

UTILIZING THE SOFTWARE TESTING LEVELS: INSIGHTS FROM THE

SOFTWARE INDUSTRY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

ATILIM UNIVERSITY

KÜBRA KORKMAZ ONAT

A MASTER OF SCIENCE THESIS

IN

THE DEPARTMENT OF COMPUTER ENGINEERING

JANUARY 2024

 K
. K

O
R

K
M

A
Z

 O
N

A
T

 A
T

IL
IM

 U
N

IV
E

R
S

IT
Y

 2
0

2
4

UTILIZING THE SOFTWARE TESTING LEVELS: INSIGHTS FROM THE

SOFTWARE INDUSTRY

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

ATILIM UNIVERSITY

BY

KÜBRA KORKMAZ ONAT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF COMPUTER ENGINEERING

JANUARY 2024

Approval of the Graduate School of Natural and Applied Sciences, Atilim

University.

 Prof. Dr. Ender

KESKİNKILIÇ

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science in Computer Engineering, Atılım University.

 Prof. Dr. Gökhan

ŞENGÜL

Head of Department

This is to certify that we have read the thesis UTILIZING THE SOFTWARE

TESTING LEVELS: INSIGHTS FROM THE SOFTWARE INDUSTRY submitted

by KÜBRA KORKMAZ ONAT and that in our opinion it is fully adequate, in scope

and quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Dr. Damla Topallı

 Supervisor

Examining Committee Members:

Assoc. Prof. Dr. Cansu Çiğdem Ekin

Computer Eng. Department, Atılım University

Asst. Prof. Dr. Damla Topallı

Computer Eng. Department, Atılım University

Assoc. Prof. Dr. Gül Tokdemir

Computer Eng. Department, Cankaya University

Date: 04/01/2024

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

 Name, Last Name : Kübra, Korkmaz Onat

Signature :

iii

ABSTRACT

UTILIZING THE SOFTWARE TESTING LEVELS: INSIGHTS FROM

SOFTWARE INDUSTRY

Korkmaz Onat, Kübra

M.S., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Damla Topallı

January 2024, 48 pages

Software testing levels play a crucial role in assuring software quality, by identifying

defects and bugs early, improving stability of the software, validating compliance

with requirements, enhancing user satisfaction, and lowering costs and risks related

to software defects. If the defects are detected timely, in an earlier stage of the

software development process, the software developed will be in higher quality and

the risks of the system failures will be reduced. Additionally, the testing levels ensure

that the components of the system work together correctly, which leads to improved

reliability of the software. Another important aspect is to ensure that the software

meets the user expectations, meeting the intended functionality and performance.

Hence, the quality of the software being created is directly affected by the proper

implementation of testing levels in the Software Development Life Cycle (SDLC). In

the literature, four main testing levels are discussed: unit testing for testing the

individual units or components, integration testing for testing the interactions and

interfaces between different components and modules, system testing to test the

system as a whole and user acceptance testing to test the software against user’s

requirements and expectations. Accordingly, the main aim of this research is to

review testing levels and methods suggested in the literature, understand their impact

on the software quality and analyze how these testing levels are used in the software

iv

industry. In this respect, a semi-structured interview is conducted with ten software

experts from the Software Industry. The questions of the interview include: which of

the test levels contribute the most to software quality, which of test levels are used in

their current projects, the testing strategy used in their projects, which factors are

affecting the choice of the testing strategy and who performs the tests, the developer

or an independent team is better in this consideration. The results give insight to the

software community regarding the use of test levels and how effective the test levels

are in terms of software quality for specific domains of the projects.

Keywords: Software Quality, Software Testing, Testing Levels, Software Testing

Pyramid.

v

ÖZ

YAZILIM TEST SEVİYELERİNİN UYGULANMASI: YAZILIM

SEKTÖRÜNDE BİR ÖRNEK ÇALIŞMA

Korkmaz Onat, Kübra

Yüsek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Dr. Öğr. Üy. Damla Topallı

Ocak 2024, 48 sayfa

Yazılım test seviyeleri, kusurları ve hataları erken tespit ederek, yazılımın

kararlılığını artırarak, gereksinimlere uygunluğu doğrulayarak, kullanıcı

memnuniyetini artırarak ve yazılım kusurlarıyla ilgili maliyet ve riskleri azaltarak

yazılım kalitesinin güvence altına alınmasında çok önemli bir rol oynar. Hataların

zamanında tespit edilmesi durumunda, yazılım geliştirme sürecinin daha erken bir

aşamasında, geliştirilen yazılım daha kaliteli olacak ve sistem arızası riskleri

azalacaktır. Ek olarak, test seviyeleri sistem bileşenlerinin birlikte doğru şekilde

çalışmasını sağlar ve bu da yazılımın güvenilirliğinin artmasına yol açar. Bir diğer

önemli husus, yazılımın kullanıcı beklentilerini karşılamasını, amaçlanan işlevsellik

ve performansı karşılamasını sağlamaktır. Bu nedenle, oluşturulan yazılımın kalitesi,

Yazılım Geliştirme Yaşam Döngüsü'ndeki (SDLC) test seviyelerinin uygun şekilde

uygulanmasından doğrudan etkilenir. Literatürde dört ana test düzeyi

tartışılmaktadır: bireysel birimleri veya bileşenleri test etmek için birim testi, farklı

bileşenler ve modüller arasındaki etkileşimleri ve arayüzleri test etmek için

entegrasyon testi, sistemi bir bütün olarak test etmek için sistem testi ve test etmek

için kullanıcı kabul testi. Yazılımın kullanıcının gereksinimlerine ve beklentilerine

uygun olması. Buna göre bu araştırmanın temel amacı literatürde önerilen test

seviyelerini ve yöntemlerini gözden geçirmek, bunların yazılım kalitesi üzerindeki

etkilerini anlamak ve bu test seviyelerinin yazılım endüstrisinde nasıl kullanıldığını

vi

analiz etmektir. Bu doğrultuda Yazılım Sektöründen on yazılım uzmanıyla yarı

yapılandırılmış bir görüşme gerçekleştirilmiştir. Mülakat soruları arasında yazılım

kalitesine en çok hangi test seviyelerinin katkı sağladığı, mevcut projelerinde hangi

test seviyelerinin kullanıldığı, projelerinde kullanılan test stratejisi, test stratejisi

seçimini hangi faktörlerin etkilediği ve kimlerin kullandığı yer almaktadır. Testleri

yapan geliştirici veya bağımsız bir ekibin bu konuda daha iyi olduğu görülmüştür.

Elde edilen sonuçların, yazılım sektöründe test seviyelerinin uygulanması ve

projelerin belirli alanları için test seviyelerinin yazılım kalitesi açısından ne kadar

etkili olduğu konusunda fikir vermesi beklenmektedir.

Anahtar Kelimeler: Yazılım Kalitesi, Yazılım Testi, Test Seviyeleri, Yazılım Test

Piramidi.

vii

To My Family

viii

ACKNOWLEDGMENTS

First and foremost, I would like to sincerely thank my supervisor, Asst. Prof. Dr.

Damla Topallı, for her unwavering support, direction, and wisdom during my thesis

research. I sincerely appreciate all of her expertise, excitement, and patience

throughout this time. I'm really honored to be one of her pupils.

I would also express my appreciation to examination committee members; Asst.

Prof. Dr. Cansu Çiğdem Ekin, and Asst. Prof. Dr. Gül Tokdemir for their valuable

time, comments and suggestions.

