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ABSTRACT 

HOME HEALTHCARE SCHEDULING AND ROUTING PROBLEMS 

Özsakallı, Gökberk 

PHD, Business Administration  

Advisor: Assoc. (PhD) Ömer ÖZTÜRKOĞLU 

November 2023 

This study introduces a new generic problem to the literature of Home Healthcare 

Scheduling and Routing Problem (HHSRP). Home healthcare is a cost-effective 

healthcare practice that can ease the burden on the healthcare system while providing 

comfortable service to the patients at their home environment. HHSRP involves 

assigning caregivers to patients and optimizing their schedules and routes to minimize 

total cost or the total working time of caregivers. In this new problem, multiple workers 

are assigned to a shared vehicle based on their qualifications and patient demands, and 

then the route is formed so that a traveler may be dropped off and picked up later to 

minimize total flow time. We introduced a mixed-integer linear programming model 

for the problem. To solve the problem, we developed an Adaptive Large Neighborhood 

Search (ALNS) algorithm with problem-specific heuristics and a decomposition-based 

constructive upper bound algorithm (UBA). To analyze the impact of the introduced 

policies, we considered some problem characteristics such as service area, difficulty 

of service, distribution of care, and number of demand nodes in an area. The 

implementation of the proposed drop-off and pick-up (DP) policy results in up to 25% 

reduction in total flow time compared to solutions in vehicle sharing without DP. The 

numerical break-even analysis showed that vehicle sharing with DP policy provides 

savings in total service cost, especially when demand nodes are located in small areas 

like in urban areas and the difficulty of service requirement increases. 

keywords: scheduling and routing; home healthcare; workforce scheduling; vehicle 

sharing; drop-off and pick-up
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ÖZ 

EVDE SAĞLIK HİZMETLERİ ÇİZELGELEME VE ROTALAMA 

PROBLEMERİ 

Özsakallı, Gökberk 

Doktora Tezi, İşletme 

Danışman: Doç Dr. Ömer ÖZTÜRKOĞLU 

Kasım 2023 

Bu çalışma, evde sağlık hizmeti çizelgeleme ve rotalama (ESHÇRP) literatürüne yeni 

bir bakış açısıyla sunulmuş bir problem önermektedir. Evde sağlık hizmetleri uygun 

maliyetli, sağlık sistem üzerindeki yükü hafifletirken hastalara ev ortamlarında rahat 

bir tedavi sunan hizmetlerdir. ESHÇRP sağlık görevlilerinin müşterilere atanması ve 

toplam maliyeti veya sağlık görevlilerinin toplam çalışma süresini en azlayacak 

çizelgeleme ve rotalama planlarının optimizasyonunu içermektedir. Bu yeni 

problemde, sağlık görevlilerinin yetenek ve hasta talepleri dikkate alınarak aynı araca 

atanmasına izin verilmektedir. Aynı zamanda, sağlık görevlilerinin, toplam akış 

zamanında azalma sağlandığı sürece bir hastada bırakılıp servis zamanı bittiğinde 

bırakılan hastadan aynı araç tarafından alınması mümkün kılınmaktadır. Önerilen bu 

problemin kısıtları ve varsayımlarını dikkate alan bir karma-tamsayılı lineer 

programlama modeli geliştirilmiştir. Ayrıca, daha büyük verilerin çözülmesini 

sağlayan bir Adaptif Büyük Komşuluk Arama algoritması (ABKA) ve dekomposizyon 

temelli bir konstrüktif üst sınır algoritması (ÜSA) geliştirilmiştir. Önerilen 

politikaların analizinin yapılabilmesi için yeni veri kümeleri üretilmiştir. Bu veri 

kümelerinde, problemin, servis alan büyüklüğü, servisin zorluğu ve toplam talep 

düğüm sayıları gibi özellikler dikkate alınmıştır. Önerilen bırak-al politikasının, bırak-

al politikası olmayan çözümlere kıyasla ortalama %25 iyileştirme sağladığı 

görülmüştür. Yapılan başa-baş nokta analizleri, bırak-al politikasının toplam 

operasyonel maliyetleri, servis alanının daha küçük ve servis zorluğunun daha yüksek 

olduğu durumlarda klasik politikalara göre azalttığını göstermiştir. 

Anahtar Kelimeler: çizelgeleme ve rotalama, evde sağlık hizmetleri, işgücü 

çizelgeleme ve rotalama, araç paylaşımı, bırak-al politikası
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CHAPTER 1 

INTRODUCTION 

This thesis aims to propose a novel variant of home healthcare scheduling and routing 

problem (HHSRP) to the existing literature. Home healthcare (HHC) services 

encompass a diverse range of medical and clinical care provided to patients within 

their own homes. According to World Health Organization (WHO, 2015), the type of 

healthcare services that HHC can provide summarized as medical and psychological 

assessment, wound care, medication education, pain and disease management, and 

physical therapy. The provision of these services is carried out by healthcare 

professionals who meet the necessary qualifications. HHC can also be viewed as a 

form of transitional care in which it provides supplementary healthcare services for 

discharged patients in need of ongoing medical treatments. 

The demand for HHC services has been steadily rising all around the world. One of 

the main reasons of the increase is closely associated with the ageing population, the 

increase in the percentage of elderly people, and increasing life expectancy. It is 

estimated that the number of elder people is projected to more than double reaching 

over 1.5 billion people over the age of 65 in 2050 (United Nations, 2019). Additionally, 

increase in the ageing population has also changed the burden of illnesses from acute 

life-threatening diseases to chronic disabling diseases (WHO, 2015). This shift poses 

significant challenges that needs to be addressed by governments and healthcare 

systems due to the associated increase in long-term care and medical costs (Crimmins, 

2004). Consequently, HHC services have emerged as an important alternative to 

traditional healthcare systems. According to U.S. Labor’s projections for 2014-2024, 

home healthcare services are expected to grow 60% with an additional 800 thousand 

new jobs.  HHC can provide personalized services at low cost, not only for the elderly 

or disabled people but also to individuals those requiring assistance during recovery 

from an illness or injury in a familiar environment after getting treatment at the hospital.  

Furthermore, during the recent global pandemic of COVID-19, HHC workers have 

played an essential role as frontline personnel in various countries (Bowles et al., 2021). 
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In addition to attending to routine and private healthcare requirements of patients who 

are unable or disinclined to seek hospital-based care due to the inherent risk of 

contracting COVID-19 (Sama et al., 2021), the HHC workers had undertaken the 

responsibility of administering a wide range of healthcare services to COVID-19 

patients. These patients, who either received home-based treatment or were discharged 

from hospitals and require medical care in self-isolation protocols, received necessary 

medical care and support from HHC workers within the familiar environment of their 

own residences. 

For these reasons, researchers have been increasing their attention to design efficient 

HHC systems and find improved management approaches by engaging in decision-

making processes at different stages of the system. HHC systems consist of three 

primary groups which are healthcare providers, caregivers, and patients. The problem 

becomes extremely complex when considering the diverse and multifaceted 

preferences and constraints of each group. Healthcare providers must consider crucial 

factors such as the geographical region of HHC service provision, the number and 

qualification of caregivers, service quality, and overall operational costs. Furthermore, 

caregivers are typically bound by diverse contractual arrangements that determine 

salaries and working hours, alongside their distinct areas of expertise which dictate the 

scope of medical services they can provide. Lastly, patients introduce key constraints 

including the type of medical treatments required, preferred time windows for service 

delivery, and personal preferences. As these multifarious elements are considered, the 

complexity of the HHC system increases exponentially (Polnik et al., 2021). 

HHC systems have three level problems, including strategic, tactical, and operational. 

Location planning, territory partitioning and resource allocation to the territories are 

strategic level problems that need to be considered. Tactical level consists of demand 

forecasting and resource dimensioning problems. A recent literature review on the 

strategic and tactical level studies is published by Chabouh et al. (2023). Two main 

problems need to be solved every day by decision-makers at HHC institutions at the 

operational phase. The first problem is an assignment problem which involves 

determining the appropriate allocation of caregivers to patients based on 

considerations of caregivers’ skills and specialties, as well as patients’ specific 

requirements. The second problem involves scheduling and routing of these assigned 

caregivers, which is referred to as the home healthcare scheduling and routing problem 
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(HHSRP) in the literature. In the literature, these two problems are considered 

simultaneously with the help of Operations Research tools. Consequently, in the 

HHSRP, decision-makers try to find an efficient route and schedule for caregivers 

while simultaneously assigning them to patients with the objective of minimizing 

travel and service costs.  

However, mismanagement in scheduling and routing caregivers can lead to unserved 

or delayed patients, patient dissatisfaction, increased working hours for caregivers, and 

high travel and service costs. For instance, according to Holm and Angelsen (2014), 

caregivers in Norway spend approximately 18% to 26% of their working time traveling 

in vehicles. Consequently, they face a heightened risk of motor vehicle-related injuries 

and a potential loss of productivity due to time spent driving (Weerdt and Baratta, 

2015).  

In this study, a novel vehicle sharing policy is proposed to minimize total operational 

costs and increase the efficiency of HHC providers. The proposed policy allows 

caregivers to share the same vehicle when visiting patients. To the best of our 

knowledge, the existing literature does not explore the vehicle sharing approach among 

caregivers. By enabling the vehicle sharing, the number of required vehicles to operate 

the system can be significantly reduced. However, it is important to address potential 

drawbacks such as unnecessary waiting times for caregivers which can decrease their 

productivity. To mitigate the issue, a “drop and pick-up policy” is proposed, allowing 

caregivers to be dropped off be the vehicle at a patient’s location to minimize waiting 

times, and subsequently picked up by the vehicle once their service is completed. 

These proposed policies introduce a new vehicle sharing approach for HHSRP 

literature.  

The problem addressed in this study is referred to as the Home Healthcare Scheduling 

and Routing Problem with Vehicle Sharing (HHSRP-VS). The novel vehicle sharing 

approach presented herein contributes not only to the existing HHSRP literature but 

also to the broader field of workforce scheduling and routing problem (WSRP). 

To examine the effectiveness of the policy across various scenarios, a mixed-integer 

linear programming is formulated, taking into account both vehicle sharing and drop 

and pick-up policies. However, due to the extension of these additional policies, 

HHSRP-VS becomes extremely complex and challenging to solve. Therefore, this 
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study introduces two solution approaches to tackle this complexity: a constructive 

matheuristic upper-bound algorithm and an Adaptive Large Neighborhood Search 

(ALNS) algorithm with problem-specific local search heuristics. These algorithms are 

designed to generate efficient solutions for the HHSRP-VS, overcoming the 

computational difficulties posed by the extended policies. In addition, a Home 

Healthcare Decision Support System (HHDSS) is presented in this study. HHDSS is 

designed to support HHC planners with the daily task of scheduling and routing of 

caregivers. The HHDSS employs the proposed algorithm to optimize the caregivers' 

routes. It is tested on instances generated using data of COVID-19 patients from the 

biggest cities of Turkey.
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CHAPTER 2 

HOME HEALTHCARE SCHEDULING AND ROUTING PROBLEM 

WITH VEHICLE SHARING 

Despite gaining popularity two decades ago, the provision of HHC services has a 

historical foundation dating back several centuries. Informal HHC services were 

traditionally provided by family members, religious institutions (Tarricone and 

Tsouros, 2008), as well as traveling physicians and nurse-midwives (Işık, 2016). 

During the 19th century, hospital care served as the primary source of healthcare for 

older individuals, children, disabled individuals, and those with mental disorders. 

However, efforts to reduce long-term hospital stays for the elderly and children, while 

improving the quality of home care, have been underway since the 1960s (Tarricone 

and Tsouros, 2008). Alternative approaches such as community care, continuous care, 

and home-based care have been proposed to alleviate the dependence on hospital-

based care.  

Additionally, changes in lifestyle trends (Jacobzone et al., 1999), smaller family sizes 

(Nasir and Dang, 2020), and increased labor market participation by women (Tarricone 

and Tsouros, 2008) have contributed to a decline in the provision of informal home 

care (Genet et al., 2011). Consequently, the growing demand for care resulting from 

an aging population, coupled with the diminished availability of informal care, has led 

to the expansion of formal home healthcare services. 

The terms "home care" or "social care" and "home healthcare" are often used 

interchangeably in the literature. However, the distinction between home care and 

home healthcare lies in the nature of the services provided at home (Tarricone and 

Tsouros, 2008). Home care encompasses household tasks such as shopping, cooking, 

and cleaning, as well as socialization and personal care such as assistance with dressing 

and bathing. These activities serve as substitutes for informal care and are typically 

provided by social service sectors or family members, predominantly catering to older 

individuals. On the other hand, home healthcare services primarily involve 
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rehabilitation, physical and occupational therapy, health promotion, disease prevention, 

and physiotherapy (see Table 2.1). 

Table 2.1. Differences between home care and HHC  

Home Care Services HHC services 

Companionship Physical and occupational therapy 

Assistance with activities 

of daily living 
Medical tests 

Meal preparation or 

delivery 

Administration of prescription 

medications or shots 

Transportation to 

appointments 
Monitoring of health status 

Cleaning and organizing Wound care 

2.1. Home Healthcare Systems in Turkey 

In Turkey, the foundations of HHC services were established in 1961 with the 

Socialization of Health Services law. This legislation emphasized the importance of 

centralizing healthcare services, ensuring an equal distribution of caregivers across the 

country, and extending HHC services to rural areas with insufficient hospital bed 

capacity. However, the implementation of HHC services similar to those introduced in 

developed Western countries only began in 2005 with the adoption of the Healthcare 

Transformation Program. The Home Care Service Delivery Decree was subsequently 

published in the Official Gazette on March 10, 2005, which outlined the regulations 

for healthcare institutions offering home care services as an independent business 

activity or as part of medical centers, specialized centers, polyclinics, or private 

hospitals. Changes made to the Disability Law and Other Statutory Decrees on July 1, 

2005, also emphasized the preference for home-based disability care whenever 

possible, with the state covering the cost of home care for eligible individuals. 

The Ministry of Health published the Directive on the Procedures and Principles of 

Home Healthcare Services in 2010, with the aim of providing examination, testing, 

treatment, medical care, rehabilitation services, and comprehensive social and 

psychological support within the familial atmosphere of patients' homes. Home 
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healthcare services are offered by educational and research hospitals, home healthcare 

service units within general or specialized hospitals, social health centers, family 

health centers, and family doctors. The coordination and management of these services, 

along with communication and collaboration among units, are facilitated through a 

coordination center established within the directorate, supervised by a healthcare 

associate director. 

Finally, the Regulation on the Presentation of Home Healthcare Services was 

published by the Ministry of Health in 2023. This new regulation introduces various 

key changes and developments in the provision of HHC services. The scope of HHC 

service provision has been expanded, with the establishment of standards regarding 

personnel, vehicle, and equipment capacity to meet the increasing demand. 

Additionally, the standardized requirements for both short-term and long-term HHC 

services, and eligible patient groups are defined. 

2.2. Key Characteristics of Home Healthcare System 

As stated by many studies (Carpenter et al., 2004; Genet et al., 2011; Kristinsdottir et 

al., 2021) the definition and scope of HHC can significantly vary between countries as 

well as within countries (MacAdam, 2004; van Hout et al., 2019). This subchapter 

examines the key characteristics of HHC systems across different countries. The 

various aspects of HHC systems can be analyzed under three key characteristics: the 

type of HHC providers, the sources of funding, and regulation of HHC benefits. A 

comprehensive discussion on this topic can be found in (Genet et al., 2011; Genet et 

al., 2012a and van Enoo et al., 2016). 

2.2.1. Type of Providers  

Different kind of HHC service provider models can be found in each country, including 

public, private (both not-for-profit and for-profit) organizations, and a mix of these. 

The provision of HHC services is predominantly carried out by non-profit 

organizations in both the public and private sectors. The exception is observed in 

Germany, where 63% of the organizations are private for-profit (van Enoo et al., 2016). 

However, it is stated that the share of private for-profit providers shows an increasing 

trend for the service provision in the other countries including England (Netten et al., 

2007), Ireland (Timonen and Doyle, 2008), Sweden (Sundström et al., 2002), as well 
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as Turkey (Aslan et al., 2018). Additionally, even though private service provision is 

growing in the Netherlands, there is also a notable emergence of a new trend of 

neighborhood-centered HHC services. This trend has developed in response to the 

dissatisfaction of professional providers (Genet and Boerma, 2012). Kendall et al. 

(2003) and Bode (2006) argue that the introduction of market mechanisms has resulted 

in the weakening of non-profit organizations. On the other hand, for-profit providers 

have demonstrated greater adaptability to the changes. 

According to Genet et al. (2012b), there are three types of government models on 

regulating provision of HHC services defined as centralized type, framework type, and 

laissez-faire type. Centralized type is defined by the prominent role of the central 

government which regulates the scope of services and strict eligibility criteria. 

Regional authorities are primarily responsible for implementing the policies set by the 

central government. Framework type is characterized by a combination of national 

regulations, and decentralized decision making. Often, general principals are defined 

without strict boundaries. Therefore, the provision of HHC services may vary largely 

within the countries. Lastly, unlike the centralized type, the central government has 

minimal role in the regulations of the services in the laissez-faire type. However, lack 

of regulations on private providers may result in provision of poor quality services, 

and inequalities in the working conditions of HHC workers (Netten et al., 2007; 

Timonen and Doyle, 2008). The summary of different governance types can be found 

in Table 2.2.  

2.2.2. Sources Of Funding 

In general, different types of sources are used for funding public HHC systems, 

including general taxation, budgets of municipalities, private payments, and social 

insurances (Genet et al., 2011). Taxes serve as primary public funding source in most 

of the countries such as Denmark (Stuart and Hansen, 2006), Portugal (Santana et al., 

2007), and Iceland (Hutchinson, 2012), with the exception of Germany. 

The other mainly used public funding source is social insurance. HHC is funded 

through either part of the compulsory health insurance as seen in the Netherlands 

(Genet and Boerma, 2012) and in Germany (Garms-Homolovà, 2012) or as part of 

social security. 
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Table 2.2. Main Types of HHC governance 

Centralized Framework Laissez-faire 

Features 

Dominant role of 

national government. 

Detailed entitlements 

set by national 

government. National 

vision on home care 

Non-state actors have 

wide decision-making 

power.  

National vision on home 

care 

Weak role of central 

government.  

No government vision. 

Few entitlements 

Actors 

Central government 

lays down detailed 

regulation. 

Municipal or regional 

government has main 

involvement in 

operational activities. 

Private providers may 

be strictly regulated. 

Central government lays 

down regulation along 

broad lines.  

Municipal or regional 

governments have large 

discretionary powers. 

NGOs may have large 

roles. 

NGOs setting their own 

rules or contracted 

sporadically by 

government.  

Private providers setting 

their own rules and helping 

those who can afford. 

Government for most 

severe cases. 

Main policy issues 

Efficiency.  

Maintaining equity 
Equity 

Equity.  

Quality in general 

Note. From Genet et al. (2012b), p.38.  

 In general, only certain HHC services is eligible for public funds. For example, HHC 

services are nationally funded for elderly people in France (Litwin and Attias-Donfut, 

2009) as well as in Turkey. On the other hand, Otero et al. (2003) argue that private 

organizations are necessary for the provision of the services in Spain due to the limited 

availability of public sources for the HHC service coverage.  
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2.2.3. Regulation of HHC benefits and workers 

Provision of HHC services is dependent on a set of eligibility criteria. In most of the 

countries, elderly people are primary eligible recipients of these services. The 

eligibility criteria typically consider the financial situation and medical condition of 

the patient and the availability of the informal care (Bihan and Martin, 2006; van Hout 

et al., 2019), and it is stated that the assessment process is stricter in France compared 

to other European countries. HHC services are independent from the income of the 

patients and are considered as universal in certain countries such as Scandinavian 

countries and Turkey (Genet et al., 2011). On the other hand, age also is considered as 

eligibility criteria in addition to the financial situation.  

HHC is highly demanding for HHC workers (Totterdell and Holman, 2003). 

Caregivers often face increased risk of motor vehicle related injuries due to driving 

from patient to patient (Weerdt and Baratta, 2015). Additionally, they are prone to back 

injuries and musculoskeletal disorders (Owen and Staehler, 2003; Waters et al., 2006). 

Caregivers also frequently experience burnout (Meissner et al., 2007; Xanthopoulou 

et al., 2007). Hence, it becomes crucial to regulate the working conditions of HHC 

workers in order to increase the job satisfaction and reduce worker turnover rates.  

2.3. Strengths and Weaknesses of Home Healthcare Systems  

In this subchapter, the strengths, and weaknesses of HHC systems as an alternative to 

institutional care are examined. Several studies state that provision of HHC services 

has positive effect on patient safety and quality of living while reducing mortality rates 

and costs (Caplan et al. 2012; DeCherrie et al., 2022). 

Early studies state that providing healthcare services to patients in the home 

environment is significantly cost effective than the provision of the same service in a 

hospital (Hammond, 1979; Jones et al., 1999). However, the benefits of HHC systems 

in terms of cost-effectiveness depends on the condition of patients and the provided 

services (Soderstrom et al., 1999). Anttila et al. (2000) shows that the implementation 

of post-discharge HHC for elderly population resulted in a cost reduction of 24% to 

52% for university hospital. Similar finding reported in Miller et al. (2005) that an 

early discharge rehabilitation program is cost-effective. Hammar et al. (2009) 

concludes that integration of HHC services and discharge practices tend to be cost 

effective. According to O’Dell and Wheeler (2012), HHC systems are found to be cost 
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effective compared to extended hospitalization, and it is almost same to long-term stay 

hospital stays. 

Moreover, one of the most important features of HHC services is the personalized 

healthcare service provision. Personalized attention of caregivers in the home 

environment improves the patient satisfaction (Hughes et al., 2000; Vass et al., 2005). 

Also, most of the studies in the HHSRP literature incorporate patient preferences into 

their models to maximize this criterion (Eveborn et al., 2006; Rasmussen et al., 2012). 

HHC services also improves the quality of living which often helps to improve 

recovery time (Owen et al., 2015). In addition, Elkan et al. (2001) finds that HHC is 

effective in reducing mortality rates and admission to long-term hospitalization for 

elder populations. Similar finding reported in Tomita et al. (2010) that HHC services 

would prevent hospitalization of elderly people with the improvements on the physical 

and mental conditions. Ishibashi and Ikegami (2010) demonstrates the positive impact 

of HHC services in functional decline among elderly population who receives HHC 

services. 

The risk of HHC related infections is a controversial topic in the literature. Haque et 

al. (2020) states that hospital associated infection rate is between 5% to 15% in high 

income countries, and 10% of these patients die. On the other hand, Shang et al. (2015) 

finds that an average of 3.5% of patients developed infections while receiving HHC 

services resulting in the need of emergency care or hospitalization in the United States. 

This risk also intensified during and after COVID-19 pandemic, as expected (Burgdorf 

et al., 2022). Therefore, it is extremely important to incorporate predictive risk models 

in HHC services to prevent potential hospitalizations and emergency treatments 

(Shang et al., 2020; Song et al., 2022). 

One of the main limitations of HHC services is the restricted variety of services that 

can be offered in emergency situations. The services can be provided by HHC systems 

are often preventative and health promoting services rather than acute emergency care 

(Keating, 1995). This restriction can pose serious challenges. Madigan (2007) and 

Sears et al. (2013) find that 13% of HHC patients experience at least one adverse event 

with one-third of these incident being preventable. HHC providers have responsibility 

for implementing necessary strategies to increase safety of both patients and caregivers, 
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and to prevent avoidable unwanted events. Furthermore, effective communication and 

attention from caregivers also play a vital role (Coleman, 2003; Romagnoli et al, 2013). 

Caregivers in general are lack of specialized training in providing care for patients in 

a home setting (WHO, 2015; Miller et al. 2022). It is crucial for patients to receive not 

only medical care but also support in addressing their social and psychological needs. 

Therefore, high level of communication skills and patient support are desired in HHC 

services (Işık et al., 2016). However, Cunningham et al. (2020) states that training and 

education of caregivers pose challenges in HHC systems. Despite the challenges, there 

are studies that propose training programs to enhance skills of caregivers that shows 

promising results (Brown et al., 2010; Clair et al., 2019; Goroncy et al., 2020). 

Finally, caregivers face risks due to inherent uncertain nature of the home environment 

during the HHC visits. Caregivers are exposed to potential risks such as violence, 

verbal abuse, and unhealthy home conditions during the provision of the care. Canton 

et al. (2009) highlights the risk of violence towards caregivers, while Karlsson et al. 

(2019) emphasizes the occurrence of verbal abuse. Additionally, Gershon et al. (2012) 

discusses the potential hazards associated with unsanitary homes. Quinn et al. (2021) 

provides a comprehensive review on weaknesses and challenges of HHC services and 

offers valuable guidelines for the improvement. Strengths and weaknesses of the HHC 

systems are summarized in Table 2.3. 

Table 2.3. Strengths and weaknesses of HHC 

Strengths Weaknesses 

Cost effective Needs special training  

Improved quality of living 
Needs high level of 

communication 

Reduced mortality rates 
Limited range of services in 

emergency situations 

Reduced infection risks in 

specific services 

Risks due to unpredictable nature 

of home environment  

More appealing to patients Risk of vehicle related injuries 
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2.4. Future of Home Healthcare 

HHC has emerged as a popular alternative to hospital-based care. The advantages of 

HHC services are summarized in this chapter such as cost-effectiveness and reduced 

risk of hospital associated infections etc. In addition, with the global shift in illnesses 

from acute life-threatening diseases to chronic disabling diseases (WHO, 2015) with 

the increase of ageing population, HHC services has become one of the most preferable 

healthcare services. It is stated that HHC has been the fastest growing sector healthcare 

sector for the past 3 decades (Jarvis, 2001; Markkanen et al., 2007; Shang et al., 2014). 

Since the proportion of 65+ older is expected to increase from 16% to 27.8% in 2050 

(Kristinsdottir et al., 2021), this trend of growth is expected to continue. According to 

U.S. Labor of Department (2015), HHC services are expected to grow 60% by 2024.
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CHAPTER 3 

HOME HEALTHCARE SCHEDULING AND ROUTING PROBLEM 

WITH VEHICLE SHARING 

Two distinct features of the HHSRP-VS are (1) multiple independent caregivers, who 

can provide independent services to different patients, traveling in the same vehicle 

and (2) a drop-off and pick-up (DP) policy implemented on a trip. Hence, the main 

objective of this research is to answer the following research questions. 

i.How effective are variations of the proposed caregiver swap heuristic used in 

the proposed ALNS algorithm?  

ii.How effective and efficient are the proposed upper bound and ALNS 

algorithms compared to each other and to CPLEX solutions? 

iii.How effective is the DP policy in HHSRP-VS? Under which circumstances 

does DP policy provide savings on total flow time? 

iv.How effective is vehicle sharing policy in HHSRP-VS? Under which 

circumstances does vehicle sharing with DP policy provide savings on total 

flow time and total service cost?  

In this section, we first provide an extensive literature review and then formal 

description of the problem. The section is concluded with the proposed mixed-integer 

linear programming model of HHSRP-VS.  

3.1. Literature Review 

As discussed in the previous chapter, HHC service providers offer a wide range of 

services to a person in need. For this purpose, staff (caregivers) with different 

qualifications like general physicians, therapists, nurses, social workers, dietitians, 

psychologists, etc. are employed by the providers. To travel between different patients' 

locations and HHC centers, these caregivers either have their personal vehicles or use 

a vehicle provided by the HHC service providers. The patients require certain types of 

services, which must be performed by suitably qualified staff members. One of the 

main problems facing the management of the HHC service provider is the daily 
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scheduling and routing task (Borchani et al., 2019). This scheduling and routing 

determine which visit will be performed, by which caregivers, and by which vehicles 

(if personal vehicle is not the case).  

3.1.1. Workforce Scheduling and Routing Literature 

The daily scheduling of tasks and routing of caregivers in the HHC service is an 

example of WSRP (Bredström and Rönnqvist, 2008). WSRP can be modeled as a 

vehicle routing problem (VRP) with the presence of some uncommon constraints 

(Cissé et al., 2017). According to Castillo-Salazar et al. (2016), assignment and 

scheduling of tasks to teams or to individual workers in WSRP are done on two 

different grounds. The first is that all workers have the same qualifications in which 

any worker can be assigned to any job. This can be seen in the problem of scheduling 

and routing security guards (Alfares & Alzahrani, 2020), electricity network 

maintenance (Goel & Meisel, 2013), etc. On the other hand, there are scenarios in 

which a workforce with different qualifications/skills is required and these 

qualifications should be satisfied with the schedule. Examples of this are common in 

industries like network infrastructures (Guastaroba et al., 2021), electricity 

distributions (Çakırgil et al., 2020), home healthcare (Liu et al., 2017), and so forth. In 

the WSRP, the demands are satisfied by either a team or an individual worker. The 

main distinction between WSRP and HHSRP is team formation, which might be 

required based on the nature of the tasks to be performed (Li et al., 2005). In general, 

the teams are formed at the beginning of the planning horizon as to meet the 

requirements of the tasks and can therefore be considered as a single entity (Cordeau 

et al., 2010; Anoshkina and Meisel, 2019; Punyakum et al., 2022). In the context of 

HHSRP, teaming is not a typical assignment constraint. WRSP is NP-Hard as it is a 

variant of VRP. Therefore, the majority of the studies in the literature consist of 

heuristic and matheuristic algorithms (Guastaroba et al., 2021). In addition, exact 

algorithms typically formulate the problem as a set covering or partitioning model and 

solve it using branch-and-price algorithms (Zamorano and Stolletz, 2017; 

Schrotenboer et al., 2019; Su et al., 2023).  

3.1.2. Home Healthcare Scheduling and Routing Literature 

To the best of our knowledge, Begur et al. (1997) and Cheng and Rich (1998) were the 

first to handle the HHSRP. Using the nearest neighborhood search heuristic approach, 
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Begur et al. (1997) modeled the problem as a VRP without considering time-window 

constraints and shared visits. On the other hand, Cheng and Rich (1998) modeled the 

problem as a VRP with time-window constraints (VRPTW) using a the mixed-integer 

linear programming (MILP) and proposed a simple solution heuristic. Since Begur et 

al. (1997), researchers have been developing models and solution algorithms for 

solving the variants of HHSRP. The literature on HHSRP is extensive with review 

papers that provide detailed overviews and analyses of the existing research. 

Comprehensive literature reviews were published recently by Di Mascolo et al. (2021), 

Grieco et al. (2021) and Goodarzian et al. (2023). In addition, literature reviews of 

Cisse et al. (2017), and Fikar and Hirsch (2017) provide detailed information about 

fundamental characteristics of the problem and well-known studies in the literature.  

As in the work of Cisse et al. (2017), constraints are grouped into three main categories 

which are temporal constraints, spatial constraints, and assignments constraints. Each 

category has one or more specific features. In the following, brief information about 

type of constraints is given. In addition, some of the important studies regarding 

HHSRP are briefly summarized according to their features in Table 3.1. 

The planning horizon determines the period in which scheduling and routing plan is 

made. According to Cisse et al. (2017), the length of the plan depends on the 

availability of demand information. In the literature, mostly a single-day planning 

horizon is considered due to the quality of the information (Eveborn et al., 2006; 

Redjem and Marcon, 2016; Rest and Hirsch, 2016; Pinheiro et al., 2016; Qiu et al., 

2022). On the other hand, studies that consider multi-period planning horizon 

generally consider one week planning horizon (Begur et al., 1997; Trautsamwieser and 

Hirsch, 2014; Qin et al., 2015; Wirnitzer et al., 2016; Chen et al., 2016; Pereira et al., 

2020). In addition, continuity of care is an important service quality indicator for 

HHSRP environment. Continuity of care constraint is not always but in general 

considered in multi-period HHSRP setting in which patients consistently receive the 

service by the same caregiver (Wirnitzer et al., 2016; Fathollahi-Fard et al., 2021; 

Nikzad et al., 2021). In HHSRP context, this constraint builds a relationship of 

confidence between the patient and caregiver (Cisse et al., 2017). 

Qualification of caregivers is one of the most important characteristics of HHSRP. 

This is because the service providers must match the patients’ varying requests with 

the employees’ expertise. In the literature qualification of caregivers is considered in 
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two ways. In the first one, more than one qualification can be assigned to a worker 

(Eveborn et al. 2006; Rasmussen et al. 2012; Pillac et al., 2013; Bard et al. 2014; 

Mankowska et al. 2014; Liu et al. 2017; Mathlouthi et al., 2021). Whereas in the 

second approach, it can be determined based on the hierarchical level of qualification 

(Cordeau et al., 2010; Nickel et al. 2012; Rest and Hirsch 2016; Trautsamwieser and 

Hirsch 2011) in which each patient's demand has a minimum required level of 

qualification and each caregiver is associated with some qualification level. In our 

study, we considered the first type of qualification approach in which the demand and 

the skill should be matched. 

Maximum working time for caregivers defines the maximum amount of time a 

caregiver is allowed to work in a shift, which is usually implemented by setting a time 

window. Maximum working time constraint can be a hard constraint (Bredström and 

Rönnqvist,2008; Frifita et al., 2017; Rasmussen et al.,2012; Trautsamwieser and 

Hirsch, 2014; Goodarzian et al., 2021) with a penalty cost for unvisited or missed 

patients, or a soft constraint which allows overtime with an additional cost in the 

objective function (Cheng and Rich, 1998; Rest and Hirsch, 2016; Trautsamwieser and 

Hirsch, 2011; Gong et al., 2020; Malagodi et al., 2021). In our study, we considered 

hard maximum working time constraints. 

Time windows of patients denotes the suitable time intervals that patients accept visits. 

It is assumed that patients have time windows in most of the HHSRP studies (Cheng 

and Rich, 1998; Eveborn et al., 2006; Rasmussen et al., 2012; etc.). Time windows can 

be applied in two different ways. Hard time windows impose that arrival to a patient 

after the upper bound of the window is not allowed. On the other hand, soft time 

windows (Trautsamwieser and Hirsch, 2011) allow the late arrivals with a penalty cost. 

In addition, Mankowska et al. (2014) propose mixed time windows of patients. In this 

approach, starting time of the service cannot exceed the earliest starting time. 

However, tardiness of service is allowed which means that a service can start after the 

latest starting time with a penalty cost.  

In the HHSRP literature, multiple caregivers are only seen in the studies that consider 

temporal dependency constraints: synchronization and precedence. 

Synchronized/shared services require visits of different caregivers at the same time 

(Eveborn et al., 2006; Issabakhsh et al., 2018; Frifita et al., 2017; Liu et al., 2021). The 

precedence constraint prioritizes multiple services (Liu et al., 2013; Bard et al., 2014), 
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which are very necessary in the case when one of the two services of a patient should 

be performed before the other. Several studies considered both type of temporal 

dependency constraints (Bredström and Rönnqvist, 2008; Rasmussen et al., 2012; 

Mankowska et al., 2014; Shahnejat-Bushehri et al., 2021). Although these studies, 

especially the ones that are considered synchronization constraints, require multiple 

workers, they either travel with their own vehicle and meet the patient at the same time 

or travel as a team to perform the same task. Thus, according to the best of our 

knowledge, it can be said that no study considers routing of multiple independent 

caregivers in a shared vehicle. 

3.1.3. Sharing Economy and Vehicle Sharing Literature 

The sharing economy (SE) has emerged as a transformative force in recent years. 

While the SE emerged around 2008-2009, early examples of online platforms such as 

Craigslist and eBay facilitating the sharing of goods and information were established 

in 1995 (Schor and Fitzmaurice, 2015). This dynamic economic model, characterized 

by the efficient utilization of underutilized assets and resources, has significantly 

altered traditional consumption patterns and service delivery mechanisms (Schor and 

Vallas, 2021). According to the review paper by Cheng (2016), the rapid expansion of 

the SE over the last two decades is closely tied to socioeconomic factors, driven by the 

desire for better and more equitable value distribution in supply chains (Gansky, 2010), 

efforts to decrease environmental footprints (Schor and Fitzmaurice, 2015), 

advancements in technology, and shifts in consumer attitudes regarding product 

ownership and the importance of social connection (Botsman and Rogers, 2010). 

