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ÖZET 

 

DENEYSEL UYGULAMALAR İLE AKTİF BOZUCU BASTIRMA KONTROL 

TEKNİKLERİNİN TASARIMI VE ANALİZİ 

Deha EKER 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Anabilim Dalı 

Danışman: Doçent Dr. Necdet Sinan ÖZBEK 

Aralık 2023, 96 sayfa 

 

Bu tez, bir dizi deneysel uygulama ile aktif bozucu bastırma kontrol tekniklerinin tasarımını ve 

analizini incelemeyi amaçlamaktadır. Bu çalışmanın temel amacı, çeşitli ileri kontrol 

stratejilerinin gerçek dünya senaryolarında nasıl etkin bir şekilde uygulanabileceğini ve 

performanslarının nasıl sistematik bir şekilde değerlendirilebileceğini keşfetmektir. Tez, aktif 

bozucu bastırma yöntemlerinin geliştirilmesi ve deneysel doğrulama sürecini ayrıntılı bir 

şekilde incelemektedir. Bu yöntemlerin pratik kullanılabilirliğini ve etkinliğini anlamak için 

detaylı bir şekilde tasarım, parametre ayarlama ve farklı senaryolarda test edilmesi 

planlanmıştır. Deney platformu olarak endüstriyel uygulamalarda sayısız alanda kullanılan 

elektromekanik sistem seçilmiştir. Sistemin matematiksel ve parametrik modeli gerçek zamanlı 

sistem tanılama deneyleri ile elde edilmiştir.  

Bu araştırmanın temel katkılarından biri, endüstriyel süreçlerde doğrusal aktif bozucu bastırma 

kontrolünün uygulanabilirliği ve etkinliği hakkında aydınlatıcı bilgiler sunmasıdır. Çalışma, 

değerlendirme için çeşitli performans metriklerini kullanılarak, geçici durum performansının 

ve sürekli durum hatalarının incelenmesine odaklanmıştır. 

Bu tezin önemli bir diğer yönü, kesir dereceli doğrusal bozucu bastırma yöntemlerinin 

tanıtılması ve deneysel doğrulamasını içermesidir. Bu yenilikçi yaklaşım ve deneysel 

doğrulama, bilgi sınırlarını genişletmekte ve mühendislik uygulamaları ile kontrol sistemlerinin 

geliştirilmesine katkıda bulunmaktadır. Sonuç olarak, bu yüksek lisans tezi, mühendislik 

uygulamaları ve kontrol sistemleri alanındaki gelişmiş bir araştırma çabasını temsil etmektedir.  

 

Anahtar Kelimeler:. Gözleyici Tabanlı Kontrol, Aktif Bozucu Bastırma Kontrolü, Lineer 

Aktif Bozucu Bastırma Kontrolü, Dahili Model Kontrolü 
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ABSTRACT 

 

DESIGN AND ANALYSIS OF ACTIVE DISTURBANCE REJECTION CONTROL 

TECHNIQUES WITH EXPERIMENTAL APPLICATIONS 

Deha EKER 

M.Sc., Department of Electrical and Electronic Engineering  
Supervisor: Assoc. Prof. Dr. Necdet Sinan ÖZBEK 

December 2023, 96  pages 

This thesis is intended to explore the design and analysis of active disturbance rejection control 

techniques through a series of experimental applications. The fundamental objective of this 

study is to investigate how various advanced control strategies can be effectively applied in 

real-world scenarios and how their performances can be systematically assessed. The thesis 

meticulously examines the development and experimental validation process of active 

disturbance rejection methods. The practical utility and effectiveness of these methods are 

planned to be comprehensively understood through detailed design, parameter tuning, and 

testing in various scenarios. As the experimental platform, electromechanical system has been 

chosen which is widely used in numerous industrial applications. The mathematical and 

parametric model of the system has been obtained through real-time system identification 

experiments.  

One of the primary contributions of this research is to provide enlightening insights into the 

applicability and effectiveness of linear active disturbance rejection control in industrial 

processes. The study is focused on the examination of transient state performance and steady-

state errors, employing various performance metrics for evaluation.  

Another significant aspect of this thesis is the introduction and experimental validation of 

fractional-order linear disturbance rejection methods. This innovative approach and its 

experimental verification are expected to expand the boundaries of knowledge and contribute 

to the improvement of engineering applications and control systems. In conclusion, this master 

thesis represents an advanced research endeavor in the field of engineering applications and 

control systems.  

 

Keywords: Active Disturbance Rejection Control, Internal Model Control, Linear Active 

Disturbance Rejection Control, Observer-Based Control. 
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1. INTRODUCTION 

1.1. A Brief Review of Control Systems 

The evolution of control systems spans a rich historical narrative, reflecting the ever-growing 

quest for precision, efficiency, and adaptability in managing dynamic systems across various 

fields. The journey begins with classical control theories, evolving through a variety of 

paradigms, ultimately culminating in contemporary methodologies like Linear Active 

Disturbance Rejection Control (LADRC).  

 

At the dawn of the control theory discipline, classical control systems, primarily based on 

proportional-integral-derivative (PID) controllers, laid the foundation for understanding and 

regulating system behavior. These early systems aimed to maintain stability and regulate 

performance by responding to system errors. However, they were limited in addressing 

uncertainties and disturbances that inherently exist in real-world systems.  

 

As technology progressed and systems became more complex, the limitations of classical 

control methods became apparent (Shi et al., 2023). This led to the emergence of more 

sophisticated control strategies, such as state-space control and observer-based control. These 

advancements introduced the concept of system states and the use of observers to estimate 

unmeasurable internal states, revolutionizing the capability to design more adaptable and robust 

control systems.  

 

LADRC represents a significant leap in the evolution of control methodologies. It addresses a 

fundamental challenge that has persisted throughout the history of control systems—the 

effective management of disturbances. LADRC introduces an innovative and active approach 

to handle disturbances by incorporating a disturbance observer and a compensation mechanism 

within the control loop. Unlike traditional methods that often struggle with disturbances, 

LADRC actively estimates and counteracts disturbances in real-time, significantly enhancing 

the system's robustness against external influences.  
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The integration of LADRC into the broader landscape of control systems signifies a paradigm 

shift towards actively addressing disturbances, uncertainties, and variations that were 

previously challenging to manage effectively. LADRC represents a novel approach that 

transcends the traditional methods by dynamically estimating and compensating for 

disturbances, thereby substantially improving control performance in electromechanical 

systems. 

  

In summary, the historical journey of control systems reflects a continuous quest for more 

effective methodologies to manage complex systems. The emergence of LADRC stands as a 

testament to this evolution, offering a groundbreaking approach to address disturbances, 

aligning with the overarching goal of achieving more robust and adaptive control strategies in 

the ever-evolving landscape of control theory and practice. 

 

1.2. Observer-Based Control Methods 

Observer-based control methods stand as a cornerstone in the landscape of modern control 

theory. Their importance lies in their capability to infer and estimate unmeasurable or difficult-

to-measure system states, which are crucial for devising precise and effective control strategies. 

These methods serve as invaluable tools in addressing the challenges posed by complex systems 

where direct measurement of all internal states might be unfeasible or costly.  

 

The essence of observer-based control lies in its ability to provide estimates of unobservable 

states, enabling control systems to operate effectively without direct access to these internal 

variables. Such methods utilize state observers or estimators, which are based on available 

system inputs and outputs, predict the unmeasured states crucial for control design.  

 

In modern control paradigms, particularly in complex or high-dimensional systems such as 

advanced mechatronic systems, robotics, and power systems, observer-based control 
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techniques play a vital role. They facilitate the development of robust and adaptable control 

strategies by enabling a deeper understanding and utilization of the system's internal dynamics. 

 

The practical implications of observer-based control are profound. They offer the means to 

design control systems that are robust in the face of uncertainties, disturbances, and unmeasured 

states, thus enhancing system performance and stability. Furthermore, these methods contribute 

significantly to real-time implementation, enabling adaptive and responsive control actions, 

especially in applications where precise and agile control is imperative. 

 

There have been three main disturbance rejection control methods studied and improved by the 

control engineers, which are Disturbance Observer-Based Control (DOBC), Equivalent Input 

Disturbance Control (EIDC),  and ADRC (Active Disturbance Rejection Control) (Du, Cao, 

She, & Fang, 2020). The recent and most studied control technique among mentioned 

techniques is ADRC for its simplicity and applicability. It is certain that it will be used more 

often in modern control engineering and industrial applications because there is always model 

mismatch and unknown dynamics that lead to unexpected outcomes in real systems. 

 

1.2.1. Equivalent Input Disturbance Control 

Equivalent Input Disturbance (EID) is a concept that focuses on modeling and compensating 

for disturbances by treating them as equivalent inputs directly into the control system. The idea 

is to analyze the effect of disturbances as if they were additional inputs to the system. EID aims 

to compensate for these equivalent disturbances, considering their impact on the control system 

as if they were part of the control input. 

 

EID approach is firstly proposed by Jin-Hua She (She, Fang, Ohyama, Hashimoto, & Wu, 2008) 

to deal with the drawbacks of DOBC control method. Needlessness of priori information of the 

disturbance and inverse dynamics of the plant are the key advantages of EID. Moreover, it does 

not require the differentiation of the measured outputs. (She et al., 2008). Disturbances are 
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almost completely rejected in both the transient and steady-state responses (She, Xin, & Pan, 

2011). 

 

The way of imposing the disturbance is not necessarily from the control input channel in EID. 

Instead, a slight change in plant model results in an approach which tends to attenuate the 

disturbance as in Figure 1.1 and Figure 1.2. 

 

 

 

Figure 1.1. The Regular Plant Model. 

 

Consider the linear time-invariant plant model as: 

 

𝑥̇0(𝑡) = 𝐴𝑥0(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝑑𝑑(𝑡) 
(1.1) 

𝑦0(𝑡) = 𝐶𝑥0(𝑡) 
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Figure 1.2  The Regular Plant with EID. 

 

It has been already proven in (She et al., 2008) that plant with an exact disturbance as in above 

equation can be shifted to EID form with the disturbance denoted as 𝑑𝑒(𝑡). The prerequisites 

of demonstration of EID form are to be observable and controllable of the plant and no zeros 

on the imaginary axis are existed. The reproduced form of the plant is: 

 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵|𝑢(𝑡) + 𝑑𝑒(𝑡)| 
(1.2) 

𝑦(𝑡) = 𝐶𝑥(𝑡) 

 

where 𝑥 ∈ 𝑅𝑛, 𝑢 ∈ 𝑅 and 𝑦 ∈ 𝑅 are the system state, the input and output of the plant 

respectively, with the equivalent input disturbance variable 𝑑𝑒(𝑡). 𝐴 ∈ 𝑅
𝑛×𝑛, 𝐵 ∈ 𝑅𝑛, and 𝐶 ∈

𝑅1×𝑛 are the constant system matrices. 

 

Since the reference input signal is precisely known, an internal model can be devised and 

implemented: 

 

𝑥̇𝑅(𝑡) = 𝐴𝑅𝑥𝑅(𝑡) + 𝐵𝑅|𝑟(𝑡) − 𝑦(𝑡)| 
(1.3) 

𝑦(𝑡) = 𝐶𝑥(𝑡) 
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It allows the perfect tracking performance in a more regulated form. For the state observer: 

 

𝑥̇̂(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢𝑓(𝑡) + 𝐿𝐶|𝑦(𝑡) − 𝑦̂(𝑡)| 
(1.4) 

𝑦̂(𝑡) = 𝐶𝑥̂(𝑡) 

 

where  𝑥̂ ∈ 𝑅𝑛, 𝑢𝑓 ∈ 𝑅, and 𝑦̂ are the state, the input and the ouput of the observer and 𝐿 

is the observer gain matrice. The state error can be defined: 

 

Δ𝑥(𝑡) = 𝑥̂(𝑡) − 𝑥(𝑡) (1.5) 

 

Substitution of the equation (1.5) into the (1.2) and the estimation of 𝑑𝑒(𝑡) becomes: 

 

𝑑̂𝑒(𝑡) = 𝐵+𝐿𝐶|Δ𝑥| + 𝑢𝑓(𝑡) − 𝑢(𝑡) (1.6) 

 

where 𝐵+ = (𝐵𝑇𝐵)−1𝐵𝑇 

 

Figure 1.3 shows the structure and components that generates the EID approach. A low pass 

filter 𝐹(𝑠) is used to filter the disturbance variable and 𝑑̂(𝑡). Choosing the appropriate filter 

where 𝜔𝑟 is the highest angular frequency band for disturbance rejection as: 

 

|𝐹(𝑗𝜔)| ≈ 1, ∀𝜔 ∈ [0, 𝜔𝑟] (1.7) 

 

As a result, the adverse effect of 𝑑𝑒(𝑡) is expected to compansate via the filtered version of it. 

Then, the block diagram of EID approach should be redrawn and extacted the transfer function 

from 𝑑𝑒(𝑡) to 𝑦. 
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Figure 1.3. The Complete Block Diagram of EID Control Method. (Du et al., 2020) 

 

The new transfer function can be acquired as: 

 

𝐺𝑦𝑑𝑒(𝑠) = 𝐺𝐹𝐹(𝑠)𝐺𝑃(𝑠) (1.8) 

 

The variables on the right hand side are: 

 

𝐺𝐹𝐹(𝑠) =
1 − 𝐹(𝑠)

1 + 𝐹(𝑠)𝐵+𝐿𝐶[𝑠𝐼 − (𝐴 − 𝐿𝐶)]−1𝐵
 (1.9) 

𝐺𝑃(𝑠) = 𝐶(𝑠𝐼 − 𝐴)
−1𝐵 (1.10) 

 

With the applicable and efficient filter design the transfer function 𝐺𝑦𝑑𝑒(𝑠) get closes to zero, 

which means that EID is rejected from the system and there is no transfer to the output. 𝐺𝐹𝐹(𝑠) 

represents the feedforward function used to diminish the unwanted effect caused by 𝑑𝑒(𝑡). 

 

Figure 1.4. shows the alternative representation of EID method involving only the state space 

representation of plant and the estimation block. 
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Figure 1.4. The Complete Block Diagram of EID Control with the Other Form. (Du et al., 

2020) 

 

1.2.2. Disturbance Observer-Based Control 

Disturbance observer-based control was introduced with the for the sake of overcoming the 

unknown perturbations and disturbances. For instance, industrial robotic manipulators, servo 

systems, maglev suspension systems encapsulate the need of controller precision to deal with 

external disturbances, torque variations and pivot frictions. In addition, the performances of the 

controller, belongs to the mechanical systems, are subject to the effects of internal model 

parameter perturbations results from the changes of operation conditions  (S. Li, Yang, Chen, 

& Xisong, 2014). Therefore, the development of new control algorithms with the ability of 

strong disturbance attenuation is helpful for practitioners to design robust systems. 

