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NEAT AND CONEAT SUBGROUPS

ABSTRACT

We survey the properties of neat subgroups of abelian groups. Coneat subgroups
are always neat subgroups. Conversely, if a torsion group A with all but finitely many
primary components zero is a neat subgroup of a group B, then it is coneat in B.
We cannot generalize this to any torsion group A. We give another proof for the
structure of neat-injective abelian groups using the structure of reduced algebraically
compact groups. This proof is generalized to give the structure of c-injective modules
over Dedekind domains. A submodule V' of a module M is a coneat submodule of M
if and only if V' is a Rad-supplement of a submodule U of M in M. We investigate
some properties of Rad-supplemented modules over any ring R. A module M is Rad-
supplemented if and only if M/P(M) is Rad-supplemented, where P(M) denotes the
sum of all radical submodules of M. A reduced Rad-supplemented module is weakly
supplemented. A reduced module is totally Rad-supplemented if and only if it is totally
supplemented. A reduced Rad-supplemented module is coatomic. For a left reduced
ring R, R is left perfect if and only if every R-module is Rad-supplemented. For a
commutative noetherian ring R, if an R-module M is reduced and Rad-supplemented,
then it is supplemented. We also investigate some properties of Rad-supplemented
modules over discrete valuation rings and Dedekind domains. For a discrete valuation
ring R which is not a field, an R-module M is Rad-supplemented if and only if M is
the direct sum of its divisible part, a finitely generated free R-module and a bounded
R-module. A module M over a Dedekind domain R is Rad-supplemented if and only if
the quotient module of M by its divisible part is supplemented. For a Dedekind domain

R, a reduced R-module is Rad-supplemented if and only if it is supplemented.

Keywords: Rad-supplement, coneat, neat, supplement, complement , c-injective,

coatomic module, proper class, closed submodule, high subgroup.



DUZENLI VE KODUZENLI ALT GRUPLAR

0z

Abel gruplarin diizenli alt gruplarinin 6zellikleri incelendi. Kodiizenli alt gruplar
daima diizenlidir. Tersine eger bir A grubu sonlu sayidaki asal parcalar: sifirdan farkl
bir burulmali grup ise ve bir B grubunun diizenli bir alt grubu ise A grubu B’de
kodiizenlidir. Bunu herhangi bir burulmali grup A igin genelleyemeyiz. indirgenmi§ ce-
birsel kompakt gruplarin yapisini kullanarak, diizenli-injektif abel gruplarin yapisi farkl
bir yolla ispatlandi. Bu ispat Dedekind tamlik bolgesi iizerinde c-injektif modiillerin
yapisini vermek icin genellegtirildi. M modiiliiniin bir V' alt modiilii M’de kodiizenlidir
ancak ve ancak V alt modilii M’nin bir U alt modiliiniin M’de bir Rad-tiimleyeni
ise. Herhangi bir halka tizerinde, Rad-tiimlenen modiillerin bazi &zellikleri hakkinda
aragtirma yapildi. Bir M modilii Rad-tiimlenendir ancak ve ancak M/P(M) Rad-
tiimlenen ise, burada P(M), M nin radikal olan alt modiillerinin toplamini ifade etmek-
tedir. Indirgenmis Rad-tiimlenen bir modiil zayif tiimlenendir. Indirgenmis bir modiil
tamamen zayif Rad-tlimlenendir ancak ve ancak tamamen tiimlenen ise. indirgenmi§
Rad-tiimlenen bir modiil koatomiktir. Sol indirgenmis bir R halkasi icin, R sol miikemmel
bir halkadir ancak ve ancak biitiin R-modiiller Rad-tiimlenen ise. Degigmeli bir noether
R halkasi icin, bir R-modiil indirgenmis Rad-tiimlenen ise tiimlenendir. Ayrica bir
ayrik degerli tamlik bolgesi ve bir Dedekind tamlik bolgesi iizerinde, Rad-tiimlenen
modiillerin baz 6zellikleri incelendi. Bir ayrik degerli tamlik bolgesi iizerinde, bir M
modiilii Rad-tiimlenendir ancak ve ancak M, boliinebilir kisminin, sonlu tiiretilmis
serbest bir R-modiiliin ve sinirhi bir R-modiiliin direkt toplami ise. Bir Dedekind tamlik
bolgesi iizerinde, bir M modiilii Rad-tiimlenendir ancak ve ancak M’in boliinebilir
kismina boliim modiilii tiimlenen ise. Bir Dedekind tamlik bolgesi lizerinde, indirgenmis

bir modiil Rad-tiimlenendir ancak ve ancak tiimlenen ise.

Anahtar Sozciikler: Rad-tiimleyen, kodiizenli, diizenli, tiimleyen, tamamlayan, c-

injektif, koatomik modiil, 6z sinif, kapali alt modiil, yiiksek alt grup.
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CHAPTER ONE
INTRODUCTION

In this introductory chapter, we will give the motivating ideas for our thesis problems
and summarize what we have done. To explain these problems and results we will
summarize what proper classes are in Section 1.3. See Section 1.1 for the definition of
complement and supplement. What is assumed as preliminaries notions is sketched in
Section 1.2; see also Chapter 2. See Section 1.4 for the definition of neat subgroups and
neat submodules. For the definition of coneat submodules see Section 1.5. In section
1.6, we will summarize the main results of this thesis.

The proper class Complrapod [Supplrod) consists of all short exact sequences

0—=A-1-pB 2050

of R-modules and R-module homomorphisms such that Im(f) is a complement [resp.
supplement| in B. Neatraoq [CoNeat paoq] consists of all short exact sequences of
R-modules and R-module homomorphisms with respect to which every simple module

is projective [resp. every module with zero radical is injective].

In Chapter 4, we survey the properties of neat subgroups and we seek for the neat
subgroups which are coneat in Section 4.6. We deal with Rad-supplemented modules
for an associative ring R with unity, using the known results for supplemented modules,
in Chapter 6. In Section 6.1, we deal with Rad-supplemented modules for an arbitrary
ring R. The next step is to give a characterization of Rad-supplemented modules for
the case R is a Dedekind domain in Section 6.4. We deal with c-injective modules in
Chapter 5. Another proof for the structure of neat-injective abelian groups is given
using the structure of reduced algebraically compact groups (see Section 5.2). This
is generalized to give the structure of c-injective modules over Dedekind domains in

Mermut et al. (2007).



1.1 Complements and Supplements

We try to understand a module through its submodules, or better to say through
its relation with its submodules. More precisely, let R denote an associative ring with
unity, B be an R-module and let K be a submodule of B. It would be best if K is
a direct summand of B, that is if there exists another submodule A of B such that

B = K & A; that means,
B=K+A and KnNA=0.

When K is not a direct summand, we hope at least to retain one of these conditions.
These give rise to two concepts: complement and supplement.

If A is a submodule of B such that B = K + A (that is the above first condition for
direct sum holds) and A is minimal with respect to this property (that is there is no
submodule A of B such that A & Abut still B = K—i—fl), then A is called a supplement
of K in B and K is said to have a supplement in B. Equivalently, K + A = B and
K N A is small (=superfluous) in A (which is denoted by K N A <« A, meaning that
for no proper submodule X of A, KN A+ X = A). The module K need not have a
supplement in B. If a module B is such that every submodule of it has a supplement in
it, then it is called a supplemented module . For the definitions and related properties
see Wisbauer (1991, §41) and Clark et al. (2006, §20).

If A is a submodule of B such that KN A = 0 (that is the above second condition for
direct sum holds) and A is mazimal with respect to this property (that is there is no
submodule A of B such that A £ A but still KnNA= 0), then A is called a complement
of K (or K-high) in B and K is ggid to have a complement in B. When K = B!,
the first Ulm subgroup of B (i.e., ﬂ nB, that is, the subgroup of elements of infinite

height in B), A will be called hz‘ghn T& B. By Zorn’s Lemma, it is seen that K always
has a complement in B (unlike the case for supplements). In fact, by Zorn’s Lemma,
we know that if we have a submodule A’ of B such that A’N K = 0, then there exists
a complement A of K in B such that A O A’. See the monograph Dung et al. (1994)

for a survey of results in the related concepts.



A submodule A of a module B is said to be a complement in B if A is a complement
of some submodule of B; shortly, we also say that A is a complement submodule of B
in this case and denote this by A <,B. It is said that A is closed in B if A has no
proper essential extension in B, that is, there exists no submodule A of B such that
A& A and A is essential in A (which is denoted by A < A and meaning that for every
nonzero submodule X of A, we have AN X # 0). We also say in this case that A is a
closed submodule and it is known that closed submodules and complement submodules
in a module coincide (see Dung et al. (1994, §1)). So the “c” in the notation A <,B
can be interpreted as complement or closed. Dually, a submodule A of a module B is
said to be a supplement in B if A is a supplement of some submodule of B; shortly, we

also say that A is a supplement submodule of B.

1.2 Preliminaries, Terminology and Notation

Throughout this thesis, by a ring we mean an associative ring with unity; R will
denote such a general ring, unless otherwise stated. So, if nothing is said about R in the
statement of a theorem, proposition, etc., then that means R is just an arbitrary ring.
We consider unital left R-modules; an R-module M will mean left R-module M and is
denoted by pM. A right R-module M is denoted by M. R-Mod denotes the category
of all left R-modules. Mod-R denotes the category of right R-modules. Z denotes the
ring of integers. Group will mean abelian group (Z-module) only. Integral domain,
or shortly domain, will mean a nonzero ring without zero divisors, not necessarily
commutative. But following the general convention a principal ideal domain (shortly
PID) will mean a commutative domain in which every ideal is principal, i.e., generated
by one element. A unique factorization domain (shortly UFD) is a commutative domain
R in which every nonzero element » € R which is not a unit can be written as a finite
product of irreducibles p; of R (not necessarily distinct): r = pips---p, and this

decomposition is unique up to associates. Also a Dedekind domain is commutative.

All definitions not given here can be found in Wisbauer (1991), Dung et al. (1994),



Anderson & Fuller (1992), Clark et al. (2006) and Fuchs (1970).
The notation we use have been given on pages (vii- viit) just before this chapter.
The index have been given on pages 165-168 at the end of this thesis.

We do not delve into the details of definitions of every term in modules, rings and
homological algebra. Essentially, we accept fundamentals of module theory, categories,
pullback and pushout, the Hom and tensor (®) functors, projective modules, injective

modules, flat modules, homology functor, the functor Extp = Ext}% are known.

For more details in homological algebra see the books Alizade & Pancar (1999),
Rotman (1979), Cartan & Eilenberg (1956) and Maclane (1963). We will explain most
of the terms and summarize the necessary concepts. See Chapter 2 for properties
for essential submodules, small submodules, radical, socle, localization, artinian rings,
noetherian rings, discrete valuation rings, Dedekind domains, perfect rings and some

facts in modules.

1.3 Proper Classes of R-modules for a ring R

Let P be a class of short exact sequences of R-modules and R-module homomor-

phisms. If a short exact sequence

B—>0—0 (1.3.1)

belongs to P, then f is said to be a P-monomorphism and g is said to be a P-
epimorphism (both are said to be P-proper and the short exact sequence is said to
be a P-proper short exact sequence.). The class P is said to be proper (in the sense
of Buchsbaum) if it satisfies the following conditions (see Buschbaum (1959), Maclane

(1963, Ch. 12, §4), Stenstrom (1967a, §2) and Sklyarenko (1978, Introduction)):

(i) If a short exact sequence E is in P, then P contains every short exact sequence

isomorphic to E .



(ii) P contains all splitting short exact sequences.

(iii) The composite of two P-monomorphisms is a P-monomorphism if this composite
is defined. The composite of two P-epimorphisms is a P-epimorphism if this

composite is defined.

(iv) If g and f are monomorphisms, and g o f is a P-monomorphism, then f is a
P-monomorphism. If g and f are epimorphisms, and g o f is a P-epimorphism,

then g is a P-epimorphism.

An important example for proper classes in abelian groups is Purez aoq: The proper
class of all short exact sequences (1.3.1) of abelian groups and abelian group homomor-
phisms such that Im(f) is a pure subgroup of B, where a subgroup A of a group B is
pure in B if ANnB = nA for all integers n (see Fuchs (1970, §26-30) for the important
notion of purity in abelian groups). The short exact sequences in Purez o4 are called
pure-exact sequences of abelian groups.

The smallest proper class of R-modules consists of only splitting short exact se-
quences of R-modules which we denote by Splitgaoq- The largest proper class of
R-modules consists of all short exact sequences of R-modules which we denote by
Abspmod (absolute purity ).

For a proper class P of R-modules, call a submodule A of a module B a P-
submodule of B, if the inclusion monomorphism iy : A — B, i4s(a) = a, a € A, is

a P-monomorphism.

1.3.1 Projectives and Injectives with respect to a Proper Class

Take a short exact sequence

E: 0 A

of R-modules and R-module homomorphisms.



An R-module M is said to be projective with respect to the short exact sequence E,

or with respect to the epimorphism g if any of the following equivalent conditions holds:

(i) every diagram

where the first row is E and v : M — C' is an R-module homomorphism can be
embedded in a commutative diagram by choosing an R-module homomorphism
¥ : M — Bj; that is, for every homomorphism v : M — C, there exits a

homomorphism %4 : M — B such that go 5 = ~.
(ii) The sequence
Hom(M,E): 0— Hom(M, A)—> Hom(M, B)—¥~ Hom(M, C)—=0

is exact.

Dually, an R-module M is said to be injective with respect to the short exact sequence
E, or with respect to the monomorphism f if any of the following equivalent conditions

holds:

(i) every diagram

where the first row is E and o : A — M is an R-module homomorphism can be
embedded in a commutative diagram by choosing an R-module homomorphism
& : B — M; that is, for every homomorphism « : A — M, there exists a

homomorphism & : B — M such that & o f = a.

(ii) The sequence

Hom(E, M) : 0— > Hom(C, M)—L > Hom(B, M)~ Hom(A, M)—~0 is exact.



An R-module M is said to be P-projective [P-injective] if it is projective [injective]
with respect to all short exact sequences in P. Denote all P-projective [P-injective]

modules by 7(P) [¢(P)].

1.3.2 Projectively generated Proper Classes

For a given class M of modules, denote by 7~ 1(M) the class of all short exact
sequences E of R-modules and R-module homomorphisms such that Hom(M,E) is

exact for all M € M, that is,
7Y M) = {E € Abspptoq| Hom(M, E) is exact for all M € M}.

71 (M) is the largest proper class P for which each M € M is P-projective. It is

called the proper class projectively generated by M.

1.3.3 Injectively generated Proper Classes

For a given class M of modules, denote by :=1(M) the class of all short exact
sequences E of R-modules and R-module homomorphisms such that Hom(E, M) is

exact for all M € M, that is,
LTI M) = {E € Absrmoq| Hom(E, M) is exact for all M € M}.

1~Y(M) is the largest proper class P for which each M € M is P-injective. It is called
the proper class injectively generated by M.

An injective module is called elementary if it coincides with the injective envelope
of some cyclic submodule. Such modules form a set and every injective module can
be embedded in a direct product of elementary injective modules (Sklyarenko, 1978,
Lemma 3.1). A subclass M of a class M of modules is called an injective basis for M
if every module in M is a direct summand of a direct product of modules in M and of

certain elementary injective modules. If M is a set, then for the proper class t~1(M),



M is an injective basis for the class of all . ~!(M)-injective modules (Sklyarenko, 1978,

Proposition 3.3).

1.3.4 Flatly generated Proper Classes

When the ring R is mot commutative, we must be careful with the sides for the
tensor product analogues of projectives and injectives with respect to a proper class.

Remember that by an R-module, we mean a left R-module.

Take a short exact sequence

E: 0 A

of R-modules and R-module homomorphisms. We say that a right R-module M is flat

with respect to the short exact sequence E, or with respect to the monomorphism g if

MoE: 0— Mo A e B e o— 0

is exact.

A right R-module M is said to be P-flat if M is flat with respect to every short
exact sequence E € P, that is, M ® E is exact for every E in P.

For a given class M of right R-modules, denote by 7=!1(M) the class of all short
exact sequences E of R-modules and R-module homomorphisms such that M ® E is

exact for all M € M:
77H (M) = {E € Absrrtoa|M @ E is exact for all M € M}.

771 M) is the largest proper class P of (left) R-modules for which each M € M is

P-flat. It is called the proper class flatly generated by the class M of right R-modules.

When the ring R is commutative, there is no need to mention the sides of the modules

since a right R-module may also be considered as a left R-module and vice versa.



1.4 Neat Subgroups and Neat Submodules

The classes Complgatod and Suppl rpoq defined in the introduction to this chapter
really form proper classes as has been shown more generally by Generalov (1978, The-
orem 1), Generalov (1983, Theorem 1), Stenstréom (1967b, Proposition 4 and Remark
after Proposition 6). In Stenstrom (1967b), following the terminology in abelian groups,
the term ‘high’ is used instead of complements and low’ for supplements. Generalov
(1978, 1983) use the terminology ‘high’ and ‘cohigh’ for complements and supplements,
and give more general definitions for proper classes of complements and supplements
related to another given proper class (motivated by the considerations as pure-high ex-
tensions and neat-high extensions in Harrison et al. (1963)); ‘weak purity’ in Generalov
(1978) is what we denote by Complgaod- See also Erdogan (2004, Theorem 2.7.15 and

Theorem 3.1.2) for the proofs of Complrat0q and Supplga0a being proper classes.

A subgroup A of a group B is said to be neat in B if AN pB = pA for all prime
numbers p (see Fuchs (1970, §31); the notion of neat subgroup has been introduced
in Honda (1956, pp. 43-44)). This is a weaker condition than being a pure subgroup.
What is important for us is that neat subgroups of an abelian group coincide with
complements in that group (see Theorem 4.2.4). Denote by Neatzato4, the proper

class of all short exact sequences

of abelian groups and abelian group homomorphisms where Im(f) is a neat subgroup
of B; call such short exact sequences neat-exact sequences of abelian groups (like the
terminology for pure-exact sequences). The following result is one of the motiva-
tions for us to deal with complements and its dual supplements: The proper class
Complzaoq = Neatzaoq is projectively generated, flatly generated and injectively

generated by simple groups Z/pZ, p a prime number:

Complzioa = Neatzaoq =7 *({Z/pZ|p prime})

T ({Z/pZ|p prime}) = . ({Z/pZIp prime})
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(see Theorem 4.4.8).

The second equality N eatzaoq = 7+ ({Z/pZ|p prime}) was the motivation to define

for each ring R, as said in the introduction to this chapter,

Neat g mod ael- 7~ ({all simple R-modules})

= 7 '({R/P|P maximal left ideal of R}),

following Stenstrom (1967a, 9.6) (and Stenstrém (1967b, §3)).
For a submodule A of an R-module B, say that A is a neat submodule of B, or say
that A is neat in B, if A is a Neatppiog-submodule. We always have Complpatod C

Neatgaoq for every ring R (by Stenstrom (1967b, Proposition 5)).

If R is a commutative noetherian ring in which every nonzero prime ideal is maximal,
then

Complpmod = Neat paod,

by Stenstrom (1967b, Corollary to Proposition 8).

Generalov (1978, Theorem 5) gives a characterization of this equality in terms of the

ring R:

Complprod = Neat Ratod if and only if R is a left C-ring.

The notion of C-ring has been introduced by Renault (1964): A ring R is said to be
a left C-ring if for every (left) R-module B and for every essential proper submodule
A of B, Soc(B/A) # 0, that is B/A has a simple submodule. Similarly right C-rings
are defined. For example, a commutative noetherian ring in which every nonzero prime
ideal is maximal is a C-ring. So, of course, in particular a Dedekind domain and

therefore a PID is also a C-ring (see for example Mermut (2004, Proposition 5.1.6)).
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1.5 Coneat Submodules

1.5.1 The Proper Class Co-Neatrriod

We have,

Neatpapod = 7 '({all semisimple R-modules})
= 7 Y{M|Soc M = M, M an R-module}).
Dualizing this, we obtain the proper class Co-Neat patoq as said in the introduction to
this chapter by
CoNeatraoq = ¢~ ({all R-modules with zero radical})
= Y{M|Rad M =0, M an R-module}).

The proper class Co-Neat gaoq has been introduced in Mermut (2004, §3.4).

If A is a CoNeatgpiog-submodule of an R-module B, the we say that A is a coneat
submodule of B, or that the submodule A of the module B is coneat in B.

For any ring R (see Mermut (2004, Proposition 3.4.1)),

Supplrpptod € CoNeatppgoq € ¢~ 1({ all (semi-)simple R-modules}).

Without using the terminology relative homological algebra, we give the definitions
of neat and coneat submodules as follows:
A monomorphism f : K — L is called neat if any simple module S is projective

relative to the projection L — L/Im f, that is, the Hom sequence
Hom(S, L) — Hom(S, L/Im f) — 0

is exact.
Dually, a monomorphism f : K — L is called coneat if any module M with Rad M =

0 is injective with respect to it, that is, the Hom sequence

Hom(L, M) — Hom(K, M) — 0
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is exact (see Clark et al. (2006, §10)).

Remark 1.5.1. The notion neat defined in this thesis and the notion neat introduced
in Bowe (1972) does not coincide. Similarly, the notion coneat homomorphism, dual-
lization of the neat homomorphism introduced in Bowe (1972), and the notion coneat
defined in this thesis does not coincide. Zoschinger (1978) introduced , which does not

coincide with our coneat monomorphism defined in this thesis.

1.5.2 Rad-supplement Submodules

The notion 7-complement and dually 7-supplement has been introduced in Clark
et al. (2006, 10.11):

Let 7 be a radical for o[M] with associated classes T, and F,. Then for a submodule
K < L where L € o[M], the following statements are equivalent:

(i) Every N € F; is injective with respect to the inclusion K — L;
(ii) there exists a submodule U < L such that

U+K=Land UNK =7(K);

(iii) there exists a submodule U < L such that

U+K=Land UNK < 7(K).

If these conditions are satisfied, then K is called a 7-supplement in L.

For more details for the radical 7 for o[M], see Clark et al. (2006, Ch. 2). Now we
consider the case 7 = Rad for R-Mod. The condition (iii) is like being a coneat, so let
us define being a Rad-supplement of a submodule in the module: for submodules U, V'
of a module M, V is said to be a Rad-supplement of U in M or U is said to have a
Rad-supplement V' in M if

U+V=MandUNV <RadV.

So, a submodule V' of a module M is said to be a Rad-supplement in M if V is a

Rad-supplement of a submodule U of M in M.
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Being a coneat submodule is like being a supplement: For a submodule V' of a

module M, V is coneat in M if and only if there exists a submodule U < M such that
U+V=M and UNV <RadV

(Proposition 3.3.1).

So, a submodule V of a module M is a coneat submodule of M if and only if V is a
Rad-supplement of a submodule U < M in M.

Dual to the relationship between the neat and complement submodules, there is a
relationship between coneat submodules and supplement submodules; every supplement

submodule is coneat (see Mermut (2004, Proposition 3.4.1)).

1.6 Main Results of This Thesis

1.6.1 Neat Subgroups which are Coneat

Coneat subgroups are always neat (see Mermut (2004, Proposition 3.4.1)). We deal
with neat subgroups which are coneat. We search for the answer of the question that
in which case neat subgroups and coneat subgroups coincide. A torsion group A of
a group B such that all but finitely many primary components of A are zero is neat
if and only if it is coneat. We cannot generalize this result to any torsion group A.
The torsion subgroup P, Z/pZ of the group [[, Z/pZ is neat in [, Z/pZ, but it is not
coneat (Example 4.6.7).

1.6.2 c-injective Modules over a Dedekind Domain

Let X and M be R-modules. The module X is called M-c-injective if, for every
closed submodule A of M, every homomorphism f : A — X can be lifted to M, i.e.,
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there exists a homomorphism f : M — X such that f|A = f:

A<M

fiw
!
X

A module M is called self-c-injective if M is M-c-injective. For a discussion of c-
injectivity and related problems see Santa-Clara & Smith (2000), Smith (2000a) and
Santa-Clara & Smith (2004).

We say that a module X is c-injective if it is M-c-injective for every module M.

Since neat-injective abelian groups are nothing but c-injective abelian groups (since
Complzroq = Neatzpod), we have given the details for the structure of neat-injective
abelian groups in Harrison et al. (1963, Lemma 4) and we have given another proof
of this result suggested by Bill Wickless (see Section 5.2). So following this proof
c-injective modules over Dedekind domains are similarly described in Mermut et al.

(2007) (see Section 5.3).

1.6.3 Rad-Supplemented Modules over a Dedekind Domain

A module M is called Rad-supplemented if every submodule of M has a Rad-
supplement.

The notion Rad-supplemented modules was introduced in Wang & Ding (2006) as
generalized supplemented modules , or shortly, GS-modules. Firstly, we investigate
some properties of Rad-supplemented modules over any ring R in Section 6.1. Every
supplement submodule is a Rad-supplement, and so every Rad-supplemented module
is supplemented (Proposition 6.1.4). If a module M is reduced and Rad-supplemented,
then it is weakly supplemented (Proposition 6.2.15). We give a very useful lemma that
if a module M is reduced and Rad-supplemented, then it is coatomic (Lemma 6.1.19).
For a left reduced ring R, R is left perfect if and only if every left R-module is Rad-
supplemented (Theorem 6.1.27). For a commutative noetherian ring R, if a module
M is reduced and Rad-supplemented, then it is supplemented (Lemma 6.2.22). For all
details see Chapter 6.
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For a discrete valuation ring R with quotient field K # R, an R-module M is
Rad-supplemented if and only if M is isomorphic to My & My ® Mz & My, where
My, My, M3, My are R-modules such that M; = R*, My = K" My = (K/R)2) and
Myp® = 0 for some integers a,b > 0 and arbitrary index sets Iy, Iy (Theorem 6.3.4).
Over a Dedekind domain R, a module M is Rad-supplemented if and only if the quo-
tient of M by its divisible part is supplemented (Theorem 6.4.2). We give a proof of

this using the structure of supplemented modules over a Dedekind domain.



CHAPTER TWO
PRELIMINARIES

In this chapter we shall give definitions and properties of some terms in rings and
modules which will be used frequently. In the first two sections, we give some elementary
properties in abelian groups. For more details in abelian groups see the books Fuchs
(1970), Kaplansky (1969) and Griffith (1970). Some useful properties for essential
submodules and small submodules are given in section 2.4. In Section 2.5, we survey
the properties of radical and socle. In Sections 2.13, we give the definitions of cosmall
inclusions and coclosed submodules; for more details see Clark et al. (2006). In Section
2.12, we give some properties for coatomic and reduced modules; for more details see the
papers Zoschinger (1974a), Zoschinger (1980). Some facts for supplemented modules are
given in 2.11; for more details see the books Wisbauer (1991) and Clark et al. (2006).
In Section 2.7, we shall give some properties of artinian rings and noetherian rings.
In the other sections of this chapter, we have given some properties for localization,
discrete valuation rings, Dedekind domains. For more details for modules and rings see
for example the books Anderson & Fuller (1992), Lam (2001, 1999), Facchini (1998),
Atiyah & Macdonald (1969), Kasch (1982) and Dummit & Foote (2004).

2.1 Inverse Limit of abelian groups

Definition 2.1.1. A partially ordered set [ is called a directed set if for every i,j € I

there exists always a k € I such that ¢ < k and j < k.

Definition 2.1.2. Assume A; (i € I) is a system of groups, indexed by a directed set

1, and for each pair i,j € I with ¢ < j, there is given a homomorphism

such that

(1) 7rf is the identity map of A;, for each i € I,

16
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(ii) for all t < j < k in I, we have 7TZ7T§C = Wf.

Then the system
A={AGel) |}

is called an inverse system.

Definition 2.1.3. The inverse limit of the inverse system defined above

—(i€l)
is defined to consists of all vectors a = (--- ,a;,---) in the direct product A = HAi’
. iel
for which 7/a; = a; (i < j) holds.

2.2 Topological Group

For more details for topological groups, see for example Calugareanu et al. (2003).

Definition 2.2.1. Given aset A, P(A) = {X | X C A}, we call 7 C P(A) a topology
on Aif @, A € 7 and 7 is closed under unions and finite intersections.

We say that (A, ) is a topological space.

Definition 2.2.2. Let us consider a group (G,+) and the maps g; : G x G — G,
g1(x,y) = x4y, and g2 : G — G, go(x) = —z. A topological space G is called a

topological group if g1 is continuous in both variables and g¢o is continuous.

Definition 2.2.3. Given a topological group G a topology on G is a linear topology

if it has a base of neighborhoods of 0 whose elements are subgroups.

Definition 2.2.4. The Z-adic topology on an abelian group G is the one induced by
setting {nG | n > 0} as a neighborhood base of 0 € G.

An abelian group G is Hausdorff in the Z-adic topology if and only if its first Ulm
subgroup G! = ﬂ nG = 0.

n>0
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Definition 2.2.5. The p-adic topology on an abelian group G is the one induced by
setting {p*G | k > 0} as a neighborhood base of 0 € G for a prime number p.

Definition 2.2.6. A group A is called complete in a given topology if it is Hausdorff,

and every Cauchy net in A has a limit in A.

2.3 Basic Notions in Modules

Definition 2.3.1. An R-module M is said to be m-projective if for every two submod-
ules U, V of M with U +V = M, there exists f € End (M) such that Im f < U and
Im(1—f)<V.

Definition 2.3.2. An R-module N is said to be an M-generated module if there exists

an R-module epimorphism f : @, ., M — N for some index set A.

Definition 2.3.3. An R-module N is said to be a finitely M-generated module if there
exists an R-module epimorphism f : @ ; M; — N with finitely many R-modules
My, Ms, ..., M,.

Definition 2.3.4. Let M be an R-module. A module N is called subgenerated by M,

or M-subgenerated, if N is isomorphic to a submodule of an M-generated module.

The book Wisbauer (1991) gives the concepts in module theory relative to the cat-
egory o[M] for a module M. This category o[M] is the full subcategory of R-Mod
consisting of all M-subgenerated modules. This category reflects the properties of the
module M. For example, o[R] = R-Mod, where the ring R is considered as a left
R-module.

Proposition 2.3.5. (Modular Law)(see for example Kasch (1982, 2.3.15)) Let A, B
and C be submodules of a module M such that B < C. Then

(A+B)NC=(ANC)+(BnC)=(AnC)+ B.

Definition 2.3.6. An R-module M is bounded if rM = 0 for some nonzero r € R.
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Definition 2.3.7. Suppose that M is a free R-module with a finite basis of n elements,

we call M a free module of rank n.

Definition 2.3.8. Let R be a commutative domain and M be an R-module. An
element x € M is called torsion if r& = 0 for some nonzero r € R. The torsion
submodule of M is the set of torsion elements, and is denoted by T'(M). M is a torsion
module if T(M) = M, and M is torsion-free if T(M) = 0, that is, r& = 0 implies that

either r =0 or z = 0.

2.4 Essential and Small Submodules

Definition 2.4.1. A submodule A of an R-module M is called small (=superfluous)
in M and is denoted by A <« M if for every submodule U of M,

A+U=M implies U =M.

Definition 2.4.2. Let A and B be R-modules. An epimorphism « : A — B is called

small if Ker o < A; such an « is called a small cover.

Definition 2.4.3. An R-module M is called simple if M # 0 and for every submodule
A< M, A=0or A= M, that is, M # 0, and 0 and M are the only submodules of
M; equivalently if M # 0 and for every 0 #m € M, Rm = M.

Definition 2.4.4. An R-module M is called semisimple if every submodule of M is a

direct summand of M (see for example Kasch (1982, Ch.8)).

Since an elementary group (i.e., every element of the group has a square-free order)

is a semisimple Z-module we have:

Proposition 2.4.5. (see for example Calugdareanu et al. (2003, S 1.61)) Any subgroup

of an elementary group is a direct summand.

Theorem 2.4.6. (Kasch (1982, 8.1.3)) For an R-module M, the following conditions

are equivalent:
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(i) Every submodule of M is a sum of simple submodules,
(ii) M is sum of simple submodules,
(iii) M is a direct sum of simple submodules,
(iv) FEwvery submodule of M is a direct summand of M, that is, M is semisimple.

Corollary 2.4.7. (Kasch, 1982, 8.1.5)

(i) Every submodule of a semisimple module is semisimple.
(ii) Ewvery epimorphic image of a semisimple module is semisimple.
(iii) Every sum of a semisimple modules is semisimple.

Definition 2.4.8. An R-module M is said to be a homogenous (isotypic) semisimple
R-module if M is a semisimple R-module whose simple submodules are all isomorphic,
that is, M = @, S for some index set A and simple submodules Sy of M such that
for some maximal left ideal P of R, S\ = R/P for every X\ € A.

The following properties for small submodules will be frequently used.

Theorem 2.4.9. (Kasch, 1982, Ch.5, §1) Let M be an R-module and A, B < M be

submodules. Then:

(i) Let A< B< M. IfA< B, then A< M and if B< M, then A < M.
(i) A< M if and only if A+ U # M for every proper submodule U of M.
(iii) If M #0 and A < M, then A # M.

(iv) 0 < M.
(v) If M is semisimple, then 0 is the only small submodule of M.

(vi) If Jac R = 0, then Rad F' = 0 for every free R-module F, i.e., only the trivial

submodule 0 is a small submodule.

(vii) Let A< B< M <N for an R-module N. If B < M, then A < N.
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(viii) Let A; < M be submodules for i = 1,2,....,n. If A; < M for each i, then
n
> A< M.

i=1
(ix) If A< M and ¢ : M — N is a homomorphism, then ¢(A) < o(M) and so
p(A) < N.

