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ABSTRACT

CLASSIFICATION OF DISTINCT MAXIMAL FLAG CODES OF A
PRESCRIPED TYPE AND RELATED RESULTS

Karakas, Zeynelabidin
Ph.D., Department of Cryptography
Supervisor : Prof. Dr. Ferruh Ozbudak

August 2023, [57) pages

In this thesis, we aim to improve the current bounds for a certain type of code and not
only find the number of distinct codes but also characterize them for some parameters.

Flag codes have applications in network coding and their algebraic and combinatorial
structures have been an active research area in recent years, see, for example, [4, 23].
Characterization of maximal flag codes of a given type and distance over a given
ambient space is a very difficult problem. In this work, we completely solve this
problem for small parameters with the help of MAGMA [8]]. In particular, we find
new maximal flag codes as well. For a given type and distance of a flag code, the
number of distinct flag codes are determined exactly for some parameters, and we
give bounds for arbitrary ones. The concept of set flag codes are given nicely and it
is shown that some of the bounds of [23] are not tight for all q.

Keywords: Graph Theory, Coding Theory, Flag Codes, Permanents
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0z

BELIRLI BIR TIPTEKI FARKLI MAKSIMAL BAYRAK KODLARININ
SINIFLANDIRILMASI VE ILGILI SONUCLAR

Karakag, Zeynelabidin
Doktora, Kriptografi Bolimii
Tez Yoneticisi  : Prof. Dr. Ferruh Ozbudak

Agustos 2023, [57| sayfa

Bu tezde, bayrak kodlari i¢in literatiirde mevcut olan bazi sinirlart gelistirmek ve
belirli tipteki farkli kodlarin sayilarim1 vermekle birlikte baz1 parametreler i¢in onlari
karakterize etmeyi amagliyoruz.

Bayrak kodlarinin ag kodlamada 6nemli uygulamalart mevcuttur, ve onlarin cebir-
sel ve kombinatorik yapilart son yillarda aktif bir arastirma alanmidir [4, 23]]. Verilen
ambiyant uzay lizerinde belirli bir tipe ve uzakliga sahip maksimal bayrak kodlarin
karakterizasyonu ¢ok zor bir problemdir. Bu tezde, biz bu problemi kiiciik paramet-
reler icin MAGMA [8]] kullanarak tamamen ¢ozdiik ve diger tiim parametreler i¢in
cizge teorisindeki bazi yapilar iizerinden kombinatorik sonuglart da kullanarak birer
alt sinir ve uist sinir belirledik. Verilen bir tipteki ve istenen bir uzakliga sahip bayrak
kodlarmin sayisi i¢in tam sonuclari bazi parametreler icin belirledik, diger degerler
icin de alt ve iist sinir verdik. Kiime-bayrak-kodlarini tammmladik ve bu sayede [23]]’da
verilmis olan bazi sinirlarin her ¢ degeri i¢in gecerli olmadigim gosterdik.

Anahtar Kelimeler: Cizge Teorisi, Kodlama Teorisi, Bayrak Kodlar
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CHAPTER 1

INTRODUCTION

Graphs are mathematical structures that can be used to model some theoretical prob-
lems. Euler introduced graph theory as a new branch in 1736 [13], and around a
hundred years later Kirchoff made a significant contribution for electrical networks’
analysis. It was Poincaré who gave the definition of incidence matrix very first time
[26]. Since then there have been many works for the graph theory and its relation
for other areas such as engineering, architecture, management and control and so on,
some of the leading books for those relations are [6} 7, [15]. One of the most important

areas is, non-surprisingly, communication.

Communication and data-transferring systems are greatly important in today’s life.
Reliable and fast communication is essential for all sorts of companies and individuals
as well. Classical Coding and Information Theory works on a transmission from a

sender S to an intended receiver R.

Coding theory was born in the 1940s to solve the concern of the security of send-
ing information via a noisy channel. Claude Shannon presented a way to calculate
the maximum rate of data transmission with zero error happening in a channel with
specific bandwidth and noise characteristics [28]]. Following him, Richard Hamming
studied error-correcting codes with information transmission rates more efficiently
than simple repetition. He produced a code that four data bits followed by three bits
for the check that admits not only the detection but also the correction of a single

error. The fundamental of coding theory was given in [17].



Definition 1. Let A be a set with a finitely many elements. A code C over A of length

n is a subset of A".

In order to combat possible errors and/or erasures through the channel, the most com-
mon tool is the usage of linear block codes. Fix a finite field F' (Mostly it is charac-
teristic 2, as ' = [F5) and take a subspace U of K. Here U is considered as a code,
and the elements © € U are being sent through the channel. If any change of entry of

u occurs in the channel, then the receiver gets «’ and the error can be characterized as

dy :={1<i<n:u; #u}|

This is the Hamming distance of u and u'. The bigger hamming distance they have,
the more errors can be corrected by the nearest neighbor decoding algorithm. In fact,
the error correcting capacity of the system is equal to Lmlgﬂj since we could have at

most one u € U with dj,(u, u') = | ™2%2 | and dyy satisfies the triangle inequality.

Because of the wide usage of the internet, the security of data transmission over a
network is more and more important. A very natural question here could be how
to execute the transfer of any data to more than one receiver, e.g. downloading or
streaming anything. The most prominent answer to this question is to use Network

Coding.

Network Coding was first introduced by [2]] to attain a maximum information flow
within a network. In [2], it has been shown that the usage of coding at the network
nodes can be more useful than just routing the received inputs. After that, [22] pro-
vided an algebraic approach to coding for random network coding. They defined the
subspace channel, given by P,(n), as a discrete memoryless channel within the al-
phabets used to represent input and output. Subspace codes would be used to correct
possible erasures or errors during the transmission. The usage of subspace codes was
introduced by [22] as a sufficient communication channel in network coding from the
sender node to the receiver node. This was the very first introduction of subspace

codes to be used in communication [20].

In the concept of flag codes, first proposed by [24], the dimension of the transmitted

subspace is fixed at each time, and it should contain the subspace(s) that is sent in
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previous time(s). In this way, the capacity for error correction improves. In [4],
authors stated that when n is even and that if each transmission has the possible
maximum distance, so does the flag, they call it optimum distance flag code. Their
biggest motivation is some features of spreads as constant dimension codes, and they
focused on the flag codes, which can be constructed from some spread. Also, they
proved that having a planar spread at the k" shot as a constant dimension code directs

us to the best possible size for the optimum distance full flag codes when n = 2k.

Recently [4} 23] considered algebraic and combinatorial structures of flag codes. Let
[, be a finite field. Let n > 2 be an integer. Let 1 < s < n — 1 be an integer. Put
T = (t1,...,t,). By aflag of type-T" in F} over IF,, we mean a chain of IF,-linear
subspaces

icW,C...CcV,CFy

such that

There is a natural distance, which is the flag distance, between two flags of type-T',
in [ over I, (see Chapter [2 below), which generalizes the subspace distance (see

Remark [I| below).

For some given integer d, it may be impossible to construct any flag code of type-T
in F} over F; with minimum flag distance d. We say d is admissible if there exists

such a flag code (see Definition [6| below).

A fundamental problem is to determine the number of all maximal flag codes of type-
T in Fy over F, with an admissible minimum flag distance d. This is a very difficult

problem along with some interesting recent results, for example, [24} 4, [23]].

A more difficult fundamental problem is to characterize all such flag codes with max-
imal cardinality. In this thesis, we solve this problem completely for small parameters
and give bounds for general cases. Namely, our exact results for this problem include

the following cases:

o F,=F,, n=3T=(1,2), d=4,
o F,=F; n=3 T=(1,2),d=4,

3



e F,=Fs, n=3T=(1,2), d=4,

o F,=Fy, n=4T=(1,2), d=4.

In particular, we find new explicit maximal flag codes (see Remarks [3] [6] [7] below).

With the help of combinatorics, even it is possible to solve some problems exactly or
give some bounds. Hence, we use related materials to model our problem and give

bounds for the number of distinct maximal flag codes.

This thesis is organized as follows. We fix the notation and give some preliminaries
in Chapter 2] In Chapter [3] we model our problem in graph theory concept, and in
Chapter[d] we solve the problem completely for the set-subset format. We also studied
the equivalency for flag codes in Chapter[5]and our exact results and actual flag codes
are given in Chapter@ and Section We present our results for F, € {Fy, F3,F5},
n=3T=(1,2),andd =4 along with[F, =Fy, n =4,7 = (1,2),and d = 4 in
Chapter[6]and Section [6.1].



CHAPTER 2

PRELIMINARIES

In this chapter we give some necessary definitions and notions related to flag codes.
Also, the knowledge of graph theory and its relation with coding theory is being set

in this chapter.

Definition 2. Let n > 2 be an integer. Let 1 < s < (n—1) be an integer. Let 1 < t; <
ty <o <ty < (n—1). PutT = (ty,ta,...,ts). By aflag of type-T in F} over FF,,

we mean a chain of F ,-linear subspaces

VicV,C---CV,CF" @.1)

such that

dlquG/l) = tl; dim[gqa/g) = tg, ceey dlqu(V;) == ts.

We also use the notation [V C Vo C -+ C V;] to denote the flag in [2.1). Note that
two flags [V, C Vo C -+ C Viland [Uy C Uy C -+ C Uy of type-T in ¥} over IF are
equal if and only if Vi = Uy, Vo =Us, ... and Vs = Us.

Definition 3. Let n > 2 be an integer. Let 1 < s < (n — 1) be an integer.
Let 1 <t <ty < -+ <ty < (n—1). PurT = (ty,t,...,ts). By the
ambient space of flags of type-T in ¥ over F,, we mean the collection of S consist-

ing of all flags of type-T in ¥, over I, defined in Definition E}

Definition 4. Let n > 2 be an integer. Let 1 < s < (n — 1) be an integer. Let
1<ty <ty< <ty < (n—1). Put T = (ty,ta,...,t5). By the flag distance
de(Vi C Vo C--- C V4], [Up CUy C -+ CUy) of two flags [Vi C Vo C -+ C V]
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and [Uy C Uy C --- C Uy of type-T in F, over F, we mean

df(ViCVaC--- CVI,[i CUyC--- CUJ) = ds(U;, Vi)
i=1
where
dS(Uz'7 ‘/z) == dlqu(Uz) + diqu (‘/z) — 2diIIqu(UZ' N V;)
forl1 <i<s.

Remark 1. If s = 1 and T = (t,), then the ambient space of flags of type-T in Fy
over I, is exactly the ambient space of constant t,-dimensional F,-linear codes in

IF’;, which is a Grassmannian. Moreover, in this case, the flag distance is the same as

the subspace distance [19, 18, 120].

