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ABSTRACT

HOME HEALTHCARE SCHEDULING AND ROUTING PROBLEMS

Ozsakalli, Gokberk
PHD, Business Administration
Advisor: Assoc. (PhD) Omer OZTURKOGLU
November 2023

This study introduces a new generic problem to the literature of Home Healthcare
Scheduling and Routing Problem (HHSRP). Home healthcare is a cost-effective
healthcare practice that can ease the burden on the healthcare system while providing
comfortable service to the patients at their home environment. HHSRP involves
assigning caregivers to patients and optimizing their schedules and routes to minimize
total cost or the total working time of caregivers. In this new problem, multiple workers
are assigned to a shared vehicle based on their qualifications and patient demands, and
then the route is formed so that a traveler may be dropped off and picked up later to
minimize total flow time. We introduced a mixed-integer linear programming model
for the problem. To solve the problem, we developed an Adaptive Large Neighborhood
Search (ALNS) algorithm with problem-specific heuristics and a decomposition-based
constructive upper bound algorithm (UBA). To analyze the impact of the introduced
policies, we considered some problem characteristics such as service area, difficulty
of service, distribution of care, and number of demand nodes in an area. The
implementation of the proposed drop-off and pick-up (DP) policy results in up to 25%
reduction in total flow time compared to solutions in vehicle sharing without DP. The
numerical break-even analysis showed that vehicle sharing with DP policy provides
savings in total service cost, especially when demand nodes are located in small areas

like in urban areas and the difficulty of service requirement increases.

keywords: scheduling and routing; home healthcare; workforce scheduling; vehicle

sharing; drop-off and pick-up
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EVDE SAGLIK HIZMETLERI CiZELGELEME VE ROTALAMA
PROBLEMERI

Ozsakalli, Gokberk
Doktora Tezi, isletme
Danisman: Dog Dr. Omer OZTURKOGLU
Kasim 2023

Bu calisma, evde saglik hizmeti ¢izelgeleme ve rotalama (ESHCRP) literatiiriine yeni
bir bakis acistyla sunulmus bir problem 6nermektedir. Evde saglik hizmetleri uygun
maliyetli, saglik sistem {izerindeki yiikii hafifletirken hastalara ev ortamlarinda rahat
bir tedavi sunan hizmetlerdir. ESHCRP saglik gorevlilerinin miisterilere atanmasi ve
toplam maliyeti veya saglik gorevlilerinin toplam c¢alisma siiresini en azlayacak
cizelgeleme ve rotalama planlarinin optimizasyonunu igermektedir. Bu yeni
problemde, saglik gorevlilerinin yetenek ve hasta talepleri dikkate alinarak ayni araca
atanmasina izin verilmektedir. Aym1 zamanda, saglik gorevlilerinin, toplam akis
zamaninda azalma saglandig1 siirece bir hastada birakilip servis zamani bittiginde
birakilan hastadan aym arag tarafindan alinmasi1 miimkiin kilinmaktadir. Onerilen bu
problemin kisitlar1 ve varsayimlarimi dikkate alan bir karma-tamsayili lineer
programlama modeli gelistirilmistir. Ayrica, daha biiylik verilerin ¢dziilmesini
saglayan bir Adaptif Biiylik Komsuluk Arama algoritmasi (ABKA) ve dekomposizyon
temelli bir konstriiktif iist smr algoritmasi (USA) gelistirilmistir. Onerilen
politikalarin analizinin yapilabilmesi ic¢in yeni veri kiimeleri iiretilmistir. Bu veri
kiimelerinde, problemin, servis alan biiylikliigii, servisin zorlugu ve toplam talep
diigiim sayilar1 gibi 6zellikler dikkate alinmistir. Onerilen birak-al politikasinin, birak-
al politikas1 olmayan c¢oziimlere kiyasla ortalama %25 iyilestirme sagladigi
goriilmiistiir. Yapilan basa-bas nokta analizleri, birak-al politikasinin toplam
operasyonel maliyetleri, servis alaninin daha kiiciik ve servis zorlugunun daha yiiksek

oldugu durumlarda klasik politikalara gore azalttigini géstermistir.

Anahtar Kelimeler: cizelgeleme ve rotalama, evde saglik hizmetleri, isgiicii
cizelgeleme ve rotalama, arag paylasimi, birak-al politikasi
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CHAPTER 1
INTRODUCTION

This thesis aims to propose a novel variant of home healthcare scheduling and routing
problem (HHSRP) to the existing literature. Home healthcare (HHC) services
encompass a diverse range of medical and clinical care provided to patients within
their own homes. According to World Health Organization (WHO, 2015), the type of
healthcare services that HHC can provide summarized as medical and psychological
assessment, wound care, medication education, pain and disease management, and
physical therapy. The provision of these services is carried out by healthcare
professionals who meet the necessary qualifications. HHC can also be viewed as a
form of transitional care in which it provides supplementary healthcare services for

discharged patients in need of ongoing medical treatments.

The demand for HHC services has been steadily rising all around the world. One of
the main reasons of the increase is closely associated with the ageing population, the
increase in the percentage of elderly people, and increasing life expectancy. It is
estimated that the number of elder people is projected to more than double reaching
over 1.5 billion people over the age of 65 in 2050 (United Nations, 2019). Additionally,
increase in the ageing population has also changed the burden of illnesses from acute
life-threatening diseases to chronic disabling diseases (WHO, 2015). This shift poses
significant challenges that needs to be addressed by governments and healthcare
systems due to the associated increase in long-term care and medical costs (Crimmins,
2004). Consequently, HHC services have emerged as an important alternative to
traditional healthcare systems. According to U.S. Labor’s projections for 2014-2024,
home healthcare services are expected to grow 60% with an additional 800 thousand
new jobs. HHC can provide personalized services at low cost, not only for the elderly
or disabled people but also to individuals those requiring assistance during recovery

from an illness or injury in a familiar environment after getting treatment at the hospital.

Furthermore, during the recent global pandemic of COVID-19, HHC workers have

played an essential role as frontline personnel in various countries (Bowles et al., 2021).
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In addition to attending to routine and private healthcare requirements of patients who
are unable or disinclined to seek hospital-based care due to the inherent risk of
contracting COVID-19 (Sama et al., 2021), the HHC workers had undertaken the
responsibility of administering a wide range of healthcare services to COVID-19
patients. These patients, who either received home-based treatment or were discharged
from hospitals and require medical care in self-isolation protocols, received necessary
medical care and support from HHC workers within the familiar environment of their

own residences.

For these reasons, researchers have been increasing their attention to design efficient
HHC systems and find improved management approaches by engaging in decision-
making processes at different stages of the system. HHC systems consist of three
primary groups which are healthcare providers, caregivers, and patients. The problem
becomes extremely complex when considering the diverse and multifaceted
preferences and constraints of each group. Healthcare providers must consider crucial
factors such as the geographical region of HHC service provision, the number and
qualification of caregivers, service quality, and overall operational costs. Furthermore,
caregivers are typically bound by diverse contractual arrangements that determine
salaries and working hours, alongside their distinct areas of expertise which dictate the
scope of medical services they can provide. Lastly, patients introduce key constraints
including the type of medical treatments required, preferred time windows for service
delivery, and personal preferences. As these multifarious elements are considered, the

complexity of the HHC system increases exponentially (Polnik et al., 2021).

HHC systems have three level problems, including strategic, tactical, and operational.
Location planning, territory partitioning and resource allocation to the territories are
strategic level problems that need to be considered. Tactical level consists of demand
forecasting and resource dimensioning problems. A recent literature review on the
strategic and tactical level studies is published by Chabouh et al. (2023). Two main
problems need to be solved every day by decision-makers at HHC institutions at the
operational phase. The first problem is an assignment problem which involves
determining the appropriate allocation of caregivers to patients based on
considerations of caregivers’ skills and specialties, as well as patients’ specific
requirements. The second problem involves scheduling and routing of these assigned

caregivers, which is referred to as the home healthcare scheduling and routing problem



(HHSRP) in the literature. In the literature, these two problems are considered
simultaneously with the help of Operations Research tools. Consequently, in the
HHSRP, decision-makers try to find an efficient route and schedule for caregivers
while simultaneously assigning them to patients with the objective of minimizing

travel and service costs.

However, mismanagement in scheduling and routing caregivers can lead to unserved
or delayed patients, patient dissatisfaction, increased working hours for caregivers, and
high travel and service costs. For instance, according to Holm and Angelsen (2014),
caregivers in Norway spend approximately 18% to 26% of their working time traveling
in vehicles. Consequently, they face a heightened risk of motor vehicle-related injuries
and a potential loss of productivity due to time spent driving (Weerdt and Baratta,

2015).

In this study, a novel vehicle sharing policy is proposed to minimize total operational
costs and increase the efficiency of HHC providers. The proposed policy allows
caregivers to share the same vehicle when visiting patients. To the best of our
knowledge, the existing literature does not explore the vehicle sharing approach among
caregivers. By enabling the vehicle sharing, the number of required vehicles to operate
the system can be significantly reduced. However, it is important to address potential
drawbacks such as unnecessary waiting times for caregivers which can decrease their
productivity. To mitigate the issue, a “drop and pick-up policy” is proposed, allowing
caregivers to be dropped off be the vehicle at a patient’s location to minimize waiting
times, and subsequently picked up by the vehicle once their service is completed.
These proposed policies introduce a new vehicle sharing approach for HHSRP

literature.

The problem addressed in this study is referred to as the Home Healthcare Scheduling
and Routing Problem with Vehicle Sharing (HHSRP-VS). The novel vehicle sharing
approach presented herein contributes not only to the existing HHSRP literature but

also to the broader field of workforce scheduling and routing problem (WSRP).

To examine the effectiveness of the policy across various scenarios, a mixed-integer
linear programming is formulated, taking into account both vehicle sharing and drop
and pick-up policies. However, due to the extension of these additional policies,

HHSRP-VS becomes extremely complex and challenging to solve. Therefore, this



study introduces two solution approaches to tackle this complexity: a constructive
matheuristic upper-bound algorithm and an Adaptive Large Neighborhood Search
(ALNS) algorithm with problem-specific local search heuristics. These algorithms are
designed to generate efficient solutions for the HHSRP-VS, overcoming the
computational difficulties posed by the extended policies. In addition, a Home
Healthcare Decision Support System (HHDSS) is presented in this study. HHDSS is
designed to support HHC planners with the daily task of scheduling and routing of
caregivers. The HHDSS employs the proposed algorithm to optimize the caregivers'
routes. It is tested on instances generated using data of COVID-19 patients from the

biggest cities of Turkey.



CHAPTER 2
HOME HEALTHCARE SCHEDULING AND ROUTING PROBLEM
WITH VEHICLE SHARING

Despite gaining popularity two decades ago, the provision of HHC services has a
historical foundation dating back several centuries. Informal HHC services were
traditionally provided by family members, religious institutions (Tarricone and
Tsouros, 2008), as well as traveling physicians and nurse-midwives (Isik, 2016).
During the 19th century, hospital care served as the primary source of healthcare for
older individuals, children, disabled individuals, and those with mental disorders.
However, efforts to reduce long-term hospital stays for the elderly and children, while
improving the quality of home care, have been underway since the 1960s (Tarricone
and Tsouros, 2008). Alternative approaches such as community care, continuous care,
and home-based care have been proposed to alleviate the dependence on hospital-

based care.

Additionally, changes in lifestyle trends (Jacobzone et al., 1999), smaller family sizes
(Nasir and Dang, 2020), and increased labor market participation by women (Tarricone
and Tsouros, 2008) have contributed to a decline in the provision of informal home
care (Genet et al., 2011). Consequently, the growing demand for care resulting from
an aging population, coupled with the diminished availability of informal care, has led

to the expansion of formal home healthcare services.

The terms "home care" or "social care" and "home healthcare" are often used
interchangeably in the literature. However, the distinction between home care and
home healthcare lies in the nature of the services provided at home (Tarricone and
Tsouros, 2008). Home care encompasses household tasks such as shopping, cooking,
and cleaning, as well as socialization and personal care such as assistance with dressing
and bathing. These activities serve as substitutes for informal care and are typically
provided by social service sectors or family members, predominantly catering to older

individuals. On the other hand, home healthcare services primarily involve



rehabilitation, physical and occupational therapy, health promotion, disease prevention,

and physiotherapy (see Table 2.1).

Table 2.1. Differences between home care and HHC

Home Care Services HHC services

Companionship Physical and occupational therapy

Assistance with activities

o Medical tests
of daily living
Meal preparation or Administration of prescription
delivery medications or shots

Transportation to y
‘ Monitoring of health status
appointments

Cleaning and organizing Wound care

2.1. Home Healthcare Systems in Turkey

In Turkey, the foundations of HHC services were established in 1961 with the
Socialization of Health Services law. This legislation emphasized the importance of
centralizing healthcare services, ensuring an equal distribution of caregivers across the
country, and extending HHC services to rural areas with insufficient hospital bed
capacity. However, the implementation of HHC services similar to those introduced in
developed Western countries only began in 2005 with the adoption of the Healthcare
Transformation Program. The Home Care Service Delivery Decree was subsequently
published in the Official Gazette on March 10, 2005, which outlined the regulations
for healthcare institutions offering home care services as an independent business
activity or as part of medical centers, specialized centers, polyclinics, or private
hospitals. Changes made to the Disability Law and Other Statutory Decrees on July 1,
2005, also emphasized the preference for home-based disability care whenever

possible, with the state covering the cost of home care for eligible individuals.

The Ministry of Health published the Directive on the Procedures and Principles of
Home Healthcare Services in 2010, with the aim of providing examination, testing,
treatment, medical care, rehabilitation services, and comprehensive social and

psychological support within the familial atmosphere of patients' homes. Home



healthcare services are offered by educational and research hospitals, home healthcare
service units within general or specialized hospitals, social health centers, family
health centers, and family doctors. The coordination and management of these services,
along with communication and collaboration among units, are facilitated through a
coordination center established within the directorate, supervised by a healthcare

associate director.

Finally, the Regulation on the Presentation of Home Healthcare Services was
published by the Ministry of Health in 2023. This new regulation introduces various
key changes and developments in the provision of HHC services. The scope of HHC
service provision has been expanded, with the establishment of standards regarding
personnel, vehicle, and equipment capacity to meet the increasing demand.
Additionally, the standardized requirements for both short-term and long-term HHC

services, and eligible patient groups are defined.

2.2. Key Characteristics of Home Healthcare System

As stated by many studies (Carpenter et al., 2004; Genet et al., 2011; Kristinsdottir et
al., 2021) the definition and scope of HHC can significantly vary between countries as
well as within countries (MacAdam, 2004; van Hout et al., 2019). This subchapter
examines the key characteristics of HHC systems across different countries. The
various aspects of HHC systems can be analyzed under three key characteristics: the
type of HHC providers, the sources of funding, and regulation of HHC benefits. A
comprehensive discussion on this topic can be found in (Genet et al., 2011; Genet et

al., 2012a and van Enoo et al., 2016).

2.2.1. Type of Providers

Diftferent kind of HHC service provider models can be found in each country, including
public, private (both not-for-profit and for-profit) organizations, and a mix of these.
The provision of HHC services is predominantly carried out by non-profit
organizations in both the public and private sectors. The exception is observed in
Germany, where 63% of the organizations are private for-profit (van Enoo et al., 2016).
However, it is stated that the share of private for-profit providers shows an increasing
trend for the service provision in the other countries including England (Netten et al.,

2007), Ireland (Timonen and Doyle, 2008), Sweden (Sundstrom et al., 2002), as well



as Turkey (Aslan et al., 2018). Additionally, even though private service provision is
growing in the Netherlands, there is also a notable emergence of a new trend of
neighborhood-centered HHC services. This trend has developed in response to the
dissatisfaction of professional providers (Genet and Boerma, 2012). Kendall et al.
(2003) and Bode (2006) argue that the introduction of market mechanisms has resulted
in the weakening of non-profit organizations. On the other hand, for-profit providers

have demonstrated greater adaptability to the changes.

According to Genet et al. (2012b), there are three types of government models on
regulating provision of HHC services defined as centralized type, framework type, and
laissez-faire type. Centralized type is defined by the prominent role of the central
government which regulates the scope of services and strict eligibility criteria.
Regional authorities are primarily responsible for implementing the policies set by the
central government. Framework type is characterized by a combination of national
regulations, and decentralized decision making. Often, general principals are defined
without strict boundaries. Therefore, the provision of HHC services may vary largely
within the countries. Lastly, unlike the centralized type, the central government has
minimal role in the regulations of the services in the laissez-faire type. However, lack
of regulations on private providers may result in provision of poor quality services,
and inequalities in the working conditions of HHC workers (Netten et al., 2007;
Timonen and Doyle, 2008). The summary of different governance types can be found

in Table 2.2.

2.2.2. Sources Of Funding

In general, different types of sources are used for funding public HHC systems,
including general taxation, budgets of municipalities, private payments, and social
insurances (Genet et al., 2011). Taxes serve as primary public funding source in most
of the countries such as Denmark (Stuart and Hansen, 2006), Portugal (Santana et al.,

2007), and Iceland (Hutchinson, 2012), with the exception of Germany.

The other mainly used public funding source is social insurance. HHC is funded
through either part of the compulsory health insurance as seen in the Netherlands
(Genet and Boerma, 2012) and in Germany (Garms-Homolova, 2012) or as part of

social security.



Table 2.2. Main Types of HHC governance

Centralized

Framework

Laissez-faire

Features

Dominant role of
national government.
Detailed entitlements
set by national
government. National

vision on home care

Non-state actors have
wide decision-making
power.

National vision on home

carc

Weak role of central
government.
No government vision.

Few entitlements

Actors

Central government
lays down detailed
regulation.

Municipal or regional
government has main
involvement in
operational activities.
Private providers may

be strictly regulated.

Central government lays
down regulation along
broad lines.

Municipal or regional
governments have large
discretionary powers.
NGOs may have large

roles.

NGOs setting their own
rules or contracted
sporadically by
government.

Private providers setting

their own rules and helping

those who can afford.
Government for most

SEvEre cases.

Main policy issues

Efficiency.

Maintaining equity

Equity

Equity.

Quality in general

Note. From Genet et al. (2012b), p.38.

In general, only certain HHC services is eligible for public funds. For example, HHC
services are nationally funded for elderly people in France (Litwin and Attias-Donfut,
2009) as well as in Turkey. On the other hand, Otero et al. (2003) argue that private
organizations are necessary for the provision of the services in Spain due to the limited

availability of public sources for the HHC service coverage.



2.2.3. Regulation of HHC benefits and workers

Provision of HHC services is dependent on a set of eligibility criteria. In most of the
countries, elderly people are primary eligible recipients of these services. The
eligibility criteria typically consider the financial situation and medical condition of
the patient and the availability of the informal care (Bihan and Martin, 2006; van Hout
et al., 2019), and it is stated that the assessment process is stricter in France compared
to other European countries. HHC services are independent from the income of the
patients and are considered as universal in certain countries such as Scandinavian
countries and Turkey (Genet et al., 2011). On the other hand, age also is considered as

eligibility criteria in addition to the financial situation.

HHC is highly demanding for HHC workers (Totterdell and Holman, 2003).
Caregivers often face increased risk of motor vehicle related injuries due to driving
from patient to patient (Weerdt and Baratta, 2015). Additionally, they are prone to back
injuries and musculoskeletal disorders (Owen and Staehler, 2003; Waters et al., 2006).
Caregivers also frequently experience burnout (Meissner et al., 2007; Xanthopoulou
et al., 2007). Hence, it becomes crucial to regulate the working conditions of HHC

workers in order to increase the job satisfaction and reduce worker turnover rates.

2.3. Strengths and Weaknesses of Home Healthcare Systems

In this subchapter, the strengths, and weaknesses of HHC systems as an alternative to
institutional care are examined. Several studies state that provision of HHC services
has positive effect on patient safety and quality of living while reducing mortality rates

and costs (Caplan et al. 2012; DeCherrie et al., 2022).

Early studies state that providing healthcare services to patients in the home
environment is significantly cost effective than the provision of the same service in a
hospital (Hammond, 1979; Jones et al., 1999). However, the benefits of HHC systems
in terms of cost-effectiveness depends on the condition of patients and the provided
services (Soderstrom et al., 1999). Anttila et al. (2000) shows that the implementation
of post-discharge HHC for elderly population resulted in a cost reduction of 24% to
52% for university hospital. Similar finding reported in Miller et al. (2005) that an
early discharge rehabilitation program is cost-effective. Hammar et al. (2009)
concludes that integration of HHC services and discharge practices tend to be cost

effective. According to O’Dell and Wheeler (2012), HHC systems are found to be cost
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effective compared to extended hospitalization, and it is almost same to long-term stay

hospital stays.

Moreover, one of the most important features of HHC services is the personalized
healthcare service provision. Personalized attention of caregivers in the home
environment improves the patient satisfaction (Hughes et al., 2000; Vass et al., 2005).
Also, most of the studies in the HHSRP literature incorporate patient preferences into

their models to maximize this criterion (Eveborn et al., 2006; Rasmussen et al., 2012).

HHC services also improves the quality of living which often helps to improve
recovery time (Owen et al., 2015). In addition, Elkan et al. (2001) finds that HHC is
effective in reducing mortality rates and admission to long-term hospitalization for
elder populations. Similar finding reported in Tomita et al. (2010) that HHC services
would prevent hospitalization of elderly people with the improvements on the physical
and mental conditions. Ishibashi and Ikegami (2010) demonstrates the positive impact
of HHC services in functional decline among elderly population who receives HHC

services.

The risk of HHC related infections is a controversial topic in the literature. Haque et
al. (2020) states that hospital associated infection rate is between 5% to 15% in high
income countries, and 10% of these patients die. On the other hand, Shang et al. (2015)
finds that an average of 3.5% of patients developed infections while receiving HHC
services resulting in the need of emergency care or hospitalization in the United States.
This risk also intensified during and after COVID-19 pandemic, as expected (Burgdorf
et al., 2022). Therefore, it is extremely important to incorporate predictive risk models
in HHC services to prevent potential hospitalizations and emergency treatments

(Shang et al., 2020; Song et al., 2022).

One of the main limitations of HHC services is the restricted variety of services that
can be offered in emergency situations. The services can be provided by HHC systems
are often preventative and health promoting services rather than acute emergency care
(Keating, 1995). This restriction can pose serious challenges. Madigan (2007) and
Sears et al. (2013) find that 13% of HHC patients experience at least one adverse event
with one-third of these incident being preventable. HHC providers have responsibility

for implementing necessary strategies to increase safety of both patients and caregivers,
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and to prevent avoidable unwanted events. Furthermore, effective communication and

attention from caregivers also play a vital role (Coleman, 2003; Romagnoli et al, 2013).

Caregivers in general are lack of specialized training in providing care for patients in
a home setting (WHO, 2015; Miller et al. 2022). It is crucial for patients to receive not
only medical care but also support in addressing their social and psychological needs.
Therefore, high level of communication skills and patient support are desired in HHC
services (Isik et al., 2016). However, Cunningham et al. (2020) states that training and
education of caregivers pose challenges in HHC systems. Despite the challenges, there
are studies that propose training programs to enhance skills of caregivers that shows

promising results (Brown et al., 2010; Clair et al., 2019; Goroncy et al., 2020).

Finally, caregivers face risks due to inherent uncertain nature of the home environment
during the HHC visits. Caregivers are exposed to potential risks such as violence,
verbal abuse, and unhealthy home conditions during the provision of the care. Canton
et al. (2009) highlights the risk of violence towards caregivers, while Karlsson et al.
(2019) emphasizes the occurrence of verbal abuse. Additionally, Gershon et al. (2012)
discusses the potential hazards associated with unsanitary homes. Quinn et al. (2021)
provides a comprehensive review on weaknesses and challenges of HHC services and
offers valuable guidelines for the improvement. Strengths and weaknesses of the HHC

systems are summarized in Table 2.3.

Table 2.3. Strengths and weaknesses of HHC

Strengths Weaknesses
Cost effective Needs special training
Needs high level of

Improved quality of living o
communication

_ Limited range of services in
Reduced mortality rates o
emergency situations

Reduced infection risks in | Risks due to unpredictable nature

specific services of home environment

More appealing to patients | Risk of vehicle related injuries
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2.4. Future of Home Healthcare

HHC has emerged as a popular alternative to hospital-based care. The advantages of
HHC services are summarized in this chapter such as cost-effectiveness and reduced
risk of hospital associated infections etc. In addition, with the global shift in illnesses
from acute life-threatening diseases to chronic disabling diseases (WHO, 2015) with
the increase of ageing population, HHC services has become one of the most preferable
healthcare services. It is stated that HHC has been the fastest growing sector healthcare
sector for the past 3 decades (Jarvis, 2001; Markkanen et al., 2007; Shang et al., 2014).
Since the proportion of 65+ older is expected to increase from 16% to 27.8% in 2050
(Kristinsdottir et al., 2021), this trend of growth is expected to continue. According to
U.S. Labor of Department (2015), HHC services are expected to grow 60% by 2024.
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CHAPTER 3
HOME HEALTHCARE SCHEDULING AND ROUTING PROBLEM
WITH VEHICLE SHARING

Two distinct features of the HHSRP-VS are (1) multiple independent caregivers, who
can provide independent services to different patients, traveling in the same vehicle
and (2) a drop-off and pick-up (DP) policy implemented on a trip. Hence, the main

objective of this research is to answer the following research questions.

i.How effective are variations of the proposed caregiver swap heuristic used in

the proposed ALNS algorithm?

ii.How effective and efficient are the proposed upper bound and ALNS
algorithms compared to each other and to CPLEX solutions?

iii.How effective is the DP policy in HHSRP-VS? Under which circumstances
does DP policy provide savings on total flow time?

iv.How effective is vehicle sharing policy in HHSRP-VS? Under which
circumstances does vehicle sharing with DP policy provide savings on total

flow time and total service cost?

In this section, we first provide an extensive literature review and then formal
description of the problem. The section is concluded with the proposed mixed-integer

linear programming model of HHSRP-VS.

3.1. Literature Review

As discussed in the previous chapter, HHC service providers offer a wide range of
services to a person in need. For this purpose, staff (caregivers) with different
qualifications like general physicians, therapists, nurses, social workers, dietitians,
psychologists, etc. are employed by the providers. To travel between different patients'
locations and HHC centers, these caregivers either have their personal vehicles or use
a vehicle provided by the HHC service providers. The patients require certain types of
services, which must be performed by suitably qualified staff members. One of the

main problems facing the management of the HHC service provider is the daily
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scheduling and routing task (Borchani et al., 2019). This scheduling and routing
determine which visit will be performed, by which caregivers, and by which vehicles

(if personal vehicle is not the case).

3.1.1. Workforce Scheduling and Routing Literature

The daily scheduling of tasks and routing of caregivers in the HHC service is an
example of WSRP (Bredstrom and Ronnqvist, 2008). WSRP can be modeled as a
vehicle routing problem (VRP) with the presence of some uncommon constraints
(Cissé et al., 2017). According to Castillo-Salazar et al. (2016), assignment and
scheduling of tasks to teams or to individual workers in WSRP are done on two
different grounds. The first is that all workers have the same qualifications in which
any worker can be assigned to any job. This can be seen in the problem of scheduling
and routing security guards (Alfares & Alzahrani, 2020), electricity network
maintenance (Goel & Meisel, 2013), etc. On the other hand, there are scenarios in
which a workforce with different qualifications/skills is required and these
qualifications should be satisfied with the schedule. Examples of this are common in
industries like network infrastructures (Guastaroba et al.,, 2021), electricity
distributions (Cakirgil et al., 2020), home healthcare (Liu et al., 2017), and so forth. In
the WSRP, the demands are satisfied by either a team or an individual worker. The
main distinction between WSRP and HHSRP is team formation, which might be
required based on the nature of the tasks to be performed (Li et al., 2005). In general,
the teams are formed at the beginning of the planning horizon as to meet the
requirements of the tasks and can therefore be considered as a single entity (Cordeau
et al., 2010; Anoshkina and Meisel, 2019; Punyakum et al., 2022). In the context of
HHSRP, teaming is not a typical assignment constraint. WRSP is NP-Hard as it is a
variant of VRP. Therefore, the majority of the studies in the literature consist of
heuristic and matheuristic algorithms (Guastaroba et al., 2021). In addition, exact
algorithms typically formulate the problem as a set covering or partitioning model and
solve it wusing branch-and-price algorithms (Zamorano and Stolletz, 2017;

Schrotenboer et al., 2019; Su et al., 2023).

3.1.2. Home Healthcare Scheduling and Routing Literature

To the best of our knowledge, Begur et al. (1997) and Cheng and Rich (1998) were the
first to handle the HHSRP. Using the nearest neighborhood search heuristic approach,
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Begur et al. (1997) modeled the problem as a VRP without considering time-window
constraints and shared visits. On the other hand, Cheng and Rich (1998) modeled the
problem as a VRP with time-window constraints (VRPTW) using a the mixed-integer
linear programming (MILP) and proposed a simple solution heuristic. Since Begur et
al. (1997), researchers have been developing models and solution algorithms for
solving the variants of HHSRP. The literature on HHSRP is extensive with review
papers that provide detailed overviews and analyses of the existing research.
Comprehensive literature reviews were published recently by Di Mascolo et al. (2021),
Grieco et al. (2021) and Goodarzian et al. (2023). In addition, literature reviews of
Cisse et al. (2017), and Fikar and Hirsch (2017) provide detailed information about

fundamental characteristics of the problem and well-known studies in the literature.

As in the work of Cisse et al. (2017), constraints are grouped into three main categories
which are temporal constraints, spatial constraints, and assignments constraints. Each
category has one or more specific features. In the following, brief information about
type of constraints is given. In addition, some of the important studies regarding

HHSREP are briefly summarized according to their features in Table 3.1.

The planning horizon determines the period in which scheduling and routing plan is
made. According to Cisse et al. (2017), the length of the plan depends on the
availability of demand information. In the literature, mostly a single-day planning
horizon is considered due to the quality of the information (Eveborn et al., 2006;
Redjem and Marcon, 2016; Rest and Hirsch, 2016; Pinheiro et al., 2016; Qiu et al.,
2022). On the other hand, studies that consider multi-period planning horizon
generally consider one week planning horizon (Begur et al., 1997; Trautsamwieser and
Hirsch, 2014; Qin et al., 2015; Wirnitzer et al., 2016; Chen et al., 2016; Pereira et al.,
2020). In addition, continuity of care is an important service quality indicator for
HHSRP environment. Continuity of care constraint is not always but in general
considered in multi-period HHSRP setting in which patients consistently receive the
service by the same caregiver (Wirnitzer et al., 2016; Fathollahi-Fard et al., 2021;
Nikzad et al., 2021). In HHSRP context, this constraint builds a relationship of
confidence between the patient and caregiver (Cisse et al., 2017).

Quialification of caregivers is one of the most important characteristics of HHSRP.
This is because the service providers must match the patients’ varying requests with

the employees’ expertise. In the literature qualification of caregivers is considered in
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two ways. In the first one, more than one qualification can be assigned to a worker
(Eveborn et al. 2006; Rasmussen et al. 2012; Pillac et al., 2013; Bard et al. 2014;
Mankowska et al. 2014; Liu et al. 2017; Mathlouthi et al., 2021). Whereas in the
second approach, it can be determined based on the hierarchical level of qualification
(Cordeau et al., 2010; Nickel et al. 2012; Rest and Hirsch 2016; Trautsamwieser and
Hirsch 2011) in which each patient's demand has a minimum required level of
qualification and each caregiver is associated with some qualification level. In our
study, we considered the first type of qualification approach in which the demand and
the skill should be matched.

