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ÖZET 

TEZ BAŞLIĞI: Finely Meromorf Fonksiyonların Sınır Özellikleri 

YAZAR ADI: Tuğba AKYEL 

      Dört bölümden oluşan bu tezde kompleks düzlemin fine açık alt kümelerinde 

tanımlanmış finely meromorf fonksiyonların Hardy-Littlewood tipi teoremlerle 

verilen sınır özellikleri incelenmiştir. Bu teoremlerde fonksiyonun yalınkat 

olmamasının etkisi ve fonksiyon ile majorantın uç noktalardaki davranışı dikkate 

alınmıştır. Standart topolojide holomorf fonksiyonlar için verilen bu özellik 

aşağıdaki gibidir:   

      G  bölgesinde analitik, G -de sürekli olan f  fonksiyonu ve tezin birinci 
bölümünde bahsedilen özellikleri sağlayan ( ) [ )+∞→+∞ ,0,0:µ  majorantı için 
sınırdaki 

  ( ) ( ) ( ) z ,           ≠∂∈∀−≤− ζζµζ Gζ,z zzff  
özelliğinden   

                            ( ) ( ) ( ) z ,           ≠∈∀−≤− ζζµζ Gζ,z zzff   

bölge özelliği elde edilir. 

      Bu tezde bu tip problemler standart topolojiden farklı olarak fine topolojide 

tanımlanmış finely meromorf fonksiyonlar için incelenmiştir.  

      Tezin birinci bölümünde problemin kısa tarihçesi ve ortaya konuluşu ele 

alınmıştır. İkinci bölüm iki kısımdan oluşmaktadır. Birinci kısımda, konkav 

fonksiyonun tanımı verilmiş ve bilogaritmik konkav majorantlar sınıfı tanıtılmıştır. 

İkinci kısımda dağınıklık kavramının tanımı, hipoharmonik, finely holomorf, finely 

meromorf fonksiyonların tanımları ve kullanılan temel özellikleri hakkında bilgi 

verilmiştir. Üçüncü bölümde finely meromorf fonksiyonlar için Hardy-Littlewood 

tipi teoremler verilmiştir. Dördüncü bölüm de iki kısımdan oluşmaktadır. Birinci 

kısımda yerel karakterli teoremler, ikinci kısımda ise, global karakterli teoremler 

ispatlanmıştır. 
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SUMMARY 

THESİS TİTLE: Contour-Solid Theorems for Finely Meromorphic Functions 

THESİS AUTHOR: Tuğba AKYEL 

      In this thesis which is divided  into four parts, boundary properties of finely 

meromorphic functions, defined on finely open subsets of complex plane,  given with 

theorems of Hardy-Littlewood type, are investigated. In these theorems the effect of 

multivalence and the behaviours of the function and majorant on the end points are 

taken into account. In Standard topology, for holomorphic functions these properties 

are given as follows: 

   The function f  is holomorphic in open set G  and continuous in G , the 

majorant ( ) [ )+∞→+∞ ,0,0:µ  is satisfying the mentioned properties in the second 

part of the thesis. Using the following property at the boundary 

( ) ( ) ( ) z ,           ≠∂∈∀−≤− ζζµζ Gζ,z zzff  

the domain property 

( ) ( ) ( ) z ,           ≠∈∀−≤− ζζµζ Gζ,z zzff  

is obtained. 

      In this thesis, such types of problems are examined for the finely meromorphic 

functions, defined on the fine topology differently from standard topology. 

      In the first part of the thesis, brief history and display of the problem exist. The 

second part consists of two sections. In the first section, the defination of concave 

function is given and the class of bilogaritmic concave majorant is introduced. In the 

second section, the information about the term thinness, the defination and the used 

basic characteristics of the finely hypoharmonic, finely holomorphic, finely 

meromorphic functions is given. In the third part, theorems of Hardy-Littlewood 

types are given. The forth  part consists of two sections. In the first section, theorems 

with local character, in the second section, theorems with global character are 

proved. 
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1 G·IR·IŞ

Bu tezde, �nely meromorf fonksiyonlar¬n yal¬nkat olmamas¬n¬n etkisi ve uç nok-

talarda fonksiyon ile majorant¬n davran¬̧s¬dikkate al¬narak bilogaritmik konkav

majorantl¬Hardy-Littlewood tipi teoremler yerel ve global karakterli olarak ince-

lenmi̧stir.