Definition 5. Let n > 2 be an integer. Let 1 < s < (n — 1) be an integer. Let
1<ti<ty<--- <ty <(n—1). PutT = (t1,ts,...,ts). By aflag code of type-T
in Iy over Iy, we mean a subset C C S such that IC| > 2, where S is the ambient
space of flags of type-T in T} over F,. Recall that S is defined in Definition|3| By the

minimum flag distance d(C) of the flag code C we mean

df(C) =min{dg((Vi cVoC---CV{],[Ui CUy C---CUy):
WMicWwc---CcV,[UhcUyC---CcUgecC
and Vi C Vo C - CV|#A[Uy CUyC--- C U}
Definition 6. Let n > 2 be an integer. Let 1 < s < (n — 1) be an integer. Let 1 <
th<te<--- <ty <(n—1). PutT = (t1,ta,...,ts). Let d > 1 be an integer. We

say that d is an admissible minimum distance for a flag code of type-T in ¥ over F,

if there exists a flag code C of type-T in ¥ over F, such that d;(C) = d.

Definition 7. Let n > 2 be an integer. We say that T' is the full type in ¥y over F if
s=(n-1)and T =(1,2,...,n—1). Wesay C is a full flag code in I, over F if

it is a flag code of the full type in I/ over F,.

Remark 2. Let n > 2 be an integer. Put T = (1,2,...,n — 1), i.e., the full type in
[y over F. Let d > 1 be an integer. It is known that if d is an admissible minimum

distance for a flag code of type-T in Iy over F, (in the sense of Definition @), then

”2—2, n s even,
d,(C) < (2.2)

2_ .
) L nisodd.




We refer to [4] for proof.

Definition 8. Let n > 2 be an integer. Let 1 < s < (n — 1) be an integer. Let
1<t <ty < - <ty <(n—1). PutT = (ty,ta,...,t5). Let d > 1 be an
admissible minimum distance for a flag code of type-T in IF over F. Let Ay, (T; d)

be the positive integer given by

Ar, (T d)=max{|C|: C is a flag code of type-T in F over F with d;(C) > d}.

Remark 3. Let n > 2 be an integer. Let 1 < s < (n — 1) be an integer. Let
1<t <ty < - <ty < (n—1). PutT = (ty,ta,...,ts). Let d > 1 be an
admissible minimum distance for a flag code of type-T in Fj over F. In general, it is
a very difficult problem to determine Ag, ., (T;d). There are very interesting results

for some parameters ¥, n,T, d in [23] and [4].

The following two definitions are crucial for this paper.

Definition 9. Let n > 2 be an integer. Let 1 < s < (n — 1) be an integer. Let
1<t <tp<--<ty<(n—=1. PuuT = (t,ta,...,t,). Let d > 1 be
an admissible minimum distance for a flag code of type-T in ¥y over F,. Let C
be a flag code of type-T in F} over F, such that dg(C) = d. We say that C is a
maximal flag code of type-T in IFy over F, with ds(C) = d if

IC| = Ag, (T d).

Definition 10. Let n > 2 be an integer. Let 1 < s < (n — 1) be an integer. Let
1 <t <ty <o <ty < (n—=1). PutT = (ty,t2,...,ts). Let d > 1
be an admissible minimum distance for a flag code of type-T in Fy over F,. Let
Mg, o (T'; d) be the set consisting of maximal flag codes C of type-T inIFy over IF, with
ds(C) = d. Recall that a maximal flag code C of type-T in F, over F, with d;(C) = d
is defined in Definition

Remark 4. In this paper, we observe that characterization of Mg, (T d) given in
Definition [I0| is even more difficult than the determination of
Ag,n(T; d) given in Definition E?]for some parameters F,,n, T, d (see Remark .
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In this work, we find a way to represent flag codes as graphs. If the type vector is
a duple, we can use bipartite graphs. Moreover, for a general representation of the
type vector, we can represent the nestedness with a partitioned hypergraph and the

hyperedges on it. Hence, the graph-related definitions are given as follows.

Definition 11. A graph G is defined as a pair G = (V, E) where V is a finite set
of elements called vertices, and E stands for the collection of unordered pairs of

elements of V, called edges.

Definition 12. A graph G = (V, E) is called simple if E has no repeated members,

i.e., there exists one edge or no edge between every pair of vertices.

Definition 13. Let G = (V, E) be a graph and an edge e¢; = {u, v}, we say

1. the vertices u and v are the endpoints of e;,
2. uw and v are adjacent vertices and write u ~ v, otherwise u ~ .
3. it is said that the edge e; is incident to u and v.

Definition 14. The number of edges that are incident to any specific vertex v € V,

defines its degree.

Definition 15. The set of all vertices which are adjacent to a specific vertex v € V' is

called neighborhood of v and denoted as N (v). Namely,
Nw)={ueV :{uv} e E}.
So, the cardinality of N (v) gives us the degree of v.

Definition 16. A subset M C E is called an independent set or matching if none of

its members is incident to the same vertex.

center:




Definition 17. A matching in a graph that cannot be extended is called as maximal
matching and the matching with a maximum possible cardinality is called maximum

matching.

Definition 18. A perfect matching of a graph is a matching (i.e., an independent edge

set) in which every vertex of the graph is incident to exactly one edge of the matching.

center: center: center:

Definition 19. In a graph G(V, E), if all the vertices have the same degree, say k, the
graph itself is called k-regular.

Definition 20. For a graph G(V, E), if we can partition the vertex set V into two
disjoint sets, say U and U’, such that every member of E is incident to both sides’
members, ie., Ve; € E e; = {ul,u;} where u; € U and v, € U’, then this graph is

called as a bipartite graph.

centeenter:

Definition 21. Consider a graph G = (V, E). An |V| x |V| matrix A is called
adjacency matrix if its elements a;; = 1 if vertices v; and v; are adjacent and a;; = 0
otherwise, where v;,v; € V. Ais a symmetric matrix and the sum of each row element

gives the degree of corresponding vertex.

Definition 22. A hypergraph is a generalization of a graph and denoted as H(V, E)
on a finite set of V.= {Vi,...,V,,} is defined as a family of p hyperedges E =

{e1,...,e,} where each hyperedge is a non-empty subset of V.

Definition 23. Let k € Z7, for a hypergraph if all hyperedges have the same cardi-
nality k, then this hypergraph is called as k-uniform hypergraph.

For example every simple graph is a 2-uniform hypergraph.



For an arbitrary length n, type-(¢,n — £), minimum distance 2(¢ + (n — ¢)) such that
1 < ¢ < 3, the size of the flag code here is equivalent to the size of ¢-dimensional

Grassmannian of . (It is also equal to the (n — ¢)dimensional Grassmannian).

Consider a bipartite graph whose vertices on one side are composed of V,’s and
the vertices of the other side are representing V(,,_), and there is an edge between

any two of them if and only if Vj, C V{,_¢,. This graph is simple, each side has

n n . : | n—t o
= vertices. Also, this graph is -regular. This will
l n—~¢ l
q q q
be called as an "(¢,n — {) Grassmannian Correspondence Graph." For simplicity we
) n n—/{
will denote « := and 3 :=
q q

The existence of such perfect matching is secured by the result of [16]. Asking how
many flag codes of type-(¢,n — £) in I} over IF, and minimum distance 2(¢ + (n —
0)) exist is the same question with asking how many complete point-line (plane-
hyperplane) correspondence exist. In this work, we find the exact result for this ques-
tion for some small parameters. However, type-(¢,n — ¢) and in an n-dimensional
Vector Space, finding the number of all maximal flag codes does not seem to be an
easy question. We obtain upper and lower bounds for type-(¢,n — ¢) for an arbitrary

length n as a consequence of [3, 9, 25 [27].

Permanent of an n x n matrix A = [a;;] . is defined by

nxn

perA = Z H Qo (i)
i=1

where the summation extends over all permutations o of {1,2, ..., n}. The permanent

of a (0, 1)-matrix can be interpreted as the number of perfect matchings in a bipartite

graph, [3]].

A permanent of a bipartite graph whose partitions represent members of /-dimensional
Grassmannian and (n—{)-dimensional Grassmannian is the number of perfect match-
ings occur in the graph and that is exactly an illustration of maximal flag codes of

type-(¢,n — £) in F} over F,.

In order to generalize adjacency matrices to higher orders, we can use multi-dimensi-

onal arrays called tensors. Let T be an r-dimensional tensor that has size n, X - - - X n,..

10



Each element of T is shown with T, ; where i, € {1,...,n;}. Here we need

another material called marginal.

Definition 24. Let T be an r-dimensional tensor. A marginal is defined as an (r —

1)—section of an r-dimensional tensor which is derived by fixing one of the indices of

T.

In the literature, especially the work [11], tells us that finding a maximum cardinal-
ity matching in an r-partite, r-uniform hypergraph for » > 3 is NP-Complete. The
case corresponding to triple-type vector maximal flag codes is called as MAX-3DM
problem [21]]. To define the exact number there have been studies in the literature and
the best-known approximation belongs to [10]. Here even » = 3 case has not been
determined clearly, yet. However, the bounds of the number of maximal flag codes
for an arbitrary type can be extended for hypermatrices deriving nicely from the in-
cidence relations of hyperedges in the corresponding Grassmannian Correspondence

Hypergraph.

11






CHAPTER 3

BOUNDS ON THE NUMBER OF MAXIMAL FLAG CODES
FOR CERTAIN FORMS OF THE TYPE VECTOR

The upper bound for the most general case we achieved is given in the first Theorem.
This is derived by modeling all of the following works to the extension of results

found for bipartite simple graphs to r-partite, r-uniform hypergraphs.

Theorem 1. If we are given a type vector T* := (t1, ... ,t,) and tasked to build a flag

code with type-T™ in IF; over I, the followings are true:

1. Minimum admissible flag distance, d* is equal to 2r,

2' AFqu(T*; d*) = min{‘gq(thn)’? R |gq(tr7n)

2

N
3 [ M, (T d9)] < [

where ~; is the sum of marginals of the corresponding tensor and N is the total

number of vertices of the Grassmannian Correspondence Hypergraph.

Proof. 1. It is a direct result of the subspace distance for distinct elements of a

Grassmannian.

2. When we model our flag to r-partite, r-uniform hypergraphs, we realize that
each hyperedge occurs by the relation of the nested subspaces of ' over I,.
Therefore, the size of the maximum matching is limited by the minimum size

of the parts.

13



3. A maximal flag code of type-(¢1,...,t.) with an admissible distance can be
represented with an r-partite and r-uniform hypergraph where the vertex set
can be written as a union V' = U;_, V; with disjoint V;’s and each of hyperedges
is incident to a single vertex from each V;. The existence of a matching in an r-
dimensional hypergraph was given by [[1]] which provides equivalency of Hall’s

Theorem for r-partite hypergraphs.

Therefore, an r-partite, r-uniform hypergraph H = (V3 U --- U V., E) can
be represented as an r-dimensional tensor. This completes the association of
each vertex class to a tensor dimension. Let |V;| = n; for 1 < i < r, the

tensor T € {0, 1}™* " has a nonzero element T,,, . if and only if ¢y =

77777

{v1,...,0.} € E, where v; € V; for 1 <i < r. Then, T is called the adjacency

tensor of H.

If we assign +; to the summation of each marginal of the adjacency tensor T,
then following the works done by [3]] and references therein, we can reach the

upper bound given.