 

To illustrate briefly, DOBC method is analyzed without system stability. The structure of 

DOBC is shown in Fig 1.5. Consider a single input single output linear minimum phase system:  

 

𝐺(𝑠) = 𝐺𝑛(𝑠) + ∆𝐺(𝑠) (1.11) 
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where 𝐺(𝑠) is the the plant dynamics with uncertainty, 𝐺𝑛(𝑠) is the nominal plant dynamics, 

∆𝐺(𝑠) is unknown uncertainty. The next step is to extract the transfer function from disturbance 

to the output. 

 

𝐺𝑦𝑑(𝑠) =
[1 − 𝑄(𝑠)]𝐺(𝑠)

1 + 𝑄(𝑠)∆𝐺(𝑠)𝐺𝑛
−1(𝑠)

 (1.12) 

 

The transfer function from 𝑢(𝑡) to 𝑦(𝑡) is 

 

𝐺𝑦𝑢(𝑠) =
𝐺(𝑠)

𝐺𝑛(𝑠) + ∆𝐺(𝑠)𝑄(𝑠)
𝐺𝑛(𝑠) (1.13) 

 

So, the disturbance supression is dependent on the bandwidth of the filter 𝑄(𝑠). It should be 

close to one in order to make purified the system from uncertainty. 

 

𝑄(𝑠) ≈ 1, 𝐺𝑦𝑑 = 0, 𝐺𝑦𝑢 = 𝐺𝑛(𝑠) (1.14) 

 

As a result, the disturbance may be discarded while designing the system's feedback controller 

for a nominal plant as long as the condition above is valid.  

 

The crucial part of the DOBC is the low-pass filter 𝑄(𝑠) and plays a key role. The variation of 

low-pass filter has an effect on disturbance rejection performance as well as the implementation 

of DOBC. The order of the filter should be more or the same with the relative degree of the 

plant model. Performance and robustness of  DOBC systems can be improved via changing the 

bandwidth of the filter just as 𝑄(𝑠)𝐺𝑛
−1(𝑠) term providing that the practical conditions are 

available. 
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Figure 1.5. The Block Diagram of Disturbance Observer-Based Control 

 

1.2.3. Active Disturbance Rejection Control 

ADRC is a control strategy that actively estimates and rejects disturbances in real-time by 

introducing a disturbance estimator and a compensator into the control loop. It uses an extended 

state observer to estimate the system state, including disturbances, and then generates a control 

action that explicitly accounts for these estimated disturbances. ADRC focuses on identifying 

and rejecting disturbances dynamically, continuously adjusting the control action to counteract 

the effects of disturbances. 

ADRC differs from traditional control methods by its ability to actively estimate and 

compensate for both known and unknown disturbances in real-time. This approach has gained 

popularity due to its versatility, simplicity, and adaptability in dealing with uncertain and time-

varying systems. ADRC structure is shown in the Figure 1.6 and the key components of ADRC 

can be listed:  

 

1. Tracking Differentiator (TD): The tracking differentiator, which is the initial 

component of the relative algorithm, seeks to eliminate the influence of the reference 

signal's derivative. The reason for this is that the derivative component in a PID 
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controller is rarely employed in the control loop due to its sensitivity to high frequency 

noise; instead, TD is used to mitigate this impact. (Feng & Guo, 2017) 

 

2. Extended State Observer (ESO): The ESO is a crucial component of ADRC. It acts 

as a dynamic compensator by estimating the system's state variables and disturbances 

simultaneously. The estimated disturbance information is then used to generate control 

actions that compensate for the disturbance effects. (Han, 2009) 

 

3. Controller: The controller generates control commands based on the estimated 

disturbance information and the system's desired reference signals. It is responsible for 

maintaining the system's output close to the desired setpoint while actively 

compensating for disturbances. The tracking controller can be designed using various 

control techniques such as PD (Proportional-Derivative), state feedback, sliding mode 

control or other advanced control methods. (Herbst, 2013) 

 

 

 

Figure 1.6. The Block Diagram of Active Disturbance Rejection Control Method 

 

In Figure 1.6, “TD” represents Tracking Differentiator, “NLSEF” represents the “Nonlinear 

State Error Feedback”-can be named as controller- , “𝑉” represents system input signal to be 

differentiated, 𝑉1 is the desired trajectory and 𝑉2 is its derivative, 𝑒1 and 𝑒2 are the error signals 
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between the ouput of the TD and estimated states, 𝑢 is the control signal, 𝑦 is the output signal 

and 𝑏0 is the tuning parameter. 

 

The core idea behind ADRC is to estimate the effects of disturbances in the system. These 

disturbances can be external factors, measurement noise, or model inaccuracies that can 

significantly affect system performance. ADRC uses mathematical models and algorithms to 

estimate the disturbances in real-time. The benefits of ADRC are as follows: 

 

1. Robustness: ADRC is known for its robustness in the presence of various 

disturbances and uncertainties. It can handle both known and unknown disturbances, 

making it suitable for real-world applications where disturbances are difficult to 

predict. 

 

2. Improved Performance: By actively estimating and compensating disturbances, 

ADRC can significantly improve the closed-loop performance of control systems. It 

allows better tracking of reference signals and disturbance rejection. 

 

3. Simplicity: ADRC is relatively simple to implement and does not require extensive 

knowledge of the system's dynamics. It can be applied to a wide range of systems 

with minimal model-based design. 

 

4. Adaptivity: ADRC can adapt to changing system dynamics and disturbances over 

time, making it suitable for applications where the environment or system 

characteristics are not constant. 

1.3. Background and Motivation of Thesis 

PID controllers are still the dominant in industrial implementations although its primitivity and 

drawbacks. That is why, observer-based control methods are the alternative methods proposed 

in the literature aims to make the dominance of PID in the industry to decrease. The replaced 

control method instead of PID should have those properties: 
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1. The solid and fixed control structure which should be easy to implement in practical 

application. 

2. Not to many tuning parameters which are directly connected to the performance of 

closed-loop system. Moreover, the tuning should not posses the complexity. 

3. Prediction and estimation error between the output signal and the reference signal in 

real time causes the system to be avoided from the unwanted outcomes. 

 

ADRC comes with the solution of those issues. So, the supremacy of the ADRC, is the main 

validation point of this thesis. With the simplified version which does not have the bunch 

parameters that ADRC used in tuning, (Gao, 2003) Because of TD and LADRC has been 

recently popular control strategy. This thesis aims to explain the different versions of LADRC 

algorithms along with the design and application processes. The results of the real time 

experimental implementations on electromechanical system were compared through some 

performance metrics. Hence, the effect of LADRC on real time applications can be assessed. 

 

1.4. Objectives and Contribution of Thesis 

This study aims to address crucial challenges in the field of control systems, particularly 

focusing on electromechanical system. The primary objectives of this thesis, which are 

multifaceted, incorporating both theoretical advancements and practical implementations to 

enhance control methodologies, are summarized as follows: 

 

1. Investigate and analyze the theoretical foundations of disturbances affecting 

electromechanical systems to develop a robust framework for disturbance rejection. 

Explain the observer-based control methods and why they are essential for modern 

control. 

2. Establish a comprehensive understanding of LADRC principles for electromechanical 

systems.  
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3. Explore and refine the integration of LADRC with electromechanical systems, 

emphasizing its advantages and limitations. 

4. Offer practical insights and guidelines for the application of LADRC in real-world 

electromechanical systems, including but not limited to robotics, mechatronics, and 

motor control.  

5. Provide a roadmap for industry practitioners and researchers to implement and adapt 

LADRC to enhance the control of electromechanical systems in diverse applications. 

6. Provide a foundation for further research and development in the realm of control 

systems for electromechanical devices, encouraging ongoing advancements and 

innovation in the field. 

The main contributions of the thesis are summarized as follows: 

 

1. Real-time identification of an electromechanical system is conducted through process 

reaction curve techniques.  

2. LADRC based algorithms are designed to mitigate disturbances in electromechanical 

systems in the the control framework for real-time applications, considering system-

specific constraints and requirements. 

3. The designed control strategies are implemented on practical electromechanical systems 

to evaluate their performance and efficacy.  

4. Extensive experimental investigations are conducted to validate the proposed LADRC 

methods under various operating conditions and disturbances.  

5. The performance of the LADRC is compared with existing control techniques to 

demonstrate its superiority in mitigating disturbances in electromechanical systems. 

This thesis is envisioned to significantly contribute to the advancement of control 

methodologies for electromechanical systems, particularly through the development and 

validation of the LADRC framework. The findings and outcomes are anticipated to be 

beneficial for both academic research and practical industrial applications, offering new 

perspectives and strategies to tackle disturbances in such systems effectively. 
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2. LITERATURE REVIEW 

2.1. Review of Active Disturbance Rejection Control Method 

Active Disturbance Rejection Control (ADRC) emerges as a potent and adaptive control 

strategy, demonstrating the capacity to markedly elevate the performance and robustness of 

control systems across diverse applications. Its distinctive capability to actively estimate and 

compensate for disturbances distinguishes it from conventional control methods, rendering it 

an appealing option for contemporary control engineering. 

 

It was first proposed by Han (Han, 2009) and from that point it evolves in both theoretical and 

experimental aspects. It reveals that PID control will eventually lose its appeal due to 

diminishing utility. Furthermore, it introduces a novel problem-solving methodology and 

mindset regarding the application of ADRC to diverse engineering challenges. 

 

The ADRC can be combined with numerous control strategy such has Fuzzy Control and 

Backstepping Control. Studies have reported applications of Fuzzy Control in underwater 

biometric vehicle system, (R. Wang, Wang, Wang, Tang, & Tan, 2018)  underactuated 

underwater vehicle system (A. Li et al., 2019), exoskeleton system (Z. Li, Guan, Li, & Xu, 

2020), networked control system (Y. W. Wang, Zhang, Dong, & Yu, 2020), robotic arm system 

(X. A. Li, Sun, Guo, & Liu, 2021), medium and high voltage distribution system (Xuesong 

Zhou, Cui, & Ma, 2021), magnetic levitation system (Ouyang, Fan, Liu, & Li, 2021), aircraft 

anti-skid breaking system (Z. Zhang et al., 2021) and quadrotor system (Z. Wang & Zhao, 

2022). 

 

The evolution of ADRC are now undeniable truth for literature. Sliding Mode Control (SMC) 

is one of the applicable methods which can be combined or be part of the elements of ADRC. 

For example, one of the alternative approach for observer design is utilizing the Sliding Mode 

apprıoach for electromechanical systems as in Figure 2.1 (Qiu, Xiao, & Wang, 2015). Using 

the sigmoid function instead of sign function with constant boundary layers and Kalman filter, 
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weakens the chattering and observer error when compared the conventional sliding mode 

observer. The output of the proposed observer is combined with ADRC to increase the 

efficiency of speed regulation. Other example demonstrates the compound control of ADRC 

with SMC is a solution of the performance problem of path following problem of underactuated 

surface ships (Li et al., 2016). The model free advantage of ADRC is utilized and heading angle 

following performance is upgraded to certain level with easily tuning. In (Alonge, Cirrincione, 

D’Ippolito, Pucci, & Sferlazza, 2017), the induction motor system have been included the work 

of centre. Rotor flux and speed of induction motor were controlled by ADRC to aim to deal 

with internal and external disturbances, which are estimated and disrupted by means of two 

LESO.  

 

 

 

Figure 2.1. The Usage of Sliding Mode Observer With ADRC (Qiu et al., 2015) 

 

The estimation errors of the total disturbance and parameter fluctuations, which are not included 

in the endogenous disturbances and cannot be assessed by the ESO, are the root source of the 

issues that ADRC cannot solve. Hence, the robustness of the controlled system is provided with 

the help of SM component which is used in the control law. The superiority of the proposed 

method over conventional ADRC was supported with both simulation study and experimental 

application. 



17 

 

 

 

 

Wearable exoskeletons have garnered increased attention in research recently because of their 

many uses, which include easing the burden of intensive rehabilitation, assisting quadriplegic 

or paraplegic individuals in regaining movement, enabling healthy individuals to lift large 

objects, and supplying extra force for walking. The significant challenge in this field is how to 

control exoskeletons to maximize their potential. In (C. F. Chen et al., 2019), ADRC with Fast 

Terminal SMC are combined to improve the performance lower limb exoskeleton by means of 

disturbance estimation with finite-time convergence. The paper demonstrates that ADRC is not 

enough to provide fast convergence so the reason behind the usage of both method collectively 

is to control the system fast and accurate way. The drum water level systems include strong 

disturbance, nonlinearity and variation of the operating conditions. Because the SMC has the 

advantages of quick response and robustness, this paper (Pu, Ren, & Su, 2019) introduces that 

it can be collectively incorporated in to closed loop control system with the LESO. For 

modelling and reconstruction, the LESO uses the systems’s total disturbance as the extended 

state. This allows the estimation of the equivalent disturbance of the system. The combination 

of two methods is applied to as SMC based on LESO to the control of drum water level. 

Performance of the controller exceeds compared with the conventional LADRC when external 

disturbance and model parameter mismatch exist in the system. Unmanned surface vessels are 

one of the application areas which uses SMC and ADRC combined. The maneuvering problems 

arises while unmanned surface vessels are sailing in the ocean. They need to launch swiftly and 

travel steadily in an emergency case. Although, the SMC is combined with adaptive theory and 

backstepping control methology in (X. Chen, Liu, Hu, Wang, & Dong, 2017), the instant and 

frequent changes in switching function makes the control state is effected negatively because 

of high frequency oscilations. Hence, as in Figure 2.2. (Dong, Huang, & Zhuang, 2020) 

proposes a new strategy, which combines Levant Tracking Differentiator that is a nonlinear 

differentiator allows to extract input signals and their differentials with efficacy, ESO and 

Sliding Mode Control which uses power exponential approaching law to construct the new 

piecewise function. The method presented in the paper manifests that the Levant TD reduces 

the alterations of the rudder angle and lessens the wear of the steering gear. Marine current 

turbine energy systems attracts attention. because of searching alternative energy sources of the 
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humanity, the predictability and availability. Marine current turbines face challenges in 

operating and maintaining mechanical sensors due to the extreme  underwater  conditions   they  

 

 

Figure 2.2. The Combination of Levant TD, SMC And ESO (Dong et al., 2020) 

 

encounter. Hence, implementing a sensorless control approach is completely justified in order 

to enhance the dependability of electrical energy output in the system. To overcome this issue, 

In the beginning, an examination has been conducted on the influence of the swell effect on the 

velocity of the marine current, which can result in disruptions to the MCT system.  Afterwards, 

an ADRC controller was developed to enhance the anti-interference capability of the MCT 

system. Subsequently, Smith predictor based time-delay compensation sliding mode observer 

is implemented to eliminate system time delay (Xiangyang Zhou, Wang, & Diallo, 2022). 