Maximum working time for caregivers defines the maximum amount of time a
caregiver is allowed to work in a shift, which is usually implemented by setting a time
window. Maximum working time constraint can be a hard constraint (Bredstrom and
Ronnqvist,2008; Frifita et al., 2017; Rasmussen et al.,2012; Trautsamwieser and
Hirsch, 2014; Goodarzian et al., 2021) with a penalty cost for unvisited or missed
patients, or a soft constraint which allows overtime with an additional cost in the
objective function (Cheng and Rich, 1998; Rest and Hirsch, 2016; Trautsamwieser and
Hirsch, 2011; Gong et al., 2020; Malagodi et al., 2021). In our study, we considered

hard maximum working time constraints.

Time windows of patients denotes the suitable time intervals that patients accept visits.
It is assumed that patients have time windows in most of the HHSRP studies (Cheng
and Rich, 1998; Eveborn et al., 2006; Rasmussen et al., 2012; etc.). Time windows can
be applied in two different ways. Hard time windows impose that arrival to a patient
after the upper bound of the window is not allowed. On the other hand, soft time
windows (Trautsamwieser and Hirsch, 2011) allow the late arrivals with a penalty cost.
In addition, Mankowska et al. (2014) propose mixed time windows of patients. In this
approach, starting time of the service cannot exceed the earliest starting time.
However, tardiness of service is allowed which means that a service can start after the

latest starting time with a penalty cost.

In the HHSRP literature, multiple caregivers are only seen in the studies that consider
temporal  dependency  constraints:  synchronization  and  precedence.
Synchronized/shared services require visits of different caregivers at the same time
(Eveborn et al., 2006; Issabakhsh et al., 2018; Frifita et al., 2017; Liu et al., 2021). The

precedence constraint prioritizes multiple services (Liu et al., 2013; Bard et al., 2014),
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which are very necessary in the case when one of the two services of a patient should
be performed before the other. Several studies considered both type of temporal
dependency constraints (Bredstrom and Ronnqgvist, 2008; Rasmussen et al., 2012;
Mankowska et al., 2014; Shahnejat-Bushehri et al., 2021). Although these studies,
especially the ones that are considered synchronization constraints, require multiple
workers, they either travel with their own vehicle and meet the patient at the same time
or travel as a team to perform the same task. Thus, according to the best of our
knowledge, it can be said that no study considers routing of multiple independent

caregivers in a shared vehicle.

3.1.3. Sharing Economy and Vehicle Sharing Literature

The sharing economy (SE) has emerged as a transformative force in recent years.
While the SE emerged around 2008-2009, early examples of online platforms such as
Craigslist and eBay facilitating the sharing of goods and information were established
in 1995 (Schor and Fitzmaurice, 2015). This dynamic economic model, characterized
by the efficient utilization of underutilized assets and resources, has significantly
altered traditional consumption patterns and service delivery mechanisms (Schor and
Vallas, 2021). According to the review paper by Cheng (2016), the rapid expansion of
the SE over the last two decades is closely tied to socioeconomic factors, driven by the
desire for better and more equitable value distribution in supply chains (Gansky, 2010),
efforts to decrease environmental footprints (Schor and Fitzmaurice, 2015),
advancements in technology, and shifts in consumer attitudes regarding product
ownership and the importance of social connection (Botsman and Rogers, 2010).
Accommodation sharing (Dogru et al., 2020) and mobility sharing (Standing et al.,
2019) are the most common forms of the SE. Shared mobility refers to the
collaborative utilization of transportation methods, allowing individuals to access
transportation as necessary for short periods (Mouratidis et al., 2021). Modern shared
mobility is greatly aided by information and communication technologies (ICT) and
mobile applications (Gossling, 2018). It includes a range of services, including
carsharing, bikesharing, ridesharing (carpooling and vanpooling), ridesourcing (on-

demand ride services), and e-scooter sharing.
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Different terms have been used for vehicle and path sharing (VPSP) in the VRP and
WSREP literature such as, dial-a-ride, ride-sharing, taxi-sharing, carpooling, etc. All of
these problems are the special cases of pickup and delivery problems (PDP) (Agatz et
al., 2012) that contain the special case of VRP (Nalepa & Blocho, 2017), therefore are
located in the NP-Hard class. According to Castillo-Salazar et al. (2016), the PDP
cannot be considered as a WSRP because in terms of time no significant "work" is
done within the premises of the customer in the PDP. In PDP, vehicles have to
transport loads directly from one location to another (Savelsbergh & Sol, 1995).
Recker (1995) proposed an interesting extension of pickup and delivery for household
activity pattern problems which involves ride-sharing along with vehicle-switching
options. The objective of the study was to minimize the disutility of household travel,
but no solution methodology was developed for the problem by the author. The dial-
a-ride problem (DARP), which was firstly proposed by Cordeau and Laporte (2003),
focuses on planning the routes of vehicles and their schedules for the transportation of
multiple passengers who request to travel from a specific place to some destination.
For the convenience of the passengers, different standard measures are used either as
a set of constraints or in an objective function in the mathematical model. Some of the
standard measures are waiting time, the number of stops during travel, etc. (Paquette
et al., 2009).

Baldacci et al. (2004) interpret the carpooling problem (CPP) based on DARP and
propose exact and heuristic methods to solve the to-work variant of the problem which
was based on two integer programming formulations. Lin et al. (2012) formulated a
taxi ride-sharing system based on DARP for picking up and dropping the customers
off at different locations. The main contribution of the study is the inclusion of the
customers' satisfaction in the objective as the minimum waiting time for the customer
to be picked. Simulated Annealing algorithm was used as a solution strategy that was
capable of solving instances with up to 29 customers. Dynamic ride-sharing problems
differ from the conventional one in such a way that they intend to bring together
travelers with similar itineraries and time schedules on short-notice (Agatz et al.,
2012). For a comprehensive review of the literature on ride-sharing, we refer Mourad
et al. (2019) for interested readers.

In all of the abovementioned studies, mainly commuters or their vehicles are routed.
Unlike in WSRP or HHSRP, there is no such constraint or requirement as a service

time of a job, workers' qualifications, worker-to-task (caregiver-to-patient) assignment
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etc. However, in this study multiple travelers are assigned to a shared vehicle
according to the demand and their characteristics, and then the route is formed such
that a traveler may be dropped and picked up later to minimize total route length. Thus,
the introduced problem in this study combines the characteristics of WSRP or HHSRP

and VPSP and provide some special features.

3.2. Problem Definition and Mathematical Model

In this section, we first provide a formal description of the problem and then MILP
formulation. The HHSRP-VS is defined as the complete directed graph G = (V, 4),
where V ={0,1,...,n,n+ 1, ...,2n,2n + 1} is the set of all nodes in the graph and
A={(i,)):i,j €V,i =+ j}isthesetofarcsbetween every pair of nodes excluding arcs
between the same nodes. n is the number of patients, and nodes 0 and 2n + 1 indicate
the same beginning and ending HHC center. The set of caregivers and illnesses (types
of cares) are denoted by L ={1,2,..,1} and S = {1,2, ..., 5}, where [ and § are the
numbers of available caregivers and type of illnesses that can be treated, respectively.

Last, K = {1,2, ..., k} indicates the set of k vehicles.

A Patient’s node of caregiver number 1
10 - O Patient's node of caregiver number 2
A
A Caregiver number 1 needs to be dropped
‘ Caregiver number 2 needs to be dropped
¥y
- = Returned arc to pick the caregiver from dummy node
1 / 7 \ Q( . Patient’s dummy node of caregiver number 1
4 / ! 19 .
" 3 : )A Patient’s dummy node of caregiver number 2
16 v .
4 A : $ Caregiver number 1 needs to be picked
. 12 e, ——N @ / U

: ) Caregiver number 2 needs to be picked

—gp  Arc towards the next patient for his‘her treatment

Figure 3.1. The two-layer representation model of the HHSRP-VS problem. The left
and right routes describe the vehicles 1 and 2’s routes, respectively.

The sub-tour elimination constraint, which is one of the typical constraints in VRP,
cannot be enforced due to the implementation of the DP policy that leaves a caregiver
to a node and then picks up from the same node. Therefore, we proposed a two-layer
modeling approach to easily adapt DP policy and avoid sub-tour elimination. In this

approach, V; = {1,2,3, ..., n} is defined as the set of original patient nodes, and V, =
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{n+1,n+ 2,..,2n} is the set of their dummy nodes. For clarification, the two-layer

approach is demonstrated in Figure 3.1.

As seen in Figure 3.1, the original patient nodes are placed in the first layer, and their
projections are in the second layer. A vehicle can visit a dummy node in the second
layer for picking up a caregiver if and only if its original patient node was visited
before and the requested caregiver was dropped off at that node. Hence, this approach
could also be considered as one of the methodological contributions of this study. For
example, suppose that there are 11 patients, 4 distinct caregivers, and 2 identical
vehicles. Each vehicle carries two distinct caregivers. Suppose that the assigned
caregiver 1 in vehicle 1 will treat patients (1, 5, 9) while caregiver 2 in the same
vehicle is assigned to patients (3, 7, 10). Similarly, suppose that caregivers 1 and 2
in vehicle 2 are assigned to treat patients (8, 11) and (2, 4, 6), respectively. Suppose
that the optimal routes of vehicle 1 and vehicle 2 are computed as {0, 1, 7, 9, 18, 3,
10, 20, 5, 23} and {0, 4, 8, 15, 2, 11, 13, 6, 22, 23}, respectively, in which {0} and
{23} indicate the start and end nodes of the single HHC center. Hence, vehicle 1 starts
its travel with two caregivers and visits directly to patient 1 where only caregiver 1
provides care. The vehicle and caregiver 2 wait for caregiver 1 to finish his/her
service. Next, they travel to patient 7 where caregiver 2 is being dropped off to serve.
The vehicle goes to patient 9 only with caregiver 1. After the vehicle drops off
caregiver 1 at patient 9, it goes back to patient 7 (dummy node 18) to pick up
caregiver 2 empty. After caregiver 2 serves patients 3 and 10 respectively, the vehicle
with caregiver 2 goes back to patient 9 (dummy node 20) to pick up caregiver 1. Last,
before the vehicle goes back to the HHC center with both caregivers, it visits patient 5
who requested caregiver 2. A similar route could also be seen for vehicle 2 on the right

diagram in Figure 3.1.

Table 3.2 lists the parameters and decision variables that we define to formulate the

mixed-integer linear programming model of the HHSRP-VS given below.
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Table 3.2. Model parameters and decision variables

Parameters Definition

ti; Nonnegative and deterministic travel time between nodes i and j, (i,j) € A
d;s 1, if patient i € V; needs to be treated for illness s € S; 0, otherwise
(patients’ demands)
Qs 1, if caregiver [ € L is qualified to treat illness s € S; 0, otherwise
(caregivers’ qualifications)
Dis Deterministic service time for treating illness s € S of patient i € V;
c Maximum number of workers allowed to be transferred by a vehicle in
addition to the dedicated driver to the vehicle
wTime Maximum daily working time (hour) of caregivers
unv Penalty cost incurred if a patient is not visited
M, M, Big numbers
Variables  Definition
Xijk 1, if vehicle k € K travels through node i € V to node j € V; 0, otherwise.
1, if caregiver | € L travels through node i € V to node j € V' with vehicle
Lkl k € K; 0, otherwise.
1, if vehicle k € K drops caregiver [ € L off at node i € V; such that the
Yikel caregiver should be picked up at node i + n ; 0, otherwise
1, if caregiver | € L visits patient i € V/; with vehicle k € K to treat illness
kel s € §; 0, otherwise
U; 1, if patient node i € V; is not visited; 0, otherwise.
hw;; Waiting time of caregiver [ € L atnodei € V
Wi k Waiting time of vehicle k € K innodei € V
av; g Arrival time of vehicle k € K tonodei € V
ah;; Avrrival time of caregiver [l € Ltonodei € V
dv; Departure time of vehicle k € K fromnodei € V
dh;, Departure time of caregiver [ € L fromnode i € V
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Table 3.2. Model parameters and decision variables (cont.)

Auxiliary o
—— Definition
1, if vehicle k € K visits patient i € V/; with caregiver [ € L and the
caregiver [ is not dropped off at the patient (either serves the patient or waits
Wik for the assigned caregiver in the vehicle).
0, if either vehicle k visits patient i but does not wait for the service by
caregiver [ (dropped off) or it never visits i,
1, if caregiver [ € L is assigned to vehicle k € K and patient i € V; for
serving the patients’ illness s € S and the caregiver [ is not dropped off at the
Yiki patient (the vehicle waits for the service completion),

0, if either caregiver [ is assigned but dropped off by the vehicle k or

caregiver [ is not assigned to patient i.

The HHSRP-VS consists of determining a set of k routes of the minimal working time
of the caregivers to serve the patients by dropping the caregiver off at the patient's
home if needed and picking up from the same place by the same vehicle under the
working time window of the caregivers, capacity constraints and the following
assumptions:

e Each vehicle consists of a fixed number of caregivers.

e There is a single HHC center where vehicles and caregivers start and
end their travel.

e The skills of the available caregivers are eligible to meet patients’
requirements.

e Each patient requires only one type of service (treatment). Hence a
patient is allowed to be visited by a single caregiver and a vehicle for
the treatment.

e Every available vehicle and caregiver is required to be utilized.

e If any of the caregivers need to be dropped at any of his/her assigned
patient's home for the treatment, he/she must be picked up from the
same patient's home by the same vehicle before either return to the
depot or visiting the next patient who requested the same caregiver.

e Caregivers are not allowed to work over-time.
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The mixed-integer linear programming model of the HHSRP-VS given below.

The objective function minimizes the total flow times of the caregivers until returning
to the HHC center, which includes their service, travel and waiting times, and the total

penalty cost of unvisited patients, if exist.

min Z ah(ni1), + Z U; * unv (1)

= i€V,

Constraint set (2) guarantees that each patient node is visited exactly once or unvisited.

z Z Xije Tt u =1 jev, )

i€V keK

Constraint sets (3) and (4) ensure that every available vehicle and caregiver must

depart from the HHC center. Moreover, a caregiver must leave with a single vehicle.

Z Xo,jk =1, kek 3
JEV:
Z z Zojkt =1, leL (4)
j€V; keK

Constraint set (5) maintains flow conservation in the network for vehicles.

in,j,k - Exj,i,k =0, i€EV,UV,kEK (5
jev jev
Constraint set (6) aims to relate the travel of vehicles with caregivers. Hence, a
caregiver can travel from nodes i to j if his/her assigned vehicle goes that route.
Constraint (7) assures that only a single and qualified caregiver is assigned to treat the
illness of a patient if being served. Constraint set (8) ensures that the vehicle must visit

a patient if the assigned caregiver to the patient is also assigned to that vehicle.

Zi,j,k,l < Xi,j,k, l,] € V,k € K,l EL (6)
zz alkls*le"'ul_di,s' ieV;,seSs (7)
le

zzl]kl>z Sai,k,l,s' jeV,keKIlelL (8)

eV

Constraint set (9) maintains that a caregiver could be dropped off at the patient node

if the assigned vehicle visits that node. Next, constraint set (10) ensures that the vehicle
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must visit the patient’s dummy node if a caregiver was dropped off at the patient node.
Although the terms ¥k, in (9) and (10) could be replaced by X.je, Yj i, they might be
preferred due to computational sakes (tighter constraints).

Yiki = in,j,kv jeV,keK,lel (9)

iev

Z Xi,G+n)k = Ykl jeEV,keK,leL (10)
iev
Constraint set (11) guarantees that the dummy node cannot be visited if none of the
caregivers were dropped at the patient. Constraint set (12) ensures that when a
caregiver is dropped off at a patient node, that caregiver is not allowed to leave the
same patient node, instead, the caregiver must leave from its dummy node due to the

two-layer approach.
Yiev Xi(j+n)k = YleL YVik,l JEVLkEK (11)
Yjev 2kek Zijit < 1 — Xkek Yik» ieV,lel (12)

For the sake of the caregivers’ flow conservation in the network, constraint sets (13)
and (14) guarantee that if a caregiver goes to a patient node, that caregiver must depart

from either the same patient node or its dummy node only with the initially assigned

vehicle.
z Zjikl = z Zijkl T Vik,l ieVy,keK,lel (13)
JEV JEV
Z Zjikt T Yi-n)kl = Z Zijl ieVy,keK lel (14)
JEV jev

Constraint sets (15) through (28) are required to track the arrival, departure, and
waiting times of both caregivers and vehicles. Because both caregivers and vehicles
can take different actions throughout the route, their synchronization should be
maintained for the accuracy of the flow. Therefore, a vehicle or a caregiver may have
to wait for the other for the continuity of the travel. These waiting times could either
appear at the first (original patient node) or the second layer (dummy node). These
could be briefly explained as in the following.

Constraints (15) and (16) computes the arrival time of vehicles and caregivers to the
nodes, respectively. A vehicle could wait at the patient node i € V; (first layer) if and

only if the vehicle decides to wait for the caregiver until the completion of the service
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at the patient. The duration of the waiting time is the amount of service time for the

patients’ requirements (constraint (17)).

an'k > dvi,k + ti,j - (1 - xl-,j,k) * Ml! l,] S V,k EK (15)
ahj,l > dhi,l + ti,j - (1 - Zi,j,k,l) * Ml! l,] € V,k € K,l €L (16)
Wik = z Z Yikl *Pis — z X (i+n)k * M,, ieV,kekK a7
JEV
SES lEL

A vehicle could wait at the dummy node i € V, (second layer) when the vehicle returns
to the patient node to pick up the dropped-off caregiver and the caregiver has not
completed the service yet. The duration of the waiting time is the difference between
the completion time of the caregivers’ service and the arrival time of the vehicle to the

dummy node (constraint (18)).

Wik = AV(i—n)k + Yises Dlel A(i-n)kls * P(i-n),s — Wik — (1 - ZjEV xj,i,k) * My,
ieV,keK (18)

A caregiver in a vehicle, if there is, could wait at the patient node i € V/; while the
assigned caregiver serves the patient, and the vehicle waits for the completion of the
service. The duration of the waiting time is equal to the amount of service time at the

patient (constraint (19)).

hw;; =2 Z z Yikl' * Dis — (1 - ZkeKllJi,k,l) * My, ieV,lel (19)

seS l'el\{l}

The assigned caregiver could wait at the dummy node i € V, if the vehicle returns later
than the caregivers’ service completion. The waiting time is the difference between
the arrival time of the vehicle to the patient and the completion time of the caregivers’

service (constraint (20)).
hwip = avi, — Xses XrreL Ai—n) ks * Pli-n),s — AV(i-n)ke — (1 - y(i—n),k,l) * My,
ieV,keK,lelL (20)

Constraint sets (21) and (22) determines the departure time of vehicles and caregivers
from the nodes, respectively. A caregiver could also wait at the dummy node i € V5,
if he/she returns to the patient with the vehicle to pick up the dropped-off caregiver

earlier than the assigned caregivers’ service completion. This waiting time was not
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explicitly computed because it is handled by both constraint (20) and the
synchronization constraints (23)-(26). The synchronization constraints (23) through
(26) aim to synchronize the arrival and departures of a vehicle and the caregivers

within it throughout the nodes.

dvi g = avi g + Wik, ieEV,keK (21)
dh;y = ah;; + hwyy, ieV,lel (22)
avi + (1 - sz,i,k,l> * My > ah;, ieV,keK,leL (23)
iev
avyp < ahy; + <1 - Z%’,i,k,l) * My, ieEV,keKIeL (24)
iev
dvie +( 1- Zzi,j,k,l * My = dhy, ieV,keKIleL (25)
jev
dvip < dh;; +{ 1 Zzi,j,k,l * My, ieV,keKIleL (26)
jev

Constraints (27) and (28) are used to indicate whether a vehicle takes a caregiver to a
patient and waits for the service and whether the assigned caregiver to a patient is not
dropped off by the vehicle, respectively (see Table 3.2 for the description of the

respective auxiliary variables).

ikt = 2 Zjikl ~ Yikl ieV,keK,leL (27)
v

Yikt = Z (Jieds = Vil leEV,keEK,LeL (28)
S

Constraint (29) ensures the capacity of vehicles in terms of the number of caregivers.
Z Z Zojkl =6 kek (29)
jeVy leL

Constraints (30) and (31) specifies the maximum working time of caregivers and
vehicles. Even though one of the constraints (30) or (31) is enough, we embedded both
to tighten the model. For the same concern, M; and M, could be replaced with tighter

wTime and ey, Yses Pi s Values, respectively.
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ahoni1) < wlime, lel (30)

avint+1)k < wlime, kekK (31)

Finally, constraint set (32) shows the feasible values of decision variables.

Xi,j s Zi ke Vidols Qi ielss Wis Wik,ts Vigr € 10,13,
(32)
hwi i; wig; avyy; ahgg; dvgg; dhyy =20

On an individual basis, the complexity of WSRP (Algethami et al., 2019) and VPSP
(Bei and Zhang, 2018) are both NP-Hard. As seen in the mathematical model, HHSRP-
VS can be reduced into WSRP by setting dummy set to empty set such as, V, = @. The
dummy set and the constraints associated with this set introduce additional decisions
into the model and enlarges the solution space which significantly increases the
complexity of it. Thus, we can conclude that HHSRP-VS is as difficult as WSRP. The
following sections explain the attempts to tighten the model by finding an upper bound
and obtain close-optimal solutions using a metaheuristic algorithm.

3.3. Upper Bound Heuristic (UBA): A Clustering-Based Matheuristic
Approach

In literature, various HHSRP problems were solved by decomposition-based
algorithms in two stages in which the patients are either clustered or partitioned based
on caregivers’ skills, geographical proximity, or some other characteristics at the first
stage. Next, the reduced problem is solved as a variant of Traveling Salesman Problem
(TSP) or VRP using MILP or heuristics (Rasmussen et al., 2012, Hiermann et al., 2015,
and Erdem and Bulkan, 2017). A multi-stage decomposition-based matheuristic
algorithm is developed to find feasible solutions.

In the first stage, the caregiver clusters are formed based on the geographical closeness
of the patients similar to the K-means clustering algorithm. The basic principle of this
clustering is that the patients with the shortest distance from the centroid of the cluster
should be placed under the same cluster. For the problem under consideration, the
clusters have been formed based on the caregivers’ skills and qualifications and the
patients’ demands and their locations. As a solution to the clustering problem, the
caregiver is at the centroid of the clusters which is a midpoint of all the assigned
patients' points of the respective cluster. In this clustering, patients are assigned in such

a way that the demand of every patient should be matched to the caregiver's skill(s).
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input: Service time of patients p;s, sets of patients V; and caregiver:
L, coordinates of patients p;
output: H;: caregiver cluster, cy: the centroid of H;, respectively.

1 Start Stage 1: Initialize caregiver clusters:
forall caregivers l€E€L
Assign patient i €V, where V, «V, to cluster H; if
e patient I can be treated by caregiver | and the distance
between p; and HHC center is the maximum
Update V\l < ]71\{1}/ H ={i}, chy=p;.
If Hr =0, '€ L then forall caregivers '
Find a proper patient i from the created clusters H;, Remove it
from that cluster and Assign it to Hp.
Assign the furthest patient iEI71 that can be treated by
caregiver | to H,
Update Hy ={i}, chy =p;, H ={i"}, chy=py, I7\1 <_l’/\l\{l’}
2 Complete and Improve clusters (K-means algorithm with
qualification constraint)
Repeat forall patient i €V;
forall caregiver clusters l€L such that HHN{i}=0
Find the nearest cluster H, where caregiver |l can treat patient
i. If there is no such a cluster, Move to the next patient.
Otherwise;,
Remove patient i from its clusters Hpand Add it toH,.

. . YieH;Pi
Update Hy <« Hy\{i}, H, « H U{i}, ch = %, lelL
l
until there is no further improvement

3 Recluster patients to balance total service workload
Compute the maximum total service time allowed per worker: ts =

Dis
i —+ max p;
ZlEVl ZSES 1 i€V,.5e8 Dis

forall caregiver clusters H,l€L
If total workload in clusterl exceeds the maximum allowance:
ts; > ts such that ts, =ZiEHlZSeSIZ;—iSI.
l
Remove the furthest patient i'in cluster H, until ts; <ts.

Assign patient i'to a candidate 1list CL.
Z. .
Update H, « H\{i'}, CL < CLU{i'}, ch, ==

[Hy|
forall patient i €CL
Find the nearest cluster H, where caregiver |l can treat patient
i and ts; + pi; <ts. Then Assign patient i to H,.

Update H, « H U {i}, CL « CL\{i'}, ch, = YieH; Pi

[Hil
If CL+# @, Repeat
Assign patient i € CL to the nearest H;, where caregiver |l can

treat patient i even if total workload exceeds ts
ZieHlpi

, LeL

, LEL, ts;= ts;+ pi

Update H, <« H;U{i}, CL < CL\{i'}, ch, = T lel, ts; = ts;+ pg
1
Until CL=0
STOP

Figure 3.2. The pseudocode of the first stage of the proposed UBA

This solution is feasible for HHSRP-VS for the following reasons. (a) All caregivers

have been utilized. (b) Qualification constraint is satisfied. Furthermore, to deal with
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working time constraints, the algorithm aims to evenly distribute the total service
workload of each caregiver. The detailed pseudocode of the first stage of the proposed
algorithm can be seen in Figure 3.2.

In the second stage, caregiver clusters are assigned to vehicles according to the
capacity of vehicles. The idea behind this caregivers-vehicle assignment is that the
caregivers can visit their patients through the same vehicle who are living close to each
other. So, in this stage, the caregiver clusters which are closer to each other are
assigned to the same vehicle. As a result of the second stage, we determine which
caregivers are assigned to which vehicle and which patients are going to be treated by

which caregiver.

input: Caregiver clusters H; and its centroid ch; from Algorithm 1.
Set of vehicles K, maximum daily working time wTime, penalty cost
patient unv, capacity of vehicle c.

output: A, and cv, that 1indicate the vehicle cluster and 1its
centroid, respectively. H;, is the visited patient 1ist by caregiver
l, u is the unvisited patient list, z, is the tour length of vehicle
k, u is the total fitness value of the solution, m, 1s the route of
vehicle k,.

5 Start Stage 2: Create vehicle clusters:

Assign the furthest caregiver cluster H; from the HHC center to
the first vehicle cluster.
Update A, « A, +{H;}, cvy =chy, H;, L <« L\{l'}.
forall vehicle cluster k€ {II—}
Assign the furthest caregiver cluster H;,, L€L from the
centroid of the previously initialized vehicle clusters j=
1,..,k—1 to the vehicle cluster.
!
Update A, « Ay + {Hy}, cv, =chy, L’e—ga
forall caregiver clusters Hj,l€L
Assign the nearest H;, to vehicle cluster A, such that the
capacity of vehicle k is not exceeded such that |Ai| <c
_ ZiEHlEAkpi

Update Ak « Ak + {Hl}/ CV = m, L « L\{l’}
=Tk

STOP

Figure 3.3. The pseudocode of the second of the proposed UBA

In the third stage, the problem is turned into a multiple TSP where the optimal route
of each vehicle is computed sequentially using the IBM ILOG CPLEX 12.6 solver
without considering the maximum working time constraints. After the optimal route
of the first vehicle is obtained, if the solution exceeds the working time limit, the
costliest patients on the route are removed until the working time constraint is
maintained. The removed patients of the vehicle are added to the patient list of the next
qualifying vehicle. After solving the last vehicle, if there are still removed patients,
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they are considered as the unvisited patients. The detailed pseudocode of the second
and third stages of the proposed algorithm can be seen in Figure 3.3 and Figure 3.4,

respectively.

6 Start Stage 3: Construct the optimal routes of the vehicles
forall vehicle cluster k€K
Solve the respective TSP using IBM ILOG CPLEX 12.6 to obtain
the optimal route,m,, of A
If z, > wTime
Repeat forall patient i€ Ay
Compute the costliest patient i considering its contribution
to zp as similar to Clarke and Wright’s savings algorithm.
Let the cost of patient i be d;.
Remove patient i and
If k+ |K|
Assign it to the Ayyq, patient list of vehicle k+1.
Else
Assign it to the unvisited patient 1ist u.
Yieay Pi
|Ak|

Update A, <« A \{i}, v u U{i}, zx =z, — di—p;, v =

7

Until z, < wTime
STOP

Figure 3.4. The pseudocode of the third stage of the proposed UBA

In the final stage, we applied an inter-route relocate operator to look for better solutions
and a repair function to reduce the unvisited number of patients at the end. Since the
optimal route of each vehicle is obtained in the previous stage, changing a patient’s
position on the same route does not improve the solution. Thus, the inter-route relocate
operator removes a patient from its vehicle and inserts it in another qualifying vehicle.
The feasibility of the solution is conserved at each iteration by satisfying qualification
and maximum working time constraints. Finally, a repair function with a greedy
heuristic is applied to assign the unvisited patients to vehicles whose total working
time is less than the maximum working time. The pseudocode of the inter-route
relocate operator and repair function can be seen in Figure 3.5.

In order to narrow the solution space and obtain feasible integer solutions in a short
time, we used the solution () obtained by the proposed mathematical algorithm as
the upper bound for the original mathematical model of HHSRP-VS. This solution can
be used as an upper bound because it does not include the drop-off and pick-up policy
but satisfies all other constraints. For this purpose, equations (33) and (34) can be
added as valid upper bound inequalities to the HHSRP-VS MILP model. Moreover,
we also used solutions provided by the upper-bound algorithm to analyze the

effectiveness of the ALNS-VS algorithm developed in the following sections.
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Ykek AV(ion+1)k T Ziev1 Uu; *unv < [, (33)

Yier Ahniny + Xiey, Wi * unv < p, (34)

input: Set of vehicles K, Route of vehicles Ty = {Vg, V1, e, Uiy Vans1tsr >

t;j travel time between node i and j, 5&*2 relocate value of assigning
patient v; from vehicle k; to position j of vehicle k,, u is the
unvisited patient 1ist, penalty cost of unvisited patient unv

output z, is the tour length of vehicle k, m, is the route of vehicle

k, u is the total fitness value of the solution.

7 Feedback Loop:
Do
forall vehicle k; €K
forall position iEnﬁlsuch that v; is the patient of position
i
forall vehicle k, € K\{k,}
forall feasible positions j € my,
kq ko
ij
sk — ¢ +t +t —(t FL )
ij T VeV ViVit1 Vj-1,Vj Vj_1,Vi V-1,V
end for
end for
end for
end for

. Kk kak
Determine §.V.2 = Inax{ﬁi?z}
O igkyky s

Compute the relocate value § such that,

ki.k5

If 5102 >0

Remove the patient v of position i from the vehicle kj
and Assign it to the position j* of the vehicle k;
Update z,: and 7y, tour length of vehicles ki and k3,
respectively

While 62 >

i",]
STOP

8 Repair Function:
While u+ @ and there is any feasible assignment
forall unvisited patient v;€u
forall route of vehicle my €K
forall feasible position j € my
Compute the insertion cost of patient v; into
position j of vehicle my
end for
end for
end for
Insert the patient into the determined position of the vehicle
that has minimum insertion cost
Update m, €K,z € K,u
end while
Compute total service and travel time of the visited patients and
the penalty cost for unvisited patients u:

B = 2k 2kt XieL Dien; Lises Pis T Diew, UNV

Figure 3.5. The pseudocode of the feedback loop and repair function of the proposed
UBA
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CHAPTER 4
SOLUTION METHODOLOGY: ALNS-VS Algorithm

Because of the complexity of the problem, decomposition-based algorithms or
metaheuristics are commonly used solution algorithms to solve HHSRP in the
literature. This chapter presents the developed Adaptive Large Neighborhood Search
(ALNS) heuristic algorithm for solving HHSRP-VS. The ALNS algorithm was first
proposed by Ropke and Pisinger (2006a) by extending Large Neighborhood Search
(LNS) algorithm proposed by Shaw (1997). Unlike the LNS, the ALNS heuristic
involves a variety of removal and insertion heuristics which help in obtaining a good
quality solution. As far as the other heuristics are concerned, ALNS is relatively fast
and has been successfully implemented in different variants of VRP. Therefore, we
preferred to adapt the ALNS for our problem. To deal with the DP policy of the
problem under study, two local search heuristics have been introduced within the
proposed ALNS-VS algorithm of which its details are discussed below.

