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ÖZET 

Radarlar, elektromanyetik dalgalar ile hedeflerden hız, konum ve menzil gibi temel bilgilerin 

elde edilmesinde kullanılmaktadır. Geleneksel darbeli radarlar, söz konusu bilgileri elde 

edebilmek için yüksek çıkış gücüne sahip kısa süreli darbeler kullanır. Bu durum muharebe 

sahasında dost radarın düşman unsurlar tarafından kolayca farkedilmesine neden olabilir. 

Radar sisteminin düşman unsurlar tarafından tespit edilmesini olabildiğince zorlaştırmak 

için yakalanma olasılığı düşük radarlar kullanılabilir. Bu radarlar, amaçlarını 

gerçekleştirmek için geniş bantlı, düşük güçlü ve kodlanmış sürekli dalga sinyalleri kullanır. 

Frekans kaydırmalı anahtarlama, bu kodlama yöntemlerinden birisidir. Costas dizileri, 

frekans kaydırmalı anahtarlama yöntemi ile yakalanma olasılığı düşük radar sinyalleri 

oluşturmak için kullanılmaktadır. Bir Costas dizisi, her satır ve sütununda sadece bir adet 

“1” elemanı bulunan, dizinin diğer tüm elemanları “0” olan ve aynı zamanda dizinin bütün 

“1” olan elemanlarının aralarındaki vektörel uzaklığın birbirinden farklı olduğu n × n 

boyutunda bir permütasyon matrisi olarak ifade edilebilir. Costas dizileri, sonlu cisimler 

teorisine dayanan Welch, Lempel, Golomb gibi temel yöntemler ile ve bu yöntemlerin 

Taylor T4, Golomb G4* - G5*, Taylor T1 -T0, Welch W0  gibi bazı varyasyonları ile elde 

edilebilir. Bu tez çalışması kapsamında, yakalanma olasılığı düşük radarlar ve sonlu cisimler 

teorisine dayanan Costas dizileri ayrıntılı olarak araştırılmıştır. C++ programlama dili 

kullanılarak yazılım geliştirilmiş ve yüksek mertebeden (5000’e kadar) varyasyonel Costas 

dizileri için kapsamlı bir arama gerçekleştirilmiştir. Elde edilen sonuçlar tablolar halinde 

sunulmuştur. 
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ABSTRACT 

Radars are used to obtain basic information such as velocity, location and range from targets 

with the help of electromagnetic waves. In order to obtain the mentioned information, 

conventional pulsed radars use short-duration pulses with high output power. In this 

circumstance, friendly radar can be easily detected by hostile elements on the battlefield. To 

increase the difficulty of detection by hostile elements as much as possible, low probability 

of intercept radars can be used. These radars in order to achieve these aims, use signals which 

have wide bandwidth, low power and coded continuous wave. Frequency shift keying is one 

of these coding techniques. Costas arrays have been used to generate frequency shift keying 

radar signals for low probability of intercept radar systems. A Costas array is a permutation 

matrix of size n x n in which there is only “1” in each row and each column, all other 

elements are “0”, and the vectorial difference between all “1”s is different from each other. 

Costas arrays can be obtained by basic construction methods that based on finite field theory, 

such as Welch, Lempel, Golomb and some variations of these methods such as Taylor T4, 

Golomb G4* - G5*, Taylor T1 -T0, Welch W0. Within the scope of this thesis, low probability 

intercept radars and Costas arrays based on finite field theory, have been investigated in 

detail. A software has been developed using the C++ programming language and a 

comprehensive search for higher order (up to 5000) variational Costas arrays has been 

performed. The obtained results have been presented in tabular forms. 
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SİMGELER VE KISALTMALAR 

Bu çalışmada kullanılmış simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda 

sunulmuştur.  

 

Simgeler   Açıklamalar  

 

dB   Desibel 

dBm        Desibel Miliwatt 

GHz        Giga Hertz 

GB        Gigabyte 

Hz   Hertz 

k   Kelvin 

 

Kısaltmalar  Açıklamalar 

 

AESA   Active Electronic Scanned Array  (Aktif Elektronik Taramalı Dizi) 

ARM   Anti Radiation Missile (Anti Radyasyon Füzesi) 

CPU   Central Processing Unit (Merkezi İşlemci Birimi) 

CW   Continuous Wave (Sürekli Dalga) 

EBOB   En Büyük Ortak Bölen 

ELINT  Electronic Intelligence (Elektronik İstihbarat) 

ESR   Electronic Support Receiver (Elektronik Destek Alıcısı) 

FKA   Frekans Kaydırmalı Anahtarlama 

FMCW Frequency Modulated Continuous Wave (Frekans Modüleli Sürekli 

Dalga) 

FSK   Frequency Shift Keying 

GF   Galois Field 

GPU   Graphics Processing Unit (Grafik İşleme Birimi) 

IEEE Institute of Electrical and Electronics Engineers  (Elektrik ve 

Elektronik Mühendisleri Enstitüsü) 

LPI   Low Probability of Intercept 
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Kısaltmalar  Açıklamalar 

 

PSK   Phase Shift Keying (Faz Kaydırmalı Anahtarlama) 

RADAR Radio Detection and Ranging (Radyo Algılama ve Menzil 

Belirleme) 

RAM   Random Access Memory (Rastgele Erişimli Hafıza) 

SNR   Signal to Noise Ratio  (Sinyal Gürültü Oranı) 

YOD   Yakalanma Olasılığı Düşük
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1. GİRİŞ 

İnsanoğlu bilindiği üzere muhaberede ilk olarak ses ve dumandan faydalanmıştır. Ancak 

kötü hava şartlarında bazen bu tür haberleşme imkansız hale gelmiş ve bazen de mesafe 

açısından oldukça kısıtlı kalmıştır. Telli telgraf ve radyonun keşfi ile iletişim imkanları 

çoğalmıştır. Uçakların keşfi ile harp stratejisinde önceden haber alma kavramı en önemli 

konulardan biri haline gelmiştir. Bu amaçla, yaklaşan düşman uçaklarının ileri savunma 

hatlarına konumlandırılmış dinleme postaları ile ihbar edilmesi ilk tedbir olarak 

düşünülmüştür. Savaş uçaklarının ve süpersonik füzelerin icat edilmesiyle bu yöntemler de 

kullanılamaz hale gelmiştir. Zaman içerisinde yüksek hızlı hedeflerin tespiti için yeni 

yöntemlere ihtiyaç duyulmuştur. Yapılan araştırmalar neticesinde elektromanyetik 

dalgaların ve bu dalgaların hedeflerden geri dönen yankılarının kullanımının bu tür 

hedeflerin erken tespiti için en uygun yöntemlerden biri olduğu görülmüştür.  

Doğada yarasaların “yankı” ilkesine dayanarak hiçbir yere çarpmadan uçabildikleri 

bilinmektedir. Bu hayvanlar insan kulağının duyamayacağı frekansta süpersonik ses 

dalgaları yayarlar ve bu dalgaların atmosferde nesnelere çarpıp geri dönen yankılarını 

anlamlandırarak engellerin kendilerine olan uzaklıklarını belirlerler. Bir radar sistemi de 

benzer ilkeyle çalışır. Ancak yarasada olduğu gibi ses dalgaları yerine elektromanyetik 

dalgaları kullanır. 

Radar, “Radio Detection and Ranging” yani “Radyo Algılama ve Menzil Belirleme” 

anlamına gelen İngilizce kelimelerin kısaltması olarak ifade edilmektedir. Bir radar, temel 

olarak şu bileşenlerden oluşur: osilatörün ürettiği elektromanyetik dalgayı atmosfere yayan 

bir verici anten, hedeften geri dönen yankıları toplayan bir alıcı anten, bu yankıları işleme 

yeteneğine sahip bir sinyal işleme ünitesi ve tespit edilen hedeflerin gösterilmesi için 

kullanılan kontrol görüntüleme ünitesi. Radarın temel çalışma ilkesi oldukça basittir. Bir 

radar sistemi bir verici anten vasıtasıyla elektromanyetik dalgaları iletir. İletilen bu dalgalar 

hedeflere çarpar ve bu hedeflerden tüm yönlerde saçılır. Radar için önemli olan geri saçılan 

dalgalardır. Alıcı anten radara geri dönen bu yankıları toplar ve sinyal işleme ünitesine 

aktarır. Söz konusu sinyal çeşitli tekniklerle işlenerek hedefin hızı, yönü ve mesafesi 

hakkında bilgi edinilir. 
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Resim 1.1. Radar sinyal gönderme / alma [1] 

Modern muharebe sahaları, farklı görev ve sorumlulukları yerine getirmek üzere 

görevlendirilmiş, birbirleriyle entegre faaliyet icra edebilen askeri unsurları içerisinde 

barındıran karmaşık ve dinamik ortamları temsil eder. Bu sahada her askeri unsur, düşman 

tehditlerine karşı taktik üstünlük sağlamak ve operasyonel hedefleri gerçekleştirmek için en 

yeni teknolojilerin getirdiği yararları benimsemek ve kullanmak zorundadır. Bu bağlamda, 

radar teknolojileri, muharebe sahalarında taktiksel durum üstünlüğü elde etmek için kritik 

bir rol oynamaktadır. 

Günümüzde askeri teknoloji alanındaki gelişmeler, radar sistemlerinin kullanımını, rolünü 

ve önemini giderek arttırmıştır. Muharebe sahası bilindiği üzere, düşman hareketliliği, 

istihbarat, keşif, saldırı ve savunma gibi birçok faktörün kesiştiği bir ortamdır. Bu ortamda 

düşmanın konumunu, hızını, sayısını ve niyetini doğru bir şekilde tespit edebilmek, dost 

unsurların stratejik harekât planlarının oluşturulmasında ve uygulanmasında hayati öneme 

sahiptir. Bu anlamda radarlar, askeri amaçlarla kullanılmaya başlandıkları ilk zamanlardan 

günümüze kadar elektronik harbin en önemli unsurlarından biri olagelmiştir [2].  

Askeri radarlar, keşif ve istihbarat faaliyetlerinin temel yapı taşını oluşturur ve dost 

unsurların düşman tehditlerini önceden tespit etme ve yanıt verme yeteneklerini arttırır.  

Özellikle hava savunma görevi icra eden radarlar, düşman unsurlar tarafından yapılacak 
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hava saldırılarına karşı önemli bir hava savunma katmanı sağlayabilir. Bu hava savunma 

katmanını işlevsel olarak zayıflatmak veya kullanılamaz hale getirmek için radarların 

yaydığı elektromanyetik dalgalardan yararlanan anti radyasyon füzeleri (Anti Radiation 

Missile; ARM) gibi bazı füze sistemleri bulunmaktadır. Muharebe sahasında bazen radarın 

performansını azaltmaya çalışan veya radarı tamamen engelleyen elektronik karıştırma 

sistemleri de kullanılabilir. Bu sistemlerin etkili elektronik karıştırma yapabilmesi için bazı 

radar parametrelerini bilmesi gerekir. Bu durum, elektromanyetik sinyallerin düşman 

unsurlar tarafından tespit edilmesinin zor olduğu radar tasarımlarının üretilmesini teşvik 

etmiştir. Yakalanma olasılığı düşük radarlar (YOD), bu tür radarlar arasında yer alır [2]. 

Bu tez çalışmasının 2’nci Bölümünde yakalanma olasılığı düşük radarlar hakkında ayrıntılı 

bilgi verilmiştir. 3’üncü Bölümde YOD radarlarda yaygın olarak kullanılan Costas dizileri 

incelenmiştir. Costas dizileri ile ilgili temel yöntemlerin yanı sıra çeşitli varyasyonel 

yöntemler de ele alınmıştır. Dördüncü Bölümde yapılan çalışmalar ve elde edilen sonuçlar 

değerlendirilmiştir.   
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2. YAKALANMA OLASILIĞI DÜŞÜK RADARLAR 

Radarlar, elektromanyetik dalgaları kullanarak optik sistemlerle görülemeyecek kadar uzak 

mesafelerde yer alan cisimlerin varlıklarını veya noksanlıklarını tespit etmek, bu cisimlerin 

konumları ve hızları hakkında yüksek hassasiyetle bilgi sahibi olmak maksadıyla tasarlanmış 

ve üretilmiş ileri teknolojili sensörler olarak tanımlanabilir. Günümüzde radarlar çok farklı 

amaçlara ve çok geniş uygulama alanlarına sahip olmalarına rağmen, icat edildiği ilk 

zamanlarda yaygın olarak askeri amaçlar için kullanılmaktaydı. Çünkü muharebe alanında 

yer alan düşman unsurlar hakkında önceden bilgi sahibi olmak, icra edilecek askeri 

operasyonun başarısı ve dost unsurların güvenliğinin sağlanabilmesi için kritik öneme 

sahiptir [2].  

Askeri bir radar, modern muharebe alanında düşman unsurlar hakkında bilgi edinmeye 

çalışır. Düşman elektronik harp ve elektronik istihbarat (Electronic Intelligence- ELINT) 

sistemleri ise radarımızın performansını düşürmek veya tamamen çalışmasını engellemek 

için çaba harcarlar. Söz konusu sistemlerin etkin bir şekilde çalışabilmesi için sinyal ile ilgili 

bazı radar parametrelerini çözümlemesi gerekir. Bu durum, elektronik harp sistemleri 

tarafından tespit edilemeyen veya edilmesi zor olan radar sistemlerinin üretilmesi ihtiyacını 

ortaya çıkartmıştır.  

Düşman elektronik harp sistemlerinin gelişmiş algoritmalarından ve etkili bozma-karıştırma 

yöntemlerinden etkilenmeyen, dolayısıyla bu sistemler tarafından tespit edilebilme olasılığı 

en aza indirilmiş, gelişmiş frekans atlama ve karmaşık modülasyon tekniklerine sahip 

radarlar literatürde yakalanma olasılığı düşük (YOD) veya “low probability of intercept 

(LPI)” radarlar olarak tanımlanırlar.  

2.1. YOD Radarların Karakteristik Özellikleri  

YOD radarlar, gizliliğin ön planda olduğu askeri operasyonlarda ve sivil uygulamalarda 

kullanılmak üzere tasarlanırlar ve üretilirler. Bu bakımdan geleneksel darbeli radarlarla 

karşılaştırıldıklarında oldukça farklı karakteristik özelliklere sahiptirler. 
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Bir YOD radarın başlıca karakteristik özellikleri;  

• Düşük yan kulak düzeyi 

• Esnek anten ışıma örüntüsü 

• Etkin güç yönetimi 

• Yayılma ortamına uygun taşıyıcı frekans seçimi 

• Etkin bant genişliği 

• Duyarlılık faktörü 

• Geniş bant iletimi 

• Evre uyumlu (coherent) sinyal algılama 

• Monostatik / bistatik konfigürasyon 

olarak sıralanabilir. 

2.1.1. Düşük yan kulak düzeyi 

Elektronik Destek Alıcıları (Electronic Support Receiver; ESR), bir radar anteninin yan 

kulak ışımalarından faydalanarak radar sinyallerini algılayabilir. Bu nedenle, bir LPI radar 

anteninin yan kulak düzeyi son derece düşük olmalıdır.  

Faz dizili anten tasarımlarında her bir anten elemanının uyarım parametreleri ayrı ayrı 

kontrol edilebilir. Bu sayede çok düşük düzeyli yan kulak ışıması elde edilebilir. Bu durum, 

radar sinyalinin yakalanma ve hüzme yönünün belirlenme olasılığını en aza indirir. 

Giderek azalan (tapered) bir uyarım uygulandığında yan kulak seviyesi -13 dB’nin altına 

düşürülebilir. Genel olarak -20 dB yan kulak düzeyi kabul edilebilir bir değerdir. Bir LPI 

radarı için ise -45 dB gibi çok daha düşük yan kulak düzeyleri gereklidir [2].  

Ana hüzme kolay bir şekilde bastırılamaz, bu nedenle iletilen hüzmenin geniş bir frekans 

bandına yayılması ve çıkış gücünün düşürülmesi gerekmektedir. Bu, radar sinyalinin 

yakalanmasını ve yönünün belirlenmesini zorlaştırır [3]. 
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2.1.2. Esnek anten ışıma örüntüsü 

Elektronik Destek Alıcıları, radarların tespit edilmesinde ve çalışma parametrelerinin elde 

edilmesinde tarama türü ve tarama hızı gibi bilgilerinden faydalanabilir. Söz konusu çalışma 

parametrelerini rasgele değiştirmek gibi yanıltıcı teknikler kullanan LPI radarları, düşman 

elektronik destek alıcıları tarafından yapılacak müdahalelere karşı yüksek oranda direnç 

gösterecek ve düşük yakalanma olasılığına sahip olacaktır. 

Aktif elektronik taramalı faz dizili antenler (Active Electronic Scanned Array; AESA), farklı 

uzay bölgelerini taramak için değişken frekanslarda çalışan çoklu hüzmeler kullanılabilir. 

Bir LPI radarın ışıma süresinin kontrol edilmesinde ve sınırlandırmasında aktif elektronik 

taramadan faydalanılabilir.  

2.1.3. Etkin güç yönetimi 

Etkin güç yönetimi, sayısal sinyal işlemedeki gelişmelerle birlikte uygulanabilir hale gelen 

bir radar tekniğidir. Bu yöntem,  

• Anten yan hüzme kontrolü/bastırılması, 

• Bir hedefin rasgele aydınlatılması, 

• Minimum sinyal gürültü oranı (Signal to Noise Ratio; SNR) için verici gücünün dinamik 

olarak kontrol edilmesi tekniklerini içerir. 

Bir LPI radarı hedefe kilitlendikten kısa bir süre sonra, SNR’ı minimum değerde tutacak 

şekilde verici gücünü azaltır. Bu işlem radar takip süresi boyunca devam eder. Düşük çıkış 

gücü sayesinde radarın algılanma menzili azaltılmış olur. Etkin güç yönetimi, karşı taraftaki 

elektronik destek alıcılarının radar menzilini yanlış hesaplamasına ve dost radarı düşük 

öncelikli tehdit olarak sınıflandırmasına neden olur [4]. 

2.1.4. Yayılma ortamına uygun taşıyıcı frekans seçimi 

Bir LPI radarı, gönderme sinyalini gizlemek ve düşman alıcılar tarafından tespit edilmesini 

daha da zorlaştırmak için atmosferik emilimin en fazla meydana geldiği 22, 60, 118, 183 ve 

320 GHz gibi frekansları öncelikli olarak kullanabilir. Atmosferik emilim, vericinin 

enerjisini de yüksek düzeyde azalttığı için, bu tekniğin kullanımı genellikle kısa menzilli 
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sistemlerde tercih edilir. 

 

Resim 2.1. Atmosferik emilimin milimetre dalga spektrumunda dağılımı [2, 5] 

Mevcut elektronik destek alıcıları genellikle 500 MHz ile 20 GHz arasında bir frekans 

bandında çalışır. LPI radarlarda genellikle söz konusu çalışma bandının dışında bir frekans 

seçilir [2].  

2.1.5. Etkin bant genişliği  

Bir LPI radarı, kendi sinyalinin parametrelerini bildiğinden düşman alıcısına göre bant 

genişliğini daha etkin kullanır. Buna karşılık düşman alıcısı, LPI radar sinyalini tespit 

edebilmek için geniş bir bant aralığındaki sinyalleri yakalamak ve bu sinyallerin türünü 

belirlemek için de ayrıntılı parametrik ölçümler yapmak zorundadır [6]. 
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2.1.6. Duyarlılık faktörü 

Duyarlılık faktörü, bir radar alıcısının zayıf sinyalleri algılama yeteneğinin bir ölçüsüdür 

(Şekil 2.1). Gelişmiş sinyal işleme teknikleri ve filtreleme algoritmaları sayesinde LPI 

radarlar alıcı gürültü seviyesini minimize ederek duyarlılık faktörünün artırılmasına ve daha 

zayıf sinyallerden hedef tespitinin yapılabilmesine olanak sağlar.  Duyarlılık faktörü, başarılı 

bir LPI radar tasarımı için değerlendirilmesi gereken önemli bir parametredir. 

 

 

Şekil 2.1. Alıcı duyarlılığı 

2.1.7. Geniş bant iletimi 

Geleneksel darbeli radarlar, yüksek çıkış gücüne sahip kısa süreli darbeler ile hedef tespiti 

yapmaya çalışırlar. Hedefe çarpıp radar antenine zayıflayarak geri dönen yankı sinyalinin 

radar tarafından tespit edilebilmesi için gönderilen sinyalin tepe gücünün, radarın tespit eşik 

değerinin altında olmaması gerekir. Radar anteninden yüksek tepe gücü ile bir sinyalin 

gönderilmesi muharebe sahasında bulunan düşman elektronik harp unsurları tarafından 

kolayca tespit edilmesine sebep olabilir. Düşman unsurlar tarafından tespit edilmeyi 

engellemek için yüksek çıkış gücüne sahip darbeli sinyaller kullanmak yerine enerjiyi geniş 

bir banda yayıp çıkış güç seviyesini düşürmek gerekir.  