(x) Ifa: A— B and 8 : B — C are small epimorphisms, then Ba: A — C is also a

small epimorphism.

(xi) For a € M, Ra is not small in M if and only if there is a mazximal submodule

C <M witha¢ C.

(xii) (Clark et al. (2006, 2.2-(7))) If A < M, then M is finitely generated if and only
if M/A is finitely generated.

(xiii) (see Anderson & Fuller (1992, §5)) N < M if and only if K < M and N/K <«
M/K.

(xiv) H+ K < M if and only if H < M and K < M.

(xv) Let K! < N' < M and let M = N & N'. Then;
KoK < N®N' ifand only if K < N and K' < N'.

Definition 2.4.10. A submodule A of an R-module M is called essential (or large or
big) in M and is denoted by A < M if for every submodule U of M,

ANU =0 implies U =0,
equivalently AN U # 0 for every nonzero submodule U < M.

Definition 2.4.11. Let A and B be R-modules. A monomorphism « : A — B is called

essential if Ima < B.

The following properties for essential submodules will be frequently used.

Theorem 2.4.12. (see for example Anderson & Fuller (1992, §)) Let M be an R-
module with submodules K < N < M and H < M. Then:
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(i) M QM.
(i) K <M if and only if K SN and N I M.
(iii) HNK 94 M if and only if HIM and K < M.
(iv) If M is semisimple, then M is the only essential submodule of M.

(v) Let K < N' <M and let M = N @& N'. Then;
K®K' dN®N' if and only if K AN and K' < N'.

(vi) If H is a complement of N in M, then;

() H® N <M,

(b) (HoN)/HM/H.

2.5 Radical and Socle

Definition 2.5.1. The radical of an R-module M, denoted by Rad M, is defined as the
intersection of all maximal submodules of M, or equivalently, as the sum of all small

submodules of M as usual we take Rad M = M when M has no maximal submodules.

Definition 2.5.2. The socle of an R-module M, denoted by Soc M, is defined as the
intersection of all essential submodules of M, or equivalently, as the sum of all its simple

submodules.

Note that Soc A = AN Soc M for every submodule A < M. Moreover, M is semi-

simple precisely when M = Soc M.

Proposition 2.5.3. (Fuchs, 1970, Ezercise 16.10) A subgroup E is essential in a group
G ezactly if Soc(G) < E and G/FE is torsion.

Proof. See Calugéareanu et al. (2003, Exercise M 1.6). O

Proposition 2.5.4. For an abelian group A,

(i) Soc A consists of all a € A such that o(a) is a square-free integer.
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(ii) Soc A = A if and only if A is an elementary group in the sense that every element

has a square-free order.

(iii) For a prime number p, if A is a p-group, then Soc A = A[p].

We collect together several elementary properties of the radical in the following

theorem.

Theorem 2.5.5. (Kasch, 1982, Ch.9, §1-2) Let M and N be R-modules and C < M

be a submodule. Then we have:

(i) Form € M, Rm < M if and only if m € Rad M.

(ii) If ¢ : M — N a homomorphism, then p(Rad M) < Rad N. In particular, if
Kerp < M, then p(Rad M) = Rad N.

(iii) Rad(M/Rad M) =0, and if Rad(M/C) =0, then Rad M < C.
(iv) If C < M, then RadC' < Rad M.
(v) For a family of R-modules {M; | i€ I}, if M = @Ml then
i€l
Rad M = @) Rad M; and M/Rad M = ED(M;/ Rad M;).
iel iel
(vi) If M is semisimple, then Rad M = 0.
(vil) If M is finitely generated, then Rad M < M.

(vil) Rad(zR) <g R.

(ix) If M is finitely generated and C < Rad(gR) then CM <« M (Nakayama’s

Lemma).
(x) If M is finitely generated and M # 0, then Rad M # M.
(xi) Rad(rR) is a two-sided ideal of R.

(xii) (C +Rad M)/C < Rad(M/C).
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Lemma 2.5.6. (Dlab, 1960, Theorem 2) Let G = [],c; Gi be a direct product decom-
position of a group G. Then
Rad G = [ [ Rad(G)).
i€l
Definition 2.5.7. The Frattini subgroup of an abelian group A is the intersection of
all the maximal subgroups of the group A. When A is considered as a Z-module, the

Frattini subgroup of abelian group A is nothing but Rad A.

Proposition 2.5.8. (Fuchs, 1970, Exercise 3.4)

(i) The intersection of all mazimal subgroups of A of the same prime index p is pA.

(ii) The Frattini subgroup of A is the intersection of all pA with p running over all

primes p, i.e., Rad A = ﬂ pA.
p prime

Proof. (i) Let | A/K |= p for each maximal subgroup K of A. Then p(4/K) =K
for every K < A, so pA+ K = K, ie., pA < K. Hence ﬂ K > pA.

mazx.

Conversely,

(1 K= () »(A/K)<pA.
Km% .A K < A

max.

(ii) Lemma 2.5.11 is the general case of this.

Generalizing this to modules:

Definition 2.5.9. A ring R is said to be a left quasi-duo ring if each maximal left ideal

is two-sided ideal.

Proposition 2.5.10. (Hungerford, 1980, Theorem 2.4) Every vector space V over a
division ring D has a basis and is therefore a free D-module. More generally every

linearly independent subset of V' is contained in a basis of V.

Lemma 2.5.11. (Generalov, 1983, Lemma 3) Let R be a quasi-duo ring. Then for
each module M,

Rad M = ﬂ PM
P < R

max.
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where the intersection is over all mazimal left ideals of R.

Proof. Let K denote the maximal submodule of M. Then we know that

Rad M = ﬂ K.
K < M

max.

Let P be any maximal left ideal of R. Since R is a left quasi-duo ring, P is a two-sided
ideal. So R/P is a ring. Moreover R/P is a division ring since the only left ideals of
R/P are 0 and R/P as P is a maximal left ideal of R. So the quotient module M/PM
can be considered as an R/P-module, since P(M/PM) = 0. Therefore M/PM is a
vector space over the division ring R/P, and so M/PM is a free R/P-module. As
R/P-modules, we have an internal direct sum

M/PM = M,/PM,

AEA
where for each A € A, M,/PM = R/P as R/P-modules, for some indexing set A.

These isomorphism equalities hold also as R-modules. So for each Ay € A,

(M/PM)/[ € Mx/PM] = M,,/PM = R/P
AeA\{Xo}

is a simple R-module. Let Ny, = Z M), for each Ao € A. Thus
AeA\{ o}

Ny/PM = @ (My/PM)
AeA\{)o}

is a maximal submodule of M/PM and

() Nap)/PM = () (Na/PM) = () ( &b (MA/PM)) =0.

Ao€A Ao€A XoEA M AeA\{Xo}

Then ﬂ Ny, = PM. Since N, is maximal in M for every A9 € A, we obtain that
AoEA

RadM = (| K< () Ny <[)PM.
K < M AoEA

max.

Conversely, since M/ K is simple for each maximal submodule K < M, we have M /K =
R/P where P is a maximal left ideal of R. Then P(M/K) = 0 implies PM < K for
each maximal left ideal P < R. Hence

ﬂPMg ﬂ K = Rad M.
K < M

max.
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Definition 2.5.12. A ring R is a left maz ring if Rad M < M for all (left) R-modules
M, equivalently every R-module M has a maximal submodule.
Proposition 2.5.13. For a p-group G for a prime number p, Rad G = pG.

Proof. Since G, is g-divisible for every prime ¢ # p, i.e., ¢M, = M, we obtain

RadG, = [ 4Gy =pG,.

q prime

O

Definition 2.5.14. The Jacobson radical of R is the intersection of all maximal ideals

of R and is denoted by Jac R.

The Jacobson radical is analogous to the Frattini subgroup of a group (i.e., the

intersection of all the maximal subgroups of the group).

Proposition 2.5.15. (Kasch, 1982, 9.3.1) For A < RrR,
A< grR ifand onlyif A <Rad(rR).

Proposition 2.5.16. (Clark et al., 2006, 2.8, (8)-(9))
(i) If M/ Rad M is semisimple and Rad M < M, then every proper submodule of M

is contained in a mazimal submodule of M, that is, M is coatomic (see Section

2.12).

(ii) Soc(Rad M) < M.

For completeness we shall also prove the following well-known result.

Proposition 2.5.17. Let M be an R-module and K be submodule of M. If K is finitely
generated and K < Rad M, then K < M.
Proof. Since K < Rad M = Z S and K is finitely generated, we obtain that K <
S<M
n n
ZS,- where S; < M for each i =1,2,...,n. Hence K < M since ZSi <M

i i=1

=1
by Theorem 2.4.9). J
(by
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For completeness we shall also prove the following well-known result.

Proposition 2.5.18. Let M be R-module and K be a submodule of M. If K < Rad M,
then Rad(M/K) = (Rad M) /K.

Proof. Rad(L/K) = m T/K = ( ﬂ T)/K = (Rad L)/K because since
T/K < L/K K<T < L
K <RadL = ﬂ N, every maximal submodule of L contains K. Hence
N <L

max.

ﬂ T = ﬂ N = Rad L.

K<T < L N < L

max. max.

OJ

Lemma 2.5.19. Let f : M — N be a homomorphism of R-modules M and N. Let
U be a nonzero submodule of M. If RadU = U, then Rad(f(U)) = f(U).

Proof. Define a homomorphism g : U — f(U) such that g(a) = f(a) for all @ € U.
Clearly, g is an epimorphism. Then U/Kerg = f(U). Since U is a radical module it
has no maximal submodule. Thus U/ Ker g has no maximal submodule, and so f(U)

has no maximal submodule. Hence Rad(f(U)) = f(U). O

Proposition 2.5.20. (Wisbauer, 1991, 21.6-(3)) If every proper submodule of M is
contained in a mazximal submodule of M, then Rad M <« M.

Proof. Suppose (Rad M)+ X = M for some X < M and suppose for the contrary that
X # M. Then by hypothesis, X is contained in a maximal submodule N of M. Since
Rad M < N already, we obtain M = X + Rad M < N. This contradicts the fact that
N is a proper submodule of M as it is maximal in M. So we must have X = M. Thus

Rad M < M. O

2.6 Localization

The idea of localization at a prime in a ring is an extremely powerful and pervasive

tool in algebra for isolating the behavior of the ideals in a ring.
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Definition 2.6.1. Let R be a ring and S be a multiplicative subset (that is, 1 € S,

and st € S for all s,t € S) of R. Introduce the following relation ~ on R x S:
(r,s) ~ (r',t) if and only if there exists u € S such that u(rt —r's) = 0;

it will be proved shortly that ~ is an equivalence relation. Write r/s for the class of

(r,s). Then the ring of fractions of R with respect to .S is
STTR=(Rx8)/~

with ring operations defined by the usual arithmetic operations on fractions:
/
o (rt +r s)

P T
S

ror oy
-t st st

-
Proposition 2.6.2. (see for example Reid (1995, §6.1, Proposition,))

(i) ~ is an equivalence relation.
(ii) The ring operations are well defined, and S™'R is a ring.

(iii) ¢ : R — SR given by r — r/1 is a ring homomorphism.

Localization is a particular case of ring of fractions.

Definition 2.6.3. (see for example Dummit & Foote (2004), Atiyah & Macdonald
(1969), Reid (1995)) Let P be a prime ideal in any commutative ring R (i.e., for all
a,b € R, ab € P implies a € P or b € P) and let S = R\ P. Since P is a prime ideal,
S is a multiplicative set . Passing to the ring S™'R in this case is called localization of
R (or localizing R) at P and the ring S™!'R is denoted by Rp.

When S is the set of all nonzero elements of a commutative domain R, S™'R is

called field of fractions or quotient field of R.

Every element of R\ P becomes a unit in Rp. For example, if R = Z and P = (p)

is a prime ideal where p is a prime number, then

a
Z(P):{B| a,bEZandp{b}gQ
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and every integer b not divisible by p is a unit.

Definition 2.6.4. A [ocal ring is a commutative ring with identity which has a unique

maximal ideal.

For example, if p is prime and n > 1, then Z/p"Z is a local ring with unique maximal

ideal pZ/p"Z.

If I an ideal in R, then the ideal S™'7 in Rp is denoted by Ip.

Proposition 2.6.5. (see for example Reid (1995, §6.2, Proposition)) Let R be a ring
and S be a multiplicative subset of R. If P is a prime ideal of R and PN S = &, then
S~1P is a prime ideal of ST'R.

Proposition 2.6.6. (see for example Hungerford (1980, ch.Ill, Theorem 4.11)) Let P

be a prime ideal in a commutative ring R with identity. Then:

(i) There is a one-to-one correspondence between the set of prime ideals of R which

are contained in P and the set of prime ideals of Rp;
(ii) the ideal Pp in Rp is the unique mazximal ideal of Rp.

Theorem 2.6.7. (see for example Hungerford (1980, Ch.III, Theorem 4.13)) If R is

a commutative ring with identity, then the following conditions are equivalent:

(i) R is local ring;
(ii) all nonunits of R are contained in some ideal M # R;
(iii) the nonunits of R form an ideal.

Definition 2.6.8. An R-module M is called semilocal if M/Rad M is semisimple.
Thus a ring R is semilocal if it is semilocal as a left R-module, that is, if R/ Jac R is a

semisimple ring.

Proposition 2.6.9. (see Lam (2001, 20.2)) For any ring R, consider the following two

conditions:

(i) R is semilocal,
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(ii) R has finitely many mazimal left ideals.

We have, in general, (ii)= (i). The converse holds if R/ Jac R is commutative.

We obtain the following Corollary from Proposition 2.6.9.

Corollary 2.6.10. A commutative ring R is semilocal if and only if R has finitely

many maximal ideals.

2.7 Noetherian Rings and Artinian Rings

Definition 2.7.1. A commutative ring R is said to be noetherian or to satisfy the
ascending chain condition on ideals (shortly ACC on ideals) if there is no infinite
increasing chain of ideals in R, i.e., whenever I} < Iy < I3 < --- is an increasing chain

of ideals of R, then there is a positive integer m such that I, = I, for all k > m.

Every quotient R/I of a commutative noetherian ring R by an ideal I is again
a noetherian ring. Any homomorphic image of a commutative noetherian ring is

noetherian.

Proposition 2.7.2. (see for example Dummit & Foote (2004, Ch.15, Theorem 2)) The

following are equivalent for a commutative ring R:

(i) R is a noetherian ring.
(ii) Ewvery nonempty set of ideals of R contains a maximal element under inclusion.
(iii) Ewvery ideal of R is finitely generated.

Definition 2.7.3. For any commutative ring R, the Krull dimension (or simply the
dimension) of R is the maximum possible length n of a chain Py < P, < P, <--- < P,
of distinct prime ideals in R. The dimension of R is said to be infinite if R has arbitrarily

long chains of distinct prime ideals.
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A ring with finite dimension must satisfy both the ascending and descending chain
conditions on prime ideals (although not necessarily on all ideals). A field has dimension

0 and a principal ideal domain that is not a field has dimension 1.

Definition 2.7.4. A commutative ring R is said to be artinian or to satisfy the descend-
ing chain condition on ideals (shortly DCC on ideals) if there is no infinite decreasing
chain of ideals in R, i.e., whenever I; > I, > I3 > --- is decreasing chain of ideals of
R, then there is a positive integer m such that I = I,,, for all k¥ > m. Similarly, an

R-module M is said to be artinian if it satisfies DCC on submodules.

It is immediate from the Lattice Isomorphism Theorem that every quotient R/I of

a commutative artinian ring R by an ideal I is again an artinian ring.

Proposition 2.7.5. (see for example Dummit & Foote (2004, Ch.16, Proposition 2))

The following are equivalent:

(i) R is an artinian ring.
(ii) Every nonempty set of ideals of R contains a minimal element under inclusion.

Definition 2.7.6. Let R be a commutative ring. An element = € R is nilpotent if
2™ = 0 for some integer n.
The set of all nilpotent elements of R is an ideal of R, the nilradical of R and is

denoted by nilrad R.

The next result gives the main structure theorem for artinian rings.

Theorem 2.7.7. (see for example Dummit & Foote (2004, Ch.16, Theorem 3)) Let R

be an artinian ring. Then we have:

(i) There are only finitely many mazimal ideals in R.

(ii) The quotient R/ Jac R is a direct product of a finite number of fields. More pre-

cisely, if My, ..., M, are the finitely many mazimal ideals in R, then

R/JacR =2 Ky x Ko X -+ X K,



32
where K; is the field R/M;, for 1 <i <n.

(iii) Ewvery prime ideal of R is mazimal, i.e., R has Krull dimension 0. The Jacobson
radical of R equals the nilradical of R and is a nilpotent ideal: (Jac R)™ =0 for

some m > 1.

(iv) The ring R is isomorphic to the direct product of a finite number of artinian local

7ings.

(v) Every commutative artinian ring is noetherian.

Corollary 2.7.8. (see for example Dummit & Foote (2004, Corollary 4, Ch.16)) A
commutative ring R is artinian if and only if it is noetherian and has Krull dimension

0.

2.8 Discrete Valuation Rings

In the previous section we showed that the commutative artinian rings are the
noetherian rings having Krull dimension 0. We now consider the noetherian rings

of dimension 1.

Definition 2.8.1.

(1) A discrete valuation on a field K is a function v : K* — Z, where K* = K \ {0}
satisfying

(i) v is surjective,
(ii) v(zy) =v(z) +v(y) forall z,y € K*,

(iii) v(x +y) > min{v(z),v(y)} forall z,y € K* with z +y # 0.

The subring {x € K| wv(xz) > 0} U {0} is called the valuation ring of v.

(2) A commutative domain R is called a discrete valuation ring (DVR) if R is the

valuation ring of a discrete valuation v on the field of fractions of R.
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The valuation v is often extended to all of K by defining v(0) = 400, in which case
(ii) and (iii) hold for all a,b € K with n+ (+00) = (+00) +n = 400 and n < oo for all

n € 7.

Example 2.8.2. The localization Z¢,) = {$ | a,b € Z, p{ b} < Q of the ring Z
of integers at any nonzero prime ideal (p) = pZ is a DVR with respect to the discrete
valuation v, on Q (which is the field of fractions of Z, and also of Z,)) defined as
follows:

Every element a/b € Q* can be written uniquely in the form p™(a;/b1) where n € Z,

a1/by € Q* and both a1 and b are integers relatively prime to p. Define

Here, n may be negative or zero as well as positive. We call v, the p-adic valuation on
Q. The corresponding valuation ring is the set of rational numbers a/b where b is not

divisible by p, which is Z,) (see for example Reid (1995, §1.14), where p = 5).

Definition 2.8.3. Let A be a subring of the ring R and let x € R. We say that z is

integral over A if x is a root of a monic polynomial with coefficients in A.

Definition 2.8.4. If A is a subring of the ring R, the integral closure of A in R is the
set A, of elements of R that are integral over A.

We say that A is integrally closed in R if A, = A.

Theorem 2.8.5. (see for example Dummit €& Foote (2004, Theorem 7, Ch.16)) The

following properties of a commutative ring R are equivalent:

(i) R is a discrete valuation ring,
(ii) R is a PID with unique mazimal ideal P # 0,
(iii) R is a UFD with a unique (up to associates) irreducible element t,

(iv) R is noetherian commutative domain that is also a local ring whose Krull dimen-

ston is 1, 1.e., R has a unique nonzero prime ideal M.
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Corollary 2.8.6. (see for example Dummit & Foote (2004, Ch.16, Corollary)) If R
1s any noetherian, integrally closed, commutative domain and P is a minimal nonzero

prime ideal of R, then the localization Rp of R at P is a discrete valuation ring.

Proposition 2.8.7. (see for example Dummit & Foote (2004, Ch.16, Proposition 11))
Suppose the commutative domain R is a local ring that is not a field. Then R is a

discrete valuation ring if and only if every nonzero fractional ideal of R is invertible.

The next lemma exhibits a useful link between the topological and algebraic aspects

of R-modules.

Lemma 2.8.8. (Kaplansky, 1969, Lemma 19) Let R be a DVR and M be an R-module
with no elements of infinite height, S a submodule of M. Then S is dense if and only
if M/S is divisible.

Definition 2.8.9. Let R be a DVR with quotient field K # R and maximal ideal Rp
and let M be an R-module. M is called a basic submodule of M if it satisfies three

conditions:

(i) M/S is divisible (equivalently S is dense in M),
(ii) S is pure in M (i.e., Sp™ = S N Mp™ for all n),
(iii) S is a direct sum of cyclic modules.

Definition 2.8.10. By a p-basic submodule B of a module A, we mean a submodule

of A satisfying the following three conditions:

(i) B is a direct sum cyclic p-modules and infinite cyclic modules;
(ii) B is p-pure in A, i.e., p*B = BN p*A for a prime p and k € ZF;

(iii) A/B is divisible (i.e., B is dense in A).

2.9 Dedekind Domains

Definition 2.9.1. A Dedekind Domain is a noetherian, integrally closed, commutative

domain of Krull dimension 1.
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Definition 2.9.2. For every commutative domain R with fraction field K, a fractional
ideal of R is an R-submodule A of K such that rA < R for some nonzero r € R
(equivalently, a submodule of the form r~!I for some nonzero r € R and ideal I of R).

We will call r a denominator of A.

It follows from definition that the product of fractional ideals with denominators r

and s respectively is fractional ideal with denominator rs.

Definition 2.9.3. The fractional ideal A is said to be invertible if there exists a frac-
tional ideal B with AB = R, in which case B is called the inverse of A and denoted
AL

The following theorem gives a number of important equivalent characterizations of

Dedekind Domains.

Theorem 2.9.4. (see for ezample Dummit € Foote (2004, Ch.16, Theorem 15)) Sup-
pose R is a commutative domain with fraction field K # R. The following are equivalent
conditions for R to be a Dedekind Domain:

(i) The ring R is moetherian, integrally closed, and every monzero prime ideal is

mazimal.

(ii) The ring R is noetherian and for each nonzero prime P of R the localization Rp

is a Discrete Valuation Ring.
(iii) Every nonzero fractional ideal of R in K is invertible.
(iv) Ewery nonzero fractional ideal of R in K is a projective R-module.

(v) Every nonzero proper ideal I of R can be written as a finite product of prime

ideals: 1 = Py Py --- P, (not necessarily distinct).

When the condition in (v) holds, the set of primes {Py,..., P,} is uniquely deter-
mined and so every nonzero proper ideal I of R can be written uniquely (up to order)

as a product of powers of distinct prime ideals.
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Proposition 2.9.5. (see for example Dummit & Foote (2004, Ch.16, Corollary 19))

Suppose I is an ideal in the Dedekind Domain R. Then

(i) there is an ideal J of R relatively prime to I (i.e., I +J = R) such that the
product I.J = (a) is a principal ideal of R,

(ii) 4f I is nonzero, then every ideal in the quotient R/I is principal; equivalently, if

Iy is an ideal of R containing I, then Iy = I + Rb for some b € R, and

(iii) every ideal in R can be generated by two elements; in fact if I is nonzero and

0#a€l, then I = Ra+ Rb for someb € I.

Corollary 2.9.6. (see for example Dummit & Foote (2004, Corollary 20, Ch.16)) If
R is a Dedekind Domain, then R is a PID if and only if R is a UFD

Theorem 2.9.7. (see for ezample Dummit & Foote (2004, Ch.22, Theorem 22)) Sup-
pose M is a finitely generated module over the Dedekind Domain R. Let n > 0 denote
the rank of M and let T(M) be the torsion submodule of M. Then

M>2ReR® - ®RoI&T(M)

n factors

for some ideal I of R, and
T(M)=R/P{* x R/Py* x --- x R/P{*

for some s > 0 and powers P, e; > 1 fori=1,2,...,s, of (not necessarily distinct)
prime ideals. The ideals P{* fori=1,...,s are unique and the ideal I is unique up to

multiplication by a principal ideal.

Corollary 2.9.8. (see for example Dummit € Foote (2004, Ch.16, Corollary 23))
A finitely generated module over a Dedekind Domain is projective if and only if it is

torsion-free.

Definition 2.9.9. Let R be a Dedekind domain and let K be its field of fractions.
Take the torsion R-module K/R and split it into its primary parts; the summand for
the prime ideal P is called the module of type P*>°. For example, the Priifer group Zye

is Z-module of (p)°°, for a prime number p.
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Theorem 2.9.10. (Kaplansky, 1952, Theorem 5) Let R be a Dedekind domain, M an
R-module, and S a pure submodule of bounded order (i.e., rS = 0 for some nonzero

r € R). Then S is a direct summand of M.

Theorem 2.9.11. (Kaplansky, 1952, Theorem 7) Let R be a Dedekind domain with
quotient field K. Then any divisible R-module is the direct sum of a vector space over

K and modules of type P*° for various prime ideals P.

Like in abelian groups, we have the following theorem:

Theorem 2.9.12. (Kaplansky, 1952, Theorem 8) Any module M over a Dedekind
domain possesses a unique largest divisible submodule D; M = D @& FE where E has no

divisible submodules.

Theorem 2.9.13. (by Cohn (2002, Proposition 10.6.9)) Any torsion R-module M over

a Dedekind domain R is a direct sum of its primary parts in a unique way:

where for each nonzero prime ideal P of R (so P is a mazimal ideal of R),
Mp = {x € M|P"z =0 for somen € Z"}
is the P-primary part of the R-module M .

Theorem 2.9.14. (by Alizade et al. (2001, Lemma 4.4)) Let R be a Dedekind domain
which is not a field and let M be an R-module. Then the following conditions are

equivalent:

(i) M is injective,
(ii) M is divisble (i.e., M = rM for every nonzeror € R),
(iii) M = PM for every mazimal ideal of R,

(iv) M does not contain a mazimal submodule (i.e., Rad M = M ).

Proof. (i) < (i1) follows from Sharpe & Vamos (1972, Propositions 2.6 and 2.10).
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(i) = (iii): PM < M clearly for every maximal ideal P of R. Now since P # 0,
there is a nonzero element X in P. Since M is divisible, we have M = M. This means

M < PM. Hence M = PM.

(#ii) = (#4): If 0 # r € R is a unit, then rM = M is immediate. Indeed, for
0#mée M, m=r(r—tm)erM. Nowif 0 # r € R is a nonunit element, then Rr
is nonzero proper ideal of R. So Rr = P\ P, --- P, for prime ideals P, P, ..., P, of R
(see Theorem 2.9.4). Since R is a Dedekind domain, every prime ideal of R is maximal.
Thus rM = (Rr)M = PLPy---P, = PLPy--- P,_1M since M = P,M by hypothesis.
Going on this way we obtain that rM = pyM = M. Then for every nonzero r € R, we
have rM = M, that is, M is divisible.

(7ii) = (iv): Suppose for the contrary that M contains a maximal submodule K. By
hypothesis PM < K must be hold. Hence K = PM = M contradicting the maximality
of K.

(iv) = (4#i1): Since M does not contain a maximal submodule, we have Rad M = M.

Then ﬂ PM = Rad M = M implies that M < PM for every maximal ideal P of R
P <R

max.

(see Lemma 2.5.11). Hence M = PM for every maximal ideal P of R since PM < M

already.

2.10 Perfect Rings

Definition 2.10.1. A subset A of aring R is called left T-nilpotent if for every sequence

of elements {a1,as,...,} < A, there exists an integer n > 1 such that a1as---a, = 0.

Definition 2.10.2. A pair (P, 7) is a projective cover of a left R-module M if P is a

projective left R-module and 7 : P — M is a small epimorphism (i.e. Kerm < P).

Definition 2.10.3. Let R be a ring. Then R is called a left perfect ring if every (left)
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R-module has a projective cover.

Definition 2.10.4. A module M is called semiperfect if every factor module of M has

a projective cover.

Proposition 2.10.5. (see for example Anderson & Fuller (1992, Theorem 28.4)) Let

R be a ring with radical J = Jac(R). Then the following statements are equivalent:

(i) R is left perfect;
(ii) R/J is semisiple and J is left T-nilpotent;

(iii) R/J is semisimple and every nonzero left R-module contains a mazimal submod-

ule.

Proposition 2.10.6. Let R be a ring. Then:

(1) If R is left noetherian, then it is left reduced.

(ii) If R is left perfect, then (every) left R-module is reduced.

Proof. (i) Since R is left noetherian, all left ideals of R are finitely generated. Then
Radl <« I for every left ideal I of R. This implies that Rad I # I for every
nonzero left ideal I of R because if Radl = I for a left ideal I of R, then
Rad I 4+ 0 = I implies I = 0 since Rad I < I. Thus R is left reduced.

(ii) Since R is left perfect, every nonzero (left) R-module contains a maximal sub-
module (by Proposition 2.10.5). Then RadU <« U for every R-module U. So for
every R-module M and for every nonzero submodule U of M, RadU # U. This

means every R-module is reduced.

O

Proposition 2.10.7. A ring R is left artinian if and only if it is left noetherian and
left perfect.

Proof. (=): If R is left artinian it is left noetherian by Cohn (2002, Corollary 5.3.10).
Hence by Anderson & Fuller (1992, Corollary 28.8), R is left perfect.
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(«<): If R a is left noetherian and left perfect ring, then R is left artinian by for
example Biiylikagik (2005, Lemma 2.3.5). O

2.11 Supplemented Modules

Definition 2.11.1. An R-module M is called lifting if every submodule N of M lies
over a direct summand , that is, N contains a direct summand X of M such that

N/X < M/X.

Definition 2.11.2. An R-module M which is both m-projective and supplemented is

called a quasi-discrete module.

Proposition 2.11.3. (see Clark et al. (2006, 26.7)) For an R-module M, the following

are equivalent:
(i) M is quasi-discrete,
(ii) M is lifting and w-projective,

(iii) M is lifting and for each direct summands U, V < M with M =U+V,UNV

s a direct summand of M.

Theorem 2.11.4. (by Wisbauer (1991, 43.9)) For a ring R the following assertions

are equivalent:

(i) R is a left perfect ring;
(ii) every (left) R-module (or only RN)) is semiperfect;
(iii) every (left) R-module is (amply) supplemented;
(iv) The (left) R-module R/(Jac R) is semisimple and Rad R™) < RM),

Definition 2.11.5. Let M be an R-module. A submodule of N of M is said to have
ample supplements in M if for every submodule L < M with N + L = M, there is a
supplement L' of N in M with L' < L.



41

Definition 2.11.6. An R-module M is called amply supplemented if all submodules

of it have ample supplements in M.

Definition 2.11.7. An R-module M is said to be totally supplemented if every sub-

module of M is supplemented.

2.12 Coatomic and Reduced Modules

Definition 2.12.1. An R-module M is called a radical module if
Rad M = M.

Definition 2.12.2. (Zoschinger, 1974a, Definition, pp. 47) An R-module M is called
coatomic if every proper submodule of M is contained in a maximal submodule, equiv-

alently if it has no nonzero radical factor module, that is, for every submodule U < M,

if Rad(M/U) = M/U, then M/U = 0.

Definition 2.12.3. (Zoschinger, 1974a, Definition, pp. 47) An R-module M is called
reduced if it has no nonzero radical submodule, that is, for every submodule U < M, if

RadU = U, then U = 0.

It is easily seen that:
Proposition 2.12.4. (i) Every submodule of a reduced module is reduced.
(ii) Ewvery factor module of coatomic module is coatomic.

Proposition 2.12.5. For every coatomic module M, Rad M < M.

Proof. Follows immediately from Proposition 2.5.20, since every submodule of M is

contained in a maximal submodule of M. O

Definition 2.12.6. A ring R is called left reduced if Rad I = I implies I = 0 for every

left ideal I of R, that is, if it is a reduced module as a left R-module.
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Definition 2.12.7. Let M be an R-module. By P(M) we denote the sum of all radical
submodules of M, that is,

P(M)=> {U< M| RadU =U}.

Clearly, M is reduced if and only if P(M) =0 .

Lemma 2.12.8. A direct sum of R-modules is reduced if and only if each component

is reduced.

Proof. Let M be a module such that M = @, _; M; for a family {M,},c; of submodules

el
of M. For each j € I, let p; : M — M; be the projection onto M;: p(3>_, m;) = mj,

where Y-, m; € @,c; My = M (m; € M; for all i € I).

(«<): Assume M; is reduced for all i € I. Suppose for the contrary that M is not
reduced. Then there exists a nonzero submodule U of M such that RadU = U. Since
U # 0, we have p;(U) # 0 for some j € I. But by Lemma 2.5.19, Rad(p;(U)) = p;(U)
since RadU = U. Then p;j(U) = 0 since M; is reduced and p;(U) < M;. This

contradiction shows that M must be reduced.

(=): Assume M; is not reduced for some j € I. Then there exists a nonzero
submodule U of M; such that RadU = U. But U is also a nonzero radical submodule

of M = &,c; M; which shows that M is not reduced. O

Lemma 2.12.9. Let M be an R-module. Then P(M) is a radical submodule of M.

Proof. Clearly, Rad(P(M)) < P(M). Conversely, let x € P(M). Then x = ny + na +
--+ 4+ ng, where n; € N; < M and Rad N; = N; for each ¢ = 1,2,...,k. Therefore
Rn; < N; = Rad N; and so Rn; < N; since Rn; is finitely generated (see Proposition

2.5.17). Then Rn; < Ny + Na + -+ + Ny, for each i = 1,2,..., k. Then by Theorem
2.4.9, we obtain

k k
Z Rn; <« Z N;.
=1 =1

k k
Rz <Y Rn; <Y N; < P(M).
i=1 i=1

Thus
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Then Rz < P(M) and so Rx < Rad(P(M)) which implies z € Rad(P(M)). Thus
P(M) <Rad(P(M)) and so Rad(P(M)) = P(M). O

Lemma 2.12.10. Let M be an R-module and V' be a submodule of M. If P(M) <V,
then P(M) < RadV.

