1VNO ZVINHHOA M

ALISHIAINN NITTILY

¥c0c¢

UTILIZING THE SOFTWARE TESTING LEVELS: INSIGHTS FROM THE
SOFTWARE INDUSTRY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
ATILIM UNIVERSITY

KUBRA KORKMAZ ONAT

A MASTER OF SCIENCE THESIS
IN
THE DEPARTMENT OF COMPUTER ENGINEERING

JANUARY 2024

UTILIZING THE SOFTWARE TESTING LEVELS: INSIGHTS FROM THE
SOFTWARE INDUSTRY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
ATILIM UNIVERSITY

BY

KUBRA KORKMAZ ONAT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
THE DEPARTMENT OF COMPUTER ENGINEERING

JANUARY 2024

Approval of the Graduate School of Natural and Applied Sciences, Atilim
University.

Prof. Dr. Ender
KESKINKILIC
Director

| certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science in Computer Engineering, Atihim University.

Prof. Dr. G6khan
SENGUL
Head of Department

This is to certify that we have read the thesis UTILIZING THE SOFTWARE
TESTING LEVELS: INSIGHTS FROM THE SOFTWARE INDUSTRY submitted
by KUBRA KORKMAZ ONAT and that in our opinion it is fully adequate, in scope
and quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Damla Topalli
Supervisor

Examining Committee Members:

Assoc. Prof. Dr. Cansu Cigdem Ekin
Computer Eng. Department, Atilim University

Asst. Prof. Dr. Damla Topalli
Computer Eng. Department, Atilim University

Assoc. Prof. Dr. Giil Tokdemir
Computer Eng. Department, Cankaya University

Date: 04/01/2024

| hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. | also declare that,
as required by these rules and conduct, | have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name : Kiibra, Korkmaz Onat

Signature :

ABSTRACT

UTILIZING THE SOFTWARE TESTING LEVELS: INSIGHTS FROM
SOFTWARE INDUSTRY

Korkmaz Onat, Kiibra
M.S., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Damla Topalli

January 2024, 48 pages

Software testing levels play a crucial role in assuring software quality, by identifying
defects and bugs early, improving stability of the software, validating compliance
with requirements, enhancing user satisfaction, and lowering costs and risks related
to software defects. If the defects are detected timely, in an earlier stage of the
software development process, the software developed will be in higher quality and
the risks of the system failures will be reduced. Additionally, the testing levels ensure
that the components of the system work together correctly, which leads to improved
reliability of the software. Another important aspect is to ensure that the software
meets the user expectations, meeting the intended functionality and performance.
Hence, the quality of the software being created is directly affected by the proper
implementation of testing levels in the Software Development Life Cycle (SDLC). In
the literature, four main testing levels are discussed: unit testing for testing the
individual units or components, integration testing for testing the interactions and
interfaces between different components and modules, system testing to test the
system as a whole and user acceptance testing to test the software against user’s
requirements and expectations. Accordingly, the main aim of this research is to
review testing levels and methods suggested in the literature, understand their impact

on the software quality and analyze how these testing levels are used in the software

industry. In this respect, a semi-structured interview is conducted with ten software
experts from the Software Industry. The questions of the interview include: which of
the test levels contribute the most to software quality, which of test levels are used in
their current projects, the testing strategy used in their projects, which factors are
affecting the choice of the testing strategy and who performs the tests, the developer
or an independent team is better in this consideration. The results give insight to the
software community regarding the use of test levels and how effective the test levels

are in terms of software quality for specific domains of the projects.

Keywords: Software Quality, Software Testing, Testing Levels, Software Testing
Pyramid.

0z

YAZILIM TEST SEVIYELERININ UYGULANMASI: YAZILIM
SEKTORUNDE BiR ORNEK CALISMA
Korkmaz Onat, Kiibra
Yiisek Lisans, Bilgisayar Miihendisligi Bolimii

Tez Yoneticisi : Dr. Ogr. Uy. Damla Topalli

Ocak 2024, 48 sayfa

Yazilim test seviyeleri, kusurlar1 ve hatalar1 erken tespit ederek, yazilimin
kararliligim1 artirarak, gereksinimlere uygunlugu dogrulayarak, kullanici
memnuniyetini artirarak ve yazilim kusurlariyla ilgili maliyet ve riskleri azaltarak
yazilim kalitesinin giivence altina alinmasinda ¢ok Onemli bir rol oynar. Hatalarin
zamaninda tespit edilmesi durumunda, yazilim gelistirme siirecinin daha erken bir
asamasinda, gelistirilen yazilim daha kaliteli olacak ve sistem arizasi riskleri
azalacaktir. Ek olarak, test seviyeleri sistem bilesenlerinin birlikte dogru sekilde
calismasini saglar ve bu da yazilimin giivenilirliginin artmasina yol acar. Bir diger
onemli husus, yazilimin kullanict beklentilerini karsilamasini, amaglanan islevsellik
ve performansi karsilamasini saglamaktir. Bu nedenle, olusturulan yazilimin kalitesi,
Yazilim Gelistirme Yasam Dongiisii'ndeki (SDLC) test seviyelerinin uygun sekilde
uygulanmasindan dogrudan etkilenir. Literatiirde dort ana test diizeyi
tartisilmaktadir: bireysel birimleri veya bilesenleri test etmek i¢in birim testi, farkl
bilesenler ve modiiller arasindaki etkilesimleri ve arayiizleri test etmek icin
entegrasyon testi, sistemi bir biitiin olarak test etmek icin sistem testi ve test etmek
icin kullanic1 kabul testi. Yazilimin kullanicinin gereksinimlerine ve beklentilerine
uygun olmasi. Buna gore bu arastirmanin temel amaci literatiirde Onerilen test
seviyelerini ve yontemlerini gézden gecirmek, bunlarin yazilim kalitesi lizerindeki

etkilerini anlamak ve bu test seviyelerinin yazilim endiistrisinde nasil kullanildigini

\Y

analiz etmektir. Bu dogrultuda Yazilim Sektdriinden on yazilim uzmaniyla yari
yapilandirilmig bir goriisme gerceklestirilmistir. Miilakat sorular1 arasinda yazilim
kalitesine en ¢ok hangi test seviyelerinin katki sagladigi, mevcut projelerinde hangi
test seviyelerinin kullanildig1, projelerinde kullanilan test stratejisi, test stratejisi
secimini hangi faktorlerin etkiledigi ve kimlerin kullandig1 yer almaktadir. Testleri
yapan gelistirici veya bagimsiz bir ekibin bu konuda daha iyi oldugu goriilmiistiir.
Elde edilen sonuglarin, yazilim sektoriinde test seviyelerinin uygulanmasi ve
projelerin belirli alanlar1 igin test seviyelerinin yazilim kalitesi agisindan ne kadar

etkili oldugu konusunda fikir vermesi beklenmektedir.

Anahtar Kelimeler: Yazilim Kalitesi, Yazilim Testi, Test Seviyeleri, Yazilim Test

Piramidi.

Vi

To My Family

vii

ACKNOWLEDGMENTS

First and foremost, | would like to sincerely thank my supervisor, Asst. Prof. Dr.
Damla Topalli, for her unwavering support, direction, and wisdom during my thesis
research. | sincerely appreciate all of her expertise, excitement, and patience

throughout this time. I'm really honored to be one of her pupils.

