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ABSTRACT

AFFECT AND PERSONALITY AWARE ANALYSIS OF
SPEECH CONTENT FOR AUTOMATIC ESTIMATION
OF DEPRESSION SEVERITY

Kaan Gong
M.S. in Computer Engineering
Advisor: Hamdi Dibeklioglu
September 2023

The detection of depression has gained a significant amount of scientific attention
for its potential in early diagnosis and intervention. In light of this, we propose a
novel approach that places exclusive emphasis on textual features for depression
severity estimation. The proposed method seamlessly integrates affect (emotion
and sentiment), and personality features as distinct yet interconnected modalities
within a transformer-based architecture. Our key contribution lies in a masked
multimodal joint cross-attention fusion, which adeptly combines the information
gleaned from these different text modalities. This fusion approach empowers the
model not only to discern subtle contextual cues within textual data but also to
comprehend intricate interdependencies between the modalities. A comprehen-
sive experimental evaluation is undertaken to meticulously assess the individual
components comprising the proposed architecture, as well as extraneous ones
that are not inherent to it. The evaluation additionally includes the assessments
conducted in a unimodal setting where the impact of each modality is examined
individually. The findings derived from these experiments substantiate the self-
contained efficacy of our architecture. Furthermore, we explore the significance
of individual sentences within speech content, offering valuable insights into the
contribution of specific textual cues and we perform a segmented evaluation of the
proposed method for different ranges of depression severity. Finally, we compare
our method with existing state-of-the-art studies utilizing different combinations
of auditory, visual, and textual features. The final results demonstrate that our
method achieves promising results in depression severity estimation, outperform-

ing the other methods.

Keywords: depression severity estimation, deep learning, natural language pro-

cessing, multimodal fusion.
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OZET

DEPRESYON SIDDETININ OTOMATIK TAHMINI
ICIN KONUSMA ICERIGININ DUYGULANIMA VE
KISILIGE BAGLI ANALIZI

Kaan Gong
Bilgisayar Miithendisligi, Yiiksek Lisans
Tez Danigmani: Hamdi Dibeklioglu
Eylil 2023

Depresyon tespiti, erken teshis ve miidahale potansiyeli dolayisiyla bilimsel acidan
onemli olgiide ilgi cekmektedir. Bu sebeple, bu tezde depresyon siddetinin tahmini
i¢in yalnizca metin 6zniteliklerine bagh kalan yeni bir yaklagim onerilmektedir.
Onerilen bu yaklagim, doniistiiriicii tabanli bir yapi icerisinde duygulanim (duygu
ve his) ve kigilik 6zniteliklerini farkli ancak birbirine bagh kipler halinde en-
tegre etmektedir. Bu tezin ana katkisi, farkli metin kiplerinden elde edilen
bilgileri birlegtirmeyi saglayan maskeli ve ¢ok kipli ortak gapraz dikkat fiizyon
yaklasimidir. Bu flizyon yaklagimi, modelin sadece metin verileri icindeki gizli
baglamsal ipuclarini ayirt etmesine degil, ayn1 zamanda modaliteler arasindaki
karmagik bagimhliklar1 da anlamasma olanak tammaktadir. Onerilen mimaride
var olan bilegenler ile var olmayan bilegsenler ayrintili olarak incelenmek ftizere
kapsamli deneysel degerlendirmelere tabi tutulmaktadir. Bu degerlendirmeler,
her kipin ayr1 ayr incelendigi tek kipli bir ortamda gergeklestirilen deneyleri
de igerir. Degerlendirmelerden elde edilen bulgular, onerilen mimarinin kendi
kendine yeterli etkinligini dogrulamaktadir. Bunlara ek olarak, bu tezde konugma
icerigi i¢indeki ciimlelerin 6nemini inceleyerek belirli metin ipuclarinin katkisina
dair degerli bilgiler sunulmaktadir. Aymi zamanda, onerilen yontemin farkh
depresyon siddeti araliklar i¢in degerlendirmeleri yer almaktadir. Son olarak,
onerilen yontem farkli isitsel, gorsel ve metinsel 6zellik kombinasyonlar: kul-
lananan mevcut en ileri diizey caligmalar ile karsilagtirilmaktadir. Sonuclar,
onerilen yontemin depresyon siddeti tahmininde umut verici sonuglar elde ettigini
ve diger yontemleri geride biraktigini gostermektedir.

Anahtar sozcikler: depresyon siddeti tahmini, derin 6grenme, dogal dil igleme,

cok kipli fiizyon.
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Chapter 1

Introduction

Depression is a common mental disorder affecting millions worldwide. It can
cause persistent feelings of sadness, hopelessness, and loss of interest in daily ac-
tivities [1]. Depression can also impair physical health, social functioning, and
quality of life. Therefore, it is important to detect and treat depression early and
effectively. However, detecting depression can be challenging, as many people
may not seek professional help or disclose their symptoms due to stigma, lack of
awareness, or other barriers. Moreover, people do not give the same response or
express the same emotions in the face of situations they experience. Due to this,
experts have to make subjective evaluations specific to the patient throughout
the treatment. Therefore, developing auxiliary tools that can make objective and
generalizable determinations is preferred for obtaining accurate results. Following
this, we propose a novel multimodal approach to automatically predict the Per-
sonal Health Questionnaire (PHQ-8) score [2] from textual transcripts of clinical

interviews.

Recent advances in the literature enabled the development of automatic meth-
ods for depression detection based on auditory and visual cues [3-7]. These
methods analyze the speech and facial expressions of the patients to infer their
emotional state and level of depression. However, auditory and visual cues may

not be reliable for depression detection, as they can be affected by noise, lighting,



or masking in unregulated or unpredictable environments. Therefore, using only
the text information without relying on any auditory or visual features can be
sufficient for depression detection, as it can capture the cognitive and linguistic
aspects of depression [8]. Moreover, text information is less likely to raise privacy
concerns than auditory and visual information, which may contain sensitive per-
sonal or biometric data that could be exploited by malicious actors. Therefore,
the audio or video records of the clinical interviews are not commonly shared
and distributed but it is more likely to get access to transcripts of the interviews.
Considering these reasons, the proposed method totally relies on text information

extracted from the transcripts of clinical interviews.

As Large Language Models (LLMs) have emerged as pioneering models in
the domain of Natural Language Processing (NLP), LLMs, such as BERT [9],
GPT [10], RoBERTa [11], and MPNet [12], are state-of-the-art models capable of
understanding, inferring, and generating human-like text. Leveraging the power
of these advanced LLMs, we employ them to create text representations for each
line existing in the transcripts. The representations extracted from pretrained
LLMs capture the contextual information and semantic meaning of the input
text at various levels of abstraction. While these abstract text representations
offer valuable linguistic features, relying solely on them can be limiting because
there are various factors that reflect an individual’s mental state and indicate
the presence or severity of depression. In this study, we utilize external sources
of information to acquire knowledge regarding the subject’s personality traits,
emotions, and sentiments based on the transcript data. Personality traits are
relatively stable patterns of thinking, feeling, and behaving that characterize an
individual. Emotions are short-term affective states that arise in response to
specific events or stimuli. Sentiments are opinionated tones, typically catego-
rized as positive, negative, or neutral. These three aspects of natural language
data can provide valuable insights into one’s psychological well-being and mood
disorders. For example, some studies have found that certain personality traits,
such as neuroticism or extraversion, are associated with a higher or lower risk
of depression [13]. Other studies have shown that the recognition and under-

standing of emotions play a crucial role in the accurate detection and assessment



of depression, highlighting the significance of emotional factors in comprehensive
diagnostic procedures. [14]. Furthermore, sentiments, such as positive or negative
polarity, can indicate one’s satisfaction or dissatisfaction with life aspects and the
severity of their mental disorder [15]. In addition to the abstract representations,
our approach extracts text representations for affect and personality features from

LLMs that have been fine-tuned for the corresponding classification tasks.

The main contributions of this thesis are listed below:

e We propose a novel architecture for the automatic depression severity esti-

mation task based on multiple text modalities.

e To our best knowledge, we are the first to utilize the emotion, sentiment,
and personality features in a single approach for the automatic depression

severity estimation task.

e We design a new multimodal joint cross-attention technique to fuse multiple

text modalities.

e We fine-tune the pretrained RoBERTa model for the utterance-based per-
sonality traits classification task and leverage it as an auxiliary model to

our main approach.

e We conduct comprehensive experimental analyses for the proposed method

and provide elaborative discussions on the results.



Chapter 2

Related Work

Textual features have been integrated into studies focused on the automatic de-
pression detection task, manifesting in various methodologies. Similar to our
proposed approach, several studies introduce techniques centered exclusively on
text modality for this purpose. For instance, Mallol-Ragolta et al. [16] devise
an architectural framework in which they input GloVe embeddings [17] of clini-
cal transcripts into a hierarchical attention network. This network hierarchically
weighs the textual components to predict the binary PHQ-8 label, indicative of
depression presence or absence. In a parallel vein, Xezonaki et al. [18] formulate
a hierarchical attention network aimed at PHQ-8 label prediction, utilizing tran-
scripts. Additionally, they incorporate external knowledge conditioning into their
methodology, encompassing facets like emotional tone, sentiment, and psycho-
linguistic attributes. While akin to our methodology, they leverage manually
crafted features, whereas we derive them from latent representations of fine-tuned
LLMs. Dinkel et al. [19] architect an ensemble comprising cascaded bidirectional
gated recurrent unit (GRU) [20] layers, followed by classification and regression
layers. They supply this architecture with embeddings at word and sentence lev-
els, harnessed via Word2Vec [21], fastText [22], ELMo [23], and BERT models.
Rutowski et al. [24] adapt the AWD-LSTM architecture [25] for the depression
detection task, adroitly fine-tuning the core model for the target task. This fine-
tuning methodology derives inspiration from the principles of ULMFiT [26]. Li

4



et al. [27] conceptualize an architecture in which utterances within transcripts are
encoded through concurrent bidirectional LSTM layers. Specifically, these bidi-
rectional LSTM layers are nourished with BERT embeddings of said utterances.
This encoding is pursued by a subsequent phase involving a mutual self-attention

mechanism and a fusion operation.

As the global prominence of social media continues to surge, there arises a
corresponding increase in the accessibility of personal information. The copious
volumes of textual user-generated content facilitate the extraction of individual
characteristics through linguistic attributes. Concurrently, social media profiles
afford the monitoring of user actions, thereby furnishing supplementary insights
into user mood and personality. Studies such as [28,29] propose multimodal
frameworks that amalgamate these textual attributes with user conduct indica-
tors for the task of depression detection. In these studies, a common approach in-
volves the utilization of hierarchical attention networks to encode user-generated
posts, coupled with the incorporation of behavioral cues encompassing social net-
work, emotional, and topic-related features. Notably, similar to our methodology,
they harness ancillary information for analysis. Nevertheless, a point of depar-
ture lies in their reliance on hand-crafted features, while our approach entails the

derivation of latent representations facilitated by LLMs.

Various studies involve amalgamating textual attributes with auditory and
visual counterparts, with the overarching objective of imbuing the analytical
paradigms with heightened informational content. Many instances of social media
allow posting either textual or visual content, it enables the analysis of textual
and visual features combined for depression detection from social media. Shet et
al. [30] propose a method that involves a cross-domain framework. This method
aims to enable depression detection in an online setting via social media for more
countries with different cultural settings. Their cross-domain framework trans-
fers the relevant information across heterogeneous domains. While doing it, they
incorporate hand-crafted emotion-based textual features along with color-related
visual attributes. Similar to [28,29], they also involve behavioral cues in their
input features. Lin et al. [31]. also enable online detection of depression followed

by an offline training phase. They combine textual features and visual features,
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both collected from social media, using a low-rank multimodal fusion technique
proposed by [32]. They extract the textual features from BERT and the visual
features from a CNN-based binary classifier for the training procedure. As a very
different approach, Gui et al. [33] adopt the reinforcement learning (RL) paradigm
in their study in order to automatically select related indicator texts and images
from the past posts of the users. They use a GRU layer and the pretrained VGG-
Net to extract the textual and visual features, respectively. Later, a multilayer
perceptron is responsible for depression classification using the features selected

by the multi-agent RL model that they introduce.