The algorithm in our study starts with finding an initial solution after which in every
iteration it randomly selects a removal heuristic to deconstruct the existing solution to
some extent and an insertion heuristic to repair it differently. Through this destroy and
repair operations, a new neighborhood solution is obtained at the end of each iteration
and is adopted as the current solution for the next iteration. These the processes
continue until the stopping criteria are met. The pseudocode of the proposed ALNS-
VS is presented in Figure 4.1. The details of the algorithm with the parameter

definitions are explained in the following subsections.

4.1. Initial Solution

At the beginning of the ALNS-VS algorithm, all of the patient nodes are placed in the
request bank R and all of the dummy nodes are placed in the dummy request bank R.
Caregivers are assigned to vehicles at random until the capacity of each vehicle is
filled. At each successive step the Regret-3 heuristic with noise algorithm (see Chapter

4.3) is applied to all the vehicles in parallel by assigning each patient i € V; from R to
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one of the existing fleet vehicles. This process is repeated until all patients are assigned
to one of the available vehicles k € K or remaining patients cannot be assigned to any
vehicle due to maximum working time of caregivers. Once a feasible solution is found,

it is set to the current solution and the best solution.

input: The set of removal heuristics ¥, the set of insertion
heuristics Z, initial temperature T, cooling rate ¢, solution
update iteration number w, caregiver swap iteration number ¢,
the iteration of the last best-found solution tpee
output: A feasible solution Xpes
Generate an initial solution Xy using the Regret-3 with noise
insertion heuristic
Set iteration counter t with an initial value of t « 1 and
thest < 1
Set the initial values, Xcurr < Xpest < Xinit
repeat
if (t—tpest ow=0) then

Apply solution update criteria to Xpew

Xcurr < Xpest
Y* « Random. Removal

else
L__Select a removal heuristic at random, ¥ €W

Let X,ow be a partial solution after applying ¥* to Xcyurr
if (t%¢@=0) then

L__}Apply caregiver swap local search heuristic to Xpew
Select a random insertion heuristic Z*€Z to Xpew tO generate
Xnew
Let X,ow be a new solution after applying Z*to Xpew
Apply drop-off and pick-up local search heuristic to improve

xnew
Apply repair function to generate a new feasible solution

Xnew and determine the unvisited patients
if f(xrew) < f(xcurr) then

xCU.TT < xnew

L f(xcurr) < f(xnew)

else
Let v« e_(f(xnew)_f(xcurr))/T
Generate a random number € € [0,1]
if e<v then

xcurr < xnew

f(xcurr) < f(xnew)
if f(xnew) < f(xbest) then

Xpest < Xnew

f(xbest) < f(xnew)

Update the temperature, T < c*T

Update the iteration counter,t «t+1

until the predetermined number of iterations reached and the
predetermined number of iterations without any further

improvement found in Xpest

Figure 4.1. Pseudocode of the proposed ALNS-VS
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4.2. Removal Heuristics

At each iteration, a randomly selected removal heuristic algorithm removes a
predetermined number of patients q from the current solution x,,- and places them
to the request bank R. In general, g is set to an integer number at the beginning of the
algorithm in the literature (Ropke and Pisinger, 2006a, 2006b; Pisinger and Ropke,
2007). However, varying g may be preferred due to exploration and explotation
capabilities of the heuristics. For this, linearly decreasing function of g is used in our
algorithm to explore the solution space more at the beginning of the iterations than the
later (Oztiirkoglu et al., 2014; Oztiirkoglu and Hoser, 2019). At each iteration, the

number of removed patients g is computed using equation (35).
g=¢xn—nx(E-v)z (35)

where, n is the total number of patients, £ and v are the parameters that control the
maximum and minimum number of removed patients, ¢t is the current iteration and 6
is the maximum number of iterations. As Pisinger and Ropke (2007) suggested that
the minimum number of removed elements from a solution should be 10% (v = 0.1)
of the total number of elements. Furthermore, we adapted 5 different removal
heuristics in our proposed ALNS-VS algorithm, which are explained below.

Random Removal: This heuristic algorithm randomly removes q patients from the
current solution x.,,,» and adding them to the request bank R.

Worst Removal: This heuristic algorithm selects g costliest patients in terms of
distance from the current solution. The heuristic removes the selected patient i € x ;-
from the current solution x.,,- and adds them to R. After removing patient i, the cost
of the x., is calculated as f_;, whereas the cost of i can be calculated as Af; =
fCccurr) = i

Shaw Removal: The main objective of this heuristic algorithm is to remove the
most similar patients in terms of their locations and service times. The heuristic starts
with selecting a random patient i € x.,,- and adding it to the request bank R. The

similarity measures (d;;) between the selected patient i and the rest of the patients j €
Xeur-\{i} N the solution x,,,, are calculated by d;; = a * t;; + B * (|pi —p;])-
In our problem, the lower the d;; is the higher the similarity. The most similar patient

Jj* is selected and added to R such that j* = argminje,,, _d;j, where a and 8 are the
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shaw parameters, p; and p; are the service times of patients i and j, and ¢; ; is the
travel time between patient nodes i and j. This heuristic algorithm is iteratively
applied g times to determine the removed patients such that the patient has the
maximum similarity measure with the last removed patient.

Route Removal: This heuristic algorithm randomly selects a route of a vehicle v
from v (a set of routes of vehicles in x.,,,), removes all the patients from it, and adds
them to the R. The idea of route removal is to redesign the route to minimize the travel
time by diversifying the search.

Dummy Node Removal: Within the scope of the drop-off and pick-up policy,
patients' dummy nodes are also included in the x.,,,. This heuristic algorithm
removed g dummy nodes, where g is a random integer number between ¢ * d and ¢ *
d. d is the total number of dummy nodes in the current solution. o and ¢ are the
minimum and maximum ratios of the dummy removal constant, respectively. Since
the drop-off and pick-up local search algorithm is applied at each iteration, removing
a large number of dummy nodes from the solution helps to explore different solutions.
Therefore, o and ¢ are set to 0.5 and 0.8, respectively. Finally, the removed dummy

nodes are added to dummy request bank R.

4.3. Insertion Heuristics

In the literature, insertion heuristics are generally categorized as sequential and parallel
algorithms. Sequential insertion heuristic algorithms select one vehicle at a time and
then construct its route by adding patients. On the other hand, parallel insertion
heuristic algorithms consider all the vehicles’ routes simultaneously. For our study, we
implemented parallel heuristics due to their expected ability to generate superior
solutions compared to sequential heuristics, even though sequential insertions are
faster (Liu and Shen, 1999). Greedy and Regret-k insertion heuristics were used in the
proposed algorithm. In addition to those heuristics, their noise versions were also
considered (Ropke and Pisinger, 2006a, 2006b). These heuristics enables the
assignment of non-assigned patients from the request bank (R) to existing route of
vehicles if it could improve the objective function value of the solution.

Greedy Insertion: All of the patients from R are assigned to all possible positions
of the routes v of caregivers and an insertion cost is calculated for each position

through Aflk,]: tig +tj—ty; fori,j=1,..,n and i # j. In this process, only
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feasible assignments are considered. After insertion cost is calculated for all patients,
the patient with the least insertion cost is assigned to determine the position of the
route of the vehicle. This process continues until all patients are assigned to a route or
no more insertion is possible. Since at each iteration only one route of a vehicle is
changed, the insertion cost for the other routes does not need to be recalculated. This
idea improves the computation time for all of the insertion heuristics.

Greedy Insertion with Noise: The idea of adding noise to the insertion cost is to
provide randomization to the search process. This is done by considering the degree
of freedom in determining the best location for a node. The steps of greedy insertion
heuristic remain the same while the new insertion cost is calculated by A%,k,j: tix +
tkj — tij t tmax * U * € WhEre ty,,, is the maximum time between patients, p is the
noise parameter which is used for the diversification and set to 0.1, and ¢ is a random
number between [-1,1].

Regret-k Insertion: Regret-k heuristics are proposed by Potvin and Rousseau
(1993). Contrary to the greedy insertion, this heuristic considers the k best positions
(depending on choice) instead of the best one. Patients are assigned to positions to

maximize the regret cost (cost¥) which is computed as the difference between k best

l
im,js

position costs A change in objective value by inserting patient m between patients

i and j in route v. In this respect, the greedy heuristic can be seen as a regret-1

heuristic. The proposed algorithm considers regret-2 and regret-3 insertions.
Regret-k Insertion with Noise: The steps of this insertion heuristic are similar to

the regret-k insertion heuristics but use the same cost function as discussed in the

greedy insertion with noise.

4.4. Drop-off and Pick-up (DP) Local Search Heuristic Algorithm

In addition to the removal and insertion heuristics, we developed a special local search
heuristic algorithm to determine whether a caregiver should be dropped off or waited
by the vehicle at a patient node during his/her service. This local search is applied to
the solution obtained after the removal and insertion heuristics are completed. Because
of the complexity of the drop-off decision and its effect on the whole tour, we
developed a smart approach for deciding drop-off and pick-up. Hence, this approach
consists of the following features. The pseudocode of the DP local search heuristic is

also given in Figure 4.2.
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e The effect of DP on the route length is computed for decision-making.

e The position where the patient is being picked up is determined.

e \When more than one caregiver is eligible to treat a patient, the approach also
decides the best caregiver who is being dropped off at the patient node (if
applied).

e The feasibility of the solution is maintained when DP is decided to be applied.
For example, if a caregiver [ is decided to be dropped off at patient node i and to
be picked up before visiting patient j, then the patients between i + 1 and j;
[i + 1, /] inthe existing route are guaranteed to be treated by the other caregivers
in the vehicle.

input: Route of vehicle mi,k €K in the Xx.4, and the saving of
dropping the caregiver [ off at the patient i and picking up
after visiting the node j by vehicle k, dpbk
output: A new feasible solution Xpew

for all route of vehicle inmgk €K
do

for all caregiverslE€my in vehiclek
for all patientsi € my

for all patients j€m, that are being visited after
patient i

drop caregiver |l off at patient i, then add
patient i’s dummy node after patientj, and calculate

dphﬂk using equation (36)
end for
end for
end for
Update 7w, with the drop-off and picking-up decision

where the maximum positive dpbﬁk occurs 1f it exists.
Then, update the current solution.
: l
while dp;;, >0
end for
return A new improved feasible solution Xpew < Xcurr

Figure 4.2. The framework of the drop-off and pick-up local search heuristic
algorithm.
The amount of savings on one caregivers’ flow time in a vehicle dpf, jm, 1S calculated
using equation (36). This saving, if exist, is induced by dropping caregiver [ off at a
patient i and picking up after node j in route m;, of vehicle k. Note that the notations
were previously defined in Table 3.2.
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dpl;,j,nk = (¢, + Pis) — (tj,(i+n) + (0, avi + pis — (dvj + tj,i+n)) +

Q+mU+D)' (36)
The first term indicates the maximum amount of savings induced by the elimination
of waiting for caregiver [ at patient i with a duration of p;; and the removal of travel
from nodes j to j + 1 in the existing route because the dummy node i + n must be
visited after node j. The second term specifies the amount of increase in flow time due
to drop-off. Hence, the first and the last terms indicate additional travels from nodes j
toi+nandi+ntoj+ 1. The second term includes the waiting time of caregiver [,
who was dropped off at patient i, if the vehicle arrives at the dummy node later than
the service completion time of the caregiver If the saving is greater than zero, then the
drop-off and pick-up decision is made.

Since the decision of drop-off and pick-up caregivers affects the arrival and departure
times at nodes, the following algorithm (see Figure 4.3) shows the computation of

vehicles’ route lengths.

input: Routes of vehicles m, k€K in the Xx.p, where, m, =
{0,...v;_1,v,Visq, ... ,2n+ 1}, travel time between patient i and j,
tij, time of arrival at patient i, avy and service time of
patient i,pjs

output: Update avy, in Xy -

for all route of vehicle, mp in the Xxq Kk €K

for all nodes v; in route my

Wy = Wy T Loy

if no caregiver is dropped off at node v;_4
Ay, k= Py;_ys

end if

if node v; is a dummy node

O Joy U b W DN

node vy represents the original patient node of
dummy node v;

avy, r = max (avvi,k: avi/,k + pvi/,s)
10 end if

11 end for

12 end for

13 return Update Xy -

Figure 4.3. Computation of flow time.

4.5. Caregiver Swap Heuristic Algorithm

After the caregivers were randomly assigned to the vehicles in the initial solution, any

of the applied insertion or removal heuristics do not change their assignments. To
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search for the whole solution space and look for better caregiver-vehicle-patient
assignments, we proposed the caregiver swap heuristic algorithm. The proposed
heuristic was inspired by the pheromone concept used in the Ant Colony Optimization
(ACO) algorithm introduced by Colorni et al. (1991), in which pheromone is used to
trace the most commonly visited paths to find the food source by ants.

In this heuristic, the pheromone density 7;;(t), i,j € L is shared among all the
caregivers at iteration t. Initially, the pheromone values are equal for all of the
caregivers. Then the pheromone density between the caregivers in the same vehicle
increases depending on their contributions to the solution. The higher the pheromone
density among the caregivers, the more likely they are to be assigned to the same
vehicle. In addition to the contribution to the solution, the pheromone density is also
affected by the heuristic (visibility) value ; ; i,j € L. Similar to Oztiirkoglu (2017),

the pheromone density for all caregivers that are in the same vehicle is updated by:

= (1= %1 :(f— * _ M [, ]
T, =A—-p)*7;(t—1D +p (fbest(t — 1)): (L) EL (37)

where p denotes the evaporation coefficient whose values lie between (0,1), and fes¢

Is the best objective function value found until iteration t — 1. Thus, the probability of

assigning caregivers into the same vehicle is calculated by:
7,;(t—1)

YeneL Tt — 1)

P () = (L) el (38)

Hence, the tournament selection procedure is performed to determine the other
caregiver(s) who share the vehicle with the previously assigned caregivers. This
process continues until all the caregivers are assigned to their respective vehicles
according to the vehicle capacity.

For the proposed caregiver swap heuristic, we consider two different visibility values
n;,; based on the common and unique number of patients that can or cannot be treated
by caregivers i and j. The idea behind common patients is that the possibility of a
continuum of treating other patients by a caregiver increases after his/her colleague(s)
is dropped off at a patient. Hence, this may efficiently use the DP policy by reducing
the number of returns. On the other side, in the case of unique patients, the algorithm
may cluster closer patients that have distinct requirements to each other. Hence, the
closer distinct patients may increase the chance of using DP policy where a vehicle

may go forth and back between them due to drop-off and pick-up. In Chapter 5.3, we
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investigate if there is any difference between the common and unique visibility
heuristics, as well as the effect of caregiver swap heuristic on the quality of the

solution.

4.6. The Repair Function and Termination Criteria

Through the application of removal and insertion heuristics and DP local search
heuristic algorithm, we only consider qualification and demand constraints. The total
working time constraint is ignored to explore a high variety of solutions and to speed
up the heuristics by avoiding recomputing the flow time after every insertion.
Therefore, a repair function is proposed to restore the feasibility of the solutions after
all insertion and the DP heuristic are applied. Thus, a new feasible solution is being
directed to the next iteration if accepted.

The proposed repair function given in Figure 4.4 guarantees the feasibility of the
solutions within two steps. In the first step, the algorithm removes the most time-
consuming patient nodes from the routes to ensure the total working time limit of the
vehicles. In the second step, the algorithm tries to assign the removed patients to the
vehicles whose total working time is less than the max working time by applying the

greedy heuristic.

input: Routes of vehicles m, k€K in the X, where, m, =
{0,...vi_1, v, Viy1, .. ,2n+ 1}, travel time between patient i and j,
tij, time of arrival at node i, av;,, service time of patient
[,pis, maximum working time wTime and request bank R.
output: Feasible solution Xgur
for all vehicle routes, my, k € K inthe x.ypr,

while av,nyqx > wlime

for all patient nodes v; in vehicle k

COSty i = o1 w4y ~ bog vy ~ bougg T Pugs

end for
Remove patient vy from vehicle k,1%*=cwgnuu{cmnwk}and
v,k
add toR
end while
end for

Apply greedy insertion to all vehicle routes Ty with
patients that are in request bank R. Consider the unvisited
patients as the remained patients in request bank R.

return route of vehicles m, k€K

Figure 4.4. The pseudocode of the repair function to ensure feasibility.
After obtaining a new feasible solution, it is accepted as a current solution for the next
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iteration if the cost of the new solution is less than that of the current solution. Similar
to the concept of the simulated annealing approach, the worse solution than the current
solution may also be accepted with some probability to increase the exploration
capability of the algorithm. This probability is calculated as e~ ®new)=f(tcurr))/T
where f(xpew) and f(x.) are the costs of the new and the current solutions,
respectively. T is the temperature having the cooling rate ¢ between 0 < ¢ < 1.

We also adopted an approach for updating the current solution to stay away from
trapping into a local optimal solution and to increase the exploration capability of the
algorithm. In our approach, if there is no improvement in the best solution in the last
o iterations, we apply random removal and Regret-3 insertion heuristics to the best-
found solution so far and consider the resulting new solution as a current solution for
the rest of the iteration.

Lastly, the ALNS-VS algorithm is terminated when both the maximum number of
iterations 6 is reached and there is no improvement in the last @ iterations. If the best
solution is improved in the last 6 iterations, other @ iterations are added to the search

process until the condition is met.
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CHAPTER 5
COMPUTATIONAL EXPERIMENTS AND RESULTS

This chapter comprises computational experiments that were conducted to assess the
performance of the proposed ALNS-VS algorithm, answer the research questions
defined in Chapter 3, and derive in-depth insights. The UBA and ALNS-VS algorithms
described in the previous chapters were implemented in C#. IBM ILOG CPLEX 12.6
optimization solver was used to solve the HHSRP-VS MILP model. CPLEX was run
both with standard settings, the aim of which is to find a proven optimal solution, and
with various settings that considered various MIP strategies. All of the experiments
were conducted on a computer with a 2.50 GHz Intel Core i7-6500U CPU and 16 GB

of RAM. Furthermore, the CPLEX solver was limited to 6 hours to obtain solutions.

5.1. Problem Instances

A new set of problem instances are generated to evaluate the performance of the
proposed algorithms and analyze the characteristics of the HHSRP-VS and the
proposed policies. The features of the generated problem instances are described in
Table 5.1. We considered 10 to 100 patients with 4 to 12 caregivers in a defined service
area. The qualifications for the caregivers were obtained from Liu et al. (2017)’s data
set. The patients were randomly located in a circular continuous area that is described
by four different radiuses. The reason for considering areas of different sizes is to
investigate the effect of area, or in other words, travel distance, on the effectiveness of
proposed policies. In each instance class, the single HHC center is located at the center
of the area. The distance between nodes in the network determined using the Euclidian
distance, ensuring the satisfaction of the triangular inequality. However, it is worth

noting that other distance metrics can also be used within the algorithm.

We defined three different types of care requirements concerning their difficulty level
as basic, moderate, and difficult care. The reason for considering services with
different difficulties is to investigate the effect of service time on the effectiveness of

the proposed policies. The service time for each type of care was assumed to be
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normally distributed by three different means and standard deviations for care. Hence,
we considered three different levels of patients’ service demand distributions in the
instance classes in which the first, second, and third numbers indicate the percentages
of the patients that require basic, moderate, and difficult care, respectively. For
example, the instance class h100_40_0 indicates that there is a total of 100 patients
with 12 caregivers, the patients are randomly distributed in a circular area with a radius
of 40 minutes, the demand distribution level is 0 indicating 80%, 15% and the
remaining 5% of the patients require basic, moderate and difficult cares (80/15/5),
respectively. Last, we generated five instances in each instance class by changing only
the locations (coordinates) of the patients. Thus, an instance is described by the last
index. For example, the last indices in h100_ 40 0 1 and h100 40 0 2 indicate that
these are the first and the second instances in the instance class h100_40 0 such that
only the locations (coordinates) of the patients are differentiated. Thus, there are 48
instance classes and 240 instances in total. Finally, each instance was run in five
replications differentiated by five seeds used in a random number generator which

resulted in 1200 runs.

Table 5.1. Characteristics of the generated problem instances.

Feature Description

Number of patients and available | 10 patients with 4 caregivers; 30 patients with 4

caregivers (4 levels) caregivers; 50 patients with 6 caregivers; 100
patients with 12 caregivers

Service area radius (4 levels) 10, 20, 30, and 40 minutes

Patients’ Demand distributions | Level 0: 80/15/5: 80% basic, 15% moderate, 5%

(3 levels) difficult.

Level 1: 60/30/10: 60% basic, 30% moderate,
10% difficult.

Level 2: 50/30/20: 50% basic, 30% moderate,
20% difficult.

Basic: mean of 10 and standard deviation of 2.5
Patients service requirement | minutes

(iliness) and  corresponding | noderate: mean of 20 and standard deviation of

service times (3 levels) 5 minutes
Difficult: mean of 30 and standard deviation of
7.5 minutes

Capacity of vehicles 2 caregivers

After generating the instances, a preliminary computational experiment is conducted
to validate the model and assess its performance on the small instances (see Figure
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5.1). Even a slight increase in the number of patients results in a significant increase
in CPU time. Similarly, a slight increase in the number of vehicles and caregivers has
a substantial impact on the performance of the MILP. Following parameter tuning
experiments, as explained in Chapter 5.2, these instances are solved by the ALNS-VS
for comparative analysis The algorithm provides an optimal solution for each instance,

with the average gap across five replications being less than 0.1%.

19773,39
10000
m 77517 890,06
D 1000
< 100 39,47 40,52
S 4,47
= 10
D) 1
S 4 5 6

#of patients

1 vehicle 2 vehicles
2 caregivers 4 caregivers

Figure 5.1. The performance of MILP on small instances

5.2. Parameter Tuning

We considered Ropke and Pisinger (2006a, 2006b)’s settings for many of the
fundamental parameters used in a typical ALNS algorithm such as 9, a, 5, u, v and ¢
as 25000, 0.3,0.1, 0.1, 0.1, and 0.99975, respectively. We took the additional number
of iterations (Q) 250 as 10% of 8 (Oztiirkoglu and Magara, 2019). Furthermore, ¢ and
¢ were assumed to be 0.5 and 0.8, respectively as explained in Chapter 4.1. Last, we
conducted a full factorial experimental design for the remaining parameters specific to
our ALNS-VS algorithm which are update solution iteration (w), caregiver swap
iteration (¢), maximum remove parameter (¢) and evaporation rate (p).

After the preliminary experiments, 6 levels were defined for w with ranging from 250
to 1500 with a step size of 250. ¢ has 7 levels with ranging from 50 to 200 with a step
size 25. Thus, we aimed to prevent the algorithm from being trapped in a local optimal
solution due to the lack of proper caregiver assignment. & has 5 levels such as ¢ €
{0.4,0.5,0.6,0.7,0.8} and finally p has 5 levels as p € {0.75,0.8,0.85,0.9,0.95}. In
the literature, different values were used for evaporation rate which range from 0.75
to 0.95 (Fuellerer et al., 2009; Yu et al., 2009). In total, we had (6x7x5x5) 1.050

settings for parameters and performed 21.000 runs with 4 different tuning instances
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and 5 replications obtained by five seeds in a random number generator. To compare

the solutions in the experiment, we normalized the best-found solutions for each run:

RPD;; = <M> « 100, where RPD; ; is the normalized best-found solution of

min,j

run i for instance j; f;; is the best-found solution by the algorithm in setting-
replication pair i for instance j, and f,,;,, ; is the best solution for instance j. These
instances comprise of 30 patients, 4 caregivers, 2 vehicles with a capacity of 2
caregivers, area with a radius of 30 minutes. The experiment was conducted on
Minitab 19 Statistical Software. The ANOVA and the Response Optimization tests
were conducted to investigate the effects of parameters on the quality of the solutions
with 95% confidence level. The tests’ results showed that the optimal setting is (w, ¢,
&, p) =(250,100, 0.5, 0.95). See Table B.1 and Figure B.1 in Appendix B for the details
of the test results. Hence, Table 5.2 summarizes the parameter settings used for the

proposed ALNS-VS algorithm for the computational experiments.

Table 5.2. The parameter settings are used in the proposed ALNS-VS algorithm.

Parameters Values | Parameters Values
Total number of iterations (6) 25000 | First Shaw parameter (@) 0.3
Additional iteration (8) 2500 | Second Shaw parameter (8) 0.1
Solution update iteration 250 Minimum dummy remove 0.5
Number of caregiver swap 100 Maximum dummy remove 0.8
Minimum remove parameter 0.1 Evaporation coefficient (p) 0.95
Maximum remove parameter 0.5 Noise parameter (i) 0.1
Cooling rate (c) 0.99975

5.3. The Effect of the Variations of the Caregiver Swap Heuristic

As previously described in Chapter 3, the first research question aims to investigate
the effectiveness of the proposed variations of the caregiver swap heuristic algorithm.
As highlighted in Chapter 4.5, this heuristic was designed to look for the best
caregiver-vehicle assignment using the pheromone concept from the ACO algorithm
with two different visibility heuristics that consider the common and unique number
of patients. Thus, we proposed three ALNS-VS algorithms differentiated by the
variations of caregiver swap heuristics: (1) ALNS-VS_NoSwap does not include the
caregiver swap heuristic, (2) ALNS-VS_Common consists of the heuristic with only
common visibility heuristic, and (3) ALNS-VS_Unique considers only unique number

of patients as a visibility heuristic.
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After solving all 480 problem instances in 5 replications by each algorithm, we tested
the following null hypothesis using a paired sample t-tests with a 99% confidence
interval in Minitab 19. Whereas the following null hypotheses state that there is no
difference between the means of the solutions obtained by the algorithms, the
alternative hypotheses state that they are different. uposwap, Ucommon @A Uynigue
indicate the averages of all of the solutions obtained by ALNS-VS_NoSwap, ALNS-
VS_Common and ALNS-VS_Unique, respectively. For the sake of the flow of the
manuscript, the solutions of the algorithms were provided in Tables C.1. through C.4
in Appendix C.

® H§': fhcommon — Hnoswap = 0, Hi'* Hcommon — Hnoswap # 0

® Hg: ftynique = Hnoswap = 0, HY: Kunique = Hnoswap # 0

® HG: icommon — Hunique = 0, Hi: common — Hunique # 0
Table 5.3 demonstrates the results of the paired t-tests for each hypothesis. As seen in
the table, both ALNS-VS_Common and ALNS-VS_Unique are statistically different
from ALNS-VS_NoSwap because p-values are less than 0.01. Additionally, ALNS-
VS_Common and ALNS-VS_Unique present lower average total flow times than
ALNS-VS_NoSwap with an average of 21 and 24 minutes. The analyzes also showed
that there is no statistically significant evidence to reject the null hypothesis H§
because the p-value (0.163) is greater than 0.01. Hence, we can conclude that ALNS-
VS_Common and ALNS-VS_Unique provide statistically similar outputs. However,
ALNS-VS_Common caused an average of 3 minutes more working time than ALNS-
VS _Unique. Because of this small difference, we decided to use the ALNS-
VS_Unique algorithm, hereafter called simply ALNS-VS again, and its solutions for

further analyzes and comparisons.

Table 5.3. The result of the paired t-tests for the comparisons of the variants of the
caregiver swap heuristics.

Std.
Std. Lower | Upper
Mean | peviation | EM" ¢ | cl t df | p

Mean
Hecommon = | 300 | 33.21 214 |-256 [857 |140 |239|0.163
.uUnique
Heommon = | 5112 | 43.12 278 | -28.34 |-13.89 |-7.59 | 239 | 0.000
.unOSwap
Hunique = | 9412 | 44.38 2.86 |-31.56 | -16.68 |-8.42 | 239 | 0.000
#noSwap
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5.4. The Effectiveness of the ALNS-VS Algorithm

This chapter aims to provide answers to the second research question in which the
effectiveness of the proposed algorithms is investigated in comparison to each other
and CPLEX solutions. We limited the running time for processing the HHSRP-VS
MILP model to 6 hours (21,600 seconds) because of the complexity of the problem.
The quality of the solutions obtained by the CPLEX solver is defined as the
discrepancy (GAP) between the best integer objective function value and the relaxed
objective function value of the node remaining at the end of the time limit (Oztiirkoglu,
2020). Thus, if we did not obtain the global optimal solution within the time limit, we
used the best-found solution so far with its gap for comparisons. We also calculated
the computational time of the ALNS-VS and UBA algorithms in terms of seconds for
accurate comparisons.

The CPLEX solver did not provide global optimal solutions for the HHSRP-VS
problem within the time limit for any of the problem instances. In literature, many
HHSRP studies also faced similar problems due to the complexity of the problem
(Trautsamwieser and Hirsch, 2011; Trautsamwieser and Hirsch, 2014). We obtain
feasible integer solutions only for the instances with 10 patients. For the other instances
with more than 10 patients, we couldn’t obtain any improved feasible integer solution
despite the initial feasible solutions provided by UBA. Table A.1 in Appendix A
demonstrates the solutions obtained by CPLEX and UBA for 10-patient instances. In
the table, “NA” indicates that no integer feasible solution is available. Whereas the
CPLEX provided 16.4% better solutions (see column % Imp.) than the given UBA
solutions on average, the average GAP in CPLEX solutions is 40.7%. According to
this result, it could be discussed that while the UBA presents a tighter upper bound in
a short amount of time (0.05 sec. on average) the optimality GAP seems to be large
due to poor lower bound, which is most likely caused by the fractional routing
variables of vehicles and caregivers and subtours due to DP policy in linear-
programming (LP)-relaxation.

In Table A.2 in Appendix A, we compared CPLEX solutions with ALNS-VS solutions
only for 10-patient instances. For 10-patient instances, there are no unvisited patients
in both CPLEX and ALNS-VS solutions. However, the ALNS-VS presented a
maximum of 19.7% and an average of 6% lower total flow time than the CPLEX

solutions only in 1.8 seconds on average.
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Since the UBA does not consider the drop off and pick-up policy, its solutions can be
considered weak benchmarks for evaluating the effectiveness of the ALNS-VS
algorithm (see Table D.1 in Appendix D), especially in instances with more than 10
patients. Therefore, for an accurate comparison, we applied DP local search heuristic
introduced in Chapter 4.4 to the solutions developed by UBA. The modified UBA with
the DP heuristic is called UBA+DP. Table A.3 in Appendix A presents the aggregated
best solutions, which are the averages of the best-found solutions of five instances in
an instance class, of ALNS-VS, UBA, UBA+DP, the percentage improvement of
UBA+DP over UBA in column “UBA+DP-UBA(%)”, and the percentage
improvement of ALNS-VS over UBA+DP in column “VS-UBA+DP”.