Accommodation sharing (Dogru et al., 2020) and mobility sharing (Standing et al., 

2019) are the most common forms of the SE. Shared mobility refers to the 

collaborative utilization of transportation methods, allowing individuals to access 

transportation as necessary for short periods (Mouratidis et al., 2021). Modern shared 

mobility is greatly aided by information and communication technologies (ICT) and 

mobile applications (Gössling, 2018). It includes a range of services, including 

carsharing, bikesharing, ridesharing (carpooling and vanpooling), ridesourcing (on-

demand ride services), and e-scooter sharing.  
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Table 3.1. Summary of relevant studies in the literature 
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Solution 

Algorithm 

Cheng and 

Rich (1998) 
Single *         

 
Heuristic 

Eveborn et al. 

(2006) 
Single *   * * *  *  

 Repeated 

matching  

Akjiratikarl et 

al. (2007) 
Single * *        

 Particle 

swarm 

Bredstörm and 

Rönnqvist 

(2008) 

Single  *    * * *  

 

Matheuristic 

Trautsamwieser 

and Hirsch 

(2011) 

Single * * *  *   *  

 

VNS 

Nickel et al. 

(2012) 
Multi * * * * *     

 CP with 

Heuristics 

Rasmussen et 

al. (2012) 
Single  * *   * * * *  

 Branch and 

price 

Mankowska et 

al. (2014) 
Single *    * * *   

 
AVNS 

Trautsamwieser 

and Hirsch 

(2014) 

Multi * *   *     

 
Branch and 

price and cut 

Redjem and 

Macron (2016) 
Single *      *   

 
Heuristic 

Rest and Hirsch 

(2016) 
Single * * *  *     

 
Tabu search 

Wirnitzer et al. 

(2016) 
Multi * * * *    *  

 
MILP 

Fathollahi-Fard 

et al. (2021) 
Multi * *  * *    * 

 Hybrid 

metaheuristic 

Goodarzian et 

al. (2021) 
Multi * *   *    * 

 
Metaheuristic 

Malagodi et al. 

(2021) 
  * *  *   *  

 Cluster based 

decomposition 

Nikzad et al. 

(2021) 
Multi * *  * *     

 Progressive 

hedging based 

matheuristic 

This Study 

(2023) 
Single  *   *     * ALNS 

VNS: Variable neighborhood search. CP: Constraint programming. AVNS: Adaptive variable neighborhood 

search. ALNS: Adaptive Large Neighborhood Seach 

 



21 

Different terms have been used for vehicle and path sharing (VPSP) in the VRP and 

WSRP literature such as, dial-a-ride, ride-sharing, taxi-sharing, carpooling, etc. All of 

these problems are the special cases of pickup and delivery problems (PDP) (Agatz et 

al., 2012) that contain the special case of VRP (Nalepa & Blocho, 2017), therefore are 

located in the NP-Hard class. According to Castillo-Salazar et al. (2016), the PDP 

cannot be considered as a WSRP because in terms of time no significant "work" is 

done within the premises of the customer in the PDP. In PDP, vehicles have to 

transport loads directly from one location to another (Savelsbergh & Sol, 1995). 

Recker (1995) proposed an interesting extension of pickup and delivery for household 

activity pattern problems which involves ride-sharing along with vehicle-switching 

options. The objective of the study was to minimize the disutility of household travel, 

but no solution methodology was developed for the problem by the author. The dial-

a-ride problem (DARP), which was firstly proposed by Cordeau and Laporte (2003), 

focuses on planning the routes of vehicles and their schedules for the transportation of 

multiple passengers who request to travel from a specific place to some destination. 

For the convenience of the passengers, different standard measures are used either as 

a set of constraints or in an objective function in the mathematical model. Some of the 

standard measures are waiting time, the number of stops during travel, etc. (Paquette 

et al., 2009). 

Baldacci et al. (2004) interpret the carpooling problem (CPP) based on DARP and 

propose exact and heuristic methods to solve the to-work variant of the problem which 

was based on two integer programming formulations. Lin et al. (2012) formulated a 

taxi ride-sharing system based on DARP for picking up and dropping the customers 

off at different locations. The main contribution of the study is the inclusion of the 

customers' satisfaction in the objective as the minimum waiting time for the customer 

to be picked. Simulated Annealing algorithm was used as a solution strategy that was 

capable of solving instances with up to 29 customers. Dynamic ride-sharing problems 

differ from the conventional one in such a way that they intend to bring together 

travelers with similar itineraries and time schedules on short-notice (Agatz et al., 

2012). For a comprehensive review of the literature on ride-sharing, we refer Mourad 

et al. (2019) for interested readers. 

In all of the abovementioned studies, mainly commuters or their vehicles are routed. 

Unlike in WSRP or HHSRP, there is no such constraint or requirement as a service 

time of a job, workers' qualifications, worker-to-task (caregiver-to-patient) assignment 



22 

etc. However, in this study multiple travelers are assigned to a shared vehicle 

according to the demand and their characteristics, and then the route is formed such 

that a traveler may be dropped and picked up later to minimize total route length. Thus, 

the introduced problem in this study combines the characteristics of WSRP or HHSRP 

and VPSP and provide some special features. 

3.2. Problem Definition and Mathematical Model 

In this section, we first provide a formal description of the problem and then MILP 

formulation. The HHSRP-VS is defined as the complete directed graph 𝐺 = (𝑉, 𝐴), 

where 𝑉 = {0,1, … , 𝑛, 𝑛 + 1, … ,2𝑛, 2𝑛 + 1} is the set of all nodes in the graph and 

𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} is the set of arcs between every pair of nodes excluding arcs 

between the same nodes. 𝑛 is the number of patients, and nodes 0 and 2𝑛 + 1 indicate 

the same beginning and ending HHC center. The set of caregivers and illnesses (types 

of cares) are denoted by 𝐿 = {1,2, … , 𝑙}̅ and 𝑆 = {1,2, … , 𝑠̅}, where 𝑙 ̅ and 𝑠̅  are the 

numbers of available caregivers and type of illnesses that can be treated, respectively. 

Last, 𝐾 = {1,2, … , 𝑘̅} indicates the set of 𝑘̅ vehicles. 

 

Figure 3.1. The two-layer representation model of the HHSRP-VS problem. The left 

and right routes describe the vehicles 1 and 2’s routes, respectively. 

The sub-tour elimination constraint, which is one of the typical constraints in VRP, 

cannot be enforced due to the implementation of the DP policy that leaves a caregiver 

to a node and then picks up from the same node. Therefore, we proposed a two-layer 

modeling approach to easily adapt DP policy and avoid sub-tour elimination. In this 

approach, 𝑉1 = {1,2,3, … , 𝑛} is defined as the set of original patient nodes, and 𝑉2 =
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{𝑛 + 1, 𝑛 + 2, … , 2𝑛} is the set of their dummy nodes. For clarification, the two-layer 

approach is demonstrated in Figure 3.1.  

As seen in Figure 3.1, the original patient nodes are placed in the first layer, and their 

projections are in the second layer. A vehicle can visit a dummy node in the second 

layer for picking up a caregiver if and only if its original patient node was visited 

before and the requested caregiver was dropped off at that node. Hence, this approach 

could also be considered as one of the methodological contributions of this study. For 

example, suppose that there are 11 patients, 4 distinct caregivers, and 2 identical 

vehicles. Each vehicle carries two distinct caregivers. Suppose that the assigned 

caregiver_1 in vehicle_1 will treat patients (1, 5, 9) while caregiver_2 in the same 

vehicle is assigned to patients (3, 7, 10). Similarly, suppose that caregivers_1 and _2 

in vehicle_2 are assigned to treat patients (8, 11) and (2, 4, 6), respectively. Suppose 

that the optimal routes of vehicle_1 and vehicle_2 are computed as {0, 1, 7, 9, 18, 3, 

10, 20, 5, 23} and {0, 4, 8, 15, 2, 11, 13, 6, 22, 23}, respectively, in which {0} and 

{23} indicate the start and end nodes of the single HHC center. Hence, vehicle_1 starts 

its travel with two caregivers and visits directly to patient 1 where only caregiver_1 

provides care. The vehicle and caregiver_2 wait for caregiver_1 to finish his/her 

service. Next, they travel to patient 7 where caregiver_2 is being dropped off to serve. 

The vehicle goes to patient 9 only with caregiver_1. After the vehicle drops off 

caregiver_1 at patient 9, it goes back to patient 7 (dummy node 18) to pick up 

caregiver_2 empty. After caregiver_2 serves patients 3 and 10 respectively, the vehicle 

with caregiver_2 goes back to patient 9 (dummy node 20) to pick up caregiver_1. Last, 

before the vehicle goes back to the HHC center with both caregivers, it visits patient 5 

who requested caregiver_2. A similar route could also be seen for vehicle 2 on the right 

diagram in Figure 3.1. 

Table 3.2 lists the parameters and decision variables that we define to formulate the 

mixed-integer linear programming model of the HHSRP-VS given below. 
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Table 3.2. Model parameters and decision variables 

Parameters Definition 

𝑡𝑖𝑗 Nonnegative and deterministic travel time between nodes 𝑖 and 𝑗, (𝑖, 𝑗) ∈ 𝐴 

𝑑𝑖𝑠 1, if patient 𝑖 ∈ 𝑉1  needs to be treated for illness 𝑠 ∈ 𝑆 ; 0, otherwise 

(patients’ demands) 

𝑞𝑙𝑠 1, if caregiver 𝑙 ∈ 𝐿  is qualified to treat illness 𝑠 ∈ 𝑆 ; 0, otherwise 

(caregivers’ qualifications) 

𝑝𝑖𝑠 Deterministic service time for treating illness 𝑠 ∈ 𝑆 of patient 𝑖 ∈ 𝑉1 

𝑐 Maximum number of workers allowed to be transferred by a vehicle in 

addition to the dedicated driver to the vehicle 

𝑤𝑇𝑖𝑚𝑒 Maximum daily working time (hour) of caregivers 

𝑢𝑛𝑣 Penalty cost incurred if a patient is not visited 

𝑀1, 𝑀2 Big numbers 

Variables Definition 

𝑥𝑖,𝑗,𝑘 1, if vehicle k ∈ K travels through node 𝑖 ∈ 𝑉 to node 𝑗 ∈ 𝑉; 0, otherwise. 

𝑧𝑖,𝑗,𝑘,𝑙 
1, if caregiver 𝑙 ∈ 𝐿 travels through node 𝑖 ∈ 𝑉 to node 𝑗 ∈ 𝑉  with vehicle 

𝑘 ∈ 𝐾; 0, otherwise. 

𝑦𝑖,𝑘,𝑙 
1, if vehicle 𝑘 ∈ 𝐾 drops caregiver 𝑙 ∈ 𝐿 off at node 𝑖 ∈ V1 such that the 

caregiver should be picked up at node 𝑖 + 𝑛 ; 0, otherwise 

α𝑖,𝑘,𝑙,𝑠 
1, if caregiver 𝑙 ∈ 𝐿 visits patient  𝑖 ∈ 𝑉1 with vehicle k ∈ K to treat illness 

𝑠 ∈ 𝑆; 0, otherwise 

𝑢𝑖 1, if patient node 𝑖 ∈ 𝑉1 is not visited; 0, otherwise. 

ℎ𝑤𝑖,𝑙 Waiting time of caregiver 𝑙 ∈ 𝐿 at node 𝑖 ∈ 𝑉 

𝑤𝑖,𝑘 Waiting time of vehicle 𝑘 ∈ 𝐾 in node 𝑖 ∈ 𝑉 

𝑎𝑣𝑖,𝑘 Arrival time of vehicle 𝑘 ∈ 𝐾  to node 𝑖 ∈ 𝑉 

𝑎ℎ𝑖,𝑙 Arrival time of caregiver 𝑙 ∈ 𝐿 to node 𝑖 ∈ 𝑉 

 𝑑𝑣𝑖,𝑘 Departure time of vehicle 𝑘 ∈ 𝐾  from node 𝑖 ∈ V 

𝑑ℎ𝑖,𝑙 Departure time of caregiver 𝑙 ∈ 𝐿 from node 𝑖 ∈ V 
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Table 3.2. Model parameters and decision variables (cont.)  

Auxiliary 

Variables 
Definition 

ψ𝑖,𝑘,𝑙   

1, if vehicle 𝑘 ∈ 𝐾  visits patient 𝑖 ∈ 𝑉1  with caregiver 𝑙 ∈ 𝐿  and the 

caregiver 𝑙 is not dropped off at the patient (either serves the patient or waits 

for the assigned caregiver in the vehicle). 

0, if either vehicle 𝑘  visits patient 𝑖  but does not wait for the service by 

caregiver 𝑙 (dropped off) or it never visits 𝑖, 

γ𝑖,𝑘,𝑙 

1, if caregiver 𝑙 ∈ 𝐿  is assigned to vehicle 𝑘 ∈ 𝐾  and patient 𝑖 ∈ 𝑉1  for 

serving the patients’ illness 𝑠 ∈ 𝑆 and the caregiver 𝑙 is not dropped off at the 

patient (the vehicle waits for the service completion), 

0, if either caregiver 𝑙  is assigned but dropped off by the vehicle 𝑘  or 

caregiver 𝑙 is not assigned to patient 𝑖. 

 

The HHSRP-VS consists of determining a set of 𝑘̅ routes of the minimal working time 

of the caregivers to serve the patients by dropping the caregiver off at the patient's 

home if needed and picking up from the same place by the same vehicle under the 

working time window of the caregivers, capacity constraints and the following 

assumptions: 

• Each vehicle consists of a fixed number of caregivers. 

• There is a single HHC center where vehicles and caregivers start and 

end their travel.  

• The skills of the available caregivers are eligible to meet patients’ 

requirements. 

• Each patient requires only one type of service (treatment). Hence a 

patient is allowed to be visited by a single caregiver and a vehicle for 

the treatment.  

• Every available vehicle and caregiver is required to be utilized. 

• If any of the caregivers need to be dropped at any of his/her assigned 

patient's home for the treatment, he/she must be picked up from the 

same patient's home by the same vehicle before either return to the 

depot or visiting the next patient who requested the same caregiver.  

• Caregivers are not allowed to work over-time. 
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The mixed-integer linear programming model of the HHSRP-VS given below. 

The objective function minimizes the total flow times of the caregivers until returning 

to the HHC center, which includes their service, travel and waiting times, and the total 

penalty cost of unvisited patients, if exist. 

min ∑ 𝑎ℎ(2𝑛+1),𝑙

𝑙∈𝐿

+ ∑ 𝑢𝑖 ∗ 𝑢𝑛𝑣

𝑖∈𝑉1

 (1) 

Constraint set (2) guarantees that each patient node is visited exactly once or unvisited. 

∑ ∑ 𝑥𝑖,𝑗,𝑘

𝑘∈𝐾𝑖∈𝑉

+ 𝑢𝑗 = 1 𝑗 ∈ 𝑉1 (2) 

Constraint sets (3) and (4) ensure that every available vehicle and caregiver must 

depart from the HHC center. Moreover, a caregiver must leave with a single vehicle. 

∑ 𝑥0,𝑗,𝑘

𝑗∈𝑉1

= 1, 𝑘 ∈ 𝐾 (3) 

∑ ∑ 𝑧0,𝑗,𝑘,𝑙

𝑘∈𝐾𝑗∈𝑉1

= 1, 𝑙 ∈ 𝐿 (4) 

Constraint set (5) maintains flow conservation in the network for vehicles. 

∑ 𝑥𝑖,𝑗,𝑘

𝑗∈𝑉

− ∑ 𝑥𝑗,𝑖,𝑘

𝑗∈𝑉

= 0, 𝑖 ∈ 𝑉1 ∪ 𝑉2, 𝑘 ∈ 𝐾 (5) 

Constraint set (6) aims to relate the travel of vehicles with caregivers. Hence, a 

caregiver can travel from nodes 𝑖  to 𝑗  if his/her assigned vehicle goes that route. 

Constraint (7) assures that only a single and qualified caregiver is assigned to treat the 

illness of a patient if being served. Constraint set (8) ensures that the vehicle must visit 

a patient if the assigned caregiver to the patient is also assigned to that vehicle. 

𝑧𝑖,𝑗,𝑘,𝑙 ≤ 𝑥𝑖,𝑗,𝑘, 𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (6) 

∑ ∑ 𝛼𝑖,𝑘,𝑙,𝑠
𝑘∈𝐾

∗ 𝑞𝑙,𝑠 + 𝑢𝑖 = 𝑑𝑖,𝑠

𝑙∈𝐿

, 𝑖 ∈ 𝑉1, 𝑠 ∈ 𝑆 (7) 

∑ 𝑧𝑖,𝑗,𝑘,𝑙

𝑖∈𝑉

≥ ∑ 𝛼𝑖,𝑘,𝑙,𝑠
𝑠∈𝑆

, 𝑗 ∈ 𝑉1, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (8) 

Constraint set (9) maintains that a caregiver could be dropped off at the patient node 

if the assigned vehicle visits that node. Next, constraint set (10) ensures that the vehicle 
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must visit the patient’s dummy node if a caregiver was dropped off at the patient node. 

Although the terms 𝑦𝑗,𝑘,𝑙 in (9) and (10) could be replaced by ∑ 𝑦𝑗,𝑘,𝑙𝑙∈𝐿 , they might be 

preferred due to computational sakes (tighter constraints). 

𝑦𝑗,𝑘,𝑙 ≤ ∑ 𝑥𝑖,𝑗,𝑘

𝑖∈𝑉

, 𝑗 ∈ 𝑉1, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (9) 

∑ 𝑥𝑖,(𝑗+𝑛),𝑘  ≥ 𝑦𝑗,𝑘,𝑙

𝑖∈𝑉

, 𝑗 ∈ 𝑉1, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (10) 

Constraint set (11) guarantees that the dummy node cannot be visited if none of the 

caregivers were dropped at the patient. Constraint set (12) ensures that when a 

caregiver is dropped off at a patient node, that caregiver is not allowed to leave the 

same patient node, instead, the caregiver must leave from its dummy node due to the 

two-layer approach. 

∑ 𝑥𝑖,(𝑗+𝑛),𝑘𝑖∈𝑉 ≤ ∑ 𝑦𝑗,𝑘,𝑙𝑙∈𝐿 , 𝑗 ∈ 𝑉1, 𝑘 ∈ 𝐾 (11) 

∑ ∑ 𝑧𝑖,𝑗,𝑘,𝑙𝑘∈𝐾𝑗∈𝑉 ≤ 1 − ∑ 𝑦𝑖,𝑘,𝑙𝑘∈𝐾 , 𝑖 ∈ 𝑉1, 𝑙 ∈ 𝐿 (12) 

For the sake of the caregivers’ flow conservation in the network, constraint sets (13) 

and (14) guarantee that if a caregiver goes to a patient node, that caregiver must depart 

from either the same patient node or its dummy node only with the initially assigned 

vehicle.  

∑ 𝑧𝑗,𝑖,𝑘,𝑙

𝑗∈𝑉

= ∑ 𝑧𝑖,𝑗,𝑘,𝑙

𝑗∈𝑉

+ 𝑦𝑖,𝑘,𝑙 , 𝑖 ∈ 𝑉1, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (13) 

∑ 𝑧𝑗,𝑖,𝑘,𝑙

𝑗∈𝑉

+ 𝑦(𝑖−𝑛),𝑘,𝑙 = ∑ 𝑧𝑖,𝑗,𝑘,𝑙

𝑗∈𝑉

, 𝑖 ∈ 𝑉2, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (14) 

Constraint sets (15) through (28) are required to track the arrival, departure, and 

waiting times of both caregivers and vehicles. Because both caregivers and vehicles 

can take different actions throughout the route, their synchronization should be 

maintained for the accuracy of the flow. Therefore, a vehicle or a caregiver may have 

to wait for the other for the continuity of the travel. These waiting times could either 

appear at the first (original patient node) or the second layer (dummy node). These 

could be briefly explained as in the following. 

Constraints (15) and (16) computes the arrival time of vehicles and caregivers to the 

nodes, respectively. A vehicle could wait at the patient node 𝑖 ∈ 𝑉1 (first layer) if and 

only if the vehicle decides to wait for the caregiver until the completion of the service 
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at the patient. The duration of the waiting time is the amount of service time for the 

patients’ requirements (constraint (17)). 

𝑎𝑣𝑗,𝑘 ≥ 𝑑𝑣𝑖,𝑘 + 𝑡𝑖,𝑗 − (1 − 𝑥𝑖,𝑗,𝑘) ∗ 𝑀1, 𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (15) 

𝑎ℎ𝑗,𝑙 ≥ 𝑑ℎ𝑖,𝑙 + 𝑡𝑖,𝑗 − (1 − 𝑧𝑖,𝑗,𝑘,𝑙) ∗ 𝑀1, 𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (16) 

𝑤𝑖,𝑘 ≥ ∑ ∑ 𝛾𝑖,𝑘,𝑙 ∗ 𝑝𝑖,𝑠

𝑙∈𝐿𝑠∈𝑆

− ∑ 𝑥𝑗,(𝑖+𝑛),𝑘
𝑗∈𝑉

∗ 𝑀2, 𝑖 ∈ 𝑉1, 𝑘 ∈ 𝐾 (17) 

   

A vehicle could wait at the dummy node 𝑖 ∈ 𝑉2 (second layer) when the vehicle returns 

to the patient node to pick up the dropped-off caregiver and the caregiver has not 

completed the service yet. The duration of the waiting time is the difference between 

the completion time of the caregivers’ service and the arrival time of the vehicle to the 

dummy node (constraint (18)). 

𝑤𝑖,𝑘 ≥ 𝑎𝑣(𝑖−𝑛),𝑘 + ∑ ∑ 𝛼(𝑖−𝑛),𝑘,𝑙,𝑠 ∗ 𝑝(𝑖−𝑛),𝑠𝑙∈𝐿𝑠∈𝑆 − 𝑎𝑣𝑖,𝑘 − (1 − ∑ 𝑥𝑗,𝑖,𝑘𝑗∈𝑉 ) ∗ 𝑀1,  

 𝑖 ∈ 𝑉2, 𝑘 ∈ 𝐾 (18) 

A caregiver in a vehicle, if there is, could wait at the patient node 𝑖 ∈ 𝑉1 while the 

assigned caregiver serves the patient, and the vehicle waits for the completion of the 

service. The duration of the waiting time is equal to the amount of service time at the 

patient (constraint (19)). 

ℎ𝑤𝑖,𝑙 ≥ ∑ ∑ 𝛾𝑖,𝑘,𝑙′ ∗ 𝑝𝑖,𝑠

𝑙′∈𝐿\{𝑙}𝑠∈𝑆

− (1 − ∑ 𝜓𝑖,𝑘,𝑙
𝑘∈𝐾

) ∗ 𝑀2, 𝑖 ∈ 𝑉1, 𝑙 ∈ 𝐿 (19) 

The assigned caregiver could wait at the dummy node 𝑖 ∈ 𝑉2 if the vehicle returns later 

than the caregivers’ service completion. The waiting time is the difference between 

the arrival time of the vehicle to the patient and the completion time of the caregivers’ 

service (constraint (20)).  

ℎ𝑤𝑖,𝑙 ≥ 𝑎𝑣𝑖,𝑘 − ∑ ∑ 𝛼(𝑖−𝑛),𝑘,𝑙′,𝑠 ∗ 𝑝(𝑖−𝑛),𝑠𝑙′∈𝐿𝑠∈𝑆 − 𝑎𝑣(𝑖−𝑛),𝑘 − (1 − 𝑦(𝑖−𝑛),𝑘,𝑙) ∗ 𝑀1,  

 𝑖 ∈ 𝑉2, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (20) 

Constraint sets (21) and (22) determines the departure time of vehicles and caregivers 

from the nodes, respectively. A caregiver could also wait at the dummy node 𝑖 ∈ 𝑉2, 

if he/she returns to the patient with the vehicle to pick up the dropped-off caregiver 

earlier than the assigned caregivers’ service completion. This waiting time was not 
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explicitly computed because it is handled by both constraint (20) and the 

synchronization constraints (23)-(26). The synchronization constraints (23) through 

(26) aim to synchronize the arrival and departures of a vehicle and the caregivers 

within it throughout the nodes.    

𝑑𝑣𝑖,𝑘 ≥ 𝑎𝑣𝑖,𝑘 + 𝑤𝑖,𝑘 , 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (21) 

𝑑ℎ𝑖,𝑙 ≥ 𝑎ℎ𝑖,𝑙 + ℎ𝑤𝑖,𝑙 , 𝑖 ∈ 𝑉, 𝑙 ∈ 𝐿 (22) 

𝑎𝑣𝑖,𝑘 + (1 − ∑ 𝑧𝑗,𝑖,𝑘,𝑙

𝑖∈𝑉

) ∗ 𝑀1 ≥ 𝑎ℎ𝑖,𝑙 , 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (23) 

𝑎𝑣𝑖,𝑘 ≤ 𝑎ℎ𝑖,𝑙 + (1 − ∑ 𝑧𝑗,𝑖,𝑘,𝑙

𝑖∈𝑉

) ∗ 𝑀1, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (24) 

𝑑𝑣𝑖,𝑘 + (1 − ∑ 𝑧𝑖,𝑗,𝑘,𝑙

𝑗∈𝑉

) ∗ 𝑀1 ≥ 𝑑ℎ𝑖,𝑙 , 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (25) 

𝑑𝑣𝑖,𝑘 ≤ 𝑑ℎ𝑖,𝑙 + (1 − ∑ 𝑧𝑖,𝑗,𝑘,𝑙

𝑗∈𝑉

) ∗ 𝑀1, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (26) 

Constraints (27) and (28) are used to indicate whether a vehicle takes a caregiver to a 

patient and waits for the service and whether the assigned caregiver to a patient is not 

dropped off by the vehicle, respectively (see Table 3.2 for the description of the 

respective auxiliary variables). 

𝜓𝑖,𝑘,𝑙 = ∑ 𝑧𝑗,𝑖,𝑘,𝑙

𝑗∈𝑉

− 𝑦𝑖,𝑘,𝑙 , 𝑖 ∈ 𝑉1, 𝑘 ∈ 𝐾 , 𝑙 ∈ 𝐿 (27) 

𝛾𝑖,𝑘,𝑙 = ∑ 𝛼𝑖,𝑘,𝑙,𝑠
𝑠∈𝑆

− 𝑦𝑖,𝑘,𝑙 , 𝑖 ∈ 𝑉1, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (28) 

Constraint (29) ensures the capacity of vehicles in terms of the number of caregivers. 

∑ ∑ 𝑧0,𝑗,𝑘,𝑙

𝑙∈𝐿𝑗∈𝑉1

= 𝑐, 𝑘 ∈ 𝐾 (29) 

Constraints (30) and (31) specifies the maximum working time of caregivers and 

vehicles. Even though one of the constraints (30) or (31) is enough, we embedded both 

to tighten the model. For the same concern, 𝑀1 and 𝑀2 could be replaced with tighter 

𝑤𝑇𝑖𝑚𝑒 and ∑ ∑ 𝑝𝑖,𝑠𝑠∈𝑆𝑖∈𝑉1
 values, respectively. 
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𝑎ℎ(2𝑛+1),𝑙 ≤ 𝑤𝑇𝑖𝑚𝑒, 𝑙 ∈ 𝐿 (30) 

𝑎𝑣(2𝑛+1),𝑘 ≤ 𝑤𝑇𝑖𝑚𝑒, 𝑘 ∈ 𝐾 (31) 

Finally, constraint set (32) shows the feasible values of decision variables. 

𝑥𝑖,𝑗,𝑘; 𝑧𝑖,𝑗,𝑘,𝑙; 𝑦𝑖,𝑘,𝑙; α𝑖,𝑘,𝑙,𝑠; 𝑢𝑖; ψ𝑖,𝑘,𝑙; γ𝑖,𝑘,𝑙  ∈ {0,1}, 

ℎ𝑤𝑖,𝑙;  𝑤𝑖,𝑘;  𝑎𝑣𝑖,𝑘;  𝑎ℎ𝑖,𝑙;  𝑑𝑣𝑖,𝑘;  𝑑ℎ𝑖,𝑙  ≥ 0 

(32) 

On an individual basis, the complexity of WSRP (Algethami et al., 2019) and VPSP 

(Bei and Zhang, 2018) are both NP-Hard. As seen in the mathematical model, HHSRP-

VS can be reduced into WSRP by setting dummy set to empty set such as, 𝑉2 = ∅. The 

dummy set and the constraints associated with this set introduce additional decisions 

into the model and enlarges the solution space which significantly increases the 

complexity of it. Thus, we can conclude that HHSRP-VS is as difficult as WSRP. The 

following sections explain the attempts to tighten the model by finding an upper bound 

and obtain close-optimal solutions using a metaheuristic algorithm.  

3.3. Upper Bound Heuristic (UBA): A Clustering-Based Matheuristic 

Approach  

In literature, various HHSRP problems were solved by decomposition-based 

algorithms in two stages in which the patients are either clustered or partitioned based 

on caregivers’ skills, geographical proximity, or some other characteristics at the first 

stage. Next, the reduced problem is solved as a variant of Traveling Salesman Problem 

(TSP) or VRP using MILP or heuristics (Rasmussen et al., 2012, Hiermann et al., 2015, 

and Erdem and Bulkan, 2017). A multi-stage decomposition-based matheuristic 

algorithm is developed to find feasible solutions.  

In the first stage, the caregiver clusters are formed based on the geographical closeness 

of the patients similar to the K-means clustering algorithm. The basic principle of this 

clustering is that the patients with the shortest distance from the centroid of the cluster 

should be placed under the same cluster. For the problem under consideration, the 

clusters have been formed based on the caregivers’ skills and qualifications and the 

patients’ demands and their locations. As a solution to the clustering problem, the 

caregiver is at the centroid of the clusters which is a midpoint of all the assigned 

patients' points of the respective cluster. In this clustering, patients are assigned in such 

a way that the demand of every patient should be matched to the caregiver's skill(s).  
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input: Service time of patients 𝑝𝑖𝑠, sets of patients 𝑉1 and caregivers 

𝐿, coordinates of patients 𝑝𝑖  

output: 𝐻𝑙: caregiver cluster, 𝑐ℎ𝑙: the centroid of 𝐻𝑙, respectively.  

1 Start Stage 1: Initialize caregiver clusters:  

 forall caregivers  𝑙 ∈ 𝐿 
  Assign patient 𝑖 ∈ 𝑉1̂ where 𝑉1̂ ← 𝑉1 to cluster 𝐻𝑙 if  

• patient 𝑖 can be treated by caregiver 𝑙 and the distance 

between 𝑝𝑖 and HHC center is the maximum 

  Update 𝑉1̂ ← 𝑉1̂\{𝑖}, 𝐻𝑙 = {𝑖}, 𝑐ℎ𝑙 = 𝑝𝑖. 

 If 𝐻𝑙′ = ∅, 𝑙′ ∈ 𝐿 then forall caregivers 𝑙′ 

  Find a proper patient 𝑖 from the created clusters 𝐻𝑙, Remove it 

from that cluster and Assign it to 𝐻𝑙′. 

  Assign the furthest patient 𝑖 ∈ 𝑉1̂  that can be treated by 

caregiver 𝑙 to 𝐻𝑙  

  Update 𝐻𝑙′ = {𝑖}, 𝑐ℎ𝑙′ = 𝑝𝑖, 𝐻𝑙 = {𝑖′}, 𝑐ℎ𝑙 = 𝑝𝑖′, 𝑉1̂ ← 𝑉1̂\{𝑖′} 
2 Complete and Improve clusters (K-means algorithm with 

qualification constraint)  

 Repeat forall patient 𝑖 ∈ 𝑉1 

  forall caregiver clusters  𝑙 ∈ 𝐿 such that 𝐻𝑙 ∩ {𝑖} = ∅ 
   Find the nearest cluster 𝐻𝑙  where caregiver 𝑙 can treat patient 

𝑖. If there is no such a cluster, Move to the next patient. 
Otherwise; 

   Remove patient 𝑖 from its clusters 𝐻𝑙′and Add it to 𝐻𝑙. 

   
Update 𝐻𝑙′ ← 𝐻𝑙′\{𝑖}, 𝐻𝑙 ← 𝐻𝑙 ∪ {𝑖}, 𝑐ℎ𝑙 =

∑ 𝑝𝑖𝑖∈𝐻𝑙

|𝐻𝑙|
, 𝑙 ∈ 𝐿 

 until there is no further improvement 

3 Recluster patients to balance total service workload 

 Compute the maximum total service time allowed per worker: 𝑡𝑠̅ =

∑ ∑
𝑝𝑖𝑠

𝑙𝑠∈𝑆𝑖∈𝑉1
+ 𝑚𝑎𝑥

𝑖∈𝑉1,𝑠∈𝑆 
𝑝𝑖𝑠 

  forall caregiver clusters 𝐻𝑙 , 𝑙 ∈ 𝐿 
   If total workload in cluster 𝑙 exceeds the maximum allowance: 

𝑡𝑠𝑙 > 𝑡𝑠̅ such that 𝑡𝑠𝑙 = ∑ ∑
𝑝𝑖𝑠

|𝐻𝑙|𝑠∈𝑆𝑖∈𝐻𝑙
. 

   Remove the furthest patient 𝑖′ in cluster 𝐻𝑙  until 𝑡𝑠𝑙 ≤ 𝑡𝑠̅ . 

Assign patient 𝑖′to a candidate list 𝐶𝐿. 
   

Update 𝐻𝑙 ← 𝐻𝑙\{𝑖′}, 𝐶𝐿 ← 𝐶𝐿 ∪ {𝑖′}, 𝑐ℎ𝑙 =
∑ 𝑝𝑖𝑖∈𝐻𝑙

|𝐻𝑙|
, 𝑙 ∈ 𝐿 

  forall patient 𝑖 ∈ 𝐶𝐿 
   Find the nearest cluster 𝐻𝑙  where caregiver 𝑙 can treat patient 

𝑖 and 𝑡𝑠𝑙 + 𝑝𝑖𝑠 ≤ 𝑡𝑠̅. Then Assign patient 𝑖 to  𝐻𝑙.  

   
Update 𝐻𝑙 ← 𝐻𝑙 ∪ {𝑖}, 𝐶𝐿 ← 𝐶𝐿\{𝑖′}, 𝑐ℎ𝑙 =

∑ 𝑝𝑖𝑖∈𝐻𝑙

|𝐻𝑙|
, 𝑙 ∈ 𝐿, 𝑡𝑠𝑙 =  𝑡𝑠𝑙 +  𝑝𝑖𝑠 

  If 𝐶𝐿 ≠ ∅, Repeat 
   Assign patient 𝑖 ∈ 𝐶𝐿 to the nearest 𝐻𝑙 where caregiver 𝑙 can 

treat patient 𝑖 even if total workload exceeds 𝑡𝑠̅ 
   

Update 𝐻𝑙 ← 𝐻𝑙 ∪ {𝑖}, 𝐶𝐿 ← 𝐶𝐿\{𝑖′}, 𝑐ℎ𝑙 =
∑ 𝑝𝑖𝑖∈𝐻𝑙

|𝐻𝑙|
, 𝑙 ∈ 𝐿, 𝑡𝑠𝑙 =  𝑡𝑠𝑙 +  𝑝𝑖𝑠 

  Until 𝐶𝐿 = ∅ 
 STOP 

Figure 3.2. The pseudocode of the first stage of the proposed UBA 

This solution is feasible for HHSRP-VS for the following reasons. (a) All caregivers 

have been utilized. (b) Qualification constraint is satisfied. Furthermore, to deal with 
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working time constraints, the algorithm aims to evenly distribute the total service 

workload of each caregiver. The detailed pseudocode of the first stage of the proposed 

algorithm can be seen in Figure 3.2. 