Bu tip teoremler öncelikle holomorf fonksiyonlar için ele al¬nm¬̧st¬r. Holo-

morf fonksiyonlar için bu teoremlerin uyguland¬¼g¬alanlar olarak Riemann s¬n¬r

de¼ger problemi, Cauchy tipi ve singüler integraller, yaklaş¬m teorisinin düz ve ters

problemleri v.s. gösterilebilir.bC genelleştirilmi̧s kompleks düzlem, G � C aç¬k küme, f fonksiyonu G�da

sürekli ve G�de analitik olsun. G � C kümesi ve � : (0;+1) ! [0;+1)

şeklinde tan¬mlanan � (�) majorant¬hangi özellikleri sa¼glamal¬d¬rlar ki, aşa¼g¬daki

gerektirmeler do¼gru olsunlar:

1. E¼ger

jf (�)� f (z)j � � (j� � zj) 8�; z 2 @G; � 6= z

ise,

jf (�)� f (z)j � C� (j� � zj) 8�; z 2 G; � 6= z (1.1)

elde edilir; burada C � 1 sabiti � ve z�den ba¼g¬ms¬zd¬r.

2. z0 2 @G sabit noktas¬için

jf (�)� f (z0)j � � (j� � z0j) 8� 2 @G; � 6= z0

ise,

jf (�)� f (z0)j � C� (j� � z0j) 8� 2 G; � 6= z0

elde edilir; burada C � 1 sabiti ��den ba¼g¬ms¬zd¬r.

Holomorf fonksiyonlar için bu tip problemler ilk G. H. Hardy, J.E. Littlewood,

S. E. Warschawski, J. L. Walsh, W. E. Sewell taraf¬ndan ortaya konmuştur. G.

H. Hardy [6], J.E. Littlewood 1 gerektirmesini, G daire ve � (�) = �� (� 2 (0; 1])

durumunda ispatlam¬̧slard¬r. Ayr¬ca S. E. Warschawski [21] 2 gerektirmesini, J.

L. Walsh ve W. E. Sewell [22] 1 gerektirmesini G Jordan bölgesi ve � (�) = ��
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durumunda ispatlam¬̧slard¬r, öyle ki, her iki sonuçta da C = 1 elde edilmi̧stir.

� (�) = � jln �j için de benzer sonuçlara ulaş¬lm¬̧st¬r.

W. E. Sewell 1942 y¬l¬nda yay¬nlanan [23] monograf¬nda, şimdi Warschawski-

Walsh-Sewell problemleri olarak adland¬r¬lan bir dizi aç¬k problem ortaya koymuş-

tur. Bunlardan birisi Warschawski-Walsh-Sewell�in yukar¬daki koşullar alt¬nda

elde ettikleri sonuçlar¬n¬Jordan bölgelerinden daha genel bölgelere ve � (�) = �a,

� (�) = � jln �j gibi majorantlar¬ndan daha genel olan süreklilik tipi majorantlara

genelleştirilmesi problemidir.

Bu konuda L. G. Magranadze, M.B.Gagua, Y. L. Geronimus, Y. A. Brudny ve

I. E. Hopenhaus taraf¬ndan baz¬sonuçlar elde edilmi̧stir. Jordan bölgeleri (baz¬

s¬n¬rlamalar ile) ve � (�) = jln �j�p majorant¬(p > 0) (ve buna benzer di¼ger somut

majorantlar) için de sonuçlar al¬nm¬̧st¬r [8,24]. Daire için genellikle kesin olmayan

(süreklilik modülü üzerine ek şartlar konuldu¼gunda kesin olan) baz¬sonuçlar elde

edilmi̧stir [26-20].

Warschawski-Walsh-Sewell problemleri 1971 y¬l¬nda P. M. Tamrazov taraf¬n-

dan tam olarak çözülmüştür. Elde edilen sonuçlar fonksiyonlar teorisi, tekil inte-

gral operatörler teorisi, s¬n¬r problemleri gibi çeşitli uygulamalarda yer alm¬̧st¬r.

Ayr¬ca P. M. Tamrazov, problemin çözümü için yeni metotlar ortaya koymuştur.

Bu metodlar problemi daha genel olarak formüle etmeye imkan vermi̧stir. P. M.

