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ABSTRACT

AFFECT AND PERSONALITY AWARE ANALYSIS OF
SPEECH CONTENT FOR AUTOMATIC ESTIMATION

OF DEPRESSION SEVERITY

Kaan Gönç

M.S. in Computer Engineering

Advisor: Hamdi Dibeklioğlu

September 2023

The detection of depression has gained a significant amount of scientific attention

for its potential in early diagnosis and intervention. In light of this, we propose a

novel approach that places exclusive emphasis on textual features for depression

severity estimation. The proposed method seamlessly integrates affect (emotion

and sentiment), and personality features as distinct yet interconnected modalities

within a transformer-based architecture. Our key contribution lies in a masked

multimodal joint cross-attention fusion, which adeptly combines the information

gleaned from these different text modalities. This fusion approach empowers the

model not only to discern subtle contextual cues within textual data but also to

comprehend intricate interdependencies between the modalities. A comprehen-

sive experimental evaluation is undertaken to meticulously assess the individual

components comprising the proposed architecture, as well as extraneous ones

that are not inherent to it. The evaluation additionally includes the assessments

conducted in a unimodal setting where the impact of each modality is examined

individually. The findings derived from these experiments substantiate the self-

contained efficacy of our architecture. Furthermore, we explore the significance

of individual sentences within speech content, offering valuable insights into the

contribution of specific textual cues and we perform a segmented evaluation of the

proposed method for different ranges of depression severity. Finally, we compare

our method with existing state-of-the-art studies utilizing different combinations

of auditory, visual, and textual features. The final results demonstrate that our

method achieves promising results in depression severity estimation, outperform-

ing the other methods.

Keywords: depression severity estimation, deep learning, natural language pro-

cessing, multimodal fusion.
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ÖZET

DEPRESYON ŞİDDETİNİN OTOMATİK TAHMİNİ
İÇİN KONUŞMA İÇERİĞİNİN DUYGULANIMA VE

KİŞİLİĞE BAĞLI ANALİZİ

Kaan Gönç

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Hamdi Dibeklioğlu

Eylül 2023

Depresyon tespiti, erken teşhis ve müdahale potansiyeli dolayısıyla bilimsel açıdan

önemli ölçüde ilgi çekmektedir. Bu sebeple, bu tezde depresyon şiddetinin tahmini

için yalnızca metin özniteliklerine bağlı kalan yeni bir yaklaşım önerilmektedir.

Önerilen bu yaklaşım, dönüştürücü tabanlı bir yapı içerisinde duygulanım (duygu

ve his) ve kişilik özniteliklerini farklı ancak birbirine bağlı kipler hâlinde en-

tegre etmektedir. Bu tezin ana katkısı, farklı metin kiplerinden elde edilen

bilgileri birleştirmeyi sağlayan maskeli ve çok kipli ortak çapraz dikkat füzyon

yaklaşımıdır. Bu füzyon yaklaşımı, modelin sadece metin verileri içindeki gizli

bağlamsal ipuçlarını ayırt etmesine değil, aynı zamanda modaliteler arasındaki

karmaşık bağımlılıkları da anlamasına olanak tanımaktadır. Önerilen mimaride

var olan bileşenler ile var olmayan bileşenler ayrıntılı olarak incelenmek üzere

kapsamlı deneysel değerlendirmelere tabi tutulmaktadır. Bu değerlendirmeler,

her kipin ayrı ayrı incelendiği tek kipli bir ortamda gerçekleştirilen deneyleri

de içerir. Değerlendirmelerden elde edilen bulgular, önerilen mimarinin kendi

kendine yeterli etkinliğini doğrulamaktadır. Bunlara ek olarak, bu tezde konuşma

içeriği içindeki cümlelerin önemini inceleyerek belirli metin ipuçlarının katkısına

dair değerli bilgiler sunulmaktadır. Aynı zamanda, önerilen yöntemin farklı

depresyon şiddeti aralıkları için değerlendirmeleri yer almaktadır. Son olarak,

önerilen yöntem farklı işitsel, görsel ve metinsel özellik kombinasyonları kul-

lananan mevcut en ileri düzey çalışmalar ile karşılaştırılmaktadır. Sonuçlar,

önerilen yöntemin depresyon şiddeti tahmininde umut verici sonuçlar elde ettiğini

ve diğer yöntemleri geride bıraktığını göstermektedir.

Anahtar sözcükler : depresyon şiddeti tahmini, derin öğrenme, doğal dil işleme,

çok kipli füzyon.
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Chapter 1

Introduction

Depression is a common mental disorder affecting millions worldwide. It can

cause persistent feelings of sadness, hopelessness, and loss of interest in daily ac-

tivities [1]. Depression can also impair physical health, social functioning, and

quality of life. Therefore, it is important to detect and treat depression early and

effectively. However, detecting depression can be challenging, as many people

may not seek professional help or disclose their symptoms due to stigma, lack of

awareness, or other barriers. Moreover, people do not give the same response or

express the same emotions in the face of situations they experience. Due to this,

experts have to make subjective evaluations specific to the patient throughout

the treatment. Therefore, developing auxiliary tools that can make objective and

generalizable determinations is preferred for obtaining accurate results. Following

this, we propose a novel multimodal approach to automatically predict the Per-

sonal Health Questionnaire (PHQ-8) score [2] from textual transcripts of clinical

interviews.

Recent advances in the literature enabled the development of automatic meth-

ods for depression detection based on auditory and visual cues [3–7]. These

methods analyze the speech and facial expressions of the patients to infer their

emotional state and level of depression. However, auditory and visual cues may

not be reliable for depression detection, as they can be affected by noise, lighting,
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or masking in unregulated or unpredictable environments. Therefore, using only

the text information without relying on any auditory or visual features can be

sufficient for depression detection, as it can capture the cognitive and linguistic

aspects of depression [8]. Moreover, text information is less likely to raise privacy

concerns than auditory and visual information, which may contain sensitive per-

sonal or biometric data that could be exploited by malicious actors. Therefore,

the audio or video records of the clinical interviews are not commonly shared

and distributed but it is more likely to get access to transcripts of the interviews.

Considering these reasons, the proposed method totally relies on text information

extracted from the transcripts of clinical interviews.

As Large Language Models (LLMs) have emerged as pioneering models in

the domain of Natural Language Processing (NLP), LLMs, such as BERT [9],

GPT [10], RoBERTa [11], and MPNet [12], are state-of-the-art models capable of

understanding, inferring, and generating human-like text. Leveraging the power

of these advanced LLMs, we employ them to create text representations for each

line existing in the transcripts. The representations extracted from pretrained

LLMs capture the contextual information and semantic meaning of the input

text at various levels of abstraction. While these abstract text representations

offer valuable linguistic features, relying solely on them can be limiting because

there are various factors that reflect an individual’s mental state and indicate

the presence or severity of depression. In this study, we utilize external sources

of information to acquire knowledge regarding the subject’s personality traits,

emotions, and sentiments based on the transcript data. Personality traits are

relatively stable patterns of thinking, feeling, and behaving that characterize an

individual. Emotions are short-term affective states that arise in response to

specific events or stimuli. Sentiments are opinionated tones, typically catego-

rized as positive, negative, or neutral. These three aspects of natural language

data can provide valuable insights into one’s psychological well-being and mood

disorders. For example, some studies have found that certain personality traits,

such as neuroticism or extraversion, are associated with a higher or lower risk

of depression [13]. Other studies have shown that the recognition and under-

standing of emotions play a crucial role in the accurate detection and assessment
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of depression, highlighting the significance of emotional factors in comprehensive

diagnostic procedures. [14]. Furthermore, sentiments, such as positive or negative

polarity, can indicate one’s satisfaction or dissatisfaction with life aspects and the

severity of their mental disorder [15]. In addition to the abstract representations,

our approach extracts text representations for affect and personality features from

LLMs that have been fine-tuned for the corresponding classification tasks.

The main contributions of this thesis are listed below:

• We propose a novel architecture for the automatic depression severity esti-

mation task based on multiple text modalities.

• To our best knowledge, we are the first to utilize the emotion, sentiment,

and personality features in a single approach for the automatic depression

severity estimation task.

• We design a new multimodal joint cross-attention technique to fuse multiple

text modalities.

• We fine-tune the pretrained RoBERTa model for the utterance-based per-

sonality traits classification task and leverage it as an auxiliary model to

our main approach.

• We conduct comprehensive experimental analyses for the proposed method

and provide elaborative discussions on the results.
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Chapter 2

Related Work

Textual features have been integrated into studies focused on the automatic de-

pression detection task, manifesting in various methodologies. Similar to our

proposed approach, several studies introduce techniques centered exclusively on

text modality for this purpose. For instance, Mallol-Ragolta et al. [16] devise

an architectural framework in which they input GloVe embeddings [17] of clini-

cal transcripts into a hierarchical attention network. This network hierarchically

weighs the textual components to predict the binary PHQ-8 label, indicative of

depression presence or absence. In a parallel vein, Xezonaki et al. [18] formulate

a hierarchical attention network aimed at PHQ-8 label prediction, utilizing tran-

scripts. Additionally, they incorporate external knowledge conditioning into their

methodology, encompassing facets like emotional tone, sentiment, and psycho-

linguistic attributes. While akin to our methodology, they leverage manually

crafted features, whereas we derive them from latent representations of fine-tuned

LLMs. Dinkel et al. [19] architect an ensemble comprising cascaded bidirectional

gated recurrent unit (GRU) [20] layers, followed by classification and regression

layers. They supply this architecture with embeddings at word and sentence lev-

els, harnessed via Word2Vec [21], fastText [22], ELMo [23], and BERT models.

Rutowski et al. [24] adapt the AWD-LSTM architecture [25] for the depression

detection task, adroitly fine-tuning the core model for the target task. This fine-

tuning methodology derives inspiration from the principles of ULMFiT [26]. Li
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et al. [27] conceptualize an architecture in which utterances within transcripts are

encoded through concurrent bidirectional LSTM layers. Specifically, these bidi-

rectional LSTM layers are nourished with BERT embeddings of said utterances.

This encoding is pursued by a subsequent phase involving a mutual self-attention

mechanism and a fusion operation.

As the global prominence of social media continues to surge, there arises a

corresponding increase in the accessibility of personal information. The copious

volumes of textual user-generated content facilitate the extraction of individual

characteristics through linguistic attributes. Concurrently, social media profiles

afford the monitoring of user actions, thereby furnishing supplementary insights

into user mood and personality. Studies such as [28, 29] propose multimodal

frameworks that amalgamate these textual attributes with user conduct indica-

tors for the task of depression detection. In these studies, a common approach in-

volves the utilization of hierarchical attention networks to encode user-generated

posts, coupled with the incorporation of behavioral cues encompassing social net-

work, emotional, and topic-related features. Notably, similar to our methodology,

they harness ancillary information for analysis. Nevertheless, a point of depar-

ture lies in their reliance on hand-crafted features, while our approach entails the

derivation of latent representations facilitated by LLMs.

Various studies involve amalgamating textual attributes with auditory and

visual counterparts, with the overarching objective of imbuing the analytical

paradigms with heightened informational content. Many instances of social media

allow posting either textual or visual content, it enables the analysis of textual

and visual features combined for depression detection from social media. Shet et

al. [30] propose a method that involves a cross-domain framework. This method

aims to enable depression detection in an online setting via social media for more

countries with different cultural settings. Their cross-domain framework trans-

fers the relevant information across heterogeneous domains. While doing it, they

incorporate hand-crafted emotion-based textual features along with color-related

visual attributes. Similar to [28, 29], they also involve behavioral cues in their

input features. Lin et al. [31]. also enable online detection of depression followed

by an offline training phase. They combine textual features and visual features,
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both collected from social media, using a low-rank multimodal fusion technique

proposed by [32]. They extract the textual features from BERT and the visual

features from a CNN-based binary classifier for the training procedure. As a very

different approach, Gui et al. [33] adopt the reinforcement learning (RL) paradigm

in their study in order to automatically select related indicator texts and images

from the past posts of the users. They use a GRU layer and the pretrained VGG-

Net to extract the textual and visual features, respectively. Later, a multilayer

perceptron is responsible for depression classification using the features selected

by the multi-agent RL model that they introduce.