Proof. P(M) <V implies Rad(P(M)) < Rad V. Hence P(M) = Rad(P(M)) < RadV/
by Lemma 2.12.9, that is, P(M) < Rad V. O

Proposition 2.12.11. Let M be an R-module. Then M/P(M) is reduced.

Proof. Suppose U/P(M) is a radical submodule of M/P(M), i.e., Rad(U/P(M)) =
U/P(M), where U is a submodule of M such that P(M) < U. Then P(M) < RadU
by Lemma 2.12.10. So we obtain that

Rad(U/P(M)) = (Rad U)/P(M)

by Proposition 2.5.18. Thus U/P(M) = Rad(U/P(M)) = (RadU)/P(M) which im-
plies that RadU = U. So, U is a radical submodule of M and thus by definition of
P(M), we have U < P(M). Hence U/P(M) = 0, since P(M) < U already. O

Proposition 2.12.12. (Zéschinger, 1980, Lemma 1.1) Let R be a commutative noetherian

ring and M be an R-module. If M is coatomic, then every submodule of M is coatomic.

2.13 Cosmall Inclusions and Coclosed Submodules

Definition 2.13.1. Given submodules K < N < M, the inclusion K < N is called
cosmall in M if N/K <« M/K; we denote this by K(%N’ equivalently if for each
submodule X < M, N+ X = M implies K + X = M (see (Clark et al., 2006, 3.2-(1))).

Definition 2.13.2. A submodule L < M is called coclosed in M, we write L5~ M ,
if L has no proper submodule K for which K(%L, that is, for every submodule
K<L K C%L implies K = L. Thus we have L&—*>M if and only if, for every
proper submodule K of L, there is a submodule N of M such that L + N = M but
K + N # M (see Clark et al. (2006, 3.6)).
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Definition 2.13.3. Let L < M be a submodule. A submodule K < L is called a
coclosure of L in M if KC%L and K< M.

Proposition 2.13.4. (Clark et al., 2006, 3.7-(3)) Let M be a module and K, L be
submodules of M such that K < L. If L~““~M , then K < M implies K < L; hence
Rad L = LN Rad M.



CHAPTER THREE
NEAT AND CONEAT SUBMODULES

In Section 3.1, we give equivalent definitions for being a neat submodule. In Section
3.2, we investigate the relation between the basic submodules of a module M over DVR
and the supplements of the radical of M (see Zoschinger (1976)). In the last section,

we give some known properties for coneat submodules (see Mermut (2004)).

3.1 Neat Submodules

For the definition of neat submodules see Section 1.4.

Proposition 3.1.1. (Mermut, 2004, Corollary 3.2.5) Let M be an R-module and N <

M be a submodule. Then the following are equivalent:

(i) N is neat in M;

(ii) For every maximal left ideal P of R, for every m € M, if Pm < N, then there
exists n € N such that P(m —n) = 0.

Lemma 3.1.2. (Fuchs & Salce, 2001, Lemma 1.8.4) Suppose

K j b

0 Ay B Cy 0

is a commutative diagram of modules and module homomorphisms with exact rows.
Then, B can be lifted to a homomorphism C; — B if and only if o can be extended to
a map By — A, that is, there exists 3 : C1 — B such that go 8 = (3 if and only if

there exists & : By — A such that & o fi = «a:

0 A\\ B C 0
i Y. O T
QT oa'—ﬁ e
0 Ay " By o C 0
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Proof. (=): If 3: Cy — B satisfies g8 = 3, then ¢ = v— 3¢ satisfies gy = gy—gBg1 =
Bg1 — Bg1 = 0 by commutativity of the diagram. Then we have Imy < Kerg =
Imf = A. Thus there exists a map & : By — A) with fa = . Indeed, since
¥(b1) € Im f for some by € B, we can define ¥ (b1) = f(a(b1)). Therefore it satisfies
fafi =1vfi =~f1— Bgifi = fa. Then since g1 fy = 0, flafi—a)=0and so af; = a,

since f is monic.

(«): Conversely, if & : By — A satisfies af; = «, then (y — fa)fi = vf1 — fafi =
fa—fa=0. Then Ker g; = Im f; < Ker(vy— fa). Thus there exists a map 3:C, — B

such that Bgl =~ — fa, that is, the diagram

Bchl

”r—fal ~
s B
B

o~

is commutative [indeed, the map g1 : By — C} emists: since g1 is epic, C1 = Im gy
By /Ker gy, and B:Cy — B is well-defined: if g1(b1) = g1(b}), then by — b} € Ker gy <
Ker(y — @), 50 (x — f@)(by — ) = 0, hence (v — @)(b1) = ( — f&)(b}) implies that
B(g1(b1)) = Bg1(61)) |- Finally, we obtain from gBg1 = gy—gf& = Bg1 [since gy = Bg1

and gf = 0 by exactness of commutative diagram] that gg = (3, since g1 is epic. O

Lemma 3.1.3. (Sklyarenko, 1978, Lemma 6.1) For every right ideal I of R the condi-
tion IA = ANIB is equivalent to the map

1r/1®ia

R/I® A R/I® B

being a monomorphism.

Proof. IA coincides with the image of h: I® A > R® A = A.

Clearly, A~ R ® A by defining a homomorphism ¢ : A — R ® A such that ¢(a) =
1 ® a. Now define f : I x A — A such that f((i,a)) = ia, then f is bilinear. So for

every 1 € I and a € A, there exists a homomorphism h : I ® A — A such that,

h(i ® a) = £((i,a)) = ia.
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Thus Imh = {h(i®a) =ia | i®a € I® A} = [ A. Hence we have the following diagram
with exact rows

0 A A LRIT0A——0

P e,k

0 BB —LR/IT® B—>0

We know that TA < AN IB is always true. Now take any = € Kera, then a(z) =
0. Since 3 is an epimorphism, there exists a y € A such that f(y) = x. Then by
commutative diagram a(8(y)) = g(ia(y)) =0, thus is(y) =y € Kerg = Imi;p = IB,
that is, y € AN IB. Now we want to show that y € TA (ie, ANIB < IA) if and

only if x =0 ( i.e., a is monic ).

Suppose y € TA. Then £(ira(y)) =0, x = B(y) = 0. Conversely, let = 0. Then
x = fB(y) =0 implies y € Ker 3 =Imi;q = [ A.

Hence x = 0 ( o is monic ) if and only if JA = ANIB ( Ais neat in B ). O

Theorem 3.1.4. (by Warfield (1969, Proposition 2)) For an element r in a ring R,

the following are equivalent for a short exact sequence

E 0—=A-“p 9.0 9

of R-modules and R-module homomorphisms where A is a submodule of B and i4 is
the inclusion map:
(i) Hom(R/Rr, B)—>Hom(R/Rr,C) is epic (i.e., R/Rr is projective relative to
the short exact sequence E)

1R/rR®iA

(ii)) R/IrR® A R/rR® B is monic (i.e., R/rR is flat relative to the short

exact sequence )
(iii) ANrB =rA.

Proof. (ii) < (4i7): This equivalence holds for every right ideal I, by Lemma 3.1.3.

(1) = (#ii): Clearly, rA < ANrB. We shall show that ANrB < rA:

Suppose ag = rbg € ANrB for some ag € A, by € B and for each r € R. Then we
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can define f : R/rR — B/A by f(14+rR) = by + A and f(s+rR) = sbp + A. f is
well-defined: If s+ 7R =5 +7rR, then s — s’ € rR. Let s — s’ = rt for some t € R. So
trbg = (s — s')bg € A since rbg € A. Thus sby + A = s'bg + A.

Now define h : R — B by h(s) = sby for every s € R. Then clearly, gh = f3 where
B: R — R/rR and g : B — B/A = C are canonical epimorphisms [indeed, for s € R,
gh(s) = g(h(s)) = h(s) + A = sbp + A = f(s+rR) = fB(s)]. Therefore, gh(rR) =
fB(rR) = f(B(rR)) = f(0+rR) = A =0p/A. Then h(rR) < Kerg = Imiy = A, so
h:rR — A exists. Thus h(r) = h(r) = rby and clearly, i s4h = ha, where o : rR — R is
inclusion map. Since R/rR is projective, there exists f: R/rR — B such that gf: f-
Hence there exists a § : R — A such that gow = h, by Lemma 3.1.2. Let §(1) € A. Then
rby = h(r) = (§a)(r) = §(a(r)) = §(r) = rg(1) € rA. This shows that ANrB < rA.
Let us show the work done above in a diagram:

The diagram

0 A-4sp—LC=B/A—0
\\:: X
%T . Th f. T f
0—=rR—~>R——>R/rR 0

is commutative with exact rows.

(#i1) = (i): Conversely, suppose that rA = ANrB. Then define g : R — A by
G(s) = sap. Then go = h [ indeed, Ga(r) = §(a(r)) = g(r) = rag = rby for some
by € B, since rag € rA = ANrB, and so ga(r) = rby = h(r) ]. Thus by Lemma 3.1.2,
there exists a f: R/rR — B such that gf: f. Hence R/rR is projective with respect
to E. O

3.2 Neat Submodules and Supplements over a DVR

Theorem 3.2.1. (Zdschinger, 1976, Introduction) Let R be a DVR with quotient field
K # R and mazimal ideal Rp and let M be an R-module. A submodule V' of M is a
supplement of radical if and only if it satisfies the following three conditions:

(i) V is dense in M,
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(ii) V is neat in M (i.e., Vp =V N Mp for all prime p),

(iii) V is coatomic (i.e., it is a direct sum of a finitely generated and a bounded module).

If such a V exists, M is called radical-supplemented.
Note that radical-supplemented modules and Rad-supplemented modules does not co-

incide (see Section 6.1 for Rad-supplemented modules).

Lemma 3.2.2. (Zdschinger, 1974c, Lemma 8.2) Let R be a DVR with quotient field
K # R and mazimal ideal Rp. For an R-module M, we have the following statements:
(i) The class of radical-supplemented R-modules is closed under factor modules, pure

submodules and group extensions.
(ii) If M is radical-supplemented and M /U is reduced, then U is also radical-supplemented.

(iii) Ewvery submodule of M is radical-supplemented if and only if T(M) is supple-
mented and M /T (M) has finite rank.

Theorem 3.2.3. (Zdschinger, 1976, Proposition 1) Let R be a DVR with quotient field
K # R and mazximal ideal Rp. For an R-module M, the following are equivalent:

(i) Rad M has ample supplements in M,
(ii) Ewvery neat submodule of M is radical-supplemented,

(iii) If M/Rad M is not finitely generated, then every submodule of M is radical-

supplemen-ted.

Proof. (i) = (ii) : Let U be a neat submodule of M, i.e., RadU = U NRad M (being
equal Up = UNMp, since R has a unique maximal Rp). Construct M/U = D(M/U)®
M, /U, hence M is also neat in M [because: M7 /U is neat in M /U, since every direct
summand is neat, and hence M7 <peqt M by Lemma 4.1.21] and M7 + Rad M = M
[indeed, for m+U € M/U, m+U = (x+U)+ (m;+U), where x+U € D(M/U), m; €
M, then m —xz — m; € U. So there is u € U such that m = x + m1 + u. Thus since
x+U = (2/+U)p for some 2/ € M, we have x —2'p € U < My, then z = 2'p+x—2'p €
Mp+ M. This shows that m = x+mj+u € Mp+M; (Rad M = Mp)]. By assumption
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there is a supplement V of Rad M in M with V < My, that is, V + Rad M = M and
VNRadM <« V. We shall show that V is a supplement of Rad M; in M;. Indeed
M; N (V +RadM) = M, then by modular law, V + (M7 N Rad M) = M, i.e.,
V + (M; N Mp) = My, then V 4+ Myp = My since M1 <peqr M, i.e., V +Rad My = M;.
And for X <V, let X +(VNRadM;) =V. Then since M1 <peat M, X +[V N (M1 N
Rad M)] = X +(VNRad M) = V. Hence by minimality of VN Rad M, X = V| that is,
V' NRad M7 < V. This implies M; is radical-supplemented. Then also U is by Lemma
3.2.2, since M7 /U is reduced.

(74) = (i11) : As a radical-supplemented, M is of the form M = D® B & F where D
is divisible torsion, B is bounded, F' is torsion-free and F/ Rad F is finitely generated
(see Zé’)schinogoer (1974c, Satz 3.1)). Assume now M /Rad M is not finitely generated, so
B =DBy® (@ B;) where B; cyclic and not all zero for i > 1. We must show by Lemma
3.2.2-(c) thia:tlF and D have finite rank [because, T(M) = D & B is supplemented
if D has finite rank and M/T(M) = F must have finite rank]. Assume that F' has
no finite ggmnk, i.e., there is an X < F with X =2 R™ so choose Y < Rad X with
XY = @ B;. Obviously, F' x X/Y is a direct summand in M up to isomorphism,
since B é’:éo ® X/Y and we have the following We shall show that the monomorphism
f: X —>FxX/Y,byzr (z,x+7Y) is neat. Let (x,2+Y) = p(a,b+Y) for some
a€F,be X. Thenx = pa and v —pb € Y < RadX = pX. So, v — pb = pz’ for
some 2/ € X. Then x = p(b+ ') € pX, say * = pt where t = b+ 2’ € X. Thus
(z,z+Y) = (pt,pt +Y) = p(t,t +Y), where (t,t +Y) € Im f. Hence X = Im f
is neat F' x X/Y. Therefore, X is a neat submodule of M up to isomorphism, since
X <peat F X XY <pear M. But since X is not radical-supplemented (since X is
torsion-free and X/ Rad X is not finitely generated, see Zoschinger (1974C,OOSatz 3.1)),
we have a contradiction. Now assume there is a decomposition D = Dy & (@ D;) with
D; = K/R for all i > 1, so choose V; < X; < D; with V; £ R/ < p' > andl}li/Yi ~ B
for all § > 1. Define Y = @Y; and X = ®X;, then Y < Rad XOO[Since, for e(ich 1,
R/ < p' >< X;, and so p(R/ < p't! >) < pX;41] and X/Y = @Xi/Yi = @Bi.

i=1 i=1
So, as above X is a neat submodule of M up to isomorphism, although not radical
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supplemented (see Zoschinger (1974c, Satz 3.1)). Contradiction.

(#i1) = (i) : Let X4+Rad M = M. We shall show that Rad M has ample supplements
in M. In case, M/ Rad M is finitely generated there is immediately a finitely generated
X1 < X with X7 + Rad M = M, because:

M/Rad M = (X+Rad M)/Rad M = {ZR((xi—l—yi)—i—RadM) | =z € X,y; € Rad M}
i=1

Then for m € M,

n n
m+ Rad M = Zri(xi +Rad M) = (anz) +Rad M
i=1 i=1

and so m — imxi € Rad M. Thus m € (i Rz;) + Rad M implies that M =
i=1 i=1
n

X1+ Rad M by saying X; = ZR:EZ'.

In the other case, choose a b;:s%c submodule X7 of X which is radical supplemented
by assumption, and of course X; + Rad M = M holds, because: by definition of basic
submodule, X7 is pure in X and X/X; is divisible. Then p(X/X;) = X/X;, and so
(pX +X1) =X. Thus pX + X1 +pM = X + pM = M, ie., X; + Rad M = M since
pX < pM. In both cases X is supplemented and a supplement of X; N Rad M in X;
(exists as X7 is supplemented) is also a supplement of Rad M in M which is contained in
X, because: let V be a supplement of X;NRad M in Xy, that is, V+(X;NRad M) = X;
and VN(XyiNRadM)=VNRadM <« V. Then, V+RadM =V +Rad M + (X1 N
Rad M) = X; + Rad M = M. Hence V is a supplement of Rad M in M such that
V<X;. O

An example for a radical supplemented module in which the radical does not have

ample supplements is as follows:

Example 3.2.4. (Zoschinger, 1976, pp. 3) Let R be a DVR with quotient field K # R
and maximal ideal Rp. An R-module M such that M = [K/R x R/Rp]" is radical

supplemented but it does not have ample supplements. Indeed, M can be written as

M=(K/RxK/Rx---)®(R/Rpx R/Rpx---).
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Then RadM = Mp = (K/RXx K/Rx ---)®(0x0x---). Thus RadM +V =M
where V=(0x0x---)® (R/Rpx R/Rp x ---), and

VNARadM =(0x0x---) < V.

Hence V is a supplement of Rad M, i.e., M is radical supplemented. But Rad M does

not have ample supplements.

Proposition 3.2.5. (Zéschinger, 1976, Remark) Let R be a DVR with quotient field
K # R and mazimal ideal Rp and let M be an R-module. An arbitrary submodule U
of M satisfies the following:

If V is a supplement of U in M, where V = vgR ® V' with vg # 0 and ug € U, then
W = (vg + ug)R + V' is also a supplement of U in M. Therefore this allows us to
describe at once the contrary situation of Theorem 8.2.3 :

If Rad M has only one supplement in M, then M is either coatomic or divisible.

Theorem 3.2.6. (Zdschinger, 1976, Proposition 2) Let R be a DVR with quotient field
K # R and mazimal ideal Rp. For an R-module M, the following are equivalent:

(i) M has ample basic submodules,
(ii) Ewvery dense neat submodule of M is pure in M,

(iii) In case M is not coatomic, T (M) is divisible.

Proof. (iit) = (ii): If M is coatomic, then M is the only dense in M. Indeed, let S be a
dense submodule in M, i.e., M/S is divisible. Then Rad(M/S) = M/S and so M = S
since M is coatomic. If M is not coatomic, then by assumption T'(M) is divisible.
So, for every neat submodule U of M, Up™ = U N Mp™; because: by induction, for
n = 1, clearly Up = U N Mp since U is neat in M. Suppose Up* = U N Mp"* holds
for k < n. Then we want to show that Up" = U N Mp". Clearly, Up" < U N Mp".
Now let z = mp™ € U N Mp". Then x = (mp" )p, and so = up for some u € U
since U is neat in M. This implies mp™ = up, and, then (u — mp"~!)p = 0. So,
(u—mp"~1t) € T(M). Since T(M) is divisible, u —mp"~1 = p"~1y for some y € T(M).
Then u = (m + y)p"~! € UN Mp"~!. Thus by induction hypothesis, u = up"~! for
n—1

some u € U. Hence z = up = up"™ 'p = up™ € Up™.
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(1) = (i): Let X + RadM = M. Theset ' = {U < X | U is neat in M} has
a maximal element X; by Zorn’s lemma, because: if N1 < Ny < ... is a chain of neat
submodules N; in T, then |J N; is also neat, and so if N; < X, then |JN; < X. This
implies X; € I' is maximal element. Since X/X; does not contain any nonzero neat
submodule of M/X; (suppose A/X; is neat in M/X; and A/X; < X/Xq, then A < X
implies that A is not neat, otherwise since X; < A, the neatness of A now contradicts
the maximality of X;. So, pA # ANpM, and so p(A/X1) = (pA+X1)/ X1 # (A4/X1)N
p(X/X1). Hence A/X; is not neat. A contradiction), we have X/X; < Rad(M/X7).
Hence X1 + Rad M = M, because:
Since X/X; < Rad(M/X1) =p(M/X1), X <pM+X; andso M = pM+X < pM+X;
implies M = X; + Rad M. Now choose a basic submodule X5 of X;. We shall show
that X is dense and neat in M:
Since X2 <peat X1 <neat M, we have Xo <peqr M. Now since X;/X5 is divisible,
pX1 + X9 = X;. Then pX; 4+ Xo +pM = X1 +pM = M, and so pM + Xo = M.
Hence p(M/X3) = M/X, implies M/X, is divisible, i.e., X5 is dense in M. So, by

assumption, Xs is pure in M, i.e., X5 is a basic submodule of M.

(1) = (4i): Let U be dense and neat in M. By assumption M has a basic submodule,
say S, with S < U. Since M/S is divisible (as S is basic in M) and T'(M/S) is pure in
M/S, T(M/S) is also divisible. We also have U/S is neat in M /S (as U is neat in M).
Thus by using the idea in the proof of (iii) = (i), we have (U/S)p" =U/SN(M/S)p™,
i.e., U/S is pure in M/S. Hence S is pure in M (as S is basic in M) implies that U is

pure in M.

(ii) = (iii): Claim 1- N = K/R x R/ < p' > where t > 1 does not satisfy
the condition (ii). Indeed, choose an intermediate module 0 # ¥ < X < K/R with
X/Y =2 R/ < p' >. Then the diagonal f: X — K/R x X/Y is a neat monomorphism

with dense image. Really,
(K/RxX/)Y)/Imf=(K/RxX/Y)/(X xX/Y)=(K/R)/X

is divisible. This means Im f is dense. But its image is not isomorphic to R/ < p! >, so
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it is not pure. Claim 2-If N = No@® N’ satisfies the condition (ii) where No = R/ < p' >
and N’ is torsion-free, then N’ is finitely generated. Indeed, suppose for the contrary
that N’ is not coatomic, so there is a basic submodule V' # N’ [since N'/V’ is divisible,
Rad(N'/V') = N'/V' # 0 for some V' since N’ is not coatomic]. Further, choose
0# a€ N with aRNV’' =0 and Ny = vR, ugp = ap. Hence (ug + v9)R = R, by
r+— (ug+wvo)r, and (up+vo) RNV’ = 0; because clearly, the map is an epimorphism, and
if (uo+wvo)r = (uo+wvo)r’, then vo(r—r") = ug(r’'—r) € NoNN’, since ugR = apR < N'.
Thus r = 7’ implies the map is an isomorphism. And now let v' = (ug + vo)r, then
v —ugr = vgr € N'N Ny = 0. Thus v' = ugr = apr € V' NaR = 0 implies v' = 0. Thus
W = (ug + vo)R @ V' is dense and neat in N:

Indeed, let w = (r,v") = p(ng,n’) for some (ng,n’) € N, v € V', r € R and prime
p. Then w = (pvor’,pn’), and so v/ = pn’ = pv” for some v"" € V', since V' is neat
in N’ (as it is pure). Thus w = p(ver’,v”) where (vor’,v”) € W. This shows that
W is neat in N . By assumption W is pure in N, so it is a basic submodule [since
W is dense and direct sum of cyclic modules as V' is direct sum of cyclic modules].
Hence W is isomorphic to a basic submodule V' = vgR & V' [(i) since Ny = R,
N'/V' = (N/Ny)/(V/No) = N/V is divisible (as V' is dense in N'), and so V is dense

! "

in N. (ii) Let v = (vor,v') = p¥(vor’,n’), then v/ = pkn’ implies v = p*v" since V'
is pure in N’. Hence v = pF(vgr’,v") where (vor’,v") € V, that is, V is pure in N.
(iii) V is direct sum of cyclic modules as V' is direct sum of cyclic modules] which
is not torsion-free [really, since v9R = R/ < p! > V & R/ < p' > &V’ and so
there is v = (2,0) € V such that p'v = 0]. This is not possible, since W = R® V'
is torsion-free as V' < N’ is torsioré—ofree. This gives a contradiction. Hence N’ is
finitely generated. Claim 3- N = @ with N; = R/ < p'i > and 0 < tg < t1---

=0
0

does not satisfy the condition (ii). choose two basic submodules V', V" in N’ = @
with V' A V" = 0 as in Mitchell & Mitchell (1967, Lemma 1). Let a € V" with
ap™tl #£ 0, Ny = vR and ug = ap. Then it follows from (vy + ug)p’® # 0 [since
ugp'® = app'® = ap'ot! £ 0] that (vo+ug) RNV’ = 0 [if v/ = (vo+ug)r € (vo+ug) RNV,

then vor = v' —ugr € NgN N’ = 0. Thus v/ = ugr = apr € V"N V" =0 since a € V",
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and so v’ = 0], hence W = (v + ug)R @ V' is dense and neat in N (see the proof of
Claim 2). But since W 2 V = 99R @ V' (as in the proof of Claim 2; W is torsion-
free but V' is not torsion-free) W is not pure in N (since W is dense but not basic
submodule of N). Now consider (ii) for M, and assume that T(M) is not divisible.
We shall show that M is coatomic. Since T (M) is not divisible, M = My & M; with
My =2 R/ < pt >. Since f: M — My x (My/T(M)) is an isomorphism with pure
kernel. Indeed, clearly Ker f = {mo+m1 € M | (mo,mi+T(M1)) =0} = {mo+my |
mo =0, my € T(My)} =T (M) and T (M) is pure in M;. Hence M is pure in M (as
it is a direct summand) implies T'(M) is pure in M. So we have the condition (ii)) for
this module. So, M1 /T (M) is finitely generated by Claim 2. It remains to show that
T(M) is bounded. By Claim 1, it is reduced and a basic submodule S of T'(M) again
satisfies (ii). So it is bounded by Claim 3, hence T'(M) is bounded, too. O

Theorem 3.2.7. (Zdschinger, 1976, Proposition 8) Let R be a DVR with quotient field
K # R and mazimal ideal Rp. For a radical supplemented R-module M the following

are equivalent:

(i) Every supplement of radical is a basic submodule,
(ii) The supplements of radical are isomorphic to each other,

(iii) In case M is not coatomic, T(M) is divisible.

3.3 Coneat Submodules

For the definition of coneat submodules, see Section 1.5.

The following proposition gives a characterization of coneat submodules.

Proposition 3.3.1. (Mermut, 2004, Proposition 3.4.2) For a submodule V. < M, the

following are equivalent:

(i) V<M is a coneat submodule;
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(ii) There exists a submodule U < M such that

U+V =M and UNV =RadV;

(iii) There exists a submodule U < M such that

U+V =M and UNV <RadV.

Proposition 3.3.2. (Mermut, 2004, Proposition 3.4.1) For any ring R, if a submodule
V of an R-module M is supplement in M, then it is coneat (= Rad-supplement) in M.
Proof. Let V< M be a supplement in M. Then there exists a submodule U < M such
that U+ V =M and U NV < V. Thus clearly U NV < RadV, since RadV is the
sum of all small submodules of V. Hence V is a Rad-supplement of U in M. O

Proposition 3.3.3. (Mermut, 2004, Proposition 3.4.5) Let V- < M be a submodule and
suppose RadV <V or RadV = 0. Then V is coneat if and only if it is a supplement
mn M.

Proof. (<) : Follows immediately from Proposition 3.3.2.

(=) : Suppose V is coneat in M. Then there exists a submodule U < M such that
U+V=MandUNV <RadV. Now if RadV < V,then UNV <« V and so V is
a supplement in M. On the other hand, if Rad V = 0, then clearly, RadV <« V. This

completes the proof. O

Proposition 3.3.4. (Mermut, 2004, Proposition 3.8.3) For a left max ring R, a sub-

module V< M 1is a supplement in M if and only if it is a coneat in M.

Proof. Follows from Proposition 3.3.3 OJ

By characterization of left perfect rings as in for example Anderson & Fuller (1992,
Theorem 28.4), a ring R is left perfect if and only if R is a semilocal left maz ring. So:
it follows from Proposition 3.3.4 that for a left perfect ring R, V is a supplement in M

if and only if V is a coneat in M.
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Theorem 3.3.5. (Generalov, 1983, Corollaries 1 and 6) For a Dedekind domain R,
if V is a supplement in an R-module M, then it is a complement. Moreover, since a
Dedekind domain is C-ring, V' is a complement in M if and only if it is neat in M (see

Section 1.4).

For finitely generated torsion modules over a Dedekind domain, we have the following

results from Mermut (2004):

Theorem 3.3.6. (Mermut, 2004, Theorems 5.3.1, 5.3.2 and 5.4.9) Let R be a Dedekind
domain. Take an R-module M and a submodule N < M. If M or N is finitely generated

and torsion, then:

(i) N is a complement in M if and only if N is a supplement in M,
(ii) N is neat in M if and only if N is coneat in M.

Theorem 3.3.7. (Mermut, 2004, Theorem 5.4.6) Let R be a Dedekind domain which
s not a field.

(i) If Jac R =0, then we have:

(a) There exists a module My and a submodule Ny of My such that Ny is coneat

m My but it is not supplement in M.

(b) There exists a module My and a submodule Ny of My such that Ny is neat

in My but it is not coneat.
(ii) If Jac R # 0, then we have:
(a) There exists a module My and a submodule Ny of My such that Ny is coneat

i My but it is not supplement in M.

(b) For every R-module M and for every submodule N < M, N is coneat in M

if and only if it is neat in M.



CHAPTER FOUR
NEAT AND CONEAT SUBGROUPS

In this chapter, we survey the properties of neat subgroups and we seek for neat
subgroups which are coneat in the last section. In particular, we give some elementary
properties for neat subgroups in Section 4.1. We also give some results by adapting
the properties for pure subgroups in this section. In Section 4.3, a characterization of
intersection of neat subgroups is given (Rangaswamy (1965)). In the other sections,
we give some properties for N-high subgroups (= complement = neat) for an abelian

group N, for neat-exact sequences of abelian groups and for Frattini-high subgroups.

4.1 Neat Subgroups

For the definition of neat subgroups, see Section 1.4.

Definition 4.1.1. For a prime number p, a subgroup H of a group G is said to be
p-neat in G if
pH = HNpG.

The concept as well as some of the properties stated here are due to Honda (1956).

Theorem 4.1.2. (Fuchs, 1958, §28, properties (a), (c), (f) and (b), pp. 92) The

following elementary properties of neat subgroups are of some interest:

(i) Every direct summand, and more generally, every pure subgroup is neat. But the

converse fails to be true.
(ii) The property of being a neat subgroup is transitive.
(iii) The union of an ascending chain of neat subgroups is again neat.

(iv) Neat subgroups of torsion-free groups are pure.

o8
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Proof. (i) Let A = B ® C. We shall show that B is a neat subgroup in A. Clearly,

(iii

)

~—

pB < B and since B=B+0< A, pB <pA. Then pB < BN pA.

Conversely, let b = pa € BN pA for some a € A, b € B. Then b = pa =
p(t/ + ) = pb/ + pc/, where a = bV + ¢ for some v/ € B and ¢ € C. Then
b—pb =pd € BNC =0, so pd = 0 already. Thus b = pb' € pB. Hence

BNpA < pB, and so B is a neat subgroup of A.

Now we shall give an example of a neat subgroup which is not pure.

Let G =< a > @ < b > such that o(a) = p® and o(b) = p. Suppose N =< pa+b >.
Then N is neat in G but not pure. To show that N is neat in G, we shall show that
every element k(pa + b) of N is divisible by p in G implies is divisible by p in N.
Let k(pa + b) = p(ta + sb) where ta + sb € G. Then kpa + kb = pta + psb = pta,
since o(b) = p. Then kb = (pt — kp)a €< a > N < b >= 0 implies that
kb = 0. Since o(b) = p, p must divide k, i.e., k = pk’ for some k¥’ € Z. Thus
k(pa + b) = pk'(pa + b). It means that k(pa + b) is divisible by p in N. On
the other hand N is a cyclic group which has order p?, i.e., p?N = 0. But
N N p*G has a nonzero element p2a (i.e., p?a = p(pa +0) € N N p?G). Hence
0= p?N # N Np?G # 0 for an integer p?, that is, N is not pure in G.

Let N and H be subgroups of a group G. Suppose N <,cat H and H <peqt G.
Then for every prime p we have pN = N NpH and pH = H N pG. Thus

pN=NN(HNpG)=(NNH)NpG = N NpG.
Hence N is neat in G.

Let N1 < Ny < Nj... be an ascending chain of neat subgroups of G. Set N =
o0

UNi‘ If n = pg € N for some g € G, then there exist some Ny such that

=1

n = pg € Ni. Since Nj is neat in G, n = pny for some ni € Ni. Clearly
o0

ng € U = N, and so n is divisible by p in N, that is, N is neat in G.
i=1

Suppose B is a neat subgroup of a torsion-free group A. Let b = na for some
a € A and for every integer n. We shall show that b = nb’ for some b’ € B.

Let n = (p1...pm) where p; are primes but not necessarily distinct. Since B is a
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neat subgroup of A, there exists b; € By such that b = p1b;. Then b = na = p1by
implies p1by — (p1...pm)a =0, 80 p1(by —p2...pma) = 0. Since A is torsion-free,
b1 —p2...pma =0, that is, by = ps ... ppa. By applying the same method above,
we get by = p3...ppa for some by € B, and so b = na = p1b; = p1p2bs. Going on

this way we obtain that b = p1ps ... pmbm = nb,, for some b, € B.

O

Theorem 4.1.3. (Fuchs, 1958, §28, (g), pp. 92) If N is neat subgroup of G and either
N itself is an elementary p-group or the factor group G/N is elementary, then N is a

direct summand of G.

Proof. Suppose N is an elementary p-group which is neat in G. Then NNpG = pN = 0,
since each element in N has order p. By Zorn’s Lemma there exists a subgroup M of
G maximal with respect to the properties pG < M and M NN =0 (i.e., M is N-high

subgroup of ). Indeed, consider the partially ordered set
r={K<G|pG<K,KNN =0}

with “« <7 | T' % 0 since pG € I'. If we take a chain A from I, then it has an upper
bound |JK; in T (K; € A). Thus by Zorn’s lemma, there is a maximal element in T,
say M. Now let us prove that G = M @ N. To apply Lemma 4.2.3, let ga = b+ ¢ with
a€G,be N, ce M and q a prime. We shall show that b = gb’ for some V' € N.