Tamrazov çok genel olan çok ba¼glant¬l¬(hatta sonsuz ba¼glant¬l¬) bölge s¬n¬�ar¬ve

s¬n¬r¬n¬n aşa¼g¬kapasite yo¼gunlu¼gu pozitif olan aç¬k kümeler ve normal majorant-

lar s¬n¬f¬(bu s¬n¬f süreklilik modülü tipli majorantlar s¬n¬f¬ndan çok daha geni̧stir)

için yukar¬daki sonuçlar¬elde etmi̧stir [27-28].

1979 y¬l¬ndan başlayarak yukar¬daki problemler kuvvet majorantlar¬ (yani

� (�) = ��) için Y. Y. Trahimchuck [25], A. I. Schekorskii [30], P. M. Tamra-

zov [18], F.W. Gehring, W. K. Hayman ve A. Hinkkanen [29] taraf¬ndan tam

çözülmüşlerdir.

1984 y¬l¬nda T .H. Aliyev ve P. M. Tamrazov taraf¬ndan aşa¼g¬daki problemler

ortaya konmuştur:

1. (1.1) ve (1.2) eşitsizliklerinde fonksiyonun yal¬nkat olmamas¬n¬n etkisinin

incelenmesi,

2. Yukar¬daki sonuçlar¬n meromorf fonksiyonlara genelleştirilmesi.
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Kuvvet ve daha genel olan bilogaritmik konkav majorantlar için her iki prob-

lem T. H. Aliyev ve P. M. Tamrazov [1,8] taraf¬ndan Green fonksiyonu dilinde tam

çözülmüştür. Ayr¬ca (1.1) ve (1.2)-de s¬n¬rda yal¬nkat olmaman¬n etkisi problemi

de çözülmüştür [17]. 1 ve 2 problemleri normal majorantlar ve yeterince geni̧s

kümeler için T. H. Aliyev taraf¬ndan çözülmüştür. T. H. Aliyev ve P. M. Tamra-

zov taraf¬ndan çok katl¬meromorf fonksiyonlar için yukar¬daki problem incelen-

mi̧s ve geni̧s koşullar alt¬nda teoremler ispatlanm¬̧st¬r. [1] çal¬̧smas¬nda meromorf

fonksiyonlar için fonksiyonun yal¬nkat olmamas¬n¬n ve s¬f¬rlar¬n¬n etkisi de göz

önünde bulundurularak kesin sonuçlar elde edilmi̧stir. Ayr¬ca bu çal¬̧smada is-

patlanan eşitsizlikler daha kesindir. Çünkü burada uç noktalarda fonksiyonun

ve majorant¬n davran¬̧s¬da göz önüne al¬nm¬̧st¬r. [30,31] çal¬̧smalar¬nda mero-

morf fonksiyonlar ve normal majorantlar s¬n¬f¬için sonuçlar elde edilmi̧stir. Yine

[11,12,15] çal¬̧smalar¬nda yukar¬daki sonuçlar meromorf fonksiyonlara genelleşti-

rilmi̧stir ve kesin sonuçlar elde edilmi̧stir. Ayr¬ca Öklid topolojisi üzerinde ortaya

konulan bu problemler ve elde edilen tüm bu sonuçlar, ondan daha kuvvetli

olan �ne topolojiye genelleştirilmi̧stir. Holomorf ve meromorf fonksiyon için elde

edilen sonuçlara benzer sonuçlar, �ne topolojide tan¬ml¬�nely holomorf ve �nely

meromorf denilen fonksiyonlar için de elde edilmi̧stir. [2] çal¬̧smas¬nda elde edilen

sonuçlar, [16] çal¬̧smas¬nda �nely meromorf fonksiyonlara genelleştirilmi̧stir; öyle

ki, ele al¬nan fonksiyonun yak¬nkat olmamas¬ve s¬f¬rlar¬n¬n etkisi göz önüne al¬n-

m¬̧st¬r.

Bu tezde 1 ve 2 problemi, uç noktalarda fonksiyon ile majorant¬n davran¬̧s¬da

hesaba kat¬larak, bilogaritmik konkav majorantlar s¬n¬f¬ve kompleks düzlemin

�ne aç¬k kümesinde tan¬mlanm¬̧s �nely meromorf fonksiyonlar için incelenmi̧s

olup, daha kesin sonuçlar elde edilmi̧stir.
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2 TEMEL TANIMLAR

2.1 Majorantlar

Majorantlar, fonksiyonlar¬n sonlu fark, düzgünlük ve aproksimatif özelliklerine

göre s¬n¬�and¬r¬lmas¬amac¬yla kullan¬l¬rlar.