Given the ease of transforming speech recordings into text through automatic

speech recognition tools, and the inherent alignment between sequential textual

and auditory data, the concurrent utilization of auditory and textual features has

emerged as a highly favored approach. Therefore, many recent studies amalga-

mate textual features with auditory counterparts, with the overarching objective

of imbuing the analytical paradigms with heightened informational content. In

the work by Lam et al. [34], a hybrid approach is adopted, where data is initially

transformed into mel-frequency spectrograms. Subsequently, textual attributes

undergo encoding through transformer-based encoders [35], while spectrogram

features are subjected to convolutional neural network (CNN) encoding. The

ensuing step involves the concatenation of the latent representations emanat-

ing from these two distinct modalities. Meanwhile, Ghadiri et al. [36] employ a

multi-pronged strategy, incorporating auditory data through low-level attributes

like mel-frequency cepstral coefficients, spectrograms, and mel-frequency spectro-

grams. Further inclusions encompass openSMILE features [37] and graph-based

descriptors. For textual input, a pre-trained BERT model is leveraged for tran-

script encoding. Zhang et al. [38] dissect auditory and textual features discretely

for the depression detection task. In the textual realm, Doc2Vec embeddings [39]

are harnessed and channeled into an Adaboost classifier. Simultaneously, various

audio-text paradigms accommodate affect and personality features. In this con-

text, Fan et al. [40] extract nuanced linguistic features through NLTK [41], com-

plemented by sentiment facets extracted from a fine-tuned BERT model rooted in

the Stanford Sentiment Treebank dataset [42]. The emphasis here diverges from

6



our approach, where latent representations are culled from the terminal stratum

of the fine-tuned network. In tandem, auditory components undergo meticulous

feature engineering, followed by encoding using a multi-scale temporal dilated

CNN architecture that they architect. Concatenation with textual features final-

izes this fusion. Moreover, Van Steijn et al. [43] furnish an assemblage of linguistic

attributes, comprising representations from a Sentence BERT network [44] and

the Linguistic Inquiry and Word Count (LIWC) 2015 [45] features. The lat-

ter’s demonstrated correlation with personality traits [46] bolsters its inclusion.

Additionally, sentiment traits are discerned through Flair’s sentiment analysis

library [47], culminating in a comprehensive ensemble of attributes for analysis.

There also has been a notable surge in research endeavors dedicated to amalga-

mating textual, auditory, and visual modalities, with the objective of addressing

the depression detection task from a multifaceted perspective encompassing di-

verse aspects. Pampouchidou et al. [48] present a comprehensive framework that

seamlessly merges high-level and low-level features extracted from audio, video,

and text data to enhance depression assessment accuracy. The proposed method

involves the extraction of high-level features such as mel-frequency cepstral coeffi-

cients (MFCCs) from audio, facial expressions from video, and textual sentiment

analysis from text. These features are then fused to provide a holistic view of

an individual’s mental state. Later, a decision tree method is used for the clas-

sification problem. Williamson et al. [49] introduce a pioneering approach that

leverages vocal, facial, and semantic cues, amalgamating information from these

modalities to offer a more holistic view of emotional well-being. The study em-

ploys feature extraction techniques such as pitch analysis for vocal cues, facial

expression recognition for facial cues, and sentiment analysis using GloVe embed-

dings for semantic cues. These features are then combined and fed to a Gaussian

staircase model to enhance depression detection accuracy. Sun et al. [50] focus on

selecting and combining the most relevant textual, auditory, and visual features.

Specifically, the method extracts relevant audio features such as MFCCs, spec-

trograms, and possibly prosodic cues from speech recordings. Visual features are

also extracted, which may include facial expressions, body language, and other vi-

sual cues obtained from video data. These extracted auditory and visual features
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are then carefully selected to identify the most informative ones for depression

assessment. Later, they are integrated with selected text-based features, which

can include linguistic patterns, sentiment analysis, and semantic information from

text data. A random forest regression model is then trained on this combined fea-

ture set to predict and assess depression levels. These studies rely on hand-crafted

features and conventional machine learning algorithms. Over time, the field has

transitioned towards employing more sophisticated deep learning techniques. Ray

et al. [51] employ a multi-level attention network to jointly process text, audio,

and video data, enhancing depression prediction through attentive feature extrac-

tion. The method involves extracting features like text embeddings from BERT

models, auditory features through audio signal processing, and visual features

using techniques like facial expression recognition. The multi-level attention net-

work then dynamically weighs and fuses these features for enhanced prediction.

Makiuchi et al. [52] exploit deep learning techniques that are harnessed to fuse

representations from textual, auditory, and visual data, showcasing the power of

neural networks in extracting meaningful features across modalities. Text data

undergoes encoding by CNN layers interpreting the BERT embeddings, while au-

ditory and visual data are processed through gated CNNs. These representations

are then combined with simple concatenation. Furthermore, Zheng et al. [53]

highlight the significance of modeling inter-modal relationships through a graph

attention model to improve depression detection accuracy. The method involves

the extraction of features from different modalities, such as textual, auditory,

and visual data, and constructs a graph-based representation to capture the re-

lationships between these features. Wei et al. [54] explore sub-attentional fusion

to estimate depression across various modalities, enhancing the robustness of de-

pression assessment. Their approach involves the extraction of sub-attentional

features from textual, auditory, and visual data, with a focus on capturing subtle

cues that may indicate depression. To achieve that, they employ convolutional

bidirectional LSTM as their backbone architecture. These sub-attentional fea-

tures are then combined using an attentional fusion approach that is inspired by

the work of Dai et al. [55]. This fusion approach relies on the attention mech-

anism similar to our multimodal fusion approach but it is designed specifically

for the feature fusion of three-dimensional input data. Lastly, Saggu et al. [56]
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introduce DepressNet, a hierarchical attention mechanism that adeptly combines

insights from multiple modalities, capturing both global and local patterns within

the data, thereby elevating the accuracy of depression detection. The method

extracts features from textual, auditory, and visual data and uses hierarchical

attention mechanisms to weigh and combine these features effectively.

As mentioned, various ways of text embedding and encoding techniques are

employed by existing studies. For the purpose of transcript data embedding, we

leverage auxiliary networks, which have been fine-tuned across multiple down-

stream tasks. In congruence with [34], our text encoding is executed through

the utilization of transformer encoders. While certain studies advocate the in-

tegration of varied cues to fortify the text modality, the absence of advanced

fusion techniques is evident. Within the realm of processing multimodal tex-

tual features, we introduce a novel joint cross-attention fusion module into our

architectural framework.
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Chapter 3

Method

The primary objective of the proposed method is to accurately predict the PHQ-8

score of a given clinical interview transcript that consists of a sequence of sen-

tences. It comprises several interconnected components. Initially, each sentence

within a transcript undergoes a sequence of auxiliary networks, each designed

to capture distinct representation types. Once we obtain the sentence embed-

dings, which we refer to as sentence tokens, for each modality, we standardize the

feature dimensions to ensure equitable treatment of modalities during encoding.

Subsequently, we inject a new token, called regression token, at the outset of the

hidden representation matrix for each modality. These modified hidden represen-

tations then pass through a transformer block, consisting of specialized cascaded

transformer encoders tailored to each modality. Later, the encoded representa-

tions of each modality are combined through a novel fusion approach: Masked

Multimodal Joint Cross-Attention Fusion (MMJCA-Fusion). The resulting fused

output is pooled by extracting the hidden representations associated with the

[REG] token. Finally, the pooled output is fed through a feed-forward network

and a regression layer. The output of the regression layer yields a prediction of the

PHQ-8 score. The high-level architecture of the proposed method is visualized in

Figure 3.1. In the subsequent sections of this chapter, we provide a comprehensive

and detailed exposition of each component of the proposed methodology.
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Figure 3.1: High-level architecture of the method. The dashed arrows indicate
that there is no back-propagation in those connections.

3.1 Auxiliary Networks

We exploit four different types of representations, each enriching the model with a

different aspect. Three of these representation types are for personality, emotion,

and sentiment. The other one is for the abstract representations that provide

the contextual information and the semantic meaning of the input sentence. We

extract these different types of representations from several auxiliary pretrained

LLMs.

3.1.1 Abstract Network

For the abstract representations, we employ all-mpnet-base-v2 introduced by

Reiemrs and Gurevych [44], that is the pretrained MPNet model optimized for

sentence embedding.

3.1.2 Emotion & Sentiment Networks

For the affect, including emotion and sentiment, representations, we employ LLMs

that are fine-tuned for the corresponding classification tasks. While choosing and

adopting the fine-tuned LLMs, we ensure fairness between the representations

extracted from separate models using the same fine-tuned architecture for each

model. It implies that they have been pretrained and fine-tuned using similar

configurations and assumptions. This mitigates potential biases that could arise
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if the representations were learned from models with different architectures. For

the emotion representations, we employ the model introduced by Barbieri et

al. [57], which has been fine-tuned for the emotion classification task. For the

sentiment representations, we employ the SiEBERT model [58], which has been

fine-tuned for the sentiment classification task. Both models have been fine-tuned

on pretrained RoBERTa architecture.

3.1.3 Personality Network

As we endeavor to employ equitable architectures for the extraction of affect and

personality representations, it is also equally imperative to acquire a correspond-

ing framework for the extraction of personality trait representations. However,

transformer-assisted text-based studies in the literature do not offer such archi-

tectures satisfying the expectations. First of all, our method requires an auxiliary

model that is trained for utterance-based personality trait classification since our

method proposes to extract personality representations for each sentence existing

in the transcripts individually and independently. However, most of the existing

studies [59–61] approach the personality traits classification task in the person-

based setting. It means they make a single prediction for multiple utterances

(posts, documents, etc.) that belong to the same person rather than making a

prediction for each utterance itself. Some other studies [62,63] involve psycholin-

guistic features alongside text information. Although Li et al. [64] introduce a

considerably expedient work, they do not offer any available dataset or ready-to-

use model. In light of this, we train our own personality trait detection network

that we utilize to extract the corresponding representations.

We instantiate the personality trait detection network through the utilization

of the pretrained RoBERTa model followed by a multi-label classification layer.

The multi-label classification layer is connected to the hidden units associated

with the BOS (Beginning of Sentence) token in the last layer of the RoBETRTa

model. We have the multi-label classification layer since there are multiple bi-

nary personality trait categories, each indicating a different characteristic of the
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personality. We train the whole network, including fine-tuning all the layers of

the pre-trained RoBERTAa model, using multi-label binary cross-entropy loss

(LMLBCE) along with a regularization factor (LR). The total loss Ltotal can be

formulated as follows:

Ltotal = LMLBCE + λLR (3.1)

where λ is the regularization parameter. For the calculation of LMLBCE, we

compute the loss value (lc,b) for the c-th class and b-th sample in the batch. This

computation is as follows:

lc,b =− wcyc,b · log(σ(ŷc,b))

− (1− yc,b) · log(1− σ(ŷc,b)) (3.2)

where yc,b ∈ {0, 1} is the target value and ŷc,b is the output of the last linear layer

for the c-th class and b-th sample in the batch. Also, wc =
Nc,positive

Nc,negative
is the weight

of the positive answer for the c-th class, where Nc,positive is the total number of

positive samples and Nc,negative is the total number of negative samples. We add

these weights to avoid possible biases that could occur due to class imbalance.