Bir LPI radarını geleneksel darbeli radarlardan ayrıştıran ve düşman elektronik harp 

unsurları tarafından tespit edilmesine engel olan en belirgin özelliği kullandığı darbe 

formudur. LPI radarlar, geleneksel radarların aksine darbe sıkıştırma teknikleriyle enerjisi 

Sinyal Gücü (dBm) 

Duyarlılık 

Gereken SNR (dB) 

Alıcı Gürültü 

Seviyesi (dB) 

Termal Gürültü Seviyesi (kTB) 
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geniş bir banda yayılmış tepe gücü düşük sinyaller kullanırlar. Bu sayede düşman elektronik 

harp unsurlarının sahip olduğu menzil avantajını modülasyon teknikleri ile etkisiz hale 

getirerek rakip alıcılar tarafından tespit edilmeyi zorlaştırırlar. 

 

Şekil 2.2. LPI radar sinyali ile geleneksel darbeli radar sinyalinin karşılaştırılması 

2.1.8. Evre uyumlu sinyal algılama 

Evre uyumlu sinyal algılama, tespit edilme olasılığını azaltmak için LPI radarlar tarafından 

kullanılan başka bir tekniktir. LPI radarların hedef tespiti yaparken gönderilen sinyalin evre 

bilgisini kullanmasını sağlar. Hedeften dönen yankı sinyali, hedefin konumunu ve hızını 

belirlemek için daha önce tanımlanmış referans sinyal ile karşılaştırılır. Bu sayede radarın 

hedef tespiti esnasında düşük güçlü yayın yapması ve tespit edilme olasılığını minimize 

etmesi sağlanır.  

Düşman alıcısı, sinyalin parametrik ayrıntılarını tam olarak bilmedikçe, bir radar sinyalini 

doğru bir şekilde algılayamaz. Sinyal modülasyonu rasgele olduğunda, bu özellik daha da 

etkili hale gelir. Bir radar sinyalinin gerçek gürültü sinyali ile modüle edilmesi rasgele sinyal 

modülasyonunu sağlar. Gerçek gürültü modülasyonu kullanan radarlara da rasgele sinyal 

radarları denir. Rasgele sinyal radarları (Random Signal Radar; RSR), yankı sinyalini, 

iletilen sinyalin gecikmeli bir örneği ile ilişkilendirirler. İletilen sinyal tamamen rasgele 

olduğu için, hedef alıcı, alınan sinyali ilişkilendirmek için herhangi bir referans noktasından 
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faydalanamaz [7]. 

2.1.9. Monostatik / Bistatik konfigürasyon 

LPI radar tasarımlarında hem monostatik hem de bistatik radar konfigürasyonları 

kullanılabilir. Monostatik radar tasarımları için, vericiden gönderilen sürekli dalga 

(Continuous Wave; CW) sinyalinin alıcı hattında yalıtılması gerekir. Bistatik radarlar için 

verici ve alıcı antenler birbirlerinden uzak noktalara yerleştirilir. Bistatik radar tasarımları, 

zaman ve yön senkronizasyonu gibi operasyonel kullanımı engelleyen bir dizi teknolojik 

zorluklar taşımaktadır. Spektruma yayılı bistatik sürekli dalga radarları, LPI radarlar için 

ideal tasarım konseptlerinden bir tanesidir [3]. 

2.2. YOD Radarlarda Kullanılan Sinyal Çeşitleri 

LPI özellikli bir radar, bir yandan muharebe sahasında hedef tespiti yapmaya çalışırken diğer 

yandan düşman unsurlar tarafından tespit edilmemeye çalışır. Bunu başarabilmek için belirli 

modülasyon işlemlerinden geçirilmiş özel dalga biçimli elektromanyetik sinyaller kullanır. 

Geleneksel düşman elektronik harp unsurları operasyonel kullanım konseptlerine uygun 

olarak farklı özelliklerde ve duyarlılık düzeylerinde almaç yapılarına sahiptir.  Genellikle bu 

almaçlar basit bir yapıda olup muharebe sahasında tehdit oluşturan rakip radarların gerçek 

zamanlı olarak tespit edilmesini amaçlamaktadır. Günümüz modern elektronik harp 

unsurları ile LPI radarların tespit edilebilmesi için yüksek bant genişliğinin yanı sıra yönlü 

anten tasarımları ile almaç kazancının arttırılması gerekir [2, 4]. 

LPI radarlar için darbe sıkıştırmalı sürekli dalga modülasyon teknikleri aşağıda verilmiştir; 

• Frekans Modüleli Sürekli Dalga (Frequency Modulated Continuous Wave; FMCW) 

o Doğrusal Frekans Modülasyonu (Linear Frequency Modulation; LFM) 

o Üçgen Frekans Modülasyonu (Triangular Frequency Modulation; TFM) 

o Basamaklı Frekans Modülasyonu  

o Doğrusal Olmayan Frekans Modülasyonu (Nonlinear Frequency Modulation; NLFM) 

• Faz Kaydırmalı Anahtarlama (Phase Shift Keying; PSK) 

o İkili Faz Kaydırmalı Anahtarlama (Binary Phase Shift Keying; BPSK) 

o Çok Fazlı Kodlar (Polyphase codes) 
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o Çok Zamanlı Kodlar (Polytime codes) 

• Frekans Kaydırmalı Anahtarlama (Frequency Shift Keying; FSK) 

o Costas Dizileri 

o Melez Frekans/Faz Kaydırmalı Anahtarlama 

o Hedef Uyumlu PSK/FSK Tekniği 

2.2.1. Frekans modüleli sürekli dalga (FMCW) 

LPI radarlarda frekans modülasyonu ve darbe sıkıştırma tekniği olarak FMCW’nin 

kullanımı oldukça yaygındır. Bu teknikte gönderilen sinyalin frekansı, belirli bir 

modülasyon profiline uygun olarak sürekli değiştirilir. Bu modülasyon profili için genellikle 

üçgen frekans modülasyonu tercih edilir. Üçgen frekans modülasyonu pozitif ve negatif 

eğimli iki doğrusal frekans bölümünden oluşur. Yani frekans bir süre boyunca belirli bir 

eğimle artırılıp, sonrasında aynı eğimle azaltılır. 

FMCW radarlarda sinyal gönderilirken aynı zamanda alıcı hattı da sürekli olarak aktiftir. 

Radar, gönderilen sinyal ile alınan yankı sinyalini sürekli olarak karşılaştırır. FMCW 

radarlarda iletilen sinyal ile yankı sinyali arasında, vurum frekansı (beat frequency) olarak 

adlandırılan bir frekans farkı ortaya çıkar. Bu frekans farkı ile hedefin menzil ve Doppler 

bilgisi yüksek duyarlılıkla elde edilebilir [2]. 

FMCW radarların elektronik destek sistemleri tarafından tespit edilmesi oldukça zordur. 

Ayrıca bu radarlar yüksek menzil çözünürlüğüne, yüksek bant genişliğine ve düşük güç 

tüketimine sahiptirler. 

2.2.2. Faz kaydırmalı anahtarlama (PSK)  

LPI radarların ilk zamanlarında genlik ve açı modülasyonu gibi analog yöntemlerle üretilen 

frekans modüleli sürekli dalga sinyalleri kullanılırken, elektronik alanındaki gelişmeler 

sayesinde sayısal devrelerin kullanımının yaygınlaşması ve bu devrelerin sinyal işlemede 

sağladığı esneklik günümüz LPI radarlarında sayısal modülasyon tekniklerinin kullanımını 

yaygın hale getirmiştir.  

Faz kaydırmalı anahtarlama, taşıyıcı sinyalin frekansı sabit tutulurken faz bilgisinin belirli 

bir örüntüye göre zamanla değiştirilmesi ile elde edilen modülasyon tekniğidir.  
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Fazın zamana göre değiştirilmesine bağlı olarak ikili faz kaydırmalı anahtarlama, çok fazlı 

kodlar ve çok zamanlı kodlar olarak gruplandırılabilir. Çok fazlı kodlar, alt kod içinde yer 

alan faz kaydırma değerinin birden çok değer almasına ve çok uzun kod üretilmesine olanak 

sağlar. Bu kodlar, ikili faz kaydırmalı anahtarlama kodlarından daha iyi yan hüzme 

performansına ve Doppler toleransına sahiptir. 

2.2.3. Frekans kaydırmalı anahtarlama (FSK) 

Frekans kaydırmalı anahtarlama (FSK) modülasyonunda taşıyıcı sinyalin frekansı 

değiştirilerek dijital veri iletilir. Bu modülasyon tekniği ile çalışan LPI radarlarının 

kullandıkları frekans setleri bilinmediği için tespit edilme olasılıkları minimize edilmiş olur. 

Düşman alıcılar bu frekans setlerini rasgeleymiş gibi algılarlar, böylelikle bir sonraki 

frekansın ne olacağını kestiremezler ve sinyali takip edemezler [8].  

Frekans kaydırmalı anahtarlama kullanan radarlar frekans atlamalı radarlar olarak da 

bilinirler. Frekans kaydırmalı anahtarlama, düşük enerji seviyeleriyle çalışabilen bir 

modülasyon tekniğidir. Bu durum radarın düşük güçte çalışmasına ve böylelikle düşman 

tarafından tespit edilme olasılığının azaltılmasına olanak sağlar. Ayrıca frekans kaydırmalı 

anahtarlama modülasyonu, gürültüye ve elektriksel parazitlere karşı oldukça dirençlidir. Bu 

durum düşmanın radar sinyalini karıştırmasına veya engellemesine yönelik girişimlerine 

karşı radara daha dayanıklı bir iletişim imkanı sağlar. 
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3. COSTAS DİZİLERİ 

J. P. Costas 1960’lı yıllarda, ABD Donanması için bir proje üzerinde çalışırken,  radar ve  

sonar sistemlerinin performanslarını iyileştirmek için ideal özilinti özelliğine sahip 

permütasyon matrisleri üzerinde çalışmaya başlamıştır [8].  

Tipik bir radar veya sonar uygulamasında, ardışık zaman dilimlerinde bir dizi farklı frekans 

üretmek performansın iyileştirilmesi açısından oldukça faydalıdır. Genel olarak bir sinyal 

bir hedeften yansıdığında, yankı sinyali bir alıcı tarafından algılanır. Yankı sinyali, iletilen 

sinyale kıyasla, frekansta hedefin hızına karşılık gelen bir miktarda, kaynağa doğru veya 

aksi yönde kaydırılmış şekilde olur. Böylece iletilen sinyal ve yankı sinyali arasındaki süre, 

hedefin mesafesiyle orantılıdır. Pratik uygulamalarda, alıcı tarafından algılanan sinyal her 

zaman gürültülüdür ve yankı sinyalini gürültüden ayırt etmek gerekir. Yankı sinyali ile 

yüksek ilintiye sahip iletilen sinyalin zaman ekseninde kayması hedefin konumuna karşılık 

gelirken, frekans ekseninde kayması hedefin hızına karşılık gelir. Bu nedenle iletilen 

sinyalin, zaman frekans kaymalarında kendisiyle düşük ilintiye sahip olacak şekilde 

seçilmesi gereklidir. 

Costas dizisi kavramı ilk defa Costas tarafından 1965 yılında mühendis olarak çalıştığı 

General Electric firması için yazdığı raporda kullanılmıştır [9]. 1984 yılında yayınlanan üç 

makalede Costas dizilerini oluşturma yöntemleri ortaya konulmuştur [9]. Costas, fiziksel 

kısıtlamalar nedeniyle, uygulama için en ideal sinyalleri, frekans sayısının zaman aralığı 

sayısına eşit olduğu, her frekansın bu zaman aralığında sadece bir defa iletildiği ve her zaman 

aralığında sadece bir adet frekansın iletildiği sinyaller olarak tanımlamıştır. Costas sıfırdan 

farklı tüm zaman ve frekans kaymalarında özilintisi en fazla “1” olan bu tür kalıplarla 

ilgilenmiş ve sorunu permütasyon matrisleri cinsinden ifade etmiştir. 

Bir Costas dizisi, her satır ve sütununda sadece bir adet “1” elemanı bulunan, dizinin diğer 

tüm elemanları “0” olan ve aynı zamanda dizinin bütün “1” olan elemanlarının aralarındaki 

vektörel uzaklığın birbirinden farklı olduğu n×n boyutunda bir permütasyon matrisi olarak 

ifade edilebilir [11, 12]. Costas dizileri olarak tanımlanan bu  permütasyon matrislerinin 

sütunları frekans eksenini, satırları ise zaman eksenini ifade eder. Sekizinci mertebeden 

örnek bir Costas dizisi Şekil 3.1’de gösterilmiştir. 
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Şekil 3.1. Sekizinci mertebeden {6 2 1 7 5 8 3 4} Costas dizisi 

Şekil 3.1’de yer alan {6 2 1 7 5 8 3 4} Costas dizisinde kullanılan frekanslar noktalar ile 

kullanılmayanlar ise boşluklar ile ifade edilmektedir. n×n boyutlarındaki her permütasyon 

matrisi Costas dizisi değildir. Herhangi bir permütasyon matrisinin Costas dizisi olabilmesi 

için bazı özelliklere sahip olması gerekir. Bir permütasyon matrisinin Costas dizisi olup 

olmadığını belirleyebilmek için fark üçgen analizi yöntemi kullanılabilir. n’inci mertebeden 

Costas dizisinin elemanları f(1), f(2), f(3), .... , f(n) şeklinde ifade edilir. Fark üçgen analizi 

yönteminde dizinin elemanları ise; 

Δ(i, j) = f (i + j) – f ( j)                 (3.1) 

Eş.3.1 ile hesaplanabilir. Bu eşitlikte i’ler satır numaralarını, j’ler ise sütun numaralarını 

göstermektedir. n’inci mertebeden bir Costas dizisinin fark üçgen analizinde n – 1 tane satır 

ve m’inci satırda n – m tane eleman vardır. Fark üçgen analizinde bulunan herhangi bir 

eleman, bulunduğu satır ve sütundaki diğer elemanlardan farklıdır. Şekil 3.1’de verilen 

Costas dizisine ait fark üçgen analizi Çizelge 3.1’de gösterilmiştir. 

Frekans kaydırmalı anahtarlama yöntemi ile çalışan radarlarda Costas dizilerinin kullanımı 

ile ideale çok yakın belirsizlik diyagramları elde edilebilir [13]. Belirsizlik diyagramları 

incelenerek bir radar sinyalinin menzil ve Doppler çözünürlükleri hakkında fikir sahibi 

olunabilir [14]. LPI radarlarda, ışıma örüntüsünün yan kulaklarının mümkün olduğunca 

düşük genlikli olması, ana hüzmenin ise dar ve yüksek genlikli olması tercih edilir.  
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Çizelge 3.1. {6 2 1 7 5 8 3 4} Costas dizisine ait fark üçgen analizi 

 

Şekil 3.2’de herhangi bir modülasyon tekniği uygulanmamış geleneksel bir darbeli radara 

ait belirsizlik diyagramı yer almaktadır. Şekil 3.3’de ise Costas dizisi kullanılarak frekans 

kaydırmalı anahtarlama ile modüle edilmiş bir LPI radarın belirsizlik diyagramı yer 

almaktadır. Belirsizlik diyagramında merkezdeki sivri ucun yüksekliği sinyalden elde 

edilecek enerji değerini ifade eder. Bu sivri ucun yanındaki değerler ne kadar küçük ise hız 

ve menzil bakımından birbirine yakın hedefleri ayırt etmek o derece kolaylaşır [15]. 

 

Şekil 3.2. Bir darbeli radara ait belirsizlik diyagramı 
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Şekil 3.3. Costas dizisi kullanılarak frekans kaydırmalı anahtarlama ile modüle edilmiş bir 

LPI radarına ait belirsizlik diyagramı 

3.1. Temel Yöntemlerle Elde Edilen Costas Dizileri 

Costas dizileri, Welch, Lempel ve Golomb gibi temel oluşturma yöntemleri ve bu 

yöntemlerin bazı varyasyonları ile elde edilebilir [16, 17]. Temel oluşturma yöntemleri ve 

varyasyonların elde edilme yöntemleri bu bölümde açıklanmıştır. 

3.1.1. Welch metodu 

Her asal p > 2 için, g (mod p)’ye göre ilkel köklerden biri olsun. Bu durumda, 0 ≤ j ≤ p - 2 

için (j, gj (mod p)) noktası, (p - 1)’inci mertebeden W1 Costas dizisinin koordinatlarını verir  

[18, 19]. Bir permütasyon matrisi olarak tanımlanabilen n × n boyutlu bir Costas dizisinde, 

matrisin satır ve sütunları (j, gj) noktası olarak ifade edilmektedir [20, 21].  

Bu notasyonda (0, 1) noktası, bu permütasyon matrisinin ilk satırını ve ilk sütununu, yani 

köşe noktasını temsil etmektedir. Bu köşe noktası (0, 1) bulunduğu satır ve sütun ile birlikte 

silinirse (p - 2)’nci mertebeden W2 Costas dizisi olarak ifade edilen bir permütasyon matrisi 

elde edilir. Yeni (0, 1) noktası elde edilen bu W2 Costas dizisinin köşe noktası olur. Eğer 

𝑔 = 2, (mod p)’ye göre ilkel kök ise elde edilen W2 Costas dizisinin köşe noktası (0, 1) 

benzer şekilde bulunduğu satır ve sütun ile birlikte silinirse (p - 3)’üncü mertebeden W3 ile 
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ifade edilen Costas dizisi elde edilir [22].  

Örnek olarak p = 11 sayısı için Welch yöntemi kullanılarak Costas dizileri elde edilmiştir. 

Costas dizilerini elde etmek için ilk olarak ilkel köklerin belirlenmesi gerekir. İlkel kökler 

farklı yöntemlerle elde edilebilir.   

a, m ϵ ℤ ve m > 0 olmak üzere  ebob(m, a) = 1 olsun. Eğer a sayısının (mod m)’ye göre 

mertebesi φ(m) ise a elemanına m modülünde bir ilkel kök (primitive root) denir. Diğer bir 

ifadeyle (mod m)’de mertebesi φ(m) olan elemanlara ilkel kök denir. 

𝑚 = 𝑃1
𝑟1 ⋅ 𝑃2

𝑟2 ⋯ 𝑃𝑡
𝑟𝑡                             (3.2) 

𝜑(𝑚) = 𝑚 (1 −
1

𝑝1
) ⋅ (1 −

1

𝑝2
) … (1 −

1

𝑝𝑡
)                                   (3.3) 

Eş. 3.3’e göre; 

𝜑(11) =  11 (1 −
1

11
) = 10                                           (3.4) 

elde edilir. Dolayısıyla (mod 11)’e göre mertebesi 10 olan elemanlar ilkel köklerdir. İlkel 

köklerin sayısı φ(p - 1) ile hesaplanır. p = 11 sayısı için φ(10) ilkel köklerin sayısını verir. 

φ(10) =  φ(21. 51) =  10 (1 −
1

2
) (1 −

1

5
) = 4                                    (3.5) 

Eş. 3.5’e göre p = 11 sayısı için 4 adet ilkel kök bulunmaktadır. İlkel kökleri bulmak için ilk 

olarak p = 11 sayısı için asal kalan sınıfları kümesinin belirlenmesi gerekir. p = 11 için asal 

kalan sınıfları kümesi 

ℤ11
∗ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}                                     (3.6) 

olarak ifade edilebilir. Asal kalan sınıfları kümesindeki her bir elemanın sırasıyla mertebesi 

hesaplanarak ilkel kök olup olmadığı belirlenir. “1” sayısı birim eleman olduğu ve mertebesi 

“1” olduğu için ilkel kök değildir. 
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2 elemanının mertebesi 

20 = 1 (mod 11)          23 = 8 (mod 11)          26 = 9 (mod 11)          29 = 6 (mod 11) 

21 = 2 (mod 11)          24 = 5 (mod 11)          27 = 7 (mod 11)          210 = 1 (mod 11) 

22 = 4 (mod 11) 25 = 10 (mod 11)        28 = 3 (mod 11)       

olarak hesaplandığından 2 sayısının mertebesinin 10 olduğu görülür. Dolayısıyla 2 sayısının 

kuvvetleri (mod p)’ye göre asal kalan sınıfları kümesindeki tüm elemanları verdiğinden 2 

sayısı için ilkel kök denilir. Bu durumda, yukarıdaki hesaplamadan 2 ilkel kökünün 

oluşturduğu (p - 1) yani 10’uncu mertebeden W1 Costas dizisi {1 2 4 8 5 10 9 7 3 6} şeklinde 

ifade edilebilir. Başlangıç noktası (0, 1) noktası olacak şekilde söz konusu W1 Costas dizisi 

Şekil 3.4’te gösterilmiştir. 

 

Şekil 3.4. g = 2 ilkel kökü için 10’uncu mertebeden {1 2 4 8 5 10 9 7 3 6} W1 Costas dizisi 

Benzer şekilde asal kalan sınıfları kümesinde yer alan diğer elemanların mertebeleri 

hesaplanarak ilkel kök olup olmadıklarına karar verilir. 

3 elemanının mertebesi      

30 = 1 (mod 11)          33 = 5 (mod 11)           

31 = 3 (mod 11)          34 = 4 (mod 11)                

32 = 9 (mod 11) 35 = 1 (mod 11)          
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3 elemanının mertebesi 5 olduğu için ilkel kök değildir. Dolayısıyla 3 elemanından W1 

Costas dizisi elde edilemez. 