Finally, I would like to express my appreciation to my cat and my husband for their

endless love, patience and support. They have never ceased to inspire and believe in

me.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

ACKNOWLEDGMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS ... xiii

CHAPTER 1 .. 1

INTRODUCTION ... 1

CHAPTER 2 .. 3

BACKGROUND OF THE STUDY .. 3

2.1 Software Testing .. 3

2.2 The Benefits of Software Testing .. 3

2.2.3 The Basic Principles of Software Testing .. 4

2.2.4 Software Testing Processes .. 5

2.3 Software Testing Pyramids and Tiers .. 7

2.4 Software Test Levels .. 9

2.4.1 Unit Test ... 9

2.4.2 Integration Test .. 12

2.4.3 System Test .. 14

2.4.4 Acceptance Test ... 18

2.5 Related Work ... 20

CHAPTER 3 .. 24

METHODOLOGY ... 24

3.1 Research Questions .. 24

3.2 Research Procedure .. 24

3.3 Participants ... 25

CHAPTER 4 .. 29

RESULTS .. 29

x

4.1 Preliminary Analysis: Results of the Questionnare 29

4.2 Results of the Interview ... 31

4.2.1 What kind of test levels are described in the literature? 31

4.2.2 What is suggested to apply these test levels? ... 33

4.2.3 How are these test levels implemented in the software industry? 34

DISCUSSION AND CONCLUSION .. 36

5.1 Limitations of Study ... 37

5.2 Threats to Validity.. 38

REFERENCES ... 39

APPENDIX A INTERVIEW QUESTIONS .. 41

APPENDIX B SURVEY QUESTIONS .. 42

APPENDIX C INTERVIEW QUESTIONS IN TURKISH 45

xi

LIST OF TABLES

Table 3.1 Experiences of Interview Participants.. 28

Table 4.1 How Test Level are Implemented Participants’ Current Projects.............. 35

xii

LIST OF FIGURES

Figure 2.1 Software Testing Pyramid .. 7

Figure 2.2 Cohn’s Test Pyramid as described by Vocke [21].................................... 21

Figure 2.3 Testing in practice; the “inverted test pyramid” as described by

Hartikainen [6] ... 22

Figure 2.4 A holistic test pyramid for data and traditional software testing [7] 23

Figure 3.1 Gender and Age Distribution of Surve Participants 25

Figure 3.2 Graduated Departments and Industries of Survey Participants 26

Figure 3.3 Experiences of Survey Participants .. 27

Figure 3.4 Graduation Degree and Departments of Interview Participants 27

Figure 3.5 Industries of Interview Participants .. 28

Figure 4.1 Experience of Participants in Test Levels .. 30

Figure 4.2 Effectiveness of Test Levels on Software Quality 30

Figure 4.3 Average Frequency of Implementing Test Levels.................................... 31

Figure 4.4 Software Test Levels and Their Functionalities 32

Figure 4.5 Software Test Pyramids and The Goals of the Each Levels 32

Figure 4.6 Factors to Decide Most Effective Testing Strategy 34

Figure 4.7 Possible Reasons to Focus High or Low Level Tests 35

xiii

LIST OF ABBREVIATIONS

E2E - End to End

UI - User Interface

API - Application Programming Interface

1

CHAPTER 1

INTRODUCTION

Software testing is a crucial aspect of the software development lifecycle, ensuring

that the final product meets the desired quality and functionality. To achieve

comprehensive testing, different levels of testing are employed, each focusing on

specific aspects of the software. These testing levels provide a structured approach to

verify and validate the software at various stages of development, helping to identify

and rectify defects before the product reaches the end-users. Assuring that software

projects produce goods of the desired quality is one of the most crucial concerns. As

the project is being developed, specific testing levels are carried out to make sure of

this.

According to the findings obtained from the literature review, it became clear that

using the software testing pyramid is the ideal way to combine different test tiers in

order to improve the quality of software projects. The Software Testing Pyramid is a

conceptual framework that represents the ideal distribution of testing efforts across

different levels, forming a pyramid shape. This model emphasizes the importance of

a well-balanced testing strategy, with a higher concentration of tests at the lower

levels and fewer at the higher levels. The goals of the software testing pyramid are to

maintain the highest possible quality, identify faults early on, and minimize the costs

and consequences of failures. By considering this viewpoint, it suggests which test

level should be constructed starting at which moment.

In this work, we will explore how the software industry strategically employs various

testing levels to guarantee the delivery of high-quality software products. From unit

testing to system testing, and ultimately user acceptance testing, each level plays a

crucial role in mitigating risks and enhancing the overall software development

2

process. Understanding the nuances of these testing levels is essential for software

professionals aiming to deliver software that not only meets but exceeds user

expectations in an ever-evolving technological landscape.

In this thesis, it is aimed to understand how the software testing pyramid and testing

levels are established in the literature, and how the software industry implements

these levels. To this end, literature research was done to see whether any previous

studies with a comparable design had been carried out. Additionally, surveys and

interviews concerning the test levels were used to understand how they fit into the

projects of the firms.

This thesis is organized as follows: in Chapter 1 the introduction section describes

the context, significance, and objectives of the study. Chapter 2 discusses the related

work and background of the study, offering an in-depth examination of the current

trends related to software testing levels, implementation of testing methodologies and

test pyramid. Chapter 3 outlines the methodology, research procedure and research

questions of the thesis. In Chapter 4, the result of the study is presented to gather

insights from the software industry by the questionnaire and interview results. Lastly,

the thesis is finalized with the conclusion and discussion section, the findings,

contributions, and limitations were explained.

3

CHAPTER 2

BACKGROUND OF THE STUDY

2.1 Software Testing

Software testing is the practice of assessing software with the goal of identifying

errors in it. Software testing is a method used to assess a program's or product's

capability or feature and determine whether it satisfies quality standards. Other

software quality aspects, such as dependability, usability, integrity, security,

capacity, efficiency, portability, maintainability, compatibility, etc., are also tested

for in software testing.

We have been employing the same testing methods for many years. Some of them

are not good engineering approaches, but rather created methods. Software testing

can be expensive, but the cost of not testing it might be far higher. Software testing

has specific objectives and guidelines that must be adhered to [1]. In order to create a

high-quality and dependable product, software testing is crucial to the software

development process. Software testing guarantees that the program operates as

intended, complies with specifications, and is bug-free [2].

2.2 The Benefits of Software Testing

Software development is creating software in accordance with a set of specifications.

To confirm and validate that the program has been constructed in accordance with

these criteria, software testing is required. If not, we risk losing our client. Thus, we

do testing to ensure that we give our client an appropriate software solution. Testing

guarantees that the final product is what you intended to create. We investigate any

issues or errors in the system that can render the client's software inoperable. This

aids in keeping a system free from faults [1].

4

Software testing, which stands for the process of quality validation and verification

of a software product, is an essential stage in the software development process.

These days, this stage is even more important since software has to improve in

quality because it is more complicated, mission- and safety-critical, and necessary for

day-to-day operations [3].

Bug detection and correction: Through software testing, we may identify potential

software flaws. These mistakes can have a negative impact on the user experience

and the program's ability to work as intended. We can find and correct these mistakes

thanks to the testing process.

Quality Assurance: Software testing is a tool used in quality assurance to raise the

level of software. A quality piece of software will be dependable, effective, and able

to satisfy user needs. An audit to confirm that the software complies with quality

requirements is provided through the testing process.

Cost and Time Saving: Software testing helps prevent future issues by assisting in

the early detection of bugs, which saves both money and time. Early error detection

saves time and money by lowering the cost of rectification.

Trust and consumer Satisfaction: Proper software operation and the execution of

anticipated functions provide consumer confidence. Customers desire a trustworthy

and faultless software experience. Software testing is crucial to establishing this

confidence and elevating client satisfaction.

2.2.3 The Basic Principles of Software Testing

The basic principles of software testing are foundational concepts that guide the

testing process and contribute to the effectiveness of identifying defects and ensuring

the quality of software products. These principles help testers, developers, and

quality assurance professionals in designing and executing robust testing strategies.

These principles are given in below:

5

Accessibility: The testing team should have simple access to the software under test.

This improves the effectiveness and efficiency of the testing procedure.

Complete Coverage: All functionalities and scenarios should be covered during

software testing. Every feature and scenario should be tested to make sure they are

functioning properly.

Independence: The software development process and the testing process should

operate independently. The chance to find faults objectively is provided by a team of

impartial testers.

