dataset of related participant. 

function [NDS] = ProcessData(Dataset_, Frames_, HEVS, No) 

... 
frames = cell2mat(Frames_(HEVS, No));  

...  

% Normalization to range of 0 - 1 
min_val = min(min(Data));  
Data = Data - min_val; 
max_val = max(max(Data));  
Data = Data / max_val; 

... 

% Cropping the dataset from the frame boundaries 
NDS = Data(:, Frames(1):Frames (2)); 

... 

end 
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Stage 2 – Step Analysis 
The purpose of this file is to perform the necessary pre-processing steps on the sensor 

data prior to interpolation. These steps include separating the sensor data into left and 

right feet, identifying the start and end points of each step, and capturing various 

attributes such as step duration and foot pressure duration. 

▶ A) Importing Normalized Datasets 

▶ B) Important Variables 

▶ C) Step Analysis 

▼ D) Processing of Data 

In this section, the sensor data is initially segregated based on the feet. Subsequently, 

the fixed data sensors are identified. Next, the individual steps taken by each foot are 

determined. The push time, repetition time, and position of these steps within the 

normalized dataset are computed. Finally, all of these procedures are visually depicted 

and saved in a designated folder for inspection. 

• Dataset_: Normalized datasets of all participants as type of struct. 

• Threshold_: Threshold value for detecting abnormal steps. 

• HEVS: Indication of Healthy or VS participants. 1: Healthy 2: VS 

• No: Participant Number 1 to 30. 

• Plot_: Plot and export result. (Significantly affects processing time.) 

• [info]: contains the positions of the starting and ending points of right 

and left steps in the normalized dataset. It also includes calculated 

values such as step times, periods… 

function [info] = ProcessData(Dataset_, Threshold_, HEVS, No, plot_) 
th_ns_r = Threshold_(1); % Non-step treshold value right 
th_ns_l = Threshold_(2); % Non-step treshold value left 

... 
% ~~~~~~~~~~~~ RIGHT FOOT ~~~~~~~~~~~~~~~~ 
% Combining four sensor data of a foot with the maximum operator. 
maxin = max(Data(1:4,:)); 

... 
% A series of loop operations to detect steps. 
for i = 2:length(maxin) 

 ... 
end 

... 
% Contact Time and Step Period Calculation 
Contact_Time_Right = Step_Right(2,:) - Step_Right(1,:); 
for i = 2:length(Step_Right(1,Step_Right(1,:)>0);) 
    Period_Right(i-1) = Step_Right(1,i) - Step_Right(1,i-1); 
end 

... 

end 
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Stage 3 – Interpolation 
The objective of this file is to merge the step data acquired in the preceding stage and 

execute the interpolation of said data. Since these procedures are conducted for every 

participant, it may take approximately 5-10 minutes. Consequently, we will carry out the 

creation of the histogram in the subsequent phase. 

▶ A) Importing Normalized Datasets 

▶ B) Important Variables 

▶ C) Interpolation of Sensor Data 

▼ D) Processing of Data 

In this section, the sensor data is initially segregated based on the feet. Subsequently, the 

fixed data sensors are identified. Next, the individual steps taken by each foot are 

determined. The push time, repetition time, and position of these steps within the 

normalized dataset are computed. Finally, all of these procedures are visually depicted 

and saved in a designated folder for inspection. 

• Dataset_: Normalized & Clipped datasets with step information of all 

participants as type of struct. 

• HEVS: Indication of Healthy or VS participants. 1: Healthy 2: VS 

• No: Participant Number 1 to 30. 

• Method: Interpolation method. 

• Coeff: Resolution enhancement coefficient. 

• Plot_: Plot and export result. (Significantly affects processing time.) 

• [Processed_Dataset]: Output containing the interpolated and non-

interpolated right and left foot sensors added one after the other when 

the foot touches the ground. 

function [Right_Step, Left_Step] = ProcessData(Dataset_, HEVS, No, 
Method, Coeff, plot_) 
rsl = 0.05; % Raw Data Resolution [sn/data] 
cof = 1/Coeff; % Interpolated Data Cooefficent. It means new resolution 
is rsl*cof [sn/data] 

... 
t = 1:total_length;  
t = t*rsl; 
tnew = 1:cof:total_length;  
tnew = tnew*rsl; 
inter = interp1(t, AllSteps, tnew, Method);  

... 
end  
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Stage 4 – Detrending of Interpolated Dataset 
The primary objective of the present document is to eliminate the inherent trend observed 

within the interpolated data. Throughout the execution of this procedure, the ultimate goal 

is to visually represent the computed polynomial for every iterative step undertaken. 

▶ A) Importing Interpolated Datasets 

▶ B) Important Variables 

▶ C) Detrending of Interpolated Data 

▼ D) Processing of Data 

In this section, firstly, all the information and dataset obtained in the previous stages are 

imported. In the initial step, the interpolated data is reconstructed using a simplified 

approach. In the second step, a threshold level for this dataset is determined, and a 

quadratic detrend polynomial is calculated for each fluctuation step within the dataset. 

These detrend polynomials are then plotted on the graph. Subsequently, the detrended 

data is visualized in its new form, and the output of all the work is saved in the designated 

folder. 

• Dataset_:  All the information & dataset obtained in the last stages. 

• HEVS: Indication of Healthy or VS participants. (1:Healthy, 2:VS) 

• No: Participant Number 1 to 30. 

• Affinity: Trend variation coefficient - affinity coefficient. 

• Thresh_: Degree of trend polynomial equation. 

• Plot_: Plot and export result. (Significantly affects processing time.) 

• [StepR_Data_S2]: Detrended Dataset of Right Foot. 