]

Theorem 2. Let F, be a finite field for an arbitrary prime q and F}; is an n-dimensional
Vector Space over F,. The set Mg, ,(({,n — ();4L) of maximal flag codes of type-
(6;n — L) in ¥} is bounded as

™|~

)0 < |Meyul(n - 0:40] < T[(8D, G.1)

«
n—1¥{
14

q q

n
Recall that o« = and 5 =
¢

Proof. Consider G as the (¢, n — ¢) Grassmannian Correspondence Graph. Here, the

total number of the edges in G is «. 3.

Having type-(¢,n — ¢) flag code with minimum distance 4/ sets a perfect matching in
the graph described above. Remember that ¢ < % and dg = 2¢ — 2dim(U; N V;) for
constant dimension codes. It is a perfect matching because in each code of constant

dimension, subspaces are used once.

14



n n
The adjacency matrix of this graph is a X dimensioned matrix whose

14

q q
entries are either 0 or 1 according to the corresponding vertices’ relations. If the

vertex v; is connected to the vertex v; with an edge, then the entry a;; of the matrix A

is 1, otherwise 0.

After all these settlements, counting distinct maximal flag codes of type- (¢,n — ()
with minimum distance 4/ is just the same as counting the number of distinct perfect

matchings in a bipartite graph and this is an NP-complete problem.

For any vector space and any ¢, the number of distinct maximal flag codes can be
interpreted as the number of permanents of a (0, 1)-matrix which is also the number

of perfect matchings in a balanced [-regular bipartite graph.

For the upper bound of (3.2)) we use the number of spanning 2-regular subgraphs of
G, namely H which consist of even cycles such that H is being counted 2¢ times,
where c is the number of such cycles within more than 2 vertices. In fact, each of the
perfect matching pairs P, P is a copy of H which is a 2-regular subgraph of GG. For

the cycles of length ¢-5, we have two possibilities of its origin, either P, or Ps.

On the other hand, the number of 2-regular subgraphs of G is equal to the permanent
of the adjacency matrix. Here cycles with odd lengths and length 2 are allowed. Such
subgraphs are counted 2¢, where c is the number of length ¢-5 cycles. Hence the
square root of the number of permanents for the adjacency matrix is the limit of the
number of perfect matchings. Therefore, the desired limit is achieved by the work of

Bregman-Minc, where [ is the cardinality of each of « vertices in G.

For the lower bound, we will use the results of [12] and [14]. Here our (¢,n — {)
Grassmannian Correspondence Graph has an o X o adjacency matrix that is S-regular.
The number of perfect matchings here bounded by (§>o¢ al. This bound has been
carefully selected among the results in the literature as the best match to the number

we seek as [ will be the sum of each row.

The lower bound in [3.2] gives better results for some cases in Table For higher

15



characteristics, the bound given below gives better results as seen in the table.

Theorem 3. Let F, be a finite field for an arbitrary prime q and IFy; is an n-dimensional
Vector Space over F,. The set Mg, ,(({,n — ();4L) of maximal flag codes of type-
(6,n — L) in ¥} is bounded as

(B-1)""

G2 )* < M, (€, — £);40)]. (3.2)

In Table [3.1) we compare the upper bounds and lower bounds with the exact results

that we know for small parameters.

For an arbitrary duble type vector apart from (¢, n — ¢), the Grassmannian Correspon-
dence Graph will be an unbalanced bipartite graph. If the type vector in the form of
(t1,t9) forany 1 < t; <ty < (n— 1), then the volumes of the parts of our graph will
n n
be and . Moreover, each of the left-hand side vertices is connected
t 12
q q
to the same number of right-hand side ones. The number of maximal flag codes of

type-(t1, t2) will correspond to the number of maximum matchings here.
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Table 3.1: Maximal Flag Codes of Some Certain Types

Length(n)| type q Exact Results Upper Bounds Lower Bounds byl%' Lower Bounds byE‘
3 (1,2) | 2 24 65 13 7,49
3 (1,2) | 3 3852 30597 1379 899
3 (1,2) | 4 18 534 400 540 208 276 4169 738 3450 873
3 (1,2) | 5 | 4598378639550 | 579274 705 236 857 638 995 826 718 707 286 916 498
3 (1,2) | 7 * 6,52 x 1032 9,98 x 10%7 2,17 x 1028
3 (1,2) | 8 * 1,25 x 1045 1,94 x 103° 6,11 x 1039
3 (1,2) | 9 2 4,94 x 10%9 7,22 x 1052 3,35 x 10°3
3 (1,2) | 11 * 1,61 x 1096 1,7 x 1087 1,76 x 1088
3 (1,2) | 13 * 1,02 x 10143 6,25 x 10131 1,49 x 10132
4 (1,3) | 2 24 601 472 85 857 793 14 177 555 4479 809
4 (1,3) | 3 % 1,37 x 1030 2,43 x 1028 7,44 x 1027
4 (1,3) | 4 * 5,91 x 1079 6,85 x 1076 2,33 x 1076
4 (1,3) | 5 * 4,67 x 10170 2,5 x 10166 1,02 x 10166
4 (1,3) | 7 * 3,97 x 10°37 2,15 x 10930 1,46 x 10°30
4 (1,3) | 8 * 4,46 x 10346 5,81 x 10937 5,36 x 10837
4 (1,3) | 9 i 5,23 x 101262 1,41 x 101252 1,8 x 101252
5 (1,4) | 2 * 1,09 x 10%% 1,39 x 1024 2,85 x 1023
5 (1,4) | 3 * 1,44 x 10146 1,09 x 10144 1,75 x 10143
5 (1,4) | 4 * 2,04 x 10515 3,18 x 101! 5,15 x 10510
5 (2,3) | 2 * 9,6 x 108! 1,48 x 1065 5,36 x 1068
6 (1,5) | 2 * 8,4 x 1098 7,85 x 1097 1,1 x 1067
6 (2,4) | 2 * 9,4 x 10725 3,21 x 10706 4,83 x 10708
7 (1,6) | 2 # 9,55 x 1017° 6,49 x 10174 6,32 x 10173
7 (2,5) | 2 * 1,16 x 104709 2,91 x 104685 ok
7 (3,4) | 2 * 6,83 x 101126 5,99 x 101036 o
8 (1,7 | 2 * 5,07 x 1047° 1,25 x 10474 1,45 x 10426

* unknown in the literature.

*% computationally hard to calculate.
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CHAPTER 4

MAXIMAL SET FLAG CODES

Instead of an n-dimensional vector space V' and its subspaces V;, we consider a set S

of cardinality n and its subsets.

The subspace distance corresponds to the subset distance given by

dsetf(Si, SJ) - #(Sz U SJ) - #(Sl ﬂ Sj)

For distinct subsets with same number of elements, ds;, = 2. Therefore, in the set
flag code concept: if our type vector has r elements, then the lower bound for the

minimum admissible distance for the set flag code is 2r.
The exact results of 4.1] can be detailed as follows:

Case 1: n = 3, type-(1,2), dse;, = 4. Then, say A = {1,2,3} and so the subsets are

listed as:

Vi ={1}, Wi ={1,2},
Vo ={2}, W, ={1,3},
Vi3 = {3}7 W3 = {273}'

Then, the possible distinct set flag codes are:

Fio ={[Vi Wi, [Va C W], [V5 C Wil},
Fa :{[%CWQ],[‘/QCW1],[%CW3]}.
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Case 2: n = 4, type-(1,3), dser, = 4. Then, say A = {1,2,3,4} and so the subsets
are listed as:

Vi ={1}, Wi ={1,2,3},
Vo ={2}, Wy ={1,2,4},
Vs ={3}, Wi ={1,3,4},
Vi ={4}, Wi ={2,3,4}.

Then, the possible distinct set flag codes are:

Fi ={[Vi c W], [Va C Wa],[Vs C W3], [Va C W4l},
Fo =A{[Vh CWh],[Va C Wa],[Vs C Wa], [Va C W3]},
Fs ={[Vi c WA],[Va C W4, [Vs C W3], [Va C Wa]},
Fi ={[Vi c Wa],[Va C W], [Vs C W3], [Va C W4},
Fs ={[Vi C Wa],[Va C W], [Vs C W4],[Va C W3]},
Fo = {[Vi C Wa],[Va C W4],[Va C Wi],[Va C W3]},
Fr ={[Vi C Ws],[Va C W], [Vs C Wa],[Va C Wa]},
Fs ={[Vi c W3], [Va C Wa],[Vas C Wi],[Va C W4l},
Fo ={[Vi C Ws],[Va C W4, [Vs C Wi],[Va C Wa]}.

Case 3: n = 4, type-(1,2), dyer; = 4. Then, say A = {1,2,3,4} and so the subsets
are listed as:

Wi = {12},
Vi ={1}, Wy = {1,3},
Vo ={2}, Ws ={1,4},
Vs = {3}, W = {23},
Vi = {4}, Ws = {2,4},
Ws = {3,4}.
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Then, the possible distinct set flag codes are:

F1
Fo
F3
Fa
Fs
Fe
Fr
Fs
Fo
Fio
Fi1
Fi2
Fi3
Fla
Fis
Fi6
Fi7
Fis

F30

={[V1 cw],
= {[Vi c W],
={[V1 c W],
= {[Vi C W],
={["1 c ],
= {[Vi C W],
={[Vi c W],
= {[Vi C W],
={[Vi c W],
= {[Vi C W],
={[Vi c W],
= {[Vi c W3],
={[Vi c W],
= {[Vi C W3],
={[Vi c W],
= {[Vi C W3],
={[i c W],
={[Vi c W],
={["i c W],
= {[Vi C W3],
={["i c W3],
= {[Vi c W3],
= {[Vi c W3],
={[Vi c W3],
= {[Vi Cc W3],
= {1 C W3],
= {[i Cc W3],
= {1 C W3],
= {[Vi Cc W3],
= {1 C W3],

C Wal, [Va C W]}
Y C W), [Va C Wi}
C Wal, [Va C We]}
5 C Wel, [Va C Ws]}
C W], [Va C Wsl},
C W], [Va C W3]}
5 C W2, [Va C Wel},
3 C Wal, [Va C Ws]}
5 C Wi, [Va C Wel},
3 C Wel, [Va C Ws]}
5 C Wi, [Va C Wsl},
C Wa], [Va C Ws]}
5 C Wa, [Va C Wel},
5 C Wel, [Va C Ws]}
5 C We], [Va C Wi},
5 C Wel, [Va C Ws]}
5 C We], [Va C Wi},
C W4, [Va C W3]}
s C Wa, [Va C Wel},
3 C Wel, [Va C Ws]}
5 C Wa, [Va C Wi},
3 C Wal, [Va C Ws]}
s C Wi, [Va C Wi},
C W4, [Va C W]}
5 C We], [Va C Wi},
3 C Wal, [Va C Ws]}
5 C W2, [Va C Wel},
3 C Wel, [Va C Ws]}
5 C W2, [Va C Wel},
3 C Wal, [Va C Ws]}

Case 4: n = 4, type-(2,3), dser, = 4. Then, say A = {1,2,3,4} and so the subsets

are listed as:

Wy ={1,2},
W2 ={1,3},
Wi ={1,4},
Wi ={2,3},
Ws = {2,4},
Ws = {3,4},
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Y

={1,2,3},
={1,2,4},
={1,3,4},
={2,3,4}.