In the second stage, caregiver clusters are assigned to vehicles according to the 

capacity of vehicles. The idea behind this caregivers-vehicle assignment is that the 

caregivers can visit their patients through the same vehicle who are living close to each 

other. So, in this stage, the caregiver clusters which are closer to each other are 

assigned to the same vehicle. As a result of the second stage, we determine which 

caregivers are assigned to which vehicle and which patients are going to be treated by 

which caregiver. 

input: Caregiver clusters 𝐻𝑙 and its centroid 𝑐ℎ𝑙 from Algorithm 1. 

Set of vehicles 𝐾, maximum daily working time 𝑤𝑇𝑖𝑚𝑒, penalty cost 

patient 𝑢𝑛𝑣, capacity of vehicle 𝑐.  

output: 𝐴𝑘  and 𝑐𝑣𝑘  that indicate the vehicle cluster and its 

centroid, respectively. 𝐻𝑙 is the visited patient list by caregiver 

𝑙, 𝑢 is the unvisited patient list, 𝑧𝑘 is the tour length of vehicle 

𝑘, 𝜇 is the total fitness value of the solution, 𝜋𝑘 is the route of 

vehicle 𝑘,. 
5 Start Stage 2: Create vehicle clusters:  

 Assign the furthest caregiver cluster 𝐻𝑙 from the HHC center to 

the first vehicle cluster.  

 Update 𝐴1 ←  𝐴1 + {𝐻𝑙′}, 𝑐𝑣1 = 𝑐ℎ𝑙′, 𝐻𝑙, 𝐿′ ← 𝐿\{𝑙′}. 
 forall vehicle cluster  𝑘 ∈

𝐾

{1}
 

  Assign the furthest caregiver cluster 𝐻𝑙 ,  𝑙 ∈ 𝐿′   from the 

centroid of the previously initialized vehicle clusters 𝑗 =

1, … , 𝑘 − 1 to the vehicle cluster. 
  

Update 𝐴𝑘 ←  𝐴𝑘 + {𝐻𝑙′}, 𝑐𝑣𝑘 = 𝑐ℎ𝑙′, 𝐿′ ←
𝐿′

{𝑙′}
   

 forall caregiver clusters 𝐻𝑙 , 𝑙 ∈ 𝐿′ 

  Assign the nearest 𝐻𝑙  to vehicle cluster 𝐴𝑘  such that the 

capacity of vehicle 𝑘 is not exceeded such that |𝐴𝑘| ≤ 𝑐 
  

Update 𝐴𝑘 ←  𝐴𝑘 + {𝐻𝑙}, 𝑐𝑣𝑘 =
∑ 𝑝𝑖𝑖∈𝐻𝑙∈𝐴𝑘

∑ |𝐻𝑙|𝐻𝑙∈𝐴𝑘

, 𝐿′ ← 𝐿\{𝑙′}   

 STOP 

Figure 3.3. The pseudocode of the second of the proposed UBA 

In the third stage, the problem is turned into a multiple TSP where the optimal route 

of each vehicle is computed sequentially using the IBM ILOG CPLEX 12.6 solver 

without considering the maximum working time constraints. After the optimal route 

of the first vehicle is obtained, if the solution exceeds the working time limit, the 

costliest patients on the route are removed until the working time constraint is 

maintained. The removed patients of the vehicle are added to the patient list of the next 

qualifying vehicle. After solving the last vehicle, if there are still removed patients, 
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they are considered as the unvisited patients. The detailed pseudocode of the second 

and third stages of the proposed algorithm can be seen in Figure 3.3 and Figure 3.4, 

respectively.   

6 Start Stage 3: Construct the optimal routes of the vehicles 

 forall vehicle cluster  𝑘 ∈ 𝐾 
  Solve the respective TSP using IBM ILOG CPLEX 12.6 to obtain 

the optimal route,𝜋𝑘, of 𝐴𝑘 

  If 𝑧𝑘 > 𝑤𝑇𝑖𝑚𝑒 
   Repeat forall patient 𝑖 ∈ 𝐴𝑘 

   Compute the costliest patient 𝑖 considering its contribution 

to 𝑧𝑘 as similar to Clarke and Wright’s savings algorithm. 

Let the cost of patient 𝑖 be 𝑑𝑖. 

   Remove patient 𝑖 and 

If 𝑘 ≠ |𝐾| 

Assign it to the 𝐴𝑘+1, patient list of vehicle 𝑘 + 1. 
Else 

Assign it to the unvisited patient list 𝑢. 
   

Update 𝐴𝑘 ← 𝐴𝑘\{𝑖}, 𝑢 ←  𝑢 ∪ {𝑖}, 𝑧𝑘 =  𝑧𝑘 −  𝑑𝑖 − 𝑝𝑖, 𝑐𝑣𝑘 =
∑ 𝑝𝑖𝑖∈𝐴𝑘

|𝐴𝑘|
,  

   Until 𝑧𝑘 ≤ 𝑤𝑇𝑖𝑚𝑒 
 STOP 

Figure 3.4. The pseudocode of the third stage of the proposed UBA 

In the final stage, we applied an inter-route relocate operator to look for better solutions 

and a repair function to reduce the unvisited number of patients at the end. Since the 

optimal route of each vehicle is obtained in the previous stage, changing a patient’s 

position on the same route does not improve the solution. Thus, the inter-route relocate 

operator removes a patient from its vehicle and inserts it in another qualifying vehicle. 

The feasibility of the solution is conserved at each iteration by satisfying qualification 

and maximum working time constraints. Finally, a repair function with a greedy 

heuristic is applied to assign the unvisited patients to vehicles whose total working 

time is less than the maximum working time. The pseudocode of the inter-route 

relocate operator and repair function can be seen in Figure 3.5. 

In order to narrow the solution space and obtain feasible integer solutions in a short 

time, we used the solution (𝜇) obtained by the proposed mathematical algorithm as 

the upper bound for the original mathematical model of HHSRP-VS. This solution can 

be used as an upper bound because it does not include the drop-off and pick-up policy 

but satisfies all other constraints. For this purpose, equations (33) and (34) can be 

added as valid upper bound inequalities to the HHSRP-VS MILP model. Moreover, 

we also used solutions provided by the upper-bound algorithm to analyze the 

effectiveness of the ALNS-VS algorithm developed in the following sections.  
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∑ 𝑎𝑣(2𝑛+1),𝑘𝑘∈𝐾 + ∑ 𝑢𝑖 ∗ 𝑢𝑛𝑣𝑖∈𝑉1
≤ 𝜇, (33) 

∑ 𝑎ℎ(2𝑛+1),𝑙𝑙∈𝐿 + ∑ 𝑢𝑖 ∗ 𝑢𝑛𝑣𝑖∈𝑉1
≤  𝜇, (34) 

 

input: Set of vehicles 𝐾, Route of vehicles 𝜋𝑘 = {𝑣0, 𝑣1, … , 𝑣𝑖 , … , 𝑣2𝑛+1}, ,  

𝑡𝑖,𝑗 travel time between node 𝑖 and 𝑗, 𝛿𝑖,𝑗
𝑘1,𝑘2 relocate value of assigning 

patient 𝑣𝑖 from vehicle 𝑘1 to position 𝑗 of vehicle 𝑘2, 𝑢 is the 

unvisited patient list, penalty cost of unvisited patient 𝑢𝑛𝑣 

output 𝑧𝑘 is the tour length of vehicle 𝑘, 𝜋𝑘 is the route of vehicle 

𝑘, 𝜇 is the total fitness value of the solution. 
7 Feedback Loop:  

 Do  

  forall vehicle 𝑘1 ∈ 𝐾  

forall position 𝑖 ∈ 𝜋𝑘1
 such that 𝑣𝑖 is the patient of position 

𝑖 
forall vehicle 𝑘2 ∈ 𝐾\{𝑘1}  

forall feasible positions 𝑗 ∈ 𝜋𝑘2
  

Compute the relocate value 𝛿𝑖,𝑗
𝑘1,𝑘2 such that,  

 𝛿𝑖,𝑗
𝑘1,𝑘2 = 𝑡𝑣𝑖−1,𝑣𝑖

+ 𝑡𝑣𝑖,𝑣𝑖+1
+ 𝑡𝑣𝑗−1,𝑣𝑗

− (𝑡𝑣𝑗−1,𝑣𝑖
+ 𝑡𝑣𝑗−1,𝑣𝑖

)   

end for 

end for 

end for 

end for 

Determine 𝛿𝑖∗ ,𝑗∗ 

𝑘1
∗ ,𝑘2

∗  
= max

𝑖,𝑗,𝑘1,𝑘2 
{𝛿𝑖,𝑗

𝑘1,𝑘2}  

If 𝛿𝑖∗ ,𝑗∗ 

𝑘1
∗ ,𝑘2

∗  
> 0 

Remove the patient 𝑣𝑖∗ of position 𝑖 from the vehicle 𝑘1
∗ 

and Assign it to the position 𝑗∗ of the vehicle 𝑘2
∗  

Update 𝑧𝑘1
∗   and 𝑧𝑘2

∗  , tour length of vehicles 𝑘1
∗ and 𝑘2

∗, 

respectively 

 
While 𝛿𝑖∗ ,𝑗∗ 

𝑘1
∗ ,𝑘2

∗  
> 0  

 STOP 

8 Repair Function: 

 While 𝑢 ≠ ∅ and there is any feasible assignment 
 forall unvisited patient 𝑣𝑖 ∈ 𝑢  
 forall route of vehicle 𝜋𝑘 ∈ 𝐾 
 forall feasible position 𝑗 ∈ 𝜋𝑘 

 Compute the insertion cost of patient 𝑣𝑖  into 

position 𝑗 of vehicle 𝜋𝑘  

 end for 

 end for 

 end for 

Insert the patient into the determined position of the vehicle 

that has minimum insertion cost 

 Update 𝜋𝑘 ∈ 𝐾, 𝑧𝑘 ∈ 𝐾, 𝑢 
 end while 

 Compute total service and travel time of the visited patients and 

the penalty cost for unvisited patients 𝜇: 

𝜇 = ∑ 𝑧𝑘𝑘 + ∑ ∑ ∑ 𝑝𝑖𝑠𝑠∈𝑆𝑖∈𝐻𝑙𝑙∈𝐿 +  ∑ 𝑢𝑛𝑣𝑖∈𝑢𝑖
  

Figure 3.5. The pseudocode of the feedback loop and repair function of the proposed 

UBA 
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CHAPTER 4 

SOLUTION METHODOLOGY: ALNS-VS Algorithm 

Because of the complexity of the problem, decomposition-based algorithms or 

metaheuristics are commonly used solution algorithms to solve HHSRP in the 

literature. This chapter presents the developed Adaptive Large Neighborhood Search 

(ALNS) heuristic algorithm for solving HHSRP-VS. The ALNS algorithm was first 

proposed by Ropke and Pisinger (2006a) by extending Large Neighborhood Search 

(LNS) algorithm proposed by Shaw (1997). Unlike the LNS, the ALNS heuristic 

involves a variety of removal and insertion heuristics which help in obtaining a good 

quality solution. As far as the other heuristics are concerned, ALNS is relatively fast 

and has been successfully implemented in different variants of VRP. Therefore, we 

preferred to adapt the ALNS for our problem. To deal with the DP policy of the 

problem under study, two local search heuristics have been introduced within the 

proposed ALNS-VS algorithm of which its details are discussed below. 

The algorithm in our study starts with finding an initial solution after which in every 

iteration it randomly selects a removal heuristic to deconstruct the existing solution to 

some extent and an insertion heuristic to repair it differently. Through this destroy and 

repair operations, a new neighborhood solution is obtained at the end of each iteration 

and is adopted as the current solution for the next iteration. These the processes 

continue until the stopping criteria are met. The pseudocode of the proposed ALNS-

VS is presented in Figure 4.1. The details of the algorithm with the parameter 

definitions are explained in the following subsections.  

4.1. Initial Solution  

At the beginning of the ALNS-VS algorithm, all of the patient nodes are placed in the 

request bank 𝑅 and all of the dummy nodes are placed in the dummy request bank 𝑅̅. 

Caregivers are assigned to vehicles at random until the capacity of each vehicle is 

filled. At each successive step the Regret-3 heuristic with noise algorithm (see Chapter 

4.3) is applied to all the vehicles in parallel by assigning each patient 𝑖 ∈ 𝑉1 from 𝑅 to 
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one of the existing fleet vehicles. This process is repeated until all patients are assigned 

to one of the available vehicles 𝑘 ∈ 𝐾 or remaining patients cannot be assigned to any 

vehicle due to maximum working time of caregivers. Once a feasible solution is found, 

it is set to the current solution and the best solution. 

input: The set of removal heuristics 𝛹, the set of insertion 

heuristics 𝛧, initial temperature T, cooling rate c, solution 
update iteration number 𝜔, caregiver swap iteration number 𝜑, 
the iteration of the last best-found solution 𝑡𝑏𝑒𝑠𝑡 

output: A feasible solution 𝑥𝑏𝑒𝑠𝑡 

Generate an initial solution 𝑥𝑖𝑛𝑖𝑡 using the Regret-3 with noise 

insertion heuristic  

Set iteration counter 𝑡 with an initial value of  𝑡 ← 1 and 
𝑡𝑏𝑒𝑠𝑡 ← 1 
Set the initial values, 𝑥𝑐𝑢𝑟𝑟 ← 𝑥𝑏𝑒𝑠𝑡 ← 𝑥𝑖𝑛𝑖𝑡 

repeat 

 if  (𝑡 − 𝑡𝑏𝑒𝑠𝑡  % 𝜔 = 0 )  then 
   Apply solution update criteria to 𝑥𝑛𝑒𝑤 

 

   𝑥𝑐𝑢𝑟𝑟 ← 𝑥𝑏𝑒𝑠𝑡   

   𝛹∗ ← 𝑅𝑎𝑛𝑑𝑜𝑚. 𝑅𝑒𝑚𝑜𝑣𝑎𝑙  
 

 else  

   Select a removal heuristic at random, 𝛹∗ ∈ 𝛹 
 Let 𝑥𝑛𝑒𝑤 be a partial solution after applying 𝛹∗ to 𝑥𝑐𝑢𝑟𝑟 

 if  (𝑡 % 𝜑 = 0 )  then 
   Apply caregiver swap local search heuristic to 𝑥𝑛𝑒𝑤 

 

 Select a random insertion heuristic 𝑍∗ ∈ 𝛧 to 𝑥𝑛𝑒𝑤 to generate 

𝑥𝑛𝑒𝑤  

 Let 𝑥𝑛𝑒𝑤 be a new solution after applying 𝑍∗to 𝑥𝑛𝑒𝑤 

 Apply drop-off and pick-up local search heuristic to improve 

𝑥𝑛𝑒𝑤  

 Apply repair function to generate a new feasible solution 

𝑥𝑛𝑒𝑤 and determine the unvisited patients 

 if  𝑓(𝑥𝑛𝑒𝑤) < 𝑓(𝑥𝑐𝑢𝑟𝑟) then 
   𝑥𝑐𝑢𝑟𝑟 ← 𝑥𝑛𝑒𝑤  

   𝑓(𝑥𝑐𝑢𝑟𝑟) ← 𝑓(𝑥𝑛𝑒𝑤)  
 else  

   Let 𝑣 ← 𝑒−(𝑓(𝑥𝑛𝑒𝑤)−𝑓(𝑥𝑐𝑢𝑟𝑟))/𝑇 

   Generate a random number 𝜖 ϵ [0,1] 
  if 𝜖 < 𝑣 then 
    𝑥𝑐𝑢𝑟𝑟 ← 𝑥𝑛𝑒𝑤  

    𝑓(𝑥𝑐𝑢𝑟𝑟) ← 𝑓(𝑥𝑛𝑒𝑤)  
 if  𝑓(𝑥𝑛𝑒𝑤) < 𝑓(𝑥𝑏𝑒𝑠𝑡) then 
   𝑥𝑏𝑒𝑠𝑡 ← 𝑥𝑛𝑒𝑤  

 

   𝑓(𝑥𝑏𝑒𝑠𝑡) ← 𝑓(𝑥𝑛𝑒𝑤)  
 

 Update the temperature, 𝑇 ← 𝑐 ∗ 𝑇    
 Update the iteration counter, 𝑡 ← 𝑡 + 1 
until the predetermined number of iterations reached and the 

predetermined number of iterations without any further 

improvement found in 𝑥𝑏𝑒𝑠𝑡 

Figure 4.1. Pseudocode of the proposed ALNS-VS 
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4.2. Removal Heuristics 

At each iteration, a randomly selected removal heuristic algorithm removes a 

predetermined number of patients q from the current solution 𝑥𝑐𝑢𝑟𝑟 and places them 

to the request bank R. In general, 𝑞 is set to an integer number at the beginning of the 

algorithm in the literature (Ropke and Pisinger, 2006a, 2006b; Pisinger and Ropke, 

2007). However, varying 𝑞  may be preferred due to exploration and explotation 

capabilities of the heuristics. For this, linearly decreasing function of 𝑞 is used in our 

algorithm to explore the solution space more at the beginning of the iterations than the 

later (Öztürkoğlu et al., 2014; Öztürkoğlu and Hoser, 2019). At each iteration, the 

number of removed patients 𝑞 is computed using equation (35). 

𝑞 = 𝜉 ∗ 𝑛 − 𝑛 ∗ (𝜉 − υ)
𝑡

𝜃
      (35) 

where, 𝑛 is the total number of patients, 𝜉 and υ are the parameters that control the 

maximum and minimum number of removed patients, 𝑡 is the current iteration and 𝜃 

is the maximum number of iterations. As Pisinger and Ropke (2007) suggested that 

the minimum number of removed elements from a solution should be 10% (υ = 0.1) 

of the total number of elements. Furthermore, we adapted 5 different removal 

heuristics in our proposed ALNS-VS algorithm, which are explained below. 

Random Removal: This heuristic algorithm randomly removes 𝑞 patients from the 

current solution 𝑥𝑐𝑢𝑟𝑟  and adding them to the request bank R.  

Worst Removal: This heuristic algorithm selects 𝑞 costliest patients in terms of 

distance from the current solution. The heuristic removes the selected patient 𝑖 ∈ 𝑥𝑐𝑢𝑟𝑟 

from the current solution 𝑥𝑐𝑢𝑟𝑟 and adds them to 𝑅. After removing patient 𝑖, the cost 

of the 𝑥𝑐𝑢𝑟𝑟  is calculated as 𝑓−𝑖 , whereas the cost of 𝑖  can be calculated as ∆𝑓𝑖 =

𝑓(𝑥𝑐𝑢𝑟𝑟) − 𝑓−𝑖. 

Shaw Removal: The main objective of this heuristic algorithm is to remove the 

most similar patients in terms of their locations and service times. The heuristic starts 

with selecting a random patient 𝑖 ∈ 𝑥𝑐𝑢𝑟𝑟  and adding it to the request bank 𝑅. The 

similarity measures (𝑑𝑖𝑗) between the selected patient 𝑖 and the rest of the patients 𝑗 ∈

𝑥𝑐𝑢𝑟𝑟\{𝑖}  in the solution 𝑥𝑐𝑢𝑟𝑟 are calculated by 𝑑𝑖𝑗 = 𝛼 ∗  𝑡𝑖,𝑗  +  𝛽 ∗  (|𝑝𝑖 − 𝑝𝑗|). 

In our problem, the lower the 𝑑𝑖𝑗 is the higher the similarity. The most similar patient 

𝑗∗ is selected and added to 𝑅 such that 𝑗∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗∈𝑥𝑐𝑢𝑟𝑟 𝑑𝑖𝑗, where 𝛼 and 𝛽 are the 
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shaw parameters, 𝑝𝑖  and 𝑝𝑗  are the service times of patients 𝑖  and 𝑗, and 𝑡𝑖,𝑗  is the 

travel time between patient nodes 𝑖  and 𝑗 . This heuristic algorithm is iteratively 

applied 𝑞  times to determine the removed patients such that the patient has the 

maximum similarity measure with the last removed patient. 

Route Removal: This heuristic algorithm randomly selects a route of a vehicle 𝑣 

from 𝑣 (a set of routes of vehicles in 𝑥𝑐𝑢𝑟𝑟), removes all the patients from it, and adds 

them to the 𝑅. The idea of route removal is to redesign the route to minimize the travel 

time by diversifying the search.  

Dummy Node Removal: Within the scope of the drop-off and pick-up policy, 

patients' dummy nodes are also included in the 𝑥𝑐𝑢𝑟𝑟 . This heuristic algorithm 

removed 𝑞 dummy nodes, where 𝑞 is a random integer number between 𝜎 ∗ 𝑑 and 𝜙 ∗

𝑑 . 𝑑  is the total number of dummy nodes in the current solution. 𝜎  and 𝜙 are the 

minimum and maximum ratios of the dummy removal constant, respectively. Since 

the drop-off and pick-up local search algorithm is applied at each iteration, removing 

a large number of dummy nodes from the solution helps to explore different solutions. 

Therefore, 𝜎 and 𝜙 are set to 0.5 and 0.8, respectively. Finally, the removed dummy 

nodes are added to dummy request bank 𝑅.  

4.3. Insertion Heuristics 

In the literature, insertion heuristics are generally categorized as sequential and parallel 

algorithms. Sequential insertion heuristic algorithms select one vehicle at a time and 

then construct its route by adding patients. On the other hand, parallel insertion 

heuristic algorithms consider all the vehicles’ routes simultaneously. For our study, we 

implemented parallel heuristics due to their expected ability to generate superior 

solutions compared to sequential heuristics, even though sequential insertions are 

faster (Liu and Shen, 1999). Greedy and Regret-k insertion heuristics were used in the 

proposed algorithm. In addition to those heuristics, their noise versions were also 

considered (Ropke and Pisinger, 2006a, 2006b). These heuristics enables the 

assignment of non-assigned patients from the request bank (𝑅) to existing route of 

vehicles if it could improve the objective function value of the solution. 

Greedy Insertion: All of the patients from 𝑅 are assigned to all possible positions 

of the routes 𝑣  of caregivers and an insertion cost is calculated for each position 

through ∆𝑖,𝑘,𝑗
𝑙 = 𝑡𝑖,𝑘 + 𝑡𝑘,𝑗 − 𝑡𝑖,𝑗  for 𝑖, 𝑗 = 1, … , 𝑛  and 𝑖 ≠ 𝑗 . In this process, only 
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feasible assignments are considered. After insertion cost is calculated for all patients, 

the patient with the least insertion cost is assigned to determine the position of the 

route of the vehicle. This process continues until all patients are assigned to a route or 

no more insertion is possible. Since at each iteration only one route of a vehicle is 

changed, the insertion cost for the other routes does not need to be recalculated. This 

idea improves the computation time for all of the insertion heuristics.  

Greedy Insertion with Noise: The idea of adding noise to the insertion cost is to 

provide randomization to the search process. This is done by considering the degree 

of freedom in determining the best location for a node. The steps of greedy insertion 

heuristic remain the same while the new insertion cost is calculated by ∆𝑖,𝑘,𝑗
𝑙 = 𝑡𝑖,𝑘 +

𝑡𝑘,𝑗 − 𝑡𝑖,𝑗 + 𝑡𝑚𝑎𝑥 ∗ 𝜇 ∗ 𝜀, where 𝑡𝑚𝑎𝑥 is the maximum time between patients, 𝜇 is the 

noise parameter which is used for the diversification and set to 0.1, and 𝜀 is a random 

number between [-1,1].  

Regret-k Insertion: Regret-k heuristics are proposed by Potvin and Rousseau 

(1993). Contrary to the greedy insertion, this heuristic considers the 𝑘 best positions 

(depending on choice) instead of the best one. Patients are assigned to positions to 

maximize the regret cost (𝑐𝑜𝑠𝑡𝑖
𝑘) which is computed as the difference between 𝑘 best 

position costs ∆𝑖,𝑚,𝑗
𝑙 , change in objective value by inserting patient 𝑚 between patients 

𝑖  and 𝑗  in route 𝑣 . In this respect, the greedy heuristic can be seen as a regret-1 

heuristic. The proposed algorithm considers regret-2 and regret-3 insertions.  

Regret-k Insertion with Noise: The steps of this insertion heuristic are similar to 

the regret-k insertion heuristics but use the same cost function as discussed in the 

greedy insertion with noise. 

4.4. Drop-off and Pick-up (DP) Local Search Heuristic Algorithm 

In addition to the removal and insertion heuristics, we developed a special local search 

heuristic algorithm to determine whether a caregiver should be dropped off or waited 

by the vehicle at a patient node during his/her service. This local search is applied to 

the solution obtained after the removal and insertion heuristics are completed. Because 

of the complexity of the drop-off decision and its effect on the whole tour, we 

developed a smart approach for deciding drop-off and pick-up. Hence, this approach 

consists of the following features. The pseudocode of the DP local search heuristic is 

also given in Figure 4.2. 
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● The effect of DP on the route length is computed for decision-making. 

● The position where the patient is being picked up is determined.  

● When more than one caregiver is eligible to treat a patient, the approach also 

decides the best caregiver who is being dropped off at the patient node (if 

applied).  

● The feasibility of the solution is maintained when DP is decided to be applied. 

For example, if a caregiver 𝑙 is decided to be dropped off at patient node 𝑖 and to 

be picked up before visiting patient 𝑗, then the patients between  𝑖 + 1 and 𝑗; 

[𝑖 + 1, 𝑗] in the existing route are guaranteed to be treated by the other caregivers 

in the vehicle.  

input: Route of vehicle 𝜋𝑘 , 𝑘 ∈ 𝐾 in the 𝑥𝑐𝑢𝑟𝑟, and the saving of 

dropping the caregiver 𝑙 off at the patient 𝑖 and picking up 

after visiting the node 𝑗 by vehicle 𝑘, 𝑑𝑝𝑖,𝑗,𝑘
𝑙

 

output: A new feasible solution 𝑥𝑛𝑒𝑤  

for all route of vehicle in 𝜋𝑘 , 𝑘 ∈ 𝐾 
 do 

  for all caregivers 𝑙 ∈ 𝜋𝑘
𝑙  in vehicle 𝑘 

   for all patients 𝑖 ∈ 𝜋𝑘  

    for all patients 𝑗 ∈ 𝜋𝑘 that are being visited after 

patient 𝑖 
     drop caregiver 𝑙 off at patient 𝑖, then add 

patient 𝑖’s dummy node after patient 𝑗, and calculate 

𝑑𝑝𝑖,𝑗,𝜋𝑘

𝑙
 using equation (36) 

    end for 

   end for 

  end for 

  Update 𝜋𝑘 with the drop-off and picking-up decision 

where the maximum positive 𝑑𝑝𝑖,𝑗,𝜋𝑘

𝑙
 occurs if it exists. 

Then, update the current solution. 

 while 𝑑𝑝𝑖,𝑗,𝜋𝑘

𝑙 > 0  
end for 

return A new improved feasible solution 𝑥𝑛𝑒𝑤 ← 𝑥𝑐𝑢𝑟𝑟   

Figure 4.2. The framework of the drop-off and pick-up local search heuristic 

algorithm. 

The amount of savings on one caregivers’ flow time in a vehicle 𝑑𝑝𝑖,𝑗,𝜋𝑘

𝑙  is calculated 

using equation (36). This saving, if exist, is induced by dropping caregiver 𝑙 off at a 

patient 𝑖 and picking up after node 𝑗 in route 𝜋𝑘 of vehicle 𝑘. Note that the notations 

were previously defined in Table 3.2. 
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𝑑𝑝𝑖,𝑗,𝜋𝑘

𝑙 = (𝑡𝑗,(𝑗+1) + 𝑝𝑖𝑠) − (𝑡𝑗,(𝑖+𝑛) + (0, 𝑎𝑣𝑖𝑘 + 𝑝𝑖𝑠 − (𝑑𝑣𝑗𝑘 + 𝑡𝑗,𝑖+𝑛)) +

 𝑡𝑖+𝑛,(𝑗+1)), (36) 

The first term indicates the maximum amount of savings induced by the elimination 

of waiting for caregiver 𝑙 at patient 𝑖 with a duration of 𝑝𝑖𝑠 and the removal of travel 

from nodes 𝑗 to 𝑗 + 1 in the existing route because the dummy node 𝑖 + 𝑛 must be 

visited after node 𝑗. The second term specifies the amount of increase in flow time due 

to drop-off. Hence, the first and the last terms indicate additional travels from nodes 𝑗 

to 𝑖 + 𝑛 and 𝑖 + 𝑛 to 𝑗 + 1. The second term includes the waiting time of caregiver 𝑙, 

who was dropped off at patient 𝑖, if the vehicle arrives at the dummy node later than 

the service completion time of the caregiver If the saving is greater than zero, then the 

drop-off and pick-up decision is made. 

Since the decision of drop-off and pick-up caregivers affects the arrival and departure 

times at nodes, the following algorithm (see Figure 4.3) shows the computation of 

vehicles’ route lengths.    

input: Routes of vehicles 𝜋𝑘 , 𝑘 ∈ 𝐾 in the 𝑥𝑐𝑢𝑟𝑟, where, 𝜋𝑘  =

 {0, … 𝑣𝑖−1, 𝑣𝑖 , 𝑣𝑖+1, … , 2𝑛 + 1}, travel time between patient 𝑖 and 𝑗,  

𝑡𝑖,𝑗, time of arrival at patient 𝑖, 𝑎𝑣𝑖𝑘 and service time of 

patient 𝑖, 𝑝𝑖𝑠 

output: Update 𝑎𝑣𝑖𝑘 in 𝑥𝑐𝑢𝑟𝑟. 

1 for all route of vehicle, 𝜋𝑘 in the 𝑥𝑐𝑢𝑟𝑟 , 𝑘 ∈ 𝐾  
2  for all nodes 𝑣𝑖 in route 𝜋𝑘  

3   𝑎𝑣𝑣𝑖,𝑘 = 𝑎𝑣𝑣𝑖−1,𝑘 + 𝑡𝑣𝑖−1,𝑣𝑖
  

4   if no caregiver is dropped off at node 𝑣𝑖−1 

5    𝑎𝑣𝑣𝑖,𝑘+= 𝑝𝑣𝑖−1,𝑠  

6   end if 

7   if node 𝑣𝑖 is a dummy node  

8    node 𝑣𝑖′ represents the original patient node of 

dummy node 𝑣𝑖 

9    𝑎𝑣𝑣𝑖,𝑘 = max (𝑎𝑣𝑣𝑖,𝑘, 𝑎𝑣
𝑖′ ,𝑘 + 𝑝𝑣

𝑖′ ,𝑠)  

10   end if 

11  end for 

12 end for 

13 return Update 𝑥𝑐𝑢𝑟𝑟. 

Figure 4.3. Computation of flow time. 

4.5.  Caregiver Swap Heuristic Algorithm 

After the caregivers were randomly assigned to the vehicles in the initial solution, any 

of the applied insertion or removal heuristics do not change their assignments. To 
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search for the whole solution space and look for better caregiver-vehicle-patient 

assignments, we proposed the caregiver swap heuristic algorithm. The proposed 

heuristic was inspired by the pheromone concept used in the Ant Colony Optimization 

(ACO) algorithm introduced by Colorni et al. (1991), in which pheromone is used to 

trace the most commonly visited paths to find the food source by ants.  

In this heuristic, the pheromone density 𝜏𝑖,𝑗(𝑡), 𝑖, 𝑗 ∈ 𝐿  is shared among all the 

caregivers at iteration 𝑡 . Initially, the pheromone values are equal for all of the 

caregivers. Then the pheromone density between the caregivers in the same vehicle 

increases depending on their contributions to the solution. The higher the pheromone 

density among the caregivers, the more likely they are to be assigned to the same 

vehicle. In addition to the contribution to the solution, the pheromone density is also 

affected by the heuristic (visibility) value 𝜂𝑖,𝑗 𝑖, 𝑗 ∈ 𝐿. Similar to Öztürkoğlu (2017), 

the pheromone density for all caregivers that are in the same vehicle is updated by:  

𝜏𝑖,𝑗(𝑡) = (1 − 𝜌) ∗ 𝜏𝑖,𝑗(𝑡 − 1) + 𝜌 ∗ (
𝜂𝑖,𝑗

𝑓𝑏𝑒𝑠𝑡(𝑡 − 1)
),  (𝑖, 𝑗) ∈ 𝐿 (37) 

where 𝜌 denotes the evaporation coefficient whose values lie between (0,1), and 𝑓𝑏𝑒𝑠𝑡 

is the best objective function value found until iteration 𝑡 − 1. Thus, the probability of 

assigning caregivers into the same vehicle is calculated by:  

P𝑖,𝑗(𝑡) =
𝜏𝑖,𝑗(𝑡 − 1)

∑ 𝜏𝑘,𝑙(𝑡 − 1)(𝑘,𝑙)∈𝐿
,  (𝑖, 𝑗) ∈ 𝐿 (38) 

Hence, the tournament selection procedure is performed to determine the other 

caregiver(s) who share the vehicle with the previously assigned caregivers. This 

process continues until all the caregivers are assigned to their respective vehicles 

according to the vehicle capacity. 

For the proposed caregiver swap heuristic, we consider two different visibility values 

𝜂𝑖,𝑗 based on the common and unique number of patients that can or cannot be treated 

by caregivers 𝑖 and 𝑗. The idea behind common patients is that the possibility of a 

continuum of treating other patients by a caregiver increases after his/her colleague(s) 

is dropped off at a patient. Hence, this may efficiently use the DP policy by reducing 

the number of returns. On the other side, in the case of unique patients, the algorithm 

may cluster closer patients that have distinct requirements to each other. Hence, the 

closer distinct patients may increase the chance of using DP policy where a vehicle 

may go forth and back between them due to drop-off and pick-up. In Chapter 5.3, we 
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investigate if there is any difference between the common and unique visibility 

heuristics, as well as the effect of caregiver swap heuristic on the quality of the 

solution. 

4.6. The Repair Function and Termination Criteria  

Through the application of removal and insertion heuristics and DP local search 

heuristic algorithm, we only consider qualification and demand constraints. The total 

working time constraint is ignored to explore a high variety of solutions and to speed 

up the heuristics by avoiding recomputing the flow time after every insertion.  

Therefore, a repair function is proposed to restore the feasibility of the solutions after 

all insertion and the DP heuristic are applied. Thus, a new feasible solution is being 

directed to the next iteration if accepted. 

The proposed repair function given in Figure 4.4 guarantees the feasibility of the 

solutions within two steps. In the first step, the algorithm removes the most time-

consuming patient nodes from the routes to ensure the total working time limit of the 

vehicles. In the second step, the algorithm tries to assign the removed patients to the 

vehicles whose total working time is less than the max working time by applying the 

greedy heuristic.  

 

input: Routes of vehicles 𝜋𝑘 , 𝑘 ∈ 𝐾 in the 𝑥𝑐𝑢𝑟𝑟, where, 𝜋𝑘  =
 {0, … 𝑣𝑖−1, 𝑣𝑖 , 𝑣𝑖+1, … , 2𝑛 + 1}, travel time between patient 𝑖 and 𝑗,  

𝑡𝑖,𝑗, time of arrival at node 𝑖, 𝑎𝑣𝑖,𝑘, service time of patient 

𝑖, 𝑝𝑖,𝑠, maximum working time 𝑤𝑇𝑖𝑚𝑒 and request bank 𝑅. 

output: Feasible solution 𝑥𝑐𝑢𝑟𝑟  

for 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑟𝑜𝑢𝑡𝑒𝑠, 𝜋𝑘 , 𝑘 ∈ 𝐾  𝑖𝑛 𝑡ℎ𝑒 𝑥𝑐𝑢𝑟𝑟 ,  
 while 𝑎𝑣2𝑛+1,𝑘 > 𝑤𝑇𝑖𝑚𝑒 

  for all patient nodes 𝑣𝑖 in vehicle 𝑘 
   𝑐𝑜𝑠𝑡𝑣𝑖,𝑘 = 𝑡𝑣𝑖−1,𝑣𝑖+1

− 𝑡𝑣𝑖−1,𝑣𝑖
− 𝑡𝑣𝑖,𝑣𝑖+1

+ 𝑝𝑣𝑖,𝑠 

  end for 

  Remove patient 𝑣𝑖∗ from vehicle 𝑘, 𝑣𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑣𝑖,𝑘

{𝑐𝑜𝑠𝑡𝑣𝑖,𝑘} and 

add to 𝑅 
  end while 

end for 

Apply greedy insertion to all vehicle routes 𝜋𝑘 with 

patients that are in request bank 𝑅. Consider the unvisited 
patients as the remained patients in request bank 𝑅. 
return route of vehicles 𝜋𝑘 , 𝑘 ∈ 𝐾 

Figure 4.4. The pseudocode of the repair function to ensure feasibility. 