Then, the loss vector for the c-th class becomes Lc = [lc,1, ..., lc,B], where B is the

batch size. On top of this, the loss matrix becomes L = [L1; ...;LC ], where C is

the number of classes. Afterward, we compute the final scalar LMLBCE value for

each batch by calculating the mean of the L matrix as:

LMLBCE = mean(L) (3.3)

In addition, we compute LR as:

LR = Variance({||w1||2, ..., ||wC ||2}) (3.4)

where wc is the weight vector associated with the c-th output neuron. The reason

we use the regularization factor is we can assume that the four categories of

personality types cannot be totally independent of each other. Therefore, we

avoid the output weights drifting apart from each other using this factor.

To extract the affect and personality representations from the auxiliary fine-

tuned RoBERTa models, we derive the hidden representations of the BOS token
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from the last layer of the models. By deriving the hidden representations of

the BOS token from the last layer, we obtain a condensed representation of the

input sentence that captures the learned features and context relevant to the

corresponding traits. We further exploit these representations for the depression

severity estimation task, treating them as distinct modalities.

Once we derive the representations from the auxiliary networks for each sen-

tence existing in a transcript, we obtain a sequence of embedded sentences. We

refer to these as sentence tokens. To standardize the number of sentence tokens

in each transcript, we apply [PAD] tokens to equalize the number of sentence

tokens in each transcript. As a result, each transcript is represented by a unique

matrix with the shape of Smax ×Dm. Here, Smax denotes the sequence length of

the transcript with the maximum number of samples among the transcripts that

exist in the training set. Dm refers to the hidden dimension of the m-th auxiliary

network.

3.2 Dimension Standardization

Since the text representations are extracted from a separate auxiliary network,

the feature dimension for each modality may differ. To ensure fair competition

between the modalities during encoding, we standardize the feature dimension to

a specific value, D. In cases where the feature dimension was initially not equal

to D, we pass it through linear transformation, GELU activation [65], and layer

normalization [66] layers to standardize it.

GELU is an activation function commonly used in deep neural networks. Given

a sequential input tensor x of shape (N,S,D), where N is the batch size, S is the

sequence length (S = Smax through the dimension standardization process), and

D is the feature dimension, the GELU activation function is applied element-wise

as follows:

GELU(x) =
1

2

[
1 + erf

(
x√
2

)]
· x (3.5)
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Here, x is the input tensor element and erf(·) is the error function, which is a

standard mathematical function used to calculate the error probability in statis-

tics and the cumulative distribution function of the standard normal distribution

in probability theory. This function maps each element of the input tensor x to

its corresponding GELU-activated value.

Layer Normalization is a technique used to normalize the activations of a layer

within a neural network. In order to apply Layer Normalization to a sequential

input tensor x of shape (N,S,D), we first compute the mean µ and standard

deviation σ for each example and sequence independently across the feature di-

mension:

µjs =
1

D

D∑
d=1

xjds (3.6)

σjs =

√√√√ 1

D

D∑
d=1

(xjds − µjs)2 (3.7)

Here, j indexes the examples in the batch, ranging from 1 to N . s indexes the

sequences in the input, ranging from 1 to S. d indexes the features in the input

tensor, ranging from 1 to D.

Then, Layer Normalization standardizes the input tensor x for each example

and sequence independently as follows:

LN(x)jds =
xjds − µjs

σjs

(3.8)

where LN(x) is the normalized output, µjs is the mean computed across the

feature dimension, and σjs is the standard deviation computed across the feature

dimension.

3.3 Addition of Regression Token

Inspired by the [CLS] token technique introduced in BERT, we include an addi-

tional token in our method. We refer to this token as the regression token ([REG]
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token). The primary aim of the [REG] token is to facilitate the regression task in

the context of multi-modal sequential data processing. We prepend a [REG] to-

ken to the beginning of each modality’s sequential data. This token is initialized

with values drawn from the Normal distribution N(µ = 0, σ = 1). As a result of

this addition, the shape of the hidden representation matrices becomes S × D,

where S = Smax + 1.

By incorporating the [REG] token into the input sequence, we aim to provide

the model with dedicated representations that encapsulate essential information

about the regression task. During the fusion of multiple modalities, we ensure

that the information from the [REG] token is seamlessly integrated into the com-

bined output. After the fusion process is complete, we employ a pooling strategy

where we extract the representations associated with the [REG] token. These

[REG] token representations serve as a critical bridge between the modalities

and the regression task, enabling our model to focus on relevant information.

These dedicated representations ensure that our model can effectively leverage

the information encapsulated by the [REG] token to make informed predictions,

effectively addressing the regression problem within the multimodal context.

3.4 Transformer Block

In the transformer block, there exist T number of cascaded transformer en-

coders [35] for each modality. Inside a single transformer encoder, we first feed

Xm,t, which is the input for the t-th transformer encoder of the m-th modal-

ity, to the masked multi-head self-attention layer. This layer is composed of the

concatenation of H number of heads which are obtained in a parallel manner.

The computation of the heads incorporates the self-attention mechanism. The

self-attention mechanism is a variant of scaled dot product attention where the

query, key, and value matrices are derived from the linear projection of the same

input matrix. The query, key, and value matrices of each head utilize unique

linear projections of Xm,t. For the h-th head, the query (Qh,m,t), key (Kh,m,t),
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and value (Vh,m,t) matrices are calculated as follows:

Qh,m,t = Xm,tWquery,h,m,t (3.9)

Kh,m,t = Xm,tWkey,h,m,t (3.10)

Vh,m,t = Xm,tWvalue,h,m,t (3.11)

where Wquery,h,m,t ∈ RD×Dh , Wkey,h,m,t ∈ RD×Dh , Wvalue,h,m,t ∈ RD×Dh are the

weight matrices. Here, Dh is the same for all heads and is calculated as Dh = D
H
.

Accordingly, we calculate the attention scores of the h-th head as follows:

Ah,m,t = softmax(
Qh,m,tK

T
h,m,t√

Dh

) (3.12)

The attention scores represent the weights assigned to sentence tokens in the

input sequence, reflecting their importance for the context. However, the [PAD]

tokens that we insert into the sequence do not contribute any information to the

context. Therefore, it is necessary to exclude them from the attention map. In

light of this, we mask out the attention scores associated with the [PAD] tokens

by setting their values to −∞. On top of this, we calculate the result of the h-th

head by multiplying the attention scores with the value matrix as follows:

headh,m,t = Ah,m,tVh,m,t (3.13)

Further, we concatenate the heads and linearly project them to obtain the output

Om, t of the masked multi-head self-attention layer.

Om,t = [head1,m,t, . . . , headH,m,t]Woutput,m,t (3.14)

where Woutput,m,t ∈ RD×D is the weight matrix. Later, we feed this output matrix

to a residual connection and a Layer Normalization layer.

X ′m,t = LN(Om,t +Xm,t) (3.15)

where LN stands for Layer Normalization. For the rest, we employ a feed-

forward network followed by the repetition of Eq. 3.15.

Xm,t+1 = LN(FFNm,t(X
′
m,t) +X ′m,t) (3.16)
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Here, FFNm,t stands for a two-layer feed-forward network. The first layer projects

the hidden representations from D dimensional space to 4D dimensional space

and the second layer projects back to D dimensional space. Both layers utilize

the GELU activation function for non-linearity.

For each modality m, we obtain Xm,T+1 as the result of the last (T -th) trans-

former encoder. This is also the output of the transformer block and is denoted

as X̂m, which is equal to Xm,T+1.

3.5 Masked Multimodal Joint Cross-Attention

Fusion (MMJCA-Fusion)

As different modalities convey diverse information related to their own context,

it is crucial to effectively capture their complementary relationship. To merge

these modalities, we utilize a cross-attention-based fusion approach, which en-

codes inter-modal information while preserving the intra-modal dependencies.

To achieve that, we rely on the cross-attention between the individual modalities

and the joint representation, which is the concatenation of the modalities over

the feature dimension. Previous works such as [67] and [68] also propose to incor-

porate joint representations for their cross-attention fusion mechanisms. Their

attention mechanism operates on the feature or modality levels. They aim to cap-

ture the dependencies between visual and audial representations across feature or

modality dimensions. In our method, the positions of sentence tokens correspond

to each other across the modalities. In light of this, we compute the attention

maps between the hidden representations of the sentence tokens along separate

modalities to capture the dependencies between the sentence tokens located in

the same position. This enables sequence information modeling for each tran-

script along multiple modalities. The architecture of the Masked Multimodal

Joint Cross-Attention Fusion (MMJCA-Fusion) module is visualized in Figure

3.2.
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Figure 3.2: Masked Multimodal Joint Cross-Attention Fusion

First, we linearly project the joint representation matrix, Z ∈ RS×Mdmodel , two

times separately using the transformation matrices Wkey ∈ RMD×D and Wvalue ∈
RMD×D. Here, S denotes the sequence length. Basically, the key and value

matrices for the cross-attention operation become:

K = ZWkey (3.17)

V = ZWvalue (3.18)

To obtain the query matrix, we also linearly project the encoded representation

matrix X̂m ∈ RS×D for the m-th modality where i ∈ {1, ...,M} and M > 1 is the

number of modalities. Hereby, the query matrix becomes:

Qi = X̂mWquery,m (3.19)

where Wquery,m ∈ RD×D is the transformation matrix. Further, we calculate the

attention scores, similar to Eq. 3.12.

Am = softmax(
QmK

T

√
D

) (3.20)

Similar to the approach that we employ in the transformer block, we mask out

the attention scores associated with the [PAD] tokens by setting their values to

∞. On top of it, we obtain the result of each attention operation by multiplying

the attention scores with the value matrix followed by a linear projection.

O′m = AmVWoutput,m (3.21)

where Woutput,m ∈ RD×D is the transformation matrix for the linear projection.

Afterward, we employ residual connection and layer normalization on top of the

attention operation as follows:

Om = LN(O′m + X̂m) (3.22)
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If we denote oreg,i as the vector that corresponds to the [REG] token index in Oi,

the final output, O = [oreg,1, oreg,2, ..., oreg,M ] is the concatenation of each oreg,i

across the feature dimension.

3.6 Feed-Forward Network & Regression

At the final stage of our model architecture, we employ a feed-forward network

followed by a regression layer. The feed-forward network consists of a series of

neural network layers. It extracts higher-level information from O by progres-

sively transforming it into lower-dimensional spaces. Considering the number of

layers is denoted by L, the set, Σ = {Σ1, . . . ΣL} indicates the number of neurons

that exist in the neural network layers. For instance, the l-th layer contains Σl

neurons. In addition, each layer utilizes GELU activation function for undergoing

non-linear transformation.

The output of the last neural network layer is connected to the regression layer.

Through a linear regression operation, this layer predicts a scalar continuous value

that corresponds to the PHQ-8 score.

For the optimization of the weights in the architecture, we employ we employ

the Concordance Correlation Coefficient (CCC) as the loss function, which is

effective in measuring the agreement between two variables and highly adaptive

to the regression tasks. CCC is calculated as follows:

CCC =
2ρσŷσy

σ2
ŷ + σ2

y + (µŷ − µy)2
(3.23)

where σŷ and σy are the standard deviations and µŷ and µy are the means of the

predictions and the target values, respectively. Also, ρ is Pearson’s correlation

coefficient between the predictions and the true values. Regarding this, we modify

CCC to obtain the loss function as follows:

LCCC = 1− CCC (3.24)
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Chapter 4

Experimental Setup

We build the experimental setup with the aim of analyzing the effects of com-

ponents that are included in or excluded from the model architecture. These

components involve employed auxiliary networks, the adaptation of temporal

modeling, the existence of the transformer block, the type of the pooling method,

and the fusion approach. We define a single experiment as the process of obtain-

ing the best model state utilizing a determined set of model components. Each

experiment consists of training procedures where we tune the hyperparameter

values. During each of these procedures, the model parameters are trained on

only the predetermined training set. The model does not encounter any samples

from the predetermined validation or test sets during the learning phase. The

validation set is used to evaluate the model performance during the training. The

test set is used to measure the test performance of the final model that is obtained

after each experiment. In this section, we explain how we configure the training

procedures, tune the hyperparameters, and select the best model state for each

experiment. Then, we define the evaluation metric that we use to perform the

assessments.
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4.1 Datasets

In this section, we provide a comprehensive overview of the datasets employed

in our study to evaluate the proposed depression severity estimation network,

and the datasets that have been used for fine-tuning the sentiment, emotion, and

personality networks, leveraged as integral components.