4 elemanının mertebesi      

40 = 1 (mod 11)          43 = 9 (mod 11)           

41 = 4 (mod 11)          44 = 3 (mod 11)                

42 = 5 (mod 11) 45 = 1 (mod 11)  

4 elemanının mertebesi 5 olduğu için ilkel kök değildir. Dolayısıyla 4 elemanından W1 

Costas dizisi elde edilemez. 

5 elemanının mertebesi 

50 = 1 (mod 11)          53 = 4 (mod 11)           

51 = 5 (mod 11)          54 = 9 (mod 11)          

52 = 4 (mod 11)          55 = 1 (mod 11)          

5 elemanının mertebesi 5 olduğu için ilkel kök değildir. Dolayısıyla 5 elemanından W1 

Costas dizisi elde edilemez. 

6 elemanının mertebesi 

60 = 1 (mod 11)          63 = 7 (mod 11)          66 = 5 (mod 11)          69 = 2 (mod 11) 

61 = 6 (mod 11)          64 = 9 (mod 11)          67 = 8 (mod 11)          610 = 1 (mod 11) 

62 = 3 (mod 11) 65 = 10 (mod 11)        68 = 4 (mod 11) 

olarak hesaplandığından 6 sayısının mertebesinin 10 olduğu görülür. Dolayısıyla 6 sayısının 

kuvvetleri (mod p)’ ye göre asal kalan sınıfları kümesindeki tüm elemanları verdiğinden 6 

sayısı için ilkel kök denilir. Bu durumda, yukarıdaki hesaplamadan 6 ilkel kökünün 

oluşturduğu (p - 1) yani 10’uncu mertebeden W1 Costas dizisi {1 6 3 7 9 10 5 8 4 2} şeklinde 

ifade edilir. Başlangıç noktası (0, 1) noktası olacak şekilde söz konusu W1 Costas dizisi Şekil 

3.5’te gösterilmiştir. 
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Şekil 3.5. g = 6 ilkel kökü için 10’uncu mertebeden {1 6 3 7 9 10 5 8 4 2} W1 Costas dizisi 

7 elemanının mertebesi 

70 = 1 (mod 11)          73 = 2 (mod 11)          76 = 4 (mod 11)          79 = 8 (mod 11) 

71 = 7 (mod 11)          74 = 3 (mod 11)          77 = 6 (mod 11)          710 = 1 (mod 11) 

72 = 5 (mod 11) 75 = 10 (mod 11)        78 = 9 (mod 11) 

olarak hesaplandığından 7 sayısının mertebesinin 10 olduğu görülür. Dolayısıyla 7 sayısının 

kuvvetleri (mod p)’ye göre asal kalan sınıfları kümesindeki tüm elemanları verdiğinden 7 

sayısı için ilkel kök denilir. Bu durumda, yukarıdaki hesaplamadan 7 ilkel kökünün 

oluşturduğu (p - 1) yani 10’uncu mertebeden W1 Costas dizisi {1 7 5 2 3 10 4 6 9 8} şeklinde 

ifade edilir. Başlangıç noktası (0, 1) noktası olacak şekilde söz konusu W1 Costas dizisi Şekil 

3.6’da gösterilmiştir. 

 

Şekil 3.6. g = 7 ilkel kökü için 10’uncu mertebeden {1 7 5 2 3 10 4 6 9 8} W1 Costas dizisi 
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8 elemanının mertebesi 

80 = 1 (mod 11)          83 = 6 (mod 11)          86 = 3 (mod 11)          89 = 7 (mod 11) 

81 = 8 (mod 11)          84 = 4 (mod 11)          87 = 2 (mod 11)          810 = 1 (mod 11) 

82 = 9 (mod 11) 85 = 10 (mod 11)        88 = 5 (mod 11) 

olarak hesaplandığından 8 sayısının mertebesinin 10 olduğu görülür. Dolayısıyla 8 sayısının 

kuvvetleri (mod p)’ye göre asal kalan sınıfları kümesindeki tüm elemanları verdiğinden 8 

sayısı için ilkel kök denilir. Bu durumda, yukarıdaki hesaplamadan 8 ilkel kökünün 

oluşturduğu (p - 1) yani 10’uncu mertebeden W1 Costas dizisi {1 8 9 6 4 10 3 2 5 7} şeklinde 

ifade edilir. Başlangıç noktası (0, 1) noktası olacak şekilde söz konusu W1 Costas dizisi Şekil 

3.7’de gösterilmiştir. 

 

Şekil 3.7. g = 8 ilkel kökü için 10’uncu mertebeden {1 8 9 6 4 10 3 2 5 7} W1 Costas dizisi 

9 elemanının mertebesi 

90 = 1 (mod 11)          93 = 3 (mod 11)           

91 = 9 (mod 11)          94 = 5 (mod 11)          

92 = 4 (mod 11)          95 = 1 (mod 11)          

9 elemanının mertebesi 5 olduğu için ilkel kök değildir. Dolayısıyla 9 elemanından W1 

Costas dizisi elde edilemez. 
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10 elemanının mertebesi 

100 = 1 (mod 11)           

101 = 10 (mod 11)                    

102 = 1 (mod 11)  

10 elemanının mertebesi 2 olduğu için ilkel kök değildir. Dolayısıyla 10 elemanından W1 

Costas dizisi elde edilemez. 

Küçük sayılar için asal kalan kümesinde yer alan her bir sayının mertebesi hesaplanarak ilkel 

kökler kolayca belirlenebilir. Fakat yeterince büyük sayılar için bu yöntemle ilkel köklerin 

belirlenmesi son derece zordur. Bu zorluğun üstesinden gelmek için ilkel köklerin 

belirlenmesine yönelik farklı bir yöntem daha tanımlanmıştır.  Bu yöntemde en küçük asal 

sayının ilkel kök olup olmadığına bakılır. Yine aynı örnekten yola çıkılırsa p = 11 için 2 

sayısının ilkel kök olduğu kolayca belirlenebilir. 2 (mod 11)’e göre ilkel kök olduğu için 

2r’nin de ilkel kök olabilmesi için ebob(r, φ(11)) = ebob(r, 10) = 1 olmalıdır. Bu ifadeden 

anlaşılacağı üzere r sayısı ile 10 sayısı aralarında asal olmalıdır. Bu şartı sağlayan sayılar 1, 

3, 7, 9 olarak hesaplanabilir. Dolayısıyla diğer ilkel kökler aşağıdaki gibi yazılabilir. 

21 = 2 (mod 11) 

23  = 9 (mod 11) 

27 = 7 (mod 11) 

29 = 6 (mod 11) 

Özet olarak her asal p > 2 saysısı için ilkel köklerin sayısı φ(p - 1) Euler fonksiyonu ile 

hesaplanabilir. Dolayısıyla Welch W1  Costas dizilerinin sayısı da ilkel köklerin sayısına 

eşittir. 

W1 Costas Dizilerinden W2 Costas Dizilerinin Elde Edilmesi 

p = 11 sayısı için ilkel kökler 2, 6, 7 ve 8 olarak hesaplanmıştır. Bu ilkel köklerden elde 

edilen W1 Costas dizileri de sırasıyla şekillerde gösterilmiştir. Şekil 3.4’te verilen g = 2 ilkel 

kökü için elde edilen 10’uncu mertebeden {1 2 4 8 5 10 9 7 3 6} W1 Costas dizisinin (0, 1) 

köşe noktasını bulunduğu satır ve sutün ile birlikte sildiğimizde  9’uncu mertebeden {1 3 7 

4 9 8 6 2 5} W2 Costas dizisi elde edilir. Bu dizinin elde edilişi Şekil 3.8’de gösterilmiştir. 
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Şekil 3.8. g = 2 ilkel kökü için 10’uncu mertebeden {1 2 4 8 5 10 9 7 3 6} W1 Costas 

dizisinden 9’uncu mertebeden {1 3 7 4 9 8 6 2 5} W2 Costas dizisinin elde edilmesi 

Benzer şekilde g = 6, g = 7 ve g = 8 ilkel kökleri için W2 Costas dizilerinin elde edilişi 

sırasıyla aşağıdaki şekillerde gösterilmiştir. 

 

Şekil 3.9. g = 6 ilkel kökü için 10’uncu mertebeden {1 6 3 7 9 10 5 8 4 2} W1 Costas 

dizisinden 9’uncu mertebeden {5 2 6 8 9 4 7 3 1} W2 Costas dizisinin elde edilmesi 
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Şekil 3.10. g = 7 ilkel kökü için 10’uncu mertebeden {1 7 5 2 3 10 4 6 9 8} W1 Costas 

dizisinden 9’uncu mertebeden {6 4 1 2 9 3 5 8 7} W2 Costas dizisinin elde 

edilmesi 

 

Şekil 3.11. g = 8 ilkel kökü için 10’uncu mertebeden {1 8 9 6 4 10 3 2 5 7} W1 Costas 

dizisinden 9’uncu mertebeden {7 8 5 3 9 2 1 4 6} W2 Costas dizisinin elde 

edilmesi 

W2 Costas Dizilerinden W3 Costas Dizilerinin Elde Edilmesi 

Elde edilen tüm 9’uncu mertebeden W2 Costas dizilerinin (0, 1) köşe noktaları benzer şekilde 

bulunduğu satır ve sütun ile birlikte silinirse, 8’inci mertebeden W3 Costas dizileri elde 

edilmiş olur. Örnek olarak g = 2 ilkel kökü için 8’inci mertebeden elde edilen W3 Costas 

dizisi Şekil 3.12’de gösterilmiştir. 
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Şekil 3.12.  g = 2 ilkel kökü için 9’uncu mertebeden {1 3 7 4 9 8 6 2 5} W2 Costas dizisinden 

8’inci mertebeden {2 6 3 8 7 5 1 4} W3 Costas dizisinin elde edilmesi 

3.1.2. Lempel yöntemi 

n bir tamsayı ve p bir asal sayı olmak üzere, q elemanlı sonlu bir cismin (Galois Field; GF) 

GF(q) eleman sayısı q = pn olarak hesaplanır [22]. α, GF(q) için ilkel kök olmak üzere                      

 1 ≤ 𝑖, 𝑗 ≤  𝑞 − 2  aralığında 

α i + α j =1                           (3.7) 

koşulunu sağlayan (i , j) noktaları (𝑞 − 2)’nci dereceden L2 Costas dizisinin kordinatlarını 

temsil eder. 2 sayısı bu GF(q) sonlu cismin ilkel kökü ve q > 2 ise (𝑞 − 2, q − 2) noktası L2 

Costas dizisinin köşe noktasıdır [23]. Bu nokta bulunduğu satır ve sütun ile birlikte 

silindiğinde (𝑞 − 3)’üncü mertebeden L3 Costas dizisi elde edilir [24, 25]. Lempel yöntemi 

ile elde edilen (𝑞 − 3)’üncü mertebeden L3 Costas dizisi, Welch yöntemi ile elde edilen        

(𝑝 − 3)’üncü mertebeden W3 Costas dizisi ile aynı değildir [26].  

Lempel yöntemi ile hem asal sayılar için hem de asal sayıların kuvvetleri için Costas dizileri 

hesaplanabilmektedir. L2 Costas dizilerinin sayısı φ(pn  - 1)/n formülü ile hesaplanır [27]. 

Bu bölümde örnek olarak m = 13 asal sayısı için Lempel yöntemi ile Costas dizileri elde 

edilmiştir. Costas dizilerinin temel yöntemlerden herhangi biri ile elde edilebilmesi için ilk 

olarak ilkel köklerin belirlenmesi gerekir. İlkel köklerin belirlenmesi için kesin bir kural 

yoktur. İlkel köklerin nasıl hesaplanacağı 3.1.1 Welch Yöntemi bölümünde örneklerle 

detaylıca anlatılmıştır.  
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Eş. 3.4’e göre ; 

φ(13) =  13 (1 −
1

13
) = 12                           (3.8) 

Dolayısıyla (mod 13)’e göre mertebesi 12 olan elemanlar ilkel köklerdir. İlkel köklerin sayısı 

φ(m - 1) ile hesaplanır. m = 13 sayısı için φ(12) ilkel köklerin sayısını verir. 

φ(12) =  φ(22. 31) =  12 (1 −
1

2
) (1 −

1

3
) = 4                                        (3.9) 

Eş. 3.9’e göre m = 13 sayısı için 4 adet ilkel kök bulunmaktadır. İlkel kökleri bulmak için 

ilk olarak m = 13 sayısı için asal kalan sınıfları kümesinin belirlenmesi gerekir. m = 13 için 

asal kalan sınıfları kümesi 

 ℤ13
∗ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}                                (3.10) 

olarak ifade edilebilir. Asal kalan sınıfları kümesindeki her bir elemanın sırasıyla mertebesi 

hesaplanarak ilkel kök olup olmadığı belirlenir. “1” sayısı birim eleman olduğu ve mertebesi 

“1” olduğu için ilkel kök değildir. 

Hesaplamalar sonrasında 2, 6, 7 ve 11 sayılarının mertebelerinin 12 olduğu görülmüştür. 

Dolayısıyla bu sayıların kuvvetleri (mod 13)’e göre asal kalan sınıfları kümesindeki tüm 

elemanları verdiğinden bu sayılar ilkel kök olarak tanımlanırlar.  

Lempel metodu ile Costas dizilerini elde etmek için 13 elemanlı GF(13) sonlu cismi 

kullanılabilir. Bu cismin elemanları; 

𝐺𝐹(13) = {0, 1, 2. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}                               (3.11) 

olarak yazılabilir. GF(13) sonlu cismi oluşturulurken her bir ilkel kök için sırasıyla toplama 

çizelgeleri aşağıda hesaplanmıştır. 
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Çizelge 3.2. α = 2 ilkel kökü için GF(13) sonlu cisminin toplama çizelgesi 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 α 10 α 11 

0 0 1 2 4 8 3 6 12 11 9 5 10 7 

1 1 2 3 5 9 4 7 0 12 10 6 11 8 

α 1 2 3 4 6 10 5 8 1 0 11 7 12 9 

α 2 4 5 6 8 12 7 10 3 2 0 9 1 11 

α 3 8 9 10 12 3 11 1 7 6 4 0 5 2 

α 4 3 4 5 7 11 6 9 2 1 12 8 0 10 

α 5 6 7 8 10 1 9 12 5 4 2 11 3 0 

α 6 12 0 1 3 7 2 5 11 10 8 4 9 6 

α 7 11 12 0 2 6 1 4 10 9 7 3 8 5 

α 8 9 10 11 0 4 12 2 8 7 5 1 6 3 

α 9 5 6 7 9 0 8 11 4 3 1 10 2 12 

α 10 10 11 12 1 5 0 3 9 8 6 2 7 4 

α 11 7 8 9 11 2 10 0 6 5 3 12 4 1 

Yukarıdaki tabloda toplamları 1 olan α değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + α 6  =1  α 5   + α 3 =1  α 9   + α8  =1   

α 2   + α 10 =1  α 6   + α 1 =1  α 10  + α 2 =1 

α 3   + α 5  =1  α 7   + α 4 =1  α 11   + α 11 =1 

α 4   + α 7  =1  α 8   + α 9 =1 

α i   + α j  =1  koşulunu sağlayan (i , j) noktaları  (𝑞 − 2)’nci dereceden L2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 2 ilkel kökü için L2 Costas dizisi {6 10 5 7 3 1 4 9 

8 2 11} olarak elde edilir. Söz konusu L2 Costas dizisi Şekil 3.13’te gösterilmiştir. 

 

Şekil 3.13. α = 2 ilkel kökü için 11’inci mertebeden {6 10 5 7 3 1 4 9 8 2 11} L2 Costas dizisi 
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Çizelge 3.3. α = 6 ilkel kökü için GF(13) sonlu cisminin toplama çizelgesi 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 α 10 α 11 

0 0 1 6 10 8 9 2 12 7 3 5 4 11 

1 1 2 7 11 9 10 3 0 8 4 6 5 12 

α 1 6 7 12 3 1 2 8 5 0 9 11 10 4 

α 2 10 11 3 7 5 6 12 9 4 0 2 1 8 

α 3 8 9 1 5 3 4 10 7 2 11 0 12 6 

α 4 9 10 2 6 4 5 11 8 3 12 1 0 7 

α 5 2 3 8 12 10 11 4 1 9 5 7 6 0 

α 6 12 0 5 9 7 8 1 11 6 2 4 3 10 

α 7 7 8 0 4 2 3 9 6 1 10 12 11 5 

α 8 3 4 9 0 11 12 5 2 10 6 8 7 1 

α 9 5 6 11 2 0 1 7 4 12 8 10 9 3 

α 10 4 5 10 1 12 0 6 3 11 7 9 8 2 

α 11 11 12 4 8 6 7 0 10 5 1 3 2 9 

Yukarıdaki tabloda toplamları 1 olan α değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + α 3  =1  α 5   + α 6 =1  α 9   + α4  =1 

α 2   + α 10 =1  α 6   + α 5 =1  α 10  + α 2 =1 

α 3   + α 1  =1  α 7   + α 7 =1  α 11   + α 8 =1 

α 4   + α 9  =1  α 8   + α 11 =1 

α = 6 ilkel kökü için L2 Costas dizisi {3 10 1 9 6 5 7 11 4 2 8} olarak elde edilir. Söz konusu 

L2 Costas dizisi Şekil 3.14’te gösterilmiştir. 

 

Şekil 3.14. α = 6 ilkel kökü için 11’inci mertebeden {3 10 1 9 6 5 7 11 4 2 8} L2 Costas dizisi 
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Çizelge 3.4. α = 7 ilkel kökü için GF(13) sonlu cisminin toplama çizelgesi 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 α 10 α 11 

0 0 1 7 10 5 9 11 12 6 3 8 4 2 

1 1 2 8 11 6 10 12 0 7 4 9 5 3 

α 1 7 8 1 4 12 3 5 6 0 10 2 11 9 

α 2 10 11 4 7 2 6 8 9 3 0 5 1 12 

α 3 5 6 12 2 10 1 3 4 11 8 0 9 7 

α 4 9 10 3 6 1 5 7 8 2 12 4 0 11 

α 5 11 12 5 8 3 7 9 10 4 1 6 2 0 

α 6 12 0 6 9 4 8 10 11 5 2 7 3 1 

α 7 6 7 0 3 11 2 4 5 12 9 1 10 8 

α 8 3 4 10 0 8 12 1 2 9 6 11 7 5 

α 9 8 9 2 5 13 4 6 7 1 11 3 12 10 

α 10 4 5 11 1 9 0 2 3 10 7 12 8 6 

α 11 2 3 9 12 7 11 0 1 8 5 10 6 4 

Yukarıdaki tabloda toplamları 1 olan α değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + α 1  =1  α 5   + α 8 =1  α 9   + α7  =1 

α 2   + α 10 =1  α 6   + α 11 =1  α 10  + α 2 =1 

α 3   + α 4  =1  α 7   + α 9 =1  α 11   + α 6 =1 

α 4   + α 3  =1  α 8   + α 5 =1 

α = 7 ilkel kökü için L2 Costas dizisi {1 10 4 3 8 11 9 5 7 2 6} olarak elde edilir. Söz konusu 

L2 Costas dizisi Şekil 3.15’te gösterilmiştir. 

 

Şekil 3.15. α = 7 ilkel kökü için 11’inci mertebeden {1 10 4 3 8 11 9 5 7 2 6} L2 Costas dizisi 
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Çizelge 3.5. α = 11 ilkel kökü için GF(13) sonlu cisminin toplama çizelgesi  

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 α 10 α 11 

0 0 1 11 4 5 3 7 12 2 9 8 10 6 

1 1 2 12 5 6 4 8 0 3 10 9 11 7 

α 1 11 12 9 2 3 1 5 10 0 7 6 8 4 

α 2 4 5 2 8 9 7 11 3 6 0 12 1 10 

α 3 5 6 3 9 10 8 12 4 7 1 0 2 11 

α 4 3 4 1 7 8 6 10 2 5 12 11 0 9 

α 5 7 8 5 11 12 10 1 6 9 3 2 4 0 

α 6 12 0 10 3 4 2 6 11 1 8 7 9 5 

α 7 2 3 0 6 7 5 9 1 4 11 10 12 8 

α 8 9 10 7 0 1 12 3 8 11 5 4 6 2 

α 9 8 9 6 12 0 11 2 7 10 4 3 5 1 

α 10 10 11 8 1 2 0 4 9 12 6 5 7 3 

α 11 6 7 4 10 11 9 0 5 8 2 1 3 12 

Yukarıdaki tabloda toplamları 1 olan α değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + α 4  =1  α 5   + α 5 =1  α 9   + α11  =1 

α 2   + α 10 =1  α 6   + α 7 =1  α 10  + α 2 =1 

α 3   + α 8  =1  α 7   + α 6 =1  α 11   + α 9 =1 

α 4   + α 1  =1  α 8   + α 3 =1 

α = 11 ilkel kökü için L2 Costas dizisi {4 10 8 1 5 7 6 3 11 2 9} olarak elde edilir. Söz konusu 

L2 Costas dizisi Şekil 3.16’da gösterilmiştir. 