I would also express my appreciation to examination committee members; Asst.
Prof. Dr. Cansu Cigdem Ekin, and Asst. Prof. Dr. Giil Tokdemir for their valuable

time, comments and suggestions.
Finally, 1 would like to express my appreciation to my cat and my husband for their

endless love, patience and support. They have never ceased to inspire and believe in

me.

viii

TABLE OF CONTENTS

ABSTRACT ettt sttt st sa e be e br e re e i
OZ oottt v
ACKNOWLEDGMENTS ...ttt Vil
TABLE OF CONTENTS ...t IX
LIST OF TABLESot nnae e XI
LIST OF FIGURES ..ottt bbbt xii
LIST OF ABBREVIATIONS ...ttt X1l
CHAPTER 1 ..ottt bbbttt ettt sttt e e e s e e e 1
INTRODUCGTION ...ttt e st e e saae e e snae e e neeeenneeennes 1
CHAPTER 2 ..ottt bbbttt bbbttt ne et 3
BACKGROUND OF THE STUDY ...ooiiiiie et 3
2.1 SOFtWArE TESHING .oveeveieie et 3
2.2 The Benefits of SOftware TESHINGccoociviriririeieiee e 3
2.2.3 The Basic Principles of Software Testing.........ccccceovevveviivieieece e 4
2.2.4 SOftware TeStiNG PrOCESSES.cuiiiiiiiieiie ittt 5
2.3 Software Testing Pyramids and TIerscccccevvveveiiieiiere e 7
2.4 SOTtWAre TSt LEVEIS......ciieieeieceee et 9
2.4. 1 UNIE TSt ittt ettt bbbt 9
2.4.2 INTEQration TESToiviieiieiriiiiieieee ettt 12
2.4.3 SYSIEIM TOSE...eiiiiiii it 14
2.4.4 ACCEPLANCE TSeiiiiiiiieiee e 18
2.5 RElAEd WOTK ...coeoieieie e 20
(O o 1A el I PSSR 24
METHODOLOGY ...ttt sttt sttt sne st neenee e 24
3.1 ReSearch QUESTIONSecieiieie e 24
3.2 ReSEArCN PrOCEAUIE........eiiiieiieie et 24
3.3 PAITICIPANTS ...t 25
CHAPTER 4 ..ottt sttt re e es 29
RESULTS Lot e e e e e s b e e e bt e e e ae e e e nneeeaseeeanneas 29

4.1 Preliminary Analysis: Results of the Questionnareccccoccevvevvenenne. 29

4.2 Results of the INTEIVIEWccviiiiiiice e 31
4.2.1 What kind of test levels are described in the literature?ccccceevenennn, 31
4.2.2 What is suggested to apply these test [evels?..........cccooeiiininiicicien, 33
4.2.3 How are these test levels implemented in the software industry? 34
DISCUSSION AND CONCLUSION ...ttt 36
51 Limitations OF STUAY........ccoeeiiiiiiie e 37
5.2 Threats to Validity.......cccooeiieeiieseeece e 38
REFERENGCES.......ccieiitiieiet ettt sttt bt naanas 39
APPENDIX A INTERVIEW QUESTIONS. ...ttt 41
APPENDIX B SURVEY QUESTIONS ..ottt 42
APPENDIX C INTERVIEW QUESTIONS IN TURKISHccceiiiiiieeeee 45

LIST OF TABLES

Table 3.1 Experiences of Interview Participants

Table 4.1 How Test Level are Implemented Participants’ Current Projects..............

Xi

LIST OF FIGURES

Figure 2.1 Software Testing PYramidcccccueiiiiiiieni e 7
Figure 2.2 Cohn’s Test Pyramid as described by Vocke [21].......ccooveiiiiiiiiiininen 21
Figure 2.3 Testing in practice; the “inverted test pyramid” as described by

o F T 1 T aT=T T G OSSR 22
Figure 2.4 A holistic test pyramid for data and traditional software testing [7] 23

Figure 3.1 Gender and Age Distribution of Surve Participantscccccceveieennenn. 25
Figure 3.2 Graduated Departments and Industries of Survey Participants................. 26
Figure 3.3 Experiences of Survey PartiCipantsccoevvveeiene s 27
Figure 3.4 Graduation Degree and Departments of Interview Participants............... 27
Figure 3.5 Industries of Interview PartiCipants...........ccccocvevveveiieiieie e, 28
Figure 4.1 Experience of Participants in Test Levels ..o 30
Figure 4.2 Effectiveness of Test Levels on Software Qualitycc.ccoceovvvviirnnne, 30
Figure 4.3 Average Frequency of Implementing Test Levels...........cccoovevviiicieennenn, 31
Figure 4.4 Software Test Levels and Their Functionalities............cccccceevevviiieieennenn, 32
Figure 4.5 Software Test Pyramids and The Goals of the Each Levels..................... 32
Figure 4.6 Factors to Decide Most Effective Testing Strategyccoccvvevervrvenenn 34
Figure 4.7 Possible Reasons to Focus High or Low Level Tests.........cccccoveieiveennen, 35

Xii

LIST OF ABBREVIATIONS

E2E - Endto End
Ul - User Interface

APl - Application Programming Interface

Xiii

CHAPTER 1

INTRODUCTION

Software testing is a crucial aspect of the software development lifecycle, ensuring
that the final product meets the desired quality and functionality. To achieve
comprehensive testing, different levels of testing are employed, each focusing on
specific aspects of the software. These testing levels provide a structured approach to
verify and validate the software at various stages of development, helping to identify
and rectify defects before the product reaches the end-users. Assuring that software
projects produce goods of the desired quality is one of the most crucial concerns. As
the project is being developed, specific testing levels are carried out to make sure of
this.

According to the findings obtained from the literature review, it became clear that
using the software testing pyramid is the ideal way to combine different test tiers in
order to improve the quality of software projects. The Software Testing Pyramid is a
conceptual framework that represents the ideal distribution of testing efforts across
different levels, forming a pyramid shape. This model emphasizes the importance of
a well-balanced testing strategy, with a higher concentration of tests at the lower
levels and fewer at the higher levels. The goals of the software testing pyramid are to
maintain the highest possible quality, identify faults early on, and minimize the costs
and consequences of failures. By considering this viewpoint, it suggests which test

level should be constructed starting at which moment.

In this work, we will explore how the software industry strategically employs various
testing levels to guarantee the delivery of high-quality software products. From unit
testing to system testing, and ultimately user acceptance testing, each level plays a

crucial role in mitigating risks and enhancing the overall software development

process. Understanding the nuances of these testing levels is essential for software
professionals aiming to deliver software that not only meets but exceeds user

expectations in an ever-evolving technological landscape.

In this thesis, it is aimed to understand how the software testing pyramid and testing
levels are established in the literature, and how the software industry implements
these levels. To this end, literature research was done to see whether any previous
studies with a comparable design had been carried out. Additionally, surveys and
interviews concerning the test levels were used to understand how they fit into the

projects of the firms.

This thesis is organized as follows: in Chapter 1 the introduction section describes
the context, significance, and objectives of the study. Chapter 2 discusses the related
work and background of the study, offering an in-depth examination of the current
trends related to software testing levels, implementation of testing methodologies and
test pyramid. Chapter 3 outlines the methodology, research procedure and research
questions of the thesis. In Chapter 4, the result of the study is presented to gather
insights from the software industry by the questionnaire and interview results. Lastly,
the thesis is finalized with the conclusion and discussion section, the findings,

contributions, and limitations were explained.

CHAPTER 2

BACKGROUND OF THE STUDY

2.1 Software Testing

Software testing is the practice of assessing software with the goal of identifying
errors in it. Software testing is a method used to assess a program's or product's
capability or feature and determine whether it satisfies quality standards. Other
software quality aspects, such as dependability, usability, integrity, security,
capacity, efficiency, portability, maintainability, compatibility, etc., are also tested

for in software testing.

We have been employing the same testing methods for many years. Some of them
are not good engineering approaches, but rather created methods. Software testing
can be expensive, but the cost of not testing it might be far higher. Software testing
has specific objectives and guidelines that must be adhered to [1]. In order to create a
high-quality and dependable product, software testing is crucial to the software
development process. Software testing guarantees that the program operates as

intended, complies with specifications, and is bug-free [2].

2.2 The Benefits of Software Testing

Software development is creating software in accordance with a set of specifications.
To confirm and validate that the program has been constructed in accordance with
these criteria, software testing is required. If not, we risk losing our client. Thus, we
do testing to ensure that we give our client an appropriate software solution. Testing
guarantees that the final product is what you intended to create. We investigate any
issues or errors in the system that can render the client's software inoperable. This

aids in keeping a system free from faults [1].
3

Software testing, which stands for the process of quality validation and verification
of a software product, is an essential stage in the software development process.
These days, this stage is even more important since software has to improve in
quality because it is more complicated, mission- and safety-critical, and necessary for

day-to-day operations [3].

Bug detection and correction: Through software testing, we may identify potential
software flaws. These mistakes can have a negative impact on the user experience
and the program's ability to work as intended. We can find and correct these mistakes

thanks to the testing process.

Quality Assurance: Software testing is a tool used in quality assurance to raise the
level of software. A quality piece of software will be dependable, effective, and able
to satisfy user needs. An audit to confirm that the software complies with quality

requirements is provided through the testing process.

Cost and Time Saving: Software testing helps prevent future issues by assisting in
the early detection of bugs, which saves both money and time. Early error detection

saves time and money by lowering the cost of rectification.

Trust and consumer Satisfaction: Proper software operation and the execution of
anticipated functions provide consumer confidence. Customers desire a trustworthy
and faultless software experience. Software testing is crucial to establishing this
confidence and elevating client satisfaction.

