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ABSTRACT 

ARABIC SIGN LANGUAGE RECOGNITION BASED ON 

ARTIFICIAL INTELLIGENCE TECHNIQUES 

SABRI, Mustafa Raad Sabri 

M.Sc., Information Technologies, Altınbaş University,

Supervisor: Asst. Prof. Dr. Oğuz KARAN 

Date: December / 2023 

Pages: 75

Arabic Sign Language is the means of communication utilised between deaf individuals. It's 

a collection of body, hand movements, and facial expressions. SL is not understood by 

hearing people, which creates a gap in communication at the same time, causing Significant 

difficulties for deaf individuals' daily lives and affecting their careers and the ability to have 

a good life. Artificial intelligence and deep learning technologies have developed computer 

vision in recent years. SL is one of the Significant research projects in computer vision. We 

propose a real-time Recognition system for Arabic SL alphabets, numbers, and words to fill 

the gap between hearing and deaf individuals by creating three datasets containing thousands 

of images taken by five volunteers in various places, lighting conditions, hands, and 

backgrounds. The training and testing of the model are done by utilising different weights 

of the deep learning model Yolov8, the last model in the Yolo models, and it achieves an 

accuracy of approximately 98%, and the experiment shows efficiency and speed in detection. 

Keywords: Arabic Sign Language Recognition, YOLO, Deep Learning, Convolutional 

Neural Network, Computer Vision. 
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1. INTRODUCTION

1.1 OVERVIEW 

Sign Language (SL) serves as a means of communication between individuals. It is critical 

in the lives of those with speech and hearing impairments, often viewed as their primary 

mode of communication; this language relies on manual gestures to convey nonverbal 

messages [1]. According to World Health Organization (WHO) data, more than 5% of the 

global population, equivalent to 430 million individuals (comprising 432 million adults and 

34 million children), require rehabilitation to address their significant hearing impairments, 

Projections indicate that by the year 2050, this number will surge to over 700 million people, 

representing 1 in 10 individuals worldwide, experiencing disabling hearing loss, 'disabling' 

hearing loss denotes a hearing impairment exceeding 35 decibels (dB) in the better-hearing 

ear, nearly 80% of those affected by such hearing loss reside in low- and middle-income 

countries; additionally, the prevalence of hearing loss escalates with age, with over 25% of 

individuals above the age of 60 grappling with disabling hearing loss [2]. 

ArSL encounters a scarcity of essential resources, such as standardised dictionaries and 

linguistic databases. This shortage of resources hinders the advancement and comprehension 

of ArSL as a unique and independent language. Unified dictionaries present a formidable 

obstacle for deaf individuals and researchers, impeding their access to a comprehensive and 

universally accepted resource for ArSL signs [3] Modern technological progress assists 

individuals with deaf disabilities in surmounting numerous communication challenges. 

Contemporary breakthroughs in deep learning and computer vision models are 

revolutionising human interaction by enabling unprecedented capabilities, and the Arabic 

language remains a fertile field for research [4]. ArSL hasn't enough research like American 

sign language (ASL), and it's still in an early stage of development, especially in Deep 

Learning (DL) and Machine Learning (ML) techniques. This research proposes a system 

that employs deep learning-based object detection models to recognise ArSL in real-time. 

1 
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1.2 PROBLEM STATEMENT 

As reported by the Centre for Strategic and International Studies in Washington DC, there 

are approximately 11 million individuals in the Middle East with disabling hearing loss; 

however, the absence of a standardised ArSL has led to a shortage of proficient SL 

interpreters for example in Saudi, this ratio is one for every 93,000 individuals who can 

bridge the communication gap between the deaf community and the broader world [5]. 

Effective communication is a vital skill for humans to engage with their surrounding 

communities; without it, sharing experiences, expressing thoughts, and conveying emotions 

become formidable challenges; communication serves as the conduit for discussing various 

matters that affect humans, enabling them to address these issues and devise suitable 

solutions to enhance their daily lives; furthermore, communication plays a pivotal role in an 

individual's mental well-being [6]. Individuals with hearing impairments face challenges in 

communicating with others because they are required to acquire SL skills, which serve as 

their primary means of interacting with the community; the effectiveness of image-based 

solutions for this issue relies heavily on the quality of segmentation and the selection of 

features that accurately represent the critical visual characteristics of SL gestures [7]. 

SL is the predominant communication mode for individuals with hearing impairments. To 

facilitate communication with these individuals, it is essential for those who are not hearing 

impaired to have the ability to understand and recognise SL. Consequently, there is a need 

to implement a SLR system to aid individuals with hearing impairments by creating a deep 

learning real-time recognition model to convert the SL to text to fill up the gap between deaf 

people and hearing people, that is what we will discuss in the proposal. 
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2. RELATED RESEARCH REVIEW

2.1 ARABIC SIGN LANGUAGE (ARSL) 

Arabic is the sixth spoken language with more than 274 million  [8], as shown in Figure 2.1. 

The Arabic language is renowned for its extensive vocabulary and abundance of synonyms 

for individual words. Conversely, ArSL possesses a more limited vocabulary. As a result, 

SL interpreters frequently omit specific words, prefixes, and suffixes from Arabic sentences. 

This selective translation approach focuses solely on conveying the essential elements of a 

sentence, ensuring that the intended meaning is effectively communicated to the target 

audience [9]. Arabic is a prevalent language throughout the Middle East, and ArSL exhibits 

distinct variations, each corresponding to a specific country in the region. 

Figure 2.1: The Most Spoken Language in The World. 

SL comprises diverse visual cues extending beyond hand and finger gestures, incorporating 

eye movements, facial expressions, lip movements, eyebrows, and other non-manual 

markers. Facial expressions are crucial in effectively communicating subtle messages [10]. 

Despite being commonly perceived as more formal, SL could convey animated and 

expressive communication, integrating life with artistic essence using hand movements, 

body language, and facial expressions. In contrast to conventional spoken language, SL 

showcases its distinct creative and refined attributes [10]. The publication of the first 
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segment of the unified dictionary of ArSL was achieved in 1999 through the collaboration 

of The League of Arab States (LAS) and the Arab League Educational, Cultural and 

Scientific Organization (ALECSO). The project aimed to establish a standardised version of 

ArSL. In 2007 the second dictionary segment was published [11]. Deaf individuals living in 

Arabic countries experience plenty of challenges due to the limited availability of services 

tailored to their needs. These challenges manifest in several forms, including limited access 

to essential information and educational opportunities, difficulties communicating with the 

hearing community, and limited participation in community events [3]. 

2.2 ARABIC SIGN LANGUAGE RECOGNITION SYSTEM 

Sign Language Recognition (SLR) models can be broadly classified into two main 

categories: vision-based techniques and sensor glove-based approaches [12]. Sensor glove-

based approaches refer to a technique that requires direct physical interaction between sensor 

devices and users. This approach often involves using instrumented gloves with various 

sensors such as electromyography, inertial measurements, or electromagnetic sensors [12]. 

These sensors are utilised to capture data related to finger positions, flexion, direction, or 

angles during the execution of SL gestures; in contrast, the vision-based approach is 

dependent on data obtained by streams life or photos acquired by a camera as the input for 

the system [12]. The preference towards vision-based methodologies often stems from the 

obvious advantage of not requiring specialised gloves or supplementary equipment beyond 

the camera for the recognition procedure [12]. Coloured gloves were utilised in specific 

vision-based methodologies to streamline the process of hand segmentation. However, 

vision-based approaches face notable problems, including the impact of elements such as 

lighting conditions, noise, differences in perspective, and complex backgrounds on the 

accuracy of the results[12]. The field of hand gesture recognition has garnered significant 

interest from many scholars, mostly because of its extensive array of potential uses, 

encompassing fields such as robotics, gaming, virtual reality, SL, and human-computer 

interaction [13]. SL, a systematised that mainly relies on manual gestures, is considered the 

most efficient mode of communication for those with hearing difficulties. The effective 

recognition of dynamic, isolated SL motions requires dealing with three primary challenges: 

hand segmentation, encoding of hand shape information, and recognising gesture sequences 

[13]. Traditional approaches to SL identification often utilise colour-based algorithms to 
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segment the hand, manually engineered techniques to extract hand shape data and the 

application of Hidden Markov Models (HMM) for sequence recognition [13]. 

2.2.1 Vision-Based Recognition (VBR) and Sensor-Based Recognition (SBR) 

The VBR strategy is more commonly utilised in ArSLR than the SBR approach. 

Furthermore, numerous study endeavours have attempted to explore how to recognise the 

Arabic alphabet and isolated words in SL, compared to comparing continuous SLR in Arabic 

[14]. The illustration is shown in Figure 2.1. 

Figure 2.2: The Categorization of Approaches for Recognizing ArSL [15]. 

2.2.2 Static Gestures and Dynamic Gestures 

The exact positioning and alignment of the hands are crucial factors in the refinement of 

static gestures, which refer to the many hands poses and postures, and dynamic gestures, 

which involve hand movements such as waving within a defined space and time, all achieved 

without any physical movement. Moreover, static gestures can involve a solitary hand 

position without associated bodily movement [16]. Static gestures involve the utilisation of 

one or more frames of signals as input, while dynamic gestures operate by utilising a 

continuous sequence of frames extracted from a video. The interpretation of static gestures 

primarily relies on the angular orientation and finger form, with the hand remaining 

immobile throughout the whole duration of the motion, as shown in Figure 2.3; on the other 

hand, dynamic hand gestures exhibit continuous movement of the hand's position, with their 

significance conveyed through a series of distinct phases such as the stroke phase, retraction, 
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and preparation; each of these phases is characterised by unique movements that occur over 

some time [17]. 