Given the ease of transforming speech recordings into text through automatic
speech recognition tools, and the inherent alignment between sequential textual
and auditory data, the concurrent utilization of auditory and textual features has
emerged as a highly favored approach. Therefore, many recent studies amalga-
mate textual features with auditory counterparts, with the overarching objective
of imbuing the analytical paradigms with heightened informational content. In
the work by Lam et al. [34], a hybrid approach is adopted, where data is initially
transformed into mel-frequency spectrograms. Subsequently, textual attributes
undergo encoding through transformer-based encoders [35], while spectrogram
features are subjected to convolutional neural network (CNN) encoding. The
ensuing step involves the concatenation of the latent representations emanat-
ing from these two distinct modalities. Meanwhile, Ghadiri et al. [36] employ a
multi-pronged strategy, incorporating auditory data through low-level attributes
like mel-frequency cepstral coefficients, spectrograms, and mel-frequency spectro-
grams. Further inclusions encompass openSMILE features [37] and graph-based
descriptors. For textual input, a pre-trained BERT model is leveraged for tran-
script encoding. Zhang et al. [38] dissect auditory and textual features discretely
for the depression detection task. In the textual realm, Doc2Vec embeddings [39]
are harnessed and channeled into an Adaboost classifier. Simultaneously, various
audio-text paradigms accommodate affect and personality features. In this con-
text, Fan et al. [40] extract nuanced linguistic features through NLTK [41], com-
plemented by sentiment facets extracted from a fine-tuned BERT model rooted in

the Stanford Sentiment Treebank dataset [42]. The emphasis here diverges from



our approach, where latent representations are culled from the terminal stratum
of the fine-tuned network. In tandem, auditory components undergo meticulous
feature engineering, followed by encoding using a multi-scale temporal dilated
CNN architecture that they architect. Concatenation with textual features final-
izes this fusion. Moreover, Van Steijn et al. [43] furnish an assemblage of linguistic
attributes, comprising representations from a Sentence BERT network [44] and
the Linguistic Inquiry and Word Count (LIWC) 2015 [45] features. The lat-
ter’s demonstrated correlation with personality traits [46] bolsters its inclusion.
Additionally, sentiment traits are discerned through Flair’s sentiment analysis

library [47], culminating in a comprehensive ensemble of attributes for analysis.

There also has been a notable surge in research endeavors dedicated to amalga-
mating textual, auditory, and visual modalities, with the objective of addressing
the depression detection task from a multifaceted perspective encompassing di-
verse aspects. Pampouchidou et al. [48] present a comprehensive framework that
seamlessly merges high-level and low-level features extracted from audio, video,
and text data to enhance depression assessment accuracy. The proposed method
involves the extraction of high-level features such as mel-frequency cepstral coeffi-
cients (MFCCs) from audio, facial expressions from video, and textual sentiment
analysis from text. These features are then fused to provide a holistic view of
an individual’s mental state. Later, a decision tree method is used for the clas-
sification problem. Williamson et al. [49] introduce a pioneering approach that
leverages vocal, facial, and semantic cues, amalgamating information from these
modalities to offer a more holistic view of emotional well-being. The study em-
ploys feature extraction techniques such as pitch analysis for vocal cues, facial
expression recognition for facial cues, and sentiment analysis using GloVe embed-
dings for semantic cues. These features are then combined and fed to a Gaussian
staircase model to enhance depression detection accuracy. Sun et al. [50] focus on
selecting and combining the most relevant textual, auditory, and visual features.
Specifically, the method extracts relevant audio features such as MFCCs, spec-
trograms, and possibly prosodic cues from speech recordings. Visual features are
also extracted, which may include facial expressions, body language, and other vi-

sual cues obtained from video data. These extracted auditory and visual features



are then carefully selected to identify the most informative ones for depression
assessment. Later, they are integrated with selected text-based features, which
can include linguistic patterns, sentiment analysis, and semantic information from
text data. A random forest regression model is then trained on this combined fea-
ture set to predict and assess depression levels. These studies rely on hand-crafted
features and conventional machine learning algorithms. Over time, the field has
transitioned towards employing more sophisticated deep learning techniques. Ray
et al. [51] employ a multi-level attention network to jointly process text, audio,
and video data, enhancing depression prediction through attentive feature extrac-
tion. The method involves extracting features like text embeddings from BERT
models, auditory features through audio signal processing, and visual features
using techniques like facial expression recognition. The multi-level attention net-
work then dynamically weighs and fuses these features for enhanced prediction.
Makiuchi et al. [52] exploit deep learning techniques that are harnessed to fuse
representations from textual, auditory, and visual data, showcasing the power of
neural networks in extracting meaningful features across modalities. Text data
undergoes encoding by CNN layers interpreting the BERT embeddings, while au-
ditory and visual data are processed through gated CNNs. These representations
are then combined with simple concatenation. Furthermore, Zheng et al. [53]
highlight the significance of modeling inter-modal relationships through a graph
attention model to improve depression detection accuracy. The method involves
the extraction of features from different modalities, such as textual, auditory,
and visual data, and constructs a graph-based representation to capture the re-
lationships between these features. Wei et al. [54] explore sub-attentional fusion
to estimate depression across various modalities, enhancing the robustness of de-
pression assessment. Their approach involves the extraction of sub-attentional
features from textual, auditory, and visual data, with a focus on capturing subtle
cues that may indicate depression. To achieve that, they employ convolutional
bidirectional LSTM as their backbone architecture. These sub-attentional fea-
tures are then combined using an attentional fusion approach that is inspired by
the work of Dai et al. [55]. This fusion approach relies on the attention mech-
anism similar to our multimodal fusion approach but it is designed specifically

for the feature fusion of three-dimensional input data. Lastly, Saggu et al. [56]



introduce DepressNet, a hierarchical attention mechanism that adeptly combines
insights from multiple modalities, capturing both global and local patterns within
the data, thereby elevating the accuracy of depression detection. The method
extracts features from textual, auditory, and visual data and uses hierarchical

attention mechanisms to weigh and combine these features effectively.

As mentioned, various ways of text embedding and encoding techniques are
employed by existing studies. For the purpose of transcript data embedding, we
leverage auxiliary networks, which have been fine-tuned across multiple down-
stream tasks. In congruence with [34], our text encoding is executed through
the utilization of transformer encoders. While certain studies advocate the in-
tegration of varied cues to fortify the text modality, the absence of advanced
fusion techniques is evident. Within the realm of processing multimodal tex-
tual features, we introduce a novel joint cross-attention fusion module into our

architectural framework.



Chapter 3

Method

The primary objective of the proposed method is to accurately predict the PHQ-8
score of a given clinical interview transcript that consists of a sequence of sen-
tences. It comprises several interconnected components. Initially, each sentence
within a transcript undergoes a sequence of auxiliary networks, each designed
to capture distinct representation types. Once we obtain the sentence embed-
dings, which we refer to as sentence tokens, for each modality, we standardize the
feature dimensions to ensure equitable treatment of modalities during encoding.
Subsequently, we inject a new token, called regression token, at the outset of the
hidden representation matrix for each modality. These modified hidden represen-
tations then pass through a transformer block, consisting of specialized cascaded
transformer encoders tailored to each modality. Later, the encoded representa-
tions of each modality are combined through a novel fusion approach: Masked
Multimodal Joint Cross-Attention Fusion (MMJCA-Fusion). The resulting fused
output is pooled by extracting the hidden representations associated with the
[REG] token. Finally, the pooled output is fed through a feed-forward network
and a regression layer. The output of the regression layer yields a prediction of the
PHQ-8 score. The high-level architecture of the proposed method is visualized in
Figure 3.1. In the subsequent sections of this chapter, we provide a comprehensive

and detailed exposition of each component of the proposed methodology.

10



[REG] ~ N(0, 1

what do you enjoy about
meeting new people seeing new |,
places

i Abstract Network [+

.......... Masked

.......... Mulimedal Joint PHQ-8 Score

Cross-attention B
Fusion

Regression

)

do you stil go therapy now Encoder |

Feed-Forward Network

I'm going to start therapy again | . Y
o . Transformer Encoder |-

Dimension Standardization

Transcript Auxiliary Networks Transformer Block (%)

Figure 3.1: High-level architecture of the method. The dashed arrows indicate
that there is no back-propagation in those connections.

3.1 Auxiliary Networks

We exploit four different types of representations, each enriching the model with a
different aspect. Three of these representation types are for personality, emotion,
and sentiment. The other one is for the abstract representations that provide
the contextual information and the semantic meaning of the input sentence. We
extract these different types of representations from several auxiliary pretrained
LLMs.

3.1.1 Abstract Network

For the abstract representations, we employ all-mpnet-base-v2 introduced by
Reiemrs and Gurevych [44], that is the pretrained MPNet model optimized for

sentence embedding.

3.1.2 Emotion & Sentiment Networks

For the affect, including emotion and sentiment, representations, we employ LLMs
that are fine-tuned for the corresponding classification tasks. While choosing and
adopting the fine-tuned LLMs, we ensure fairness between the representations
extracted from separate models using the same fine-tuned architecture for each
model. It implies that they have been pretrained and fine-tuned using similar

configurations and assumptions. This mitigates potential biases that could arise
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if the representations were learned from models with different architectures. For
the emotion representations, we employ the model introduced by Barbieri et
al. [57], which has been fine-tuned for the emotion classification task. For the
sentiment representations, we employ the SIEBERT model [58], which has been
fine-tuned for the sentiment classification task. Both models have been fine-tuned

on pretrained RoBERTa architecture.

3.1.3 Personality Network

As we endeavor to employ equitable architectures for the extraction of affect and
personality representations, it is also equally imperative to acquire a correspond-
ing framework for the extraction of personality trait representations. However,
transformer-assisted text-based studies in the literature do not offer such archi-
tectures satisfying the expectations. First of all, our method requires an auxiliary
model that is trained for utterance-based personality trait classification since our
method proposes to extract personality representations for each sentence existing
in the transcripts individually and independently. However, most of the existing
studies [59-61] approach the personality traits classification task in the person-
based setting. It means they make a single prediction for multiple utterances
(posts, documents, etc.) that belong to the same person rather than making a
prediction for each utterance itself. Some other studies [62,63] involve psycholin-
guistic features alongside text information. Although Li et al. [64] introduce a
considerably expedient work, they do not offer any available dataset or ready-to-
use model. In light of this, we train our own personality trait detection network

that we utilize to extract the corresponding representations.