Repetition: Test procedures and scenarios ought to be repeatable. This makes it

possible to recursively check the results' accuracy and find errors.

Documentation: Test cases and outcomes must be documented as part of the testing

process. This enables tests to be repeated and outcomes to be compared for potential

changes in the future.

Software testing is a crucial stage in the creation of software that raises the level of

quality. Error detection, quality control, cost and time savings, trust and customer

happiness are just a few of its numerous benefits. A successful product is largely

dependent on software testing conducted in accordance with its fundamental

principles.

2.2.4 Software Testing Processes

Testing is the process of determining whether or not a certain system satisfies the

requirements that were first stated. It is mostly a process that includes validation and

verification to see if the created system satisfies the user-specified requirements. As a

result, the outcome of this activity differs from what was anticipated. Software

testing is the process of examining developed systems or software to identify defects,

mistakes, or missing requirements. Thus, this inquiry gives the relevant parties

6

precise information regarding the product's quality. Another way to think of software

testing as a risk-based activity is. During the software testing process, it is crucial for

testers to know how to reduce a huge number of tests into a manageable set and

make informed decisions about which risks should be tested and which should not

[4].

In the software development process, a testing process should be followed to ensure

the quality of the software and detect errors at an early stage. The testing process

aims to verify that the software works correctly, produces expected results, and

meets user requirements.

Steps of the Testing Process:

Requirements Analysis: The testing process starts with understanding user

requirements. User requirements are analyzed to determine what functions the

software should perform and expectations.

Test Planning: The test plan determines how the testing process will be run and

which tests will be performed. The test plan specifies the test objectives, scope,

strategies, and resources.

Creation of Test Cases: Test cases are created to test different functions and

scenarios of the software. Each scenario simulates a specific use case and defines

expected results.

Preparation of the Test Environment: The test environment includes the hardware

and software components to test the software. The test environment should simulate

the real production environment and ensure that the software works correctly.

Test Execution: Test cases are executed in the test environment. At this stage, it is

checked whether the software produces the expected results, whether the errors are

detected and whether it works correctly.

7

Error Tracking and Management: Errors detected during the test are recorded and

tracked. Bug reports are generated; errors are prioritized and forwarded to the

development team for correction.

Test Reporting and Evaluation: Test results and error reports are compiled and

evaluated in the form of test reports. Test reports provide information about the

quality and test coverage of the software.

Retest and Regression Tests: After corrections are made, it is determined that the

errors are corrected correctly.

2.3 Software Testing Pyramids and Tiers

Software testing is a crucial step in making sure a piece of software works correctly

and is of high quality. How to organize and prioritize tests is a crucial topic in

software testing [5]. In Figure 2.1, the software test pyramid shows how the tests are

organized and balanced at various stages [6].

Figure 2.1 Software Testing Pyramid

A conceptual model known as the "test pyramid" explains how quality checks can be

set up to guarantee that every system component is covered at every stage. The idea

was progressively adopted into software engineering after it was initially developed

8

to assist aerospace engineers in scheduling tests to ascertain how material changes

affect system integrity. These days, the test pyramid is usually used to show that

most tests should be run at the lowest level, which is the unit test; fewer integration

tests and even fewer acceptance tests—which are the most costly to create and the

slowest to run—should be conducted.

While the integrity of the underlying data, models, and pipelines is becoming more

and more important for acceptance tests and integration tests, software development

and data management organizations have historically been divided, and quality

assurance procedures are less developed in the data operations space than they are in

the software industry [7].

Unit Tests: Unit tests are used to test the smallest functional components of the

software at the base of the testing pyramid. Unit tests typically test quickly-working

code-level features. These tests are performed to make sure that every part of the

software is operating properly and delivering the desired outcomes. Developers can

test every component of software and find flaws early on thanks to unit tests.

Integration Tests: Component tests, which are placed atop unit tests and enable the

assembly and testing of several unit components. The purpose of this layer is to test

how the units interact and interface with one another. Unit tests can contain flaws

that haven't yet been found thanks to component tests. With the use of these tests, the

software's component integration and collaboration are specifically examined.

System Tests: The user experience and interface of the product are tested using user

interface (UI) tests, which are at the second level of the software testing pyramid.

These evaluations look at the software's functionality, usability, and user

interactions. Utilizing automation techniques, user interface tests are typically carried

out to determine whether software is compatible with various platforms (web,

mobile, and desktop).

9

Acceptance Tests: A quality assurance procedure called acceptance testing

establishes the extent to which a program satisfies end users' needs. Acceptance

testing may be conducted as end-user, field, application, or beta testing, depending

on the company.

The software test pyramid tries to maximize the quantity and cost of tests while

improving the accuracy and quality of the product. Lower level unit and component

testing have the benefit of spotting errors early on and offering quick feedback. The

overall functioning and user experience are tested at higher levels of service and user

interface testing. The software testing pyramid offers a useful framework for

organizing and prioritizing the software testing process. In order to enhance quality

and save expenses, this paradigm is frequently applied during the software

development process [7].

2.4 Software Test Levels

2.4.1 Unit Test

Small, automatically executing unit tests are possible thanks to the unit testing

frameworks that are available for practically every programming language these

days. Unit testing is now considered standard procedure and is frequently required by

development processes. Software quality is still a problem, though. Thus, academics

in software engineering contend that testing automation needs to be advanced to the

point where unit tests may be generated automatically [2].

Verifying that your software is working correctly, performs the expected functions

and doesn't have any bugs during development will be important. In this validation

process, software unit tests are very important. The most basic components in a

software suite such as functions, methods or classes shall be tested separately using

Software Unit Tests. Software unit testing is an automated process to check for the

smallest components of software that may be tested. The unit tests are generally

written by programmers so they can verify the functions and methods of software.

Unit tests check that each unit component of the code works correctly, produces the

10

expected results, and is free of bugs. It will enhance the quality of software and

enable bugs to be detected more quickly.

The importance of software unit testing is explained in below. This type of testing is

mostly suitable to test each individual unit of the software separately, to identify the

bugs in the code.

Bug detection and repair: Software unit tests allow you to detect possible bugs in

your code. Unit testing shall verify that the expected results are produced by each

component, as well as catch any errors. This is how errors can be detected and

corrected at an earlier stage.

Increase code coverage and confidence: Unit testing increases code coverage. For

more thorough control of the code, it is possible to test each component individually.

Unit testing also ensures that, if you change your code, it does not break the current

functionality. This makes it more likely that the code will be trusted.

Documentation and Preparedness for Future Changes: Unit tests help document your

code. Tests clearly show what the code should do and make the code easier to

understand. Also, unit tests ensure that code is expected in future changes.

Best Practices and Approaches:

Creating Small and Isolated Test Cases: Create small and custom test cases to test

each component in isolation. Test cases check whether the component produces the

expected results and catches errors.

Automation: Automating software unit tests enables a faster and repeatable testing

process. Automating test cases using automated testing tools and automatically

evaluating results increases efficiency.

11

Frequent and Continuous Testing: Perform software unit tests frequently and

continuously. You can quickly detect and fix bugs by running unit tests after each

change.

Error Reporting and Management: Record and track errors detected during testing.

Generate bug reports, prioritize bugs, and forward them to the development team for

fixes.

Software unit tests are an important test method for testing the smallest units of

software in isolation and detecting bugs at an early stage. These tests improve the

quality of the software, fix bugs and ensure the reliability of the code. You can make

your software more robust and reliable by regularly performing software unit tests.

The "lowest" level of testing is unit testing, which is intended to evaluate the units

generated during the implementation phase. Sometimes, such when developing

general-purpose library modules, unit testing is carried out without the software

application it encapsulates being known. Similar to module testing, unit testing is

typically the duty of the programmer in software development organizations [8].

Developers typically start by writing unit tests before moving on to coding software

units to ensure that the customer receives a reliable product with which to conduct

acceptance testing. Because they were created to make the software fail a

requirement, unit tests are failure tests. In a paradoxical way, developers are forced

to create software that fails in order to test the testing. Developers continue writing

software that passes the unit tests after test harnesses are put in place.