2.2.3 The Basic Principles of Software Testing

The basic principles of software testing are foundational concepts that guide the
testing process and contribute to the effectiveness of identifying defects and ensuring
the quality of software products. These principles help testers, developers, and
quality assurance professionals in designing and executing robust testing strategies.

These principles are given in below:

Accessibility: The testing team should have simple access to the software under test.

This improves the effectiveness and efficiency of the testing procedure.

Complete Coverage: All functionalities and scenarios should be covered during
software testing. Every feature and scenario should be tested to make sure they are

functioning properly.

Independence: The software development process and the testing process should
operate independently. The chance to find faults objectively is provided by a team of

impartial testers.

Repetition: Test procedures and scenarios ought to be repeatable. This makes it

possible to recursively check the results' accuracy and find errors.

Documentation: Test cases and outcomes must be documented as part of the testing
process. This enables tests to be repeated and outcomes to be compared for potential

changes in the future.

Software testing is a crucial stage in the creation of software that raises the level of
quality. Error detection, quality control, cost and time savings, trust and customer
happiness are just a few of its numerous benefits. A successful product is largely
dependent on software testing conducted in accordance with its fundamental

principles.

2.2.4 Software Testing Processes

Testing is the process of determining whether or not a certain system satisfies the
requirements that were first stated. It is mostly a process that includes validation and
verification to see if the created system satisfies the user-specified requirements. As a
result, the outcome of this activity differs from what was anticipated. Software
testing is the process of examining developed systems or software to identify defects,

mistakes, or missing requirements. Thus, this inquiry gives the relevant parties

5

precise information regarding the product's quality. Another way to think of software
testing as a risk-based activity is. During the software testing process, it is crucial for
testers to know how to reduce a huge number of tests into a manageable set and
make informed decisions about which risks should be tested and which should not

[4].

In the software development process, a testing process should be followed to ensure
the quality of the software and detect errors at an early stage. The testing process
aims to verify that the software works correctly, produces expected results, and

meets user requirements.

Steps of the Testing Process:
Requirements Analysis: The testing process starts with understanding user
requirements. User requirements are analyzed to determine what functions the

software should perform and expectations.

Test Planning: The test plan determines how the testing process will be run and
which tests will be performed. The test plan specifies the test objectives, scope,

strategies, and resources.

Creation of Test Cases: Test cases are created to test different functions and
scenarios of the software. Each scenario simulates a specific use case and defines

expected results.

Preparation of the Test Environment: The test environment includes the hardware
and software components to test the software. The test environment should simulate

the real production environment and ensure that the software works correctly.

Test Execution: Test cases are executed in the test environment. At this stage, it is
checked whether the software produces the expected results, whether the errors are

detected and whether it works correctly.

Error Tracking and Management: Errors detected during the test are recorded and
tracked. Bug reports are generated; errors are prioritized and forwarded to the

development team for correction.

Test Reporting and Evaluation: Test results and error reports are compiled and
evaluated in the form of test reports. Test reports provide information about the

quality and test coverage of the software.

Retest and Regression Tests: After corrections are made, it is determined that the

errors are corrected correctly.

2.3 Software Testing Pyramids and Tiers

Software testing is a crucial step in making sure a piece of software works correctly
and is of high quality. How to organize and prioritize tests is a crucial topic in
software testing [5]. In Figure 2.1, the software test pyramid shows how the tests are

organized and balanced at various stages [6].

Acceptance
Test

System Test

Figure 2.1 Software Testing Pyramid

A conceptual model known as the "test pyramid™ explains how quality checks can be
set up to guarantee that every system component is covered at every stage. The idea

was progressively adopted into software engineering after it was initially developed

7

to assist aerospace engineers in scheduling tests to ascertain how material changes
affect system integrity. These days, the test pyramid is usually used to show that
most tests should be run at the lowest level, which is the unit test; fewer integration
tests and even fewer acceptance tests—which are the most costly to create and the

slowest to run—should be conducted.

While the integrity of the underlying data, models, and pipelines is becoming more
and more important for acceptance tests and integration tests, software development
and data management organizations have historically been divided, and quality
assurance procedures are less developed in the data operations space than they are in

the software industry [7].

Unit Tests: Unit tests are used to test the smallest functional components of the
software at the base of the testing pyramid. Unit tests typically test quickly-working
code-level features. These tests are performed to make sure that every part of the
software is operating properly and delivering the desired outcomes. Developers can

test every component of software and find flaws early on thanks to unit tests.

Integration Tests: Component tests, which are placed atop unit tests and enable the
assembly and testing of several unit components. The purpose of this layer is to test
how the units interact and interface with one another. Unit tests can contain flaws
that haven't yet been found thanks to component tests. With the use of these tests, the

software's component integration and collaboration are specifically examined.

System Tests: The user experience and interface of the product are tested using user
interface (Ul) tests, which are at the second level of the software testing pyramid.
These evaluations look at the software's functionality, usability, and user
interactions. Utilizing automation techniques, user interface tests are typically carried
out to determine whether software is compatible with various platforms (web,

mobile, and desktop).

Acceptance Tests: A quality assurance procedure called acceptance testing
establishes the extent to which a program satisfies end users' needs. Acceptance
testing may be conducted as end-user, field, application, or beta testing, depending
on the company.

The software test pyramid tries to maximize the quantity and cost of tests while
improving the accuracy and quality of the product. Lower level unit and component
testing have the benefit of spotting errors early on and offering quick feedback. The
overall functioning and user experience are tested at higher levels of service and user
interface testing. The software testing pyramid offers a useful framework for
organizing and prioritizing the software testing process. In order to enhance quality
and save expenses, this paradigm is frequently applied during the software

development process [7].

2.4 Software Test Levels
2.4.1 Unit Test

Small, automatically executing unit tests are possible thanks to the unit testing
frameworks that are available for practically every programming language these
days. Unit testing is now considered standard procedure and is frequently required by
development processes. Software quality is still a problem, though. Thus, academics
in software engineering contend that testing automation needs to be advanced to the

point where unit tests may be generated automatically [2].

Verifying that your software is working correctly, performs the expected functions
and doesn't have any bugs during development will be important. In this validation
process, software unit tests are very important. The most basic components in a
software suite such as functions, methods or classes shall be tested separately using
Software Unit Tests. Software unit testing is an automated process to check for the
smallest components of software that may be tested. The unit tests are generally
written by programmers so they can verify the functions and methods of software.

Unit tests check that each unit component of the code works correctly, produces the

9

expected results, and is free of bugs. It will enhance the quality of software and

enable bugs to be detected more quickly.

The importance of software unit testing is explained in below. This type of testing is
mostly suitable to test each individual unit of the software separately, to identify the

bugs in the code.

Bug detection and repair: Software unit tests allow you to detect possible bugs in
your code. Unit testing shall verify that the expected results are produced by each
component, as well as catch any errors. This is how errors can be detected and

corrected at an earlier stage.

Increase code coverage and confidence: Unit testing increases code coverage. For
more thorough control of the code, it is possible to test each component individually.
Unit testing also ensures that, if you change your code, it does not break the current
functionality. This makes it more likely that the code will be trusted.

Documentation and Preparedness for Future Changes: Unit tests help document your
code. Tests clearly show what the code should do and make the code easier to
understand. Also, unit tests ensure that code is expected in future changes.

Best Practices and Approaches:
Creating Small and Isolated Test Cases: Create small and custom test cases to test
each component in isolation. Test cases check whether the component produces the

expected results and catches errors.
Automation: Automating software unit tests enables a faster and repeatable testing

process. Automating test cases using automated testing tools and automatically

evaluating results increases efficiency.

10

Frequent and Continuous Testing: Perform software unit tests frequently and
continuously. You can quickly detect and fix bugs by running unit tests after each

change.

Error Reporting and Management: Record and track errors detected during testing.
Generate bug reports, prioritize bugs, and forward them to the development team for
fixes.

Software unit tests are an important test method for testing the smallest units of
software in isolation and detecting bugs at an early stage. These tests improve the
quality of the software, fix bugs and ensure the reliability of the code. You can make

your software more robust and reliable by regularly performing software unit tests.

The "lowest" level of testing is unit testing, which is intended to evaluate the units
generated during the implementation phase. Sometimes, such when developing
general-purpose library modules, unit testing is carried out without the software
application it encapsulates being known. Similar to module testing, unit testing is

typically the duty of the programmer in software development organizations [8].