After obtaining a new feasible solution, it is accepted as a current solution for the next 
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iteration if the cost of the new solution is less than that of the current solution. Similar 

to the concept of the simulated annealing approach, the worse solution than the current 

solution may also be accepted with some probability to increase the exploration 

capability of the algorithm. This probability is calculated as 𝑒−(𝑓(𝑥𝑛𝑒𝑤)−𝑓(𝑥𝑐𝑢𝑟𝑟))/𝑇 , 

where 𝑓(𝑥𝑛𝑒𝑤)  and 𝑓(𝑥𝑐𝑢𝑟𝑟)  are the costs of the new and the current solutions, 

respectively. 𝑇 is the temperature having the cooling rate 𝑐 between 0 < 𝑐 < 1. 

We also adopted an approach for updating the current solution to stay away from 

trapping into a local optimal solution and to increase the exploration capability of the 

algorithm. In our approach, if there is no improvement in the best solution in the last 

ω iterations, we apply random removal and Regret-3 insertion heuristics to the best-

found solution so far and consider the resulting new solution as a current solution for 

the rest of the iteration.  

Lastly, the ALNS-VS algorithm is terminated when both the maximum number of 

iterations 𝜃 is reached and there is no improvement in the last 𝜃 iterations. If the best 

solution is improved in the last 𝜃 iterations, other 𝜃 iterations are added to the search 

process until the condition is met. 
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CHAPTER 5 

COMPUTATIONAL EXPERIMENTS AND RESULTS 

This chapter comprises computational experiments that were conducted to assess the 

performance of the proposed ALNS-VS algorithm, answer the research questions 

defined in Chapter 3, and derive in-depth insights. The UBA and ALNS-VS algorithms 

described in the previous chapters were implemented in C#. IBM ILOG CPLEX 12.6 

optimization solver was used to solve the HHSRP-VS MILP model. CPLEX was run 

both with standard settings, the aim of which is to find a proven optimal solution, and 

with various settings that considered various MIP strategies. All of the experiments 

were conducted on a computer with a 2.50 GHz Intel Core i7-6500U CPU and 16 GB 

of RAM. Furthermore, the CPLEX solver was limited to 6 hours to obtain solutions. 

5.1. Problem Instances 

A new set of problem instances are generated to evaluate the performance of the 

proposed algorithms and analyze the characteristics of the HHSRP-VS and the 

proposed policies. The features of the generated problem instances are described in 

Table 5.1. We considered 10 to 100 patients with 4 to 12 caregivers in a defined service 

area. The qualifications for the caregivers were obtained from Liu et al. (2017)’s data 

set. The patients were randomly located in a circular continuous area that is described 

by four different radiuses. The reason for considering areas of different sizes is to 

investigate the effect of area, or in other words, travel distance, on the effectiveness of 

proposed policies. In each instance class, the single HHC center is located at the center 

of the area. The distance between nodes in the network determined using the Euclidian 

distance, ensuring the satisfaction of the triangular inequality. However, it is worth 

noting that other distance metrics can also be used within the algorithm. 

We defined three different types of care requirements concerning their difficulty level 

as basic, moderate, and difficult care. The reason for considering services with 

different difficulties is to investigate the effect of service time on the effectiveness of 

the proposed policies. The service time for each type of care was assumed to be 
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normally distributed by three different means and standard deviations for care. Hence, 

we considered three different levels of patients’ service demand distributions in the 

instance classes in which the first, second, and third numbers indicate the percentages 

of the patients that require basic, moderate, and difficult care, respectively. For 

example, the instance class h100_40_0 indicates that there is a total of 100 patients 

with 12 caregivers, the patients are randomly distributed in a circular area with a radius 

of 40 minutes, the demand distribution level is 0 indicating 80%, 15% and the 

remaining 5% of the patients require basic, moderate and difficult cares (80/15/5), 

respectively. Last, we generated five instances in each instance class by changing only 

the locations (coordinates) of the patients. Thus, an instance is described by the last 

index. For example, the last indices in h100_40_0_1 and h100_40_0_2 indicate that 

these are the first and the second instances in the instance class h100_40_0 such that 

only the locations (coordinates) of the patients are differentiated. Thus, there are 48 

instance classes and 240 instances in total. Finally, each instance was run in five 

replications differentiated by five seeds used in a random number generator which 

resulted in 1200 runs. 

Table 5.1. Characteristics of the generated problem instances. 

Feature Description 

Number of patients and available 

caregivers (4 levels) 

10 patients with 4 caregivers; 30 patients with 4 

caregivers; 50 patients with 6 caregivers; 100 

patients with 12 caregivers 

Service area radius (4 levels) 10, 20, 30, and 40 minutes 

Patients’ Demand distributions 

(3 levels) 

Level 0: 80/15/5: 80% basic, 15% moderate, 5% 

difficult. 

Level 1: 60/30/10: 60% basic, 30% moderate, 

10% difficult. 

Level 2: 50/30/20: 50% basic, 30% moderate, 

20% difficult. 

Patients service requirement 

(illness) and corresponding 

service times (3 levels) 

Basic: mean of 10 and standard deviation of 2.5 

minutes 

Moderate: mean of 20 and standard deviation of 

5 minutes 

Difficult: mean of 30 and standard deviation of 

7.5 minutes 

Capacity of vehicles 2 caregivers 

After generating the instances, a preliminary computational experiment is conducted 

to validate the model and assess its performance on the small instances (see Figure 
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5.1). Even a slight increase in the number of patients results in a significant increase 

in CPU time. Similarly, a slight increase in the number of vehicles and caregivers has 

a substantial impact on the performance of the MILP. Following parameter tuning 

experiments, as explained in Chapter 5.2, these instances are solved by the ALNS-VS 

for comparative analysis The algorithm provides an optimal solution for each instance, 

with the average gap across five replications being less than 0.1%.   

 

Figure 5.1. The performance of MILP on small instances 

5.2. Parameter Tuning 

We considered Ropke and Pisinger (2006a, 2006b)’s settings for many of the 

fundamental parameters used in a typical ALNS algorithm such as 𝜃, 𝛼, 𝛽, 𝜇, 𝜐 and 𝑐 

as 25000, 0.3, 0.1, 0.1, 0.1, and 0.99975, respectively.  We took the additional number 

of iterations (𝜃) 250 as 10% of 𝜃 (Öztürkoğlu and Mağara, 2019). Furthermore, 𝜎 and 

𝜙 were assumed to be 0.5 and 0.8, respectively as explained in Chapter 4.1. Last, we 

conducted a full factorial experimental design for the remaining parameters specific to 

our ALNS-VS algorithm which are update solution iteration (𝜔), caregiver swap 

iteration (𝜑), maximum remove parameter (𝜉)  and evaporation rate (𝜌).  

After the preliminary experiments, 6 levels were defined for 𝜔 with ranging from 250 

to 1500 with a step size of 250. 𝜑 has 7 levels with ranging from 50 to 200 with a step 

size 25. Thus, we aimed to prevent the algorithm from being trapped in a local optimal 

solution due to the lack of proper caregiver assignment. 𝜉 has 5 levels such as 𝜉 ∈

{0.4, 0.5, 0.6, 0.7, 0.8} and finally 𝜌 has 5 levels as 𝜌 ∈ {0.75, 0.8, 0.85, 0.9, 0.95}. In 

the literature, different values were used for evaporation rate which range from 0.75 

to 0.95 (Fuellerer et al., 2009; Yu et al., 2009). In total, we had (6x7x5x5) 1.050 

settings for parameters and performed 21.000 runs with 4 different tuning instances 
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and 5 replications obtained by five seeds in a random number generator. To compare 

the solutions in the experiment, we normalized the best-found solutions for each run: 

𝑅𝑃𝐷𝑖,𝑗 = (
𝑓𝑖,𝑗−𝑓𝑚𝑖𝑛,𝑗

𝑓𝑚𝑖𝑛,𝑗
) ∗ 100, where 𝑅𝑃𝐷𝑖,𝑗  is the normalized best-found solution of 

run 𝑖  for instance 𝑗 ; 𝑓𝑖,𝑗  is the best-found solution by the algorithm in setting-

replication pair 𝑖 for instance 𝑗, and 𝑓𝑚𝑖𝑛,𝑗  is the best solution for instance 𝑗. These 

instances comprise of 30 patients, 4 caregivers, 2 vehicles with a capacity of 2 

caregivers, area with a radius of 30 minutes. The experiment was conducted on 

Minitab 19 Statistical Software. The ANOVA and the Response Optimization tests 

were conducted to investigate the effects of parameters on the quality of the solutions 

with 95% confidence level. The tests’ results showed that the optimal setting is (𝜔, 𝜑, 

𝜉, 𝜌) = (250,100, 0.5, 0.95). See Table B.1 and Figure B.1 in Appendix B for the details 

of the test results. Hence, Table 5.2 summarizes the parameter settings used for the 

proposed ALNS-VS algorithm for the computational experiments.    

Table 5.2. The parameter settings are used in the proposed ALNS-VS algorithm. 

Parameters Values Parameters Values 

Total number of iterations (𝜃) 25000 First Shaw parameter (𝛼) 0.3 

Additional iteration (𝜃) 2500 Second Shaw parameter (𝛽) 0.1 

Solution update iteration 

number (𝜔) 

250 Minimum dummy remove 

parameter (𝜎) 

0.5 

Number of caregiver swap 

iteration (𝜑) 

100 Maximum dummy remove 

parameter (𝜙) 

0.8 

Minimum remove parameter 

(𝜐) 

0.1 Evaporation coefficient (𝜌) 0.95 

Maximum remove parameter 

(𝜉) 

0.5 Noise parameter (𝜇) 0.1 

Cooling rate (𝑐) 0.99975   

5.3. The Effect of the Variations of the Caregiver Swap Heuristic 

As previously described in Chapter 3, the first research question aims to investigate 

the effectiveness of the proposed variations of the caregiver swap heuristic algorithm. 

As highlighted in Chapter 4.5, this heuristic was designed to look for the best 

caregiver-vehicle assignment using the pheromone concept from the ACO algorithm 

with two different visibility heuristics that consider the common and unique number 

of patients. Thus, we proposed three ALNS-VS algorithms differentiated by the 

variations of caregiver swap heuristics: (1) ALNS-VS_NoSwap does not include the 

caregiver swap heuristic, (2) ALNS-VS_Common consists of the heuristic with only 

common visibility heuristic, and (3) ALNS-VS_Unique considers only unique number 

of patients as a visibility heuristic.  
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After solving all 480 problem instances in 5 replications by each algorithm, we tested 

the following null hypothesis using a paired sample t-tests with a 99% confidence 

interval in Minitab 19. Whereas the following null hypotheses state that there is no 

difference between the means of the solutions obtained by the algorithms, the 

alternative hypotheses state that they are different. 𝜇𝑛𝑜𝑆𝑤𝑎𝑝 , 𝜇𝐶𝑜𝑚𝑚𝑜𝑛  and 𝜇𝑈𝑛𝑖𝑞𝑢𝑒 

indicate the averages of all of the solutions obtained by ALNS-VS_NoSwap, ALNS-

VS_Common and ALNS-VS_Unique, respectively. For the sake of the flow of the 

manuscript, the solutions of the algorithms were provided in Tables C.1. through C.4 

in Appendix C.   

● 𝐻0
𝑎: 𝜇𝐶𝑜𝑚𝑚𝑜𝑛 −  𝜇𝑛𝑜𝑆𝑤𝑎𝑝 = 0, 𝐻1

𝑎: 𝜇𝐶𝑜𝑚𝑚𝑜𝑛 −  𝜇𝑛𝑜𝑆𝑤𝑎𝑝 ≠ 0 

● 𝐻0
𝑏: 𝜇𝑈𝑛𝑖𝑞𝑢𝑒 −  𝜇𝑛𝑜𝑆𝑤𝑎𝑝 = 0, 𝐻1

𝑏: 𝜇𝑈𝑛𝑖𝑞𝑢𝑒 −  𝜇𝑛𝑜𝑆𝑤𝑎𝑝 ≠ 0 

● 𝐻0
𝑐: 𝜇𝐶𝑜𝑚𝑚𝑜𝑛 −  𝜇𝑈𝑛𝑖𝑞𝑢𝑒 = 0, 𝐻1

𝑐: 𝜇𝐶𝑜𝑚𝑚𝑜𝑛 −  𝜇𝑈𝑛𝑖𝑞𝑢𝑒 ≠ 0 

Table 5.3 demonstrates the results of the paired t-tests for each hypothesis. As seen in 

the table, both ALNS-VS_Common and ALNS-VS_Unique are statistically different 

from ALNS-VS_NoSwap because p-values are less than 0.01. Additionally, ALNS-

VS_Common and ALNS-VS_Unique present lower average total flow times than 

ALNS-VS_NoSwap with an average of 21 and 24 minutes. The analyzes also showed 

that there is no statistically significant evidence to reject the null hypothesis 𝐻0
𝑐 

because the p-value (0.163) is greater than 0.01. Hence, we can conclude that ALNS-

VS_Common and ALNS-VS_Unique provide statistically similar outputs. However, 

ALNS-VS_Common caused an average of 3 minutes more working time than ALNS-

VS_Unique. Because of this small difference, we decided to use the ALNS-

VS_Unique algorithm, hereafter called simply ALNS-VS again, and its solutions for 

further analyzes and comparisons.  

Table 5.3. The result of the paired t-tests for the comparisons of the variants of the 

caregiver swap heuristics. 

 Mean 
Std. 

Deviation 

Std. 

Error 

Mean 

Lower 

CI 

Upper 

CI 
t df p 

𝜇𝐶𝑜𝑚𝑚𝑜𝑛 −
 𝜇𝑈𝑛𝑖𝑞𝑢𝑒  

3.00 33.21 2.14 -2.56 8.57 1.40 239 0.163 

𝜇𝐶𝑜𝑚𝑚𝑜𝑛 −
 𝜇𝑛𝑜𝑆𝑤𝑎𝑝  

-21.12 43.12 2.78 -28.34 -13.89 -7.59 239 0.000 

𝜇𝑈𝑛𝑖𝑞𝑢𝑒 −

 𝜇𝑛𝑜𝑆𝑤𝑎𝑝  
-24.12 44.38 2.86 -31.56 -16.68 -8.42 239 0.000 
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5.4. The Effectiveness of the ALNS-VS Algorithm 

This chapter aims to provide answers to the second research question in which the 

effectiveness of the proposed algorithms is investigated in comparison to each other 

and CPLEX solutions. We limited the running time for processing the HHSRP-VS 

MILP model to 6 hours (21,600 seconds) because of the complexity of the problem. 

The quality of the solutions obtained by the CPLEX solver is defined as the 

discrepancy (GAP) between the best integer objective function value and the relaxed 

objective function value of the node remaining at the end of the time limit (Öztürkoğlu, 

2020). Thus, if we did not obtain the global optimal solution within the time limit, we 

used the best-found solution so far with its gap for comparisons. We also calculated 

the computational time of the ALNS-VS and UBA algorithms in terms of seconds for 

accurate comparisons. 

The CPLEX solver did not provide global optimal solutions for the HHSRP-VS 

problem within the time limit for any of the problem instances. In literature, many 

HHSRP studies also faced similar problems due to the complexity of the problem 

(Trautsamwieser and Hirsch, 2011; Trautsamwieser and Hirsch, 2014). We obtain 

feasible integer solutions only for the instances with 10 patients. For the other instances 

with more than 10 patients, we couldn’t obtain any improved feasible integer solution 

despite the initial feasible solutions provided by UBA. Table A.1 in Appendix A 

demonstrates the solutions obtained by CPLEX and UBA for 10-patient instances. In 

the table, “NA” indicates that no integer feasible solution is available. Whereas the 

CPLEX provided 16.4% better solutions (see column % Imp.) than the given UBA 

solutions on average, the average GAP in CPLEX solutions is 40.7%. According to 

this result, it could be discussed that while the UBA presents a tighter upper bound in 

a short amount of time (0.05 sec. on average) the optimality GAP seems to be large 

due to poor lower bound, which is most likely caused by the fractional routing 

variables of vehicles and caregivers and subtours due to DP policy in linear-

programming (LP)-relaxation.  

In Table A.2 in Appendix A, we compared CPLEX solutions with ALNS-VS solutions 

only for 10-patient instances. For 10-patient instances, there are no unvisited patients 

in both CPLEX and ALNS-VS solutions. However, the ALNS-VS presented a 

maximum of 19.7% and an average of 6% lower total flow time than the CPLEX 

solutions only in 1.8 seconds on average.  
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Since the UBA does not consider the drop off and pick-up policy, its solutions can be 

considered weak benchmarks for evaluating the effectiveness of the ALNS-VS 

algorithm (see Table D.1 in Appendix D), especially in instances with more than 10 

patients. Therefore, for an accurate comparison, we applied DP local search heuristic 

introduced in Chapter 4.4 to the solutions developed by UBA. The modified UBA with 

the DP heuristic is called UBA+DP. Table A.3 in Appendix A presents the aggregated 

best solutions, which are the averages of the best-found solutions of five instances in 

an instance class, of ALNS-VS, UBA, UBA+DP, the percentage improvement of 

UBA+DP over UBA in column “UBA+DP-UBA(%)”, and the percentage 

improvement of ALNS-VS over UBA+DP in column “VS-UBA+DP”. 

When we applied the DP heuristic to the UBA solutions, we obtained 9.4, 14.6, 13.2 

and 12.8 percentage improvement on average in the instances with 10, 30, 50 and 100 

patients, respectively. It is obvious that these improvements were achieved by 

dropping and picking up caregivers on the route. Also, these improvements were 

achieved with milliseconds more computational effort to solve UBA+DP compared to 

UBA; where UBA+DP lasted 0.05, 0.2, 0.6, and 1.4 seconds on average in the 10-, 

30-, 50-, and 100-patient instances, respectively. 

On the other hand, the ALNS-VS solutions presented 13.1, 13.6, 19.3 and 15.9 percent 

lower total flow time than UBA+DP on average for the 10-, 30-, 50- and 100-patient 

instances, respectively. When they were compared with UBA solutions, as is expected 

the percentage improvements increase up to 30%, 35% and 34% for the instances with 

30, 50 and 100 patients, respectively. Since ALNS-VS employs the DP policy 

throughout the iterations in contrast to UBA+DP, some portions of its savings on total 

flow time over UBA+DP seem to be achieved by additional drop-off and pick-ups. 

Whereas the caregivers were dropped off 4, 14, 23 and 41 times on average in 10-, 30-, 

50- and 100-patient instances in the ALNS-VS solutions, they are 2, 10, 6, 30 in the 

UBA+DP solutions. It also seems that the number of drop off and pick-up increases as 

the instance size gets larger. Even though the ALNS-VS algorithm requires 

proportionally higher computational effort than UBA+DP, 23, 34, 119 seconds in the 

30, 50- and 100-patient instances, respectively, we think that this could be negligible 

from the view of practitioners because a manual solution always takes a very long time 

and the expected planning time is also usually longer than 5 minutes in practice. 

Additionally, while there are several unvisited patients in UBA+DP solutions for 12 

instances there are no unvisited patients in any of the ALNS-VS solutions. For 
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example, there are averages of 0.4, 1.8, 0.6 and 1.4 unvisited patients in the UBA+DP 

solutions of h50_40_1, h50_40_2, h100_40_1 and h100_40_2 instance classes, 

respectively.  For the sake of clarity, these unvisited patients were not shown in the 

tables. As a result, we can conclude that the proposed ALNS-VS algorithm seems to 

provide reasonably good solutions to the HHSRP-VS problems in a reasonable 

computational effort. 

5.5. The Effect of the Drop-off and Pick-up Policy 

In the previous section, we highlighted that the DP policy seems to reduce the total 

flow time of caregivers when we compared ALNS-VS, UBA+DP and UBA solutions. 

Thus, this section aims to investigate the effectiveness of the DP policy in a detailed 

analysis and answer the third research question. To provide an accurate comparison, 

we introduced the HHSRP-M problem by removing only the DP policy in HHSRP-

VS. Hence, HHSRP-M only allows caregivers to share a vehicle without the possibility 

of drop-off and pick-up. The MILP model of HHSRP-M could be easily achieved by 

setting all 𝑦𝑖,𝑘,𝑙 decision variables to 0 and removing the set of dummy nodes 𝑉2 in the 

HHSRP-VS MILP model. 

Proposition 1. The optimal total flow time of caregivers in HHSRP-VS (𝑓𝑉𝑆
∗ ) is always 

less than or equal to that in HHSRP-M (𝑓𝑀
∗ ): 𝑓𝑉𝑆

∗  ≤ 𝑓𝑀
∗ . 

Proof 1. Suppose that 𝑃𝑉𝑆 and 𝑃𝑀 are the optimal routes in HHSRP-VS and HHSRP-

M, respectively. Since DP policy is the only difference between HHSRP-M and 

HHSRP-VS and it is not allowed in HHSRP-M, 𝑃𝑀 ⊆ 𝑃𝑉𝑆. Hence, it can be written 

that 𝑓𝑀
∗ −△𝐷𝑃= 𝑓𝑉𝑆

∗ , where △𝐷𝑃 indicates savings in total flow time due to drop-off 

and pick-up. Hence, although the drop-off and pick-up require additional travel time 

if there exists at least one such a drop-off and pick-up option that reduces flow time of 

the caregivers by reducing wasted time of the caregivers who wait in the vehicle for 

the completion time of the occupied caregiver in HHSRP-M; if ∃ △𝐷𝑃> 0 then 𝑓𝑉𝑆
∗ <

𝑓𝑀
∗ ; otherwise 𝑓𝑉𝑆

∗ = 𝑓𝑀
∗ . ∎ 

To compare HHSRP-VS solutions with HHSRP-M in an empirical analysis, we 

modified the ALNS-VS algorithm by removing its DP local search and dummy node 

removal heuristics, which were described in Chapter 4. Hence, we called the modified 

algorithm ALNS-M to solve the HHSRP-M problem. After solving the problem 

instances with ALNS-M, we observed that there are no unvisited patients in any of the 
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problem instances. We then calculated the percentage difference of total flow time 

between ALNS-M and ALNS-VS solutions as VS-M%=100*(ALNS-M - ALNS-

VS)/ALNS-M to analyze the effect of DP policy on total flow time. Tables E.1 through 

E4 in Appendix E present the ALNS-M solutions and the percentage differences in 

details. Table A.3 in Appendix A also presents the aggregated best solutions of ALNS-

M and their differences with ALNS-VS. It can be seen in the tables that the 

implementation of DP policy provides approximately 19, 25, 24 and 22% savings in 

caregivers’ total working time on average for 10-, 30-, 50- and 100-patient instances.  

Using the 240 solutions in Tables E.1-E.4 in Appendix E, we also performed a full 

factorial design of the experiment to investigate the effects of the problem features 

described in Table 5.1 on the contribution of DP policy at the 95% confidence level. 

Recall that there are 4 levels of a number of patients (𝑛𝑜𝑃), 4 levels of service area 

radiuses (𝑟𝑎 ) and 3 levels of patients’ demand distributions (𝑑𝑑 ). The response 

(dependent variable) is the VS-M%. The results of the full factorial design of 

experiments (the ANOVA table) are given in Table E.5 in Appendix E. The main 

factors and their all-level interactions explain 94.27% of the total variation of the 

response (𝑅2). As seen in Table E.5, 𝑛𝑜𝑃, 𝑟𝑎 , and 𝑑𝑑 are significant on the model. 

Moreover, 𝑟𝑎 has the largest effect on the contribution of DP policy due to its high 

“Adj SS” value. This could also be seen in the main effects plot given in Figure 5.1.  

 

Figure 5.2. The main effects plot of the factors. 
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As the service area radius increases from 10 to 40 minutes, the contribution of DP 

policy steadily decreases from 34% to 14%. This shows that while the impact of DP 

policy on total flow time is very significant when patients are located in smaller areas 

such as urban or metropolitan areas, it also provides significant time savings for larger 

areas. Additionally, the contribution of DP policy steadily increases from 19% to 25% 

as the level of demand distribution increases. Note that while at the first 𝑑𝑑 level only 

20% of the patients were defined as requiring moderate and difficult care, this rate 

increases to 50% at the third level. Thus, this suggests that the higher the proportion 

of patients' difficult service requirements, the greater the contribution of the DP policy. 

The reason for this increasing contribution of DP policy with increasing demand for 

difficult services could be that a vehicle prefers to travel between patients rather than 

waiting in a patient due to high service time. Last, the contribution of the DP policy 

appeared to be the lowest when the number of patients is the smallest. Its contribution 

reaches its maximum when there is a moderate number of patients. In our experiments, 

the policy has shown its highest contribution in the 30-patient problem instances with 

an average of 25%. The reasons for decreasing contributions when there are few or 

many patients may be that (1) traveling back and forth due to the DP policy may not 

be very efficient because a small number of patients is highly likely to be dispersed far 

from each other, and (2) caregivers’ may have longer waiting times at their patients 

due to the late arrival of the vehicle when there are too many patients to visit.   

5.6. The Effect of Vehicle Sharing by Multiple Caregivers 

As discussed in Chapter 3, one of the common assumptions in existing HHSRP 

literature is that one vehicle carries only one caregiver.  On the contrary, the proposed 

HHSRP-VS allows multiple caregivers to share a single vehicle for their travels. 

Hence, it is obvious that sharing a vehicle reduces the necessity of vehicles. However, 

this could also increase the total flow time of workers due to waiting for each other or 

a returning vehicle at a patient node.  Thus, this section aims to investigate the 

scenarios where HHSRP-VS may provide potential cost savings and answer the fourth 

research question. For this purpose and accurate comparison, similar to conventional 

HHSRP we defined the HHSRP-STD problem in which every single caregiver is 

assumed to travel with a single vehicle with or without a driver. Therefore, vehicle 

sharing, and DP policies are irrelevant in the HHSRP-STD. The MILP model of the 

HHSRP-STD can be easily developed by setting the capacity of all vehicles to 1, 𝑐𝑘 =
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1, setting all 𝑦𝑖,𝑘,𝑙  decision variables to 0, and removing the set of dummy nodes 𝑉2 

in HHSRP-VS MILP model.  

Proposition 2. (Best-case scenario) If the sets of patients of 𝑐 caregivers, who can 

travel in a single shared vehicle, are assigned to the same locations and the patients 

at the same locations require the same type of service, then the optimal flow time of 

HHSRP-VS (𝑓𝑉𝑆
∗ ), HHSRP-M (𝑓𝑀

∗ ) and HHSRP-STD (𝑓𝑆𝑇𝐷
∗ ) are equal to each other. 

𝑓𝑉𝑆
∗ = 𝑓𝑀

∗ = 𝑓𝑆𝑇𝐷
∗ .  

Proof 2. Suppose that there are 𝑐 caregivers who travel with their own vehicle in 

HHSRP-STD and with a single shared vehicle in HHSRP-M and HHSRP-VS. Suppose 

that they are assigned to serve the same number of patients (𝑛), each located at the 

same node such as in a mall, apartment or business center: the location of patient 𝑖 of 

caregiver 𝑙 is 𝑣𝑖
𝑙 =  𝑣𝑖 and 𝑣𝑖 ≠ 𝑣𝑗 , ∀𝑖 ≠ 𝑗 = 1, … , 𝑛, , and ∀𝑙 = 1, … , 𝑐. Suppose that 

the patients located at the same node require the same treatment: the service time of 

patient 𝑖  of caregiver 𝑙  is 𝑝(𝑣𝑖
𝑙) = 𝑝(𝑣𝑖), ∀𝑖 = 1, … , 𝑛  and ∀𝑙 = 1, … , 𝑐 . Since each 

caregiver must visit each patient, and patient treatment times are the same at the same 

location, the optimal tour for all caregivers in HHSRP-STD can be easily computed 

by solving a TSP for just one caregiver. Hence, suppose that 𝑃 = 𝑃𝑆𝑇𝐷
𝑙 =

{𝑣0
𝑙 = 0, 𝑣1

𝑙 , … , 𝑣𝑛
𝑙 , 𝑣𝑛+1

𝑙 = 0 }, ∀𝑙 = 1, … , 𝑐 indicates the optimal route of caregivers 

in HHSRP-STD. If 𝑃 minimizes the total route length for one caregiver, it must also 

be the optimal tour of the single shared vehicle in HHSRP-M since all of the 

caregivers’ patients are located at the same points and their service times are the same. 

Hence, 

𝑓𝑆𝑇𝐷
𝑙 = ∑ (𝑡

𝑣𝑖−1
𝑙 ,𝑣𝑖

𝑙 + 𝑝(𝑣𝑖
𝑙))𝑖∈𝑃𝑆𝑡𝑑

𝑙 = ∑ (𝑡𝑣𝑖−1,𝑣𝑖
+ 𝑝(𝑣𝑖))𝑖∈𝑃 = 𝑇 + 𝑆, ∀𝑙 = 1, … , 𝑐,  (39) 

where  ∑ (𝑡𝑣𝑖−1,𝑣𝑖
) = 𝑇𝑖∈𝑃  and ∑ 𝑝(𝑣𝑖

𝑙) = 𝑆𝑖∈𝑃 . 

𝑓𝑆𝑇𝐷
∗ = ∑ 𝑓𝑆𝑇𝐷

𝑙𝑐
𝑙=1 = 𝑐 ∙ (𝑇 + 𝑆)  (40) 

𝑓𝑀
∗ = ∑ ∑ (𝑡𝑣𝑖−1,𝑣𝑖

+ 𝑝(𝑣𝑖))𝑖∈𝑃
𝑐
𝑙=1 = 𝑐 ∙ (𝑇 + 𝑆)  (41) 

Because all caregivers in the shared vehicle leave at every patient node 𝑣𝑖 and treat 

their patients simultaneously with the same amount of service time, there is no need to 

implement a DP policy. Thus, 𝑓𝑉𝑆
∗ = 𝑓𝑀

∗ = 𝑓𝑆𝑇𝐷
∗ .∎ 

Proposition 3. (Practical best-case scenario) 𝑓𝑆𝑇𝐷
∗  is always less than 𝑓𝑀

∗  when 

caregivers’ patients located at the same nodes require different types of services 

contrary to Proposition 2. 
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Proof 3. (Based on Proposition 2) Suppose that caregiver 𝑙’s patient treatment time 

at patient node 𝑖 is not necessarily equal to the treatment times of other caregivers at 

the same node due to different service requirements: 𝑝(𝑣𝑖
𝑗
)  ≠ 𝑝(𝑣𝑖

𝑘), ∀𝑖 = 1, … , 𝑛 

and ∀𝑗, 𝑘 = 1, … , 𝑐, and 𝑗 ≠ 𝑘 in Proposition 2. The optimal sequence of patients in 

HHSRP-STD (𝑃) can be still obtained by solving a TSP for one caregiver because 

service times are constant. 𝑃 also minimizes the total travel time of the single shared 

vehicle in HHSRP-M. Let 𝑇 be the total travel time of caregivers or vehicles in the 

optimal path: ∑ (𝑡
𝑣𝑖−1

𝑙 ,𝑣𝑖
𝑙)𝑖∈𝑃𝑆𝑡𝑑

𝑙 = ∑ (𝑡𝑣𝑖−1,𝑣𝑖
) = 𝑇𝑖∈𝑃 , ∀𝑙 = 1, … , 𝑐. Let ∑ 𝑝(𝑣𝑖

𝑙) =𝑖∈𝑃

𝑆𝑙 be the total service times of caregiver 𝑙’s patients, which are known and constant. 

The optimal flow time of the caregivers in HHSRP-STD is, 

𝑓𝑆𝑇𝐷
𝑙 = ∑ (𝑡

𝑣𝑖−1
𝑙 ,𝑣𝑖

𝑙 + 𝑝(𝑣𝑖
𝑙))𝑖∈𝑃𝑆𝑡𝑑

𝑙 = 𝑇 + 𝑆𝑙, ∀𝑙 = 1, … , 𝑐  (42) 

𝑓𝑆𝑇𝐷
∗ = ∑ 𝑓𝑆𝑇𝐷

𝑙𝑐
𝑙=1 = 𝑐 ∙ 𝑇 +  ∑ 𝑆𝑙𝑐

𝑙=1 .  (43) 

In HHSRP-M, when 𝑐 caregivers visit their patients located at the same nodes with 

a shared vehicle, all other caregivers wait for the caregiver whose patient require the 

highest treatment time.  Hence, 𝑃 still provides the optimal tour in HHSRP-M, and the 

optimal flow time in HHSRP-M can be written as in equation (44). 

𝑓𝑀
∗ = ∑ ∑ 𝑡𝑣𝑖−1,𝑣𝑖𝑖∈𝑃

𝑐
𝑙=1 + ∑ ∑ max ({𝑝(𝑣𝑖

1), … , 𝑝(𝑣𝑖
𝑐)})𝑖∈𝑃

𝑐
𝑙=1    

       = 𝑐 ∙ 𝑇 +  𝑐 ∙ ∑ max ( {𝑝(𝑣𝑖
1), … , 𝑝(𝑣𝑖

𝑐)})𝑖∈𝑃 . (44) 

As a result, since 𝑆𝑙 < ∑ max ({𝑝(𝑣𝑖
1), … , 𝑝(𝑣𝑖

𝑐)})𝑖∈𝑃  , ∀𝑙 = 1, … , 𝑐, 𝑓𝑆𝑇𝐷
∗ < 𝑓𝑀

∗ . ∎  

As it is seen in Propositions 2 and 3, sharing a vehicle without DP policy certainly 

increases caregivers’ total flow time except for the best-case scenario. We also know 

from the previous sections that DP policy provides savings of the flow time when 

vehicle sharing is allowed. Therefore, to investigate the effect of vehicle sharing with 

DP and develop in-depth insights, we perform an empirical analysis. For this, we 

solved HHSRP-STD with the ALNS-STD algorithm, which was developed by 

removing DP local search, dummy node removal, and caregiver swap heuristics from 

ALNS-VS, for an accurate comparison. 

As defined in Table 3.2, whereas 2 vehicles are assumed to be needed to serve 10 and 

30 patients, 3 and 6 vehicles are required for 50 and 100 patients respectively in our 

problem instances in HHSRP-VS. However, the numbers of vehicles needed are 4, 4, 

6, and 12 in HHSRP-STD because every caregiver needs a separate vehicle. Hence, 

the additional vehicle needs are 2, 2, 3, and 6 (doubled) in HHSRP-STD in those 
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problems. After solving the same problem instances with the new number of vehicles 

using the ALNS-STD algorithm, we obtained the best-found solutions as given in 

Tables F.1 through F.4 in Appendix F in details. Table A.3 in Appendix A also presents 

the aggregated best solutions of ALNS-STD and their percentage improvement over 

ALNS-VS in column “STD-VS(%)”. Because HHSRP-STD is less complex than 

HHSRP-VS and ALNS-STD requires a few local search heuristics, solving ALNS-

STD requires a shorter amount of time: 1.7, 3.2, 5.1, and 19.5 seconds for 10, 30, 50, 

and 100 patients, respectively, which are much shorter than ALNS-VS that solved the 

same problems in 1.9, 22.9, 34.1, and 118.6 seconds. Furthermore, as expected the 

HHSRP-VS causes more total flow time than the HHSRP-STD.  

● For 10-patient instances, the caregivers spent about 33% less time, on average 

158 minutes, in HHSRP-STD than in HHSRP-VS. 

