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ABSTRACT

ARABIC SIGN LANGUAGE RECOGNITION BASED ON
ARTIFICIAL INTELLIGENCE TECHNIQUES

SABRI, Mustafa Raad Sabri

M.Sc., Information Technologies, Altinbas University,
Supervisor: Asst. Prof. Dr. Oguz KARAN
Date: December / 2023
Pages: 75

Arabic Sign Language is the means of communication utilised between deaf individuals. It's
a collection of body, hand movements, and facial expressions. SL is not understood by
hearing people, which creates a gap in communication at the same time, causing Significant
difficulties for deaf individuals' daily lives and affecting their careers and the ability to have
a good life. Artificial intelligence and deep learning technologies have developed computer
vision in recent years. SL is one of the Significant research projects in computer vision. We
propose a real-time Recognition system for Arabic SL alphabets, numbers, and words to fill
the gap between hearing and deaf individuals by creating three datasets containing thousands
of images taken by five volunteers in various places, lighting conditions, hands, and
backgrounds. The training and testing of the model are done by utilising different weights
of the deep learning model Yolov8, the last model in the Yolo models, and it achieves an

accuracy of approximately 98%, and the experiment shows efficiency and speed in detection.

Keywords: Arabic Sign Language Recognition, YOLO, Deep Learning, Convolutional
Neural Network, Computer Vision.
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1. INTRODUCTION

1.1 OVERVIEW

Sign Language (SL) serves as a means of communication between individuals. It is critical
in the lives of those with speech and hearing impairments, often viewed as their primary
mode of communication; this language relies on manual gestures to convey nonverbal
messages [1]. According to World Health Organization (WHO) data, more than 5% of the
global population, equivalent to 430 million individuals (comprising 432 million adults and
34 million children), require rehabilitation to address their significant hearing impairments,
Projections indicate that by the year 2050, this number will surge to over 700 million people,
representing 1 in 10 individuals worldwide, experiencing disabling hearing loss, ‘disabling’
hearing loss denotes a hearing impairment exceeding 35 decibels (dB) in the better-hearing
ear, nearly 80% of those affected by such hearing loss reside in low- and middle-income
countries; additionally, the prevalence of hearing loss escalates with age, with over 25% of

individuals above the age of 60 grappling with disabling hearing loss [2].

ArSL encounters a scarcity of essential resources, such as standardised dictionaries and
linguistic databases. This shortage of resources hinders the advancement and comprehension
of ArSL as a unique and independent language. Unified dictionaries present a formidable
obstacle for deaf individuals and researchers, impeding their access to a comprehensive and
universally accepted resource for ArSL signs [3] Modern technological progress assists
individuals with deaf disabilities in surmounting numerous communication challenges.
Contemporary breakthroughs in deep learning and computer vision models are
revolutionising human interaction by enabling unprecedented capabilities, and the Arabic
language remains a fertile field for research [4]. ArSL hasn't enough research like American
sign language (ASL), and it's still in an early stage of development, especially in Deep
Learning (DL) and Machine Learning (ML) techniques. This research proposes a system

that employs deep learning-based object detection models to recognise ArSL in real-time.



1.2 PROBLEM STATEMENT

As reported by the Centre for Strategic and International Studies in Washington DC, there
are approximately 11 million individuals in the Middle East with disabling hearing loss;
however, the absence of a standardised ArSL has led to a shortage of proficient SL
interpreters for example in Saudi, this ratio is one for every 93,000 individuals who can
bridge the communication gap between the deaf community and the broader world [5].

Effective communication is a vital skill for humans to engage with their surrounding
communities; without it, sharing experiences, expressing thoughts, and conveying emotions
become formidable challenges; communication serves as the conduit for discussing various
matters that affect humans, enabling them to address these issues and devise suitable
solutions to enhance their daily lives; furthermore, communication plays a pivotal role in an
individual's mental well-being [6]. Individuals with hearing impairments face challenges in
communicating with others because they are required to acquire SL skills, which serve as
their primary means of interacting with the community; the effectiveness of image-based
solutions for this issue relies heavily on the quality of segmentation and the selection of
features that accurately represent the critical visual characteristics of SL gestures [7].

SL is the predominant communication mode for individuals with hearing impairments. To
facilitate communication with these individuals, it is essential for those who are not hearing
impaired to have the ability to understand and recognise SL. Consequently, there is a need
to implement a SLR system to aid individuals with hearing impairments by creating a deep
learning real-time recognition model to convert the SL to text to fill up the gap between deaf

people and hearing people, that is what we will discuss in the proposal.



2. RELATED RESEARCH REVIEW

2.1 ARABIC SIGN LANGUAGE (ARSL)

Arabic is the sixth spoken language with more than 274 million [8], as shown in Figure 2.1.
The Arabic language is renowned for its extensive vocabulary and abundance of synonyms
for individual words. Conversely, ArSL possesses a more limited vocabulary. As a result,
SL interpreters frequently omit specific words, prefixes, and suffixes from Arabic sentences.
This selective translation approach focuses solely on conveying the essential elements of a
sentence, ensuring that the intended meaning is effectively communicated to the target
audience [9]. Arabic is a prevalent language throughout the Middle East, and ArSL exhibits

distinct variations, each corresponding to a specific country in the region.

30%

12% 22%
English Mandarin Chinese Hindi

M Spanish French Standard Arabic
Egyptian Spoken Arabic m Bengali M Portuguese

Figure 2.1: The Most Spoken Language in The World.

SL comprises diverse visual cues extending beyond hand and finger gestures, incorporating
eye movements, facial expressions, lip movements, eyebrows, and other non-manual
markers. Facial expressions are crucial in effectively communicating subtle messages [10].
Despite being commonly perceived as more formal, SL could convey animated and
expressive communication, integrating life with artistic essence using hand movements,
body language, and facial expressions. In contrast to conventional spoken language, SL

showcases its distinct creative and refined attributes [10]. The publication of the first
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segment of the unified dictionary of ArSL was achieved in 1999 through the collaboration
of The League of Arab States (LAS) and the Arab League Educational, Cultural and
Scientific Organization (ALECSO). The project aimed to establish a standardised version of
ArSL. In 2007 the second dictionary segment was published [11]. Deaf individuals living in
Arabic countries experience plenty of challenges due to the limited availability of services
tailored to their needs. These challenges manifest in several forms, including limited access
to essential information and educational opportunities, difficulties communicating with the

hearing community, and limited participation in community events [3].

2.2 ARABIC SIGN LANGUAGE RECOGNITION SYSTEM

Sign Language Recognition (SLR) models can be broadly classified into two main
categories: vision-based techniques and sensor glove-based approaches [12]. Sensor glove-
based approaches refer to a technique that requires direct physical interaction between sensor
devices and users. This approach often involves using instrumented gloves with various
sensors such as electromyography, inertial measurements, or electromagnetic sensors [12].
These sensors are utilised to capture data related to finger positions, flexion, direction, or
angles during the execution of SL gestures; in contrast, the vision-based approach is
dependent on data obtained by streams life or photos acquired by a camera as the input for
the system [12]. The preference towards vision-based methodologies often stems from the
obvious advantage of not requiring specialised gloves or supplementary equipment beyond
the camera for the recognition procedure [12]. Coloured gloves were utilised in specific
vision-based methodologies to streamline the process of hand segmentation. However,
vision-based approaches face notable problems, including the impact of elements such as
lighting conditions, noise, differences in perspective, and complex backgrounds on the
accuracy of the results[12]. The field of hand gesture recognition has garnered significant
interest from many scholars, mostly because of its extensive array of potential uses,
encompassing fields such as robotics, gaming, virtual reality, SL, and human-computer
interaction [13]. SL, a systematised that mainly relies on manual gestures, is considered the
most efficient mode of communication for those with hearing difficulties. The effective
recognition of dynamic, isolated SL motions requires dealing with three primary challenges:
hand segmentation, encoding of hand shape information, and recognising gesture sequences

[13]. Traditional approaches to SL identification often utilise colour-based algorithms to
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segment the hand, manually engineered techniques to extract hand shape data and the
application of Hidden Markov Models (HMM) for sequence recognition [13].

2.2.1 Vision-Based Recognition (VBR) and Sensor-Based Recognition (SBR)

The VBR strategy is more commonly utilised in ArSLR than the SBR approach.
Furthermore, numerous study endeavours have attempted to explore how to recognise the
Arabic alphabet and isolated words in SL, compared to comparing continuous SLR in Arabic

[14]. The illustration is shown in Figure 2.1.

Colared Gloves
| Geomelric Eeatures
g
g Body/Facial Expeessions
=
% (Power, Cyber, Data Glove)
2

Figure 2.2: The Categorization of Approaches for Recognizing ArSL [15].