We instantiate the personality trait detection network through the utilization
of the pretrained RoBERTa model followed by a multi-label classification layer.
The multi-label classification layer is connected to the hidden units associated
with the BOS (Beginning of Sentence) token in the last layer of the RoOBETRTa
model. We have the multi-label classification layer since there are multiple bi-

nary personality trait categories, each indicating a different characteristic of the

12



personality. We train the whole network, including fine-tuning all the layers of
the pre-trained RoBERTAa model, using multi-label binary cross-entropy loss
(Lyrpor) along with a regularization factor (Lg). The total loss L can be

formulated as follows:

Liotal = Lynpee + ALg (3.1)

where A is the regularization parameter. For the calculation of Ly pcg, we
compute the loss value (I.;) for the c-th class and b-th sample in the batch. This

computation is as follows:

lepy = — WeYep - 10g(0(Yep))
o (1 r yc,b) : lOg(l i O(Qc,b)) (32)

where y., € {0, 1} is the target value and 9. is the output of the last linear layer
for the c-th class and b-th sample in the batch. Also, w. = % is the weight
of the positive answer for the c-th class, where N, yositive 1S the total number of
positive samples and N negative 15 the total number of negative samples. We add
these weights to avoid possible biases that could occur due to class imbalance.
Then, the loss vector for the c-th class becomes L, = [l 1, ..., l. p], where B is the
batch size. On top of this, the loss matrix becomes L = [Ly;...; L¢|, where C' is
the number of classes. Afterward, we compute the final scalar Ly;;pcr value for

each batch by calculating the mean of the L matrix as:
Lypor = mean(L) (3.3)
In addition, we compute Lg as:
L = Variance({||w1 |2, ..., ||wc]|2}) (3.4)

where w, is the weight vector associated with the c-th output neuron. The reason
we use the regularization factor is we can assume that the four categories of
personality types cannot be totally independent of each other. Therefore, we

avoid the output weights drifting apart from each other using this factor.

To extract the affect and personality representations from the auxiliary fine-

tuned RoBERTa models, we derive the hidden representations of the BOS token
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from the last layer of the models. By deriving the hidden representations of
the BOS token from the last layer, we obtain a condensed representation of the
input sentence that captures the learned features and context relevant to the
corresponding traits. We further exploit these representations for the depression

severity estimation task, treating them as distinct modalities.

Once we derive the representations from the auxiliary networks for each sen-
tence existing in a transcript, we obtain a sequence of embedded sentences. We
refer to these as sentence tokens. To standardize the number of sentence tokens
in each transcript, we apply [PAD] tokens to equalize the number of sentence
tokens in each transcript. As a result, each transcript is represented by a unique
matrix with the shape of S, X D,,. Here, S,,., denotes the sequence length of
the transcript with the maximum number of samples among the transcripts that
exist in the training set. D,, refers to the hidden dimension of the m-th auxiliary

network.

3.2 Dimension Standardization

Since the text representations are extracted from a separate auxiliary network,
the feature dimension for each modality may differ. To ensure fair competition
between the modalities during encoding, we standardize the feature dimension to
a specific value, D. In cases where the feature dimension was initially not equal
to D, we pass it through linear transformation, GELU activation [65], and layer

normalization [66] layers to standardize it.

GELU is an activation function commonly used in deep neural networks. Given
a sequential input tensor x of shape (N, S, D), where N is the batch size, S is the
sequence length (S = S,,,, through the dimension standardization process), and

D is the feature dimension, the GELU activation function is applied element-wise

oo e

as follows:

1
GELU(x) = 5 [1 +erf (

Sk
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Here, z is the input tensor element and erf(-) is the error function, which is a
standard mathematical function used to calculate the error probability in statis-
tics and the cumulative distribution function of the standard normal distribution
in probability theory. This function maps each element of the input tensor x to

its corresponding GELU-activated value.

Layer Normalization is a technique used to normalize the activations of a layer
within a neural network. In order to apply Layer Normalization to a sequential
input tensor x of shape (N, S, D), we first compute the mean p and standard

deviation ¢ for each example and sequence independently across the feature di-

mension:
1 D
His = 55 D Tids (3.6)
d=1
1 D
Tis =l D ;(%‘ds = 1js)? (3.7)

Here, j indexes the examples in the batch, ranging from 1 to N. s indexes the
sequences in the input, ranging from 1 to S. d indexes the features in the input

tensor, ranging from 1 to D.

Then, Layer Normalization standardizes the input tensor = for each example

and sequence independently as follows:

LN(2)jqs = Ljds — Hjs (3.8)

Ojs
where LN(z) is the normalized output, pjs is the mean computed across the

feature dimension, and o, is the standard deviation computed across the feature

dimension.

3.3 Addition of Regression Token

Inspired by the [CLS] token technique introduced in BERT, we include an addi-

tional token in our method. We refer to this token as the regression token ([REG]
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token). The primary aim of the [REG] token is to facilitate the regression task in
the context of multi-modal sequential data processing. We prepend a [REG] to-
ken to the beginning of each modality’s sequential data. This token is initialized
with values drawn from the Normal distribution N(x = 0,0 = 1). As a result of
this addition, the shape of the hidden representation matrices becomes S x D,

where S = S0 + 1.

By incorporating the [REG]| token into the input sequence, we aim to provide
the model with dedicated representations that encapsulate essential information
about the regression task. During the fusion of multiple modalities, we ensure
that the information from the [REG] token is seamlessly integrated into the com-
bined output. After the fusion process is complete, we employ a pooling strategy
where we extract the representations associated with the [REG] token. These
[REG] token representations serve as a critical bridge between the modalities
and the regression task, enabling our model to focus on relevant information.
These dedicated representations ensure that our model can effectively leverage
the information encapsulated by the [REG] token to make informed predictions,

effectively addressing the regression problem within the multimodal context.

3.4 Transformer Block

In the transformer block, there exist 7' number of cascaded transformer en-
coders [35] for each modality. Inside a single transformer encoder, we first feed
Xmt, which is the input for the ¢-th transformer encoder of the m-th modal-
ity, to the masked multi-head self-attention layer. This layer is composed of the
concatenation of H number of heads which are obtained in a parallel manner.
The computation of the heads incorporates the self-attention mechanism. The
self-attention mechanism is a variant of scaled dot product attention where the
query, key, and value matrices are derived from the linear projection of the same
input matrix. The query, key, and value matrices of each head utilize unique

linear projections of X, ;. For the h-th head, the query (Qnmz), key (Kpm.t),
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and value (V}, ) matrices are calculated as follows:

Qh,m,t - Xm,thuery,h,m,t (39)
Kh,m,t = Xm,th:ey,h,m,t (310)
Vh,m,t = Xm,thalue,h,m,t (311)

where unery,h,m,t € RDXDh) Wkey,h,m,t € RDXDha anluah,m,t € RDXDh are the

weight matrices. Here, D, is the same for all heads and is calculated as D), = %.

Accordingly, we calculate the attention scores of the h-th head as follows:

Qh,m,t K}Zmi
vV Dy

The attention scores represent the weights assigned to sentence tokens in the

Ap .t = softmax( ) (3.12)

input sequence, reflecting their importance for the context. However, the [PAD]
tokens that we insert into the sequence do not contribute any information to the
context. Therefore, it is necessary to exclude them from the attention map. In
light of this, we mask out the attention scores associated with the [PAD] tokens
by setting their values to —oco. On top of this, we calculate the result of the h-th

head by multiplying the attention scores with the value matrix as follows:
headh’m,t = Ah,m,tvh,m,t (313)

Further, we concatenate the heads and linearly project them to obtain the output

Om, t of the masked multi-head self-attention layer.
Omﬂg = [headLm’h ey headH7m7t]Woutput,m,t (314)

where Wouput mt € RP*P is the weight matrix. Later, we feed this output matrix

to a residual connection and a Layer Normalization layer.
Xt = LN(Opy + Xins) (3.15)
where LN stands for Layer Normalization. For the rest, we employ a feed-
forward network followed by the repetition of Eq. 3.15.
Xmtr1 = LN(FFN,, (X, ) + X)) (3.16)
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Here, FFN,, ; stands for a two-layer feed-forward network. The first layer projects
the hidden representations from D dimensional space to 4D dimensional space
and the second layer projects back to D dimensional space. Both layers utilize

the GELU activation function for non-linearity.

For each modality m, we obtain X,, 711 as the result of the last (7-th) trans-
former encoder. This is also the output of the transformer block and is denoted

as Xm, which is equal to X,, 741.

3.5 Masked Multimodal Joint Cross-Attention
Fusion (MMJCA-Fusion)

As different modalities convey diverse information related to their own context,
it is crucial to effectively capture their complementary relationship. To merge
these modalities, we utilize a cross-attention-based fusion approach, which en-
codes inter-modal information while preserving the intra-modal dependencies.
To achieve that, we rely on the cross-attention between the individual modalities
and the joint representation, which is the concatenation of the modalities over
the feature dimension. Previous works such as [67] and [68] also propose to incor-
porate joint representations for their cross-attention fusion mechanisms. Their
attention mechanism operates on the feature or modality levels. They aim to cap-
ture the dependencies between visual and audial representations across feature or
modality dimensions. In our method, the positions of sentence tokens correspond
to each other across the modalities. In light of this, we compute the attention
maps between the hidden representations of the sentence tokens along separate
modalities to capture the dependencies between the sentence tokens located in
the same position. This enables sequence information modeling for each tran-
script along multiple modalities. The architecture of the Masked Multimodal
Joint Cross-Attention Fusion (MMJCA-Fusion) module is visualized in Figure
3.2.

18



(© Concatenation Across Feature Dimension @ Transpose @Mask out ®© softmax @ Position-wise Addition

Figure 3.2: Masked Multimodal Joint Cross-Attention Fusion

First, we linearly project the joint representation matrix, Z € RS*Mdmode  two
times separately using the transformation matrices Wy, € RMPXD and Wyniwe €
RMDPxD — Here, S denotes the sequence length. Basically, the key and value

matrices for the cross-attention operation become:

K = ZWiey (3.17)
V = ZWoatue (3.18)

To obtain the query matrix, we also linearly project the encoded representation
matrix X,, € RS*? for the m-th modality where i € {1, ..., M} and M > 1 is the

number of modalities. Hereby, the query matrix becomes:

A

Qi = Xquuery,m (319)

RDXD

where Wyerym € is the transformation matrix. Further, we calculate the

attention scores, similar to Eq. 3.12.

T

A, = softmax(Q\n;I_Ij ) (3.20)

Similar to the approach that we employ in the transformer block, we mask out

the attention scores associated with the [PAD] tokens by setting their values to
0o. On top of it, we obtain the result of each attention operation by multiplying

the attention scores with the value matrix followed by a linear projection.
O;n = AmVWoutput,m (321)

where Woutput,m € RP*P is the transformation matrix for the linear projection.
Afterward, we employ residual connection and layer normalization on top of the

attention operation as follows:

Om = LN(O!, + X, (3.22)
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If we denote 0,¢,,; as the vector that corresponds to the [REG] token index in O;,
the final output, O = [0eg1, Oreg,2, s Oreg m| 18 the concatenation of each 0y¢4,;

across the feature dimension.

3.6 Feed-Forward Network & Regression

At the final stage of our model architecture, we employ a feed-forward network
followed by a regression layer. The feed-forward network consists of a series of
neural network layers. It extracts higher-level information from O by progres-
sively transforming it into lower-dimensional spaces. Considering the number of
layers is denoted by L, the set, X = {3;,... ¥} indicates the number of neurons
that exist in the neural network layers. For instance, the [-th layer contains 3}
neurons. In addition, each layer utilizes GELU activation function for undergoing

non-linear transformation.

The output of the last neural network layer is connected to the regression layer.
Through a linear regression operation, this layer predicts a scalar continuous value
that corresponds to the PHQ-8 score.

For the optimization of the weights in the architecture, we employ we employ
the Concordance Correlation Coefficient (CCC) as the loss function, which is
effective in measuring the agreement between two variables and highly adaptive
to the regression tasks. CCC is calculated as follows:
2p0 40y

CCC =
g+ oy + (g — )

(3.23)

where o and o, are the standard deviations and p; and p, are the means of the
predictions and the target values, respectively. Also, p is Pearson’s correlation
coefficient between the predictions and the true values. Regarding this, we modify

CCC to obtain the loss function as follows:

Leco =1 —CCC (3.24)
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Chapter 4

Experimental Setup

We build the experimental setup with the aim of analyzing the effects of com-
ponents that are included in or excluded from the model architecture. These
components involve employed auxiliary networks, the adaptation of temporal
modeling, the existence of the transformer block, the type of the pooling method,
and the fusion approach. We define a single experiment as the process of obtain-
ing the best model state utilizing a determined set of model components. Each
experiment consists of training procedures where we tune the hyperparameter
values. During each of these procedures, the model parameters are trained on
only the predetermined training set. The model does not encounter any samples
from the predetermined validation or test sets during the learning phase. The
validation set is used to evaluate the model performance during the training. The
test set is used to measure the test performance of the final model that is obtained
after each experiment. In this section, we explain how we configure the training
procedures, tune the hyperparameters, and select the best model state for each
experiment. Then, we define the evaluation metric that we use to perform the

assessments.
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4.1 Datasets

In this section, we provide a comprehensive overview of the datasets employed
in our study to evaluate the proposed depression severity estimation network,
and the datasets that have been used for fine-tuning the sentiment, emotion, and

personality networks, leveraged as integral components.