When we applied the DP heuristic to the UBA solutions, we obtained 9.4, 14.6, 13.2
and 12.8 percentage improvement on average in the instances with 10, 30, 50 and 100
patients, respectively. It is obvious that these improvements were achieved by
dropping and picking up caregivers on the route. Also, these improvements were
achieved with milliseconds more computational effort to solve UBA+DP compared to
UBA; where UBA+DP lasted 0.05, 0.2, 0.6, and 1.4 seconds on average in the 10-,
30-, 50-, and 100-patient instances, respectively.

On the other hand, the ALNS-VS solutions presented 13.1, 13.6, 19.3 and 15.9 percent
lower total flow time than UBA+DP on average for the 10-, 30-, 50- and 100-patient
instances, respectively. When they were compared with UBA solutions, as is expected
the percentage improvements increase up to 30%, 35% and 34% for the instances with
30, 50 and 100 patients, respectively. Since ALNS-VS employs the DP policy
throughout the iterations in contrast to UBA+DP, some portions of its savings on total
flow time over UBA+DP seem to be achieved by additional drop-off and pick-ups.
Whereas the caregivers were dropped off 4, 14, 23 and 41 times on average in 10-, 30-,
50- and 100-patient instances in the ALNS-VS solutions, they are 2, 10, 6, 30 in the
UBA+DP solutions. It also seems that the number of drop off and pick-up increases as
the instance size gets larger. Even though the ALNS-VS algorithm requires
proportionally higher computational effort than UBA+DP, 23, 34, 119 seconds in the
30, 50- and 100-patient instances, respectively, we think that this could be negligible
from the view of practitioners because a manual solution always takes a very long time
and the expected planning time is also usually longer than 5 minutes in practice.
Additionally, while there are several unvisited patients in UBA+DP solutions for 12

instances there are no unvisited patients in any of the ALNS-VS solutions. For
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example, there are averages of 0.4, 1.8, 0.6 and 1.4 unvisited patients in the UBA+DP
solutions of h50 40 1, h50 40 2, h100 40 1 and h100 40 2 instance classes,
respectively. For the sake of clarity, these unvisited patients were not shown in the
tables. As a result, we can conclude that the proposed ALNS-VS algorithm seems to
provide reasonably good solutions to the HHSRP-VS problems in a reasonable
computational effort.

5.5. The Effect of the Drop-off and Pick-up Policy

In the previous section, we highlighted that the DP policy seems to reduce the total
flow time of caregivers when we compared ALNS-VS, UBA+DP and UBA solutions.
Thus, this section aims to investigate the effectiveness of the DP policy in a detailed
analysis and answer the third research question. To provide an accurate comparison,
we introduced the HHSRP-M problem by removing only the DP policy in HHSRP-
VS. Hence, HHSRP-M only allows caregivers to share a vehicle without the possibility
of drop-off and pick-up. The MILP model of HHSRP-M could be easily achieved by
setting all y; ., decision variables to 0 and removing the set of dummy nodes V; in the
HHSRP-VS MILP model.

Proposition 1. The optimal total flow time of caregivers in HHSRP-VS (f;/s) is always
less than or equal to that in HHSRP-M (fy): frs < fu-

Proof 1. Suppose that P,s and Py, are the optimal routes in HHSRP-VS and HHSRP-
M, respectively. Since DP policy is the only difference between HHSRP-M and
HHSRP-VS and it is not allowed in HHSRP-M, P,, € P,s. Hence, it can be written
that fy; —App= fys, Where App indicates savings in total flow time due to drop-off
and pick-up. Hence, although the drop-off and pick-up require additional travel time
if there exists at least one such a drop-off and pick-up option that reduces flow time of
the caregivers by reducing wasted time of the caregivers who wait in the vehicle for
the completion time of the occupied caregiver in HHSRP-M; if 3 App> 0 then f/s <
fum: otherwise fs = fy. ®

To compare HHSRP-VS solutions with HHSRP-M in an empirical analysis, we
modified the ALNS-VS algorithm by removing its DP local search and dummy node
removal heuristics, which were described in Chapter 4. Hence, we called the modified

algorithm ALNS-M to solve the HHSRP-M problem. After solving the problem
instances with ALNS-M, we observed that there are no unvisited patients in any of the
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problem instances. We then calculated the percentage difference of total flow time
between ALNS-M and ALNS-VS solutions as VS-M%=100*(ALNS-M - ALNS-
VS)/ALNS-M to analyze the effect of DP policy on total flow time. Tables E.1 through
E4 in Appendix E present the ALNS-M solutions and the percentage differences in
details. Table A.3 in Appendix A also presents the aggregated best solutions of ALNS-
M and their differences with ALNS-VS. It can be seen in the tables that the
implementation of DP policy provides approximately 19, 25, 24 and 22% savings in
caregivers’ total working time on average for 10-, 30-, 50- and 100-patient instances.
Using the 240 solutions in Tables E.1-E.4 in Appendix E, we also performed a full
factorial design of the experiment to investigate the effects of the problem features
described in Table 5.1 on the contribution of DP policy at the 95% confidence level.
Recall that there are 4 levels of a number of patients (noP), 4 levels of service area
radiuses (ra) and 3 levels of patients’ demand distributions (dd). The response
(dependent variable) is the VS-M%. The results of the full factorial design of
experiments (the ANOVA table) are given in Table E.5 in Appendix E. The main
factors and their all-level interactions explain 94.27% of the total variation of the
response (R?). As seen in Table E.5, noP, ra , and dd are significant on the model.
Moreover, ra has the largest effect on the contribution of DP policy due to its high

“Adj SS” value. This could also be seen in the main effects plot given in Figure 5.1.

40,0
35,0
30,0
X
= 250 ==X
> —X“
20,0 ==
15,0
10,0
Level 1 Level 2 Level 3 Level 4
noP 19,2 24,7 23,7 22,3
ra 33,8 24,4 17,7 13,9
== dd 19,4 22,6 25,4

factor levels

Figure 5.2. The main effects plot of the factors.
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As the service area radius increases from 10 to 40 minutes, the contribution of DP
policy steadily decreases from 34% to 14%. This shows that while the impact of DP
policy on total flow time is very significant when patients are located in smaller areas
such as urban or metropolitan areas, it also provides significant time savings for larger
areas. Additionally, the contribution of DP policy steadily increases from 19% to 25%
as the level of demand distribution increases. Note that while at the first dd level only
20% of the patients were defined as requiring moderate and difficult care, this rate
increases to 50% at the third level. Thus, this suggests that the higher the proportion
of patients' difficult service requirements, the greater the contribution of the DP policy.
The reason for this increasing contribution of DP policy with increasing demand for
difficult services could be that a vehicle prefers to travel between patients rather than
waiting in a patient due to high service time. Last, the contribution of the DP policy
appeared to be the lowest when the number of patients is the smallest. Its contribution
reaches its maximum when there is a moderate number of patients. In our experiments,
the policy has shown its highest contribution in the 30-patient problem instances with
an average of 25%. The reasons for decreasing contributions when there are few or
many patients may be that (1) traveling back and forth due to the DP policy may not
be very efficient because a small number of patients is highly likely to be dispersed far
from each other, and (2) caregivers’ may have longer waiting times at their patients

due to the late arrival of the vehicle when there are too many patients to visit.

5.6. The Effect of Vehicle Sharing by Multiple Caregivers

As discussed in Chapter 3, one of the common assumptions in existing HHSRP
literature is that one vehicle carries only one caregiver. On the contrary, the proposed
HHSRP-VS allows multiple caregivers to share a single vehicle for their travels.
Hence, it is obvious that sharing a vehicle reduces the necessity of vehicles. However,
this could also increase the total flow time of workers due to waiting for each other or
a returning vehicle at a patient node. Thus, this section aims to investigate the
scenarios where HHSRP-VS may provide potential cost savings and answer the fourth
research question. For this purpose and accurate comparison, similar to conventional
HHSRP we defined the HHSRP-STD problem in which every single caregiver is
assumed to travel with a single vehicle with or without a driver. Therefore, vehicle
sharing, and DP policies are irrelevant in the HHSRP-STD. The MILP model of the
HHSRP-STD can be easily developed by setting the capacity of all vehiclesto 1, ¢, =
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1, setting all y; ,; decision variables to 0, and removing the set of dummy nodes V,
in HHSRP-VS MILP model.

Proposition 2. (Best-case scenario) If the sets of patients of ¢ caregivers, who can
travel in a single shared vehicle, are assigned to the same locations and the patients
at the same locations require the same type of service, then the optimal flow time of
HHSRP-VS (fs), HHSRP-M (fy;) and HHSRP-STD (fsrp) are equal to each other.
fvs = fu = fsrp-

Proof 2. Suppose that there are c caregivers who travel with their own vehicle in
HHSRP-STD and with a single shared vehicle in HHSRP-M and HHSRP-V'S. Suppose
that they are assigned to serve the same number of patients (n), each located at the
same node such as in a mall, apartment or business center: the location of patient i of
caregiver [ is v! = v; and v; # v,Vi#j=1,..,n,,and Vvl =1,...,c. Suppose that
the patients located at the same node require the same treatment: the service time of
patient i of caregiver Lis p(v}) =p(v),Vi=1,..,nand ¥l = 1,...,c. Since each
caregiver must visit each patient, and patient treatment times are the same at the same
location, the optimal tour for all caregivers in HHSRP-STD can be easily computed
by solving a TSP for just one caregiver. Hence, suppose that P = P, =
wé=0,vi,..,v,vl,, =0}, vl=1,..,cindicates the optimal route of caregivers
in HHSRP-STD. If P minimizes the total route length for one caregiver, it must also
be the optimal tour of the single shared vehicle in HHSRP-M since all of the
caregivers’ patients are located at the same points and their service times are the same.

Hence,

féro = Ziept,, (tvz L+ p(vf)) = Yiep (toym +2@)) =T+S¥I=1,..,c,  (39)

i-1Yi

where Yiep(ty,_,v,) =T and Yiepp(vi) = S.

fstp = ZlczlfslTD =c(T+9) (40)
fir = 61 Zier (toym +P@W)) = ¢ (T +5) (41)

Because all caregivers in the shared vehicle leave at every patient node v; and treat
their patients simultaneously with the same amount of service time, there is no need to
implement a DP policy. Thus, f/s = fy = forp-®

Proposition 3. (Practical best-case scenario) forp IS always less than fy, when
caregivers’ patients located at the same nodes require different types of services

contrary to Proposition 2.
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Proof 3. (Based on Proposition 2) Suppose that caregiver [’s patient treatment time
at patient node i is not necessarily equal to the treatment times of other caregivers at
the same node due to different service requirements: p(v!) # p(vf),vi=1,..,n
andVj,k =1,...,c,and j # k in Proposition 2. The optimal sequence of patients in
HHSRP-STD (P) can be still obtained by solving a TSP for one caregiver because
service times are constant. P also minimizes the total travel time of the single shared

vehicle in HHSRP-M. Let T be the total travel time of caregivers or vehicles in the
optimal path: ¥;cp1 (tvil_pvil) =Yier(ty,_ v) =T VI=1,..,c. Let T;epp(v)) =

St be the total service times of caregiver I’s patients, which are known and constant.

The optimal flow time of the caregivers in HHSRP-STD is,

férp = Yierl,, (tvz it p(vil)) =T+S,vi=1,..,c (42)

i-1
fsrp = Xi=1 forp = ¢ T+ Xi St 43)
In HHSRP-M, when ¢ caregivers visit their patients located at the same nodes with
a shared vehicle, all other caregivers wait for the caregiver whose patient require the
highest treatment time. Hence, P still provides the optimal tour in HHSRP-M, and the
optimal flow time in HHSRP-M can be written as in equation (44).

for = i1 Diep to,_, v, + 2ie1 Liep max {p(w}), ..., p(v)})
=c T+ ¢ Yiepmax ({p(W}), .., p(WH}. (44)

As aresult, since S < ¥;cpmax ({(p(v)), ., p(H)}) , VI =1,...,c, forp < fr;- ®
As it is seen in Propositions 2 and 3, sharing a vehicle without DP policy certainly
increases caregivers’ total flow time except for the best-case scenario. We also know
from the previous sections that DP policy provides savings of the flow time when
vehicle sharing is allowed. Therefore, to investigate the effect of vehicle sharing with
DP and develop in-depth insights, we perform an empirical analysis. For this, we
solved HHSRP-STD with the ALNS-STD algorithm, which was developed by
removing DP local search, dummy node removal, and caregiver swap heuristics from
ALNS-VS, for an accurate comparison.

As defined in Table 3.2, whereas 2 vehicles are assumed to be needed to serve 10 and
30 patients, 3 and 6 vehicles are required for 50 and 100 patients respectively in our
problem instances in HHSRP-VS. However, the numbers of vehicles needed are 4, 4,
6, and 12 in HHSRP-STD because every caregiver needs a separate vehicle. Hence,
the additional vehicle needs are 2, 2, 3, and 6 (doubled) in HHSRP-STD in those
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problems. After solving the same problem instances with the new number of vehicles
using the ALNS-STD algorithm, we obtained the best-found solutions as given in
Tables F.1 through F.4 in Appendix F in details. Table A.3 in Appendix A also presents
the aggregated best solutions of ALNS-STD and their percentage improvement over
ALNS-VS in column “STD-VS(%)”. Because HHSRP-STD is less complex than
HHSRP-VS and ALNS-STD requires a few local search heuristics, solving ALNS-
STD requires a shorter amount of time: 1.7, 3.2, 5.1, and 19.5 seconds for 10, 30, 50,
and 100 patients, respectively, which are much shorter than ALNS-VS that solved the
same problems in 1.9, 22.9, 34.1, and 118.6 seconds. Furthermore, as expected the
HHSRP-VS causes more total flow time than the HHSRP-STD.

e For 10-patient instances, the caregivers spent about 33% less time, on average

158 minutes, in HHSRP-STD than in HHSRP-VS.

e For 30, 50 and 100 patients, caregivers complete their tour in about 26%, 25%

and 25% less time in HHSRP-STD than they are in HHSRP-VS on average,

respectively. This leads to totals of 263, 400 and 858 minutes of savings on

average for the same problem sets, respectively.
The abovementioned results showed that HHSRP-STD provides a considerable
amount of savings in total flow time of caregivers’ working time with a cost of
additional vehicles, which may be special vehicles equipped with healthcare
equipment. Because of this trade-off, we take our analysis further and compare
HHSRP-VS and HHSRP-STD in light of the total cost of providing care services to
find out deeper insights. For this purpose, we performed a break-even analysis.
Suppose that TCsrp and TCy ¢ are the total daily monetary cost of managing home
health care services in HHSRP-STD and HHSRP-VS, respectively. Let C, be the
hourly cost of vehicle ownership or usage that may consist of the rental or payment
cost per hour of a vehicle, the hourly wage of a driver, the cost of fuel consumption
for an hour, and all other costs related to the usage of the vehicle. Similarly, let C, be
the average hourly cost of caregivers that may include their salaries, insurances,
bonuses, and lunch payments. Last, forp and f,s indicate the best objective function
values (total flow time of caregivers in hours) of the HHSRP-STD and HHSRP-VS
problem instances solved by ALNS-STD and ALNS-VS algorithms, respectively.
Recall that c is the capacity of the vehicles in HHSRP-VS. Thus, TCsrp and TCys can

be simply written TCérp = forp * Cy + forp * €, and TCps = Ivs Cy+ fs*Cp.

Cc
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The first terms in these equations indicate the total cost of vehicle ownership and the
second terms identify the total cost of labor. In TCys, fys IS divided by c to calculate
the flow time of vehicles. Hence, the breakeven rate (BER) can be calculated by
equation (45). Proposition 4 shows that the denominator is always positive.

BER =& — Uis—fsro)

CL (f STD™ f*ﬂ)’ (45)

c

Proposition 4. In the optimal solutions of HHSRP-STD (fsrp), HHSPR-M (fy;), and
HHSRP-VS (fys), 25 < B < g

Proof 4. Suppose that Pgrp, = {Pl4, V1 = 1...c} is the set of optimal assignments and
routes of c¢ caregivers/vehicles in the optimal solution of a HHSRP-STD, where
Pl = {wh =0,v}, ..., v}, vl 41 = 2n + 1 }indicates the optimal route of caregiver
l. Let ef = (v}, v} and el = (v}, v}, ,,} be the first and the last edges that are
traversed in the route of caregiver I, respectively. Let T be the total travel time of

caregiver [, hence, similar to equation (42),

fsro = Ziepl,, (tvz L+ p(vl-l)) =T!'+ 5! (46)

i-1vi
fsrp = Xie1 forp = Xi=a TH+ Xio, St (47)
Suppose that caregivers have no common skills or there is no patient who can be
treated by more than one caregiver. Suppose that each patient has a different service
time and the locations of patients treated by each caregiver are placed apart from each
other like in different regions or zones. See Figure 5.2 for an example representation
of two caregivers’ patients and paths. Contrary to Proposition 3, these assumptions
define the worst case of the distribution and the assignments of patients. Because Pl;,
identifies the optimal path for each caregiver, in the optimal solution of HHSRP-M the
vehicle must follow through each caregivers’ path with an elimination of return to the
HHC center after a caregiver’s service completed. The caregivers who completed
serving their patients must travel through the other caregivers’ paths and wait in the
shared vehicle until all caregivers completed their service. Hence, when we combine
Py = Pérp U P2 ..U P&p U {A%}/{AS} where A% and AS indicate the additional and
the removed paths to complete a single circuit. Let us consider the example in Figure
5.2. We can develop optimal tour of HHSRP-M by combining two caregivers’ routes
Prp and P&, into one route of a vehicle Py,. Suppose that the vehicle visits patients

in P&p then in P&, for minimum flow. Hence, Py, = Pép/{ei} u{eio} UPEp/
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{e§}, where ey, = {vj, vi}is the connection edge. For the example in Figure 5.2,
Pép =10,1,2,3,0}, P4, ={0,4,5,6,7,0} and Py, = {0,1,2,3,4,5,6,7,0} where
el ={3,0}, e2 ={0,4} were removed from P, and P%, , respectively and
connection edge e; , = {3,4} was added.

Let I be the set of caregiver pairs in the shared vehicle in the optimal route of

HHSRP-M. So, we can write the optimal flow time as

* — . — 5 — . .
fu=c [ZlEL ZiEPétd tvl v} + Z(i,i+1)e7{,iei (tei,i+1 te{ teé“)] +c

i-17i ) (48)
Sie Ziept, p(v)
P P
- @ ®</

’
I
s
\x‘@ ®€F
- #
~
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———» route of caregiver 1 and caregiver 2

L

Figure 5.3. The representation of the optimal paths of two caregivers in the worst

case.

In equation (45), the first and the second terms indicate the portion of total travel and

service times in the total flow time of caregivers. With the triangle inequality

assumption, the term }; ti— teéﬂ) in total travel time is always

(i,i+1)67-[,ie% (tei,i+1 T el

non-positive. This can be seen in the example given in Figure 5.2 e,, < ef + €Z.
Hence, f;; can be written as in equation (49).

fa=c XiaT + ¢ X, St +c 4, (49)
% =X T+ X ST+ A< forp (50)

Finally, with the help of Proof 1, 2 < [ < £ w

Cc

Tables F.1 — F.4 in Appendix F presents the BER values calculated for each solution

in detail. Table A.3 in Appendix A demonstrates the average BER values for each
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instance class. Hence, if 3 E—V > BER, HHSRP-VS may be preferable to HHSRP-STD
L

due to lower total cost of service; otherwise, HHSRP-STD is superior to HHSRP-VS
in terms of the total cost of service. When we conducted a full factorial design of
experiment with factors noP, ra, and dd and a response BER, the analysis showed
that every main factor and only noP * ra two-way interaction is significant with a
model of 76.75% R2. The ANOVA table for this analysis is given in Table 5.4.
Additionally, the number of patients (noP) and service area radius (ra) have the
largest effect on BER due to their high Adj SS values.

Table 5.4. The ANOVA table for break-even ratios.

Source DF Adj SS Adj MS F-Value p-Value
noP 3 33.95 11.32 63.05 0.000
ra 3 57.57 19.19 106.93 0.000
dd 2 7.49 3.75 20.88 0.000
noP *ra 9 8.41 0.93 5.21 0.000
noP * dd 6 3.09 0.52 2.87 0.011
raxdd 6 1.10 0.18 1.02 0.413
no xra* dd 18 2.11 0.12 0.65 0.854
Error 192 34.46 0.18
Total 239 148.19

Further analysis was also conducted to gain more insights into the effects of the main
factors on BER. First, the Bonferroni t-test was used to examine the statistical
significance of  the different levels of noP , ra and
dd with a 95% confidence level. If there is no statistically significant difference
between the levels, then they are grouped and shown symbolically as demonstrated in
Table 5.5.

Table 5.5. Multiple comparison test results for BER according to the problem

features.
noP Mean ra Mean dd Mean
10 199 A 40 191 A o 157 A
30 1.30 B 30 169 A 1 137 B
100 1.08 B/C| 20 119 B 5 113 C
50 106 C| 10 064 C

As can be seen in Table 5.5 whereas the problems with 10 patients are statistically
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different from the others, it is interesting that there is no statistical difference between
the problem instances of 30 and 100 patients and between 50 and 100 patients. The
BER values for the 10-patient problem instances are approximately twice as high as
those for the other 50- and 100-patient problem instances. This result may be consistent
with the observation made in Chapter 5.5, where the contribution of DP policy to flow
time savings was lowest when the number of patients is smallest. The analysis also
revealed that while there was no statistical difference between service areas with a
radius of 30 and 40 minutes, there was a difference among these and other service

areas.

Furthermore, the BER decreases as the service area gets smaller. This result is also
consistent with the observation made in Chapter 5.5 that the reduction in flow time is
greatest when the service area is smallest. For example, in a 10-minute service area,
HHSRP-VS has a lower total cost than HHSRP-STD as long as the hourly vehicle cost
to hourly labor cost ratio is greater than 0.64. In other words, if the hourly labor cost
is 100 units and the hourly vehicle cost is more than 64 units, car sharing with a drop-
off policy may be preferred compared to the case where everyone uses their own
vehicle to reduce the total cost in a 10-minute service area. Since labor costs may be
higher than vehicle usage costs in developed countries, especially in the health sector,
BER values less than 1 may indicate that the chance of using a shared vehicle with the

DP policy is higher.

However, the opposite might also be true for developing countries, where ownership
or using cost of proper vehicles for home health care services might be more expensive
than cost of labor. According to the results, we can say that vehicle sharing with DP
policy provides cost savings mostly when the hourly vehicle cost is higher than the
labor cost since BER is mostly higher than 1 in many of the cases as can be seen in
Table 5.5. Additionally, as shown in Proposition 2, BER is equal to 0 in the best-case
scenario where f;s = forp. Hence, HHSRP-VS always costs less than HHSRP-STD,
no matter how high the hourly labor cost in the best-case scenario. Last, the average
BER s statistically different at each level of the patient's demand distribution. The

average BER decreases as the percentage of difficult care requirement increases.

Figure 5.4 also demonstrates that the average BER generally decreases as the number

of patients increases, the service area decreases, and the level of service patients’
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demand distribution increases. If the practical % can be assumed to be 1, where the
L

hourly costs of vehicle ownership labor cost are equal, then we can say that sharing
vehicles with DP policy provides savings in total service cost,
e when the service area is 10 minutes away from the HHC center regardless of
the number of patients and the difficulty of the service requirement.
e when the service area is 20 minutes away from the HHC center and the number
of patients in the area is more than 30.
e when the patients’ demand distribution is 50/30/20, where the difficult and

moderate care requirements are high, and there are more than 30 patients.
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Figure 5.4. The changes on average BER over service area (top) and the patients’
demand distributions (bottom).

Finally, we explore the effect of patient density in an area in terms of “number of
patients located per unit service area (PperA) in terms of kilometer? where a vehicle
travels 60 km/h on average. PperA = noP /(m * ra?), where m was taken 3.14. As

seen in Figure 5.5, the average BER mostly decreases as PperA decreases. For
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example, the average BER is 0.98 when there are 0.08 patients in a unit service area,
while it decreases to 0.48 when there are 0.096 patients in the same area. We can
conclude that it is highly likely that sharing vehicles with DP policy will result in less
total cost than HHSRP-STD when PperA is greater than 0.075. Hence, this result also
supports our previous observations, such that the denser the patients in an area the
superior the HHSRP-V'S model.
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Figure 5.5. The effect of PperA on average BER values
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CHAPTER 6
HOME HEALTHCARE DECISION SUPPORT SYSTEM AND ITS
IMPACT IN HHC SYSTEM

A Decision Support System (DSS) is an information system that permits users to seek
help from computer technology during decision making process. It is a combination of
data, information, software, analysis, and mathematical model which helps people to
understand the complex systems and solution methodology of these systems. With an
aim of assisting experts (end-users) in their decision-making, a prototype of home
healthcare decision support system (HHDSS) has also been developed for the HHRSP
under study. To implement a desktop application of the proposed system, different
libraries such as matplotlib!, NumPy?, scikit-learn®, and Tkinter have been used, in
which the Tkinter is the standard GUI library for python. Tkinter provides a powerful
object-oriented environment to the GUI toolkit. The integration of python and Tkinter

~

allows users to create a GUI application through a fast and easy process.
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Figure 6.1. Architecture of HHDSS

6.1. Architecture of HHDSS

The designed HHDSS is a model-driven single installation system that has all the

! Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in

Python and is accessible from https://matplotlib.org.
2 Numpy is an open scientific computing Python library and is accessible from https://numpy.org.
3 Sklearn or scikit-learn is an open machine learning Python library which and is accessible from

https://scikit-learn.org/stable/
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essentials programs and databases stored locally. The HHDSS architect is divided into
three main parts. "Data Entry", "Solver" and "Visualization™ as shown in Figure 6.1.
Through the "Entry Forms", necessary information of patients, caregivers, and

vehicles data is entered in the database of the system which is saved in .xIsx format.

"Solver" is further divided into four different modules which are distance matrix
generator, patients' location on the map, optimization algorithm, and routes of the
vehicle on a map. These modules can be operated by the respective buttons which
exploit the required data available in the database to generate the desired results. These
buttons include "Run: Distance Matrix", "Run: Patients on Map", "Run: Optimization
Algorithm" and "Run: Vehicles Routes". In short, all the buttons starting with "Run:"

are part of "Solver" and will use to run the code for the desired operation.

TODAY'S CAREGIVER

regiver Mo Dusication ity = Careghvsrs Marme Corpgieer B Ousificataon Chy =

Figure 6.2. Outlook of the HHDSS

The data which is in the database or entered through the "Patients Entry Form" are
used to calculate the road distances from every node to every node in the current
network by clicking the "Run: Distance Matrix" button. The actual road distance
matrix is obtained by using Bing Maps Distance Matrix API. A Python code is
developed using JSON and urllib* libraries. The Bing API provides travel times and

4 urllib is a python package for dealing with URLs. It can freely accesed from
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distances for a set of origins and destinations. The generated distance matrix can be
seen in .xIsx and .txt format by clicking the "Distance Matrix" button from the menu.

To get a better idea of patients' locations, a code is written by using the folium?® library
and can be run by clicking the "Run: Patients on Map" button. For the input, the data
that was used for calculating the distance matrix is utilized here also through the
panda’s library. The results of that code can be seen as an HTML file by clicking the

next button of the pair i.e., “Patients Map".

The proposed ALNS-VS algorithm is used to find the caregiver-patient assignment
and the routes of vehicles. The ALNS-VS takes three inputs that are distance matrix,
and information of patients, and the caregivers. By clicking the "Run: Optimization
Algorithm", an .exe file is executed from the Python environment to generate the
result. The result of schedule and route optimization can be seen through the "Export

Results" button.

*Region 1: Bayrakli (Izmir); Region 2: Bornova (lzmir)

Figure 6.3. Example representation of patients' locations on the map in Izmir,
Turkey

A code for showing the route of vehicles on the actual road network is written in
Python and is shown by clicking "Run: Vehicle Routes" button on the interface. An

open-source package, VeRoViz (Vehicle Routing Visualization), is used to generate

https://docs.python.org/2/library/urllib.html
> Folium developed by Story, R (2013) is a python library and be freely accessed from
https://pypi.org/project/folium/
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and visualize the nodes and vehicle routes on the road networks. Figure 6.3 shows an
example visualization of the locations of patients on a map that needs to be visited
with a distinct color variation depending on the area in Izmir, Turkey. This map is

obtained by running the backend code of the "Run Code: Map on Patients" button.

6.2. An Example on the Data Set of Covid-19

This section aims to present the potential use of the developed DSS powered by the
developed ALNS-VS algorithm with real road distances. For this, the approximate
locations of COVID-19 patients present in two neighboring districts of the three
biggest cities of Turkey, namely Ankara, Istanbul, and Izmir have been extracted.
These three cities are at high risk of spreading the virus that causes COVID-19 to
people (COVID-19 Istanbul, Ankara and Izmir density and risk map, September 07,
2020) and on average 200-250 positive cases are being observed per day just in 1zmir.
Neighboring districts were selected from these cities in terms of importance in
diplomatic affairs, tourism, and their role as financial centers. These extractions of the
approximate locations from these districts were made through the heatmap available
in the mobile application “Life Fits into Home". This mobile application was
developed and continuously updated by the digital transformation office of the Turkish
government. The main objective behind this application is to protect its citizens from
being exposed to dangerous areas during the current pandemic. Figure 6.4 provides
example heat maps of COVID-19 patients from various provinces in Turkey that were

extracted from the application.

()
m
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Figure 6.4. Heat map images from “Life Fits into Home” application
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6.2.1. Test Instances

Small to large-sized instances are generated in the selected districts within the cities of
Istanbul, Ankara, and Izmir in Turkey. The largest government hospital, located within
the neighborhoods of these selected districts, has been designated as the HHC (Home
Health Care) center to provide an enough number of caregivers to serve all the patients.
Details about the selected districts in the three largest cities of Turkey, along with the
number of patients in each city and their respective selected districts, are presented in
Table 6.1. The symbols representing the cities, which will be used to represent
instances, are enclosed in brackets alongside their names. The table also provides
information on the minimum, average, and maximum distances of patients from the

HHC center, displayed on the right-hand side.

Table 6.1. The details of the selected neighborhood with respect to their cities

] ] Land Distance to HHC (km)
) Neighboring # Total #
City o ) Areas : )
Districts Patients Patients | Min. | Avg. | Max.
(km?)
Ankara Cankaya (C) 195 268
344 0.68 | 12.6 24
(AN) Altindag (A) 149 174.5
Fatih (F) 101 13.08
Istanbul i
Zeytinburnu 184 0.78 | 4.78 | 11.61
(1S) 83 12.08
(2)
] Bornova (O) 68 224
Izmir (12) 131 144 | 656 | 12.71
Bayrakli (B) 63 30

In total there are six classes of instances generated for each city that are given in Table
6.2. These instances are going to be represented in the format like 50SO1, 1001S2,
ANAC344 which means 50 randomly selected patients from Bornova in the first
instance, 100 randomly selected patients from whole Istanbul out of 184 patients in
total in the second instance, and all patients of Ankara (A+C) that are 344 respectively.
Three different types of services for the caregivers have been considered based on our
experience and interviews with practitioners. Type-I service is assumed to be for
diagnosing the COVID-19 test such as the PCR test. In this type of service, a caregiver
visits the patient to take samples for diagnosing the disease. Type-I11 service is assumed
to be for the simple medication and varying of positive COVID-19 patients who do

not have a chronic disease, whereas the Type-Ill service includes the medication of
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positive COVID-19 patients and their chronic diseases but not in a high-risk group.
Patients who are in the high-risk group are not included because they have to be treated

in hospitals or in some specially built isolation centers.