If ¢ # p, then since N is a p-group, N is ¢-divisible (Since (¢,p) = 1,qu + pv = 1 for
some integers u,v. Then qua + pva = a, a € N, and so a = q(ua) since pva = 0).

If ¢ = p, then pa = b+ ¢ or equivalently b =pa—c € NN M =0 (since pa € pG < M).
So b=0 already. Thus b is divisible by p in N. Hence by Lemma 4.2.3, G = N & M,

i.e., N is direct summand of G.

Now suppose G/N is elementary, i.e., G/N = @ < a;+ N >, where o(a; + N) = p;
iel

is prime for each i € T for an arbitrary index set I. Let < a; + N >= G;/N. By Fuchs

(1970, Lemma 9.4) it suffices to prove that N is a direct summand of G; for every i € I.

Since N is neat in G, if n = p;a; € N for a; € G;, then n = p;n’ for some n’ € N.
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Then p;a; = p;n’ or equivalently p;(a; — n') = 0. Then for the element a = a; — n/, we
have p;a =0 and a — a; € N. Thus o(a) =o(a; + N) = p;, and so < a >=< a; + N >.
Moreover, for the homomorphism f :< a; + N >— G, defined by f(k(a; + N)) = ka,
we have oo f = 14,4 N>, where 0 : G; — G;/N is a natural epimorphism. Therefore

the short exact sequence

splits, and so N is a direct summand of G; for every i € I. O

Example 4.1.4. For a group B = H Z/pZ, the subgroup A = @ Z/pZ is neat

p prime p prime
in B, but A is not a direct summand of G. In particular, A is the torsion part of B,

but it is not a direct summand of B.

Firstly, we shall show that A is neat in B. Let
(a1,a2,...,an,0,0,...) = p(b1,b2, ..., by, bpy1,...).
So there exists m such that by,1; =0 (j > 0), i.e.,
(b1,b2, ... by, ...) = (b1,b2,...,bp,0,0,...) € A.

Hence A is neat in B.
Now let us show that A is not a direct summand of B. If it were a direct summand,
then B = A @ C for some C < B. Since B is reduced, so is its direct summand

C' = B/A. But this contradicting B/A is divisible.

It remains only to show that B/A is divisible. For this it suffices to show that
p(B/A) = B/A for all primes p. Let b+ A € B/A and p an arbitrary prime. Then
b= (b1,bas . bp.bpp1s.-) = (b1,bas .. 0,bpe1,-..) + (0,0,...,0,b,,0,...) = ¢+ d.
Then b+ A=c+d+ A=c+ Asince d € A. Since Z/qZ is p-divisible for all primes
q # p, we have b, = pbj, for some b, € Z/qZ. So c is p-divisible, that is, ¢ = pc’ for
some ¢ € B. Hence b+ A =c+ A = p(cd + A) implies B/A is divisible.

Remark 4.1.5. (Imam, 2000, Remark 1.2.2) An elementary neat subgroup need not be

a direct summand (by the above example).
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Proposition 4.1.6. (Fuchs, 1958, §28, (d), pp. 92) Let M be a subgroup of a group
G. If M is a complement in G, then M is neat in G.

Proof. Suppose 0 # m = pg for some m € M, g € G, but g ¢ M. Then (M+ < g >
) = M. Since M is maximal with the property M N H =0, (M+ < g >)NH # 0.
So there exists 0 # h = m' + kg € (M+ < g >)N H for some m' € M and k € Z,
where k is not divisible by p (really, if p | k, then k = pk’ for some k' € Z, and so
h=m+pklg=m'+kpg=m'+k'me HNM = 0 contradicting h # 0). Thus
ged(p, k) = 1, so there exist u, v € Z such that pu+kv = 1. Then upg+vkg = g implies
that um + v(h —m') = um + vh — vm’ = g, since kg = h — m’ and pg = m. Therefore
pum + pvh — pvm’ = pg, so pvh = pg — pum + pvm’ € M N H = 0 since pg = m € M.
Hence m = pg = p(um + vm’), i.e., m is divisible by p in M (um + vm' € M), that is,
M is neat in G. O

Definition 4.1.7. We call a subgroup A of a group G an absolute direct summand of

G, if for every complement B of Ain G, A& B =G.

Proposition 4.1.8. (Fuchs, 1958, (e), pp. 92) A subgroup A of a group G is an
absolute direct summand of G if and only if for every neat subgroup N of G with
ANN =0, the sum A® N is also neat in G.

Proof. (=): If A is an absolute direct summand of G and N is a neat subgroup with
ANN =0, then G = A& B, where B is a subgroup of G maximal with respect to the
property AN B =0 (clearly N < B). We shall show that A 4+ N is neat in G.

Suppose a’ + ¢ = pg for some g € G, @' € A, ¢ € N and an arbitrary prime p. Since
g = a+ b for some a € B,b € B, we get pg = pa + pb. So pg = a’ + ¢ = pa + pb or
equivalently ' —pa =pb—c € ANB = 0 since ¢c € N < B. Thus we obtain pa = d’
and pb = c. Since N is neat in G, pb = ¢ € N implies that ¢ = pc’ for some ¢’ € N.
Hence pg = a + ¢ = pa + pd = p(a + ), where a + ¢ € A+ N which implies A + N is

neat in G.

(«<): Conversely, let A be a subgroup of G which satisfies the stated conditions and
let B be any subgroup maximal with respect to the property BN A = 0 (i.e.,, B is
A-high)(existence of B by Zorn’s lemma). Then by Proposition 4.1.6, B is neat in G,
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and so by hypothesis A + B is again neat in G. Let pg € A+ B for some g € G, i.e.,
pg=a+b(a€ A be B). Since A+ B is neat in G, we have pg = a+ b = p(a’ + V')
for some a’ € A and & € B. Thus a —pa’ = pb' —b € AN B = 0. Hence a = pa’ implies
that G = A ® B, by Lemma 4.2.3. O

Theorem 4.1.9. (Fuchs, 1958, §28, (h), pp. 92) If E is a minimal divisible group
containing a group G, then N is a neat subgroup of G if and only if N = G N D where
D is a divisible subgroup of E.

Proof. («<): Let us suppose N = GN D where D is a divisible subgroup of F and F is
a minimal divisible group containing G. We shall show that N = GN D is neat in G.
Suppose pg € N =GN D < D for some g € G and an arbitrary prime p. Since D is
divisible, there exist some x € D such that pg = px or equivalently p(¢—x) = 0. In case
x#g,9—x € E[p] = G[p], and so z € G. Since x € D also, we obtain z € GND = N.

Hence N is neat in G.

(=): Conversely, let N be neat in G and D be a minimal divisible subgroup of E,
containing N. Clearly N < GND. Now let a € GN D and suppose a ¢ N Then
we can choose some least 0 # n € Z such that na € N. Choose n > 0 as small as
possible and write n = pni. Then b = nja ¢ N. This implies pb = pnia = na € N,
and so pb = pc for some ¢ € N < D since N is neat in G. So p(b — ¢) = 0 shows that
b—ce D[p]=NJp],sinceb—ce Dasb=nja€ Dandce N <D. Thusb—ce N,
and so b € N since ¢ € N. Contradicting b ¢ N. Hence a € N, that is, GND < N. O

Corollary 4.1.10. (Fuchs, 1958, §28, (i), pp. 92) Every subgroup H of a group G can
be embedded in a minimal neat subgroup N of G.

Proof. Take a minimal divisible subgroup D of E (FE as defined in Theorem 4.1.9) which
contains H. Then by Theorem 4.1.9, N = G N D will be a neat subgroup containing

H and will be minimal. ]

We next list some useful facts concerning neat subgroups. These facts follow by

adapting the related properties for pure subgroups in Fuchs (1970, pp. 114)
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Theorem 4.1.11. (Bilhan, 1995, Ch. 1) :

(i)
(i)

(vii)

Torsion part of a group is a pure subgroup so also a neat subgroup.

Let A be a group, G be a subgroup of A. If A/G is torsion-free, then G is pure

i A so also neat in A.
For every prime number p, a p-neat, p-subgroup of a group is neat.

Let A and B be groups and f : A — B be an isomorphism. Let C be a subgroup
of A. If C is neat in A, then f(C) is neat in B.

Let A, B,C be groups satisfying A < B < C. If A is neat in C, then A is neat in
B.

Let B and C be groups and A be a subgroup of B. If f(A) is neat in f(B) for

some monomorphism f: B — C, then A is neat in B.

In torsion-free groups, intersections of neat subgroups is neat.

In general, the intersection of two neat subgroups need not be neat. We give an

example from Rangaswamy (1965, Introduction):

Example 4.1.12. Let GG be a group such that G =< a > @& < b > for some a,b € G,

where o(a) = p? and o(b) = p. Take S; =< a > and Sy =< a + b >. Then S

and S are neat subgroups of G, but S; N .Se =< pa > is not neat in G. Indeed, let

ka = p(ta + sb) € S; for some ta + sb € G and integers k,t,s. Then ka = p(ta) since

psb =0 as o(b) = p. Thus S is neat in G since ta € 5.

Now suppose k(a+b) = p(ta+sb) € Sy, then ka+kb = pta since psb = 0. So (pt—k)a =

kbe<a>nN<b>=0,sokb=0. Since o(b) = p, p must divide k, i.e., k = pk’ for

some integer k'. Thus k(a +b) = pk/(a + b) which means that k(a +b) € Sy is divisible

by p.

Hence 93 is also neat in G. Finally, p(S; N S2) = p < pa >= 0 since o(a) = p>.

On the other hand, (S1 N S2) N pG =< pa > NpG # 0 since 0 # pa €< pa > NpG.

Hence p(S1 N S2) # (51N S2) NpG, i.e, S NSy is not neat in G.
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Theorem 4.1.13. A subgroup B of a group A is neat in A if and only if every coset

of A modulo B of prime order contains an element of the same order.

Proof. Following the proof for pure subgroups in Fuchs (1970, Theorem 28.1), we argue

as follows.

(=): Suppose B <peqr A. Take a coset a* =< a+ B >€ A/B of prime order p, for
some a € A. Then for every g € a*, g =t(a+ B) =ta+b, for some b € B and t € Z.
Now we have pg = pta + pb € B, since o(< a + B >) = p implies pta + B = B, i.e.,
pta € B. Since B is neat in A, pg = pb’ for some b € B. Thus p(g — ') = 0, and so
o(g—b)<p.Since g—V =ta+b—-V €<a+ B >=a*, o(g — V') = p must be hold.

(«): Conversely, if the stated condition holds, and if pg = b € B, for some g € A,
then choose a = g+ b €< g+ B > of order of this coset. Then pa = 0, since
o(< g+ B >) =p. Thus p(g9 —a) = pg — pa = b, where g —a = —b € B. Hence B is
neat in A. O

The results in the following theorem are inferred from some exercises on pure sub-

groups from Fuchs (1970):

Theorem 4.1.14. (Fuchs, 1970, Ezxercises 26.1, 26.2, 26.6, 26.8, 28.3)

(i) If GN H and G + H are neat subgroups of A, then so are G and H.
(ii) Let G be a neat subgroup of a group A. Then:

(a) RadG = GNRad A.
(b) (G +Rad A)/Rad A is neat in A/ Rad A.

(¢) G < Rad A implies pG = G for all prime numbers p.
(iii) The only essential neat subgroup of a group G is G itself.

(iv) If A= B+ C and BN C is neat in B, then Alp] = Blp] + C[p] for every prime

number p.
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(v) If G is a neat subgroup of each member of a chain --- < B; < ---, then G is neat
in |J B;.

Proof. (i) Let pa € G for some a € A and an arbitrary prime p. Then pa = pa +
0 € G+ H. Since G + H is neat in A, there exists g + h € G + H such that
pa = p(g+h) = pg+ ph or equivalently pa —pg = ph € GNH. Since GN H is also
neat in A, there exists x € G N H < G such that ph = px. Thus pa — pg = pz,
and so pa = p(g + x), where g + x € G. Hence G is neat in A. Similarly, H is

neat in A.
(ii) (a) Since G is neat in A,

RadG = (| pG = () (GNpA) =GN ([]pA) =GnRadA.

peP peP peP

(b) For z € (G+Rad A)/Rad A, let x = p(a + Rad A) for some a € A. We shall
show that z € p((G+Rad A)/ Rad A). Here x = g+a;+Rad A = g+Rad A4,
g € G,a; € RadA. Sozr = g+ RadA = pa + Rad A or equivalently
pa—g € Rad A. Say pa—g = pa’ for every p € P and a’ € A, so g = p(a—d’).
Since a — a’ € A and since G <,qt A, there exists an element ¢’ € G such
that g = p(a—a’) = pg’. Thusx = g+Rad A = pg’+Rad A = p(¢'+Rad A) €
p((G + Rad A)/ Rad A) completes the proof.

(¢) Clearly, pG < G. Conversely, let g € G. Then by assumption g € Rad A,
and so g = pa for every p € P and a € A. Since G is neat in A, there exists

g € G such that g = pa = pg’. Hence g € pG. This means G < pG.

(iii) Following the proof for pure subgroups in Calugireanu et al. (2003, S 3.12), we
argue as follows. Let H be a neat subgroup of G. Suppose H is essential in G,
then we have Soc H = Soc G by Proposition 2.5.3 (because if x € SocG < H,
then # € H has a square-free order, this means x € Soc H). Using Theorem
4.1.13, it results that if g+ H € G/H with o(g + H) = p for some prime p then
there exists h € H such that o(g+h) =p, so g+ h € SocG = Soc H, thus g € H.
Hence we deduce that G = H.
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(=): Take any element a = b+ ¢ of A[p], for some b € B, ¢ € C. Then pa =
pb+pc=0,s0 —pc=pbe BNC. Since BN C <eqr B, we have —pc = pb = pz
for some z € BNC. Then p(b—z) = 0, and so b—z € B implies that b—z € Blp).
Moreover, pa = pb + pc = px 4+ pc = 0 since pb = px, and so p(x 4 ¢) = 0 implies
z+c € Clpl, since z+c € C. Hencea=b+c= (b—z)+ (z +¢) € Blp] + C[p].
(«): Clearly, Blp] + C[p] < B4+ C = A. Then for b+ ¢ € B[p| + C[p| there
exists an a € A such that b+ ¢ = a. Then pa = p(b+ ¢) = pb+ pc = 0. Thus
b+c=ace€ Alp|.

Let pb € G for some b € | J B; and an arbitrary prime p. Then b € B; for some j,
since --- < B; < --- is a chain. Now since G <peqt Bj, pb = pg for some g € G

which implies the neatness of G in | B;.

O

Proposition 4.1.15. If H and K are neat subgroups of a group G and H is essential

mn K, then H =K.

Proof. Since H is neat in G, we have by Theorem 4.1.11 H is neat in K. Thus the

result follows immediately from the Theorem 4.1.14. O

Lemma 4.1.16. Let K be a group and H be a neat subgroup of a group G. Then we

have:

(i)
(i)

H + D is neat in G, where D is the largest divisible subgroup of G.

K ® H is neat in K ® G.

Proof. (i) We have pH = H N pG and pD = D. We shall show that p(H + D) =

(H+ D)nNpG.

Solution 1. By modularity,
(H+D)npG = (H+pD)NpG =pD+ (HNpG) =pD +pH =p(H + D).

Solution 2. Let h+d =pg € (H+ D)NpG for some h € H, d € D. Since D is

divisible there exists d’ € D such that d = nd’ for every positive integer n, and so
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does for a prime p, ie.e., d = pd'. Thus pg = h+d = h+pd and so h = p(g—d').
Since H is neat in G there is i’ € H such that h = p(g — d') = ph’. Therefore
pg=h+d=ph' +pd =ph' +d) € p(H+ D) as desired. Hence H + D is neat

in G since the reverse inclusion always holds.

Since pK < K @ H, using the modularity of the subgroup lattice of a group, we

have
pKeG)N(KoH)=pKopG)N(K®H)=pK o (pGN(K®H)).
We shall show that these equalities equal to p(K & H). Let
pg=k+hepGN(K®H)

for some k € K, h € H and g € G. Then k = pg — h € GN K = {0}, and so
pg = h. Thus there exists ' € H such that pg = h = ph/ € pH since H is neat in
G. Hence it follows that

pKeGN(KeH)=pK& (pGN(K®H)) <pK ®pH =p(K & H).

Since the reverse inclusion always holds, the proof is completed.

O

Theorem 4.1.17. In a group G, every subgroup is neat if and only if G is an elementary

group (i.e., SocG = G).

Proof. (=): If every subgroup of the group G is neat, then G has only one essential sub-

group that is G itself (see Theorem 4.1.14). Since the socle of a group is the intersection

of all essential subgroups, we deduce that G = Soc G, that is, G is elementary.

(«<): Conversely, let G be an elementary group. Then every subgroup of G is a

direct summand, by Proposition 2.4.5, and so it is clearly neat in G. O

Theorem 4.1.18. Let H be a subgroup of a group G. Then the following conditions

are equivalent:

(i)

H is neat in G;
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(ii) (G/H)[p] = (Glp] + H)/H for all prime p;

(iii) p~tH = H + p~t{0} for all prime p.
Proof. Following the proof for pure subgroups in Calugireanu et al. (2003, S 3.2), we

argue as follows.

(i) = (i1): Clearly, (G/H)[p] 2 (G[p] + H)/H. Conversely, if g + H € (G/H)[p],
then p(¢+ H) =pg+ H = H, and so pg € H. But pg € H N pG = pH since H is neat
in G. So, there exists an element h € H such that pg = ph or equivalently p(g—h) = 0.
This means that g —h € G[p], and so g+ H = (¢ —h)+ H € (G[p] + H)/H.

(ii) = (iii): The inclusion p~'*H O H + p~'{0} is immediate, because if h 4+ 2 €
H + p~1{0}, then p(h + ) = ph + pxr = ph € H since pr = 0, and so h +z € p~'H.
Conversely, let us take g € p~'H i.e., pg € H, that is, p(g + H) = H. Then g+ H €
(G/H)[p] = (G[p] + H)/H (by hypothesis) which implies the existence of an element
g’ € G[p] such that g+ H = ¢’ + H. Hence g = ¢’ + h for some h € H. Since pg’ =0
(ie., ¢ € p~1{0}) it follows that g € H + p~1{0}.

(#i7) = (1): If h € H N pG, then h = pg for some g € G and an any prime p. It
follows that g € p~*H = H + p~1{0}, and so there exist h’ € H and = € p~1{0} such
that g = W' + z. Hence h = pg = p(h/ + x) = ph/ € pH since px = 0. Since the reverse
inclusion always holds, H N pG = pH, that is, H is neat in G. O

Proposition 4.1.19. (see for example Calugareanu et al. (2003, M 3.9)) If M is an
essential subgroup of a group G such that G = A& F for some subgroups A and F of
G, then AN M is neat in M.

Proof. We have to verify that ANpM = (ANM)NpM < p(ANM) (the reverse inclusion
always holds). Take an element a = pg € ANpM (a € A, g € M) and g = a1 + f
(a1 € A, f € F). Then a = pg = p(a1 + f) = pa1 + pf, or, a —pa; = pf € ANF =0,
and so pf =0, i.e., a = paj. Hence it suffices to prove a; € M.

Case (i): f=0;, then g =ay € M.

Case (ii): f # 0;, then MN < f > 0 since M is essential, and so there is an m € Z*
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such that 0 # mf € M. But pf = 0, so we may suppose 0 < m < p and hence
ged(m,p) = 1. Then um + vp = 1 for some integers u,v. Finally, f = 1.f = (um +
vp)f =umf € M since pf =0, whence a; =g — f € M. O

The following theorem is a modification of the exercise for pure subgroups in Fuchs

(1970, 27.12).

Theorem 4.1.20. Let A be a neat subgroup of a group G such that G = H & K for
some subgroups H and K of G. If ANK is essential in both A and K, then G = H® A.

Proof. Following the proof for pure subgroups in Célugareanu et al. (2003, M 3.1),
we argue as follows. First observe that H N A = 0. Indeed, if z € H N A, then
(AnNK)N <z >< HNK =0. Since AN K is essential in A, we obtain that < x >= 0,

and so x = 0 already. Thus the sum H + A is direct.

Observe (see Theorem 4.1.14) that it suffices to prove that: (i) H 4 A is essential in
G; and (ii) H + A is neat in G.
(i): Notice that SocG = Soc(H @ K) = SocH @ Soc K < H + A (because AN K is
essential in K implies that Soc K < AN K < A, see Proposition 2.5.3).
Now we show that G/(H + A) is a torsion group:
Since ANK is essential in K it follows from Proposition 2.5.3 that K/ANK = (K+A)/A
is a torsion group. Hence for every g = h+ k € G with h € H, k € K there exists
a positive integer n such that nk € A (since n(k + A) = A as (K + A)/A is torsion),
and it follows ng = nh + nk € H + A or equivalently n(g + (H + A)) = H + A for
every g+ (H + A) € G/(H + A). Hence we obtain from Proposition 2.5.3 that H + A
is essential in G.
(ii): Since A is a neat subgroup of G it suffices (see Lemma 4.1.21) to prove that
(H + A)/A is neat in G/A. But this follows using the neatness of H (as a direct
summand) in G (see Lemma 4.1.21-(ii)). O

Lemma 4.1.21. (by Bilhan (1995, Lemma 1)) Let B,C be subgroups of A such that
C < B<A. Then we have:
(i) If B is neat in A, then B/C is neat in A/C.
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(ii) If C is neat in A and B/C is neat A/C, then B is neat in A.

Proof. Following the proof for pure subgroups in Fuchs (1970, Lemma 26.1), we argue

as follows.

(i) follows from the equalities

p(B/C) = (pB+C)/C = [(BNpA)+C]/C = [BN(pA+C)]/C = (B/C)Np(A/C).

(ii) Let b = pa € B for some a € A and an arbitrary prime p. Now b+ C = pa+ C =
p(a+C) and since B/C <peqt A/C, there exists b’ € B such that b+C = p(b'+C).
From pb' —b € C, we get pb/ —b=c (c € C). So pb/ —pa = ¢, i.e., p(b’ —a) =c.
Since C' is neat in A, ¢ = pc for some ¢ € C. Finally, pb/ — b = ¢ = pc’ implies

that p(b’ — ¢’) = b, where b/ — ¢ € B. Hence B is neat in A.

OJ

Proposition 4.1.22. (Bilhan, 1995, Theorem 2) If B is a subgroup of a group A such

that pB = 0, then the following statements are equivalent:

(i) B is a neat [p-neat] subgroup of A;
(i) BNpA =0;

(iii) B is a direct summand of A.

Proof. Following the proof for pure subgroups in Fuchs (1970, Proposition 27.1), we

argue as follows.

(i)=(ii): If B is neat in A, then BN pA = pB = 0 by hypothesis.

(ii)=-(iii): Let C' be a B-high subgroup of A (existence of C' by Zorn’s Lemma).
Since C' is maximal with the property C N B = 0, we have pA < C. If, for a € A,
pa =b+c (b€ B,c € (), then by Lemma 4.2.3 it suffices to show that b = pb’ for
some b’ € B. Then pa —c=0b¢€ CNB =0, since pa € C, and so b = 0 already. Since
pb’ € pB = 0 for some V' € B, we obtain that 0 = b = pb’. Hence A= B & C.

(iii)=-(i) is trivial. O



72

Corollary 4.1.23. (Bilhan, 1995, Corollary 3) For a prime p, every pA-high subgroup
of a group A is direct summand of A.

Proof. Let B be a pA-high subgroup of A. Then B is neat in A by Proposition 4.1.6.
Thus pB = BN pA = 0 since B is pA-high. Hence the result follows immediately from
Proposition 4.1.22. O

Theorem 4.1.24. (Bilhan, 1995, Theorem 4) The following are equivalent conditions
for a subgroup B of a group A:

(i) B is neat in A;
(ii) B/pB is a direct summand of A/pB for every prime p;

(iii) If C < B and pB < C, then B/C is a direct summand of A/C.

Proof. (i)= (ii): Assume (i), then BN pA = pB < B; thus by Lemma 4.1.21, B/pB is
also neat in A/pB. Since B/pB is a cyclic group of order p, by Proposition 4.1.22, it is
a direct summand of A/pB.

(ii)=(iil): Suppose B/pB is a direct summand of A/pB, i.e., A/pB = (B/pB) @
(K/pB), where pB < K. Also Suppose C' < B such that pB < C. Then there exists a
projection map f : A/pB — B/pB defined by f(a+pB) = b+pB, where a € A, b € B.
Let us define F : A/C — B/C as F(a+ C) = (go f)(a + pB), where pB < C < B
(by hypothesis) and ¢g : B/pB — B/C such that g(b + pB) = b+ C. Clearly, g is
well-defined since pB < C.

Let us show that I is also well-defined: Take a 4+ C = o’ 4 C for some a,a’ € A, i.e.,

a —a' € C. Thus we have,
Fla+C)=(go f)(a+pB)=g(fla+tpB)) =g(b+pB)=b+C
and
F(d + C)=g(f(d +pB)) = g(t' + pB) =b' + C.

Now we shall show that b+ C =¥+ C,ie.,b—b € C whena—ada' €C.
Since A/pB = (B/pB) & (K/pB), for a+pB € A/pB, we have a = b+ k + pby, and for
a' +pB € A/pB, we have o' = b + k' + pby for some b1,bo € B and k, k' € K. Then
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a—a ={b-=b)+ (k—Fk)+p(by — bs). We know that a —a’ € C, p(by —bs) € pB < C
and k—k' € C (indeed, k—k = (a—d')+ (b' —b) +p(ba—b1) € Bsincea—a’ € C < B,
and so k — k' € BNK = pB < C since (B/pB) N (K/pB) = 0). Thus b— V' € C which
implies b + C' = 4+ C. Hence F is well-defined. Since F' is a projection map, B/C is

a direct summand of A/C.

(iii)=(i): Let b = pa € B, for some a € A. Since pB < B and pB < pB, B/pB
is a direct summand of A/pB by hypothesis. Then there exists a projection map
f: A/pB — B/pB defined by f(a + pB) = b+ pB, where a € A and b € B. Then
b+pB = f(b+pB) = f(pa+ pB) = pf(a+ pB) = p(b/ + pB) = pb/ + pB for some
b € B. So b—pb € pB, and, then b — pb’ = pb” for some b” € B. Thus b = p(b' + "),
where b’ + V" € B. Hence B is neat in A. O

4.2 N-high Subgroups

High subgroups of abelian groups were first introduced by Irwin (1961). Since, then
lots of research on various properties and representation of high subgroups have been
conducted. See Irwin & Walker (1961), Irwin et al. (1962), Megibben (1964), Irwin &
Benabdallah (1968) Benabdallah et al. (1974), Benabdallah & Irwin (1975), etc.

For the definition of high subgroups, see Section 1.1.

Definition 4.2.1. (i) A minimal divisible group E containing A is called the divis-
ible (injective) envelope of A.

(ii) A neat subgroup N minimally containing S is called a neat envelope of S.

Lemma 4.2.2. (Fuchs, 1970, Lemma 9.8) If N is a subgroup of G and K is a N-high
subgroup of G, then a € G, pa € K [p a prime] impliesa € N ® K < G.

Proof. If a € K, then clearly a € N ® K. Because a =0+ k € N + K for some k € K
and NN K =0, since K is N-high subgroup of G. If a ¢ K, then < a > +K = K and
since K is N-high in G, (< a > +K)NN # 0. Thus there exists an element 0 # b € N,
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i.e., b =ta+k for some k € K and integer ¢t. Here (¢,p) = 1 since pa € K and NNK =0
[otherwise, if (p,t) # 1, then (p,t) = p since p is prime, so t = pl for some integer [, thus
0#£b=ta+k=Ipa+k e NNK =0 gives a contradiction]. Thus ut+wvp = 1 for some
integers u, v, and so a = u(ta) + v(pa) = u(b—k) +v(pa) = ub+ (—uk +vpa) € N® K
since b € N and (—uk + vpa) € K. O

Lemma 4.2.3. (Fuchs, 1970, Lemma 9.9) Let G,N, K be as in Lemma 4.2.2. Then
G=N&K ifand only if pa =b+k (a € G,b € N,k € K) implies pb' = b for some
b e N.

Proof. Suppose G = N @ K and pa = b+ k (a € G,b € N,k € K). Then there exist
b € N and k' € K such that a =V + k’. Thus pb’ + pk’ = p(b/ + k') = pa = b+ k, and
sopb —b=k—pk/ € NN K =0 implies b = pb'.

Conversely, if pa =b+k (a € G,b € N,k € K) implies pb’ = b for some ¥’ € N, then
we have:
(i) The quotient group G/(N & K) contains no elements of prime order, and therefore

it is torsion-free:

Suppose that there is an element a + (N @ K) with prime order p, i.e., p(a + N @
K)=N® K. Then pa € N @ K, and so pa = b+ k for some b € N,k € K.
Thus by hypothesis, there exists &’ € N such that pb’ = b, and so pa = pb’ + k
or equivalently p(a — V') = k € K. Then by Lemma 4.2.2, a — V' € N @& K. This
implies a € N® K since b/ € N@ K already. So a+ (N®K) = N@® K. This shows

that G/(N @ K) has no nontrivial element of prime order, i.e., it is torsion-free.

(ii) The quotient group G/(N & K) is torsion:

Take any nonzero element z + (N @ K) € G/(N & K), ie.,, z ¢ N & K, then
(<x>+K) 2 K since z ¢ K, and so (< z > +K)NN # 0 since K is N-high
in G. Therefore there is 0 # b"” € N such that " = k" + Iz for some k" € K and
integer [. Clearly [ # 0 since NN K =0. Thuslzx =V’ — k" € N® K, and so
lx+(N® K)=N®K or equivalently {(x + (N @ K)) = N @& K. This means
G/(N & K) is torsion.
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Hence G/(N @ K) is both torsion and torsion-free group. We conclude that
G=(N®K).

The following result immediate since it holds for modules over commutative noetherian
ring in which every nonzero prime ideal is maximal (see Section 1.4), and for the direct

proof of this important fact see also Imam (2007).

Theorem 4.2.4. A is a neat subgroup of B if and only if A is a K-high subgroup of
B (or a complement of K ), for some K < B.

Proof. (=): Let A be a neat subgroup of B and prove that A is a K-high subgroup of
B for some K < B. Applying Zorn’s lemma to the set

r={r<B|TNA=0}
we find an A-high subgroup K of B. Now taking the set
I'={S<B|SNK=0,A<S}

again by Zorn’s lemma we obtain a K-high subgroup M of B with A < M. We shall
show that A = M.

Suppose for the contrary that M # A. Then there exists m € M \ A. So, if < m >
NA = 0, then (K+ <m >)NA =0. Indeed, if a = k+tm € (K+ <m >)NA
for some k € Kt € Z, then k = a—tm € KNM = 0 (since a € A < M), and
so a =tm €< m > NA = 0 implies a = 0. But this contradicting the fact that K
is A-high in B since (< m > +K) 2 K (as m € M implies m ¢ K). Now we have
<m > NA # 0, so there exists 0 # a = sm €< m > NA, where s = p1ps . .. p, for prime
numbers p; (not necessarily distinct). We know m ¢ A, but a = (p1p2...pn)(m) € A
implies that x ¢ A, but pz € A for some z € B and prime p. Then px € ANpB = pA
since A <peqt B, that is, pr = pa’ (a’ € A) or equivalently p(z — a’) = 0. Put
y=x—a € M\ A, then o(y) = p, and so < y > NA = 0. Indeed, if 0 # ty € A, then

(t,p) = 1, i.e., tu + pv = 1 for some integers u,v. So y = uty € A since vpy = 0 as
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o(y) = p, contradicting y ¢ A. Thus (K+ < y >) N A = 0 gives a contradiction, since
K is A-high in B and (< y > NK = K) (as y € M implies y ¢ K). Hence m must be
an element of A, that is, M = A.

(«): Conversely, we assume that A is a K-high subgroup of B for some K < B and
prove that A is neat in B, i.e., pA = AN pB for every prime p. Now pA < ANpB is
always true. Let a = pb € ANpB for some a € A,b € B. By Lemma 4.22b€ A® K
since pb € A. Thus b =d' + k for some o’ € A,k € K. Hence a = p(a’ + k) = pa’ + pk,
and so pk = a —pa’ € AN K = 0 or equivalently a = pa’ € pA. So ANpB < pA,
completes the proof.

For another direct proof of this part, without using Lemma 4.2.2, see Proposition

4.1.6. 0

In fact, we have the following Theorem from Harrison et al. (1963).

Theorem 4.2.5. (Harrison et al., 1963, after Definition 3, pp. 827) if A is a subgroup

of a group G, the following statements are equivalent:

(i) A is a neat subgroup of G,
(ii) A is mazimal disjoint from some subgroup K of G (i.e., A is K-high in G),

(iii) If K is a subgroup of G mazimal disjoint from A, , then A is mazimal disjoint

from K,
(iv) ANpG = pA.

Theorem 4.2.6. (Irwin, 1961, Lemma 1) Let G be a primary group with H an N-high
subgroup of G, D is divisible envelope of G, A any divisible envelope of H in D (this
means that A < D), and B any divisible envelope of N in D. Then:

(i) D=A@B
(i) ANG =H, and H and BN G are neat in G.

(iii) D[p] = (H & N)[p| = H[p] & N[p] = GIp].
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(iv) All N-high subgroups H of G may be obtained as EN G, E is a complementary

direct summand of a divisible envelope F' of N in D.