2.2.2 Static Gestures and Dynamic Gestures

The exact positioning and alignment of the hands are crucial factors in the refinement of
static gestures, which refer to the many hands poses and postures, and dynamic gestures,
which involve hand movements such as waving within a defined space and time, all achieved
without any physical movement. Moreover, static gestures can involve a solitary hand
position without associated bodily movement [16]. Static gestures involve the utilisation of
one or more frames of signals as input, while dynamic gestures operate by utilising a
continuous sequence of frames extracted from a video. The interpretation of static gestures
primarily relies on the angular orientation and finger form, with the hand remaining
immobile throughout the whole duration of the motion, as shown in Figure 2.3; on the other
hand, dynamic hand gestures exhibit continuous movement of the hand's position, with their

significance conveyed through a series of distinct phases such as the stroke phase, retraction,
5



and preparation; each of these phases is characterised by unique movements that occur over
some time [17].

Static Gesture Dynamic Gesture

=T

Figure 2.3: Example of Static and Dynamic Gesture [15].

Various properties, including orientations, finger shape, flex angles, relative location to the
body, and contextual surrounds, can characterise static gestures. On the other hand, dynamic
gestures exhibit distinguishing attributes such as orientations, finger configuration, flexion
angles, hand paths, hand orientations, motion velocity and direction, and scale [18].

Accurately recognising gestures in ArSL involves four main phases. The four processes
involved in this procedure are 1) data collecting, 2) pre-processing and segmentation, 3)
feature extraction, and 4) classification. The phases are essential components of both the
conventional SLR and Automatic Sign Language Recognition (ASLR) models [19]. In the
first step, an appropriate input device is employed to capture the image of the hand; following
this, the image is subjected to a segmentation process to ascertain the precise position of the
hand with the adjacent body components while being distinguished from the background,;
the location image is after that subjected to several processing steps aimed at noise reduction,
contour identification, and model generation [19]. classification: re-processing of the photos
and movements, the subsequent phase involves feature extraction; this step entails the
extraction of data of the shape, position, orientation, movements, and hand placements for
the classification; after doing analysis and employing modelling techniques, it has been
determined that the acquired images can be classified as appropriate gestures; SLR can be
classified into three distinct levels within a broader framework; these levels comprise the

recognition of SL alphabets, isolated words, and continuous sentences [19].
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There are two primary classifications for SLR systems: isolated and continuous. In the
context of isolated SLR, it is standard procedure to interpret each image as a representation
of a unique letter of the alphabet, a numerical value, or a distinct motion. In contrast,
continuous SLR is specifically developed to enable uninterrupted and continuous signing,
and it provides the ggacapanility t0 identify and translate entire sentences accurately [20]. SLR
classification employs a range of methodologies, including Hidden Markov Models (HMM),
CNN, and Atrtificial Neural Networks (ANN) [20].

2.3 COMPUTER VISION TECHNIQUES

2.3.1 Deep Learning (DL)

Deep learning is a branch of machine learning distinguished by implementing neural
networks consisting of three or more layers. The objective of these neural networks is to
emulate the cognitive processes and activities observed in the human brain, hence facilitating
their ability to acquire and enhance their capabilities through exposure to vast amounts of
data [21], [22]. Although a single-layer neural network can reach a basic level of predictive
capability, the potential of deep learning networks is greatly enhanced by their increased
depth [22]. Deep learning encompasses a wide array of applications in artificial intelligence,
facilitating the enhancement of automation and the accomplishment of intricate analytical
tasks without requiring direct human involvement. In addition to implementing sophisticated
technologies such as autonomous vehicles, deep learning methodologies are also widely
employed in diverse services and applications, including mobile device digital assistants,
voice-controlled devices, and the identification of credit card fraud, among other pragmatic
applications [22].

The comparative analysis of the efficacy of CNN, Restricted Boltzmann Machines (RBMs),
Autoencoders, and Sparse Coding in computer vision (CV) tasks, it was finally determined
that CNNs exhibited the highest level of suitability as an architectural choice [23].
Nevertheless, within that specific timeframe, significant obstacles arose because of
constraints in accuracy and the dimensions of the models and the hurdles encountered
encompassed several aspects: firstly, the absence of comprehensive understanding of the
superior performance of specific architectures; secondly, the limitations imposed by training

with a restricted dataset; thirdly, the complexities associated with attaining real-time



applications; and finally, the imperative need for more robust models [23]. The study [23]
investigates the latest deep learning (DL) developments and examines eight emerging
techniques established as fundamental models in different computer vision (CV) application
fields. The broad range of deep learning applications can be categorised into four main use
cases: recognition, visual tracking, semantic segmentation, and image restoration, as shown
in Figure 2.4.

Object Detection
YOLO
SSD
Image Classification (Backbone) RetinaNet
R-CNN

Visual Tracking

AlexNet ADNet
VGGNet GFS-DCF
GoogleNet&inception D3s
ResNet
DenseNet 1 . ;
MobileNets Semantic Segmentation
EfficientNet DecoupledNet
RegNet SharpMask
Deeplabv3+
RoiAlign
Canet
U-Net series
Image Restoration
N2V
EventSR
CyclelSP
SRResNet
Basic Models Derived Models

Figure 2.4: CNN Basic Models and Derived Models [23].

2.3.2 Convolutional Neural Network (CNN)

The CNN deep learning methodology extensively employed to tackle complex problems,
demonstrating superior performance compared to traditional machine learning approaches
[24]. CNNs present a viable alternative methodology for the autonomous acquisition of
domain-specific features, so as a result, this unique approach has triggered a reassessment
of all aspects within the wider domain of computer vision [24]. CNNs have gained

prominence as major deep learning methodologies following their remarkable performance



in the ImageNet competition, and Image classification is considered one of the crucial
domains in the realm of computer vision. The CNN, also known as ConvNet, is characterised
by its deep feed-forward architecture and demonstrates exceptional generalisation skills,
surpassing networks that utilise fully connected layers [26]. CNNs are designed using the
underlying concept of hierarchical feature identification, drawing inspiration from biological
principles [27]. They demonstrate exceptional proficiency in acquiring complex conceptual
attributes and identifying various entities [24]. There are several compelling justifications
for adopting CNN over alternative conventional methods. The primary benefit of CNN is in
their utilisation of weight sharing, a technique that effectively decreases the parameters that
need to be trained, and this reduction in  parameters leads to
improved generalisation capabilities of the network [28].

decreases the parameters enables CNN to undergo effective training while mitigating the
risk of overfitting [29]. The architecture employed by CNN for image classification
encompasses convolutional layers, pooling layers, and fully connected layers. The
convolutional layers of a neural network employ several kernels to conduct convolutions on
the entire picture, resulting in the creation of intermediate feature maps that possess a wide
range of distinct features. Pooling layers are utilized in CNNs to decrease the dimensions of
feature maps, hence simplifying the data representation. On the other hand, fully connected
layers, positioned at the end of the CNN architecture, function as a classifier. The interwoven

layers that are formed as a result facilitate efficient classification of images [23]. The

architecture of the CNN is illustrated in Figures 2.5.
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Figure 2.5: CNN Architecture for Image Classification [23].
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a. Convolutional Layers: Structure Explanation

i. Convolutional Layer

The procedure begins by feeding an image to the initial layer and generating an output with
a predicted class. This prediction is made based on the analysis of features retrieved from
the image [30]. A singular neuron forms connections within the subsequent layer with a
specific selection of neurons in the preceding layer; this localised connecter is commonly
called the "receptive field" [26]. Utilising the receptive field allows for extracting local
details from the input image [31]. Each neuron's receptive field, inked to a distinct area in
the preceding layer, constitutes a weight vector that remains constant across all sites inside
the plane [32]. In this context, the term "plane"” pertains to the neurons in the subsequent
layer. Sharing identical weights among neurons within the same plane enables them to
recognize comparable characteristics at distinct positions within the supplied data [33]. The

visual representation of this concept is illustrated in Figure 2.6.

Figure 2.6: Receptive Neuron Field in The Next Layer [24].

The weight vector, a filter or kernel, traverses the input vector to generate the feature map
[34]. The function of moving the filter in horizontal and vertical directions is called the
convolution process [24]. Various characteristics are Based on the provided picture inside a
singular layer, creating filters and N feature maps [33]. Each of these feature maps
represents unique and different features. Utilising the local receptive field results in a
notable reduction in trainable parameters [35]. The computation of the output value ajj in

the succeeding layer at a certain place (i, j) is determined by executing the convolution.
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operation, utilising the formula specified in reference [36], as depicted in equation 2.1.

Aij= o((WeX)yj+b) (2.1)

In the provided context, X denotes the input supplied to the layer, W stands for the filter or
kernel traversing the input, b represents the bias term, signifies the convolution operation,

and o indicates the non-linear element incorporated within the network [24].

ii. Pooling Layer

Once a particular characteristic has been determined, the exact positioning of this
characteristic becomes less crucial [31]. Consequently, following the convolutional layer, it
is customary to include a pooling or sub-sampling layer [32]. One of the main advantages of
using the pooling technique is the significant decrease in the number of trainable parameters
and the incorporation of translation invariance [35]. The pooling procedure is performed by
selecting a window and applying a pooling function to the input items within that window
[24], as depicted in Figure 2.7.

. 11021 34
window ) : |
L]0 Ak
2100013
010311

Figure 2.7: The Pooling Procedure Is Performed by Picking A 2 X 2 Window [24].