4.1.1 Dataset Used for the Assessment of the Proposed

Depression Severity Estimation Network

For the assessment of the proposed depression severity estimation network, we

use the E-DAIC dataset [69], which is an extension of the DAIC-WoZ dataset

[70], provided by the AVEC’19 Detecting Depression with AI Subchallenge [71].

The data consists of semi-clinical video interviews, including video features, au-

dio recordings, and automatic transcriptions generated by Google’s Automatic

Speech Recognition (ASR) tool. The dataset is divided into fixed sets for train-

ing, development, and testing, comprising 163, 56, and 56 interviews, respectively.

The interviews were conducted in a Wizard-of-Oz (WoZ) scenario by two humans

controlling a virtual agent (Ellie) or by a fully automated AI. The training and

development sets contain a mix of WoZ and AI settings, while the test set only

includes the AI setting. All interviewees filled out the eight-item Patient Health

Questionnaire (PHQ-8), providing scores for each of the eight symptoms and their

total depression score. The total depression score, ranging from 0 to 24, is the

sum of the eight-item scores. The distribution of the number of subjects over

PHQ-8 scores for each set is detailed in Figure 4.1.

The quality and interpretability of the dataset are crucial for machine learning

tasks. However, the datasets come with challenges and limitations most of the

time so the proposed methods should be capable of accomplishing the challenges

and overcoming the limitations. The dataset that we use also introduces some,

which we detail as follows:

22



Figure 4.1: Data distributions across different intervals of PHQ-8 Score.

• The acoustic of environments and the quality of recordings differ for sepa-

rate interviews. These cause noisy variances among auditory features and

inaccuracies in automatic generations of transcripts.

• There are no human interventions or manual corrections throughout the

preparation of transcripts. Thus, we encounter mistakes in the text, caused

by the failures that occurred during the automatic speech recognition. The

textual feature extraction is affected by such mistakes significantly.

• Aside from the lack of manual correction, there is no manually tagged

speaker information on transcripts. So, it is not known which parts of

the transcripts belong to the interviewee and which parts belong to Ellie or

the AI agent. This information can be derived from audial features but it

is a certain bottleneck for textual features.

• Even though we use the extended version of DAIC-WoZ dataset, the size
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of the dataset is considerably small. Modern technologies in the machine

learning field require reasonably large datasets to train and validate the

models they include. Due to consistently growing architectures, it gets

harder to avoid the overfitting issue. Therefore, the size of the dataset is a

significant challenge for adjusting the complexity of our proposed methods.

• As can be observed from Figure 4.1, the dataset is plagued by significant

class imbalance. This leads to deflections in the prediction of PHQ-8 scores.

It impels the model to predict scores from a certain scope of the range and

reduces the performance during the validation and testing phases.

4.1.2 Datasets Used for the Fine-tuned Auxiliary Net-

works

In order to fine-tune the RoBERTa model for the sentiment classification task,

Hartmann et al. [58] exploit 15 different datasets, introduced by the studies [72–

79] and offered publicly on Kaggle1 and Yelp2. The combination of these datasets

encompasses various domains, including tweets, movie reviews from IMDb3 and

Rotten Tomatoes4, product and kitchen appliance reviews from Amazon5, and

restaurant reviews from Yelp6. It consists of 1,253,000 samples and is labeled

with fine-grained sentiment scores, ranging from very negative to very positive.

The authors only consider the binary version of the dataset, where the sentences

are classified as either positive or negative.

In order to fine-tune the RoBERTa model for the emotion recognition task,

Barbieri et al. [57] exploit the Affect in Tweets dataset, introduced by Mohammad

et al. [80]. The dataset consists of 174,356 tweets annotated with multi-labeled

emotion classes that are listed as follows:

1https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
2https://www.yelp.com/dataset
3https://www.imdb.com/
4https://www.rottentomatoes.com/
5https://www.amazon.com/
6https://www.yelp.com/
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• anger, including annoyance, rage

• anticipation, including interest, vigilance

• disgust, including disinterest, dislike, loathing

• fear, including apprehension, anxiety, terror

• joy, including serenity, ecstasy

• love, including affection

• optimism, including hopefulness, confidence

• pessimism, including cynicism, no confidence

• sadness, including pensiveness, grief

• surprise, including distraction, amazement

• trust, including acceptance, liking, admiration

• neutral or no emotion

Barbieri et al. re-purpose this multi-label dataset into a multi-class classification

problem, keeping only the tweets labeled with a single emotion. In order to

tackle the scarcity of the number of tweets with single labels, they select the

tweets annotated with the most common four emotions: anger, joy, sadness, and

optimism. This ends up with a total number of 5,052 samples for the fine-tuning

process.

We fine-tune the personality network, using the Kaggle MBTI dataset7. No-

tably, this dataset has been leveraged in contemporary research endeavors for

the personality trait classification task [60, 63, 81]. The dataset is sourced from

PersonalityCafe8, a platform where individuals share their personality types and

engage in discussions on topics such as health, behavior, and personal growth.

7https://www.kaggle.com/datasets/datasnaek/mbti-type/
8https://www.personalitycafe.com/
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The dataset comprises 8675 users, with each user contributing approximately 45-

50 posts. The data is labeled based on the Myers-Briggs Type Indicator (MBTI)

taxonomy [82], which divides personality types into four categories: Introversion /

Extroversion, Sensing / Intuition, Thinking / Feeling, and Perception / Judging.

4.2 Training Configuration

Throughout the training process, the model parameters (weights and biases) are

initialized and then aimed at achieving optimization subject to iterative updates.

Exclusively, we freeze the fine-tuned parameters of the auxiliary networks since

they do not involve back-propagation. We use Xavier’s method [83] for the ini-

tialization of the parameters and we use Adam optimizer [84] with weight decay

of 10−5 and an epsilon value of 10−8 to update them. We designate the learning

rate (lr) as a hyperparameter, dictating the magnitude of parameter updates dur-

ing the optimization process. Furthermore, we apply the dropout technique [85]

on all model parameters as a regularization technique. We also designate the

dropout probability (p) as a hyperparameter.

4.3 Hyperparameter Tuning

For each experiment, we conduct an extensive hyperparameter tuning process.

The selection of hyperparameters is based on the random search algorithm. Dur-

ing the random search, multiple training procedures are executed with randomly

selected configurations of hyperparameter values. The configuration that has

achieved the highest validation score indicates the best model for that experi-

ment. The model selection process is explained elaborately in Section 4.4. We

ensure the amount of training procedures is the same for each experiment. The

considered values for each hyperparameter are listed in Table 4.1.
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Table 4.1: Considered values for each hyperparameter.

Hyperparameter Considered Values

# of Transformer Encoders (K) {1, 2, 3}

# of Heads in Self-Attention Layers (H) {1, 2, 4, 8}

# of Neurons in The Layers of FFN (Σ)
{{1024, 256, 16}, {1024, 64},
{256, 64}, {64, 16}, {256}}

Learning Rate (lr) [10−6, 10−4]

Dropout Probability (p) {0, 0.1, 0.2, 0.3}

Batch Size {8, 16, 32, 64}

4.4 Model Selection

Each training procedure runs for a maximum value of 250 epochs. We also apply

the early-stoppage criterion with a patient parameter of 10. We evaluate the

validation score after each epoch is completed. In case the validation score does

not improve for 10 epochs, the training procedure terminates. Applying the early-

stoppage criterion reduces both the risk of overfitting and the training time to

be consumed. As the training procedure ends, we select the model state that has

achieved the highest validation score as the candidate model. At the end of each

experiment, we obtain the best model similarly by selecting among the candidate

models.

4.5 Evaluation Metrics

To assess the performance of the methods that are utilized in the experiments,

we use three distinct evaluation metrics: Concordance Correlation Coefficient

(CCC), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE).
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The CCC measures the agreement between predicted values and ground truth

labels, considering both the mean and variance of the data, as formulated in Eq.

3.23. A higher CCC score indicates better agreement between predictions and

true values, with 1 indicating perfect agreement and 0 representing no agreement.

RMSE is a common regression metric that quantifies the average deviation

between predicted and target values, giving more weight to larger errors due to

the squaring of differences. It calculates the square root of the mean of squared

differences, providing a measure of the model’s accuracy in predicting continuous

values. Lower RMSE values indicate better model performance. Considering the

number of test samples as N , the prediction value as ŷ, and the true value as y,

RMSE is formulated as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (4.1)

MAE is another regression metric measuring the average deviation between

predicted and target values. It provides a similar evaluation as RMSE but is

less sensitive to outliers since MAE treats all errors equally, without giving more

weight to larger errors. Like RMSE, lower MAE values indicate better model

accuracy. MAE is formulated as follows:

MAE =
1

N

N∑
i=1

|ŷi − yi| (4.2)

To monitor the progress of the model during the training procedures and to

compare the empirical results during the assessments, we consistently utilize the

CCC metric. The reasons are (1) the CCC metric effectively assesses how well the

model predictions match the ground truth values and (2) the AVEC’19 Subchal-

lenge declares it as the main metric of the task. During the analyses demonstrated

in Sections 5.3 and 5.5, where we take account of only our final model, we also

involve the RMSE and MAE metrics.
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Chapter 5

Experiments & Results

In this section, we expound upon the executed experiments and present their out-

comes, accompanied by meticulous analyses. Initially, our focus revolves around

conducting a series of experiments aimed at assessing the significance of the com-

ponents comprising our model architecture. These experimental procedures are

primarily segregated into two distinct sections: encompassing the evaluations of

unimodality and multimodality. For each of these sections, we compare the vali-

dation result of each experiment with the validation result achieved by the best

model state we have obtained at the end of all experiments throughout the anal-

yses of the empirical outcomes. Moreover, we ensure to keep other components

the same as controlling variables while experimenting for one. three distinct sub-

groups, encompassing the assessments of various combinations of auxiliary net-

works, the existence of temporal modeling, and the fusion approach. Throughout

the analyses of the empirical outcomes, we compare the validation result of each

experiment with the validation result achieved by the best model state we have

obtained at the end of all experiments.

Further, we enhance our analyses by investigating the performance of the best

model over the test set. First, we assess the attention weights extracted from the

MMJCA-Fusion module while inferring two samples selected from the test set.

Second, we execute a more elaborate evaluation by applying the test metrics to
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small portions of the test set that have been created with respect to the ground

truth labels. Lastly, we compare the final results on the test set with other

state-of-the-art studies in order to ensure the credibility of our findings.

5.1 Evaluations in the Unimodal Setting

The objective of this assessment is to explore the impact of auxiliary networks

individually on the performance of our depression severity estimation model. To

achieve this, we conduct a series of experiments in the unimodal setting.

5.1.1 Assessment of Auxiliary Networks Individually

First, we examine the model for each modality independently. To achieve this,

the MMJCA-Fusion module is omitted from the architecture, and the network is

instantiated separately for each modality. This assessment provides insights into

the individual performance of each modality when they are treated in isolation.

The high-level architecture of the method modified for the unimodal setting is

visualized in Figure 5.1 and the individual performance of each auxiliary network

is represented in Table 5.1.
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Figure 5.1: High-level architecture of the method modified for the unimodal
setting. The dashed arrow indicates that there is no back-propagation in that
connection.
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Table 5.1: Development and test CCC scores when the auxiliary networks are

utilized individually. The bold values indicate the best scores.