Figure 2.3: Example of Static and Dynamic Gesture [15]. 

Various properties, including orientations, finger shape, flex angles, relative location to the 

body, and contextual surrounds, can characterise static gestures. On the other hand, dynamic 

gestures exhibit distinguishing attributes such as orientations, finger configuration, flexion 

angles, hand paths, hand orientations, motion velocity and direction, and scale [18]. 

Accurately recognising gestures in ArSL involves four main phases. The four processes 

involved in this procedure are 1) data collecting, 2) pre-processing and segmentation, 3) 

feature extraction, and 4) classification. The phases are essential components of both the 

conventional SLR and Automatic Sign Language Recognition (ASLR) models [19]. In the 

first step, an appropriate input device is employed to capture the image of the hand; following 

this, the image is subjected to a segmentation process to ascertain the precise position of the 

hand with the adjacent body components while being distinguished from the background; 

the location image is after that subjected to several processing steps aimed at noise reduction, 

contour identification, and model generation [19]. classification: re-processing of the photos 

and movements, the subsequent phase involves feature extraction; this step entails the 

extraction of data of the shape, position, orientation, movements, and hand placements for 

the classification; after doing analysis and employing modelling techniques, it has been 

determined that the acquired images can be classified as appropriate gestures; SLR can be 

classified into three distinct levels within a broader framework; these levels comprise the 

recognition of SL alphabets, isolated words, and continuous sentences [19]. 
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There are two primary classifications for SLR systems: isolated and continuous. In the 

context of isolated SLR, it is standard procedure to interpret each image as a representation 

of a unique letter of the alphabet, a numerical value, or a distinct motion. In contrast, 

continuous SLR is specifically developed to enable uninterrupted and continuous signing, 

and it provides the 999capability to identify and translate entire sentences accurately [20]. SLR 

classification employs a range of methodologies, including Hidden Markov Models (HMM), 

CNN, and Artificial Neural Networks (ANN) [20].  

2.3 COMPUTER VISION TECHNIQUES 

2.3.1 Deep Learning (DL) 

Deep learning is a branch of machine learning distinguished by implementing neural 

networks consisting of three or more layers. The objective of these neural networks is to 

emulate the cognitive processes and activities observed in the human brain, hence facilitating 

their ability to acquire and enhance their capabilities through exposure to vast amounts of 

data [21], [22]. Although a single-layer neural network can reach a basic level of predictive 

capability, the potential of deep learning networks is greatly enhanced by their increased 

depth [22]. Deep learning encompasses a wide array of applications in artificial intelligence, 

facilitating the enhancement of automation and the accomplishment of intricate analytical 

tasks without requiring direct human involvement. In addition to implementing sophisticated 

technologies such as autonomous vehicles, deep learning methodologies are also widely 

employed in diverse services and applications, including mobile device digital assistants, 

voice-controlled devices, and the identification of credit card fraud, among other pragmatic 

applications  [22]. 

The comparative analysis of the efficacy of CNN, Restricted Boltzmann Machines (RBMs), 

Autoencoders, and Sparse Coding in computer vision (CV) tasks, it was finally determined 

that CNNs exhibited the highest level of suitability as an architectural choice [23]. 

Nevertheless, within that specific timeframe, significant obstacles arose because of 

constraints in accuracy and the dimensions of the models and the hurdles encountered 

encompassed several aspects: firstly, the absence of comprehensive understanding of the 

superior performance of specific architectures; secondly, the limitations imposed by training 

with a restricted dataset; thirdly, the complexities associated with attaining real-time 
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applications; and finally, the imperative need for more robust models [23]. The study [23] 

investigates the latest deep learning (DL) developments and examines eight emerging 

techniques established as fundamental models in different computer vision (CV) application 

fields. The broad range of deep learning applications can be categorised into four main use 

cases: recognition, visual tracking, semantic segmentation, and image restoration, as shown 

in Figure 2.4.  

Figure 2.4: CNN Basic Models and Derived Models [23]. 

2.3.2 Convolutional Neural Network (CNN) 

The CNN deep learning methodology extensively employed to tackle complex problems, 

demonstrating superior performance compared to traditional machine learning approaches 

[24]. CNNs present a viable alternative methodology for the autonomous acquisition of 

domain-specific features, so as a result, this unique approach has triggered a reassessment 

of all aspects within the wider domain of computer vision [24]. CNNs have gained 

prominence as major deep learning methodologies following their remarkable performance 
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in the ImageNet competition, and Image classification is considered one of the crucial 

domains in the realm of computer vision. The CNN, also known as ConvNet, is characterised 

by its deep feed-forward architecture and demonstrates exceptional generalisation skills, 

surpassing networks that utilise fully connected layers [26]. CNNs are designed using the 

underlying concept of hierarchical feature identification, drawing inspiration from biological 

principles [27]. They demonstrate exceptional proficiency in acquiring complex conceptual 

attributes and identifying various entities [24]. There are several compelling justifications 

for adopting CNN over alternative conventional methods. The primary benefit of CNN is in 

their utilisation of weight sharing, a technique that effectively decreases the parameters that 

need to be trained, and this reduction in parameters leads to 

improved generalisation capabilities of the network [28].  

decreases the parameters enables CNN to undergo effective training while mitigating the 

risk of overfitting [29]. The architecture employed by CNN for image classification 

encompasses convolutional layers, pooling layers, and fully connected layers. The 

convolutional layers of a neural network employ several kernels to conduct convolutions on 

the entire picture, resulting in the creation of intermediate feature maps that possess a wide 

range of distinct features. Pooling layers are utilized in CNNs to decrease the dimensions of 

feature maps, hence simplifying the data representation. On the other hand, fully connected 

layers, positioned at the end of the CNN architecture, function as a classifier. The interwoven 

layers that are formed as a result facilitate efficient classification of images [23]. The 

architecture of the CNN is illustrated in Figures 2.5. 

Figure 2.5: CNN Architecture for Image Classification [23]. 
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a. Convolutional Layers: Structure Explanation 

i.  Convolutional Layer 

The procedure begins by feeding an image to the initial layer and generating an output with 

a predicted class. This prediction is made based on the analysis of features retrieved from 

the image [30]. A singular neuron forms connections within the subsequent layer with a 

specific selection of neurons in the preceding layer; this localised connecter is commonly 

called the "receptive field" [26]. Utilising the receptive field allows for extracting local 

details from the input image [31]. Each neuron's receptive field, inked to a distinct area in 

the preceding layer, constitutes a weight vector that remains constant across all sites inside 

the plane [32]. In this context, the term "plane" pertains to the neurons in the subsequent 

layer. Sharing identical weights among neurons within the same plane enables them to 

recognize comparable characteristics at distinct positions within the supplied data [33]. The 

visual representation of this concept is illustrated in Figure 2.6. 

 

Figure 2.6: Receptive Neuron Field in The Next Layer [24]. 

The weight vector, a filter or kernel, traverses the input vector to generate the feature map 

[34]. The function of moving the filter in horizontal and vertical directions is called the 

convolution process [24]. Various characteristics are Based on the provided picture inside a 

singular layer, creating filters and N feature maps [33]. Each of these feature maps 

represents unique and different features. Utilising the local receptive field results in a 

notable reduction in trainable parameters [35]. The computation of the output value aij in 

the succeeding layer at a certain place (i, j) is determined by executing the convolution.  
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operation, utilising the formula specified in reference [36], as depicted in equation 2.1. 

In the provided context, X denotes the input supplied to the layer, W stands for the filter or 

kernel traversing the input, b represents the bias term, signifies the convolution operation, 

and σ indicates the non-linear element incorporated within the network [24]. 

ii. Pooling Layer

Once a particular characteristic has been determined, the exact positioning of this 

characteristic becomes less crucial [31]. Consequently, following the convolutional layer, it 

is customary to include a pooling or sub-sampling layer [32]. One of the main advantages of 

using the pooling technique is the significant decrease in the number of trainable parameters 

and the incorporation of translation invariance [35]. The pooling procedure is performed by 

selecting a window and applying a pooling function to the input items within that window 

[24], as depicted in Figure 2.7. 

Figure 2.7: The Pooling Procedure Is Performed by Picking A 2 X 2 Window [24]. 