Then, the possible distinct set flag codes are:

Fi =A{[W1 CYi],[Ws C Y], [Wa CY3], [Ws C Ys]}
Fo  ={[W1 CYi],[W;s CYa],[Wa C V3], [Ws C Ya|}
Fs  =A{[W1 CYi],[Ws C Y], [Wa C V3], [Ws C Yd]}
Fi  ={[W1CW],[Ws CYs],[Ws CYs],[Ws C Yy}
Fs  =A{[W1 CYi],[Ws C Y], [Ws C Y3], [Ws C Yd]}
Fo ={[W1 CYi],[Ws CYa],[Wa CY3],[Ws C Ya]}
Fr =A{[W1 CYi],[Ws C Ya],[Wa C Y3], [Ws C Yu]}
Fs  ={[WL CYi],[Ws C Ya],[W3 C V3], [Ws C Y|}
Fo =A{[W1CYi],[Ws C Y], [Ws CYs], [Ws C Yd]}
Fio ={[W1CW],[Ws CYs],[Ws CYs],[Ws CYy]}
Fii ={[W2CYi],[W1 CYa],[Ws CY3], [Ws C Y]}
Fiz ={[W2: CY1],[W1 CYs],[WsCYs],[Ws C Yy}
Fiz ={[W2CYi],[W1 C Y], [Ws C V3], [Ws C Ya|}
Fia ={[WaCYi],[W1 CYa],[Ws C Ys],[Ws C Ya]}
Fi5 ={[W2 CYi],[W1 C Y], [Ws C V3], [Ws C Y|}
Fie = {[Wa2CYi],[Ws C Y], [Ws C Ys],[Ws C Ya]}
Fir ={[W2CYi],[Ws C Y2, [Ws C V3], [Ws C Y|}
Fis ={[Wa CYi],[Ws C Ya],[W3 C V3], [Ws C Ya|}
Fro9 ={[W2CYi],[Ws C Y2],[Ws C V3], [Ws C Y|}
Fao ={[WaCYi],[Ws C Ya],[Ws C V3], [Ws C Ya|}
For ={[WacC V1], W1 CYa],[WaCYs], [Ws C Y]}
Far = {[WsC W], [W1 CYa],[W2 CY5],[Ws CYi}
Faz ={[WsC V1], W1 CYa],[WsCVYs], [Ws C Y]}
Foa ={[WsCYi],[W1 CYa],[Ws CY3],[Ws C Ya]}
Fas ={[WaC V1], W1 CYa],[Ws CYs], [Ws C Y]}
Fas = {[WsC W], [Ws CYa],[W2 CY5],[Ws C Yy}
For ={[WaC V1], [Ws CYa],[Wa C V5], [Ws C Y]}
Fos = {[WaC Y], [Ws C Ya],[We C Ya],[Ws C Ya]}
Fag ={[WaCY1],[Ws CYa],[Wa CYs],[Ws C Yd]}
Fzo ={[WsCY1],[Ws CYs],[Ws CYs],[Ws CYy]}

Case 5: n = 4, type-(1,2,3), dset, = 6. Then, say A = {1, 2, 3,4} and so the subsets

are listed as:
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Wi ={1,2},

Vi o={1}, Wy ={1,3}, v ={1,2,3},

v, ={2}, Wy = {1,4}, Y, ={1,2,4},

Vs ={3}, Wy ={2,3}, Vs ={1,3,4},

Vi ={4}, Wy ={2,4}, Y. =1{2,3,4}.
We = {34},

Then, the possible distinct full set flag codes are:

Fi ={[VicWicYi],[Va CWsCYa],[Vz C WaCYs],[VaCWsC Ya]}
Fo ={[Vi CW1 CYa],[Va C WaCYs],[Va CWa CYi],[VaC W5 CYa]}
Fs ={[VicWicCYi],[Va C W4 CYa],[Vs CWaCYs],[VaCWsC Y]}
Fao ={[Vi CW1 CYa],[Va C WaCYs],[Va CWaCVYi],[VaCWs C Ya]}
Fs ={[VicWicCYi],[Va C W4 CYa],[Vs CWaCYs],[VaCWsC Y]}
Fo ={[VicWiCYs],[VaCWsCYs],[Va CWaCYi],[Va CWsCYi]}
Fr ={{VicWicYi],[Va C W4 CYs],[Vs CWsCYs],[VaCWsC Y]}
Fs ={[Vi CW1 CYa],[Va C WaCYs],[Va CWs CVYa],[VaCWsCYi]}
Fo ={VicWicCYi],[VaCWsCYa],[VaCWsCVYa],[VaCTWsCVYi}
Fio ={[Vi c Wi CcYi],[Vo C Wy CY3],[Vs C Ws CYa],[Va CWs5C Yo},
Fii ={[Vi c Wi CYi],[Va C W5 C Ya],[Vs C Wa C Y3],[Va C W3 C Ya]},
Fiz ={[Vi CWi CYs],[Vo C W5 CVYy],[Vs CWaCVYs],[VuCWsCVi]}
Fiz ={[Vi c Wi CYi],[Va C W5 C Ya],[Vs C W2 C Y3],[Va C We C Ya|}
Fia ={[Vi CWi CYs],[Vo CWs CVYy],[Vs CWaCVYi],[Va T Ws CYs5]}
Fi5 ={(VicWiCcYi],[Va C W5 CYs],[Vs C Wy CYs],[VaCWsCVYil},
Fie ={[Vi CWi CYs],[Vo CWs CVi],[Vs CWsCVYs],[VaCWsCVi]}
Fir ={(VicWi CYq],[Va C W5 CYa],[Vs C Wy CVYs],[VaCWs CYi]}
Fis ={[VicWiCYi],[Vo CWs CVY4],[Vs CWsCVYo],[VuCTWsCYs]}
Frg ={[Vi c Wi CYi],[Va C W5 C Ya],[Vs C We C Y3],[Va C W3 C Ya]},
Faoo =A{[Vi c Wi CYs],[Vo C W5 CVYa,[Vs CWsCYs],[VaCWsC Y]},
Foar ={[Vi cWaCYi],[Va C Wi CYa],[Vs C Wy CYs],[Va CWsC Y4},
Fao =A{[Vi CWaCYs],[VoC Wi CYi],[Vs C Wy CYa],[VaCWsC Y4},
Fozs ={[Vi CWaCYi],[Va C Wi C Ya],[Va C Wa CY3],[Va CWs C Ydl},
For ={[Vi CWa CY3],[VoC W1 CY1],[Va CWyCYa],[Va CWs5CVYil},
Fos ={[Vi cWaCY1],[Va C Wi CYa],[Vs C Wy CYs],[Va CWs C Y4},
Fos ={[Vi CWa CYs],[VoC W1 CYi],[Vs C Wy CYa],[VaCWs C Y4},
For ={[Vi CWaCYi],[Va C Wi C Ya],[Va C W5 C Y3],[Va C W5 C Y4},
Fos ={[Vi CWa CY3],[Vo C Wi CYa],[Va CWsC VYa],[Va CWs3CYi]},
Fog ={[Vi CWaCYi],[Va C Wi C Ya],[Va C Ws C Y3],[Va C Ws C Yal},
Fao =A{[Vi CWaCYs],[Va CW1 CYi],[Va C Ws CYy],[VaCWsC Yal},
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Fs1 ={[Vi CWa CYq],[Vo C Wy CYs],[Vs CWs CYs],[Va C W5 C Yi]l},
Fso ={[Vi CWo CY3],[Vo C Wy CYa],[Vs CWs CVYa],[VaCTW5CY1]},
Fs3 ={[Vi CWa CYi],[Vo C Wy CYa],[Vs CWs CYs],[Va CWs CYi]l},
Faa ={[Vi CWaCYi],[Vo C WaCYs],[Va C Ws CYa],[Va CWsC Yal},
Fzs ={[Vi cWaCYi],[Va C W5 C Ya],[Va C Wy CY3],[Va C W3 C Ya]},
Fss ={[Vi CWa CYs],[Va C W5 CYa4],[Va C Wy CYa],[VaCWs CYi]},
Fasr ={[Vi CWa CYi],[Va C W5 C Ya],[Vs C Wa C V3], [Va C Ws C Ya]},
Fsg ={[Vi CWaCYi],[Va C W5 CYa4],[Vs C Wy CYa],[Va CWs CYsl]},
Fsg ={[Vi CWa CYi],[Va C W5 C Ya],[Vs C W C Y3],[Va C W3 C Ya]},
Fao ={[Vi CWa CYs],[Vo C W5 CYa],[Vs C W CYd],[Va CW5CYi]},
Fu ={[VicWsCYi],[Va C W1 CYa],[Vs C Wa CYs],[Va C W5 C Yd]},
Fio ={[Vi C W3 CYsq],[VoC W1 CY1],[Vza CWaCYs],[VaCWsC Y]},
Faz ={[Vi cWs CYi],[Vo C W1 CYa],[Vs C Wa C Y3],[Va C W C Ya]},
Faae ={[Vi CWsCYs],[VaC Wi CYa],[VsCWoCYi],[Va CWs C Y5},
Fas ={[VicWsCYi],[Vo C W1 CYa],[Vs C Wa CYs],[Va C W5 C Ya]},
Fie ={[Vi CWsCYs],[VoC W1 CY1],[VzaCWyCYs],[VaCWsCYa]l},
For ={[ViCcWsCYi],[Vo C W1 CYa],[Vs C Wa CYs],[Va CWs C Ya]},
Fas ={[Vi CWs CYa],[Va C Wi CY1],[Vs C Wy CYa],[Va CWs C Y5},
Fao ={[Vi CWsCYi],[Va C W1 CYa],[Vs C Ws CYs],[Va C W5 C Ya]},
Fso ={[Vi C W3 CYa],[Vo C W1 CY1],[Vs C Ws CY3],[Va C W5 C Ya]},
Fs1 ={[VicWs CYi],[Vo C Wy CYa],[Vs C Wa C Y3],[Va C W5 C Ya]},
Fso ={[Vi C W3 CYa],[Vo CWaCVYs],[Vs CWaCYi],[VaCWs5C Yo},
Fss ={[Vi CcWs CYi],[Va C Wy CYa],[Vs C Wa C V3], [Va C Ws C Ya]},
Fsa ={[Vi CWsCYa],[VoCWsCYo],[VsCWoCYi],[Va CWs C Y5},
Fss ={[Vi C W3 CYi],[Vo C W4 CYa],[Vs C Ws CYa],[Va CWs C Yi]},
Fse ={[Vi CWs3CYi],[Vo C W4y CYs5],[Va CWs CYa],[VaCWsCYa]l},
Fsr ={[Vi C W3 CYi],[Va C W5 C Y], [Vs C W CY3],[Va C Ws C Yi]},
Fss ={[Vi CW5 CYa],[Vo C W5 CYa],[Vs C Wa CY1],[Va CWs C Ys]},
Fso ={[Vi C W3 CYi],[Vo C W5 C Y], [Vs C Wy CYs],[Va CWs C Yi]},
Foo ={[Vi CWs3CYi],[Vo CWs C V4], [Va CWsCVYo],[VaCWsCYs]}.