● For 30, 50 and 100 patients, caregivers complete their tour in about 26%, 25% 

and 25% less time in HHSRP-STD than they are in HHSRP-VS on average, 

respectively. This leads to totals of 263, 400 and 858 minutes of savings on 

average for the same problem sets, respectively.  

The abovementioned results showed that HHSRP-STD provides a considerable 

amount of savings in total flow time of caregivers’ working time with a cost of 

additional vehicles, which may be special vehicles equipped with healthcare 

equipment. Because of this trade-off, we take our analysis further and compare 

HHSRP-VS and HHSRP-STD in light of the total cost of providing care services to 

find out deeper insights. For this purpose, we performed a break-even analysis.  

Suppose that 𝑇𝐶𝑆𝑇𝐷  and 𝑇𝐶𝑉𝑆  are the total daily monetary cost of managing home 

health care services in HHSRP-STD and HHSRP-VS, respectively. Let 𝐶𝑉  be the 

hourly cost of vehicle ownership or usage that may consist of the rental or payment 

cost per hour of a vehicle, the hourly wage of a driver, the cost of fuel consumption 

for an hour, and all other costs related to the usage of the vehicle. Similarly, let 𝐶𝐿 be 

the average hourly cost of caregivers that may include their salaries, insurances, 

bonuses, and lunch payments. Last, 𝑓𝑆𝑇𝐷
∗  and 𝑓𝑉𝑆 indicate the best objective function 

values (total flow time of caregivers in hours) of the HHSRP-STD and HHSRP-VS 

problem instances solved by ALNS-STD and ALNS-VS algorithms, respectively. 

Recall that 𝑐 is the capacity of the vehicles in HHSRP-VS. Thus, 𝑇𝐶𝑆𝑇𝐷 and 𝑇𝐶𝑉𝑆 can 

be simply written 𝑇𝐶𝑆𝑇𝐷
∗  = 𝑓𝑆𝑇𝐷

∗ ∗ 𝐶𝑉 + 𝑓𝑆𝑇𝐷
∗ ∗ 𝐶𝐿  and 𝑇𝐶𝑉𝑆

∗ =
𝑓𝑉𝑆

∗

𝑐
∗ 𝐶𝑉 + 𝑓𝑉𝑆

∗ ∗ 𝐶𝐿 . 
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The first terms in these equations indicate the total cost of vehicle ownership and the 

second terms identify the total cost of labor. In 𝑇𝐶𝑉𝑆
∗ , 𝑓𝑉𝑆

∗  is divided by 𝑐 to calculate 

the flow time of vehicles.  Hence, the breakeven rate (𝐵𝐸𝑅) can be calculated by 

equation (45). Proposition 4 shows that the denominator is always positive. 

𝐵𝐸𝑅 =
𝐶𝑉

∗

𝐶𝐿
∗  =

(𝑓𝑉𝑆
∗ − 𝑓𝑆𝑇𝐷

∗ )

(𝑓𝑆𝑇𝐷
∗ − 

𝑓𝑉𝑆
∗

𝑐
)
, (45) 

Proposition 4. In the optimal solutions of HHSRP-STD (𝑓𝑆𝑇𝐷
∗ ), HHSPR-M (𝑓𝑀

∗ ), and 

HHSRP-VS (𝑓𝑉𝑆
∗ ), 

𝑓𝑉𝑆
∗

𝑐
≤

𝑓𝑀
∗

𝑐
< 𝑓𝑆𝑇𝐷

∗ . 

Proof 4. Suppose that 𝑃𝑆𝑇𝐷 = {𝑃𝑆𝑡𝑑
𝑙 , ∀𝑙 = 1 … 𝑐} is the set of optimal assignments and 

routes of 𝑐  caregivers/vehicles in the optimal solution of a HHSRP-STD, where 

𝑃𝑆𝑇𝐷
𝑙 = {𝑣0

𝑙 = 0, 𝑣1
𝑙 , … , 𝑣𝑚

𝑙 , 𝑣𝑚+1
𝑙 = 2𝑛 + 1 } indicates the optimal route of caregiver 

𝑙 . Let 𝑒0
𝑙 = {𝑣0

𝑙 , 𝑣1
𝑙 }  and 𝑒1

𝑙 = {𝑣𝑚
𝑙 , 𝑣𝑚+1

𝑙 }  be the first and the last edges that are 

traversed in the route of caregiver 𝑙, respectively. Let 𝑇𝑙 be the total travel time of 

caregiver 𝑙, hence, similar to equation (42),  

𝑓𝑆𝑇𝐷
𝑙 = ∑ (𝑡

𝑣𝑖−1
𝑙 ,𝑣𝑖

𝑙 + 𝑝(𝑣𝑖
𝑙))𝑖∈𝑃𝑆𝑡𝑑

𝑙 = 𝑇𝑙 + 𝑆𝑙  (46) 

𝑓𝑆𝑇𝐷
∗ = ∑ 𝑓𝑆𝑇𝐷

𝑙𝑐
𝑙=1 = ∑ 𝑇𝑙𝑐

𝑙=1 +  ∑ 𝑆𝑙𝑐
𝑙=1   (47) 

Suppose that caregivers have no common skills or there is no patient who can be 

treated by more than one caregiver. Suppose that each patient has a different service 

time and the locations of patients treated by each caregiver are placed apart from each 

other like in different regions or zones. See Figure 5.2 for an example representation 

of two caregivers’ patients and paths. Contrary to Proposition 3, these assumptions 

define the worst case of the distribution and the assignments of patients. Because 𝑃𝑆𝑇𝐷
𝑙  

identifies the optimal path for each caregiver, in the optimal solution of HHSRP-M the 

vehicle must follow through each caregivers’ path with an elimination of return to the 

HHC center after a caregiver’s service completed. The caregivers who completed 

serving their patients must travel through the other caregivers’ paths and wait in the 

shared vehicle until all caregivers completed their service. Hence, when we combine 

𝑃𝑀 = 𝑃𝑆𝑇𝐷
1 ∪ 𝑃𝑆𝑇𝐷

2 … ∪ 𝑃𝑆𝑇𝐷
𝑐 ∪ {∆𝑎}/{∆𝑠} where ∆𝑎 and ∆𝑠 indicate the additional and 

the removed paths to complete a single circuit. Let us consider the example in Figure 

5.2. We can develop optimal tour of HHSRP-M by combining two caregivers’ routes 

𝑃𝑆𝑇𝐷
1  and 𝑃𝑆𝑇𝐷

2  into one route of a vehicle 𝑃𝑀. Suppose that the vehicle visits patients 

in 𝑃𝑆𝑇𝐷
1  then in 𝑃𝑆𝑇𝐷

2  for minimum flow. Hence, 𝑃𝑀 = 𝑃𝑆𝑇𝐷
1 /{𝑒1

1}  ∪ {𝑒1,2} ∪ 𝑃𝑆𝑇𝐷
2 /
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{𝑒0
2}, where  𝑒1,2 = {𝑣𝑚

1 , 𝑣1
2} is the connection edge. For the example in Figure 5.2, 

𝑃𝑆𝑇𝐷
1 = {0, 1, 2, 3, 0} , 𝑃𝑆𝑇𝐷

2 = {0, 4, 5, 6, 7, 0}  and 𝑃𝑀 = {0, 1, 2, 3, 4, 5, 6, 7, 0}  where 

𝑒1
1 = {3,0} , 𝑒0

2 = {0,4}  were removed from 𝑃𝑆𝑇𝐷
1  and 𝑃𝑆𝑇𝐷

2 , respectively and 

connection edge 𝑒1,2 = {3,4} was added.  

Let ℋ be the set of caregiver pairs in the shared vehicle in the optimal route of 

HHSRP-M. So, we can write the optimal flow time as 

𝑓𝑀
∗ = 𝑐 ∙ [∑ ∑ 𝑡

𝑣𝑖−1
𝑙 ,𝑣𝑖

𝑙𝑖∈𝑃𝑆𝑡𝑑
𝑙𝑙∈𝐿 + ∑ (𝑡𝑒𝑖,𝑖+1

− 𝑡𝑒1
𝑖 − 𝑡𝑒0

𝑖+1)
(𝑖,𝑖+1)∈ℋ,𝑖∈

𝐿

{𝑐}

] +  𝑐 ∙

∑ ∑ 𝑝(𝑣𝑖
𝑙)𝑖∈𝑃𝑆𝑡𝑑

𝑙𝑙∈𝐿   

(48) 

 

Figure 5.3. The representation of the optimal paths of two caregivers in the worst 

case. 

In equation (45), the first and the second terms indicate the portion of total travel and 

service times in the total flow time of caregivers. With the triangle inequality 

assumption, the term ∑ (𝑡𝑒𝑖,𝑖+1
− 𝑡𝑒1

𝑖 − 𝑡𝑒0
𝑖+1)

(𝑖,𝑖+1)∈ℋ,𝑖∈
𝐿

{𝑐}

 in total travel time is always 

non-positive. This can be seen in the example given in Figure 5.2  𝑒1,2 < 𝑒1
1 + 𝑒0

2. 

Hence, 𝑓𝑀
∗  can be written as in equation (49). 

𝑓𝑀
∗ = 𝑐 ∙ ∑ 𝑇𝑙𝑐

𝑙=1 +  𝑐 ∙ ∑ 𝑆𝑙𝑐
𝑙=1 + 𝑐 ∙ ∆,  (49) 

𝑓𝑀
∗

𝑐
= ∑ 𝑇𝑙𝑐

𝑙=1 + ∑ 𝑆𝑙𝑐
𝑙=1 + ∆ ≤ 𝑓𝑆𝑇𝐷

∗   (50) 

Finally, with the help of Proof 1, 
𝑓𝑉𝑆

∗

𝑐
≤

𝑓𝑀

𝑐
< 𝑓𝑆𝑇𝐷

∗ .∎ 

Tables F.1 – F.4 in Appendix F presents the 𝐵𝐸𝑅 values calculated for each solution 

in detail. Table A.3 in Appendix A demonstrates the average 𝐵𝐸𝑅 values for each 
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instance class. Hence, if   ∃
𝐶𝑉

𝐶𝐿
> 𝐵𝐸𝑅, HHSRP-VS may be preferable to HHSRP-STD 

due to lower total cost of service; otherwise, HHSRP-STD is superior to HHSRP-VS 

in terms of the total cost of service. When we conducted a full factorial design of 

experiment with factors  𝑛𝑜𝑃, 𝑟𝑎, and 𝑑𝑑 and a response 𝐵𝐸𝑅, the analysis showed 

that every main factor and only 𝑛𝑜𝑃 ∗ 𝑟𝑎 two-way interaction is significant with a 

model of 76.75% 𝑅2 . The ANOVA table for this analysis is given in Table 5.4. 

Additionally, the number of patients (𝑛𝑜𝑃) and service area radius (𝑟𝑎) have the 

largest effect on 𝐵𝐸𝑅 due to their high Adj SS values. 

Table 5.4. The ANOVA table for break-even ratios. 

Source DF Adj SS Adj MS F-Value p-Value 

𝒏𝒐𝑷 3 33.95 11.32 63.05 0.000 

𝒓𝒂 3 57.57 19.19 106.93 0.000 

𝒅𝒅 2 7.49 3.75 20.88 0.000 

𝒏𝒐𝑷 ∗ 𝒓𝒂 9 8.41 0.93 5.21 0.000 

𝒏𝒐𝑷 ∗  𝒅𝒅 6 3.09 0.52 2.87 0.011 

𝒓𝒂 ∗ 𝒅𝒅 6 1.10 0.18 1.02 0.413 

𝒏𝒐 ∗ 𝒓𝒂 ∗ 𝒅𝒅 18 2.11 0.12 0.65 0.854 

Error 192 34.46 0.18 

Total 239 148.19 

Further analysis was also conducted to gain more insights into the effects of the main 

factors on 𝐵𝐸𝑅 . First, the Bonferroni t-test was used to examine the statistical 

significance of the different levels of 𝑛𝑜𝑃 , 𝑟𝑎  and  

𝑑𝑑  with a 95% confidence level. If there is no statistically significant difference 

between the levels, then they are grouped and shown symbolically as demonstrated in 

Table 5.5. 

Table 5.5. Multiple comparison test results for 𝐵𝐸𝑅 according to the problem 

features. 

𝑛𝑜𝑃 Mean 

𝐵𝐸𝑅 

    𝑟𝑎 Mean 

𝐵𝐸𝑅 

    𝑑𝑑 Mean 

𝐵𝐸𝑅 

   

10 1.99 A    40 1.91 A    0 1.57 A   

30 1.30  B   30 1.69 A    1 1.37  B  

100 1.08  B C  20 1.19  B   2 1.13   C 

50 1.06   C  10 0.64   C       

As can be seen in Table 5.5 whereas the problems with 10 patients are statistically 
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different from the others, it is interesting that there is no statistical difference between 

the problem instances of 30 and 100 patients and between 50 and 100 patients. The 

𝐵𝐸𝑅 values for the 10-patient problem instances are approximately twice as high as 

those for the other 50- and 100-patient problem instances. This result may be consistent 

with the observation made in Chapter 5.5, where the contribution of DP policy to flow 

time savings was lowest when the number of patients is smallest. The analysis also 

revealed that while there was no statistical difference between service areas with a 

radius of 30 and 40 minutes, there was a difference among these and other service 

areas.  

Furthermore, the 𝐵𝐸𝑅 decreases as the service area gets smaller. This result is also 

consistent with the observation made in Chapter 5.5 that the reduction in flow time is 

greatest when the service area is smallest. For example, in a 10-minute service area, 

HHSRP-VS has a lower total cost than HHSRP-STD as long as the hourly vehicle cost 

to hourly labor cost ratio is greater than 0.64. In other words, if the hourly labor cost 

is 100 units and the hourly vehicle cost is more than 64 units, car sharing with a drop-

off policy may be preferred compared to the case where everyone uses their own 

vehicle to reduce the total cost in a 10-minute service area. Since labor costs may be 

higher than vehicle usage costs in developed countries, especially in the health sector, 

BER values less than 1 may indicate that the chance of using a shared vehicle with the 

DP policy is higher.  

However, the opposite might also be true for developing countries, where ownership 

or using cost of proper vehicles for home health care services might be more expensive 

than cost of labor. According to the results, we can say that vehicle sharing with DP 

policy provides cost savings mostly when the hourly vehicle cost is higher than the 

labor cost since 𝐵𝐸𝑅 is mostly higher than 1 in many of the cases as can be seen in 

Table 5.5. Additionally, as shown in Proposition 2, 𝐵𝐸𝑅 is equal to 0 in the best-case 

scenario where 𝑓𝑉𝑆
∗ = 𝑓𝑆𝑇𝐷

∗ . Hence, HHSRP-VS always costs less than HHSRP-STD, 

no matter how high the hourly labor cost in the best-case scenario. Last, the average 

𝐵𝐸𝑅 is statistically different at each level of the patient's demand distribution. The 

average 𝐵𝐸𝑅 decreases as the percentage of difficult care requirement increases. 

Figure 5.4 also demonstrates that the average 𝐵𝐸𝑅 generally decreases as the number 

of patients increases, the service area decreases, and the level of service patients’ 
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demand distribution increases. If the practical 
𝐶𝑉

𝐶𝐿
 can be assumed to be 1, where the 

hourly costs of vehicle ownership labor cost are equal, then we can say that sharing 

vehicles with DP policy provides savings in total service cost, 

● when the service area is 10 minutes away from the HHC center regardless of 

the number of patients and the difficulty of the service requirement. 

● when the service area is 20 minutes away from the HHC center and the number 

of patients in the area is more than 30. 

● when the patients’ demand distribution is 50/30/20, where the difficult and 

moderate care requirements are high, and there are more than 30 patients. 

 

Figure 5.4. The changes on average 𝐵𝐸𝑅 over service area (top) and the patients’ 

demand distributions (bottom). 

Finally, we explore the effect of patient density in an area in terms of “number of 

patients located per unit service area (𝑃𝑝𝑒𝑟𝐴) in terms of kilometer2 where a vehicle 

travels 60 km/h on average. 𝑃𝑝𝑒𝑟𝐴 = 𝑛𝑜𝑃/(𝜋 ∗ 𝑟𝑎2), where 𝜋 was taken 3.14. As 

seen in Figure 5.5, the average 𝐵𝐸𝑅  mostly decreases as 𝑃𝑝𝑒𝑟𝐴  decreases. For 
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example, the average BER is 0.98 when there are 0.08 patients in a unit service area, 

while it decreases to 0.48 when there are 0.096 patients in the same area. We can 

conclude that it is highly likely that sharing vehicles with DP policy will result in less 

total cost than HHSRP-STD when 𝑃𝑝𝑒𝑟𝐴 is greater than 0.075. Hence, this result also 

supports our previous observations, such that the denser the patients in an area the 

superior the HHSRP-VS model. 

 

Figure 5.5. The effect of 𝑃𝑝𝑒𝑟𝐴 on average 𝐵𝐸𝑅 values 
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CHAPTER 6 

HOME HEALTHCARE DECISION SUPPORT SYSTEM AND ITS 

IMPACT IN HHC SYSTEM 

A Decision Support System (DSS) is an information system that permits users to seek 

help from computer technology during decision making process. It is a combination of 

data, information, software, analysis, and mathematical model which helps people to 

understand the complex systems and solution methodology of these systems. With an 

aim of assisting experts (end-users) in their decision-making, a prototype of home 

healthcare decision support system (HHDSS) has also been developed for the HHRSP 

under study. To implement a desktop application of the proposed system, different 

libraries such as matplotlib1, NumPy2, scikit-learn3, and Tkinter have been used, in 

which the Tkinter is the standard GUI library for python. Tkinter provides a powerful 

object-oriented environment to the GUI toolkit. The integration of python and Tkinter 

allows users to create a GUI application through a fast and easy process. 

 

Figure 6.1. Architecture of HHDSS 

6.1. Architecture of HHDSS 

The designed HHDSS is a model-driven single installation system that has all the 

 
1 Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in 

Python and is accessible from https://matplotlib.org. 
2 Numpy is an open scientific computing Python library and is accessible from https://numpy.org. 
3 Sklearn or scikit-learn is an open machine learning Python library which and is accessible from 

https://scikit-learn.org/stable/ 

https://matplotlib.org./
https://numpy.org./
https://scikit-learn.org/stable/


68 

essentials programs and databases stored locally. The HHDSS architect is divided into 

three main parts. "Data Entry", "Solver" and "Visualization" as shown in Figure 6.1. 

Through the "Entry Forms", necessary information of patients, caregivers, and 

vehicles data is entered in the database of the system which is saved in .xlsx format.  

"Solver" is further divided into four different modules which are distance matrix 

generator, patients' location on the map, optimization algorithm, and routes of the 

vehicle on a map. These modules can be operated by the respective buttons which 

exploit the required data available in the database to generate the desired results. These 

buttons include "Run: Distance Matrix", "Run: Patients on Map", "Run: Optimization 

Algorithm" and "Run: Vehicles Routes". In short, all the buttons starting with "Run:" 

are part of "Solver" and will use to run the code for the desired operation.  

 

Figure 6.2. Outlook of the HHDSS 

The data which is in the database or entered through the "Patients Entry Form" are 

used to calculate the road distances from every node to every node in the current 

network by clicking the "Run: Distance Matrix" button. The actual road distance 

matrix is obtained by using Bing Maps Distance Matrix API. A Python code is 

developed using JSON and urllib4 libraries. The Bing API provides travel times and 

 
4  urllib is a python package for dealing with URLs. It can freely accesed from 
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distances for a set of origins and destinations. The generated distance matrix can be 

seen in .xlsx and .txt format by clicking the "Distance Matrix" button from the menu. 

To get a better idea of patients' locations, a code is written by using the folium5 library 

and can be run by clicking the "Run: Patients on Map" button. For the input, the data 

that was used for calculating the distance matrix is utilized here also through the 

panda's library. The results of that code can be seen as an HTML file by clicking the 

next button of the pair i.e., “Patients Map".  

The proposed ALNS-VS algorithm is used to find the caregiver-patient assignment 

and the routes of vehicles. The ALNS-VS takes three inputs that are distance matrix, 

and information of patients, and the caregivers. By clicking the "Run: Optimization 

Algorithm", an .exe file is executed from the Python environment to generate the 

result. The result of schedule and route optimization can be seen through the "Export 

Results" button. 

 

*Region 1: Bayrakli (Izmir); Region 2: Bornova (Izmir)   

Figure 6.3. Example representation of patients' locations on the map in Izmir, 

Turkey  

A code for showing the route of vehicles on the actual road network is written in 

Python and is shown by clicking "Run: Vehicle Routes" button on the interface. An 

open-source package, VeRoViz (Vehicle Routing Visualization), is used to generate 

 
https://docs.python.org/2/library/urllib.html 
5  Folium developed by Story, R (2013) is a python library and be freely accessed from 

https://pypi.org/project/folium/ 

https://docs.python.org/2/library/urllib.html
https://pypi.org/project/folium/
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and visualize the nodes and vehicle routes on the road networks. Figure 6.3 shows an 

example visualization of the locations of patients on a map that needs to be visited 

with a distinct color variation depending on the area in Izmir, Turkey. This map is 

obtained by running the backend code of the "Run Code: Map on Patients" button. 

6.2. An Example on the Data Set of Covid-19  

This section aims to present the potential use of the developed DSS powered by the 

developed ALNS-VS algorithm with real road distances. For this, the approximate 

locations of COVID-19 patients present in two neighboring districts of the three 

biggest cities of Turkey, namely Ankara, Istanbul, and Izmir have been extracted. 

These three cities are at high risk of spreading the virus that causes COVID-19 to 

people (COVID-19 Istanbul, Ankara and Izmir density and risk map, September 07, 

2020) and on average 200-250 positive cases are being observed per day just in Izmir. 

Neighboring districts were selected from these cities in terms of importance in 

diplomatic affairs, tourism, and their role as financial centers. These extractions of the 

approximate locations from these districts were made through the heatmap available 

in the mobile application "Life Fits into Home". This mobile application was 

developed and continuously updated by the digital transformation office of the Turkish 

government. The main objective behind this application is to protect its citizens from 

being exposed to dangerous areas during the current pandemic. Figure 6.4 provides 

example heat maps of COVID-19 patients from various provinces in Turkey that were 

extracted from the application. 

 

Figure 6.4. Heat map images from “Life Fits into Home” application 
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6.2.1. Test Instances 

Small to large-sized instances are generated in the selected districts within the cities of 

Istanbul, Ankara, and Izmir in Turkey. The largest government hospital, located within 

the neighborhoods of these selected districts, has been designated as the HHC (Home 

Health Care) center to provide an enough number of caregivers to serve all the patients. 

Details about the selected districts in the three largest cities of Turkey, along with the 

number of patients in each city and their respective selected districts, are presented in 

Table 6.1. The symbols representing the cities, which will be used to represent 

instances, are enclosed in brackets alongside their names. The table also provides 

information on the minimum, average, and maximum distances of patients from the 

HHC center, displayed on the right-hand side. 

Table 6.1. The details of the selected neighborhood with respect to their cities 

City 
Neighboring 

Districts 

# 

Patients 

Land 

Areas 

(km2) 

Total # 

Patients 

Distance to HHC (km) 

Min. Avg. Max. 

Ankara 

(AN) 

Çankaya (C) 195 268 
344 0.68 12.6 24 

Altındağ (A) 149 174.5 

Istanbul 

(IS) 

Fatih (F) 101 13.08 

184 0.78 4.78 11.61 Zeytinburnu 

(Z) 
83 12.08 

Izmir (IZ) 
Bornova (O) 68 224 

131 1.44 6.56 12.71 
Bayraklı (B) 63 30 

In total there are six classes of instances generated for each city that are given in Table 

6.2. These instances are going to be represented in the format like 50SO1, 100IS2, 

ANAC344 which means 50 randomly selected patients from Bornova in the first 

instance, 100 randomly selected patients from whole Istanbul out of 184 patients in 

total in the second instance, and all patients of Ankara (A+C) that are 344 respectively. 

Three different types of services for the caregivers have been considered based on our 

experience and interviews with practitioners. Type-I service is assumed to be for 

diagnosing the COVID-19 test such as the PCR test. In this type of service, a caregiver 

visits the patient to take samples for diagnosing the disease. Type-II service is assumed 

to be for the simple medication and varying of positive COVID-19 patients who do 

not have a chronic disease, whereas the Type-III service includes the medication of 
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positive COVID-19 patients and their chronic diseases but not in a high-risk group. 

Patients who are in the high-risk group are not included because they have to be treated 

in hospitals or in some specially built isolation centers. 

Table 6.2. The details of the different classes of instances within cities 

Classes of Instances (Ankara) Classes of Instances 

(Istanbul) 

Classes of Instances (Izmir) 

SA: Sample of Altindag 

SC: Sample of Cankaya 

AN: Sample of Ankara 

ANA: All Altindag 

ANC: All Cankaya 

ANAC: All Ankara (A+C) 

SF: Sample of Fatih 

SZ: Sample of Zeytinburnu 

IS: Sample of Istanbul 

ISF: All Fatih 

ISZ: All Zeytinburnu  

ISFZ: All Istanbul (F+Z) 

SO: Sample of Bornova 

SB: Sample of Bayrakli 

IZ: Sample of Izmir (B+O) 

IZB: All Bayrakli 

IZO: All Bornova 

IZBO: All Izmir (B+O) 

Therefore, the proposed service types are a standard procedure with low variability. 

However, the service times of different types of services differ from one another. The 

mean and coefficient of variation values are estimated for each type of service. The 

mean service time values of Type-I, Type-II, and Type-III services are assumed to be 

10, 15, and 20 minutes, respectively. The coefficient of variation of all types of 

services is estimated as 0.25 due to low variability caused by cultural behaviors. In 

addition, after talking to practitioners, we assumed that 60%, 30%, and 10% of patients 

seek Type-I, Type-II, and Type-III treatments, respectively. On the other hand, 

hierarchical qualification levels are determined for caregivers which means all of the 

caregivers can treat Type-I services, 50% of caregivers can treat Type-II, and only 

20% of caregivers can treat Type-III services. Lastly, caregivers work between 9:00 

and 18:00 and must have 60 minutes lunch break between 11:00 and 14:00. The details 

of the generated patients' and caregivers' data concerning types of services are given 

in Table 6.3 in which the number of caregivers has been defined with the assumption 

to represent practical concerns. 

6.2.2. Results 

Table 6.4 demonstrates the summary of the results that are the averages of the 

corresponding test instances of COVID-19 patients' data concerning the city and 

patients' size. These results are obtained using the developed DSS. The average of the 

total travel time spent by caregivers for all corresponding instances is identified by 
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“Avg. TTT” in minutes whereas “Avg. TWT” shows how much time all caregivers 

spent for servicing and traveling in a single day on average. For an instance, two 

caregivers spent 44.46 minutes in traveling and 437.46 minutes (implicitly 393 min. 

for caring) for both servicing and traveling all 30 patients in Bayrakli on average. 

Hence, the average total service time can be calculated by (Avg. Total Working Time 

- Avg. Total Travel Time.” “Avg. Cpu” is the average computational time to obtain a 

solution, and “Std. Dev.” is the standard deviation of caregivers’ travel time. 

Table 6.3. The details of patients and caregivers 

# of patients 
# of 

caregivers 

# of demands 

# available caregivers with 

respect to the type of 

illnesses. 

Type-

I 

Type-

II 
Type-III 

Type-

I 

Type-

II 
Type-III 

30 2 18 9 3 2 1 1 

50 3 30 15 5 3 2 1 

100 5 60 30 10 5 3 1 

63 (Bayrakli) 4 38 19 6 4 2 1 

68 (Bornova) 4 41 20 7 4 2 1 

131 (Izmir) 7 79 39 13 7 4 1 

40 2 24 12 4 2 1 1 

60 3 36 18 6 3 2 1 

100 5 60 30 10 5 3 1 

101 (Fatih) 6 61 30 10 6 3 1 

83 (Zeytinburnu) 5 50 25 8 5 3 1 

184 (Istanbul) 10 110 55 19 10 5 2 

75 4 45 23 7 4 2 1 

100 5 54 27 9 5 3 1 

149 (Altindag) 8 89 45 15 8 4 2 

195 (Cankaya) 10 117 59 19 10 5 2 

344 (Ankara) 18 206 104 34 18 9 4 

Considering the instances of Izmir in which it can be seen that the travel time increases 

when patients from both the neighboring districts are combinedly selected rather than 

dealing with them individually. This phenomenon is not seen among the instances of 

Istanbul and Ankara. The reason for this is that in Istanbul the land areas of both the 
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districts are very small as compared to the land areas of other cities and the patients 

are located very close to each other due to high urbanization. In the case of Ankara, 

the land area of Çankaya individually is greater than the sum of the areas of Bornova 

and Bayrakli, and the patients are spread all over the districts of Ankara. This can also 

be observed by comparing the average travel time spent by the caregivers of 131IZBO, 

184ISFZ and 344ANAC that are 157.31, 152.10, and 599.96 minutes, respectively. 

Table 6.4. The results of COVID-19 instances 

IZMIR ISTANBUL 

Instance 

Clusters 

Avg. 

TTT 

Std. 

Dev. 

Avg. 

TWT 

Avg. 

CPU 

Instance 

Clusters 

Avg. 

TTT 

Std. 

Dev. 

Avg. 

TWT 

Avg. 

CPU 

30SB 44.46 1.84 437.46 96.12 40SF 37.30 2.04 564.49 172.16 

30SO 53.18 3.19 449.93 70.76 40SZ 50.54 3.40 557.22 147.44 

30IZ 67.04 5.39 459.45 77.00 40IS 50.59 2.32 606.25 162.64 

50SB 60.16 1.88 712.92 179.32 60SF 49.86 2.45 836.84 287.88 

50SO 72.22 1.83 720.15 162.32 60SZ 66.96 1.55 831.39 270.64 

50IZ 88.11 5.49 739.42 157.20 60IS 66.00 1.49 863.92 287.84 

100IZ 142.40 4.51 1278.76 695.56 100IS 98.67 3.85 1420.66 760.56 

68IZB 87.96 1.56 1408.96 299.80 101ISF 72.70 0.71 1403.25 813.4 

63IZO 74.51 3.40 1396.51 317.40 83ISZ 91.95 1.37 1193.86 559.8 

131IZBO 157.31 4.07 1877.43 825.80 184ISFZ 152.10 5.74 2590.32 1238.4 

ANKARA 

Instance 

Clusters 

Avg. 

TTT 

Std. 

Dev. 

Avg. 

TWT 

Avg. 

CPU  

Instance 

Clusters 

Avg. 

TTT 

Std. 

Dev. 

Avg. 

TWT 

Avg. 

CPU  

75SA 121.07 2.09 1096.61 423.12 100AN 262.91 12.26 1604.52 652.32 

75SC 207.08 14.16 1177.70 385.20 149ANA 203.23 2.38 2167.06 993 

75AN 206.17 8.57 1187.38 380.04 195ANC 326.99 10.03 2886.16 1158 

100SA 273.94 9.51 1613.66 631.56 344ANAC 599.56 17.11 5104.66 1678.8 

100SC 159.07 3.69 1489.73 732.28      

It can also be observed that the caregivers spent the bigger portion of their total 

working time in giving service to their patients and not more than 18% of the total 

working time was spent on traveling in any of the instances. The duration of the service 

time of caregivers is completely dependent on the number of patients present in the 

respective instance. As the number of patients increases, the total service time also 

increases. Figure 6.5 demonstrates the caregiver routes of one of the 40SZ and 30SO 

instances, respectively. The sequence of visiting the patients is exactly delineated by 

the HHDSS.  
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Figure 6.5. The representation of the caregiver routes 

6.3. Managerial Insights and Discussions  

HHC services play a significant role in providing care for individuals in the comfort 

of their homes. As explained in Chapter 2.3, the provision of HHC services has 

positive effect on patient satisfaction (Vass et al., 2005), improves the quality of living 

which helps to improve recovery time of patients (Owen et al., 2015), and prevents 

hospitalization of elderly people with the improvements on the physical and mental 

conditions (Tomita et al., 2010). Furthermore, several studies show the HHC services 

are cost effective compared to institutional care (Soderstrom et al., 1999; Anttila et al., 

2000; Miller et al., 2005; Hammar et al., 2009; O’Dell and Wheeler, 2012).   
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However, the HHC facilities face several challenges, including the delivery of high-

quality services to patients, ensuring caregiver job satisfaction, optimizing caregiver 

routes and schedules, reducing both operational costs and environmental footprints. 

The development and implementation of a DSS, when combined with a scheduling 

and routing optimization algorithm, present promising solutions to these challenges.  

Several studies in the literature have proposed a decision support system to assist HHC 

centers. For instance, Eveborn et al. (2006) introduced a decision support system, 

known as LAPS-CARE, for a Swedish HHC. While it is mentioned that the DSS is 

coded in C, the specific details of its functionality are not provided. Kandakoglu et al. 

(2020) developed a HHDSS for a division of The Ottawa Hospital. The HHDSS is 

implemented in Java and uses open-source libraries. The MILP model is utilized to 

find the schedules of caregivers. However, the model is solved by the commercial 

solver Gurobi Optimizer. The HHDSS developed in this study is implemented in 

Python and uses open-source libraries. In addition, to avoid additional software costs, 

the ALNS-VS algorithm is used to solve the problem.  

Healthcare organizations must find ways to deliver high-quality services while 

minimizing operational costs. This involves cost-effective resource allocation, 

efficient route planning, and minimizing administrative expenses. However, many 

HHC centers lack dedicated operations research specialists who can provide daily 

scheduling and routing plans. As a result, they often experience inefficient resource 

utilization and costly schedules and routes. According to a National Association for 

Home Care & Hospice (NAHC, 2015), caregivers in the United States traveled nearly 

8 billion miles in 2013, showing a significant increase from 4.76 billion miles in 2006. 

In addition, caregivers in Norway spend an average of 22% of their working hours in 

vehicles, which is considered non-value-added time (Holm and Angelsen, 2014). 

Thus, the implementation of efficient solutions to the HHSRP can result in substantial 

cost savings for institutions and increase patients’ satisfaction. For instance, 

Kandakoglu et al. (2020) states that the use of HHDSS resulted in a 33% decrease in 

average total travel time. This led to potential an estimated annual cost reduction of 

around 100,000 Canadian dollars just for the dialysis division. Both exact solution 

algorithms which prioritize to find the optimal solutions at the cost of the 

computational time, and heuristic algorithms, that aim to find near-optimal solutions 

in short amount of time, can significantly improve the manual scheduling and routing 
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plans of caregivers.  

Furthermore, the manual planning of daily schedules and routes is extremely time-

consuming task, taking several hours and many staff members to complete 

(Kandakoglu et al., 2020). Efficient planning reduces resource consumption since it 

spares the need for involving all staff members in last-minute changes, enabling them 

to depart from the office earlier to initiate their visits (Eveborn et al., 2006). As 

demonstrated in Chapter 5.4, CPLEX fails to find optimal solutions for instances with 

10 patients and 4 caregivers within the allocated 6 hours. In contrast, the proposed 

algorithm consistently provides near optimal solutions in less than 2 minutes on 

average even for larger instances, which consist of 100 patients and 12 caregivers. The 

proposed algorithm, integrated into a decision support system as its framework is 

explained in Chapter 6, successfully addresses this challenging task and provides 

efficient and accurate solutions in a short amount of time.  

As discussed in the Chapter 5, the proposed vehicle sharing policy and the solution 

algorithm provide efficient scheduling and routing plans for HHC centers in short 

amount of time by using less resources than the standard models in the literature. 

Vehicle sharing policies allow for better utilization of available vehicles. Instead of 

each caregiver having a dedicated vehicle, shared vehicles can be used more 

efficiently, therefore reducing the overall number of vehicles needed. One of the most 

substantial financial investments in the HHC systems is associated with the number of 

vehicles employed. Vehicle sharing not only optimizes the allocation of vehicles but 

also reduces the overall quantity required, thus providing significant savings in both 

initial investment and operational costs.  