The pooling operation creates an additional output vector [24]. Other pooling strategies can 

be utilised, such as average pooling and max pooling, and among these methods, max 

pooling is commonly preferred due to its significant reduction in map size [34]. When 

𝑎𝑖𝑗= 𝜎((𝑊∗𝑋)𝑖𝑗+𝑏) (2.1) 
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calculating mistakes, it is crucial to acknowledge that the error is not communicated back 

to the successful group in max-pooling, as it does not engage in the forward flow [24]. 

iii. Fully Connected Layer

The fully connected layer, like conventional models, accepts the output generated by the first 

convolution and pooling procedures. The computation entails performing a dot product 

operation between the weight vector and the input vector [35]. Gradient descent, sometimes 

referred to as batch mode learning or an offline technique, aims to minimize the cost function 

by estimating costs throughout the complete training dataset. The aforementioned 

methodology involves the adjustment of parameters after the completion of dataset 

processing within a single period. Although this approach is successful in achieving global 

minima, it results in extended training periods when dealing with huge datasets. To address 

this issue, the introduction of stochastic gradient descent emerged as an alternate method for 

minimizing the cost function. 

iv. Activation Function

Using the Rectified Linear Unit (ReLU) has demonstrated more benefits than its predecessor, 

primarily attributed to two crucial features. To begin with, computing the partial derivative 

of the ReLU function is quite simple [35]. Furthermore, when considering the importance of 

training time, the non-saturating non-linearities denoted by 𝑓𝑥 = 𝑚𝑎𝑥 (0, 𝑋), such as ReLU, 

exhibit superior performance in terms of speed compared to saturating non-linearities like 

the sigmoid function, denoted by 𝑓(𝑥) = (1 + 𝑒 − 𝑥 − 1) [29]. Thirdly, the ReLU serves to 

mitigate the issue of vanishing gradients; however, the efficacy of the ReLU reduces in 

situations when a significant gradient propagates across the neural network, resulting in the 

phenomenon known as Dying ReLU, wherein neurons fail to activate. One potential 

approach to address this concern is the utilisation of the Leaky ReLU activation function 

[24]. The punctured ReLU operates in the following manner: for values of x > 0, the 

activation function is defined as f(x) = 𝑥; however, for values of x < 0, the activation 

function is defined as αx, where α denotes a tiny constant [24]. 
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b. Common CNN Architectures

i. LeNet Architecture

Multi-layer networks demonstrate high suitability to the picture identification tasks 

according to the ability learn from intricate and high-dimensional input [24]. The LeNet 

architecture, introduced in 1998 by [31], is an architectural design that incorporates a dataset 

[37] and is briefly described in the subsequent paragraph. The architecture of LeNet5, as

depicted in Figure 2.8, comprises eight layers, encompassing five convolutional layers and 

three fully linked layers, and each component within a two-dimensional space possesses a 

total of 25 distinct inputs [24]. The units within the initial hidden layer get input from a 5x5 

region corresponding to a subset of the complete image; hence, a limited segment of the 

initial picture is conveyed to the initial hidden layer, and specific input region denoted as the 

unit's receptive field. All units within a plane possess an identical weight vector, and the 

result of a unit is saved at an identical index within the feature map [24]. 

Figure 2.8: The Architecture of Lenet-5, Is Characterized by Distinct Feature Maps Represented 

by Each Box [31]. 

Adjacent units in the previous layer have an impact on neighbouring units in the feature map, 

resulting in the formation of overlapping receptive fields. The first convolutional layer, as 

seen in Figure 2.8, utilizes a 5x5 area to produce a variety of feature maps using horizontal 

shifting, hence facilitating various feature extraction [24]. CNNs have the capacity to 

preserve the stability of feature maps even in the face of tiny alterations in the input. This 

characteristic allows CNNs to prioritize the overall existence of features rather than their 
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precise location, which can result in a reduction in accuracy during the process of 

subsampling. The second layer, seen in Figure 2.8, illustrates the process of subsampling, 

which leads to the generation of feature maps equal in number to those produced by 

convolution. The subsampling layer employs a 2x2 area to compute the mean of four input 

values. This mean is then multiplied by a coefficient that can be adjusted by training, 

followed by the addition of a trainable bias. The resulting value is subjected to a sigmoid 

function and thereafter propagated through hierarchical layers. The procedure involves the 

augmentation of feature maps while simultaneously reducing spatial resolution, a process 

that is enabled by the utilization of the backpropagation algorithm for the acquisition of 

knowledge [24]. 

ii. AlexNet Architecture

Figure 2.9 briefly summarises the modified iteration of the LeNet architecture, commonly 

referred to as AlexNet, as originally presented by reference [29].The structure of AlexNet 

comprises five convolutional layers and three fully connected layers [24]. The resulting 

outputs are further fed into a SoftMax layer with 1000 nodes, aiming to classify 1.2 million 

high-resolution photo datasets into 1000 unique categories. 

Figure 2.9: AlexNet Architecture [38]. 

To improve the network's speed training, the utilisation of non-saturating neurons is 

combined with the utilisation of efficient GPUs. To facilitate the classification of objects 
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within an extensive dataset comprising millions of photos, utilising a substantial network 

becomes imperative [24]. Nevertheless, this phenomenon might give rise to a significant 

need for weight training, perhaps resulting in overfitting concerns. To address this difficulty, 

the dropout approach was implemented; this strategy entails the temporary inactivation of 

neurons with a probability of 0.5 throughout both the forward and backward propagation 

stages, effectively attenuating their activity [24]. The neurons that rely on these attenuated 

neurons are motivated to acquire more resilient characteristics autonomously, thereby 

substantially reducing overfitting. It is important to acknowledge that utilising the dropout 

approach effectively results in a twofold increase in the number of iterations necessary for 

achieving convergence. In network training, a pair of GTX 580 3GB GPUs is employed, 

with the normal duration of the operation ranging from five to six days. An important 

characteristic of this architectural design is the integration of the ReLU non-linearity into 

the convolutional neural network, significantly improving the convergence rate [38]. 

iii. GoogleNet Architecture

GoogleNet model and originally proposed by [39], developed to design a more economical 

model that could effectively minimise power consumption, the number of trainable 

parameters, and memory utilisation. This model led to a significant reduction in the overall 

count of trainable parameters in the neural network. The overarching structure can be briefly 

described as follows: it efficiently utilises 12 million fewer parameters compared to the 

model put forward by [29]. The primary goal of this structure was to construct a network 

that possesses enhanced precision in object recognition within photographs; one potential 

method for achieving this objective is augmenting the network's dimensions and 

incorporating additional layers [24]. However, a significant limitation of this strategy is the 

possibility of an escalated parameter count, which may result in the issue of overfitting. 

A further obvious limitation emerges when the quantity of filters is augmented, as this leads 

to elevated computational demands and, consequently, heightened overhead; to tackle this 

matter, a potential resolution has been put up which entails the utilisation of sparse matrices 

[24]. In this approach, units that exhibit a high degree of correlation are grouped in the 

preceding layer, thereby furnishing input to the subsequent layer. As the reference outlines, 

this technique aims to build an ideal network topology [39]. It is important to mention that 



16 

non-uniform sparse matrices can also be utilised. However, despite their potential to reduce 

calculations by a significant factor of up to 100, the issue of cache misses remains an 

overhead [24]. Despite their ability to enhance computational speed, the utilisation of 

extensively optimised numerical libraries fails to alleviate this concern. Hence, the 

prevailing approach in the field mostly depends on using uniform sparse matrices [24]. 

2.3.3 Object Detection 

The human beings possess limited capabilities when it comes to effectively processing an 

extensive volume of visual input; as a result, there is an increasing demand for automated 

handling of this data through the utilisation of computers to tackle visual obstacles on a wide 

scale [40]. As the level of comprehension about image processing technology advances, it 

becomes increasingly important to possess an in-depth knowledge of images and the 

accurate detection of objects inside them [41]. There has been a shift in people's interests 

from basic picture categorisation to a more exact determination of the semantic category of 

items inside an image and the identification of their distinctive locations [42]. As a result, 

there has been considerable focus on object-detecting technology [43]. Object detection 

technology uses concepts and techniques derived from image processing and pattern 

recognition to discover and identify items within an image [40]. This involves determining 

the semantic categories of these objects and accurately determining their precise locations 

[44]. Object detection is a significant computer vision task that involves the identification of 

instances of Object categories inside digital images, such as persons, animals, or vehicles 

[45]. Object detection is an important field within computer vision important in scientific 

research and practical industrial applications. Particularly notable cases can be found in 

Figure 2.10. 
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Figure 2.10: Object Detection Can Be Classified into Two Main Categories: General Object 

Detection and Specialized Object Detection [46]. 

The primary objective of object detection is to create computational models and 

methodologies that deliver fundamental information necessary for computer vision 

applications, specifically the localization of objects. Object detection is closely related to 

object classification, semantic segmentation, and instance segmentation. as depicted in 

Figure 2.11. 

Figure 2.11: The Actual Applying of Different Image Techniques [46]. 

The primary criteria in object detection are cantered on accuracy, which encompasses both 

classification and localization accuracy, as well as speed [45]. This resulted in astonishing 
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discoveries and has made object detection a study area of considerable interest, attracting 

unprecedented attention. Object detection has become prevalent in various practical 

domains, including autonomous driving, robot vision, and video surveillance. Employing 

computer technology to identify objects in real-world scenarios automatically presents 

significant challenges [40]. Object detection can be considerably impacted by multiple 

factors, including but not limited to complicated backgrounds, noise interference, occlusion, 

low-resolution images, and changes in scale and orientation [40]. Conventional approaches 

for object detection heavily depend on manually designed characteristics, rendering them 

vulnerable to challenges such as variations in lighting conditions and limited ability to 

generalise effectively. It is essential to mention a very slow advancement in object detection 

between 2010 and 2012, as evidenced by the observations made in the PASCAL VOC 

challenge [47]. Only minimal enhancements were accomplished during this period using 

ensemble systems and minor modifications to conventional methodologies [48]. In 

consideration of these challenges. The advent of Convolutional Neural Networks (CNN) 

[49], a very effective deep learning architecture [50], has brought about a significant 

transformation in the field of object detection through its ability to facilitate hierarchical 

feature learning. The organisers of the ImageNet competition introduced a task in 2013 that 

focused on object detection, and this job required participants to recognise and classify 200 

different items within a dataset consisting of 40,000 photos [40]. 