Permanent Magnet Sycronous Motors (PMSM) needs to posses good tracking performance for 

the current control in industry. Even if, model predictive control (X. Zhang, Hou, & Mei, 2017) 

is a solution in many ways such that has the ability to determine and forecast future voltages, 

the predictions of model predictive control comes with high computational costs. That is why, 

in order to improve the performance of the current control ADRC based SMC was proposed in 

(Qu, Qiao, & Qu, 2021) and the proposed technique was validated by experimental results for 

200W salient pole PMSM drive system as in Figure 2.3. The article introduces a new active-

disturbance-rejection-based sliding-model current controller (ADR-SMCC) for field oriented 

based control  PMSM drives to enhance their disturbance rejection ability and current tracking 
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performance. The ADR-SMCC combines an SMCC with ESO to achieve fast current tracking 

performance. The ESO's real-time disturbance estimate mitigates the influence of disturbances 

on current tracking performance, making the ADR-SMCC more robust to system disturbances 

than PI current control, SMCC and the disturbance observer sliding mode current control.  

 

 

Figure 2.3. The Block Diagram of the Plant Controlled by the ADR-SMCC Scheme (Qu et al., 

2021) 

 

Sliding mode ESO combined with SMC in way that constittutes a structure that applies ADRC 

with sliding mode components to the fractional order systems in (Djeghali, Bettayeb, & 

Djennoune, 2021). Several studies have focused on developing the ADRC specifically for linear 

and nonlinear fractional-order systems. Nevertheless, the application of the sliding mode 

technique in the design of ADRC for fractional-order systems has not been implemented thus 

far. This study aims to introduce a sliding mode active disturbance rejection controller for 

stabilizing and tracking nonlinear fractional-order systems that have uncertainties and external 

disturbances as in Figure 2.4.  
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Figure 2.4. The Block Diagram of the Proposed Scheme for Fractional Order System. (Djeghali 

et al., 2021) 

 

The more applicable form of ADRC is referred to as LADRC, which avoids the use of nonlinear 

functions seen in ADRC. Applying to various control systems is significantly easier due to the 

requirement of fewer parameters compared to ADRC. Since its proposal by Gao (Gao, 2003), 

the approach has been recognized as an acceptable alternative control methodology for over 

two decades (D. Eker, Özbek, & Çelik, 2022)(D. Eker & Özbek, 2021). For example, a 

generalized version of LADRC is proposed in (R. Zhou & Tan, 2015) to account for additional 

plant information, such as the presence of extra dynamics in the controlled plant. To optimize, 

the suggested configuration is transformed into an Internal Model Control (IMC) framework. 

Consecutively, the generalized version of LADRC  with Smith predictor is investigated for time 

delayed systems in (B. Zhang, Tan, & Li, 2020). After that, (Cui, Tan, Li, Wang, & Wang, 

2020) proposes a new tuning method for LADRC via relay feedback to initialize the parameters 

of LADRC and tested simulatively. Then, reduced-order ESO is combined with LADRC is 

proposed in (Fu & Tan, 2020) to improve the control performance of LADRC. In (R. Zhou, Fu, 

& Tan, 2021), the question that where the linear control is sufficient, is it possible to apply 

LADRC in any strictly proper linear controller was tried to answered. It is inevitable that 

LADRC method will draw more attention by the researchers and control engineers. Hence, it 

became the primary subject of investigation in this thesis. 
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3. BACKGROUND OF SELECTED CONTROL METHODS 

3.1. Linear Active Disturbance Rejection Control 

Linear Active Disturbance Rejection Control (LADRC) offers a range of notable advantages 

that make it a compelling choice in control system design and practical applications. Its inherent 

robustness against diverse disturbances and system uncertainties ensures reliable performance 

even in noisy environments. LADRC excels in tracking desired trajectories with precision, 

making it ideal for applications where maintaining control in the face of disturbances is crucial. 

What sets LADRC apart is its ability to function without the need for a precise mathematical 

model of the system, simplifying the control design process. This ease of parameter tuning is 

especially valuable in experimental and practical settings (R. Zhou et al., 2021). Additionally, 

the incorporation of an Extended State Observer (ESO) for real-time disturbance estimation and 

compensation further enhances its effectiveness. LADRC's adaptability to various system types, 

suitability for both linear and nonlinear systems, and ability to reduce control effort make it a 

versatile and advantageous choice for control system engineers and researchers across 

numerous industries, seeking to elevate the performance and resilience of their systems (Fu & 

Tan, 2021). 

 

Bearing these observations in mind, the LADRC method, is considered a due to the ease of 

parameter selection which provides to the designer in experimental applications.  

 

Rather than the conventional approaches as PID, LADRC does not need all the parameters of 

the plant in order to control the system. That is why despite conventional control approaches, 

the control scheme derives the information required to regulate the plant through using the ESO 

rather than the plant's model. The following second order system is taken into consideration in 

order to effectively express the LADRC scheme: 

 

𝑦̈ = −𝑎𝑦̇ − 𝑏𝑦 + 𝑤 + 𝑏𝑢 (3.1) 
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where 𝑦 is the output of the plant, 𝑢 is the input of the plant, 𝑏 is the system parameter and 𝑤 

is the external disturbance. The coefficients of 𝑦 and 𝑦̇ may not be known, but it is useful to get 

some prior knowledge of the plant model while constructing the LARDC controller. So, the 

information of 𝑏 ≈ 𝑏0 is used as: 

 

𝑦̈ = −𝑎𝑦̇ − 𝑏𝑦 + 𝑤 + (𝑏 − 𝑏0)𝑢 + 𝑏0𝑢 (3.2.a) 

𝑦̈ = 𝑓 + 𝑏0𝑢 (3.2.b) 

 

The idea is cover all the internal unknown dynamics and external disturbance as total 

disturbance, which is denoted as 𝑓, and convert the system to double integral plant. 

Fundementally, an ESO should practically be implemented so that the estimation of 𝑓, which 

is denoted as 𝑓, is possible to use in the control law. Moreover, the impact of 𝑓 on the control 

loop can be compansated and remaining part to be handled for the controller is the process with 

nearly double integrating behaviour. With the usage of 𝑓 , the control signal becomes: 

 

𝑢 = (−𝑓 + 𝑢0)/𝑏0 (3.3) 

 

After that, it is mandatory to define state equation form of  (3.1) as: 

 

𝑥̇1 = 𝑥2 

(3.4) 
𝑥̇2 = 𝑥3 + 𝑏0𝑢 

𝑥̇3 = ℎ 

𝑦 = 𝑥1 

 

The point is the augmented state is added as 𝑥3 = 𝑓. Hence, 𝑥̇3 = 𝑓̇ = ℎ is denoted as unknown 

disturbance which can be estimated by a state observer-based on the state space model below: 

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐸ℎ (3.5.a) 

𝑦 = 𝐶𝑥 (3.5.b) 
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where, 

 

𝐴 = [
0 1 0
0 0 1
0 0 0

] 

𝐵 = [0 𝑏0 0]𝑇 

𝐸 = [0 0 1]𝑇 

𝐶 = [1 0 0] 

(3.6) 

LESO, which is a special form of ESO, for (3.5) now can be designed as:  

 

𝑧̇ = 𝐴𝑧 + 𝐵𝑢 + 𝐿(𝑦 − 𝑦̂) 
(3.7) 

𝑦̂ = 𝐶𝑧 

  

𝐿 can be named as observer gain vector, which can be determined using pole placement method. 

With the estimated variables, 𝑧 = 𝑥̂ , ESO equation can be written as where 𝐿 = [𝑙1 𝑙2 𝑙3]
𝑇: 

 

[

𝑥̂1
𝑥̂2
𝑥̂3

] = [
0 1 0
0 0 1
0 0 0

] [

𝑥̂1
𝑥̂2
𝑥̂3

] + [
0
𝑏0
0
] 𝑢 + [

𝑙1
𝑙2
𝑙3

] (𝑦 − 𝑦̂) (3.8.a) 

[

𝑥̂1
𝑥̂2
𝑥̂3

] = [

−𝑙1 1 0
−𝑙2 0 1
−𝑙3 0 0

] [

𝑥̂1
𝑥̂2
𝑥̂3

] + [
0
𝑏0
0
] 𝑢 + [

𝑙1
𝑙2
𝑙3

] 𝑦 (3.8.b) 

 

According to equation above, it can be deduced that 𝑥̂1 = 𝑦̂, 𝑥̂2 = 𝑦̇̂ and 𝑥̂3 = 𝑓. Using the 

variables which are guessed by ESO, a modified PD controller as in Figure 3.1 without the 

derivative part of the reference signal causes second order closed loop controlled system to 

exist: 
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Figure 3.1. The Block Diagram of PD Based LADRC Method. 

 

𝑢 =
(−𝑧3 + 𝑢0)

𝑏0
 (3.9.a) 

𝑢0 = 𝐾𝑃(𝑟 − 𝑥̂1) − 𝐾𝐷𝑥̂2 (3.9.b) 

 

Provided that the ESO makes sufficient estimates of states such that  𝑥̂1 = 𝑦̂ ≈ 𝑦, 𝑥̂2 = 𝑦̇̂ ≈ 𝑦̇ 

and 𝑥̂3 = 𝑓 ≈ 𝑓, equation (3.9.a) can be substitued into (3.2.b) (Herbst, 2013): 

 

𝑦̈ = (𝑓 − 𝑓) + 𝑢0 ≈ 𝑢0 ≈ 𝐾𝑃(𝑟 − 𝑥̂1) − 𝐾𝐷𝑥̂2 (3.10) 

 

where  𝑟 represents the setpoint. One of the key point is that 𝐾𝐷 . 𝑥̂2 is utilized instead of 𝐾𝐷 . (𝑟̇ −

𝑥̂2) in order that the control signal does not include the differentiation of the setpoint. It provides 

a closed loop pure second order transfer function without a zero. Setpoint signal equals: 

 

1

𝐾𝑃
𝑦̈ +

𝐾𝑃
𝐾𝐷
𝑦̇ + 𝑦 = 𝑟 

(3.11) 
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3.1.1. Tuning of Linear Active Disturbance Rejection Control 

The selection of controller gains are not strictly restricted, means any second order dynamics 

can be used to determine the 𝐾𝑃 and 𝐾𝐷. Practically, these two parameters are linked with 

controller bandwidth and damping ratio, denoted as 𝑤𝐶 and 𝛿. 

 

𝐾𝐷 = 2𝛿𝑤𝐶  , 𝐾𝑃 = 𝑤𝐶
2 (3.12) 

 

The parameter 𝑤𝐶 is related the question that how the controller can be optimized for each 

application and how the engineer eloborates deep in the system so that gets the most reliable 

performance. Hence, 𝑤𝐶 can be expressed as the measure of performance, which corresponds 

better disturbance rejection and better setpoint following as it’s value gets higher. 

 

Practically, it is assumed beneficially to tune closed loop system as critically damped behaviour 

and 2% settling time so that negative real double pole is obtained. Since the damping ratio is 

one: 

 

𝐾𝐷 = 2𝑤𝐶 

(3.13) 
𝐾𝑃 = 𝑤𝐶

2 

𝑤𝐶 =
6

𝑇𝑆
 

 

The coefficient that stands above the fraction which identifies 𝑤𝐶 depends on the desired closed 

loop transfer function and proof is presented at the Appendix A.  

 

After the controller gains were determined, the gains of ESO should be specified. One way to 

do this is to placing all observer poles at one location. So, there is another parameter, denoted 

as 𝑤𝑂 and named observer bandwidth, emerged to regulate observer dynamics. The LESO has 

three observer poles and should be placed −𝑤𝑂 equivalently: 
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𝜃(𝑠) = 𝑠3 + 𝑙1𝑠
2 + 𝑙2𝑠 + 𝑙3 = (𝑠 + 𝑤𝑂)

3 
(3.14) 

𝑙1 = 3𝑤𝑂 , 𝑙2 = 3𝑤𝑂
2, 𝑙3 = 𝑤𝑂

3 

 

The equations are easily extended up to 𝑛𝑡ℎ order LESO. The parameters of LESO are the 

functions of  𝑤𝑂 and the real question, in particular, is how the observer bandwidth should be 

optimized. Moreover, as the LESO tracks the states with expected speed, it will be better for 

the system to eliminate unwanted noises and internal disturbances. It, requires a relation 

between the controller bandwidth and the observer bandwidth.  

 

𝑤𝑂 = (3…10). 𝑤𝑐 (3.15) 

 

The coeffcient of the equation above demostrates that observer bandwidth should be faster than 

controller bandwidth so that the compensation of uncertainties is possible. 

 

3.2. Error Based Linear Active Disturbance Rejection Control 

 This version of the LADRC scheme deploys the LESO in conjunction with a linear state 

feedback controller. However, it's worth noting that the system's state vector encompasses the 

feedback error and its successive time derivatives. (Madonski et al., 2023). 

The objective is to make system output 𝑦 track the reference signal 𝑟 by manipulating the input 

signal 𝑢. The less trajectory tracking error 𝑒 ≜ 𝑟 − 𝑦 results in the less presence of unknown 

system dynamics and unpredictable external disturbance. In order to utilize this method, 

reference signal should satisfies: 

 

• The signal itself and its consecutive reference time derivatives are unknown. 

• Its consecutive time derivatives exist for all 𝑡 ≥ 0 and are bounded. 

• The signal itself should be bounded. 