Table 6.2. The details of the different classes of instances within cities

Classes of Instances (Ankara) Classes of Instances Classes of Instances (I1zmir)
(Istanbul)

SA: Sample of Altindag SF: Sample of Fatih SO: Sample of Bornova
SC: Sample of Cankaya SZ: Sample of Zeytinburnu | SB: Sample of Bayrakli
AN: Sample of Ankara IS: Sample of Istanbul 1Z: Sample of Izmir (B+0)
ANA: All Altindag ISF: All Fatih 1ZB: All Bayrakli

ANC: All Cankaya ISZ: All Zeytinburnu 1ZO: All Bornova

ANAC: All Ankara (A+C) ISFZ: All Istanbul (F+2) 1ZBO: All 1zmir (B+0O)

Therefore, the proposed service types are a standard procedure with low variability.
However, the service times of different types of services differ from one another. The
mean and coefficient of variation values are estimated for each type of service. The
mean service time values of Type-I, Type-Il, and Type-I111 services are assumed to be
10, 15, and 20 minutes, respectively. The coefficient of variation of all types of
services is estimated as 0.25 due to low variability caused by cultural behaviors. In
addition, after talking to practitioners, we assumed that 60%, 30%, and 10% of patients
seek Type-l, Type-Il, and Type-lll treatments, respectively. On the other hand,
hierarchical qualification levels are determined for caregivers which means all of the
caregivers can treat Type-I services, 50% of caregivers can treat Type-1l, and only
20% of caregivers can treat Type-lll services. Lastly, caregivers work between 9:00
and 18:00 and must have 60 minutes lunch break between 11:00 and 14:00. The details
of the generated patients' and caregivers' data concerning types of services are given
in Table 6.3 in which the number of caregivers has been defined with the assumption

to represent practical concerns.
6.2.2. Results

Table 6.4 demonstrates the summary of the results that are the averages of the
corresponding test instances of COVID-19 patients' data concerning the city and
patients' size. These results are obtained using the developed DSS. The average of the

total travel time spent by caregivers for all corresponding instances is identified by
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“Avg. TTT” in minutes whereas “Avg. TWT” shows how much time all caregivers
spent for servicing and traveling in a single day on average. For an instance, two
caregivers spent 44.46 minutes in traveling and 437.46 minutes (implicitly 393 min.
for caring) for both servicing and traveling all 30 patients in Bayrakli on average.
Hence, the average total service time can be calculated by (Avg. Total Working Time
- Avg. Total Travel Time.” “Avg. Cpu” is the average computational time to obtain a

solution, and “Std. Dev.” is the standard deviation of caregivers’ travel time.

Table 6.3. The details of patients and caregivers

# available caregivers with

# of demands respect to the type of

# of patients i (?f illnesses.

caregivers Type | Type: Type | Type:
| " Type-IlI | | Type-Ill

30 2 18 9 3 2 1 1
50 3 30 15 5 3 2 1
100 5 60 30 10 5 3 1
63 (Bayrakli) 4 38 19 6 4 2 1
68 (Bornova) 4 41 20 7 4 2 1
131 (I1zmir) 7 79 39 13 7 4 1
40 2 24 12 4 2 1 1
60 3 36 18 6 3 2 1
100 5 60 30 10 5 3 1
101 (Fatih) 6 61 30 10 6 3 1
83 (Zeytinburnu) 5 50 25 8 5 3 1
184 (Istanbul) 10 110 55 19 10 5 2
75 4 45 23 7 4 2 1
100 5 54 27 9 5 3 1
149 (Altindag) 8 89 45 15 8 4 2
195 (Cankaya) 10 117 59 19 10 5 2
344 (Ankara) 18 206 104 34 18 9 4

Considering the instances of Izmir in which it can be seen that the travel time increases
when patients from both the neighboring districts are combinedly selected rather than
dealing with them individually. This phenomenon is not seen among the instances of
Istanbul and Ankara. The reason for this is that in Istanbul the land areas of both the
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districts are very small as compared to the land areas of other cities and the patients
are located very close to each other due to high urbanization. In the case of Ankara,
the land area of Cankaya individually is greater than the sum of the areas of Bornova
and Bayrakli, and the patients are spread all over the districts of Ankara. This can also

be observed by comparing the average travel time spent by the caregivers of 1311ZBO,

1841SFZ and 344ANAC that are 157.31, 152.10, and 599.96 minutes, respectively.

Table 6.4. The results of COVID-19 instances

IZMIR ISTANBUL
Instance Avg. Std.  Avg. Avg. Instance Avg. Std. Avg. Avg.
Clusters TTT Dev. TWT CPU Clusters TTT Dev. TWT CPU
30SB 44.46 184  437.46 96.12 40SF 37.30 2.04 564.49 172.16
30SO 53.18 3.19  449.93 70.76 40SZ 50.54 340 557.22 147.44
301Z 67.04 539  459.45 77.00 401S 5059 232 606.25 162.64
50SB 60.16 188 712.92 179.32 60SF 49.86 245 836.84 287.88
50S0 72.22 183  720.15 162.32 60SZ 66.96 155 831.39 270.64
5012 88.11 549  739.42 157.20 60IS 66.00 149  863.92 287.84
1001Z 142.40 451 1278.76  695.56 1001S 98.67 3.85 1420.66  760.56
681ZB 87.96 1.56 1408.96  299.80 101ISF 72.70 0.71  1403.25 8134
63120 74.51 3.40 1396.51  317.40 831SZ 91.95 1.37 119386 559.8
1311ZBO 157.31 4.07 1877.43  825.80 184ISFZ 152.10 5.74 2590.32 12384

ANKARA

Instance Avg. Std.  Avg. Avg. Instance Avg. Std.  Avg. Avg.
Clusters TTT Dev. TWT CPU Clusters TTT Dev. TWT CPU
75SA 121.07 2.09 1096.61 423.12 100AN 26291 12.26 160452 652.32
75SC 207.08 14.16 1177.70 385.20 149ANA 203.23 238 2167.06 993
75AN 206.17  8.57 1187.38  380.04 195ANC 326.99 10.03 2886.16 1158
100SA 273.94 951 1613.66 631.56 344ANAC 59956 17.11 5104.66 1678.8
100SC 159.07 3.69 1489.73  732.28

It can also be observed that the caregivers spent the bigger portion of their total
working time in giving service to their patients and not more than 18% of the total
working time was spent on traveling in any of the instances. The duration of the service
time of caregivers is completely dependent on the number of patients present in the
respective instance. As the number of patients increases, the total service time also
increases. Figure 6.5 demonstrates the caregiver routes of one of the 40SZ and 30SO
instances, respectively. The sequence of visiting the patients is exactly delineated by
the HHDSS.
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Q HHC Center

(a) Zeytinburnu neighborhood (Istanbul) with 2 caregivers
covering 40 patients

.

Q-Q

&
QQQS

HHC Center

(b) Bomovaneighborhood (Izmir) with 2 caregivers covering
30 patients

Figure 6.5. The representation of the caregiver routes

6.3. Managerial Insights and Discussions

HHC services play a significant role in providing care for individuals in the comfort
of their homes. As explained in Chapter 2.3, the provision of HHC services has
positive effect on patient satisfaction (Vass et al., 2005), improves the quality of living
which helps to improve recovery time of patients (Owen et al., 2015), and prevents
hospitalization of elderly people with the improvements on the physical and mental
conditions (Tomita et al., 2010). Furthermore, several studies show the HHC services
are cost effective compared to institutional care (Soderstrom et al., 1999; Anttila et al.,
2000; Miller et al., 2005; Hammar et al., 2009; O’Dell and Wheeler, 2012).
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However, the HHC facilities face several challenges, including the delivery of high-
quality services to patients, ensuring caregiver job satisfaction, optimizing caregiver
routes and schedules, reducing both operational costs and environmental footprints.
The development and implementation of a DSS, when combined with a scheduling

and routing optimization algorithm, present promising solutions to these challenges.

Several studies in the literature have proposed a decision support system to assist HHC
centers. For instance, Eveborn et al. (2006) introduced a decision support system,
known as LAPS-CARE, for a Swedish HHC. While it is mentioned that the DSS is
coded in C, the specific details of its functionality are not provided. Kandakoglu et al.
(2020) developed a HHDSS for a division of The Ottawa Hospital. The HHDSS is
implemented in Java and uses open-source libraries. The MILP model is utilized to
find the schedules of caregivers. However, the model is solved by the commercial
solver Gurobi Optimizer. The HHDSS developed in this study is implemented in
Python and uses open-source libraries. In addition, to avoid additional software costs,

the ALNS-VS algorithm is used to solve the problem.

Healthcare organizations must find ways to deliver high-quality services while
minimizing operational costs. This involves cost-effective resource allocation,
efficient route planning, and minimizing administrative expenses. However, many
HHC centers lack dedicated operations research specialists who can provide daily
scheduling and routing plans. As a result, they often experience inefficient resource
utilization and costly schedules and routes. According to a National Association for
Home Care & Hospice (NAHC, 2015), caregivers in the United States traveled nearly
8 billion miles in 2013, showing a significant increase from 4.76 billion miles in 2006.
In addition, caregivers in Norway spend an average of 22% of their working hours in
vehicles, which is considered non-value-added time (Holm and Angelsen, 2014).
Thus, the implementation of efficient solutions to the HHSRP can result in substantial
cost savings for institutions and increase patients’ satisfaction. For instance,
Kandakoglu et al. (2020) states that the use of HHDSS resulted in a 33% decrease in
average total travel time. This led to potential an estimated annual cost reduction of
around 100,000 Canadian dollars just for the dialysis division. Both exact solution
algorithms which prioritize to find the optimal solutions at the cost of the
computational time, and heuristic algorithms, that aim to find near-optimal solutions

in short amount of time, can significantly improve the manual scheduling and routing
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plans of caregivers.

Furthermore, the manual planning of daily schedules and routes is extremely time-
consuming task, taking several hours and many staff members to complete
(Kandakoglu et al., 2020). Efficient planning reduces resource consumption since it
spares the need for involving all staff members in last-minute changes, enabling them
to depart from the office earlier to initiate their visits (Eveborn et al., 2006). As
demonstrated in Chapter 5.4, CPLEX fails to find optimal solutions for instances with
10 patients and 4 caregivers within the allocated 6 hours. In contrast, the proposed
algorithm consistently provides near optimal solutions in less than 2 minutes on
average even for larger instances, which consist of 100 patients and 12 caregivers. The
proposed algorithm, integrated into a decision support system as its framework is
explained in Chapter 6, successfully addresses this challenging task and provides

efficient and accurate solutions in a short amount of time.

As discussed in the Chapter 5, the proposed vehicle sharing policy and the solution
algorithm provide efficient scheduling and routing plans for HHC centers in short
amount of time by using less resources than the standard models in the literature.
Vehicle sharing policies allow for better utilization of available vehicles. Instead of
each caregiver having a dedicated vehicle, shared vehicles can be used more
efficiently, therefore reducing the overall number of vehicles needed. One of the most
substantial financial investments in the HHC systems is associated with the number of
vehicles employed. Vehicle sharing not only optimizes the allocation of vehicles but
also reduces the overall quantity required, thus providing significant savings in both

initial investment and operational costs.

An often overlooked advantage is the significance of storing all data within a system.
Although it involves extensive data entry, it also allows for data validation and enables
the planner to identify operational imbalances. For instance, situations in which one
caregiver is responsible for an excessive number of patients become highly evident

through the graphical representations (Eveborn et al., 2006).

Furthermore, reducing the environmental footprint of service provision is increasingly
important in the context of broader sustainability goals. This includes minimizing fuel
consumption, carbon emissions, and energy usage in service delivery. Due to the risks

associated with global climate change, governments impose carbon emission taxes on
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industries with high carbon emission as a tool to mitigate them (Zhang et al., 2015).
According to the Pretis (2022), the current carbon taxes, being too low to be effective
on reduction of carbon emissions, may lead to future tax increases. An inherent
advantage of the proposed vehicle sharing policies is its significant contribution to
reducing carbon emissions and decreased environmental impacts. Vehicle sharing
results in a reduced fleet size which lowers fuel consumption and emissions. This
aligns with the increasing emphasis on sustainability and environmentally friendly

practices.

In addition, through optimized or improved scheduling and routing plans, caregivers
can also spend more time with patients, allowing them to focus on their healthcare
needs rather than struggling with logistics challenges. This focus on enhancing patient
care is especially important within the context of HHC, as discussed in Chapter 2.3,
given that a significant portion of healthcare service recipients are elderly individuals.
Additionally, the provision of efficient plans, in terms of the total working time of
caregivers results in increasing number of patients that are served on a daily basis. This

allows for the satisfaction of a larger number of patients overall.
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CHAPTER 7
CONCLUSIONS AND FUTURE RESEARCH

The main contribution of this study is to present a new generic problem to the literature
of Workforce Scheduling and Routing Problem (WSRP). This problem introduces two
distinct features. First, multiple independent workers can travel in a single shared
vehicle. Second, a worker in a vehicle can be dropped off at a customer's location and
then picked up by the same vehicle. Although the generic WSRP we introduced in this
study can be applied in any field such as telecom, public utilities, or maintenance, we
have defined it specifically in the context of the home healthcare industry. Hence, the
problem is called Home Healthcare Scheduling and Routing Problem (HHSRP) with
Vehicle Sharing (VS) and drop-off and pick-up (DP) policy. The objective of this
HHSRP-VS is to minimize caregivers’ total flow time and the penalty cost of unvisited
patients.

We developed MILP model of this problem using a two-layer approach to easily adapt
the DP policy and avoid sub-tour elimination constraints. Since the complexity of the
HHSRP-VS can be considered NP-Hard, we proposed a constructive matheuristic
upper-bound algorithm (UBA) and an Adaptive Large Neighborhood Search (ALNS)
algorithm with problem-specific local search heuristics to solve HHSRP-VS. We
generated various problem instances based on some problem features such as the
radius of the service area, the number of patients in an area, the patients’ demand

distribution of the difficulty of care. We then studied on four research questions.

i.We proposed two variations of the caregiver swap heuristic for the ALNS-VS
algorithm, called the “common” and “unique” visibility heuristics. Statistical
analysis showed no significant difference between these visibility heuristics.

ii.We analyzed the effectiveness of the proposed UBA and ALNS-VS algorithms.
The CPLEX solver could only provide integer solutions for 10-patient instances
with an average optimality gap of 40.7% in six hours. For the same instances, UBA
developed 16.4% worse solutions than CPLEX in less than 1 seconds. However,

the ALNS-VS presented a maximum of 19.7% and an average of 6% lower total
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flow time than the CPLEX solutions only in 1.8 seconds on average. Because of
the lack of CPLEX solutions for the problems with more than 10 patients, we
compared ALNS-VS solutions with UBA+DP solutions obtained by applying the
proposed DP local search heuristic to UBA solutions. The ALNS-VS solutions
presented 13.1%, 13.6% and 19.3% and 15.9% lower total flow time than
UBA+DP in 1.9, 23, 34 and 119 seconds on average for 10-, 30-, 50- and 100-
patient instances, respectively. While ALNS-VS did not result in any unvisited
patients, there were 12 instances in UBA+DP where an average of 2 patients were
not visited. We concluded that the proposed ALNS-VS algorithm offers both
effective and efficient solutions for HHSRP-VS due to its solution qualities and
short computation time.

iii.We investigated the effect of DP policy on the total flow time. For this purpose,
we presented the HHSRP-M problem that allows vehicle sharing but DP. We first
proved that the optimal solutions of the HHSRP-VS are always better than or equal
to those in HHSRP-M. Next, in an empirical analysis, we also revealed that the DP
policy saves up to 25% in total flow time. We also showed statistically that savings
increase as service area gets smaller and patients need more difficult service.

iv.The effects of vehicle sharing with DP policy on total flow time and total service
cost were analyzed. For this purpose, we presented the HHSRP-STD problem,
which requires each caregiver to travel with their own vehicle, as in the
conventional HHSRP. We proved that the optimal flow time of HHSRP-STD is
always shorter than that of HHSRP-M, except in the best-case scenario. Next, we
conducted an empirical break-even analysis to investigate under what conditions
HHSRP-VS could reduce the total cost of service, including hourly vehicle
ownership and labor costs. We explored that the denser the area, the higher the
chance to reduce cost with the DP policy. Moreover, the possibility of reducing the
cost of service by HHSRP-VS increases when the demand for difficult care

increases.

Furthermore, a prototype of a HHDSS has been developed to demonstrate the practical
application of the proposed ALNS-VS algorithm in solving real-world problems with
real geographic road distances. To illustrate this, we tackled the task of visiting
COVID-19 patients at their homes for testing and care, a task performed by healthcare
providers of the Turkish Ministry of Health during the contact tracing process. Our
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study focused on identifying susceptible COVID-19 patients in two randomly selected
neighboring districts of each of Turkey's three major cities: Ankara, Istanbul, and [zmir.
To pinpoint patient locations, we utilized the heat map data available in the mobile
application 'Life Fits into Home,' which is developed by the Turkish Ministry of Health.
The proposed ALNS-VS algorithm was put into practice to determine an optimal
sequence for visiting patients, taking into account actual road distances and utilizing

visualization modules.

The proposed HHDSS combined with the ALNS-VS algorithm can significantly
enhance the planning and scheduling process of HHC centers in several ways. One of
the most significant improvements is observed in the optimized daily plans. As
reported by Kandakoglu et al. (2020) with the assistance of effective solution
algorithms, HHDSSs can lead to a %30 of reduction in total working time of caregivers.
This translates to the hundreds of thousand dollars in savings for a single division.
Besides cost saving, when caregivers spend less time traveling, they can visit more
patients and allocate more time to patient care. It is obvious that meeting customer
needs is the most important element in every service sector. However, its significance
is further emphasized within the healthcare sector, particularly in the context of HHC.
Furthermore, with the proposed vehicle sharing policy, the required total number of
vehicles can also be significantly reduced. This, in turn, can effectively lower both the
total investment costs and the total operational costs for HHC businesses. As a result,
with fewer vehicles and reduced travel distances, carbon emissions can also be

decreased, leading to a cleaner, more environmentally friendly solutions.

As it is discussed in the previous Chapter 6.3, the HHDSS also provides a storage of
comprehensive data related to patients, caregivers, and vehicles within the HHDSS is
a valuable aspect of the system. This comprehensive data storage allows for robust
analysis, prediction, and informed decision-making. The HHDSS stores patient details,
including medical history, care requirements, and appointment schedules. Planners can
analyze this data to understand patient trends and anticipate future needs. Anticipating
future patient needs and ensuring timely visits contribute to better patient care and
satisfaction. This insight is vital for capacity planning and resource allocation.
Information about caregivers, their qualifications, availability, and workload are
recorded in the system. This data enables planners to assess workforce capacity and

skill distribution. Details of the vehicles used for patient visits, including fuel
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efficiency and maintenance schedules, are maintained. This information aids in vehicle
allocation and routing optimization. Based on the workforce capacity and expected
patient demand, the system can forecast the number of vehicles and caregivers required.

This helps in proactively addressing staffing and vehicle fleet needs.

Finally, in dynamic environments, HHDSS combined with optimization algorithms
can adapt to changing conditions in real-time such as patient needs, caregiver
availability, and unforeseen events. For instance, in traffic management, they can
dynamically adjust routes based on traffic conditions. They can also assist in risk
assessment and management by identifying potential issues and suggesting strategies
to mitigate them. This real-time adaptability results in more efficient resource usage
and reduces operational bottlenecks, further contributing to sustainability.
Organizations that leverage DSS and optimization algorithms can gain a competitive
edge by offering superior service, reducing costs, and responding more effectively to

changing market conditions.

The results and insights of this study were obtained under various assumptions. First,
we assume that the number of caregivers assigned to a vehicle is fixed and 2. In
practice, however, more than two or varying numbers of caregivers can be assigned to
vehicles. Because our assumption is restrictive, this kind of flexibility can increase the
likelihood of reducing total flow time with the vehicle sharing and DP policies.
Therefore, we believe that relaxing this assumption could create new challenging
problems and opportunities in HHSRP-VS. Second, the current model mandates that
the caregiver be picked up by the same vehicle after being dropped off. Once this
assumption is relaxed and caregivers are allowed to travel in any vehicle, the likelihood
of lower total flow times may be very high. Third, researchers can also include multiple
HHC centers in the problem to develop more centralized decisions, reduce flow time,
and increase patient satisfaction. Hence, the new generic problem introduced, and
insights developed in this study seem to have the potential to open up new discussions
and challenging problems not only in the WSRP literature but also in the vehicle

routing problems.
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APPENDIX A — Computational Results

Table A.1. The best-found CPLEX solutions for 10-patient instances and their
comparisons with the UBA.

CPLEX UBA CPLEX UBA
Instance uB* ((;(2 )P uB** | CPU I:f)p. Instance uB* C(B(Q) g) uB** | CPU Ir(;/op.
h10 0 0 | 2585 39 335.1 | 0.11 | 229 | h30 0 0 506.5 | 49.2 | 557.4 | 0.05 | 9.1
h10 0 1 | 256.3 35.5 [ 3414 | 0.05 | 249 | h30 0 1 5319 | 46.9 | 6149 | 0.03 | 13.5
h10 0 2 | 2485 30.5 | 338.3 | 0.06 | 26,5 | h30 0 2 5035 | 34.6 | 5339 | 0.03 | 5.7
h10 0 3 | 255.8 38.6 | 3439 | 0.05 | 25.6 | h30 0 3 522.2 | 524 | 580.4 | 0.03 | 10.0
h10 0 4 | 233.8 29.1 | 3183 | 0.03 | 26,5 | h30 0 4 NA NA | 514.2 | 0.03 | NA
h10 1 0 | 258.1 30.1 [ 379.1 | 0.04 | 31.9 | h30.1 0 550.5 | 50.6 | 601.4 | 0.02 | 8.5
h10 1 1 | 288.8 35.7 | 385.4 | 0.05 | 251 | h30 1 1 554.4 | 444 | 658.9 | 0.02 | 15.9
h10 1 2 | 267.7 27 3823 | 0.04 | 30.0 | h30 1 2 533.2 | 348 | 5779 | 0.03 | 7.7
h10 1 3 | 278.2 35.6 | 3879 | 0.04 | 28.3 | h30 1 3 522.7 | 48.7 | 624.4 | 0.07 | 16.3
h10 1 4 | 255.4 26.1 | 362.3 | 0.03 | 295 | h30 1 4 483.6 | 38.9 | 558.2 | 0.03 | 134
h10 2 0 | 299.3 29.5 | 431.1 | 0.03 | 30.6 | h30.2 0 628.9 52 638.6 | 0.04 | 15
h10 2 1 | 307.8 29.2 | 4474 | 0.03 | 31.2 | h30 2 1 629.6 | 48.2 | 720.9 | 0.09 | 12.7
h10 2 2 | 281.8 19.6 | 4443 | 0.03 | 36.6 | h30 2 2 580 384 | 639.9 | 0.05 | 9.4
h10 2 3 308 299 | 4499 | 0.03 | 315 | h30 2 3 576.2 48 686.4 | 0.10 | 16.1
h10 2 4 | 295.1 259 | 424.3 | 0.03 | 30.4 | h30 2 4 NA NA | 620.2 | 0.06 | NA
h20 0 0 | 399.9 479 | 4468 | 0.03 | 105 | h40 0 0 5674 | 454 | 668.6 | 0.02 | 15.1
h20 0 1 403 452 ] 469.1 | 0.03 | 141 | h40.0 1 644.7 | 437 | 7282 ] 0.08 | 115
h20 0 2 | 3784 38.1 | 452.7 | 0.06 | 16.4 | h40 0 2 614.7 | 39.7 | 637.0 | 0.06 | 3.5
h20 0 3 | 3904 49 | 457.7 | 0.22 | 147 | h40 0 3 646.7 | 49.7 | 698.6 | 0.14 | 74
h20 0 4 | 418.6 48.1 | 418.7 | 0.03 | 0.0 h40 0 4 NA NA | 608.7 | 0.03 | NA
h20 1 0 | 4044 42.2 | 490.8 | 0.03 | 176 | h40.1 0 621 477 | 7126 | 0.03 | 12.9
h20 1 1 | 4121 419 | 5131 | 0.03 | 19.7 | h40 11 684.4 | 472 | 7722 | 0.02 | 11.4
h20 1 2 395 44 | 476.0 | 0.03 | 17.0 | h40_1 2 676.3 | 40.3 | 681.0 | 0.05 | 0.7
h20_1 3 | 398.1 399 | 501.7 | 0.04 | 206 | h40_1 3 660.8 | 494 | 7426 | 0.10 | 11.0
h20 1 4 NA NA | 4627 | 0.03 | NA h40 1 4 652.6 | 47.2 | 652.7 | 0.05 | 0.0
h20 2 0 | 465.6 452 | 5356 | 0.03 | 13.1 | h40.2 0 708.7 | 503 | 7415 | 0.03 | 4.4
h20 2 1 | 466.4 432 | 575.1 | 0.02 | 189 | h40 2 1 745.2 47 834.2 | 0.02 | 10.7
h20 2 2 | 4458 37.1 | 558.7 | 0.02 | 20.2 | h40 2 2 708.6 | 39.6 | 743.0 | 0.03 | 4.6
h20 2 3 451 441 | 563.7 | 0.04 | 20.0 | h40 2 3 687.7 | 48.1 | 804.6 | 0.07 | 145
h20 2 4 | 384.1 29.7 | 524.7 | 0.03 | 26.8 | h40 2 4 637.8 | 41.2 | 7147 | 0.02 | 10.8

*Best-found integer: The best objective function values of the best-found integer solutions by CPLEX.

**UB: the objective function values of the solutions obtained by the proposed UBA.
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Table A. 2. The ALNS-VS solutions and their comparisons with CPLEX solutions
for 10-patient instances.

Instance [Best-found| Avg. #DP|ICPU% Imp.| Instance [Best-found| Avg. #DP|CPU[% Imp.
h10_ 00 2405 |246.3|54|1.7| 6.9 h30_0_0 4525 |468.5]/2.0|2.0| 10.7
h10 0 1 2543 |256.4|5.2(18| 0.8 h30_0_1 527.3 |527.3|2.0|18| 0.9
h10_0_2 231.0 |231.8(6.0/2.0| 7.0 h30_0_2 500.3 |500.3|2.0/1.7| 0.6
h10_0_3 255.8 |261.0{4.4]18| 0.0 h30_0_3 504.6 |504.6|3.0|1.7| 3.4
h10_0 4 2172 |2214|44|16| 71 h30_0_4 449.0 [451.3[24|16| NA
h10_1. 0 2524 |2575(6.2|19| 22 h30_ 1 0 496.3 |515.3|3.8|2.0| 99
h10_1 1 282.0 |283.3|54|17| 24 h30 1 1 544.6 |5446]40|17| 138
h10_1 2 243.0 [2454|7.0|19]| 92 h30 1 2 5351 |549.2|44|18]| -04
h10_1 3 2720 |2759|6.2|18| 22 h30_1_3 527.8 |527.8|3.0/1.8]| -1.0
h10_1_4 2358 |238.8|6.0|/1.7| 7.7 h30_1_4 484.2 |484.2142|1.7| 0.1
h10_2 0 278.0 |287.9(6.8|19| 7.1 h30_2 0 504.8 |531.8|3.6[1.9| 19.7
h10 2 1 305.3 |308.0{6.8/1.8| 0.8 h30_2_1 5485 598.4|3.4|1.7| 129
h10_2 2 276.6 |277.3]6.0/18| 1.9 h30_2 2 577.6 |578.9|3.2|1.7| 04
h10_2 3 303.2 |306.3|4.8|18]| 16 h30_2_3 548.7 |551.4|4.0/2.0| 438
h10_2 4 279.2 |282.9]5.0|16| 54 h30 2 4 496.1 496.1|4.0|16| NA
h20 0 0 361.2 |378.7|2.8|19| 97 h40 0_0 542.6 |562.3|2.0|19| 44
h20 0_1 401.0 |401.0{4.0{18| 05 h40_0_1 588.4 |633.4|2.0[19| 87
h20_0_2 346.7 |372.3[|26|1.7| 84 h40_0_2 539.1 |591.4|1.0|1.7] 123
h20_0_3 3845 |[3845|3.2|18]| 15 h40_0_3 619.2 619.2|3.0|1.8| 4.2
h20_0_4 339.5 |[339.5/4.0/1.7| 189 h40_0_4 551.8 |[551.8]2.0|1.6| NA
h20_1 0 357.1 |377.2|54]2.0| 117 h40_1 0 593.3 |620.0|/3.0[1.9| 45
h20_1 1 4131 [413.2(3.6|18| -02 h40 1 1 6654 |668.6(44|17| 2.8
h20_1 2 3574 |385.4(6.0/19| 95 h40 1 2 606.2 |649.8(1.8|1.7 | 10.4
h20_1_3 397.7 [398.0(4.2|17] 01 h40 1 3 650.3 |650.3|3.0|19| 16
h20_1 4 356.8 |[356.8/5.6|1.6| NA h40_1_4 600.5 |600.5/2.8|1.6| 8.0
h20_2_0 409.0 [438.0{44|19] 121 h40_2 0 601.5 [6325]3.0/2.0] 15.1
h20_2_1 428.7 |460.9|48|17| 8.1 h40_2 1 663.9 |731.0/3.0|1.8] 10.9
h20_2_2 3740 |4244]3.0/18]| 16.1 h40_2 2 608.2 [676.7(2.0/1.8| 142
h20_2_3 433.7 43574020 3.8 h40_2_3 666.2 |668.4|36]|21| 3.1
h20_2_4 380.6 |387.3|4.0/1.7| 09 h40 2 4 600.7 6047|4217 | 538
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Table A.3. The aggregated results of ALNS-VS, UBA, ALNS_M, ALNS-STD and
their comparisons.