Observation: This new approach corresponds to the limit case with ¢ = 1 of the flag

codes.

Idea: Finding optimal cardinalities and characterizations seems easier for some small

parameters.

Question: How many admissible type vectors exist for a set with n elements?

In the set flag codes, as the proper subsets will determine the code, we can have
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Table 4.1: Maximal Set Flag Codes

|S| type dsetf Size of the maximal set flag code [Number of the maximal set flag codes|

3 [@,2)*] 4 3=(¢"+q+1lg=1 2

4 | (1,2) | 4 4=(°+q>+q+1)g=1 30

4 (1,3) 4 4=(+d>+q+)g=1 9

4 | (2,3 [ 4 4=(°+a>+q+ 1g=1 30

4 1(1,2,3)% 6 4=(+d>+aq+lg=1 60

5 [ (1,4 | 4 5= (" +d®+d°+a+1)[g=1 44

5 (2,3) 4 10 = (¢ +¢° + 247 +2¢° +2¢% + ¢+ D)]g=1 60

5 [(1,2,3)] 6 5=(T+¢>+qZ+q+ 1)|g=1 43632

6 [ @5 | 4 6=(" +a"+d®>+a°+a+1lg—1 265

6 (2,4) 4 14 = (¢ +4q" +2¢° +2¢° +2¢7 +2¢° +2¢° + g+ Vg1 3013854

7 [ (,6) [ 4 7T=@P+ +a"+ +d® +a+ Dlg=1 1854

s [ an | 4 8=(" +d° +a° +a* +d® + >+ a+ Dlg=1 14833

9 (1,8) | 4 9= +d +F+P+ad* +d®+d®> +a+Dlg=1 133496
* full flags.

(27~1 —1) type vectors as we exclude the empty set. All the calculations for maximal
flag codes can be operated more easily for the set flag codes and this also reduces the

need for computational work and the necessary space for the results.

Theorem 4. If we are given a type vector T* = (ty,...,t,) with the set flag dis-

tance 2r, the set flag code in a set S with n elements exists with cardinality of

n n

min{ s } and the number of such maximal set flag codes can be
t ty

bounded as

N
(M (T 20)] < [ ] ()™, (4.1)

where ~; is the sum of marginals of the corresponding tensor and N is the total

number of vertices of the Grassmannian Correspondence Hypergraph.
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CHAPTER 5

EQUIVALENT CODES
Take 7 as a permutation of {1,...,n} and a4, ..., o, non-zero elements of F, along
with ¢ = @, ., as diagonal matrix with entries o, ..., a,. Therefore, ) = o

1s a monomial transformation on FZ.

Observation: [V; C 15 C ---

C Vi]is a flag of type (t1,12,...,ts) in F} if and only
if [(V1) S (Vo) € -+ C(Vi)] is a flag of type (1,12, ..., 1) in Fy.

Observation: C is a flag code of type (t1,%s,...,ts) with ds(C) = d if and only if
¥(C) is a flag code of type (t1,t2, ..., ts) with d¢(1(C)) = d.

We call C and v(C) are monomially equivalent and denote C ~ »(C).

For monomially equivalent of the ones that can be obtained by the work of [23]]

are listed as:

fl —>./_"1, fz —>.F2, .Fg —>f3,

Y1 Y1 Y1

Fi — Fas, Fo — Fia, Fs — Fu,
P2 2 )2

Fi = Fu, Fo —Fu, Fz3 —Fs,
V3 Y3 Y3

Fi = Fo, Fo —Fis,  Fz — Fs,
P4 Y4 Py

Fi = Fr, Fa ? Fir,  Fz3 — Fi,
; . .

5 S5

Fi = Fie, F2 — Fs, Fz — Fis,
Y6 e e

where 1y = I, ¥ = (12), 45 = (13), vy = (23), ¥5 = (12)(13), v = (12)(23).
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Result: The orbits of {F, F2, F3} can be listed as follows

?1 = {F17f237f117f207f77‘/—-16}7
f? — {]:27f127f247f157fl77f8}7
T3 :{F37~F47F67~F57F197F18}'

—F_22 = {F227F107F14af217-r97f13}-

The latter one is a new class derived from our extension. If we investigate a similar
case for (6.24), the number of monomially equivalent ones to the results of [23]] will
be 5.4! = 120. We found 328672649760 of them in our search. The remaining ones

also can be divided into equivalency classes as shown here.
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CHAPTER 6

CHARACTERIZATION OF ALL MAXIMAL FLAG CODES OF
TYPE-(1,2) IN Fg and ]F‘qL WITH d = 4 FOR SMALL ¢

Let F, be a finite field, let n = 3, 7" = (1,2) and d = 4. Using the information
provided by [23]], we obtain that

Ar,3((1,2);4) = ¢* + g+ 1.

Let C be a maximal flag code of type-(1,2) with d = 4 in Fg (see Definition @) Note
that C is also full flag code in F? over IF, (see Definition [7) and d = 4 satisfies
with n = 3. Note that the number of distinct 2-dimensional IF,-linear subspaces in F
is

=¢ +q+1

q
Let N = ¢> + ¢+ 1and Wy,...,Wy be a fixed enumeration of 2-dimensional

IF,-linear subspaces in IF}.

Let [U; C Us], [Vi C V5] € C be two distinct flags. We observe that

de([Uy C Us], Vi C Vo)) =ds(Uy, V1) + ds(Us, V5)
and  dg(Uy, Vi) <2, dg(Us, Va) <2

(6.1)
where
ds(Uy, V1) = 2.1 — 2dim(U; N Vi) and dg(Us, Vo) = 2.2 — 2dim(U; N V3). (6.2)
Moreover,
dim(U;NVy) > 1 and (dim(UsNV3) =1 <= Us # V3). (6.3)
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The last statement follows from the observation
dim((Us, V3)) + dim(U; N'Va) =242 and (Us, V3) C F,.
Combining (6.1)), (6.2)) and (6.3)), we obtain that
Ur # Vi and Uz # Va.

Recall that we choose and fix the enumeration Wi,..., Wy of 2-dimensional
F,-linear subspaces F:. We further choose and fix an enumeration of 1-dimensional
[F,-linear subspaces IE‘:; as Vi,...,Vn. These arguments imply that a maximal flag

code C of type-(1,2) with d = 4 in Fg is represented uniquely as an /N-tuple.

C= (Wi, Wi,...,Wi] 6.4)
where
Vi Wi, VaC Wi, ...,V C Wi, (6.5)
and
(41,49, ...,1y) is a permutation of (1,2,..., N). (6.6)

Hence, the problem of finding a maximal flag code of type-(1,2) with d = 4 in IF}
is exactly finding a permutation (iy,4s,...,iy) of (1,2,...,N) as in such that
(6.5) holds. We solve this problem completely if ¢ = 2 and ¢ = 3 using an exhaustive

computer search via MAGMA [§] in the following two theorems.

First, we consider the case of ¢ = 2.

Theorem 5. Let IF, be a finite field with ¢ = 2. Let n = 3,1 = (1,2) and d = 4. Let

3
N = = ¢*> + q + 1 = 7 be the number of distinct 2-dimensional subspaces
2

q
in Fg. Note that N is also equal to the number of distinct 1-dimensional subspaces

of Fg. Let Vi, ...,V be an enumeration of all 1-dimensional subspaces of Fg given

explicitly as follows:



Let Wy, ..., Wy be an enumeration of all 2-dimensional subspaces of ]Fg given ex-

plicitly as follows:

100 100 101 101
Wiy =rs o =rs W3 =rs JWyi=rs ,
010 011 010 011

100 110 010
Wy =rs JWe =rs JWe=rs
001 001 001

Here, rs denotes the row space of the corresponding 2 x 3 matrix over I,

Under the notation of (6.4), (6.3)) (6.6)), the set Mg, 5((1,2);4) of maximal flag codes
of type-(1,2) in Fg is exactly the set of 24 flag codes F1, ..., Fay given explicitly as

follows:

Fi =Wy, Wy, Wa, Wy, We, W3, W],
Fo = [We, Ws, Wy, W, Wi, Wy, Wi,
Fy = [Ws, Wr, Wi, Wa, Wy, We, W],
Fy = [Wr, Wy, Wy, Wo, Wy, W, W],
Fs = [Wr, Wi, Wy, Wa, We, W3, Wil
Fo = [Wr, Wi, Wy, Wy, We, Wa, W], 67)
Fr = [Wr, Ws, Wy, Wo, Wy, We, Wi,
Fs = [Wr, Wy, Wo, Wy, Wy, We, W],
Fo = [We, W, Wy, Wa, Wy, We, W],
Fro = [Wr, W, Wy, Wy, We, Wa, W],
Fu = [We, Wr, Wy, Wo, Wy, W, W],
]:12 = [W67W77W27W4aW17W37W5] )
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Fiz = W, Wa, W5, Wy, Wy, Wo, W],
Fr = [We, Wr, W5, Wo, Wy, W3, W],
Fis = [We, W, Wy, Wy, Wy, Wy, Wi]
Fis = [We, W1, W5, We, Wy, Wa, W3],
Frr = [We, Wy, Wo, We, Wy, W3, W],
Fig = [Ws, We, Wy, Wy, We, W5, W],
Fro = [Ws, We, Wi, Wy, W, Wa, W],
Foo = [Ws, W, Wo, Wy, Wy, We, W],
For = [Ws, Wy, Wo, We, Wy, We, W],
Foy = (W5, Wy, Wo, We, W, W3, W],
Foz = [Ws, Wa, Wy, Wy, We, Wo, W],
Fou = [Ws, Wa, Wy, Wy, Wy, We, Wy].

Proof. There are exactly 7! = 5040 permutations of (1,...,N) = (1,...,7). For
each permutation 7 = (iy,...,iy) of (1,...,7) we check if (6.5) holds. By MAGMA,
we obtain that the permutations 7 = (i1, ...,iy) of (1,...,7) satisfying (6.5) are ex-

actly the ones corresponding to F, . .., Foq.

]

Let g be a generator of I}, and let Wi, ..., W5 be all 2-dimensional subspaces of
Fos. There exists 1 < ¢ < 7 such that 1 € WW;, by renumbering let 1 € Wl. Let
W (j) = (1,¢7) for 1 < j < 6. As ¢ = g + 1, we observe that

(1,g) =(1,9%),
(1,g>) =(1,4°,
(Lg") =(L,¢°).