Tan¬m 1 v(t) fonksiyonu (a; b) aral¬¼g¬nda tan¬mlanm¬̧s olsun. E¼ger

v(
t1 + t2
2

) � v(t1) + v(t2)

2
;8t1; t2 2 (a; b)

özelli¼gi sa¼glan¬yorsa v(t)�ye konkav fonksiyon denir.

Tan¬m 2 � : [1;+1)! (0;+1) şeklinde tan¬mlanan � fonksiyonu için log � (et)

fonksiyonu (0;+1) aral¬¼g¬nda konkav ise, � (t)�ye bilogaritmik konkav fonksiyon

denir.

M ile aşa¼g¬daki koşullar¬sa¼glayan � fonksiyonlar s¬n¬f¬n¬i̧saretleyece¼giz:

i. � : (0;+1)! [0;+1);

ii. I� = fx : � (x) > 0g ba¼glant¬l¬kümedir;

iii. log � (x) fonksiyonunun I��ye k¬s¬tlan¬̧s¬log x fonksiyonuna göre konkavd¬r.

�majorant olarak isimlendirilir. I� kümesinin boş olmad¬¼g¬bütün � 2M�lerin

s¬n¬f¬n¬M� ile i̧saretleyelim. � 2 M� için I� aral¬¼g¬n¬n sol ve sa¼g uç noktalar¬n¬

s¬ras¬yla x�� ve x
+
� ile i̧saretleyelim. Aç¬kt¬r ki, 0 � x�� � x+� � +1 eşitsizli¼gi

sa¼glan¬r.

x�� < x+� oldu¼gunda kastedilen konkavl¬k koşulu aşa¼g¬daki koşullar¬n kombi-

nasyonuna denktir:

i. log � (x) fonksiyonu
�
x�� ; x

+
�

�
aral¬¼g¬nda log x fonksiyonuna göre konkavd¬r;

ii. log � (x) fonksiyonu I� kümesinde alttan yar¬süreklidir.

� 2M için

�0 := lim
x!0

log � (x)

log x
; �1 := lim

x!1

log � (x)

log x
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limitleri mevcut olup,

�1 < �0 � +1; �1 � �1 < +1; �0 � �1: (2.1.1)

x�� > 0 (benzer olarak x
+
� < +1) ise, �0 = +1 (uygun olarak �1 = �1) kabul

edece¼giz. E¼ger � � 0 ise, �0 ve �1 olarak (2.1.1) eşitsizliklerini sa¼glayan key�

sonlu say¬lar¬kabul etmek olur. �0 < +1 eşitsizli¼gi sa¼gland¬¼g¬nda,m0 ilem0�1 <

�0 � m0 koşulunu sa¼glayan tam say¬s¬n¬, �1 > �1 eşitsizli¼gi sa¼gland¬¼g¬nda m1

ile m1 � �1 < m1 + 1 koşulunu sa¼glayan tam say¬s¬n¬i̧saretleyece¼giz.

Her sabitlenmi̧s � 2 R, � 2 (0;+1) için � (x) := �x� fonksiyonu M� s¬n¬f¬n-

dand¬r ve buradan �0 = �1 = � al¬r¬z. E¼ger � tamsay¬ise, m0 = m1 = � olur.

M ve M� s¬n¬�ar¬[18]-de incelenmi̧stir.

Aç¬kt¬r ki, � (�) = �� kuvvet majorantlar¬M s¬n¬f¬ndand¬rlar.

Teoremlerin ispatlar¬nda da kullan¬lacak olan ve [16]-da yer alan aşa¼g¬daki

notasyonlar¬verelim:

i. � : (0;+1)! [�1;+1);

ii. I� = fx : � (x) > �1g ba¼glant¬l¬kümedir;

iii. � (x) fonksiyonunun I��ya k¬s¬tlan¬̧s¬log x fonksiyonuna göre konkavd¬r.

I� kümesinin boş olmad¬¼g¬bütün � 2 L�lerin s¬n¬f¬n¬L� ile i̧saretleyelim. � 2

L� için I� aral¬¼g¬n¬n sol ve sa¼g uç noktalar¬n¬s¬ras¬yla x�� ve x
+
� ile i̧saretleyelim.