 

Şekil 3.16.  α = 11 ilkel kökü için 11’inci mertebeden {4 10 8 1 5 7 6 3 11 2 9} L2 Costas 

dizisi 
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2 sayısı ilkel kök olduğu için Şekil 3.13’te verilen {6 10 5 7 3 1 4 9 8 2 11} L2 Costas 

dizisinin (i , j) = (9 , 9) noktası köşe noktasını ifade etmektedir. Bu nokta bulunduğu satır ve 

sütun ile birlikte silinirse (𝑞 − 3)’üncü mertebeden {6 10 5 7 3 1 4 9 8 2 } L3 Costas dizisi 

elde edilir. Şekil 3.17’de L3 Costas dizisinin elde edilişi gösterilmektedir. 

 

Şekil 3.17. α = 2 ilkel kökü için 11’inci mertebeden {6 10 5 7 3 1 4 9 8 2 11} L2  Costas 

dizisinden 10’uncu mertebeden {6 10 5 7 3 1 4 9 8 2 } L3 Costas dizisinin elde 

edilmesi 

Diğer bir örnek olarak q = 16 sayısı için Lempel yöntemi ile Costas dizileri elde edilmiştir. 

İlk olarak 16 elemanlı sonlu cismin oluşturulması gerekir. q sayısı, asal bir sayının kuvveti 

olduğundan bu sonlu cismin elemanları sayılardan değil polinomlardan oluşmaktadır. 

Aşağıda 16 elemanlı sonlu bir cismin indirgenemez polinomlar kullanılarak nasıl 

oluşturulduğu ayrıntılı olarak açıklanmıştır. 

Tanım 

En az birinci dereceden iki polinom şeklinde çarpanlarına ayrılamayan polinomlara 

indirgenemez polinomlar denir. pn elemanlı sonlu bir cismi oluşturabilmek için n’inci 

dereceden indirgenemez polinomların hesaplanması gerekmektedir [28, 29].  

GF(24) yani p = 2, n = 4 sonlu cismini oluşturmak için indirgenemez polinomları 

hesaplayalım. p = 2 yani (mod 2) için aradığımız indirgenemez polinomlar, katsayıları 0 ve 

1 olan ax4+bx3+cx2+dx+e şeklinde yazılabilen n’inci dereceden polinomlardır. İndirgenemez 

polinomları hesaplayabilmek için x’e tam olarak bölünemeyen yani sabit terimi 1 olan 

polinomlar incelenmelidir. Bu tanıma uyan 8 farklı polinom yazılabilir. 
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Bu polinomlar; 

f1(x) = x4+1  =  (x3+x2+x+1)(x+1)                              

f2(x) = x4+x3+1        

f3(x) = x4+x2+1  =  (x2+x+1)(x2+x+1) 

f4(x) = x4+x+1        

f5(x) = x4+x3+x2+1  =  (x3+x+1)(x+1) 

f6(x) = x4+x3+x+1  =  (x3+1)(x+1) 

f7(x) = x4+x2+x+1  =  (x3+x2+1)(x+1) 

f8(x) = x4+x3+x2+x+1 

olarak ifade edilebilir. f1(x), f3(x), f5(x), f6(x), f7(x) polinomları yukarıda gösterildiği gibi 

çarpanlarına ayrılabildiğinden indirgenebilir polinomlardır. f2(x) = x4+x3+1, f4(x) = x4+x+1,                       

f8(x) = x4+x3+x2+x+1 polinomları ise indirgenemez polinomlardır. GF(24) cismini 

oluşturmakta kullanılabilen indirgenemez polinomlara ilkel polinomlar denir. İlk beş derece 

için indirgenemez polinomların listesi Çizelge 3.6’da verilmiştir. 

Çizelge 3.6. p = 2 için n = 1’den n = 5’e kadar olan indirgenemez polinomların listesi 

n İndirgenemez polinomlar 

1 x, x+1 

2 x2+x+1 

3 x3+x2+1, x3+x+1 

4 x4+x3+1, x4+x3+x2+x+1, x4+x+1 

5 x5+x2+1, x5+x3+x2+x+1, x5+x3+1, x5+x4+x3+x+1, x5+x4+x3+x2+1, x5+x4+x2+x+1 

f4(x) = x4+x+1 polinomunun bir ilkel polinom olduğu gösterilebilir. Söz konusu polinomu 

kullanarak GF(24) sonlu cismini oluşturalım. f(x), GF(q) veya GF(pn)’de ilkel bir polinom 

ise, bu sonlu cismin bütün elemanları Eş. 3.12’de olduğu gibi hesaplanabilir. 

𝑥0 = 1, 𝑥, 𝑥2, 𝑥3, … , 𝑥𝑝𝑛−2                                                       (3.12) 

GF(pn) yani GF(24) için kuvvet döngüsü (power cycle) oluşturmak suretiyle elemanları 

bulunurken, mertebesi n = 3 olan f(x) = ax3+bx2+cx+d formunda bir polinomdan yararlanılır. 
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f(x)  = ax3 +    bx2 +    cx +     d      

 0 0 0 0     →      0        

 0 0 0 1 →       1 

 0 0 1 0 → x 

 0 0 1 1 → x+1 

 0 1 0 0 → x2 

 0 1 0 1 → x2+1 

 0 1 1 0 → x2+x 

 0 1 1 1 → x2+x+1 

 1 0 0 0 → x3 

 1 0 0 1 → x3+1 

 1 0 1 0 → x3+x 

 1 0 1 1 → x3+x+1 

 1 1 0 0  → x3+x2 

 1 1 0 1 →  x3+x2+1 

 1 1 1 0 → x3+x2+x 

 1 1 1 1 → x3+x2+x+1 

GF(24) = {0, 1, x, x+1, x2, x2+1, x2+x, x2+x+1, x3, x3+1, x3+x, x3+x+1, x3+x2, x3+x2+1, x3+x2+x, 

x3+x2+x+1} şeklinde oluşturulabilir. 

“0” yutan eleman, “1” ise birim eleman olduğundan bu sayıların kuvvetleri GF(24)’ün 

kuvvet döngüsünde yer alan tüm elemanları vermeyeceği için ilkel eleman değildir. x’in ilkel 

eleman olup olmadığı mertebesi hesaplanarak belirlenebilir. 

x elemanının mertebesi 

x0 = 1    (mod x4+x+1)      

x1 = x    (mod x4+x+1)           

x2 = x2    (mod x4+x+1)        

x3 = x3    (mod x4+x+1)    

x4 = x+1   (mod x4+x+1)  

x5 = x2+x   (mod x4+x+1) 

x6 = x3+x2   (mod x4+x+1)  
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x7 = x3+x+1   (mod x4+x+1)   

x8 = x2+1   (mod x4+x+1)   

x9 = x3+x   (mod x4+x+1)       

x10 = x2+x+1   (mod x4+x+1) 

x11 = x3+x2+x   (mod x4+x+1) 

x12 = x3+x2+x+1  (mod x4+x+1) 

x13 = x3+x2+1   (mod x4+x+1) 

x14 = x3+1   (mod x4+x+1) 

α = x olmak üzere, αj şeklinde  x’in tüm kuvvetleri 0 ≤  j ≤ 𝑞 − 2 = 14 aralığında GF(24)’ün 

kuvvet döngüsünde yer alan tüm elemanları verdiğinden x ilkel elemandır. GF(pn) sonlu 

cismi için ilkel elemanların sayısı φ(𝑝𝑛 − 1) ile hesaplanır.  

#𝐺𝐹(24) = φ(24 − 1) = φ(15) = 15 (1 −
1

3
) (1 −

1

5
) = 8                      (3.13) 

İlkel elemanlar belirlenip toplama tabloları oluşturulduktan sonra Costas dizileri elde 

edilebilir. Kuvvet döngüsünde yer alan diğer elemanların mertebelerine bakıldığında diğer 

ilkel elemanlar {x2, x+1, x3+x+1, x2+1, x3+x2+x, x3+x2+1, x3+1} olarak hesaplanır.  

α = x ilkel elemanı için 

Çizelge 3.7. α = x ilkel elemanı için GF(24) sonlu cisminin toplama çizelgesi 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x x2 x3 x+1 x2+x x3+x2 

1 1 0 x+1 x2+1 x3+1 x x2+x+1 x3+x2+1 

α 1 x x+1 0 x2+x x3+x 1 x2 x3+x2+x 

α 2 x2 x2+1 x2+x 0 x3+x2 x2+x+1 x x3 

α 3 x3 x3+1 x3+x x3+x2 0 x3+x+1 x3+x2+x x2 

α 4 x+1 x 1 x2+x+1 x3+x+1 0 x2+1 x3+x2+x+1 

α 5 x2+x x2+x+1 x2 x x3+x2+x x2+1 0 x3+x 

α 6 x3+x2 x3+x2+1 x3+x2+x x3 x2 x3+x2+x+1 x3+x 0 

α 7 x3+x+1 x3+x x3+1 x3+x2+x+1 x+1 x3 x3+x2+1 x2+x+1 

α 8 x2+1 x2 x2+x 1 x3+x2+1 x2+x x+1 x3+1 

α 9 x3+x x3+x+1 x3 x3+x2+x x x3+1 x3+x2 x2+x 

α 10 x2+x+1 x2+x x2+1 x+1 x3+x2+x+1 x2 1 x3+x+1 

α 11 x3+x2+x x3+x2+x+1 x3+x2 x3+x x2+x x3+x2+1 x3 x 

α 12 x3+x2+x+1 x3+x2+x x3+x2+1 x3+x+1 x2+x+1 x3+x2 x3+1 x+1 

α 13 x3+x2+1 x3+x2 x3+x2+x+1 x3+1 x2+1 x3+x2+x x3+x+1 1 

α 14 x3+1 x3 x3+x+1 x3+x2+1 1 x3+x x3+x2+x+1 x2+1 
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Çizelge 3.7. (devam) α = x ilkel elemanı için GF(24) sonlu cisminin toplama çizelgesi   

+ α 7 α 8 α 9 α 10 α 11 α 12 α 13 α 14 

0 x3+x+1 x2+1 x3+x x2+x+1 x3+x2+x x3+x2+x+1 x3+x2+1 x3+1 

1 x3+x x2 x3+x+1 x2+x x3+x2+x+1 x3+x2+x x3+x2 x3 

α 1 x3+1 x2+x x3 x2+1 x3+x2 x3+x2+1 x3+x2+x+1 x3+x+1 

α 2 x3+x2+x+1 1 x3+x2+x x+1 x3+x x3+x+1 x3+1 x3+x2+1 

α 3 x+1 x3+x2+1 x x3+x2+x+1 x2+x x2+x+1 x2+1 1 

α 4 x3 x2+x x3+1 x2 x3+x2+1 x3+x2 x3+x2+x x3+x 

α 5 x3+x2+1 x+1 x3+x2 1 x3 x3+1 x3+x+1 x3+x2+x+1 

α 6 x2+x+1 x3+1 x2+x x3+x+1 x x+1 1 x2+1 

α 7 0 x3+x2+x 1 x3+x2 x2+1 x2 x2+x x 

α 8 x3+x2+x 0 x3+x2+x+1 x x3+x+1 x3+x x3 x3+x2 

α 9 1 x3+x2+x+1 0 x3+x2+1 x2 x2+1 x2+x+1 x+1 

α 10 x3+x2 x  x3+x2+1 0 x3+1 x3 x3+x x3+x2+x 

α 11 x2+1 x3+x+1 x2 x3+1 0 1 x+1 x2+x+1 

α 12 x2 x3+x x2+1 x3 1 0 x x2+x 

α 13 x2+x x3 x2+x+1 x3+x x+1 x 0 x2 

α 14 x x3+x2 x+1 x3+x2+x x2+x+1 x2+x x2 0 

Yukarıdaki tabloda toplamı 1 olan α değerleri sütun ve satır olarak aşağıdaki gibi yazılabilir. 

α 1   + α 4  =1  α 4   + α 1  =1  α 7   + α 9  =1  α 10   + α5  =1  α 13   + α 6 =1    

α 2   + α 8 =1  α 5   + α 10 =1  α 8   + α 2 =1  α 11   + α12  =1 α 14   + α 3 =1             

α 3   + α 14 =1  α 6   + α 13 =1  α 9   + α 7 =1  α 12  + α 11 =1                                 

α i   + α j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden L2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x ilkel polinomu için L2 Costas dizisi {4 8 14 1 10 

13 9 2 7 5 12 11 6 3} olarak elde edilir.  

α = x2 ilkel elemanı için 
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Çizelge 3.8. α = x2 ilkel elemanı için GF(24) sonlu cisminin toplama çizelgesi 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x2 x+1 x3+x2 x2+1 x2+x+1 x3+x2+x+1 

1 1 0 x2+1 x x3+x2+1 x2 x2+x x3+x2+x 

α 1 x2 x2+1 0 x2+x+1 x3 1 x+1 x3+x+1 

α 2 x+1 x x2+x+1 0 x3+x2+x+1 x2+x x2 x3+x2 

α 3 x3+x2 x3+x2+1 x3 x3+x2+x+1 0 x3+1 x3+x+1 x+1 

α 4 x2+1 x2 1 x2+x x3+1 0 x x3+x 

α 5 x2+x+1 x2+x x+1 x2  x3+x+1 x 0 x3 

α 6 x3+x2+x+1 x3+x2+x x3+x+1 x3+x2 x+1 x3+x x3 0 

α 7 x3+1 x3 x3+x2+1 x3+x2+x x2+1 x3+x2 x3+x2+x x2+x 

α 8 x x+1 x2+x 1 x3+x2+x x2+x+1 x2+1 x3+x2+1 

α 9 x3 x3+1 x3+x2 x3+x+1 x2 x3+x2+1 x3+x2+x+1 x2+x+1 

α 10 x2+x x2+x+1 x x2+1 x3+x x+1 1 x3+1 

α 11 x3+x+1 x3+x x3+x2+x+1 x3 x2+x+1 x3+x2+x x3+x2 x2 

α 12 x3+x x3+x+1 x3+x2+x x3+1 x2+x x3+x2+x+1 x3+x2+1 x2+1 

α 13 x3+x2+x x3+x2+x+1 x3+x x3+x2+1 x x3+x+1 x3+1 1 

α 14 x3+x2+1 x3+x2 x3+1 x3+x2+x 1 x3 x3+x x 

         

+ α 7 α 8 α 9 α 10 α 11 α 12 α 13 α 14 

0 x3+1 x x3 x2+x x3+x+1 x3+x x3+x2+x x3+x2+1 

1 x3 x+1 x3+1 x2+x+1 x3+x x3+x+1 x3+x2+x+1 x3+x2 

α 1 x3+x2+1 x2+x x3+x2 x x3+x2+x+1 x3+x2+x x3+x x3+1 

α 2 x3+x2+x 1 x3+x+1 x2+1 x3 x3+1 x3+x2+1 x3+x2+x 

α 3 x2+1 x3+x2+x x2 x3+x x2+x+1 x2+x x 1 

α 4 x3+x2 x2+x+1 x3+x2+1 x+1 x3+x2+x x3+x2+x+1 x3+x+1 x3 

α 5 x3+x2+x x2+1 x3+x2+x+1 1 x3+x2 x3+x2+1 x3+1 x3+x 

α 6 x2+x x3+x2+1 x2+x+1 x3+1 x2 x2+1 1 x 

α 7 0 x3+x+1 1 x3+x2+x+1 x x+1 x2+x+1 x2 

α 8 x3+x+1 0 x3+x x2 x3+1 x3 x3+x2 x3+x2+x+1 

α 9 1 x3+x 0 x3+x2+x x+1 x x2+x x2+1 

α 10 x3+x2+x+1 x2 x3+x2+x 0 x3+x2+1 x3+x2 x3 x3+x+1 

α 11 x x3+1 x+1 x3+x2+1 0 1 x2+1 x2 

α 12 x+1 x3 x x3+x2 1 0 x2 x2+x+1 

α 13 x2+x+1 x3+x2 x2+x x3 x2+1 x2 0 x+1 

α 14 x2 x3+x2+x+1 x2+1 x3+x+1 x2 x2+x+1 x+1 0 

Yukarıdaki tabloda toplamı 1 olan α değerleri sütun ve satır olarak aşağıdaki gibi yazılabilir. 

α 1   + α 4  =1    α 4   + α 1   =1  α 7   + α 9  =1  α 10   + α5   =1     α 13   + α 6 =1 

α 2   + α 8  =1   α 5   + α 10 =1   α 8   + α 2  =1  α 11   + α12  =1      α 14   + α 3 =1            

α 3   + α 14 =1    α 6   + α 13  =1  α 9   + α 7  =1  α 12  + α 11 =1               

α i   + α j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden L2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x2 ilkel elemanı için L2 Costas dizisi {4 8 14 1 10 

13 9 2 7 5 12 11 6 3} olarak elde edilir.  

  



39 
 

 

α = x+1 ilkel elemanı için 

Çizelge 3.9. α = x+1 ilkel elemanı için GF(24) sonlu cisminin toplama çizelgesi 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x+1 x2+1 x3+x2+x+1 x x2+x x3+x 

1 1 0 x x2 x3+x2+x x+1 x2+x+1 x3+x+1 

α 1 x+1 x 0 x2+x x3+x2 1 x2+1 x3+1 

α 2 x2+1 x2 x2+x 0 x3+x x2+x+1 x+1 x3+x2+x+1 

α 3 x3+x2+x+1 x3+x2+x x3+x2 x3+x 0 x3+x2+1 x3+1 x2+1 

α 4 x x+1 1 x2+x+1 x3+x2+1 0 x2 x3 

α 5 x2+x x2+x+1 x2+1 x+1 x3+1 x2 0 x3+x2 

α 6 x3+x x3+x+1 x3+1 x3+x2+x+1 x2+1 x3 x3+x2 0 

α 7 x3+x2+1 x3+x2 x3+x2+x x3 x x3+x2+x+1 x2+x+1 x2+x+1 

α 8 x2 x2+1 x2+x+1 1 x3+x+1 x2+x x x3+x2+x 

α 9 x3+x2 x3+x2+1 x3+x2+x+1 x3+1 x+1 x3+x2+x x3+x x2+x 

α 10 x2+x+1 x2+x x2 x x3 x2+1 1 x3+x2+1 

α 11 x3+1 x3 x3+x x3+x2 x2+x x2 x3+x2+x+1 x+1 

α 12 x3 x3+1 x3+x+1 x3+x2+1 x2+x+1 x3+x x3+x2+x x 

α 13 x3+x+1 x3+x x3 x3+x2+x x2 x3+1 x3+x2+1 1 

α 14 x3+x2+x x3+x2+x+1 x3+x2+1 x3+x+1 1 x3+x2 x3 x2 

         

+ α 7 α 8 α 9 α 10 α 11 α 12 α 13 α 14 

0 x3+x2+1 x2 x3+x2 x2+x+1 x3+1 x3 x3+x+1 x3+x2+x 

1 x3+x2 x2+1 x3+x2+1 x2+x x3 x3+1 x3+x x3+x2+x+1 

α 1 x3+x2+x x2+x+1 x3+x2+x+1 x2 x3+x x3+x+1 x3 x3+x2+1 

α 2 x3 1 x3+1 x x3+x2 x3+x2+1 x3+x2+x x3+x+1 

α 3 x x3+x+1 x+1 x3 x2+x x2+x+1 x2 1 

α 4 x3+x2+x+1 x2+x x3+x2+x x2+1 x2 x3+x x3+1 x3+x2 

α 5 x2+x+1 x x3+x 1 x3+x2+x+1 x3+x2+x x3+x2+1 x3 

α 6 x2+x+1 x3+x2+x x2+x x3+x2+1 x+1 x 1 x2 

α 7 0 x3+1 1 x3+x x2 x2+1 x2+x x+1 

α 8 x3+1 0 x3 x+1 x3+x2+1 x3+x2 x3+x2+x+1 x3+x 

α 9 1 x3 0 x3+x+1 x2+1 x2 x2+x+1 x 

α 10 x3+x x+1 x3+x+1 0 x3+x2+x x3+x2+x+1 x3+x2 x3+1 

α 11 x2 x3+x2+1 x2+1 x3+x2+x 0 1 x x2+x+1 

α 12 x2+1 x3+x2 x2 x3+x2+x+1 1 0 x+1 x2+x 

α 13 x2+x x3+x2+x+1 x2+x+1 x3+x2 x x+1 0 x2+1 

α 14 x+1 x3+x x x3+1 x2+x+1 x2+x x2+1 0 

Yukarıdaki tabloda toplamı 1 olan α değerleri sütun ve satır olarak aşağıdaki gibi yazılabilir. 