Auxiliary Network
Dev CCC Test CCC

Personality Emotion Sentiment Abstract

✓ 0.636 0.448

✓ 0.645 0.640

✓ 0.456 0.457

✓ 0.640 0.618

The findings presented in Table 5.1 demonstrate that each auxiliary network

contributes valuable information to depression severity estimation. However, no-

table differences are observed, particularly with the sentiment network, which

lags significantly behind the other networks in terms of the CCC results. This

discrepancy can be attributed to the multifaceted nature of depression, which

encompasses various emotional, cognitive, and behavioral aspects. Simple posi-

tive or negative sentiment analysis is insufficient to grasp the complexity of this

mental health condition. Instead, a comprehensive understanding requires in-

corporating personality traits and emotions, as they offer a more nuanced and

enriched perspective on an individual’s mental state.

Additionally, it is intriguing to note that the utilization of the abstract network

achieves a CCC score comparable to that of the personality traits and emotion

networks. This suggests that our proposed method effectively accomplishes the

depression severity estimation task even without employing affect or personality

representations. Instead, it successfully captures the intricate dependencies be-

tween abstract representations derived from the transcripts and the PHQ-8 score,

implying that the abstract network is capable of extracting meaningful patterns

and features related to depression.

31



5.1.2 Assessment of Temporal Modeling in the Unimodal

Setting

Further, we delve into investigating the influence of introducing temporal model-

ing on individual modalities in the unimodal setting. To achieve this, a temporal

modeling module that is composed of a variant of recurrent neural networks is

inserted subsequent to the transformer block of the network. This enables the

network to capture temporal dependencies and sequential patterns within each

modality. Similar to Section 5.1.1, the MMJCA-Fusion module is excluded to

maintain the unimodal nature of this comparison.

Moreover, we add a pooling layer after the temporal modeling module to obtain

the comprehended representation of the input sequence. We do not incorporate

the [REG] token approach since the hidden state associated with the [REG] to-

ken after passing through a recurrent neural network layer would not capture

the same type of high-level information as the [REG] token’s original represen-

tations. [REG] token embedding is designed to encapsulate the entire sequence’s

information, while that hidden state represents the sequence in the context of the

recurrent neural network’s own internal processing. The high-level architecture

of the method modified for the unimodal setting including temporal modeling is

visualized in Figure 5.2
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Figure 5.2: High-level architecture of the method modified for the unimodal
setting including temporal modeling. The dashed arrow indicates that there is
no back-propagation in that connection. ht represents the hidden state for the
t-th time step in the temporal modeling module.

We explore variations in the type of recurrent layer, the number of cascaded
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recurrent layers, and the pooling method, seeking to identify the optimal config-

uration that yields superior performance. The evaluation process involves em-

ploying different combinations of these components and comparing their results

against one another. The results are presented in Table 5.2

Two prominent recurrent layer types, Long Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU), are considered for capturing temporal dependen-

cies within the unimodal data. These layers exhibit different gating mechanisms

and memory retention characteristics. The LSTM cell is characterized by its sep-

arate memory cell and output gate, while the GRU combines these gates into a

unified update gate and reset gate. Mathematically, LSTM is defined as follows:

Mathematically, the LSTM unit consists of several key components that govern

its operation at each time step t. Given an input sequence xt at time t, an LSTM

unit computes the following transformations:

ft = σ(Wfxt + Ufht−1 + bf ) (5.1)

it = σ(Wixt + Uiht−1 + bi) (5.2)

ot = σ(Woxt + Uoht−1 + bo) (5.3)

gt = tanh(Wgxt + Ught−1 + bg) (5.4)

ct = ft ⊙ ct−1 + it ⊙ gt (5.5)

ht = ot ⊙ tanh(ct) (5.6)

(5.7)

Here, ft, it, and ot represent the forget, input, and output gates respectively,

controlling the flow of information in the LSTM. gt is the candidate value to

be added to the memory cell, ct, while ht is the LSTM’s hidden state at time

t. W and U represent the weight matrices, and b represents the bias terms

for the respective gates. The symbol ⊙ denotes element-wise multiplication, σ

represents the sigmoid activation function, and tanh stands for the hyperbolic

tangent activation. In words, the forget gate decides which information from the

previous cell state ct−1 to discard, the input gate determines new information to
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be added to the cell state, and the output gate controls the information to be

exposed in the hidden state ht. The candidate value gt is computed based on the

current input and the previous hidden state, which, after gating, contributes to

the updated cell state ct.

Given an input sequence xt at time t similar to the defined LSTM unit, a GRU

unit is defined as follows:

zt = σ(Wz · [ht−1, xt] + bz) (5.8)

rt = σ(Wr · [ht−1, xt] + br) (5.9)

h̃t = tanh(Wh · [rt ⊙ ht−1, xt] + bh) (5.10)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (5.11)

Here, ht−1 is the hidden state from the previous time step, zt is the update

gate that determines how much of the previous state should be retained, and rt

is the reset gate that controls the information from the current input that should

be added to the new memory content. Similar to the LSTM unit, W represents

the weight matrices, and b represents the bias terms for the respective gates. In

this formulation, the update gate allows the network to decide whether to blend

the previous hidden state with the new memory content, enabling the model to

remember or forget information as needed. The reset gate controls how much of

the previous state information to reset based on the current input, enhancing the

model’s adaptability to different patterns in the data.

The number of cascaded recurrent layers is another critical factor to consider.

It determines the depth of the temporal modeling hierarchy within the network.

We experiment with employing one and two layers of the chosen recurrent type.

This allows us to gauge whether deeper temporal modeling yields improved per-

formance compared to a single-layer approach.
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Pooling methods are employed to aggregate the temporal information ex-

tracted by the recurrent layers into a fixed-length representation. In this as-

sessment, we focus on two pooling methods: Last-Pooling and Max Pooling. In

the last-pooling method, the output of the last time step from the recurrent layer

is selected as the aggregated representation. This captures the final temporal

state of the sequence. Max pooling involves selecting the maximum value along

each dimension of the temporal sequence. This method aims to capture the most

salient features present at different time steps.

Table 5.2: Development and test CCC Scores across different configurations:

auxiliary network, recurrent layer type, number of recurrent Layers, and pooling

method. The bold values indicate the best scores.

Auxiliary Network Recurrent Layer Type # of Recurrent Layers Pooling Method Dev CCC Test CCC

Abstract

LSTM

1
Last 0.595 0.616

Max 0.541 0.639

2
Last 0.575 0.664

Max 0.540 0.623

GRU

1
Last 0.627 0.654

Max 0.575 0.527

2
Last 0.638 0.635

Max 0.567 0.604

Emotion

LSTM

1
Last 0.589 0.607

Max 0.631 0.575

2
Last 0.577 0.626

Max 0.611 0.650

GRU

1
Last 0.596 0.620

Max 0.650 0.675

2
Son 0.601 0.648

Max 0.610 0.611

Sentiment

LSTM

1
Last 0.440 0.34

Max 0.467 0.416

2
Last 0.413 0.364

Max 0.431 0.392

GRU

1
Last 0.441 0.415

Max 0.466 0.411

2
Last 0.436 0.358

Max 0.414 0.388

Personality

LSTM

1
Last 0.625 0.621

Max 0.634 0.619

2
Last 0.626 0.552

Max 0.623 0.512

GRU

1
Last 0.616 0.553

Max 0.641 0.556

2
Last 0.624 0.555

Max 0.636 0.520
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After conducting an exhaustive assessment of the various configurations, it

is ascertained that the outcomes align consistently with the data presented in

Table 5.1 when accounting for the interplay among the auxiliary networks.” The

results also show that employing a single layer of GRU with max pooling with the

emotion network achieves the highest CCC score. This indicates that the GRU’s

gating mechanism combined with max pooling is particularly effective in captur-

ing relevant temporal patterns. The single-layer architecture suggests that for

the dataset and task under consideration, additional layers did not significantly

contribute to improved performance.

To further scrutinize the impact of different temporal modeling components, we

conduct an additional assessment, focusing on the integration of bidirectional re-

current layers. As employing LSTM and two cascaded layers does not consistently

improve the performance, we aim to understand the influence of bidirectional in-

formation flow on the unimodal temporal modeling task while maintaining the

recurrent layer type as GRU and a single cascaded layer to mitigate computa-

tional complexity. This exploration allows us to investigate whether bidirectional

modeling could enhance the network’s ability to capture temporal dependencies

effectively. The results are presented in Table 5.3

Bidirectional recurrent layers enable the network to consider both past and

future contexts when processing each time step, potentially capturing a more

comprehensive representation of temporal patterns. In our assessment, we uti-

lized the bidirectional variant of GRU. Mathematically, bidirectional GRU can

be defined as follows:

−→z t = σ(W−→z xt + U−→z
−→
h t−1 + b−→z ) (5.12)

←−z t = σ(W←−z xt + U←−z
←−
h t+1 + b←−z ) (5.13)

h̃t = tanh(Whxt + U−→
h
(−→r t ⊙

−→
h t−1) + U←−

h
(←−r t ⊙

←−
h t+1) + bh) (5.14)

−→
h t = (1−−→z t)⊙

−→
h t−1 +

−→z t ⊙ h̃t (5.15)
←−
h t = (1−←−z t)⊙

←−
h t+1 +

←−z t ⊙ h̃t (5.16)

ht = [
−→
h t;
←−
h t] (5.17)
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Here, −→z t and
←−z t represent the update gates for the forward and backward di-

rections respectively. The weight matrices W−→z , U−→z , W←−z , and U←−z correspond

to input-to-gate and hidden-to-gate connections for the forward and backward

directions. Additionally,
−→
h t and

←−
h t denote the hidden states for the forward

and backward directions, while −→r t and ←−r t stand for the reset gates for these

directions. The weight matrices Wh, U−→h , and U←−
h
capture the interactions within

the bidirectional hidden states. The bias terms b−→z and b←−z correspond to the

update gates, and bh is the bias term for the candidate hidden state.

Table 5.3: Development and test CCC scores of unidirectional and bidirectional

recurrent layers in the Unimodal Temporal Modeling baseline, with fixed GRU

recurrent layer type and a single recurrent layer, while exploring various auxiliary

network and pooling method combinations. The bold values indicate the best

scores.

Auxiliary Network Pooling Method Recurrent Layer Direction Type Dev CCC Test CCC

Abstract

Last
Unidirectional 0.627 0.654

Bidirectional 0.602 0.404

Max
Unidirectional 0.575 0.527

Bidirectional 0.590 0.420

Emotion

Last
Unidirectional 0.596 0.620

Bidirectional 0.625 0.550

Max
Unidirectional 0.650 0.675

Bidirectional 0.626 0.604

Sentiment

Last
Unidirectional 0.441 0.415

Bidirectional 0.462 0.355

Max
Unidirectional 0.466 0.411

Bidirectional 0.470 0.447

Personality

Last
Unidirectional 0.616 0.553

Bidirectional 0.479 0.398

Max
Unidirectional 0.641 0.556

Bidirectional 0.503 0.453

Contrary to our expectations, the integration of bidirectional GRU does not

consistently lead to improved performance across all configurations. While bidi-

rectional modeling exhibits potential in certain instances, it does not yield con-

sistently higher CCC scores compared to the unidirectional GRU configurations.

This observation is intriguing, as the bidirectional mechanism intuitively offers

37



access to a broader temporal context. The results indicate that bidirectional

modeling might not inherently contribute to better performance. This could be

attributed to the deficiency of computational complexity and the nature of the

temporal patterns they encapsulate.