Let J = {1,2,4}. Note that (1, ¢/*) # (1, ¢’?) and
dim]}?q(<1,gjl>) = diqu(<1,gj2>) = 2if j17j2 € J and jl 7é j2 . Forj S ._7,
let C(j) be the collection given by



Next, we give an explicit version of a result of [23]

Proposition 1. Let F, be a finite field with g = 2. Letn = 3, T' = (1,2) and d = 4.
Let g be a generator of Fi; and let J = {1,2,4}. For each j € J, the collection
C(j) given in is a maximal flag code of type-T in 3 and hence an element of
My, 3((1,2);4). Moreover, C(j1) # C(j2) if j1. jo € T and ji # jo.

Proof. Recall that W (5) = (1,¢7) = {0,1,¢7, ¢/ + 1},
ct) = { [ WG] [0 97 0] ... [(00) WG] |

As g is a generator of Fj,, we have (¢") = {0,¢"} # {0,¢”} = (¢") for
1 <141 <19 < 6. We observe that

g (i) = {0,g™,g"%, g + g} #£ {0,972, g7 g2 + g2t} = gi2W(j)
for 1 <4 < iy < 6. Indeed, otherwise

W(j) = g2 "W (j).
Put i = 75 — ;. Note that 1 <7 < 6. We have
W(j) =(1,¢’)and

gW () = (g',g").

If g'W (j) = W(j). then 1 € g'W(j) and ¢ € g'W (j). These imply

1 =a.g +0bg™,
¢ =cg +dgti.

for a, b, ¢, d € 5. Hence, we also have

l=cg¢ 7 +dg =ag +bg™. (6.9)
Put x = ¢’. Dividing by ¢, we obtain
cr '+ d=a+bx
and hence
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bz’ + (a+d)x +c= 0. (6.10)

Using (6.10), we get a contradiction as Fy(x) = Fys and the minimal polynomial of

x over [Fy has degree 3. Next we observe that
{0,9'Y = (¢") CgW(j) ={0.9'.9". 9" + g}

These arguments show that C(j) is a maximal flag code of type-T in Fas.

Finally, we show that C(j;) # C(j2) if ji1, jo € J and j; # j2. Indeed
[(1), (1, 9™)] € C(j1) \ C(j2) as[(1),(L,¢”)] € C(j2) and
(1,97) # (L, g%).

Corollary 1. Let F, be a finite field with ¢ = 2. Letn = 3, T = (1,2) and d = 4.
Let g € Fys with g> + g + 1 = 0. Then the maximal flag codes of type-(1,2) in Fys
obtained by [23|] correspond to the subset {Fy, Fo, F3} of the ones given in .

Remark 5. Proposition |l| is an explicit presentation of a construction of [23] for
q=2n=3T=(1,2) and d = 4. In particular, we show that the number of
maximal flag codes of type-(1,2) forq =2, n =3, T = (1,2) and d = 4 constructed
from [23|] is exactly 3. Hence, we detect 24 maximal flag codes of type-(1,2) for
g=2n=3"T=(1,2) and d = 4 in Theorem 3

Next, we consider the case of ¢ = 3.

Theorem 6. Let F, be a finite field with ¢ = 3. Letn = 3, T = (1,2) and d = 4.

3
Let N = = ¢*+q+1 = 13 be the number of distinct 2-dimensional subspaces
2

q
in 2. Note that N is also equal to the number of distinct 1-dimensional subspaces
3 q )4

of F3. Let Vi, ..., Vy be an enumeration of all 1-dimensional subspaces of T3 given
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explicitly as follows:

Vi =((0,0,1)

‘/5 = <(1’270)

Vo =((2,0,2)

Vig = <( ;0,2 >
Let Wy, ..

explicitly as follows:

010
Wi =rs
(OOI
120
Ws=rs
002
202
=rs
’ 011

V2 = <(071
‘/6 = <(271

,0))
2)) 5

Vs = <(1’O70)> )
Vi = <(17 L, 1)> )

Vi= <(O7 L, 2)> )
Ve = <(17272)> )

VlO = <(07 17 1)> > Vll = <(17 170)) ) ‘/12 = <<17 17 2)> )

Here, rs denotes the row space of the corresponding 2 x 3 matrix over .

.,Wx be an enumeration of all 2-dimensional subspaces of F3 given

Under the notation of (6.4)), (6.5), (6.6)). the set Mg, 5((1,2);4) of maximal flag codes

of type-(1,2) with d = 4 in 3 is exactly the set of 3852 flag codes JF, . .

.y F3852 have

been given explicitly detected by an exhaustive search via MAGMA [8|], they have
been uploaded to the link: \Github
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Some of them we put here in our paper as follows:

Fr = [Wh, Wa, Wy, Wy, Wy, We, We, Ws, Wo, Wig, Wiy, Wi, Whs),
Fy = [W5; W67 W% Wsy Wg, Ww, Wn, le, W137 Wl; W2, W37 W4] )
Fs = Wiy, Wiz, Wiz, Wi, Wa, W3, Wy, Wi, We, Wr, Wy, Wy, Wi ,
Fy = Wiz, Wy, Wa, Wy, Wy, Wy, We, W, Wy, Wo, Wi, Wiy, Wha]
Fs = [Wb W, Ws, Wy, Wy, We, Wy, Wia, Wy, Wio, Wg, Wiy, W13] )
Fo = [Wi, Wa, Wy, Wy, Wy, W, We, Wia, Wiz, Wo, Wg, Wiy, Wig],
Fro = (Wi, Wa, Wy, Wy, Wy, We, We, Wig, W, Wig, Wii, Wo, Wig],
Fs = [Wla Wa, Ws, Wy, Wy, We, Wy, Wi, Wg, Wy, Wig, Wiy, W13] )
Fy9 = [Wla Wo, W, Wy, Wy, We, Wiy, W, Wy, We, Wig, Wi, le] )
Fio = [Wh, Wa, Wy, Wy, W5, We, Wiy, Ws, Wiz, We, Wig, Wy, Wis]
Fu o = [Wi, Wo, Wa, Wy, Ws, We, Wiy, Wi, Wis, W, Ws, Wy, Wig]
Fir2 = [WlaW27W37W47W57WG,W117W127W87W77W97W107W13] )
Fis = (Wi, Wa, W5, Wy, W5, W, Wiy, Wr, Wy, Wig, Ws, Wi, Wis] ,
Fra = [Wh, Wo, Wy, Wy, W5, We, Wiy, We, Wiz, Wig, Ws, Wy, Wis]
Fi5 = [Wla W, W3, Wy, Wy, We, Wiy, We, Wis, Wy, Wg, Wia, Wlo] ) 6.11)
Fie = (Wi, Wa, W3, Wy, W5, We, Wiy, We, W, Wy, Wig, Wia, Wi,
Fir = Wy, Wo, Wa, Wy, W5, Wio, W, Ws, We, Wo, Wiy, Wia, Wis],
Fig = [Wb W, W3, Wy, Ws, Wi, We, Wia, We, Wy, Wg, Wiy, W13] )
Fro = [Wi, Wo, W3, Wy, W, Wi, Wiy, Wig, We, Wr, Ws, Wy, Wig],
Foo = [Wh, Wo, Wy, Wy, W5, Wig, Wir, Wr, W, Wy, Ws, Wia, Wis]
For = [Wb W27 Ws, W4, W5, W10, W67 Ws; Wg, W7, Wn, W12, W13] )
Fa = [Wh W, W3, Wy, Wi, Wi, We, Wg, Wis, We, Wiy, Wy, W12] )
Foz = [Wh, Wo, Wy, Wy, W5, Wio, W, Wia, Wy, Wr, Ws, Wiy, Whs],
For = [Wb W, Ws, Wy, W, Wi, We, Wia, We, We, Wiy, Wy, W13] )
Fos = [Wh W, W3, Wy, W, Wi, We, We, Wis, Wy, Wg, Wiy, W12] )
Fos = [Wy, Wo, W3, Wy, W5, Wig, We, Wr, Wy, Wo, Wiy, Wia, Wis],
Far = [Wb Wo, W, Wy, Wy, We, Wo, W5, Wiz, Wig, Wg, Wiy, W12] )
Fog = [Wh W, W3, Wy, W, We, W, Wy, Wy, Wig, W11, Wia, le] )
Fog = [Wh, Wo, Wy, Wy, Wy, We, Wiy, W5, Wiz, We, Ws, Wia, W],
Fso = [Wh, Wa, W, Wy, Wy, We, Wiy, W5, Ws, Wo, Wig, Wia, Wis] .

Proof. There are exactly 13!=6227020800 permutations of (1,..., N)=(1,...,13).
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For each permutation 7 = (i,...,iy) of (1,...,13) we check if (6.5) holds. By
MAGMA, we obtain that the permutations 7 = (i1, ...,iy) of (1,...,13) satisfying

(6.5) are exactly the ones corresponding to Fi, . .., Fsgso.

]

Let g be a generator of [F;; with ¢ +29+1=0. Let Wi, Wa, ..., W5 be all 2-
dimensional F3-linear subspaces of F3s. There exists 1 < j < 13 such that 1 € Wj.

By renumbering, we assume that 1 € W1. Let

A

W) =(1Lg¢")

for 1 < j < 12. Note that g'* € F%. Using ¢ + 2g + 1 = 0, we obtain that

(Lg) = (1,g°) = (L,¢°),
(Lg*) =(1,¢4%) = (1,¢"),
(Lgh) =(1,¢°) = (Lg"),
(1,¢% = (1,¢") = (1,¢")

Let J = {1,2,4,6}. Note that for j € 7, let C(j) be the collection given by

aﬁ={kUJWﬂ]kmyWuﬂwwkf%y”WUﬂ} (6.12)

Proposition 2. Let F, be a finite field with ¢ = 3. Letn = 3, T = (1,2) and d = 4.
Let g be a generator of F5; and let J = {1,2,4,6}. For each j € J, the collection
C(j) given in is a maximal flag code of type-T in F3 and hence an element of
M, 5((1,2);4). Moreover, C(j1) # C(j2) if j1, j2 € J and j1 # jo.

Proof. Recall that W = (1,¢7) = {0,1,2,¢7,2¢7, ¢ + 1,47 + 2,2¢" + 1,2¢7 + 2}

and

et ={ [ W0 [t a7 0)] oo [16) 7)) |
As g is a generator of Fi,, we have (¢") = {0,¢"} # {0,g”} = (¢") for
1 < iy < iy < 12. We observe that g W (5) # {0, g2, g1, g2 + g2t} = g2/ ()
for 1 <1 < 19 < 12. Indeed, otherwise



Put? = 725 — 7;. Note that 1 <7 < 12. We have

W(j) =(1,¢°) and
gW () = (g’ g").
If g'W(j) = W(j), then 1 € ¢'W () and ¢' € ¢'W (j). These imply

1 =a.g" +b.g™i,
¢ =cg +dgt.

for a, b, c,d € F5. Hence, we also have

l=cg 7 4+dg =ag +bg™. (6.13)
Put z = ¢’. Dividing (6.13) by ¢, we obtain
cr '+ d=a+bx

and hence

baz? + (a+ d)z + ¢ = 0. (6.14)

Using (6.14), we get a contradiction as F3(x) = F3s and the minimal polynomial of

x over [F3 has degree 3.