 

The following single input single output plant model is introduced first: 
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𝑦(𝑛) =∑𝑎𝑖

𝑛−1

𝑖=0

𝑦(𝑖) + 𝑏𝑢 + 𝑑 (3.16) 

 

where 𝑛 is the order of the plant, 𝑦 is the output, 𝑢 is the control input, 𝑎𝑖 are unknown plant 

parameters, 𝑑 is the external disturbance and 𝑏 is partially known plant gain.  The approach of 

the presented method leads to the system into more compact form: 

 

𝑦(𝑛) = 𝑓 + 𝑏0𝑢 (3.17) 

 

where 𝑓 is the total disturbance. The definition of tracking error makes the plant model into: 

 

𝑒(𝑛) = 𝑓𝑒 − 𝑏0𝑢 (3.18) 

 

where 𝑓𝑒 can be defined total disturbance in error domain and the expansion of 𝑓𝑒 is: 

 

𝑓𝑒 = 𝑟
(𝑛) −∑𝑎𝑖

𝑛−1

𝑖=0

𝑟(𝑖) +∑𝑎𝑖

𝑛−1

𝑖=0

𝑒(𝑖) − ∆𝑏𝑢 − 𝑑 (3.19) 

 

The derivation and approach of ADRC allows to represent 𝑏 = 𝑏0 + ∆𝑏 where 𝑏0 ≠ 0. Hence, 

the estimation of uncertainties are made to possible to demonstrate. In LADRC,  the reference 

signal and its derivatives are not part of the total disturbance, while in this approach they 

becomes the part of the term, 𝑓𝑒. For a second order system the equations above turns into: 

 

𝑦̈ = 𝑎0𝑦 + 𝑎1𝑦̇ + 𝑏𝑢 + 𝑑 (3.20) 

 

𝑒̈ = 𝑓𝑒 − 𝑏0𝑢 (3.21) 

 

𝑓𝑒 = 𝑟̈ − 𝑎0𝑟 − 𝑎1𝑟̇ + 𝑎0𝑒 + 𝑎1𝑒̇ − ∆𝑏𝑢 − 𝑑 (3.22) 
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The following part of E-LADRC involves the derivations for second order system (H. Zhang, 

2017). The states of the system  for a second order system can be written in terms of error signal 

as where 𝑒 ≜ 𝑟 − 𝑦. 

 

𝑥1 = 𝑒 = 𝑟 − 𝑦 

(3.23) 𝑥2 = 𝑟̇ − 𝑦̇ = 𝑥̇1 

𝑥3 = 𝑓𝑒(2) 

 

Where 𝑓𝑒(2) = 𝑟̈ − 𝑓. Then 𝑥2 can be rewritten as: 

 

𝑥̇2 = 𝑓𝑒(2) = 𝑟̈ − 𝑦̈ = 𝑟̈ − (𝑓 + 𝑏𝑢) = 𝑟̈ − 𝑓 − 𝑏𝑢 = 𝑥3 − 𝑏𝑢 (3.24) 

 

The plant’s form can be expressed as: 

 

𝑥̇1 = 𝑥2 

(3.25) 𝑥̇2 = 𝑥3 − 𝑏𝑢 

𝑥̇3 = 𝑓𝑒̇(2) 

 

The block diagram of the error based LADRC structure is shown in Figure 3.2. The main 

difference with the LADRC structure depicted in Figure 3.1, is the feedback controller which 

involves not the multiplication of estimaton of the states but the estimation of errors. So the 

control signal can be written as: 
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Figure 3.2. The Block Diagram of Error Based LADRC Method 

 

𝑢 =
(𝑓𝑒(2) + 𝑢0)

𝑏0
 (3.26.a) 

𝑢0 = 𝐾1𝑥̂𝑒1 +𝐾2𝑥̂𝑒2 (3.26.b) 

 

Provided that the output variables of the error based observer are perfectly designed such that 

𝑥̂𝑒1 = 𝑒̂ ≈ 𝑒, 𝑥̂𝑒2 = 𝑒̇̂ ≈ 𝑒̇ and 𝑥̂𝑒3 = 𝑓𝑒(2) ≈ 𝑓𝑒(2), the goal of the ELADRC is to minimize 

observer estimation which equals 𝑒 − 𝑒̂. 

 

𝑥̇̂𝑒 = 𝐴𝑥̂𝑒 − 𝑏𝑢𝑒 + 𝐿(𝑒 − 𝑒̂) 
(3.27) 

𝑒̂ = 𝐶𝑥𝑒 

 

where, 
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𝐴 = [
0 1 0
0 0 1
0 0 0

] 

𝑏 = [0 𝑏0 0]𝑇 

𝐿 = [𝑙1 𝑙2 𝑙3]
𝑇 

𝐶 = [1 0 0] 

(3.28) 

It can be seen clearly that error based ESO is almost the same with the one which LADRC 

involves. However, the term related with the control signal, 𝑏. 𝑢𝑒, has a negative sign in front. 

Moreover, the input of LESO is the output signal 𝑦 while the input is the tracking error 𝑒 in 

error based ESO. With the use of eq. 3.26, the system model reduces its dynamics to idealized 

integral form which is denoted as 𝑒̈ = −𝑢0.   

 

In the tuning procedure, the error-based LADRC method employs the same tuning methodology 

as the conventional LADRC structure, relying on both the controller bandwidth and observer 

bandwidth. For practitioners, using identical controller gains and observer gains can be 

beneficial in comprehending the relationship between and assessing both methods. 

 

3.3. Linear Active Disturbance Rejection Control via IMC 

The following linear system is considered to demonstrate the entire scheme (Tan & Fu, 2016): 

 

𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠) + 𝐷𝑒(𝑠)𝐷(𝑠) (3.29) 

 

where: 

 

𝐺(𝑠) =
𝑏𝑚𝑠

𝑚 +⋯+ 𝑏1𝑠 + 𝑏0
𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 +⋯+ 𝑎1𝑠 + 𝑎0

 (3.30) 
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𝐷𝑒(𝑠) =
𝑐ℎ𝑠

ℎ +⋯+ 𝑐1𝑠 + 𝑐0
𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 +⋯+ 𝑎1𝑠 + 𝑎0

 (3.31) 

 

𝑌(𝑠), 𝑈(𝑠) and 𝐷(𝑠) are representation of Laplace transform of system variables which 

correspond output, input and disturbance singly. 𝐷𝑒(𝑠) and 𝐺(𝑠) are the transfer functions of 

the external disturbance and the controlled plant. 

𝑝 = 𝑛 −𝑚 where 𝑝 the relative order of the controlled plant is sufficient for designer who 

establishes the ADRC control scheme over the controlled plant. The form of differential 

equation of the whole system can be written as: 

 

𝑎𝑛𝑦
(𝑛)(𝑡) + 𝑎𝑛−1𝑦

(𝑛−1)(𝑡) + ⋯+ 𝑎1𝑦̇(𝑡) + 𝑎0𝑦(𝑡) = 

𝑏𝑚𝑢
(𝑚)(𝑡) + ⋯+ 𝑏1𝑢̇(𝑡) + 𝑏0𝑢(𝑡) + 

𝑐ℎ𝑑
(ℎ)(𝑡) +⋯+ 𝑐1𝑑̇(𝑡) + 𝑐0𝑑(𝑡) 

(3.32) 

 

The idea is to treat all of the uncertainties and disturbances as ‘lumped’ disturbance. That is 

why the whole equation can be arranged as: 

 

𝑦(𝑝)(𝑡) = 𝑏𝑢(𝑡) + 𝑓(𝑡) (3.33) 

  

where 𝑓 is the total amount of internal and external disturbance with the unknown dynamics 

and 𝑏 =
𝑏𝑚

𝑎𝑛⁄  where 𝑏 is the gain of the controlled plant. The next step is to estimate the states 

of the controlled system with the ‘lumped’ disturbance which is unknown. To do so, an ESO 

should be implemented to the control structure. 
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𝑧1 = 𝑦  

𝑧2 = 𝑦 ̇  

⋮  

𝑧𝑝 = 𝑦(𝑝−1) 

𝑧𝑝+1 = 𝑓 

(3.34) 

 

The fact that the assumption of extra state being differentiable made the expression 𝑓̇ = ℎ. It 

will be used in: 

  

𝑧̇ = 𝐴𝑒𝑧 + 𝐵𝑒𝑢 + 𝐸𝑒ℎ, 

𝑦 = 𝐶𝑒𝑧 
(3.35) 

where 𝑧 = [𝑧1 𝑧2 … 𝑧𝑝 𝑧𝑝+1]
𝑇
.  Full form of system matrices are shown in below as: 

 

𝐴𝑒 =

[
 
 
 
 
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0
0 0 0

⋯
⋯

1
0]
 
 
 
 

 

𝐵𝑒 = [0 0 … 𝑏 0](𝑝+1)×1
𝑇  

𝐸𝑒 = [0 0 … 0 1](𝑝+1)×1
𝑇  

𝐶𝑒 = [1 0 0 … 0]1×(𝑝+1) 

(3.36) 

 

An observer should be constructed so that the estimated states can join the control loop as 

negative feedback. The aim of that process is to reduce the error at the output with the usage of 

estimated states within the control scheme. 

 

𝑧̂̇ = 𝐴𝑒𝑧̂ + 𝐵𝑒𝑢 + 𝐿0(𝑦 − 𝑦̂) 

𝑦̂ = 𝐶𝑒𝑧̂ 
(3.37) 
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where 𝐿0 is the observer gain vector. 

 

𝐿0 = [𝛽1 𝛽2 ⋯ 𝛽𝑝 𝛽𝑝+1] (3.38) 

 

According to how effective design of the observer, the control scheme’s efficacy varies. 

It should be remembered that 𝑧̂𝑝+1(𝑡) ≅ 𝑓(𝑡). 

 

𝑢(𝑡) =
𝑢0(𝑡) − 𝑓(𝑡)

𝑏
 (3.39) 

 

The dynamics of the plant changes after the submission of 𝑢(𝑡) into the plant equation as below.  

 

𝑦(𝑝)(𝑡) = 𝑏 (
𝑢0(𝑡) − 𝑓(𝑡)

𝑏
) + 𝑓(𝑡) 

𝑦(𝑝)(𝑡) = 𝑢0(𝑡) − 𝑓(𝑡) + 𝑓(𝑡) 

(3.40) 

 

Dependency of the design quality of ESO makes the plant an integral system which the order 

of the integral is 𝑝. That makes the system: 

 

𝑦(𝑝)(𝑡) ≈ 𝑢0(𝑡) 

 
(3.41) 

Now, the regulation of system response should be satisfactory. Hence, the controller design is 

based on state feedback: 

 

𝑢0(𝑡) = 𝑘1(𝑟(𝑡) − 𝑦(𝑡)) + 𝑘2(𝑟̇(𝑡) − 𝑦̇(𝑡)) + ⋯+ 𝑘𝑝(𝑟
(𝑝−1)(𝑡) − 𝑦(𝑝−1)(𝑡)) (3.42) 
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The value 𝑟(𝑡) related to the equation is the reference signal. It is assumed that the observer is 

perfectly operates, which means that the approximations of system states converges the real 

system states at close level. The term 𝑢0(𝑡) substituted for the purpose of obtaining the control 

law: 

 

𝑢(𝑡) =
𝑘1(𝑟(𝑡) − 𝑧̂1(𝑡)) + 𝑘2(𝑟̇(𝑡) − 𝑧̂2(𝑡)) + ⋯+ 𝑘𝑝 (𝑟

(𝑝−1)(𝑡) − 𝑧̂𝑝(𝑡))

𝑏
 

−
𝑧𝑝+1(𝑡)

𝑏
= 𝐾𝑂(𝑟̂(𝑡) − 𝑧̂(𝑡)) 

(3.43) 

 

As 𝑧̂1(𝑡) through 𝑧̂𝑝(𝑡) are outputs of ESO and approximately equal output 𝑦(𝑡) through 

𝑦(𝑝−1)(𝑡), they are replaced into (3.14). The extended reference signal is expressed as 𝑟̂(𝑡) 

which involves the reference signal and its derivates with the order up to 𝑝 − 1. 

 

𝑟̂(𝑡) = [𝑟(𝑡) 𝑟̇(𝑡) ⋯ 𝑟(𝑝−1)(𝑡) 0]𝑇 (3.44.a) 

𝐾𝑂 = [𝑘1 𝑘2 ⋯ 𝑘𝑝 1]/𝑏 (3.44.b) 

 

As a summary, the state – space form of the complete LADRC is: 

 

𝑧̇̂(𝑡) = 𝐴𝑒𝑧̂(𝑡) + 𝐵𝑒𝑢(𝑡) + 𝐿𝑂(𝑦(𝑡) − 𝐶𝑒𝑧̂(𝑡)) 

𝑧̇̂(𝑡) = (𝐴𝑒 − 𝐿𝑂𝐶𝑒)𝑧̂(𝑡) + 𝐵𝑒𝑢(𝑡) + 𝐿𝑂𝑦(𝑡) 
(3.45.a) 

𝑢(𝑡) = 𝐾𝑂(𝑟̂(𝑡) − 𝑧̂(𝑡)) (3.45.b) 

 

Even though various tuning methods are possible to apply, “bandwidth parametrization” 

method is used due to its simplicity. Obviously, two sets of parameters should be tuned: 𝐾𝑂, 

named as controller gain for the plant, and 𝐿𝑂, named as observer gain matrix for ESO. There 

two parameters are dependent on the controller bandwidth, 𝑤𝐶, and the observer bandwidth, 

𝑤𝑂.  
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3.3.1 The Relation Between IMC and LADRC 

The Laplace transform should be used initially to establish a link and dependency between 

LADRC and IMC (Tan & Fu, 2016). The result is: 

 

𝑠𝑍̂(𝑠) = 𝐴𝑒𝑍̂(𝑠) + 𝐵𝑒𝑈(𝑠) + 𝐿𝑂(𝑌(𝑠) − 𝐶𝑒𝑍̂(𝑠)) (3.46.a) 

𝑠𝑍̂(𝑠) = (𝐴𝑒 − 𝐿𝑂𝐶𝑒)𝑍̂(𝑠) + 𝐵𝑒𝑈(𝑠) + 𝐿𝑂𝑌(𝑠) (3.46.b) 

𝑈(𝑠) = 𝐾𝑂 (𝑅̂(𝑠) − 𝑍̂(𝑠)) (3.46.c) 

 

where 𝑍̂(𝑠) is the Laplace transform of 𝑧̂(𝑡), and 𝑅̂(𝑠) is the Laplace tranform of 𝑟̂(𝑡). 𝑅̂(𝑠) 

can be represented as: 