The purpose of unit tests is to make the software fail. You can only start fixing the

code such that it passes the tests by making sure your tests catch errors. The testing

process—and a developer's confidence—depend on your unit tests' ability to detect

problems. The developer can now experiment with various implementations while

being confident that any errors will be caught by the unit tests.

12

Any code modifications should enhance the program rather than add bugs. In order

to improve and streamline the code base, refactoring activities are also supported by

the continuous testing idea. Continuous testing also produces confidence, the

previously mentioned intangible benefit. Because you continually validate the code

base with unit tests, the programming team feels more confident about it.

Additionally, knowing that the code base consistently passes unit tests boosts the

confidence of your clients in their investment [9].

The rise of object-oriented programming has changed how software testers are

approached by programmers. It is known that object-oriented programming, which is

primarily bottom-up, favors a testing approach that emphasizes classes. A unit test

runs a "unit" of code in isolation and contrasts the outcomes with what was

anticipated. The unit in Java is typically a class. Unit tests call one or more class

methods to generate observable outcomes that are automatically checked [10].

2.4.2 Integration Test

In the software development process, it is important that the different components

work harmoniously and function correctly together. Software integration testing is a

testing phase used to test the integration and collaboration of different components.

In this section, we'll cover the importance, benefits, and best practices of software

integration testing. Software integration tests are automated or manual tests that are

used to test collaboration and compatibility of different software components by

combining them. These tests check the components' interfaces, data communication,

database interactions, and other integration points. Integration tests aim to verify that

components work together correctly and produce expected results [11].

The testing that is done after every module has been assembled into a functional

program is known as integration testing. Instead of testing at the statement level like

in unit testing, testing is done at the module level. The relationships between

modules and their interfaces are the focus of integration testing [12].

13

Unexpected interactions between system components are a common cause of

software and system errors. When a system has a lot of replaceable network

components for each element, the risk goes up. To lessen the chance of interaction

issues, a maker of these system components would want to test as many alternative

system configurations as feasible. However, there are an exponentially increasing

number of possible system configurations [13].

Importance of Software Integration Tests:

Collaboration and Interface Check: Software integration tests ensure that different

components collaborate when they come together and interfaces work correctly.

These tests check that the components work harmoniously with each other and that

the data or information exchange is error-free.

Debugging and Catching Problems at an Early Stage: Integration tests aim to detect

errors between components. It detects errors that may occur at the points where

different components come together and allows these errors to be corrected at an

early stage. This helps prevent bigger problems.

Performance and Reliability Check: Integration tests check whether components are

performing together and working reliably. It helps to detect performance problems

and error conditions that may occur with the combination of components.

Software Quality and Customer Satisfaction: Integration tests increase the quality of

the software and ensure customer satisfaction. Compatible and integrated software

provides the user with a seamless experience and demonstrates that the functionality

is performed correctly.

14

Best Practices and Approaches:

Good Planning and Design: Good planning and design is essential to perform

integration tests effectively. Which components will be tested, determining

integration points and creating test scenarios are important steps.

Modular and Standalone Tests: It is important to use modular and independent tests,

as integration tests test the interoperability of components. Testing each component

in isolation makes it easier to identify and resolve issues.

Automation: Automating integration tests enables a faster and repeatable testing

process. Automating test cases using automated testing tools and automatically

evaluating results increases efficiency.

Error Tracking and Monitoring: It is important to track and monitor the errors

detected in integration tests. Fixing, retesting, and tracking bugs improve the quality

of software.

Software integration tests are important to ensure that different components of the

software work harmoniously and function correctly. These tests improve the

detection of bugs, the early resolution of problems and the quality of the software.

Planning, designing, and automating integration testing leads to a more effective and

efficient testing process.

2.4.3 System Test

Software and hardware systems are tested as a whole, integrated unit to determine

whether or not they meet the requirements that have been set forth. Since system

testing is a type of black box testing, it shouldn't be necessary to understand the logic

or inner workings of the code. The main goal of system testing, which is essentially a

collection of several tests, is to thoroughly test the computer-based system.

15

Even though each test serves a distinct objective, they all aim to confirm that system

components have been correctly integrated and are carrying out their assigned tasks

[1].

Software development projects are becoming increasingly complex and large. The

successful completion of these projects depends on the complete completion of

important steps such as software system testing. Software system testing is a critical

phase of evaluating how the software works as an integrated system and checking

whether the software meets business requirements.

When choosing testing procedures, the two most crucial factors are effectiveness and

economy. Economics suggests that the test itself should use the least amount of time

and resources possible, even yet efficacy requires the test to be able to reveal the

greatest number of faults present in the software [14].

Finding flaws in the way the system to be tested functions is the goal of system

testing. In order to realize a desired function for the system user, the intended

functional behavior is determined by the functional needs of the system. When a

system's behavior deviates from its functional requirements, mistakes are present

[15].

Software System Testing

Software system testing is a process in which all components of a software

application are brought together and tested. This testing focuses on checking whether

different components of the software work together smoothly and meet specific

business requirements. System testing also includes evaluating the performance,

security, and overall stability of the software.

Software system testing is a type of testing performed to evaluate the functionality of

a software application and verify that certain functions work as intended. This testing

focuses on determining whether the software meets user expectations. Its main

purpose is to test the functionality, usability and performance of the software and to

ensure that it can be safely presented to users at the end of the development process.

16

Advantages of Software System Testing

Evaluating Integrated Functionality: System testing evaluated how different

components of the software are brought together and how they worked as an

integrated system. This is critical to ensure the different components work in

harmony.

Checking Business Requirements: System testing is used to check whether the

software meets the business requirements or not. This allows verification of the

functionality and usability of the software.

Meeting User Expectations: Software system testing is important to verify whether

the software meets users' expectations. This is critical to improving user experience

and increasing customer satisfaction.

Improving Performance: System testing is used to evaluate the performance of the

software. This helps optimize the response time, speed, and scalability of the

software.

Improving Security: System testing is used to test the security of software and detect

vulnerabilities. This ensures the protection of user data and business processes.

Software System Testing Process

Software system testing usually includes the preparation of the test plan, the test

environment, execution of the test scenarios, evaluation of the test results, fixing the

bugs found and re-testing and finally validation and the delivery of the software to

the users. These processes are described in detail below.

Preparation of Test Plan: The first step is to prepare a test plan that determines the

scope, objectives and plan of system testing. This plan should include test scenarios

and test data.

17

Preparation of the Test Environment: A suitable test environment is created for

system testing. This includes an environment that enables the integration of different

components.

Execution of Test Scenarios: The prepared test scenarios are applied to the software

system. These scenarios simulate different business processes and use cases.

Evaluation of Results: Test results are used to evaluate the performance and

compatibility of the software. If any errors or deficiencies are detected, feedback is

given to the development team.

Bug Fixing and Retesting: If bugs are found, these bugs are fixed, and the software is

retested. This process can be repeated to verify whether the errors have been fixed.

Validation and Delivery: Finally, when the software is confirmed to be usable and

the tests are successful, the software is delivered to users.

Software system testing is an essential part of the successful completion of software

projects. This testing is used to evaluate the software's integrated functionality,

business requirements, performance and security, as well as detect and fix errors.

Good software system testing contributes to the successful completion of large

projects and increased user satisfaction.

Software systems are tested as a whole, integrated unit to see if they meet the criteria

as stated. This is known as system testing. Since system testing is a type of black box

testing, it shouldn't be necessary to understand the inside workings of the code or

logic. The goal of system testing, which is essentially a collection of several tests, is

to thoroughly test the computer-based system. Even though each test serves a distinct

objective, they all aim to confirm that system components have been correctly

integrated and are carrying out their assigned tasks [1].

18

2.4.4 Acceptance Test

A number of tests are carried out during the software development process to ensure

that the program satisfies user requirements and fulfills set standards. "Acceptance

testing" is one of these testing procedures. Prior to the program being made available

to customers or end users, a testing phase known as software acceptance testing is

conducted [16].