An often overlooked advantage is the significance of storing all data within a system. 

Although it involves extensive data entry, it also allows for data validation and enables 

the planner to identify operational imbalances. For instance, situations in which one 

caregiver is responsible for an excessive number of patients become highly evident 

through the graphical representations (Eveborn et al., 2006). 

Furthermore, reducing the environmental footprint of service provision is increasingly 

important in the context of broader sustainability goals. This includes minimizing fuel 

consumption, carbon emissions, and energy usage in service delivery. Due to the risks 

associated with global climate change, governments impose carbon emission taxes on 
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industries with high carbon emission as a tool to mitigate them (Zhang et al., 2015). 

According to the Pretis (2022), the current carbon taxes, being too low to be effective 

on reduction of carbon emissions, may lead to future tax increases. An inherent 

advantage of the proposed vehicle sharing policies is its significant contribution to 

reducing carbon emissions and decreased environmental impacts. Vehicle sharing 

results in a reduced fleet size which lowers fuel consumption and emissions. This 

aligns with the increasing emphasis on sustainability and environmentally friendly 

practices.  

In addition, through optimized or improved scheduling and routing plans, caregivers 

can also spend more time with patients, allowing them to focus on their healthcare 

needs rather than struggling with logistics challenges. This focus on enhancing patient 

care is especially important within the context of HHC, as discussed in Chapter 2.3, 

given that a significant portion of healthcare service recipients are elderly individuals. 

Additionally, the provision of efficient plans, in terms of the total working time of 

caregivers results in increasing number of patients that are served on a daily basis. This 

allows for the satisfaction of a larger number of patients overall. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE RESEARCH 

The main contribution of this study is to present a new generic problem to the literature 

of Workforce Scheduling and Routing Problem (WSRP). This problem introduces two 

distinct features. First, multiple independent workers can travel in a single shared 

vehicle. Second, a worker in a vehicle can be dropped off at a customer's location and 

then picked up by the same vehicle. Although the generic WSRP we introduced in this 

study can be applied in any field such as telecom, public utilities, or maintenance, we 

have defined it specifically in the context of the home healthcare industry. Hence, the 

problem is called Home Healthcare Scheduling and Routing Problem (HHSRP) with 

Vehicle Sharing (VS) and drop-off and pick-up (DP) policy. The objective of this 

HHSRP-VS is to minimize caregivers’ total flow time and the penalty cost of unvisited 

patients.  

We developed MILP model of this problem using a two-layer approach to easily adapt 

the DP policy and avoid sub-tour elimination constraints. Since the complexity of the 

HHSRP-VS can be considered NP-Hard, we proposed a constructive matheuristic 

upper-bound algorithm (UBA) and an Adaptive Large Neighborhood Search (ALNS) 

algorithm with problem-specific local search heuristics to solve HHSRP-VS. We 

generated various problem instances based on some problem features such as the 

radius of the service area, the number of patients in an area, the patients’ demand 

distribution of the difficulty of care. We then studied on four research questions.  

i.We proposed two variations of the caregiver swap heuristic for the ALNS-VS 

algorithm, called the “common” and “unique” visibility heuristics. Statistical 

analysis showed no significant difference between these visibility heuristics.  

ii.We analyzed the effectiveness of the proposed UBA and ALNS-VS algorithms. 

The CPLEX solver could only provide integer solutions for 10-patient instances 

with an average optimality gap of 40.7% in six hours. For the same instances, UBA 

developed 16.4% worse solutions than CPLEX in less than 1 seconds. However, 

the ALNS-VS presented a maximum of 19.7% and an average of 6% lower total 
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flow time than the CPLEX solutions only in 1.8 seconds on average.  Because of 

the lack of CPLEX solutions for the problems with more than 10 patients, we 

compared ALNS-VS solutions with UBA+DP solutions obtained by applying the 

proposed DP local search heuristic to UBA solutions. The ALNS-VS solutions 

presented 13.1%, 13.6% and 19.3% and 15.9% lower total flow time than 

UBA+DP in 1.9, 23, 34 and 119 seconds on average for 10-, 30-, 50- and 100-

patient instances, respectively. While ALNS-VS did not result in any unvisited 

patients, there were 12 instances in UBA+DP where an average of 2 patients were 

not visited. We concluded that the proposed ALNS-VS algorithm offers both 

effective and efficient solutions for HHSRP-VS due to its solution qualities and 

short computation time.  

iii.We investigated the effect of DP policy on the total flow time. For this purpose, 

we presented the HHSRP-M problem that allows vehicle sharing but DP. We first 

proved that the optimal solutions of the HHSRP-VS are always better than or equal 

to those in HHSRP-M. Next, in an empirical analysis, we also revealed that the DP 

policy saves up to 25% in total flow time. We also showed statistically that savings 

increase as service area gets smaller and patients need more difficult service. 

iv.The effects of vehicle sharing with DP policy on total flow time and total service 

cost were analyzed. For this purpose, we presented the HHSRP-STD problem, 

which requires each caregiver to travel with their own vehicle, as in the 

conventional HHSRP. We proved that the optimal flow time of HHSRP-STD is 

always shorter than that of HHSRP-M, except in the best-case scenario. Next, we 

conducted an empirical break-even analysis to investigate under what conditions 

HHSRP-VS could reduce the total cost of service, including hourly vehicle 

ownership and labor costs. We explored that the denser the area, the higher the 

chance to reduce cost with the DP policy. Moreover, the possibility of reducing the 

cost of service by HHSRP-VS increases when the demand for difficult care 

increases. 

Furthermore, a prototype of a HHDSS has been developed to demonstrate the practical 

application of the proposed ALNS-VS algorithm in solving real-world problems with 

real geographic road distances. To illustrate this, we tackled the task of visiting 

COVID-19 patients at their homes for testing and care, a task performed by healthcare 

providers of the Turkish Ministry of Health during the contact tracing process. Our 
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study focused on identifying susceptible COVID-19 patients in two randomly selected 

neighboring districts of each of Turkey's three major cities: Ankara, Istanbul, and Izmir. 

To pinpoint patient locations, we utilized the heat map data available in the mobile 

application 'Life Fits into Home,' which is developed by the Turkish Ministry of Health. 

The proposed ALNS-VS algorithm was put into practice to determine an optimal 

sequence for visiting patients, taking into account actual road distances and utilizing 

visualization modules.  

The proposed HHDSS combined with the ALNS-VS algorithm can significantly 

enhance the planning and scheduling process of HHC centers in several ways. One of 

the most significant improvements is observed in the optimized daily plans. As 

reported by Kandakoglu et al. (2020) with the assistance of effective solution 

algorithms, HHDSSs can lead to a %30 of reduction in total working time of caregivers. 

This translates to the hundreds of thousand dollars in savings for a single division. 

Besides cost saving, when caregivers spend less time traveling, they can visit more 

patients and allocate more time to patient care. It is obvious that meeting customer 

needs is the most important element in every service sector. However, its significance 

is further emphasized within the healthcare sector, particularly in the context of HHC. 

Furthermore, with the proposed vehicle sharing policy, the required total number of 

vehicles can also be significantly reduced. This, in turn, can effectively lower both the 

total investment costs and the total operational costs for HHC businesses. As a result, 

with fewer vehicles and reduced travel distances, carbon emissions can also be 

decreased, leading to a cleaner, more environmentally friendly solutions.  

As it is discussed in the previous Chapter 6.3, the HHDSS also provides a storage of 

comprehensive data related to patients, caregivers, and vehicles within the HHDSS is 

a valuable aspect of the system. This comprehensive data storage allows for robust 

analysis, prediction, and informed decision-making. The HHDSS stores patient details, 

including medical history, care requirements, and appointment schedules. Planners can 

analyze this data to understand patient trends and anticipate future needs. Anticipating 

future patient needs and ensuring timely visits contribute to better patient care and 

satisfaction. This insight is vital for capacity planning and resource allocation. 

Information about caregivers, their qualifications, availability, and workload are 

recorded in the system. This data enables planners to assess workforce capacity and 

skill distribution. Details of the vehicles used for patient visits, including fuel 
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efficiency and maintenance schedules, are maintained. This information aids in vehicle 

allocation and routing optimization. Based on the workforce capacity and expected 

patient demand, the system can forecast the number of vehicles and caregivers required. 

This helps in proactively addressing staffing and vehicle fleet needs.  

Finally, in dynamic environments, HHDSS combined with optimization algorithms 

can adapt to changing conditions in real-time such as patient needs, caregiver 

availability, and unforeseen events. For instance, in traffic management, they can 

dynamically adjust routes based on traffic conditions. They can also assist in risk 

assessment and management by identifying potential issues and suggesting strategies 

to mitigate them. This real-time adaptability results in more efficient resource usage 

and reduces operational bottlenecks, further contributing to sustainability. 

Organizations that leverage DSS and optimization algorithms can gain a competitive 

edge by offering superior service, reducing costs, and responding more effectively to 

changing market conditions.     

The results and insights of this study were obtained under various assumptions. First, 

we assume that the number of caregivers assigned to a vehicle is fixed and 2. In 

practice, however, more than two or varying numbers of caregivers can be assigned to 

vehicles. Because our assumption is restrictive, this kind of flexibility can increase the 

likelihood of reducing total flow time with the vehicle sharing and DP policies. 

Therefore, we believe that relaxing this assumption could create new challenging 

problems and opportunities in HHSRP-VS. Second, the current model mandates that 

the caregiver be picked up by the same vehicle after being dropped off. Once this 

assumption is relaxed and caregivers are allowed to travel in any vehicle, the likelihood 

of lower total flow times may be very high. Third, researchers can also include multiple 

HHC centers in the problem to develop more centralized decisions, reduce flow time, 

and increase patient satisfaction. Hence, the new generic problem introduced, and 

insights developed in this study seem to have the potential to open up new discussions 

and challenging problems not only in the WSRP literature but also in the vehicle 

routing problems. 
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APPENDIX A – Computational Results 

Table A.1. The best-found CPLEX solutions for 10-patient instances and their 

comparisons with the UBA. 

 CPLEX UBA   CPLEX UBA  

Instance UB* 
GAP 

(%) 
UB** CPU 

% 

Imp. 
Instance UB* 

GAP 

(%) 
UB** CPU 

% 

Imp. 

h10_0_0 258.5 39 335.1 0.11 22.9 h30_0_0 506.5 49.2 557.4 0.05 9.1 

h10_0_1 256.3 35.5 341.4 0.05 24.9 h30_0_1 531.9 46.9 614.9 0.03 13.5 

h10_0_2 248.5 30.5 338.3 0.06 26.5 h30_0_2 503.5 34.6 533.9 0.03 5.7 

h10_0_3 255.8 38.6 343.9 0.05 25.6 h30_0_3 522.2 52.4 580.4 0.03 10.0 

h10_0_4 233.8 29.1 318.3 0.03 26.5 h30_0_4 NA NA 514.2 0.03 NA 

h10_1_0 258.1 30.1 379.1 0.04 31.9 h30_1_0 550.5 50.6 601.4 0.02 8.5 

h10_1_1 288.8 35.7 385.4 0.05 25.1 h30_1_1 554.4 44.4 658.9 0.02 15.9 

h10_1_2 267.7 27 382.3 0.04 30.0 h30_1_2 533.2 34.8 577.9 0.03 7.7 

h10_1_3 278.2 35.6 387.9 0.04 28.3 h30_1_3 522.7 48.7 624.4 0.07 16.3 

h10_1_4 255.4 26.1 362.3 0.03 29.5 h30_1_4 483.6 38.9 558.2 0.03 13.4 

h10_2_0 299.3 29.5 431.1 0.03 30.6 h30_2_0 628.9 52 638.6 0.04 1.5 

h10_2_1 307.8 29.2 447.4 0.03 31.2 h30_2_1 629.6 48.2 720.9 0.09 12.7 

h10_2_2 281.8 19.6 444.3 0.03 36.6 h30_2_2 580 38.4 639.9 0.05 9.4 

h10_2_3 308 29.9 449.9 0.03 31.5 h30_2_3 576.2 48 686.4 0.10 16.1 

h10_2_4 295.1 25.9 424.3 0.03 30.4 h30_2_4 NA NA 620.2 0.06 NA 

h20_0_0 399.9 47.9 446.8 0.03 10.5 h40_0_0 567.4 45.4 668.6 0.02 15.1 

h20_0_1 403 45.2 469.1 0.03 14.1 h40_0_1 644.7 43.7 728.2 0.08 11.5 

h20_0_2 378.4 38.1 452.7 0.06 16.4 h40_0_2 614.7 39.7 637.0 0.06 3.5 

h20_0_3 390.4 49 457.7 0.22 14.7 h40_0_3 646.7 49.7 698.6 0.14 7.4 

h20_0_4 418.6 48.1 418.7 0.03 0.0 h40_0_4 NA NA 608.7 0.03 NA 

h20_1_0 404.4 42.2 490.8 0.03 17.6 h40_1_0 621 47.7 712.6 0.03 12.9 

h20_1_1 412.1 41.9 513.1 0.03 19.7 h40_1_1 684.4 47.2 772.2 0.02 11.4 

h20_1_2 395 44 476.0 0.03 17.0 h40_1_2 676.3 40.3 681.0 0.05 0.7 

h20_1_3 398.1 39.9 501.7 0.04 20.6 h40_1_3 660.8 49.4 742.6 0.10 11.0 

h20_1_4 NA NA 462.7 0.03 NA h40_1_4 652.6 47.2 652.7 0.05 0.0 

h20_2_0 465.6 45.2 535.6 0.03 13.1 h40_2_0 708.7 50.3 741.5 0.03 4.4 

h20_2_1 466.4 43.2 575.1 0.02 18.9 h40_2_1 745.2 47 834.2 0.02 10.7 

h20_2_2 445.8 37.1 558.7 0.02 20.2 h40_2_2 708.6 39.6 743.0 0.03 4.6 

h20_2_3 451 44.1 563.7 0.04 20.0 h40_2_3 687.7 48.1 804.6 0.07 14.5 

h20_2_4 384.1 29.7 524.7 0.03 26.8 h40_2_4 637.8 41.2 714.7 0.02 10.8 

*Best-found integer: The best objective function values of the best-found integer solutions by CPLEX. 

**UB: the objective function values of the solutions obtained by the proposed UBA. 
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Table A. 2. The ALNS-VS solutions and their comparisons with CPLEX solutions 

for 10-patient instances. 

Instance Best-found Avg. #DP CPU % Imp. Instance Best-found Avg. #DP CPU % Imp. 

h10_0_0 240.5 246.3 5.4 1.7 6.9 h30_0_0 452.5 468.5 2.0 2.0 10.7 

h10_0_1 254.3 256.4 5.2 1.8 0.8 h30_0_1 527.3 527.3 2.0 1.8 0.9 

h10_0_2 231.0 231.8 6.0 2.0 7.0 h30_0_2 500.3 500.3 2.0 1.7 0.6 

h10_0_3 255.8 261.0 4.4 1.8 0.0 h30_0_3 504.6 504.6 3.0 1.7 3.4 

h10_0_4 217.2 221.4 4.4 1.6 7.1 h30_0_4 449.0 451.3 2.4 1.6 NA 

h10_1_0 252.4 257.5 6.2 1.9 2.2 h30_1_0 496.3 515.3 3.8 2.0 9.9 

h10_1_1 282.0 283.3 5.4 1.7 2.4 h30_1_1 544.6 544.6 4.0 1.7 1.8 

h10_1_2 243.0 245.4 7.0 1.9 9.2 h30_1_2 535.1 549.2 4.4 1.8 -0.4 

h10_1_3 272.0 275.9 6.2 1.8 2.2 h30_1_3 527.8 527.8 3.0 1.8 -1.0 

h10_1_4 235.8 238.8 6.0 1.7 7.7 h30_1_4 484.2 484.2 4.2 1.7 -0.1 

h10_2_0 278.0 287.9 6.8 1.9 7.1 h30_2_0 504.8 531.8 3.6 1.9 19.7 

h10_2_1 305.3 308.0 6.8 1.8 0.8 h30_2_1 548.5 598.4 3.4 1.7 12.9 

h10_2_2 276.6 277.3 6.0 1.8 1.9 h30_2_2 577.6 578.9 3.2 1.7 0.4 

h10_2_3 303.2 306.3 4.8 1.8 1.6 h30_2_3 548.7 551.4 4.0 2.0 4.8 

h10_2_4 279.2 282.9 5.0 1.6 5.4 h30_2_4 496.1 496.1 4.0 1.6 NA 

h20_0_0 361.2 378.7 2.8 1.9 9.7 h40_0_0 542.6 562.3 2.0 1.9 4.4 

h20_0_1 401.0 401.0 4.0 1.8 0.5 h40_0_1 588.4 633.4 2.0 1.9 8.7 

h20_0_2 346.7 372.3 2.6 1.7 8.4 h40_0_2 539.1 591.4 1.0 1.7 12.3 

h20_0_3 384.5 384.5 3.2 1.8 1.5 h40_0_3 619.2 619.2 3.0 1.8 4.2 

h20_0_4 339.5 339.5 4.0 1.7 18.9 h40_0_4 551.8 551.8 2.0 1.6 NA 

h20_1_0 357.1 377.2 5.4 2.0 11.7 h40_1_0 593.3 620.0 3.0 1.9 4.5 

h20_1_1 413.1 413.2 3.6 1.8 -0.2 h40_1_1 665.4 668.6 4.4 1.7 2.8 

h20_1_2 357.4 385.4 6.0 1.9 9.5 h40_1_2 606.2 649.8 1.8 1.7 10.4 

h20_1_3 397.7 398.0 4.2 1.7 0.1 h40_1_3 650.3 650.3 3.0 1.9 1.6 

h20_1_4 356.8 356.8 5.6 1.6 NA h40_1_4 600.5 600.5 2.8 1.6 8.0 

h20_2_0 409.0 438.0 4.4 1.9 12.1 h40_2_0 601.5 632.5 3.0 2.0 15.1 

h20_2_1 428.7 460.9 4.8 1.7 8.1 h40_2_1 663.9 731.0 3.0 1.8 10.9 

h20_2_2 374.0 424.4 3.0 1.8 16.1 h40_2_2 608.2 676.7 2.0 1.8 14.2 

h20_2_3 433.7 435.7 4.0 2.0 3.8 h40_2_3 666.2 668.4 3.6 2.1 3.1 

h20_2_4 380.6 387.3 4.0 1.7 0.9 h40_2_4 600.7 604.7 4.2 1.7 5.8 
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Table A.3. The aggregated results of ALNS-VS, UBA, ALNS_M, ALNS-STD and 

their comparisons. 

Instance UBA+DP 
ALNS-

VS 

ALNS-

M 

ALNS-

STD 

UBA+DP-

UBA (%) 

VS-

UBA+ 

DP (%) 

VS-M 

(%) 

STD-VS 

(%) 
𝑩𝑬𝑹 

h10_10_0 296.5 239.98 329.18 176.67 11.6 18.9 27.2 26.0 1.2 

h10_10_1 305.3 258.16 373.18 198.52 19.6 15.8 31.2 22.4 0.9 

h10_10_2 371.6 289.65 435.18 229.52 15.5 21.9 33.7 20.3 0.7 

h10_20_0 414.5 373.16 434.10 239.80 7.7 11.4 15.6 34.3 2.4 

h10_20_1 438.3 387.68 478.10 261.80 10.4 14.0 21.3 30.2 1.7 

h10_20_2 479.7 431.68 540.10 293.14 13.0 15.5 25.0 27.4 1.3 

h10_30_0 534.9 490.83 540.08 304.79 4.6 8.8 9.9 37.2 3.2 

h10_30_1 567.5 526.23 584.08 326.79 6.1 8.5 11.4 36.8 2.9 

h10_30_2 595.7 553.69 646.08 357.79 9.9 10.0 17.2 32.9 2.1 

h10_40_0 645.6 599.49 645.62 368.88 3.4 11.8 11.9 34.9 2.6 

h10_40_1 689.0 641.80 689.62 391.43 3.3 9.3 9.6 37.1 3.0 

h10_40_2 711.5 670.93 751.62 421.88 7.4 11.5 16.4 32.7 2.0 

h30_10_0 683.1 560.65 859.66 459.52 22.1 17.8 34.8 18.0 0.6 

h30_10_1 730.8 603.58 941.66 501.36 23.9 17.3 35.9 16.9 0.5 

h30_10_2 860.0 665.52 1091.79 573.90 22.2 22.3 39.0 13.8 0.4 

h30_20_0 898.5 785.82 1030.83 569.02 15.0 12.5 23.8 27.6 1.2 

h30_20_1 947.4 817.17 1119.01 609.38 16.2 13.7 27.0 25.4 1.0 

h30_20_2 1053.3 885.24 1265.90 684.17 17.9 15.9 30.1 22.7 0.8 

h30_30_0 1106.4 1001.70 1202.96 676.04 9.5 9.5 16.7 32.5 1.9 

h30_30_1 1169.7 1040.87 1287.13 719.03 10.5 10.9 19.1 30.9 1.6 

h30_30_2 1272.1 1101.78 1434.96 789.51 13.3 13.3 23.2 28.3 1.3 

h30_40_0 1323.2 1211.49 1380.25 789.16 6.3 8.4 12.2 34.9 2.3 

h30_40_1 1402.3 1259.11 1466.82 829.19 7.4 9.9 14.2 34.1 2.2 

h30_40_2 1492.1 1322.80 1613.96 904.68 11.4 11.2 18.0 31.6 1.7 

h50_10_0 1123.8 917.19 1362.34 741.10 19.6 18.3 32.7 19.2 0.6 

h50_10_1 1339.2 1049.48 1634.19 878.71 20.0 21.5 35.8 16.3 0.5 

h50_10_2 1538.8 1207.55 1941.84 1030.20 22.2 21.4 37.8 14.7 0.4 

h50_20_0 1490.6 1265.13 1617.41 928.82 11.6 15.1 21.8 26.6 1.1 

h50_20_1 1711.2 1394.07 1890.92 1065.76 12.6 18.5 26.3 23.6 0.9 

h50_20_2 1911.4 1558.52 2196.37 1218.73 15.7 18.3 29.0 21.8 0.8 

h50_30_0 1817.2 1594.62 1875.04 1119.60 7.7 12.1 15.0 29.8 1.5 

h50_30_1 2031.2 1729.75 2154.47 1255.32 9.8 14.6 19.7 27.4 1.2 

h50_30_2 2231.5 1890.13 2464.78 1407.72 12.9 15.2 23.3 25.5 1.1 

h50_40_0 2139.7 1916.01 2138.98 1310.78 6.1 10.4 10.4 31.6 1.7 

h50_40_1 2756.1 2051.53 2416.16 1446.51 6.0 20.9 15.1 29.5 1.4 

h50_40_2 4357.0 2256.00 2742.02 1598.29 14.2 45.8 17.7 29.2 1.4 

h100_10_0 2433.3 2010.13 2870.71 1580.91 16.9 17.3 30.0 21.4 0.8 

h100_10_1 2879.8 2360.71 3553.15 1920.09 20.0 18.0 33.6 18.7 0.6 

h100_10_2 2954.9 2464.20 3719.20 1999.56 21.4 16.6 33.7 18.9 0.6 

h100_20_0 3112.4 2659.69 3389.20 1967.69 11.1 14.5 21.5 26.0 1.1 

h100_20_1 3632.8 3046.90 4082.18 2308.09 13.6 16.1 25.4 24.2 0.9 

h100_20_2 3722.0 3141.26 4230.52 2391.76 14.3 15.6 25.7 23.9 0.9 

h100_30_0 3751.3 3300.48 3909.16 2366.60 7.2 12.0 15.6 28.3 1.3 

h100_30_1 4183.6 3677.09 4604.94 2702.44 11.2 12.1 20.1 26.5 1.1 

h100_30_2 4352.5 3783.61 4783.56 2782.05 10.5 13.0 20.9 26.5 1.1 

h100_40_0 4391.1 3968.25 4429.90 2755.97 4.8 9.6 10.4 30.5 1.6 

h100_40_1 5493.3 4400.96 5192.64 3106.26 11.6 19.1 15.2 29.4 1.4 

h100_40_2 6349.7 4535.37 5336.92 3173.82 10.6 27.4 15.0 30.0 1.5 
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APPENDIX B – Details of the parameter tuning tests 

The ANOVA results in Table B.1 indicate that all of the parameters are statistically 

significant since their p-values are less than 0.05. In addition, update solution iteration 

(𝜔) has the greatest effect on the algorithm since it has the largest adjusted sum of 

square (Adj SS). In addition to the main effects, the two-way interaction of caregiver 

swap iteration (𝜑)  and maximum remove parameter (𝜉)  is the only statistically 

significant interaction that affects the algorithm’s output. Hence, we do not only 

consider the main effects but also 𝜑*𝜉  two-way interaction while determining the 

optimum setting for the parameters. For this purpose, we analyzed the main effects 

plot and used Response Optimizer module of Minitab 19. As seen in Figure B.1, the 

best setting for (𝜔, 𝜑, 𝜉, 𝜌) that minimizes the output is (250,150, 0.5, 0.95) when only 

main effects are considered. However, the result of the Response Optimization 

suggests a change on the value of 𝜑 from 150 to 100 resulting that the optimal setting 

is (𝜔, 𝜑, 𝜉, 𝜌) = (250,100, 0.5, 0.95) with a 95% confidence interval of (3,185; 4,935).  

 

Table B. 4. ANOVA results for parameter tuning of the ALNS-VS.  

Source df Adj SS Adj MS F-Value p-Value 

Model 1049 2955.5 2.8174 0.66 1.000 

  Linear 19 779.1 41.0042 9.63 0.000 

    𝜔 5 399.3 79.8577 18.75 0.000 

    𝜑 6 81.3 13.5511 3.18 0.004 

    𝜉 4 74.5 18.6208 4.37 0.002 

    𝜌   4 224.0 56.0005 13.15 0.000 

  2-Way Interactions 134 685.1 5.1127 1.20 0.057 

    𝜔*𝜑 30 132.5 4.4159 1.04 0.410 

    𝜔*𝜉 20 39.3 1.9659 0.46 0.980 

    𝜔*𝜌 20 9.9 0.4960 0.12 1.000 

    𝜑*𝜉 24 382.7 15.9467 3.74 0.000 

    𝜑*𝜌 24 51.2 2.1332 0.50 0.980 

    𝜉*𝜌 16 69.5 4.3415 1.02 0.431 

  3-Way Interactions 416 877.2 2.1086 0.50 1.000 

    𝜔*𝜑 *𝜉 120 402.2 3.3517 0.79 0.959 

    𝜔*𝜑 *𝜌 120 179.6 1.4966 0.35 1.000 

    𝜔*𝜉 *𝜌 80 115.3 1.4413 0.34 1.000 

    𝜑*𝜉 *𝜌 96 180.1 1.8757 0.44 1.000 

  4-Way Interactions 480 614.1 1.2794 0.30 1.000 

    𝜔*𝜑 *𝜉*𝜌 480 614.1 1.2794 0.30 1.000 

Error 19950 84952.0 4.2582   

Total 20999 87907.4    
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Figure B.1.  The main effects plot for parameters. 
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APPENDIX C – The ALNS-VS solutions: variants of the caregiver swap 

heuristic  

Tables C.1 through C.4 consists of the best-found solutions of the HHSRP problem 

instances by the variations of the ALNS-VS algorithm for 10, 30, 50 and 100 patients, 

respectively. These solutions are used in the analyzes in Chapter 5.3, 5.4, 5.5 and 5.6. 

In the following tables, the “Best-found” and “Avg.” columns indicate the objective 

values of the best-found and the averages of the best solutions found in five 

replications, respectively. The column “#DP” shows how many times the caregivers 

were dropped off. Last, “CPU” presents the computational time of the algorithm in 

seconds.  

Table C. 5. The best-found solutions for the instances with 10 patients by the ALNS-

VS algorithms. 

 
ALNS-VS_Unique ALNS-VS_Common ALNS-VS_No-Swap 

Instance 
Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. # DP 

h10_10_0_0 240.54 246.304 5.2 1.94 240.54 246.304 5.2 1.85 247.48 250.056 5.00 

h10_10_0_1 254.28 256.42 5.2 1.78 254.28 256.42 5.2 1.77 254.28 256.328 5.2 

h10_10_0_2 232.1 233.628 5.8 1.87 232.1 233.628 5.8 1.89 231 233.22 5.2 

h10_10_0_3 255.76 257.088 5.2 1.80 255.76 257.088 5.2 1.78 255.76 258.844 4.8 

h10_10_0_4 217.24 220.508 4.8 2.09 217.24 220.508 4.8 1.58 217.24 220.508 4.8 

h10_10_1_0 256.26 258.22 6 1.92 256.26 258.22 6 1.85 256.26 259.148 5.8 

h10_10_1_1 281.98 283.932 5.4 1.77 281.98 283.932 5.4 1.74 281.98 283.848 5.6 

h10_10_1_2 243.04 244.848 7 1.81 243.04 244.848 7 1.78 245.3 245.3 7.0 

h10_10_1_3 271.96 275.88 6.2 1.78 271.96 275.88 6.2 1.75 276.48 277.276 5.2 

h10_10_1_4 237.54 241.524 6.4 1.63 237.54 241.524 6.4 1.57 235.84 240.14 5.2 

h10_10_2_0 278.02 290.968 7 1.74 278.02 290.968 7 1.76 280.82 289.9 6.6 

h10_10_2_1 308.08 309.436 6.8 1.81 308.08 309.436 6.8 1.96 305.34 307.8 7.0 

h10_10_2_2 276.56 276.56 6 1.80 276.56 276.56 6 1.87 276.56 276.56 5.6 

h10_10_2_3 306.36 308.12 5.2 2.00 306.36 308.12 5.2 1.88 304.76 308 4.8 

h10_10_2_4 279.24 281.272 5.4 1.60 279.24 281.272 5.4 1.62 279.24 280.252 5.8 

h10_20_0_0 371.66 377.892 3.6 1.99 371.66 377.892 3.6 2.18 371.66 379.332 3.6 

h10_20_0_1 401.04 401.04 4 1.79 401.04 401.04 4 1.74 401.04 401.416 3.8 

h10_20_0_2 369.14 378.356 2.8 1.82 369.14 378.356 2.8 1.99 366.94 377.916 3.2 

h10_20_0_3 384.52 384.52 3 1.90 384.52 384.52 3 1.93 384.52 384.52 3.2 

h10_20_0_4 339.46 339.46 4 1.72 339.46 339.46 4 1.85 339.46 339.46 4.2 

h10_20_1_0 379.22 382.368 5.8 2.01 379.22 382.368 5.8 2.20 379.22 384.612 5.8 

h10_20_1_1 413.12 413.18 4.8 1.78 413.12 413.18 4.8 1.80 413.12 413.18 4.8 

h10_20_1_2 391.6 391.6 6 1.92 391.6 391.6 6 2.12 391.6 391.6 6.0 

h10_20_1_3 397.7 398.096 4.6 1.85 397.7 398.096 4.6 1.92 397.7 397.964 3.8 

h10_20_1_4 356.78 356.78 5.2 1.66 356.78 356.78 5.2 1.80 356.78 356.78 5.2 

h10_20_2_0 440.16 441.372 4.8 1.92 440.16 441.372 4.8 2.18 441.22 441.948 4.6 

h10_20_2_1 466.62 471.716 4.8 1.72 466.62 471.716 4.8 2.07 466.62 467.172 4.6 

h10_20_2_2 437.02 437.048 3.2 1.79 437.02 437.048 3.2 2.34 437.02 437.076 3.4 

h10_20_2_3 433.98 435.724 4 2.04 433.98 435.724 4 2.33 433.7 437.108 3.4 

h10_20_2_4 380.64 386.36 5.2 1.72 380.64 386.36 5.2 1.96 380.64 385.668 5.0 

h10_30_0_0 472.46 472.46 2 1.92 472.46 472.46 2 2.07 472.46 472.46 2.0 

h10_30_0_1 527.26 527.26 2 1.81 527.26 527.26 2 1.95 527.26 527.26 2.0 

h10_30_0_2 500.28 500.28 2.2 1.77 500.28 500.28 2.2 1.83 500.28 500.28 2.0 

h10_30_0_3 504.56 504.56 3 1.99 504.56 504.56 3 2.02 504.56 504.56 3.0 

h10_30_0_4 449.6 452.08 2.2 1.63 449.6 452.08 2.2 1.66 449.6 452.08 2.2 

h10_30_1_0 519.86 519.86 4 2.08 519.86 519.86 4 2.12 518.48 519.584 4.2 

h10_30_1_1 544.58 544.58 3.8 1.76 544.58 544.58 3.8 1.74 544.58 544.58 4.0 
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Table C.1. The best-found solutions for the instances with 10 patients by the ALNS-

VS algorithms (cont). 

 
ALNS-VS_Unique ALNS-VS_Common ALNS-VS_No-Swap 

Instance 
Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. # DP 

h10_30_1_3 527.82 527.82 3 1.86 527.82 527.82 3 1.87 527.82 527.82 3.0 

h10_30_1_4 484.16 484.16 4.2 1.69 484.16 484.16 4.2 1.65 484.16 484.728 3.8 

h10_30_2_0 538.44 538.44 4 1.90 538.44 538.44 4 1.92 538.44 541.812 3.4 

h10_30_2_1 607.64 610.08 3.8 1.84 607.64 610.08 3.8 1.73 607.64 609.136 4.0 

h10_30_2_2 577.62 577.62 3 1.84 577.62 577.62 3 1.86 577.62 578.624 3.2 

h10_30_2_3 548.68 551.352 3.8 1.97 548.68 551.352 3.8 1.97 548.68 551.352 3.8 

h10_30_2_4 496.08 496.08 4 1.64 496.08 496.08 4 1.64 496.08 496.08 3.8 

h10_40_0_0 567.26 567.26 2 1.79 567.26 567.26 2 1.80 567.26 567.26 2.0 

h10_40_0_1 644.64 644.64 2 2.40 644.64 644.64 2 1.80 644.64 644.64 2.0 

h10_40_0_2 614.5 614.5 1 1.74 614.5 614.5 1 1.75 614.5 614.5 1.0 

h10_40_0_3 619.24 619.24 3 2.00 619.24 619.24 3 1.94 619.24 619.24 3.0 

h10_40_0_4 551.8 551.8 2 1.62 551.8 551.8 2 1.60 551.8 551.8 2.0 

h10_40_1_0 614.74 626.04 2.8 2.61 614.74 626.04 2.8 2.01 614.74 627.808 2.6 

h10_40_1_1 665.44 666.496 4.8 2.02 665.44 666.496 4.8 1.75 665.44 666.496 4.8 

h10_40_1_2 678.02 678.02 2 1.85 678.02 678.02 2 1.78 678.02 678.02 2.0 

h10_40_1_3 650.3 650.3 3 1.91 650.3 650.3 3 1.83 650.3 650.3 3.0 

h10_40_1_4 600.48 600.48 3 1.72 600.48 600.48 3 1.57 600.48 600.48 2.8 

h10_40_2_0 640.18 640.18 3 1.93 640.18 640.18 3 1.97 640.18 640.18 3.0 

h10_40_2_1 743.28 743.352 3.4 1.80 743.28 743.352 3.4 1.81 743.28 743.376 3.2 

h10_40_2_2 704.28 705.2 2.8 1.81 704.28 705.2 2.8 1.90 704.28 704.28 3.0 

h10_40_2_3 666.2 668.412 4 2.10 666.2 668.412 4 2.00 666.2 666.2 4.0 

h10_40_2_4 600.7 604.672 4.2 1.61 600.7 604.672 4.2 1.71 600.7 608.636 3.2 

 

Table C. 6. The best-found solutions for the instances with 30 patients by the ALNS-

VS algorithms 

 

ALNS-VS_Unique ALNS-VS_Common 
ALNS-VS_No-

Swap 

Instance 
Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. 

h30_10_0_0 548.5 563.568 17.4 24 538.76 555.344 17.6 18 573.98 579.24 

h30_10_0_1 571.6 579.116 15.4 19 568.22 577 14.6 18 569.52 578.56 

h30_10_0_2 552.34 562.172 20 13 561.66 566.736 20.6 15 559.76 568.376 

h30_10_0_3 571.22 577.948 15.8 15 576.48 577.88 16.6 21 556.06 573.336 

h30_10_0_4 559.58 564.284 16.2 20 559.84 566.768 16.2 29 558.4 573.14 

h30_10_1_0 604.16 622.404 17.8 15 604.16 628.3 16.8 27 638.6 638.6 

h30_10_1_1 614.22 623.92 18.8 16 614.22 622.272 18.6 34 619.96 632.488 

h30_10_1_2 604.38 613.864 21.6 17 611.5 616.04 20.4 25 610.78 614.156 

h30_10_1_3 597.14 600.38 17.6 22 597.14 602.984 18 29 595.46 604.856 

h30_10_1_4 597.98 604.148 19 23 599.12 607.832 18.8 28 601.34 609.864 

h30_10_2_0 664.76 678.128 16.2 29 659.7 676.34 15.8 28 670.74 680.964 

h30_10_2_1 665.44 690.324 17.2 28 663.06 681.62 18.6 29 666.94 684.94 

h30_10_2_2 671.58 682.828 17.4 27 669.14 678.1 20.2 29 675.68 680.876 

h30_10_2_3 652.6 664.488 17.4 29 651.54 664.096 17.8 30 661.56 676.724 

h30_10_2_4 673.22 679.768 15.6 21 663.02 677.964 15.8 22 670.54 678.972 

h30_20_0_0 769.9 788.924 12.4 30 770.96 786.868 13.8 28 765.02 774.152 

h30_20_0_1 795.58 810.9 14.8 32 795.58 815.54 16 32 800.84 803.496 

h30_20_0_2 818.36 836.032 14.8 28 814.02 828.084 16.4 26 824.42 826.392 

h30_20_0_3 767.94 777.92 16 30 773.48 779.252 16 27 768.48 778.844 

h30_20_0_4 777.32 779.608 16.6 27 768.92 777.264 15.8 27 777.34 779.472 

h30_20_1_0 816.72 831.776 15.4 30 818.06 832.088 16.4 34 824.16 833.692 
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Table C.2. The best-found solutions for the instances with 30 patients by the ALNS-

VS algorithms (cont.). 