Nevertheless, the prevailing methodology depended on manually engineered characteristics, 

leading to a mean Average Precision (mAP) of 22.581%. Following this, the integration of 

deep learning and proposal techniques, such as R-CNN, resulted in a notable enhancement, 

attaining a considerable 43.933% mean Average Precision (mAP) in the ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC) [48]. Object detection has experienced 

significant advancements, marked by the widespread adoption of deep learning 

methodologies. Figure 2.12 presents a visual contrast between conventional and object 

detection techniques that rely on Deep Convolutional Neural Networks (DCNNs). The 

constant improvement of detection accuracy is essential requirements of diverse and intricate 

scenarios. Furthermore, enhancements have been made to the detection speed to meet the 

requirements of real-time system applications, maintaining high accuracy [46]. Hence, it is 

imperative to consider the balance between precision and efficiency in forthcoming scholarly 
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investigations [51]. The consideration of the trade-off between accuracy and speed is crucial 

for achieving state-of-the-art results [46]. 

Figure 2.12: Classical, Traditional Object Detection and Object Detection Based on DCNNs [46]. 

2.3.4  YOLO Method 

The application of real-time object detection has become increasingly crucial in various 

domains, such as autonomous cars, robots, video surveillance, and augmented reality [52]. 

The YOLO framework has garnered recognition in object detection due to its notable blend 

of speed and accuracy. Ts framework enables efficient and reliable identification of objects 

within images [52]. The YOLO family of algorithms has experienced multiple revisions 

since its inception, with each subsequent version making advancements over previous 

iterations to address constraints and boost overall performance (see Figure 2.13) [52]. 

Figure 2.13: A Timeline of YOLO Versions [52]. 
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The YOLO method and its subsequent architectural iterations have demonstrated notable 

advancements in detection accuracy, occasionally surpassing that of two-stage detectors. 

The broad acceptance of YOLOs in numerous applications can be attributed mostly to their 

higher inference speeds, as opposed to their exclusive emphasis on detection accuracy [52]. 

For example, whereas YOLO achieves a detection accuracy of 63.4% and Fast-RCNN 

achieves 70%, the inference time of YOLO is nearly 300 times faster; moreover, the use of 

YOLOs has resulted in their effective incorporation into diverse applications for object 

detection and recognition in varied scenarios, surpassing the performance of the two-stage 

detectors [52]. 

a. YOLO Applications

The YOLO algorithm has proven instrumental in real-time object detection, particularly in 

autonomous driving systems, where it efficiently identifies and tracks various objects such 

as automobiles, pedestrians, bicycles, and obstacles. Its applications extend to surveillance, 

sports analysis, and human-computer interaction. In agriculture, YOLO models contribute 

to crop detection, pest identification, and disease diagnosis, advancing precision agricultural 

techniques. The algorithm finds utility in biometric applications for face detection, 

enhancing security measures and facial recognition systems. In the medical field, YOLO is 

applied to cancer diagnosis, skin segmentation, and pill identification, leading to improved 

diagnostic accuracy, and streamlined treatment procedures. Additionally, YOLO plays a role 

in remote sensing for tasks like land use mapping and environmental monitoring. It has been 

integrated into security systems for real-time monitoring, compliance with social distance 

guidelines, and recognizing individuals wearing face masks. Other applications include 

surface inspection for quality control in manufacturing, traffic management for license plate 

detection and traffic sign recognition, wildlife detection for biodiversity preservation, and 

utilization in robotics and object detection using drone imagery. All can be evidence in [53]– 

[68]. 

b. YOLO Model Evaluation

Object identification models are often evaluated using Average Precision (AP), commonly 

known as Mean Average Precision (mAP). The mean accuracy, computed across all 

categories, provides a single outcome for model comparison. The AP metric, calculated 
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through precision-recall metrics and the IoU method, handles multiple object categories. The 

mAP can be computed using the accompanying mathematical expression: 

i. Precision and recall are vital metrics for evaluating a model's performance. Precision gauges

the accuracy of positive predictions, while recall quantifies the proportion of actual positives

identified by the model. Often, there's a trade-off between precision and recall, where an

increase in identified items (higher recall) may lead to more false positives (lower precision).

The AP metric captures this trade-off through the precision-recall curve, illustrating the

relationship at various confidence thresholds. The precision equation can be expressed as:

The recall value may be determined using the following equation: 

ii. Multiple Object Categories The challenge of object detection models involves recognising

and localising multiple categories of objects in an image. The difficulty is addressed by the

AP measure, which calculates the average accuracy (AP) for each category and then

computes the mean average precision by averaging these AP scores across all categories

[52]. This methodology guarantees that the performance of the model is assessed

individually for each area, this analysis aims to offer a thorough evaluation of the model's

overall performance. efficacy [52].

iii. Intersection over Union (IoU) Object detection, aiming for accurate object localization

through predicted bounding boxes, is commonly evaluated using the IoU metric. The AP
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(2.3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(2.4) 



22 

metric employs IoU to assess the accuracy of predicted bounding boxes, quantifying the 

overlap between predicted and ground truth bounding boxes in relation to their combined 

area. The COCO benchmark assesses model performance using various IoU criteria, 

evaluating object localization accuracy at different levels [52]. (see Figure 2.14) 

Figure 2.14: The Computation of IoU Entails the Division of The Intersection of Two Boxes By 

Their Union. The Provided Illustrations Showcase Three Distinct IoU Values, Each Corresponding 

to Various Bounding Box Positions [52]. 

c. YOLO Architectures

i. YOLO: You Only Look Once

The YOLO (You Only Look Once) algorithm was introduced by Joseph Redmon et al. in 

their article at the Conference on Computer Vision and Pattern Recognition (CVPR) in 2016 

[69]. The YOLO algorithm is a notable advance in real-time object detection since it has 

fundamentally transformed the traditional methodology [52]. The tagline "You Only Look 

Once" appropriately signifies its pioneering capability to execute object detection within 

only one iteration of the network. This approach deviates from prior methodologies that 

either utilised sliding windows in conjunction with a classifier, requiring multiple iterations 

for each image, or employed advanced algorithms that divided the process into two separate 

stages [52]. The previous methodologies entailed an initial stage of finding prospective 

regions containing objects or region proposals, followed by a subsequent stage of applying 
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a classifier. In contrast, the YOLO model employed a streamlined methodology by 

exclusively employing regression techniques to predict detection outcomes in contrast to 

Fast R-CNN [70], The approach included two separate outputs, with one output used for 

estimating classification probabilities and the other for performing box coordinate 

regression. The YOLO model significantly advanced computer vision and object detection 

by offering a novel methodology that enables the simultaneous detection of all bounding 

boxes. The objective was accomplished by partitioning the input image into a grid with 

dimensions S × S [52]. Subsequently, forecasts were generated for B bounding boxes 

belonging to the same class within each grid element. 

Furthermore, confidence ratings are assigned to C distinct classes, and each bounding box 

prediction includes Pc (confidence score), bx, by (centre coordinates), bh, and bw (height 

and width). The YOLO algorithm produces output dimensions of S × S × (B × 5 + C), which 

can be processed with non-maximum suppression (NMS) to eliminate redundant detections 

[52]. Figure 2.15 illustrates a simplified output vector. YOLOv1 achieved an average 

accuracy (AP) of 63.4 on the PASCAL VOC2007 dataset [52]. 

Figure 2.15: The Provided Diagram Depicts a Rudimentary YOLO Model That Showcases a Grid 

Structure of Dimensions Three-By-Three. This Model Is Designed to Classify Objects into Three 

Distinct Classes. Each Grid Element in The Diagram Is Associated with A Single Class Prediction, 

Resulting in A Vector Including Eight Values [52]. 

The YOLOv1 architecture consists of 24 convolutional layers followed by two fully 

connected layers, responsible for predicting bounding box coordinates and probabilities. 
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Leaky ReLU activations are used in all layers except the final one, which employs a linear 

activation function. Influenced by GoogLeNet and Network models, the YOLO algorithm 

integrates 1×1 convolutional layers to reduce feature map quantity while maintaining a 

reasonably low parameter count. A streamlined version, Fast YOLO, features nine 

convolutional layers. 

ii. YOLOv2

The YOLOv2 model, presented by [71], introduced several notable improvements compared 

to the initial YOLO model. The enhancements were implemented to preserve its velocity 

while substantially enhancing its functionalities, enabling it to identify a wider spectrum of 

9000 classifications [52]. The YOLOv2 model has introduced some significant 

enhancements in architecture and training methodologies. An important improvement was 

the integration of batch normalization on every convolutional layer, which improved the 

convergence rate and served as a regularization method to address the overfitting issue[52]. 