Software Acceptance Testing

Software acceptance testing is a testing process performed to verify that the software

works in accordance with the specified requirements, meets user needs and is

generally functional. This testing is usually done by the customer or end user and

confirms that the software is ready for use.

The interests of the client are represented by acceptance tests. The consumer can feel

confident that the application has the necessary functionality and functions properly

thanks to the acceptance tests. The project is finished in theory when every

acceptance test is passed [17].

The user does manual testing as part of user acceptance testing. User acceptance

testing is not usually mechanized. If not, it would be regarded as an automated test

case for verifying the functionality of the program. However, we might think about

automating some tests if users are too busy to test after every build or if our testing

team is understaffed [18].

The Importance of Software Acceptance Testing

User Satisfaction: Software Acceptance Testing assesses how well the program

satisfies user requirements. User satisfaction rises as a result.

Detection of Bugs: Acceptance testing offers the chance to find software bugs.

Resolving these issues increases the software's dependability.

19

Reliability: Determines the degree of reliability of the software. Users favor using

dependable software.

Software Acceptance Testing Process

Determining criteria: Knowing the criteria that the program is built upon is the first

step in the acceptance testing process. The developer and the client should decide on

these specifications.

Constructing Test Scenarios: In order to conduct acceptance testing, test scenarios

must be constructed. These scenarios ought to encompass various software use cases

and functionalities.

Test Execution: The requirements must be followed when implementing the test

scenarios. To determine if the software performs as anticipated, each situation is

examined.

Error Analysis and Reporting: An error report is created for each error that is

discovered during testing. This report provides an opportunity for developers to

address bugs.

Customer Approval: After being shown the test results, the customer chooses

whether or not to accept the software.

Best Practices of Software Acceptance Testing

Early Communication: Accurate requirement understanding and efficient test case

production are ensured by early communication with the customer.

Automation: By automating repeatable test cases, automation technologies can

expedite the testing process and contribute to the delivery of more consistent results.

Examining Actual Users: Including actual users in the software's evaluation and

feedback loop helps improve the acceptability testing procedure.

20

To make sure the program fulfills user expectations, software acceptance testing is an

essential step in the software development process. Software quality can be raised

and customer satisfaction can be guaranteed with precise and thorough acceptance

testing [19].

2.5 Related Work

Previous studies on this subject in the literature have been examined. Although there

are not many studies on this subject, the following study has been examined as a

related work in the field. Mike Cohn's testing pyramid shown in Figure 2.1 was

adjusted for dispersed information processing systems testing [7]. The adjusted

version given in [7] expanded testing capabilities and applies distributed system

characteristics.

There are now ideas for additional uses for the mechanisms included in the revised

Mike Cohn's pyramid. In their study, the requirements provided were needed to

ensure that the distributed computer system will always be able to supply the services

of the distributed information processing system and that request packets will always

be sent at a certain rate. They have developed a software testing paradigm for

distributed systems that is based on the independent software component deployment

[7]. This allows for a reduction in the number of bulk tests while simultaneously

boosting testing efficiency [20], based on an altered version of Mike Cohn's pyramid

given in Figure 2.2, described by [21].

21

Figure 2.2 Cohn’s Test Pyramid as described by Vocke [21]

In this instance, the distributed systems architecture is taken into consideration when

replacing end-to-end and service testing. It is obvious that end-to-end testing is an

ineffective method for distributed systems architecture since it necessitates a

guarantee that modifications won't interfere with the operation of other subsystems

when a new subsystem is deployed in live applications. Using so-called "contracts"

that are based on requests from the subsystem is one method to accomplish this

without utilizing actual subsystems. A test code that operates in vending mode is

called a contract.

In actuality, the pyramid is usually flipped, with the more costly and fragile UI tests

occurring far more frequently. As seen in Figure 2.3, this "ice cream cone" model

shows that there are a lot more automated UI tests at the top, a lot more automated

unit tests at the bottom, and a lot more manual tests at the top. This means that a

larger portion of the testing burden is placed on the testers or QA team because

developers' unit test coverage is insufficient. The ice cream cone is frequently the

outcome of lower management allocating less resources for unit testing in favor of

end-to-end testing that shows the product's functioning [6].

22

Figure 2.3 Testing in practice; the “inverted test pyramid” as described by

Hartikainen [6]

The test strategy is centered on the location of the tests, not the types of tests that are

designed, according to the suggested pyramid (see Figure 2.4). It is assumed that

functional tests will be augmented by unit testing at every level of the pyramid. It

acknowledges that, given the growing complexity of data-driven systems, uncertainty

is likely to exist in both scenarios and does not discriminate between a user who is a

person and a user who is a machine.

Additionally, it eliminates the possibility that unit tests can stand alone and do not

require contract or functional testing at all levels because they should serve as the

cornerstone for system behavior, performance, and stability. In reality, functional

testing is becoming more and more necessary [7].

23

Figure 2.4 A holistic test pyramid for data and traditional software testing [7]

The development of a testing methodology, the computation of the testing method

selection based on the modified Mike Cohn's pyramid, and the creation of procedures

for carrying out upper levels of testing are required in order to test the full distributed

system functioning [20].

By combining both data and traditional software testing in a holistic test pyramid ,

organizations can ensure comprehensive test coverage that addresses the

complexities of both software-centric and data-centric approaches. The software

centric approach focuses on both the underlying functionality of software

components (API testing) and the end-user experience (UI testing). A data-centric

approach in software testing places a primary emphasis on the quality, integrity, and

hygiene of the data used in testing processes. Combining them both, this holistic

approach helps in building robust, reliable software systems and intelligent approach

to test automation that effectively handle data processing and meet user expectations.

24

CHAPTER 3

METHODOLOGY

In order to provide a detailed understanding of how testing levels are utilized in

software industry, a mixed-methods approach is used in this study by combining the

qualitative and quantitative techniques. The research questions and the detailed

research procedure are given under the following sections.

3.1 Research Questions

In this study, we aimed to investigate how the use of software testing levels varies

across sectors. To investigate how the use of these levels varies and the general

approach across sectors, we set the following research questions.

RQ1: What kinds of test levels are described in literature?

RQ2: What is the suggestion to apply these test levels?

RQ3: How are these test levels implemented in the software industry?

3.2 Research Procedure

In this research, two different methods were followed to investigate the research

questions. Firstly, an online survey prepared by using google forms and conducted

from May to Dec 2023. It was sent to people in different sectors for preliminary

research. The purpose of this survey is to understand people's general knowledge

about test levels and to analyze their experiences with these test levels. Secondly,

interviews were conducted both face to face and online during November 2023 with

people experienced in testing in different sectors. Out of 10 participants, 4

participants interviewed face to face and for remains, it was online. The online

sessions are preferred for the participants living out of Ankara.

25

In these interviews, individuals were asked to personally evaluate which test level

they had mastered and how well they had contributed to the quality of these test

levels. In addition, their experiences were asked about how they used these levels in

their current and previous projects and what they took into consideration when

determining the test strategy. In this thesis work, I have prepared both the semi-

structured interview and survey questions based on our research aim. Then for

validating the survey and interview questions, three domain experts in the field of

software engineering reviewed and provide feedback on the relevancy and

appropriateness of the questions.

3.3 Participants

35 people participated in the survey, which was conducted to understand people's

level of knowledge about test levels and to understand the test strategies that

companies create within the scope of their projects and which test levels they

develop by taking into account which criteria. While 40 percent of participants are

female, 60 percent of them are male. The ages of the participants ranged between 18

and 55 years. Details about the participant information are given in Figure 3.1.

Figure 3.1 Gender and Age Distribution of Surve Participants

26

These participants consist of people who develop or implement at least one test level

in their current projects. Average work experience varies between 5 and 18 years.

While 50 percent of the people participating in the survey graduated from computer

engineering, 30 percent from electrical and electronics engineering, and 10 percent

from industrial engineering, the remaining 10 percent graduated from different

departments. Again, 40 percent of the participants work in the defense industry, 30

percent work in energy systems and the other 30 percent work in different fields.