α 1   + α 4  =1  α 4   + α 1  =1  α 7   + α 9  =1  α 10   + α5  =1 α 13   + α 6 =1    

α 2   + α 8 =1  α 5   + α 10 =1  α 8   + α 2 =1  α 11   + α12  =1 α 14   + α 3 =1           

α 3   + α 14 =1  α 6   + α 13 =1  α 9   + α 7 =1  α 12  + α 11 =1                     

α i   + α j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)'nci dereceden L2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x+1 ilkel elemanı için L2 Costas dizisi {4 8 14 1 10 

13 9 2 7 5 12 11 6 3} olarak elde edilir. 
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α = x3+x+1 ilkel elemanı için 

Çizelge 3.10. α = x3+x+1 ilkel elemanı için GF(24) sonlu cisminin toplama çizelgesi 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x3+x+1 x3+1 x3+x2 x3+x2+1 x2+x x3+x2+x+1 

1 1 0 x3+x x3 x3+x2+1 x3+x2 x2+x+1 x3+x2+x 

α 1 x3+x+1 x3+x 0 x x2+x+1 x2+x x3+1 x2 

α 2 x3+1 x3 x 0 x2+1 x2 x3+x2+x+1 x2+x 

α 3 x3+x2 x3+x2+1 x2+x+1 x2+1 0 1 x3+x x+1 

α 4 x3+x2+1 x3+x2 x2+x x2 1 0 x3+x+1 x 

α 5 x2+x x2+x+1 x3+1 x3+x2+x+1 x3+x x3+x+1 0 x3+1 

α 6 x3+x2+x+1 x3+x2+x x2 x2+x x+1 x x3+1 0 

α 7 x+1 x x3 x3+x x3+x2+x+1 x3+x2+x x2+1 x3+x2 

α 8 x3+x2+x x3+x2+x+1 x2+1 x2+x+1 x x+1 x3 1 

α 9 x3 x3+1 x+1 1 x2 x2+1 x3+x2+x x2+x+1 

α 10 x2+x+1 x2+x x3+x2 x3+x2+x x3+x+1 x3+x 1 x3 

α 11 x2 x2+1 x3+x2+x+1 x3+x2+1 x3 x3+1 x x3+x+1 

α 12 x3+x x3+x+1 1 x+1 x2+x x2+x+1 x3+x2 x2+1 

α 13 x x+1 x3+1 x3+x+1 x3+x2+x x3+x2+x+1 x2 x3+x2+1 

α 14 x2+1 x2 x3+x2+x x3+x2 x3+1 x3 x+1 x3+x 

         

+ α 7 α 8 α 9 α 10 α 11 α 12 α 13 α 14 

0 x+1 x3+x2+x x3 x2+x+1 x2 x3+x x x2+1 

1 x x3+x2+x+1 x3+1 x2+x x2+1 x3+x+1 x+1 x2 

α 1 x3 x2+1 x+1 x3+x2 x3+x2+x+1 1 x3+1 x3+x2+x 

α 2 x3+x x2+x+1 1 x3+x2+x x3+x2+1 x+1 x3+x+1 x3+x2 

α 3 x3+x2+x+1 x x2 x3+x+1 x3 x2+x x3+x2+x x3+1 

α 4 x3+x2+x x+1 x2+1 x3+x x3+1 x2+x+1 x3+x2+x+1 x3 

α 5 x2+1 x3 x3+x2+x 1 x x3+x2 x2 x+1 

α 6 x3+x2 1 x2+x+1 x3 x3+x+1 x2+1 x3+x2+1 x3+x 

α 7 0 x3+x2+1 x3+x+1 x2 x2+x+1 x3+1 1 x2+x 

α 8 x3+x2+1 0 x2+x x3+1 x3+x x2 x3+x2 x3+x+1 

α 9 x3+x+1 x2+x 0 x3+x2+x+1 x3+x2 x x3+x x3+x2+1 

α 10 x2 x3+1 x3+x2+x+1 0 x+1 x3+x2+1 x2+1 x 

α 11 x2+x+1 x3+x x3+x2 x+1 0 x3+x2+x x2+x 1 

α 12 x3+1 x2 x x3+x2+1 x3+x2+x 0 x3 x3+x2+x+1 

α 13 1 x3+x2 x3+x x2+1 x2+x x3 0 x2+x+1 

α 14 x2+x x3+x+1 x3+x2+1 x 1 x3+x2+x+1 x2+x+1 0 

Yukarıdaki tabloda toplamı 1 olan α değerleri sütun ve satır olarak aşağıdaki gibi yazılabilir. 

α 1   + α 12 =1 α 4   + α 3  =1  α 7   + α 13 =1  α 10   + α5  =1  α 13   + α 7 =1    

α 2   + α 9 =1  α 5   + α 10 =1  α 8   + α 6 =1  α 11   + α14 =1  α 14   + α 11 =1               

α 3   + α 4 =1  α 6   + α 8 =1  α 9   + α 2 =1  α 12  + α 1 =1 

α i   + α j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden L2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x3+x+1 ilkel elemanı için L2 Costas dizisi {12 9 4 

3 10 8 13 6 2 5 14 1 7 11} olarak elde edilir. 
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α = x2+1 ilkel elemanı için 

Çizelge 3.11. α = x2+1 ilkel elemanı için GF(24) sonlu cisminin toplama çizelgesi 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x2+1 x x3+x x2 x2+x+1 x3 

1 1 0 x2 x+1 x3+x+1 x2+1 x2+x x3+1 

α 1 x2+1 x2 0 x2+x+1 x3+x2+x+1 1 x x3+x2+1 

α 2 x x+1 x2+x+1 0 x3 x2+x x2+1 x3+x 

α 3 x3+x x3+x+1 x3+x2+x+1 x3 0 x3+x2+x x3+x2+1 x 

α 4 x2 x2+1 1 x2+x x3+x2+x 0 x+1 x3+x2 

α 5 x2+x+1 x2+x x x2+1 x3+x2+1 x+1 0 x3+x2+x+1 

α 6 x3 x3+1 x3+x2+1 x3+x x x3+x2 x3+x2+x+1 0 

α 7 x3+x2+x x3+x2+x+1 x3+x+1 x3+x2 x2 x3+x x3+1 x2+x 

α 8 x+1 x x2+x 1 x3+1 x2+x+1 x2 x3+x+1 

α 9 x3+x2+x+1 x3+x2+x x3+x x3+x2+1 x2+1 x3+x+1 x3 x2+x+1 

α 10 x2+x x2+x+1 x+1 x2 x3+x2 x 1 x3+x2+x 

α 11 x3+x2+1 x3+x2 x3 x3+x2+x+1 x2+x+1 x3+1 x3+x x2+1 

α 12 x3+x2 x3+x2+1 x3+1 x3+x2+x x2+x x3 x3+x+1 x2 

α 13 x3+1 x3 x3+x2 x3+x+1 x+1 x3+x2+1 x3+x2+x 1 

α 14 x3+x+1 x3+x x3+x2+x x3+1 1 x3+x2+x+1 x3+x2 x+1 

         

+ α 7 α 8 α 9 α 10 α 11 α 12 α 13 α 14 

0 x3+x2+x x+1 x3+x2+x+1 x2+x x3+x2+1 x3+x2 x3+1 x3+x+1 

1 x3+x2+x+1 x x3+x2+x x2+x+1 x3+x2 x3+x2+1 x3 x3+x 

α 1 x3+x+1 x2+x x3+x x+1 x3 x3+1 x3+x2 x3+x2+x 

α 2 x3+x2 1 x3+x2+1 x2 x3+x2+x+1 x3+x2+x x3+x+1 x3+1 

α 3 x2 x3+1 x2+1 x3+x2 x2+x+1 x2+x x+1 1 

α 4 x3+x x2+x+1 x3+x+1 x x3+1 x3 x3+x2+1 x3+x2+x+1 

α 5 x3+1 x2 x3 1 x3+x x3+x+1 x3+x2+x x3+x2 

α 6 x2+x x3+x+1 x2+x+1 x3+x2+x x2+1 x2 1 x+1 

α 7 0 x3+x2+1 1 x3 x+1 x x2+x+1 x2+1 

α 8 x3+x2+1 0 x3+x2 x2+1 x3+x2+x x3+x2+x+1 x3+x x3 

α 9 1 x3+x2 0 x3+1 x x+1 x2+x x2 

α 10 x3 x2+1 x3+1 0 x3+x+1 x3+x x3+x2+x+1 x3+x2+1 

α 11 x+1 x3+x2+x x x3+x+1 0 1 x2 x 

α 12 x x3+x2+x+1 x+1 x3+x 1 0 x2+1 x2+x+1 

α 13 x2+x+1 x3+x x2+x x3+x2+x+1 x2 x2+1 0 x 

α 14 x2+1 x3 x2 x3+x2+1 x x2+x+1 x 0 

Yukarıdaki tabloda toplamı 1 olan α değerleri sütun ve satır olarak aşağıdaki gibi yazılabilir. 

α 1   + α 4  =1 α 4   + α 1  =1 α 7   + α 9  =1 α 10   + α5  =1 α 13   + α 6 =1 

α 2   + α 8 =1 α 5   + α 10 =1 α 8   + α 2 =1 α 11   + α12  =1 α 14   + α 3 =1 

α 3   + α 14 =1 α 6   + α 13 =1 α 9   + α 7 =1 α 12  + α 11 =1  

α i   + α j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden L2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x2+1 ilkel elemanı için L2 Costas dizisi {4 8 14 1 

10 13 9 2 7 5 12 11 6 3} olarak elde edilir. 
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α = x3+x2+x ilkel elemanı için 

Çizelge 3.12. α = x3+x2+x ilkel elemanı için GF(24) sonlu cisminin toplama çizelgesi 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x3+x2+x x3+x+1 x3 x3+1 x2+x+1 x3+x2 

1 1 0 x3+x2+x+1 x3+x x3+1 x3 x2+x x3+x2+1 

α 1 x3+x2+x x3+x2+x+1 0 x2+1 x2+x x2+x+1 x3+1 x 

α 2 x3+x+1 x3+x x2+1 0 x+1 x x3+x2 x2+x+1 

α 3 x3 x3+1 x2+x x+1 0 1 x3+x2+x+1 x2 

α 4 x3+1 x3 x2+x+1 x 1 0 x3+x2+x x2+1 

α 5 x2+x+1 x2+x x3+1 x3+x2 x3+x2+x+1 x3+x2+x 0 x3+x+1 

α 6 x3+x2 x3+x2+1 x x2+x+1 x2 x2+1 x3+x+1 0 

α 7 x2 x2+1 x3+x x3+x2+x+1 x3+x2 x3+x2+1 x+1 x3 

α 8 x3+x2+1 x3+x2 x+1 x2+x x2+1 x2+1 x3+x 1 

α 9 x3+x x3+x+1 x2 1 x x+1 x3+x2+1 x2+x 

α 10 x2+x x2+x+1 x3 x3+x2+1 x3+x2+x x3+x2+x+1 1 x3+x 

α 11 x x+1 x3+x2 x3+1 x3+x x3+x+1 x2+1 x3+x2+x 

α 12 x3+x2+x+1 x3+x2+x 1 x2 x2+x+1 x2+x x3 x+1 

α 13 x2+1 x2 x3+x+1 x3+x2+x x3+x2+1 x3+x2 x x3+1 

α 14 x+1 x x3+x2+1 x3 x3+x+1 x3+x x2 x3+x2+x+1 

         

+ α 7 α 8 α 9 α 10 α 11 α 12 α 13 α 14 

0 x2 x3+x2+1 x3+x x2+x x x3+x2+x+1 x2+1 x+1 

1 x2+1 x3+x2 x3+x+1 x2+x+1 x+1 x3+x2+x x2 x 

α 1 x3+x x+1 x2 x3 x3+x2 1 x3+x+1 x3+x2+1 

α 2 x3+x2+x+1 x2+x 1 x3+x2+1 x3+1 x2 x3+x2+x x3 

α 3 x3+x2 x2+1 x x3+x2+x x3+x x2+x+1 x3+x2+1 x3+x+1 

α 4 x3+x2+1 x2+1 x+1 x3+x2+x+1 x3+x+1 x2+x x3+x2 x3+x 

α 5 x+1 x3+x x3+x2+1 1 x2+1 x3 x x2 

α 6 x3 1 x2+x x3+x x3+x2+x x+1 x3+1 x3+x2+x+1 

α 7 0 x3+1 x3+x2+x x x2+x x3+x+1 1 x2+x+1 

α 8 x3+1 0 x2+x+1 x3+x+1 x3+x2+x+1 x x3 x3+x2+x 

α 9 x3+x2+x x2+x+1 0 x3+x2 x3 x2+1 x3+x2+x+1 x3+1 

α 10 x x3+x+1 x3+x2 0 x2 x3+1 x+1 x2+1 

α 11 x2+x x3+x2+x+1 x3 x2 0 x3+x2+1 x2+x+1 1 

α 12 x3+x+1 x x2+1 x3+1 x3+x2+1 0 x3+x x3+x2 

α 13 1 x3 x3+x2+x+1 x+1 x2+x+1 x3+x 0 x2+x 

α 14 x2+x+1 x3+x2+x x3+1 x2+1 1 x3+x2 x2+x 0 

Yukarıdaki tabloda toplamı 1 olan α değerleri sütun ve satır olarak aşağıdaki gibi yazılabilir. 

α 1   + α 12 =1 α 4   + α 3  =1 α 7   + α 13 =1 α 10   + α5  =1 α 13   + α 7 =1  

α 2   + α 9 =1 α 5   + α 10 =1 α 8   + α 6 =1 α 11   + α14=1  α 14   + α 11 =1               

α 3   + α 4 =1 α 6   + α 8 =1 α 9   + α 2 =1 α 12  + α 1 =1   

α i   + α j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden L2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x3+x2+x ilkel elemanı için L2 Costas dizisi {12 9 4 

3 10 8 13 6 2 5 14 1 7 11} olarak elde edilir. 



43 
 

 

α = x3+x2+1 ilkel elemanı için 

Çizelge 3.13. α = x3+x2+1 ilkel elemanı için GF(24) sonlu cisminin toplama çizelgesi  

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x3+x2+1 x3+x2+x x3+x x3+x+1 x2+x x3 

1 1 0 x3+x2 x3+x2+x+1 x3+x+1 x3+x x2+x+1 x3+1 

α 1 x3+x2+1 x3+x2 0 x+1 x2+x+1 x2+x x3+x+1 x2+1 

α 2 x3+x2+x x3+x2+x+1 x+1 0 x2 x2+1 x3 x2+x 

α 3 x3+x x3+x+1 x2+x+1 x2 0 1 x3+x2 x 

α 4 x3+x+1 x3+x x2+x x2+1 1 0 x3+x2+1 x+1 

α 5 x2+x x2+x+1 x3+x+1 x3 x3+x2 x3+x2+1 0 x3+x2+x 

α 6 x3 x3+1 x2+1 x2+x x x+1 x3+x2+x 0 

α 7 x x+1 x3+x2+x+1 x3+x2 x3 x3+1 x2 x3+x 

α 8 x3+1 x3 x2 x2+x+1 x+1 x x3+x2+x+1 1 

α 9 x3+x2+x+1 x3+x2+x x 1 x2+1 x2 x3+1 x2+x+1 

α 10 x2+x+1 x2+x x3+x x3+1 x3+x2+1 x3+x2 1 x3+x2+x+1 

α 11 x2+1 x2 x3 x3+x+1 x3+x2+x+1 x3+x2+x x+1 x3+x2+1 

α 12 x3+x2 x3+x2+1 1 x x2+x x2+x+1 x3+x x2 

α 13 x+1 x x3+x2+x x3+x2+1 x3+1 x3 x2+1 x3+x+1 

α 14 x2 x2+1 x3+1 x3+x x3+x2+x x3+x2+x+1 x x3+x2 

         

+ α 7 α 8 α 9 α 10 α 11 α 12 α 13 α 14 

0 x x3+1 x3+x2+x+1 x2+x+1 x2+1 x3+x2 x+1 x2 

1 x+1 x3 x3+x2+x x2+x x2 x3+x2+1 x x2+1 

α 1 x3+x2+x+1 x2 x x3+x x3 1 x3+x2+x x3+1 

α 2 x3+x2 x2+x+1 1 x3+1 x3+x+1 x x3+x2+1 x3+x 

α 3 x3 x+1 x2+1 x3+x2+1 x3+x2+x+1 x2+x x3+1 x3+x2+x 

α 4 x3+1 x x2 x3+x2 x3+x2+x x2+x+1 x3 x3+x2+x+1 

α 5 x2 x3+x2+x+1 x3+1 1 x+1 x3+x x2+1 x 

α 6 x3+x 1 x2+x+1 x3+x2+x+1 x3+x2+1 x2 x3+x+1 x3+x2 

α 7 0 x3+x+1 x3+x2+1 x2+1 x2+x+1 x3+x2+x 1 x2+x 

α 8 x3+x+1 0 x2+x x3+x2+x x3+x2 x2+1 x3+x x3+x2+1 

α 9 x3+x2+1 x2+x 0 x3 x3+x x+1 x3+x2 x3+x+1 

α 10 x2+1 x3+x2+x x3 0 x x3+x+1 x2 x+1 

α 11 x2+x+1 x3+x2 x3+x x 0 x3+1 x2+x 1 

α 12 x3+x2+x x2+1 x+1 x3+x+1 x3+1 0 x3+x2+x+1 x3 

α 13 1 x3+x x3+x2 x2 x2+x x3+x2+x+1 0 x2+x+1 

α 14 x2+x x3+x2+1 x3+x+1 x+1 1 x3 x2+x+1 0 

Yukarıdaki tabloda toplamı 1 olan α değerleri sütun ve satır olarak aşağıdaki gibi yazılabilir. 

α 1   + α 12  =1 α 4   + α 3  =1  α 7   + α 13  =1  α 10   + α5  =1  α 13   + α 7 =1    

α 2   + α 9 =1  α 5   + α 10 =1  α 8   + α 6 =1 α 11   + α14 =1 α 14   + α 11 =1              

α 3   + α 4 =1  α 6   + α 8 =1   α 9   + α 2 =1 α 12  + α 1 =1                          

α i   + α j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden L2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x3+x2+1 ilkel elemanı için L2 Costas dizisi {12 9 4 

3 10 8 13 6 2 5 14 1 7 11} olarak elde edilir.  
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α = x3+1 ilkel elemanı için 

Çizelge 3.14. α = x3+1 ilkel elemanı için GF(24) sonlu cisminin toplama çizelgesi 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x3+1 x3+x2+1 x3+x2+x+1 x3+x2+x x2+x+1 x3+x 

1 1 0 x3 x3+x2 x3+x2+x x3+x2+x+1 x2+x x3+x+1 

α 1 x3+1 x3 0 x2 x2+x x2+x+1 x3+x2+x x+1 

α 2 x3+x2+1 x3+x2 x2 0 x x+1 x3+x x2+x+1 

α 3 x3+x2+x+1 x3+x2+x x2+x x 0 1 x3 x2+1 

α 4 x3+x2+x x3+x2+x+1 x2+x+1 x+1 1 0 x3+1 x2 

α 5 x2+x+1 x2+x x3+x2+x x3+x x3 x3+1 0 x3+x2+1 

α 6 x3+x x3+x+1 x+1 x2+x+1 x2+1 x2 x3+x2+1 0 

α 7 x2+1 x2 x3+x2 x3 x3+x x3+x+1 x x3+x2+x+1 

α 8 x3+x+1 x3+x x x2+x x2 x2+1 x3+x2 1 

α 9 x3+x2 x3+x2+1 x2+1 1 x+1 x x3+x+1 x2+x 

α 10 x2+x x2+x+1 x3+x2+x+1 x3+x+1 x3+1 x3 1 x3+x2 

α 11 x+1 x x3+x x3+x2+x x3+x2 x3+x2+1 x2 x3+1 

α 12 x3 x3+1 1 x2+1 x2+x+1 x2+x x3+x2+x+1 x 

α 13 x2 x2+1 x3+x2+1 x3+1 x3+x+1 x3+x x+1 x3+x2+x 

α 14 x x+1 x3+x+1 x3+x2+x+1 x3+x2+1 x3+x2 x2+1 x3 

         

+ α 7 α 8 α 9 α 10 α 11 α 12 α 13 α 14 

0 x2+1 x3+x+1 x3+x2 x2+x x+1 x3 x2 x 

1 x2 x3+x x3+x2+1 x2+x+1 x x3+1 x2+1 x+1 

α 1 x3+x2 x x2+1 x3+x2+x+1 x3+x 1 x3+x2+1 x3+x+1 

α 2 x3 x2+x 1 x3+x+1 x3+x2+x x2+1 x3+1 x3+x2+x+1 

α 3 x3+x x2 x+1 x3+1 x3+x2 x2+x+1 x3+x+1 x3+x2+1 

α 4 x3+x+1 x2+1 x x3 x3+x2+1 x2+x x3+x x3+x2 

α 5 x x3+x2 x3+x+1 1 x2 x3+x2+x+1 x+1 x2+1 

α 6 x3+x2+x+1 1 x2+x x3+x2 x3+1 x x3+x2+x x3 

α 7 0 x3+x2+x x3+1 x+1 x2+x x3+x2+1 1 x2+x+1 

α 8 x3+x2+x 0 x2+x+1 x3+x2+1 x3 x+1 x3+x2+x+1 x3+1 

α 9 x3+1 x2+x+1 0 x3+x x3+x2+x+1 x2 x3 x3+x2+x 

α 10 x+1 x3+x2+1 x3+x 0 x2+1 x3+x2+x x x2 

α 11 x2+x x3 x3+x2+x+1 x2+1 0 x3+x+1 x2+x+1 1 

α 12 x3+x2+1 x+1 x2 x3+x2+x x3+x+1 0 x3+x2 x3+x 

α 13 1 x3+x2+x+1 x3 x x2+x+1 x3+x2 0 x2+x 

α 14 x2+x+1 x3+1 x3+x2+x x2 1 x3+x x2+x 0 

Yukarıdaki tabloda toplamı 1 olan α değerleri sütun ve satır olarak aşağıdaki gibi yazılabilir. 