 

𝑅̂(𝑠) = [1 𝑠 𝑠2 … 𝑠𝑝 0]𝑇𝑅(𝑠) (3.47) 

 

where 𝑅(𝑠) is the Laplace transform of the reference signal 𝑟(𝑡). Substitute 3.17.c into the 

equation 3.17.a :  

 

𝑠𝑍̂(𝑠) = (𝐴𝑒 − 𝐿𝑂𝐶𝑒)𝑍̂(𝑠) + 𝐵𝑒𝐾𝑂 (𝑅̂(𝑠) − 𝑍̂(𝑠)) + 𝐿𝑂𝑌(𝑠) (3.48.a) 

𝑠𝑍̂(𝑠) = (𝐴𝑒 − 𝐿𝑂𝐶𝑒 + 𝐵𝑒𝐾𝑂)𝑍̂(𝑠) + 𝐵𝑒𝐾𝑂𝑅̂(𝑠) + 𝐿𝑂𝑌(𝑠) (3.48.b) 

 

3.19.b should be solved for 𝑍̂(𝑠) and be isolated so that the final 𝑍̂(𝑠) term can be obtained: 

 

(𝑠𝐼 − 𝐴𝑒 + 𝐿𝑂𝐶𝑒 − 𝐵𝑒𝐾𝑂)𝑍̂(𝑠) = 𝐵𝑒𝐾𝑂𝑅̂(𝑠) + 𝐿𝑂𝑌(𝑠) (3.49) 

 

The term in paranthesis which stands the left side of 𝑍̂(𝑠) represents a matrice. Thus, taking the 

inverse of the term then multiply from left side brings about the isolated form of 𝑍̂(𝑠): 

 

𝑍̂(𝑠) = (𝑠𝐼 − 𝐴𝑒 + 𝐿𝑂𝐶𝑒 − 𝐵𝑒𝐾𝑂)
−1𝐵𝑒𝐾𝑂𝑅̂(𝑠) + ⋯ 

(𝑠𝐼 − 𝐴𝑒 + 𝐿𝑂𝐶𝑒 − 𝐵𝑒𝐾𝑂)
−1𝐿𝑂𝑌(𝑠) 

(3.50) 
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Substitute 𝑍̂(𝑠) into 𝑈(𝑠) = 𝐾𝑂(𝑅̂(𝑠) − 𝑍̂(𝑠)): 

 

𝑈(𝑠) = 𝐾𝑂[𝑅̂(𝑠) − (𝑠𝐼 − 𝐴𝑒 + 𝐿𝑂𝐶𝑒 − 𝐵𝑒𝐾𝑂)
−1𝐵𝑒𝐾𝑂𝑅̂(𝑠) − ⋯ 

(3.51) 
(𝑠𝐼 − 𝐴𝑒 + 𝐿𝑂𝐶𝑒 + 𝐵𝑒𝐾𝑂)

−1𝐿𝑂𝑌(𝑠)] 

 

Expansion of the equation above is needed by multiplying all terms with 𝐾𝑂: 

 

𝑈(𝑠) = 𝐾𝑂𝑅̂(𝑠) − 𝐾𝑂(𝑠𝐼 − 𝐴𝑒 + 𝐿𝑂𝐶𝑒 − 𝐵𝑒𝐾𝑂)
−1𝐵𝑒𝐾𝑂𝑅̂(𝑠) − ⋯ 

(3.52) 
𝐾𝑂(𝑠𝐼 − 𝐴𝑒 + 𝐿𝑂𝐶𝑒 + 𝐵𝑒𝐾𝑂)

−1𝐿𝑂𝑌(𝑠) 

 

𝐾𝑂𝑅̂(𝑠) term should be placed in common paranthesis as below: 

 

𝑈(𝑠) = [1 − 𝐾𝑂(𝑠𝐼 − 𝐴𝑒 + 𝐿𝑂𝐶𝑒 + 𝐵𝑒𝐾𝑂)
−1𝐵𝑒]𝐾𝑂𝑅̂(𝑠) − ⋯ 

(3.53) 
𝐾𝑂(𝑠𝐼 − 𝐴𝑒 + 𝐿𝑂𝐶𝑒 + 𝐵𝑒𝐾𝑂)

−1𝐿𝑂𝑌(𝑠) 

 

Due to the complexity of the expressions in the equation, there is a need to simplify the equation 

as: 

 

𝑈(𝑠) = 𝐶1(𝑠)𝐹𝑟(𝑠)𝑅(𝑠) − 𝐶2(𝑠)𝑌(𝑠) (3.54.a) 

𝐶1(𝑠) = 1 − 𝐾𝑂(𝑠𝐼 − 𝐴𝑒 + 𝐿𝑂𝐶𝑒 + 𝐵𝑒𝐾𝑂)
−1𝐵𝑒 (3.54.b) 

𝐶2(𝑠) = 𝐾𝑂(𝑠𝐼 − 𝐴𝑒 + 𝐿𝑂𝐶𝑒 + 𝐵𝑒𝐾𝑂)
−1𝐿𝑂 (3.54.c) 

𝐹𝑟(𝑠) = 𝐾𝑂[1 𝑠 𝑠2 … 𝑠𝑝 0]𝑇 (3.54.d) 

 

For the case of analysis and tuning, it should be demonstrated that the equiavalence of TDF-

IMC. The key point is that the conventional LADRC structure can be changed into the TDF-

IMC as in Figure 3.3 structure: 

 

𝑃0 = 𝐶𝑒(𝑠𝐼 − 𝐴𝑒)
−1𝐵𝑒 (3.55) 
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Figure 3.3. The Block Diagram of LADRC With IMC Structure 

 

The set point tracking IMC controller, and the disturbance-rejection IMC controller are 

respectively: 

 

𝑄 = (1 − 𝐾0(𝑠𝐼 − 𝐴𝑒 + 𝐵𝑒𝐾0)
−1𝐵𝑒)𝐹𝑟(𝑠)  (3.56.a) 

𝑄𝑑 = 𝐾0(𝑠𝐼 − 𝐴𝑒 + 𝐿0𝐶𝑒)
−1𝐿0/𝐹𝑟(𝑠) (3.56.b) 

 

The proof for 𝑃0, 𝑄 and 𝑄𝑑 are discussed at Appendix B section. 

 

3.3.2 Tuning of Linear Active Disturbance Rejection with IMC 

The bandwidth parametrization methods includes parameters that are observer bandwidth and 

control bandwidth. In this section, the main components of LADRC-IMC structure will be 

demonstrated in the form of transfer function. 

 

There are three steps for the design procedure of TDF-IMC structure: 
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1. Decompose the plant model 𝑃0 in two parts; the invertible part 𝑃𝑀 (minimum phase) 

and the allpass part 𝑃𝐴 (non-minimum phase with unity magnitude part). 

 

𝑃0(𝑠) = 𝑃𝑀(𝑠). 𝑃𝐴(𝑠) (3.57) 

 

2. Design a setpoint tracking IMC controller where 𝜆 is a tuning parameter such that the 

desired setpoint response is 
1

(𝜆𝑠+1)𝑟
 and 𝑟 is the relative degree of 𝑃𝑀(𝑠). 

 

𝑄(𝑠) = 𝑃𝑀
−1(𝑠)

1

(𝜆𝑠 + 1)𝑟
 (3.58) 

 

3. Design a disturbance - rejecting IMC controller 𝑄𝑑(𝑠) as : 

 

𝑄𝑑(𝑠) =
𝑎𝑚𝑠

𝑚 +⋯+ 𝑎1𝑠 + 1

(𝜆𝑑𝑠 + 1)𝑟𝑑
 (3.59) 

 

where 𝑚 is the number of poles of 𝑃0(𝑠) that 𝑄𝑑(𝑠) should need to cancel and 𝜆𝑑 is a tuning 

parameter for the disturbance rejection filter 
1

(𝜆𝑑𝑠+1)
𝑟𝑑

 with order 𝑟𝑑 ≥ 𝑚. Suppose 𝑝1, … , 𝑝𝑚 

are the poles to be canceled, then 𝑎1, … , 𝑎𝑚 should satisfy the condition: 

 

(1 − 𝑃0(𝑠)𝑄(𝑠)𝑄𝑑(𝑠))|𝑠=𝑝1,…,𝑝𝑚 = 0 (3.60) 

 

For LADRC, it is noticeable that the nominal plant in TDF-IMC for a 𝑝th-order LADRC is 

simply a 𝑝th-order integral model. That is why the plant model can be expressed as: 

 

𝑃0 = 𝐶𝑒(𝑠𝐼 − 𝐴𝑒)
−1𝐵𝑒 =

𝑏

𝑠𝑝
 (3.61) 

 

Hence the plant model is invertible, setpoint-tracking controller for LADRC can be designed 

as: 
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𝑄̃ =
𝑠𝑝

𝑏
×

1

(𝜆𝑠 + 1)𝑝
 (3.62) 

 

And the disturbance rejecting IMC controller for LADRC is: 

 

𝑄̃𝑑 =
𝑎𝑝𝑠

𝑝 +⋯+ 𝑎1𝑠 + 1

(𝜆𝑑𝑠 + 1)
𝑝+1

 (3.63) 

 

The order of disturbance rejecting filter is chosen 𝑝 + 1 so that it becomes related to the order 

of ESO for 𝑝th-order LADRC. 

 

The expansion of 1 − 𝑃0𝑄̃𝑄̃𝑑 can be written as: 

 

𝑃0𝑄̃𝑄̃𝑑 =
𝑎𝑝𝑠

𝑝 +⋯+ 𝑎1𝑠 + 1

(𝜆𝑑𝑠 + 1)𝑝(𝜆𝑑𝑠 + 1)𝑝+1
 (3.64.a) 

1 − 𝑃0𝑄̃𝑄̃𝑑 =
(𝜆𝑑𝑠 + 1)

𝑝(𝜆𝑑𝑠 + 1)
𝑝+1 − (𝑎𝑝𝑠

𝑝 +⋯+ 𝑎1𝑠 + 1)

(𝜆𝑑𝑠 + 1)𝑝(𝜆𝑑𝑠 + 1)𝑝+1
 (3.64.b) 

 

The expansion of 1 − 𝑃0𝑄̃𝑄̃𝑑 shows that the numerator of the expression must have 𝑝 zeros at 

the origin to cancel the poles of 𝑃0 because 𝑃0 is a 𝑝th-order integral model. That is why, 𝑎𝑖 

terms are the coefficients of 𝑠𝑖 in the expansion of the polynomial term, (𝜆𝑑𝑠 + 1)
𝑝(𝜆𝑑𝑠 +

1)𝑝+1. The further derivations in (Tan & Fu, 2016) proves that: 

 

𝑤𝐶 =
1

𝜆
 , 𝑤𝑂 =

1

𝜆𝑑
 (3.65) 

 

The key point is the bandwidths of LADRC are the inverse of two time constants. The controller 

bandwidth 𝑤𝐶, in LADRC structure is the inverse of the time constant 𝜆 and the observer 

bandwidth 𝑤𝑂,  in LADRC structure is the inverse of the time constant 𝜆𝑑.  
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The following procedure should be applied for tuning LADRC via IMC: 

 

• Determine the order 𝑝 of LADRC. 

• Determine the desired tracking performance of the closed loop system by choosing 𝜆. 

• Estimate the gain 𝑏 for the controlled plant. If the plant model is given, it is optional 

that 𝑏 can be computed using the model. 

• Determine the disturbance-rejection filter constant 𝜆𝑑, so that the closed loop is stable 

and has the desired disturbance rejection performance. 

• Let 𝑤𝐶 =
1

𝜆
 and 𝑤𝑂 =

1

𝜆𝑑
 

 

The adjustments above leads to guaranteed tracking performance and then improves the 

disturbance rejection capability with the trade-off for robustness by tuning 𝜆𝑑 or 𝑏. In order to 

make the system more robust two possible choices can be followed: 

 

• Increase the gain 𝑏 

• Increase the time constant 𝜆𝑑 

 

3.4. Fractional-Order Linear Active Disturbance Rejection Control (FOLADRC) 

In the realm of control engineering, the quest for ever more accurate and robust control 

strategies continues unabated. Engineers and scientists have tirelessly explored various 

methodologies to address the complexities of modern control systems. Fractional order systems 

and fractional order calculus have been studied by many researchers in the past two decades 

thanks to the expressing ability of the real world more detailed. Hence, it caused emerging new 

idea whether it can be a part of the controller structure. An innovation that has garnered 

significant attention and relevance in recent years is the Fractional Order Linear Active 

Disturbance Rejection (FOLADRC).  
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Control systems are essential components in countless industries, from aerospace and 

automotive to manufacturing and healthcare. The primary objective of any control system is to 

regulate the behavior of a dynamic process, ensuring it follows a desired trajectory or setpoint 

while rejecting external disturbances. Traditional control techniques, such as Proportional-

Integral-Derivative (PID) controllers, have long been employed to achieve this objective. 

However, as systems become more complex, nonlinear, and uncertain, the need for more 

advanced control strategies becomes apparent. FOLADRC is a novel control technique that 

brings a fresh perspective to the field. It combines the power of fractional calculus, active 

disturbance rejection control, and linear control to deliver enhanced performance and 

robustness. One of the approaches come up with the idea which could be incorporated with the 

observer structure in (Pacheco, Duarte-Mermoud, Aguila-Camacho, & Castro-Linares, 2017). 

This paper proves that a single input single output, integer order system states can be tracable 

with fractional order Luenberger observer which is also a part of LADRC. 

 

The fractional order observer should be initially examined using the preliminaries for fractional 

calculus. The premise of fractional calculus is that a key component of the generalization that 

it suggests is the extension of differointegral operators to non-integer orders. Fractional calculus 

is an extension of the classical calculus, where differentiation and integration of non-integer 

order are considered. Instead of dealing exclusively with integer orders, fractional calculus 

encompasses a broader spectrum of orders, including non-integer values. This extension allows 

engineers to capture more complex dynamics and better model certain physical phenomena. In 

FOLADRC, fractional calculus plays a pivotal role in defining the fractional order controller, 

which exhibits unique properties compared to classical integer order controllers.  