Next we observe that

{0,9'} = (¢") CgW ()
— {0,4°, 2, ¢, 247 g + g7 2" + ¢, g + 2979, 241 + 2479,

These arguments show that C(j) is a maximal flag code of type-T in Fss.

Finally, we show that C(j1) # C(j2) if j1, jo € J and j; # j2. Indeed
[(1) (L, ¢™)] € C(j1) \ C(j2) as [(1),(L,¢"%)] € C(j2) and
(1,97) # (1,97).
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Corollary 2. Let IF, be a finite field with ¢ = 3. Letn = 3, T = (1,2) and d = 4.
Let g € F3s with g> + 29 + 1 = 0. Then the maximal flag codes of type-(1,2) in
F3s obtained by [23] correspond to the subset {Fy, Fo, F3, F4} of the ones given in

(6-11).

Remark 6. Combining Theorem |6l and Corollary 2] we observe that we detect 3852
maximal flag codes of type-(1,2), and d = 4 for g = 3 and n = 3 in Theorem@

Next, we consider the case of ¢ = 3.

Theorem 7. Let IF, be a finite field with ¢ = 5. Letn =3, T' = (1,2) and d = 4. Let

3
N = = ¢> + q + 1 = 31 be the number of distinct 2-dimensional subspaces
2

q
in F3. Note that N is also equal to the number of distinct 1-dimensional subspaces

of F3. Let Vi, ..., Vy be an enumeration of all 1-dimensional subspaces of F3 given

explicitly as follows:

Vi=((0,0,1)), V2=((0,1,0)), V3=((0,1,1)), Vi=((0,1,2)),
Vs =((0,1,3)), Ve=((0,1,4)), Vz=((1,0,0)), Vs=((1,0,1)),
Vo=1((1,0,2)), Vie=((1,0,3)), Vi =((1,0,4)), Viz=((1,1,0)),
Vis=((1,1,1)), Viu=((1,1,2)), Vis=((1,1,3)), Vig=((1,1,4)),
Vir =((1,2,0)), Vis=((1,2,1)), Vie=((1,2,2)), Vao =((1,2,3)),
Vo =((1,2,4)), Va2 =((1,3,0)), Vas =((1,3,1)), Vaa=((1,3,2)),
Vos = <(1,373)> , Vas =((1,3,4)), Vor= <(17470)> , Vag = <(1,4, 1)> )
Vag = ((1,4,2)), Vao =((1,4,3)), Va1 =((1,4,4)).
Let Wy,...,Wx be an enumeration of all 2-dimensional subspaces of T3 given
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explicitly as follows:

010 100 110 120
Wi =rs , Wy =rs , W3 =rs , Wy=rs ,
001 001 001 001

130 140 1 1

Wy =rs , W =rs , Wr = 00 , =rs 00 ,
001 001 010 011
100 100 100 101

WQZT'S ,Wlo—T’S ,WH:T'S ,ng— S
012 013 01 010
101 101 101 101

W13:7'S ,W14:7’S ,W15:7"S ,W16:7"S
011 012 013 0114
102 102 102 102

Wiz =rs ,Wisg =7rs Wig =71s ,Woo =1s

1 010)  ° 011) * 012) * 013

W 102 W 103 W 103 W 103

=rs , =rs , =rs , =rs

& 014)  * 010)  * 011) 012
103 103 104 104

Wos =1s ,Wae =1s Waor =rs ,Was =1s

2 013) 014) 7 010)  * 011
104 104 104

Wag =1s Wag=rs Wsy =1s

2 012)7 > 013) 014

Here, rs denotes the row space of the corresponding 2 x 3 matrix over I,,.

Under the notation of (6.4), (6.3), (6.6), the set My, 3((1,2);4) of maximal flag
codes of type-(1,2) with d = 4 in T3 is exactly the set of 4598378639550 flag codes

F1, ..., Fusos378639550 have been given explicitly detected by an exhaustive search via
MAGMA [8]. This much data is not easy to store. Therefore, for a specific purpose,
one can get as many maximal flag codes of type-(1,2) with d = 4 in F2 from the

output of this construction.

Proof. There are exactly 31! = 8222838654177922817725562830000000 permuta-
tionsof (1,..., N)=(1,...,13). For each permutation 7 = (iy,...,ix)of (1,...,31)
we check if holds. By MAGMA, we obtain that the permutations 7 = (i1, ...,iy)
of (1,...,31) satisfying are exactly the ones corresponding to

-Fla s 7]:4598378639550‘
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Let g be a generator of F}, with ¢° + 39 + 2 = 0. Let Wl, Wg, ey W31 be all 2-
dimensional F5-linear subspaces of F5s. There exists 1 < j < 31 such that 1 € Wj.

By renumbering, we assume that 1 € Wi. Let
W) = (Lg’)

for 1 < j < 30. Note that ¢3! € F£. Using ¢ + 3g + 2 = 0, we obtain that

(Lg) =(1,¢% =(1,9" =(1,9") =(1,¢*),
(Lg* =(9") =(,¢") =(1,9") =(1,¢"),
(LgY) =(1,9" =(L,¢") =(L¢"?) =(1L4¢),
(Lg) =(Lg¢% =(,¢% =(Lg") =(14"),
(Lg") =(Lg") =(1,¢%) =(1,9%) =(1,¢7),
(1,g%) =(1,¢') =(1,¢") =(1,¢*) =(1,¢97),

Let 7 = {1,2,4,5,7,12}. Note that for j € 7, let C(j) be the collection given by

cj) = { (0 WG], (@) g @) (6, 6T ()] } (6.15)
Proposition 3. Let F, be a finite field with 5 = 3. Letn = 3, T = (1,2) and d = 4.
Let g be a generator of Fi; and let J = {1,2,4,5,7,12}. For each j € J, the
collection C(j) given in is a maximal flag code of type-T in T} and hence an
element of My, 3((1,2);4). Moreover, C(j1) # C(j2) if j1,j2 € J and j1 # jo.

Proof. Recallthat W = (1,¢7) = {0,1,2,3,4, ¢7, ¢+1, ¢7+2, g7 +3, g7 +4, 2¢7, 24"+
1,2¢7 +2,2¢7 + 3,297 +4,3¢7,3¢° + 1,397 +2,3¢° +3,3¢7 +4,4¢7,4¢° + 1,447 +
2,49’ + 3,49’ + 4, } and
et = { [ WG] [0 G)] ... [0 07 G)] .

As g is a generator of F};, we have (¢") = {0,9"} # {0,¢”} = (g*) for
1 < iy < iy < 30. We observe that g W (5) # {0, ¢”, g1, g + gt} = g2W (4)
for 1 <17 < i < 30. Indeed, otherwise

W(j) = g= "W ().
Put i = 75 — 4. Note that 1 < 7 < 30. We have

W(j) =(L¢’) and

gW () = (g’ g™).
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If g'W(j) = W(j), then 1 € ¢'W () and ¢' € ¢'W (j). These imply
1 =ag +0bg™,
¢ =cg +dgt.
for a, b, c,d € 5. Hence, we also have
l=cg 7 4+dg =ag +bg™. (6.16)
Put x = ¢’. Dividing by ¢°, we obtain
ct '+ d=a+bx
and hence
bz’ + (a +d)x +c=0. (6.17)

Using (6.17), we get a contradiction as F5(z) = F5s and the minimal polynomial of

x over [F5 has degree 3.

Next, we observe that
{0,y =(¢') C gW ()
—{0, g%, 24", 3¢", 4g°, g7 291 3g1H1 4giHT | gt 4 git 2g 4 gH,
3g' + 9"t 49" + g™, g + 29" 29" + 29" 3¢° + 29"
4g" +2¢"7, " + 39", 2¢° + 39", 3¢" + 3¢°7, 4g" + 3¢",
g+ 4g™H 2g1 + 4gH g1+ 4git Agh + 4gitiY.

These arguments show that C(j) is a maximal flag code of type-T in F5s.

Finally, we show that C(j;) # C(jo) if j1, jo € J and j; # jo. Indeed
(1), (L, ¢/)] € C(51) \ C(ja2) as[(1),(1,¢7%)] € C(j2) and
(Lg") #(1,97).

]

Corollary 3. Let F,, be a finite field with ¢ = 5. Letn = 3, T = (1,2) and d = 4.
Let g € Fys with g> + 2g + 1 = 0. Then the maximal flag codes of type-(1,2) in Fss
obtained by [23|] correspond to the subset {F, Fo, Fs, Fu, Fs, F¢} of the ones given

in *%2.
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Remark 7. Combining Theorem [7] and Corollary Bl we observe that we detect
4598378639550 maximal flag codes of type-(1,2), and d = 4 for ¢ = 5 and n = 3 in
Theorem [/

Remark 8. The main point of the work by Alonso et al. in [4] is to construct flag
codes via spreads and the number of collections of certain types of flag codes with a
given minimum distance d under a fixed vector space F' can be calculated with the

help of matcihngs and perfect matchings of graph theory.

The results we share in this section coincide with the sequence from the online integer
encyclopedia [29].
24,3852, 18534400, 4598378639550.

These integers are the numbers of permanents of a projective plane of order n for
q=2,q=3,q=4,q = 5, respectively. It is also the number of perfect matchings
between points and lines in a projective plane. It should be noted that this matching
relies on inclusion so that any point is eligible to match with a line such that the

chosen point is involved by that line.

6.1 Characterization of All Maximal Flag Codes of type-(1,2) in ]Ff]l with d =4
for g =2

Let I, be a finite field, let n = 4, T" = (1,2) and d = 4. Using the information
provided by [23], we obtain that
Ar,a((L,2)i4) =¢" +¢" +q+ 1.

Let C be a maximal flag code of type-(1,2) with d = 4 in IF; (see Definition @) There

is an important difference from the case of Section 3. Note that C is not a full flag.

Note that the number N, of distinct 1-dimensional IF-linear subspaces and the num-

ber N, of distinct 2-dimensional F-linear subspaces in IF, are

E _ 3, 2 | 4 2 2
N, = ) =q¢°+q¢°+q+1and Ny, = ) =@+ 1)(¢"+q+1).
q q

Let [U; C Us), [Vi C Vi) € C be two distinct flags. Note that

43



ds (U1, Vi) + ds(Us, V) > 4. (6.18)

Assume that U; = V;. Then (Us N V4) D Uy and hence

ds(Uy, Vi) =0 and ds(Us, Vi) < 2. (6.19)

Combining (6.18)) and (6.19), we conclude that U; # Vi. If Uy # Vj and Uy = V5,
then

ds(Uy, V1) +ds(Us, Vo) =2+ 0= 2. (6.20)
Let Vi,..., VN, be a fixed enumeration of 1-dimensional distinct subspaces of IF;‘.
Let W7, ..., Wy, be a fixed enumeration of 2-dimensional distinct subspaces of IF;‘.