α 1   + α 12 =1  α 4   + α 3  =1  α 7   + α 13 =1  α 10   + α5  =1 α 13   + α 7 =1    

α 2   + α 9 =1  α 5   + α 10 =1  α 8   + α 6 =1  α 11   + α14 =1 α 14   + α 11 =1           

α 3   + α 4 =1  α 6   + α 8 =1  α 9   + α 2 =1  α 12  + α 1 =1                        

α i   + α j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden L2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x3+1 ilkel elemanı için L2 Costas dizisi {12 9 4 3 

10 8 13 6 2 5 14 1 7 11} olarak elde edilir. 
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Sonuç olarak f4(x) = x4+x+1 ilkel polinomu için elde edilen Costas dizileri Çizelge 3.15’te 

verilmiştir. 

Çizelge 3.15. f4(x) = x4+x+1 ilkel polinomu için elde edilen Costas dizileri 

İlkel eleman Costas dizileri 

x {4 8 14 1 10 13 9 2 7 5 12 11 6 3} 

x2 {4 8 14 1 10 13 9 2 7 5 12 11 6 3} 

x+1 {4 8 14 1 10 13 9 2 7 5 12 11 6 3} 

x3+x+1 {12 9 4 3 10 8 13 6 2 5 14 1 7 11} 

x2+1 {4 8 14 1 10 13 9 2 7 5 12 11 6 3} 

x3+x2+x {12 9 4 3 10 8 13 6 2 5 14 1 7 11} 

x3+x2+1 {12 9 4 3 10 8 13 6 2 5 14 1 7 11} 

x3+1 {12 9 4 3 10 8 13 6 2 5 14 1 7 11} 

Tekrar eden Costas dizileri çıkarıldıktan sonra elde edilen L2 Costas dizileri {4 8 14 1 10 13 

9 2 7 5 12 11 6 3} ve {12 9 4 3 10 8 13 6 2 5 14 1 7 11} olarak ifade edilebilir. Bu Costas 

dizileri Şekil 3.18’de gösterilmektedir. 

 

Şekil 3.18. GF(24) sonlu cismi için x4 +x+1 ilkel polinomu kullanılarak elde edilen 14’üncü 

mertebeden {4 8 14 1 10 13 9 2 7 5 12 11 6 3} ve {12 9 4 3 10 8 13 6 2 5 14 1 7 

11} L2 Costas dizileri 

{4 8 14 1 10 13 9 2 7 5 12 11 6 3} ve {12 9 4 3 10 8 13 6 2 5 14 1 7 11} L2 Costas dizilerinin 

(𝑞 − 2, 𝑞 − 2) = (14 , 14) noktası köşe noktası olmadığı için GF(24) için (𝑞 − 3) yani 

13’üncü mertebeden L3 Costas dizisi elde edilemez. 
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3.1.3. Golomb metodu 

n bir tamsayı ve p bir asal sayı olmak üzere, q elemanlı sonlu bir cismin GF(q) eleman sayısı 

q = pn olarak hesaplanır [23]. α ve β, bu GF(q) için ilkel kök ise 1 ≤ (i, j) ≤ 𝑞 − 2   aralığında  

α i + β j =1                       (3.14) 

koşulunu sağlayan (i, j) noktaları (𝑞 − 2)’nci mertebeden G2 Costas dizisinin koordinatlarını 

gösterir [29]. α = β olduğu durumlarda elde edilen G2 Costas dizisi bir önceki bölümde 

anlatılan Lempel metodu ile elde edilen L2 Costas dizisi ile aynıdır [30]. G2 Costas dizisinin 

en sol ve en alt noktası yani (1, 1) noktası köşe noktasını temsil eder [23]. Bu nokta 

bulunduğu satır ve sütun ile birlikte silindiğinde (𝑞 − 3)’üncü mertebeden G3 Costas dizisi 

elde edilir. Eğer G3 Costas dizisi yine (1, 1) noktasına sahipse veya diğer bir ifadeyle G2 

Costas dizisi (2, 2) noktasına da sahipse, bu noktanın bulunduğu satır ve sütun ile birlikte 

silinmesiyle (𝑞 − 4)’üncü mertebeden G4 Costas dizisi elde edilir [31]. G2 Costas dizilerinin 

sayısı φ(pn  - 1).φ(pn  - 1)/n formülü ile hesaplanır [18]. 

Bu bölümde örnek olarak q = 11 asal sayısı için Golomb yöntemi ile Costas dizileri elde 

edilmiştir. Söz konusu Costas dizilerinin elde edilebilmesi için ilk olarak ilkel köklerin 

belirlenmesi gerekir. İlkel köklerin nasıl hesaplanacağı 3.1.1 Welch Metodu bölümünde 

örneklerle detaylıca anlatılmıştır. 

Eş. 3.4’e göre; 

φ(11) =  11 (1 −
1

11
) = 10                                                        (3.15) 

Dolayısıyla (mod 11)’e göre mertebesi 10 olan sayılar ilkel köklerdir. İlkel köklerin sayısı 

φ(𝑝 − 1) ile hesaplanır. p = 11 sayısı için φ(10) ilkel köklerin sayısını verir. 

φ(10) =  φ(21. 51) =  10 (1 −
1

2
) (1 −

1

5
) = 4                                    (3.16) 

Eş. 3.16’ ya göre q = 11 sayısı için 4 adet ilkel kök bulunmaktadır. İlkel kökleri bulmak için 

ilk olarak q = 11 sayısı için asal kalan sınıfları kümesinin belirlenmesi gerekir. q = 11 için 

asal kalan sınıfları kümesi; 
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ℤ11
∗ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}                                     (3.17) 

olarak ifade edilebilir. Asal kalan sınıfları kümesindeki her bir elemanın sırasıyla mertebesi 

hesaplanarak ilkel kök olup olmadığı belirlenir. Bir sayının mertebesinin nasıl hesaplanacağı 

3.1.1 Welch Metodu bölümünde detaylı olarak anlatılmıştır. “1” sayısı birim eleman olduğu 

ve mertebesi “1” olduğu için ilkel kök değildir. Hesaplamalar sonrasında 2, 6, 7 ve 8 

sayılarının mertebesinin 10 olduğu görülmüştür. Dolayısıyla bu sayıların kuvvetleri         

(mod 11)’e göre asal kalan sınıfları kümesindeki tüm  elemanları verdiğinden ilkel kök 

olarak tanımlanır. Golomb metodu ile Costas dizilerini elde etmek için 11 elemanlı GF(11) 

sonlu cismi kullanılabilir. Bu cismin elemanları; 

𝐺𝐹(11) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}                                               (3.18) 

olarak yazılabilir. GF(11) sonlu cismini oluşturmak adına her bir (α, β) ilkel kök çifti için 

sırasıyla toplama tabloları aşağıda hesaplanmıştır. 

Çizelge 3.16. α = 2 ve β = 2 ilkel kökleri için GF(11) sonlu cisminin toplama çizelgesi 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 2 4 8 5 10 9 7 3 6 

1 1 2 3 5 9 6 0 10 8 4 7 

β 1 2 3 4 6 10 7 1 0 9 5 8 

β 2 4 5 6 8 1 9 3 2 0 7 10 

β 3 8 9 10 1 5 2 7 6 4 0 3 

β 4 5 6 7 9 2 10 4 3 1 8 0 

β 5 10 0 1 3 7 4 9 8 6 2 5 

β 6 9 10 0 2 6 3 8 7 5 1 4 

β 7 7 8 9 0 4 1 6 5 3 10 2 

β 8 3 4 5 7 0 8 2 1 10 6 9 

β 9 6 7 4 10 3 0 5 4 2 9 1 

Yukarıdaki çizelgede toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 5  =1  α 4   + β 7  =1  α 7   + β 4 =1     

α 2   + β 3 =1 α 5   + β 1 =1  α 8   + β 6 =1     

α 3   + β 2  =1  α 6   + β 8 =1  α 9   + β 9  =1      
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α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 2 ve β = 2 ilkel kökleri için G2 Costas dizisi               

{5 3 2 7 1 8 4 6 9} olarak elde edilir.  

Çizelge 3.17. α = 2 ve β = 6 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 2 4 8 5 10 9 7 3 6 

1 1 2 3 5 9 6 0 10 8 4 7 

β 1 6 7 8 10 3 0 5 4 2 9 1 

β 2 3 4 5 7 0 8 2 1 10 6 9 

β 3 7 8 9 0 4 1 6 5 3 10 2 

β 4 9 10 0 2 6 3 8 7 5 1 4 

β 5 10 0 1 3 7 4 9 8 6 2 5 

β 6 5 6 7 9 2 10 4 3 1 8 0 

β 7 8 9 10 1 5 2 7 6 5 0 3 

β 8 4 5 6 8 1 9 3 2 0 7 10 

β 9 2 3 4 6 10 7 1 0 9 5 8 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 5  =1  α 4   + β 3  =1  α 7   + β 6 =1     

α 2   + β 7 =1 α 5   + β 9 =1  α 8   + β 4 =1     

α 3   + β 8  =1  α 6   + β 2 =1  α 9   + β 1  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 2 ve β = 6 ilkel kökleri için G2 Costas dizisi               

{5 7 8 3 9 2 6 4 1} olarak elde edilir.  

Çizelge 3.18. α = 2 ve β = 7 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 2 4 8 5 10 9 7 3 6 

1 1 2 3 5 9 6 0 10 8 4 7 

β 1 7 8 9 0 4 1 6 5 3 10 2 

β 2 5 6 7 9 2 10 4 3 1 8 0 

β 3 2 3 4 6 10 7 1 0 9 5 8 

β 4 3 4 5 7 0 8 2 1 10 6 9 

β 5 10 0 1 3 7 4 9 8 6 2 5 

β 6 4 5 6 8 1 9 3 2 0 7 10 

β 7 6 7 8 10 3 0 5 4 2 9 1 

β 8 9 10 0 2 6 3 8 7 5 1 4 

β 9 8 9 10 1 5 2 7 6 5 0 3 
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Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 5  =1  α 4   + β 1  =1  α 7   + β 2 =1     

α 2   + β 9 =1 α 5   + β 3 =1  α 8   + β 8 =1     

α 3   + β 6  =1  α 6   + β 4 =1  α 9   + β 7  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 2 ve β = 7 ilkel kökleri için G2 Costas dizisi               

{5 9 6 1 3 4 2 8 7} olarak elde edilir.  

Çizelge 3.19. α = 2 ve β = 8 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 2 4 8 5 10 9 7 3 6 

1 1 2 3 5 9 6 0 10 8 4 7 

β 1 8 9 10 1 5 2 7 6 4 0 3 

β 2 9 10 0 2 6 3 8 7 5 1 4 

β 3 6 7 8 10 3 0 5 4 2 9 1 

β 4 4 5 6 8 1 9 3 2 0 7 10 

β 5 10 0 1 3 7 4 9 8 6 2 5 

β 6 3 4 5 7 0 8 2 1 10 6 9 

β 7 2 3 4 6 10 7 1 0 9 5 8 

β 8 5 6 7 9 2 10 4 3 1 8 0 

β 9 7 8 9 0 4 1 6 5 3 10 2 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 5  =1  α 4   + β 9  =1  α 7   + β 8 =1     

α 2   + β 1 =1 α 5   + β 7 =1  α 8   + β 2 =1     

α 3   + β 4  =1  α 6   + β 6 =1  α 9   + β 3  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 2 ve β = 8 ilkel kökleri için G2 Costas dizisi               

{5 1 4 9 7 6 8 2 3} olarak elde edilir.  
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Çizelge 3.20. α = 6 ve β = 2 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 6 3 7 9 10 5 8 4 2 

1 1 2 7 4 8 10 0 6 9 5 3 

β 1 2 3 8 5 9 0 1 7 10 6 4 

β 2 4 5 10 7 0 2 3 9 1 8 6 

β 3 8 9 3 0 4 6 7 2 5 1 10 

β 4 5 6 0 8 1 3 4 10 2 9 7 

β 5 10 0 5 2 6 8 9 4 7 3 1 

β 6 9 10 4 1 5 7 8 3 6 2 0 

β 7 7 8 2 10 3 5 6 1 4 0 9 

β 8 3 4 9 6 10 1 2 8 0 7 5 

β 9 6 7 1 9 2 4 5 0 3 10 8 

Yukarıdaki çizelgede toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 9  =1  α 4   + β 8  =1  α 7   + β 2 =1     

α 2   + β 6 =1 α 5   + β 1 =1  α 8   + β 3 =1     

α 3   + β 4  =1  α 6   + β 7 =1  α 9   + β 5  =1 

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 6 ve β = 2 ilkel kökleri için G2 Costas dizisi               

{9 6 4 8 1 7 2 3 5} olarak elde edilir 

Çizelge 3.21. α = 6 ve β = 6 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 6 3 7 9 10 5 8 4 2 

1 1 2 7 4 8 10 0 6 9 5 3 

β 1 6 7 1 9 2 4 5 0 3 10 8 

β 2 3 4 9 6 10 1 2 8 0 7 5 

β 3 7 8 2 10 3 5 6 1 4 0 9 

β 4 9 10 4 1 5 7 8 3 6 2 0 

β 5 10 0 5 2 6 8 9 4 7 3 1 

β 6 5 6 0 8 1 3 4 10 2 9 7 

β 7 8 9 3 0 4 6 7 2 5 1 10 

β 8 4 5 10 7 0 2 3 9 1 8 6 

β 9 2 3 8 5 9 0 1 7 10 6 4 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 
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α 1   + β 1  =1  α 4   + β 2  =1  α 7   + β 8 =1     

α 2   + β 4 =1 α 5   + β 9 =1  α 8   + β 7 =1     

α 3   + β 6  =1  α 6   + β 3 =1  α 9   + β 5  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 6 ve β = 6 ilkel kökleri için G2 Costas dizisi               

{1 4 6 2 9 3 8 7 5} olarak elde edilir. 

Çizelge 3.22. α = 6 ve β = 7 ilkel kökleri için GF (11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 6 3 7 9 10 5 8 4 2 

1 1 2 7 4 8 10 0 6 9 5 3 

β 1 7 8 2 10 3 5 6 1 4 0 9 

β 2 5 6 0 8 1 3 4 10 2 9 7 

β 3 2 3 8 5 9 0 1 7 10 6 4 

β 4 3 4 9 6 10 1 2 8 0 7 5 

β 5 10 0 5 2 6 8 9 4 7 3 1 

β 6 4 5 10 7 0 2 3 9 1 8 6 

β 7 6 7 1 9 2 4 5 0 3 10 8 

β 8 9 10 4 1 5 7 8 3 6 2 0 

β 9 8 9 3 0 4 6 7 2 5 1 10 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 7  =1  α 4   + β 4  =1  α 7   + β 6 =1     

α 2   + β 8 =1 α 5   + β 3 =1  α 8   + β 9 =1     

α 3   + β 2  =1  α 6   + β 1 =1  α 9   + β 5  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 6 ve β = 7 ilkel kökleri için G2 Costas dizisi               

{7 8 2 4 3 1 6 9 5} olarak elde edilir.  
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Çizelge 3.23. α = 6 ve β = 8 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 6 3 7 9 10 5 8 4 2 

1 1 2 7 4 8 10 0 6 9 5 3 

β 1 8 9 3 0 4 6 7 2 5 1 10 

β 2 9 10 4 1 5 7 8 3 6 2 0 

β 3 6 7 1 9 2 4 5 0 3 10 8 

β 4 4 5 10 7 0 2 3 9 1 8 6 

β 5 10 0 5 2 6 8 9 4 7 3 1 

β 6 3 4 9 6 10 1 2 8 0 7 5 

β 7 2 3 8 5 9 0 1 7 10 6 4 

β 8 5 6 0 8 1 3 4 10 2 9 7 

β 9 7 8 2 10 3 5 6 1 4 0 9 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 3  =1  α 4   + β 6  =1  α 7   + β 4 =1     

α 2   + β 2 =1 α 5   + β 7 =1  α 8   + β 1 =1     

α 3   + β 8  =1  α 6   + β 9 =1  α 9   + β 5  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 6 ve β = 8 ilkel kökleri için G2 Costas dizisi               

{3 2 8 6 7 9 4 1 5} olarak elde edilir.  

Çizelge 3.24. α = 7 ve β = 2 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 7 5 2 3 10 4 6 9 8 

1 1 2 8 6 3 4 0 5 7 10 9 

β 1 2 3 9 7 4 5 1 6 8 0 10 

β 2 4 5 0 9 6 7 3 8 10 2 1 

β 3 8 9 4 2 10 0 7 1 3 6 5 

β 4 5 6 1 10 7 8 4 9 0 3 2 

β 5 10 0 6 4 1 2 9 3 5 8 7 

β 6 9 10 5 3 0 1 8 2 4 7 6 

β 7 7 8 3 1 9 10 6 0 2 5 6 

β 8 3 4 10 8 5 6 2 7 9 1 0 

β 9 6 7 2 0 8 9 5 10 1 4 3 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 
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α 1   + β 4  =1  α 4   + β 6  =1  α 7   + β 9 =1     

α 2   + β 7 =1 α 5   + β 1 =1  α 8   + β 8 =1     

α 3   + β 5  =1  α 6   + β 3 =1  α 9   + β 2  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 7 ve β = 2 ilkel kökleri için G2 Costas dizisi               

{4 7 5 6 1 3 9 8 2} olarak elde edilir.  

Çizelge 3.25. α = 7 ve β = 6 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 7 5 2 3 10 4 6 9 8 

1 1 2 8 6 3 4 0 5 7 10 9 

β 1 6 7 2 0 8 9 5 10 1 4 6 

β 2 3 4 10 8 5 6 2 7 9 1 0 

β 3 7 8 3 1 9 10 6 0 2 5 4 

β 4 9 10 5 3 0 1 8 2 4 7 6 

β 5 10 0 6 4 1 2 9 3 5 8 7 

β 6 5 6 1 10 7 8 4 9 0 3 2 

β 7 8 9 4 2 10 0 7 1 3 6 5 

β 8 4 5 0 9 6 7 3 8 10 2 1 

β 9 2 3 9 7 4 5 1 6 8 0 10 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 6  =1  α 4   + β 4  =1  α 7   + β 1 =1     

α 2   + β 3 =1 α 5   + β 9 =1  α 8   + β 2 =1     

α 3   + β 5  =1  α 6   + β 7 =1  α 9   + β 8  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 7 ve β = 6 ilkel kökleri için G2 Costas dizisi               

{6 3 5 4 9 7 1 2 8} olarak elde edilir.  
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Çizelge 3.26. α = 7 ve β = 7 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 7 5 2 3 10 4 6 9 8 

1 1 2 8 6 3 4 0 5 7 10 9 

β 1 7 8 3 1 9 10 6 0 2 5 4 

β 2 5 6 1 10 7 8 4 9 0 3 2 

β 3 2 3 9 7 4 5 1 6 8 0 10 

β 4 3 4 10 8 5 6 2 7 9 1 0 

β 5 10 0 6 4 1 2 9 3 5 8 7 

β 6 4 5 0 9 6 7 3 8 10 2 1 

β 7 6 7 2 0 8 9 5 10 1 4 3 

β 8 9 10 5 3 0 1 8 2 4 7 6 

β 9 8 9 4 2 10 0 7 1 3 6 5 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 2  =1  α 4   + β 8  =1  α 7   + β 7 =1     

α 2   + β 1 =1 α 5   + β 3 =1  α 8   + β 4 =1     

α 3   + β 5  =1  α 6   + β 9 =1  α 9   + β 6  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 7 ve β = 7 ilkel kökleri için G2 Costas dizisi               

{2 1 5 8 3 9 7 4 6} olarak elde edilir.  

Çizelge 3.27. α =  7 ve β = 8 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 7 5 2 3 10 4 6 9 8 

1 1 2 8 6 3 4 0 5 7 10 9 

β 1 8 9 4 2 10 0 7 1 3 6 5 

β 2 9 10 5 3 0 1 8 2 4 7 6 

β 3 6 7 2 0 8 9 5 10 1 4 3 

β 4 4 5 0 9 6 7 3 8 10 2 1 

β 5 10 0 6 4 1 2 9 3 5 8 7 

β 6 3 4 10 8 5 6 2 7 9 1 0 

β 7 2 3 9 7 4 5 1 6 8 0 10 

β 8 5 6 1 10 7 8 4 9 0 3 2 

β 9 7 8 3 1 9 10 6 0 2 5 4 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 
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α 1   + β 8  =1  α 4   + β 2  =1  α 7   + β 3 =1     

α 2   + β 9 =1 α 5   + β 7 =1  α 8   + β 6 =1     

α 3   + β 5  =1  α 6   + β 1 =1  α 9   + β 4  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 7 ve β = 8 ilkel kökleri için G2 Costas dizisi               

{8 9 5 2 7 1 3 6 4} olarak elde edilir.  