• [StepL_Data_S2]: Detrended Dataset of Left Foot. 

function [StepR_Data_S2, StepL_Data_S2] = ProcessData(Dataset_, HEVS, 
No, Affinity, Thresh_, Plot_) 

... 
Trend = imresize(Last_Trend_Curve, [1 length(fluctuation)], 'nearest'); 
old_error = mean(abs(fluctuation - Trend)); step = 0.001; found = 0; 
yon = 0; Distance = 0; 
while ~found 

   ... 
   predicted_trend = Trend * (1 - Distance) + C * Distance;  
   error = mean(abs(fluctuation - predicted_trend)); 
   if error > old_error; yon = ~yon; step = step/2; end 
   old_error=error; 
   if abs(Distance) >= aff_coef || step < 0.00001; found = 1;  end 
end        
Last_Trend_Curve = predicted_trend; Trend = predicted_trend; 
Detrend = fluctuation - Trend; 

... 
end  
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Stage 5 – Entropy Calculations 
The primary objective of this document is to generate a graphical representation, 

specifically a histogram, of the data that has undergone both detrending and interpolation 

processes. Subsequently, the calculation of Tsallis entropy will be carried out on the 

aforementioned data. 

▶ A) Importing Dataset 

▶ B) Important Variables 

▶ C) Histogram and Entropy Study 

▼ D) Processing of Data 

In this section, initially, all the information and dataset obtained in the preceding stages 

are imported. In the first stage, the detrended interpolated data is regraphed using a 

straightforward approach. In the second stage, histograms of these data are analyzed and 

plotted. Finally, the entropy calculation is executed, and the visual representation of the 

analysis is saved to the designated folder. 

• Dataset_:  All the information & dataset obtained in the last stages. 

• HEVS: Indication of Healthy or VS participants. 1: Healthy 2: VS 

• No: Participant Number 1 to 30. 

• Bin_Width: Bin width of histogram. 

• Method: Entropy calculation method. 

• Param: Parameter of entropy calculation method if there is any. 

• Plot_: Plot and export result. (Significantly affects processing time.) 

• [Probability]: Probability values in the Histogram. 

• [Entropy]: Calculated entropy values. 

• [EES]: Entropy values for each steps. 

function [Probability, Entropy, EES] = ProcessData(Dataset_, HEVS, No, 
Bin_Width, Method, Param, Plot_) 

...  
subplot(8,2,2*i); 
Hs = histogram(Detrended_Data, rsl_his, Normalization="probability", 
FaceColor=colors_(i), EdgeColor='k', BinWidth = 1/rsl_his); 
Probability(i,1:length(Hs.Values)) = Hs.Values; % Probabilities 

... 
Entropy(i,1) = tsallisEntropy(Probability,Param); 

... 
end 
 
function entropy = tsallisEntropy(probabilities, parameter) 

... 
q = parameter; % Tsallis parameter 
entropy = (1 - sum(Prob_nonzero.^q)) / (q - 1); 

... 
end 
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Stage 6 – Feature Extraction 
In order to facilitate the process of feature extraction for machine learning, employing the 

acquired data is imperative. This entails identifying and isolating relevant attributes or 

characteristics from the data set that can serve as inputs for subsequent machine learning 

algorithms. 

▶ A) Importing Dataset 

▶ B) Feature Extraction 

▼ C) Processing of Data 

In this section, firstly, all the information & dataset obtained in the last stages is imported. 

For a better understanding of the obtained data, operations such as standard deviation 

are applied. It is then tabulated and clustered as inputs/outputs. 

• Dataset_:  All the information & dataset obtained in the last stages. 

• [Inputs]: Inputs for machine learning. 

• [Outputs]: Outputs for machine learning. 

function [Inputs, Outputs] = ProcessData(Dataset_) 

...  
 for p = 1:2 % Min-Max 1:2 
   for q = 1:30  % Min-Max 1:30   
    if p == 1 
        Ent = Dataset_.Healthy(q).Entropy'; 
        SSER = cell2mat(Dataset_.Healthy(q).EES(1)); 
        SSEL = cell2mat(Dataset_.Healthy(q).EES(2)); 
    else 
        Ent = Dataset_.VS(q).Entropy'; 
        SSER = cell2mat(Dataset_.VS(q).EES(1)); 
        SSEL = cell2mat(Dataset_.VS(q).EES(2)); 
    end 
    for r = 1 : 4; StSER(30*(p-1) + q,r  ) = Evaluate(SSER(r  ,:)); end 
    for r = 5 : 8; StSEL(30*(p-1) + q,r-4) = Evaluate(SSEL(r-4,:)); end 
    Total_Entropy(30*(p-1) + q ,:) = Ent; 
   end 
 end 

... 
End 
 
function [result] = Evaluate(SSE_) 

... 
SSE_(1) = []; % Removing entropy value of first step 
result = std([SSE_ -SSE_]); % Calculation of deviation from zero 
end 

 

 

  



75 

CURRICULUM VITAE 

 

Name Surname : Harun Yaşar KÖSE  

 

EDUCATION:   

• B.Sc. : 2015, Kocaeli University, Engineering Faculty, 

Department of Mechatronics Engineering  

 

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS: 

• Köse, H.Y.; İkizoğlu, S. Development of An Entropy-Based Method for 

Determining the Balance Problem in Individuals, 8th International Battalgazi 

Scientific Studies Congress, Sep 3, 2023 Malatya, p14-24. ISBN: 978-625-367-

296-6 (Congress Presentation & Publication) 

• Köse, H.Y.; İkizoğlu, S. Nonadditive Entropy Application to Detrended Force 

Sensor Data to Indicate Balance Disorder of Patients with Vestibular System 

Dysfunction. Entropy 2023, 25, 1385. https://doi.org/10.3390/e25101385 

(Article) 

https://doi.org/10.3390/e25101385