Developers typically start by writing unit tests before moving on to coding software
units to ensure that the customer receives a reliable product with which to conduct
acceptance testing. Because they were created to make the software fail a
requirement, unit tests are failure tests. In a paradoxical way, developers are forced
to create software that fails in order to test the testing. Developers continue writing
software that passes the unit tests after test harnesses are put in place.

The purpose of unit tests is to make the software fail. You can only start fixing the
code such that it passes the tests by making sure your tests catch errors. The testing
process—and a developer's confidence—depend on your unit tests' ability to detect
problems. The developer can now experiment with various implementations while

being confident that any errors will be caught by the unit tests.

11

Any code modifications should enhance the program rather than add bugs. In order
to improve and streamline the code base, refactoring activities are also supported by
the continuous testing idea. Continuous testing also produces confidence, the
previously mentioned intangible benefit. Because you continually validate the code
base with unit tests, the programming team feels more confident about it.
Additionally, knowing that the code base consistently passes unit tests boosts the

confidence of your clients in their investment [9].

The rise of object-oriented programming has changed how software testers are
approached by programmers. It is known that object-oriented programming, which is
primarily bottom-up, favors a testing approach that emphasizes classes. A unit test
runs a "unit" of code in isolation and contrasts the outcomes with what was
anticipated. The unit in Java is typically a class. Unit tests call one or more class

methods to generate observable outcomes that are automatically checked [10].

2.4.2 Integration Test

In the software development process, it is important that the different components
work harmoniously and function correctly together. Software integration testing is a
testing phase used to test the integration and collaboration of different components.
In this section, we'll cover the importance, benefits, and best practices of software
integration testing. Software integration tests are automated or manual tests that are
used to test collaboration and compatibility of different software components by
combining them. These tests check the components' interfaces, data communication,
database interactions, and other integration points. Integration tests aim to verify that
components work together correctly and produce expected results [11].

The testing that is done after every module has been assembled into a functional
program is known as integration testing. Instead of testing at the statement level like
in unit testing, testing is done at the module level. The relationships between

modules and their interfaces are the focus of integration testing [12].

12

Unexpected interactions between system components are a common cause of
software and system errors. When a system has a lot of replaceable network
components for each element, the risk goes up. To lessen the chance of interaction
issues, a maker of these system components would want to test as many alternative
system configurations as feasible. However, there are an exponentially increasing

number of possible system configurations [13].

Importance of Software Integration Tests:

Collaboration and Interface Check: Software integration tests ensure that different
components collaborate when they come together and interfaces work correctly.
These tests check that the components work harmoniously with each other and that

the data or information exchange is error-free.

Debugging and Catching Problems at an Early Stage: Integration tests aim to detect
errors between components. It detects errors that may occur at the points where
different components come together and allows these errors to be corrected at an

early stage. This helps prevent bigger problems.

Performance and Reliability Check: Integration tests check whether components are
performing together and working reliably. It helps to detect performance problems

and error conditions that may occur with the combination of components.

Software Quality and Customer Satisfaction: Integration tests increase the quality of
the software and ensure customer satisfaction. Compatible and integrated software
provides the user with a seamless experience and demonstrates that the functionality

is performed correctly.

13

Best Practices and Approaches:

Good Planning and Design: Good planning and design is essential to perform
integration tests effectively. Which components will be tested, determining
integration points and creating test scenarios are important steps.

Modular and Standalone Tests: It is important to use modular and independent tests,
as integration tests test the interoperability of components. Testing each component

in isolation makes it easier to identify and resolve issues.

Automation: Automating integration tests enables a faster and repeatable testing
process. Automating test cases using automated testing tools and automatically

evaluating results increases efficiency.

Error Tracking and Monitoring: It is important to track and monitor the errors
detected in integration tests. Fixing, retesting, and tracking bugs improve the quality
of software.

Software integration tests are important to ensure that different components of the
software work harmoniously and function correctly. These tests improve the
detection of bugs, the early resolution of problems and the quality of the software.
Planning, designing, and automating integration testing leads to a more effective and

efficient testing process.

2.4.3 System Test

Software and hardware systems are tested as a whole, integrated unit to determine
whether or not they meet the requirements that have been set forth. Since system
testing is a type of black box testing, it shouldn't be necessary to understand the logic
or inner workings of the code. The main goal of system testing, which is essentially a
collection of several tests, is to thoroughly test the computer-based system.

14

Even though each test serves a distinct objective, they all aim to confirm that system

components have been correctly integrated and are carrying out their assigned tasks

[1].

Software development projects are becoming increasingly complex and large. The
successful completion of these projects depends on the complete completion of
important steps such as software system testing. Software system testing is a critical
phase of evaluating how the software works as an integrated system and checking
whether the software meets business requirements.

When choosing testing procedures, the two most crucial factors are effectiveness and
economy. Economics suggests that the test itself should use the least amount of time
and resources possible, even yet efficacy requires the test to be able to reveal the

greatest number of faults present in the software [14].

Finding flaws in the way the system to be tested functions is the goal of system
testing. In order to realize a desired function for the system user, the intended
functional behavior is determined by the functional needs of the system. When a
system's behavior deviates from its functional requirements, mistakes are present
[15].

Software System Testing

Software system testing is a process in which all components of a software
application are brought together and tested. This testing focuses on checking whether
different components of the software work together smoothly and meet specific
business requirements. System testing also includes evaluating the performance,

security, and overall stability of the software.

Software system testing is a type of testing performed to evaluate the functionality of
a software application and verify that certain functions work as intended. This testing
focuses on determining whether the software meets user expectations. Its main
purpose is to test the functionality, usability and performance of the software and to
ensure that it can be safely presented to users at the end of the development process.

15

Advantages of Software System Testing

Evaluating Integrated Functionality: System testing evaluated how different
components of the software are brought together and how they worked as an
integrated system. This is critical to ensure the different components work in

harmony.

Checking Business Requirements: System testing is used to check whether the
software meets the business requirements or not. This allows verification of the

functionality and usability of the software.

Meeting User Expectations: Software system testing is important to verify whether
the software meets users' expectations. This is critical to improving user experience

and increasing customer satisfaction.

Improving Performance: System testing is used to evaluate the performance of the
software. This helps optimize the response time, speed, and scalability of the

software.

Improving Security: System testing is used to test the security of software and detect
vulnerabilities. This ensures the protection of user data and business processes.

Software System Testing Process

Software system testing usually includes the preparation of the test plan, the test
environment, execution of the test scenarios, evaluation of the test results, fixing the
bugs found and re-testing and finally validation and the delivery of the software to

the users. These processes are described in detail below.
Preparation of Test Plan: The first step is to prepare a test plan that determines the

scope, objectives and plan of system testing. This plan should include test scenarios

and test data.

16

Preparation of the Test Environment: A suitable test environment is created for
system testing. This includes an environment that enables the integration of different

components.

Execution of Test Scenarios: The prepared test scenarios are applied to the software

system. These scenarios simulate different business processes and use cases.

Evaluation of Results: Test results are used to evaluate the performance and
compatibility of the software. If any errors or deficiencies are detected, feedback is

given to the development team.

Bug Fixing and Retesting: If bugs are found, these bugs are fixed, and the software is

retested. This process can be repeated to verify whether the errors have been fixed.

Validation and Delivery: Finally, when the software is confirmed to be usable and

the tests are successful, the software is delivered to users.

Software system testing is an essential part of the successful completion of software
projects. This testing is used to evaluate the software's integrated functionality,
business requirements, performance and security, as well as detect and fix errors.
Good software system testing contributes to the successful completion of large

projects and increased user satisfaction.

Software systems are tested as a whole, integrated unit to see if they meet the criteria
as stated. This is known as system testing. Since system testing is a type of black box
testing, it shouldn't be necessary to understand the inside workings of the code or
logic. The goal of system testing, which is essentially a collection of several tests, is
to thoroughly test the computer-based system. Even though each test serves a distinct
objective, they all aim to confirm that system components have been correctly

integrated and are carrying out their assigned tasks [1].

17

2.4.4 Acceptance Test

A number of tests are carried out during the software development process to ensure
that the program satisfies user requirements and fulfills set standards. "Acceptance
testing" is one of these testing procedures. Prior to the program being made available
to customers or end users, a testing phase known as software acceptance testing is
conducted [16].

Software Acceptance Testing

Software acceptance testing is a testing process performed to verify that the software
works in accordance with the specified requirements, meets user needs and is
generally functional. This testing is usually done by the customer or end user and
confirms that the software is ready for use.