To address the requirement of managing high-quality images, the model performed fine-

tuning with a resolution of 448 × 448, and this represents a significant deviation from the 

previous resolution of 224 × 224 that was employed during the pre-training phase on 

ImageNet [52]. The alteration resulted in a notable enhancement in the network's efficiency 

when handling inputs of greater resolution. Moreover, YOLOv2 moved to a convolutional 

architecture, eliminating dense layers, and adopting a more streamlined and efficient design 

[52]. Incorporating anchor boxes played a crucial role in accurately estimating bounding 

boxes by introducing predetermined shapes for object alignment, as shown in Figure 2.16. 

The authors chose the anchor box priors through the utilisation of dimension clustering. This 

involved applying k-means clustering to the training bounding boxes to identify the most 

suitable priors. The YOLOv2 model brought about a significant advancement in location 

prediction by directly calculating the coordinates of bounding boxes with grid cells; this was 

achieved by training the network to predict five boxes for every cell, with each box being 

characterized by five values as shown in Figure 2.17 [52]. 
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Figure 2.16: Anchor Boxes: For Every Grid Cell, Yolov2 Creates Numerous Anchor Boxes [52]. 

Figure 2.17:  Bounding Box Prediction: To forecast bounding boxes, use the predicted Tx and Ty 

values. These values run through a sigmoid function and are offset by the grid cell's position (Cx, 

Cy). This yields the box's centre coordinates. The previous width Pw is used to calculate the height 

and breadth of the final box [52]. 

Furthermore, the model preserved more detailed features and incorporated a passthrough 

layer to concatenate feature maps efficiently, ensuring the preservation of valuable 

information across the network's structure [52]. Incorporating multi-scale training was 

critical in creating YOLOv2, as it facilitated the model's ability to cope with a wide range of 

input sizes, from 320 × 320 to 608 × 608. This method has significantly enhanced the 

robustness and versatility of YOLOv2 in various input conditions, and the integration of 
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architectural enhancements and training methodologies in YOLOv2 has resulted in a notable 

advancement in object detection within the domain of computer vision [52]. This progress 

holds great potential for achieving enhanced accuracy and efficiency in the detection and 

localization of objects. The architecture of YOLOv2 is structured around the Darknet-19 

backbone, comprising 19 convolutional layers and five max-pooling layers. like the 

YOLOv1 model, this design is influenced by the Network in Network concept. This 

technique, which utilises 1 × 1 convolutions within the 3 × 3 convolutions to decrease the 

parameters. Moreover, as previously stated, batch normalization is employed to manage and 

facilitate the convergence process. The predictions generated by YOLOv2 on the PASCAL 

VOC dataset consist of five bounding boxes, each characterized by five numerical values, 

and contain 20 distinct classes [52]. In the object classification component, the final four 

convolutional layers are substituted by a solitary convolutional layer with 1000 filters. 

Subsequently, a global average pooling layer is applied, followed by a SoftMax operation. 

As a result of these improvements, YOLOv2 achieved an average precision (mean average 

precision) of 78.6% on the PASCAL VOC 2007 dataset, representing a substantial 

enhancement compared to the 63.4% achieved by YOLOv1 [52]. 

 

iii.  YOLOv3 

The YOLOv3 model, developed by Joseph Redmon and Ali Farhadi in 2018, incorporated 

significant revisions and improved architecture to attain a cutting-edge performance while 

preserving its ability to operate in real-time; the modifications were implemented in contrast 

to YOLOv2 [52]. YOLOv3 has various substantial improvements and modifications. 

Initially, the network preserves the forecast of four coordinates (tx, ty, tw, th) for every 

bounding box, like the approach employed in YOLOv2 [52]. However, the current model 

also utilises logistic regression to predict a score for each bounding box without considering 

the presence of an object [52]. The score assigned to the anchor box with the maximum 

overlap with the ground truth is 1, differentiating it from the remaining anchor boxes 

assigned a score of 0 [52]. YOLOv3 employs a distinctive approach by assigning a solitary 

anchor box exclusively to each ground truth item. When an object is not assigned any anchor 

box, YOLOv3 experiences a classification loss without any localization or confidence loss 

[52]. This contrasts the methodology employed by Faster R-CNN [72]. In addition, YOLOv3 
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undergoes a movement in its approach to classification, moving from the utilisation of 

SoftMax to the adoption of binary cross-entropy; this shift allows for the training of separate 

logistic classifiers, thereby framing the problem as one of multilabel classification [52]. This 

modification enables greater adaptability and accuracy in class projections. The architecture 

of YOLOv3 also includes a feature extractor that is more comprehensive, including 53 

convolutional layers with residual connections [52]. In addition, the researchers have 

incorporated a modified spatial pyramid pooling (SPP) block into the underlying 

architecture, incorporating multiple kernel sizes; this integration has resulted in an improved 

receptive field and enhanced performance, particularly in the YOLOv3-spp variant, which 

demonstrated a notable 2.7% gain in AP50 [52]. The YOLOv3 model incorporates multi-

scale predictions, like the approach used in Feature Pyramid Networks. In contrast to 

YOLOv2, YOLOv3 utilises k-means clustering to establish bounding box priors for anchor 

boxes [52]. This approach involves the utilisation of three prior boxes, each corresponding 

to a separate scale, as opposed to YOLOv2's employment of five prior boxes per cell. The 

YOLOv3 architecture includes a backbone known as Darknet-53, which has undergone 

substantial revisions. In recent advancements, stride convolutions have placed max-pooling 

layers while integrating residual connections have been introduced. Darknet-53 comprises 

53 convolutional layers; detailed information regarding this architecture can be found in 

Figure 2.18. The Darknet-53 backbone exhibits comparable Top-1 and Top-5 accuracies to 

ResNet-152 but operates at nearly double the speed [52]. 

Figure 2.18: YOLOv3 Darknet-53 Backbone [52]. 
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iv. YOLOv3 Multi-Scale

The overarching architectural framework, YOLOv3, incorporates a notable progression in 

multi-scale predictions, wherein predictions are generated at many grid sizes. This invention 

has demonstrated significant value in improving bounding box precision and enhancing all 

object recognition, addressing a notable limitation observed in prior iterations of YOLO 

[52]. The detection architecture, as depicted in Figure 2.19, functions at several scales in the 

following manner: The initial output, referred to as y1, is the output of the YOLOv2 

algorithm, which is generated based on a grid of size 13×13 [52]. The formation of the 

second output, denoted as y2, involves concatenating the output obtained after multiplying 

the output of Darknet-53 by the (Res × 4) with the output obtained after multiplying it by the 

(Res × 8). An up-sampling process is conducted before concatenation due to the varying 

sizes of the feature maps, specifically 13×13 and 26×26. In conclusion, the third output, y3, 

merges the 26×26 feature maps with the 52×52 feature maps through an additional up-

sampling procedure. The output tensor dimensions for each scale in the COCO dataset, 

which consists of 80 categories, are N×N× [3× (4+1+80)]. Here, N×N specifies the size of 

the feature map or grid cell. The numerical value "3" represents the number of boxes 

assigned to each cell, while the notation "4+1" comprises the four coordinates and the 

objectness score [52]. 

Figure 2.19: YOLOv3 Multi-Scale Detection Architecture [52] 



29 

v. YOLOv4

In April 2020, a noteworthy advancement occurred in object detection with the publication 

of a research article on YOLOv4 by [73]. This development came after two years without 

any updates to the YOLO framework [52]. At first glance, the introduction of multiple 

authors proposing a novel "official" iteration of YOLO may have appeared unconventional 

[52]. Nevertheless, YOLOv4 adhered to the fundamental principles of YOLO, which 

prioritised real-time processing, as depicted in Figure 2.20, a single-shot methodology, and 

dependency on the darknet framework. The enhancements in YOLOv4 were of such 

magnitude that the community expeditiously embraced it as the authoritative iteration of 

YOLOv4 [52]. The key modifications architecture introduced in YOLOv4 can be 

summarized as follows, CSPDarknet53-PANet-SPP, optimizing object detection by 

incorporating Bag-of-Specials (BoS). The modified Darknet-53 with cross-stage partial 

connections (CSPNet) and the Mish activation function outperformed other backbone 

topologies. The model utilizes a customized path aggregation network (PANet) with a 

modified spatial attention module (SAM) and anchors for detection, deviating from 

YOLOv3's FPN. The Bag-of-Freebies (BoF) technique enhances training methodologies 

through mosaic augmentation, Drop Block for regularization, class label smoothing, CIoU 

loss function, and Cross Mini-Batch Normalization (CmBN). Self-Adversarial Training 

(SAT) is employed to enhance the model's resilience to disturbances by manipulating input 

images. Genetic algorithms optimize hyperparameters, with a cosine annealing scheduler 

dynamically adjusting the learning rate during training, ensuring optimal performance. 

Figure 2.20: YOLOv4 Architecture [52]. 
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vi. YOLOv5

In 2020, YOLOv5, introduced by Glen Jocher [74], builds upon the advancements of 

YOLOv4 but utilizes the PyTorch framework instead of Darknet. The pre-training 

methodology involves analysing and adapting anchor boxes, leveraging a k-means function 

for initial conditions and a Genetic Evolution (GE) algorithm for refinement. YOLOv5 

adopts a modified CSPDarknet53 framework with a distinctive Stem design to minimize 

memory consumption. The architecture integrates Spatial Pyramid Pooling Fast (SPPF) for 

multi-scale feature addressing, a modified Cross Stage Partial Aggregation Network (CSP-

PAN) in the neck segment, and YOLOv3-inspired head module. The implementation 

includes augmentations like Mosaic and Mix-up, enhancing grid sensitivity for stability. 