In our ongoing endeavor to comprehensively explore the impact of temporal

modeling components, we conduct yet another crucial assessment. This time,

our focus shifts to the existence of a transformer block, specifically targeting text

representations as a precursor to temporal modeling. The primary objective is to

understand the influence of the transformer block while maintaining consistency

by utilizing a single-layer unidirectional GRU configuration. Since the results in

Table 5.3 indicate that employing bidirectional GRU is not consistently superior

to the unidirectional GRU, we persevere with the unidirectional approach to avoid

unnecessary computational complexity. The results are presented in Table 5.4.

Table 5.4: Development and test CCC scores comparing the inclusion and exclu-

sion of the Transformer block in the Unimodal Temporal Modeling baseline, with

a fixed GRU recurrent layer type, a single recurrent layer, unidirectional recur-

rent layer direction, and max-pooling, while exploring various auxiliary network

configurations. The bold values indicate the best scores.

Auxiliary Network Transformer Block Dev CCC Test CCC

Abstract
✓ 0.575 0.527

0.565 0.543

Emotion
✓ 0.650 0.675

0.519 0.440

Sentiment
✓ 0.466 0.411

0.390 0.362

Personality
✓ 0.641 0.556

0.335 0.234

The outcomes of this assessment yield compelling insights into the signifi-

cance of incorporating the transformer block. The existence of the transformer
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block consistently leads to a significant improvement in the CCC scores across

all modalities. This marked improvement suggests that the transformer’s atten-

tion mechanisms excel not only in capturing interdependencies within the input

data but also in distilling crucial temporal features. The observed performance

boost aligns with the transformer’s inherent strength in capturing long-range de-

pendencies and contextual nuances. By incorporating the transformer block, the

model effectively enhances the text representations before temporal modeling,

enabling the subsequent layers to operate on more informative and contextually

enriched inputs. This corroborates the effectiveness of the attention mechanisms

in capturing intricate temporal dynamics present in the data.

5.2 Evaluations in the Multimodal Setting

In this section, we present the assessments conducted for our main multimodal

framework. We divide this section into four distinct subgroups, encompassing

the assessments of various combinations of auxiliary networks, the existence of

temporal modeling, the influence of [REG] token, and the fusion approach.

5.2.1 Assessment of Various Combinations of Auxiliary

Networks

We evaluate the impact of combining different auxiliary networks on depression

severity estimation performance. We experiment with various combinations of the

auxiliary networks, and the results are presented in Table 5.5. While executing

these experiments, we stick to our main architecture, including the MMJCA-

Fusion module.

The results presented in Table 5.5 demonstrate a coherent alignment with

the findings in Table 5.1. Specifically, combinations involving the abstract and

emotion networks exhibit superior performance. Despite the sentiment network’s
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Table 5.5: Development and test CCC scores when different combinations of
auxiliary networks are utilized. The bold values indicate the best scores.

Auxiliary Networks
Dev CCC Test CCC

Personality Emotion Senitment Abstract

✓ ✓ 0.632 0.640
✓ ✓ 0.679 0.677
✓ ✓ 0.644 0.633
✓ ✓ ✓ 0.660 0.681

✓ ✓ 0.641 0662
✓ ✓ 0.586 0.612
✓ ✓ 0.627 0.638
✓ ✓ ✓ 0.638 0.666
✓ ✓ ✓ 0.675 0.652
✓ ✓ ✓ 0.648 0.665
✓ ✓ ✓ ✓ 0.690 0.748

tendency to diminish performance in certain instances, the amalgamation of mul-

tiple auxiliary networks consistently enhances depression severity estimation com-

pared to the utilization of individual auxiliary networks in general. Notably, the

fusion of all auxiliary networks yields the most favorable performance outcome,

indicating that the integration of diverse representations substantially augments

the model’s capacity to discern intricate patterns associated with depression.

This implies that the combined utilization of complementary information sources

significantly enriches the model’s grasp of the multifaceted aspects inherent in

depression severity estimation.

5.2.2 Assessment of Temporal Modeling in the Multi-

modal Setting

In this section, we investigate the impact of temporal modeling on the perfor-

mance of the depression severity estimation network. The primary objective is

to determine whether the incorporation of temporal information through differ-

ent modeling techniques enhances or hinders the multimodal framework’s ability

to predict PHQ-8 scores from transcripts. Two distinct approaches for tempo-

ral modeling are explored: (1) utilizing a single unidirectional GRU layer with
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max-pooling and last-pooling, and (2) adding learnable positional embeddings.

In the first approach, we delve into investigating the influence of introduc-

ing temporal modeling in our multimodal framework. The introduced temporal

modeling mechanism is applied after the MMJCA-Fusion module, ensuring that

both modalities’ fused information is effectively utilized. We integrate the tem-

poral modeling module subsequent to the MMJCA-Fusion module, aiming to

capture the sequential information from the fused representations. The underly-

ing premise is that incorporating a separate temporal modeling module for each

modality before the fusion would lead to a substantial increase in model complex-

ity. Akin to Section 5.1.2, we insert a pooling layer after the temporal modeling

module. The high-level architecture of the method modified with the addition of

temporal modeling is visualized in Figure 5.3.
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Figure 5.3: High-level architecture of the method modified with the addition of
temporal modeling. The dashed arrows indicate that there is no back-propagation
in those connections. ht represents the hidden state for the t-th time step in the
temporal modeling module.

Following the indications of the results obtained in Section 5.1.2, we use uni-

directional GRU inside the temporal modeling module. Akin to the experiments

conducted in Section 5.1.2, we employ a single layer and two cascaded layers of

unidirectional GRU. Further, we employ two pooling methods: max-pooling and

last-pooling to extract relevant information from the GRU output. The former

captures the most salient features across the temporal dimension, while the lat-

ter focuses on the final time step’s representation, assuming it carries the most

critical information.

Since the multimodal framework has significantly more complex architecture

compared to the unimodal framework, we introduce the second approach. This

41



alternative approach represents a lighter temporal modeling method that necessi-

tates notably lower computational resources in contrast to the first approach. In

this approach, we augment the baseline model by incorporating learnable posi-

tional embeddings. These embeddings aim to provide the model with additional

positional information, which might help in discerning the order of the sentences

within the transcript during prediction. For each modality m, the positional em-

beddings matrix Pm ∈ RS×D are initialized from N(µ = 0, σ = 1). We inject

them into the network prior to the transformer block. With the integration of

these embeddings, the input of the transformer block for the modality m trans-

forms into Xm,t=1

⊕
Pm, where

⊕
denotes the position-wise addition.

We present the results of our experiments in Table 5.6, comparing the perfor-

mance of each temporal modeling approach against the baseline model.

Table 5.6: Development and test CCC scores of different temporal modeling

approaches. The bold values indicate the best scores.

Temporal Modeling Pooling Method Dev CCC Test CCC

GRU (single layer)
Last 0.616 0.621

Max 0.670 0.669

GRU (two cascaded layers)
Last 0.623 0.670

Max 0.625 0.700

Positional Embedding [REG] Token 0.649 0.574

None (Our Best) [REG] Token 0.690 0.748

The results in Table 5.6 indicate that not employing any temporal modeling

outperforms any other temporal modeling approach. The potential reasons are

(1) data characteristics and (2) trade-offs between dataset limitations and model

complexity. First of all, the transcripts may not have strong temporal dependen-

cies or sequential patterns that can be effectively captured by temporal modeling

techniques. In cases where the information relevant to depression severity estima-

tion is mostly contained within individual sentences or short segments, temporal

modeling might introduce noise and unnecessary complexity, leading to subopti-

mal performance. Secondly, the addition of temporal modeling can significantly
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increase the model’s capacity, making it more prone to overfitting, especially

considering the fact that our dataset is limited. In contrast, the model without

temporal modeling is simpler and less susceptible to overfitting, leading to bet-

ter generalization and overall performance. Furthermore, the transcripts contain

various linguistic noises, hesitations, or repetitions. Temporal modeling methods

inadvertently emphasize these noisy elements, leading to a negative impact on

performance. In short, these outcomes can be summarized as the incorporation

of temporal modeling acquiesces to the dataset limitations. Drawing from these

potential reasons and the significant difference between the results, we deem it

superfluous to advance to temporal modeling experiments within the context of

the multimodal framework, given that the incorporation of temporal modeling

techniques conspicuously diminishes performance.

5.2.3 Assessment of Regression Token Approach

In this section, we explore and analyze the impact of different pooling meth-

ods in the network. The original model utilizes the [REG] token approach for

pooling contextual information from the fused representations. We conducted

experiments to compare the performance of this [REG] token approach with two

alternative pooling methods: max-pooling and mean-pooling. The experiment

results are represented in Table 5.7.

Table 5.7: Development and test CCC scores of different pooling methods. The
bold values indicate the best scores.

Pooling Method Dev CCC Test CCC

Mean 0.636 0.711
Max 0.646 0.693

[REG] Token 0.690 0.748

The results in Table 5.7 indicate that the original [REG] token approach

achieves the highest performance among the three pooling methods. The model

is able to effectively capture and summarize the contextual information from

the interview transcripts, leading to superior predictions of PHQ-8 scores. The

max-pooling approach, which selects the maximum value from each dimension
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across the token representations, exhibits significantly lower performance com-

pared to the [REG] token approach. While max-pooling is a simple and efficient

method, it seems to be not ideal for this specific task, as it tends to focus on

the most salient features while potentially discarding relevant context. Similarly,

the mean-pooling approach, which calculates the average of the token representa-

tions, demonstrates lower performance compared to the [REG] token approach.

Mean-pooling may not adequately capture the nuanced patterns and interactions

present in the transcripts, resulting in less accurate predictions.

In summary, the superiority of the [REG] token approach over max-pooling

and mean-pooling is attributed to its ability to leverage the entire context of the

transcripts for prediction. The [REG] token carries aggregated information from

the transformer’s attention mechanism, allowing it to encapsulate the most perti-

nent information for the task at hand. In contrast, max-pooling and mean-pooling

may fail to preserve important contexts, leading to suboptimal performance.

5.2.4 Assessment of Fusion Approach

We evaluate the performance of the proposed MMJC-Fusion module in conjunc-

tion with the transformer block by comparing its results with two existing fusion

approaches from other studies, as well as the basic concatenation method. The

goal is to demonstrate the effectiveness and superiority of the proposed approach.

In addition, we experiment with each fusion approach with and without the trans-

former block in order to assess its impact effectively.

For comparison, we include two existing fusion approaches relying on joint

cross-attention, each proposed for emotion recognition tasks involving different

modalities:

• Praveen et al. [67] propose a fusion approach designed for emotion recog-

nition tasks that involve fusing auditory and visual modalities. It operates

on the feature dimension, attending to specific features extracted from each
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modality to capture their complementary information for emotion predic-

tion.

• Zhang et al. [68] propose a fusion approach designed for emotion recognition

tasks that involve fusing textual, auditory, and visual modalities. Unlike our

MMJC-Fusion approach that attends to tokens, it operates on the modality

dimension, allowing the network to focus on the most informative modality

during the emotion prediction task.

We present the results of the experiments in Table 5.8.

Table 5.8: Development and test CCC scores of different fusion approaches. The
bold values indicate the best scores.

Fusion Approach Transformer Block Dev CCC Test CCC

Concatenation
0.000 0.000

✓ 0.650 0.654

Praveen et al. [67]
0.376 0.349

✓ 0.641 0.680

Zhang et al. [68]
0.000 0.000

✓ 0.650 0.676

MMJCA-Fusion
0.570 0.669

✓ 0.690 0.748

As shown in the results, the combination of the transformer block and the

MMJC-Fusion module outperforms all other fusion approaches with or with-

out the Transformer. The superior performance of this combined approach is

attributed to its ability to effectively capture long-range intra- and inter-level

dependencies, contextual relationships, and fine-grained token-level information

from auxiliary networks.