VS-
ALNS- | ALNS- | ALNS- | UBA+DP- VS-M | STD-VS
Instance | UBA+DP | “0/c M STD | UBA (%) Et)JPB(/;\/:) (%) o) | BER
h10 10 0 | 2965 | 239.98 | 329.18 | 17667 | 116 189 | 272 | 260 | 12
h10 10 1 | 3053 | 25816 | 373.18 | 19852 | 19.6 158 | 312 | 224 | 09
h10 10 2 | 371.6 | 289.65 | 43518 | 22952 | 155 219 | 337 | 203 |07
h10 20 0 | 4145 | 37316 | 434.10 | 239.80 7.7 114 | 156 | 343 | 24
h10 20 1 | 4383 | 387.68 | 47810 | 261.80 | 10.4 140 | 213 [ 302 [ 17
h10 20 2 | 479.7 | 431.68 | 540.10 | 293.14 | 13.0 155 | 250 | 274 | 13
h10 30 0 | 534.9 | 490.83 | 540.08 | 304.79 4.6 8.8 9.9 372 | 32
h10 30 1 | 567.5 | 526.23 | 584.08 | 326.79 6.1 8.5 114 | 368 | 29
h10 30 2 | 5957 | 55369 | 646.08 | 357.79 9.9 100 | 172 | 329 [21
h10 40 0 | 6456 | 599.49 | 645.62 | 368.83 34 118 | 119 | 349 [ 26
h10 40 1 | 689.0 | 641.80 | 689.62 | 391.43 3.3 9.3 9.6 371 | 30
h10 40 2 | 7115 | 670.93 | 751.62 | 421.88 7.4 115 | 164 | 327 | 2.0
h30 10 0 | 6831 | 560.65 | 859.66 | 45952 | 22.1 178 | 348 | 180 | 06
h30 10 1 | 730.8 | 60358 | 941.66 | 501.36 | 23.9 173 | 359 | 169 | 05
h30_10 2 | 8600 | 665.52 [1091.79| 573.90 | 222 223 | 390 | 138 | 04
h30 20 0 | 8985 | 785.82 |1030.83| 569.02 | 150 125 | 238 | 276 | 12
h30 20 1 | 947.4 | 817.17 [1119.01] 609.38 | 16.2 137 | 270 | 254 | 1.0
h30 20 2 | 1053.3 | 88524 [1265.90| 68417 | 17.9 159 | 301 | 227 |08
h30_30 0 | 1106.4 | 1001.70 [1202.96 | 676.04 9.5 9.5 167 | 325 |19
h30 30 1 | 1169.7 | 1040.87 [1287.13| 71903 | 105 109 | 191 | 309 [ 16
h30_30 2 | 12721 |1101.78 [1434.96| 78951 | 13.3 133 | 232 | 283 | 13
h30 40 0 | 1323.2 | 1211.49 [1380.25| 789.16 6.3 8.4 122 | 349 | 23
h30 40 1 | 1402.3 [ 1250.11 [1466.82 | 829.19 7.4 9.9 142 | 341 | 22
h30 40 2 | 1492.1 [1322.80 [1613.96| 90468 | 11.4 112 | 180 | 316 | 17
h50 10 0 | 11238 | 917.19 [1362.34| 74110 | 196 183 | 327 | 192 | 06
h50_10 1 | 1339.2 | 1049.48 [1634.19| 87871 | 200 215 | 358 | 163 | 05
h50_10 2 | 1538.8 | 1207.55 [1941.84| 103020 | 222 214 | 378 | 147 |04
h50 20 0 | 1490.6 | 1265.13 [1617.41| 928.82 | 116 151 | 218 | 266 | 11
h50 20 1 | 1711.2 | 1394.07 [1890.92 | 106576 | 12.6 185 | 263 | 236 | 09
h50 20 2 | 1911.4 | 1558.52 [2196.37 | 121873 | 157 183 | 200 | 218 |08
h50 30 0 | 1817.2 | 1504.62 | 1875.04| 111960 | 7.7 121 | 150 | 298 | 15
h50 30 1 | 2031.2 [ 1729.75 [2154.47 | 125532 | 9.8 146 | 197 [ 274 [ 12
h50 30 2 | 2231.5 | 1890.13 [2464.78 | 1407.72 | 12.9 152 | 233 | 255 | 11
h50 40 0 | 2139.7 |1916.01 [2138.98| 131078 | 6.1 104 | 104 | 316 | 17
h50 40 1 | 2756.1 | 2051.53 [2416.16 | 144651 | 6.0 209 | 151 | 205 | 14
h50 40 2 | 4357.0 | 2256.00 [2742.02| 150829 | 14.2 458 | 177 | 292 | 14
h100_10 0| 2433.3 [ 2010.13 [2870.71| 158091 | 16.9 173 | 300 | 214 |08
h100_10 1| 2879.8 | 2360.71 [3553.15| 1920.09 | 20.0 180 | 336 | 187 | 06
h100_10 2| 2954.9 | 2464.20 [3719.20| 199956 | 21.4 166 | 337 | 189 | 06
h100 20 0| 3112.4 | 2659.69 |3389.20 | 1967.69 | 11.1 145 | 215 | 260 | 11
h100 20 1| 3632.8 | 3046.90 |4082.18 | 2308.09 | 13.6 161 | 254 | 242 | 09
h100 20 2| 3722.0 | 3141.26 [4230.52| 239176 | 14.3 156 | 257 | 239 [ 09
h100 30 0| 3751.3 | 3300.48 [3909.16 | 2366.60 | 7.2 120 | 156 | 283 | 13
h100 30 1| 4183.6 | 3677.09 [4604.94 | 270244 | 11.2 121 | 201 | 265 | 11
h100 30 2| 4352.5 | 3783.61 |4783.56 | 2782.05 | 105 130 | 209 | 265 | 11
h100 40 0| 4391.1 | 3968.25 |4429.90| 275597 | 4.8 9.6 104 | 305 |16
h100 40 1| 5493.3 | 4400.96 |5192.64 | 310626 | 11.6 191 | 152 | 294 | 14
h100 40 2| 6349.7 | 4535.37 [5336.92| 317382 | 10.6 274 | 150 | 300 |15
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APPENDIX B - Details of the parameter tuning tests

The ANOVA results in Table B.1 indicate that all of the parameters are statistically
significant since their p-values are less than 0.05. In addition, update solution iteration
(w) has the greatest effect on the algorithm since it has the largest adjusted sum of
square (Adj SS). In addition to the main effects, the two-way interaction of caregiver
swap iteration (@) and maximum remove parameter (&) is the only statistically
significant interaction that affects the algorithm’s output. Hence, we do not only
consider the main effects but also ¢*¢ two-way interaction while determining the
optimum setting for the parameters. For this purpose, we analyzed the main effects
plot and used Response Optimizer module of Minitab 19. As seen in Figure B.1, the
best setting for (w, @, &, p) that minimizes the output is (250,150, 0.5, 0.95) when only
main effects are considered. However, the result of the Response Optimization
suggests a change on the value of ¢ from 150 to 100 resulting that the optimal setting
is (w, @, &, p)=(250,100, 0.5, 0.95) with a 95% confidence interval of (3,185; 4,935).

Table B. 4. ANOVA results for parameter tuning of the ALNS-VS.

Source df AdjSS AdjMS  F-Value p-Value
Model 1049 29555  2.8174 0.66 1.000
Linear 19 779.1  41.0042 9.63 0.000
) 5 399.3  79.8577 18.75 0.000
@ 6 81.3 13.5511 3.18 0.004
& 4 74.5 18.6208 4.37 0.002
p 4 2240  56.0005 13.15 0.000
2-Way Interactions 134 685.1 5.1127 1.20 0.057
w*p 30 132.5 4.4159 1.04 0.410
w*¢ 20 39.3 1.9659 0.46 0.980
w*p 20 9.9 0.4960 0.12 1.000
p*¢ 24 382.7  15.9467 3.74 0.000
o*p 24 51.2 2.1332 0.50 0.980
&*p 16 69.5 4.3415 1.02 0.431
3-Way Interactions 416 877.2 2.1086 0.50 1.000
w*p *¢ 120 4022 3.3517 0.79 0.959
w*p *p 120 179.6 1.4966 0.35 1.000
w*é*p 80 115.3 1.4413 0.34 1.000
@*&*p 96 180.1 1.8757 0.44 1.000
4-Way Interactions 480 614.1 1.2794 0.30 1.000
w*p *&*p 480 614.1 1.2794 0.30 1.000
Error 19950 84952.0 4.2582
Total 20999 87907.4
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Figure B.1. The main effects plot for parameters.
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APPENDIX C - The ALNS-VS solutions: variants of the caregiver swap

heuristic

Tables C.1 through C.4 consists of the best-found solutions of the HHSRP problem
instances by the variations of the ALNS-VS algorithm for 10, 30, 50 and 100 patients,

respectively. These solutions are used in the analyzes in Chapter 5.3, 5.4, 5.5 and 5.6.

In the following tables, the “Best-found” and “Avg.” columns indicate the objective

values of the best-found and the averages of the best solutions found in five

replications, respectively. The column “#DP” shows how many times the caregivers

were dropped off. Last, “CPU” presents the computational time of the algorithm in

seconds.

Table C. 5. The best-found solutions for the instances with 10 patients by the ALNS-

VS algorithms.
ALNS-VS_Unique ALNS-VS_Common ALNS-VS_No-Swap
Instance fiisrf;i Avg. | #DP | CPU fissr; Avg. | #DP | CPU fgzﬁa Avg. | #DP
h10 10 0 0| 240.54 | 246.304| 52 | 1.04 | 24054 | 246.304| 52 | 1.85 | 247.48 | 250.056 | 5.00
h10 10 0 1|254.28 | 25642 | 52 | 1.78 |254.08 | 256.42 | 52 | 1.77 | 254.28 | 256.328 | 52
h10 10 0 2| 232.1 | 233.628| 5.8 | 1.87 | 232.1 |233.628| 5.8 | 1.89 | 231 | 233.22 | 52
h10 10 0 3| 255.76 | 257.088 | 5.2 | 1.80 | 255.76 | 257.088 | 5.2 | 1.78 | 255.76 | 258.844| 4.8
h10 10 0 4| 217.04 | 220508 | 4.8 | 2.09 | 217.24 | 220508 | 4.8 | 158 | 217.24 | 220508 | 4.8
h10 10 1 0| 256.26| 258.22 | 6 | 1.92 |256.26 | 258.22 | 6 | 1.85 | 256.26 | 259.148| 5.8
h10 10 1 1|281.98|283.932| 5.4 | 1.77 |281.98|283.932| 54 | 1.74 | 281.98 | 283.848| 56
h10 10 1 2| 243.04 | 244.848| 7 | 1.81 |243.04 |244.848| 7 | 1.78 | 2453 | 2453 | 7.0
h10 10 1 3|271.96 | 275.88 | 6.2 | 1.78 |271.96 | 275.88 | 6.2 | 1.75 | 276.48 | 277.276| 52
h10 10 1 4| 237.54 | 241524 | 6.4 | 163 | 237.54 | 241524 | 6.4 | 157 | 235.84 | 24014 | 52
h10 10 2 0|278.02|290.968| 7 | 1.74 |278.02|290.968| 7 | 1.76 | 280.82 | 289.9 | 66
h10 10 2 1|308.08 | 309.436| 6.8 | 1.81 |308.08 | 309.436| 6.8 | 1.96 | 305.34 | 307.8 | 7.0
h10 10 2 2|276.56 | 27656 | 6 | 1.80 | 276.56 | 27656 | 6 | 1.87 | 27656 | 276.56 | 5.6
h10 10 2 3|306.36 | 308.12 | 5.2 | 2.00 | 306.36 | 308.12 | 52 | 1.88 | 30476 | 308 | 4.8
h10 10 2 4| 279.24 | 281272 | 54 | 1.60 | 279.24 | 281.272| 54 | 1.62 | 279.24 | 280.252| 5.8
h10 20 0 0| 371.66 | 377.892| 3.6 | 1.99 |371.66 |377.892| 3.6 | 2.18 | 371.66 |379.332| 3.6
h10 20 0 1|401.04| 401.04 | 4 | 1.79 |401.04| 401.04 | 4 | 1.74 | 401.04 |401.416| 3.8
h10 20 0 2|369.14 | 378.356 | 2.8 | 1.82 | 369.14 |378.356 | 2.8 | 1.99 | 366.94 |377.916| 3.2
h10 20 0 3|384.52 | 38452 | 3 | 1.90 | 38452 | 38452 | 3 | 1.93 | 38452 | 38452 | 3.2
h10 20 0 4 |339.46 | 339.46 | 4 | 1.72 |339.46| 339.46 | 4 | 1.85 | 339.46 | 339.46 | 4.2
h10 20 1 0|379.22 | 382.368 | 5.8 | 2.01 |379.22 |382.368| 5.8 | 2.20 | 379.22 |384.612| 58
h10 20 1 1|413.12| 41318 | 4.8 | 1.78 |413.12| 41318 | 48 | 1.80 | 413.12 | 413.18 | 438
h10 20 1 2| 391.6 | 391.6 | 6 | 1.92 | 391.6 | 3916 | 6 | 212 | 3916 | 391.6 | 6.0
h10 20 1 3| 397.7 | 398.096| 4.6 | 1.85 | 397.7 | 398.096 | 4.6 | 1.92 | 397.7 |397.964| 3.8
h10 20 1 4|356.78 | 356.78 | 5.2 | 1.66 |356.78 | 356.78 | 5.2 | 1.80 | 356.78 | 356.78 | 5.2
h10 20 2 0|440.16 | 441.372| 4.8 | 1.92 |440.16 |441.372| 4.8 | 2.18 | 441.22 |441.948| 46
h10 20 2 1|466.62 | 471.716| 4.8 | 1.72 | 466.62 | 471.716 | 4.8 | 2.07 | 466.62 |467.172| 4.6
h10 20 2 2 |437.02 | 437.048| 3.2 | 1.79 |437.02 |437.048| 3.2 | 2.34 | 437.02 |437.076| 3.4
h10 20 2 3|433.98 | 435724 | 4 | 2.04 |433.98 |435.724| 4 | 2.33 | 433.7 |437.108| 3.4
h10 20 2 4|380.64 | 386.36 | 5.2 | 1.72 |380.64 | 386.36 | 5.2 | 1.96 | 380.64 |385.668| 5.
h10 30 0 0| 47246 | 472.46 | 2 | 1.02 |47246| 47246 | 2 | 2.07 | 472.46 | 47246 | 2.0
h10 30 0 1|527.26| 527.26 | 2 | 1.81 |527.26| 527.26 | 2 | 1.95 | 527.26 | 527.26 | 2.0
h10 30 0 2|500.28 | 500.28 | 2.2 | 1.77 |500.28 | 500.28 | 2.2 | 1.83 | 500.28 | 500.28 | 2.0
h10 30 0 3|504.56 | 504.56 | 3 | 1.99 |504.56 | 50456 | 3 | 2.02 | 504.56 | 504.56 | 3.0
h10 30 0 4| 449.6 | 452.08 | 2.2 | 1.63 | 449.6 | 452.08 | 2.2 | 1.66 | 4496 | 45208 | 2.2
h10 30 1 0]519.86| 519.86 | 4 | 2.08 |519.86 | 519.86 | 4 | 2.12 | 518.48 |519584 | 4.2
h10 30 1 1|544.58 | 54458 | 3.8 | 1.76 |544.58 | 54458 | 3.8 | 1.74 | 54458 | 54458 | 4.0
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Table C.1. The best-found solutions for the instances with 10 patients by the ALNS-
VS algorithms (cont).

ALNS-VS_Unique ALNS-VS_Common ALNS-VS_No-Swap
Instance fBoﬁsrfa Avg. | #DP | CPU fgﬁs:;, Avg. | #DP | CPU 55‘% Avg. | #DP
h10 30 1 3|527.82| 527.82 | 3 | 1.86 |527.82| 527.82 | 3 | 1.87 | 527.82 | 527.82 | 3.0
h10 30 1 4|484.16 | 484.16 | 42 | 1.6 |484.16| 48416 | 42 | 1.65 | 484.16 |484.728| 3.8
h10 30 2 053844 | 538.44 | 4 | 1.00 |538.44| 53844 | 4 | 1.92 | 538.44 |541.812| 3.4
h10 30 2 1]607.64| 610.08 | 3.8 | 1.84 |607.64| 610.08 | 3.8 | 1.73 | 607.64 | 609.136| 4.0
h10 30 2 2|577.62| 577.62 | 3 | 1.84 |577.62| 57762 | 3 | 1.86 | 577.62 | 578.624| 3.
h10 30 2 3|548.68 |551.352| 3.8 | 1.97 |548.68 |551.352| 3.8 | 1.97 | 548.68 |551.352| 3.8
h10 30 2 4|496.08 | 496.08 | 4 | 1.64 | 496.08| 496.08 | 4 | 1.64 | 496.08 | 496.08 | 3.8
h10 40 0 0]567.26 | 567.26 | 2 | 1.79 |567.26 | 567.26 | 2 | 1.80 | 567.26 | 567.26 | 2.0
h10 40 0 1|644.64| 64464 | 2 | 2.40 |644.64| 64464 | 2 | 1.80 | 644.64 | 64464 | 2.0
h10 40 0 2| 6145 | 6145 | 1 | 1.74 | 6145 | 6145 | 1 | 1.75 | 6145 | 6145 | 1.0
h10 40 0 3|619.24 | 619.24 | 3 | 2.00 |619.24| 619.04 | 3 | 1.94 | 619.24 | 619.24 | 3.0
h10 40 0 4| 551.8 | 551.8 | 2 | 1.62 | 5501.8 | 551.8 | 2 | 1.60 | 551.8 | 551.8 | 2.0
h10 40 1 0| 614.74 | 626.04 | 2.8 | 2.61 |614.74| 62604 | 2.8 | 201 | 614.74 | 627.808| 2.6
h10 40 1 166544 | 666.496| 4.8 | 2.02 |665.44|666.496 | 4.8 | 1.75 | 66544 |666.496| 4.8
h10 40 1 2|678.02| 678.02 | 2 | 1.85 |678.02| 67802 | 2 | 1.78 | 678.02 | 678.02 | 2.0
h10 40 1 3| 650.3 | 6503 | 3 | 191 | 650.3 | 650.3 | 3 | 1.83 | 6503 | 6503 | 3.0
h10 40 1 4|600.48 | 60048 | 3 | 1.72 | 600.48| 60048 | 3 | 1.57 | 600.48 | 600.48 | 2.8
h10 40 2 0]640.18 | 640.18 | 3 | 1.93 |640.18| 640.18 | 3 | 1.97 | 640.18 | 640.18 | 3.0
h10 40 2 1|743.28 | 743.352| 3.4 | 1.80 |743.28|743.352 | 34 | 1.81 | 743.28 | 743376 | 3.
h10 40 2 2|704.28 | 7052 | 2.8 | 1.81 |704.28| 7052 | 2.8 | 1.90 | 704.28 | 70428 | 3.0
h10 40 2 3| 666.2 |668.412| 4 | 2.10 | 666.2 |668.412| 4 | 2.00 | 6662 | 666.2 | 4.0
h10 40 2 4| 600.7 |604.672| 4.2 | 1.61 | 600.7 |604.672| 42 | 1.71 | 600.7 |608.636| 3.2

Table C. 6. The best-found solutions for the instances with 30 patients by the ALNS-

VS algorithms
ALNS-VS_No-
ALNS-VS_Unique ALNS-VS_Common -
Swap
Best- Best- Best-
Instance Avg. #DP | CPU Avg. #DP | CPU Avg.
found found found

h30 10 0 0| 5485 | 563.568 | 17.4 | 24 | 538.76 | 555.344 | 17.6 18 | 573.98 | 579.24
h30 10 0 1| 5716 | 579.116 | 154 | 19 | 568.22 577 14.6 18 | 569.52 | 578.56
h30 10 0 2| 552.34 | 562.172 | 20 13 | 561.66 | 566.736 | 20.6 15 | 559.76 | 568.376
h30 10 0 3| 571.22 | 577948 | 158 | 15 | 576.48 | 577.88 | 16.6 | 21 | 556.06 | 573.336
h30 10 0 4| 559.58 | 564.284 | 16.2 | 20 | 559.84 | 566.768 | 16.2 | 29 558.4 573.14
h30 10 1 0| 604.16 | 622.404 | 178 | 15 | 604.16 628.3 168 | 27 638.6 638.6
h30 10 1 1| 614.22 | 623.92 | 188 | 16 | 614.22 | 622.272 | 18.6 | 34 | 619.96 | 632.488
h30 10 1 2| 604.38 | 613.864 | 216 | 17 6115 | 616.04 | 204 | 25 | 610.78 | 614.156
h30 10 1 3| 597.14 | 600.38 | 17.6 | 22 | 597.14 | 602.984 18 29 | 595.46 | 604.856
h30 10 1 4| 597.98 | 604.148 | 19 23 | 599.12 | 607.832 | 18.8 | 28 | 601.34 | 609.864
h30 10 2 0| 664.76 | 678.128 | 16.2 | 29 659.7 | 676.34 | 158 | 28 | 670.74 | 680.964
h30 10 2 1| 665.44 | 690.324 | 17.2 | 28 | 663.06 | 681.62 | 18.6 | 29 | 666.94 | 684.94
h30 10 2 2| 671.58 | 682.828 | 17.4 | 27 | 669.14 | 678.1 202 | 29 | 675.68 | 680.876
h30 10 2 3| 652.6 | 664.488 | 174 | 29 | 651.54 | 664.096 | 17.8 | 30 | 661.56 | 676.724
h30 10 2 4| 673.22 | 679.768 | 156 | 21 | 663.02 | 677.964 | 158 | 22 | 670.54 | 678.972
h30 20 0 0| 769.9 | 788.924 | 124 | 30 | 770.96 | 786.868 | 13.8 | 28 | 765.02 | 774.152
h30 20 0 1| 795.58 810.9 148 | 32 | 795.58 | 815.54 16 32 | 800.84 | 803.496
h30 20 0 2| 818.36 | 836.032 | 14.8 | 28 | 814.02 | 828.084 | 164 | 26 | 824.42 | 826.392
h30 20 0 3| 767.94 | 777.92 16 30 | 773.48 | 779.252 16 27 | 768.48 | 778.844
h30 20 0 4| 777.32 | 779.608 | 16.6 | 27 | 768.92 | 777.264 | 158 | 27 | 777.34 | 779.472
h30 20 1 0| 816.72 | 831.776 | 154 | 30 | 818.06 | 832.088 | 16.4 | 34 | 824.16 | 833.692
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Table C.2. The best-found solutions for the instances with 30 patients by the ALNS-
VS algorithms (cont.).

ALNS-VS_No-
ALNS-VS_Unique ALNS-VS_Common -
Swap
Best- Best- Best-
Instance Avg. #DP | CPU Avg. #DP | CPU Avg.
found found found
h30 20 1 1| 866.12 | 880.496 | 144 | 30 | 855.12 | 875.128 | 134 | 21 | 873.28 | 883.736
h30 20 1 2| 808.28 | 829.98 16 25 809.8 | 824556 | 144 | 15 | 825.18 | 833.808
h30 20 1 3| 7859 | 798.828 | 178 | 30 | 796.66 | 802.68 | 16.4 | 18 | 799.96 | 812.512
h30 20 1 4| 808.82 | 822.028 | 13.4 | 20 | 808.82 | 820.572 | 12.8 | 11 | 823.44 | 824.344
h30 20 2 0| 874.98 | 890.644 | 146 | 37 | 84538 | 878.92 | 158 | 20 | 854.42 | 875.464
h30 20 2 1| 923.62 | 940.1 154 | 28 | 905.16 | 936.428 | 148 | 17 930.2 948.36
h30 20 2 2| 894.72 | 904.356 | 158 | 26 | 894.72 | 901.516 16 15 | 894.72 | 904.348
h30 20 2 3| 849.02 | 866.828 | 16.6 | 25 | 832.84 | 854.684 17 16 | 861.08 | 874.564
h30 20 2 4| 883.88 | 891.828 | 134 | 20 | 865.94 888 142 | 10 | 878.08 | 893.408
h30 30 0 0| 959.54 | 972.352 | 10.2 | 24 | 974.96 | 977.052 10 15 | 958.58 | 964.776
h30 30 0 _1|1039.02| 1044.46 | 8.6 15 [1036.04 | 1044.176| 10.2 | 15 | 1042.08 | 1044.824
h30_30 0 2|1053.54|1069.328 | 12.8 | 15 | 1054.2 |1068.404| 13.2 | 15 | 1050.98 | 1067.116
h30 30 0 3| 989.12 | 992.924 | 126 | 16 | 969.52 | 986.4 132 | 15 991.5 | 999.876
h30 30 0 4| 967.3 | 983.896 | 126 | 15 | 986.98 | 989.408 | 124 | 16 | 986.98 | 993.932
h30 30 1 0]1045.36 | 1053.992 | 16 16 | 1045.8 | 1055.556 | 16 15 | 1046.62 | 1058.228
h30 30 1 1|1106.12 1112152 | 11 15 [1081.98|1106.804| 11.2 | 15 | 1088.9 | 1103.64
h30 30 1 2| 1047.8 | 1064.38 | 158 | 16 |1031.38|1056.944| 15 17 | 1051.7 | 1058.096
h30 30 _1_ 3| 996.64 |1031.664 | 13.4 | 22 | 998.02 |1035.208 | 13.2 | 16 | 1037.76 | 1049.976
h30 30_1_4|1008.44)|1011.236 | 12 21 1014 |1021.616| 11 10 | 1004.88 | 1020.872
h30 30 2 0| 1069.3 |1087.996 | 15.6 | 30 |1089.06|1107.484| 126 | 19 |1093.58 | 1102.92
h30 30 2_1| 1163.3 |1172.428 | 14 26 | 1159.6 |1174.088 | 11.6 | 15 |1163.86 | 1184.056
h30 30 2_2|1144.22|1149.812 | 14 25 [1140.68|1143.916| 15 16 | 1143.66 | 1147.144
h30_30_2_3|1057.34|1083.984 | 13.6 | 28 |1062.86|1085.592| 146 | 15 | 1096.34 | 1108.792
h30 30 2 4]|1074.72|1080.016 | 11.6 | 21 |1074.72| 1081.74 13 11 |1064.38 | 1078.572
h30 40 0 0]1163.52|1172.112| 106 | 26 |[1163.52|1171.192| 9.6 15 | 1164.2 | 1174.66
h30 40 0 1]1249.28 | 1249.28 7 25 [1246.38|1247.368| 9.2 15 | 1246.44 | 1248.508
h30 40 0 2|1274.94|1283.996 | 7.8 25 [1281.48|1287.564| 8.2 15 | 1274.94 | 1281.036
h30 40 0 3|1179.64| 1202.1 | 106 | 24 |1186.42| 1199.2 | 10.2 | 15 |1207.42 |1220.948
h30 40 0 4]1190.08 | 1196.688 | 9.2 20 ]1190.08|1194.176| 9.2 11 |1190.08 | 1195.7
h30 40 1 0]1253.14 | 1261.06 | 10.8 | 25 |[1252.72|1266.272| 9.6 14 | 1246.96 | 1261.52
h30 40 1 1)1328.04 |1336.316| 9.2 29 |1336.52| 1341 9.2 15 | 1325.7 |1332.864
h30 40 1 2]1273.12|1280.696 | 11.8 | 26 |1271.72]1282.864| 13.2 | 15 | 1281.36 | 1283.688
h30 40 1 3]1224.14|1239.648 | 11.6 | 25 |1225.26|1250.016| 7.8 15 | 1264.06 | 1273.464
h30 40 1 4]1217.12|1221.356| 8.4 21 [1220.02| 122352 | 84 10 | 1210.7 |1224.636
h30 40 2 0] 1298.9 [1315564 | 11.8 | 25 |1301.42|1314.672| 12 15 | 1298.9 |1303.552
h30 40 2 1| 1413.4 |1423.804 | 10.6 19 1416 |1436.756| 10.2 15 | 1422.44 | 1425.116
h30 40 2 2|1348.32|1363.456 | 10.6 | 15 |1360.74|1366.648| 11 15 | 1363.52 | 1370.188
h30_40 2 _3|1306.24|1319.656 | 11.8 | 15 |1292.98|1315.408| 104 | 15 | 1305.46 | 1319.32
h30 40 2 4]1247.14|1256.468 | 11.4 10 |1245.02]1256.672| 10.2 10 | 1247.14 | 1257.02
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Table C. 7. The best-found solutions for the instances with 50 patients by the ALNS-

VS algorithms

ALNS-VS_Unique ALNS-VS_Common ALNS-VS_No-Swap

Instance | Best-found| Avg. |#DP |CPU |Best-found| Avg. |#DP |CPU |Best-found| Avg.

h50 10 0 O 909.82 938.08 | 27.6 | 36 925.44 943.03 | 28 39 930.86 952.35
h50 10 0 1 930.92 94558 | 30 32 931.62 94352 | 33 | 354 937.54 949.22
h50 10 0 2| 942.04 951.08 | 30.2 | 36 940.80 951.14 | 30.6 | 39.6 932.86 954.17
h50 10 0_3 889.4 909.50 | 28.2 | 32 860.06 921.51 | 29.2 | 40.2 940.48 953.92
h50 10 0 4 913.76 925.07 | 28 35 927.30 93141 | 276 | 34.6 910.20 919.16
h50 10 1 0| 1070.26 |1080.83|28.2 | 32 1063.70 |[1072.54| 28.2 | 39 1113.02 [1124.70
h50 10 1 1| 1072.84 |1086.14| 278 | 31 1089.38 [1102.11| 25.2 | 34.2 | 1082.86 |1094.71
h50 10 1 2| 1053.3 [107844| 29 | 33 1066.10 |1098.62 | 29.4 | 33.4 | 1063.92 |1084.54
h50 10 1 3 1021 1064.35| 28.2 | 33 1055.60 |1075.01| 28.8 | 32 1059.56 |1080.78
h50 10 1 4| 1030.02 |1046.45|30.8 | 42 1019.32 | 1043.08| 32 | 40.8 | 1027.76 |1042.82
h50 10 2 0| 121142 124041284 | 47 1219.90 |1234.61| 28.2 | 424 | 1246.84 |1265.81
h50 10 2 1| 121942 [124299| 284 | 36 1216.34 |1234.95| 26 |37.8 | 1228.12 |1253.67
h50 10 2 2| 1216.24 [1244.29| 316 | 36 1246.30 |1257.28| 28.6 | 34 1238.10 | 1258.67
h50 10 2 3 1183 1219.13| 278 | 31 122458 |1233.18| 276 | 38 1195.12 | 1228.56
h50 10 2 4| 1207.66 |1221.07|288 | 32 117794 |1201.63| 28.2 | 41.6 | 1203.40 |1227.23
h50 20 0 0| 12675 |1290.61| 246 | 39 1291.12 |1295.83| 25.8 | 34.2 | 1312.28 |1338.59
h50 20 0 1| 1299.14 |1313.87| 238 | 30 131448 |1338.43| 23.8 | 314 | 1274.34 |1306.00
h50 20 0 2| 1301.56 |[1324.11|248 | 34 1294.10 |1322.08| 25.6 | 38.2 | 1316.54 |1333.51
h50 20 0 3 1176.6 1194.74 | 28 38 1188.76 | 119250 26.6 | 35 1187.82 | 1194.77
h50 20 0 4| 1280.86 |1310.50| 23.6 | 32 1263.50 |1284.00| 23.4 | 35.6 | 1281.60 |1306.30
h50 20 1 0| 1406.52 |1432.50]| 25.2 | 37 1404.30 |1415.00| 25.6 | 33.6 | 1478.90 |1492.80
h50 20 1 1| 1382.12 |1430.88| 234 | 31 1398.40 |1419.40| 26 | 354 | 1440.70 |1470.40
h50 20 1 2| 1465.96 |1479.76| 232 | 36 1468.90 |1488.20| 248 | 33 1446.40 | 1458.00
h50 20 1 3| 13319 [1347.19)|256 | 30 1322.10 |1352.20| 26 |36.2 | 1374.60 |1386.50
h50 20 1 4| 1383.84 |1389.09| 28.8 | 36 1388.80 |1402.30| 27.8 | 37.6 | 1373.50 |1401.60
h50 20 2 0| 1591.36 |1609.98 | 26.6 | 34 1546.50 |1598.00 | 28.4 | 41.4 | 1624.20 |1642.40
h50 20 2 1| 1588.36 |1607.17| 274 | 29 1557.80 |[1590.50| 28.2 | 46 1585.90 |1608.30
h50 20 2 2| 1602.74 |1638.72| 27 36 1575.10 [1614.20| 26.4 | 35.2 | 1594.10 |1620.20
h50 20 2 3| 1465.66 |1509.78 | 214 | 32 1464.00 |1499.70| 25 |33.2 | 1522.40 |1549.00
h50 20 2 4| 1544.46 |1589.41|26.8 | 42 1592.30 |1612.00| 246 | 31 1573.80 |1615.10
h50 30 0 0| 1569.1 |1599.30| 19.6 | 35 1608.30 |1624.40| 21.2 | 35.6 | 1665.60 |1676.00
h50 30 0 1| 1598.98 |1635.80|20.8 | 31 1639.70 [1669.40| 20 | 35.2 | 1652.20 |1672.10
h50 30 0 2 1679.3 1688.92 | 194 | 30 1672.30 [1693.00| 21.8 | 426 | 1677.00 |1696.30
h50 30 0 3| 1504.66 |1514.45|214 | 33 1449.40 |1484.80| 25.2 | 43 1496.70 | 1509.10
h50 30 0 4| 1621.08 |1648.01|20.8 | 36 1637.50 |1655.10| 18.6 | 31.4 | 1645.20 |1658.00
h50 30 1 0 1723.9 173477 222 | 31 1696.50 |1720.30| 20.4 | 34.4 | 1813.50 |1844.30
h50 30 1 1| 1746.08 [1794.46| 184 | 28 1753.20 [1801.10| 17.8 | 30.6 | 1803.40 |1816.20
h50 30 1 2| 1808.54 [1835.79| 21 27 1800.50 [1826.20| 20.6 | 30.6 | 1839.00 |1859.10
h50 30 1 3| 1625.76 |1653.10| 22.6 | 37 1645.00 |1662.30| 22 | 334 | 1682.70 |1696.30
h50 30 1 4| 174446 |1798.96 | 20 33 1731.00 |1790.50| 19 |31.2| 177150 [1783.40
h50 30 2 0| 1836.42 |1922.96| 25.2 | 42 1923.70 |1976.20| 22.4 | 33.4 | 1967.30 |2025.20
h50 30 2 1| 1938.74 [1968.94| 20 30 1957.30 [1963.80| 22 | 346 | 1947.70 |1961.50
h50 30 2 2| 1980.06 |2001.14|20.2 | 27 1965.10 [2008.80| 21.6 | 30.4 | 2023.90 |2035.70
h50 30 2 3| 1764.08 |1803.30| 23.6 | 38 175250 |1805.90| 22.2 | 35.8 | 1804.60 |1834.10
h50 30 2 4| 1931.36 |1940.23|194 | 30 1931.20 [1943.40( 204 | 324 | 1912.80 [1936.10
h50 40 0 0| 1871.68 |191567| 19 | 51 1896.70 |1931.10| 17.2 | 30.6 | 2043.00 |2050.80
h50 40 0 1| 1971.42 |2004.05| 142 | 39 1958.70 |2007.60| 154 | 29 2032.60 |2039.20
h50 40 0 2| 2012.02 |2070.38| 154 | 42 2078.10 |2097.70| 15.2 | 36.4 | 2099.40 |2104.30
h50 40 0 3| 1774.16 |1809.53|19.2 | 43 177360 |1798.10| 20 |42.2| 1801.60 |1815.30
h50 40 0 4| 1950.78 |1969.72| 12.8 | 29 1962.00 |1980.30| 15.6 | 37.8 | 1977.00 |1985.50
h50 40 1 0| 2047.46 |2091.54| 176 | 38 202190 |207850| 18.8 | 37.6 | 2124.90 |2159.10
h50 40 1 1| 2071.16 |2108.10| 15 32 2072.70 |2113.70| 176 | 36.8 | 2129.40 |2163.30
h50 40 1 2| 214436 |2193.98| 148 | 28 2130.70 |2217.70| 16 |42.2 | 2239.10 |2272.80
h50 40 1 3 1914.2 1936.31| 164 | 31 1875.30 [1916.40| 22.4 | 45.2 | 1982.60 |2004.90
h50 40 1 4| 2080.46 |2126.72| 174 | 30 2071.90 |2149.20| 164 | 31.2 | 2120.10 |2137.70
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Table C.3. The best-found solutions for the instances with 50 patients by the ALNS-

VS algorithms (cont.)