 

ALNS-VS_Unique ALNS-VS_Common 
ALNS-VS_No-

Swap 

Instance 
Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. 

h30_20_1_1 866.12 880.496 14.4 30 855.12 875.128 13.4 21 873.28 883.736 

h30_20_1_2 808.28 829.98 16 25 809.8 824.556 14.4 15 825.18 833.808 

h30_20_1_3 785.9 798.828 17.8 30 796.66 802.68 16.4 18 799.96 812.512 

h30_20_1_4 808.82 822.028 13.4 20 808.82 820.572 12.8 11 823.44 824.344 

h30_20_2_0 874.98 890.644 14.6 37 845.38 878.92 15.8 20 854.42 875.464 

h30_20_2_1 923.62 940.1 15.4 28 905.16 936.428 14.8 17 930.2 948.36 

h30_20_2_2 894.72 904.356 15.8 26 894.72 901.516 16 15 894.72 904.348 

h30_20_2_3 849.02 866.828 16.6 25 832.84 854.684 17 16 861.08 874.564 

h30_20_2_4 883.88 891.828 13.4 20 865.94 888 14.2 10 878.08 893.408 

h30_30_0_0 959.54 972.352 10.2 24 974.96 977.052 10 15 958.58 964.776 

h30_30_0_1 1039.02 1044.46 8.6 15 1036.04 1044.176 10.2 15 1042.08 1044.824 

h30_30_0_2 1053.54 1069.328 12.8 15 1054.2 1068.404 13.2 15 1050.98 1067.116 

h30_30_0_3 989.12 992.924 12.6 16 969.52 986.4 13.2 15 991.5 999.876 

h30_30_0_4 967.3 983.896 12.6 15 986.98 989.408 12.4 16 986.98 993.932 

h30_30_1_0 1045.36 1053.992 16 16 1045.8 1055.556 16 15 1046.62 1058.228 

h30_30_1_1 1106.12 1112.152 11 15 1081.98 1106.804 11.2 15 1088.9 1103.64 

h30_30_1_2 1047.8 1064.38 15.8 16 1031.38 1056.944 15 17 1051.7 1058.096 

h30_30_1_3 996.64 1031.664 13.4 22 998.02 1035.208 13.2 16 1037.76 1049.976 

h30_30_1_4 1008.44 1011.236 12 21 1014 1021.616 11 10 1004.88 1020.872 

h30_30_2_0 1069.3 1087.996 15.6 30 1089.06 1107.484 12.6 19 1093.58 1102.92 

h30_30_2_1 1163.3 1172.428 14 26 1159.6 1174.088 11.6 15 1163.86 1184.056 

h30_30_2_2 1144.22 1149.812 14 25 1140.68 1143.916 15 16 1143.66 1147.144 

h30_30_2_3 1057.34 1083.984 13.6 28 1062.86 1085.592 14.6 15 1096.34 1108.792 

h30_30_2_4 1074.72 1080.016 11.6 21 1074.72 1081.74 13 11 1064.38 1078.572 

h30_40_0_0 1163.52 1172.112 10.6 26 1163.52 1171.192 9.6 15 1164.2 1174.66 

h30_40_0_1 1249.28 1249.28 7 25 1246.38 1247.368 9.2 15 1246.44 1248.508 

h30_40_0_2 1274.94 1283.996 7.8 25 1281.48 1287.564 8.2 15 1274.94 1281.036 

h30_40_0_3 1179.64 1202.1 10.6 24 1186.42 1199.2 10.2 15 1207.42 1220.948 

h30_40_0_4 1190.08 1196.688 9.2 20 1190.08 1194.176 9.2 11 1190.08 1195.7 

h30_40_1_0 1253.14 1261.06 10.8 25 1252.72 1266.272 9.6 14 1246.96 1261.52 

h30_40_1_1 1328.04 1336.316 9.2 29 1336.52 1341 9.2 15 1325.7 1332.864 

h30_40_1_2 1273.12 1280.696 11.8 26 1271.72 1282.864 13.2 15 1281.36 1283.688 

h30_40_1_3 1224.14 1239.648 11.6 25 1225.26 1250.016 7.8 15 1264.06 1273.464 

h30_40_1_4 1217.12 1221.356 8.4 21 1220.02 1223.52 8.4 10 1210.7 1224.636 

h30_40_2_0 1298.9 1315.564 11.8 25 1301.42 1314.672 12 15 1298.9 1303.552 

h30_40_2_1 1413.4 1423.804 10.6 19 1416 1436.756 10.2 15 1422.44 1425.116 

h30_40_2_2 1348.32 1363.456 10.6 15 1360.74 1366.648 11 15 1363.52 1370.188 

h30_40_2_3 1306.24 1319.656 11.8 15 1292.98 1315.408 10.4 15 1305.46 1319.32 

h30_40_2_4 1247.14 1256.468 11.4 10 1245.02 1256.672 10.2 10 1247.14 1257.02 
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Table C. 7. The best-found solutions for the instances with 50 patients by the ALNS-

VS algorithms 

 
ALNS-VS_Unique ALNS-VS_Common ALNS-VS_No-Swap 

Instance Best-found Avg. # DP CPU Best-found Avg. # DP CPU Best-found Avg. 

h50_10_0_0 909.82 938.08 27.6 36 925.44 943.03 28 39 930.86 952.35 

h50_10_0_1 930.92 945.58 30 32 931.62 943.52 33 35.4 937.54 949.22 

h50_10_0_2 942.04 951.08 30.2 36 940.80 951.14 30.6 39.6 932.86 954.17 

h50_10_0_3 889.4 909.50 28.2 32 860.06 921.51 29.2 40.2 940.48 953.92 

h50_10_0_4 913.76 925.07 28 35 927.30 931.41 27.6 34.6 910.20 919.16 

h50_10_1_0 1070.26 1080.83 28.2 32 1063.70 1072.54 28.2 39 1113.02 1124.70 

h50_10_1_1 1072.84 1086.14 27.8 31 1089.38 1102.11 25.2 34.2 1082.86 1094.71 

h50_10_1_2 1053.3 1078.44 29 33 1066.10 1098.62 29.4 33.4 1063.92 1084.54 

h50_10_1_3 1021 1064.35 28.2 33 1055.60 1075.01 28.8 32 1059.56 1080.78 

h50_10_1_4 1030.02 1046.45 30.8 42 1019.32 1043.08 32 40.8 1027.76 1042.82 

h50_10_2_0 1211.42 1240.41 28.4 47 1219.90 1234.61 28.2 42.4 1246.84 1265.81 

h50_10_2_1 1219.42 1242.99 28.4 36 1216.34 1234.95 26 37.8 1228.12 1253.67 

h50_10_2_2 1216.24 1244.29 31.6 36 1246.30 1257.28 28.6 34 1238.10 1258.67 

h50_10_2_3 1183 1219.13 27.8 31 1224.58 1233.18 27.6 38 1195.12 1228.56 

h50_10_2_4 1207.66 1221.07 28.8 32 1177.94 1201.63 28.2 41.6 1203.40 1227.23 

h50_20_0_0 1267.5 1290.61 24.6 39 1291.12 1295.83 25.8 34.2 1312.28 1338.59 

h50_20_0_1 1299.14 1313.87 23.8 30 1314.48 1338.43 23.8 31.4 1274.34 1306.00 

h50_20_0_2 1301.56 1324.11 24.8 34 1294.10 1322.08 25.6 38.2 1316.54 1333.51 

h50_20_0_3 1176.6 1194.74 28 38 1188.76 1192.50 26.6 35 1187.82 1194.77 

h50_20_0_4 1280.86 1310.50 23.6 32 1263.50 1284.00 23.4 35.6 1281.60 1306.30 

h50_20_1_0 1406.52 1432.50 25.2 37 1404.30 1415.00 25.6 33.6 1478.90 1492.80 

h50_20_1_1 1382.12 1430.88 23.4 31 1398.40 1419.40 26 35.4 1440.70 1470.40 

h50_20_1_2 1465.96 1479.76 23.2 36 1468.90 1488.20 24.8 33 1446.40 1458.00 

h50_20_1_3 1331.9 1347.19 25.6 30 1322.10 1352.20 26 36.2 1374.60 1386.50 

h50_20_1_4 1383.84 1389.09 28.8 36 1388.80 1402.30 27.8 37.6 1373.50 1401.60 

h50_20_2_0 1591.36 1609.98 26.6 34 1546.50 1598.00 28.4 41.4 1624.20 1642.40 

h50_20_2_1 1588.36 1607.17 27.4 29 1557.80 1590.50 28.2 46 1585.90 1608.30 

h50_20_2_2 1602.74 1638.72 27 36 1575.10 1614.20 26.4 35.2 1594.10 1620.20 

h50_20_2_3 1465.66 1509.78 21.4 32 1464.00 1499.70 25 33.2 1522.40 1549.00 

h50_20_2_4 1544.46 1589.41 26.8 42 1592.30 1612.00 24.6 31 1573.80 1615.10 

h50_30_0_0 1569.1 1599.30 19.6 35 1608.30 1624.40 21.2 35.6 1665.60 1676.00 

h50_30_0_1 1598.98 1635.80 20.8 31 1639.70 1669.40 20 35.2 1652.20 1672.10 

h50_30_0_2 1679.3 1688.92 19.4 30 1672.30 1693.00 21.8 42.6 1677.00 1696.30 

h50_30_0_3 1504.66 1514.45 21.4 33 1449.40 1484.80 25.2 43 1496.70 1509.10 

h50_30_0_4 1621.08 1648.01 20.8 36 1637.50 1655.10 18.6 31.4 1645.20 1658.00 

h50_30_1_0 1723.9 1734.77 22.2 31 1696.50 1720.30 20.4 34.4 1813.50 1844.30 

h50_30_1_1 1746.08 1794.46 18.4 28 1753.20 1801.10 17.8 30.6 1803.40 1816.20 

h50_30_1_2 1808.54 1835.79 21 27 1800.50 1826.20 20.6 30.6 1839.00 1859.10 

h50_30_1_3 1625.76 1653.10 22.6 37 1645.00 1662.30 22 33.4 1682.70 1696.30 

h50_30_1_4 1744.46 1798.96 20 33 1731.00 1790.50 19 31.2 1771.50 1783.40 

h50_30_2_0 1836.42 1922.96 25.2 42 1923.70 1976.20 22.4 33.4 1967.30 2025.20 

h50_30_2_1 1938.74 1968.94 20 30 1957.30 1963.80 22 34.6 1947.70 1961.50 

h50_30_2_2 1980.06 2001.14 20.2 27 1965.10 2008.80 21.6 30.4 2023.90 2035.70 

h50_30_2_3 1764.08 1803.30 23.6 38 1752.50 1805.90 22.2 35.8 1804.60 1834.10 

h50_30_2_4 1931.36 1940.23 19.4 30 1931.20 1943.40 20.4 32.4 1912.80 1936.10 

h50_40_0_0 1871.68 1915.67 19 51 1896.70 1931.10 17.2 30.6 2043.00 2050.80 

h50_40_0_1 1971.42 2004.05 14.2 39 1958.70 2007.60 15.4 29 2032.60 2039.20 

h50_40_0_2 2012.02 2070.38 15.4 42 2078.10 2097.70 15.2 36.4 2099.40 2104.30 

h50_40_0_3 1774.16 1809.53 19.2 43 1773.60 1798.10 20 42.2 1801.60 1815.30 

h50_40_0_4 1950.78 1969.72 12.8 29 1962.00 1980.30 15.6 37.8 1977.00 1985.50 

h50_40_1_0 2047.46 2091.54 17.6 38 2021.90 2078.50 18.8 37.6 2124.90 2159.10 

h50_40_1_1 2071.16 2108.10 15 32 2072.70 2113.70 17.6 36.8 2129.40 2163.30 

h50_40_1_2 2144.36 2193.98 14.8 28 2130.70 2217.70 16 42.2 2239.10 2272.80 

h50_40_1_3 1914.2 1936.31 16.4 31 1875.30 1916.40 22.4 45.2 1982.60 2004.90 

h50_40_1_4 2080.46 2126.72 17.4 30 2071.90 2149.20 16.4 31.2 2120.10 2137.70 
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Table C.3. The best-found solutions for the instances with 50 patients by the ALNS-

VS algorithms (cont.) 

 
ALNS-VS_Unique ALNS-VS_Common ALNS-VS_No-Swap 

Instance 
Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. 

h50_40_2_0 2287.30 2328.43 18 28 2242.9 2335.8 18.8 33.4 2393.8 2414.1 

h50_40_2_1 2292.64 2326.44 16.6 31 2313.1 2334.2 17.6 33.2 2335.0 2350.9 

h50_40_2_2 2352.22 2402.03 17.4 34 2353.7 2391.2 18 36.4 2404.3 2418.8 

h50_40_2_3 2056.96 2139.99 18.4 30 2062.9 2097.9 19 46.4 2096.0 2137.2 

h50_40_2_4 2290.88 2307.47 19.6 28 2284.7 2298.3 21.4 34.4 2291.9 2306.4 

 

 

Table C. 8. The best-found solutions for the instances with 100 patients by the 

ALNS-VS algorithms. 

 

ALNS-VS_Unique ALNS-VS_Common 
ALNS-VS_No-

Swap 

Instance 
Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. 

h100_10_0_0 1975.94 2033.988 49.4 149.08 2019.76 2066.468 50.4 115.4 2040.06 2064.648 

h100_10_0_1 2051.56 2070.744 48.4 113.68 1964.26 2012.772 52.4 135.6 2029.7 2067.368 

h100_10_0_2 2041.64 2061.932 48.8 99.75 1977.2 2024.948 52 137 1991.1 2023.512 

h100_10_0_3 2013.56 2035.148 53.8 101.77 1953.18 2035.676 49.8 117.6 2018.1 2027.964 

h100_10_0_4 1967.94 2021.876 50.6 110.50 1940.72 2018.312 52.2 142.4 2076.9 2097.88 

h100_10_1_0 2382.64 2436.08 47.4 138.95 2405.42 2453.616 49.2 126.2 2465.1 2496.02 

h100_10_1_1 2326.82 2357.72 52 148.36 2352.70 2397.42 48.8 140 2328.68 2402.86 

h100_10_1_2 2388.90 2449.05 47 109.69 2387.84 2407.90 49.8 112 2368.82 2393.16 

h100_10_1_3 2327.80 2406.86 52.4 111.42 2393.56 2434.27 51.6 119.6 2379.28 2411.78 

h100_10_1_4 2377.38 2423.96 50 121.26 2403.40 2428.49 51.2 114 2470.76 2508.92 

h100_10_2_0 2492.14 2552.20 49.4 119.28 2481.96 2560.17 51.2 123.4 2555.28 2580.46 

h100_10_2_1 2413.36 2472.93 49 147.52 2455.66 2532.70 47 98.4 2464.08 2517.13 

h100_10_2_2 2480.80 2532.17 49.2 110.87 2498.76 2527.12 51.8 131.2 2501.24 2510.07 

h100_10_2_3 2457.34 2489.38 52.4 144.96 2391.60 2533.36 52.4 134.4 2516.92 2547.64 

h100_10_2_4 2477.34 2517.40 53.8 146.06 2470.08 2507.38 53 121.2 2534.56 2577.45 

h100_20_0_0 2657.80 2711.22 43 128.59 2614.92 2713.10 40.8 114.4 2691.18 2707.95 

h100_20_0_1 2681.96 2711.83 42.6 125.32 2662.06 2719.92 41.2 106.4 2733.38 2774.04 

h100_20_0_2 2611.18 2678.72 44.6 128.44 2690.94 2740.40 38.8 129.6 2704.62 2726.70 

h100_20_0_3 2629.60 2675.42 44 105.09 2574.78 2647.04 44.2 134.6 2667.82 2702.70 

h100_20_0_4 2717.90 2769.44 42.8 122.81 2687.62 2737.07 44.4 132.4 2850.54 2885.18 

h100_20_1_0 3024.92 3068.61 45 119.07 3058.46 3090.73 44.6 114.2 2990.66 3061.63 

h100_20_1_1 3003.90 3066.52 47.2 102.61 3004.40 3065.98 44.4 123.8 3044.90 3095.76 

h100_20_1_2 3036.40 3072.89 46.4 119.15 3053.54 3081.45 47.8 144.6 3082.14 3110.57 

h100_20_1_3 3078.32 3105.32 45.8 112.63 3064.24 3097.34 47.8 148.6 3017.06 3072.51 

h100_20_1_4 3090.96 3174.91 45.8 112.93 3125.54 3168.02 48.4 101.2 3206.98 3234.46 

h100_20_2_0 3175.98 3262.40 48.8 99.51 3173.98 3253.58 49.4 130.2 3167.02 3205.34 

h100_20_2_1 3134.16 3204.64 45.8 116.13 3149.68 3165.06 46.8 131.6 3134.74 3164.36 

h100_20_2_2 3139.24 3176.72 49.4 126.49 3205.72 3244.50 46.4 121.8 3187.52 3253.49 

h100_20_2_3 3082.96 3170.28 48.6 132.11 3124.34 3199.83 48 127 3150.58 3193.79 

h100_20_2_4 3173.98 3233.62 48.2 137.97 3246.96 3288.03 46 110.4 3339.36 3348.96 

h100_30_0_0 3273.16 3341.56 33.2 104.89 3393.88 3426.43 33.2 113 3406.66 3452.16 

h100_30_0_1 3398.24 3429.25 32.2 120.67 3276.74 3369.55 32.2 103.2 3463.10 3488.12 

h100_30_0_2 3241.28 3351.30 34.6 113.79 3364.72 3403.68 36 117.2 3364.26 3374.55 

h100_30_0_3 3191.18 3266.75 36.2 101.53 3230.68 3303.51 34.6 107 3165.96 3197.29 
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Table C.4. The best-found solutions for the instances with 100 patients by the ALNS-

VS algorithms (cont.) 

 

ALNS-VS_Unique ALNS-VS_Common 
ALNS-VS_No-

Swap 

Instance 
Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. # DP CPU 

Best-

found 
Avg. 

h100_30_0_4 3398.52 3439.18 34.8 120.98 3383.56 3400.45 38 113.8 3504.04 3551.21 

h100_30_1_0 3702.12 3782.59 41.4 139.78 3696.76 3785.92 37.8 110.8 3808.16 3892.71 

h100_30_1_1 3713.72 3778.30 33.2 110.19 3704.40 3748.71 34 97.8 3639.32 3727.42 

h100_30_1_2 3647.28 3784.80 39 103.34 3630.70 3744.15 41.4 152 3808.50 3831.99 

h100_30_1_3 3586.44 3688.59 39.2 103.71 3606.88 3676.64 40 142.4 3572.16 3662.64 

h100_30_1_4 3735.90 3864.74 37.2 116.17 3820.04 3888.97 35.2 96.2 3912.46 3957.38 

h100_30_2_0 3875.58 3914.14 41 103.81 3825.66 3916.22 40.8 106 3908.42 3958.00 

h100_30_2_1 3829.38 3873.24 39.6 92.95 3798.62 3919.96 38.6 101.2 3851.70 3916.98 

h100_30_2_2 3692.94 3874.69 40 113 3895.78 3997.08 37.8 91.2 3835.20 3894.89 

h100_30_2_3 3736.70 3766.84 43.8 155.08 3718.26 3812.80 44.2 109.4 3750.54 3776.84 

h100_30_2_4 3783.46 3932.99 36.8 113.65 3874.50 3957.14 39.8 134.8 4029.02 4069.10 

h100_40_0_0 3872.08 4025.22 25.2 107.7 4037.28 4102.71 25.8 119.2 4065.76 4100.28 

h100_40_0_1 3937.38 4028.89 25.8 110.5 3924.94 4005.34 27.4 91 4082.98 4129.19 

h100_40_0_2 4027.06 4096.79 22.6 88.54 4038.82 4072.06 26.2 101.8 4070.90 4106.11 

h100_40_0_3 3882.64 3923.13 31.2 110.08 3861.82 3921.81 31.8 136.6 3919.56 3974.66 

h100_40_0_4 4122.08 4186.27 23.6 123.97 4042.88 4084.27 29 102.2 4143.36 4195.98 

h100_40_1_0 4447.40 4514.60 33.2 101.58 4349.46 4476.23 29.4 123.8 4503.38 4528.63 

h100_40_1_1 4386.10 4452.66 33.8 116.57 4380.64 4446.90 34.8 125 4439.68 4481.56 

h100_40_1_2 4396.34 4436.01 33 129.34 4396.52 4465.57 34.4 111.6 4437.78 4496.21 

h100_40_1_3 4295.88 4335.04 35.8 118.47 4275.06 4382.08 32.8 131.8 4339.76 4388.51 

h100_40_1_4 4479.10 4568.86 29.8 98.98 4544.14 4590.90 32.4 94.4 4527.80 4586.44 

h100_40_2_0 4545.96 4634.15 29.2 104.15 4603.64 4638.65 34.4 129.8 4608.80 4652.39 

h100_40_2_1 4480.66 4623.75 32 108.06 4491.28 4609.90 34.4 122.2 4561.18 4622.66 

h100_40_2_2 4612.04 4645.64 32 128.22 4601.72 4636.37 31.4 116.8 4576.02 4623.93 

h100_40_2_3 4369.82 4432.90 38.6 183.18 4377.48 4461.34 38 125.4 4439.96 4481.94 

h100_40_2_4 4668.38 4742.96 32.4 108.38 4712.68 4746.25 29.2 119.6 4640.92 4728.26 
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APPENDIX D – The solutions obtained by the UBA and their 

comparisons with the ALNS-VS solutions 

As mentioned in the manuscript, ALNS-VS_Unique solutions in Tables C1.-C.4 are 

adopted for further analysis. The column “UB” presents the objective function values 

of the solutions obtained by the proposed UBA. The “VS-UBA(%)” column indicates 

how much improvement on objective is offered by ALNS-VS over the UBA. 

Table D. 9. UBA solutions and their comparisons with ALNS-VS solutions. 

Instance UB CPU VS-UBA(%) Instance UB CPU VS-UBA(%) 

h30_10_0_0 911.7 0.57 39.8 h30_30_0_0 1426.2 0.22 32.7 

h30_10_0_1 892.2 0.15 35.9 h30_30_0_1 1288.4 0.13 19.4 

h30_10_0_2 901.4 0.21 38.7 h30_30_0_2 1299.6 0.13 18.9 

h30_10_0_3 907.7 0.26 37.1 h30_30_0_3 1322.4 0.32 25.2 

h30_10_0_4 884.7 0.07 36.8 h30_30_0_4 1246.7 0.16 22.4 

h30_10_1_0 1011.3 0.22 40.3 h30_30_1_0 1409.2 0.14 25.8 

h30_10_1_1 979.3 0.16 37.3 h30_30_1_1 1426.2 0.07 22.4 

h30_10_1_2 983.4 0.15 38.5 h30_30_1_2 1381.6 0.1 24.2 

h30_10_1_3 984.1 0.32 39.3 h30_30_1_3 1388.5 0.36 28.2 

h30_10_1_4 966.7 0.07 38.1 h30_30_1_4 1336.2 0.06 24.5 

h30_10_2_0 1100.9 0.1 39.6 h30_30_2_0 1561 0.11 31.5 

h30_10_2_1 1118.2 0.22 40.5 h30_30_2_1 1514.4 0.11 23.2 

h30_10_2_2 1127.4 0.14 40.4 h30_30_2_2 1472.1 0.14 22.3 

h30_10_2_3 1128.1 0.3 42.1 h30_30_2_3 1532.5 0.38 31 

h30_10_2_4 1110.7 0.06 39.4 h30_30_2_4 1472.7 0.09 27 

h30_20_0_0 1117.1 0.1 31.1 h30_40_0_0 1545.5 0.32 24.7 

h30_20_0_1 1092.5 0.2 27.2 h30_40_0_1 1487.8 0.16 16 

h30_20_0_2 1113.9 0.24 26.5 h30_40_0_2 1505.3 0.13 15.3 

h30_20_0_3 1135.7 0.18 32.4 h30_40_0_3 1521 0.18 22.4 

h30_20_0_4 1074.2 0.08 27.6 h30_40_0_4 1437.6 0.15 17.2 

h30_20_1_0 1197.9 0.48 31.8 h30_40_1_0 1703.2 0.22 26.4 

h30_20_1_1 1212.2 0.1 28.5 h30_40_1_1 1585 0.07 16.2 

h30_20_1_2 1194.9 0.18 32.4 h30_40_1_2 1597.5 0.22 20.3 

h30_20_1_3 1205.3 0.83 34.8 h30_40_1_3 1586.5 0.26 22.8 

h30_20_1_4 1161.3 0.13 30.4 h30_40_1_4 1530.5 0.08 20.5 

h30_20_2_0 1343.1 0.15 34.9 h30_40_2_0 1736.5 0.09 25.2 

h30_20_2_1 1318.5 0.31 30 h30_40_2_1 1713.8 0.1 17.5 

h30_20_2_2 1339.9 0.26 33.2 h30_40_2_2 1658.1 0.14 18.7 

h30_20_2_3 1361.2 1.77 37.6 h30_40_2_3 2650.4 0.28 50.7 

h30_20_2_4 1300.2 0.07 32 h30_40_2_4 1663.6 0.06 25 
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Instance UB CPU VS-UBA(%) Instance UB CPU VS-UBA(%) 

h50_10_0_0 1434.6 0.7 36.6 h50_30_0_0 2093.8 0.52 25.1 

h50_10_0_1 1456.1 0.3 36.1 h50_30_0_1 2161.8 0.25 26 

h50_10_0_2 1460.3 0.43 35.5 h50_30_0_2 2177.6 0.22 22.9 

h50_10_0_3 1442.8 0.45 38.4 h50_30_0_3 1886.8 2.34 20.3 

h50_10_0_4 1402.6 0.31 34.9 h50_30_0_4 2174.7 0.18 25.5 

h50_10_1_0 1714.7 0.51 37.6 h50_30_1_0 3315.6 0.54 48 

h50_10_1_1 1702.2 0.18 37 h50_30_1_1 2364.6 0.19 26.2 

h50_10_1_2 1719.6 0.24 38.7 h50_30_1_2 2490.6 0.25 27.4 

h50_10_1_3 1716.8 0.41 40.5 h50_30_1_3 2160.8 2.37 24.8 

h50_10_1_4 1676.5 0.32 38.6 h50_30_1_4 2398.7 0.66 27.3 

h50_10_2_0 2018.7 0.51 40 h50_30_2_0 3566.2 0.52 48.5 

h50_10_2_1 2032.5 0.31 40 h50_30_2_1 2732.7 0.32 29.1 

h50_10_2_2 2038.3 0.5 40.3 h50_30_2_2 2731.3 0.29 27.5 

h50_10_2_3 2020.8 0.38 41.5 h50_30_2_3 2464.8 2.91 28.4 

h50_10_2_4 1974.7 0.29 38.8 h50_30_2_4 2584.1 0.54 25.3 

h50_20_0_0 1789.9 0.46 29.2 h50_40_0_0 2424.6 0.92 22.8 

h50_20_0_1 1787.1 0.23 27.3 h50_40_0_1 2602.5 0.34 24.2 

h50_20_0_2 1766.2 0.27 26.3 h50_40_0_2 2427 0.19 17.1 

h50_20_0_3 1680 0.61 30 h50_40_0_3 2149.1 1.72 17.4 

h50_20_0_4 1818.4 0.23 29.6 h50_40_0_4 3492.6 0.65 44.1 

h50_20_1_0 2042.2 0.4 31.1 h50_40_1_0 5516.2 0.48 62.9 

h50_20_1_1 2043 0.17 32.3 h50_40_1_1 3776.5 0.48 45.2 

h50_20_1_2 2077.9 0.24 29.5 h50_40_1_2 4709 0.24 54.5 

h50_20_1_3 1889.1 0.51 29.5 h50_40_1_3 2423.1 2.1 21 

h50_20_1_4 2061.2 0.56 32.9 h50_40_1_4 2607.6 0.83 20.2 

h50_20_2_0 2346.2 0.42 32.2 h50_40_2_0 5791.2 0.53 60.5 

h50_20_2_1 2365.1 0.19 32.8 h50_40_2_1 8733.6 0.28 73.7 

h50_20_2_2 2344.2 0.25 31.6 h50_40_2_2 6680.1 0.28 64.8 

h50_20_2_3 2290.8 0.5 36 h50_40_2_3 2841.8 0.59 27.6 

h50_20_2_4 2293.8 0.65 32.7 h50_40_2_4 3849 0.39 40.5 

h100_10_0_0 3004.5 1.61 34.2 h100_30_0_0 4307.1 2.82 24 

h100_10_0_1 2979.1 1.07 31.1 h100_30_0_1 4221.4 0.55 19.5 

h100_10_0_2 2999.6 0.66 31.9 h100_30_0_2 4213.4 1.14 23.1 

h100_10_0_3 2998.3 0.98 32.8 h100_30_0_3 4275.9 0.67 25.4 

h100_10_0_4 3032.2 1.15 35.1 h100_30_0_4 4402.6 0.56 22.8 

h100_10_1_0 3686 0.97 35.4 h100_30_1_0 4931.5 0.88 24.9 

h100_10_1_1 3685 0.75 36.9 h100_30_1_1 5076.5 0.54 26.8 

h100_10_1_2 3704.7 0.78 35.5 h100_30_1_2 5018.3 0.74 27.3 

h100_10_1_3 3683.6 1.07 36.8 h100_30_1_3 4855.2 2.2 26.1 

h100_10_1_4 3696.6 1.25 35.7 h100_30_1_4 4982.6 0.52 25 

h100_10_2_0 3863.7 1.52 35.5 h100_30_2_0 5050.6 2.7 23.3 

h100_10_2_1 3834.7 0.97 37.1 h100_30_2_1 5111 0.58 25.1 
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Instance UB CPU VS-UBA(%) Instance UB CPU VS-UBA(%) 

h100_10_2_2 3848 1.45 35.5 h100_30_2_2 5199.9 1.41 29 

h100_10_2_3 3845.6 1.7 36.1 h100_30_2_3 5148.3 0.85 27.4 

h100_10_2_4 3859.2 2.4 35.8 h100_30_2_4 5171.9 0.57 26.8 

h100_20_0_0 3553 2.64 25.2 h100_40_0_0 4964.7 3.76 22 

h100_20_0_1 3706.7 1.29 27.6 h100_40_0_1 4851.8 0.6 18.8 

h100_20_0_2 3710.5 1.88 29.6 h100_40_0_2 4917 1.14 18.1 

h100_20_0_3 3668.2 1.61 28.3 h100_40_0_3 4911.8 0.49 21 

h100_20_0_4 3666.2 0.95 25.9 h100_40_0_4 5091.4 0.54 19 

h100_20_1_0 4274.2 2.05 29.2 h100_40_1_0 7646.1 0.88 41.8 

h100_20_1_1 4415.4 1.2 32 h100_40_1_1 9488.7 1.82 53.8 

h100_20_1_2 4425 3.63 31.4 h100_40_1_2 10561.2 0.79 58.4 

h100_20_1_3 4270.6 1.37 27.9 h100_40_1_3 12520.1 1.17 65.7 

h100_20_1_4 4356.7 0.78 29.1 h100_40_1_4 11516.5 0.92 61.1 

h100_20_2_0 4430.4 1.86 28.3 h100_40_2_0 11453.7 2.92 60.3 

h100_20_2_1 4501 1.27 30.4 h100_40_2_1 12504.8 1.13 64.2 

h100_20_2_2 4613.5 2.5 32 h100_40_2_2 9613.9 4.91 52 

h100_20_2_3 4443.8 2.16 30.6 h100_40_2_3 9537.6 1.79 54.2 

h100_20_2_4 4523.2 1.55 29.8 h100_40_2_4 10626.1 0.91 56.1 
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APPENDIX E – The effect of DP policy and the HHSRP-M solutions 

In Chapter 5.5, we discussed the effect of DP policy on total flow time by comparing 

the solutions of the HHSRP-M with the HHSRP-VS. In this appendix, Tables E.1 

through E.4 demonstrates the solutions obtained by the ALNS-M and their 

comparisons with the ALNS-VS in details.  As mentioned in the manuscript, ALNS-

VS_Unique solutions in Tables D1.-D.4 are adopted for further analysis. In the 

following tables, the “Best-found” and “Avg.” columns indicate the objective values 

of the best-found and the averages of the best solutions found in five replications by 

the ALNS-M, respectively. Additionally, the column “VS-M%” presents the 

percentage improvement on the objective offered by ALNS-VS over the ALNS-M. 

Table E. 10. ALNS-M solutions for 10-patient instances and their comparisons with 

ALNS-VS. 