Proposition 4.2.7. (Akinci, 1996) Let G be a torsion group, G = B, Gp where Gp’s
are p-groups belonging to different primes p and N be a subgroup of G. Then if H is
an N-high subgroup of G, H, is an Np-high subgroup of G,.

Theorem 4.2.8. (Irwin & Walker, 1961, Theorem 12) Let H and K be any two high

subgroups of a group G. Then:

(i) G/H is divisible
(ii) G/H is a divisible envelope of (G' © H)/H = G*

(i) G/H =~ G/K.

The following theorem gives a characterization in terms divisible envelope of N-high

subgroups of a torsion group G.

Theorem 4.2.9. (Trwin & Walker, 1961, Theorem 3) Let N be any subgroup of a
torsion group G, and E be a divisible envelope of G with D a divisible envelope of
N in E. Then the set of N-high subgroups of G is the set of intersections of G with

complementary summands of D in E.

Proof. Let H=ANG, where A® D = E. We shall show that H is N-high in G. Now

by Theorem 4.2.6, and Fuchs (1958, pp. 67), we have for each prime p,
Glp] = Elp] = Alp] & D[p| = (ANG)[p| & Nlp| = H[p] & Np].

Thus by Theorem 4.1.9, H is neat in G and finally H is N-high in G by Theorem 4.2.4.
For the converse, suppose H is N-high in G, so that H is maximal subgroup with respect
to HON = 0. Now HND = 0, because: notice that (HND)NN = HNN = 0, and by
Fuchs (1958, Lemma 20.3) (Kulikov’s lemma), HND = 0. Since D is an absolute direct
summand, there exists a group A containing H with A® D = E. But H < ANG, and
since (AN G) N N = 0, by the maximality of H with respect to H N N = 0, we have
H=ANG. O
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Theorem 4.2.10. (Irwin & Walker, 1961, Theorem 7) Let H and K be high subgroups
of a torsion group G. Then if H is a direct sum of cyclic groups, so is K. Moreover

H=ZK.

Now we give some results of purity of N-high subgroups of torsion groups:

Theorem 4.2.11. (Irwin, 1961, Lemma 2) Let N be a subgroup of a primary group
G, H an N-high subgroup of G, and let H contain a basic subgroup B of G. Then H

is pure in G.

Lemma 4.2.12. (Irwin, 1961, Lemma 12) Let G be a torsion group and let H be a

high subgroup of G. Then H contains a basic subgroup of G.

Theorem 4.2.13. (Irwin, 1961, Theorem 3) If H is a high subgroup of a torsion group
G, then H is pure in G.

Theorem 4.2.14. (Irwin & Walker, 1961, Lemma 5-6) Let N be a subgroup of a

torsion group G. Then
(i) If H and K both N -high subgroups of G then ((H & N)/N)[p] = (K & N)/N)[p]

for each relevant prime p.
(ii) If H is an N-high subgroup of G with N < G', then ((H © N)/N) is pure in
G/N.

Proposition 4.2.15. (Irwin & Walker, 1961, Theorem 5) Let N be a subgroup of a
torsion group G with N < G, and let H be an N-high subgroup of G. Then H is pure
inQG.

Theorem 4.2.16. (Irwin & Walker, 1961, Lemma 7) Let H and K be any two N-high
subgroups of a primary group G with N a subgroups of G*. Then for all positive integers

n, we have:

(i) p"H is N-high in p"G,
(ii) p™H is pure in p"G,

(iii) p"((H ® N)/N)[p] = (p"((K ® N)/N))[p],
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(iv) H, K, and G have the same nth Ulm invariants (see Kaplansky (1969)).

Theorem 4.2.17. (Irwin & Walker, 1961, Theorems 1-2) Let G = 3" G, be an arbi-
trary direct sum of torsion groups, where H, and N, are subgroups of G, for each «.
Then:
(i) If Hy is Ny-high in G, for each o and N = > N,, then H = Y  H, is N-high
in G.

(ii) If Hy is a high subgroup of G, for each «, then H = Hy is high in G.

Theorem 4.2.18. (Irwin & Walker, 1961, Theorems 13) Let T be the torsion subgroup
of an abelian group G, H be a high subgroup of G, and Ty be the torsion subgroup of
H. Then Ty is high in T.

The Theorem 4.2.13 is generalized by Irwin & Walker (1961) as follows:

Theorem 4.2.19. (Irwin & Walker, 1961, Theorem 14) Let H be a high subgroup of

an abelian group G. Then H is pure in G.

Proof. Let T be a torsion subgroup of GG, and Ty be the torsion subgroup of H. Now by
Theorem 4.2.18, T'/Ty is divisible, so that G/Ty =T /Ty @& R/Ty, where R is chosen
such that R/Ty contains H/Ty. Since Ty is pure in G by Irwin & Walker (1961,
Corollary to Theorem 13), R is pure in G (as R/Ty is pure, since a direct summand).
Thus since H is neat in G (as a high subgroup), H/Ty is neat in G/Ty, and so H/Ty
is neat in R/Ty (see Theorem 4.1.11). But R/Ty is torsion-free. This implies that
H/Ty is pure in R/Ty by Theorem 4.1.2. Hence we have that H is pure in R, so that

H is pure in G (since R is pure in G), and the proof is complete. O]

The concept of > -groups was introduced by Irwin & Walker (1961).

Definition 4.2.20. A > -group is any group G all of whose high subgroups are direct
sums of cyclic groups. This means that in a torsion » -group every high subgroup is

basic.
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The next theorem shows that torsion ) -groups are closed under direct sums.

Theorem 4.2.21. (Trwin & Walker, 1961, Theorem 8) For torsion groups, a direct

sum of > -groups is a Y -group.

The next theorem gives a characterization of torsion » -groups of a torsion group.

> -groups in terms of their basic subgroups.

Theorem 4.2.22. (Trwin & Walker, 1961, Theorem 9) A torsion group G is a Y .-group

if and only if G contains a mazximal basic subgroup.

The next Theorem is a result concerning the > -groups of a torsion group.

Theorem 4.2.23. (Irwin & Walker, 1961, Theorem 10) Every torsion group G con-
tains a Y -subgroup R pure in G such that R* = G*.

Proposition 4.2.24. (Irwin & Walker, 1961, Theorem 11) Every subgroup L of a

torsion Y .-group G with L' = L N G (and so every pure subgroup of such G) is a
> -group.

Definition 4.2.25. Let T(G) denote the torsion subgroup of a group G. Then G splits
if T(G) is a direct summand of G.

Proposition 4.2.26. (Irwin et al., 1962, Theorem 1) Let H be a high subgroup of
a group G, and suppose H = Hy @ L, where Hy is the torsion subgroup of H. Then
G =M ® L, where M/T(G) is the divisible part of G/T(QG).

From the Theorem 4.2.26, we obtain the following necessary and sufficient condition

that a reduced group split.

Theorem 4.2.27. (Trwin et al., 1962, Theorem 2) Let G be reduced. Then G splits if
and only if G/T(G) is reduced and some high subgroup of G splits, where T(G) is the

torsion part of G.
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Theorem 4.2.28. (Irwin et al., 1962, Corollary, pp. 191) If one high subgroup of
a group G is a direct sum of cyclic groups then G is a Y -group, and any two high

subgroups of G are isomorphic.

Theorem 4.2.29. (Megibben, 1964, Theorem 3) If G is a > -group, then every high
subgroup of G is an endomorphic image of G. More generally, if the high subgroup H
of G splits and the torsion subgroup of H is a direct sum of cyclic groups, then H is an

endomorphic image of G.

The following theorem gives a characterization of N-high subgroups of a group G,
with N < GL.
Theorem 4.2.30. (Irwin & Benabdallah, 1968, Theorem 2.4) Let G be a group, N
a subgroup of G' and K a pure subgroup of G containing N. Then for every N -high
subgroup H of G,

G=H-+K.

Theorem 4.2.31. (Irwin & Benabdallah, 1968, Theorem 2.5) Let G be a group, N a
subgroup of G and H a subgroup of G disjoint from N. Then H is N-high in G if
and only if H is pure, G/H divisible and G = H + K for every pure subgroup K of G

containing N.

Now we obtain a criterion for pure subgroups of a group G to be summands of G.

Theorem 4.2.32. (Irwin & Benabdallah, 1968, Theorem 3.1) Let G be a group, K a
pure subgroup of G containing a subgroup N of G*. Then K is a direct summand of G
if and only if there exists an N-high subgroup H of G such that HNK = M is a direct

summand of H.

Definition 4.2.33. A p-group G is called pure complete if every subsocle S < G|p]

supports a pure subgroup of G.

Theorem 4.2.34. (Benabdallah et al., 197/, Theorem 6) If G is a pure complete p-
group, and N < G, then all N-high subgroups of G are direct sums of cyclics if and

only if all pure N-high subgroups are direct sums of cyclics.
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Corollary 4.2.35. (Benabdallah et al., 1974, Corollary 15) Let G be a p-group, and

N a subgroup of G. Then there exists an N -high subgroup of G which is pure in G.

Theorem 4.2.36. (Benabdallah et al., 1974, Lemma 8) Let K be a subgroup of a p-
group G and S < K[p]. Then K/S is (G[p]/S)-high in G/S if and only if K[p] = S
and K is neat in G.

Proof. (=) : Let K/S be (G[p]/S)-high in G/S. Let pg € K and g ¢ K. Then
(<g+S>+K/S)N(G[p]/S) # 0 since K/S is (G[p]/S)-high.

So there exists g+ k+ S € G[p]/S for some k € K and g+ k € G[p]. Then pg+ pk =0,
pg = —pk. Thus K is neat in G. Now, let © € K[p| < G[p]. Then z + S € K/SnN
G[p]/S =0, and so = € S which implies that K[p] = S.

(<) : Conversely, suppose K is neat in G, then K/S N G|p|/S = 0, because:

let k+S5 =g+S forsome k € K, g € G[p|]. Then k—g € S = K[p] and so p(k—g) = 0.
Hence pk = 0, since pg = 0. This implies k € K[p] = 5, so k+ S = 0.

And (G/S)[p] = (G[p]/S)® (K /S)[p], because: for g+5 € (G/S)[p], we have p(g+S) =
S, and sopg € S < K. Since K is neat in G, pg = pk’ for some k¥’ € K. So, p(g—k') =0
or equivalently g — k' € G[p]. Hence g+ S = (g9 — k' + S) + (k' + S) € G[p]/S + K/S.
Now K is neat in G implies K/S is neat G/S. Hence K/S is maximal subgroup by
(K/S)[p] and is (G[p]/S)-high in G/S. O

Theorem 4.2.37. (Benabdallah et al., 1974, Theorem 10) All neat subgroups supported

by a subsocle S of a p-group G are dense if and only if S is dense in G[p).

The following proposition is a modification of the exercise on pure subgroups in

Fuchs (1970, Exercise 28.2)

Proposition 4.2.38. (Benabdallah et al., 1974, Lemma 12) If H is a neat subgroup of
a p-group G, then

(G/H)[p] = G[p]/H][p]-
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Proof. Following the proof for pure subgroups in Calugireanu et al. (2003, Exercise S

3.14), we argue as follows. Consider the group homomorphism

[ Gl — (G/H)lpl,  fla)=a+H

for every a € G (the restriction of the canonical projection). Obviously f is well-defined
(since pa = 0 implies p(a+H)=H) and, moreover, H being neat in G, it is surjective by

using Theorem 4.1.13. Finally,
Ker f ={a € Glp] | a+ H = H, or equivalently, a € H} = H N G[p] = H|[p],

so our claim follows by the First Isomorphism Theorem. O

4.3 Intersection of Neat Subgroups

Now we give a few characterizations of Neat Subgroups of abelian groups from

Rangaswamy (1965) :

Definition 4.3.1. (i) A subgroup S of a group G which can be represented as the

intersection of neat subgroups of G is called 7-subgroup.
(ii) Let p be a prime. A subgroup S is p-absorbing if px € S implies z € S.

(iii) If G is a group, a subgroup which is maximally disjoint with T'(G) (torsion sub-
group of GG) is denoted by Goo.

Lemma 4.3.2. (Rangaswamy, 1965, (1.6)) If S is essential in G (i.e., SN A # O for

every nonzero subgroup A of G), then the only neat subgroup containing S is G itself.

Proposition 4.3.3. (Rangaswamy, 1965, Theorem 2) Let G be a p-group. If S # G,
then S is a m-subgroup if and only if there exists a nonzero subgroup H of G disjoint

with S.

Proposition 4.3.4. (Rangaswamy, 1965, Corollary) Let G be a torsion-free group.
Then a subgroup S of G is a w-subgroup if and only if S is neat.
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Theorem 4.3.5. (Rangaswamy, 1965, Theorem 5) Let G be an arbitrary divisible
group. Then the following are equivalent:

(i) S is the intersection of divisible subgroups of G (S is mw-subgroup).
(ii) If pr € S, x ¢ S, then there exists z ¢ S with pz = 0.
(iii) S is p-absorbing whenever S[p] = G|[p].

(iv) For a prime p, Sy (p-primary component of S;) and S/S, are w-subgroups of G
and G /S, respectively.

(v) For each relevant prime p, either (i) S, = Gp and p~(Se) < S for every Se or

(i) there exists a nonzero p-subgroup disjoint with S.

4.4 Neat Exact Sequences

Definition 4.4.1. A group G is said to be a neat-projective if for every neat-exact

sequence 0 A—.p P

¥ : G — B such that oy = ¢.

C 0 and homomorphism ¢ : G — C there exist

G
w/
e
ot 8
0 A B C 0

Lemma 4.4.2. (Imam, 2000, Lemma 1.4.2) A group P is neat-projective if and only
if Next(P,G) =0 for each group G.
Theorem 4.4.3. (Bilhan, 1995, Theorem 8) P is neat-projective if and only if P =

P'© F, where P’ is a direct sum of cyclic groups of prime order and F is free.

Definition 4.4.4. A group F is said to be a neat-injective if for every neat-exact

sequence 0 A—*-B y C 0 and homomorphism & : A — FE there exist

1n: B — E such that noa = ¢.
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Lemma 4.4.5. (Imam, 2000, Lemma 1.4.6) A group E is neat-injective if and only if
Next(G, E) =0 for each group G.

Proposition 4.4.6. (Imam, 2000, Propositionl.4.8) Let p be a prime. An elementary

p-group is neat-injective and neat-projective.

Another important characterization for being a neat subgroup is the following:

Lemma 4.4.7. (Bilhan, 1995, Theorem 7) Let A be a subgroup of a group B. Then A
is neat in B if and only if Z/pZ is injective with respect to the inclusion homomorphism

A — B.

Proof. (=): Suppose A is neat in B, i.e., A — B is a neat homomorphism. Let
¢ : A — Z/pZ be any homomorphism. Since Z/pZ has no proper subgroup ( as a simple
subgroup) ¢(A) = 0 or ¢(A) = Z/pZ. If ¢(A) = 0, then ¢ is a zero homomorphism
and, then it can be extended to ¥ : B — Z/pZ, where ¢(z) = 0 for every © € B.
So we shall consider the case when ¢(A) = Z/pZ, i.e., ¢ is an epimorphism. Since
A/ Ker ¢ = Z/pZ (By Fundamental isomorphism theorem), we obtain p(A/Ker ¢) = 0,
that is, pA < Ker ¢, and so we have a homomorphism g : A/pA — A/ Ker ¢ such that
gla+pA) = a+Ker ¢. Clearly g is well-defined. Since A is neat in B, A/pA is a direct
summand of B/pA by Theorem 4.1.24. So there exists a projection o : B/pA — A/pA.

Thus we have the following diagram

C e B 2 B/pA

Z/pZ = A/ Ker ¢

where 71, w9 are natural epimorphisms. Therefore for a € A, (0 om0 a)(a) = (o o
m9)(a) = o(me(a)) = o(a + pA) = a + pA = m1(a), since o is projection and « is
inclusion. So we have o o 9 0 &« = m1. Moreover, (g o m)(a) = g(a + pA) = ¢(a), and

so gom = ¢. Finally, let us define ¢ : B — Z/pZ such that ¢ = go o omy. It is clearly
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well-defined since g, o, w3 are well-defined. Hence for every a € A, we have
(Yoa)(a) =(gooomoa)(a) = (gom)(a) = ¢(a),

that is, Z/pZ is injective with respect to the neat monomorphism A — B.

(«<): Conversely, suppose that every Z/pZ has injective property with respect to

the short exact sequence

E:0 A—">B C 0.

Now assume that A is not neat in B, that is, [E is not neat-exact. Then A NpB # pA,
so there exists an a € (AN pB) \ pA. Let us define the set

r={D<B|pA< D<A a¢ D}

Clearly, every chain {D;} has an upper bound, namely |JD;. Therefore by Zorn’s
lemma I' has a maximal element, say M.

Consider A/M. Since pA < M, we have p(A/M) = M, and so A/M = Z/pZ for
some prime p since A/M is simple (as M is maximal in A). Then A/M is injective
with respect to E (by hypothesis), so there exists ¢ : B — A/M such that the following

diagram is commutative:

that is, ¥ oo = 7, where 7 is natural projection. Since « is inclusion map a(a) = a, and
Y (a) € Y(pB), since a € ANpB for some a € A. We know that ¢(pB) is a subgroup of
p(A/M), then ¢(a) € p(A/M) = M. Thus ¥(a) = ¢(a(a)) = 7(a) ¢ M since a ¢ M.
Contradicting ¢ (a) €€ M. Hence A is neat in B. O

Theorem 4.4.8. Let
E:0 A—2sB C 0

be a short exact sequence for abelian groups A and B. Then the following are equivalent:



(i) A is neat subgroup of B, i.e., pA = ANpB for every prime p;

(ii) Z/pZ has the projective property with respect to E, for every prime p;
(iii) Z/pZ has the injective property with respect to E, for every prime p;
(iv) Z/pZ is flat with respect to E, for every prime p.

Proof. (i)<(ii)<(iv): Follows immediately from Proposition 3.1.4.

(i) (iil): This equivalence follows from Lemma 4.4.7.
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By using the idea of short pure-exact sequences for example in Griffith (1970, Lemma

26), we get the following Theorem for short neat-exact sequences:

Theorem 4.4.9. (i) A pushout of a short neat-exact sequence is neat-ezxact.

(ii) A pull back of a short neat-exact sequence is neat-exact.

(iii) The Baer sum of two short neat-exact sequences is neat-exact.

Proof. (i) Suppose that a short exact sequence E : 0 A—t-p-YsC

neat and that the diagram

E:0 A—>B-—"s( 0
b
E/ . 0 E u P C Oa

represents a pushout of E. Without loss of generality, assume A is a subgroup of

B and 1 is the inclusion homomorphism. Recall that

M = (E & B)/N where N = {(f(a),—i(a)) :a € A}, and 7 : e — (e,0) + N,

¥ :b— (0,b)+ N and p: (e,b) + N — v(b), for some e € E, b € B. We want to

show that E’ is neat-exact, i.e., m(E) is neat in M.

Suppose that 7(e1) = pm for some e; € E, m € M. Since m = (e, b)+ N for some

e € E, b € B, we have (e1,0) + N = w(e1) = pm = pl(e,b) + N] = p(e,b) + N.
Then p(e,b) — (e1,0) € N. Thus by definition of N, there exists a € A such
that p(e,b) — (e1,0) = (f(a), —i(a)), and so (pe,pb) = (e1 + f(a), —i(a)). Then
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a =i(a) = —pb = p(—b). Since A <,eqt B a = pa; for some a; € A. We also
have pe = e; + f(a), then e; = pe — f(a) = pe — f(pa1) = p(e — f(a1)). Since
e — f(a1) € E, we can write e¢/f(a1) = pe’ for some ¢/ € E. Thus w(e;) =
(e1,0) + N = (pe/,0) + N = p((¢/,0) + N) = pm(€’), and this shows that 7(F) is

neat in M.

For a short neat-exact sequence E : 0 A—t~p-YsC 0, suppose that

the commutative diagram

p

E :0 A—">M E 0
ool
E:0 A—t=p-—"s( 0,

represents a pullback of E. Without loss of generality, assume A is a subgroup of
B and i is the inclusion homomorphism. Recall that

M = {(bje) e B@E : v(b) = f(e)}, and 7 : a — (a,0), p : (b,e) — e, and
¥ : (bye) — b for some a € A, b € B, e € E. We want to show that E’ is neat-
exact, i.e., m(A4) is neat in M.

Suppose that m(a) = pm for some a € A, m € M. Since m = (b, e) for some b € B,
e € E, we have w(a) = (a,0) = p(b,e) = (pb,pe). Then a = pb, and so a = pay
for some a1 € A since A <peqr B (as i(A) = A). Hence 7(a) = n(pa1) = pr(ay)

shows that 7(A) is neat in M as required.
Suppose that

B :0—>B—>X-JsA— o0 andEy: 0—>B—>yY " A0

are neat-exact sequences and that

E:0 B—/—=W—"=A 0

represents the Baer sum of these sequences E; and Es, where
W = M/Na M = {(xay) EXBY: j(x) = ﬂ-(y)}a N = {(—’L(b),p(b)) 1b € B}7
and 7: b+ (i(b),0) + N and o : (x,y) + N — j(x).

Without loss of generality, assume B is a subgroup of X and Y, and 4, p are the
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inclusion homomorphisms. We want to show that E is neat-exact, i.e., 7(B) is
neat in W.

Suppose that 7(b) = pw for some w € W = M/N. Let w = (x,y) + N for some
r € Xandy €Y. Then 7(b) = (i(b),0)+ N = p(z,y)+ N = (px,py)+ N for some
b e B. So (i(b),0) — (pz,py) € N. Then there exists (—i(b1), p(b1)) € N (b, € B)
such that (i(b),0) — (px,py) = (—i(b1),p(b1)) = (=b1,b1) as i, p are inclusions.
Thus we have, by = —py = p(—y) and so by = pb’ for some b’ € B, since B <peqt Y.
And we also have, i(b) — pr = —by, that is, b+ by = pz. Then b+ by = pb” for
some b € B, since B <peat X. So, b= pb” — by = pb” — pb' = p(b” — V). Hence
7(b) = (i(b),0) + N = (b,0) + N = (p(t — 1/),0) + N = p(b" — ¥/,0) + N =
pl(i(0" —¥),0)+ N| = pr( = V'), i.e., 7(b) = p(7(b” —V')). This shows that 7(B)

is neat in W.

O

Theorem 4.4.10. (Imam (2000, Propositionl.3.2)-without proof) For a short exact

sequence
0—=A—2-p- 20—

the following conditions are equivalent:

(i) 0 A—2.p P ¢ 0 is neat-exvact;

(ii) 0 pA—">pB pC 0 is exact for every prime p;

Cp] 0 s exact for every prime p;

(iv) 0 A/pA—=2 B/pBAC/pCHO is exact for every prime p;

(v) 0——=A/Ajp|—">~B/B[p]

Ba

C/Cp] 0 is exact for prime p.

Proof. (1)< (ii): By exactness of (i), we have « is monic and f is epic. Since Kerag =

KeranpA =0 (as Kera = 0), ay is monic. Indeed,

Keran ={z € pA| a1(z) = alpa(z) =0} = {x € pA | v € Kera} = Kera N pA.
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And Im 3y = Im BN pC = pC since 3 is epic, and so F; is epic. Finally,
Kerpgy =KergNpB =ImanNpB

which is equal to p(Im ) = a(pA) = Ima|pa = Imaq (ie., (ii) is exact) if and only if

Im « is neat B, i.e., (i) is neat-exact.

(i) (iii): g is always monic, while (s is epic for every p exactly if every element
of C[p|] is an image of an element of B[p]. This is, by Theorem 4.1.13, equivalent to

neatness of (i). Finally,
Ker fy = Ker 8N Bp] = Ima N Blp| = a(Alp]) = Im as,

that is, (i) is neat-exact if and only if (ii4) is exact.

(i)e(iv) and (i)<(v) follows from 3x3-lemma. Indeed, we have the following com-

mutative diagram with all three columns are exact:

0 0 0 )
a 51
0 pA pB pC 0
i1 2 13
a I¢]
0 A B C 0
o1 o2 o3
0 AfpA—"3- B/pB =~ C/pCc — 0
0 0 0

where ij, is inclusion map and oy, is canonical epimorphism for k£ = 1,2,3. Clearly, all
columns of the diagram are exact. Assume (i). We have proved that (i)<-(ii). This
means the first two rows of the diagram are exact. Thus by the 3 x 3-lemma (see
for example Fuchs (1970, Lemma 2.4)), the remaining row is also exact, that is, (iv)
is exact. Conversely, suppose (iv) is exact, that is, ag is a monomorphism, (3 is an
epimorphism and Ker 3 = Im «3. We shall show that (i) holds, i.e., a(pA) = a(A)NpB.
a(pA) < a(A) N pB always holds. Let a(a) = pb € a(A) N pB for some a € A and an
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arbitrary prime p. Then (02 0 a)(a) = (ag o 01)(a) by commutativity of the diagram.

Thus we obtain,

(agoo01)(a) = (o2 0 @)(a) = o2(al(a)) = o2(pb) = p(b+ pB) = pB = Op/5,
that is, 01(a) € Kerag = 04/,4 = pA since a3 is a monomorphism. Then a + pA =

o1(a) = pA implies a € pA, i.e., a(a) € a(pA). Hence a(4A) N pB < apA) as required.

Similarly, (i)<(iv) follows from 3 x 3-lemma. O

We know (see Fuchs (1970, §53)) that the extensions corresponding to pure-exact
sequences form a subgroup of Ext which coincides with the first Ulm subgroup of Ext.

This leads a functor Pext.

Proposition 4.4.11. (Fuchs, 1970, Theorem 53.3) Let the exact sequence

E:0 A—2>B C 0

represent an element of Ext(C,A). Then E belongs to nExt(C, A) if and only if
a(nd) = a(A) NnB (ie, Ima <,eq B). It belongs to the first Ulm subgroup of

Ext(C, A) if and only if E is a pure-exact sequence. This asserts:

Pext(C, A) = Ext(C, A)! = (\nExt(C, A).

Like the functor Pext, the extensions corresponding to neat-exact sequences form a
subgroup of Ext which coincides with the Frattini subgroup of Ext. This leads a new

functor Next.

Theorem 4.4.12. (Bilhan, 1995, Theorem 10) A short exact sequence

E:0 A—2>B C 0

is neat if and only if E is an element of pExt(C, A) for every prime p. This asserts:

Next(C, A) = Rad(Ext(C, A)) = (| pExt(C, A)

(see Fuchs (1970, Ezercise 53.4) and Nunke (1959, Theorem 5.1)).
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Proposition 4.4.13. (Imam, 2000, Corollary 1.4.13) If {E; : i € I} is a family of

short neat-exact sequence

Ei : 0 Az = Bi
then their direct sum

B
@]Ei 00— @161 Azi) @ie] Bi4>®i61 Cl 0
el

is also neat-exact.

4.5 Frattini-high Subgroups

A Frattini-high subgroup, a notion parallel to high subgroups, was introduced by
Ahmad (2006).

Definition 4.5.1. A subgroup H of a group G is Frattini-high subgroup if H is maximal
with respect to the property H N Rad G = 0, that is, H is a complement of Rad G.

The following theorem shows that a Frattini-high subgroup of a torsion group when

combined with pure subgroups generates the group.

Theorem 4.5.2. (Ahmad, 2006, Theorem 2) Let G be a torsion group and K be a
pure subgroup of G containing Rad G. Then for every ®-high subgroup H of G, we
have G = H + K.

4.6 Coneat Subgroups

For the definition of coneat subgroups, see Section 1.5.

Theorem 4.6.1. (Mermut, 2004, Theorem 4.3.1) Let A be a finite subgroup of an

abelian group B. Then A is a complement in B if and only it is a supplement in B.
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We cannot generalized this theorem to include finitely generated abelian groups as

the following example in Mermut (2004, Example 4.3.2) shows.

Example 4.6.2. Consider the following short exact sequence of abelian groups,
0— 2t ~(2/p2) & Z—2~7/p2T—>0

where f(k) = k- (=1 +pZ,p), k € Z, and g(a + pZ,b) = (pa + b) + p*Z, a,b € Z. Then
Im f is a neat (complement) subgroup of (Z/pZ) & Z, but not a coneat subgroup of
(Z/pZ) & Z and so not a supplement in (Z/pZ) & Z.

Proposition 4.6.3. (Mermut, 2004, Corollary 4.3.3) Let B be a group. If a subgroup
A of B is coneat in B, then it is neat in B. But the converse fails to be true always

(see Example 4.6.2).

Proposition 4.6.4. (Mermut, 2004, Proposition 4.6.1) Let A be a subgroup of a group
B. If A is a supplement in B, then it is coneat in B and so neat in B (equal being a

complement).

Theorem 4.6.5. (Mermut, 2004, Theorem 4.6.6) A finite subgroup A of a group B is

coneat in B if and only if it is neat in B.

For a torsion group B, neat subgroups and coneat subgroups coincide:

Theorem 4.6.6. (Mermut, 2004, Theorem 4.6.8) Let B be a torsion group, and A any

subgroup of B. Then A is neat in B if and only if A is coneat in B.

In general, a torsion and neat subgroup of a group need not be coneat as the following

example shows:

Example 4.6.7. Let A = @p Z/pZ be a torsion subgroup of a B = Hp Z/pZ. Then
A is neat in B (see Example 4.1.4), but it is not coneat in B. We shall show that A is
not coneat in B:

If A were coneat in B, then since Rad A = @, Rad(Z/pZ) = D, p(Z/pZ) = P, 0 =
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0, we would have that A is a direct summand of B. Indeed, if the inclusion monomor-
phism A — B is coneat, then A is injective with respect to it (since Rad A = 0). This

means the short exact sequence

0—>A——>B—>B/A—>0

splits, that is, A is a direct summand of B. Contradicting A is not a direct summand

of B (see Example 4.1.4).

In particular, we can generalize the Theorem 4.6.5 as follows:

Theorem 4.6.8. Let A be a torsion subgroup of a group B such that all but finitely
many primary components of A are zero. Then A is neat in B if and only if it is coneat
in B.

Proof. (<) always holds for every group B by Proposition 4.6.3. Conversely, suppose
A is neat in B. To show that A is coneat in B, we must show that for every module
M with Rad M = 0, any homomorphism f : A — M can be extended to B. Since
A is torsion, so is f(A). So, without loss of generality, we may suppose that M is also
a torsion group. Let T denote the torsion part of B. Decompose A, T and M into
their p-primary components: A = @;_, Ap,, where p1,...,p, are distinct primes, and
T=@,T, and M = P, M, where the index p runs through all prime numbers (see
for example Fuchs (1970, Theorem 8.4) for p-primary components of a torsion group).
For each prime py, let f,, : A, — M, be the restriction of f to A4, , with range

restricted to M), also (note that f(A,,) < M,p,). Since
0 =Rad M = @Y Rad M, = P pM,
P P

(as My, is a p-group), we have pM,, = 0 for each prime p. So, each M,, is a neat-injective
abelian group by the structure of neat-injective abelian groups (see Theorem 5.2.1 in
§5.2). Now let M= @Di_; My,. Then M is neat-injective since it is a finite direct sum

of neat-injective groups. Since

n

Imf:f(A):Zf(Apk) SZMpk :Mv

i=1 =1
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we can define fi = &f, : A — M by fi(z) = f(x) for each z € A. Since A is
neat in B, it is also neat in 7' (by Theorem 4.1.11). So there exists a homomorphism
g: T — M extending f; : A — M (since M is neat-injective). Moreover, since T is
neat in B as a torsion part of B, there exists a homomorphism h : B — M extending

g: T — M (since M is neat-injective). Thus we have the following diagram:

A= @Z:l Apk( n T¢ & ~ B
\ :g - ~
1 v L.~ h
f M: @Z:l Mpk
M = @pMp

where i1, 19,3 are inclusion homomorphisms. Therefore we have from the commutative
diagrams that hoio = g, goi; = f1 and i3 0 f; = f. Finally, let us define fv: B— M
such that f: igoh. Ir is clearly well-defined since h is well-defined. Hence fo (ig0i1) =
igo(hoig)oiy =igogoi; =izo fi = f, that is, f : A — M is extended to B by f.

This means A is coneat in B. J



CHAPTER FIVE
c-INJECTIVE MODULES AND ENVELOPES

In Section 5.1, we give some results for c-injective modules which will be used in
other sections. In Section 5.2, we have given the details for the structure of neat-
injective abelian groups in Harrison et al. (1963) and we have given another proof of
this result suggested by Bill Wickless. c-injective modules over Dedekind domains are
similarly described in Section 5.3. In Section 5.4, we give the result for the structure
of neat-injective envelopes of an abelian group in Onishi (1984) and for the structure
of neat-injective envelopes of an abelian group A in terms of the basic subgroupsB,(A)
of p-component T),(A) of A and A/T(A) in Alizade et al. (2004). In the last section,
a structure of c-injective envelopes of modules over a Dedekind domain is given (see

Imam (2007)).

5.1 c-Injective Modules

We will approach to a relative injectivity problem for modules over Dedekind domains
using relative homological algebra.

For definition of c-injective module, see Section 1.6.

Santa-Clara & Smith (2004, Theorem 6) shows that for a Dedekind domain R, every
direct product of simple R-modules is self-c-injective. Santa-Clara & Smith (2004, after
Theorem 6) has also noted that: for a Dedekind domain R, if M is a direct product
of homogeneous semisimple R-modules, then M is self-c-injective and any simple R-
module is M-c-injective.