ALNS-VS_Unique ALNS-VS_Common ALNS-VS_No-Swap
Best- Best- Best-
Instance Avg. #DP | CPU Avg. #DP | CPU Avg.
found found found
h50 40 2 0| 2287.30 |2328.43| 18 28 22429 2335.8 | 18.8 | 334 2393.8 24141
h50 40 2 1| 2292.64 |2326.44| 16.6 | 31 2313.1 2334.2 | 176 | 33.2 2335.0 2350.9
h50 40 2 2| 2352.22 |2402.03| 174 | 34 2353.7 23912 | 18 | 364 2404.3 2418.8
h50 40 2 3| 2056.96 [2139.99]| 184 | 30 2062.9 2097.9 | 19 | 464 2096.0 2137.2
h50 40 2 4| 2290.88 |2307.47] 196 | 28 2284.7 2298.3 | 214 | 344 2291.9 2306.4

Table C. 8. The best-found solutions for the instances with 100 patients by the
ALNS-VS algorithms.

ALNS-VS_No-
ALNS-VS_Unique ALNS-VS_Common -
Swap
Best- Best- Best-
Instance Avg. |#DP| CPU Avg. |#DP| CPU Avg.
found found found
h100_10 0 0] 1975.94 | 2033.988 | 49.4 | 149.08 | 2019.76 | 2066.468 | 50.4 | 115.4 | 2040.06 |2064.648
h100_10 0_1| 2051.56 | 2070.744 | 48.4 | 113.68 | 1964.26 | 2012.772 | 52.4 | 135.6 | 2029.7 |2067.368
h100_10_0 2| 2041.64 | 2061.932 | 48.8 | 99.75 | 1977.2 | 2024.948 | 52 137 1991.1 |2023.512
h100_10_0_ 3| 2013.56 | 2035.148 | 53.8 | 101.77 | 1953.18 | 2035.676 | 49.8 | 117.6 | 2018.1 |2027.964
h100_10_0_ 4] 1967.94 | 2021.876 | 50.6 | 110.50 | 1940.72 | 2018.312 | 52.2 | 142.4 | 2076.9 | 2097.88
h100_10_1 0] 2382.64 | 2436.08 | 47.4 | 138.95| 2405.42 | 2453.616 | 49.2 | 126.2 | 2465.1 | 2496.02
h100_10_1 1] 2326.82 | 2357.72 | 52 |148.36|2352.70 | 2397.42 | 48.8 | 140 | 2328.68 | 2402.86
h100_10_1 2| 2388.90 | 2449.05 | 47 |109.69|2387.84| 2407.90 | 49.8 | 112 | 2368.82 | 2393.16
h100_10 1 3| 2327.80 | 2406.86 | 52.4 | 111.42 | 2393.56 | 2434.27 | 51.6 | 119.6 | 2379.28 | 2411.78
h100 10 1 4| 2377.38 | 2423.96 | 50 |121.26|2403.40 | 2428.49 | 51.2 | 114 | 2470.76 | 2508.92
h100_10 2 0] 2492.14 | 2552.20 | 49.4 | 119.28 | 2481.96 | 2560.17 | 51.2 | 123.4 | 2555.28 | 2580.46
h100 10 2 1| 2413.36 | 2472.93 | 49 |147.52|2455.66 | 2532.70 | 47 | 984 | 2464.08 | 2517.13
h100_10 2 2| 2480.80 | 2532.17 | 49.2 | 110.87 | 2498.76 | 2527.12 | 51.8 | 131.2 | 2501.24 | 2510.07
h100_10 2 3| 2457.34 | 2489.38 | 52.4 | 144.96 | 2391.60 | 2533.36 | 52.4 | 134.4 | 2516.92 | 2547.64
h100_10_2 4| 2477.34 | 2517.40 | 53.8 | 146.06 | 2470.08 | 2507.38 | 53 | 121.2 | 2534.56 | 2577.45
h100_20_0 0] 2657.80 | 2711.22 | 43 |128.59|2614.92| 2713.10 | 40.8 | 1144 | 2691.18 | 2707.95
h100_20 0 1] 2681.96 | 2711.83 | 42.6 | 125.32 | 2662.06 | 2719.92 | 41.2 | 106.4 | 2733.38 | 2774.04
h100 20 0 2| 2611.18 | 2678.72 | 44.6 | 128.44|2690.94 | 2740.40 | 38.8 | 129.6 | 2704.62 | 2726.70
h100_20_0_ 3] 2629.60 | 2675.42 | 44 |105.09|2574.78 | 2647.04 | 44.2 | 134.6 | 2667.82 | 2702.70
h100_20 0 4] 2717.90 | 2769.44 | 42.8 | 122.81 | 2687.62 | 2737.07 | 44.4 | 132.4 | 2850.54 | 2885.18
h100_20 1 0| 3024.92 | 3068.61 | 45 |119.07 |3058.46 | 3090.73 | 44.6 | 114.2 | 2990.66 | 3061.63
h100_20 1 1| 3003.90 | 3066.52 | 47.2 | 102.61 | 3004.40 | 3065.98 | 44.4 | 123.8 | 3044.90 | 3095.76
h100 20 1 2| 3036.40 | 3072.89 | 46.4 |119.15|3053.54 | 3081.45 | 47.8 | 144.6 | 3082.14 | 3110.57
h100 20 1 3| 3078.32 | 3105.32 | 45.8 | 112.63 | 3064.24 | 3097.34 | 47.8 | 148.6 | 3017.06 | 3072.51
h100_20 1 4| 3090.96 | 3174.91 | 45.8 | 112.93 | 3125.54 | 3168.02 | 48.4 | 101.2 | 3206.98 | 3234.46
h100_20 2 0] 3175.98 | 3262.40 | 48.8 | 99.51 |3173.98 | 3253.58 | 49.4 | 130.2 | 3167.02 | 3205.34
h100 20 2 1] 3134.16 | 3204.64 | 45.8 | 116.13 | 3149.68 | 3165.06 | 46.8 | 131.6 | 3134.74 | 3164.36
h100_20 2 2| 3139.24 | 3176.72 | 49.4 | 126.49 | 3205.72 | 324450 | 46.4 | 121.8 | 3187.52 | 3253.49
h100 20 2 3| 3082.96 | 3170.28 | 48.6 | 132.11|3124.34| 3199.83 | 48 127 | 3150.58 | 3193.79
h100 20 2 4| 3173.98 | 3233.62 | 48.2 | 137.97 | 3246.96 | 3288.03 | 46 | 110.4 | 3339.36 | 3348.96
h100_30_0 0] 3273.16 | 3341.56 | 33.2 | 104.89 | 3393.88 | 3426.43 | 33.2 | 113 | 3406.66 | 3452.16
h100_30 0 1| 3398.24 | 3429.25 | 32.2 | 120.67 | 3276.74 | 3369.55 | 32.2 | 103.2 | 3463.10 | 3488.12
h100_30 0 2| 3241.28 | 3351.30 | 34.6 |113.79 | 3364.72 | 3403.68 | 36 | 117.2 | 3364.26 | 3374.55
h100_30 0 3| 3191.18 | 3266.75 | 36.2 | 101.53 | 3230.68 | 3303.51 | 34.6 | 107 | 3165.96 | 3197.29
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Table C.4. The best-found solutions for the instances with 100 patients by the ALNS-
VS algorithms (cont.)

4668.38 | 4742.96 | 32.4 | 108.38 | 4712.68 | 4746.25 | 29.2 | 119.6 | 4640.92 | 4728.26

ALNS-VS_No-
ALNS-VS_Unique ALNS-VS_Common -
Swap
Best- Best- Best-
Instance Avg. |#DP| CPU Avg. |#DP| CPU Avg.
found found found
h100 30 0 4| 3398.52 | 3439.18 | 34.8 | 120.98 | 3383.56 | 3400.45 | 38 | 113.8 | 3504.04 | 3551.21
h100 30 1 0| 3702.12 | 3782.59 | 41.4 | 139.78 | 3696.76 | 3785.92 | 37.8 | 110.8 | 3808.16 | 3892.71
h100 30 1 1| 3713.72 | 3778.30 | 33.2 |110.19 | 3704.40 | 3748.71 | 34 97.8 | 3639.32 | 3727.42
h100 30 1 2| 3647.28 | 3784.80 | 39 |103.34|3630.70 | 3744.15 | 41.4 | 152 | 3808.50 | 3831.99
h100 30 1 3| 3586.44 | 3688.59 | 39.2 | 103.71 | 3606.88 | 3676.64 | 40 | 142.4 | 3572.16 | 3662.64
h100_30_1 4| 3735.90 | 3864.74 | 37.2 | 116.17 | 3820.04 | 3888.97 | 35.2 | 96.2 | 3912.46 | 3957.38
h100 30 2 0] 3875.58 | 3914.14 | 41 |103.81|3825.66 | 3916.22 | 40.8 | 106 | 3908.42 | 3958.00
h100 30 2 1] 3829.38 | 3873.24 | 39.6 | 92.95 | 3798.62 | 3919.96 | 38.6 | 101.2 | 3851.70 | 3916.98
h100_30 2 2| 3692.94 | 3874.69 | 40 113 [3895.78| 3997.08 | 37.8 | 91.2 | 3835.20 | 3894.89
h100 30 2 3| 3736.70 | 3766.84 | 43.8 | 155.08 | 3718.26 | 3812.80 | 44.2 | 109.4 | 3750.54 | 3776.84
h100 30 2 4| 3783.46 | 3932.99 | 36.8 | 113.65 | 3874.50 | 3957.14 | 39.8 | 134.8 | 4029.02 | 4069.10
h100_40 0 0| 3872.08 | 4025.22 | 25.2 | 107.7 | 4037.28 | 4102.71 | 25.8 | 119.2 | 4065.76 | 4100.28
h100_40_0 1| 3937.38 | 4028.89 | 25.8 | 110.5 | 3924.94 | 4005.34 | 27.4 91 4082.98 | 4129.19
h100_40_0_2| 4027.06 | 4096.79 | 22.6 | 88.54 |4038.82 | 4072.06 | 26.2 | 101.8 | 4070.90 | 4106.11
h100_40_0_3| 3882.64 | 3923.13 | 31.2 | 110.08 | 3861.82 | 3921.81 | 31.8 | 136.6 | 3919.56 | 3974.66
h100_40_0 4| 4122.08 | 4186.27 | 23.6 | 123.97 | 4042.88 | 4084.27 | 29 | 102.2 | 4143.36 | 4195.98
h100_40_1 0| 4447.40 | 4514.60 | 33.2 | 101.58 | 4349.46 | 4476.23 | 29.4 | 123.8 | 4503.38 | 4528.63
h100_40_1 1| 4386.10 | 4452.66 | 33.8 | 116.57 | 4380.64 | 4446.90 | 34.8 | 125 | 4439.68 | 4481.56
h100 40 1 2| 4396.34 | 4436.01 | 33 |129.34 | 4396.52 | 4465.57 | 34.4 | 111.6 | 4437.78 | 4496.21
h100 40 1 3| 4295.88 | 4335.04 | 35.8 | 118.47 | 4275.06 | 4382.08 | 32.8 | 131.8 | 4339.76 | 4388.51
h100 40 1 4| 4479.10 | 4568.86 | 29.8 | 98.98 | 4544.14 | 4590.90 | 32.4 | 94.4 | 4527.80 | 4586.44
h100 40 2 0| 4545.96 | 4634.15 | 29.2 | 104.15 | 4603.64 | 4638.65 | 34.4 | 129.8 | 4608.80 | 4652.39
h100 40 2 1| 4480.66 | 4623.75 | 32 |108.06 | 4491.28 | 4609.90 | 34.4 | 122.2 | 4561.18 | 4622.66
h100 40 2 2| 4612.04 | 4645.64 | 32 |128.22 | 4601.72 | 4636.37 | 31.4 | 116.8 | 4576.02 | 4623.93
h100_40_2 3| 4369.82 | 4432.90 | 38.6 | 183.18 | 4377.48 | 4461.34 | 38 | 1254 | 4439.96 | 4481.94
024
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APPENDIX D - The solutions obtained by the UBA and their

comparisons with the ALNS-VS solutions

As mentioned in the manuscript, ALNS-VS_Unique solutions in Tables C1.-C.4 are

adopted for further analysis. The column “UB” presents the objective function values
of the solutions obtained by the proposed UBA. The “VS-UBA(%)” column indicates
how much improvement on objective is offered by ALNS-VS over the UBA.

Table D. 9. UBA solutions and their comparisons with ALNS-VS solutions.

Instance UB CPU VS-UBA(%) | Instance UB CPU VS-UBA(%0)
h30_10_0_0 911.7 0.57 39.8 h30_30_0 0 | 14262 0.22 32.7
h30_10 0 1 892.2 0.15 35.9 h30_30_0_1 | 12884 0.13 19.4
h30_10 0 _2 901.4 0.21 38.7 h30_30_0_2 | 1299.6 0.13 18.9
h30_10_0_3 907.7 0.26 371 h30.30_0 3 | 13224 0.32 25.2
h30_10_0_4 884.7 0.07 36.8 h30_30_0 4 | 1246.7 0.16 224
h30_10 1 0 | 1011.3 0.22 40.3 h30_30_1 0 | 1409.2 0.14 25.8
h30_10 1 1 979.3 0.16 373 h30_30_1 1 | 1426.2 0.07 22.4
h30_10_1 2 983.4 0.15 38.5 h30.30_1 2 | 13816 0.1 24.2
h30 10 1 3 | 984.1 0.32 39.3 h30 30 1 3 | 13885 0.36 28.2
h30 10 1 4 | 966.7 0.07 38.1 h30 30 1 4 | 1336.2 0.06 245
h30_10_2 0 | 1100.9 0.1 39.6 h30_30_2_0 1561 0.11 315
h30_10 2 1 1118.2 0.22 40.5 h30_30 2 1 15144 0.11 23.2
h30 10 2 2 | 1127.4 0.14 404 h30 30 2 2 | 14721 0.14 223
h30_10 2 3 | 1128.1 0.3 421 h30_30_2_3 | 15325 0.38 31
h30 10 2 4 | 11107 0.06 39.4 h30 30 2 4 | 1472.7 0.09 27
h30 20 0 0 | 1117.1 0.1 311 h30 40 0 0 | 15455 0.32 24.7
h30 20 0 1 | 10925 0.2 27.2 h30 40 0 1 | 1487.8 0.16 16
h30_20 0 2 | 1113.9 0.24 26.5 h30_40_0_2 | 1505.3 0.13 15.3
h30 20 0 3 | 11357 0.18 324 h30_40 0_3 1521 0.18 224
h30 20 0 4 | 1074.2 0.08 27.6 h30 40 0 4 | 1437.6 0.15 17.2
h30_20 1 0 1197.9 0.48 31.8 h30_ 40 1 0 1703.2 0.22 26.4
h30 20 1 1 | 12122 0.1 285 h30 40 1 1 1585 0.07 16.2
h30 20 1 2 | 1194.9 0.18 32.4 h30 40 1 2 | 1597.5 0.22 20.3
h30 20 1 3 | 12053 0.83 34.8 h30 40 1 3 | 1586.5 0.26 22.8
h30 20 1 4 | 11613 0.13 304 h30 40 1 4 | 15305 0.08 205
h30 20 2 0 | 1343.1 0.15 34.9 h30 40 2 0 | 17365 0.09 25.2
h30 20 2 1 | 13185 0.31 30 h30 40 2.1 | 1713.8 0.1 175
h30_20 2 2 | 1339.9 0.26 332 h30_40 2 2 | 1658.1 0.14 18.7
h30_20 2 3 | 1361.2 1.77 37.6 h30_40_2_3 | 26504 0.28 50.7
h30 20 2 4 | 1300.2 0.07 32 h30 40 2 4 | 1663.6 0.06 25
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Instance UB CPU VS-UBA(%) Instance UB CPU VS-UBA(%)
h50_10 0 0 | 1434.6 0.7 36.6 h50_30_0_0 | 2093.8 0.52 25.1
h50 10 0 1 | 1456.1 0.3 36.1 h50 30 0 1 | 2161.8 0.25 26
h50 10 0 2 | 1460.3 0.43 355 h50 30 0 2 | 2177.6 0.22 22.9
h50_10 0 3 | 144238 0.45 38.4 h50_30_ 0_3 | 1886.8 2.34 20.3
h50_10 0 4 | 1402.6 0.31 34.9 h50_30_0_4 | 2174.7 0.18 255
h50 10 1 0 | 1714.7 0.51 376 h50 30 1 0 | 3315.6 0.54 48
h50_10 1 1 | 1702.2 0.18 37 h50_30_1 1 | 2364.6 0.19 26.2
h50_10 1 2 | 1719.6 0.24 38.7 h50_30_1 2 | 2490.6 0.25 274
h50 10 1 3 | 1716.8 0.41 405 h50 30 1 3 | 2160.8 2.37 24.8
h50_10_1 4 | 1676.5 0.32 38.6 h50_30_1 4 | 2398.7 0.66 273
h50_10 2 0 | 2018.7 0.51 40 h50_30 2 0 | 3566.2 0.52 48.5
h50_10 2 1 | 2032.5 0.31 40 h50_30 2 1 | 27327 0.32 20.1
h50_10_2 2 | 2038.3 05 40.3 h50_30_2 2 | 27313 0.29 275
h50_10 2 3 | 2020.8 0.38 415 h50_30_2 3 | 2464.8 291 284
h50_10 2 4 | 1974.7 0.29 38.8 h50_30_2 4 | 2584.1 0.54 253
h50_20 0 0 | 1789.9 0.46 29.2 h50_40 0 0 | 2424.6 0.92 22.8
h50 20 0 1 | 1787.1 0.23 27.3 h50 40 0 1 | 26025 0.34 24.2
h50_ 20 0 2 | 1766.2 0.27 26.3 h50_40_0_2 2427 0.19 171
h50 20 0 3 | 1680 0.61 30 h50 40 0 3 | 2149.1 1.72 17.4
h50_20 0 4 | 1818.4 0.23 29.6 h50_40_ 0 4 | 3492.6 0.65 44.1
h50 20 1 0 | 2042.2 0.4 311 h50 40 1 0 | 5516.2 0.48 62.9
h50 20 1 1 | 2043 0.17 323 h50 40 1 1 | 37765 0.48 45.2
h50_20_1_2 2077.9 0.24 295 h50_40_1_2 4709 0.24 545
h50 20 1 3 | 1889.1 0.51 295 h50 40 1 3 | 2423.1 2.1 21
h50 20 1 4 | 2061.2 0.56 329 h50 40 1 4 | 2607.6 0.83 20.2
h50_20_2 0 | 2346.2 0.42 32.2 h50_40_ 2 0 | 5791.2 0.53 60.5
h50_20 2 1 | 2365.1 0.19 328 h50_40_2 1 | 8733.6 0.28 73.7
h50 20 2 2 | 2344.2 0.25 316 h50 40 2 2 | 6680.1 0.28 64.8
h50 20 2 3 | 2290.8 0.5 36 h50 40 2 3 | 284138 0.59 276
h50_20 2 4 | 2293.8 0.65 32.7 h50_40_2_4 3849 0.39 40.5

h100 10 0 0 | 3004.5 1.61 34.2 h100 30 0 0 | 4307.1 2.82 24

h100 10 0 1 | 2979.1 1.07 311 h100 30 0 1 | 42214 0.55 19.5
h100_10 0 2 | 2999.6 0.66 31.9 h100_30 0 2 | 42134 1.14 23.1
h100_10 0 3 | 2998.3 0.98 328 h100_30_0_3 | 4275.9 0.67 25.4
h100 10 0 4 | 3032.2 1.15 35.1 h100 30 0 4 | 4402.6 0.56 22.8
h100 10 1 0 | 3686 0.97 35.4 h100 30 1 0 | 49315 0.88 24.9
h100_10 1 1 3685 0.75 36.9 h100_30_1 1 | 5076.5 0.54 26.8
h100 10 1 2 | 3704.7 0.78 355 h100 30 1 2 | 5018.3 0.74 27.3
h100 10 1 3 | 3683.6 1.07 36.8 h100 30 1 3 | 4855.2 2.2 26.1
h100_10 1 4 | 3696.6 1.25 35.7 h100_30_1 4 | 4982.6 0.52 25

h100_10 2 0 | 3863.7 1.52 355 h100_30_2 0 | 5050.6 2.7 233
h100 10 2 1 | 3834.7 0.97 371 h100 30 2 1 | 5111 0.58 25.1
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Instance UB CPU VS-UBA(%) Instance UB CPU VS-UBA(%)
h100_10 2 2 3848 1.45 355 h100_30_2 2 | 5199.9 1.41 29
h100 10 2 3 | 3845.6 1.7 36.1 h100 30 2 3 | 5148.3 0.85 27.4
h100 10 2 4 | 3859.2 2.4 358 h100 30 2 4 | 5171.9 0.57 26.8
h100_20 0_0 3553 2.64 25.2 h100_40 0 0 | 4964.7 3.76 22
h100_20 0 1 | 3706.7 1.29 27.6 h100_40 0_1 | 48518 0.6 18.8
h100 20 0 2 | 3710.5 1.88 29.6 h100 40 0 2 | 4917 1.14 18.1
h100_20 0 3 | 3668.2 1.61 28.3 h100_40 0 3 | 49118 0.49 21
h100_20 0 4 | 3666.2 0.95 25.9 h100_40 0_4 | 5091.4 0.54 19
h100 20 1 0 | 4274.2 2.05 29.2 h100 40 1 0 | 7646.1 0.88 418
h100 20 1 1 | 44154 12 32 h100_40_1_1 | 9488.7 1.82 53.8
h100 20 1 2 | 4425 3.63 314 h100_40 1 2 | 10561.2 0.79 58.4
h100 20 1 3 | 4270.6 1.37 27.9 h100 40 1 3 | 12520.1 1.17 65.7
h100_20_1 4 | 4356.7 0.78 291 h100_40_1_4 | 11516.5 0.92 61.1
h100 20 2 0 | 44304 1.86 28.3 h100_40 2 0 | 11453.7 2.92 60.3
h100 20 2 1 | 4501 1.27 304 h100_40 2 1 | 12504.8 1.13 64.2
h100_20_2 2 | 46135 25 32 h100_40_2_2 | 9613.9 491 52
h100_20 2 3 | 444338 2.16 30.6 h100_40 2 3 | 9537.6 1.79 54.2
h100 20 2 4 | 4523.2 1.55 29.8 h100_40 2 4 | 10626.1 0.91 56.1
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APPENDIX E - The effect of DP policy and the HHSRP-M solutions

In Chapter 5.5, we discussed the effect of DP policy on total flow time by comparing
the solutions of the HHSRP-M with the HHSRP-VS. In this appendix, Tables E.1
through E.4 demonstrates the solutions obtained by the ALNS-M and their
comparisons with the ALNS-VS in details. As mentioned in the manuscript, ALNS-
VS _Unique solutions in Tables D1.-D.4 are adopted for further analysis. In the
following tables, the “Best-found” and “Avg.” columns indicate the objective values
of the best-found and the averages of the best solutions found in five replications by
the ALNS-M, respectively. Additionally, the column “VS-M%” presents the
percentage improvement on the objective offered by ALNS-VS over the ALNS-M.

Table E. 10. ALNS-M solutions for 10-patient instances and their comparisons with
ALNS-VS.

VS-
Instance Best-found | Avg. | CPU | VS-M(%) | Instance Best-found | Avg. | CPU | M(%)

h10 10 0 0| 3186 |318.6|1.09| 245 |h1030 00| 5065 | 5065 | 1.05 | 6.7
h10 10 0 1| 3387 3387 |1.04| 249 |h103001| 5691 | 569.1 | 1.07 | 7.3
h10 10 0 2| 3332 |333.2[1.06| 303 |h103002| 5523 | 5523|104 | 9.4
h10 10 0 3| 3372 |337.2[1.07| 242 |h103003| 5585 | 5585 | 1.06 | 9.7
h10 10 0 4| 3182 |3182[1.02| 317 |h103004| 5141 | 5141|100 | 125
h10 10 1 0| 3626 |362.6 |1.04| 293 |h1030 10| 5505 | 550.5 | 1.11 | 5.6
h10 10 1 1| 3827 |3827[1.03| 263 |h1030 11| 6131 | 6131 | 1.02 | 112
h10 10 1 2| 3772 |377.2[1.02| 356 |h1030 12| 59.3 | 59.3 | 1.06 | 7.0
h10 10 1 3| 3812 |381.2[1.02| 287 |h1030 13| 6025 | 6025 | 1.06 | 12.4
h10 10 1 4| 3622 |362.2|096| 344 |h1030 14| 5581 | 5581 | 0.97 | 13.2
h10 10 2 0| 4246 |4246|1.02| 345 |h103020| 6125 | 6125|105 | 121
h10 10 2 1| 4447 | 4447[102| 307 |h103021| 6751 | 6751 | 1.09 | 10.0
h10 10 2 2| 4392 |439.2|102| 370 |h103022| 6583 | 6583 | 1.07 | 123

h10 10 2 3 443.2 443.2 | 1.02 30.9 h10 30 2 3 664.5 6645 | 1.06 | 174
h10 10 2 4 424.2 424.2 | 0.98 34.2 h10 30 2 4 620.1 620.1 | 0.98 | 20.0
h10 20 0 0 4154 4154 | 1.06 10.5 h10 40 0 0 602.7 602.7 | 1.06 5.9
h10 20 0 1 449.0 449.0 | 1.04 10.7 h10 40 0 1 687.4 687.4 | 1.05 6.2
h10 20 0 2 442.8 4428 | 1.04 16.6 h10 40 0 2 659.9 659.9 | 1.04 6.9
h10 20 0 3 444.7 444.7 | 1.57 13.5 h10 40 0 3 669.5 669.5 | 1.03 7.5
h10 20 0 4 418.6 418.6 | 1.01 18.9 h10 40 0 4 608.6 608.6 | 1.12 9.3
h10 20 1 0 459.4 459.4 | 1.06 17.5 h10 40 1 0 646.7 646.7 | 2.85 4.9

h10 20 1 1| 4930 |493.0 |1.06| 162 |h1040 11| 7314 | 7314 | 151 | 9.0
h10 20 1 2| 4868 | 486.8 |1.05| 196 |h1040 12| 7039 | 703.9 | 1.00 | 3.7
h10 20 1 3| 4887 |488.7|110| 186 |h1040 13| 7135 | 7135 | 1.00 | 8.9
h10 20 1 4| 4626 | 462.6 [097 | 229 |h1040 14| 6526 | 652.6 | 0.93 | 8.0
h10 20 2 0| 5214 |521.4[104| 156 |h10402 0| 7087 | 708.7 | 1.01 | 9.7
h10 20 2 1| 5550 |555.0 [1.04| 159 |h10402 1| 7934 | 7934 | 099 | 6.3
h10 20 2 2| 5488 |548.8|1.08| 204 |h1040 22| 7659 | 7659 | 0.99 | 8.0
h10 20 2 3| 5507 |550.7 | 1.06 | 212 |h104023| 7755 | 7755 | 1.00 | 14.1
h10 20 2 4| 5246 |524.6 097 | 274 |h10402 4| 7146 | 7146 | 1.03 | 159
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Table E. 11. ALNS-M solutions for 30-patient instances and their comparisons with

ALNS-VS.