Aç¬kt¬r ki, 0 � x�� � x+� � +1 eşitsizli¼gi sa¼glan¬r. � (:) fonksiyonu L veya L�

s¬n¬f¬ndayken, exp� (:) fonksiyonuM veya M� s¬n¬�ar¬nda yer al¬r.

x�� < x+� oldu¼gunda kastedilen konkavl¬k koşulu aşa¼g¬daki koşullar¬n kombi-

nasyonuna denktir:

i. � (x) fonksiyonu
�
x�� ; x

+
�

�
aral¬¼g¬nda log x fonksiyonuna göre konkavd¬r;

ii. log � (x) fonksiyonu I� kümesinde alttan yar¬süreklidir.

� 2 L için

�0 := lim
x!0

� (x)

log x
; �1 := lim

x!1

� (x)

log x
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limitleri mevcut olup,

�0 � �1; �0 > � 1; �1 < + 1:

Her sabitlenmi̧s � 2 R, � 2 R say¬lar¬ve L��dan olan �(x) := � log x + �

fonksiyonu için �0 = �1 = � eşitli¼gi elde edilir.

2.2 Finely Hipoharmonik ve Finely Meromorf Fonksiyon-

lar

Fine topoloji, 1940 y¬l¬nda Henri Cartan taraf¬ndan bütün subharmonik fonksiy-

onlar¬n sürekli oldu¼gu topolojilerin en zay¬f¬ olarak tan¬mlanm¬̧st¬r. O halde,

sürekli olmayan fonksiyonlar¬n varl¬¼g¬ndan dolay¬, �ne topoloji bildi¼gimiz Euclid

topolojisinden daha kuvvetlidir. Marcel Brelot [4, s.6, 9-17] taraf¬ndan tan¬m-

lanm¬̧s da¼g¬n¬kl¬k kavram¬yla �ne civarlar¬karakterize etmek mümkündür. Fine

topoloji Hausdor¤ özelli¼gini sa¼glar ve tam regülerdir. Öte yandan �ne topoloji

say¬labilirli¼gin birinci aksiyomunu da, ikinci aksiyomunu da sa¼glamaz [9, s.21].

Standart topolojide kapal¬olan �ne civarlar, �ne civarlar¬n baz¬n¬oluşturmak-

tad¬r.

Tan¬m 3 Aşa¼g¬daki koşullardan biri sa¼gland¬¼g¬nda E � bC kümesi x0 noktas¬nda
da¼g¬n¬kt¬r diyece¼giz:

i. bC kapal¬düzleminin standart topolojisinde x0 noktas¬Enfx0g kümesinin s¬n¬r
noktas¬de¼gil;

ii. x0 noktas¬Enfx0g kümesinin s¬n¬r noktas¬d¬r ve x0-¬n bir civar¬nda subhar-

monik olan öyle u fonksiyonu mevcuttur ki,

u (x0) > lim
x!x0;x2Enfx0g

u (x)

eşitsizli¼gi sa¼glan¬r.

Tan¬m 4 E kümesi x0 2 bC noktas¬nda da¼g¬n¬k olmak üzere bCnE := CE biçi-

mindeki kümeye x0�¬n �ne civar¬denir [4, s.11].
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Tan¬m 5 E kümesinin da¼g¬n¬k olmad¬¼g¬x 2 bC noktalar¬kümesine E�nin bC�daki
baz¬denir ve b(E) ile işaretlenir. eE := E [ b(E) kümesine E �nin bC�daki �ne
kapan¬̧s¬denir. bE ile E�nin bC�daki standart kapan¬̧s¬n¬gösterilir. Aç¬kt¬r ki,eE � bE. E ile E � C�nin C�deki standart kapan¬̧s¬, b@fE ile ise, E�nin bC�daki
�ne s¬n¬r¬ işaretlenir. @fE := C \ b@fE olsun. (E)i := Enb(E) kümesi, E�nin

bütün irregular noktalar¬kümesini, (E)r := En(E)i ise, bütün regüler noktalar¬

kümesini göstermektedir.