Instance Best-found Avg. CPU VS-M(%) Instance Best-found Avg. CPU 

VS-

M(%) 

h10_10_0_0 318.6 318.6 1.09 24.5 h10_30_0_0 506.5 506.5 1.05 6.7 

h10_10_0_1 338.7 338.7 1.04 24.9 h10_30_0_1 569.1 569.1 1.07 7.3 

h10_10_0_2 333.2 333.2 1.06 30.3 h10_30_0_2 552.3 552.3 1.04 9.4 

h10_10_0_3 337.2 337.2 1.07 24.2 h10_30_0_3 558.5 558.5 1.06 9.7 

h10_10_0_4 318.2 318.2 1.02 31.7 h10_30_0_4 514.1 514.1 1.00 12.5 

h10_10_1_0 362.6 362.6 1.04 29.3 h10_30_1_0 550.5 550.5 1.11 5.6 

h10_10_1_1 382.7 382.7 1.03 26.3 h10_30_1_1 613.1 613.1 1.02 11.2 

h10_10_1_2 377.2 377.2 1.02 35.6 h10_30_1_2 596.3 596.3 1.06 7.0 

h10_10_1_3 381.2 381.2 1.02 28.7 h10_30_1_3 602.5 602.5 1.06 12.4 

h10_10_1_4 362.2 362.2 0.96 34.4 h10_30_1_4 558.1 558.1 0.97 13.2 

h10_10_2_0 424.6 424.6 1.02 34.5 h10_30_2_0 612.5 612.5 1.05 12.1 

h10_10_2_1 444.7 444.7 1.02 30.7 h10_30_2_1 675.1 675.1 1.09 10.0 

h10_10_2_2 439.2 439.2 1.02 37.0 h10_30_2_2 658.3 658.3 1.07 12.3 

h10_10_2_3 443.2 443.2 1.02 30.9 h10_30_2_3 664.5 664.5 1.06 17.4 

h10_10_2_4 424.2 424.2 0.98 34.2 h10_30_2_4 620.1 620.1 0.98 20.0 

h10_20_0_0 415.4 415.4 1.06 10.5 h10_40_0_0 602.7 602.7 1.06 5.9 

h10_20_0_1 449.0 449.0 1.04 10.7 h10_40_0_1 687.4 687.4 1.05 6.2 

h10_20_0_2 442.8 442.8 1.04 16.6 h10_40_0_2 659.9 659.9 1.04 6.9 

h10_20_0_3 444.7 444.7 1.57 13.5 h10_40_0_3 669.5 669.5 1.03 7.5 

h10_20_0_4 418.6 418.6 1.01 18.9 h10_40_0_4 608.6 608.6 1.12 9.3 

h10_20_1_0 459.4 459.4 1.06 17.5 h10_40_1_0 646.7 646.7 2.85 4.9 

h10_20_1_1 493.0 493.0 1.06 16.2 h10_40_1_1 731.4 731.4 1.51 9.0 

h10_20_1_2 486.8 486.8 1.05 19.6 h10_40_1_2 703.9 703.9 1.00 3.7 

h10_20_1_3 488.7 488.7 1.10 18.6 h10_40_1_3 713.5 713.5 1.00 8.9 

h10_20_1_4 462.6 462.6 0.97 22.9 h10_40_1_4 652.6 652.6 0.93 8.0 

h10_20_2_0 521.4 521.4 1.04 15.6 h10_40_2_0 708.7 708.7 1.01 9.7 

h10_20_2_1 555.0 555.0 1.04 15.9 h10_40_2_1 793.4 793.4 0.99 6.3 

h10_20_2_2 548.8 548.8 1.08 20.4 h10_40_2_2 765.9 765.9 0.99 8.0 

h10_20_2_3 550.7 550.7 1.06 21.2 h10_40_2_3 775.5 775.5 1.00 14.1 

h10_20_2_4 524.6 524.6 0.97 27.4 h10_40_2_4 714.6 714.6 1.03 15.9 
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Table E. 11. ALNS-M solutions for 30-patient instances and their comparisons with 

ALNS-VS. 

Instance Best-found Avg. CPU VS-M(%) Instance Best-found Avg. CPU VS-M(%) 

h30_10_0_0 846.8 849.7 17.1 35.4 h30_30_0_0 1182.9 1188.7 11.0 19.3 

h30_10_0_1 863.3 864.7 12.9 33.9 h30_30_0_1 1226.4 1228.6 12.4 15.4 

h30_10_0_2 876.0 879.5 10.9 37.2 h30_30_0_2 1230.5 1230.5 12.0 14.4 

h30_10_0_3 856.4 864.5 12.0 33.9 h30_30_0_3 1203.3 1206.9 13.4 18.0 

h30_10_0_4 855.7 855.8 11.1 34.6 h30_30_0_4 1171.6 1171.6 13.0 17.4 

h30_10_1_0 928.8 933.8 12.6 35.3 h30_30_1_0 1272.2 1274.6 15.3 18.0 

h30_10_1_1 945.3 945.3 13.8 35.0 h30_30_1_1 1312.0 1312.0 18.3 15.7 

h30_10_1_2 958.0 961.5 11.0 37.1 h30_30_1_2 1312.5 1312.5 17.1 20.2 

h30_10_1_3 938.4 946.5 12.4 36.9 h30_30_1_3 1285.3 1288.9 17.7 22.7 

h30_10_1_4 937.7 937.8 12.4 36.2 h30_30_1_4 1253.6 1253.6 15.1 19.6 

h30_10_2_0 1082.8 1082.8 12.3 38.6 h30_30_2_0 1422.2 1427.2 17.8 25.1 

h30_10_2_1 1098.3 1099.6 11.9 39.5 h30_30_2_1 1458.2 1458.2 18.1 20.2 

h30_10_2_2 1106.3 1106.3 10.0 39.3 h30_30_2_2 1467.5 1467.5 16.0 22.0 

h30_10_2_3 1089.6 1089.8 12.2 40.1 h30_30_2_3 1429.3 1432.8 18.4 26.2 

h30_10_2_4 1081.9 1081.9 9.4 37.8 h30_30_2_4 1397.6 1397.6 15.3 23.1 

h30_20_0_0 1019.0 1019.0 11.9 24.4 h30_40_0_0 1350.8 1362.0 18.4 14.6 

h30_20_0_1 1047.8 1049.7 11.6 24.2 h30_40_0_1 1413.7 1413.7 19.6 11.6 

h30_20_0_2 1045.1 1050.1 10.2 22.1 h30_40_0_2 1426.5 1426.5 18.5 10.6 

h30_20_0_3 1017.1 1025.1 11.8 25.1 h30_40_0_3 1369.7 1374.1 18.9 14.1 

h30_20_0_4 1025.2 1025.2 9.4 24.2 h30_40_0_4 1340.6 1340.6 16.4 11.2 

h30_20_1_0 1112.9 1113.3 10.7 26.6 h30_40_1_0 1432.8 1434.6 17.6 12.7 

h30_20_1_1 1131.6 1132.7 11.5 23.5 h30_40_1_1 1498.7 1499.2 18.6 11.4 

h30_20_1_2 1133.4 1133.4 9.9 28.7 h30_40_1_2 1508.5 1508.5 18.7 15.6 

h30_20_1_3 1110.0 1115.7 11.2 29.6 h30_40_1_3 1471.6 1476.4 19.6 17.1 

h30_20_1_4 1107.2 1107.2 9.5 26.9 h30_40_1_4 1422.6 1422.6 17.3 14.4 

h30_20_2_0 1256.9 1257.8 11.0 30.4 h30_40_2_0 1579.7 1610.7 18.5 19.4 

h30_20_2_1 1280.7 1280.7 10.9 27.9 h30_40_2_1 1654.0 1654.0 20.2 14.5 

h30_20_2_2 1282.3 1282.3 9.5 30.2 h30_40_2_2 1657.8 1664.1 17.0 19.0 

h30_20_2_3 1258.4 1260.3 11.0 32.6 h30_40_2_3 1611.7 1620.9 18.5 19.4 

h30_20_2_4 1251.2 1251.2 9.8 29.4 h30_40_2_4 1566.6 1566.6 16.3 20.4 

 

Table E. 12. ALNS-M solutions for 50-patient instances and their comparisons with 

ALNS-VS. 

Instance Best-found Avg. CPU VS-M(%) Instance Best-found Avg. CPU VS-M(%) 

h50_10_0_0 1371.0 1374.0 33 33.6 h50_30_0_0 1883.9 1892.9 38 16.7 

h50_10_0_1 1367.1 1372.0 31 31.9 h50_30_0_1 1901.0 1915.3 38 15.9 

h50_10_0_2 1367.9 1372.9 34 31.1 h50_30_0_2 1898.0 1938.3 38 11.5 

h50_10_0_3 1339.5 1343.4 35 33.6 h50_30_0_3 1806.0 1820.7 39 16.7 

h50_10_0_4 1366.2 1371.5 41 33.1 h50_30_0_4 1886.3 1900.2 38 14.1 

h50_10_1_0 1642.4 1647.6 40 34.8 h50_30_1_0 2171.1 2182.5 35 20.6 

h50_10_1_1 1641.1 1645.0 35 34.6 h50_30_1_1 2160.6 2178.7 28 19.2 
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Instance Best-found Avg. CPU VS-M(%) Instance Best-found Avg. CPU VS-M(%) 

h50_10_1_2 1638.5 1644.8 42 35.7 h50_30_1_2 2190.9 2201.9 20 17.5 

h50_10_1_3 1612.2 1619.5 39 36.7 h50_30_1_3 2088.2 2097.1 20 22.1 

h50_10_1_4 1636.8 1643.2 42 37.1 h50_30_1_4 2161.5 2183.0 20 19.3 

h50_10_2_0 1950.0 1952.8 41 37.9 h50_30_2_0 2464.0 2498.7 20 25.5 

h50_10_2_1 1948.7 1951.2 37 37.4 h50_30_2_1 2488.0 2498.8 20 22.1 

h50_10_2_2 1953.4 1955.6 40 37.7 h50_30_2_2 2504.9 2523.6 20 21.0 

h50_10_2_3 1916.3 1918.6 41 38.3 h50_30_2_3 2398.0 2403.9 20 26.4 

h50_10_2_4 1940.8 1950.9 35 37.8 h50_30_2_4 2469.0 2495.5 20 21.8 

h50_20_0_0 1627.0 1628.9 44 22.1 h50_40_0_0 2145.5 2182.5 20 12.8 

h50_20_0_1 1625.8 1636.9 36 20.1 h50_40_0_1 2161.1 2191.3 20 8.8 

h50_20_0_2 1631.3 1638.1 42 20.2 h50_40_0_2 2186.5 2207.8 20 8.0 

h50_20_0_3 1578.7 1580.7 24 25.5 h50_40_0_3 2056.0 2063.1 20 13.7 

h50_20_0_4 1624.2 1627.6 27 21.1 h50_40_0_4 2145.7 2153.8 20 9.1 

h50_20_1_0 1901.0 1909.5 26 26.0 h50_40_1_0 2420.2 2471.9 20 15.4 

h50_20_1_1 1899.8 1912.6 25 27.2 h50_40_1_1 2435.1 2463.1 20 14.9 

h50_20_1_2 1909.0 1922.2 33 23.2 h50_40_1_2 2467.4 2485.9 20 13.1 

h50_20_1_3 1844.8 1851.4 43 27.8 h50_40_1_3 2330.3 2343.8 20 17.9 

h50_20_1_4 1900.0 1903.6 45 27.2 h50_40_1_4 2427.7 2461.9 20 14.3 

h50_20_2_0 2207.8 2211.4 42 27.9 h50_40_2_0 2744.9 2806.3 20 16.7 

h50_20_2_1 2203.8 2216.8 38 27.9 h50_40_2_1 2754.6 2799.3 20 16.8 

h50_20_2_2 2212.1 2219.1 39 27.5 h50_40_2_2 2809.8 3002.9 20 16.3 

h50_20_2_3 2152.3 2156.7 35 31.9 h50_40_2_3 2662.0 2662.0 20 22.7 

h50_20_2_4 2205.8 2220.2 36 30.0 h50_40_2_4 2738.8 2774.0 20 16.4 

 

Table E.13. ALNS-M solutions for 100-patient instances and their comparisons with 

ALNS-VS. 

Instance Best-found Avg. CPU 

VS-

M(%) Instance Best-found Avg. CPU 

VS-

M(%) 

h100_10_0_0 2867.7 2891.2 63 31.1 h100_30_0_0 3927.5 3965.8 62 16.7 

h100_10_0_1 2861.3 2868.6 65 28.3 h100_30_0_1 3883.6 3912.8 62 12.5 

h100_10_0_2 2876.0 2886.5 65 29.0 h100_30_0_2 3930.7 3950.4 64 17.5 

h100_10_0_3 2859.4 2884.4 64 29.6 h100_30_0_3 3864.3 3893.5 64 17.4 

h100_10_0_4 2889.1 2900.7 63 31.9 h100_30_0_4 3939.7 3966.2 63 13.7 

h100_10_1_0 3564.8 3571.7 67 33.2 h100_30_1_0 4610.1 4645.9 60 19.7 

h100_10_1_1 3544.1 3551.1 65 34.3 h100_30_1_1 4610.6 4620.2 60 19.5 

h100_10_1_2 3545.8 3559.2 65 32.6 h100_30_1_2 4599.5 4627.1 61 20.7 

h100_10_1_3 3546.0 3561.1 66 34.4 h100_30_1_3 4557.4 4580.9 60 21.3 

h100_10_1_4 3565.1 3578.5 65 33.3 h100_30_1_4 4647.2 4671.9 60 19.6 

h100_10_2_0 3724.1 3738.9 65 33.1 h100_30_2_0 4762.8 4814.4 60 18.6 

h100_10_2_1 3707.7 3712.7 65 34.9 h100_30_2_1 4770.2 4770.2 60 19.7 

h100_10_2_2 3715.7 3723.4 65 33.2 h100_30_2_2 4800.1 4810.5 60 23.1 

h100_10_2_3 3711.8 3718.9 65 33.8 h100_30_2_3 4715.6 4731.1 60 20.8 

h100_10_2_4 3736.7 3748.2 66 33.7 h100_30_2_4 4869.2 4885.9 63 22.3 
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Instance Best-found Avg. CPU 

VS-M 

(%) Instance Best-found Avg. CPU 

VS-M 

(%) 

h100_20_0_0 3412.3 3412.3 63 22.1 h100_40_0_0 4409.2 4475.7 61 12.2 

h100_20_0_1 3372.6 3400.2 65 20.5 h100_40_0_1 4394.0 4491.5 62 10.4 

h100_20_0_2 3396.5 3402.0 65 23.1 h100_40_0_2 4468.0 4497.0 63 9.9 

h100_20_0_3 3349.3 3379.4 64 21.5 h100_40_0_3 4404.9 4427.3 62 11.9 

h100_20_0_4 3415.4 3458.0 64 20.4 h100_40_0_4 4473.4 4540.0 60 7.9 

h100_20_1_0 4077.7 4091.4 61 25.8 h100_40_1_0 5220.2 5225.9 61 14.8 

h100_20_1_1 4089.2 4101.6 63 26.5 h100_40_1_1 5149.0 5205.4 62 14.8 

h100_20_1_2 4073.7 4076.1 66 25.5 h100_40_1_2 5182.6 5186.0 63 15.2 

h100_20_1_3 4059.2 4066.6 67 24.2 h100_40_1_3 5145.1 5186.9 60 16.5 

h100_20_1_4 4111.1 4133.8 65 24.8 h100_40_1_4 5266.3 5280.1 64 14.9 

h100_20_2_0 4215.0 4255.3 62 24.6 h100_40_2_0 5365.4 5409.0 67 15.3 

h100_20_2_1 4221.5 4240.4 66 25.8 h100_40_2_1 5390.7 5435.7 62 16.9 

h100_20_2_2 4234.5 4242.4 66 25.9 h100_40_2_2 5324.2 5344.4 63 13.4 

h100_20_2_3 4229.5 4231.1 64 27.1 h100_40_2_3 5311.0 5323.8 61 17.7 

h100_20_2_4 4252.2 4290.1 67 25.4 h100_40_2_4 5293.3 5404.9 64 11.8 

 

Table E. 14. ANOVA table for analyzing the contribution of DP. 

Source DF Adj SS Adj MS F-Value p-Value 

𝒏𝒐𝑷 3 2171.55 723.85 138.08 0.000 

𝒓𝒂 3 14833.40 4944.47 943.17 0.000 

𝒅𝒅 2 1269.85 634.92 121.11 0.000 

𝒏𝒐𝑷 ∗ 𝒓𝒂 9 164.41 18.27 3.48 0.001 

𝒏𝒐𝑷 ∗  𝒅𝒅 6 94.16 15.69 2.99 0.008 

𝒓𝒂 ∗ 𝒅𝒅 6 24.24 4.04 0.77 0.594 

𝒏𝒐 ∗ 𝒓𝒂 ∗ 𝒅𝒅 18 54.51 3.03 0.58 0.913 

Error 192 1006.54 5.24 

Total 239 19618.65 
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APPENDIX F – The effect of vehicle sharing with DP policy and the 

HHSRP-STD solutions 

In Chapter 5.5, we discussed the effect of the vehicle sharing with DP policy on 

total flow time by comparing the solutions of the HHSRP-STD with the HHSRP-VS. 

In this appendix, Tables F.1 through F.4 demonstrates the solutions obtained by the 

ALNS-STD. In the following tables, the “Best-found” and “Avg.” columns indicate 

the objective values of the best-found and the averages of the best solutions found in 

five replications by the ALNS-STD, respectively. The column “ALNS-VS” shows the 

best-found solution by the ALNS-VS. The column “ADD” presents the increase in 

total working time of the caregivers caused by the vehicle sharing with DP policy, 

which is simple the different between the best-found solutions of ALNS-STD and 

ALNS-VS. Moreover, the column “𝐵𝐸𝑅" demonstrates the break-even ratios. 

Table F. 15. ALNS-STD solutions and break-even ratios for 10-patient instances. 

Instance Best-found Avg. ALNS-VS ADD 𝑩𝑬𝑹  

h10_10_0_0 174.62 174.62 240.54 65.92 1.2 

h10_10_0_1 178.48 178.48 254.28 75.8 1.5 

h10_10_0_2 177.72 177.72 232.1 54.38 0.9 

h10_10_0_3 176.36 176.36 255.76 79.4 1.6 

h10_10_0_4 176.15 177.454 217.24 41.09 0.6 

h10_10_1_0 195.87 196.798 256.26 60.39 0.9 

h10_10_1_1 200.48 200.48 281.98 81.5 1.4 

h10_10_1_2 199.72 199.72 243.04 43.32 0.6 

h10_10_1_3 198.36 198.36 271.96 73.6 1.2 

h10_10_1_4 198.15 198.15 237.54 39.39 0.5 

h10_10_2_0 226.87 227.17 278.02 51.15 0.6 

h10_10_2_1 231.48 231.48 308.08 76.6 1 

h10_10_2_2 230.72 230.72 276.56 45.84 0.5 

h10_10_2_3 229.36 229.36 306.36 77 1 

h10_10_2_4 229.15 230.454 279.24 50.09 0.6 

h10_20_0_0 236 237.986 371.66 135.66 2.7 

h10_20_0_1 243.81 243.81 401.04 157.23 3.6 

h10_20_0_2 242.07 242.07 369.14 127.07 2.2 

h10_20_0_3 236.34 236.34 384.52 148.18 3.4 

h10_20_0_4 240.78 242.842 339.46 98.68 1.4 

h10_20_1_0 258 259.344 379.22 121.22 1.8 

h10_20_1_1 265.81 265.81 413.12 147.31 2.5 

h10_20_1_2 264.07 264.07 391.6 127.53 1.9 
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Instance Best-found Avg. ALNS-VS ADD 𝑩𝑬𝑹 

h10_20_1_3 258.34 258.34 397.7 139.36 2.3 

h10_20_1_4 262.78 266.904 356.78 94 1.1 

h10_20_2_0 290.68 291.322 440.16 149.48 2.1 

h10_20_2_1 296.81 296.81 466.62 169.81 2.7 

h10_20_2_2 295.07 295.07 437.02 141.95 1.9 

h10_20_2_3 289.34 289.34 433.98 144.64 2 

h10_20_2_4 293.78 298.466 380.64 86.86 0.8 

h10_30_0_0 296.95 299.102 472.46 175.51 2.9 

h10_30_0_1 311.45 311.45 527.26 215.81 4.5 

h10_30_0_2 307.78 308.232 500.28 192.5 3.3 

h10_30_0_3 301.45 301.45 504.56 203.11 4.1 

h10_30_0_4 306.31 314.118 449.6 143.29 1.8 

h10_30_1_0 318.95 321.102 519.86 200.91 3.4 

h10_30_1_1 333.45 333.45 544.58 211.13 3.5 

h10_30_1_2 329.78 330.684 554.74 224.96 4.3 

h10_30_1_3 323.45 323.45 527.82 204.37 3.4 

h10_30_1_4 328.31 331.506 484.16 155.85 1.8 

h10_30_2_0 349.95 352.102 538.44 188.49 2.3 

h10_30_2_1 364.45 364.45 607.64 243.19 4 

h10_30_2_2 360.78 360.78 577.62 216.84 3 

h10_30_2_3 354.45 354.45 548.68 194.23 2.4 

h10_30_2_4 359.31 367.118 496.08 136.77 1.2 

h10_40_0_0 358.74 360.948 567.26 208.52 2.8 

h10_40_0_1 380.51 380.51 644.64 264.13 4.5 

h10_40_0_2 371.65 371.818 614.5 242.85 3.8 

h10_40_0_3 364.31 364.31 619.24 254.93 4.7 

h10_40_0_4 369.18 369.18 551.8 182.62 2 

h10_40_1_0 383.5 383.5 614.74 231.24 3 

h10_40_1_1 402.51 402.51 665.44 262.93 3.8 

h10_40_1_2 393.65 393.734 678.02 284.37 5.2 

h10_40_1_3 386.31 386.31 650.3 263.99 4.3 

h10_40_1_4 391.18 391.18 600.48 209.3 2.3 

h10_40_2_0 411.74 413.396 640.18 228.44 2.5 

h10_40_2_1 433.51 433.51 743.28 309.77 5 

h10_40_2_2 424.65 424.734 704.28 279.63 3.9 

h10_40_2_3 417.31 417.31 666.2 248.89 3 

h10_40_2_4 422.18 422.18 600.7 178.52 1.5 
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Table F.16. ALNS-STD solutions and break-even ratios for 30-patient instances. 

Instance Best-found Avg. ALNS-VS ADD 𝑩𝑬𝑹  

h30_10_0_0 453 458.258 548.5 95.5 0.5 

h30_10_0_1 463.61 465.666 571.6 107.99 0.6 

h30_10_0_2 462.48 462.48 552.34 89.86 0.5 

h30_10_0_3 459.45 459.45 571.22 111.77 0.6 

h30_10_0_4 459.04 460.506 559.58 100.54 0.6 

h30_10_1_0 495.53 498.028 604.16 108.63 0.6 

h30_10_1_1 507.18 507.18 614.22 107.04 0.5 

h30_10_1_2 503.48 503.48 604.38 100.9 0.5 

h30_10_1_3 500.45 500.45 597.14 96.69 0.5 

h30_10_1_4 500.18 503.552 597.98 97.8 0.5 

h30_10_2_0 570.34 570.618 664.76 94.42 0.4 

h30_10_2_1 579.18 579.18 665.44 86.26 0.3 

h30_10_2_2 575.48 575.48 671.58 96.1 0.4 

h30_10_2_3 572.45 572.45 652.6 80.15 0.3 

h30_10_2_4 572.04 574.7 673.22 101.18 0.4 

h30_20_0_0 558.61 568.012 769.9 211.29 1.2 

h30_20_0_1 584.3 585.54 795.58 211.28 1.1 

h30_20_0_2 567.59 567.59 818.36 250.77 1.6 

h30_20_0_3 565.78 565.78 767.94 202.16 1.1 

h30_20_0_4 568.84 569.57 777.32 208.48 1.2 

h30_20_1_0 599.59 606.06 816.72 217.13 1.1 

h30_20_1_1 626.85 626.85 866.12 239.27 1.2 

h30_20_1_2 608.59 608.59 808.28 199.69 1 

h30_20_1_3 602.05 605.834 785.9 183.85 0.9 

h30_20_1_4 609.84 610.996 808.82 198.98 1 

h30_20_2_0 681.03 682.112 874.98 193.95 0.8 

h30_20_2_1 698.62 698.804 923.62 225 1 

h30_20_2_2 680.59 680.59 894.72 214.13 0.9 

h30_20_2_3 678.78 678.78 849.02 170.24 0.7 

h30_20_2_4 681.84 681.98 883.88 202.04 0.8 

h30_30_0_0 660.92 674.008 959.54 298.62 1.6 

h30_30_0_1 695.92 701.784 1039.02 343.1 1.9 

h30_30_0_2 682.78 682.78 1053.54 370.76 2.4 

h30_30_0_3 670.36 675.106 989.12 318.76 1.8 

h30_30_0_4 670.21 673.722 967.3 297.09 1.6 

h30_30_1_0 701.5 711.156 1045.36 343.86 1.9 

h30_30_1_1 739.49 742.474 1106.12 366.63 2 

h30_30_1_2 723.78 723.78 1047.8 324.02 1.6 

h30_30_1_3 714.99 717.03 996.64 281.65 1.3 

h30_30_1_4 715.39 715.96 1008.44 293.05 1.4 



118 

Instance Best-found Avg. ALNS-VS ADD 𝑩𝑬𝑹 

h30_30_2_0 777.77 782.312 1069.3 291.53 1.2 

h30_30_2_1 808.21 814.642 1163.3 355.09 1.6 

h30_30_2_2 795.78 795.78 1144.22 348.44 1.6 

h30_30_2_3 782.59 788.15 1057.34 274.75 1.1 

h30_30_2_4 783.21 790.366 1074.72 291.51 1.2 

h30_40_0_0 766.48 781.078 1163.52 397.04 2.1 

h30_40_0_1 825.43 825.43 1249.28 423.85 2.1 

h30_40_0_2 795.25 795.25 1274.94 479.69 3 

h30_40_0_3 774.98 783.276 1179.64 404.66 2.2 

h30_40_0_4 783.67 785.854 1190.08 406.41 2.2 

h30_40_1_0 813.49 824.638 1253.14 439.65 2.4 

h30_40_1_1 854.28 863.888 1328.04 473.76 2.5 

h30_40_1_2 836.25 836.25 1273.12 436.87 2.2 

h30_40_1_3 817.26 824.532 1224.14 406.88 2 

h30_40_1_4 824.67 826.168 1217.12 392.45 1.8 

h30_40_2_0 886.1 898.558 1298.9 412.8 1.7 

h30_40_2_1 938.82 941.416 1413.4 474.58 2 

h30_40_2_2 908.25 908.25 1348.32 440.07 1.9 

h30_40_2_3 889.25 896.53 1306.24 416.99 1.8 

h30_40_2_4 900.97 905.218 1247.14 346.17 1.2 

 

Table F. 17. ALNS-STD solutions and break-even ratios for 50-patient instances. 

Instance Best-found Avg. ALNS-VS ADD 𝑩𝑬𝑹  

h50_10_0_0 746.2 748.994 909.82 163.62 0.6 

h50_10_0_1 737.77 740.464 930.92 193.15 0.7 

h50_10_0_2 750.24 751.108 942.04 191.8 0.7 

h50_10_0_3 728.15 728.83 889.4 161.25 0.6 

h50_10_0_4 743.15 743.412 913.76 170.61 0.6 

h50_10_1_0 883.15 885.794 1070.26 187.11 0.5 

h50_10_1_1 877.17 879.13 1072.84 195.67 0.6 

h50_10_1_2 886.61 888.376 1053.3 166.69 0.5 

h50_10_1_3 866.48 866.726 1021 154.52 0.4 

h50_10_1_4 880.15 880.15 1030.02 149.87 0.4 

h50_10_2_0 1035.15 1039.146 1211.42 176.27 0.4 

h50_10_2_1 1028.57 1029.176 1219.42 190.85 0.5 

h50_10_2_2 1038.61 1040.694 1216.24 177.63 0.4 

h50_10_2_3 1016.5 1017.502 1183 166.5 0.4 

h50_10_2_4 1032.15 1032.462 1207.66 175.51 0.4 

h50_20_0_0 937.06 943.964 1267.5 330.44 1.1 
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Instance Best-found Avg. ALNS-VS ADD 𝑩𝑬𝑹 

h50_20_0_1 926.25 927.85 1299.14 372.89 1.3 

h50_20_0_2 945.51 947.582 1301.56 356.05 1.2 

h50_20_0_3 902.41 904.42 1176.6 274.19 0.9 

h50_20_0_4 932.87 932.992 1280.86 347.99 1.2 

h50_20_1_0 1074.06 1078.708 1406.52 332.46 0.9 

h50_20_1_1 1062.65 1065.992 1382.12 319.47 0.9 

h50_20_1_2 1081.11 1084.184 1465.96 384.85 1.1 

h50_20_1_3 1041.12 1041.964 1331.9 290.78 0.8 

h50_20_1_4 1069.87 1070.314 1383.84 313.97 0.8 

h50_20_2_0 1232.82 1234.888 1591.36 358.54 0.8 

h50_20_2_1 1214.65 1217.674 1588.36 373.71 0.9 

h50_20_2_2 1232.91 1235.188 1602.74 369.83 0.9 

h50_20_2_3 1191.41 1192.21 1465.66 274.25 0.6 

h50_20_2_4 1221.87 1222.142 1544.46 322.59 0.7 

h50_30_0_0 1127.57 1134.43 1569.1 441.53 1.3 

h50_30_0_1 1113.81 1114.642 1598.98 485.17 1.5 

h50_30_0_2 1146.2 1148.628 1679.3 533.1 1.7 

h50_30_0_3 1083.84 1083.84 1504.66 420.82 1.3 

h50_30_0_4 1126.6 1126.748 1621.08 494.48 1.6 

h50_30_1_0 1264.09 1270.016 1723.9 459.81 1.1 

h50_30_1_1 1245.67 1249.818 1746.08 500.41 1.3 

h50_30_1_2 1282.39 1286.464 1808.54 526.15 1.4 

h50_30_1_3 1220.84 1220.84 1625.76 404.92 1 

h50_30_1_4 1263.6 1263.748 1744.46 480.86 1.2 

h50_30_2_0 1415.99 1417.878 1836.42 420.43 0.8 

h50_30_2_1 1398.58 1400.946 1938.74 540.16 1.3 

h50_30_2_2 1435.2 1437.736 1980.06 544.86 1.2 

h50_30_2_3 1372.84 1372.84 1764.08 391.24 0.8 

h50_30_2_4 1415.97 1415.972 1931.36 515.39 1.1 

h50_40_0_0 1320.89 1331.308 1871.68 550.79 1.4 

h50_40_0_1 1312.33 1314.804 1971.42 659.09 2 

h50_40_0_2 1344.03 1347 2012.02 667.99 2 

h50_40_0_3 1260.57 1260.57 1774.16 513.59 1.4 

h50_40_0_4 1316.06 1316.356 1950.78 634.72 1.9 

h50_40_1_0 1455.25 1461.442 2047.46 592.21 1.4 

h50_40_1_1 1442.72 1449.804 2071.16 628.44 1.5 

h50_40_1_2 1480.74 1485.04 2144.36 663.62 1.6 

h50_40_1_3 1397.57 1397.57 1914.2 516.63 1.2 

h50_40_1_4 1456.25 1456.724 2080.46 624.21 1.5 

h50_40_2_0 1607.25 1614.2 2287.3 680.05 1.5 

h50_40_2_1 1596.03 1605.192 2292.64 696.61 1.5 

h50_40_2_2 1629.6 1639.234 2352.22 722.62 1.6 
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Instance Best-found Avg. ALNS-VS ADD 𝑩𝑬𝑹 

h50_40_2_3 1549.86 1550.606 2056.96 507.1 1 

h50_40_2_4 1608.71 1608.71 2290.88 682.17 1.5 

 

Table F. 18. ALNS-STD solutions and break-even ratios for 100-patient instances. 

Instance Best-found Avg. ALNS-VS ADD 𝑩𝑬𝑹 

h100_10_0_0 1581.67 1589.786 1975.94 394.27 0.7 

h100_10_0_1 1562.52 1565.392 2051.56 489.04 0.9 

h100_10_0_2 1580.38 1585.93 2041.64 461.26 0.8 

h100_10_0_3 1578.2 1580.2 2013.56 435.36 0.8 

h100_10_0_4 1601.76 1604.676 1967.94 366.18 0.6 

h100_10_1_0 1914.49 1923.402 2382.64 468.15 0.6 

h100_10_1_1 1902.53 1905.818 2326.82 424.29 0.6 

h100_10_1_2 1917.37 1921.808 2388.9 471.53 0.7 

h100_10_1_3 1920.82 1924.34 2327.8 406.98 0.5 

h100_10_1_4 1945.25 1947.224 2377.38 432.13 0.6 

h100_10_2_0 1999.24 2007.968 2492.14 492.9 0.7 

h100_10_2_1 1985.6 1988.07 2413.36 427.76 0.5 

h100_10_2_2 2000.53 2004.33 2480.8 480.27 0.6 

h100_10_2_3 1998.01 2003.274 2457.34 459.33 0.6 

h100_10_2_4 2014.43 2023.398 2477.34 462.91 0.6 

h100_20_0_0 1969.03 1981.914 2657.8 688.77 1.1 

h100_20_0_1 1934.91 1948.976 2681.96 747.05 1.3 

h100_20_0_2 1970.49 1979.106 2611.18 640.69 1.0 

h100_20_0_3 1969.34 1977.528 2629.6 660.26 1.0 

h100_20_0_4 1994.69 2011.222 2717.9 723.21 1.1 

h100_20_1_0 2304.3 2325.934 3024.92 720.62 0.9 

h100_20_1_1 2281.08 2293.752 3003.9 722.82 0.9 

h100_20_1_2 2311.35 2319.314 3036.4 725.05 0.9 

h100_20_1_3 2303.47 2315.992 3078.32 774.85 1.0 

h100_20_1_4 2340.27 2346.596 3090.96 750.69 0.9 

h100_20_2_0 2393.9 2406.694 3175.98 782.08 1.0 

h100_20_2_1 2362.11 2370.542 3134.16 772.05 1.0 

h100_20_2_2 2399.61 2403.952 3139.24 739.63 0.9 

h100_20_2_3 2385.63 2400.682 3082.96 697.33 0.8 

h100_20_2_4 2417.54 2427.548 3173.98 756.44 0.9 

h100_30_0_0 2365.8 2373.264 3273.16 907.36 1.2 

h100_30_0_1 2330.76 2339.942 3398.24 1067.48 1.7 

h100_30_0_2 2370.46 2382.284 3241.28 870.82 1.2 

h100_30_0_3 2352.21 2373.962 3191.18 838.97 1.1 

h100_30_0_4 2413.79 2422.82 3398.52 984.73 1.4 

h100_30_1_0 2688.06 2712.556 3702.12 1014.06 1.2 

h100_30_1_1 2668.54 2686.552 3713.72 1045.18 1.3 

h100_30_1_2 2698.58 2711.902 3647.28 948.7 1.1 

h100_30_1_3 2700.64 2713.372 3586.44 885.8 1.0 

h100_30_1_4 2756.39 2767.222 3735.9 979.51 1.1 

h100_30_2_0 2774.43 2785.114 3875.58 1101.15 1.3 

h100_30_2_1 2761.99 2768.014 3829.38 1067.39 1.3 

h100_30_2_2 2770.29 2796.816 3692.94 922.65 1.0 

h100_30_2_3 2781.12 2793.006 3736.7 955.58 1.0 

h100_30_2_4 2822.4 2839.694 3783.46 961.06 1.0 
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Instance Best-found Avg. ALNS-VS ADD 𝑩𝑬𝑹 

h100_40_0_0 2746.65 2768.802 3872.08 1125.43 1.4 

h100_40_0_1 2689.58 2713.964 3937.38 1247.8 1.7 

h100_40_0_2 2772.4 2788.034 4027.06 1254.66 1.7 

h100_40_0_3 2758.07 2768.694 3882.64 1124.57 1.4 

h100_40_0_4 2813.14 2845.296 4122.08 1308.94 1.7 

h100_40_1_0 3091.39 3099.684 4447.4 1356.01 1.6 

h100_40_1_1 3061.43 3079.758 4386.1 1324.67 1.5 

h100_40_1_2 3120.62 3139.544 4396.34 1275.72 1.4 

h100_40_1_3 3090.52 3098.836 4295.88 1205.36 1.3 

h100_40_1_4 3167.35 3179.958 4479.1 1311.75 1.4 

h100_40_2_0 3171.75 3193.064 4545.96 1374.21 1.5 

h100_40_2_1 3136.95 3164.082 4480.66 1343.71 1.5 

h100_40_2_2 3188.39 3212.272 4612.04 1423.65 1.6 

h100_40_2_3 3151.92 3170.768 4369.82 1217.9 1.3 

h100_40_2_4 3220.08 3245.284 4668.38 1448.3 1.6 

 

 

 