4.1.1 Dataset Used for the Assessment of the Proposed

Depression Severity Estimation Network

For the assessment of the proposed depression severity estimation network, we
use the E-DAIC dataset [69], which is an extension of the DAIC-WoZ dataset
[70], provided by the AVEC’19 Detecting Depression with AI Subchallenge [71].
The data consists of semi-clinical video interviews, including video features, au-
dio recordings, and automatic transcriptions generated by Google’s Automatic
Speech Recognition (ASR) tool. The dataset is divided into fixed sets for train-
ing, development, and testing, comprising 163, 56, and 56 interviews, respectively.
The interviews were conducted in a Wizard-of-Oz (WoZ) scenario by two humans
controlling a virtual agent (Ellie) or by a fully automated AI. The training and
development sets contain a mix of WoZ and Al settings, while the test set only
includes the AT setting. All interviewees filled out the eight-item Patient Health
Questionnaire (PHQ-8), providing scores for each of the eight symptoms and their
total depression score. The total depression score, ranging from 0 to 24, is the
sum of the eight-item scores. The distribution of the number of subjects over

PHQ-8 scores for each set is detailed in Figure 4.1.

The quality and interpretability of the dataset are crucial for machine learning
tasks. However, the datasets come with challenges and limitations most of the
time so the proposed methods should be capable of accomplishing the challenges
and overcoming the limitations. The dataset that we use also introduces some,

which we detail as follows:
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Figure 4.1: Data distributions across different intervals of PHQ-8 Score.

e The acoustic of environments and the quality of recordings differ for sepa-
rate interviews. These cause noisy variances among auditory features and

inaccuracies in automatic generations of transcripts.

e There are no human interventions or manual corrections throughout the
preparation of transcripts. Thus, we encounter mistakes in the text, caused
by the failures that occurred during the automatic speech recognition. The

textual feature extraction is affected by such mistakes significantly.

e Aside from the lack of manual correction, there is no manually tagged
speaker information on transcripts. So, it is not known which parts of
the transcripts belong to the interviewee and which parts belong to Ellie or
the Al agent. This information can be derived from audial features but it

is a certain bottleneck for textual features.

e Even though we use the extended version of DAIC-WoZ dataset, the size
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of the dataset is considerably small. Modern technologies in the machine
learning field require reasonably large datasets to train and validate the
models they include. Due to consistently growing architectures, it gets
harder to avoid the overfitting issue. Therefore, the size of the dataset is a

significant challenge for adjusting the complexity of our proposed methods.

e As can be observed from Figure 4.1, the dataset is plagued by significant
class imbalance. This leads to deflections in the prediction of PHQ-8 scores.
It impels the model to predict scores from a certain scope of the range and

reduces the performance during the validation and testing phases.

4.1.2 Datasets Used for the Fine-tuned Awuxiliary Net-

works

In order to fine-tune the RoBERTa model for the sentiment classification task,
Hartmann et al. [58] exploit 15 different datasets, introduced by the studies [72-
79] and offered publicly on Kaggle! and Yelp?. The combination of these datasets
encompasses various domains, including tweets, movie reviews from IMDb? and
Rotten Tomatoes*, product and kitchen appliance reviews from Amazon®, and
restaurant reviews from Yelp®. It consists of 1,253,000 samples and is labeled
with fine-grained sentiment scores, ranging from very negative to very positive.
The authors only consider the binary version of the dataset, where the sentences

are classified as either positive or negative.

In order to fine-tune the RoBERTa model for the emotion recognition task,
Barbieri et al. [57] exploit the Affect in Tweets dataset, introduced by Mohammad
et al. [80]. The dataset consists of 174,356 tweets annotated with multi-labeled

emotion classes that are listed as follows:

Thttps://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
Zhttps://www.yelp.com/dataset

3https://www.imdb.com/

“https://www.rottentomatoes.com/

Shttps://www.amazon.com/

Shttps://www.yelp.com/
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e anger, including annoyance, rage

e anticipation, including interest, vigilance

e disgust, including disinterest, dislike, loathing
e fear, including apprehension, anxiety, terror

e joy, including serenity, ecstasy

e love, including affection

e optimism, including hopefulness, confidence

e pessimism, including cynicism, no confidence
e sadness, including pensiveness, grief

e surprise, including distraction, amazement

e trust, including acceptance, liking, admiration

e neutral or no emotion

Barbieri et al. re-purpose this multi-label dataset into a multi-class classification
problem, keeping only the tweets labeled with a single emotion. In order to
tackle the scarcity of the number of tweets with single labels, they select the
tweets annotated with the most common four emotions: anger, joy, sadness, and
optimism. This ends up with a total number of 5,052 samples for the fine-tuning

process.

We fine-tune the personality network, using the Kaggle MBTI dataset”. No-
tably, this dataset has been leveraged in contemporary research endeavors for
the personality trait classification task [60,63,81]. The dataset is sourced from
PersonalityCafe®, a platform where individuals share their personality types and

engage in discussions on topics such as health, behavior, and personal growth.

"https://www.kaggle.com /datasets/datasnaek /mbti-type/
8https://www.personalitycafe.com/
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The dataset comprises 8675 users, with each user contributing approximately 45-
50 posts. The data is labeled based on the Myers-Briggs Type Indicator (MBTT)
taxonomy [82], which divides personality types into four categories: Introversion /

Extroversion, Sensing / Intuition, Thinking / Feeling, and Perception / Judging.

4.2 Training Configuration

Throughout the training process, the model parameters (weights and biases) are
initialized and then aimed at achieving optimization subject to iterative updates.
Exclusively, we freeze the fine-tuned parameters of the auxiliary networks since
they do not involve back-propagation. We use Xavier’s method [83] for the ini-
tialization of the parameters and we use Adam optimizer [84] with weight decay
of 107° and an epsilon value of 1078 to update them. We designate the learning
rate (Ir) as a hyperparameter, dictating the magnitude of parameter updates dur-
ing the optimization process. Furthermore, we apply the dropout technique [85]
on all model parameters as a regularization technique. We also designate the

dropout probability (p) as a hyperparameter.

4.3 Hyperparameter Tuning

For each experiment, we conduct an extensive hyperparameter tuning process.
The selection of hyperparameters is based on the random search algorithm. Dur-
ing the random search, multiple training procedures are executed with randomly
selected configurations of hyperparameter values. The configuration that has
achieved the highest validation score indicates the best model for that experi-
ment. The model selection process is explained elaborately in Section 4.4. We
ensure the amount of training procedures is the same for each experiment. The

considered values for each hyperparameter are listed in Table 4.1.
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Table 4.1: Considered values for each hyperparameter.

Hyperparameter Considered Values
# of Transformer Encoders (K) {1, 2, 3}
# of Heads in Self-Attention Layers (H) {1, 2, 4, 8}

{{1024, 256, 16}, {1024, 64},

# of Neurons in The Layers of FEN (X)
(256, 64}, {64, 16}, {256)}

Learning Rate (Ir) (1076, 1071]
Dropout Probability (p) {0, 0.1, 0.2, 0.3}
Baitch Size (8, 16, 32, 64}

4.4 Model Selection

Each training procedure runs for a maximum value of 250 epochs. We also apply
the early-stoppage criterion with a patient parameter of 10. We evaluate the
validation score after each epoch is completed. In case the validation score does
not improve for 10 epochs, the training procedure terminates. Applying the early-
stoppage criterion reduces both the risk of overfitting and the training time to
be consumed. As the training procedure ends, we select the model state that has
achieved the highest validation score as the candidate model. At the end of each
experiment, we obtain the best model similarly by selecting among the candidate

models.

4.5 Evaluation Metrics

To assess the performance of the methods that are utilized in the experiments,
we use three distinct evaluation metrics: Concordance Correlation Coefficient
(CCC), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE).
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The CCC measures the agreement between predicted values and ground truth
labels, considering both the mean and variance of the data, as formulated in Eq.
3.23. A higher CCC score indicates better agreement between predictions and

true values, with 1 indicating perfect agreement and 0 representing no agreement.

RMSE is a common regression metric that quantifies the average deviation
between predicted and target values, giving more weight to larger errors due to
the squaring of differences. It calculates the square root of the mean of squared
differences, providing a measure of the model’s accuracy in predicting continuous
values. Lower RMSE values indicate better model performance. Considering the
number of test samples as N, the prediction value as 7, and the true value as vy,
RMSE is formulated as follows:

N
1
_ . . A 2
RMSE = | = ;:1:(341 n (4.1)

MAE is another regression metric measuring the average deviation between
predicted and target values. It provides a similar evaluation as RMSE but is
less sensitive to outliers since MAE treats all errors equally, without giving more
weight to larger errors. Like RMSE, lower MAE values indicate better model

accuracy. MAE is formulated as follows:

N

1 .
MAE = < 31— i (4.2)

i=1

To monitor the progress of the model during the training procedures and to
compare the empirical results during the assessments, we consistently utilize the
CCC metric. The reasons are (1) the CCC metric effectively assesses how well the
model predictions match the ground truth values and (2) the AVEC’19 Subchal-
lenge declares it as the main metric of the task. During the analyses demonstrated
in Sections 5.3 and 5.5, where we take account of only our final model, we also
involve the RMSE and MAE metrics.
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Chapter 5

Experiments & Results

In this section, we expound upon the executed experiments and present their out-
comes, accompanied by meticulous analyses. Initially, our focus revolves around
conducting a series of experiments aimed at assessing the significance of the com-
ponents comprising our model architecture. These experimental procedures are
primarily segregated into two distinct sections: encompassing the evaluations of
unimodality and multimodality. For each of these sections, we compare the vali-
dation result of each experiment with the validation result achieved by the best
model state we have obtained at the end of all experiments throughout the anal-
yses of the empirical outcomes. Moreover, we ensure to keep other components
the same as controlling variables while experimenting for one. three distinct sub-
groups, encompassing the assessments of various combinations of auxiliary net-
works, the existence of temporal modeling, and the fusion approach. Throughout
the analyses of the empirical outcomes, we compare the validation result of each
experiment with the validation result achieved by the best model state we have

obtained at the end of all experiments.

Further, we enhance our analyses by investigating the performance of the best
model over the test set. First, we assess the attention weights extracted from the
MMJCA-Fusion module while inferring two samples selected from the test set.

Second, we execute a more elaborate evaluation by applying the test metrics to
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small portions of the test set that have been created with respect to the ground
truth labels. Lastly, we compare the final results on the test set with other

state-of-the-art studies in order to ensure the credibility of our findings.

5.1 Evaluations in the Unimodal Setting

The objective of this assessment is to explore the impact of auxiliary networks
individually on the performance of our depression severity estimation model. To

achieve this, we conduct a series of experiments in the unimodal setting.