 

The two primary reasons for employing fractional calculus in the field of control engineering 

are as follows: The first reason is that fractional-order models, in contrast to integer models, 

offer a more accurate representation of the dynamics inherent in complex systems. The second 

objective is to surpass the performance of filter structures and integer-order control systems. 
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FOLADRC has found applications in various fields, including but not limited to: 1) Aerospace: 

FOLADRC can enhance the stability and maneuverability of aircraft, making it invaluable in 

flight control systems. 2) Robotics: Robotic systems benefit from FOLADRC's ability to track 

desired trajectories while compensating for external forces. 3) Process Control: Industries such 

as chemical processing and manufacturing leverage FOLADRC to improve the precision and 

efficiency of their control systems. 4) Biomedical Engineering: FOLADRC aids in the precise 

control of medical devices and patient-specific therapies.  

 

The non-integer order differintegration can be expressed in a standardised manner as: 

 

𝐷𝑡
𝛽

𝑎 =

{
  
 

  
 

𝑑𝛽

𝑑𝑡𝛽
𝑅𝑒(𝛽) > 0

1 𝑅𝑒(𝛽) = 0

∫(𝑑𝜏)(−𝛽)
𝑡

𝑎

𝑅𝑒(𝛽) < 0

 (3.66) 

 

where 𝛽 ∈ 𝑅 denotes the order of the operator, and 𝐷𝑡
𝛽

 stands for the fractional 

integrodifferential operation. The parameters 𝑎 and 𝑡 specify the bound of the operation. The 

definitions known as Caputo and Riemann-Liouville are widely used definitions for fractional 

operators (Monje et al., 2010). The Caputo type fractional derivative can be demostrated as: 

 

𝐷𝛽𝑓(𝑡) =
1

Γ(𝑛 − 𝛽)
∫

𝑓(𝜏)

(𝑡 − 𝜏)𝛽+𝑛+1
𝑑𝜏

𝑡

0

 (3.67) 

 

where Γ(𝑛) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
∞

0
 is given with integer order 𝑛, 𝑛 − 1 ≤ 𝛽 ≤ 𝑛. Further; 𝛽 = 1,

𝛽 ≤ 0, 𝛽 ≥ 0, gives a first-order derivative, fractional-integration, and fractional-

differentiation, respectively. The Riemann-Lionville equation (RL) definition is used in this 

study to explain fractional differentiation as follows: 
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 𝐷𝑡
𝛽

𝑡0 𝑓(𝑡) =
1

Γ(𝑛 − 𝛽)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝜏)

(𝑡 − 𝜏)𝛽+𝑛+1
𝑑𝜏

𝑡

0

 (3.68) 

 

Furthermore, the Riemann-Liouville (RL) integration may be defined: 

 

𝐼𝑡
𝛽

𝑡0 𝑓(𝑡) = 𝐷𝑡
−𝛽

𝑡0 𝑓(𝑡) =
1

Γ(𝛽)
∫

𝑓(𝜏)

(𝑡 − 𝜏)1−𝛽
𝑑𝜏

𝑡

𝑡0

 (3.69) 

 

Active Disturbance Rejection Control (ADRC) is a control technique that emerged to address 

the challenges posed by disturbances in control systems. ADRC models disturbances as 

dynamic entities and employs an extended state observer (ESO) to estimate these disturbances 

in real-time. By doing so, it decouples the control system from the disturbances, making it 

highly robust and adaptable to varying operating conditions. FOLADRC borrows the concept 

of ADRC and integrates it with fractional calculus to achieve disturbance rejection with even 

greater precision and efficiency.  

 

At the heart of FOLADRC lies the fractional order controller, which is responsible for shaping 

the control input based on the error and its fractional derivatives. The FOLADRC framework 

can be summarized in the following steps: I) System Modeling: Begin by modeling the plant 

dynamics and disturbances. This typically involves deriving the fractional order transfer 

function of the system. II) Fractional Order Controller Design: Determine the fractional order 

controller based on the system's characteristics and control objectives. This step involves 

selecting the fractional order (e.g., 0.8, 1.5) and tuning controller parameters. III) Extended 

State Observer (ESO): Implement an ESO to estimate and compensate for disturbances in real-

time. The ESO observes both the system states and the fractional derivatives of the disturbances.  

IV) Feedback Control: Combine the output of the fractional order controller with the ESO's 

disturbance estimate to generate the control input to the system. V) Performance Assessment: 

Evaluate the control system's performance in terms of tracking accuracy, disturbance rejection, 

and robustness. Fine-tune the controller parameters if necessary.  
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A fractional-order observer is designed, featuring a rigorous theoretical proof of its convergence 

guarantees. A series of comprehensive simulations is conducted to juxtapose its performance 

against the conventional integer-order Luenberger state observer. The results highlight notable 

advantages associated with the proposed fractional-order observer, specifically in terms of 

enhanced error convergence speed and superior resilience to high-frequency disturbances. 

 

3.4.1.  Fractional-order Luenberger observer 

While classical observer theory is well-established and extensively researched, the investigation 

of observers with orders that do not precisely match those of the observed system remains an 

underexplored area, constituting the primary contribution of this paper. More specifically, this 

paper delves into the exploration of Fractional-Order (FO) observers for linear, Integer-Order 

(IO), and Single-Input Single-Output (SISO) dynamic systems with known parameters. This 

study reveals several notable advantages of the proposed FO observer over the traditional IO 

Luenberger observer, particularly in terms of error convergence rates and the mitigation of high-

frequency disturbances. 

 

Designing Fractional-order State Observers for Integer-Order Linear Systems involves adapting 

fractional-order calculus concepts to estimate the unmeasured states of a dynamic system that 

can be described by integer-order linear equations. The ESO in FOLADRC is designed to 

estimate both the states of the system and the fractional derivatives of the disturbances. It uses 

an extended state vector to capture these estimates.  

 

State Estimation: The ESO employs a dynamic model of the system to estimate the internal 

states, typically based on the system's fractional order transfer function.   

 

Disturbance Estimation: The ESO also estimates the disturbance, including its fractional 

derivatives, by comparing the predicted system output with the actual output. 
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Let's contemplate the Linear Time-Invariant (LTI), Single-Input Single-Output (SISO), Integer-

Order (IO) system (3.5) with well-defined parameters. We also have the observer presented in 

(3.7), which shares the same structure as the conventional Luenberger state observer but 

incorporates Fractional-Order (FO) derivatives. 

 

A schematic diagram of the fractional-order observer is presented in Figure 3.4.  

  

 

Figure 3.4. The Block Diagram of Fractional-Order Luenberger Observer 

 

The expression (3.70) gives the Laplace domain representation of an integer-order system and 

(3.71) corresponds to the FO Luenberger observer. 

 

𝑋(𝑠) = (𝑠𝐼 − 𝐴)−1(𝑏𝑈(𝑠) + 𝑥0) (3.70) 

𝑋̂(𝑠) = [𝑠𝛼𝐼 − (𝐴 − 𝑓𝑐𝑇)]−1(𝑏𝑈(𝑠) + 𝑓𝑐𝑇𝑋(𝑠) +∑(𝑥̂0
(𝑘−1)

𝑚

𝑘=1

𝑠𝛼−𝑘)) 
(3.71) 

 

The subtraction of (3.70) from (3.71) yields the Laplace domain representation of the state 

estimation error dynamics, as depicted in (3.73). 
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𝐸𝑥(𝑠) = [(𝑠𝐼 − 𝐴)
−1 − (𝑠𝛼𝐼 − (𝐴 − 𝑓𝑐𝑇))

−1
(𝐼 + 𝑓𝑐𝑇(𝑠𝐼 − 𝐴)−1)] 𝑏𝑈(𝑠) +

[(𝑠𝐼 − 𝐴)−1 − (𝑠𝛼𝐼 − (𝐴 − 𝑓𝑐𝑇))
−1
] 𝑥0+(𝑠𝛼𝐼 − (𝐴 −

𝑓𝑐𝑇))
−1
∑ (𝑥̂0

(𝑘−1)𝑚
𝑘=1 𝑠𝛼−𝑘) 

(3.72) 

 

From equation (3.72), it is evident that the dynamics of the estimation error are influenced by 

the system input u(t), which prevents its asymptotic convergence to zero for arbitrary inputs 

and initial conditions. Furthermore, the expression of the estimation error involves multiple 

orders of derivatives, making (3.72) a system of non-commensurate order. Consequently, due 

to the challenge in factorizing (3.72) and analyzing it in terms of the estimation error ex(t), we 

will assess the stability of (3.72) by individually considering each term. 

 

The selection of the α value in the design of the Fractional-Order (FO) observer is not unique, 

and it is primarily contingent upon the anticipated performance requirements of the observer. 

For instance, if the objective is to achieve rapid convergence in state estimation, a lower α value 

within the range of [0.3, 0.9] would be preferred. Conversely, if the goal is to mitigate the 

impact of external perturbations on state estimation, an α value greater than [0.9 1.1] will 

significantly diminish the effects of the disturbance with a frequency of 10 rad/sec. In general, 

the choice of the α value is closely tied to the selection of an appropriate performance criterion.  
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4. THE EXPERIMENTAL SETUP 

This section presents the setups for real-time experiments conducted to validate the proposed 

control strategies. The systems utilized in experimental applications comprise an 

electromechanical system. 

 

4.1. Electromechanical System 

Electromechanical systems find widespread application in various industrial sectors, including 

robot control, manufacturing processes, and automotive applications. Moreover, these systems 

serve as essential platforms for testing innovative control strategies and facilitating control 

system education. To evaluate the proposed control algorithms, an electromechanical system is 

utilized, comprising a direct current (DC) motor connected to a tachogenerator via a shaft. The 

shaft is equipped with several sensors and transducers, representing the load on the shaft.  

Figure 4.1 illustrates a schematic representation of the system. 

 

 

Figure 4.1. Electromechanical System. 

 

The sensors and transducers given in Figure 4.1 are presented as in Table 4.1. 
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Table 4.1. Sensors and transducers with electromechanical system 

Label 
Equipment  Equipment 

 Label  

A DC motor E Hall effect sensor 

B Slotted optos sensor F Servo potentiometer 

C Reflective opto sensor G Tachogenerator 

D Inductive sensor E Hall effect sensor 

 

As depicted in Figure 4.1, a DC motor system is mounted on a DIGIAC 1750 control training 

set. The motor propels a shaft equipped with various sensors, transducers, and a tachogenerator. 

The slotted-opto transducer is utilized to measure shaft speed during the experiments. 

Additionally, the tachogenerator, generating voltage in accordance with the shaft speed, serves 

as a speed transducer. 

 

4.2. Modeling of the Electromechanical System 

The modeling and control of electromechanical systems have garnered significant attention in 

the control community due to their prevalence in a wide array of applications. Direct Current 

(DC) motors, in particular, find application in various industrial control scenarios, including 

disk motion control, liquid pumping, and position control of robotic manipulators (İ. Eker, 

2004). Moreover,  DC motors offer several advantages such as easy position/speed regulation, 

a simple structure, and low maintenance requirements. A multitude of studies are dedicated to 

the position and velocity control of DC motors, aiming to achieve set-point regulation, tracking 

accuracy, robustness, and energy efficiency.  
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Figure 4.2. The Representation of Electromechanical System.  

 

The schematic diagram of the system is presented in Figure 4.2, and the corresponding 

parameters are outlined in Table 4.2. 

 

Table 4.2. DC motor parameters 

    

Parameter  Parameter  

𝑉𝑎 Armature voltage 𝑅𝑚 Viscous friction 

𝐿𝑎 Armature inductance 𝐾𝑚 Torque coefficient 

𝑅𝑎 Armature resistance 𝑇𝑚 Generated motor torque 

𝑖𝑎 Armature current 𝑇𝐷 External load disturbance 

𝑇𝑆 Nonlinear friction 𝑇𝑓 Transmitted shaft torque 

𝐽𝑀, 𝐽𝐿 Moments of inertia 𝜔𝑀,𝜔𝐿 Rotational speeds 

 

The dynamic equations of the electromechanical system are provided as follows: 

 

𝑉𝑎 = 𝐿𝑎
𝑑

𝑑𝑡
𝑖𝑎(𝑡) + 𝑅𝑎𝑖𝑎(𝑡) + 𝐾𝑚𝜔𝑚(𝑡) (4.1) 
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𝐽𝑚 (
𝑑

𝑑𝑡
𝜔𝑚(𝑡)) = 𝑇𝑚(𝑡) − 𝑇𝑠(𝑡) = 𝑅𝑚𝜔𝑚(𝑡) − 𝑇𝑓(𝜔𝑚) (4.2) 

 

𝑇𝑠(𝑡) = 𝑘𝑠(𝜃𝑚(𝑡) − 𝜃𝐿(𝑡) − 𝐵𝑠(𝜔𝑚(𝑡) − 𝜔𝐿(𝑡)) (4.3) 

 

𝑑

𝑑𝑡
𝜃𝑚(𝑡) = 𝜔𝑚(𝑡),

𝑑

𝑑𝑡
𝜃𝐿(𝑡) = 𝜔𝐿(𝑡) (4.4) 

 

where DC motor parameters are given in Table 4.2.  

 

Model of the nonlinear friction 𝑇𝑓(𝜔) can be considered as an asymmetrical characteristic as: 

  

𝑇𝑓(𝜔) = (𝑎0 + 𝑎1𝑒
−𝑎2|𝜔|)𝑠𝑔𝑛1(𝜔) + (𝑎3 + 𝑎4𝑒

−𝑎5|𝜔|)𝑠𝑔𝑛2(𝜔) (4.5) 

 

where 𝑎1…𝑎5 are positive constants and 𝑎0 ≠ 𝑎3, 𝑎1 ≠ 𝑎4, 𝑎2 ≠ 𝑎5 and the signum functions 

are defined as:  

 

𝑠𝑔𝑛1(𝜔) = {
1 𝑖𝑓 𝜔 ≥ 0
0 𝑖𝑓 𝜔 ≤ 0

} 

(4.6) 

𝑠𝑔𝑛2(𝜔) = {
0 𝑖𝑓 𝜔 ≥ 0
−1 𝑖𝑓 𝜔 ≤ 0

} 

 

Figure 4.3 illustrates the block diagram of the system. The model incorporates certain 

parameters, such as friction and mechanical structure resonance, which require additional 

clarification. Determining the precise values of all these parameters is a laborious task. 

Additionally, the presence of parametric uncertainties can result in performance degradation in 

tracking tasks. Therefore, ADRC methods are preferred to effectively manage these 

uncertainties. 
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Figure 4.3. Block Diagram of the Electromechanical System.(Özbek, 2018) 

 

It is clear that constructing a precise parametric model of the actual system is a time-consuming 

operation. Thus, the goal is to use real-time identification techniques to create a model that 

describes the electromechanical system. Furthermore, the parameter uncertainties degrade 

tracking task performance.   