We shall describe c-injective modules by the general theorems for injectively gen-
erated proper classes since for a Dedekind domain R, the proper class Complr imod
defined below is injectively generated by homogenous semisimple R-modules and c-
injective modules are the same concept with Complg.a104-injective modules. The relative

homological algebra approach goes as follows:

96
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For terminology and notation in proper classes, we shall follow Sklyarenko (1978).
When R is a Dedekind domain R, using mainly the results in Nunke (1959, Lemmas
4.4 and 5.2, and Theorem 5.1), Mermut (2004) that the proper class Complg amoq 18

both projectively generated, injectively generated and flatly generated:

Theorem 5.1.1. (see Mermut (2004, Theorem 5.2.2)) Complr_pod equals the following
for a Dedekind domain R:

€

(i) Neatr-pmod et 7 Y({R/P|P mazximal ideal of R}),

(ii) "Y({M|M € R-Mod and PM = 0 for some mazimal ideal P of R}),

= 1Y ({M|M is a homogenous semisimple R-module}),
(iii) «~Y({R/P|P mazimal ideal of R}),
(iv) 7*({R/P|P maximal ideal of R})

(v) The proper class of all short exact sequences of R-modules and R-module homo-

! B—Y-C 0 such that

morphisms of the form E : 0 A
A NPB=PA, where A’ = Im f,

for every mazimal ideal P of R (or AN PB = PA when A is identified with its

image and f is taken as the inclusion homomorphism).

A c-injective module X is nothing but a Complg.a0q-injective, that is, X is injective

with respect to every short exact sequence E in Complgaiod, SO:

Corollary 5.1.2. (Mermut, 2004, Theorem 5.2.4) For a Dedekind domain R, every c-
injective R-module is a direct summand of a direct product of homogeneous semisimple
R-modules and of injective envelopes of cyclic R-modules, that is, every c-injective

R-module is a direct summand of a module E such that

E=Dao ][] Gr
P < R

max.
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where D is a divisible module and the product is over all maximal ideals of R such that
for every mazimal ideal P of R, Gp is a homogeneous semisimple R-module having

simple components isomorphic to R/P, i.e.,

PGp =0 for all maximal ideals P < R.

5.2 Structure of Neat-Injective Abelian Groups

Tho following theorem gives the structure of neat-injective abelian groups.

Theorem 5.2.1. (Harrison et al., 1963, Lemma 4) A group E is neal-injective if and
only if E=D & Hp T,, where D is divisible, pT,, = 0, and p ranges over all primes.

For the proof of Theorem 5.2.1, we shall firstly give the following lemmas:

There are enough neat-injectives, that is, given any group, we can embed it into a
neat-injective group as a neat subgroup; in fact, we do have the following particular

embedding;:
Lemma 5.2.2. (by Harrison et al. (1968, proof of Lemma 5)) For an abelian group
X, if we embed X into a divisible group D1, then the homomorphism

f:X — Die ] (X/pX)

p prime

f(l‘) = (SC,(UUJFPX)p prime); z e X,
is a Neatyaoq-monomorphism, that is, Im f is a neat subgroup of Dy & Hp(X/pX)
and Dy @ [[,(X/pX) is neat-injective.

Lemma 5.2.3. Let the group E be of the form

E=Dao [[ 7.

p prime

where D is a divisible group, and in the product, p ranges over all prime numbers and

for every prime number p, T}, is a direct sum of copies of Z/pZ, i.e.,

pT, =0  for all prime numbers p.
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Then:

(i)

(i)

Hp T, is reduced and the divisible part of ¥ is D ® 0:

E=De[[1,= ®e0) o (0a][n)
——
p divisible part of E | p ,

reduced

E =D ®][,T, has no nonzero torsion-free reduced direct summands.

Proof. (i) The group [[, 7}, is reduced: Suppose for the contrary that it is not re-

duced. Then it has a nonzero divisible subgroup D;. Suppose (g;), is a nonzero
element of Dqi. Then it must be divisible in Dy, and so in Hp T,, by every posi-
tive integer. Since (gp)p is a nonzero element, g, # 0 for some prime number g.
Then in particular this element (g,), must be divisible by ¢ in Hp T,. But, then
(9p)p = q(hyp)p for some (hy), € [],7),. This gives a contradiction when we look

at the gth component: 0 # g, = ghq = 0 since pT}, = 0 for all prime numbers p.

Thus in E = D &[], T}, we have that D & 0 is the divisible part of E.

Suppose A is a torsion-free reduced direct summand of £ = D & Hp T,. So
A@® B = FE for some subgroup B < FE. Let m4 : E — A and 7g : E — B be
projections corresponding to the direct sum £ = A® B. Since D@0 is a divisible
subgroup of F, we have that m4(D & 0) is also divisible. But m4(D & 0) < A and
A is reduced by hypothesis. So we must have m4(D @ 0) = 0. Then

Da0<ma(D®0)+7(Dd0)=0+75(D&0)=rp(Da0)<B.
So,

B=BNnE=Bn[Do0)o0a][[T)]=Da0)aBn0 ][],

and, then we obtain

Dene0e][n)=E=AeB=AaDa0)a[Bn0a]][L).

Taking quotient groups by D @ 0 of both sides gives

[[m=Ae B [T
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Hence we can assume that A is a direct summand of [], 7).

Let M =[], T},. Let’s show that ][, 7}, has no nonzero torsion-free reduced direct
summands. Suppose A is a torsion-free reduced direct summand of M = Hp Tp.
So A® B = M for some subgroup B < M. Since A is torsion-free, we have that
the torsion part T'(M) of M is contained in B:

T(M)=T(A® B)=T(A) & T(B) = 0& T(B) = T(B) < B.
Then:
M/T(M) = (A® B)/T(M) = [(AeT(M))/T(M)] & [B/T(M)].
Since M = [[, T, where for every prime number p, pT, = 0, we have that

(M) = @Tpv

because if (ap), € T(M) = T([],T}), then for some n € Z*, na, = 0 for all
prime numbers p. Since pa, = 0 for all prime numbers p already (as pT}, = 0),
this implies that for all prime numbers p that does not divide n (thus for all but

finitely many prime numbers p), we must have a,, = 0. Hence (a,), € , T}

We shall now show that M /T (M) is divisible. For any prime number g,

qM:HqT ZHﬁ
p p

where for all prime numbers p # ¢, T, = ¢1,, = T, since T, is a p-group so it is

g-divisible and ﬁ =qT,; = 0. Then
gM+TM) =[T,+ P =][1, =M
P P P
which implies that
q(M/T(M)) = (¢M +T(M))/T(M) = M/T (M),

that is, M/T(M) is g-divisible. This holds for all prime numbers ¢q. Thus
M/T(M) is divisible. Then the direct summand (A& T(M))/T(M) of M/T (M)



101

is also divisible. But (A ® T'(M))/T(M) = A is reduced. Thus we must have
A= (A®T(M))/T(M)=0,ie., A=0 as required.

The notion of cotorsion groups is fundamental in the study of Ext. It was discovered

by Harrison et al. (1963) and found independently by Nunke (1959) and Fuchs (1960).

Definition 5.2.4. A group is called cotorsion if Ext(J,G) = 0 for every torsion-free

group J, equivalently if every extension of G by a torsion-free group splits.

Proof of Theorem 5.2.1.

A group F of the form E =D & Hp T,, where D is divisible, pT}, = 0, and p ranges
over all primes, is clearly a neat-injective abelian group (= c-injective abelian group)
by Corollary 5.1.2. So assume conversely that F is a neat injective abelian group. Then
by Corollary 5.1.2, E is a direct summand of a group E’ such that

E=De [] G
p prime
where D’ is a divisible group, and in the product, p ranges over all prime numbers and

for every prime number p, G) is a direct sum of copies of Z/pZ, i.e.,

pGp =0 for all prime numbers p.

By Lemma 5.2.3, the group [], G, is reduced and in E' = D’ @[], Gp, we have that
D' ® 0 is the divisible part of E’:

E=DwaollG,= Do) @ (0allG
H p L,—l ( 1;[ p)

p divisible part of E/ ,

reduced

Let D be the divisible part of E. Then

E=DaC
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for some subgroup C' of E such that C' is reduced.

Let C; be the torsion part of C' and for each prime p, let T}, be the p-primary

component of the torsion part Cj:

C, = @ Ty, T, is p-primary for each prime number p.
P

prime

We shall follow the below steps:

Step 1. For all prime numbers p, pT;, = 0.

Step 2. C is cotorsion, i.e., Ext(J,C) = 0 for every torsion-free abelian group J (or

equivalently Ext(Q, C) = 0).
Step 3. C has no nonzero torsion-free direct summands.
Step 4. C =2 Ext(Q/Z, C) since C is cotorsion and reduced.
Step 5. C = Ext(Q/Z, C}) since C' is adjusted cotorsion.

Step 6. C' = [[, Ext((Q/Z)y, Ct) = [, Ext(Zpe,Tp) = [], Tp, where for each prime
number p, (Q/Z), = Zy~ is the p-primary part of Q/Z.

Proof of Step 1: For all prime numbers p, pI, = 0.

Since £ = D @ C is a direct summand of B = D' &[], Gp, we have E' = E® H
for some subgroup H of E’. Let D” be the divisible part of H. Then H = D" ®C”
for some subgroup C” of H. Let C" =[], G},. We have seen that C’ is reduced,
E'=(D'30)® (0 C)". Thus:

(D'®0) @ (0a]][G,) = F=EeH=(DaC)e D" aC"
V4

divisible part of E’ —_—

reduced

(DaD"Y&(Cal")
N N —

divisible reduced
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since the sum of divisible groups is divisible and the direct sum of reduced groups

is reduced. By uniqueness of the divisible part of an abelian group, we must have
D'ao0=Dao D",

and so (CC")N(D'@0)=(CaC")N (D@ D")=0. Thus we obtain

Cn(D'&0)=0.

Suppose for the contrary that for some prime number ¢, g7 # 0. Since Ty is the
g-primary part of the torsion part C; of C, the order of every element of Tj is a
power of ¢q. Since gT'qg # 0, there exists an element « € T;, and an integer n > 2
such that

¢"z=0 and ¢ lz#0

SincexEqu@pT :CtgCgD@C:ESE@H:E':D’@HPGP,We
have

z=(d,(gp)p) for some d' € D" and (gp), € HGp,
p
where for each prime number p, g, € G, and so pg, = 0 since pG, = 0. Then

0=q"z=(¢"d,(¢"gp)p) implies that
¢"d =0 and ¢"g, =0 for all prime numbers p.

For each prime number p # ¢, since pg, = 0 already and we have ¢"g, = 0, we

obtain g, = 0 by relative primality of p and ¢":
gp =0 for all prime numbers p # g.
Since 0 # ¢" 'z = (¢"'d’, (¢" 'gp),), we obtain

qnfld/ 7& 0 or qnflgq 7& 0

because for all prime numbers p # ¢, we have g, = 0 and so gt

gp = 0 already.
But gg, = 0 since ¢G4 = 0. So we must have ¢" 'g, = 0 since n > 2. Thus the
only possibility is that

qnfld/ # 0.
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Then we obtain the contradiction

0 n-t = (" 'd,(0),) eT,N(D'®0)<CND ®0)=0
# g T (q (0)p) N ®0) < (D"®0)
€Ty since z€Ty eD'®0

by the initial observation about the divisible part of E’.

The direct proof of Step 1 in Harrison et al. (1963, Lemma 4), without using

Corollary 5.1.2, goes as follows:

Suppose for the contrary that 7, has an element of order p?. Then it has a cyclic
summand Z/p"Z of order p™, n > 1 (i.e., a cyclic summand of a basic subgroup
of Tp,).

Indeed, since T), is torsion it contains a basic subgroup, say B, (i.e., B, is pure
in T, T,,/B, divisible and B, is direct sum of cyclics of p-power order). Now
suppose for the contrary that B, is a direct sum of cyclic groups of order p. Then

since B, is pure in T}, we have
(pTp) N By, = pB, = 0.
Since T),/B,, is divisible, we obtain

Tp/B = P(Tp/Bp) = (PTp + Bp)/Bpa

that is, T), = (pTp) + Bp. Thus T), = (p1},) ® Bp, and so T,/ B, = pT), is divisible
which contradicts T}, is reduced. Hence B, contains a cyclic summand p™, n > 1.
Now let A =< a > and B =< b > be two cyclic groups such that o(a) = p"*!
and o(b) = p. Since < pa+b > is a cyclic group of order n (indeed, suppose there
is an integer k < n such that p*(pa + b) = 0, then p**1a = 0 and so n + 1 must

divide k + 1 since o(a) = n + 1, but this is impossible),
Z/p"Z =<pa+b><A3B.

Let us show that < pa + b > is neat subgroup of A @ B, but it is not pure:
Suppose k(pa+b) = p(ta+ sb) for some k(pa+b) €< pa+b >, (ta+sb) € AP B,
integers k,t, s and any prime p. Then kpa + kb = pta + psb = pta since psb = 0 as
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o(b) =p. So kb =pta—kpa = (pt—kplae<a>N<b>=ANB=0. Thusp | k
since o(b) = p, that is, k = pk’ for some k' € Z. Therefore k(pa+b) = pk'(pa+b) =
plk'(pa + b)], where k'(pa + b) €< pa+ b >. Hence < pa + b > is neat in A & B.
On the other hand, since 0 # p"a = p"~(pa +0) € (< pa+b>)Np"(AD B) we
have

0=p"(<pa+b>)#(<pa+b>)Np" (A& B) #0.
This implies that < pa + b > is not pure.

Since Z/p"Z is pure in B, (as a direct summand) and B, is pure in T}, (as a basic
subgroup), Z/p"Z is pure in T),. So Z/p"Z is pure in C since T}, is pure in C' (as
adirect summand). Then there exists a subgroup S < C such that C = Z/p"Z® .S,
and so C < A® B @ S since Z/p"Z < A@® B. Thus clearly we have a neat-exact

sequence which does not split
0—-E-Do(AeB) ®&S—>X—0,

where F = D®Z/p"Z P S and X any group. Indeed, to show that Im f is neat in
D®(A®B)®S, it suffices to show Im g is neat in A®B, where g : Z/p"Z — A®B.
Since Im g = Z/p"Z =< pa + b >, we have Im g is neat in A @ B. If the sequence
splits, then Z/p"Z will be a direct summand of A @ B. But this is impossible.
On the other hand, since E is neat-injective group the sequence must split, a
contradiction. Hence every element of T}, has order p., that is, pT}, = 0, for all

prime p.

Proof of Step 2. C is cotorsion, i.e., Ext(J,C) = 0 for every torsion-free abelian
group J (or equivalently Ext(Q,C) =0).

The group C' is also neat-injective since C' is a direct summand of the neat-injective

abelian group F.

Let

G A Sy S

be a short exact sequence of abelian groups such that J is a torsion-free abelian

group. Since B/Im f = J is torsion-free, Im f is pure in B (by Fuchs (1970, §26,
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(d), p. 114)) and so neat in B. Thus this short exact sequence is in Neatzpod-
Since C' is neat-injective, this short exact sequence must split. This shows that
Ext(J,C) = 0 for all torsion-free abelian groups J which means that C is cotor-

sion.

Proof of Step 3. C has no nonzero torsion-free direct summands.

Suppose for the contrary that C = X @Y for some submodules X and Y of
C such that X # 0, X is torsion-free. By Lemma 5.2.2, if we embed X into a

divisible group D;, then for the homomorphism

f:X — Die]][(X/pX)
flz) = (z,(z+pX)y), ze€lX,

we have that Im f is a neat subgroup of [],(X/pX) and Dy &[],(X/pX) is neat-
injective. Since X is a direct summand of the neat-injective group C, we obtain
that Im f = X is also neat-injective. Thus Im f must be a direct summand of
Dy&]],(X/pX). But by Lemma 5.2.3, the group D1 @] [,(X/pX) has no nonzero
torsion-free reduced direct summands and this contradicts with Im f = X being

a nonzero torsion-free reduced module.

Proof of Step 4. C 2 Ext(Q/Z,C) since C is cotorsion and reduced.

Since C' is cotorsion by Step 2 and C' is reduced, we have a natural isomorphism
C =2 Ext(Q/Z,C)
by Fuchs (1970, §54, (H), p. 234).

Proof of Step 5. C = Ext(Q/Z,C;) since C is adjusted cotorsion.

By Fuchs (1970, Theorem 55.5), since C' is a reduced cotorsion group (by Step

2), we have a direct decomposition
C=AaC

for some subgroups A and C of C such that A is torsion-free and C' = Ext(Q/Z, C}).

By Step 3, C has no nonzero torsion-free direct summands. Thus we must have
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A =0 and so
C=C>2Ext(Q/Z,C}).
A cotorsion group that is reduced and has no nonzero torsion-free direct sum-

mands is called adjusted; see Fuchs (1970, §55). We have seen so far that C' is

adjusted cotorsion.

Proof of Step 6. C = [[ Ext((Q/Z)y,Cy) = [[, Ext(Zye,Tp) = [],Tp, where for
each prime number p, (Q/Z), = Zp is the p-primary part of Q/Z.
By Step 5, C = Ext(Q/Z, Cy). Since Q/Z = @, Zy~, we have by the properties
of Ext (see Fuchs (1970, Theorem 52.2)),

C = Ext (EB Lo, ct> = [[Ext(Zpe<, C1)
p p

Since Cy = @p T,, we have for each prime number p,

C,=T,® b

q prime, g#p
Then by the properties of Ext (see Fuchs (1970, Theorem 52.2)), for each prime

number p,

Ext(Zye<, Ct) = Ext(Zye, T)) & Ext | Zpe, DT,
q#p

Since Zpe is a p-group and @q;ﬁp Ty, is p-divisible, we obtain by Fuchs (1970, §52,
(K), p. 223) that
Ext | Zy~, T, | =0.

q#p
Thus

EXt(ZPOO, Ct) == EXt(Zpoo 5 Tp)
So it only remains to show that Ext(Zye,T),) = T).

By Fuchs (1970, §52, (F), p. 223), we have for each abelian group C' and positive
integer m, Ext(C,Z/mZ) = Ext(C|m],Z/mZ), where C[m] = {c € C' | mc = 0}.
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For the proof of that it suffices to have m(Z/mZ) = 0. For C' = Zy~ and m = p,
we follow Fuchs (1970, §52, proof of (F), p. 223). From the exactness of

C—LspC 0,

0 Cp]

where the first map f is inclusion and the second map ¢ is multiplication by p

(i.e., g(z) = px for all x € C'), we obtain the induced exact sequence
Ext(pC, Tp)—L > Ext(C, Tp) > Ext(C[p], T,)— 0.
We shall show that Im g* = 0 which implies that f* is an isomorphism:

Ext(C,T),) = Ext(C[p], Tp).

Let g1 : pC — C' be inclusion homomorphism and g3 : C — C' be multiplication
by p (i.e., go(x) = px for all z € C). Then go = g1 0o g. Applying the functor

Ext(—,T}), we obtain homomorphisms

g1+ Ext(C,T,) — Ext(pC,Tp),

g5 : Ext(C,T,) — Ext(C,T,),
such that g5 = ¢* o gf. So Img* < Imgs. By Fuchs (1970, Lemma 52.1), since
g2 : C — C is multiplication by p, the homomorphism g5 : Ext(C,T,) —
Ext(C,T,) is also multiplication by p. Hence Img; = pExt(C,T,). By Fuchs
(1970, §52, (E), p. 223), since pT, = 0, we obtain pExt(C,T,) = 0. Thus
Im g5 = 0 and so Im g* = 0.

For C' = Zye, since Clp| = Zp=[p] = Z/pZ, we obtain
Ext(Zye, Tp) = Ext(Z/pZ, T,),

and, then by Fuchs (1970, §52, (D), p. 222),
Ext(Z/pZ,T,) = Tp/pT, = Tp

since pT), = 0 by Step 1. Thus Ext(Zy~,T)) = T, and this completes the proof
of Step 6.
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Another argument to prove Ext(Zge,T,) = T, for every prime number ¢ is as
follows. Since T}, is a homogeneous semisimple Z-module, T is neat-injective.
In the proof of Step 2, we have indeed shown that neat-injective abelian groups
are cotorsion. Thus Tj is cotorsion. Since T, < C and C' is reduced, T} is also
reduced. Then as in the proof of Step 4, since T} is reduced and cotorsion, we

have a natural isomorphism
T, = Ext(Q/Z,T,)

by Fuchs (1970, §54, (H), p. 234). Since Q/Z = €P,Zp=, we have by the
properties of Ext (see Fuchs (1970, Theorem 52.2)),

T, = Ext (@ Zpoo,Tq> = [[Ext(Zp, T,)
p p

For every prime number p # g, Zp~ is a p-group and Ty is p-divsible, so by Fuchs
(1970, 8§52, (K), p. 223) that

Ext(Zpe~,Tq) =0 for all prime numbers p # q.

Thus [], Ext(Zye, T;) = Ext(Zge, Ty) as required.

Another proof of Theorem 5.2.1 suggested by Bill Wickless.

My supervisor E. Mermut has given a talk on c-injective modules over Dedekind
domains in Antalya Algebra Days 2006 (Mermut, May 17-21, 2006) and he has asked
to Bill Wickless (Wickless, William J.) about the proof for the structure of the neat-
injective abelian groups given in Harrison et al. (1963, Lemma 4). Bill Wickless has
clarified the details for the case of abelian groups with ideas and suggestions of how
it can be generalized in the case of modules over Dedekind domains. Bill Wickless
pointed out the structure theorem for reduced algebraically compact groups to obtain
the following result: a direct summand of a direct product of homogeneous semisimple
abelian groups turns out to be again of this form, that is, it is also a direct product of
homogeneous semisimple abelian groups. See Fuchs (1970, Ch. VII) or Wickless (2004,

Sections 8.5 and 8.6) for algebraically compact groups.
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Theorem 5.2.5. Structure of reduced algebraically compact groups.

(by Fuchs (1970, Proposition 40.1 and its proof, §40) or Wickless (2004, Theorem 8.6.1
and its proof, §8.6))

Let A be a reduced algebraically compact group. Then there exist groups A, for each

prime number p such that

A%HAZ,

p prime

and for every prime p,

(i) Ap is a p-local group, that is, A, is q-divisible for all prime numbers q # p: For

all positive integers k,

qkAp = A, for all prime numbers ¢ #p and ﬂ pkAp =0.

(ii) Ay, is complete in its p-adic topology ( which equals the Z-adic topology on A,

since Ay is p-local) since Ay, is also a reduced algebraically compact group,

(ili) A, is uniquely determined up to isomorphism by A, it is called the p-adic compo-

nent of the reduced algebraically compact group A; more precisely

A, = ( the unique mazimal p-local subgroup of A')
= ﬂ{qkA | k € Z" and q is a prime number such that q # p}.

~ ;(p = ( the unique maximal p-local subgroup of H Aq)

q prime

where Z; consists of all elements of Hq Ag with all coordinates zero except the pth

coordinate (so just a copy of the pth coordinate Ap):

A, ={(aq)q € HAq | ag =0 for all prime numbers q # p}.
q

We shall follow the beginning of the above proof of Theorem 5.2.1 till the first part
of proof of Step 1. In fact it suffices to show the reduced case as the below argument

shows.
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Let E be a neat-injective abelian group. Then by Corollary 5.1.2, E is a direct

summand of a group E’ such that

E=De [[ G

p prime
where D’ is a divisible group, and in the product, p ranges over all prime numbers and

for every prime number p, G) is a direct sum of copies of Z/pZ, i.e.,

pGp =0 for all prime numbers p.

By Lemma 5.2.3, the group [[, G, is reduced and in E" = D' @[], G, we have that
D' ® 0 is the divisible part of E’:

EF=DwaollG,= D'a0) @ (0e]|lG
I ( ) <1;[p>

P divisible part of E/ ,
reduced

Let D be the divisible part of E. Then
E=D&C

for some subgroup C' of E such that C' is reduced.

Since E = D @ C' is a direct summand of E' = D' & [[, Gp, we have E' = E® H
for some subgroup H of E’. Let D" be the divisible part of H. Then H = D" & C”
for some subgroup C” of H. Let ¢’ = [[,Gp. We have seen that C’ is reduced,
E'=(D'®0)® (0 C)". Thus:

(D'@0) & (0a][G,) = EF=EeH=(DaC)e D" aC"
p

divisible part of E/ ,

reduced
= DeD"e(Caol")
—_——— —\—
divisible reduced

since the sum of divisible groups is divisible and the direct sum of reduced groups is

reduced. By uniqueness of the divisible part of an abelian group, we must have

D'ao=DaoD".
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Thus taking quotient group by D' @& 0 = D & D" in of both sides of
(D'o0)e(0a][G)=DaD) e (CacC"),
P

we obtain

[[G,=cec”
p

Thus C is isomorphic to a direct summand of [ [, Gp. So it suffices to show that a direct
summand of Hp G, is isomorphic to a group of the form Hp B, where for each prime

p, B, is a group such that pB, = 0.

For every prime number p, since pG, = 0, the group G, is bounded and so alge-
braically compact by Fuchs (1970, Theorem 27.5 and §38). Then the direct product
[1, Gp is also algebraically compact by Fuchs (1970, Corollary 38.3). Let B be a direct
summand of the reduced algebraically compact group Hp Gp. Then B is also alge-
braically compact and reduced (see Fuchs (1970, §38)). By the structure of reduced
algebraically compact groups (Theorem 5.2.5), we know that B = Hp B, where for
each prime p, B, is the unique maximal p-local subgroup of B. Then necessarily B,
is contained in the unique maximal p-local subgroup of [] q G4 which is isomorphic to
Gp. Thus B, is isomorphic to a subgroup of G}, which is a homogeneous semisimple
Z-module. Thus pB, = 0 also since pG, = 0. This ends the proof suggested by Bill
Wickless.

5.3 c-injective Modules over a Dedekind Domain

To prove the similar result for the structure of c-injective modules over Dedekind
domains, the proof suggested by Bill Wickless in the case of abelian groups is followed

in Mermut et al. (2007).

Definition 5.3.1. An R-module N is called finitely presented if

(i) N is finitely generated and
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(ii) in every exact sequence

0—>K—>L—>N—->0,

with L is finitely generated R-module, K is also finitely generated R-module.
Definition 5.3.2. A short exact sequence

0 A B C 0

of left R-modules is pure if the induced sequence of abelian groups
0—— Hom(F, A)—— Hom(E, B)—— Hom(E,C)——0
is exact for every finitely presented left R-module E.

Definition 5.3.3. A submodule A of an R-module B is a pure submodule of B if the

canonical exact sequence

0 A B B/A 0 is pure.

Theorem 5.3.4. (see for example Facchini (1998, Theorem 1.27))Let

0 A B C 0

be an exact sequence of (left) R-modules. Then the following conditions are equivalent:

(i) The sequence 0 A B C 0 is pure.

(ii) For every finitely presented right R-module Fr, the induced sequence of abelian

groups

0 F®A F®B FeC 0

s exact.

(iii) For every right R-module Fr, the induced sequence of abelian groups

0 F®A F®B FeC 0

1S exact.
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(iv) Ewvery system of m linear equations
n
mej = a;—, 7=12...,m,
i=1

with ri; € R and a; e f(A) i=1,2,...,n,7=1,2,...,m), which has a solution

in B™, also has a solution in (f(A))".

Definition 5.3.5. A submodule A of an R-module B is called relatively divisible , or

briefly, an RD-submodule, if
rA=ANrB foreachr € R.

Definition 5.3.6. A commutative domain R is said to be a Priifer domain if all its
localizations at maximal ideals are valuation domains; thus Priifer domains are those

domains which are locally valuation domains.

Proposition 5.3.7. (see Fuchs & Salce (2001, Ch.IV, §3, pp. 131)) A commutative

domain R is h-local if and only if the following two conditions are satisfied:

(i) R is of finite character (i.e., R/I is semilocal for every ideal I # 0);

(ii) every monzero prime ideal is contained in only one mazximal ideal (i.e., R/I is

even local if I # 0 is a prime ideal).

See for example Fuchs & Salce (2001, §IV.3) for h-local domains and Fuchs & Salce
(2001, Ch. III) for Priifer domains.

Note that, a Dedekind domain is an h-local Priifer domain.

Proposition 5.3.8. (Fuchs & Salce, 2001, Ch.I, Theorem 8.11) Over Prifer domains

(and so over Dedekind domains), relative divisibility and purity are equivalent.

In the case of abelian groups, a direct summand of a direct product of homogeneous
semisimple abelian groups and an injective abelian group turns out to be again of this

form, that is, it is also a direct product of homogeneous semisimple abelian groups and
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an injective abelian group. This is seen by Theorem 5.2.1 since neat-injective abelian

groups are nothing but c-injective abelian groups:

Like in abelian groups, we have structure theorems for pure-injective modules over

Dedekind domains. More generally:

Theorem 5.3.9. (by Warfield (1969) and Fuchs € Salce (2001, Ch. XIII, Proposition
4.5)) A reduced pure-injective module M over an h-local Priifer domain R decomposes
in a unique way, up to isomorphism, into the product of pure-injective Rp-modules,

with P ranging over the set of maximal ideals of R:

M=]]Ap
P

where the product runs through all mazimal ideals P of R and where Ap is an Rp-
module such that

Ap = HomR(RP, M)

for every maximal ideal P of R.

Since a Dedekind domain is an A-local Priifer domain, the above result also holds

for modules over Dedekind domains.

Lemma 5.3.10. (Mermut et al., 2007) For a Dedekind domain R which is not a field,
let E be an R-module of the form

E=Do& H Gp
P <R

max.

where D is a divisible module and the product is over all maximal ideals of R such that
for every mazimal ideal P of R, Gp is a homogeneous semisimple R-module having

simple components isomorphic to R/P, i.e.,
PGp =0 for all maximal ideals P < R.

Then:
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(i)

(iii)
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[1p Gp is reduced and the divisible part of E is D & 0:

E=Do[[Gr= (Da0) o (0®1:>[GP)

P divisible part of E _

reduced
Let M = [[pGp. Then M = [[pGp is a reduced pure-injective R-module and
for every maximal ideal P of R, Gp is a reduced pure-injective Rp-module such
that
Gp 2 Hompg(Rp, M).

Let E' be a direct summand of E. Then E' = D' ® C" for an injective submodule

D' of E' and a submodule C' of E' such that C' is isomorphic to a direct summand

OfHPGp.

Proof. (i) Suppose for the contrary that [[, Gp is not reduced. Then it has a nonzero

(iii)

divisible submodule D;. So there exists a nonzero element (gp)p of D;. Then it
must be divisible in Dy, and so in [[» Gp, by every nonzero r € R. Since (gp)p
is a nonzero element, gg # 0 for some maximal ideal ) of R. Then in particular
this element (gp)p must be divisible by every nonzero ¢ € @ in [[, Gp. But then
(9p)p = q(hp)p for some (hp)p € [[pGp. This gives a contradiction when we
look at the @th component: 0 # gg = ghg = 0 since PGp = 0 for every maximal
ideal P of R.

Thus in £ = D @ [[p Gp, we have that D & 0 is the divisible part of E.

For every maximal ideal P of R, the module Gp is bounded since PGp = 0. So
each Gp is pure-injective (by Theorem 2.9.10). Since PGp = 0, the R-module Gp
can be considered as an Rp-module also. Since Gp is a pure-injective R-module,
it is also a pure-injective Rp-module. Thus the reduced pure-injective module
M = ]]pGp have been expressed as a product of pure-injective Rp-modules
with P ranging over the set of maximal ideals of R. Then by the uniqueness part

of Theorem 5.3.9, we have Gp = Hompg(Rp, M).
Let D’ be the divisible part of E'. Then

E/:D,@Cl
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for some submodule C’ of E such that C’ is reduced.

Since E' = D'® (" is a direct summand of E = D& [[, Gp, we have E = E' @ H
for some submodule H of E. Let D" be the divisible part of H. Then H = D"&C”
for some reduced submodule C” of H. Let C' = [[p» Gp. We have seen that C' is
reduced and £ = (D & 0) ® (0@ C). Thus:

(D®0) & (O@HGP) = E=FE &®H-= (D/EBC')@(D"EBC”)
P
divisible part of E | .
reduced
_ (D/ & D//) & (C/ & C//)
——
divisible reduced

since the sum of divisible modules is divisible and the direct sum of reduced
modules is reduced. By uniqueness of the divisible part of a module over a

Dedekind domain, we must have
Da0=D"&D".
Thus taking quotient group by D & 0 = D’ & D" in of both sides of
(Do) @ (e ][Gr)= (DD e ([ eC"),
P

we obtain

HGchl@Cll
P

Thus C’ is isomorphic to a direct summand of [[, Gp.

O

Theorem 5.3.11. (Mermut et al., 2007) For a Dedekind domain R, every c-injective

R-module is isomorphic to a direct product of homogeneous semisimple R-modules and

an injective module; more precisely, every c-injective R-module is isomorphic to a mod-

ule E of the form

E=D& H Gp
P < R

max.
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where D is a divisible module and the product is over all maximal ideals of R such that
for every mazimal ideal P of R, Gp is a homogeneous semisimple R-module having

simple components isomorphic to R/P, i.e.,

PGp =0 for all maximal ideals P < R.

Proof. Let E be a c-injective R-module. Then by Corollary 5.1.2, E is a direct summand
of an R-module E’ of the form

E=Deo [[ Gr
P < R

max.