Instance Best-found | Avg. | CPU | VS-M(%) | Instance Best-found | Avg. | CPU | VS-M(%)
h30 10 0 0 846.8 849.7 | 17.1 35.4 h30 30 0 0| 11829 [1188.7|11.0 19.3
h30 10 0 1 863.3 864.7 | 12.9 33.9 h30 30 0 1| 12264 12286 | 124 15.4
h30 10 0 2 876.0 879.5 | 10.9 37.2 h30 30 0 2| 12305 [1230.5]12.0 14.4
h30 10 0 3 856.4 864.5 | 12.0 33.9 h30 30 0 3| 12033 |1206.9| 134 18.0
h30 10 0 4 855.7 855.8 | 11.1 34.6 h30 30 0 4| 11716 [11716]|13.0 17.4
h30 10 1 0 928.8 933.8 | 12.6 35.3 h30 30 1 0| 12722 [12746| 153 18.0
h30 10 11 945.3 945.3 | 13.8 35.0 h30 301 1| 13120 [1312.0| 183 15.7
h30 10 1 2 958.0 961.5 | 11.0 37.1 h30 30 1 2| 13125 |[13125|17.1 20.2
h30 10 1 3 938.4 946.5 | 124 36.9 h30 30 1 3| 12853 [12889]17.7 22.7
h30 10 1 4 937.7 937.8 | 124 36.2 h30 30 1 4| 1253.6 [1253.6| 15.1 19.6
h30 10 2 0| 1082.8 |1082.8| 12.3 38.6 h30 30 2 0| 14222 [14272|1738 25.1
h30 10 2 1| 10983 [1099.6| 11.9 39.5 h30 30 2 1| 14582 [1458.2|18.1 20.2
h30 10 2 2| 1106.3 |1106.3| 10.0 39.3 h30 30 2 2| 14675 |14675]| 16.0 22.0
h30 10 2 3| 1089.6 |1089.8| 12.2 40.1 h30 30 2 3| 1429.3 [1432.8]| 184 26.2
h30 10 2 4| 1081.9 [1081.9| 94 37.8 h30 30 2 4| 1397.6 |1397.6| 153 23.1
h30 20 0 0| 1019.0 |1019.0| 11.9 24.4 h30 40 0 0| 1350.8 |[1362.0|18.4 14.6
h30 20 0 1| 1047.8 |[1049.7|11.6 24.2 h30 40 0 1| 1413.7 [1413.7|19.6 11.6
h30 20 0 2| 10451 |1050.1| 10.2 22.1 h30 40 0 2| 14265 [14265| 185 10.6
h30 20 0 3| 1017.1 |1025.1| 11.8 25.1 h30 40 0 3| 1369.7 |[1374.1]18.9 14.1
h30 20 0 4| 10252 [1025.2| 94 24.2 h30 40 0 4| 1340.6 |1340.6| 16.4 11.2
h30 20 1 0| 11129 |1113.3]10.7 26.6 h30 40 1 0| 14328 [1434.6|17.6 12.7
h30 20 1 1| 11316 [1132.7]115 23.5 h30 40 1 1| 1498.7 [1499.2|18.6 11.4
h30 20 1 2| 11334 [11334]| 9.9 28.7 h30 40 1 2| 15085 [1508.5 | 18.7 15.6
h30 20 1 3| 1110.0 [1115.7]11.2 29.6 h30 40 1 3| 14716 [1476.4|19.6 17.1
h30 20 1 4| 1107.2 |[1107.2] 9.5 26.9 h30 40 1 4| 14226 |1422.6]17.3 14.4
h30 20 2 0| 1256.9 |1257.8|11.0 30.4 h30 40 2 0| 1579.7 [1610.7| 185 194
h30 20 2 1| 1280.7 |1280.7 | 10.9 27.9 h30 40 2 1| 1654.0 |[1654.0]20.2 14.5
h30 20 2 2| 12823 [1282.3| 9.5 30.2 h30 40 2 2| 16578 [1664.1|17.0 19.0
h30 20 2 3| 12584 |1260.3| 11.0 32.6 h30 40 2 3| 16117 [1620.9| 185 194
h30 20 2 4| 1251.2 |1251.2] 9.8 29.4 h30 40 2 4| 1566.6 |1566.6 | 16.3 20.4

Table E. 12. ALNS-M solutions for 50-patient instances and their comparisons with

ALNS-VS.

Instance Best-found | Avg. | CPU | VS-M(%) | Instance | Best-found | Avg. | CPU | VS-M(%)
h50 10 0 0 1371.0 1374.0] 33 33.6 h50 30 0 0 1883.9 18929| 38 16.7
h50 10 0 1 1367.1 1372.0] 31 31.9 h50 30 0 1 1901.0 19153| 38 15.9
h50 10 0 2| 13679 [13729| 34 311 h50 30 0 2| 1898.0 |1938.3| 38 115
h50 10 0 3| 13395 [13434| 35 33.6 h50 30 0 3| 1806.0 |1820.7| 39 16.7
h50 10 0 4 1366.2 13715] 41 33.1 h50 30 0 4 1886.3 1900.2| 38 141
h50 10 1 0 1642.4 1647.6| 40 34.8 h50 30 1 0 21711 21825 35 20.6
h50 10 1 1| 16411 |16450] 35 34.6 h50 30 1 1| 21606 |2178.7| 28 19.2
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Instance Best-found | Avg. | CPU | VS-M(%) | Instance | Best-found | Avg. | CPU | VS-M(%)
h50 10 1 2 16385 |1644.8| 42 35.7 h50 30 1 2| 21909 [22019| 20 175
h50 10 1 3 1612.2 | 1619.5| 39 36.7 h50 30 1 3| 2088.2 |2097.1| 20 22.1
h50 10 1 4| 1636.8 |1643.2| 42 37.1 h50 30 1 4| 21615 [2183.0| 20 19.3
h50 10 2 0 1950.0 [1952.8| 41 37.9 h50 30 2 0| 2464.0 [2498.7| 20 255
h50 10 2 1 1948.7 19512 | 37 374 h50 30 2 1| 2488.0 [2498.8| 20 22.1
h50 10 2 2 19534 | 1955.6| 40 37.7 h50 30 2 2| 25049 [2523.6| 20 21.0
h50 10 2 3 1916.3 |1918.6| 41 38.3 h50 30 2 3| 2398.0 [2403.9| 20 26.4
h50 10 2 4| 19408 19509 | 35 37.8 h50 30 2 4| 2469.0 [24955| 20 218
h50 20 0 0 1627.0 |1628.9| 44 22.1 h50 40 0 0| 21455 [21825| 20 12.8
h50 20 0 1 1625.8 | 1636.9| 36 20.1 h50 40 0 1| 21611 [2191.3| 20 8.8
h50 20 0 2 1631.3 |1638.1| 42 20.2 h50 40 0 2| 2186.5 |2207.8| 20 8.0
h50 20 0 3 1578.7 | 1580.7 | 24 25.5 h50 40 0 3| 2056.0 |2063.1| 20 13.7
h50 20 0 4| 16242 |1627.6| 27 21.1 h50 40 0 4| 21457 [2153.8| 20 9.1
h50 20 1 0 1901.0 [1909.5| 26 26.0 h50 40 1 0| 2420.2 [24719| 20 15.4
h50 20 1 1 1899.8 |1912.6| 25 27.2 h50 40 1 1| 24351 [2463.1| 20 14.9
h50 20 1 2 1909.0 |1922.2| 33 23.2 h50 40 1 2| 24674 [24859]| 20 13.1
h50 20 1 3 1844.8 18514 | 43 27.8 h50 40 1 3| 2330.3 [2343.8| 20 17.9
h50 20 1 4| 1900.0 |1903.6| 45 27.2 h50 40 1 4| 24277 [24619| 20 14.3
h50 20 2 0| 2207.8 |22114]| 42 27.9 h50 40 2 0| 27449 |2806.3| 20 16.7
h50 20 2 1| 2203.8 [2216.8| 38 27.9 h50 40 2 1| 27546 [2799.3| 20 16.8
h50 20 2 2| 22121 |2219.1| 39 275 h50 40 2 2| 2809.8 [3002.9| 20 16.3
h50 20 2 3| 2152.3 |2156.7| 35 31.9 h50 40 2 3| 2662.0 |2662.0| 20 22.7
h50 20 2 4| 2205.8 [2220.2]| 36 30.0 h50 40 2 4| 27388 |27740| 20 16.4

Table E.13. ALNS-M solutions for 100-patient instances and their comparisons with

ALNS-VS.

VS- VS-
Instance Best-found | Avg. |CPU| M(%) Instance | Best-found | Avg. [CPU| M(%)
h100 10 0 O 2867.7 2891.2| 63 31.1 h100 30 0 O 3927.5 3965.8 | 62 16.7
h100 10 0 1| 2861.3 |2868.6| 65 283 |h100_ 30 0 1| 3883.6 |3912.8| 62 125
h100 10 0 2| 2876.0 |2886.5| 65 29.0 |h100_ 30 0 2| 3930.7 |3950.4| 64 175
h100 10 0 3| 2859.4 |2884.4| 64 29.6 | h100 30 0 3| 3864.3 |3893.5| 64 174
h100 10 0 4| 2889.1 2900.7 | 63 31.9 h100 30 0 4 3939.7 3966.2 | 63 13.7
h100 10 1 O 3564.8 3571.7| 67 33.2 h100 30 1 0| 4610.1 4645.9| 60 19.7
h100 10 1 1| 35441 |3551.1| 65 343 |h100 30 1 1| 46106 |4620.2| 60 19.5
h100 10 1 2 3545.8 3559.2 | 65 32.6 h100 30 1 2| 4599.5 4627.1| 61 20.7
h100 10 1 3| 3546.0 |3561.1| 66 344 |h100 30 1 3| 45574 |4580.9| 60 213
h100 10 1 4| 3565.1 3578.5| 65 33.3 h100 30 1 4| 4647.2 4671.9| 60 19.6
h100 10 2 O 3724.1 3738.9| 65 33.1 h100 30 2 0| 4762.8 48144 | 60 18.6
h100 10 2 1| 3707.7 |3712.7| 65 349 |h100 30 2 1| 4770.2 |4770.2| 60 19.7
h100 10 2 2| 37157 |3723.4| 65 332 |h100 30 2 2| 4800.1 |4810.5| 60 23.1
h100 10 2 3 3711.8 3718.9| 65 33.8 h100 30 2 3| 47156 4731.1| 60 20.8
h100 10 2 4| 3736.7 3748.2| 66 33.7 h100 30 2 4| 4869.2 4885.9| 63 22.3
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VS-M VS-M
Instance Best-found | Avg. | CPU (%) Instance | Best-found | Avg. | CPU (%)
h100 20 0 0| 34123 |34123| 63 221 |h100 40 0 0| 4409.2 |4475.7| 61 12.2
h100 20 0 1| 3372.6 |3400.2| 65 205 |h100 40 0 1| 43940 [44915| 62 10.4
h100 20 0 2| 33965 |3402.0| 65 231 | h100 40 0 2| 4468.0 |4497.0| 63 9.9
h100_20 0 3| 3349.3 [3379.4| 64 215 | h100_ 40 0 3| 44049 |4427.3| 62 11.9
h100 20 0 4| 34154 |3458.0| 64 20.4 | h100 40 0 4| 4473.4 |4540.0| 60 7.9
h100 20 1 0| 4077.7 |4091.4| 61 258 | h100 40 1 0| 5220.2 |52259]| 61 14.8
h100 20 1 1| 4089.2 |41016| 63 265 |h100 40 1 1| 5149.0 [5205.4| 62 14.8
h100 20 1 2| 4073.7 |4076.1| 66 255 |h100 40 1 2| 5182.6 |5186.0| 63 15.2
h100_20_1 3| 4059.2 |4066.6| 67 242 | h100 40 1 3| 51451 [5186.9| 60 16.5
h100 20 1 4| 41111 |4133.8| 65 248 | h100 40 1 4| 5266.3 |5280.1| 64 14.9
h100 20 2 0| 42150 [4255.3| 62 246 | h100 40 2 0| 53654 |5409.0| 67 15.3
h100 20 2 1| 42215 |4240.4| 66 258 | h100 40 2 1| 5390.7 |5435.7| 62 16.9
h100 20 2 2| 42345 |42424| 66 259 |h100 40 2 2| 53242 |5344.4| 63 13.4
h100 20 2 3| 42295 [4231.1| 64 27.1 | h100 40 2 3| 5311.0 |5323.8| 61 17.7
h100 20 2 4| 42522 |4290.1| 67 254 | h100 40 2 4| 5293.3 |5404.9| 64 11.8
Table E. 14. ANOVA table for analyzing the contribution of DP.
Source DF Adj SS Adj MS F-Value  p-Value
noP 3 2171.55 723.85 138.08 0.000
ra 3 14833.40  4944.47 943.17 0.000
dd 2 1269.85 634.92 121.11 0.000
noP xra 9 164.41 18.27 3.48 0.001
noP x dd 6 94.16 15.69 2.99 0.008
raxdd 6 24.24 4.04 0.77 0.594
no*raxdd 18 54.51 3.03 0.58 0.913
Error 192 1006.54 5.24
Total 239  19618.65




APPENDIX F — The effect of vehicle sharing with DP policy and the
HHSRP-STD solutions

In Chapter 5.5, we discussed the effect of the vehicle sharing with DP policy on
total flow time by comparing the solutions of the HHSRP-STD with the HHSRP-VS.
In this appendix, Tables F.1 through F.4 demonstrates the solutions obtained by the
ALNS-STD. In the following tables, the “Best-found” and “Avg.” columns indicate
the objective values of the best-found and the averages of the best solutions found in
five replications by the ALNS-STD, respectively. The column “ALNS-VS” shows the
best-found solution by the ALNS-VS. The column “ADD” presents the increase in
total working time of the caregivers caused by the vehicle sharing with DP policy,
which is simple the different between the best-found solutions of ALNS-STD and

ALNS-VS. Moreover, the column “BER" demonstrates the break-even ratios.

Table F. 15. ALNS-STD solutions and break-even ratios for 10-patient instances.

Instance Best-found Avg. ALNS-VS ADD BER
h10_10 0 0 174.62 174.62 240.54 65.92 12
h10_10 0 1 178.48 178.48 254.28 75.8 15
h10_10 0 2 177.72 177.72 232.1 54.38 0.9
h10_10 0 3 176.36 176.36 255.76 79.4 16
h10_10 0 4 176.15 177.454 217.24 41.09 0.6
h10_10 1 0 195.87 196.798 256.26 60.39 0.9
h10 10 1 1 200.48 200.48 281.98 81.5 14
h10 101 2 199.72 199.72 243.04 43.32 0.6
h10_10_1 3 198.36 198.36 271.96 73.6 1.2
h10_10 1 4 198.15 198.15 237.54 39.39 0.5
h10 10 2 0 226.87 227.17 278.02 51.15 0.6
h10_10 2 1 231.48 231.48 308.08 76.6 1
h10_10 2 2 230.72 230.72 276.56 45.84 0.5
h10_10 2 3 229.36 229.36 306.36 7 1
h10_10 2 4 229.15 230.454 279.24 50.09 0.6
h10_20_0_0 236 237.986 371.66 135.66 2.7
h10_20 0_1 243.81 243.81 401.04 157.23 3.6
h10_20 0 2 242.07 242.07 369.14 127.07 2.2
h10_20 0 3 236.34 236.34 384.52 148.18 34
h10_20 0 4 240.78 242.842 339.46 98.68 14
h10 20 1 0 258 259.344 379.22 121.22 1.8
h10 20 1 1 265.81 265.81 413.12 147.31 25
h10 20 1 2 264.07 264.07 391.6 127.53 1.9
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Instance Best-found Avg. ALNS-VS ADD BER
h10_20_1 3 258.34 258.34 397.7 139.36 23
h10 20 1 4 262.78 266.904 356.78 94 11
h10 20 2 0 290.68 291.322 440.16 149.48 21
h10_20 2 1 296.81 296.81 466.62 169.81 2.7
h10_20 2 2 295.07 295.07 437.02 141.95 1.9
h10_20 2 3 289.34 289.34 433.98 144.64 2
h10_20 2 4 293.78 298.466 380.64 86.86 0.8
h10_30_0_0 296.95 299.102 472.46 175.51 29
h10 30 0 1 311.45 311.45 527.26 215.81 4.5
h10_30_0_2 307.78 308.232 500.28 192.5 33
h10 30 0 3 301.45 301.45 504.56 203.11 41
h10_30 0_4 306.31 314.118 449.6 143.29 1.8
h10_30_1 0 318.95 321.102 519.86 200.91 34
h10 30 1 1 333.45 333.45 54458 211.13 35
h10_30 1 2 329.78 330.684 554.74 224.96 4.3
h10 30 1 3 323.45 323.45 527.82 204.37 3.4
h10_30_1 4 328.31 331.506 484.16 155.85 1.8
h10_30_2 0 349.95 352.102 538.44 188.49 23
h10 30 2 1 364.45 364.45 607.64 243.19 4
h10_30_2 2 360.78 360.78 577.62 216.84 3
h10_30_2 3 354.45 354.45 548.68 194.23 24
h10_30_2 4 359.31 367.118 496.08 136.77 1.2
h10_40_0_0 358.74 360.948 567.26 208.52 2.8
h10_40 0_1 380.51 380.51 644.64 264.13 4.5
h10_40 0 2 371.65 371.818 614.5 242.85 3.8
h10_40 0 3 364.31 364.31 619.24 254.93 4.7
h10_40 0_4 369.18 369.18 551.8 182.62 2
h10 40 1.0 383.5 383.5 614.74 231.24 3
h10 40 1 1 402.51 402.51 665.44 262.93 3.8
h10_40_1 2 393.65 393.734 678.02 284.37 5.2
h10_40_1 3 386.31 386.31 650.3 263.99 4.3
h10 40 1 4 391.18 391.18 600.48 209.3 2.3
h10 40 2 0 411.74 413.396 640.18 228.44 2.5
h10 40 2 1 43351 43351 743.28 309.77 5
h10_40 2 2 424.65 424.734 704.28 279.63 3.9
h10_40 2 3 417.31 417.31 666.2 248.89 3
h10 40 2 4 422.18 422.18 600.7 178.52 15
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Table F.16. ALNS-STD solutions and break-even ratios for 30-patient instances.

Instance Best-found Avg. ALNS-VS ADD BER
h30_10 0_0 453 458.258 548.5 95.5 0.5
h30_10 0 1 463.61 465.666 571.6 107.99 0.6
h30_10 0 2 462.48 462.48 552.34 89.86 0.5
h30 10 0 3 459.45 459.45 571.22 111.77 0.6
h30_10 0_4 459.04 460.506 559.58 100.54 0.6
h30_10 1 0 495.53 498.028 604.16 108.63 0.6
h30 10 1 1 507.18 507.18 614.22 107.04 0.5
h30_10 1 2 503.48 503.48 604.38 100.9 0.5
h30_10_1 3 500.45 500.45 597.14 96.69 0.5
h30_10_1 4 500.18 503.552 597.98 97.8 0.5
h30_10 2 0 570.34 570.618 664.76 94.42 0.4
h30_10 2 1 579.18 579.18 665.44 86.26 0.3
h30_10_2 2 575.48 575.48 671.58 96.1 0.4
h30_10 2 3 572.45 572.45 652.6 80.15 0.3
h30 10 2 4 572.04 574.7 673.22 101.18 0.4
h30_20_0_0 558.61 568.012 769.9 211.29 1.2
h30_20 0_1 584.3 585.54 795.58 211.28 1.1
h30_20 0 2 567.59 567.59 818.36 250.77 16
h30_20_0_3 565.78 565.78 767.94 202.16 1.1
h30_20 0_4 568.84 569.57 777.32 208.48 1.2
h30_20_10 599.59 606.06 816.72 217.13 11
h30_20 1 1 626.85 626.85 866.12 239.27 12
h30_20_1 2 608.59 608.59 808.28 199.69 1
h30_20_1_3 602.05 605.834 785.9 183.85 0.9
h30_20_1 4 609.84 610.996 808.82 198.98 1
h30_20_2 0 681.03 682.112 874.98 193.95 0.8
h30_20 2 1 698.62 698.804 923.62 225 1
h30_20 2 2 680.59 680.59 894.72 21413 0.9
h30_20 2 3 678.78 678.78 849.02 170.24 0.7
h30_20_2 4 681.84 681.98 883.88 202.04 0.8
h30_30 0 0 660.92 674.008 959.54 298.62 16
h30_30 0 1 695.92 701.784 1039.02 343.1 19
h30_30_0_2 682.78 682.78 1053.54 370.76 2.4
h30_30_0_3 670.36 675.106 989.12 318.76 1.8
h30_30_0 4 670.21 673.722 967.3 297.09 16
h30_30_1 0 7015 711.156 1045.36 343.86 1.9
h30 30 1 1 739.49 742.474 1106.12 366.63 2
h30_30_1 2 723.78 723.78 1047.8 324.02 16
h30_30_1 3 714.99 717.03 996.64 281.65 1.3
h30_30_1_4 715.39 715.96 1008.44 293.05 14
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Instance Best-found Avg. ALNS-VS ADD BER
h30_30_2 0 777.77 782.312 1069.3 291.53 1.2
h30_30 2 1 808.21 814.642 1163.3 355.09 1.6
h30_30 2 2 795.78 795.78 1144.22 348.44 16
h30 30 2 3 782.59 788.15 1057.34 274.75 1.1
h30_30_2_4 783.21 790.366 1074.72 291,51 1.2
h30_40 0 0 766.48 781.078 1163.52 397.04 21
h30_40 0_1 825.43 825.43 1249.28 423.85 2.1
h30_40_0_2 795.25 795.25 1274.94 479.69 3
h30_40 0 3 774.98 783.276 1179.64 404.66 2.2
h30_40_0_4 783.67 785.854 1190.08 406.41 2.2
h30_40_1 0 813.49 824.638 1253.14 439.65 24
h30_40 1 1 854.28 863.888 1328.04 473.76 25
h30_40 1 2 836.25 836.25 1273.12 436.87 2.2
h30_40_1 3 817.26 824.532 1224.14 406.88 2
h30_40_1 4 824.67 826.168 1217.12 392.45 1.8
h30_40_2 0 886.1 898.558 1298.9 412.8 1.7
h30_40_2_1 938.82 941.416 14134 474.58 2
h30_40 2 2 908.25 908.25 1348.32 440.07 1.9
h30_40_2 3 889.25 896.53 1306.24 416.99 1.8
h30_40_2_4 900.97 905.218 1247.14 346.17 1.2

Table F. 17. ALNS-STD solutions and break-even ratios for 50-patient instances.

Instance Best-found Avg. ALNS-VS ADD BER
h50_10 0 0 746.2 748.994 909.82 163.62 0.6
h50_10 0 1 737.77 740.464 930.92 193.15 0.7
h50_10 0 2 750.24 751.108 942.04 191.8 0.7
h50_10_0_3 728.15 728.83 889.4 161.25 0.6
h50_10 0 4 743.15 743.412 913.76 170.61 0.6
h50_10 1 0 883.15 885.794 1070.26 187.11 0.5
h50 10 1 1 877.17 879.13 1072.84 195.67 0.6
h50_10 1 2 886.61 888.376 1053.3 166.69 0.5
h50_10_1_3 866.48 866.726 1021 154.52 0.4
h50_10_1 4 880.15 880.15 1030.02 149.87 0.4
h50_10 2 0 1035.15 1039.146 1211.42 176.27 0.4
h50 10 2 1 1028.57 1029.176 1219.42 190.85 0.5
h50_10 2 2 1038.61 1040.694 1216.24 177.63 0.4
h50_10_2_3 1016.5 1017.502 1183 166.5 0.4
h50_10 2 4 1032.15 1032.462 1207.66 175.51 0.4
h50 20 0 0 937.06 943.964 1267.5 330.44 11
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Instance Best-found Avg. ALNS-VS ADD BER
h50_20 0_1 926.25 927.85 1299.14 372.89 1.3
h50_20 0 2 945.51 947.582 1301.56 356.05 12
h50_20 0 3 902.41 904.42 1176.6 274.19 0.9
h50_20 0_4 932.87 932.992 1280.86 347.99 1.2
h50_20_1 0 1074.06 1078.708 1406.52 332.46 0.9
h50 20 1 1 1062.65 1065.992 1382.12 319.47 0.9
h50 20 1 2 1081.11 1084.184 1465.96 384.85 1.1
h50_20_1 3 1041.12 1041.964 1331.9 290.78 0.8
h50 20 1 4 1069.87 1070.314 1383.84 313.97 0.8
h50_20_2 0 1232.82 1234.888 1591.36 358.54 0.8
h50_20 2 1 1214.65 1217.674 1588.36 373.71 0.9
h50_20 2 2 1232.91 1235.188 1602.74 369.83 0.9
h50_20 2 3 119141 1192.21 1465.66 274.25 0.6
h50_20 2 4 1221.87 1222.142 1544.46 322.59 0.7
h50 30 0 0 1127.57 1134.43 1569.1 44153 1.3
h50_30_0_1 1113.81 1114.642 1598.98 485.17 15
h50_30 0_2 1146.2 1148.628 1679.3 533.1 1.7
h50_30_0_3 1083.84 1083.84 1504.66 420.82 13
h50_30_0_4 1126.6 1126.748 1621.08 494.48 16
h50_30_1_0 1264.09 1270.016 1723.9 459.81 11
h50 30 1 1 1245.67 1249.818 1746.08 500.41 1.3
h50_30_1 2 1282.39 1286.464 1808.54 526.15 14
h50_30_1_3 1220.84 1220.84 1625.76 404.92 1
h50_30_1_4 1263.6 1263.748 1744.46 480.86 12
h50_30_2 0 1415.99 1417.878 1836.42 420.43 0.8
h50_30_2_1 1398.58 1400.946 1938.74 540.16 1.3
h50_30_2_2 1435.2 1437.736 1980.06 544.86 1.2
h50_30_2_3 1372.84 1372.84 1764.08 391.24 0.8
h50_30_2 4 1415.97 1415.972 1931.36 515.39 11
h50_40_0_0 1320.89 1331.308 1871.68 550.79 1.4
h50_40 0 1 1312.33 1314.804 1971.42 659.09 2
h50_40 0 2 1344.03 1347 2012.02 667.99 2
h50_40 0 3 1260.57 1260.57 1774.16 513.59 1.4
h50_40 0_4 1316.06 1316.356 1950.78 634.72 1.9
h50 40 1 0 1455.25 1461.442 2047.46 592.21 14
h50 40 1 1 1442.72 1449.804 2071.16 628.44 15
h50 40 1 2 1480.74 1485.04 2144.36 663.62 1.6
h50_40_1_3 1397.57 1397.57 1914.2 516.63 12
h50_40_1 4 1456.25 1456.724 2080.46 624.21 15
h50_40_2_0 1607.25 1614.2 2287.3 680.05 15
h50_40_2_1 1596.03 1605.192 2292.64 696.61 15
h50_40 2 2 1629.6 1639.234 2352.22 722.62 16
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Instance Best-found Avg. ALNS-VS ADD BER
h50_40_2 3 1549.86 1550.606 2056.96 507.1 1
h50_40 2 4 1608.71 1608.71 2290.88 682.17 15

Table F. 18. ALNS-STD solutions and break-even ratios for 100-patient instances.

Instance Best-found Avg. ALNS-VS ADD BER
h100_10 0 O 1581.67 1589.786 1975.94 394.27 0.7
h100_10 0 1 1562.52 1565.392 2051.56 489.04 0.9
h100_10 0 2 1580.38 1585.93 2041.64 461.26 0.8
h100_10 0 3 1578.2 1580.2 2013.56 435.36 0.8
h100_10 0 4 1601.76 1604.676 1967.94 366.18 0.6
h100_10 1 0 1914.49 1923.402 2382.64 468.15 0.6
h100 10 1 1 1902.53 1905.818 2326.82 424.29 0.6
h100_10 1 2 1917.37 1921.808 2388.9 471.53 0.7
h100_10 1 3 1920.82 1924.34 2327.8 406.98 0.5
h100 10 1 4 1945.25 1947.224 2377.38 432.13 0.6
h100_10 2 0 1999.24 2007.968 2492.14 492.9 0.7
h100_10 2 1 1985.6 1988.07 2413.36 427.76 0.5
h100_10 2 2 2000.53 2004.33 2480.8 480.27 0.6
h100_10 2 3 1998.01 2003.274 2457.34 459.33 0.6
h100_10 2 4 2014.43 2023.398 2477.34 462.91 0.6
h100_20 00 1969.03 1981.914 2657.8 688.77 1.1
h100_20 0 1 1934.91 1948.976 2681.96 747.05 1.3
h100 20 0 2 1970.49 1979.106 2611.18 640.69 1.0
h100 20 0 3 1969.34 1977.528 2629.6 660.26 1.0
h100 20 0 4 1994.69 2011.222 2717.9 723.21 11
h100 20 1 0 2304.3 2325.934 3024.92 720.62 0.9
h100 20 1 1 2281.08 2293.752 3003.9 722.82 0.9
h100 20 1 2 2311.35 2319.314 3036.4 725.05 0.9
h100 20 1 3 2303.47 2315.992 3078.32 774.85 1.0
h100 20 1 4 2340.27 2346.596 3090.96 750.69 0.9
h100_20 2 0 2393.9 2406.694 3175.98 782.08 1.0
h100 20 2 1 2362.11 2370.542 3134.16 772.05 1.0
h100 20 2 2 2399.61 2403.952 3139.24 739.63 0.9
h100_20 2 3 2385.63 2400.682 3082.96 697.33 0.8
h100 20 2 4 2417.54 2427.548 3173.98 756.44 0.9
h100 30 0 O 2365.8 2373.264 3273.16 907.36 1.2
h100 30 0 1 2330.76 2339.942 3398.24 1067.48 1.7
h100 30 0 2 2370.46 2382.284 3241.28 870.82 1.2
h100 30 0 3 2352.21 2373.962 3191.18 838.97 1.1
h100 30 0 4 2413.79 2422.82 3398.52 984.73 14
h100 30 1 0 2688.06 2712.556 3702.12 1014.06 1.2
h100.30 1 1 2668.54 2686.552 3713.72 1045.18 1.3
h100 30 1 2 2698.58 2711.902 3647.28 948.7 11
h100_30_1 3 2700.64 2713.372 3586.44 885.8 1.0
h100 30 1 4 2756.39 2767.222 3735.9 979.51 11
h100_30_2 0 2774.43 2785.114 3875.58 1101.15 1.3
h100 30 2 1 2761.99 2768.014 3829.38 1067.39 1.3
h100_30 2 2 2770.29 2796.816 3692.94 922.65 1.0
h100_30 2 3 2781.12 2793.006 3736.7 955.58 1.0
h100_30 2 4 2822.4 2839.694 3783.46 961.06 1.0

120




Instance Best-found Avg. ALNS-VS ADD BER
h100_40 0 0 2746.65 2768.802 3872.08 1125.43 1.4
h100_40 0 1 2689.58 2713.964 3937.38 1247.8 1.7
h100_40 0 2 2772.4 2788.034 4027.06 1254.66 1.7
h100_40 0 3 2758.07 2768.694 3882.64 1124.57 1.4
h100_40 0 4 2813.14 2845.296 4122.08 1308.94 1.7
h100_ 40 1 0 3091.39 3099.684 4447 .4 1356.01 1.6
h100 40 1 1 3061.43 3079.758 4386.1 1324.67 15
h100_40 1 2 3120.62 3139.544 4396.34 1275.72 1.4
h100_40 1 3 3090.52 3098.836 4295.88 1205.36 1.3
h100 40 1 4 3167.35 3179.958 4479.1 1311.75 14
h100 40 2 0 3171.75 3193.064 4545.96 1374.21 15
h100_40 2 1 3136.95 3164.082 4480.66 1343.71 15
h100_40 2 2 3188.39 3212.272 4612.04 1423.65 1.6
h100_40 2 3 3151.92 3170.768 4369.82 1217.9 1.3
h100_40 2 4 3220.08 3245.284 4668.38 1448.3 1.6
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