The pooling operation creates an additional output vector [24]. Other pooling strategies can
be utilised, such as average pooling and max pooling, and among these methods, max

pooling is commonly preferred due to its significant reduction in map size [34]. When
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calculating mistakes, it is crucial to acknowledge that the error is not communicated back

to the successful group in max-pooling, as it does not engage in the forward flow [24].

iii. Fully Connected Layer

The fully connected layer, like conventional models, accepts the output generated by the first
convolution and pooling procedures. The computation entails performing a dot product
operation between the weight vector and the input vector [35]. Gradient descent, sometimes
referred to as batch mode learning or an offline technique, aims to minimize the cost function
by estimating costs throughout the complete training dataset. The aforementioned
methodology involves the adjustment of parameters after the completion of dataset
processing within a single period. Although this approach is successful in achieving global
minima, it results in extended training periods when dealing with huge datasets. To address
this issue, the introduction of stochastic gradient descent emerged as an alternate method for

minimizing the cost function.

iv. Activation Function

Using the Rectified Linear Unit (ReLU) has demonstrated more benefits than its predecessor,
primarily attributed to two crucial features. To begin with, computing the partial derivative
of the ReL.U function is quite simple [35]. Furthermore, when considering the importance of
training time, the non-saturating non-linearities denoted by fx = max (0, X), such as ReLU,
exhibit superior performance in terms of speed compared to saturating non-linearities like
the sigmoid function, denoted by f(x) = (1 + e — x — 1) [29]. Thirdly, the ReL U serves to
mitigate the issue of vanishing gradients; however, the efficacy of the ReLU reduces in
situations when a significant gradient propagates across the neural network, resulting in the
phenomenon known as Dying RelLU, wherein neurons fail to activate. One potential
approach to address this concern is the utilisation of the Leaky RelLU activation function
[24]. The punctured ReLU operates in the following manner: for values of x > 0, the
activation function is defined as f(x) = x; however, for values of x < 0, the activation

function is defined as ax, where a denotes a tiny constant [24].
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b. Common CNN Architectures

i. LeNet Architecture

Multi-layer networks demonstrate high suitability to the picture identification tasks
according to the ability learn from intricate and high-dimensional input [24]. The LeNet
architecture, introduced in 1998 by [31], is an architectural design that incorporates a dataset
[37] and is briefly described in the subsequent paragraph. The architecture of LeNet5, as
depicted in Figure 2.8, comprises eight layers, encompassing five convolutional layers and
three fully linked layers, and each component within a two-dimensional space possesses a
total of 25 distinct inputs [24]. The units within the initial hidden layer get input from a 5x5
region corresponding to a subset of the complete image; hence, a limited segment of the
initial picture is conveyed to the initial hidden layer, and specific input region denoted as the
unit's receptive field. All units within a plane possess an identical weight vector, and the

result of a unit is saved at an identical index within the feature map [24].
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Figure 2.8: The Architecture of Lenet-5, Is Characterized by Distinct Feature Maps Represented
by Each Box [31].

Adjacent units in the previous layer have an impact on neighbouring units in the feature map,
resulting in the formation of overlapping receptive fields. The first convolutional layer, as
seen in Figure 2.8, utilizes a 5x5 area to produce a variety of feature maps using horizontal
shifting, hence facilitating various feature extraction [24]. CNNs have the capacity to
preserve the stability of feature maps even in the face of tiny alterations in the input. This

characteristic allows CNNSs to prioritize the overall existence of features rather than their
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precise location, which can result in a reduction in accuracy during the process of
subsampling. The second layer, seen in Figure 2.8, illustrates the process of subsampling,
which leads to the generation of feature maps equal in number to those produced by
convolution. The subsampling layer employs a 2x2 area to compute the mean of four input
values. This mean is then multiplied by a coefficient that can be adjusted by training,
followed by the addition of a trainable bias. The resulting value is subjected to a sigmoid
function and thereafter propagated through hierarchical layers. The procedure involves the
augmentation of feature maps while simultaneously reducing spatial resolution, a process
that is enabled by the utilization of the backpropagation algorithm for the acquisition of
knowledge [24].

ii. AlexNet Architecture

Figure 2.9 briefly summarises the modified iteration of the LeNet architecture, commonly
referred to as AlexNet, as originally presented by reference [29].The structure of AlexNet
comprises five convolutional layers and three fully connected layers [24]. The resulting
outputs are further fed into a SoftMax layer with 1000 nodes, aiming to classify 1.2 million

high-resolution photo datasets into 1000 unique categories.
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Figure 2.9: AlexNet Architecture [38].

To improve the network's speed training, the utilisation of non-saturating neurons is
combined with the utilisation of efficient GPUs. To facilitate the classification of objects
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within an extensive dataset comprising millions of photos, utilising a substantial network
becomes imperative [24]. Nevertheless, this phenomenon might give rise to a significant
need for weight training, perhaps resulting in overfitting concerns. To address this difficulty,
the dropout approach was implemented; this strategy entails the temporary inactivation of
neurons with a probability of 0.5 throughout both the forward and backward propagation
stages, effectively attenuating their activity [24]. The neurons that rely on these attenuated
neurons are motivated to acquire more resilient characteristics autonomously, thereby
substantially reducing overfitting. It is important to acknowledge that utilising the dropout
approach effectively results in a twofold increase in the number of iterations necessary for
achieving convergence. In network training, a pair of GTX 580 3GB GPUs is employed,
with the normal duration of the operation ranging from five to six days. An important
characteristic of this architectural design is the integration of the ReLU non-linearity into

the convolutional neural network, significantly improving the convergence rate [38].

iii. GoogleNet Architecture

GoogleNet model and originally proposed by [39], developed to design a more economical
model that could effectively minimise power consumption, the number of trainable
parameters, and memory utilisation. This model led to a significant reduction in the overall
count of trainable parameters in the neural network. The overarching structure can be briefly
described as follows: it efficiently utilises 12 million fewer parameters compared to the
model put forward by [29]. The primary goal of this structure was to construct a network
that possesses enhanced precision in object recognition within photographs; one potential
method for achieving this objective is augmenting the network's dimensions and
incorporating additional layers [24]. However, a significant limitation of this strategy is the

possibility of an escalated parameter count, which may result in the issue of overfitting.

A further obvious limitation emerges when the quantity of filters is augmented, as this leads
to elevated computational demands and, consequently, heightened overhead; to tackle this
matter, a potential resolution has been put up which entails the utilisation of sparse matrices
[24]. In this approach, units that exhibit a high degree of correlation are grouped in the
preceding layer, thereby furnishing input to the subsequent layer. As the reference outlines,

this technique aims to build an ideal network topology [39]. It is important to mention that
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non-uniform sparse matrices can also be utilised. However, despite their potential to reduce
calculations by a significant factor of up to 100, the issue of cache misses remains an
overhead [24]. Despite their ability to enhance computational speed, the utilisation of
extensively optimised numerical libraries fails to alleviate this concern. Hence, the

prevailing approach in the field mostly depends on using uniform sparse matrices [24].

2.3.3 Object Detection

The human beings possess limited capabilities when it comes to effectively processing an
extensive volume of visual input; as a result, there is an increasing demand for automated
handling of this data through the utilisation of computers to tackle visual obstacles on a wide
scale [40]. As the level of comprehension about image processing technology advances, it
becomes increasingly important to possess an in-depth knowledge of images and the
accurate detection of objects inside them [41]. There has been a shift in people's interests
from basic picture categorisation to a more exact determination of the semantic category of
items inside an image and the identification of their distinctive locations [42]. As a result,
there has been considerable focus on object-detecting technology [43]. Object detection
technology uses concepts and techniques derived from image processing and pattern
recognition to discover and identify items within an image [40]. This involves determining
the semantic categories of these objects and accurately determining their precise locations
[44]. Object detection is a significant computer vision task that involves the identification of
instances of Object categories inside digital images, such as persons, animals, or vehicles
[45]. Object detection is an important field within computer vision important in scientific
research and practical industrial applications. Particularly notable cases can be found in
Figure 2.10.
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Figure 2.10: Object Detection Can Be Classified into Two Main Categories: General Object
Detection and Specialized Object Detection [46].

The primary objective of object detection is to create computational models and
methodologies that deliver fundamental information necessary for computer vision
applications, specifically the localization of objects. Object detection is closely related to
object classification, semantic segmentation, and instance segmentation. as depicted in
Figure 2.11.
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Figure 2.11: The Actual Applying of Different Image Techniques [46].