Then by Lemma 5.3.10, E = D’ @ C for some injective submodule D’ of E and a
submodule C of E such that C' is isomorphic to a direct summand of [[, Gp. Thus it
suffices to show that a direct summand of [ [, Gp is isomorphic to a module of the form

[Ip Ap such that for every maximal ideal P of R, the R-module Ap satisfies PAp = 0.

Let B be a direct summand of [ [, Gp. By Lemma 5.3.10, [ [, Gp is a reduced pure-
injective R-module. Then its direct summand B is also pure-injective (by for example
Fuchs & Salce (2001, §XII1.2, (B), p. 430)) and reduced. By the structure of reduced
pure-injective R-modules (Theorem 5.3.9), we know that B = [[, Ap where for each

maximal ideal P of R, Ap is a pure-injective Rp-module such that
Ap = HOIDR(RP, B)
Since B is a direct summand of M, M = B ® B’ for some submodule B’ < M. Thus:

Gp = Hompg(Rp,M)=Hompg(Rp, B® BI)
= HomR(RP,B)@HOHlR(RP,B,)

= Ap o HOIHR(RP, B/)

Thus Ap is isomorphic to a direct summand of Gp. Since PGp = 0, we also have

PAp =0. O
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5.4 Neat-Injective Envelopes of Abelian Groups

It is well known that every abelian group A can be embedded in a minimal injective
(i.e., divisible) group which is called injective envelope (or injective hull) of A (see Fuchs
(1970, Ch.IV, §24)). Similar results were proved for pure-injective envelopes (see Fuchs
(1970, Ch.VII, §41)). Then neat-injective envelopes were proved by Onishi (1984).

Definition 5.4.1. Let S be the set of all square-free integers. Let G be a group. The
subgroups nG (n € S) form a base of neighborhood about 0 € G. We call this linear
topology the S-adic topology on G. Obviously, S-adic topology is coarser than Z-adic
topology.

Theorem 5.4.2. (see Imam (2000, Corollary 1.4.11)) A group G can be embedded as
a neat subgroup in a reduced neat-injective group G if and only if its Frattini subgroup

Rad G = 0.

The following lemma clarifies the relationship among neat-injective groups, pure-

injective groups and cotorsion groups.

Lemma 5.4.3. (by Onishi (1984, Lemma 2.3)) If A is a group such that the Frattini

subgroup of its reduced part vanishes, then the following properties of A are equivalent:
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(i) A is neat-injective,
(ii) A is pure-injective,

(iii) A is cotorsion.
Proof. (i) = (ii): Since neat-injectivity is stronger than pure-injectivity, A is pure-

injective.

(#4) = (7it): If A is pure-injective, then it is algebraically compact by Fuchs (1970,
Theorem 38.1). Thus it follows immediately from Fuchs (1970, Proposition 54.1) that

A is cotorsion.

(iii) = (i9): If A is cotorsion, then it is an epimorphic image of an algebraically
compact group (by Fuchs (1970, Proposition 54.1)). Thus A is an algebraically compact
group since an epimorphic image of a pure subgroup is again pure. Hence A is pure-

injective.

(#i) = (i): A has a decomposition A = D & C where C is a reduced subgroup and
D is the maximal divisible subgroup of A. Since C is reduced pure-injective, it follows
from Fuchs (1970, Proposition 40.1) that C' = [, C}, where C), is complete in its p-adic
topology. Then each C,, is clearly a direct sum of cyclic groups of order p . Indeed,
0=RadC = ﬂ qC = ﬂ q(HC’p) = Hqu
q prime q prime p q
since Cj is p-divisible for every prime ¢ # p. Thus for every prime ¢, ¢C; = 0, and so

Cy is a direct summand of cyclic groups of order g. Therefore A is neat-injective by

Onishi (1980, Theorem 4.3) (or see Theorem 5.2.1). O

Since the S-adic topology is coarser than the Z-adic topology, if a group A is com-
plete (for details of completeness, see for example Fuchs (1970, §13)) in the S-adic
topology, then A is complete in the Z-adic topology by Fuchs (1970, Remark, pp. 163).

Conversely, we have:
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Proposition 5.4.4. (Onishi, 1984, Lemma 2.4) Let a group A is complete in the Z-
adic topology. If the Frattini subgroup Rad A = 0, then A is complete in the S-adic
topology.

Proposition 5.4.5. (Onishi, 198/, Proposition 2.5) A group is complete in the S-adic

topology if and only it is reduced neat-injective group.

Proposition 5.4.6. (Onishi, 1984, Proposition 2.6) The inverse limit of reduced neat-

injective groups is reduced neat-injective.

Let N be a group. Define m < n for m,n € S to mean that m is a divisor of n.
Then clearly S is a directed set. Moreover, for m < n, let n%, : N/nN — N/mN be

the homomorphism that maps a +nN upon a + mN for a € N. Then
{N/nN (n€S)|n (m<n)}

is clearly an inverse system. We shall denote the inverse limit of this system by N.
Namely,
N = lim N/nN.

«—(nes)
Definition 5.4.7. For any group N, N = l(ims) N/nN is called a S-adic completion
—(ne
of N.

Lemma 5.4.8. (Onishi, 1984, Proposition 2.7) For any group N, N is complete in the

S-adic topology.

Moreover, the mapping p defined by p(a) = (a+nN) (n € S,a € N) is a homomor-
phism from N into N satisfying the following three properties:
(i) Kerp =Rad N,

(i) w(N) is neat in N,
(iii) N/u(N) is divisible.

Now we give a useful criterion from Onishi (1984) under which a neat-injective group

A containing N as a neat subgroup is minimal.
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Lemma 5.4.9. (Onishi, 1984, Proposition 3.1) Let N be a group. The neat-injective
group A containing N as a neat subgroup is minimal if and only if the following two
conditions hold:
(i) D(A), where D(A) is the mazimal divisible subgroup of a group A, is the divisible
envelope of the Frattini subgroup Rad N of N;

(ii) A/N is divisible.

By Lemma 5.4.9 we obtain the following Corollary.

Corollary 5.4.10. (Onishi, 1984, Corollary 3.2) Any two minimal neat-injective groups,
containing o given group N as a neat subgroup are isomorphic over N (i.e., there is an

isomorphism f : A — B fizes the elements of N, where A, B are groups containing N ).

It is well known (see Fuchs (1970, Theorem 41.9)) that a minimal pure-injective
group containing a given group G as a pure subgroup (i.e., the pure-injective envelope
or pure-injective hull of G) is isomorphic to the direct sum of the divisible envelope of

the Ulm subgroup G' of G and the Z-adic completion of G.

The following theorem which gives the characterization of the neat-injective envelope

of a given group N can be derived parallel to the Theorem 41.9 in Fuchs (1970).

Theorem 5.4.11. (Onishi, 1984, Theorem 3.3) Let N be a group. The direct sum of
the S-adic completion of N and the divisible envelope of the Frattini subgroup of N
(i.e., Rad N ) is a minimal neat-injective group containing N as a neat subgroup.

Conversely, a minimal neat-injective group containing N as a neat subgroup is iso-

morphic to the direct sum of the S-adic completion of N and the divisible envelope of
Rad N.

Proof. Since N is complete in its S-adic topology (by Lemma 5.4.8), it follows from
Proposition 5.4.5 that N is reduced neat-injective. Let D be the divisible envelope
of Rad N. Since D is also neat-injective, N & D is neat-injective by Onishi (1980,
Proposition 4.2). Finally, we have to prove that

(i) N can be embedded as a neat subgroup into N @ D and (ii) (N & D)/N is divisible.
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Consider the mapping 1 : N — N defined by u(a) = (a +nN) for some n € S and
a € N. Thus (i) and (ii) follow from Lemma 5.4.8. Hence by Lemma 5.4.9, it follows

that N @ D is a minimal neat-injective group containing /N as a neat subgroup.

The converse follows immediately from Corollary 5.4.10. O

Alizade et al. (2004) gives a structure of neat-injective envelopes of an abelian group

A in terms of the basic subgroupsBy(A) of p-component T},(A) of A and A/T(A).

Definition 5.4.12. Let x be any class of abelian groups. I € x is called an x-envelope
for an abelian group A if there is a homomorphism ¢ : A — I such that the following

hold:

(i) For any homomorphism f : A — X with X € x, there is a homomorphism
g : I — X such that f = go ¢;

(ii) If an endomorphism h : I — I is such that ¢ = h o ¢, that is, the diagram

ypnaay

7/
l //
¥
I

is commute, then h is an automorphism.

The following definitions and results in Alizade et al. (2004) can easily be derived
parallel to the results given in Fuchs (1970, pp. 170-173) for pure-injective hull.

Let G be a neat subgroup of A, and K(G, A) denote the set of all subgroup H < G,
such that (i) GNH =0 and (ii) (G+ H)/H is neat in A/H.

K(G, A) is not empty since at least 0 € K(G, A). Indeed, for H =0, (i) GN0 =0
and (ii) (G4 0)/0 = G is neat in A = A/0 hold.
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Definition 5.4.13. A group A is called neat-essential extension of its subgroup G if
G is neat in A, and if K(G, A) consists of 0 only.

Definition 5.4.14. A group A is called mazimal neat-essential extension of G if A’
with A < A’ is never a neat-essential extension of G.
A maximal neat-essential extension of GG is a minimal neat-injective group containing

G as a neat subgroup.

Definition 5.4.15. A group A is called a neat-injective envelope of G if A is minimal

neat-injective group containing G as a neat subgroup.

Definition 5.4.16. A group G is called Nf-group if all its neat extensions by a torsion
divisible group split. In other words G is a N{-group if Next(Q/Z,G) = 0.

Proposition 5.4.17. (Imam, 2000, Theorem 3.1.4) Let G be a reduced N{-group.

Then the sequence
0——G——Ext(Q/Z, G)—— Ext(Q,G)——=0

is neat-exact with Ext(Q/Z,G) neat-injective. Moreover, Ext(Q/Z,G) is a minimal

reduced neat-injective group containing G as a neat subgroup.

Proposition 5.4.18. (Imam, 2000, Theorem 3.1.6) If G is an arbitrary N&-group such
that G = D ® R, where D is divisible and R is reduced, then

0—G—— EXt((@/Z7 R)® D— EXt((@/Z7 R)® D/G4>O

is a neat-exact sequence with the middle group neat-injective. Moreover, Ext(Q/Z, R)®

D is a minimal neat-injective group containing G as a neat subgroup.

The equivalence of general definition of x-envelopes and the above definition of neat-

injective envelopes is shown in the following proposition.

Proposition 5.4.19. (Alizade et al., 2004, Proposition 1) Let x be the set of all neat-
injective groups and N be any group. A group A containing N is a meat-injective

envelope for N if and only if A is an x-envelope for N.
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The neat-injective envelope of cyclic groups of prime power order is given in the

following Proposition.

Proposition 5.4.20. (Alizade et al., 2004, Lemma 5) A neat-injective envelope of
Z(p™) (n = 1) is isomorphic to Z(p) ® Z(p*°).

Let T, be any p-group. T}, contains a p-basic subgroup B, (by Fuchs (1970, Theorem
32.3)). Since B, is a direct sum of groups isomorphic Z(p™) we know the structure of
the neat-injective envelope of B,. On the other hand, T,/B, is divisible, so it is a

neat-injective envelope for itself.

The following Proposition describes the neat-injective envelope of T}, in terms of

those of By, and T,,/B,, where B, is the basic subgroup of T}, and T}, a p-group.

Proposition 5.4.21. (Alizade et al., 2004, Proposition 3) Let T}, be a p-group. Let
M be a neat-injective envelope of the basic subgroup B, of T, and K = T,/B,. Then

M @ K is a neat-injective envelope of Tj,.

The following Proposition describes the neat-injective envelope of a torsion group

T.

Proposition 5.4.22. (Alizade et al., 2004, Proposition 4) Let T be a torsion group
and for each prime p, M, ® D, be neat-injective envelope for the p-component T,, of
T with pMy, = 0 and divisible Dy,. Then M = ([[, M,) & (@, Dp) is a neat-injective

envelope for T.

The following Proposition describes the neat-injective envelope of a torsion-free

group.

Proposition 5.4.23. (Alizade et al., 2004, Theorem 1) Let S be a torsion-free group,
D be an injective envelope of the Frattini subgroup Rad S of S and for every prime p,
ap be the rank of the p-basic subgroup B, of S. Then the neat-injective envelope of S
is isomorphic to E'= D & ([], Z(p)'»), with |L,| = ay.
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Finally, knowing the neat-injective envelopes of torsion and torsion-free groups, we

are now able to describe neat-injective envelopes of arbitrary group.

Theorem 5.4.24. (Alizade et al., 2004, Theorem 2) Let A be any group, T be its
torsion part, S = A/T, I be a neat-injective envelope for T, M = Hp S/pS, and D
be an injective envelope for Rad A/ RadT. Then a neat-injective envelope for A is

isomorphic to J=1& D & M.

5.5 c-Injective Envelopes of Modules over a Dedekind Domain

It was proved that given any group can be embedded into a neat-injective group as
a neat subgroup by Harrison et al. (1963, Lemma 5). The structure of neat-injective
envelopes were proved by Onishi (1984), see Theorem 5.4.11. It is well known that
every abelian group has a neat-injective envelope. Moreover, Imam (2007) generalize
the notion of neat-injective envelope for a module over any ring R. He proved that in

the case of R is a Dedekind domain, every R-module has a c-injective envelope.

Definition 5.5.1. A c-monomorphism « : L — M is called c-essential if every ( :

M — N, such that 8o« is a c-monomorphism, is a monomorphism.

Definition 5.5.2. A c-essential monomorphism « : L — M is a maximal c-essential
monomorphism if every monomorphism (5 : M — N with 8 o « is c-essential, is an

isomorphism.

Definition 5.5.3. A c-essential monomorphism « : L — M with M being c-injective

is called a c-injective envelope.

Proposition 5.5.4. (Imam, 2007, Proposition 2.2) If an R-module M is c-injective,

then it is a maximal c-essential extension of itself.

Proposition 5.5.5. (see Mermut (2004, Theorem 5.2.2)) Let R be a Dedekind domain.
Then o : L — M is a c-monomorphism if and only ifa® 1g: L®S — M ® S is a

monomorphism for every simple R-module S.
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Proposition 5.5.6. (Imam, 2007, Theorem 2.3) Let R be a Dedekind domain. For

every R-module M there is a mazimal c-essential extension o : M — FE.

Theorem 5.5.7. (Imam, 2007, Theorem 2.5) Let R be a Dedekind domain. If « :

M — E is a maximal c-essential extension, then E is a c-injective module.

Corollary 5.5.8. (Imam, 2007, Corollary 2.6) For a Dedekind domain R, every R-

module has a c-injective envelope which is unique up to isomorphism.



CHAPTER SIX
RAD-SUPPLEMENTED MODULES

In this chapter, we give some properties and results on Rad-supplemented mod-
ules. In first two sections, we deal with Rad-supplemented modules and weakly Rad-
supplemented modules over any ring R. We also collect together the results in Wang
& Ding (2006) and Tirkmen & Pancar (2007) in these sections. Some of the given
properties follow by adapting the related properties for supplemented modules (see
Zoschinger (1974a), Zoschinger (1974b), Zoschinger (1974c), Zoschinger (1976), Wis-
bauer (1991) and Clark et al. (2006)). In Section 6.3, we give a characterization of
Rad-supplemented modules over a discrete valuation (DVR). In the last section, we
give a characterization of Rad-supplemented modules over Dedekind domains using the

structure of supplemented modules over Dedekind domains in Zoschinger (1974a).

6.1 Rad-Supplemented Modules

Definition 6.1.1. Let M be an R-module. A submodule U < M is said to have ample
Rad-supplements in M if for every submodule X < M with U + X = M, there is a
Rad-supplement V of U in M such that V < X.

Definition 6.1.2. An R-module M is called amply Rad-supplemented if every sub-
module of M has ample Rad-supplements.

Such an R-module M is also called a generalized amply supplemented module, shortly

G AS-module in Wang & Ding (2006).

The following definition can easily be derived parallel to the definition given in Smith

(2000b) for totally supplemented modules.

Definition 6.1.3. An R-module M is said to be totally Rad-supplemented if every
submodule of M is Rad-supplemented.
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Proposition 6.1.4. If a module M is supplemented, then it is Rad-supplemented.

Proof. Follows immediately from Proposition 3.3.2. O

But the converse implication of this Proposition fails to be true. Now we shall give

an example of a Rad-supplemented module which is not supplemented.

Example 6.1.5. The Z-module Q is Rad-supplemented but not supplemented.

Proof. (i) We know that there is no maximal submodule of Q (see for example Kasch
(1982, 2.3.7 Proposition)). Thus we obtain Rad@Q = Q and this implies that Q is

Rad-supplemented (see Corollary 6.1.22).

(ii) By Clark et al. (2006, 20.12.), it is proved that the Z-module Q is not supple-

mented by showing that for a prime number p,
Zpy = {a/b € Q| p does not divide b}

does not have a supplement in Q. O

Theorem 6.1.6. Let M be an R-module and V < M be coneat in M. Then for every
submodule K < M and L <V, we have:

(i) if K <Rad M, then KNV <RadV.
(ii) if L <Rad M, then L <RadV.
(iii) (Tirkmen & Pancar (2007)) if K < M, then KNV < RadV.

(iv) if L < M and Lis finitely generated, then L < V.

Proof. (i) Assume that V is a Rad-supplement of a submodule U < M in M: Now
suppose for the contrary that K NV £ RadV. Then there exists a maximal
submodule 7' < V such that KNV £ T. So there exists an m € (KNV)\T. Since
T is a maximal submodule of V, T+ Rm =V. Thus M =U+V =U+T+ Rm.
Since Rm < K < Rad M, we obtain Rm < M as Rm is a finitely generated
submodule of Rad M, and so M = (U + T) + Rm implies that U + T = M.
Then by modular law V = VN M =V N U+T)=(VnNU)+T and since
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VNU <RadV < T, we obtain V = T. This contradicts with T being maximal
submodule of V.

(ii) Since L < Rad M we obtain by (i), L=LNV <RadV.
(iii) Since K <« M implies K < Rad M, the result follows immediately from (i).

(iv) Since L <« M implies L < Rad M, we obtain by (iii) that L < RadV. Thus

L <« V since L is finitely generated by hypothesis (see Proposition 2.5.17).

For a submodule V' of an R-module M, it is known that the property
RadV =V NRad M

holds if V' is coclosed in M (see Clark et al. (2006, 3.7-(3))) and so if V' is a supplement
in M (Clark et al. (2006, 20.4-(7) and 20.2)). The following theorem shows that this
property also holds when V' is a Rad-supplement in M.

Theorem 6.1.7. Let M be an R-module. If a submodule V< M is coneat in M, then

RadV =V NnRad M.

Proof. For a submodule V < M, RadV < V N Rad M always holds. Conversely, let
r € VNRadM. Then Rz <V and Rx < Rad M. Then by Theorem 6.1.6, we obtain
Rz < RadV. So xz € RadV as required. O

The formula Rad V =V N Rad M holds for all submodules V' < M only in the case
Rad M = 0:

Proposition 6.1.8. Let M be an R-module. Then the following are equivalent:

(i) For every submodule V< M, RadV =V NnRad M,

(ii) Rad M = 0.
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Proof. (i) = (ii): Let z € RadM and let V.= Rz. Then V < RadM and by
hypothesis, RadV = VNRad M = V. But V = Rz is cyclic, so it is finitely generated.
Then V < RadV implies V <« V. Therefore, V 4+ 0 = V implies 0 = V since V < V.
Hence Rx =V =0, so x = 0. Thus Rad M = 0.

(i) = (i): Let V < M be a submodule, RadV < V N Rad M always holds. If
Rad M =0, then RadV < VNRadM =V N0=0. So RadV =0 =V NRad M since
Rad M = 0 by hypothesis. O

Corollary 6.1.9. For an R-module M, if Rad M # 0, then M has a submodule Vj
which is not a Rad-supplement in M (i.e., not coneat in M) for which RadV, #
Vo N Rad M, thus there exists x € Vi such that for the cyclic submodule Rx of Vp,
Rr < M but Rx £ Vj.

Corollary 6.1.10. Let M be an R-module. Every submodule of M is a coneat in M
if and only if M is semisimple.
Proof. (<): It is obvious. Since every submodule of semisimple module is a direct

summand, and so a Rad-supplement in M.

(=): Since every submodule of M is Rad-supplement, for each V' < M, we have
RadV =V NRad M. So Rad M = 0 by Proposition 6.1.8, and so RadV = 0 already.
Thus V is injective with respect to monomorphism V < M (as V is coneat). Hence V

is a direct summand of M, that is, M is semismple. O

Lemma 6.1.11. Let V be a submodule of an R-module M and let T' be a mazimal

submodule of V.. Then the following are equivalent:

(i) There exists a mazimal submodule L of M such that LNV =T.

(ii) V/T is not small in M /T, that is, the inclusion T <V is not cosmall in M.
Proof. (i) = (ii): T = LNV < L implies T' < L. Since T is a maximal submodule of V'
there exists x € V\T. Then x ¢ L because if x € L, then we would have x € LNV =T,

contradicting « ¢ T. Thus L + Rx = M since L is a maximal submodule of M and
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x ¢ L. Since Rx <V asx € V, we obtain L+V = M. Then since T <V and T < L,
M/T = (L+V)/T=(L/T)+ (V/T)

and, then L/T # M/T because L # M as L is maximal submodule of M. This shows
that V/T is not small in M/T.

(1) = (i): Since V/T is not small in M/T, (V/T) + (L/T) = M/T for some
submodule L < M such that T < L # M. Since V/T is simple as T is a maximal
submodule of V', (V/T) N (L/T) is either 0 or V/T. If (V/T)N (L/T) = V/T, then
V/T < L/T and M/T = (V/T)+ (L/T) = L/T, contradicting L # M. Thus

(VnL)/T=(V/T)n(L/T) =0,

and so we have VN L = T. It remains to show that L is maximal in M. Since

(V/T)N(L/T) =0, we obtain M/T = (V/T)® (L/T). Hence
M/L=(M/T)/(L)T)=V/T
is simple which implies that L is maximal in M. O

Proposition 6.1.12. Let M be an R-module and V' < M be coneat in M. If T is
a maximal submodule of V', then there exists a maximal submodule L of M such that
Lnv="T.

Proof. Suppose T is a maximal submodule of M. Then V/T is simple. Now since V is
a Rad-supplement in M there exists a submodule U < M such that U +V = M and
UNV <RadV. Let L=U+T. Thensince T <V, L+V =U+T+V =U+V =M.
Since 7" is maximal in V and Rad V is the intersection of all maximal submodules of

V,wehave UNV < RadV <T. Thus
LNV=U+T)nV=UnNV)+T=T.

First proof: So,
(L/TYN(V/T)=(LNV)/T=T/T=0

and

M/T = (L+V)/T=(L/T)+ (V/T).
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Thus M/T = (L/T) @ (V/T). Since M/L = (M/T)/(L/T) = V/T is simple (as T is
maximal in V'), we obtain that L is maximal in M.
Second proof: We have L # M because if L = M, then V =M NV =LNV =T

contradicting 7" is maximal in V. Thus
M/T =(L+V)/T = (L/T)+ (V/T)

where L/T # M/T. This shows that V/T is not small in M/T. Hence use Lemma
6.1.11 O

Proposition 6.1.13. Let S be a simple submodule of an R-module M such that S is
essential in M. If M/S is Rad-supplemented, then M is Rad-supplemented.

Proof. By hypothesis, S is contained in every nonzero submodule of M because SNN #
0 (as SAM) for every nonzero submodule N < M, and since S is simple S = SNN < N.
Of course the zero submodule and the whole module M have supplements in M. Now
let U < M be a submodule such that U # 0 and U # M. Then S < U and since
M/S is Rad-supplemented U/S has a Rad-supplement in M/S, that is, there exists
a submodule V' of M such that S <V, (U+V)/S = (U/S) + (V/S) = M/S and
(U/S)N(V/S) < Rad(V/S). We shall show that V is a Rad-supplement of U in M.
Clearly, U+ V =M and (UNV)/S = (U/S)N(V/S) <Rad(V/S) = (RadV)/S since
S <RadV. Thus UNV < RadV. Hence M is Rad-supplemented. O

Theorem 6.1.14. . Let M be an R-module and K, L be submodules of M such that
K < L<M. Then we have:

(i) If K <RadL and L/K s coneat in M/K, then L is coneat in M.
(ii) If K a coneat in M, then K is coneat in L.
(iii) If L is coneat in M, then L/K is coneat in M/K.

(iv) For submodules K < L < M, if K is coneat in L and L is coneat in M, then K

is coneat M.
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Proof. (i) Say V/K is a Rad-supplement of L/K in M/K, where V is a submodule

(iii)

(iv)

of M such that K < V. Then (L/K)+ (V/K) = M/K and (L/K)N (V/K) <
Rad(L/K). Therefore we have L +V = M clearly and since K < Rad L,

(LNV)/K = (L/K)N (V/K) < Rad(L/K) = (Rad L)/K

(by Proposition 2.5.18). Thus LNV < Rad L, and so L is a Rad-supplement of
Vin M.

Since K is a Rad-supplement in M, there exists a submodule U < M such that
K+U=Mand KNU <RadK. Then L=LNM =LN(K+U)=K+(LNU)
and KN(LNU)=KNU < Rad K. Hence K is a Rad-supplement of LNU in L.

Since L is a Rad-supplement in M, there exists a submodule U < M such that
L+U=M and LNU <Rad L. Then

(L/K)+[(U+K)/K]=(L+U+K)/K=(L+U)/K=M/K
and
(L/K)N[(U+K)/K]=[(LNU)+ K]/K < [(Rad L) + K]/K < Rad(L/K)
(by Theorem 2.5.5) Hence L/K is a Rad-supplement of (U + K)/K in M/K.

If f: K— Landg: L — M are coneat monomorphisms, then h = go f :
K — M is also a coneat homomorphism by the axioms of being a proper class

(as CoNeatgpatoq 1s form a proper class). Hence K is coneat in M.

Actually, (ii) also follows from being Co-Neatgaoq form a proper class. O]

Corollary 6.1.15. Let M be an R-module.

(i)
(i)

If M is Rad-supplemented, then every factor module of M is Rad-supplemented.

If M is Rad-supplemented, then every direct summand of M is Rad-supplemented.

Proposition 6.1.16. Let M be an R-module and N, K be submodules of M. Suppose

M =

M.

N + K. If K is Rad-supplemented, then K contains a Rad-supplement of N in
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Proof. Since K is Rad-supplemented, the submodule NN K of K has a Rad-supplement
in K, that is, there exists a submodule L < K such that K = (N N K) + L and
(NNK)NL < RadL. Then M = N+ K = N+ (NNK)+L = N+ L and
NNL=(NNK)nL<RadL. Hence L is a Rad-supplement of N in M. O

Lemma 6.1.17. An R-module M has ample Rad-supplements in every module contain-
ing M if and only if every submodule U of M has a Rad-supplement in every module

containing U .

Proof. Following the proof for supplements in Zoschinger (1974¢, Lemma 1.2), we argue
as follows. («<): Let N be a module containing M: M < N. Suppose that for a
submodule X < N, X + M = N. By hypothesis the submodule U = X N M of M
has a Rad-supplement V' in the module X containing U, that is, (X " M)+ V = X
and (X NM)NV <RadV. Then N=X+M=[(XNM)+V]+ M=V + M and
VAM=WVnX)NM=(XNM)NnV <RadV. Hence V is a Rad-supplement of M
in N.

(=): Let U be a submodule of M and N be a module containing U: U < N. Thus

we can draw the pushout for the inclusion homomorphisms iy : U — N, U — M:

M-=->F
A
18
[
——=N
where a: M — F, 3 : N — F are such that 8i1 = «ais. Since i1 and io are monomor-
phisms, « and [ are also monomorphisms by the properties of pushout (see for ex-
ample Fuchs (1970, §10)). Let M’ = Ima and N’ = Im 3. Then M’ = Ima & M,
N =Imf3 = N and F = M’ + N’ again by the properties of pushout. So by hy-
pothesis, M’ = M has a Rad-supplement V' in the module F containing M such that
V<N: M+V =Fand M NV < RadV. Therefore V is a Rad-supplement
of M' NN in N' because N' = N'NF = N NnN(M +V) = (N NM)+V and
VAN'NM)=VNM <RadV.

We shall show that 371(V) is a Rad-supplement of U in N. Since 3: N — F is a
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monomorphism with N’ = Im 3, we have that 8: N — N/, E(x) = f(z), z € N, is an
isomorphism. By this isomorphism, since V' is a Rad-supplement of M/ N N’ in N’, we
obtain that 371(V) is a Rad-supplement of 3~ (M'NN") in ~1(N’). Clearly, 3=1(V) =

BL(V), B~YN') = B~1(N') = N and so it remains to show that 3~*(M’' N N') = U.
We have 3~ 1(M'NN') = g~Y(M'NN") = g~Y(M")nB~Y(N') = B~1(M') N N. Now
let x € U. Then by the pushout diagram a(x) = a(i1(z)) = (aoiy)(x) = (B oiz)(z) =
B(ia(x)) = B(z). So B(x) = a(x) € Ima = M’, hence x € f~1(M'). Since U < N,
x € N is clear. Thus x € f~Y(M') N N. Conversely, let + € 371(M’') N N. Then
z €N, B(z) e M =Ima = a(U) and so B(x) = a(y) for some y € U. By the pushout

diagram, since y € U, a(y) = B(y). So B(z) = a(y) = B(y). Then f(z) = B(y) implies

that z = y since 8 is a monomorphism. Thus x =y € U and so x € U as desired. [J

Lemma 6.1.18. If an R-module M has a Rad-supplement in every module containing

M then every direct summand U of M has a Rad-supplement in every module containing

U.

Proof. Following the proof for supplements in Zoschinger (1974c, Lemma 1.3-(a)), we
argue as follows. Suppose M = A @ U for some submodule A < M and N is a module
containing U: U < N. By hypothesis M = A® U has a Rad-supplement in the module
A @® N containing M, that is, there exists a submodule V' of A @ N such that

(ApU)4+V=A®dN and (AaU)NV <RadV.

Let g: A®@ N — N be the projection onto N. g(a,n) = n, for all (a,n) € A® N. Then
U+g(V)=g(AaU)+g9(V) =g(AdU)+V)=g(A® N) =N and UnNng(V) =
g(AaU)Ng(V)=gM)Ng(V) =g(MNV). Indeed, g(MNV) < g(M)Ng(V) always
holds. Conversely, let y € g(M) N g(V). Then y = g(m) = g(v) for some m € M and
v € V. Thus g(m—v) = 0 implies m—v € Ker g < M since Kerg = A®0 < AU = M.
Som —wv € M. Then v € M since m € M already. Hence y = g(v) € g(M NV) since
veMNV. ThusUNg(V)=gMnNV)=g((ApU)NV) < g(RadV) < Radg(V).
So, g(V') is a Rad-supplement of U in N. O

Lemma 6.1.19. If a module is reduced and Rad-supplemented, then it is coatomic.
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Proof. If M = 0, then we are done. Suppose M # 0. Since M is reduced, Rad M # M.
Let U < M, U # M. Since M is Rad-supplemented, U has a Rad-supplement V in
M, ie.,U+V =M and UNV <RadV. We shall consider two cases: If U < Rad M,
then clearly U is contained in a maximal submodule of M since Rad M # M. Now
suppose U £ Rad M. Since U # M, we cannot have V = 0. Thus RadV # V since M

is reduced. So V has a maximal submodule, say 7. Then
M/(U+T) = (U+V)/(U4T) = [(U+T)+V]/(U+T) 2 V/[VN(U+T)] = V/[(UNV)+T].

Since UNV < RadV < T as T is a maximal submodule of V| we obtain that (UNV')+
T =T and so M/(U+T) = V/T. Thus M/(U + T) is simple, since V/T is simple.
This implies that U + T is a maximal submodule of M and it clearly contains U. So in

any case U is contained in a maximal submodule of M. Hence M is coatomic. O

Lemma 6.1.20. Let V be a submodule of a module M. If V. < M is coatomic and

coneat in M, then V is a supplement in M.

Proof. Since V is a Rad-supplement in M, there exists a submodule U < M such that
U+V =M and UNV < RadV. Since V is coatomic, RadV <« V by Proposition
2.12.5. Thus UNV « V. Hence V is a supplement of U in M. O

Proposition 6.1.21. Every submodule of a module M contained in Rad M has a Rad-
supplement in M.

Proof. Let U < Rad M. Then clearly, U + M = M and UN M = U < Rad M. Hence
M is a Rad-supplement of U in M. O

Corollary 6.1.22. FEwvery radical module is Rad-supplemented.

Proposition 6.1.23. For a module M, P(M) is Rad-supplemented.

Proof. Since P(M) is a radical module by Lemma 2.12.9, the results follows from
Corollary 6.1.22. O

Theorem 6.1.24. Let M be an R-module. Then M is Rad-supplemented if and only
if M/P(M) is Rad-supplemented.