5.1.1 Assessment of Auxiliary Networks Individually

First, we examine the model for each modality independently. To achieve this,
the MMJCA-Fusion module is omitted from the architecture, and the network is
instantiated separately for each modality. This assessment provides insights into
the individual performance of each modality when they are treated in isolation.
The high-level architecture of the method modified for the unimodal setting is
visualized in Figure 5.1 and the individual performance of each auxiliary network

is represented in Table 5.1.
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Figure 5.1: High-level architecture of the method modified for the unimodal
setting. The dashed arrow indicates that there is no back-propagation in that
connection.
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Table 5.1: Development and test CCC scores when the auxiliary networks are

utilized individually. The bold values indicate the best scores.

Auxiliary Network
. . . Dev CCC Test CCC
Personality Emotion Sentiment Abstract

v 0.636 0.448
v 0.645 0.640

v 0.456 0.457

v 0.640 0.618

The findings presented in Table 5.1 demonstrate that each auxiliary network
contributes valuable information to depression severity estimation. However, no-
table differences are observed, particularly with the sentiment network, which
lags significantly behind the other networks in terms of the CCC results. This
discrepancy can be attributed to the multifaceted nature of depression, which
encompasses various emotional, cognitive, and behavioral aspects. Simple posi-
tive or negative sentiment analysis is insufficient to grasp the complexity of this
mental health condition. Instead, a comprehensive understanding requires in-
corporating personality traits and emotions, as they offer a more nuanced and

enriched perspective on an individual’s mental state.

Additionally, it is intriguing to note that the utilization of the abstract network
achieves a CCC score comparable to that of the personality traits and emotion
networks. This suggests that our proposed method effectively accomplishes the
depression severity estimation task even without employing affect or personality
representations. Instead, it successfully captures the intricate dependencies be-
tween abstract representations derived from the transcripts and the PHQ-8 score,
implying that the abstract network is capable of extracting meaningful patterns

and features related to depression.
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5.1.2 Assessment of Temporal Modeling in the Unimodal
Setting

Further, we delve into investigating the influence of introducing temporal model-
ing on individual modalities in the unimodal setting. To achieve this, a temporal
modeling module that is composed of a variant of recurrent neural networks is
inserted subsequent to the transformer block of the network. This enables the
network to capture temporal dependencies and sequential patterns within each
modality. Similar to Section 5.1.1, the MMJCA-Fusion module is excluded to

maintain the unimodal nature of this comparison.

Moreover, we add a pooling layer after the temporal modeling module to obtain
the comprehended representation of the input sequence. We do not incorporate
the [REG] token approach since the hidden state associated with the [REG] to-
ken after passing through a recurrent neural network layer would not capture
the same type of high-level information as the [REG]| token’s original represen-
tations. [REG] token embedding is designed to encapsulate the entire sequence’s
information, while that hidden state represents the sequence in the context of the
recurrent neural network’s own internal processing. The high-level architecture
of the method modified for the unimodal setting including temporal modeling is

visualized in Figure 5.2

what do you enjoy about
meeting new people seeing new
places

- -» Auxiliary Network PHQ-8 Score

—

Regression

do you still go therapy now

Dimension Standardization
Feed-Forward Network

I'm going to start therapy again

Transcript Temporal
Modeling

Figure 5.2: High-level architecture of the method modified for the unimodal
setting including temporal modeling. The dashed arrow indicates that there is
no back-propagation in that connection. h; represents the hidden state for the
t-th time step in the temporal modeling module.

We explore variations in the type of recurrent layer, the number of cascaded
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recurrent layers, and the pooling method, seeking to identify the optimal config-
uration that yields superior performance. The evaluation process involves em-
ploying different combinations of these components and comparing their results

against one another. The results are presented in Table 5.2

Two prominent recurrent layer types, Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU), are considered for capturing temporal dependen-
cies within the unimodal data. These layers exhibit different gating mechanisms
and memory retention characteristics. The LSTM cell is characterized by its sep-
arate memory cell and output gate, while the GRU combines these gates into a

unified update gate and reset gate. Mathematically, LSTM is defined as follows:

Mathematically, the LSTM unit consists of several key components that govern
its operation at each time step ¢t. Given an input sequence x; at time ¢, an LSTM

unit computes the following transformations:

fi=0(Wxy + Ushi—q + by) (5.1)
ir = o(Wizy + Uihi—y + b;) (5.2)
or = o(Woxy + Uphi—1 + b,) (5.3)
gr = tanh(Wyz, + Uyhy_1 + by) (5.4)
a=fO0cq 1+ 0O g (5.5)
hy = oy ® tanh(c;) (5.6)

(5.7)

Here, f;, iy, and o; represent the forget, input, and output gates respectively,
controlling the flow of information in the LSTM. ¢; is the candidate value to
be added to the memory cell, ¢;, while h; is the LSTM’s hidden state at time
t. W and U represent the weight matrices, and b represents the bias terms
for the respective gates. The symbol ® denotes element-wise multiplication, o
represents the sigmoid activation function, and tanh stands for the hyperbolic
tangent activation. In words, the forget gate decides which information from the

previous cell state ¢; 1 to discard, the input gate determines new information to
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be added to the cell state, and the output gate controls the information to be
exposed in the hidden state h;. The candidate value g; is computed based on the
current input and the previous hidden state, which, after gating, contributes to

the updated cell state ¢;.

Given an input sequence x; at time ¢ similar to the defined LSTM unit, a GRU

unit is defined as follows:

2= 0(W, - [he_y, 2] +.) (5.8)
re = (W - [huey, @] + by) (5.9)
hy = tanh(W), - [ry @ hy_1, 2] + bp) (5.10)
he=(1—2)@hi1+ 20 hy (5.11)

Here, h;_; is the hidden state from the previous time step, z; is the update
gate that determines how much of the previous state should be retained, and r,
is the reset gate that controls the information from the current input that should
be added to the new memory content. Similar to the LSTM unit, W represents
the weight matrices, and b represents the bias terms for the respective gates. In
this formulation, the update gate allows the network to decide whether to blend
the previous hidden state with the new memory content, enabling the model to
remember or forget information as needed. The reset gate controls how much of
the previous state information to reset based on the current input, enhancing the

model’s adaptability to different patterns in the data.

The number of cascaded recurrent layers is another critical factor to consider.
It determines the depth of the temporal modeling hierarchy within the network.
We experiment with employing one and two layers of the chosen recurrent type.
This allows us to gauge whether deeper temporal modeling yields improved per-

formance compared to a single-layer approach.

34



Pooling methods are employed to aggregate the temporal information ex-
tracted by the recurrent layers into a fixed-length representation. In this as-
sessment, we focus on two pooling methods: Last-Pooling and Max Pooling. In
the last-pooling method, the output of the last time step from the recurrent layer
is selected as the aggregated representation. This captures the final temporal
state of the sequence. Max pooling involves selecting the maximum value along
each dimension of the temporal sequence. This method aims to capture the most

salient features present at different time steps.

Table 5.2: Development and test CCC Scores across different configurations:
auxiliary network, recurrent layer type, number of recurrent Layers, and pooling

method. The bold values indicate the best scores.

Auxiliary Network Recurrent Layer Type # of Recurrent Layers Pooling Method Dev CCC Test CCC

A Last 0.595 0.616
Max 0.541 0.639
LSTM
9 Last 0.575 0.664
Max 0.540 0.623
Abstract
L Last 0.627 0.654
Max 0.575 0.527
GRU
9 Last 0.638 0.635
Max 0.567 0.604
1 Last 0.589 0.607
Max 0.631 0.575
LSTM
9 Last 0.577 0.626
Max 0.611 0.650
Emotion
1 Last 0.596 0.620
Max 0.650 0.675
GRU
9 Son 0.601 0.648
Max 0.610 0.611
1 Last 0.440 0.34
Max 0.467 0.416
LSTM
9 Last 0.413 0.364
Max 0.431 0.392
Sentiment
1 Last 0.441 0.415
Max 0.466 0.411
GRU
9 Last 0.436 0.358
Max 0.414 0.388
. Last 0.625 0.621
Max 0.634 0.619
LSTM
9 Last 0.626 0.552
Max 0.623 0.512
Personality
L Last 0.616 0.553
Max 0.641 0.556
GRU
) Last 0.624 0.555
Max 0.636 0.520
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After conducting an exhaustive assessment of the various configurations, it
is ascertained that the outcomes align consistently with the data presented in
Table 5.1 when accounting for the interplay among the auxiliary networks.” The
results also show that employing a single layer of GRU with max pooling with the
emotion network achieves the highest CCC score. This indicates that the GRU’s
gating mechanism combined with max pooling is particularly effective in captur-
ing relevant temporal patterns. The single-layer architecture suggests that for
the dataset and task under consideration, additional layers did not significantly

contribute to improved performance.

To further scrutinize the impact of different temporal modeling components, we
conduct an additional assessment, focusing on the integration of bidirectional re-
current layers. As employing LSTM and two cascaded layers does not consistently
improve the performance, we aim to understand the influence of bidirectional in-
formation flow on the unimodal temporal modeling task while maintaining the
recurrent layer type as GRU and a single cascaded layer to mitigate computa-
tional complexity. This exploration allows us to investigate whether bidirectional
modeling could enhance the network’s ability to capture temporal dependencies

effectively. The results are presented in Table 5.3

Bidirectional recurrent layers enable the network to consider both past and
future contexts when processing each time step, potentially capturing a more
comprehensive representation of temporal patterns. In our assessment, we uti-
lized the bidirectional variant of GRU. Mathematically, bidirectional GRU can

be defined as follows:

7, = oWz + Uyﬁt,l +b>) (5.12)
T, = oc(Wezy + Ug%tﬂ + bs) (5.13)
hy = tanh(W,z; + Uﬁ(?t ® ﬁt_l) + Ug(?t ® %t+1) + by) (5.14)
He=(1-Z2)® hor+ 200 hy (5.15)
he=(1=F)0 hm + 70 M (5.16)
S (5.17)
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Here, 7, and 7, represent the update gates for the forward and backward di-
rections respectively. The weight matrices W—, U, W+, and U4 correspond
to input-to-gate and hidden-to-gate connections for the forward and backward
directions. Additionally, ﬁt and %t denote the hidden states for the forward
and backward directions, while 7,; and <7t stand for the reset gates for these
directions. The weight matrices W, Uz, and Us- capture the interactions within
the bidirectional hidden states. The bias terms b and b4 correspond to the
update gates, and by, is the bias term for the candidate hidden state.

Table 5.3: Development and test CCC scores of unidirectional and bidirectional
recurrent layers in the Unimodal Temporal Modeling baseline, with fixed GRU
recurrent layer type and a single recurrent layer, while exploring various auxiliary
network and pooling method combinations. The bold values indicate the best

scores.

Auxiliary Network Pooling Method Recurrent Layer Direction Type Dev CCC Test CCC

Last Unidirectional 0.627 0.654
as
Bidirectional 0.602 0.404
Abstract o
Unidirectional 0.575 0.527
Max o .
Bidirectional 0.590 0.420
Unidirectional 0.596 0.620
Last o .
. Bidirectional 0.625 0.550
Emotion o
Unidirectional 0.650 0.675
Max . .
Bidirectional 0.626 0.604
Unidirectional 0.441 0.415
Last o .
) Bidirectional 0.462 0.355
Sentiment .
Unidirectional 0.466 0.411
Max o )
Bidirectional 0.470 0.447
Unidirectional 0.616 0.553
Last o .
. Bidirectional 0.479 0.398
Personality o ]
Unidirectional 0.641 0.556
Max o
Bidirectional 0.503 0.453

Contrary to our expectations, the integration of bidirectional GRU does not
consistently lead to improved performance across all configurations. While bidi-
rectional modeling exhibits potential in certain instances, it does not yield con-
sistently higher CCC scores compared to the unidirectional GRU configurations.

This observation is intriguing, as the bidirectional mechanism intuitively offers
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access to a broader temporal context. The results indicate that bidirectional
modeling might not inherently contribute to better performance. This could be
attributed to the deficiency of computational complexity and the nature of the

temporal patterns they encapsulate.