The primary criteria in object detection are cantered on accuracy, which encompasses both

classification and localization accuracy, as well as speed [45]. This resulted in astonishing
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discoveries and has made object detection a study area of considerable interest, attracting
unprecedented attention. Object detection has become prevalent in various practical
domains, including autonomous driving, robot vision, and video surveillance. Employing
computer technology to identify objects in real-world scenarios automatically presents
significant challenges [40]. Object detection can be considerably impacted by multiple
factors, including but not limited to complicated backgrounds, noise interference, occlusion,
low-resolution images, and changes in scale and orientation [40]. Conventional approaches
for object detection heavily depend on manually designed characteristics, rendering them
vulnerable to challenges such as variations in lighting conditions and limited ability to
generalise effectively. It is essential to mention a very slow advancement in object detection
between 2010 and 2012, as evidenced by the observations made in the PASCAL VOC
challenge [47]. Only minimal enhancements were accomplished during this period using
ensemble systems and minor modifications to conventional methodologies [48]. In
consideration of these challenges. The advent of Convolutional Neural Networks (CNN)
[49], a very effective deep learning architecture [50], has brought about a significant
transformation in the field of object detection through its ability to facilitate hierarchical
feature learning. The organisers of the ImageNet competition introduced a task in 2013 that
focused on object detection, and this job required participants to recognise and classify 200
different items within a dataset consisting of 40,000 photos [40].

Nevertheless, the prevailing methodology depended on manually engineered characteristics,
leading to a mean Average Precision (mAP) of 22.581%. Following this, the integration of
deep learning and proposal techniques, such as R-CNN, resulted in a notable enhancement,
attaining a considerable 43.933% mean Average Precision (mAP) in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [48]. Object detection has experienced
significant advancements, marked by the widespread adoption of deep learning
methodologies. Figure 2.12 presents a visual contrast between conventional and object
detection techniques that rely on Deep Convolutional Neural Networks (DCNNs). The
constant improvement of detection accuracy is essential requirements of diverse and intricate
scenarios. Furthermore, enhancements have been made to the detection speed to meet the
requirements of real-time system applications, maintaining high accuracy [46]. Hence, it is

imperative to consider the balance between precision and efficiency in forthcoming scholarly

18



investigations [51]. The consideration of the trade-off between accuracy and speed is crucial

for achieving state-of-the-art results [46].
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Figure 2.12: Classical, Traditional Object Detection and Object Detection Based on DCNNs [46].

2.3.4 YOLO Method

The application of real-time object detection has become increasingly crucial in various
domains, such as autonomous cars, robots, video surveillance, and augmented reality [52].
The YOLO framework has garnered recognition in object detection due to its notable blend
of speed and accuracy. Ts framework enables efficient and reliable identification of objects
within images [52]. The YOLO family of algorithms has experienced multiple revisions
since its inception, with each subsequent version making advancements over previous

iterations to address constraints and boost overall performance (see Figure 2.13) [52].
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Figure 2.13: A Timeline of YOLO Versions [52].
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The YOLO method and its subsequent architectural iterations have demonstrated notable
advancements in detection accuracy, occasionally surpassing that of two-stage detectors.
The broad acceptance of YOLOSs in numerous applications can be attributed mostly to their
higher inference speeds, as opposed to their exclusive emphasis on detection accuracy [52].
For example, whereas YOLO achieves a detection accuracy of 63.4% and Fast-RCNN
achieves 70%, the inference time of YOLO is nearly 300 times faster; moreover, the use of
YOLOs has resulted in their effective incorporation into diverse applications for object
detection and recognition in varied scenarios, surpassing the performance of the two-stage
detectors [52].

a. YOLO Applications

The YOLO algorithm has proven instrumental in real-time object detection, particularly in
autonomous driving systems, where it efficiently identifies and tracks various objects such
as automobiles, pedestrians, bicycles, and obstacles. Its applications extend to surveillance,
sports analysis, and human-computer interaction. In agriculture, YOLO models contribute
to crop detection, pest identification, and disease diagnosis, advancing precision agricultural
techniques. The algorithm finds utility in biometric applications for face detection,
enhancing security measures and facial recognition systems. In the medical field, YOLO is
applied to cancer diagnosis, skin segmentation, and pill identification, leading to improved
diagnostic accuracy, and streamlined treatment procedures. Additionally, YOLO plays arole
in remote sensing for tasks like land use mapping and environmental monitoring. It has been
integrated into security systems for real-time monitoring, compliance with social distance
guidelines, and recognizing individuals wearing face masks. Other applications include
surface inspection for quality control in manufacturing, traffic management for license plate
detection and traffic sign recognition, wildlife detection for biodiversity preservation, and
utilization in robotics and object detection using drone imagery. All can be evidence in [53]-
[68].

b. YOLO Model Evaluation
Object identification models are often evaluated using Average Precision (AP), commonly
known as Mean Average Precision (mMAP). The mean accuracy, computed across all

categories, provides a single outcome for model comparison. The AP metric, calculated
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through precision-recall metrics and the loU method, handles multiple object categories. The

mAP can be computed using the accompanying mathematical expression:

1 N
i=1

i. Precision and recall are vital metrics for evaluating a model's performance. Precision gauges

(2.1)

the accuracy of positive predictions, while recall quantifies the proportion of actual positives
identified by the model. Often, there's a trade-off between precision and recall, where an
increase in identified items (higher recall) may lead to more false positives (lower precision).
The AP metric captures this trade-off through the precision-recall curve, illustrating the
relationship at various confidence thresholds. The precision equation can be expressed as:

true positive (2.3)

precision = — —
true positive + false positive

The recall value may be determined using the following equation:

true positive
Recall = p (2.4)

true positive + false negative

ii. Multiple Object Categories The challenge of object detection models involves recognising
and localising multiple categories of objects in an image. The difficulty is addressed by the
AP measure, which calculates the average accuracy (AP) for each category and then
computes the mean average precision by averaging these AP scores across all categories
[52]. This methodology guarantees that the performance of the model is assessed
individually for each area, this analysis aims to offer a thorough evaluation of the model's
overall performance. efficacy [52].

iii. Intersection over Union (loU) Object detection, aiming for accurate object localization

through predicted bounding boxes, is commonly evaluated using the loU metric. The AP
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metric employs loU to assess the accuracy of predicted bounding boxes, quantifying the
overlap between predicted and ground truth bounding boxes in relation to their combined
area. The COCO benchmark assesses model performance using various loU criteria,

evaluating object localization accuracy at different levels [52]. (see Figure 2.14)
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Figure 2.14: The Computation of loU Entails the Division of The Intersection of Two Boxes By
Their Union. The Provided Illustrations Showcase Three Distinct loU Values, Each Corresponding

to Various Bounding Box Positions [52].

c. YOLO Architectures

i. YOLO: You Only Look Once

The YOLO (You Only Look Once) algorithm was introduced by Joseph Redmon et al. in
their article at the Conference on Computer Vision and Pattern Recognition (CVPR) in 2016
[69]. The YOLO algorithm is a notable advance in real-time object detection since it has
fundamentally transformed the traditional methodology [52]. The tagline "You Only Look
Once" appropriately signifies its pioneering capability to execute object detection within
only one iteration of the network. This approach deviates from prior methodologies that
either utilised sliding windows in conjunction with a classifier, requiring multiple iterations
for each image, or employed advanced algorithms that divided the process into two separate
stages [52]. The previous methodologies entailed an initial stage of finding prospective

regions containing objects or region proposals, followed by a subsequent stage of applying
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a classifier. In contrast, the YOLO model employed a streamlined methodology by
exclusively employing regression techniques to predict detection outcomes in contrast to
Fast R-CNN [70], The approach included two separate outputs, with one output used for
estimating classification probabilities and the other for performing box coordinate
regression. The YOLO model significantly advanced computer vision and object detection
by offering a novel methodology that enables the simultaneous detection of all bounding
boxes. The objective was accomplished by partitioning the input image into a grid with
dimensions S x S [52]. Subsequently, forecasts were generated for B bounding boxes

belonging to the same class within each grid element.

Furthermore, confidence ratings are assigned to C distinct classes, and each bounding box
prediction includes Pc (confidence score), bx, by (centre coordinates), bh, and bw (height
and width). The YOLO algorithm produces output dimensions of S x S x (B x 5 + C), which
can be processed with non-maximum suppression (NMS) to eliminate redundant detections
[52]. Figure 2.15 illustrates a simplified output vector. YOLOv1 achieved an average
accuracy (AP) of 63.4 on the PASCAL VOC2007 dataset [52].
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Figure 2.15: The Provided Diagram Depicts a Rudimentary YOLO Model That Showcases a Grid
Structure of Dimensions Three-By-Three. This Model Is Designed to Classify Objects into Three
Distinct Classes. Each Grid Element in The Diagram Is Associated with A Single Class Prediction,
Resulting in A Vector Including Eight Values [52].