The interests of the client are represented by acceptance tests. The consumer can feel
confident that the application has the necessary functionality and functions properly
thanks to the acceptance tests. The project is finished in theory when every

acceptance test is passed [17].

The user does manual testing as part of user acceptance testing. User acceptance
testing is not usually mechanized. If not, it would be regarded as an automated test
case for verifying the functionality of the program. However, we might think about
automating some tests if users are too busy to test after every build or if our testing

team is understaffed [18].
The Importance of Software Acceptance Testing
User Satisfaction: Software Acceptance Testing assesses how well the program

satisfies user requirements. User satisfaction rises as a result.

Detection of Bugs: Acceptance testing offers the chance to find software bugs.

Resolving these issues increases the software's dependability.

18

Reliability: Determines the degree of reliability of the software. Users favor using

dependable software.

Software Acceptance Testing Process
Determining criteria; Knowing the criteria that the program is built upon is the first
step in the acceptance testing process. The developer and the client should decide on

these specifications.

Constructing Test Scenarios: In order to conduct acceptance testing, test scenarios
must be constructed. These scenarios ought to encompass various software use cases

and functionalities.

Test Execution: The requirements must be followed when implementing the test
scenarios. To determine if the software performs as anticipated, each situation is

examined.

Error Analysis and Reporting: An error report is created for each error that is
discovered during testing. This report provides an opportunity for developers to

address bugs.

Customer Approval: After being shown the test results, the customer chooses

whether or not to accept the software.

Best Practices of Software Acceptance Testing
Early Communication: Accurate requirement understanding and efficient test case

production are ensured by early communication with the customer.

Automation: By automating repeatable test cases, automation technologies can

expedite the testing process and contribute to the delivery of more consistent results.

Examining Actual Users: Including actual users in the software's evaluation and

feedback loop helps improve the acceptability testing procedure.

19

To make sure the program fulfills user expectations, software acceptance testing is an
essential step in the software development process. Software quality can be raised
and customer satisfaction can be guaranteed with precise and thorough acceptance
testing [19].

2.5 Related Work

Previous studies on this subject in the literature have been examined. Although there
are not many studies on this subject, the following study has been examined as a
related work in the field. Mike Cohn's testing pyramid shown in Figure 2.1 was
adjusted for dispersed information processing systems testing [7]. The adjusted
version given in [7] expanded testing capabilities and applies distributed system
characteristics.

There are now ideas for additional uses for the mechanisms included in the revised
Mike Cohn's pyramid. In their study, the requirements provided were needed to
ensure that the distributed computer system will always be able to supply the services
of the distributed information processing system and that request packets will always
be sent at a certain rate. They have developed a software testing paradigm for
distributed systems that is based on the independent software component deployment
[7]. This allows for a reduction in the number of bulk tests while simultaneously
boosting testing efficiency [20], based on an altered version of Mike Cohn's pyramid

given in Figure 2.2, described by [21].

20

A,
more slower

integration
Ul
Tests

Service Tests

more Unit Tests -
isolation ' jaster

Figure 2.2 Cohn’s Test Pyramid as described by Vocke [21]

In this instance, the distributed systems architecture is taken into consideration when
replacing end-to-end and service testing. It is obvious that end-to-end testing is an
ineffective method for distributed systems architecture since it necessitates a
guarantee that modifications won't interfere with the operation of other subsystems
when a new subsystem is deployed in live applications. Using so-called "contracts"
that are based on requests from the subsystem is one method to accomplish this
without utilizing actual subsystems. A test code that operates in vending mode is

called a contract.

In actuality, the pyramid is usually flipped, with the more costly and fragile Ul tests
occurring far more frequently. As seen in Figure 2.3, this "ice cream cone" model
shows that there are a lot more automated Ul tests at the top, a lot more automated
unit tests at the bottom, and a lot more manual tests at the top. This means that a
larger portion of the testing burden is placed on the testers or QA team because
developers' unit test coverage is insufficient. The ice cream cone is frequently the
outcome of lower management allocating less resources for unit testing in favor of

end-to-end testing that shows the product's functioning [6].

21

Time A A Cost

Manual
Testing

E2E
Tests

API Tests
Integration Tests

< >

Quantity

Figure 2.3 Testing in practice; the “inverted test pyramid” as described by
Hartikainen [6]

The test strategy is centered on the location of the tests, not the types of tests that are
designed, according to the suggested pyramid (see Figure 2.4). It is assumed that
functional tests will be augmented by unit testing at every level of the pyramid. It
acknowledges that, given the growing complexity of data-driven systems, uncertainty
is likely to exist in both scenarios and does not discriminate between a user who is a

person and a user who is a machine.

Additionally, it eliminates the possibility that unit tests can stand alone and do not
require contract or functional testing at all levels because they should serve as the
cornerstone for system behavior, performance, and stability. In reality, functional

testing is becoming more and more necessary [7].

22

Manual
Exploratory

Accessibility

Software-centric approach —
focuses on Ul & APl testing and test
automation
APl/Services
- Pipelines/Models
focuses on data hygiene
throughout the info supply chain
Data Stores '

Figure 2.4 A holistic test pyramid for data and traditional software testing [7]

Holistic approach
focuses on end-to-end quality
and a risk-based, intelligent
approach to test automation

The development of a testing methodology, the computation of the testing method
selection based on the modified Mike Cohn's pyramid, and the creation of procedures
for carrying out upper levels of testing are required in order to test the full distributed

system functioning [20].

By combining both data and traditional software testing in a holistic test pyramid ,
organizations can ensure comprehensive test coverage that addresses the
complexities of both software-centric and data-centric approaches. The software
centric approach focuses on both the underlying functionality of software
components (API testing) and the end-user experience (Ul testing). A data-centric
approach in software testing places a primary emphasis on the quality, integrity, and
hygiene of the data used in testing processes. Combining them both, this holistic
approach helps in building robust, reliable software systems and intelligent approach

to test automation that effectively handle data processing and meet user expectations.

23

CHAPTER 3

METHODOLOGY

In order to provide a detailed understanding of how testing levels are utilized in
software industry, a mixed-methods approach is used in this study by combining the
qualitative and quantitative techniques. The research questions and the detailed

research procedure are given under the following sections.

3.1 Research Questions
In this study, we aimed to investigate how the use of software testing levels varies
across sectors. To investigate how the use of these levels varies and the general

approach across sectors, we set the following research questions.

RQ1: What kinds of test levels are described in literature?
RQ2: What is the suggestion to apply these test levels?

RQ3: How are these test levels implemented in the software industry?

3.2 Research Procedure

In this research, two different methods were followed to investigate the research
questions. Firstly, an online survey prepared by using google forms and conducted
from May to Dec 2023. It was sent to people in different sectors for preliminary
research. The purpose of this survey is to understand people's general knowledge
about test levels and to analyze their experiences with these test levels. Secondly,
interviews were conducted both face to face and online during November 2023 with
people experienced in testing in different sectors. Out of 10 participants, 4
participants interviewed face to face and for remains, it was online. The online

sessions are preferred for the participants living out of Ankara.

24

In these interviews, individuals were asked to personally evaluate which test level
they had mastered and how well they had contributed to the quality of these test
levels. In addition, their experiences were asked about how they used these levels in
their current and previous projects and what they took into consideration when
determining the test strategy. In this thesis work, | have prepared both the semi-
structured interview and survey questions based on our research aim. Then for
validating the survey and interview questions, three domain experts in the field of
software engineering reviewed and provide feedback on the relevancy and

appropriateness of the questions.

3.3 Participants

35 people participated in the survey, which was conducted to understand people's
level of knowledge about test levels and to understand the test strategies that
companies create within the scope of their projects and which test levels they
develop by taking into account which criteria. While 40 percent of participants are
female, 60 percent of them are male. The ages of the participants ranged between 18

and 55 years. Details about the participant information are given in Figure 3.1.

Gender Age Group

m Male = Female m 1825 w26-33 w3441 42-49 w50 and above

Figure 3.1 Gender and Age Distribution of Surve Participants

25

These participants consist of people who develop or implement at least one test level
in their current projects. Average work experience varies between 5 and 18 years.
While 50 percent of the people participating in the survey graduated from computer
engineering, 30 percent from electrical and electronics engineering, and 10 percent
from industrial engineering, the remaining 10 percent graduated from different
departments. Again, 40 percent of the participants work in the defense industry, 30
percent work in energy systems and the other 30 percent work in different fields.
These information is represented in Figure 3.2 and 3.3, respectively.