In our ongoing endeavor to comprehensively explore the impact of temporal
modeling components, we conduct yet another crucial assessment. This time,
our focus shifts to the existence of a transformer block, specifically targeting text
representations as a precursor to temporal modeling. The primary objective is to
understand the influence of the transformer block while maintaining consistency
by utilizing a single-layer unidirectional GRU configuration. Since the results in
Table 5.3 indicate that employing bidirectional GRU is not consistently superior
to the unidirectional GRU, we persevere with the unidirectional approach to avoid

unnecessary computational complexity. The results are presented in Table 5.4.

Table 5.4: Development and test CCC scores comparing the inclusion and exclu-
sion of the Transformer block in the Unimodal Temporal Modeling baseline, with
a fixed GRU recurrent layer type, a single recurrent layer, unidirectional recur-
rent layer direction, and max-pooling, while exploring various auxiliary network

configurations. The bold values indicate the best scores.

Auxiliary Network Transformer Block Dev CCC Test CCC

ve 0.575 0.527
Abstract
X 0.565 0.543
) v 0.650 0.675
Emotion
X 0.519 0.440
] v 0.466 0.411
Sentiment
X 0.390 0.362
) v 0.641 0.556
Personality
X 0.335 0.234

The outcomes of this assessment yield compelling insights into the signifi-

cance of incorporating the transformer block. The existence of the transformer
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block consistently leads to a significant improvement in the CCC scores across
all modalities. This marked improvement suggests that the transformer’s atten-
tion mechanisms excel not only in capturing interdependencies within the input
data but also in distilling crucial temporal features. The observed performance
boost aligns with the transformer’s inherent strength in capturing long-range de-
pendencies and contextual nuances. By incorporating the transformer block, the
model effectively enhances the text representations before temporal modeling,
enabling the subsequent layers to operate on more informative and contextually
enriched inputs. This corroborates the effectiveness of the attention mechanisms

in capturing intricate temporal dynamics present in the data.

5.2 Evaluations in the Multimodal Setting

In this section, we present the assessments conducted for our main multimodal
framework. We divide this section into four distinct subgroups, encompassing
the assessments of various combinations of auxiliary networks, the existence of

temporal modeling, the influence of [REG] token, and the fusion approach.

5.2.1 Assessment of Various Combinations of Auxiliary

Networks

We evaluate the impact of combining different auxiliary networks on depression
severity estimation performance. We experiment with various combinations of the
auxiliary networks, and the results are presented in Table 5.5. While executing
these experiments, we stick to our main architecture, including the MMJCA-

Fusion module.

The results presented in Table 5.5 demonstrate a coherent alignment with
the findings in Table 5.1. Specifically, combinations involving the abstract and

emotion networks exhibit superior performance. Despite the sentiment network’s
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Table 5.5: Development and test CCC scores when different combinations of
auxiliary networks are utilized. The bold values indicate the best scores.

Auxiliary Networks
Personality Emotion Senitment Abstract Dev CCC Test CCC

v v 0.632 0.640

v v 0.679 0.677

v v 0.644 0.633

v v v 0.660 0.681

v v 0.641 0662
v v 0.586 0.612
v v 0.627 0.638
v v v 0.638 0.666
v v v 0.675 0.652
v v v 0.648 0.665
v v v v 0.690 0.748

tendency to diminish performance in certain instances, the amalgamation of mul-
tiple auxiliary networks consistently enhances depression severity estimation com-
pared to the utilization of individual auxiliary networks in general. Notably, the
fusion of all auxiliary networks yields the most favorable performance outcome,
indicating that the integration of diverse representations substantially augments
the model’s capacity to discern intricate patterns associated with depression.
This implies that the combined utilization of complementary information sources
significantly enriches the model’s grasp of the multifaceted aspects inherent in

depression severity estimation.

5.2.2 Assessment of Temporal Modeling in the Multi-
modal Setting

In this section, we investigate the impact of temporal modeling on the perfor-
mance of the depression severity estimation network. The primary objective is
to determine whether the incorporation of temporal information through differ-
ent modeling techniques enhances or hinders the multimodal framework’s ability
to predict PHQ-8 scores from transcripts. Two distinct approaches for tempo-

ral modeling are explored: (1) utilizing a single unidirectional GRU layer with
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max-pooling and last-pooling, and (2) adding learnable positional embeddings.

In the first approach, we delve into investigating the influence of introduc-
ing temporal modeling in our multimodal framework. The introduced temporal
modeling mechanism is applied after the MMJCA-Fusion module, ensuring that
both modalities’ fused information is effectively utilized. We integrate the tem-
poral modeling module subsequent to the MMJCA-Fusion module, aiming to
capture the sequential information from the fused representations. The underly-
ing premise is that incorporating a separate temporal modeling module for each
modality before the fusion would lead to a substantial increase in model complex-
ity. Akin to Section 5.1.2, we insert a pooling layer after the temporal modeling
module. The high-level architecture of the method modified with the addition of

temporal modeling is visualized in Figure 5.3.

what do you enjoy about
meeting new people seeing new |,/ |
places

PHQ-8 Score

do you still go therapy now [,

Feed-Forward Network

I'm going to start therapy again

Dimension Standardization

Transcript ‘Auxiliary Networks Transformer Block (xT7)

Figure 5.3: High-level architecture of the method modified with the addition of
temporal modeling. The dashed arrows indicate that there is no back-propagation
in those connections. h; represents the hidden state for the ¢-th time step in the
temporal modeling module.

Following the indications of the results obtained in Section 5.1.2, we use uni-
directional GRU inside the temporal modeling module. Akin to the experiments
conducted in Section 5.1.2, we employ a single layer and two cascaded layers of
unidirectional GRU. Further, we employ two pooling methods: max-pooling and
last-pooling to extract relevant information from the GRU output. The former
captures the most salient features across the temporal dimension, while the lat-
ter focuses on the final time step’s representation, assuming it carries the most

critical information.

Since the multimodal framework has significantly more complex architecture

compared to the unimodal framework, we introduce the second approach. This
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alternative approach represents a lighter temporal modeling method that necessi-
tates notably lower computational resources in contrast to the first approach. In
this approach, we augment the baseline model by incorporating learnable posi-
tional embeddings. These embeddings aim to provide the model with additional
positional information, which might help in discerning the order of the sentences
within the transcript during prediction. For each modality m, the positional em-
beddings matrix P,, € R**P are initialized from N(u = 0,0 = 1). We inject
them into the network prior to the transformer block. With the integration of
these embeddings, the input of the transformer block for the modality m trans-

forms into X,, 11 @ P, where @ denotes the position-wise addition.

We present the results of our experiments in Table 5.6, comparing the perfor-

mance of each temporal modeling approach against the baseline model.

Table 5.6: Development and test CCC scores of different temporal modeling

approaches. The bold values indicate the best scores.
Temporal Modeling Pooling Method Dev CCC Test CCC

Last 0.616 0.621

GRU (single layer)
Max 0.670 0.669
Last 0.623 0.670

GRU (two cascaded layers)

Max 0.625 0.700
Positional Embedding [REG] Token 0.649 0.574
None (Our Best) [REG] Token 0.690 0.748

The results in Table 5.6 indicate that not employing any temporal modeling
outperforms any other temporal modeling approach. The potential reasons are
(1) data characteristics and (2) trade-offs between dataset limitations and model
complexity. First of all, the transcripts may not have strong temporal dependen-
cies or sequential patterns that can be effectively captured by temporal modeling
techniques. In cases where the information relevant to depression severity estima-
tion is mostly contained within individual sentences or short segments, temporal
modeling might introduce noise and unnecessary complexity, leading to subopti-

mal performance. Secondly, the addition of temporal modeling can significantly

42



increase the model’s capacity, making it more prone to overfitting, especially
considering the fact that our dataset is limited. In contrast, the model without
temporal modeling is simpler and less susceptible to overfitting, leading to bet-
ter generalization and overall performance. Furthermore, the transcripts contain
various linguistic noises, hesitations, or repetitions. Temporal modeling methods
inadvertently emphasize these noisy elements, leading to a negative impact on
performance. In short, these outcomes can be summarized as the incorporation
of temporal modeling acquiesces to the dataset limitations. Drawing from these
potential reasons and the significant difference between the results, we deem it
superfluous to advance to temporal modeling experiments within the context of
the multimodal framework, given that the incorporation of temporal modeling

techniques conspicuously diminishes performance.

5.2.3 Assessment of Regression Token Approach

In this section, we explore and analyze the impact of different pooling meth-
ods in the network. The original model utilizes the [REG] token approach for
pooling contextual information from the fused representations. We conducted
experiments to compare the performance of this [REG] token approach with two
alternative pooling methods: max-pooling and mean-pooling. The experiment

results are represented in Table 5.7.

Table 5.7: Development and test CCC scores of different pooling methods. The

bold values indicate the best scores.
Pooling Method Dev CCC Test CCC

Mean 0.636 0.711
Max 0.646 0.693
[REG] Token 0.690 0.748

The results in Table 5.7 indicate that the original [REG] token approach
achieves the highest performance among the three pooling methods. The model
is able to effectively capture and summarize the contextual information from
the interview transcripts, leading to superior predictions of PHQ-8 scores. The

max-pooling approach, which selects the maximum value from each dimension
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across the token representations, exhibits significantly lower performance com-
pared to the [REG] token approach. While max-pooling is a simple and efficient
method, it seems to be not ideal for this specific task, as it tends to focus on
the most salient features while potentially discarding relevant context. Similarly,
the mean-pooling approach, which calculates the average of the token representa-
tions, demonstrates lower performance compared to the [REG] token approach.
Mean-pooling may not adequately capture the nuanced patterns and interactions

present in the transcripts, resulting in less accurate predictions.

In summary, the superiority of the [REG] token approach over max-pooling
and mean-pooling is attributed to its ability to leverage the entire context of the
transcripts for prediction. The [REG] token carries aggregated information from
the transformer’s attention mechanism, allowing it to encapsulate the most perti-
nent information for the task at hand. In contrast, max-pooling and mean-pooling

may fail to preserve important contexts, leading to suboptimal performance.

5.2.4 Assessment of Fusion Approach

We evaluate the performance of the proposed MMJC-Fusion module in conjunc-
tion with the transformer block by comparing its results with two existing fusion
approaches from other studies, as well as the basic concatenation method. The
goal is to demonstrate the effectiveness and superiority of the proposed approach.
In addition, we experiment with each fusion approach with and without the trans-

former block in order to assess its impact effectively.

For comparison, we include two existing fusion approaches relying on joint
cross-attention, each proposed for emotion recognition tasks involving different

modalities:

e Praveen et al. [67] propose a fusion approach designed for emotion recog-
nition tasks that involve fusing auditory and visual modalities. It operates

on the feature dimension, attending to specific features extracted from each
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modality to capture their complementary information for emotion predic-

tion.

e Zhang et al. [68] propose a fusion approach designed for emotion recognition
tasks that involve fusing textual, auditory, and visual modalities. Unlike our
MMJC-Fusion approach that attends to tokens, it operates on the modality
dimension, allowing the network to focus on the most informative modality

during the emotion prediction task.

We present the results of the experiments in Table 5.8.

Table 5.8: Development and test CCC scores of different fusion approaches. The

bold values indicate the best scores.
Fusion Approach Transformer Block Dev CCC Test CCC

Concatenation § R o
v 0.650 0.654

Praveen et al. [67] ‘); 821? 8238
I% 0.000 0.000

Zhang et al. [68] v 0.650 0.676
MMJCA-Fusion ‘); 8 2;% (g) gi%

As shown in the results, the combination of the transformer block and the
MMJC-Fusion module outperforms all other fusion approaches with or with-
out the Transformer. The superior performance of this combined approach is
attributed to its ability to effectively capture long-range intra- and inter-level
dependencies, contextual relationships, and fine-grained token-level information

from auxiliary networks.