These information is represented in Figure 3.2 and 3.3, respectively.

Figure 3.2 Graduated Departments and Industries of Survey Participants

27

Figure 3.3 Experiences of Survey Participants

Details about the graduation levels of the interview participants is given in Figure

3.4. Among those participants, 40% of the participants graduated from the

department of computer engineering, %20 from the department of electrical and

electronics engineering, 20% from the department of Mathematics and remaining

10% from the department of Physics. Majortity of the participants (80%) obtained a

master degree.

Figure 3.4 Graduation Degree and Departments of Interview Participants

28

As seen in Table 3.1, interview participants were selected as 10 people with software

testing experience ranging from at least 8 years to 45 years.

Table 3.1 Experiences of Interview Participants

Percentage of the interview participants Experience in software testing (year)

40% 8 - 10

40% 11 -15

20% 15+

These participants have experience in the fields of defense industry, finance, energy,

telecom and management automation. The industries that the participants are

working is given in Figure 3.5.

Figure 3.5 Industries of Interview Participants

Both survey and interview participants were selected considering their experience in

the field of software testing. For this selection, Linkedln profiles were examined and

suitable people were contacted.

29

CHAPTER 4

RESULTS

In this chapter, preliminary analysis from questionnare is given according to

questions. In addition to that, the results of the interviews were presented in three

sessions based on the answers to each of the research questions: firstly the results

based on the test levels that are depicted in the existing literature is summarized and

the findings on the diverse approoaches and methodologies employed by the

software professionals were presented. Then, the results on the recommendations that

are suggested for applying these test levels in the software industry practices were

explained. Lastly, the methodologies and strategies adopted by software development

professionals to implement these test levels effectively were explained based on the

survey and interview results.

4.1 Preliminary Analysis: Results of the Questionnare

In the survey conducted for the preliminary research, it was aimed to understand

people's experience with each test level and they were asked to evaluate the

effectiveness of these test levels. Graphs of the collected results and the implications

of these results are provided below. Participants were asked to indicate their

experience with each test level on a scale from 1 to 5 (from Novice to Expert).

Person distribution according to the answers given to the question is shown in Figure

4.1. It has been observed that each person chooses Competent and above (3 and

above) at more than one test level. This shows us that these people are capable of

evaluating the effectiveness of testing levels.

30

Figure 4.1 Experience of Participants in Test Levels

Participants were asked which testing levels they thought were most effective in

terms of their impact on software quality, in line with their experiences. Based on

the response from the participants (see Figure 4.2), it is seen that the most

effective testing level in terms of software quality is unit testing, followed by

integration testing and system testing. This result is exactly the same as the

written test pyramid.

Figure 4.2 Effectiveness of Test Levels on Software Quality

31

Therefore, it can be concluded that determining a testing strategy in accordance with

the software testing pyramid will be the most effective method in terms of software

quality. In addition, participants were asked which test level they used and how

often. As seen in Figure 4.3, the participants use unit tests most frequently in their

current projects. It has been observed that it is followed by integration testing and

system testing.

Figure 4.3 Average Frequency of Implementing Test Levels

Considering all these data, it can be thought that the survey participants generally

adopted the software testing pyramid and a method suitable for its purpose.

4.2 Results of the Interview

In this section the results of the interview with our participant are discussed to

answer the research questions in three sessions as given below.

4.2.1 What kind of test levels are described in the literature?

As seen in Figure 4.4, within the scope of the Software Testing Pyramid, four main

testing levels are defined. These are stated as unit test, integration test, system test

32

and acceptance test, from the lowest level to the highest level [4]. Each test level and

their detailed quotes are discussed in detail in Chapter 2.

Figure 4.4 Software Test Levels and Their Functionalities

Each level of testing has a purpose that contributes to the quality of the developed

product. These can be briefly summarized as follows. While unit testing aims to test

each individual component within the software in isolation, integration testing checks

whether the integration between these components works correctly. System test

checks that each functionality works correctly end to end(e2e). Acceptance testing,

on the other hand, ensures that customer requirements work correctly in the

environment defined by the customer [1].

Figure 4.5 Software Test Pyramids and The Goals of the Each Levels

33

4.2.2 What is suggested to apply these test levels?

Within the scope of this research question, interview participants' opinions were

taken on how to use the test levels in the most effective way. Participants were

expected to answer this question considering their current work experience.

During the research, it was seen that the test levels that play the main role in ensuring

software quality and offering a product that can meet the customer's expectations are

unit test, component test, integration test, functional test and system/acceptance test.

Considering the contribution of each level to the writing quality, it has been observed

that the use of all of these tests in a certain combination gives the most effective

results. Participant P8 explained that “Each different level finds different types of

defects. You need them all to produce a high quality software product”.

How and in what quantity these test levels should be used is explained in detail in the

concept called software testing pyramid. This concept describes a path to minimizing

software maintenance costs, early detection of errors, and ultimately ensuring

customer satisfaction, starting from the quality of the software code. Participant P4

said that “I think the need for testing levels may vary by industry. Considering the

effort and benefit spent, the defense industry focuses more on unit and integration

tests. However, I think that in sectors and systems with fewer users or where error

effects are not very high, more customer requirement tests, that is, functional and

system tests, will be more effective.”. For this reason, it is stated that the number of

unit tests should be proportionally more than at other levels. Afterwards, it is stated

that component, integration and at least system testing should be prepared. This

method not only ensures product quality but also helps to solve any errors found at

the least cost.

34

Figure 4.6 Factors to Decide Most Effective Testing Strategy

The factors affecting the focus on higher and lower level testing strategies are

depicted in Figure 4.6. The importance of unit and integration testing was

emphasized in facilitating the maintenance of the product and eliminating any errors

found at an early stage. On the other hand, it has been stated that one of the best

ways to ensure that customer demands are met is to focus on system and acceptance

level tests. The importance of correctly realizing customer expectations in the

environment determined by the customer is stated.

4.2.3 How are these test levels implemented in the software industry?

In the interviews, participants were asked whether they used a certain testing strategy

in their projects and if these test strategies aligned with Test Pyramid. While a

defined test strategy was used in 80 percent of the projects, it was observed that no

strategy was defined in the remaining twenty percent. In addition, it was observed

that 25 percent of this 80 percent determined a general testing strategy and used the

same strategy in all their projects. It was learned that the remaining 75 percent

defined the test strategy on a project basis. It has been learned that the most

important factors in determining this strategy are determined according to the

expectations of the project customer (contract), the industry (defense, financial

energy, etc.) and the standards that the project must comply with. See the Figure 4.7.

35

Figure 4.7 Possible Reasons to Focus High or Low Level Tests

This has shown us that the most effective factors in determining the testing strategy

are the risk tolerance of the project and the acceptability of the effects that errors may

cause. In addition, participants were asked whether the people and teams performing

the testing were from the development team or an independent team. The results

were provided in Table 4.1.

Table 4.1 How Test Level are Implemented Participants’ Current Projects

Percentage of the Participants Test Level Implementations

40% All tests are developed by development team.

There is no seperation or independency in team

for implementing test levels.

60% While unit and integration tests are developed by

development team, there is also an independent

team to perform system and aceptance tests.

While 40 percent of the participants reported that all test levels were developed by

the development team, the remaining 60 percent reported that unit and integration

tests were carried out by the development team, but system and acceptance tests were

carried out by an independent testing team.

36

CHAPTER 5

DISCUSSION AND CONCLUSION

One of the most important issues in software projects is to develop products with the

expected quality. To ensure this, certain levels of testing are performed while the

project is being developed. It was seen during the literature research that the best

combination of these test levels to increase the quality of software projects is the

application of the software testing pyramid. The software testing pyramid focuses on

keeping the quality at the best level, detecting errors in the early stages, and thus

reducing the effects of errors while reducing their costs. It puts forward which test

level should be developed from which point by taking this perspective into

consideration. This thesis was written to understand how the software testing

pyramid and testing levels are defined in the literature and how these levels are

realized in the software industry.