Aşa¼g¬daki özellik ancak iki boyutlu hal için geçerlidir. E¼ger G �ne aç¬k ve

�ne ba¼glant¬l¬küme ise (yani �ne bölge), a 2 bC noktas¬n¬n G için �ne d¬̧s nokta
olmas¬için gerek ve yeter koşul bu noktan¬n G için standart topolojide d¬̧s noktas¬

olmas¬d¬r. Yani �ne bölgenin �ne kapan¬̧s¬standart topolojide de kapal¬d¬r.

E � bC kümesi x0 2 bC noktas¬nda da¼g¬n¬k ise, x0 merkezli, istenildi¼gi kadar
küçük yar¬çapl¬ve E ile ortak noktas¬olmayan çemberler mevcuttur [4, s.97].

z 2 C noktas¬ için fzg�de toplanm¬̧s Dirac ölçüsünü "z ile, "z�in W � bC
kümesine balayage (=sweeping out) ¬n¬"Wz ile i̧saretleyelim [3, s.25].

Tan¬m 6 Fine aç¬k D � C kümesinde tan¬mlanm¬̧s, u : D ! [�1;+1) fonksi-

yonu aşa¼g¬daki koşullar¬sa¼glad¬¼g¬nda, ona D�de �nely hipoharmonik fonksiyon

denir:

i. u fonksiyonu D�de yukar¬dan �nely yar¬süreklidir;

ii. Fine topolojinin D�ye izi, �ne kapan¬̧slar¬D�ye dahil olan s¬n¬rl¬�ne aç¬k V

kümelerinin oluşturdu¼gu

u(z) �
Z
�

ud"CVz 8z 2 V

eşitsizli¼gini sa¼glayan bir baza sahiptir.

Yukar¬daki
R
�
ile aşa¼g¬integral i̧saretlenmektedir (de¼gi̧sken i̧saretli fonksiyon-

lar¬n aşa¼g¬ve yukar¬integralleri için [29, s.163-164]).

Tan¬m 7 Fine aç¬kD kümesinde tan¬mlanm¬̧s veD�nin �ne yo¼gun alt kümesinde

sonlu olan hipoharmonik fonksiyona �nely subharmonik fonksiyon denir.
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Tan¬m 8 E � C için, E�de -1 de¼gerini al¬p, C�da subharmonik olan bir

fonksiyon mevcut ise, E�ye polar küme denir.

E � bC için bCnE := FE ve E � C için CnE := CE olsun.
G � bC �ne aç¬k küme ve z 2 G olsun.
E¼ger FG polar olmayan küme ise, !Gz ile G�ye göre genelleştirilmi̧s harmonik

ölçüyü i̧saretleyece¼giz. E¼ger FG polar küme ise, G�ye göre harmonik ölçüyü

!Gz = 0 eşitli¼gi ile tan¬mlayaca¼g¬z. Aç¬kt¬r ki, FG polar de¼gil ise, o halde, !
G
z 6= 0:

!Gz için herhangi durumda z 2 G noktas¬nda G�ye göre harmonik ölçü terimini

kullanaca¼g¬z.

Tan¬m 9 E¼ger G�nin her �nely ba¼glant¬l¬bileşeni T için, Q \ @fT kümesi, z 2

T noktalar¬nda pozitif harmonik ölçüye
�
!Tz (K) > 0

�
sahip hiçbir K kompakt¬

içermiyorsa, Q � FG kümesine G�e nazaran nearly negligible-d¬r denir. Bu

gerektirme aşa¼g¬daki duruma denktir: Ya FG polard¬r (o halde, Q�da polard¬r)

yada G�nin her �nely ba¼glant¬l¬bileşeni T için @fT polar de¼gildir ve Q kümesi iç

harmonik ölçüsü s¬f¬r olan bir kümedir ve z 2 T . E¼ger E � FG kümesi G�nin

her �nely ba¼glant¬l¬bileşeni T için logaritmik kapasitesi pozitif olan (Cap(K) > 0)

K � @fT kompakt alt kümesi içermiyorsa, E kümesine G�e nazaran nearly

negligible-d¬r denir. Özel halde iç logaritmik kapasitesi s¬f¬r olan herhangi E �

FG kümesi G�e nazaran nearly negligible-d¬r.

E¼ger T , G�nin �nely ba¼glant¬l¬bileşeni ve z 2 G ise, !Gz = !Tz (K) eşitli¼gi

do¼grudur.