The fusion approaches proposed by Praveen et al. and Zhang et al. were
originally developed for emotion recognition tasks that involve different modali-
ties. However, in the context of depression severity estimation from transcripts,
the MMJC-Fusion approach, which operates along the token dimension, demon-
strates better performance compared to attention along the feature dimension
(FD-Attention) and the modality dimension (MD-Attention).
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The joint cross-attention mechanism along the token dimension in our MMJC-
Fusion approach enables the depression severity estimation network to attend to
specific sentences and phrases within the clinical interview transcripts. Therefore,
the network gains a deeper understanding of the text data and can capture the nu-
anced linguistic patterns and contextual cues indicative of depression symptoms.
This token-level attention allows the network to effectively integrate information
from different personality traits, emotion, and sentiment representations, leading
to superior predictions of PHQ-8 scores. In contrast, the joint cross-attention
along the feature dimension and the modality dimension do not fully exploit the
fine-grained information present in the text data. Praveen et al. emphasize spe-
cific features extracted from each modality, which might miss the context and
relationships between tokens. Similarly, Zhang et al. focus on modalities, po-
tentially overlooking the importance of specific sentences or phrases that carry

critical information about a patient’s mental state.

Furthermore, the positive impact of masking in the MMJC-Fusion approach
reinforces the effectiveness of the token-level attention and the careful handling
of text data during the fusion process. By considering only meaningful tokens
and filtering out padding tokens, the depression severity estimation network can
fully utilize the valuable information present in the clinical interview transcripts,
resulting in a more accurate and interpretable prediction of PHQ-8 scores. In
contrast, the fusion approaches without this masking process might inadvertently
allocate attention to padding tokens, which may hinder the model’s ability to
focus on the critical content of the text. This results in suboptimal predictions

and lower scores.

5.3 Segmented Evaluation of The Method
Across Different Ranges of True Values

In this section, we present a detailed analysis of our proposed method’s perfor-

mance across different ranges of true PHQ-8 values. The purpose of this analysis
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is to examine whether the predictive accuracy of our method remains consis-
tent across the entire spectrum of depression severity, despite the class imbalance
present in the dataset. To achieve this, we partition the validation and test sets
into distinct groups based on the true PHQ-8 scores. Each group encompasses
a specific range of PHQ-8 values, allowing us to investigate how our method’s

prediction errors are distributed within these partitions.

For each evaluation on both the validation and test sets, we segment the sam-
ples into distinct groups according to the following PHQ-8 score ranges: [0,4],
[5,9], [10,14], [15,19], and [20,24]. We compute the RMSE and MAE for each
group, providing us with insights into the accuracy of our method’s predictions
within different ranges of depression severity. By analyzing the trends in RMSE
and MAE across these groups, we aim to gain a comprehensive understanding of

our method’s behavior across the entire depression severity spectrum.

6
A RMSE
s MAE
5_
10-14 15-19 20-24

True PHQ-8 Score

Figure 5.4: RMSE and MAE values across different groups in the validation set,
each encompassing a specific range of PHQ-8 scores.
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Figure 5.5: RMSE and MAE values across different groups in the test set, each
encompassing a specific range of PHQ-8 scores.

The results of our segmented evaluation, shown in Figures 5.4 and 5.5, shed
light on the robustness of our proposed method. Across both the validation and
test sets, we observe consistent patterns in the distribution of prediction errors.
Notably, the RMSE and MAE values demonstrate remarkably similar trends for
the groups encompassing the [0,4], [5,9], [10,14], and [15,19] PHQ-8 score ranges.
This finding suggests that our method’s accuracy remains stable across a wide
range of depression severity, indicating its resilience against potential bias arising
from class imbalance of the AVEC’19 dataset.

Furthermore, a noteworthy observation emerges from the evaluation of the
[20,24] PHQ-8 score range. In both the validation and test sets, this group ex-
hibits substantially lower RMSE and MAE values compared to the other groups.

This phenomenon indicates that our method excels in predicting cases of higher
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depression severity, showcasing its potential clinical relevance in accurately iden-

tifying individuals with a higher tendency towards depression.

Our method’s ability to maintain consistent performance across varying levels
of depression severity is a testament to its generalizability and reliability. The
fact that it performs well even in the presence of imbalanced class distribution
demonstrates its capacity to capture the intricate relationships between input
features and depression severity, without succumbing to undue influence from

the prevalence of lower PHQ-8 scores.

5.4 Assessment of Attention Weights of the
MMJCA-Fusion Module on the Test Set

In the pursuit of enhancing the accuracy and interpretability of the proposed
method, we delve into an essential aspect of our proposed architecture — the
MMJCA-Fusion module. This section focuses on a comprehensive assessment of
the attention weights generated by this module when applied to transcripts from
the clinical interview test set. Understanding the distribution and significance
of attention across sentences within a transcript is pivotal in comprehending the

model’s decision-making process.

Our novel architecture aims to harness multiple text modalities, incorporat-
ing emotional, sentiment, and personality trait features extracted from auxiliary
fine-tuned networks for each sentence in the transcripts. The MMJCA-Fusion
module, a critical component of our framework, facilitates the fusion of these di-
verse modalities while assigning attention weights to each modality during feed-
forward propagation. This enables the model to dynamically adapt to the most
informative aspects of the input data. Throughout this evaluation process, we
extract the attention weights associated with the [REG]| token for each sentence
in a transcript. Since the [REG] token encapsulates the captured information for

each sentence, these attention weights reflect the importance or significance of
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the corresponding sentences in the context of the entire transcript. To obtain a
scalar attention weight score for each sentence, we calculate the mean of these
attention weights across all modalities. This scalar score encapsulates the relative
importance of each sentence within the transcript, as determined by the model’s

attention mechanism.

In this section, we embark on an exploratory journey into the attention weights
assigned by the MMJCA-Fusion module under various scenarios. Four distinct
scenarios will be analyzed, each shedding light on the model’s behavior in different

situations:

e High True PHQ-8 Score with Accurate Prediction: This scenario
explores a specific transcript with a high true PHQ-8 score, where our model
accurately predicts the corresponding depression severity level. By exam-
ining the sentences that garner the highest attention, we aim to decipher
what characteristics the model identifies as indicative of depression in these

cases.

e High True PHQ-8 Score with Inaccurate Prediction: Here, we in-
vestigate a case where the true PHQ-8 score is high, but the model’s predic-
tion deviates from accuracy. The analysis of attention weights in such an
instance can unveil potential challenges or shortcomings in our architecture

when handling severe depression cases.

e Low True PHQ-8 Score with Accurate Prediction: In this scenario,
we focus on a specific transcript with a low true PHQ-8 score, which is
correctly identified by our model. Understanding which sentences receive
heightened attention during prediction can provide insights into the model’s

ability to recognize non-depressive attributes within the text.

e Low True PHQ-8 Score with Inaccurate Prediction: Lastly, we delve
into a case where a specific transcript exhibits a low true PHQ-8 score, but
our model’s prediction is inaccurate. Analyzing the sentences prioritized
by the model’s attention can uncover challenges in distinguishing low-level

depressive symptoms from other factors.
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By scrutinizing the attention weights attributed to individual sentences in
these scenarios, we aim to enhance our understanding of the model’s decision-
making process, gain insights into the salient textual cues it leverages, and identify
areas for potential improvement. This analysis not only contributes to the inter-
pretability of our automatic depression severity estimation system but also offers
valuable feedback for refining its performance and robustness. The results of the

scenarios are presented in Tables 5.9, 5.10, 5.11, and 5.12.

Table 5.9: The top ten sentences that have achieved the highest average attention
weights for the high true PHQ-8 score with accurate prediction scenario(True
PHQ-8 Score: 20, Predicted PHQ-8 Score: 20.49).

Sentence Average Attention Weight (x10?%)

how easy is it for you to get a good night sleep not very 1.804
because I knew I was going to kill myself if I didn’t 1.776
and it wasn’t easy at all especially during that time 1.687
over at a friend’s house I really wanted to leave felt it was rude to leave so early so 1586
T stuck it out for 6 hours and I just was probably the worst guest

depressed mostly 1.578
not very good 1.569
no I'm even more irritable I have even more of a flash camper L1551
it makes depression worse anxiety worse

I want to take a boat load of medications now treatment for PTSD it’s also for depression 1.435
due to PTSD 1.342
I'm not a therapist 1.323

Table 5.10: The top ten sentences that have achieved the highest average atten-
tion weights for the high true PHQ-8 score with inaccurate prediction scenario
(True PHQ-8 Score: 19, Predicted PHQ-8 Score: 9.74).

Sentence Average Attention Weight (x10%)
yes I'm a little bit more upbeat 2.688
I'm very good at controlling my temper 2.598
I went to a ladies luncheon and I enjoyed myself 2.516
I went to the movies and saw Monsters University 2.490
how would your best friend describe 2.429
my home is filled with a lot of negative energy and I don’t have any friends to rely on 2.422
the shopping the museums 2.372
I recently got involved in a book club 2.369
I went to Walt Disney World for my 21st birthday 2.366
I read a book 2.276
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Table 5.11: The top ten sentences that have achieved the highest average atten-
tion weights for the low true PHQ-8 score with accurate prediction scenario (True
PHQ-8 Score: 0, Predicted PHQ-8 Score: 1.61).

Sentence Average Attention Weight (x10?)
I think it’s a very useful tool and many people have been successful in receiving therapy 1.668
how easy is it for you to get a good night’s sleep very easy I usually retire about 11:30 12:00 at night 1489
and sleep through for 6 to 7 hours
you feel therapy is useful I think it is for some people yes probably for most 1.342
and it’s usually as a result of being ill if I have the flu or cold or whatever then I'm sluggish the next day 1312
or for two days but I'm usually able to bounce back
the 18th of July and then they’ll be out on the Great Lawn on August 3rd so it’ll be the August 3rd event
and crate they're bringing a trailer ring in BBQ for everybody and it’s going to be a wonderful time
we have anything will send it in or you’re more than happy and I okay at night I don’t think I do but 1.284
I met you sent me an email and I noticed you have the military would have to understand it from
West Point okay and they would I mean that we're going to have generals were going to be on during
‘World War two people they might love to come oh yeah
T got a feeling good I've been very fortunate since having open heart surgery I've been relatively healthy
and I'm very involved in the community and I enjoy every every aspect of that sometimes it’s very tiring 1.269
but it’s a good tired
many of the veterans with whom I live in work I have had extensive therapy and it’s proven to be very successful 1.227
visiting SEC liqueur in that my Mart in Paris on my first day in France in Europe 1.206
T always having a full plate 1.203
we didn’t have any virtual people but it was nice 1.201

Table 5.12: The top ten sentences that have achieved the highest average atten-
tion weights for the low true PHQ-8 score with accurate prediction scenario (True
PHQ-8 Score: 0, Predicted PHQ-8 Score: 9.12).

Sentence Average Attention Weight (x10?%)

I hardly ever not sleep or get sleep 3.399

not too easy 2.740
Come Easy 2.580
I’'m happy to be alive 2.313
[REG] 2.215
I need a kiss to my head together 2.210
tell me about the hardest. 2.198
try to help her out 2.121
it’s Friday or is it 2.088

it’s simple knowing is an A+ affect my life 2.070
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5.4.1 Discussion on the High True PHQ-8 Score with Ac-

curate Prediction Scenario

In this scenario, the model accurately predicts a high PHQ-8 score, indicating
severe depressive symptoms. The sentences that received the highest attention

weights predominantly revolve around themes associated with depression:

e Sentences like "how easy is it for you to get a good night’s sleep not very”
and "and it wasn’t easy at all especially during that time” highlight sleep

disturbances, a common symptom of depression [86,87].

e "because I knew I was going to kill myself if I didn't” is a particularly
alarming statement, signifying a high risk of self-harm or suicide, which
aligns with a high PHQ-8 score [88,89].