As a result of the surveys and interviews, it has been seen that the application of

software levels as they are in the software pyramid depends on some different

criteria. For example, it has been observed that in projects developed in the defense

industry, these test levels are actually used in the hierarchy defined in the literature.

The most important reasons for this are the criticality levels of the developed

projects. Also, one of the reasons is the magnitude of the effects that errors will

cause. Additionally, in this sector, customer expectations and standards that must be

adhered to ensure that these test levels are used as defined in the literature. In

addition, it is seen that in civil projects, not all levels in the test pyramid are always

used, and sometimes this can be adapted according to the project. These types of

projects generally have low error tolerance and impact. In these projects, the test

strategy is typically determined by development and the test team's knowledge of the

test levels.

37

Additionally, it is very important for the team to know which functionality will be

tested at which level. Otherwise, it will be seen that the tests written do not really

serve their purpose. This situation causes an issue that can be tested at the unit test

level to be left to the upper levels and the test levels not to be used for their purpose.

In order to achieve this balance, it is very important to take into account the

experience and knowledge level of the team when determining the test levels and the

intensity at which they will be used. Considering all the analyzes made, customer

expectations, signed contract requirements, standards to be complied with and the

effects of possible errors are important in determining and using the software testing

strategy.

In this regard, in addition to the surveys and interviews about which test levels were

applied and how within the scope of the companies' projects, it was investigated

whether similar studies had been conducted through literature research. Related

works with this study has been given in Section 2.5. In contrast to our

findings, Radziwill and Freeman (2020) hypothesized that since unit tests should be

the foundation for system behavior, performance, and stability, they may stand alone

and do not need contract or functional testing at any level. Functional testing is really

getting more and more important. This contradictory finding can be explained by the

system which is focused for this study. In their study, the data-driven systems have

been considered [7]. However, in our study, different people from different industries

have been included.

5.1 Limitations of Study

In this study, surveys and interviews were conducted taking into account the

experiences of the participants. For this reason, a limited number of participants

could be reached for this study. Therefore, results of these interview and survey

should be validated by additional studies, including higher number of participants,

from different fields.

38

5.2 Threats to Validity

Although the results of our survey provide valuable insights about how test levels are

determined in the software industry, it is crucial to acknowledge the potential threats

to the validity based on or results. Several concerns should be noted which could

impact the reliability and generalizability of our results. Most importantly, in this

study, as participants have been selected according to their experience on software

testing field. Both the survey and the interview were conducted with limited number

of participants. Hence, our survey sample may not be fully representative of the

entire software industry. When conducting the online survey, some of the

participants may struggle to accurately recall and report details about their

experiences with test levels, leading to potential inaccuracies in the data. In order to

eliminate this concern, more detailed information is asked during the interviews to

obtain more reliable answers.

39

REFERENCES

[1] A. A. Sawant, P. H. Bari, and P. M. Chawan, “Software Testing Techniques

and Strategies.” Journal of Engineering Research & Applications, vol. 2, pp.

980-986, May-June 2012.

[2] E. Daka and G. Fraser, “A survey on unit testing practices and problems.”

Proceedings International Symposium on Software Reliability Engineering,

2014, pp. 201-211.

[3] K. Hrabovská, B. Rossi, and T. Pitner, “Software Testing Process Models

Benefits & Drawbacks: a Systematic Literature Review.” arXiv preprint

arXiv:1901.01450, vol. 1, Jan. 2019.

[4] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, “Software testing

techniques: A literature review,” in 6th International Conference on

Information and Communication Technology for the Muslim World, 2016, pp.

177-182.

[5] S. Elbaum, S., A. G. Malishevsky, and G. Rothermel, “Prioritizing test cases

for regression testing,” in Proceedings of the 2000 ACM SIGSOFT

international symposium on Software testing and analysis, 2000, pp. 102-112.

[6] V. Hartikainen, “Defining suitable testing levels, methods and practices for an

agile web application project.” M.A. thesis, Lappeenranta-Lahti University of

Technology, Finland, 2020.

[7] N. Radziwill and G. Freeman, “Reframing the Test Pyramid for Digitally

Transformed Organizations,”, arXiv preprint arXiv:2011.00655, Nov. 2020.

[8] R. Bierig, S. Brown, E. Galván, and J. Timoney, Introduction to Software

Testing. Cambridge University Press, 2021, pp. 283-295.

[9] J. L. Dalley, “The art of software testing,” in IEEE Proceedings of the

National Aerospace and Electronics Conference, 1991, pp. 757-760.

[10] M. Olan, “Unit testing: test early, test often.” Journal of Computer Science in

College, vol. 19, pp. 319-328, 2003.

[11] S. P. Shashank, P. Chakka, and D. V. Kumar, “A systematic literature survey

of integration testing in component-based software engineering,” in 2010

International Conference on Computer and Communication Technology,

2010, pp. 562-568.

[12] H. K. N. Leung and L. White, “A study of integration testing and software

regression at the integration level,” in Conference on Software Maintenance,

1990, pp. 290-301.

40

[13] A. W. Williams, “Software Component İnteraction Testing: Coverage

Measurement And Generation Of Configurations.” PhD thesis, University of

Ottawa, Canada, 2002.

[14] M. Shi, “Software Functional Testing from the Perspective of Business

Practice.” Computer and Information Science, vol. 3, p. 49, 2010.

[15] O. Bühler and J. Wegener, “Evolutionary functional testing.” Computers &

Operations Research, vol. 35, pp. 3144-3160, 2008.

[16] J. Weiss, A. Schill, I. Richter, and P. Mandl, “Literature Review of Empirical

Research Studies within the Domain of Acceptance Testing,” in Proceedings -

42nd Euromicro Conference on Software Engineering and Advanced

Applications, 2016, pp. 181-188.

[17] I. Otaduy and O. Díaz, “User acceptance testing for Agile-developed web-

based applications: Empowering customers through wikis and mind maps.”

Journal of Systems and Software, vol.133, pp. 212-229, 2017.

[18] P. Pandit and S. Tahiliani, “AgileUAT: A Framework for User Acceptance

Testing based on User Stories and Acceptance Criteria.” International Journal

of Computer Applications, vol. 10, pp. 120, 2015.

[19] K. Naik and P. Tripathy, Software Testing and Quality Assurance: Theory and

Practice. Canada, 2008, pp. 173-185.

[20] V. Mukhin, Y. Kornaga, Y. Bazaka, I. Krylov, A. Barabash, A. Yakovleva,

and O. Mukhin, “The Testing Mechanism for Software and Services Based on

Mike Cohn’s Testing Pyramid Modification,” in Proceedings of the 11th IEEE

International Conference on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications, 2021, pp.589-595.

[21] H. Vocke, “The Practical Test Pyramid.” Internet: https://martinfowler.com/

articles/practical-test-pyramid.html, Feb 26, 2018 [Dec. 22, 2023].

https://martinfowler.com/

41

APPENDIX A INTERVIEW QUESTIONS

Section-1. Basic Information

1.1 Which department did you graduate from?

1.2 What is the last degree you completed?

1.3 How many years of work experience do you have?

1.4 How many years of software testing experience do you have?

1.5 Which sector do you work in?

Section-2.1 Personal Evaluation About Test Levels

2.1.1 To what extent do you know which test levels?

2.1.2 Which levels of testing do you think contribute the most to software quality?

Section-2.2 Using Test Levels in Current Work Experience in Line with Product

Quality Goals

2.2.1 What testing levels are used in your current projects?

2.2.2 Does the testing strategy you use in your projects differ from project to project

or do you use a single strategy for all of them? If you are applying a different

strategy for each project, what are the inputs you use to decide on this strategy?

2.2.3 Does a team independent from the development team perform the tests, or are

the developer and tester the same person? Does this vary depending on test levels?