Tan¬m 10 D � bC �ne aç¬k cümle olsun. ' : D ! C fonksiyonu aşa¼g¬daki

koşulu sa¼glad¬¼g¬taktirde ona D�de �nely holomorf fonksiyon denir: Key� z 2 D

noktas¬n¬n bC�da kompakt olan öyle V � D �ne civar¬mevcuttur ki, '�nin V�ye
izi, V�nin bir aç¬k civar¬nda holomorf olan fonksiyonun V�ye izi ile çak¬̧s¬yor

[8].

bC�da �nely D aç¬k kümesini ele alal¬m.

B.Fuglede aşa¼g¬dakini ispatlam¬̧st¬r [3, s.96], [3, Teorem 4].

Önerme 1 E; �ne aç¬k D kümesinin polar alt kümesi, u fonksiyonu DnE�de

hipoharmonik ve E�nin her noktas¬n¬n bir �ne civar¬nda yukar¬dan s¬n¬rl¬olsun.
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Bu takdirde u fonksiyonunun DnE�ye tek hipoharmonik devam¬ vard¬r ve bu

devam

u(z) = fine lim
�!z;�2DnE

u (�) 8z 2 E

formülü ile belirlenir.

Finely holomorf fonksiyonlar¬n s¬f¬rlar¬hakk¬ndaki aşa¼g¬daki önerme Fuglede�nin

[3] çal¬̧smas¬nda yer almaktad¬r.

E¼ger f fonksiyonu G�de �nely holomorf ise, k (f; w) ile f (w) de¼gerinin w

noktas¬ndaki mertebesi gösterilsin.

Önerme 2 D �ne bölgesinde tan¬mlanm¬̧s �nely holomorf fonksiyonun s¬f¬rlar¬

kümesinin kuvveti say¬labilirden fazla de¼gildir. Fine aç¬k D kümesinde �nely holo-

morf fonksiyonun her a s¬f¬r¬n¬n mertebesi sonlu olup aşa¼g¬daki eşde¼ger koşullarla

belirlenir:

i. fn (a) 6= 0 ve 8k < n için fk (a) = 0;

i�. D�de �nely holomorf olan 9F fonksiyonu vard¬r ki, F (a) 6= 0 ve f (z) =

(z � a)k F (z); 8z 2 D;

ii. k (f; a), f fonksiyonunun s¬f¬r¬n¬n mertebesi.

Tan¬m 11 a noktas¬civar¬nda tan¬mlanan f : D ! C fonksiyonu, k negatif tam

say¬ ve F; F (a) 6= 0 foksiyonu bu civarda �nely holomorf olmak üzere f (�) =

(� � a)k F (�) şeklinde yaz¬labiliyorsa, ona a noktas¬nda �nely meromorf fonksiyon

denir. D�nin her noktas¬nda �nely meromorf olan fonksiyona D�de �nely mero-

morf fonksiyon denir.

Tümleyeni (yani CG) polar olmayan �ne aç¬k G � C kümesi için, w; z 2 C,

w 6= � olmak üzere,

gG (w; z) =

Z
log

jw � zj
jw � �jd"

CG
� (z)

formülü ile tan¬mlanan Green fonksiyonu mevcuttur.

gG (w; �) ile s¬n¬r¬n¬n logaritmik kapasitesi pozitif olan �ne aç¬kG � C kümesinin

genelleştirilmi̧s Green fonksiyonunu i̧saretleyelim.
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B � C aç¬k küme t 2 (0; 1), w; z 2 C olmak üzere lt (w; z) = logmax ft; jw � zjg

olsun.

HB (lt (w; :) ; �) :=

Z
lt (w; :) d"

CB
� (z) (2.2.1)

i̧saretleyelim.

Aşa¼g¬daki önerme P.M.Tamrazov �un [18] çal¬̧smas¬ndaki önermenin benz-

eridir.

Önerme 3 Key� � 2 B ve w 2 C de¼gişkeni için

lim
t!0
HB (lt (w; :) ; �) =: hB (w; �) (2.2.2)

limiti mevcut olup, w 2 C de¼gişkenine göre �nely subharmoniktir ve

hB (w; �)� log jw � �j = gG (w; �) 8� 2 B;w 2 C (2.2.3)

formülü sa¼glan¬r.