Proof. (=): It follows from Corollary 6.1.15.
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(«<): Let U < M. Either U < P(M) or U £ P(M). Assume U < P(M). Then M
is a Rad-supplement of U in M: U+ M =M and U =UNM < P(M) by assumption
and so by Lemma 2.12.10, P(M) = Rad(P(M)) < Rad M which implies that UNM <
P(M) < Rad M. Now assume U ¢« P(M). Then by hypothesis, (U + P(M))/P(M)
has a Rad-supplement V/P(M) in M /P(M), where V is a submodule of M such that
P(M) <V. Then

[(U+ P(M))/P(M)]+[V/P(M)] = M/P(M) implies U +V = (U+ P(M))+V = M,

and

(U + P(M))/P(M)] 0 [V/P(M)] < Rad(V/P(M))
implies
[(UNV)+P(M)]/P(M) = [(U+P(M))NV]/P(M) < Rad(V/P(M)) = (Rad V) /P(M)
since P(M) < Rad V' by Lemma 2.12.10. Thus
UNV < (UNV)+P(M)<RadV.
Hence V is a Rad-supplement of U in M. Thus M is Rad-supplemented. 0

Proposition 6.1.25. Let M be a reduced R-module. Then M is totally Rad-supplemented

if and only if it is totally supplemented.

Proof. (=): Let U < M be a submodule. We shall show that U is supplemented:
Since M is reduced and totally Rad-supplemented, every submodule of M is reduced
(by Proposition 2.12.4) and Rad-supplemented. So every submodule of M is coatomic
by Lemma 6.1.19. Let K be a submodule of U. Since U is Rad-supplemented, there
exists a submodule L < U such that K + L = U and K N L < Rad L. Since every
submodule of M is coatomic, the submodule L is also coatomic and so Rad L < L (by
Proposition 2.12.5). Thus KN L <« L (by Theorem 2.4.9). Hence L is a supplement of

K in U. This means that U is supplemented. Thus M is totally supplemented.

(«<): If every submodule of M is supplemented, then every submodule of M is

Rad-supplemented by Proposition 6.1.4. Hence M is totally Rad-supplemented. O
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Lemma 6.1.26. (Wang & Ding, 2006, Proposition 2.6) Let M be an R-module. If M

15 a Rad-supplemented module, then we have:

(i) Ewvery finitely M -generated module is Rad-supplemented.
(ii) The module M /(Rad M) is semisimple.

Theorem 6.1.27. Let R be a left reduced ring, i.e., R is reduced as a left R-module.

Then the following are equivalent:

(i) The ring R is left perfect,
(ii) The (left) R-module R™ is Rad-supplemented,

(iii) every (left) R-module is Rad-supplemented.

Proof. (i) = (ii3): Since R is left perfect, by Theorem 2.11.4 every (left) R-module is

supplemented, and so Rad-supplemented.
(#i1) = (i1): Clear.

(i3) = (i): Suppose R is Rad-supplemented. Since R is reduced, R is also
reduced by Lemma 2.12.8. Thus R is coatomic by Lemma 6.1.19. So Rad(R™) «
RM) (by Proposition 2.12.5). Since R is Rad-supplemented, R/ Jac(R) is semisimple
by Lemma 6.1.26. Hence R is left perfect by Theorem 2.11.4. O

Corollary 6.1.28. Let R be a left noetherian ring. Then R is left artinian if and only
if every left R-module is Rad-supplemented.

Proof. (=): Since R is left artinian it is left perfect by Proposition 2.10.7. Since R is
left noetherian, it is left reduced by Proposition 2.10.6. Thus every left R-module is
Rad-supplemented by Theorem 6.1.27.

(«<): Suppose every left R-module is Rad-supplemented. By Proposition 2.10.6, the
ring R is left reduced since it is left noetherian. R is left perfect by Theorem 6.1.27.
Hence R is left artinian by Proposition 2.10.7. O
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We collect together the results in Wang & Ding (2006) on Rad-supplemented modules

in the following theorems.

Theorem 6.1.29. (Wang & Ding, 2006, Propositions 2.1, 2.3, 2.4, 2.5 and Remark
2.20) Let M be an R-module. If M is a Rad-supplemented module, then we have:
(i) If L < M is a submodule with the property LNRad M = 0, then L is semisimple.

(i) M = N® L for submodules N, L < M such that N is semisimple and Rad L<L.

(iii) Let U be a submodule of a module K. If M +U has a Rad-supplement in K, then

U has a Rad-supplement in K.
(iv) If a module T is Rad-supplemented, then M + T is Rad-supplemented.

(v) If Rad M is noetherian (or M satisfies ACC on small submodules), then M is

supplemented.

Theorem 6.1.30. (Wang € Ding, 2006, Propositions 2.2, 2.7, 2.13, Lemma 2.10,
Corollary 2.14 and Theorems 2.15, 2.16) Let M be an R-module. Then:
(i) If M is amply Rad-supplemented, then every direct summand of M is also amply
Rad-supplemented.

(ii) Let M = My + My for submodules My, My < M. If My and Ms have ample
Rad-supplements in M, then My N M also has ample Rad-supplements in M.

(iii) If M 1is totally Rad-supplemented, then it is amply Rad-supplemented.

(iv) If U, V are submodules of M such that U is mazimal in M and V is a Rad-
supplement of U in M, then U NV = RadV is the unique mazximal submodule of
V.

(v) For any ring R, every R-module is amply Rad-supplemented if and only if every
R-module is Rad-supplemented.

(vi) If M is w-projective and Rad-supplemented, then it is amply Rad-supplemented.

(vil) M is artinian if and only if M is amply Rad-supplemented and satisfies DCC on

Rad-supplement submodules and on small submodules.
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Theorem 6.1.31. (Wang & Ding, 2006, Theorem 2.8) Let M be an R-module and

U < M be a submodule. Then the following statements are equivalent:

(i) There is a decomposition M = X @ X' for submodules X, X' < M such that
X <U and X'NU < Rad X/,

(ii) There is an idempotent e € End (M) with e(M) < U and (1 — e)U < Rad((1 —
e)M),
(iii) There is a direct summand X of M with X <U and U/X < Rad(M/X),

(iv) U has a Rad-supplement V in M such that V N U is a direct summand of U.

An R-module M said to have property (P*) if for each submodule N of M, there
exists a direct summand K of M such that K < N and N/K < Rad(N/K) (see
Al-Khazzi & Smith (1991)).

Theorem 6.1.32. (Wang & Ding, 2006, Theorem 2.19) Let M be an R-module with
ACC on small submodules. Then:
(i) M is amply Rad-supplemented and every Rad-supplement is a direct summand of
M if and only if M 1is lifting module.

(ii) M satisfies (P*) if and only if M is lifting module.

(iii) If M is a w-projective Rad-supplemented module, then it is a quasi-discrete mod-

ule.

We collect together the results in Tiirkmen & Pancar (2007) on Rad-supplemented

modules in the following theorems.

Theorem 6.1.33. (Tirkmen & Pancar, 2007) Let M be an R-module and U, V < M

be submodules. Then we have:

(i) V is a Rad-supplement of U in M if and only if U +V = M and Rm <V for
everymeUNV.

(ii) If V is a Rad-supplement of U in M, then:
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(a) if LU and L4+V = M, then V is also a Rad-supplement of L in M.

(b) if K <V for a submodule K < M, then V is also a Rad-supplement of
U+ K in M.

(¢) if K is a mazimal submodule of V', then U + K is a mazimal submodule of

M.

(iii) Letp: M — M/Rad M be the canonical epimorphism. If V is a Rad-supplement
of U in M and U < Rad M, then

M/Rad M = p(U) & p(V).
(iv) If U has a nonzero Rad-supplement in M and Rad M < M, then U is contained
m a maximal submodule of M.

Definition 6.1.34. (Tiirkmen & Pancar, 2007) An R-module M is called f-Rad-

supplemented if every finitely generated submodule of M has a Rad-supplement in

M.

Theorem 6.1.35. (Tirkmen & Pancar, 2007) Let M be an f-Rad-supplemented.
(i) If L is a finitely generated submodule of M, then M /L is also f-Rad-supplemented.

(ii) IfRad M is finitely generated, then every finitely generated submodule of M/ Rad M
is a direct summand of M/Rad M.

6.2 Weakly Rad-Supplemented Modules

Definition 6.2.1. Let M be an R-module and let L be a submodule of M. A sub-
module N < M is said to be a weak Rad-supplement of L (or L is said to be a weak

Rad-supplement of N) in M or L is said to have a weak Rad-supplement N in M if
N+L=M and NNL < RadM.

Definition 6.2.2. (Wang & Ding, 2006, Definition 3.1) An R-module M is called

weakly Rad-supplemented if every submodule of M has a weak Rad-supplement.
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Such an R-module is also called a weakly generalized supplemented or briefly a WGS-
module in Wang & Ding (2006).

Theorem 6.2.3. (Wang € Ding, 2006, Propositions 8.2, 3.7 and Lemma 3.6) Let M

be a weakly Rad-supplemented module. Then we have:

(i) Ewvery supplement submodule of M is weakly Rad-supplemented.

(ii) For a module N, if f : N — M is a small cover of M, then N is also weakly
Rad-supplemented.

(iii) Every factor module of M is weakly Rad-supplemented.

(iv) If M is a submodule of a module L such that a submodule K of L is also weakly
Rad-supplemented, then M + K s weakly Rad-supplemented.

(v) Suppose M is a submodule of a module N. If M + U has a weak Rad-supplement
in N, then U has a weak Rad-supplement in N for every submodule U < N.

Theorem 6.2.4. (Wang & Ding, 2006, Theorem 3.9) Let R be a ring and M be an

R-module. The following statements are equivalent:

(i) R is semilocal,
(ii) If Rad M <« M, then M is weakly Rad-supplemented,
(iii) If M 1is finitely generated, then it is weakly Rad-supplemented,

(iv) If M is cyclic, then it is weakly Rad-supplemented.

We collect together the results in Tiirkmen & Pancar (2007) on weakly Rad-supplemented

modules in the following theorem.

Definition 6.2.5. (Tirkmen & Pancar, 2007) Let M be an R-module. A submodule
L < M is called Rad-coclosed in M if L has no proper submodule K such that L/K <
Rad(M/K).

Theorem 6.2.6. (Tirkmen & Pancar, 2007) Let U and V' be submodules of a module
M. Then:
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(i) V is a weak Rad-supplement of U in M if and only if U+V = M and Rm < M
for everym e UNV.

(ii) If U <V, V is Rad-coclosed in M and U < Rad M, then U < Rad V.
(iii) If V is Rad-coclosed in M, then RadV =V NnRad M.

(iv) Suppose V is a weak Rad-supplement of U in M. IfV is Rad-coclosed in M or a

direct summand in M, then V is a Rad-supplement of U in M.

(v) suppose U < V.Then V. < RadM if and only if U < RadM and V/U <
Rad(M/U).

(vi) If U < Rad M and M/U is weakly Rad-supplemented, then M is weakly Rad-

supplemented.

(vil) If M is weakly Rad-supplemented and V is Rad-coclosed in M, then V is also

weakly Rad-supplemented.

Proposition 6.2.7. (Tirkmen & Pancar, 2007) Let

0 L M N 0

be a short exact sequence of modules.

(i) If L and N are weakly Rad-supplemented and L has o weak Rad-supplement in
M, then M is weakly Rad-supplemented.

(ii) If M is weakly Rad-supplemented and L is Rad-coclosed in M, then L and N are

weakly Rad-supplemented.

Theorem 6.2.8. (by Clark et al. (2006, 17.2)) For an R-module M, the following

statements are equivalent:

(i) M is semilocal;
(ii) M is weakly Rad-supplemented;

(iii) There is a decomposition M = My @& My such that My is semisimple and My is
semilocal with Rad M < M.
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Proof. (i) = (ii): Let L < M be a submodule. Since M is semilocal, M/Rad M is
semisimple. So (L + Rad M)/Rad M is a direct summand of M/Rad M. Then there
exists a submodule K < M with Rad M < K such that

[(L+RadM)/Rad M]® (K/Rad M) = M/Rad M.
Then we obtain L + K = L + K + Rad M = M since Rad M < K. Since
[(L+RadM)Nn K|/Rad M =0,

(LNK)+Rad M = (L + Rad M) N K = Rad M.

Thus LN K < Rad M and so K is a weak Rad-supplement of L in M. Hence M is

weakly Rad-supplemented.

(7) = (i): Let L/Rad M be a submodule of M/Rad M with Rad M < L. Since M
is weakly Rad-supplemented there is a submodule K < M such that L + K = M and
LNK <RadM. Thus

M/Rad M = (L + K)/Rad M = (L/ Rad M) + (K + Rad M)/ Rad M
and
(L/RadM)N[(K+RadM)/RadM] =[LN (K +RadM)]/Rad M =0

because L N (K + RadM) = (LN K) + Rad M = Rad M, since Rad M < L and
LNK <RadM. So

M/Rad M = (L/Rad M) & [(K + Rad M)/ Rad M].
Hence every submodule of M/ Rad M is a direct summand. So M/ Rad M is semisimple

which implies that M is semilocal.

(1) = (¢it): Let M; be a complement of Rad M in M. Then M; @ Rad M is essential
in M by Theorem 2.4.12. Since M/ Rad M is semisimple, M; = (M; ®Rad M)/ Rad M
is a direct summand in M/Rad M, hence semisimple (see Corollary 2.4.7), and there

is a semisimple submodule M/ Rad M where My < M with Rad M < Mj such that

[(M; ® Rad M)/ Rad M| & (M>/Rad M) = M/Rad M.
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So (M ®Rad M)+ My = M and (M7 ¢ Rad M) N Ms = Rad M. Since Rad M < Ms,
we have M = M; + Rad M + My = My + My and Rad M = (M; @ Rad M) N My =
(M N M) @ Rad M which implies that My N My = 0. Thus M = M; & My. Since M
is a complement in M, Rad M is essential in Ms. Indeed, suppose for the contrary that
Rad M ﬁ M>. Then there exists a nonzero submodule L < My such that LNRad M = 0.
Thus we obtain (M; @ L) NRad M = 0 because if x =mq +1 € (M1 ® L) NRad M for
some r € RadM < Ms, m; € My andl € L < My, thenx—1l=my € MiNM; =0
and sox =1 € LNRadM =0, i.e., x = 0. But this contradicts the fact that M is a

complement of Rad M.

(#91) = (i): We shall show that M/Rad M is semisimple.
M/Rad M = (M; @ Ms)/Rad M = [(M; & Rad M)/ Rad M] @ (Ms/ Rad M)

since Rad M < M. Then M/Rad M = M; & (Mz/Rad M). By assumption M; is
semisimple, so it suffices to show that My/Rad M is semisimple (by Corollary 2.4.7).
But we have,

M/ Rad M = (M,/ Rad Ms)/(Rad M/ Rad M)

and M,/ Rad My is semisimple since M; is semilocal by hypothesis. Thus
MQ/ Rad M = (MQ/ Rad Mg)/(Rad M/ Rad Mz)

is also semisimple since epimorphic image of a semisimple module is again semisimple

(by Corollary 2.4.7). O

Proposition 6.2.9. Fvery Rad-supplemented module is weakly Rad-supplemented.

Proof. Let M be a Rad-supplemented module and U be a submodule of M. We shall
show that U has a weak Rad-supplement in M. Since M is Rad-supplemented there
exists a submodule V' < M such that U +V = M and U NV < RadV. Thus clearly,
UNV <Rad M since Rad V < Rad M already. Hence V is a weak Rad-supplement of
Uin M. O

Proposition 6.2.10. Let V be a submodule of a module M. Then the following are

equivalent:
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(i) V is a weak Rad-supplement in M and RadV =V NRad M,

(ii) V is a Rad-supplement in M.

Proof. (i) = (i1): By hypothesis, V is a weak Rad-supplement of a submodule U < M.
Then U+V = M and UNV < Rad M. ThusUNV =VN(UNV) < VNRad M = RadV
by hypothesis. Hence V is a Rad-supplement of U in M.

(#i) = (i): Suppose V is a Rad-supplement of U in M, that is, U + V = M and
UNV <RadV. Since RadV < Rad M, V is clearly a weak Rad-supplement of U in
M. Since V is a Rad-supplement in M, it follows immediately from Theorem 6.1.7 that
RadV =V NRad M. O

Proposition 6.2.11. Let M be a weakly Rad-supplemented module. If a submodule
V < M satisfies the property RadV = VNRad M, then V is weakly Rad-supplemented.

Proof. Let T < V. Since M is weakly rad-supplemented, there exists a submodule
N of M such that N is a weak Rad-supplement of T"in M. Then T'+ N = M and
TNN <Rad M. Thus by modular law V=V NM =VN(T+N)=T+(VNN) since
T<V,and we have TN (NNV)<TNN <RadM. Since TN (NNV) <V clearly,
we obtain TN (N NV) <V NRad M = RadV by hypothesis. Hence N NV is a weak
Rad-supplement of T in V. This shows that V is weakly Rad-supplemented. O

Proposition 6.2.12. Let M be a module and N, L be submodules of M such that
L <N and L < RadM. Assume N/L is weakly Rad-supplemented. If K < M is a
submodule such that N + K has a weak Rad-supplement in M, then K also has a weak
Rad-supplement in M.

Proof. Following the proof for weakly supplemented modules in Clark et al. (2006,
Lemma 17.11), we argue as follows. Let X < M be a weak Rad-supplement of N + K.
Then (N + K)+ X = M and (N + K)NX < Rad M. We have two cases. Firstly,
suppose N N (K 4+ X) < L. Then by hypothesis N N (K + X) < Rad M. Thus

(N+X)NK<NN(K+X)+XnN(N+K)<RadM,
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and since (N + X)+ K = (N + K) + X = M, we obtain that N + X is a weak Rad-
supplement of K in M. On the other hand, suppose N N (K + X) ¢ L and let Y/L be
a weak Rad-supplement of [L + N N (K + X)]/L in N/L for some submodule Y < N
such that L <Y. Then clearly we have

N=Y+L+[NN(K+X)]=Y +[Nn(K+X)],

and

YN[L+NN(K+ X)]/L <Rad(N/L) <Rad(M/L) = (RadM)/L
since L < Rad M (see Proposition 2.5.18). Therefore
RadM >YN[L+NN(K+X)|]=L+[YN(NN(K+X))]=L+[YN(K+X)].
SoY N (K + X)Rad M. Thus
M=N+K+X)=Y+(NN(K+X)]+(K+X)=Y +X)+ K
and
Y+X)NK<YNK+X)+ XN +K)<YN(K+X)+XN(K+N)

since Y < N. Hence (Y + X)N K < RadM since Y N (K + X) < RadM and
X N(K + N) <RadM. This shows that ¥ + X is a weak Rad-supplement of K in
M. O

Proposition 6.2.13. Let M be a module and K, N be submodules of M such that
K<N. If K%)N and N has a weak Rad-supplement in M, then N = K + S for
some submodule S < N such that S < Rad M.

Proof. Following the proof for weak supplements in Clark et al. (2006, Lemma 17.9-(5)),
we argue as follows. Suppose L is a weak Rad-supplement of N in M. Then N+ L = M
and N N L < Rad M. Since KC%HV7 we obtain K + L = M (see Definition 2.13.1).

By modular law,
N=NNM=NnN(K+L)=K+(NNL).

Hence for S = NN L, we have N = K + S and S < Rad M. O
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Theorem 6.2.14. Let M be a weakly Rad-supplemented module. Then:

(i)

(i)

If M = A+ B for some submodules A and B of M, then A has a weak Rad-
supplement C' in M such that C' < B.

If every submodule of M has a coclosure in M, then M is amply Rad-supplemented.

Proof. Following the proof for weakly supplemented modules in Clark et al. (2006,

Lemmas 17.9-(6) and 20.25), we argue as follows.

(i)

(i)

Suppose M = A+ B. As M is weakly Rad-supplemented, there exists a weak Rad-
supplement K of ANB in M, that is, M = K+(ANB) and KN(ANB) < Rad M.
Now B=BNM =BN(K+(ANB))=(BNK)+(ANB). Then M = A+ B =
A+(BNK)+(ANB)=A+(BNK)and AN(BNK)=KnN(ANB) <Rad M.
Hence C = BN K < B is a weak Rad-supplement of A in M.

Let K, L < M with M = K + L. Since M is weakly Rad-supplemented, there
exists a weak Rad-supplement T' of K in M such that 7" < L by (i). Then
T+ K =M and TN K < Rad M. By hypothesis, there exists a coclosure of
T in M, say N. Since NCL]VSI>T7 T+ K = M implies N + K = M. We also
have NN K < TNK < RadM. Since N—>M, Rad N = N nRad M (see
Proposition 2.13.4). Thus we obtain N N K < NNRad M = Rad N. Hence N is
a Rad-supplement of K in M such that N < L.

O

Proposition 6.2.15. If a module M is reduced and Rad-supplemented, then it is weakly

supplemented.

Proof. Let U < M. Since M is Rad-supplemented, there exists a Rad-supplement V' <

MofUin M. ThenU+V =M and UNV < RadV. Since M is coatomic by Lemma
6.1.19, we have Rad M < M by Proposition 2.12.5. SoUNV < RadV < Rad M <« M

implies that UNV <« Rad M (see Theorem 2.5.5). Thus M is weakly supplemented. [J

Proposition 6.2.16. Let M be an R-module with small radical (i.e., Rad M < M ).

(i)

If M is Rad-supplemented, then it is weakly supplemented.
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(il) M is weakly supplemented if and only if it is weakly Rad-supplemented.

Proof. (i) Let U < M be a submodule. We shall show that U has a weak supplement
in M. Since M is Rad-supplemented there exists a submodule V' < M such that
U+V =M and UNV <RadV. This impliesUNV < Rad M. ThusUNV <« M
since Rad M < M by hypothesis. Hence V is also a weak supplement of U in M.

(ii) (=): Let U < M. Since M is weakly supplemented there exists a submodule
V < M such that U+V = M and UNV <« M. Then it follows immediately
that UNV < Rad M. Thus V is a weak Rad-supplement of U in M. Hence M
is weakly Rad-supplemented.

(«<): Let U < M. Since M is weakly Rad-supplemented there exists a submodule
V < M such that U 4+V = M and UNV < Rad M. Since Rad M <« M, we
obtain that U NV <« M. Hence V is a weak supplement of U in M.

The following definitions can easily be derived parallel to the definitions given in

Alizade et al. (2001) and Alizade & Biiyiikasik (2003) for supplemented modules.

Definition 6.2.17. A submodule N of an R-module M is called cofinite if M/N is
finitely generated (see Alizade et al. (2001)).
An R-module M is called cofinitely Rad-supplemented if every cofinite submodule

of M has a Rad-supplement in M.

Definition 6.2.18. An R-module M is called cofinitely weakly Rad-supplemented if

every cofinite submodule of M has a weak Rad-supplement in M.

The class of cofinitely weakly supplemented modules is closed under homomorphic
images and small covers (see Clark et al. (2006, 18.5-(1))). Similar result holds for

cofinitely weakly Rad-supplemented modules as the following lemma shows:

Lemma 6.2.19. Let M be a cofinitely weakly Rad-supplemented module. Then:



(i)
(i)
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M/N is cofinitely weakly Rad-supplemented for every submodule N < M.

Let S be a module and f : S — M be a small cover of M, then S is cofinitely
weakly Rad-supplemented.

Proof. (i) Let T'/N be a cofinite submodule of M /N, where T is a submodule of M

(if)

such that N <T. Then M/T = (M/N)/(T/N) is finitely generated, and so T is
a cofinite submodule of M. Since M is cofinitely weakly Rad-supplemented, there
exists a weak Rad-supplement L of T'in M. Then T+ L = M and TNL < Rad M.
Thus

M/N=(T+L)/N=(T/N)+[(L+ N)/N]

and
(T/N)N[(L+N)/N]=[TN(L+N)]/N=[(TNL)+ N]/N < (N+RadM)/N,

and so we obtain (T/N) N [(L + N)/N] < Rad(M/N) since by Theorem 2.5.5
(N + Rad M)/N < Rad(M/N). This shows that (L + N)/N is a weak Rad-
supplement of T/N in M/N. Thus M/N is cofinitely weakly Rad-supplemented.

Let f : S — M be a small cover with K = Kerf (K « S). Then S/K =
Imf = M. Now let L < S be a cofinite submodule. Then S/L is finitely
generated. We shall show that L has a weak Rad-supplement in S. Now consider
the epimorphism ¢g : S/L — S/(L+ K), g(x+ L) =z+ (L+ K) for all z € S.
Since S/L is finitely generated, its epimorphic image S/(L + K) is also finitely
generated. Thus L+ K is a cofinite submodule of S and so (L+ K)/K is a cofinite
submodule of S/K because (S/K)/(L+K)/K = S/(L+ K) is finitely generated.
Since S/K = M is cofinitely weakly Rad-supplemented, (L + K)/K has a weak
Rad-supplement T/K in S/K, where T is a submodule of N such that K < T.
Then
(L + K)/K) + (T/K) = S/ K

and

(L + K)/K]N(T/K) < Rad(S/K) = (Rad S)/K
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since K < S (see Proposition 2.5.18). Therefore we obtain L + K + 7 = S and
so L+ T = S since K < S. Finally, since (LNT)+ K = (L+ K)NT <RadS,
we obtain that L N'T < RadS. Hence T is a weak Rad-supplement of L in S as

desired.

O

Proposition 6.2.20. If an R-module M is cofinitely weakly Rad-supplemented, then
every cofinite submodule of M/ Rad M is a direct summand.

Proof. Following the proof for supplemented modules in Clark et al. (2006, 18.5-(2)), we
argue as follows. By Lemma 6.2.19, M/ Rad M is cofinitely weakly Rad-supplemented
. Let T/Rad M be a cofinite submodule of M/Rad M, where T is a submodule of
M such that RadM < T. Then T is a cofinite submodule of M, since M/T =
(M/Rad M)/(T/Rad M) is finitely generated. So by hypothesis T has a weak Rad-
supplement L in M, that is, T+ L = M and T N L < Rad M. Since

(T/RadM)N[(L+ RadM)/Rad M] =[RadM + (' L)]/Rad M =0
as T'N L < Rad M, we obtain that
M/Rad M = (T'+ L)/Rad M = (T'/Rad M) & [(L + Rad M)/ Rad M].
Hence T'/Rad M is a direct summand of M/ Rad M. O

Proposition 6.2.21. Let M be an R-module and N, L < M be submodules such that
N is cofinite, L is cofinitely Rad-supplemented and N + L has a Rad-supplement in M.
Then N has a Rad-supplement in M.

Proof. Following the proof for supplemented modules in Clark et al. (2006, 20.18-(1)),
we argue as follows. Let K be a Rad-supplement of N+ L in M, that is, M = K+N+1L
and KN (N + L) <RadK. Then LN (N + K) is a cofinite submodule of L. Indeed,

consider the epimorphism

J:M/N - M/(N+K), fa+N)=z+(N+EK) (zeM).
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Since M/N is finitely generated as N < M is cofinite its epimorphic image M /(N + K)

is also finitely generated. So the result follows from
M/(N+K)=[L+(N+K)|/(N+K)=L/[LN(N + K)].

By hypothesis there exists a Rad-supplement H of L N (N + K) in L. Then L =
H+[LN(N+K) and HN(N +K)=HN[LN (N + K)] < Rad H. Finally, we shall
show that H + K is a Rad-supplement of N in M. Clearly,

M=K+N+L=(N+K)+[H+LN(N+K)]=N+(H+K)
and
NA(H+EK)<[HN(N+K)]+[KN(N+H)| <[HN(N+K)]+[Kn0(N+ L)
Hence NN (H + K) < Rad H + Rad K < Rad(H + K) which completes the proof. [

Lemma 6.2.22. Let R be a commutative noetherian ring and M be an R-module. If
M is reduced and Rad-supplemented, then M is supplemented.

Proof. Let U < M. Since M is Rad-supplemented, there exists a Rad-supplement V' of
Uin M,ie,U+V =M and UNV < RadV. We shall show that V is a supplement
of U in M. For this, it suffices to show that RadV « V. By Lemma 6.1.19, M is
coatomic. Since R is a commutative noetherian ring V' is also coatomic by Proposition

2.12.12. Then Proposition 2.12.5, RadV < V. O

6.3 Rad-Supplemented Modules over a Discrete Valuation Ring

The next lemma exhibits a useful link between the coatomic modules and supple-
mented modules over a discrete valuation ring (DVR). It also gives a characterization

of coatomic modules over a DVR.

Lemma 6.3.1. (Zéoschinger, 1974a, Lemma2.1) Let R be a DVR with quotient field

K # R, and p be the unique prime element. Then the following are equivalent:

(i) M has a small radical (i.e., Rad M < M );
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(il) M is coatomic;
(iii) M is a direct sum of a finitely generated free and a bounded submodule;

(iv) M is reduced and supplemented.

The following theorem gives a characterization of supplemented modules over a DVR.

Theorem 6.3.2. (Zoschinger, 1974a, Theorem 2.4) Let R be a DVR with quotient field
K # R, and p be the unique prime element. Then an R-module M is supplemented if
and only if M = My @ My ® Ms @& My, where My = R™ | My = K™, My = (K/R)",

and Myp™ =0 for some nonnegative integers ni, na,ng, ny.

Over a DVR, supplemented modules and Rad-supplemented modules does not co-

incide as the following example shows:

Example 6.3.3. Let R be a DVR which is not a field, let K be its field of quotients.
The R-module M = KM is Rad-supplemented by Corollary 6.1.22 since Rad M = M.
Indeed, Rad M = Rad KM = @, yRadK = @,y K since RadK = K as K is
divisible (see Theorem 2.9.14). But it is not supplemented by Theorem 6.3.2.

Now we give the main result of this section, using the structure of coatomic modules,

in the following theorem.

Theorem 6.3.4. Let R be a DVR with quotient field K # R, and p be the unique prime
element. Then M is Rad-supplemented if and only if M = My @& My & Ms @& My, where
M, = R*, My = KU | My = (K/R)2), and Myp® = 0 for some integers a,b > 0 and
arbitrary index sets I, Ip.

Proof. (=): Suppose M is Rad-supplemented. M can be described as follows, M =
M@ M for submodules M| and MY, of M such that M is the divisible part of M and M}
is reduced (see Theorem 2.9.12). Since every direct summand of a Rad-supplemented
module is again Rad-supplemented by Corollary 6.1.15, M} is Rad-supplemented. Thus
by Lemma 6.1.19, M} is coatomic. Then by Lemma 6.3.1, M} = M; & My for some
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submodules M; and My of M such that M; = R® for some integer a > 0 and My is
bounded, say p’M = 0 for some integer b > 0. Since M| is divisible, M| = My & M3,
where My = K1) and Ms = (K/R)U2) for some index sets I1, I (see Theorem 2.9.11).
Hence M = My & Ms & My @ My is required form.

(<): Let M{ = My ® M3 and M) = M; @ My. Since M is a divisible module
Rad M| = M| by Theorem 2.9.14, i.e., M] is a radical module. So by Corollary 6.1.22,
M is Rad-supplemented. By Theorem 6.3.2, M} is supplemented and so it is Rad-
supplemented, too (by Proposition 6.1.4). O

Corollary 6.3.5. Let R be a DVR and M be an R-module. If M is a reduced module,

then M is supplemented if and only if M is Rad-supplemented.

Corollary 6.3.6. Let R be a DVR. Let M be an R-module and D(M) be the divisible
part of M: M = D(M) @ M’ for some submodule M' such that M' is reduced. Then

the following are equivalent:

(i) M is Rad-supplemented,
(ii) M’ is supplemented,

(iii) M/D(M) is supplemented.
Proof. (i) = (ii): Since M is Rad-supplemented M’ is also Rad-supplemented by
Corollary 6.1.15. Thus M’ is supplemented by Corollary 6.3.5.

(14) = (i74): Since M’ is supplemented, M/D(M) = M’ is supplemented.

(1ii) = (i): Since M' = M/D(M) is supplemented, M’ is Rad-supplemented (by
Proposition 6.1.4). Since Rad D(M) = D(M) (by Theorem 2.9.14), D(M) is also Rad-
supplemented by Corollary 6.1.22. Hence M = D(M) @& M’ is Rad-supplemented (by
Theorem 6.1.29). O
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Rad-Supplemented Modules over a Dedekind Domain

The next theorem gives a characterization of supplemented modules over Dedekind

domains.

Theorem 6.4.1. (Zéschinger, 1974a, Theorem 3.1) Let R be a non-local Dedekind

domain and M be an R-module. Then M is supplemented if and only if it is torsion

and every primary component is supplemented.

Using previous theorem we give a characterization of Rad-supplemented modules

over Dedekind domains.

Theorem 6.4.2. Let R be a Dedekind domain. Then the following are equivalent:

(i)
(i)

(iii)

M is Rad-supplemented,

M = D(M) @ M’', where D(M) is the divisible part of M and M’ is a reduced
submodule of M such that M' is supplemented,

M/D(M) is supplemented, where D(M) is the divisible part of M.

Proof. (i) = (ii): The R-module M can be written as follows: M = D(M) & M’
for submodules D(M) and M’ of M such that D(M) is the divisible part of M
and M’ is a reduced submodule of M. Since every direct summand of a Rad-
supplemented module is again Rad-supplemented (by Corollary 6.1.15), M’ is also
Rad-supplemented. Since R is a Dedekind domain (and so it is a commutative

noetherian ring) , we obtain by Lemma 6.2.22 that M’ is supplemented.

(71) = (i): Suppose M = D(M) @& M’, where D(M) is the divisible part of M
and M’ is supplemented. Since R is Dedekind domain and D(M) is a divisible
module, D(M) is a radical module, i.e., Rad D(M) = D(M). So D(M) is Rad-
supplemented by Corollary 6.1.22. Now since M’ is supplemented, it is clearly
Rad-supplemented. Hence M = D(M) @& M’ is Rad-supplemented (by Theorem
6.1.29).
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(i1) < (i4i): This is easily seen since M’ = M/D(M).
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