YOLOv5 offers scaled variations (nano to extra-large) catering to diverse applications. 

YOLOv5x, optimized for superior performance, achieves 50.7% Average Precision (AP) at 

640-pixel image size and 55.8% with a 1536-pixel input, demonstrating flexibility for

different hardware and application needs. Figure 2.21 depicts the structure of YOLOv5; all 

can be evidence by [75]–[79]. 

Figure 2.21: YOLOv5 Architecture [52]. 
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vii. YOLOv6

The YOLOv6 model, presented by [80], consists of a network architecture that includes an 

efficient backbone with RepVGG or CSPStackRep blocks, a neck structure based on the 

PAN topology, and an efficient decoupled head that incorporates a hybrid-channel strategy. 

In addition, the research study presents sophisticated quantization methods that utilise post-

training quantization and channel-wise distillation. These techniques result in detectors that 

exhibit improved speed and accuracy. YOLOv6 demonstrates superior performance in 

accuracy and speed measures compared to earlier state-of-the-art models; Figure 2.22 refers 

to YOLOv6 architecture [52]. This model presents several significant advancements: the 

introduction of a unique EfficientRep backbone, which is based on RepVGG and specifically 

designed to enhance parallel processing capabilities; the use of RepBlocks or CSPStackRep 

Blocks in an improved PAN neck for larger models; and the implementation of an efficient 

decoupled head that aligns [52]. The proposed methodology utilises a Task alignment 

learning approach to assign labels, incorporates novel classification and regression losses 

such as VariFocal and SIoU/GIoU, and integrates self-distillation techniques for both 

regression and classification tasks. In addition, the system has a detection quantization 

approach that utilises RepOptimizer and channel-wise distillation techniques, substantially 

enhancing the detector's computational efficiency [52]. The researchers introduce eight 

scaled models, denoted as YOLOv6-N to YOLOv6-L6. Notably, the largest model achieves 

a remarkable average precision of 57.2% while operating at a speed of about 29 FPS on an 

NVIDIA Tesla T4. This evaluation uses the MS COCO dataset's test-dev 2017 subset [52]. 
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Figure 2.22: YOLOv6 Architecture [80]. 

viii. YOLOv7

The creators of YOLOv4 and YOLOR introduced YOLOv7 in July 2022, which 

demonstrated a noteworthy accomplishment by surpassing all current object detection 

models in speed and accuracy [81]. This achievement encompasses a wide spectrum, ranging 

from 5 to 160 frames per second; like its previous iteration, YOLOv4, this version was 

trained exclusively using the MS COCO dataset and without dependence on pre-learned 

backbones. The YOLOv7 model featured a variety of architectural enhancements and 

integrated many "bag-of-freebies" techniques to improve its accuracy while still preserving 

its efficiency in terms of inference speed; however, it should be noted that these upgrades 

resulted in a minor increase in the duration of the training process [52]. To understand its 

architectural structure comprehensively, please consult Figure 2.23. The architectural 

modifications included in YOLOv7 consist of two fundamental components; first and 

foremost, YOLOv7 presents the Extended Efficient Layer Aggregation Network (E-ELAN), 

which expands the ELAN approach [82]. The ELAN framework is designed to enhance the 

effectiveness of learning and convergence in deep models through the regulation of the 

shortest longest gradient path; YOLOv7 further advances its capabilities by introducing E-

ELAN, a specialised framework designed to accommodate models using a wide range of 

stacked computational blocks [52]. This is accomplished by reorganising and consolidating 

cardinality from separate feature groups, enhancing network learning capabilities while 
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maintaining the integrity of the original gradient route. Moreover, YOLOv7 effectively 

tackles the requirement for model scaling, particularly in the context of concatenation-based 

architectures; the utilisation of traditional scaling methods, such as depth scaling, may lead 

to an imbalance in the ratios of input and output channels inside transition layers, hence 

affecting hardware efficiency. However, YOLOv7 presents a novel scaling methodology to 

address this issue. This approach guarantees that the dimensions of model blocks, in terms 

of depth and width, are evenly scaled by a consistent factor, thus maintaining the model's 

ideal structural integrity [52]. 

Figure 2.23: YOLOv7 Architecture[83]. 
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3. METHODOLOGY

3.1 DATASET ACQUISITION 

3.1.1 Collecting Data 

The dataset collected photos and consisted of three distinct subsets, each representing the 

alphabet, numbers, and words. ArSL lacks comprehensive and up-to-date dictionaries, 

resulting in a shortage of standardized resources. This can be attributed to the fact that each 

Arab country has its distinct SL, owing to variations in Arabic dialects employed across 

these regions. Using the Classical or standard Arabic language is not prevalent in everyday 

communication or as a spoken form. Instead, it is mostly employed on television channels, 

particularly in news broadcasts, official written documents, and literary works. The use of 

ArSL is not universally consistent but exhibits variation across different countries and even 

within the same country. In the Arab region, various SL are utilized, including those 

employed in Saudi Arabia, Iraq, Morocco, and Egypt [3]. The initial release of the unified 

dictionary of ArSL in 1999, a collaborative effort by The League of Arab States (LAS) and 

the Arab League Educational, Cultural and Scientific Organization (ALECSO), aimed to 

standardize ArSL. The second dictionary segment followed in 2007. Deaf individuals in 

Arabic-speaking nations face challenges due to limited services for their community, 

requiring assistance in accessing information, education, communication with the hearing 

community, and active participation in events. The dataset used in this study aligns with the 

2007 Unified ArSL vocabulary [3]. ArSL involves two sign types, static and dynamic 

gestures; however, this dataset predominantly comprises static gestures, enabling the 

implementation of an object detection model based on single-frame photographs. The initial 

dataset was sourced from [84] and it’s available online in Kaggle [85] and includes a curated 

and annotated collection of 14,202 photos representing 32 letter signs in ArSL, as shown in 

Figure 3.1. These images exhibit diverse backgrounds and were obtained from 50 

individuals. 
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Figure 3.1: The Alphabets ArSL Dataset. 

The second dataset consists of numerical values and their corresponding static gestures, 

specifically focusing on numbers 0 to 9, as shown in Figure 3.2. This dataset was 

meticulously constructed, involving the collection of 1160 images. Four volunteers actively 

performed the gestures, following the guidelines described in the unified ArSL dictionary. 

The data collection occurred in various locations, backgrounds, and lighting conditions. 
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Figure 3.2: The Numbers 0 To 9 In the ArSL Numbers Dataset. 

The third dataset consists of 19 important words: accident, aim at, bandage, certificate, 

emergency, fixed, government, identity conformity, injury, necessary, negative outcome, no, 

plate, positive outcome, ready, slow, student, support, and true as shown in Figure 3.3. This 

dataset specifically focuses on the emergency medical station, approval and rejection 

answers, and other related words. A single hand gesture is also required for this dataset. In 

total, 1345 images were captured by four participating volunteers in different locations, 

backgrounds, and lighting conditions. The photographs were captured using the camera of a 

Realme 6.0 smartphone running on the Android 11 operating system, including a camera 

resolution of 64 megapixels. 
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Figure 3.3: The Selected Words in The ArSL Word Dataset. 

3.1.2 Augmentation and Annotation 

The process of data annotation holds significant importance in the context of object detection 

activities. Each image within the dataset was assigned a label indicating its equivalent 

representation of the Arabic alphabet, numbers, or words. The bounding box annotation 

process was conducted to determine the target object's precise location accurately. The 

bounding box surrounding the hand gesture can be determined using coordinates (x, y, h, 

w), subsequently employed to specify its width and height. The labels were stored in Txt 

files. The annotation process was conducted using Anaconda Navigator and Labelimg, as 

shown in Figure 3.4, and the augmentation was conducted using Roboflow [86]; its platform 

serves as a tool for developers and data scientists to effectively handle, preprocess, and 

enhance their image collections to train machine learning models. The utilization of image 

data in diverse machine-learning frameworks is facilitated by streamlining the preparation 

process.  
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Figure 3.4: Labelimg [87]. 

The datasets underwent a sample augmentation process, which included rotation, as shown 

in Figure 4.5 and increased photos. As a result, the numbers dataset expanded to include 

2348 images, while the words dataset now has 2116 images. The augmentation process is 

expected to enhance the detection accuracy by training the model with larger images, 

improving its precision. 

Figure 3.5: Two Images from The Number’s Dataset. 
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3.1.3 Spilt Dataset 

The training and testing procedure of YOLOv8 involves the utilization of 

image Splitting. The collection of images is partitioned into training, validation, and test sets 

randomly. These sets comprise approximately 90%, 5%, and 5% of the sign data. The 

determination of these separation values was based on tests that were done. The size of the 

training set is increased to enhance the model's training process using annotated images, 

whilst the validation and test sets are exclusively used to assess the model's detection 

accuracy. The process of image splitting is conducted utilizing the Roboflow platform. As a 

result, the dataset containing numerical values has been partitioned into 2121 images for 

training, 116 images for validation, and 111 for testing. In the same way, the word dataset 

has been partitioned into 1850 photos for training, 133 images for validation, and an 

additional 133 images for testing. 