Çizelge 3.28. α = 8 ve β = 2 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 8 9 6 4 10 3 2 5 7 

1 1 2 9 10 7 5 0 4 3 6 8 

β 1 2 3 10 0 8 6 1 5 4 7 9 

β 2 4 5 1 2 10 8 3 7 6 9 0 

β 3 8 9 5 6 3 1 7 0 10 2 4 

β 4 5 6 2 3 0 9 4 8 7 10 1 

β 5 10 0 7 8 5 3 9 2 1 4 6 

β 6 9 10 6 7 4 2 8 1 0 3 5 

β 7 7 8 4 5 2 0 6 10 9 1 3 

β 8 3 4 0 1 9 7 2 6 5 8 10 

β 9 6 7 3 4 1 10 5 9 8 0 2 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 2  =1  α 4   + β 3  =1  α 7   + β 5 =1     

α 2   + β 8 =1 α 5   + β 1 =1  α 8   + β 7 =1     

α 3   + β 9  =1  α 6   + β 6 =1  α 9   + β 4  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 8 ve β = 2 ilkel kökleri için G2 Costas dizisi               

{2 8 9 3 1 6 5 7 4} olarak elde edilir.  
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Çizelge 3.29. α = 8 ve β = 6 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 8 9 6 4 10 3 2 5 7 

1 1 2 9 10 7 5 0 4 3 6 8 

β 1 6 7 3 4 1 10 5 9 8 0 2 

β 2 3 4 0 1 9 7 2 6 5 8 10 

β 3 7 8 4 5 2 0 6 10 9 1 3 

β 4 9 10 6 7 4 2 8 1 0 3 5 

β 5 10 0 7 8 5 3 9 2 1 4 6 

β 6 5 6 2 3 0 9 4 8 7 10 1 

β 7 8 9 5 6 3 1 7 0 10 2 4 

β 8 4 5 1 2 10 8 3 7 6 9 0 

β 9 2 3 10 0 8 6 1 5 4 7 9 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 8  =1  α 4   + β 7  =1  α 7   + β 5 =1     

α 2   + β 2 =1 α 5   + β 9 =1  α 8   + β 3 =1     

α 3   + β 1  =1  α 6   + β 4 =1  α 9   + β 6  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 8 ve β = 6 ilkel kökleri için G2 Costas dizisi               

{8 2 1 7 9 4 5 3 6} olarak elde edilir.  

Çizelge 3.30. α = 8 ve β = 7 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 8 9 6 4 10 3 2 5 7 

1 1 2 9 10 7 5 0 4 3 6 8 

β 1 7 8 4 5 2 0 6 10 9 1 3 

β 2 5 6 2 3 0 9 4 8 7 10 1 

β 3 2 3 10 0 8 6 1 5 4 7 9 

β 4 3 4 0 1 9 7 2 6 5 8 10 

β 5 10 0 7 8 5 3 9 2 1 4 6 

β 6 4 5 1 2 10 8 3 7 6 9 0 

β 7 6 7 3 4 1 10 5 9 8 0 2 

β 8 9 10 6 7 4 2 8 1 0 3 5 

β 9 8 9 5 6 3 1 7 0 10 2 4 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 
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α 1   + β 6  =1  α 4   + β 9  =1  α 7   + β 5 =1     

α 2   + β 4 =1 α 5   + β 3 =1  α 8   + β 1 =1     

α 3   + β 7  =1  α 6   + β 8 =1  α 9   + β 2  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 8 ve β = 7 ilkel kökleri için G2 Costas dizisi               

{6 4 7 9 3 8 5 1 2} olarak elde edilir.  

Çizelge 3.31. α = 8 ve β = 8 ilkel kökleri için GF(11) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 

0 0 1 8 9 6 4 10 3 2 5 7 

1 1 2 9 10 7 5 0 4 3 6 8 

β 1 8 9 5 6 3 1 7 0 10 2 4 

β 2 9 10 6 7 4 2 8 1 0 3 5 

β 3 6 7 3 4 1 10 5 9 8 0 2 

β 4 4 5 1 2 10 8 3 7 6 9 0 

β 5 10 0 7 8 5 3 9 2 1 4 6 

β 6 3 4 0 1 9 7 2 6 5 8 10 

β 7 2 3 10 0 8 6 1 5 4 7 9 

β 8 5 6 2 3 0 9 4 8 7 10 1 

β 9 7 8 4 5 2 0 6 10 9 1 3 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 4  =1  α 4   + β 1  =1  α 7   + β 5 =1     

α 2   + β 6 =1 α 5   + β 7 =1  α 8   + β 9 =1     

α 3   + β 3  =1  α 6   + β 2 =1  α 9   + β 8  =1      

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = 8 ve β = 8 ilkel kökleri için G2 Costas dizisi                

{4 6 3 1 7 2 5 9 8} olarak elde edilir. 

Sonuç olarak q = 11 asal sayısı için elde edilen tüm Golomb G2 Costas dizileri Çizelge 

3.32’de sunulmuştur. 
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Çizelge 3.32. q = 11 asal sayısı için elde edilen tüm Golomb G2 Costas dizileri 

α/β 2 6 7 8 

2 {5 3 2 7 1 8 4 6 9} {9 6 4 8 1 7 2 3 5} {4 7 5 6 1 3 9 8 2} {2 8 9 3 1 6 5 7 4} 

6 {5 7 8 3 9 2 6 4 1} {1 4 6 2 9 3 8 7 5} {6 3 5 4 9 7 1 2 8}  {8 2 1 7 9 4 5 3 6}  

7 {5 9 6 1 3 4 2 8 7} {7 8 2 4 3 1 6 9 5} {2 1 5 8 3 9 7 4 6}  {6 4 7 9 3 8 5 1 2}  

8 {5 1 4 9 7 6 8 2 3} {3 2 8 6 7 9 4 1 5} {8 9 5 2 7 1 3 6 4} {4 6 3 1 7 2 5 9 8} 

Çizelge 3.32’de yer alan G2 Costas dizileri Şekil 3.19’da verilmiştir. 

 

Şekil 3.19. q = 11 asal sayısı için elde edilen Golomb G2 Costas dizileri 

Bu dizilerden sadece  α = 6 ve  β = 6 ilkel kökleri için elde edilen  {1 4 6 2 9 3 8 7 5} G2 

Costas dizisi, (1, 1) elemanına sahip olduğundan, bu diziden (𝑞 − 3)’üncü yani 8’inci 

mertebeden G3 Costas dizisi elde edilebilir. G2 Costas dizisinde (1, 1) noktası bulunduğu 
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satır ve sütun ile birlikte silinirse 8’inci mertebeden {3 5 1 8 2 7 6 4} G3 Costas dizisi elde 

edilir. 

 

Şekil 3.20. q = 11 asal sayısı için {1 4 6 2 9 3 8 7 5} Golomb G2 Costas dizisinden {3 5 1 8 

2 7 6 4} G3 Costas dizisinin elde edilmesi 

Çizelge 3.32’den görüleceği üzere üretilen G2 Costas dizilerinden hiçbiri (1, 1) ve (2, 2) 

noktasına sahip olmadığından bu örnek için G4 Costas dizisi elde edilememiştir.  

Diğer bir örnek olarak q = 8 sayısı için Golomb yöntemi ile Costas dizileri elde edilmiştir. 

İlk olarak 8 elemanlı sonlu cismin oluşturulması gerekir. q sayısı, asal bir sayının kuvveti 

olduğundan bu sonlu cismin elemanları sayılardan değil polinomlardan oluşmaktadır. 

Aşağıda 8 elemanlı sonlu bir cismin indirgenemez polinomlar kullanılarak nasıl 

oluşturulduğu ayrıntılı olarak açıklanmıştır. 

GF(8) = GF(23) yani p = 2, n = 3 sonlu cismi için indirgenemez polinomları hesaplayalım. 

p = 2 yani (mod 2) için aradığımız indirgenemez polinomlar, katsayıları “0” ve “1” olan  

ax3+ bx2 +cx +d şeklinde yazılabilen n’inci dereceden polinomlardır. İndirgenemez 

polinomları hesaplayabilmek için x’e tam olarak bölünemeyen yani sabit terimi “1” olan 

polinomlar incelenmelidir. Bu forma uyan 4 farklı polinom yazılabilir. 

Bu polinomlar; 

f1(x) = x3+1  = (x + 1)(x2 + x + 1)  

f2(x) = x3+x+1        

f3(x) = x3+x2+1   
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f4(x) = x3+x2+x+1 = (x + 1)(x2 + 1)        

olarak ifade edilebilir.  

f1(x) ve f4(x) polinomları yukarıda gösterildiği gibi çarpanlarına ayrılabildiğinden 

indirgenebilir polinomlardır. f2(x) = x3+x+1 ve f3(x) = x3+x2+1 polinomları ise indirgenemez 

polinomlardır. GF(23) cismini oluşturmakta kullanılabilen indirgenemez polinomlara ilkel 

polinomlar denir. Çizelge 3.6’da p = 2 için n = 1’den n = 5’e kadar olan indirgenemez 

polinomlar verilmiştir.  

f2(x) = x3+x+1 polinomunun ilkel polinom olduğu gösterilebilir. Bu polinomu kullanarak 

GF(23) sonlu cismini oluşturalım. f(x), GF(q) veya GF(pn)’de ilkel bir polinom ise, bu sonlu 

cismin bütün elemanları Eş. 3.19’da ifade edilen kuvvet döngüsü ile hesaplanabilir. 

𝑥0 = 1, 𝑥,  𝑥2, 𝑥3, … ,  𝑥𝑝𝑛−2                                                        (3.19)   

GF(pn) yani GF(23) için kuvvet döngüsü oluşturmak suretiyle elemanları bulunurken, 

mertebesi n = 2 olan f(x) = ax2 + bx + c formunda bir polinomdan yararlanılır. 

f(x)  = ax2 +    bx   +    c     

0 0 0    → 0        

0 0 1    → 1 

0 1 0    → x 

0 1 1    → x+1 

1 0 0    → x2 

1 0 1    → x2+1 

1 1 0    → x2+x 

1 1 1    → x2+x+1 

GF(23) ={0, 1, x, x+1, x2 , x2+1, x2+x, x2+x+1} şeklinde oluşturulabilir. 

“0” yutan eleman “1” ise birim eleman olduğundan bu sayıların kuvvetleri GF(23)’ün kuvvet 

döngüsünde yer alan elemanları vermeyeceği için ilkel eleman değildirler. x’in ilkel eleman 

olup olmadığı mertebesi hesaplanarak belirlenebilir. 
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x elemanının mertebesi 

x0 = 1              (mod x3+x+1)      

x1 = x              (mod x3+x+1)      

x2 = x2             (mod x3+x+1)             

x3 = x+1          (mod x3+x+1)      

x4 = x2+x         (mod x3+x+1)      

x5 = x2+x +1    (mod x3+x+1)      

x6 = x2+1         (mod x3+x+1)      

α = x olmak üzere, αj şeklinde  x’in tüm kuvvetleri 0 ≤  j ≤ (𝑞 − 2) = 6 aralığında GF(23)’ün 

kuvvet döngüsünde yer alan tüm elemanları verdiğinden x ilkel elemandır. GF(pn) sonlu 

cismi için ilkel elemanların sayısı φ(𝑝𝑛 − 1) ile hesaplanır.  

𝐺𝐹(23) = φ(23 − 1) = φ(7) = 7 (1 −
1

7
) = 6                               (3.20) 

İlkel elemanlar belirlenip toplama tabloları oluşturulduktan sonra Costas dizileri elde 

edilebilir. Kuvvet döngüsünde yer alan diğer elemanların mertebelerine bakıldığında tüm 

ilkel elemanlar {x, x2, x+1, x2+1, x2+x, x2+x+1} olarak hesaplanır.  

α = x ve β = x ilkel elemanları için 

Çizelge 3.33. α = x ve β = x ilkel elemanları ve f2(x) = x3+x+1 ilkel polinomu için GF(23) 

sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x x2 x+1 x2+x x2+x+1 x2+1 

1 1 0 x+1 x2+1 x x2+x+1 x2+x x2 
 β 1 x x+1 0 x2+x 1 x2 x2+1 x2+x+1 

β 2 x2 x2+1 x2+x 0 x2+x+1 x x+1 1 

β 3 x+1 x 1 x2+x+1 0 x2+1 x2 x2+x 

β 4 x2+x x2+x+1 x2 x x2+1 0 1 x+1 

β 5 x2+x+1 x2+x x2+1 x+1 x2 1 0 x 

β 6 x2+1 x2 x2+x+1 1 x2+x x+1 x 0 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 
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α 1   + β 3  =1  α 3   + β 1  =1 α 5   + β 4 =1    

α 2   + β 6 =1 α 4   + β 5  =1 α 6   + β 2 =1        

α i   + β j  =1  koşulunu sağlayan (i, j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x ve β = x ilkel kökleri için G2 Costas dizisi               

{3 6 1 5 4 2} olarak elde edilir.  

α = x ve β = x2 ilkel elemanları için 

Çizelge 3.34. α = x ve β = x2 ilkel elemanları ve f2(x) = x3+x+1 ilkel polinomu için GF(23) 

sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x x2 x+1 x2+x x2+x+1 x2+1 

1 1 0 x+1 x2+1 x x2+x+1 x2+x x2 
 β 1 x2 x2+1 x2+x 0 x2+x+1 x x+1 1 

β 2 x2+x x2+x+1 x2 x x2+1 0 1 x+1 

β 3 x2+1 x2 x2+x+1 1 x2+x x+1 x 0 

β 4 x x+1 0 x2+x 1 x2 x2+1 x2+x+1 

β 5 x+1 x 1 x2+x+1 0 x2+1 x2 x2+x 

β 6 x2+x+1 x2+x x2+1 x+1 x2 1 0 x 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 5  =1  α 3   + β 4  =1 α 5   + β 2 =1    

α 2   + β 3 =1 α 4   + β 6  =1 α 6   + β 1 =1        

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x ve β = x2 ilkel kökleri için G2 Costas dizisi              

{5 3 4 6 2 1} olarak elde edilir.  

α = x ve β = x+1 ilkel elemanları için 
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Çizelge 3.35.  α = x ve β = x+1 ilkel elemanları ve f2(x) = x3+x+1 ilkel polinomu için GF(23) 

sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x x2 x+1 x2+x x2+x+1 x2+1 

1 1 0 x+1 x2+1 x x2+x+1 x2+x x2 
 β 1 x+1 x 1 x2+x+1 0 x2+1 x2 x2+x 

β 2 x2+1 x2 x2+x+1 1 x2+x x+1 x 0 

β 3 x2 x2+1 x2+x 0 x2+x+1 x x+1 1 

β 4 x2+x+1 x2+x x2+1 x+1 x2 1 0 x 

β 5 x x+1 0 x2+x 1 x2 x2+1 x2+x+1 

β 6 x2+x x2+x+1 x2 x x2+1 0 1 x+1 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 1  =1  α 3   + β 5  =1 α 5   + β 6 =1    

α 2   + β 2 =1 α 4   + β 4  =1 α 6   + β 3 =1        

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x ve β = x + 1 ilkel kökleri için G2 Costas dizisi    

{1 2 5 4 6 3} olarak elde edilir.  

α = x ve β = x2+1 ilkel elemanları için 

Çizelge 3.36.  α = x ve β = x2+1 ilkel elemanları ve f2(x) = x3+x+1 ilkel polinomu için GF(23) 

sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x x2 x+1 x2+x x2+x+1 x2+1 

1 1 0 x+1 x2+1 x x2+x+1 x2+x x2 
 β 1 x2+1 x2 x2+x+1 1 x2+x x+1 x 0 

β 2 x2+x+1 x2+x x2+1 x+1 x2 1 0 x 

β 3 x2+x x2+x+1 x2 x x2+1 0 1 x+1 

β 4 x+1 x 1 x2+x+1 0 x2+1 x2 1 

β 5 x2 x2+1 x2+x 0 x2+x+1 x x+1 1 

β 6 x x+1 0 x2+x 1 x2 x2+1 x2+x+1 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 4  =1  α 3   + β 6  =1 α 5   + β 3 =1    

α 2   + β 1 =1 α 4   + β 2  =1 α 6   + β 5 =1        
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α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x ve β = x2+1 ilkel kökleri için G2 Costas dizisi     

{4 1 6 2 3 5} olarak elde edilir. 

α = x ve β = x2+x ilkel elemanları için 

Çizelge 3.37.  α = x ve β = x2+x ilkel elemanları ve f2(x) = x3+x+1 ilkel polinomu için GF(23) 

sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x x2 x+1 x2+x x2+x+1 x2+1 

1 1 0 x+1 x2+1 x x2+x+1 x2+x x2 
 β 1 x2+x x2+x+1 x2 x x2+1 0 1 x+1 

β 2 x x+1 0 x2+x 1 x2 x2+1 x2+x+1 

β 3 x2+x+1 x2+x x2+1 x+1 x2 1 0 x 

β 4 x2 x2+1 x2+x 0 x2+x+1 x x+1 1 

β 5 x2+1 x2 x2+x+1 1 x2+x x+1 x 0 

β 6 x+1 x 1 x2+x+1 0 x2+1 x2 x2+x 

Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 6  =1  α 3   + β 2  =1 α 5   + β 1 =1    

α 2   + β 5 =1 α 4   + β 3  =1 α 6   + β 4 =1        

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x ve β = x2+x ilkel kökleri için G2 Costas dizisi      

{6 5 2 3 1 4} olarak elde edilir.  

α = x ve β = x2+x+1 ilkel elemanları için 

Çizelge 3.38.  α = x ve β = x2+x+1 ilkel elemanları ve f2(x) = x3+x+1 ilkel polinomu için 

GF(23) sonlu cisminin toplama tablosu 

+ 0 1 α 1 α 2 α 3 α 4 α 5 α 6 

0 0 1 x x2 x+1 x2+x x2+x+1 x2+1 

1 1 0 x+1 x2+1 x x2+x+1 x2+x x2 
 β 1 x2+x+1 x2+x x2+1 x+1 x2 1 0 x 

β 2 x+1 x 1 x2+x+1 0 x2+1 x2 x2+x 

β 3 x x+1 0 x2+x 1 x2 x2+1 x2+x+1 

β 4 x2+1 x2 x2+x+1 1 x2+x x+1 x 0 

β 5 x2+x x2+x+1 x2 x x2+1 0 1 x+1 

β 6 x2 x2+1 x2+x 0 x2+x+1 x x+1 1 
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Yukarıdaki tabloda toplamları 1 olan α ve β değerleri sütun ve satır olarak aşağıdaki gibi 

yazılabilir. 

α 1   + β 2  =1  α 3   + β 3  =1 α 5   + β 5 =1    

α 2   + β 4 =1 α 4   + β 1  =1 α 6   + β 6 =1        

α i   + β j  =1  koşulunu sağlayan (i,  j) noktaları  (𝑞 − 2)’nci dereceden G2 Costas dizisinin 

koordinatlarını verir. Bu koşula göre α = x ve β = x2+x+1 ilkel kökleri için G2 Costas dizisi 

{2 4 3 1 5 6} olarak elde edilir. 

Benzer şekilde hesaplama yapılarak tüm Golomb G2 Costas dizileri elde edilmiştir. α ve β, 

sırasıyla {x, x2, x+1, x2+1, x2+x, x2+x+1} ilkel elemanları olacak şekilde ayrı ayrı toplama 

tabloları oluşturularak 36 adet Golomb G2 Costas dizisi üretilmiştir. Elde edilen tüm Costas 

dizileri Çizelge 3.39’da verilmiştir. 

Çizelge 3.39. GF(8) ve x3+x+1 ilkel polinomu için elde edilen G2 Costas dizileri 

β /α                   x x2 x+1 x2+1 x2+x x2+x+1 

x {3 6 1 5 4 2} {5 3 4 6 2 1} {1 2 5 4 6 3} {4 1 6 2 3 5} {6 5 2 3 1 4} {2 4 3 1 5 6} 
x2 {6 5 2 3 1 4} {3 6 1 5 4 2} {2 4 3 1 5 6} {1 2 5 4 6 3} {5 3 4 6 2 1} {4 1 6 2 3 5} 
x+1 {1 2 6 4 3 5} {4 1 3 2 5 6} {5 3 2 6 1 4} {6 5 1 3 4 2} {2 4 5 1 6 3} {3 6 4 5 2 1} 
x2+1 {2 4 5 1 6 3} {1 2 6 4 3 5} {3 6 4 5 2 1} {5 3 2 6 1 4} {4 1 3 2 5 6} {6 5 1 3 4 2} 
x2+x {5 3 4 6 2 1} {6 5 2 3 1 4} {4 1 6 2 3 5} {2 4 3 1 5 6} {3 6 1 5 4 2} {1 2 5 4 6 3} 
x2+x+1 {4 1 3 2 5 6} {2 4 5 1 6 3} {6 5 1 3 4 2} {3 6 4 5 2 1} {1 2 6 4 3 5} {5 3 2 6 1 4} 

Tablo incelendiğinde bazı Costas dizilerinin bir kereden fazla elde edildiği görülür. Bu 

diziler sadeleştirildiğinde GF(8) ve x3+x+1 ilkel polinomu için 12 farklı Golomb G2 Costas 

dizisinin elde edildiği görülür. Söz konusu Costas dizileri Çizelge 3.39’da sarı boyalı olarak 

Şekil 3.21’de ise permütasyon matrisi olarak verilmiştir. 