The YOLOvV1 architecture consists of 24 convolutional layers followed by two fully
connected layers, responsible for predicting bounding box coordinates and probabilities.
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Leaky ReLU activations are used in all layers except the final one, which employs a linear
activation function. Influenced by GoogLeNet and Network models, the YOLO algorithm
integrates 1x1 convolutional layers to reduce feature map quantity while maintaining a
reasonably low parameter count. A streamlined version, Fast YOLO, features nine

convolutional layers.

ii. YOLOV2

The YOLOv2 model, presented by [71], introduced several notable improvements compared
to the initial YOLO model. The enhancements were implemented to preserve its velocity
while substantially enhancing its functionalities, enabling it to identify a wider spectrum of
9000 classifications [52]. The YOLOv2 model has introduced some significant
enhancements in architecture and training methodologies. An important improvement was
the integration of batch normalization on every convolutional layer, which improved the
convergence rate and served as a regularization method to address the overfitting issue[52].
To address the requirement of managing high-quality images, the model performed fine-
tuning with a resolution of 448 x 448, and this represents a significant deviation from the
previous resolution of 224 x 224 that was employed during the pre-training phase on
ImageNet [52]. The alteration resulted in a notable enhancement in the network’s efficiency
when handling inputs of greater resolution. Moreover, YOLOv2 moved to a convolutional
architecture, eliminating dense layers, and adopting a more streamlined and efficient design
[52]. Incorporating anchor boxes played a crucial role in accurately estimating bounding
boxes by introducing predetermined shapes for object alignment, as shown in Figure 2.16.
The authors chose the anchor box priors through the utilisation of dimension clustering. This
involved applying k-means clustering to the training bounding boxes to identify the most
suitable priors. The YOLOv2 model brought about a significant advancement in location
prediction by directly calculating the coordinates of bounding boxes with grid cells; this was
achieved by training the network to predict five boxes for every cell, with each box being

characterized by five values as shown in Figure 2.17 [52].
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Figure 2.16: Anchor Boxes: For Every Grid Cell, Yolov2 Creates Numerous Anchor Boxes [52].
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Figure 2.17: Bounding Box Prediction: To forecast bounding boxes, use the predicted Ty and Ty

values. These values run through a sigmoid function and are offset by the grid cell's position (Cy,

Cy). This yields the box's centre coordinates. The previous width Py, is used to calculate the height
and breadth of the final box [52].

Furthermore, the model preserved more detailed features and incorporated a passthrough
layer to concatenate feature maps efficiently, ensuring the preservation of valuable
information across the network's structure [52]. Incorporating multi-scale training was
critical in creating YOLOV2, as it facilitated the model's ability to cope with a wide range of
input sizes, from 320 x 320 to 608 x 608. This method has significantly enhanced the

robustness and versatility of YOLOV2 in various input conditions, and the integration of
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architectural enhancements and training methodologies in YOLOV2 has resulted in a notable
advancement in object detection within the domain of computer vision [52]. This progress
holds great potential for achieving enhanced accuracy and efficiency in the detection and
localization of objects. The architecture of YOLOV2 is structured around the Darknet-19
backbone, comprising 19 convolutional layers and five max-pooling layers. like the
YOLOv1 model, this design is influenced by the Network in Network concept. This
technique, which utilises 1 x 1 convolutions within the 3 % 3 convolutions to decrease the
parameters. Moreover, as previously stated, batch normalization is employed to manage and
facilitate the convergence process. The predictions generated by YOLOv2 on the PASCAL
VOC dataset consist of five bounding boxes, each characterized by five numerical values,
and contain 20 distinct classes [52]. In the object classification component, the final four
convolutional layers are substituted by a solitary convolutional layer with 1000 filters.
Subsequently, a global average pooling layer is applied, followed by a SoftMax operation.
As a result of these improvements, YOLOv2 achieved an average precision (mean average
precision) of 78.6% on the PASCAL VOC 2007 dataset, representing a substantial
enhancement compared to the 63.4% achieved by YOLOv1 [52].

iii. YOLOv3

The YOLOvV3 model, developed by Joseph Redmon and Ali Farhadi in 2018, incorporated
significant revisions and improved architecture to attain a cutting-edge performance while
preserving its ability to operate in real-time; the modifications were implemented in contrast
to YOLOv2 [52]. YOLOvV3 has various substantial improvements and modifications.
Initially, the network preserves the forecast of four coordinates (tx, ty, tw, tn) for every
bounding box, like the approach employed in YOLOv2 [52]. However, the current model
also utilises logistic regression to predict a score for each bounding box without considering
the presence of an object [52]. The score assigned to the anchor box with the maximum
overlap with the ground truth is 1, differentiating it from the remaining anchor boxes
assigned a score of 0 [52]. YOLOv3 employs a distinctive approach by assigning a solitary
anchor box exclusively to each ground truth item. When an object is not assigned any anchor
box, YOLOv3 experiences a classification loss without any localization or confidence loss
[52]. This contrasts the methodology employed by Faster R-CNN [72]. In addition, YOLOvV3
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undergoes a movement in its approach to classification, moving from the utilisation of
SoftMax to the adoption of binary cross-entropy; this shift allows for the training of separate
logistic classifiers, thereby framing the problem as one of multilabel classification [52]. This
modification enables greater adaptability and accuracy in class projections. The architecture
of YOLOvV3 also includes a feature extractor that is more comprehensive, including 53
convolutional layers with residual connections [52]. In addition, the researchers have
incorporated a modified spatial pyramid pooling (SPP) block into the underlying
architecture, incorporating multiple kernel sizes; this integration has resulted in an improved
receptive field and enhanced performance, particularly in the YOLOv3-spp variant, which
demonstrated a notable 2.7% gain in AP50 [52]. The YOLOv3 model incorporates multi-
scale predictions, like the approach used in Feature Pyramid Networks. In contrast to
YOLOvV2, YOLOv3 utilises k-means clustering to establish bounding box priors for anchor
boxes [52]. This approach involves the utilisation of three prior boxes, each corresponding
to a separate scale, as opposed to YOLOv2's employment of five prior boxes per cell. The
YOLOv3 architecture includes a backbone known as Darknet-53, which has undergone
substantial revisions. In recent advancements, stride convolutions have placed max-pooling
layers while integrating residual connections have been introduced. Darknet-53 comprises
53 convolutional layers; detailed information regarding this architecture can be found in
Figure 2.18. The Darknet-53 backbone exhibits comparable Top-1 and Top-5 accuracies to
ResNet-152 but operates at nearly double the speed [52].
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Figure 2.18: YOLOv3 Darknet-53 Backbone [52].
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Iv. YOLOv3 Multi-Scale

The overarching architectural framework, YOLOV3, incorporates a notable progression in
multi-scale predictions, wherein predictions are generated at many grid sizes. This invention
has demonstrated significant value in improving bounding box precision and enhancing all
object recognition, addressing a notable limitation observed in prior iterations of YOLO
[52]. The detection architecture, as depicted in Figure 2.19, functions at several scales in the
following manner: The initial output, referred to as y1, is the output of the YOLOv2
algorithm, which is generated based on a grid of size 13x13 [52]. The formation of the
second output, denoted as y2, involves concatenating the output obtained after multiplying
the output of Darknet-53 by the (Res x 4) with the output obtained after multiplying it by the
(Res x 8). An up-sampling process is conducted before concatenation due to the varying
sizes of the feature maps, specifically 13x13 and 26x26. In conclusion, the third output, y3,
merges the 26x26 feature maps with the 52x52 feature maps through an additional up-
sampling procedure. The output tensor dimensions for each scale in the COCO dataset,
which consists of 80 categories, are NxNx [3x (4+1+80)]. Here, NxN specifies the size of
the feature map or grid cell. The numerical value "3" represents the number of boxes
assigned to each cell, while the notation "4+1" comprises the four coordinates and the

objectness score [52].
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Figure 2.19: YOLOvV3 Multi-Scale Detection Architecture [52]
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V. YOLOvV4

In April 2020, a noteworthy advancement occurred in object detection with the publication
of a research article on YOLOV4 by [73]. This development came after two years without
any updates to the YOLO framework [52]. At first glance, the introduction of multiple
authors proposing a novel "official" iteration of YOLO may have appeared unconventional
[52]. Nevertheless, YOLOv4 adhered to the fundamental principles of YOLO, which
prioritised real-time processing, as depicted in Figure 2.20, a single-shot methodology, and
dependency on the darknet framework. The enhancements in YOLOv4 were of such
magnitude that the community expeditiously embraced it as the authoritative iteration of
YOLOv4 [52]. The key modifications architecture introduced in YOLOv4 can be
summarized as follows, CSPDarknet53-PANet-SPP, optimizing object detection by
incorporating Bag-of-Specials (BoS). The modified Darknet-53 with cross-stage partial
connections (CSPNet) and the Mish activation function outperformed other backbone
topologies. The model utilizes a customized path aggregation network (PANet) with a
modified spatial attention module (SAM) and anchors for detection, deviating from
YOLOv3's FPN. The Bag-of-Freebies (BoF) technique enhances training methodologies
through mosaic augmentation, Drop Block for regularization, class label smoothing, CloU
loss function, and Cross Mini-Batch Normalization (CmBN). Self-Adversarial Training
(SAT) is employed to enhance the model's resilience to disturbances by manipulating input
images. Genetic algorithms optimize hyperparameters, with a cosine annealing scheduler

dynamically adjusting the learning rate during training, ensuring optimal performance.