3.2 PROPOSED MODEL 

3.2.1 YOLOv8 Architecture 

In January 2023, Ultralytics, the company responsible for the advancement of YOLOv5, 

introduced YOLOv8 [88]. The YOLOv8 framework provides five variants that have been 

scaled accordingly: YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l 

(large), and YOLOv8x (extra-large). The current version of YOLO has been enhanced to 

handle a range of vision tasks, such as object identification, segmentation, pose estimation, 

tracking, and classification. As previously mentioned, YOLOv8 is an object detection 

methodology based on deep learning techniques. The architectural design of 

YOLOv8 encompasses a diverse range of components and features. Now, a shortage of 

scholarly literature on the architectural aspects of YOLOv8 exists. Consequently, our 

analysis necessitates drawing upon discerning observations to establish a comparative 

framework vis-a-vis preceding iterations of YOLO. 

a. Backbone

The Cross Stage Partial (CSP) design, which splits the feature map into two halves, is 

incorporated into the suggested model's CSPDarknet53 base architecture for feature 

extraction. While the second is added to the output of the previous segment, the first is 
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subjected to convolution operations. By reducing computational weight, this convolutional 

neural network (CNN) design improves the CNN's learning ability. To enhance gradient  

flow information, the C2f module is integrated and combined with the C3 module in the 

YOLOv8 model. As shown in Figure 3.6, the C2f module is made up of two ConvModule 

and "n" DarknetBottleNeck components connected by Split and Concat, whereas the C3 

module has three ConvModule and DarknetBottleNeck components. Conv-BN-SiLU is the 

component of each ConvModule, where "n" is the number of bottlenecks. In contrast to 

YOLOv5, our model uses the C2f module in favor of the C3 module, and for computational 

efficiency, we have fewer blocks in each stage than in YOLOv5. Furthermore, the Spatial 

Pyramid Pooling-Fast (SPPF) module to improve the current Spatial Pyramid Pooling (SPP) 

module and speed up the model's inference. 

b. Neck

Typically, networks with greater depth tend to record a wider range of feature information, 

leading to enhanced capabilities in making dense predictions. Nevertheless, it is worth noting 

that deep networks that are excessively complex can result in a decrease in the accuracy of 

object localization. Additionally, many convolution processes can potentially result in losing 

valuable information, especially when dealing with smaller objects. Hence, integrating Path 

Aggregation Network (PAN) and Feature Pyramid Network (FPN) designs are required for 

the effective integration of multi-scale data. The Neck component in our model architecture 

uses multi-scale feature fusion to combine features from different network levels, as shown 

in Figure 3.6. Because fewer convolution layers are used in the lower levels, more layers in 

the network help get information in the top layers while maintaining location details. 

Additional network layers facilitate information acquisition in the upper layers whilst 

preserving location information, attributed to utilizing fewer convolution layers in the lower 

layers. Primarily inspired by the YOLOv5 model, it is observed that the Feature Pyramid 

Network (FPN) employs an up-sampling technique from the top to the bottom to augment 

the feature information contained within the bottom feature map. Conversely, the Path 

Aggregation Network (PAN) utilizes a down-sampling approach from the bottom to the top 

to acquire additional information from the top feature map. These two feature outputs are 

merged to enhance the accuracy of predictions for images with diverse dimensions. 
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c. Head

This module predicts the class and places objects inside the image. The utilization of anchor 

boxes is employed to estimate the location of an object's location and its corresponding class 

scores. The primary neural network is trained to optimize the IoU metric, which measures 

the overlapping between the predicted and ground-truth bounding boxes. Furthermore, the 

method also integrates the non-maximum suppression (NMS) technique, eliminating 

redundant bounding boxes that overlap and guaranteeing that only the most reliable 

predictions are preserved. In contrast to the YOLOv5 model, our methodology incorporates 

a decoupled head architecture, wherein the classification and detection heads are distinct and 

independent entities. To summarize, the mask indices are used to determine the specific 

anchor scales and anchor boxes inside the resulting tensor to make predictions regarding the 

bounding boxes and confidence ratings for each object in the image. 

Figure 3.6: Detailed Illustration of Yolov8 Architecture. The Backbone, Neck, and Head Are the 

Three Parts of Our Model, And C2f, ConvModule, DarknetBottleNeck, And SPPF Are Modules 

[89]. 
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3.2.2 Training Based YOLOv8 Model 

a. Platform

In the training model, Google Colab, or Google Collaboratory, was used to train the 

YOLOv8 model on the three datasets. Google Collaboratory is a freely available Integrated 

Development Environment (IDE) provided by Google. Its primary purpose is to support and 

enhance research and educational activities in Artificial Intelligence (AI). Colab functions 

as a coding environment based on Jupyter Notebook, offering the advantage of free access 

to both the Graphics Processing Unit (GPU) and Tensor Processing Unit (TPU). The 

platform has pre-installed libraries commonly employed in deep learning research, such as 

PyTorch, TensorFlow, Keras, and OpenCV. The recognition of the computational demands 

of machine learning and deep learning algorithms, which often rely on GPU support for 

efficient processing, is acknowledged by Colab. To meet these requirements, Colab offers 

access to a cloud-based GPU, specifically the Tesla V100 and TPU (TPUv2), renowned for 

their exceptional performance, to cater to the needs of AI researchers. Our approach used 

NVIDIA A100 Tensor Core GPU; the A100 model exhibits a significant performance 

improvement, boasting up to 20 times higher capabilities than its predecessor. Additionally, 

it has the flexibility to be divided into seven separate GPU instances, allowing for dynamic 

adjustments to accommodate changing computational requirements. The A100 80GB 

introduces the highest memory bandwidth in the world, exceeding two terabytes per second 

(TB/s), enabling the efficient execution of extensive models and datasets to enhance the 

training model process to ensure the best performance and accuracy. 

b. Training

The selected YOLOv8 model will be trained using the pre-processed ArSL datasets. The 

training will involve optimizing the model's hyperparameters and refining the architecture. 

The YOLOv8 models, specifically YOLOv8n, YOLOv8s, and YOLOv8m, will undergo 

training using hyperparameters that have been derived through the utilization of a genetic 

algorithm All the datasets will train in nano, small and medium weight of the YOLOv8. To 

obtain a summary of the training hyperparameters, refer to Table 3.1. 
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Table 3.1: Empirical Hyperparameter Values for Alphabet, Words, and Numbers of Model,  

 

 

 

 

  

Model YOLOv8m YOLOv8s YOLOv8n 

Image size 640 640 640 

Batch size 32 32 32 

    epoch                                                       200 200 200 

Patience 100 100 100 

Workers 8 8 8 

Parameters  25.9 million 11.2 million 3.2 million 

Optimizer SGD SGD SGD 

Decay 0.0005 0.0005 0.0005 
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4. RESULT AND DISCUSSION

ArSLR system will be evaluated comprehensively, utilizing well-established metrics 

outlined in Section 2.3.4.2. The model's accuracy in recognizing ArSL alphabets, numbers, 

and words will be assessed using commonly used metrics such as precision, recall, mean 

Average Precision (mAP) and accuracy, F1 and FPS. Furthermore, the evaluation will 

consider real-world circumstances to gauge the actual usability and resilience of the system. 

4.1 ALPHABETS MODEL RESULTS 

The 32 classes and signs of the alphabet model achieve high accuracy in the detection, as 

shown in Table 4.1. All three models reached convergent results, but the highest result was 

for the YOLOv8m (medium) model with 98.0% Precision, 98.1% Recall and 98.9% mAP 

0.5. 

Table 4.1: The Performance of Yolov8 Models on ASL Alphabets. 

Models Precision Recall mAP 0.5 

YOLOv8n 98.00% 97.40% 98.80% 

YOLOv8s 98.10% 97.70% 98.80% 

YOLO8vm 98.00% 98.10% 98.90% 

Finally, the F1 score is calculated as the harmonic mean of precision and recall. It can be 

computed during the training phase using the following formula: 

The accuracy of our model during the detection step is calculated using the following 

equation: 

Based on the previous equations, the model’s accuracy, F1 and FPS (Frame Per Second) 

values after training for 200 epochs are shown in Tabel 4.2 

𝐹1 =
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(4.1) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

(4.2) 
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Table 4.2: Results of Performance Evaluation For 32 Alphabets Models. 

Model F1 Accuracy FPS 

YOLOv8n 80% 91.00% 65.36 

YOLOv8s 81% 90.00% 55.25 

YOLOv8m 85% 94.00% 28.49 

The evaluation metrics for each 32 classes in the ArSL using the YOLOv8m model are 

presented in Table 4.3.  

Table 4.3: Evaluation Results of YOLOv8m for 32 Alphabets Signs. 