Graduated Department Industry

» Computer Engineering

= Electrical and Electronics Engineering

= Industrial Engineering

Others m Defence = Energy = Others

Figure 3.2 Graduated Departments and Industries of Survey Participants

26

m Total Experience m Experience in Testing

50,00%
45,00%
40,00%

35,00%

30,00%
25,00%
20,00%
15,00%
10,00%

5,00%

0,00%

Less than 5 years 6 - 10 years 11-15years More than 15 years

Figure 3.3 Experiences of Survey Participants

Details about the graduation levels of the interview participants is given in Figure
3.4. Among those participants, 40% of the participants graduated from the
department of computer engineering, %20 from the department of electrical and
electronics engineering, 20% from the department of Mathematics and remaining
10% from the department of Physics. Majortity of the participants (80%) obtained a
master degree.

Graduation Degree Graduated Department

u Computer Engineering

= Electrical and Electronics Engineering

» Mathematics
m Bachelor Degree = Master Degree 1 Physical

Figure 3.4 Graduation Degree and Departments of Interview Participants

27

As seen in Table 3.1, interview participants were selected as 10 people with software

testing experience ranging from at least 8 years to 45 years.

Table 3.1 Experiences of Interview Participants

Percentage of the interview participants Experience in software testing (year)
40% 8-10
40% 11-15
20% 15+

These participants have experience in the fields of defense industry, finance, energy,
telecom and management automation. The industries that the participants are

working is given in Figure 3.5.

Industry

m Defence = Energy = Automotive Security = Others

Figure 3.5 Industries of Interview Participants

Both survey and interview participants were selected considering their experience in
the field of software testing. For this selection, LinkedIn profiles were examined and

suitable people were contacted.

28

CHAPTER 4

RESULTS

In this chapter, preliminary analysis from questionnare is given according to
questions. In addition to that, the results of the interviews were presented in three
sessions based on the answers to each of the research questions: firstly the results
based on the test levels that are depicted in the existing literature is summarized and
the findings on the diverse approoaches and methodologies employed by the
software professionals were presented. Then, the results on the recommendations that
are suggested for applying these test levels in the software industry practices were
explained. Lastly, the methodologies and strategies adopted by software development
professionals to implement these test levels effectively were explained based on the

survey and interview results.

4.1 Preliminary Analysis: Results of the Questionnare

In the survey conducted for the preliminary research, it was aimed to understand
people's experience with each test level and they were asked to evaluate the
effectiveness of these test levels. Graphs of the collected results and the implications
of these results are provided below. Participants were asked to indicate their
experience with each test level on a scale from 1 to 5 (from Novice to Expert).
Person distribution according to the answers given to the question is shown in Figure
4.1. It has been observed that each person chooses Competent and above (3 and
above) at more than one test level. This shows us that these people are capable of

evaluating the effectiveness of testing levels.

29

Experience of Participants in Test Levels
30

25

i -ll.-ll

Unit Test Integration Test System Test Aceptance Test

mmm Novice mmmBeginner mmmCompetent Proficient —mmmExpert -——Average

Figure 4.1 Experience of Participants in Test Levels

Participants were asked which testing levels they thought were most effective in
terms of their impact on software quality, in line with their experiences. Based on
the response from the participants (see Figure 4.2), it is seen that the most
effective testing level in terms of software quality is unit testing, followed by
integration testing and system testing. This result is exactly the same as the

written test pyramid.

Effectiveness of Test Levels on Software Quality
25

20
15
10
| I
0

Unit Test Integration Test System Test Aceptance Test

mmm Very Inefficient mmm Inefficient mmm Effective Enough Effective mmmVery Effective ——Average

Figure 4.2 Effectiveness of Test Levels on Software Quality
30

Therefore, it can be concluded that determining a testing strategy in accordance with
the software testing pyramid will be the most effective method in terms of software
quality. In addition, participants were asked which test level they used and how
often. As seen in Figure 4.3, the participants use unit tests most frequently in their
current projects. It has been observed that it is followed by integration testing and

system testing.

Average Frequency of Implementing Test Levels

35
25
15
0,5

0

Unit Test Integration Test System Test Aceptance Test

w

N

-

m Average Value of Implementing Test Value (5:Always, 1:Never)

Figure 4.3 Average Frequency of Implementing Test Levels

Considering all these data, it can be thought that the survey participants generally
adopted the software testing pyramid and a method suitable for its purpose.

4.2 Results of the Interview

In this section the results of the interview with our participant are discussed to
answer the research questions in three sessions as given below.

4.2.1 What kind of test levels are described in the literature?

As seen in Figure 4.4, within the scope of the Software Testing Pyramid, four main

testing levels are defined. These are stated as unit test, integration test, system test

31

and acceptance test, from the lowest level to the highest level [4]. Each test level and

their detailed quotes are discussed in detail in Chapter 2.

e W\ Y

Unit Test Integration Test System Test Acceptance Test

Figure 4.4 Software Test Levels and Their Functionalities

Each level of testing has a purpose that contributes to the quality of the developed
product. These can be briefly summarized as follows. While unit testing aims to test
each individual component within the software in isolation, integration testing checks
whether the integration between these components works correctly. System test
checks that each functionality works correctly end to end(e2e). Acceptance testing,
on the other hand, ensures that customer requirements work correctly in the

environment defined by the customer [1].

Tests the final system to ensure all customer

Acceptance Test regirements are fullfilled

Tests the end to end functionalities of
the entire system

Tests integration between
components

Tests individual
components

Figure 4.5 Software Test Pyramids and The Goals of the Each Levels

32

4.2.2 What is suggested to apply these test levels?

Within the scope of this research question, interview participants’ opinions were
taken on how to use the test levels in the most effective way. Participants were

expected to answer this question considering their current work experience.

During the research, it was seen that the test levels that play the main role in ensuring
software quality and offering a product that can meet the customer's expectations are
unit test, component test, integration test, functional test and system/acceptance test.
Considering the contribution of each level to the writing quality, it has been observed
that the use of all of these tests in a certain combination gives the most effective
results. Participant P8 explained that “Each different level finds different types of
defects. You need them all to produce a high quality software product”.

How and in what quantity these test levels should be used is explained in detail in the
concept called software testing pyramid. This concept describes a path to minimizing
software maintenance costs, early detection of errors, and ultimately ensuring
customer satisfaction, starting from the quality of the software code. Participant P4
said that “I think the need for testing levels may vary by industry. Considering the
effort and benefit spent, the defense industry focuses more on unit and integration
tests. However, | think that in sectors and systems with fewer users or where error
effects are not very high, more customer requirement tests, that is, functional and
system tests, will be more effective.”. For this reason, it is stated that the number of
unit tests should be proportionally more than at other levels. Afterwards, it is stated
that component, integration and at least system testing should be prepared. This
method not only ensures product quality but also helps to solve any errors found at

the least cost.

33

) / Acceptance .
Factors affecting focus on higher level testing; , 4 -I- t . \\\ Factors affecting focus on lower level testing;
* High user tolerance for system problems . - // es ‘\ A N + Conractual Requirements
* Not critical effects of errors y 4 A y L N + Standard Requirements

/ A N * System Criticallity
g y * Low tolerance for Faults

System Test * Minimizing maintenance and rework cost

y
4

Integration Test

Unit Test A

Figure 4.6 Factors to Decide Most Effective Testing Strategy

The factors affecting the focus on higher and lower level testing strategies are
depicted in Figure 4.6. The importance of unit and integration testing was
emphasized in facilitating the maintenance of the product and eliminating any errors
found at an early stage. On the other hand, it has been stated that one of the best
ways to ensure that customer demands are met is to focus on system and acceptance
level tests. The importance of correctly realizing customer expectations in the

environment determined by the customer is stated.

4.2.3 How are these test levels implemented in the software industry?

In the interviews, participants were asked whether they used a certain testing strategy
in their projects and if these test strategies aligned with Test Pyramid. While a
defined test strategy was used in 80 percent of the projects, it was observed that no
strategy was defined in the remaining twenty percent. In addition, it was observed
that 25 percent of this 80 percent determined a general testing strategy and used the
same strategy in all their projects. It was learned that the remaining 75 percent
defined the test strategy on a project basis. It has been learned that the most
important factors in determining this strategy are determined according to the
expectations of the project customer (contract), the industry (defense, financial
energy, etc.) and the standards that the project must comply with. See the Figure 4.7.