The fusion approaches proposed by Praveen et al. and Zhang et al. were

originally developed for emotion recognition tasks that involve different modali-

ties. However, in the context of depression severity estimation from transcripts,

the MMJC-Fusion approach, which operates along the token dimension, demon-

strates better performance compared to attention along the feature dimension

(FD-Attention) and the modality dimension (MD-Attention).
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The joint cross-attention mechanism along the token dimension in our MMJC-

Fusion approach enables the depression severity estimation network to attend to

specific sentences and phrases within the clinical interview transcripts. Therefore,

the network gains a deeper understanding of the text data and can capture the nu-

anced linguistic patterns and contextual cues indicative of depression symptoms.

This token-level attention allows the network to effectively integrate information

from different personality traits, emotion, and sentiment representations, leading

to superior predictions of PHQ-8 scores. In contrast, the joint cross-attention

along the feature dimension and the modality dimension do not fully exploit the

fine-grained information present in the text data. Praveen et al. emphasize spe-

cific features extracted from each modality, which might miss the context and

relationships between tokens. Similarly, Zhang et al. focus on modalities, po-

tentially overlooking the importance of specific sentences or phrases that carry

critical information about a patient’s mental state.

Furthermore, the positive impact of masking in the MMJC-Fusion approach

reinforces the effectiveness of the token-level attention and the careful handling

of text data during the fusion process. By considering only meaningful tokens

and filtering out padding tokens, the depression severity estimation network can

fully utilize the valuable information present in the clinical interview transcripts,

resulting in a more accurate and interpretable prediction of PHQ-8 scores. In

contrast, the fusion approaches without this masking process might inadvertently

allocate attention to padding tokens, which may hinder the model’s ability to

focus on the critical content of the text. This results in suboptimal predictions

and lower scores.

5.3 Segmented Evaluation of The Method

Across Different Ranges of True Values

In this section, we present a detailed analysis of our proposed method’s perfor-

mance across different ranges of true PHQ-8 values. The purpose of this analysis
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is to examine whether the predictive accuracy of our method remains consis-

tent across the entire spectrum of depression severity, despite the class imbalance

present in the dataset. To achieve this, we partition the validation and test sets

into distinct groups based on the true PHQ-8 scores. Each group encompasses

a specific range of PHQ-8 values, allowing us to investigate how our method’s

prediction errors are distributed within these partitions.

For each evaluation on both the validation and test sets, we segment the sam-

ples into distinct groups according to the following PHQ-8 score ranges: [0,4],

[5,9], [10,14], [15,19], and [20,24]. We compute the RMSE and MAE for each

group, providing us with insights into the accuracy of our method’s predictions

within different ranges of depression severity. By analyzing the trends in RMSE

and MAE across these groups, we aim to gain a comprehensive understanding of

our method’s behavior across the entire depression severity spectrum.

Figure 5.4: RMSE and MAE values across different groups in the validation set,
each encompassing a specific range of PHQ-8 scores.
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Figure 5.5: RMSE and MAE values across different groups in the test set, each
encompassing a specific range of PHQ-8 scores.

The results of our segmented evaluation, shown in Figures 5.4 and 5.5, shed

light on the robustness of our proposed method. Across both the validation and

test sets, we observe consistent patterns in the distribution of prediction errors.

Notably, the RMSE and MAE values demonstrate remarkably similar trends for

the groups encompassing the [0,4], [5,9], [10,14], and [15,19] PHQ-8 score ranges.

This finding suggests that our method’s accuracy remains stable across a wide

range of depression severity, indicating its resilience against potential bias arising

from class imbalance of the AVEC’19 dataset.

Furthermore, a noteworthy observation emerges from the evaluation of the

[20,24] PHQ-8 score range. In both the validation and test sets, this group ex-

hibits substantially lower RMSE and MAE values compared to the other groups.

This phenomenon indicates that our method excels in predicting cases of higher

48



depression severity, showcasing its potential clinical relevance in accurately iden-

tifying individuals with a higher tendency towards depression.

Our method’s ability to maintain consistent performance across varying levels

of depression severity is a testament to its generalizability and reliability. The

fact that it performs well even in the presence of imbalanced class distribution

demonstrates its capacity to capture the intricate relationships between input

features and depression severity, without succumbing to undue influence from

the prevalence of lower PHQ-8 scores.

5.4 Assessment of Attention Weights of the

MMJCA-Fusion Module on the Test Set

In the pursuit of enhancing the accuracy and interpretability of the proposed

method, we delve into an essential aspect of our proposed architecture – the

MMJCA-Fusion module. This section focuses on a comprehensive assessment of

the attention weights generated by this module when applied to transcripts from

the clinical interview test set. Understanding the distribution and significance

of attention across sentences within a transcript is pivotal in comprehending the

model’s decision-making process.

Our novel architecture aims to harness multiple text modalities, incorporat-

ing emotional, sentiment, and personality trait features extracted from auxiliary

fine-tuned networks for each sentence in the transcripts. The MMJCA-Fusion

module, a critical component of our framework, facilitates the fusion of these di-

verse modalities while assigning attention weights to each modality during feed-

forward propagation. This enables the model to dynamically adapt to the most

informative aspects of the input data. Throughout this evaluation process, we

extract the attention weights associated with the [REG] token for each sentence

in a transcript. Since the [REG] token encapsulates the captured information for

each sentence, these attention weights reflect the importance or significance of
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the corresponding sentences in the context of the entire transcript. To obtain a

scalar attention weight score for each sentence, we calculate the mean of these

attention weights across all modalities. This scalar score encapsulates the relative

importance of each sentence within the transcript, as determined by the model’s

attention mechanism.

In this section, we embark on an exploratory journey into the attention weights

assigned by the MMJCA-Fusion module under various scenarios. Four distinct

scenarios will be analyzed, each shedding light on the model’s behavior in different

situations:

• High True PHQ-8 Score with Accurate Prediction: This scenario

explores a specific transcript with a high true PHQ-8 score, where our model

accurately predicts the corresponding depression severity level. By exam-

ining the sentences that garner the highest attention, we aim to decipher

what characteristics the model identifies as indicative of depression in these

cases.

• High True PHQ-8 Score with Inaccurate Prediction: Here, we in-

vestigate a case where the true PHQ-8 score is high, but the model’s predic-

tion deviates from accuracy. The analysis of attention weights in such an

instance can unveil potential challenges or shortcomings in our architecture

when handling severe depression cases.

• Low True PHQ-8 Score with Accurate Prediction: In this scenario,

we focus on a specific transcript with a low true PHQ-8 score, which is

correctly identified by our model. Understanding which sentences receive

heightened attention during prediction can provide insights into the model’s

ability to recognize non-depressive attributes within the text.

• Low True PHQ-8 Score with Inaccurate Prediction: Lastly, we delve

into a case where a specific transcript exhibits a low true PHQ-8 score, but

our model’s prediction is inaccurate. Analyzing the sentences prioritized

by the model’s attention can uncover challenges in distinguishing low-level

depressive symptoms from other factors.
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By scrutinizing the attention weights attributed to individual sentences in

these scenarios, we aim to enhance our understanding of the model’s decision-

making process, gain insights into the salient textual cues it leverages, and identify

areas for potential improvement. This analysis not only contributes to the inter-

pretability of our automatic depression severity estimation system but also offers

valuable feedback for refining its performance and robustness. The results of the

scenarios are presented in Tables 5.9, 5.10, 5.11, and 5.12.

Table 5.9: The top ten sentences that have achieved the highest average attention

weıghts for the high true PHQ-8 score with accurate prediction scenario(True

PHQ-8 Score: 20, Predicted PHQ-8 Score: 20.49).
Sentence Average Attention Weight (×102)

how easy is it for you to get a good night sleep not very 1.804

because I knew I was going to kill myself if I didn’t 1.776

and it wasn’t easy at all especially during that time 1.687

over at a friend’s house I really wanted to leave felt it was rude to leave so early so

I stuck it out for 6 hours and I just was probably the worst guest
1.586

depressed mostly 1.578

not very good 1.569

no I’m even more irritable I have even more of a flash camper

it makes depression worse anxiety worse
1.551

I want to take a boat load of medications now treatment for PTSD it’s also for depression 1.435

due to PTSD 1.342

I’m not a therapist 1.323

Table 5.10: The top ten sentences that have achieved the highest average atten-

tion weıghts for the high true PHQ-8 score with inaccurate prediction scenario

(True PHQ-8 Score: 19, Predicted PHQ-8 Score: 9.74).
Sentence Average Attention Weight (×102)

yes I’m a little bit more upbeat 2.688

I’m very good at controlling my temper 2.598

I went to a ladies luncheon and I enjoyed myself 2.516

I went to the movies and saw Monsters University 2.490

how would your best friend describe 2.429

my home is filled with a lot of negative energy and I don’t have any friends to rely on 2.422

the shopping the museums 2.372

I recently got involved in a book club 2.369

I went to Walt Disney World for my 21st birthday 2.366

I read a book 2.276
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Table 5.11: The top ten sentences that have achieved the highest average atten-

tion weıghts for the low true PHQ-8 score with accurate prediction scenario (True

PHQ-8 Score: 0, Predicted PHQ-8 Score: 1.61).
Sentence Average Attention Weight (×102)

I think it’s a very useful tool and many people have been successful in receiving therapy 1.668

how easy is it for you to get a good night’s sleep very easy I usually retire about 11:30 12:00 at night

and sleep through for 6 to 7 hours
1.482

you feel therapy is useful I think it is for some people yes probably for most 1.342

and it’s usually as a result of being ill if I have the flu or cold or whatever then I’m sluggish the next day

or for two days but I’m usually able to bounce back
1.312

the 18th of July and then they’ll be out on the Great Lawn on August 3rd so it’ll be the August 3rd event

and crate they’re bringing a trailer ring in BBQ for everybody and it’s going to be a wonderful time

we have anything will send it in or you’re more than happy and I okay at night I don’t think I do but

I met you sent me an email and I noticed you have the military would have to understand it from

West Point okay and they would I mean that we’re going to have generals were going to be on during

World War two people they might love to come oh yeah

1.284

I got a feeling good I’ve been very fortunate since having open heart surgery I’ve been relatively healthy

and I’m very involved in the community and I enjoy every every aspect of that sometimes it’s very tiring

but it’s a good tired

1.269

many of the veterans with whom I live in work I have had extensive therapy and it’s proven to be very successful 1.227

visiting SEC liqueur in that my Mart in Paris on my first day in France in Europe 1.206

I always having a full plate 1.203

we didn’t have any virtual people but it was nice 1.201

Table 5.12: The top ten sentences that have achieved the highest average atten-

tion weıghts for the low true PHQ-8 score with accurate prediction scenario (True

PHQ-8 Score: 0, Predicted PHQ-8 Score: 9.12).

Sentence Average Attention Weight (×102)

I hardly ever not sleep or get sleep 3.399

not too easy 2.740

Come Easy 2.580

I’m happy to be alive 2.313

[REG] 2.215

I need a kiss to my head together 2.210

tell me about the hardest. 2.198

try to help her out 2.121

it’s Friday or is it 2.088

it’s simple knowing is an A+ affect my life 2.070
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5.4.1 Discussion on the High True PHQ-8 Score with Ac-

curate Prediction Scenario

In this scenario, the model accurately predicts a high PHQ-8 score, indicating

severe depressive symptoms. The sentences that received the highest attention

weights predominantly revolve around themes associated with depression:

• Sentences like ”how easy is it for you to get a good night’s sleep not very”

and ”and it wasn’t easy at all especially during that time” highlight sleep

disturbances, a common symptom of depression [86,87].

• ”because I knew I was going to kill myself if I didn’t” is a particularly

alarming statement, signifying a high risk of self-harm or suicide, which

aligns with a high PHQ-8 score [88,89].