Using the arguments above, in particular (6.18)), (6.19) and (6.20), we obtain that a

maximal flag code C of type-(1,2) with d = 4 in IF;l is represented uniquely as an

Ni-tuple.
C= Wy, W, .. .,WZ-Nl] (6.21)
where
%CVVZ‘I,‘/QCWZ'Q,...,VNl CVVL‘N1 (6.22)
and

{i1,d9,...,in,} C{1,2,..., Ny} and iy, s, ..., iy, are mutually distinct. (6.23)

Hence, the problem of finding a maximal flag code of type-(1,2) with d = 4 in F;
is exactly finding a subset Z = {iy,4s,...,in,} of size Ny in {1,2,..., Ny} as in
(6.20) such that (6.19) holds. We solve this problem completely if ¢ = 2 and using

exhaustive computer search via MAGMA [8]] in the following theorem.

Theorem 8. Let F, be a finite field with ¢ = 2. Letn = 4, T = (1,2) and d = 4.

4
Let Ny = = ¢+ ¢® + q + 1 = 15 be the number of distinct 1-dimensional
1

q
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subspaces in F5. Let Vi, ..., Vy, be an enumeration of all 1-dimensional subspaces

of T3 given explicitly as follows:

Vi =((0,0,0,1)), V>2=((0,0,1,0)), V5=(0,1,0,0)),
Vi=((1,0,0,0)), V5=((0,0,1,1)), Vs=((0,1,1,0)),
Vi =((1,1,0,0), Vs=((1,0,1,1)), Vo =((0,1,0,1)),
‘/10 = <(170a ]-70)> ) ‘/11 == <(07 17 17 1)) ) ‘/12 = <(1a la ]-70)> )
Vis=((1,1,1,1)), Via={((1,1,0,1)), Vi5=((1,0,0,1)).
4
Note that Ny = = (¢* + 1)(¢* + ¢ + 1) = 35 is the number of dis-
2
q
tinct 2-dimensional subspaces in ¥3. Let Wy,... , Wy, be an enumeration of all
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2-dimensional subspaces of T3 given explicitly as follows:

1000 1000 1000
Wi =rs , Wy =rs , Wy =rs ,
0100 0101 0110

1000 1001 1001
Wy=rs , Ws=rs , We=rs ,
0111 0100 0101

1001 1001 1010
W7:7’5< ,Wgz’f’5< , Wo =rs ,

0110 0111 0100
1010 1010 1010
Wl():TS ,WH:TS ,W12:7”8 s
0101 0110 0111
1011 1011 1011
W13:TS ,W14:TS ,W15:T‘S s
0100 0101 0110
1011 1000 1001
Wi =1s Wiz =rs ,Wig=rs ,
0111 0010 0010
1100 1101 1000
W19:7“S ,WQ(]:?“S ,W21:7"S s
0010 0010 0011
1001 1100 1101
Woo = 1s Was =rs Wos=1s ,
- 0oo11) % o011/ 0011
1000 1010 1100
Was = 1s Wog =1s Waor =1s ,
0001 0001 0001

w. 1110 W 0100 W 0100
=rs , =rs , =rs ,
. 00o01)® 0010/ 0011
0101 0101 0100
W31:TS ,W32:TS ,W33:TS s
0010 0011 0001
0110 0010
Wss =1s ,Wss =1s )
0001 0001

Here, rs denotes the row space of the corresponding 2 x 4 matrix over IF,.Under

the notation of (6.4), (6.5), (6.6). the set My, 4((1,2);4) of maximal flag codes of
type-(1,2) in F3 contains exactly 328672649760 elements within the set of flag codes

Fi, ..., Fig below. Moreover, 522980 of them have been uploaded to the linkGithub
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Fi
s

= [Was, Wig, Wy, Wa, Wor, W3, We, Wi, Wig, Wy, Wag, Wig, Waz, War, W] ,
= [Was, Wiz, Wy, Wa, Woy, W3, We, Wi, Wig, Wy, Wag, Wig, Wag, W5, W],
Fy = [Was, Wiz, Wi, Wo, Way, W3, We, Wiz, Wig, Wy, Wag, Wig, Wag, W5, W],
Fi = [Was, Wiz, Wy, Wo, Way, Wa, We, Wiz, Wig, Wo, Wsg, Wig, Wag, Ws, Wis]
Fs = [Was, Wiz, Wi, Wa, Woy, W3, We, Wiz, Wio, Wo, Wag, Wig, Wag, Wi, Was]
Fo = [Was, Wiz, Wi, Wo, Way, W3, We, Wiz, Wig, Wo, Wao, Wig, Wag, Wiz, W]
Fr = [Was, Wiz, Wi, Wy, Way, Wa, We, Wiz, Wig, Wy, Wag, Wig, Was, Wiz, Wr]
Fs = [Was, Wiz, Wy, Wa, Way, Wy, We, Wiz, Wig, Wo, Wag, Wig, Wag, Wia, Wis]
Fo = [Was, Wiz, Wi, Wo, Way, Wz, We, Wiz, Wig, Wo, Wao, Wig, Wag, Wiz, Wo]
=

Was, Wiz, Wy, Wo, Way, Wa, We, Wi, Wig, Wy, Wag, Wig, Was, Wis, Wi].
(6.24)

9

)

Proof. Let V be a 1-dimensional subspaces of F5. The number of 2-dimensional
subspaces of 3 containing V' is exactly the number of 2 by 4 reduced row echeloned
matrices over Fy of rank 2 such that the first row is [1000]. Indeed if V C W and W
is a 2-dimesional subspace of I3, then considering a basis of W of the form {v, w}

with v € V shows this fact. Such reduced row echeloned matrices are

10 0 0 100 0 1000
01 2, 2o [0 0 1 25/ |0 0 0 1

with z1, 2o, 3 € 5. Hence, the number of 2-dimensional subspaces of IE“Z1 containing

Vis224+24+1=7.

For 1 <i <15, let J(i) be the subset of {1,2,...,35} such that V; C W; if and only
if j € J(i). The arguments above imply that |.J(:)| = 7 for each 1 < i < 15. Note
that, if 1 < 47 < 79 < 15, then

1J(i1) N J(is)| = 1. (6.25)

Let

C: [VViUVI/iQ)"‘aVViw]
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be a maximal flag code of type-(1,2) with d = 4 in [F3 represented as in . The
arguments above imply that i; € J(1),iy € J(2),...,415 € J(15). Moreover, using
(6.25), we have two situations. Assume first i; € J(1) is chosen. The two situations
depend on the following: By (6.23)), |J(1) N J(2)| = 1. If {i1} = J(1) N J(2), then
there are 7 choices for i5. Using MAGMA, we search maximal flag codes of type-

(1,2) with d = 4 in F; satisfying (6.21)), (6.22)), (6.23). We update the online table

periodically.

Let g be a generator of F}, with ¢* + g + 1 = 0. Let Wl, Wg, cee W5 be all 2-
dimensional [F5-linear subspaces of Fo1. By renumbering, we assume that 1 € Wh.

Let

A

W) =(1¢")

for 1 < j < 14. Using g* + g + 1 = 0, we obtain that

ct) ={[w 0] [0 [ 0] ) 620

Proposition 4. Let F, be a finite field with ¢ = 2. Letn = 4,7 = (1,2) and d = 4.
Let g be a generator of Fy, and let J = {1,2,3,6,7,11}. For each j € J, the
collection C(j) given in is a maximal flag code of type-T in F3 and hence an
element of Mg, 4((1,2);4). Moreover, C(j1) # C(ja) if j1,j2 € J and j1 # ja.
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Proof. Recall that W = (1, ¢7) = {0,1,¢7, ¢/ + 1},
et ={ [ WG] [0 WG] ... [0 a7 G)] .

As g is a generator of F},, we have (¢") = {0, ¢} # {0,¢"} = (¢”) for1 < i; <
iy < 14. We observe that g TV (j) = {0, g™, g7, g + g +7} #£ {0, g'2, g7, g2 +
gt} = giQW(j) for 1 < i; < iy < 14. Indeed, otherwise

W (j) = g2 "W (j).

Put? = 725 — 7;. Note that 1 <7 < 14. We have

W(j) =(1,¢') and
giW(j) _ <gi7gi+j> :

If g'W (j) = W(j), then 1 € g'W (j) and ¢ € g'W (5). These imply

1 =a.g' +b.gt,
¢ =cg' +dg.

for a, b, ¢, d € 5. Hence, we also have

l=cg¢ 7 +dg =ag +bg™. (6.27)
Put 2 = ¢/. Dividing (6.27) by ¢‘, we obtain
cr '+ d=a+bx

and hence

bz’ + (a +d)x +c=0. (6.28)

Using (6.28), we get a contradiction as Fy(x) = Fy1 and the minimal polynomial of

x over [Fy has degree 4. Next we observe that
{0, = (¢") C gW(j) ={0,9', 9", 4" + g"}.

These arguments show that C(j) is a maximal flag code of type-T in Fa.
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Finally, we show that C(j;) # C(j2) if j1, jo € J and j; # j2. Indeed
[(1) (L, ¢™)] € C(j1) \ C(j2) as [(1),(L,¢%)] € C(j2) and
(1,g7) # (1,97).

]

Remark 9. Note that if j = 5, then g° € F4. Hence, we remove 5 in the list J in

Proposition | This is another difference to the Section [6]

Corollary 4. Let F, be a finite field with ¢ = 2. Letn = 4, T = (1,2) and d = 4.
Let g € Fou with g* + g + 1 = 0. Then the maximal flag codes of type-(1,2) in Fys
obtained by [23|] correspond to the subset { Fy, Fa, F3, Fa, Fs, F6} of the ones given

in (6.24).

Remark 10. Combining Theorem [8| and Corollary H| we observe that we detect ex-
actly 328672649760 maximal flag codes of type-(1,2) and d = 4 for ¢ = 2 and n = 4

in Theorem
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CHAPTER 7

CONCLUSION

In this work, we have studied a special form of subspace codes which is helpful to
increase the error-correcting capacity of the network via sending all of the previously
sent ones in the new transfer. This way of using subspace codes was introduced first
by Nebe et al. recently and got a lot of attention from researchers all around the world.
Especially the works of Alonso et al. and Sascha Kurz gave some characterizations
for some special forms. In addition, Sascha Kurz gave some results for the size of a
code under some parametrizations and some upper bounds for others. He stated that
his upper bounds are tight for ¢ = 2. We add a new perspective to the case, we count
the number of distinct maximal flag codes for some parameters and also give upper
and lower bounds for any arbitrary maximal flag codes. We also extend this concept
to sets and investigate the situation among a set and its subsets for various values.
This extension was necessary as working with subsets lets us handle the calculations
more flexibly. In this way, we find out that some of the upper bounds of Sascha
Kurz are not tight for ¢ = 1. This is possible with the help of modeling our flags
on different types of graphs and using some combinatorial works from the literature
mostly belonging to Bregman and Alon. This gives a hint that for higher ¢ values,

there might be some more interesting results.
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