34

Mainly focusing to high level tests

51591 |[9A3] MO| 01 Buisndoy Ajulely

Figure 4.7 Possible Reasons to Focus High or Low Level Tests

This has shown us that the most effective factors in determining the testing strategy
are the risk tolerance of the project and the acceptability of the effects that errors may
cause. In addition, participants were asked whether the people and teams performing
the testing were from the development team or an independent team. The results

were provided in Table 4.1.

Table 4.1 How Test Level are Implemented Participants’ Current Projects

Percentage of the Participants Test Level Implementations

40% All tests are developed by development team.
There is no seperation or independency in team

for implementing test levels.

60% While unit and integration tests are developed by
development team, there is also an independent

team to perform system and aceptance tests.

While 40 percent of the participants reported that all test levels were developed by
the development team, the remaining 60 percent reported that unit and integration
tests were carried out by the development team, but system and acceptance tests were

carried out by an independent testing team.

35

CHAPTER 5

DISCUSSION AND CONCLUSION

One of the most important issues in software projects is to develop products with the
expected quality. To ensure this, certain levels of testing are performed while the
project is being developed. It was seen during the literature research that the best
combination of these test levels to increase the quality of software projects is the
application of the software testing pyramid. The software testing pyramid focuses on
keeping the quality at the best level, detecting errors in the early stages, and thus
reducing the effects of errors while reducing their costs. It puts forward which test
level should be developed from which point by taking this perspective into
consideration. This thesis was written to understand how the software testing
pyramid and testing levels are defined in the literature and how these levels are

realized in the software industry.

As a result of the surveys and interviews, it has been seen that the application of
software levels as they are in the software pyramid depends on some different
criteria. For example, it has been observed that in projects developed in the defense
industry, these test levels are actually used in the hierarchy defined in the literature.

The most important reasons for this are the criticality levels of the developed
projects. Also, one of the reasons is the magnitude of the effects that errors will
cause. Additionally, in this sector, customer expectations and standards that must be
adhered to ensure that these test levels are used as defined in the literature. In
addition, it is seen that in civil projects, not all levels in the test pyramid are always
used, and sometimes this can be adapted according to the project. These types of
projects generally have low error tolerance and impact. In these projects, the test
strategy is typically determined by development and the test team's knowledge of the

test levels.

36

Additionally, it is very important for the team to know which functionality will be
tested at which level. Otherwise, it will be seen that the tests written do not really
serve their purpose. This situation causes an issue that can be tested at the unit test
level to be left to the upper levels and the test levels not to be used for their purpose.
In order to achieve this balance, it is very important to take into account the
experience and knowledge level of the team when determining the test levels and the
intensity at which they will be used. Considering all the analyzes made, customer
expectations, signed contract requirements, standards to be complied with and the
effects of possible errors are important in determining and using the software testing

strategy.

In this regard, in addition to the surveys and interviews about which test levels were
applied and how within the scope of the companies' projects, it was investigated
whether similar studies had been conducted through literature research. Related
works with this study has been given in Section 2.5. In contrast to our
findings, Radziwill and Freeman (2020) hypothesized that since unit tests should be
the foundation for system behavior, performance, and stability, they may stand alone
and do not need contract or functional testing at any level. Functional testing is really
getting more and more important. This contradictory finding can be explained by the
system which is focused for this study. In their study, the data-driven systems have
been considered [7]. However, in our study, different people from different industries

have been included.

5.1 Limitations of Study

In this study, surveys and interviews were conducted taking into account the
experiences of the participants. For this reason, a limited number of participants
could be reached for this study. Therefore, results of these interview and survey
should be validated by additional studies, including higher number of participants,
from different fields.

37

5.2 Threats to Validity

Although the results of our survey provide valuable insights about how test levels are
determined in the software industry, it is crucial to acknowledge the potential threats
to the validity based on or results. Several concerns should be noted which could
impact the reliability and generalizability of our results. Most importantly, in this
study, as participants have been selected according to their experience on software
testing field. Both the survey and the interview were conducted with limited number
of participants. Hence, our survey sample may not be fully representative of the
entire software industry. When conducting the online survey, some of the
participants may struggle to accurately recall and report details about their
experiences with test levels, leading to potential inaccuracies in the data. In order to
eliminate this concern, more detailed information is asked during the interviews to

obtain more reliable answers.

38

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

A. A. Sawant, P. H. Bari, and P. M. Chawan, “Software Testing Techniques
and Strategies.” Journal of Engineering Research & Applications, vol. 2, pp.
980-986, May-June 2012.

E. Daka and G. Fraser, “A survey on unit testing practices and problems.”
Proceedings International Symposium on Software Reliability Engineering,
2014, pp. 201-211.

K. Hrabovskd, B. Rossi, and T. Pitner, “Software Testing Process Models
Benefits & Drawbacks: a Systematic Literature Review.” arXiv preprint
arXiv:1901.01450, vol. 1, Jan. 20109.

M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, “Software testing
techniques: A literature review,” in 6th International Conference on
Information and Communication Technology for the Muslim World, 2016, pp.
177-182.

S. Elbaum, S., A. G. Malishevsky, and G. Rothermel, “Prioritizing test cases
for regression testing,” in Proceedings of the 2000 ACM SIGSOFT
international symposium on Software testing and analysis, 2000, pp. 102-112.

V. Hartikainen, “Defining suitable testing levels, methods and practices for an
agile web application project.” M.A. thesis, Lappeenranta-Lahti University of
Technology, Finland, 2020.

N. Radziwill and G. Freeman, “Reframing the Test Pyramid for Digitally
Transformed Organizations,”, arXiv preprint arXiv:2011.00655, Nov. 2020.

R. Bierig, S. Brown, E. Galvan, and J. Timoney, Introduction to Software
Testing. Cambridge University Press, 2021, pp. 283-295.

J. L. Dalley, “The art of software testing,” in IEEE Proceedings of the
National Aerospace and Electronics Conference, 1991, pp. 757-760.

M. Olan, “Unit testing: test early, test often.” Journal of Computer Science in
College, vol. 19, pp. 319-328, 2003.

S. P. Shashank, P. Chakka, and D. V. Kumar, “A systematic literature survey
of integration testing in component-based software engineering,” in 2010
International Conference on Computer and Communication Technology,
2010, pp. 562-568.

H. K. N. Leung and L. White, “A study of integration testing and software
regression at the integration level,” in Conference on Software Maintenance,
1990, pp. 290-301.

39

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. W. Williams, “Software Component Interaction Testing: Coverage
Measurement And Generation Of Configurations.” PhD thesis, University of
Ottawa, Canada, 2002.

M. Shi, “Software Functional Testing from the Perspective of Business
Practice.” Computer and Information Science, vol. 3, p. 49, 2010.

O. Biihler and J. Wegener, “Evolutionary functional testing.” Computers &
Operations Research, vol. 35, pp. 3144-3160, 2008.

J. Weiss, A. Schill, I. Richter, and P. Mandl, “Literature Review of Empirical
Research Studies within the Domain of Acceptance Testing,” in Proceedings -
42nd Euromicro Conference on Software Engineering and Advanced
Applications, 2016, pp. 181-188.

I. Otaduy and O. Diaz, “User acceptance testing for Agile-developed web-
based applications: Empowering customers through wikis and mind maps.”
Journal of Systems and Software, vol.133, pp. 212-229, 2017.

P. Pandit and S. Tahiliani, “AgiletUAT: A Framework for User Acceptance
Testing based on User Stories and Acceptance Criteria.” International Journal
of Computer Applications, vol. 10, pp. 120, 2015.

K. Naik and P. Tripathy, Software Testing and Quality Assurance: Theory and
Practice. Canada, 2008, pp. 173-185.

V. Mukhin, Y. Kornaga, Y. Bazaka, I. Krylov, A. Barabash, A. Yakovleva,
and O. Mukhin, “The Testing Mechanism for Software and Services Based on
Mike Cohn’s Testing Pyramid Modification,” in Proceedings of the 11th IEEE
International Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications, 2021, pp.589-595.

H. Vocke, “The Practical Test Pyramid.” Internet: https://martinfowler.com/
articles/practical-test-pyramid.html, Feb 26, 2018 [Dec. 22, 2023].

40

https://martinfowler.com/

APPENDIX A INTERVIEW QUESTIONS

Section-1. Basic Information

1.1 Which department did you graduate from?

1.2 What is the last degree you completed?

1.3 How many years of work experience do you have?

1.4 How many years of software testing experience do you have?

1.5 Which sector do you work in?

Section-2.1 Personal Evaluation About Test Levels
2.1.1 To what extent do you know which test levels?