 

The specifications of the DC motor are outlined in Table 4.3, with the parameters derived from 

a series of experiments. The input voltage applied to the motor and the corresponding output 

voltage of the tachogenerator are measured and summarized in Table 4.4. 

 

Table 4.3. DC motor systems parameters  

 

Armature Resistance 6.2 Ω 

No load current 120 mA 

Stall current 1.93 A 

Starting torque 7  Ncm/A 

Torque constant 3.5 Ncm/A 

Efficiency 70%-80% 

Shaft speed at no load 2400 rpm (max) 
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Table 4.4. DC motor system responses to different input signals 

 

Shaft Speed (rpm) Tachagenarator output voltage (V) 

600 2.37 

800 3.03 

900 3.39 

1200 4.48 

1500 5.52 

1800 6.71 

 

Obtaining parameters for dynamical equations poses a significant challenge, and control 

designers consistently require an accurate model to achieve satisfactory closed-loop control 

performance. However, the intricate nature of most physical systems makes the development 

of precise models a tedious task. Consequently, an appropriate approximated model must be 

derived using various system identification techniques. In this study, the identification problem 

is approached as linear time-invariant (LTI) to obtain a suitable model. The model's validity is 

assessed by comparing the actual system output with the predicted model output, aiming to 

ensure that the model generates responses akin to measured output responses (İ. Eker, 

2004)(Kara & Eker, 2004). System identification, a critical aspect for control engineers, is 

defined as the art of constructing mathematical models of dynamic systems based on observed 

input-output data. Numerous innovative system identification tools have been developed thus 

far. In the current work, an interactive software tool, highlighted in (Ozbek & Eker, 2015), is 

employed.  

 

The process reaction curve serves as a widely accepted tool for elucidating the characteristic 

properties of a system under diverse conditions. Moreover, various dynamic properties, 
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including rise time, settling time, and time constant, can be directly derived from the system. 

To establish the plant model, the armature of the DC motor is stimulated with a step input of 

5.20 V magnitude, and the resulting shaft speed is measured in revolutions per minute (RPM). 

The output voltage generated by the tachogenerator is recorded at 4.48 V, approximately 

corresponding to a shaft speed of 1200 RPM. This information is then used to approximate a 

second-order model as follows: 

 

𝐺(𝑠) =
644.1

𝑠2 + 118.69𝑠 + 783.57
 (4.7) 

 

4.3. Data Acquision Process for Experimental Setup 

Data transmission from the experimental setup to the computer is facilitated through the 

National Instrument 6229 M Series data acquisition card (DAQ). All calculations and controller 

design processes are carried out using Matlab/Simulink. The specifications of the DAQ board 

for the electromechanical system are detailed in Table 4.5. 

 

 

Table 4.5. National Instrument NI 6229 M Series DAQ board. 

Analog Input Channels  32 SE/16Diff 

Sampling Rates 250 kS/s (kilo samples per second) 

Resolution 16 bits 

Unipolar Input (V) 0~10,0~5,0~1,0~0.2 

Bipolar Inputs ±10,5,1,0.2 

Analog Output Channels 4 

Resolution 16 bits 

Digital I/O Digital Input Channels 16 
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Digital Output Channels 32 

General Bus PCI/PXI 

Timer/Counter Resolution 32 bits 

Time Base 80 MHz, 20MHz, 0.1 MHz 

Channels 2 

 

 

Figure 4.4. The Scene of the Laboratory.  

 

A snapshot of the laboratory environment is depicted in Figure 4.4, where the DC motor is 

linked to various sensors and the tachogenerator through the shaft.  

 

The simulations and experimental realizations are conducted using the Matlab/Simulink 

software platform. The controller output is applied within the range of [0V,12V], considering 

the operating limits of the actual electromechanical system. A sampling interval of 5ms is set, 

and the output position of the DC motor is acquired through the tachogenerator. Figure 4.5 

illustrates the experimental setup, wherein the actual plant is connected to the PC via a PCI 
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terminal using a multifunction data acquisition (DAQ) board. RS232 series communication is 

employed for real-time applications. 

 

Real-Time Workshop is utilized to generate C++ source code. Subsequently, the code is 

compiled to produce an executable program that functions as a controller. Concurrently, Real-

Time Windows Target, facilitating interaction with the hardware device through I/O, allows 

bidirectional control of data flow between the controller and the real system. This application 

offers several advantages. For example, the control designer need not worry about the 

communication mechanism of the actual control system while constructing the control scheme 

using Simulink® tools.  

 

 

Figure 4.5. Experimental Environment. 
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5. RESULTS AND DISCUSSION 

This chapter includes the test results of real time experimental applications. Aforementioned 

methods in previous chapter contains the methods, which applied to the system to be controlled 

in experimental study as follows: 

 

• LADRC 

• ELADRC 

• LADRC with IMC 

• FOLADRC 

 

In order to demonstrate the the superiority and comparison between the studied control 

methods; three types of test was applied to electromechanical system: 

 

• Step Response Test 

• Disturbance Rejection Test 

• Tracking Test 

 

The rise time, settling time and overshoot values were also investigated and examined in the 

applied control methods. The low pass filter s/(s + 90) was used in order to improve the 

performance of the applied control techniques. 

 

5.1. LADRC Applications and Results 

LADRC controller was chosen first to apply to the system to be controlled. LADRC has six 

different parameters as mentioned before which are 𝑇𝑠,  𝑤𝐶,  𝑤𝑂,  𝛽,  𝐾𝑃 and 𝐾𝐷. These 

parameters were determined first then applied to the electromechanical system. The calculation 

of the parameters was carried out just before the experiment, and the experimental process was 

carried out with these parameters. 
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5.1.1. Step Test 

The parameters are calculated to be 𝑇𝑠 = 0.5 𝑠𝑒𝑐, 𝑤𝐶 = 12, 𝑤𝑂 = 120, 𝛽 = 210, 𝐾𝑃 = 144 

and 𝐾𝐷 = 24. A low pass filter is used at the output of the system to be controlled in order to 

constitute the feedback signal. The result of transient response is shown in the Figure 5.1 and 

the whole response signal is shown in Figure 5.2. Also, the control signal in corformity with 

the total step response is given in the Figure 5.3 and the error signal that corresponds with the 

total step response is given in the Figure 5.4. 

 

 

 

Figure 5.1. The Transient Performance of LADRC 
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Figure 5.2. The Step Signal Graph of LADRC 

 

Figure 5.3. The Control Signal Graph of LADRC 
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Figure 5.4. The Error Signal Graph of LADRC 

 

No overshoot is observed on the system output signal of the applied LADRC algorithm. 

Moreover,  the tabulated results include rise time, settling time, overshoot and output deviation 

are demonstrated in Table 5.1. 

 

Table 5.1. The transient values correspond to LADRC 

 Rise Time Settling Time Overshoot Output Deviation  

LADRC 0.363 sec 0.561 sec No overshoot ±8.0 rpm 

 

5.1.2. Disturbance Rejection Test 

Input disturbance was applied to the system as an addition of 0.22 V, which is 5% of 4.48 V, 

from the control input channel. As a result, the performance graph of disturbance rejection 

capability of LADRC was observed. A voltage of 0.22V is applied to the system for a duration 

of 3 seconds, starting at 3 seconds. The result are shown in the Figure 5.5 with the control signal 

in the Figure 5.6 and error signal in the Figure 5.7. 
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Figure 5.5. The Disturbance Rejection Performance of LADRC 

 

Figure 5.6. The Control Signal Graph of LADRC When Input Disturbance Exists 



61 

 

 

 

 

 

Figure 5.7. The Error Signal Graph of LADRC When Input Disturbance Exists 

5.1.3. Tracking Test 

Tracking performance can be defined as the capability of the controlled system to follow the 

changable set point reference signals. For this study, the reference set point signals vary for 

certain durations between 1000 rpm and 1400 rpm. The results of the tracking performance of 

LADRC is shown in the Figure 5.8 with control signal in the Figure 5.9 and error signal in the 

Figure 5.10. At 1000 rpm and 1400 rpm, the output deviation is reduced to ±5 rpm. 
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Figure 5.8. The Tracking Performance of LADRC  

 

Figure 5.9. The Control Signal of Tracking Test of LADRC 
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Figure 5.10. The Error Signal of Tracking Test of LADRC 

5.2. Error Based LADRC Applications and Results 

ELADRC controller was chosen second to apply to the system to be controlled. ELADRC 

possesses the same parameters as mentioned before which are 𝑇𝑠,  𝑤𝐶,  𝑤𝑂,  𝛽,  𝐾𝑃 and 𝐾𝐷. 

These parameters were determined first then applied to the electromechanical system. The 

calculation of the parameters was carried out just before the experiment, and the experimental 

process was carried out with these parameters. 

 

5.2.1. Step Test 

The parameters are calculated to be 𝑇𝑠 = 0.5 𝑠𝑒𝑐, 𝑤𝐶 = 12, 𝑤𝑂 = 120, 𝛽 = 210, 𝐾𝑃 = 144 

and 𝐾𝐷 = 24. A low pass filter is used at the output of the system to be controlled in order to 

constitute the feedback signal. The result of step response is shown in the Figure 5.11 and the 

transient response of the corresponding step signal is shown Figure 5.12. Also, the control 

signal in corformity with the total step response is given in the Figure 5.13 and the error signal 

that corresponds with the total step response is given in the Figure 5.14. 
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Figure 5.11. The Step Response of ELADRC 

 

Figure 5.12. The Transient Response of ELADRC 
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Figure 5.13. The Control Signal of ELADRC 

 

Figure 5.14. The Error Signal of ELADRC 
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According to the transient profile of ELADRC graph, an overshoot is observed at the output of 

system. The rise time, settling time, overshoot and output deviation values are given in the 

Table 5.2. 

 

Table 5.2. The transient values correspond to ELADRC 

 Rise Time Settling Time Overshoot Output Deviation  

ELADRC 0.09 sec 0.561sec % 11.5 ±8.4 rpm 

 

5.2.2. Disturbance Rejection Test 

Input disturbance was applied to the system as an addition of 0.22 V, which is 5% of 4.48 V, 

from the control input channel. As a result, the performance graph of disturbance rejection 

capability of ELADRC was observed. A voltage of 0.22V is applied to the system for a duration 

of 3 seconds, starting at 3 seconds. The result are shown in the Figure 5.15 with the control 

signal in the Figure 5.16 and error signal in the Figure 5.17. 

 

 

Figure 5.15. The Step Signal of ELADRC While Input Disturbance Exists 
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Figure 5.16. The Control Signal of ELADRC While Input Disturbance Exists 

 

Figure 5.17. The Control Signal of ELADRC While Input Disturbance Exists 
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5.2.3. Tracking Test 

Tracking performance can be denoted as the capability of the controlled system to follow the 

changable set point reference signals. For this study, the reference set point signals vary for 

certain durations between 1000 rpm and 1400 rpm. The results of the tracking performance of 

ELADRC is shown in the Figure 5.18 with control signal in the Figure 5.19 and error signal in 

the Figure 5.20. At 1000 rpm and 1400 rpm, the output deviation is reduced to ±5.2 rpm. 

 

 

Figure 5.18. The Tracking Performance of ELADRC 
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Figure 5.19. The Control Signal of Tracking Test of ELADRC 

 

 

Figure 5.20. The Error Signal of Tracking Test of ELADRC 
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5.3. LADRC with IMC Applications and Results 

The LADRC with IMC was chosen as third algorithm to apply to the system. The algorithm 

possesses the same parameters as mentioned before which are 𝜆𝑑,  𝜆, and  𝛽  . These parameters 

were determined first then applied to the electromechanical system. The calculation of the 

parameters was carried out just before the experiment, and the experimental process was carried 

out with these parameters.  

 

5.3.1. Step Test 

The parameters are calculated to be 𝜆𝑑 = 0.05, 𝜆 = 0.01,  𝛽 = 400. A low pass filter is used 

at the output of the system to be controlled in order to constitute the feedback signal. The result 

of transient response is shown in the Figure 5.21 and the whole response signal is shown in 

Figure 5.22. Also, the control signal in corformity with the total step response is given in the 

Figure 5.23 and the error signal that corresponds with the total step response is given in the 

Figure 5.24.  

 

Figure 5.21. The Transient Response of LADRC with IMC 
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Figure 5.22. The Step Response of LADRC with IMC 

 

Figure 5.23. The Control Signal of LADRC with IMC 
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Figure 5.24. The Error Signal of LADRC with IMC 

 

In compliance with the transient of response graph of LADRC with IMC, a small overshoot is 

observed. The datas for the transient profile is given in Table 5.3. 

 

Table 5.3. The transient values correspond to LADRC with IMC 

 Rise Time Settling Time Overshoot Output Deviation  

LADRC with 

IMC 

0.28 sec 0.597 sec % 2.66 ±8.1 rpm 

 

5.3.2. Disturbance Rejection Test 

Input disturbance was applied to the system as an addition of 0.22 V, which is 5% of 4.48 V, 

from the control input channel. As a result, the performance graph of disturbance rejection 

capability of LADRC with IMC was observed. A voltage of 0.22V is applied to the system for 

a duration of 3 seconds, starting at 3 seconds. The result are shown in the Figure 5.25 with the 

control signal in the Figure 5.26 and error signal in the Figure 5.27. 
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Figure 5.25. The Step Signal of LADRC With IMC While Input Disturbance Exists. 

 

Figure 5.26. The Control Signal of LADRC With IMC While Input Disturbance Exists. 
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Figure 5.27. The Error Signal of LADRC With IMC While Input Disturbance Exists. 

5.3.3. Tracking Test 

For this study, the reference set point signals vary for certain durations between 1000 rpm and 

1400 rpm. The results of the tracking performance of LADRC with IMC is shown in the Figure 

5.28 with control signal in the Figure 5.29 and error signal in the Figure 5.30. At 1000 rpm and 

1400 rpm, the output deviation is reduced to ±4.1 rpm. 
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Figure 5.28. The Tracking Performance of LADRC With IMC 

 

Figure 5.29. The Control Signal of LADRC With IMC 
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Figure 5.30. The Error Signal of LADRC With IMC 

 

5.4. LADRC with Fractional Order Observer Applications and Results 

The FOLADRC was chosen as third algorithm to apply to the system. The observer of algorithm 

possesses the parameters which are 𝑘, 𝑉, 𝑛 and 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ. These parameters were determined 

first then applied to the electromechanical system. The determination of the parameters was 

carried out just before the experiment, and the experimental process was carried out with these 

parameters. The toolbox for fractional order systems named as “nint” is used to realize the 

experiment. The rest of the parameters are the same as LADRC, denoted as 𝑇𝑠,  𝑤𝐶,  𝑤𝑂,  𝛽,  

𝐾𝑃 and 𝐾𝐷. 