CSPDDarknet53
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Figure 2.20: YOLOv4 Architecture [52].
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vi. YOLOV5

In 2020, YOLOVS5, introduced by Glen Jocher [74], builds upon the advancements of
YOLOv4 but utilizes the PyTorch framework instead of Darknet. The pre-training
methodology involves analysing and adapting anchor boxes, leveraging a k-means function
for initial conditions and a Genetic Evolution (GE) algorithm for refinement. YOLOV5
adopts a modified CSPDarknet53 framework with a distinctive Stem design to minimize
memory consumption. The architecture integrates Spatial Pyramid Pooling Fast (SPPF) for
multi-scale feature addressing, a modified Cross Stage Partial Aggregation Network (CSP-
PAN) in the neck segment, and YOLOv3-inspired head module. The implementation
includes augmentations like Mosaic and Mix-up, enhancing grid sensitivity for stability.
YOLOV5 offers scaled variations (nano to extra-large) catering to diverse applications.
YOLOV5X, optimized for superior performance, achieves 50.7% Average Precision (AP) at
640-pixel image size and 55.8% with a 1536-pixel input, demonstrating flexibility for
different hardware and application needs. Figure 2.21 depicts the structure of YOLOVS5; all
can be evidence by [75]-[79].
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Figure 2.21: YOLOV5 Architecture [52].
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Vvii.YOLOv6

The YOLOv6 model, presented by [80], consists of a network architecture that includes an
efficient backbone with RepVGG or CSPStackRep blocks, a neck structure based on the
PAN topology, and an efficient decoupled head that incorporates a hybrid-channel strategy.
In addition, the research study presents sophisticated quantization methods that utilise post-
training quantization and channel-wise distillation. These techniques result in detectors that
exhibit improved speed and accuracy. YOLOv6 demonstrates superior performance in
accuracy and speed measures compared to earlier state-of-the-art models; Figure 2.22 refers
to YOLOV6 architecture [52]. This model presents several significant advancements: the
introduction of a unique EfficientRep backbone, which is based on RepVVGG and specifically
designed to enhance parallel processing capabilities; the use of RepBlocks or CSPStackRep
Blocks in an improved PAN neck for larger models; and the implementation of an efficient
decoupled head that aligns [52]. The proposed methodology utilises a Task alignment
learning approach to assign labels, incorporates novel classification and regression losses
such as VariFocal and SloU/GloU, and integrates self-distillation techniques for both
regression and classification tasks. In addition, the system has a detection quantization
approach that utilises RepOptimizer and channel-wise distillation techniques, substantially
enhancing the detector's computational efficiency [52]. The researchers introduce eight
scaled models, denoted as YOLOV6-N to YOLOvV6-L6. Notably, the largest model achieves
a remarkable average precision of 57.2% while operating at a speed of about 29 FPS on an
NVIDIA Tesla T4. This evaluation uses the MS COCO dataset's test-dev 2017 subset [52].
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Figure 2.22: YOLOV6 Architecture [80].

viii. YOLOvV7

The creators of YOLOv4 and YOLOR introduced YOLOv7 in July 2022, which
demonstrated a noteworthy accomplishment by surpassing all current object detection
models in speed and accuracy [81]. This achievement encompasses a wide spectrum, ranging
from 5 to 160 frames per second; like its previous iteration, YOLOv4, this version was
trained exclusively using the MS COCO dataset and without dependence on pre-learned
backbones. The YOLOv7 model featured a variety of architectural enhancements and
integrated many "bag-of-freebies" techniques to improve its accuracy while still preserving
its efficiency in terms of inference speed; however, it should be noted that these upgrades
resulted in a minor increase in the duration of the training process [52]. To understand its
architectural structure comprehensively, please consult Figure 2.23. The architectural
modifications included in YOLOv7 consist of two fundamental components; first and
foremost, YOLOV7 presents the Extended Efficient Layer Aggregation Network (E-ELAN),
which expands the ELAN approach [82]. The ELAN framework is designed to enhance the
effectiveness of learning and convergence in deep models through the regulation of the
shortest longest gradient path; YOLOvV7 further advances its capabilities by introducing E-
ELAN, a specialised framework designed to accommodate models using a wide range of
stacked computational blocks [52]. This is accomplished by reorganising and consolidating

cardinality from separate feature groups, enhancing network learning capabilities while
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maintaining the integrity of the original gradient route. Moreover, YOLOvV7 effectively
tackles the requirement for model scaling, particularly in the context of concatenation-based
architectures; the utilisation of traditional scaling methods, such as depth scaling, may lead
to an imbalance in the ratios of input and output channels inside transition layers, hence
affecting hardware efficiency. However, YOLOV7 presents a novel scaling methodology to
address this issue. This approach guarantees that the dimensions of model blocks, in terms
of depth and width, are evenly scaled by a consistent factor, thus maintaining the model's

ideal structural integrity [52].
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Figure 2.23: YOLOV7 Architecture[83].
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3. METHODOLOGY

3.1 DATASET ACQUISITION

3.1.1 Collecting Data

The dataset collected photos and consisted of three distinct subsets, each representing the
alphabet, numbers, and words. ArSL lacks comprehensive and up-to-date dictionaries,
resulting in a shortage of standardized resources. This can be attributed to the fact that each
Arab country has its distinct SL, owing to variations in Arabic dialects employed across
these regions. Using the Classical or standard Arabic language is not prevalent in everyday
communication or as a spoken form. Instead, it is mostly employed on television channels,
particularly in news broadcasts, official written documents, and literary works. The use of
ArSL is not universally consistent but exhibits variation across different countries and even
within the same country. In the Arab region, various SL are utilized, including those
employed in Saudi Arabia, Iraq, Morocco, and Egypt [3]. The initial release of the unified
dictionary of ArSL in 1999, a collaborative effort by The League of Arab States (LAS) and
the Arab League Educational, Cultural and Scientific Organization (ALECSO), aimed to
standardize ArSL. The second dictionary segment followed in 2007. Deaf individuals in
Arabic-speaking nations face challenges due to limited services for their community,
requiring assistance in accessing information, education, communication with the hearing
community, and active participation in events. The dataset used in this study aligns with the
2007 Unified ArSL vocabulary [3]. ArSL involves two sign types, static and dynamic
gestures; however, this dataset predominantly comprises static gestures, enabling the
implementation of an object detection model based on single-frame photographs. The initial
dataset was sourced from [84] and it’s available online in Kaggle [85] and includes a curated
and annotated collection of 14,202 photos representing 32 letter signs in ArSL, as shown in
Figure 3.1. These images exhibit diverse backgrounds and were obtained from 50

individuals.
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Figure 3.1: The Alphabets ArSL Dataset.

The second dataset consists of numerical values and their corresponding static gestures,
specifically focusing on numbers 0 to 9, as shown in Figure 3.2. This dataset was
meticulously constructed, involving the collection of 1160 images. Four volunteers actively
performed the gestures, following the guidelines described in the unified ArSL dictionary.

The data collection occurred in various locations, backgrounds, and lighting conditions.
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Figure 3.2: The Numbers 0 To 9 In the ArSL Numbers Dataset.

The third dataset consists of 19 important words: accident, aim at, bandage, certificate,
emergency, fixed, government, identity conformity, injury, necessary, negative outcome, no,
plate, positive outcome, ready, slow, student, support, and true as shown in Figure 3.3. This
dataset specifically focuses on the emergency medical station, approval and rejection
answers, and other related words. A single hand gesture is also required for this dataset. In
total, 1345 images were captured by four participating volunteers in different locations,
backgrounds, and lighting conditions. The photographs were captured using the camera of a
Realme 6.0 smartphone running on the Android 11 operating system, including a camera
resolution of 64 megapixels.
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Figure 3.3: The Selected Words in The ArSL Word Dataset.

3.1.2 Augmentation and Annotation

The process of data annotation holds significant importance in the context of object detection
activities. Each image within the dataset was assigned a label indicating its equivalent
representation of the Arabic alphabet, numbers, or words. The bounding box annotation
process was conducted to determine the target object's precise location accurately. The
bounding box surrounding the hand gesture can be determined using coordinates (X, y, h,
w), subsequently employed to specify its width and height. The labels were stored in Txt
files. The annotation process was conducted using Anaconda Navigator and Labelimg, as
shown in Figure 3.4, and the augmentation was conducted using Roboflow [86]; its platform
serves as a tool for developers and data scientists to effectively handle, preprocess, and
enhance their image collections to train machine learning models. The utilization of image
data in diverse machine-learning frameworks is facilitated by streamlining the preparation

process.
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Figure 3.4: Labelimg [87].

The datasets underwent a sample augmentation process, which included rotation, as shown
in Figure 4.5 and increased photos. As a result, the numbers dataset expanded to include
2348 images, while the words dataset now has 2116 images. The augmentation process is
expected to enhance the detection accuracy by training the model with larger images,
improving its precision.

Figure 3.5: Two Images from The Number’s Dataset.