Class P R mAP50 Class P R mAP50 

ain 0.993 0.997 0.995 laam 0.99 0.947 0.993 

al 0.986 0.993 0.993 meem 1 0.987 0.995 

aleff 0.998 0.993 0.995 meem 0.965 0.959 0.984 

bb 1 0.985 0.995 ra 1 0.988 0.995 

dal 0.954 0.931 0.943 saad 0.985 0.973 0.994 

dha 0.983 0.985 0.993 seen 0.995 0.97 0.988 

dhad 0.977 0.971 0.987 sheen 0.995 1 0.995 

fa 0.963 0.961 0.99 ta 0.962 1 0.989 

gaaf 0.985 0.988 0.994 taa 0.983 0.978 0.994 

ghain 0.989 1 0.995 thaa 1 0.983 0.995 

ha 0.992 0.993 0.995 thal 0.981 0.963 0.99 

haa 0.957 1 0.981 toot 0.999 0.993 0.995 

jeem 0.978 0.971 0.993 waw 0.947 0.967 0.97 

kaaf 0.967 1 0.986 ya 0.941 0.978 0.983 

khaa 0.976 0.993 0.995 yaa 0.986 1 0.994 

la 0.998 1 0.995 zay 0.956 0.955 0.977 
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Figure 4.1: Depicts the Metrics Achieved After Completing the Training and Validation Processes 

Over 200 Epochs. 

The analysis Figure 4.1 shows a positive correlation between the number of epochs and the 

precision of our model. This means an increased number of epochs leads to improved 

precision. Simultaneously. Accuracy is utilized as a metric for evaluating our model, 

providing a measure of its overall correctness by indicating the frequency with which the 

model made valid predictions. Precision evaluates the model's capacity to make correct 

predictions for a single category. In contrast, recall quantifies the model's efficacy in 

identifying instances of a particular category. The following figures depict the process of 

alphabet detection. Figure 4.2 refers to the implementation of the model in test set images, 

and it’s worth noting that all the sign of the alphabet needs one hand to express. 
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Figure 4.2: ArSL Alphabets of Recognition Results on Test Images. 

4.2 NUMBERS MODEL RESULTS 

The Table 4.6 illustrates that the ten classes and signs in the number model from 0 to 9 

demonstrate high accuracy. All three models exhibit convergent results, with the YOLOv8m 

(medium) model performing the best, achieving a 97.6% mean Average Precision (mAP) 

compared to the other two models, as shown in Table 4.4. It also attains 95.5% precision and 

96.5% recall. 

Table 4.4: Performance of The Yolov8 Model on ASL Numbers. 

All the models exhibit precise detection capabilities in real-world webcam scenarios and 

photos. To assess the models' performance, we utilised equations (4.2) and (4.1) to obtain 

the accuracy performance, the F1 score, and the speed, all shown in Table 4.5.  

Models Precision Recall mAP 0.5 

YOLOV8n 95.50% 94.20% 97.30% 

YOLOV8s 96.10% 96.60% 96.00% 

YOLOV8m 95.90% 96.50% 97.60% 
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Table 4.5: Results of Performance Evaluation Numbers Models. 

Model F1 Accuracy FPS 

YOLOv8n 56% 75.00% 27.1 

YOLOv8s 78% 73.00% 23.26 

YOLOv8m 77% 80.00% 28.49 

Table 4.6 presents comprehensive data about each of the ten classes in this model. 

Table 4.6: Evaluation Results of YOLOv8m for 10 Numbers Signs. 

Significant improvements in precision, recall, and mean average precision (mAP) were 

observed during the validation stage, as illustrated in Figure 4.3. Finally, Figure 4.4 shows 

the image recognition in the test set, and it turns out that all numerical signs require a single-

hand movement to express them. 

Class P R mAP50 

0 0.969 1 0.995 

1 1 0.865 0.99 

2 1 0.992 0.995 

3 0.987 1 0.995 

4 1 0.828 0.995 

5 0.861 1 0.995 

6 0.986 1 0.995 

7 0.956 1 0.995 

8 1 0.874 0.995 

9 0.964 1 0.994 
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Figure 4.3: Depicts the Metrics Achieved After Completing the Training and Validation Processes 

Over 200 Epochs. 
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Figure 4.4: ArSL Numbers of Recognition Results on Test Images. 

4.3 WORDS MODEL RESULTS 

Similarly, the previous models, the YOLOv8, performed so efficiently with words dataset in 

all wights, the models so convergent in results, especially YOLOv8s and YOLOv8m. In the 

end, we chose to use the medium weight. The precision is 99.0%, Recall 99.9% and mAP 

99.5%; all the details are shown in Table 4.7. The common thing in all the models is all the 

results were so convergent with high accuracy. The proposal model is efficient and fits the 

solution for the core problem and could be developed as an official translation tool based on 

AI computer vision because YOLOv8 could train a big dataset size, providing opportunities 

to extend and develop the model. More details about the performance in this model for the 

Precision, Recall and mAP 0.5 for each class are in Table 4.8.  
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Table 4.7: Performance of Yolov8 Model on ASL Words. 

Table 4.8: Evaluation Results of Yolov8m For 19 Words Signs. 

Convergence in real-world webcam detection and image processing leads to the 

simultaneous improvement of performance and accuracy. After using equations 4.2 and 4.1 

on the testing set, the accuracy, F1 score, and speed achieved are all shown in Table 4.9. 

 As depicted in Figure 4.6, some signs need one hand to express, and others need both hands 

to achieve optimal outcomes. 

Models Precision Recall mAP 0.5 

YOLOV8n 98.50% 99.30% 99.50% 

YOLOV8s 99.00% 99.90% 99.50% 

YOLOV8m 99.00% 99.90% 99.50% 

Class P R mAP50 

accident 1 1 0.995 

aim_at 1 1 0.995 

bandage 0.988 1 0.995 

certificate 0.982 1 0.995 

emergency 0.992 1 0.995 

fixed 1 1 0.995 

government 0.981 1 0.995 

conformity 1 1 0.995 

injury 1 1 0.995 

necessary 1 1 0.995 

negative outcome 0.978 1 0.995 

no 1 1 0.995 

plate 1 1 0.995 

positive outcome 1 1 0.995 

ready 1 1 0.995 

slow 0.988 1 0.995 

student 0.991 1 0.995 

support 1 1 0.995 

True 0.982 1 0.995 
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Table 4.9: Results of Performance Evaluation Words Models. 

Model F1 Accuracy FPS 

YOLOv8n 95% 95.00% 27.1 

YOLOv8s 96% 84.00% 25.51 

YOLOv8m 95% 85.00% 23.7 

During the traning and vaildtion stage all the values shown in Figure 4.5 show fluctuations in the initial epochs, 

but after epoch 160 they begin to stabilize with similar results. 

Figure 4.5: Depicts the Metrics Achieved After Completing the Training and Validation Processes 

Over 200 Epochs. 
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Figure 4.6: ArSL Words of Recognition Results on Test Images. 
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5. CONCLUSION AND FUTURE WORK

ArSL is the main communication form within the deaf community, enabling 

effective communication and engagement with society. Nevertheless, a notable obstacle 

arises from the limited comprehension of SL among people who can hear, resulting in a 

substantial disparity across multiple facets of the lives of individuals with hearing 

impairments. This disparity encompasses career prospects, engagement in communal 

activities, and broader assimilation within society. The deaf community in numerous Arab 

countries, which are confronted with economic and political instability, encounters 

heightened difficulties that adversely affect their access to treatment and support. The field 

of computer vision and deep learning detection technologies has witnessed significant 

progress in the past few years, offering academics promising avenues to tackle the problems 

mentioned above. Our suggested system aims to create an operational recognition system 

using the YOLOv8 deep learning model. The architectural foundation of YOLOv8 

incorporates CSPDarknet53, an effective technique for extracting features, by utilizing Cross 

Stage Partial (CSP) to enhance the learning process and minimize computational costs. 

Substituting the C3 module with the C2f module improves the transmission of gradient flow 

information. 

A deliberate block decrease within each stage is also implemented to optimize computing 

performance. The Neck component, drawing inspiration from FPN and PAN architectures, 

integrates multi-scale feature fusion techniques to enhance the accuracy of predictions for 

images with diverse sizes. The prediction module, which includes anchor boxes and a 

decoupled head, is designed to maximize the IoU metric and utilizes Non-Maximum 

Suppression (NMS) to enhance the accuracy of predictions. Although there is a scarcity of 

information on the architecture of YOLOv8, valuable insights form the basis for doing a 

comparison analysis with earlier versions of YOLO. Furthermore, we have generated two 

datasets from inception, encompassing 2,348 images for numerical representations, 2,116 

for textual representations, and 14,202 for alphabetical representations. Upon completing the 

model's training and subsequent testing, we obtained a mean Average Precision (mAP) of 

98.9% at an Intersection over Union (IoU) threshold of 0.5 for alphabets. 
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Similarly, for numbers, the mAP at IoU 0.5 was found to be 97.60%. Lastly, for words, the 

mAP at IoU 0.5 was determined to be 99.0%. The presented model exhibits efficacy and 

precision in detecting webcams in practical scenarios, facilitating the advancement of a 

commercially viable application for converting ArSL into textual form. We suggest 

augmenting the dataset with a larger corpus of words, sentences, and numerical data to 

enhance future research. Additionally, it would be beneficial to construct a separate dataset 

specifically tailored to capture dynamic gesture movements. While multiple techniques are 

available for detecting and recognizing signs, our primary focus is cost-effective solutions 

promoting inclusivity and accessibility for all individuals. 
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