 

5.4.1. Step Test 

The observer of FOLADRC parameters are chosen as follows: 

• 𝑘 = 1.1 
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• 𝑉 = −0.98 

• 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = [0 0,1 100] 

• 𝑛 = 5 

The rest of the parameters are chosen as as 𝑇𝑠 = 0.5 𝑠𝑒𝑐,  𝑤𝐶 = 12,  𝑤𝑂 = 120,  𝛽 = 210,  

𝐾𝑃 = 144 and 𝐾𝐷 = 24. 

 

A low pass filter is used at the output of the system to be controlled in order to constitute the 

feedback signal. The result of transient response is shown in the Figure 5.31 and the whole 

response signal is shown in Figure 5.32. Also, the control signal in corformity with the total 

step response is given in the Figure 5.33 and the error signal that corresponds with the total step 

response is given in the Figure 5.34. 

 

 

Figure 5.31. The Step Response of FOLADRC 
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Figure 5.32. The Transient Profile of FOLADRC 

 

Figure 5.33. The Control Signal of FOLADRC 
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Figure 5.34. The Error Signal of FOLADRC 

 

No overshoot is observed at the output of system. The transient values for FOLADRC are 

presented in Table 5.4. 

 

Table 5.4. The transient values correspond to FOLADRC 

 Rise Time Settling Time Overshoot Output Deviation  

FOLADRC 0.336 sec 0.573 sec No Overshoot ±6 rpm 

 

5.4.2. Disturbance Rejection Test 

Input disturbance was applied to the system as an addition of 0.22 V, which is 5% of 4.48 V, 

from the control input channel. As a result, the performance graph of disturbance rejection 

capability of FOLADRC was observed. A voltage of 0.22V is applied to the system for a 

duration of 3 seconds, starting at 3 seconds. The result are shown in the Figure 5.35 with the 

control signal in the Figure 5.36 and error signal in the Figure 5.37. 
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Figure 5.35. The Step Signal of FOLADRC While Input Disturbance Exists. 

 

 

Figure 5.36. The Control Signal of FOLADRC While Input Disturbance Exists. 
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Figure 5.37. The Error Signal of FOLADRC While Input Disturbance Exists. 

 

5.4.3. Tracking Test 

For this study, the reference set point signals vary for certain durations between 1000 rpm and 

1400 rpm. The results of the tracking performance of FOLADRC is shown in the Figure 5.38 

with control signal in the Figure 5.39 and error signal in the Figure 5.40. At 1000 rpm and 1400 

rpm, the output deviation is reduced to ±4 rpm. 
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Figure 5.38. The Tracking Performance of FOLADRC 

 

 

Figure 5.39. The Control Signal of Tracking Performance of FOLADRC 
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Figure 5.40. The Error Signal of Tracking Performance of FOLADRC 

 

5.5. Performance Comparison of the Studied Control Methods 

The performance indices are applied to the error and control signals to the each control methods 

for step response during 2-6 seconds and results are tabulated in Table 5.5. 

 

Certain performance criteria are selected, in order to make comparisons between the 

aforementioned control methods. These criteria are listed as follows: 

 

• Integral of absolute error (IAE) 

 

𝐼𝐴𝐸 = ∫|𝑒(𝑡)|𝑑𝑡 (5.1) 

 

• Integral of square error (ISE) 
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𝐼𝑆𝐸 = ∫𝑒2(𝑡)𝑑𝑡 (5.2) 

 

• Integral of time absolute error (ITAE) 

 

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡 (5.3) 

 

• Integral time squared error (ITSE) 

 

𝐼𝑇𝑆𝐸 = ∫𝑡𝑒2(𝑡)𝑑𝑡 (5.4) 

 

• Integral squared control input (ISCI) 

 

𝐼𝑆𝐶𝐼 = ∫𝑢2(𝑡)𝑑𝑡 (5.5) 

 

The performance indices regarding to the the studied control methods are given in Table 5.5 

 

The least ISCI value is 80.25 which belongs to LADRC with IMC method. It shows the LADRC 

with IMC method has forced the control signal least in terms of voltage variation. This situation 

deduced that the method is the most energy saving among the others. 
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Table 5.5. The table of performance indices 

(2-6 

seconds) 
IAE ISE ITAE ITSE ISCI 

LADRC  0.5118 0.0351 0.1248 0.2018 105.58 

ELADRC 0.4063 0.0333 0.0982 0.1946 105.39 

LADRC 

(IMC) 
0.3908 0.0321 0.0945 0.1878 80.25 

FOLADRC 0.3259 0.0316 0.0776 0.1862 107.81 

 

The least IAE, ISE, ITAE, ITSE values belongs to the FOLADRC method. IAE is 0.3259, ISE 

is 0.0316, ITAE is 0.0776 and ITSE is 0.1862 respectively in FOLADRC. The method 

possesses the least amount of error values except ISCI according to the Table 5.1. Because of 

the representation of physical systems with fractional order systems is more precise, it can 

validated that the utilization of fractional order observer has made a difference. The difference 

is to maintain the error less than that in rest of methods and it shows its efficacy over the other 

methods. 

 

The disturbance rejection performance of the all four methods are quite satisfactory and similar. 

Approximately 0.27 seconds after the the input disturbance injected, the electromechanical 

system recovers itself and follows the reference signal again. 

 

Table 5.6. The rise time, settling time and overshoot with output deviation  

 Rise Time Settling Time Overshoot Output Deviation  

LADRC 0.363 sec 0.561 sec No overshoot ±8.0 rpm 

ELADRC 0.09 sec 0.561sec % 11.5 ±8.4 rpm 

LADRC with IMC 0.28 sec 0.597 sec % 2.66 ±8.1 rpm 

FOLADRC 0.336 sec 0.573 sec No Overshoot ±6 rpm 
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Although LADRC, ELADRC and FOLADRC posses the same tuning parameters, the transient 

values are different from each other. FOLADRC has shown its superiority over the other 

methods in terms of output deviation with no overshoot at the output of system. For LADRC 

and ELADRC, the difference between overshoot and output deviation values are expected as 

in stated (Madonski et al., 2023). LADRC gave the response with no overshoot while ELADRC 

caused the output of the system with an acceptable overshoot as in Table 5.6. 

 

The tuning LADRC with IMC method has been proved its usefullness while comparing the 

LADRC method. 0.1 rpm difference demonstrated the both methods are good alternatives for 

the steady state condition as in Table 5.6. 

 

All four methods have been designed based on specific settling time value and it can be 

remarked that with efficient designing procedure, their consistency is proved with 

experimentally in Table 5.6. 

 

The tracking performance of studied control methods are quite satisfactory. Under the different 

reference signals changing instantly, the controllers are adapted in order to maintain the system 

robustness. 

 

According to the rise time values in Table. 5.6, ELADRC completed the transient time 0.09 

seconds, which demonstrates the least transient period when compared with other methods. It 

is an elegant method in the need of faster response time. However, the overshoot of ELADRC 

should be taken into consideration. 
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6. CONCLUSION AND FUTURE WORKS 

In this thesis, observer-based control methodologies are explained briefly. The general 

theoretical background apart from ADRC has explained and demonstrated their necessity in the 

control engineering field. The vision of the of observer-based control methods are introduced. 

 

The compliance of ADRC method with existing methods such as SMC and Fuzzy Control are 

investigated. The findings deduced that ADRC is key element to reduce and suppress the 

unwanted dynamics and signals from the system to be controlled while utilizing with the control 

methods which the efficiency and performance are proved in the literature. 

 

The detailed explanation about four variants of LADRC was given expressively. By taking into 

account the key studies, first time in the literature, it is aimed to light these four methods for 

further use and study. 

 

Consecutively, the four variants of LADRC methods have been examined with experimental 

applications. The experimental applications are utilized with the usage of DC Motor which 

belongs to DIGIAC 1750. The system identification is used to extract the model of the plant by 

several test procedures. 

 

One the aim of this thesis, to observe the variants of LADRC methods under the same 

parameters. The variants of LADRC which examined in this thesis are as follows: 

 

• LADRC 

• ELADRC 

• LADRC with IMC 

• FOLADRC 

 

All methods are successfully implemented to the electromechanical system after the simulation 

studies. The performance analysis of has been done based on the experimental results. Those 
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four methods are tested first time on a specific electromechanical system and comparison is 

made among them. It is demonstrated that the FOLADRC is more superior then the rest of the 

methods in terms of the tests applied to the system to be controlled.  

 

For future works, the adaptive based LADRC control method will be utilized and studied for 

the electromechanical system. The parameter optimization is another field for ADRC methods 

and will be studied both experimentally and theoretically. The original ADRC method contains 

nonlinearity and will be studied on the nonlinear modeled system such as quadrotor, pendulum 

system models to demonstrate its usefulness. 
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APPENDIX 

Appendix A: Control Bandwidth Coefficient 

 

The desired transfer function for LADRC denoted as:  

 

𝐺𝑐𝑙(𝑠) =
𝑤𝐶

2

(𝑠 + 𝑤𝐶)
2
 (A 1.1) 

 

where 𝑤𝑐 is denoted as control bandwidth. If step signal is applied to the closed loop transfer 

function and expand with partial fraction expansion: 

 

𝑌(𝑠) =
𝑤𝐶

2

𝑠(𝑠 + 𝑤𝐶)2
=
1

𝑠
−

𝑤𝐶
2

(𝑠 + 𝑤𝐶)2
−

1

𝑠 + 𝑤𝐶
 (A 1.2) 

 

 

Using the inverse laplace transform of 𝑌(𝑠): 

 

𝑦(𝑡) = 1 − 𝑤𝐶𝑡𝑒
−𝑤𝐶𝑡 − 𝑒−𝑤𝐶𝑡 = 1 − (1 + 𝑤𝐶𝑡)𝑒

−𝑤𝐶𝑡 (A 1.3) 

 

At the infinity, the output of the system is expected to become unity. So, the differemce the 

output at a particular time and the output at the infinity can be decided 2%: 

 

|𝑦(𝑡𝑠) − 𝑦(∞)| = 0.02 (A 1.4) 

 

where 𝑦(∞) = 1. Using the equation A 1.3: 

 

(1 + 𝑤𝐶𝑡𝑠)𝑒
−𝑤𝐶𝑡𝑠 = 0.02 (A 1.5) 

 

Let 𝑤𝐶𝑡𝑠 = 𝑘 then taking the logarithm: 
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(1 + 𝑘)𝑒−𝑘 = 0.02 (A 1.6.a) 

log(1 + 𝑘) − 𝑘 log 𝑒 = log 0.02 (A 1.6.b) 

log(1 + 𝑘) − 0.43𝑘 = −1.69 (A 1.6.c) 

 

When the equation above is solved for 𝑘, two values can be obtained, which equals to 5.82 and 

−0.9. Positive value should be taken into account then: 

 

𝑤𝐶𝑡𝑠 = 5.82 (A 1.7.a) 

𝑤𝐶 =
5.82

𝑡𝑠
≈
6

𝑡𝑠
 (A 1.7.b) 

 

Appendix B: Linear ADRC with IMC Proof 

 

The control signal of the aforementioned method equals: 

 

𝑈(𝑠) =
𝑄

1 − 𝑃0𝑄𝑄𝑑
𝑅(𝑠) −

𝑄𝑄𝑑
1 − 𝑃0𝑄𝑄𝑑

𝑌(𝑠) (B 1.1) 

 

It can be seen that the equation above possesses a resemblence with control signal which 

contains 𝐶1(𝑠), 𝐶2(𝑠) and 𝐹𝑟(𝑠). So, this can be eqaulized with equation (3.54) and expected to 

satisfied the following: 

 

𝐶1(𝑠)𝐹𝑟(𝑠) =
𝑄

1 − 𝑃0𝑄𝑄𝑑
 

(B 1.2) 

𝐶2(𝑠) =
𝑄𝑄𝑑

1 − 𝑃0𝑄𝑄𝑑
 

 

It should be extracted 𝑄 and 𝑄𝑑 from the equation above for the simplification. For 𝑄𝑑: 
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𝐶2(𝑠)

𝑄𝑑
= 𝐶1(𝑠)𝐹𝑟(𝑠) =

𝑄

1 − 𝑃0𝑄𝑄𝑑
 

(B 1.3) 

𝐶2(𝑠) = 𝐶1(𝑠)𝐹𝑟(𝑠)𝑄𝑑 

 

Then disturbance rejection IMC controller can be concluded that: 

 

𝑄𝑑 =
𝐶2(𝑠)

𝐶1(𝑠)𝐹𝑟(𝑠)
 (B 1.4) 

 

The next step is to determine the setpoint tracking IMC controller. With the usage of 𝑄𝑑 term: 

 

𝐶2(𝑠) =
𝑄

𝐶2(𝑠)
𝐶1(𝑠)𝐹𝑟(𝑠)

1 − 𝑃0𝑄
𝐶2(𝑠)

𝐶1(𝑠)𝐹𝑟(𝑠)

=
𝑄𝐶2(𝑠)

𝐶1(𝑠)𝐹𝑟(𝑠) − 𝑃0𝑄𝐶2(𝑠)
 (B 1.5) 

 

Then, after the simplification of the equation above leads to: 

 

𝑄 = 𝐶1(𝑠)𝐹𝑟(𝑠) − 𝑃0𝑄𝐶2(𝑠) (B 1.6) 

 

Taking the term starts with 𝑃0 to the left hand side and taking the common paranthesis brings 

about: 

 

𝑄(1 + 𝑃0𝐶2(𝑠)) = 𝐶1(𝑠)𝐹𝑟(𝑠) 

(B 1.7) 
𝑄 =

𝐶1(𝑠)𝐹𝑟(𝑠)

1 + 𝑃0𝐶2(𝑠)
 

 

By using the 𝑃0, 𝐶1 and 𝐶2 defined in (3.54) and substitute them into derived representation of 

IMC controller parameters, it is obvious to prove that the both controller have the form stated 

in (3.56) 

 

 