3.1.3 Spilt Dataset

The training and testing procedure of YOLOvV8 involves the utilization of
image Splitting. The collection of images is partitioned into training, validation, and test sets
randomly. These sets comprise approximately 90%, 5%, and 5% of the sign data. The
determination of these separation values was based on tests that were done. The size of the
training set is increased to enhance the model's training process using annotated images,
whilst the validation and test sets are exclusively used to assess the model's detection
accuracy. The process of image splitting is conducted utilizing the Roboflow platform. As a
result, the dataset containing numerical values has been partitioned into 2121 images for
training, 116 images for validation, and 111 for testing. In the same way, the word dataset
has been partitioned into 1850 photos for training, 133 images for validation, and an

additional 133 images for testing.
3.2 PROPOSED MODEL

3.2.1 YOLOvV8 Architecture

In January 2023, Ultralytics, the company responsible for the advancement of YOLOVS5,
introduced YOLOV8 [88]. The YOLOV8 framework provides five variants that have been
scaled accordingly: YOLOv8n (nano), YOLOvV8s (small), YOLOv8m (medium), YOLOV8I
(large), and YOLOVS8x (extra-large). The current version of YOLO has been enhanced to
handle a range of vision tasks, such as object identification, segmentation, pose estimation,
tracking, and classification. As previously mentioned, YOLOV8 is an object detection
methodology based on deep learning techniques. The architectural design of
YOLOvV8 encompasses a diverse range of components and features. Now, a shortage of
scholarly literature on the architectural aspects of YOLOv8 exists. Consequently, our
analysis necessitates drawing upon discerning observations to establish a comparative

framework vis-a-vis preceding iterations of YOLO.

a. Backbone

The Cross Stage Partial (CSP) design, which splits the feature map into two halves, is
incorporated into the suggested model's CSPDarknet53 base architecture for feature
extraction. While the second is added to the output of the previous segment, the first is
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subjected to convolution operations. By reducing computational weight, this convolutional
neural network (CNN) design improves the CNN's learning ability. To enhance gradient

flow information, the C2f module is integrated and combined with the C3 module in the
YOLOvV8 model. As shown in Figure 3.6, the C2f module is made up of two ConvModule
and "n" DarknetBottleNeck components connected by Split and Concat, whereas the C3
module has three ConvModule and DarknetBottleNeck components. Conv-BN-SiLU is the
component of each ConvModule, where "n" is the number of bottlenecks. In contrast to
YOLOV5, our model uses the C2f module in favor of the C3 module, and for computational
efficiency, we have fewer blocks in each stage than in YOLOV5. Furthermore, the Spatial
Pyramid Pooling-Fast (SPPF) module to improve the current Spatial Pyramid Pooling (SPP)

module and speed up the model's inference.

b. Neck

Typically, networks with greater depth tend to record a wider range of feature information,
leading to enhanced capabilities in making dense predictions. Nevertheless, it is worth noting
that deep networks that are excessively complex can result in a decrease in the accuracy of
object localization. Additionally, many convolution processes can potentially result in losing
valuable information, especially when dealing with smaller objects. Hence, integrating Path
Aggregation Network (PAN) and Feature Pyramid Network (FPN) designs are required for
the effective integration of multi-scale data. The Neck component in our model architecture
uses multi-scale feature fusion to combine features from different network levels, as shown
in Figure 3.6. Because fewer convolution layers are used in the lower levels, more layers in
the network help get information in the top layers while maintaining location details.
Additional network layers facilitate information acquisition in the upper layers whilst
preserving location information, attributed to utilizing fewer convolution layers in the lower
layers. Primarily inspired by the YOLOv5 model, it is observed that the Feature Pyramid
Network (FPN) employs an up-sampling technique from the top to the bottom to augment
the feature information contained within the bottom feature map. Conversely, the Path
Aggregation Network (PAN) utilizes a down-sampling approach from the bottom to the top
to acquire additional information from the top feature map. These two feature outputs are

merged to enhance the accuracy of predictions for images with diverse dimensions.
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c. Head

This module predicts the class and places objects inside the image. The utilization of anchor
boxes is employed to estimate the location of an object's location and its corresponding class
scores. The primary neural network is trained to optimize the loU metric, which measures
the overlapping between the predicted and ground-truth bounding boxes. Furthermore, the
method also integrates the non-maximum suppression (NMS) technique, eliminating
redundant bounding boxes that overlap and guaranteeing that only the most reliable
predictions are preserved. In contrast to the YOLOv5 model, our methodology incorporates
a decoupled head architecture, wherein the classification and detection heads are distinct and
independent entities. To summarize, the mask indices are used to determine the specific
anchor scales and anchor boxes inside the resulting tensor to make predictions regarding the

bounding boxes and confidence ratings for each object in the image.
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Figure 3.6: Detailed Illustration of Yolov8 Architecture. The Backbone, Neck, and Head Are the
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[89].
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3.2.2 Training Based YOLOvV8 Model

a. Platform

In the training model, Google Colab, or Google Collaboratory, was used to train the
YOLOv8 model on the three datasets. Google Collaboratory is a freely available Integrated
Development Environment (IDE) provided by Google. Its primary purpose is to support and
enhance research and educational activities in Artificial Intelligence (Al). Colab functions
as a coding environment based on Jupyter Notebook, offering the advantage of free access
to both the Graphics Processing Unit (GPU) and Tensor Processing Unit (TPU). The
platform has pre-installed libraries commonly employed in deep learning research, such as
PyTorch, TensorFlow, Keras, and OpenCV. The recognition of the computational demands
of machine learning and deep learning algorithms, which often rely on GPU support for
efficient processing, is acknowledged by Colab. To meet these requirements, Colab offers
access to a cloud-based GPU, specifically the Tesla V100 and TPU (TPUv2), renowned for
their exceptional performance, to cater to the needs of Al researchers. Our approach used
NVIDIA A100 Tensor Core GPU; the A100 model exhibits a significant performance
improvement, boasting up to 20 times higher capabilities than its predecessor. Additionally,
it has the flexibility to be divided into seven separate GPU instances, allowing for dynamic
adjustments to accommodate changing computational requirements. The A100 80GB
introduces the highest memory bandwidth in the world, exceeding two terabytes per second
(TB/s), enabling the efficient execution of extensive models and datasets to enhance the

training model process to ensure the best performance and accuracy.

b. Training

The selected YOLOv8 model will be trained using the pre-processed ArSL datasets. The
training will involve optimizing the model's hyperparameters and refining the architecture.
The YOLOvV8 models, specifically YOLOv8n, YOLOvVSs, and YOLOv8m, will undergo
training using hyperparameters that have been derived through the utilization of a genetic
algorithm All the datasets will train in nano, small and medium weight of the YOLOVS8. To

obtain a summary of the training hyperparameters, refer to Table 3.1.
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Table 3.1: Empirical Hyperparameter VValues for Alphabet, Words, and Numbers of Model,

Model YOLOv8m YOLOVSs YOLOvV8n
Image size 640 640 640
Batch size 32 32 32

epoch 200 200 200
Patience 100 100 100
Workers 8 8 8
Parameters 25.9 million 11.2 million 3.2 million
Optimizer SGD SGD SGD
Decay 0.0005 0.0005 0.0005
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4. RESULT AND DISCUSSION

ArSLR system will be evaluated comprehensively, utilizing well-established metrics
outlined in Section 2.3.4.2. The model's accuracy in recognizing ArSL alphabets, numbers,
and words will be assessed using commonly used metrics such as precision, recall, mean
Average Precision (mAP) and accuracy, F1 and FPS. Furthermore, the evaluation will

consider real-world circumstances to gauge the actual usability and resilience of the system.

4.1 ALPHABETS MODEL RESULTS
The 32 classes and signs of the alphabet model achieve high accuracy in the detection, as
shown in Table 4.1. All three models reached convergent results, but the highest result was
for the YOLOv8m (medium) model with 98.0% Precision, 98.1% Recall and 98.9% mAP
0.5.

Table 4.1: The Performance of Yolov8 Models on ASL Alphabets.

Models Precision Recall mAP 0.5
YOLOV8n 98.00% 97.40% 98.80%
YOLOV8s 98.10% 97.70% 98.80%
YOLO8vm 98.00% 98.10% 98.90%

Finally, the F1 score is calculated as the harmonic mean of precision and recall. It can be

computed during the training phase using the following formula:

Pl = 2 * (precision * recall) (4.2)

precision + recall

The accuracy of our model during the detection step is calculated using the following

equation:

number of correct predication (4.2)

accuracy =
Y tota number of samples

Based on the previous equations, the model’s accuracy, F1 and FPS (Frame Per Second)

values after training for 200 epochs are shown in Tabel 4.2
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Table 4.2: Results of Performance Evaluation For 32 Alphabets Models.

Model F1 Accuracy FPS
YOLOv8n 80% 91.00% 65.36
YOLOV8s 81% 90.00% 55.25
YOLOv8m 85% 94.00% 28.49

The evaluation metrics for each 32 classes in the ArSL using the YOLOv8m model are

presented in Table 4.3.

Table 4.3: Evaluation Results of YOLOv8m for 32 Alphabets Signs.