42

APPENDIX B SURVEY QUESTIONS

Section-1. Basic Information

1.1. What age group are you in?

 18 - 25

 26 - 33

 34 - 41

 42 - 49

 50 and over

1.2. What is your gender?

 Male

 Woman

1.3. What is the last degree you obtained?

 Associate degree

 Bachelor’s degree

 Master’s degree

 Doctorate

1.4. Select the program(s) you graduated from.

 Computer engineering

 Software engineering

 Information Systems Engineering

 Computer Science

 Associate degree

 Other:

1.5. What is your position in the company you work for?

 Developer (Software Developer)

 Test engineer

 System Architect

 Project manager

 Other:

43

1.6. How many years of experience do you have in the testing field?

 I have no experience with the test.

 Less than 5 years

 6 - 10 years

 11 - 15 years

 More than 15 years

1.7. How many years have you been practicing your profession? *

 0 - 3 years

 3 - 6 years

 7 - 10 years

 more than 10 years

1.8. What is the industry you are working in?

 Academic

 Information technologies

 Electronic

 Energy

 Security

 Automotive

 Health

 Defense industry

 Other:........

Section-2.1 Personal Evaluation About Test Levels

2.1.1. Please mark to what extent you evaluate your mastery of the test levels given

in the table below (1: Lowest, 5: Highest).

Quality Attribute: 1 2 3 4 5

Unit Testing

Integration Test

Functional Test

System Test

Acceptance Test

44

2.1.2. Please mark how effective you think the test levels given in the table below are

in terms of product quality (1: Lowest, 5: Highest).

Quality Attribute: 1 2 3 4 5

Unit Testing

Integration Test

Functional Test

System Test

Acceptance Test

Section-2.2 Using Test Levels in Current Work Experience in Line with Product

Quality Goals

2.2.1 Evaluate and mark how often you use the test levels given in the table below in

your current job in terms of product quality (1: Lowest, 5: Highest).

Quality Attribute: 1 2 3 4 5

Unit Testing

Integration Test

Functional Test

System Test

Acceptance Test

2.2.2 Please mark how effective you think the test levels in the table below are in

terms of product quality in your current project (1: Lowest, 5: Highest).

Quality Attribute: 1 2 3 4 5

Unit Testing

Integration Test

Functional Test

System Test

Acceptance Test

2.2.3 In the light of your experiences in the institution you work for, what would you

like to add/suggestions, if any, regarding achieving the quality targets of test levels?

45

APPENDIX C INTERVIEW QUESTIONS IN TURKISH

Bölüm-1.Temel Bilgiler

1.1 Hangi bölümden mezun oldunuz?

1.2 En son tamamladığınız diploma derecesi nedir?

1.3 Kaç yıllık iş tecrübeniz bulunmaktadır?

1.4 Kaç yıllık yazılım testi tecrübeniz bulunmaktadır?

1.5 Hangi sektörde çalışmaktasınız?

Bölüm-2.1 Test Seviyeleri Hakkında Kişisel Değerlendirme

2.1.1 Hangi test seviyelerine ne derece hakimsiniz?

2.1.2 Hangi test seviyelerinin yazılım kalitesine en çok katkısı olduğunu

düşünüyorsunuz?

Bölüm-2.2 Test Seviyelerinin Ürün Kalite Hedefleri Doğrultusunda Mevcut İş

Deneyiminde Kullanılması

2.2.1 Mevcut projelerinde hangi test seviyelerini kullanılmaktadır?

2.2.2 Projelerinizde kullandığınız test stratejisi projeden projeye farklılık

göstermekte midir yoksa hepsi için tek bir strateji ile mi ilerliyorsunuz? Eğer herbir

proje için farklı strateji uyguluyorsanız bu stratejiye karar verme konusunda

kullandığınız girdiler nelerdir?

2.2.3 Testleri geliştirme ekibinden bağımsız bir ekip mi gerçekleştirmektedir yoksa

geliştirici ve testçi aynı kişi midir? Bu test seviyelerine göre değişiklik göstermekte

midir?

46

APPENDIX D SURVEY QUESTIONS IN TURKISH

Bölüm-1.Temel Bilgiler

1. Hangi yaş grubundasınız?

 18 - 25

 26 - 33

 34 - 41

 42 - 49

 50 ve üzeri

2. Cinsiyetiniz nedir?

 Erkek

 Kadın

3. En son edindiğiniz diploma derecesi nedir?

 Önlisans

 Lisans

 Yüksek lisans

 Doktora

4. Mezun olduğunuz programı/programları seçiniz.

 Bilgisayar Mühendisliği

 Yazılım Mühendisliği

 Bilişim Sistemleri Mühendisliği

 Bilgisayar Bilimleri

 Önlisans

 Diğer:

5. Çalıştığınız şirketteki pozisyonunuz nedir?

 Geliştirici (Software Developer)

 Test mühendisi (Test Engineer)

 Sistem mimarı (System Architect)

 Proje yöneticisi (Project Manager)

 Diğer:

6. Test alanında toplam kaç yıllık tecrübeniz bulunmaktadır?

 Test ile ilgili tecrübem bulunmamaktadır

 5 yıldan az

 6 - 10 yıl

 11 - 15 yıl

 15 yıldan fazla

47

7. Mesleğinizi kaç yıldır icra ediyorsunuz? *

 0 - 3 yıl

 3 - 6 yıl

 7 - 10 yıl

 10 yıldan fazla

8. Çalışmakta olduğunuz sektör nedir?

 Akademik

 Bilgi Teknolojileri

 Elektronik

 Enerji

 Güvenlik

 Otomotiv

 Sağlık

 Savunma Sanayi

 Diğer:........

Bölüm-2.1 Test Seviyeleri Hakkında Kişisel Değerlendirme

1. Aşağıdaki tabloda verilen test seviyelerine ne derecede hakim olduğunuzu

değerlendiriyorsunuz işaretleyiniz (1: En Düşük, 5: En Yüksek).

Kalite Özniteliği: 1 2 3 4 5

Birim Testi (Unit Test)

Entegrasyon Testi (Integration Test)

Fonksiyonel Test (Functional Test)

Sistem Testi (System Test)

Kabul Testi (Acceptance Test)

2. Aşağıdaki tabloda verilen test seviyelerinin ürün kalitesi açısından ne derece etkin

olduğunu değerlendiriyorsunuz işaretleyiniz (1: En Düşük, 5: En Yüksek).

Kalite Özniteliği: 1 2 3 4 5

Birim Testi (Unit Test)

Entegrasyon Testi (Integration Test)

Fonksiyonel Test (Functional Test)

Sistem Testi (System Test)

Kabul Testi (Acceptance Test)

48

Bölüm-2.2 Test Seviyelerinin Ürün Kalite Hedefleri Doğrultusunda Mevcut İş

Deneyiminde Kullanılması

1. Aşağıdaki tabloda verilen test seviyelerinin ürün kalitesi açısından mevcut işinizde

ne sıklıkla kullandığınızı değerlendirip işaretleyiniz (1: En Düşük, 5: En Yüksek).

Kalite Özniteliği: 1 2 3 4 5

Birim Testi (Unit Test)

Entegrasyon Testi (Integration Test)

Fonksiyonel Test (Functional Test)

Sistem Testi (System Test)

Kabul Testi (Acceptance Test)

2. Aşağıdaki tabloda verilen test seviyelerinin mevcut projenizde ürün kalitesi

açısından ne derece etkin olduğunu değerlendiriyorsunuz işaretleyiniz (1: En Düşük,

5: En Yüksek).

Kalite Özniteliği: 1 2 3 4 5

Birim Testi (Unit Test)

Entegrasyon Testi (Integration Test)

Fonksiyonel Test (Functional Test)

Sistem Testi (System Test)

Kabul Testi (Acceptance Test)

3. Çalıştığınız kurumdaki tecrübeleriniz ışığında test seviyelerinin kalite hedeflerine

ulaşılması konusunda ile ilgili varsa eklemek istedikleriniz / önerileriniz nelerdir?

Lütfen yanıtınızı buraya yazın.