2.1.2 Which levels of testing do you think contribute the most to software quality?

Section-2.2 Using Test Levels in Current Work Experience in Line with Product
Quality Goals

2.2.1 What testing levels are used in your current projects?

2.2.2 Does the testing strategy you use in your projects differ from project to project
or do you use a single strategy for all of them? If you are applying a different
strategy for each project, what are the inputs you use to decide on this strategy?

2.2.3 Does a team independent from the development team perform the tests, or are

the developer and tester the same person? Does this vary depending on test levels?

41

APPENDIX B SURVEY QUESTIONS

Section-1. Basic Information
1.1. What age group are you in?
e 18-25
o 26-33
o 34-41
o 42-49

50 and over

1.2. What is your gender?
e Male
e \Woman
1.3. What is the last degree you obtained?
e Associate degree
e Bachelor’s degree
e Master’s degree
e Doctorate
1.4. Select the program(s) you graduated from.
e Computer engineering
e Software engineering
e Information Systems Engineering
e Computer Science
e Associate degree
e Other:
1.5. What is your position in the company you work for?
e Developer (Software Developer)
e Test engineer
e System Architect
e Project manager
e Other:

42

1.6. How many years of experience do you have in the testing field?
e | have no experience with the test.
e Lessthan5 years
e 6-10years
e 11-15years
e More than 15 years
1.7. How many years have you been practicing your profession? *
e (0-3years
e 3-06years
e 7-10years
e more than 10 years
1.8. What is the industry you are working in?
e Academic

e Information technologies

e Electronic
e Energy
e Security

e Automotive

e Health

e Defense industry

e Other:........
Section-2.1 Personal Evaluation About Test Levels
2.1.1. Please mark to what extent you evaluate your mastery of the test levels given
in the table below (1: Lowest, 5: Highest).

Quality Attribute: 112 1|3 |4 15

Unit Testing

Integration Test

Functional Test

System Test

Acceptance Test

43

2.1.2. Please mark how effective you think the test levels given in the table below are

in terms of product quality (1: Lowest, 5: Highest).

Quality Attribute: 112 |3 |4 15

Unit Testing

Integration Test

Functional Test

System Test

Acceptance Test

Section-2.2 Using Test Levels in Current Work Experience in Line with Product
Quality Goals
2.2.1 Evaluate and mark how often you use the test levels given in the table below in

your current job in terms of product quality (1: Lowest, 5: Highest).

Quality Attribute: 112 |3 |4 15

Unit Testing

Integration Test

Functional Test

System Test

Acceptance Test

2.2.2 Please mark how effective you think the test levels in the table below are in

terms of product quality in your current project (1: Lowest, 5: Highest).

Quality Attribute: 112 1|3 |4 15

Unit Testing

Integration Test

Functional Test

System Test

Acceptance Test

2.2.3 In the light of your experiences in the institution you work for, what would you

like to add/suggestions, if any, regarding achieving the quality targets of test levels?

44

APPENDIX C INTERVIEW QUESTIONS IN TURKISH

Boliim-1.Temel Bilgiler

1.1 Hangi boliimden mezun oldunuz?

1.2 En son tamamladiginiz diploma derecesi nedir?
1.3 Kag yillik is tecriibeniz bulunmaktadir?

1.4 Kag yillik yazilim testi tecriibeniz bulunmaktadir?

1.5 Hangi sektorde ¢alismaktasiniz?

Boliim-2.1 Test Seviyeleri Hakkinda Kisisel Degerlendirme
2.1.1 Hangi test seviyelerine ne derece hakimsiniz?
2.1.2 Hangi test seviyelerinin yazilim kalitesine en ¢ok katkist oldugunu

diisiiniiyorsunuz?

Béliim-2.2 Test Seviyelerinin Uriin Kalite Hedefleri Dogrultusunda Mevcut is
Deneyiminde Kullanilmasi

2.2.1 Mevcut projelerinde hangi test seviyelerini kullanilmaktadir?

2.2.2 Projelerinizde kullandiginiz test stratejisi projeden projeye farklilik
gostermekte midir yoksa hepsi i¢in tek bir strateji ile mi ilerliyorsunuz? Eger herbir
proje i¢in farkli strateji uyguluyorsaniz bu stratejiye karar verme konusunda
kullandiginiz girdiler nelerdir?

2.2.3 Testleri gelistirme ekibinden bagimsiz bir ekip mi gerceklestirmektedir yoksa
gelistirici ve testci ayni kisi midir? Bu test seviyelerine gore degisiklik gostermekte

midir?

45

APPENDIX D SURVEY QUESTIONS IN TURKISH

Boliim-1.Temel Bilgiler
1. Hangi yas grubundasiniz?

18- 25
26 - 33
34 -41
42 - 49
50 ve lizeri

2. Cinsiyetiniz nedir?

o FErkek
e Kadin

3. En son edindiginiz diploma derecesi nedir?

Onlisans
Lisans
Yiksek lisans
Doktora

4. Mezun oldugunuz programi/programlari se¢iniz.

Bilgisayar Miihendisligi
Yazilim Miihendisligi

Bilisim Sistemleri Miihendisligi
Bilgisayar Bilimleri

Onlisans

Diger:

5. Calistiginiz sirketteki pozisyonunuz nedir?

Gelistirici (Software Developer)
Test miithendisi (Test Engineer)
Sistem mimari (System Architect)
Proje yoneticisi (Project Manager)
Diger:

6. Test alaninda toplam kag yillik tecriibeniz bulunmaktadir?

Test ile ilgili tecriibem bulunmamaktadir
5 yildan az

6-10yil

11-15wyl

15 yildan fazla

46

7. Mesleginizi kag yildir icra ediyorsunuz? *

e 0-3wyl
e 3-06yi
e 7-10y1l

e 10 yildan fazla

8. Caligmakta oldugunuz sektor nedir?

e Akademik

o Bilgi Teknolojileri
o Elektronik

e Enerji

e Gilivenlik

« Otomotiv

e Saglik

e Savunma Sanayi

e Diger:........

Boliim-2.1 Test Seviyeleri Hakkinda Kisisel Degerlendirme

1. Asagidaki tabloda verilen test seviyelerine ne derecede hakim oldugunuzu

degerlendiriyorsunuz isaretleyiniz (1: En Diisiik, 5: En Yiiksek).

Kalite Ozniteligi: 123 45
Birim Testi (Unit Test)

Entegrasyon Testi (Integration Test)

Fonksiyonel Test (Functional Test)

Sistem Testi (System Test)

Kabul Testi (Acceptance Test)

2. Asagidaki tabloda verilen test seviyelerinin iirlin kalitesi agisindan ne derece etkin
oldugunu degerlendiriyorsunuz isaretleyiniz (1: En Diisiik, 5: En Yiiksek).

Kalite Ozniteligi: 123 45
Birim Testi (Unit Test)

Entegrasyon Testi (Integration Test)

Fonksiyonel Test (Functional Test)

Sistem Testi (System Test)

Kabul Testi (Acceptance Test)

47

Boliim-2.2 Test Seviyelerinin Uriin Kalite Hedefleri Dogrultusunda Mevcut Is
Deneyiminde Kullanilmasi

1. Asagidaki tabloda verilen test seviyelerinin {iriin kalitesi agisindan mevcut isinizde
ne siklikla kullandiginizi degerlendirip isaretleyiniz (1: En Diisiik, 5: En Yiksek).

Kalite Ozniteligi: 123 45
Birim Testi (Unit Test)

Entegrasyon Testi (Integration Test)

Fonksiyonel Test (Functional Test)

Sistem Testi (System Test)

Kabul Testi (Acceptance Test)

2. Asagidaki tabloda verilen test seviyelerinin mevcut projenizde iirlin kalitesi
acisindan ne derece etkin oldugunu degerlendiriyorsunuz isaretleyiniz (1: En Diisiik,

5: En Yiiksek).

Kalite Ozniteligi: 1.2 3 45
Birim Testi (Unit Test)

Entegrasyon Testi (Integration Test)

Fonksiyonel Test (Functional Test)

Sistem Testi (System Test)

Kabul Testi (Acceptance Test)

3. Calistiginiz kurumdaki tecriibeleriniz 15181nda test seviyelerinin kalite hedeflerine
ulagilmas1 konusunda ile ilgili varsa eklemek istedikleriniz / 6nerileriniz nelerdir?

Liitfen yanitiniz1 buraya yazin.

48