Class P R mAP50 Class p R mAP50
ain 0.993 0.997 0.995 laam 0.99 0.947 0.993
al 0.986 0.993 0.993 meem 1 0.987 0.995
aleff 0.998 0.993 0.995 meem 0.965 0.959 0.984
bb 1 0.985 0.995 ra 1 0.988 0.995
dal 0.954 0.931 0.943 saad 0.985 0.973 0.994
dha 0.983 0.985 0.993 seen 0.995 0.97 0.988
dhad 0.977 0.971 0.987 sheen 0.995 1 0.995
fa 0.963 0.961 0.99 ta 0.962 1 0.989
gaaf 0.985 0.988 0.994 taa 0.983 0.978 0.994
ghain 0.989 1 0.995 thaa 1 0.983 0.995
ha 0.992 0.993 0.995 thal 0.981 0.963 0.99
haa 0.957 1 0.981 toot 0.999 0.993 0.995
jeem 0.978 0.971 0.993 waw 0.947 0.967 0.97
kaaf 0.967 1 0.986 ya 0.941 0.978 0.983
khaa 0.976 0.993 0.995 yaa 0.986 1 0.994
la 0.998 1 0.995 zay 0.956 0.955 0.977
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Figure 4.1: Depicts the Metrics Achieved After Completing the Training and Validation Processes
Over 200 Epochs.

The analysis Figure 4.1 shows a positive correlation between the number of epochs and the
precision of our model. This means an increased number of epochs leads to improved
precision. Simultaneously. Accuracy is utilized as a metric for evaluating our model,
providing a measure of its overall correctness by indicating the frequency with which the
model made valid predictions. Precision evaluates the model's capacity to make correct
predictions for a single category. In contrast, recall quantifies the model's efficacy in
identifying instances of a particular category. The following figures depict the process of
alphabet detection. Figure 4.2 refers to the implementation of the model in test set images,

and it’s worth noting that all the sign of the alphabet needs one hand to express.
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Figure 4.2: ArSL Alphabets of Recognition Results on Test Images.

4.2 NUMBERS MODEL RESULTS

The Table 4.6 illustrates that the ten classes and signs in the number model from 0 to 9
demonstrate high accuracy. All three models exhibit convergent results, with the YOLOv8m
(medium) model performing the best, achieving a 97.6% mean Average Precision (mAP)
compared to the other two models, as shown in Table 4.4. It also attains 95.5% precision and
96.5% recall.

Table 4.4: Performance of The Yolov8 Model on ASL Numbers.

Models Precision Recall mAP 0.5
YOLOVS8n 95.50% 94.20% 97.30%
YOLOVS8s 96.10% 96.60% 96.00%
YOLOV8m 95.90% 96.50% 97.60%

All the models exhibit precise detection capabilities in real-world webcam scenarios and
photos. To assess the models' performance, we utilised equations (4.2) and (4.1) to obtain

the accuracy performance, the F1 score, and the speed, all shown in Table 4.5.
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Table 4.5: Results of Performance Evaluation Numbers Models.

Model F1 Accuracy FPS
YOLOvV8N 56% 75.00% 27.1
YOLOVS8s 78% 73.00% 23.26
YOLOvV8m 7% 80.00% 28.49

Table 4.6 presents comprehensive data about each of the ten classes in this model.
Table 4.6: Evaluation Results of YOLOv8m for 10 Numbers Signs.

Class P R mAP50
0 0.969 1 0.995
1 1 0.865 0.99
2 1 0.992 0.995
3 0.987 1 0.995
4 1 0.828 0.995
5 0.861 1 0.995
6 0.986 1 0.995
7 0.956 1 0.995
8 1 0.874 0.995
9 0.964 1 0.994

Significant improvements in precision, recall, and mean average precision (mAP) were
observed during the validation stage, as illustrated in Figure 4.3. Finally, Figure 4.4 shows
the image recognition in the test set, and it turns out that all numerical signs require a single-

hand movement to express them.
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Figure 4.3: Depicts the Metrics Achieved After Completing the Training and Validation Processes
Over 200 Epochs.
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Figure 4.4: ArSL Numbers of Recognition Results on Test Images.

4.3 WORDS MODEL RESULTS

Similarly, the previous models, the YOLOVS, performed so efficiently with words dataset in
all wights, the models so convergent in results, especially YOLOv8s and YOLOv8m. In the
end, we chose to use the medium weight. The precision is 99.0%, Recall 99.9% and mAP
99.5%; all the details are shown in Table 4.7. The common thing in all the models is all the
results were so convergent with high accuracy. The proposal model is efficient and fits the
solution for the core problem and could be developed as an official translation tool based on
Al computer vision because YOLOVS8 could train a big dataset size, providing opportunities
to extend and develop the model. More details about the performance in this model for the
Precision, Recall and mAP 0.5 for each class are in Table 4.8.
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Table 4.7: Performance of Yolov8 Model on ASL Words.

Models Precision Recall mAP 0.5
YOLOVS8n 98.50% 99.30% 99.50%
YOLOV8s 99.00% 99.90% 99.50%
YOLOV8m 99.00% 99.90% 99.50%

Table 4.8: Evaluation Results of Yolov8m For 19 Words Signs.

Class P R mAP50
accident 1 1 0.995
aim_at 1 1 0.995
bandage 0.988 1 0.995
certificate 0.982 1 0.995
emergency 0.992 1 0.995
fixed 1 1 0.995
government 0.981 1 0.995
conformity 1 1 0.995
injury 1 1 0.995
necessary 1 1 0.995
negative outcome 0.978 1 0.995
no 1 1 0.995
plate 1 1 0.995
positive outcome 1 1 0.995
ready 1 1 0.995
slow 0.988 1 0.995
student 0.991 1 0.995
support 1 1 0.995
True 0.982 1 0.995

Convergence in real-world webcam detection and image processing leads to the
simultaneous improvement of performance and accuracy. After using equations 4.2 and 4.1
on the testing set, the accuracy, F1 score, and speed achieved are all shown in Table 4.9.

As depicted in Figure 4.6, some signs need one hand to express, and others need both hands

to achieve optimal outcomes.
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Table 4.9: Results of Performance Evaluation Words Models.

Model F1 Accuracy FPS
YOLOvV8n 95% 95.00% 27.1
YOLOVS8s 96% 84.00% 25.51
YOLOv8m 95% 85.00% 23.7

During the traning and vaildtion stage all the values shown in Figure 4.5 show fluctuations in the initial epochs,

but after epoch 160 they begin to stabilize with similar results.

metrics/mAPSO(8) L S/mAPS0-95(8)
1ag: matnes/mAPSD{B) ta nrics/mAPSD95(B)

metncs/precision(B) metrics/recall(B)
tag. metnca/precisiond(ll) tag: metrics/recall(ll)

Figure 4.5: Depicts the Metrics Achieved After Completing the Training and Validation Processes
Over 200 Epochs.
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Figure 4.6: ArSL Words of Recognition Results on Test Images.
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5. CONCLUSION AND FUTURE WORK

ArSL is the main communication form within the deaf community, enabling
effective communication and engagement with society. Nevertheless, a notable obstacle
arises from the limited comprehension of SL among people who can hear, resulting in a
substantial disparity across multiple facets of the lives of individuals with hearing
impairments. This disparity encompasses career prospects, engagement in communal
activities, and broader assimilation within society. The deaf community in numerous Arab
countries, which are confronted with economic and political instability, encounters
heightened difficulties that adversely affect their access to treatment and support. The field
of computer vision and deep learning detection technologies has witnessed significant
progress in the past few years, offering academics promising avenues to tackle the problems
mentioned above. Our suggested system aims to create an operational recognition system
using the YOLOvV8 deep learning model. The architectural foundation of YOLOVS8
incorporates CSPDarknet53, an effective technique for extracting features, by utilizing Cross
Stage Partial (CSP) to enhance the learning process and minimize computational costs.
Substituting the C3 module with the C2f module improves the transmission of gradient flow

information.

A deliberate block decrease within each stage is also implemented to optimize computing
performance. The Neck component, drawing inspiration from FPN and PAN architectures,
integrates multi-scale feature fusion techniques to enhance the accuracy of predictions for
images with diverse sizes. The prediction module, which includes anchor boxes and a
decoupled head, is designed to maximize the loU metric and utilizes Non-Maximum
Suppression (NMS) to enhance the accuracy of predictions. Although there is a scarcity of
information on the architecture of YOLOVS, valuable insights form the basis for doing a
comparison analysis with earlier versions of YOLO. Furthermore, we have generated two
datasets from inception, encompassing 2,348 images for numerical representations, 2,116
for textual representations, and 14,202 for alphabetical representations. Upon completing the
model's training and subsequent testing, we obtained a mean Average Precision (mAP) of
98.9% at an Intersection over Union (loU) threshold of 0.5 for alphabets.
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Similarly, for numbers, the mAP at loU 0.5 was found to be 97.60%. Lastly, for words, the
mAP at loU 0.5 was determined to be 99.0%. The presented model exhibits efficacy and
precision in detecting webcams in practical scenarios, facilitating the advancement of a
commercially viable application for converting ArSL into textual form. We suggest
augmenting the dataset with a larger corpus of words, sentences, and numerical data to
enhance future research. Additionally, it would be beneficial to construct a separate dataset
specifically tailored to capture dynamic gesture movements. While multiple techniques are
available for detecting and recognizing signs, our primary focus is cost-effective solutions

promoting inclusivity and accessibility for all individuals.
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