• ”depressed mostly,” ”not very good,” and ”it makes depression worse anx-

iety worse” directly mention feelings of depression and anxiety, reinforcing

the severity of the condition.

• The mention of ”treatment for PTSD” and ”due to PTSD” indicates the

presence of comorbid conditions, which can contribute to a higher PHQ-8

score.

The attention weights in this scenario reflect the model’s ability to appropri-

ately identify and prioritize sentences indicative of severe depression, leading to

an accurate prediction.

5.4.2 Discussion on the High True PHQ-8 Score with In-

accurate Prediction Scenario

In this case, despite the high true PHQ-8 score, the model’s prediction is inac-

curate. The sentences receiving the highest attention weights seem to focus on

positive or neutral aspects of the individual’s life:
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• Sentences such as ”I’m very good at controlling my temper,” ”I went to a

ladies luncheon and I enjoyed myself,” and ”I went to the movies and saw

Monsters University” convey positive experiences and emotional stability,

which may have influenced the model’s prediction.

• Mentions of engaging in activities like ”the shopping,” ”the museums,” and

”a book club” indicate an active and socially connected lifestyle, potentially

leading the model to underestimate the depression severity as the plenitude

of the social activities indicates a lower risk of depression [90,91].

• ”I recently got involved in a book club” and ”I read a book” highlight

engagement in intellectually stimulating activities, suggesting a positive

mental state.

The attention weights in this scenario suggest that the model might have been

overly influenced by the presence of positive or neutral cues in the text, leading

to an inaccurate prediction despite the high true PHQ-8 score.

5.4.3 Discussion on the Low True PHQ-8 Score with Ac-

curate Prediction Scenario

In this situation, the model accurately predicts a low PHQ-8 score, reflecting the

absence or mild nature of depressive symptoms. The sentences with the highest

attention weights emphasize positive attributes and well-being:

• Sentences like ”I think it’s a very useful tool,” ”how easy is it for you to get

a good night’s sleep very easy,” and ”I’ve been very fortunate since having

open heart surgery” underscore a positive outlook on life, good sleep quality,

and overall well-being.

• Mentions of engaging in activities, attending events, and enjoying social

interactions (”they’re bringing a trailer ring in BBQ,” ”I’m very involved

in the community”) indicate an active and socially connected lifestyle.
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• The statement ”many of the veterans with whom I live in work I have had

extensive therapy and it’s proven to be very successful” suggests a support

network and successful therapeutic interventions, contributing to the low

PHQ-8 score.

The attention weights in this scenario align with the model’s accurate predic-

tion, highlighting the absence of significant depressive cues and the presence of

positive indicators.

5.4.4 Discussion on the Low True PHQ-8 Score with In-

accurate Prediction Scenario

In this scenario, the model’s prediction is notably inaccurate, given the low true

PHQ-8 score. The sentences with the highest attention weights do not strongly

indicate depressive symptoms. However, it’s essential to highlight why this inac-

curate prediction occurred:

• Sentences like ”I hardly ever not sleep or get sleep” and ”not too easy” do

mention sleep difficulties and possible emotional distress, but they do not

strongly suggest severe depression. The model might have placed undue

emphasis on these mild cues, leading to an inaccurate prediction.

• It is essential to note that the model’s prediction, though elevated compared

to the low true PHQ-8 score, does not reach the upper range of possible

PHQ-8 scores. Phrases like ”I’m happy to be alive” and ”it’s simple knowing

is an A+ affect my life” convey a positive attitude and optimism. These

positive expressions may have influenced the model’s decision positively,

but the overall prediction remains within a moderate range.

• The mention of ”try to help her out” and ”it’s Friday or is it” does not

provide clear evidence of depression. However, the model might have mis-

takenly interpreted these sentences as neutral statements, which could have

contributed to the model’s erroneous high prediction.
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In this case, the model’s attention weights seem to have been swayed by sen-

tences with mild emotional cues, potentially leading to the inaccurate prediction.

This highlights the challenge of distinguishing between mild depressive symptoms

and non-depressive cues, a crucial area for future model improvement.

5.5 Comparison to Other Methods

In this section, we present a comprehensive comparison of the performance of

the proposed method to existing state-of-the-art methods. Akin to ours, these

methods address the depression severity estimation task on the AVEC’19 dataset.

This comparison allows us to place our results in the broader context of the ex-

isting research landscape, providing insights into the strengths and limitations

of our approach. By benchmarking our performance against other cutting-edge

methods, we can ascertain the competitiveness of our model and its potential to

outperform or align with the best-performing techniques in the field. The practice

of comparing our outcomes with state-of-the-art studies promotes transparency

and encourages rigorous evaluation, thereby enhancing the reliability of our re-

search. It showcases the significance of independent validation and strengthens

the credibility of our contributions to the scientific community.

Table 5.13 presents a meticulous comparison between our text-based depression

severity estimation network and prominent state-of-the-art methodologies. A

distinguishing factor is our exclusive reliance on the text modality, while other

methods combine multiple modalities such as textual, auditory, and visual inputs.

The results decisively highlight the supremacy of our approach despite the scarcity

of the utilized modalities.
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Table 5.13: Results of comparison to other methods. Bold values indicate the
best results for the corresponding evaluation metric. The methods are sorted by
year.

Method Year
Modalities Dev Test

Textual Audial Visual CCC RMSE MAE CCC RMSE MAE

Zhang et al. [38] 2019 ✓ ✓ - - - - 6.78 5.77
Ray et al. [51] 2019 ✓ ✓ ✓ - 4.37 - 0.670 4.73 4.02

Makiuchi et al. [52] 2019 ✓ ✓ ✓ 0.696 3.86 - 0.403 6.11 -
Fan et al. [40] 2019 ✓ ✓ 0.466 5.07 4.06 0.430 5.91 4.39
Sun et al. [6] 2021 ✓ ✓ 0.733 3.78 - - - -

Rutowski et al. [24] 2021 ✓ - - - - 5.51 4.20
Van Steijn et al. [43] 2022 ✓ ✓ 0.61 5.10 - 0.62 6.06 -
Saggu et al. [56] 2022 ✓ ✓ ✓ 0.662 4.32 - 0.457 5.36 -

Ours 2023 ✓ 0.690 4.32 3.62 0.748 4.37 3.46
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Chapter 6

Conclusion

In this thesis, we have presented a comprehensive approach to automatic de-

pression severity estimation through the analysis of clinical interview transcripts.

Our contributions have advanced the field by proposing a novel architecture that

effectively utilizes multiple text modalities, including emotion, sentiment, and

personality. Through our research, we have demonstrated the effectiveness of

these features in a single, integrated framework for the automatic depression

severity estimation task. To derive motion, sentiment, and personality features,

we have incorporated various auxiliary networks that are LLMs fine-tuned for the

corresponding classification tasks. Our pioneering use of these multiple features

within a novel transformer-based approach represents a significant step forward

in the development of accurate and comprehensive depression severity estimation

systems. By leveraging these diverse aspects of textual information, our model

captures a more holistic representation of an individual’s mental state, enhancing

the predictive capabilities and robustness of the system.

Furthermore, we have introduced a new multimodal joint cross-attention fusion

technique (MMJCA-Fusion) that effectively combines information from different

text modalities. This technique not only improves the interpretability of our

model but also ensures that relevant features are adequately integrated, leading

to enhanced predictive performance.
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An essential aspect of our work involves the fine-tuning of the pretrained

RoBERTa model, as one of the auxiliary networks, for the classification of per-

sonality traits in utterances. This auxiliary network not only contributes to the

accuracy of our main approach but also underscores the potential for leveraging

pre-existing models to augment specific tasks within a larger framework.

We have assessed the proposed method with unimodal and multimodal set-

tings. During the evaluations with unimodal settings, we have examined the

impact of each auxiliary network on PHQ-8 score estimation. To convert the

original architecture to an unimodal one, we have excluded the MMJCA-Fusion

module. The first assessment with the unimodal setting has been executed by

employing each auxiliary network individually. The results have indicated that

each network has contributed valuable information to depression severity estima-

tion, whereas the sentiment network has achieved significantly lower results than

others. Later, we have assessed the impact of adding temporal modeling into

the unimodal network. During this assessment, we have conducted experiments

across different configurations of auxiliary networks, recurrent layer types, the

number of recurrent layers, and pooling methods. We have considered using two

types of recurrent layers: LSTM and GRU, using a single layer and two cascaded

recurrent layers, and last-pooling and max-pooling methods. One observation

that has been obtained from the results is that using temporal modeling has

slightly improved the results in the unimodal setting. So, we have proceeded

with the assessments of temporal modeling. Another observation has been that

the configurations, including LSTM and two cascaded recurrent layers, have not

consistently improved the model performance. To avoid an unnecessary increase

in model complexity, we have taken account of using a single GRU layer in the pro-

ceeding assessments of temporal modeling in the unimodal setting. Afterward, we

have explored the influence of employing bidirectional recurrent layers instead of

unidirectional ones. For each auxiliary network, we have conducted experiments

for utilizing a single bidirectional GRU layer with both max-pooling and last-

pooling methods. Contrary to our expectations, the integration of bidirectional

GRU has not consistently led to improved performance across the configurations.

In this manner, we have stuck with utilizing a single unidirectional GRU layer in
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the subsequent evaluation, that is the assessment of the existence of the trans-

former block. In this assessment, we have both included the transformer block

in and excluded it from the network for each auxiliary network. The findings

have demonstrated the importance of the transformer block in our architecture

as including it has consistently led to a significant improvement in the results.

For the multimodal evaluation, we have first conducted experiments utiliz-

ing all combinations of the auxiliary networks. The results have indicated that

combining multiple auxiliary networks has consistently improved the PHQ-8 esti-

mation performance and the combination of all the auxiliary networks has yielded

the best results. Similar to the unimodal evaluation, we have included temporal

modeling in the multimodal setting for the subsequent assessment. In this assess-

ment, we have utilized a single GRU layer and two cascaded layers GRU layers

with both last-pooling and max-pooling. In addition, we have experimented with

a positional embedding approach. The findings have shown that the utilization of

any temporal modeling has not managed to improve the performance. Further,

we have conducted assessments for different pooling methods to explore the im-

pact of the [REG] token, and for different fusion approaches from other studies to

explore the impact of the MMJCA-Fusion approach. The findings have demon-

strated the original proposed architecture has outperformed other configurations.

Moreover, we have performed a segmented evaluation of the proposed method

across different ranges of true PHQ-8 scores on both the validation set and the

test set. The findings have demonstrated that our method’s accuracy remains

stable across a wide range of depression severity, indicating its resilience against

potential bias arising from class imbalance of the AVEC’19 dataset. We have

also observed from the results that the [20,24] PHQ-8 score range has exhibited

significantly lower error values compared to the other ranges. Subsequently, we

have explored the attention weights generated by the MMJCA-Fusion module.

We have examined the average attention weights assigned for the sentences that

exist in selected samples from the test set. The outcomes have provided valuable

insights into the correlations between the observed textual cues and the depression

severity. The outcomes have also matched existing psychological studies. Finally,

we have pursued a comprehensive comparison of the performance of the proposed
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method to other methods that also address the depression severity estimation

task on the AVEC’19 dataset. A notable factor in this comparison is that other

studies exploit the different combinations of text, audio, and vision modalities.

The results have highlighted the supremacy of our method.

The remarkable attainment of our text-based depression severity estimation

network deserves profound recognition. By exclusively focusing on textual data,

our approach circumvents the intricacies involved in integrating and processing

multimodality. This underscores the latent potential residing within linguistic

constructs present within the textual content for discerning and precise depression

severity estimation. Furthermore, the singularity of text modality integration

conveys pragmatic implications for real-world implementation. The streamlined

utilization of text data not only mitigates resource and computational demands

but also amplifies the method’s practicality and seamless integration into existing

mental health assessment frameworks.
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