%N

e "depressed mostly,” "not very good,” and ”it makes depression worse anx-
iety worse” directly mention feelings of depression and anxiety, reinforcing

the severity of the condition.

e The mention of "treatment for PTSD” and "due to PTSD” indicates the
presence of comorbid conditions, which can contribute to a higher PHQ-8

score.

The attention weights in this scenario reflect the model’s ability to appropri-
ately identify and prioritize sentences indicative of severe depression, leading to

an accurate prediction.

5.4.2 Discussion on the High True PHQ-8 Score with In-

accurate Prediction Scenario

In this case, despite the high true PHQ-8 score, the model’s prediction is inac-
curate. The sentences receiving the highest attention weights seem to focus on

positive or neutral aspects of the individual’s life:
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e Sentences such as "I'm very good at controlling my temper,” "I went to a
ladies luncheon and I enjoyed myself,” and "I went to the movies and saw
Monsters University” convey positive experiences and emotional stability,

which may have influenced the model’s prediction.

e Mentions of engaging in activities like "the shopping,” ”the museums,” and
”a book club” indicate an active and socially connected lifestyle, potentially
leading the model to underestimate the depression severity as the plenitude

of the social activities indicates a lower risk of depression [90,91].

e "I recently got involved in a book club” and "I read a book” highlight
engagement in intellectually stimulating activities, suggesting a positive

mental state.

The attention weights in this scenario suggest that the model might have been
overly influenced by the presence of positive or neutral cues in the text, leading

to an inaccurate prediction despite the high true PHQ-8 score.

5.4.3 Discussion on the Low True PHQ-8 Score with Ac-

curate Prediction Scenario

In this situation, the model accurately predicts a low PHQ-8 score, reflecting the
absence or mild nature of depressive symptoms. The sentences with the highest

attention weights emphasize positive attributes and well-being:

e Sentences like "I think it’s a very useful tool,” "how easy is it for you to get
a good night’s sleep very easy,” and ”"I've been very fortunate since having
open heart surgery” underscore a positive outlook on life, good sleep quality,

and overall well-being.

e Mentions of engaging in activities, attending events, and enjoying social
interactions ("they’re bringing a trailer ring in BBQ,” "I'm very involved

in the community”) indicate an active and socially connected lifestyle.
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e The statement "many of the veterans with whom I live in work I have had
extensive therapy and it’s proven to be very successful” suggests a support

network and successful therapeutic interventions, contributing to the low
PHQ-8 score.

The attention weights in this scenario align with the model’s accurate predic-
tion, highlighting the absence of significant depressive cues and the presence of

positive indicators.

5.4.4 Discussion on the Low True PHQ-8 Score with In-

accurate Prediction Scenario

In this scenario, the model’s prediction is notably inaccurate, given the low true
PHQ-8 score. The sentences with the highest attention weights do not strongly
indicate depressive symptoms. However, it’s essential to highlight why this inac-

curate prediction occurred:

e Sentences like "I hardly ever not sleep or get sleep” and "not too easy” do
mention sleep difficulties and possible emotional distress, but they do not
strongly suggest severe depression. The model might have placed undue

emphasis on these mild cues, leading to an inaccurate prediction.

e [t is essential to note that the model’s prediction, though elevated compared
to the low true PHQ-8 score, does not reach the upper range of possible
PHQ-8 scores. Phrases like ”I’'m happy to be alive” and ”it’s simple knowing
is an A+ affect my life” convey a positive attitude and optimism. These
positive expressions may have influenced the model’s decision positively,

but the overall prediction remains within a moderate range.

e The mention of "try to help her out” and ”it’s Friday or is it” does not
provide clear evidence of depression. However, the model might have mis-
takenly interpreted these sentences as neutral statements, which could have

contributed to the model’s erroneous high prediction.
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In this case, the model’s attention weights seem to have been swayed by sen-
tences with mild emotional cues, potentially leading to the inaccurate prediction.
This highlights the challenge of distinguishing between mild depressive symptoms

and non-depressive cues, a crucial area for future model improvement.

5.5 Comparison to Other Methods

In this section, we present a comprehensive comparison of the performance of
the proposed method to existing state-of-the-art methods. Akin to ours, these
methods address the depression severity estimation task on the AVEC’19 dataset.
This comparison allows us to place our results in the broader context of the ex-
isting research landscape, providing insights into the strengths and limitations
of our approach. By benchmarking our performance against other cutting-edge
methods, we can ascertain the competitiveness of our model and its potential to
outperform or align with the best-performing techniques in the field. The practice
of comparing our outcomes with state-of-the-art studies promotes transparency
and encourages rigorous evaluation, thereby enhancing the reliability of our re-
search. It showcases the significance of independent validation and strengthens

the credibility of our contributions to the scientific community.

Table 5.13 presents a meticulous comparison between our text-based depression
severity estimation network and prominent state-of-the-art methodologies. A
distinguishing factor is our exclusive reliance on the text modality, while other
methods combine multiple modalities such as textual, auditory, and visual inputs.
The results decisively highlight the supremacy of our approach despite the scarcity

of the utilized modalities.
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Table 5.13: Results of comparison to other methods. Bold values indicate the
best results for the corresponding evaluation metric. The methods are sorted by

year.
Modalities Dev Test
Method Year | povtual Audial Visual | CCC RMSE MAE | CCC RMSE MAE
Zhang ct al. [38] | 2019 7 7 - - - - 6.78 5.7
Ray et al. [51] 2019 v v v . 4.37 - o670 473 402
Makiuchi et al. [52] | 2019 v v v | 0696  3.86 - | 0403 611 .
Fan et al. [40] 2019 v v 0.466 507  4.06 | 0430 591  4.39
Sun et al. [6] 2021 v v 0.733  3.78 - - - -
Rutowski et al. [24] | 2021 v - - - - 5.51 4.20
Van Steijn et al. [43] | 2022 v v 0.61  5.10 - 062  6.06 .
Saggu et al. [56] | 2022 v v v 0.662  4.32 - | 0457 5.36 .
Ours 2023 7 0.6900  4.32  3.62 | 0.748 4.37  3.46
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Chapter 6

Conclusion

In this thesis, we have presented a comprehensive approach to automatic de-
pression severity estimation through the analysis of clinical interview transcripts.
Our contributions have advanced the field by proposing a novel architecture that
effectively utilizes multiple text modalities, including emotion, sentiment, and
personality. Through our research, we have demonstrated the effectiveness of
these features in a single, integrated framework for the automatic depression
severity estimation task. To derive motion, sentiment, and personality features,
we have incorporated various auxiliary networks that are LLMs fine-tuned for the
corresponding classification tasks. Our pioneering use of these multiple features
within a novel transformer-based approach represents a significant step forward
in the development of accurate and comprehensive depression severity estimation
systems. By leveraging these diverse aspects of textual information, our model
captures a more holistic representation of an individual’s mental state, enhancing

the predictive capabilities and robustness of the system.

Furthermore, we have introduced a new multimodal joint cross-attention fusion
technique (MMJCA-Fusion) that effectively combines information from different
text modalities. This technique not only improves the interpretability of our
model but also ensures that relevant features are adequately integrated, leading

to enhanced predictive performance.
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An essential aspect of our work involves the fine-tuning of the pretrained
RoBERTa model, as one of the auxiliary networks, for the classification of per-
sonality traits in utterances. This auxiliary network not only contributes to the
accuracy of our main approach but also underscores the potential for leveraging

pre-existing models to augment specific tasks within a larger framework.

We have assessed the proposed method with unimodal and multimodal set-
tings. During the evaluations with unimodal settings, we have examined the
impact of each auxiliary network on PHQ-8 score estimation. To convert the
original architecture to an unimodal one, we have excluded the MMJCA-Fusion
module. The first assessment with the unimodal setting has been executed by
employing each auxiliary network individually. The results have indicated that
each network has contributed valuable information to depression severity estima-
tion, whereas the sentiment network has achieved significantly lower results than
others. Later, we have assessed the impact of adding temporal modeling into
the unimodal network. During this assessment, we have conducted experiments
across different configurations of auxiliary networks, recurrent layer types, the
number of recurrent layers, and pooling methods. We have considered using two
types of recurrent layers: LSTM and GRU, using a single layer and two cascaded
recurrent layers, and last-pooling and max-pooling methods. One observation
that has been obtained from the results is that using temporal modeling has
slightly improved the results in the unimodal setting. So, we have proceeded
with the assessments of temporal modeling. Another observation has been that
the configurations, including LSTM and two cascaded recurrent layers, have not
consistently improved the model performance. To avoid an unnecessary increase
in model complexity, we have taken account of using a single GRU layer in the pro-
ceeding assessments of temporal modeling in the unimodal setting. Afterward, we
have explored the influence of employing bidirectional recurrent layers instead of
unidirectional ones. For each auxiliary network, we have conducted experiments
for utilizing a single bidirectional GRU layer with both max-pooling and last-
pooling methods. Contrary to our expectations, the integration of bidirectional
GRU has not consistently led to improved performance across the configurations.

In this manner, we have stuck with utilizing a single unidirectional GRU layer in
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the subsequent evaluation, that is the assessment of the existence of the trans-
former block. In this assessment, we have both included the transformer block
in and excluded it from the network for each auxiliary network. The findings
have demonstrated the importance of the transformer block in our architecture

as including it has consistently led to a significant improvement in the results.

For the multimodal evaluation, we have first conducted experiments utiliz-
ing all combinations of the auxiliary networks. The results have indicated that
combining multiple auxiliary networks has consistently improved the PHQ-8 esti-
mation performance and the combination of all the auxiliary networks has yielded
the best results. Similar to the unimodal evaluation, we have included temporal
modeling in the multimodal setting for the subsequent assessment. In this assess-
ment, we have utilized a single GRU layer and two cascaded layers GRU layers
with both last-pooling and max-pooling. In addition, we have experimented with
a positional embedding approach. The findings have shown that the utilization of
any temporal modeling has not managed to improve the performance. Further,
we have conducted assessments for different pooling methods to explore the im-
pact of the [REG] token, and for different fusion approaches from other studies to
explore the impact of the MMJCA-Fusion approach. The findings have demon-

strated the original proposed architecture has outperformed other configurations.

Moreover, we have performed a segmented evaluation of the proposed method
across different ranges of true PHQ-8 scores on both the validation set and the
test set. The findings have demonstrated that our method’s accuracy remains
stable across a wide range of depression severity, indicating its resilience against
potential bias arising from class imbalance of the AVEC’19 dataset. We have
also observed from the results that the [20,24] PHQ-8 score range has exhibited
significantly lower error values compared to the other ranges. Subsequently, we
have explored the attention weights generated by the MMJCA-Fusion module.
We have examined the average attention weights assigned for the sentences that
exist in selected samples from the test set. The outcomes have provided valuable
insights into the correlations between the observed textual cues and the depression
severity. The outcomes have also matched existing psychological studies. Finally,

we have pursued a comprehensive comparison of the performance of the proposed
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method to other methods that also address the depression severity estimation
task on the AVEC’19 dataset. A notable factor in this comparison is that other
studies exploit the different combinations of text, audio, and vision modalities.

The results have highlighted the supremacy of our method.

The remarkable attainment of our text-based depression severity estimation
network deserves profound recognition. By exclusively focusing on textual data,
our approach circumvents the intricacies involved in integrating and processing
multimodality. This underscores the latent potential residing within linguistic
constructs present within the textual content for discerning and precise depression
severity estimation. Furthermore, the singularity of text modality integration
conveys pragmatic implications for real-world implementation. The streamlined
utilization of text data not only mitigates resource and computational demands
but also amplifies the method’s practicality and seamless integration into existing

mental health assessment frameworks.
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