Bu dizilerden {1 2 5 4 6 3} ve {1 2 6 4 5 3} G2 Costas dizileri (1, 1) ve (2, 2) elemanlarına 

sahip olduğundan, bu dizilerden (q – 3)’üncü yani 5’inci mertebeden G3 Costas dizisi ve      

(q – 4)’üncü yani 4’üncü mertebeden G4 Costas dizisi elde edilebilir. Bu yeni diziler Şekil 

3.22 ve Şekil 3.23’te gösterilmiştir. 

 



66 

 

 

 

Şekil 3.21. GF(8) ve x3+x+1 ilkel polinomu için elde edilen G2 Costas dizileri 

 

Şekil 3.22. GF(8) ve x3+x+1 ilkel polinomu için elde edilen G3 Costas dizileri 
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Şekil 3.23. GF(8) ve x3+x+1 ilkel polinomu için elde edilen G4 Costas dizileri 

3.2. Varyasyonel Yöntemlerle Elde Edilen Costas Dizileri 

Costas dizileri, Welch, Lempel ve Golomb gibi temel oluşturma yöntemlerinin yanı sıra bu 

yöntemleri referans alan Taylor T4, Golomb G4* - G5*, Taylor T1 - T0 ve Welch W0 gibi bu 

yöntemlerin varyasyonları ile de elde edilebilir [30]. 

3.2.1. Taylor T4 varyasyonu 

Taylor T4 varyasyonu, Lempel yöntemini esas alır. Eğer (q – 2)’nci mertebeden elde edilen 

bir L2 Costas dizisi (1, 2) ve (2, 1) elemanlarına sahipse, yani diğer bir ifadeyle bu L2 Costas 

dizisinin elemanları {2 1 . . . } şeklinde ifade edilebiliyorsa bu L2 Costas disizinin en alt 2 

satırı ve en sol 2 sütunu silinerek (q – 4)’üncü mertebeden Taylor T4 Costas dizisi elde 

edilebilir [32, 33].  Örnek olarak bu yöntemi kullanarak q = 11 için Taylor T4 Costas dizisini 

elde edelim. Bölüm 3.1.2’de anlatılan Lempel yöntemi ile (q – 2)’nci yani 9’uncu 

mertebeden L2 Costas dizisi {2 1 5 8 3 9 7 4 6} olarak bulunur. Bu dizinin en alt iki satırı ve 

en sol iki sütunu silindiğinde (q – 4)’üncü yani 7’nci mertebeden Taylor T4 Costas dizisi     

{3 6 1 7 5 2 4} olarak elde edilir. Şekil 3.24’te bu dizinin elde edilişi gösterilmiştir. 

 

Şekil 3.24. q = 9’uncu mertebeden {2 1 5 8 3 9 7 4 6} Lempel L2 Costas dizisinden, 7’nci 

mertebeden {3 6 1 7 5 2 4} Taylor T4 Costas dizisinin elde edilmesi 
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Bu tez çalışması kapsamında yüksek mertebeden Taylor T4 Costas dizileri (7 – 5000) 

oluşturulmuş ve Çizelge 3.40’da sunulmuştur. 

Çizelge 3.40. Yüksek mertebeden (7-5000) Taylor T4 Costas dizileri 

Mertebe T4 Mertebe T4 Mertebe T4 Mertebe T4 Mertebe T4 

9 1 641 2 1801 2 2791 1 3769 2 

11 1 659 1 1811 1 2819 1 3779 1 

19 1 701 2 1831 1 2851 1 3889 2 

31 1 719 1 1879 1 2879 1 3911 1 

41 2 739 1 1889 2 2909 2 3931 1 

59 1 751 1 1901 2 2939 1 4019 1 

61 2 821 2 1931 1 2971 1 4079 1 

71 1 839 1 1949 2 2999 1 4091 1 

79 1 929 2 1979 1 3011 1 4099 1 

109 2 971 1 2011 1 3019 1 4111 1 

131 1 1019 1 2039 1 3061 2 4129 2 

149 2 1039 1 2099 1 3109 2 4139 1 

179 1 1051 1 2111 1 3119 1 4211 1 

191 1 1091 1 2129 2 3181 2 4219 1 

239 1 1129 2 2131 1 3191 1 4241 2 

241 2 1171 1 2141 2 3209 2 4259 1 

251 1 1181 2 2309 2 3221 2 4271 1 

269 2 1201 2 2311 1 3229 2 4339 1 

271 1 1259 1 2339 1 3259 1 4349 2 

311 1 1301 2 2341 2 3319 1 4409 2 

359 1 1319 1 2351 1 3359 1 4421 2 

379 1 1321 2 2381 2 3361 2 4451 1 

389 2 1399 1 2399 1 3371 1 4519 1 

409 2 1429 2 2411 1 3449 2 4591 1 

419 1 1439 1 2459 1 3491 1 4639 1 

431 1 1451 1 2531 1 3511 1 4679 1 

439 1 1459 1 2539 1 3539 1 4721 2 

449 2 1481 2 2549 2 3541 2 4799 1 

479 1 1489 2 2551 1 3559 1 4801 2 

491 1 1499 1 2579 1 3659 1 4889 2 

499 1 1531 1 2609 2 3671 1 4919 1 

569 2 1559 1 2671 1 3691 1 4931 1 

571 1 1571 1 2699 1 3701 2 4951 1 

599 1 1609 2 2711 1 3709 2 4999 1 

601 2 1619 1 2719 1 3719 1   

631 1 1759 1 2741 2 3761 2   
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3.2.2. Golomb G4* - G5* varyasyonu 

Golomb G4* - G5* varyasyonu Golomb yöntemini esas alır. Eğer α + β = 1 ve α2 + β-1 = 1 

koşulları (q – 2)’nci mertebeden G2 Costas dizisinde sağlanıyorsa α-1 + β2 = 1 koşulu da 

sağlanmış olur [16]. G2 Costas dizisindeki (1, 1) noktası ve (2, q – 2) noktası, bulunduğu 

satırları ve sütunları ile birlikte silinirse (q – 4)’üncü mertebeden G4* Costas dizisi elde edilir 

[18, 34]. Ancak elde edilen bu G4* Costas dizisinin G4 Costas dizisiyle aynı olmadığına 

dikkat edilmelidir [8, 35]. Eğer G2 Costas dizisindeki (q – 2, 2) noktası veya G4* Costas 

dizisindeki (q – 4, 1) noktası bulunduğu satır ve sütunla birlikte silinirse, G5* Costas dizisi 

elde edilir [18]. Örnek bir G4* -  G5* Costas dizilerinin elde edilişi şekil 3.25’de 

gösterilmiştir. 

 

Şekil 3.25. {1 7 3 4 6 5 2} G2 Costas dizisinden {2 3 5 4 1} G4* ve {1 2 4 3} G5* Costas 

dizilerinin elde edilmesi 

Bu tez çalışması kapsamında yüksek mertebeden Golomb G4* - G5* Costas dizileri                 

(7 – 5000) araştırılmıştır. p bir asal sayı olmak üzere yüksek mertebeden q = p ve q = pn’inci 

mertebeden Costas dizileri incelenmiştir. Elde edilen sonuçlar detaylı olarak 

değerlendirildiğinde Taylor T4 ile Golomb G4* - G5* Costas dizileri arasında dikkate değer 

bir ilişki olduğu fark edilmiştir. 
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Varsayım 1  

Eğer Taylor T4 yöntemi kullanılarak, q = p  veya q = pn
  olarak ifade edilebilen herhangi bir 

mertebe için iki adet Costas dizisi üretilebiliyorsa, yine aynı mertebe için Golomb G4* ve 

G5* Costas dizileri de mevcuttur. Ancak bu varsayım sadece q = 9 için geçerli değildir.           

q = 9 için sadece bir adet T4 Costas dizisi olmasına rağmen, Golomb G4* ve G5* Costas 

dizileri de hesaplanabilmektedir. 

Bu tez çalışması kapsamında yüksek mertebeden Golomb G4* ve G5 Costas dizileri                 

(7 – 5000) oluşturulmuş ve Çizelge 3.41’de sunulmuştur. 

Çizelge 3.41. Yüksek mertebeden (7 - 5000) Golomb G4* ve G5* Costas dizileri 

Mertebe 

G4*-

G5* Mertebe 

G4*-

G5* Mertebe 

G4*-

G5* Mertebe 

G4*-

G5* Mertebe 

G4*-

G5* 

9* 1 641 2 1609 2 2741 2 3709 2 

41 2 701 2 1801 2 2909 2 3761 2 

61 2 821 2 1889 2 3061 2 3769 2 

109 2 929 2 1901 2 3109 2 3889 2 

149 2 1129 2 1949 2 3181 2 4129 2 

241 2 1181 2 2129 2 3209 2 4241 2 

269 2 1201 2 2141 2 3221 2 4349 2 

389 2 1301 2 2309 2 3229 2 4409 2 

409 2 1321 2 2341 2 3361 2 4421 2 

449 2 1429 2 2381 2 3449 2 4721 2 

569 2 1481 2 2549 2 3541 2 4801 2 

601 2 1489 2 2609 2 3701 2 4889 2 

3.2.3. Taylor T1 ve T0 varyasyonu 

Taylor T1 varyasyonu Golomb yöntemine dayanır. (q – 2)’nci mertebeden elde edilen bir G2 

Costas dizisinin sol alt köşe (0, 0), sol üst köşe (0, q – 1), sağ alt köşe (q – 1, 0) veya sağ üst 

köşe (q – 1, q – 1) bölgelerinden herhangi birine bir nokta eklenir. Bu şekilde elde edilen 

yeni Costas dizisi (q – 1)’inci mertebeden Taylor T1 Costas dizisidir [36]. Taylor T1 

varyasyonu, q  ≠  2k olduğu durumlarda geçerlidir [37].  

Örnek olarak bu yöntemi kullanarak q = 17 sayısı için Taylor T1 Costas dizisini elde edelim. 

Bölüm 3.1.3’de anlatılan Golomb yöntemi ile (q – 2)’nci yani 15’inci mertebeden G2 Costas 

dizisi {12 9 7 15 4 8 14 10 13 6 1 11 2 3 5} olarak bulunur. Bu dizinin sol alt (0, 0), sol üst 
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(0, 16), sağ alt (16, 0) ve sağ üst (16, 16) bölgelerinden herhangi birine bir nokta eklenerek 

ayrı ayrı olası Taylor T1 Costas dizileri elde edilebilir. Şekil 3.26’da {12 9 7 15 4 8 14 10 13 

6 1 11 2 3 5} Golomb G2 Costas dizisinden elde edilen Taylor T1 Costas dizileri 

gösterilmiştir. 

 

Şekil 3.26. q = 17 için 15’inci mertebeden {12 9 7 15 4 8 14 10 13 6 1 11 2 3 5} Golomb G2 

Costas dizisinden elde edilen Taylor T1 Costas dizileri 

Taylor T0 varyasyonu, Taylor T1 varyasyonu gibi Golomb yöntemini esas alır. (q – 2)’nci 

mertebeden elde edilen bir G2 Costas dizisinin  sol alt köşe (0, 0) ve sağ üst köşe                          

(q – 1, q – 1) veya sağ alt köşe (q – 1, 0) ve sol üst köşe (0, q – 1) gibi çapraz köşe 

noktalarından herhangi ikisine birer adet nokta eklenir. Bu şekilde elde edilen muhtemel 

yeni Costas dizisi q’ncu dereceden Taylor T0 Costas dizisidir. 
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Aynı örnek üzerinden, 15’inci mertebeden {12 9 7 15 4 8 14 10 13 6 1 11 2 3 5} G2 Costas 

dizisinin sağ alt köşe (q – 1, 0) ve sol üst köşe (0, q – 1) bölgelerine birer nokta eklenerek T0 

Costas dizisi elde edilmiştir. Şekil 3.27’da bu Taylor T0 Costas dizisinin elde edilişi 

gösterilmiştir. 

 

Şekil 3.27. q = 17 için 15’inci mertebeden {12 9 7 15 4 8 14 10 13 6 1 11 2 3 5} Golomb G2 

Costas dizisinden elde edilen {1 13 10 8 16 5 9 15 11 14 7 2 12 3 46 17} Taylor 

T0 Costas dizisi 

Bu tez çalışması kapsamında yüksek mertebeden Taylor T1 ve T0 Costas dizileri                        

(5  ≤  q  ≤ 3000) oluşturulmuştur. Elde edilen sonuçlar detaylıca incelendiğinde 53’ten büyük 

sayılar için Taylor T1 Costas dizisinin, 47’den büyük sayılar için ise Taylor T0 Costas 

dizisinin üretilemediği gözlenmiştir. 

Varsayım 2  

q > 53 için Taylor T1 Costas dizisi elde edilemez. 

Varsayım 3  

q > 47 için Taylor T0 Costas dizisi elde edilemez. 
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3.2.4. Welch W0 varyasyonu 

Welch W0 varyasyonu, Welch yöntemine dayanır. p bir asal sayı olmak üzere (p – 1)’inci 

mertebeden elde edilen bir W1 Costas dizisinin herhangi bir köşesine bir nokta eklenerek 

p’inci mertebeden (p x p) boyutlarında bir permütasyon matrisi oluşturulur. Oluşturulan bu 

matris Costas dizisi özelliklerine sahip ise Welch W0 varyasyonu ile elde edilen Costas dizisi 

olarak tanımlanır [38]. 

Örnek olarak bu yöntemi kullanarak p = 13 sayısı için Welch W0 Costas dizisini elde edelim. 

Bölüm 3.1.1’de anlatılan Welch yöntemi ile (p – 1)’inci yani 12’nci mertebeden W1 Costas 

dizisi {3 7 12 2 9 8 10 6 1 11 4 5} olarak bulunur. Bu dizinin sol alt (0, 0), sol üst (0, p – 1), 

sağ alt (p – 1, 0) ve sağ üst (p – 1, p – 1) bölgelerinden herhangi birine bir nokta eklenerek 

ayrı ayrı olası Welch W0  Costas dizileri elde edilebilir. Şekil 3.28’de {3 7 12 2 9 8 10 6 1 11 

4 5} Welch W1 Costas dizisinden elde edilen {1 4 8 13 3 10 9 11 7 2 12 5 6} Welch W0 

Costas dizisi gösterilmiştir. 

 

Şekil 3.28. p = 13 için 12’nci mertebeden {3 7 12 2 9 8 10 6 1 11 4 5} Welch W1 Costas 

dizisinden elde edilen {1 4 8 13 3 10 9 11 7 2 12 5 6} Welch W0 Costas dizisi 

Bu tez çalışması kapsamında yüksek mertebeden Welch W0 Costas dizileri (5 ≤ q ≤ 3000) 

oluşturulmuştur. Elde edilen sonuçlar detaylıca incelendiğinde 53’ten büyük sayılar için 

Welch W0 Costas dizilerinin üretilemediği gözlenmiştir. 

Varsayım 4  

q > 53 için Welch W0 Costas dizisi elde edilemez. 



74 

 

 

  



75 
 

 

4. SONUÇLAR 

Darbeli radarlar, günümüzde, hedeflerin mesafe ve hızlarının tespit edilmesinde yoğun 

olarak kullanılmaktadır. Ancak amacın düşman tarafından tespit edilmeden yakın 

mesafelerdeki hedefleri tespit etmek olduğu durumlarda genellikle LPI radarların kullanımı 

tercih edilmektedir. Darbeli radarlarda, daha iyi bir menzil çözünürlüğü elde edebilmek için 

nispeten daha kısa süreli darbeler kullanılır. Eğer hedef tespiti için kısa süreli darbeler 

kullanılıyorsa, bu darbelerin yüksek tepe gücü ile hedefe iletilmesi gerekir. Radarın yüksek 

tepe gücü ile ışıma yapması, genellikle, modern muharebe sahasında yer alan düşman 

elektronik harp sistemleri tarafından kolaylıkla tespit edilmesine ve dolayısıyla kullandığı 

çalışma parametrelerinin tahmin edilmesine neden olur [39]. Bu parametrelerin düşman 

unsurlar tarafından tespit edilmesi, söz konusu parametrelerin elektronik karıştırma 

sistemleri ile radarlarımıza karşı yanıltıcı faaliyetlerde kullanılmasına neden olabilir.  

Düşük güç tüketimleri, kullandıkları karmaşık modülasyon teknikleri ve sürekli sinyal 

kullanımı gibi en temel özellikleri sayesinde LPI radarları oldukça avantajlı ve tercih 

edilebilir bir hale gelmiştir. Bu temel özellikler LPI radarların çok yakın mesafelerde bile 

düşman tarafından tespit edilmeden görev yapmasına olanak sağlamaktadır. LPI radarları 

geniş bir frekans bandında sürekli dalga sinyalleri yayma yeteneğine sahiptir. LPI radarları 

bu özelliklerinin yanı sıra yüksek menzil - Doppler çözünürlüğü de sağlarlar. Geniş bir 

bantta ışıma yapabilme kabiliyeti, çözünürlüğü arttırır. Diğer yandan sürekli dalga 

sinyallerinin kullanılması, bu sinyallerin çok daha düşük tepe gücüyle gönderilmesine 

olanak sağlar [40]. 

LPI radarları bu özelliklere sahip sinyalleri elde edebilmek için çeşitli modülasyon 

tekniklerinden faydalanır. Bu modülasyon türlerinden birisi Frekans Kaydırmalı 

Anahtarlama tekniğidir. Costas dizileri, LPI radarları için Frekans Kaydırmalı Anahtarlama 

tekniği ile sinyallerin oluşturulmasında kullanılan yöntemlerden birisidir. 

Bu tez çalışmasında, LPI radarları için Frekans Kaydırmalı Anahtarlama ile modüle edilmiş 

sinyallerden olan  Costas dizileri, bu dizilerin elde edilmesinde kullanılan Welch, Lempel 

ve Golomb gibi temel yöntemler ve bu yöntemlerin Taylor T4, Golomb G4* - G5*, Taylor T1 

-T0, Welch W0  gibi bazı varyasyonları araştırılmıştır. Tüm bu yöntemler için C/C++ dilinde 

programlar geliştirilmiştir.  
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Literatürde ilk kez bu yüksek lisans tez çalışmasında, Taylor T4, Golomb G4* - G5*,        

Taylor T1 -T0, Welch W0 varyasyonları için yüksek mertebeden (5000’e kadar) Costas 

dizileri araştırılmıştır ve elde edilen sonuçlar tablolar halinde sunulmuştur. Hesaplamalar 

çok uzun süreler aldığı için yüksek işlem gücüne sahip özel bilgisayarlar kullanılmıştır. 

Çizelge 4.1’de tablo halinde detayları verilen yüksek kapasiteli bilgisayarların bulunduğu 

bir laboratuvarda bu programlar 7 gün 24 saat boyunca çalıştırılmıştır. Örneğin Golomb G4* 

- G5* yöntemi kullanılarak 4000’inci mertebeye kadar Costas dizilerinin elde edilmesi için 

5 adet HPZ4 bilgisayar 5 hafta boyunca çalışmıştır. 4000’den büyük sayılar için 64 GB RAM 

belleğe sahip HPZ4 bilgisayarlar hesaplamalarda yetersiz kalmıştır. Daha yüksek 

mertebeden sayılar için hesaplamalara bir adet HPC bilgisayar ile devam edilmiştir. HPC 

bilgisayar ile Golomb G4* - G5* yöntemi kullanılarak 4000 – 5000 arası sayılar için 

hesaplamalar 2,5 ay sürmüştür.  

Çizelge 4.1. Bilgisayar özellikleri 

 HPC HPZ4 

Ürün Adı Dell Hewlett Packard 

CPU Intel Xeon Gold 6154 (18 core) Intel Xeon W-2245 

Computer Node 36 Nodes (x2 socket) 8 Core 16 Thread 

RAM 10 GB (per Node) 64 GB 

GPU 
Nvidia Volta V100                

SXM2 GPGPU 16 GB 

Nvidia Geforce RTX              

3060TI 16 GB 

GPU Node 4 Node x 4 GPU 1 Node x 16 GB GPU 

Düşük mertebeli sayılar için Costas dizilerinin hesaplanmasında “Costas Arrays Matlab 

Toolbox” paket programının kullanımı oldukça avantajlıdır [17]. Fakat mertebe büyüdükçe 

özellikle iki ilkel eleman ve polinom hesaplamalarıyla karmaşıklaşan Golomb yöntemi aşırı 

miktarda zaman ve bellek kullanımı gerektirdiğinden bu paket program hesaplamalarda 

yetersiz kalmaktadır. 

Günümüzde halen 29’dan büyük sayılar için kaç adet Costas dizisi olduğu bilinmemektedir. 

Tüm Costas dizilerinin elde edilebilmesi için genel bir yöntem de bulunmamaktadır. 

İlerideki çalışmalarda zaman ve bellek kullanımı daha efektif hale getirelerek, daha yüksek 

mertebeden Costas dizilerinin elde edilmesi için paralel hesaplama yöntemleri kullanılabilir. 

Tez kapsamında elde edilmiş olan yüksek mertebeli Costas dizileri Savunma Sanayii’nde 

çeşitli projelerde ve uygulamalarda kullanılabilir. 
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