·Ispat. �; w 2 B için t! 0 koşulunda lt (w; �)monoton azalarak log jw � �j �ye

yaklaş¬r. (2.2.1)-e göre (2.2.2) limiti mevcut olup,

hB (w; �) =

Z
log jw � �j d"CB� (z) 8� 2 B; w 2 C

koşulunu sa¼glar. Green fonksiyonunun tan¬m¬na göre, (2.2.3) formülünü al¬r¬z.

G kümesi bC�da �ne aç¬k ve z 2 b@fG olsun. u : G ! [�1;+1] ve f : G !bC fonksiyonlar¬için aşa¼g¬daki �ne üst limitleri tan¬tal¬m:
finelim sup

�!z;�2G
u (�) =: euG;f (z)

finelim sup
�!z;�2G

jf (�)j =: fG (z)

G kümesi C�da �ne aç¬k ve a 2 CG sabit bir nokta olsun.ve f : G ! C

fonksiyonu için
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fa;G :=

(
finelim
�!a;�2G

logjf(�)j
jlogj��ajj , a 2 @fG

0, a =2 @fG
(2.2.4)

f1;G :=

8<: finelim
�!1;�2G

logjf(�)j
logj�j , 1 2 b@fG

0, 1 =2 b@fG (2.2.5)

i̧saretleyelim.

E¼ger f fonksiyonu G�de �nely meromorf bir fonksiyon ise, k (f; w) ile f (w)

de¼gerinin w noktas¬ndaki mertebesi gösterilsin.

z 2 bC; G; � 2 M� ve f fonksiyonu için aşa¼g¬daki formüllerle belirlenen

s (z; f (:)) =: s (z; f (:) ; G; �) say¬lar¬n¬i̧saretleyelim.

s (z; f (:)) :=

( �
f(:)

�(j:�zj)

�
z;G

; x�� = 0; 8z 2 C
0; x�� > 0; 8z 2 C

s (1; f (:)) :=
( �

f(:)
�(j:j)

�
1;G

; x+� = +1
0; x+� < +1

E¼ger � = 0 ise, z 2 bC için s (z; f (:)) = 0 varsay¬l¬r. � 2 M için e¼ger

�0 6= +1 ve z 2 C ise, s (z; f (:)) = fz;G + �0; e¼ger �1 6= �1 ve z 2 C ise,

s (1; f (:)) = f1;G � �1:

G � C �ne aç¬k küme, f : G ! bC şeklinde tan¬mlanm¬̧s meromorf fonksiyon
ve � 2M olsun. Aşa¼g¬daki koşullara bakal¬m:

(A;1) 1 2 b(CG) ve 1 2 b(T ) olmak üzere G kümesinin �ne ba¼glant¬l¬T

bileşeni için f1;G < +1 eşitsizli¼gi sa¼glan¬r;

(B;1) 1 =2 b(CG), �1 > �1 ve f (�) = fineo
�
j�jm1+1

�
, � !1, � 2 G;

(B0;1) 1 =2 b(CG), �1 � 0 ve f (�) = fineo
�
j�jm1+1

�
, � !1, � 2 G

ve z 2 C sabit bir nokta ise, aşa¼g¬daki koşullara bakal¬m:

(A; z) z 2 b(CG) ve z 2 b(T ) olmak üzere G kümesinin �ne ba¼glant¬l¬T bileşeni

için fz;G < +1 eşitsizli¼gi sa¼glan¬r;

(B; z) z =2 b(CG), �0 < +1 ve f (�) = fineo
�
j� � zjm0�1�, � ! z, � 2 G;
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(B1; z) z =2 b(CG), �0 � 1 ve f (�) = fineo
�
j� � zjm0�1�, � ! z, � 2 G:

G kümesi C�de �ne aç¬k, a 2 CG sabit bir nokta ve u : G ! [�1;+1]

fonksiyonu için

uaG;f :=

8<: finelim
�!a;�2G

u(�)
jlogj��ajj a 2 @fG;

0 a =2 @fG:

u1G;f :=

8<:
finelim
�!1;�2G

u(�)
logj�j 1 2 b@fG;

0 1 =2 b@fG :
olsun.

� 2 L olsun. Aşa¼g¬daki koşullar¬göz önüne alal¬m:

(A0;1) 1 2 b(CG) ve 1 2 b(T ) olmak üzere G kümesinin �ne ba¼glant¬l¬T

bileşeni için u1T;f < + 1 eşitsizli¼gi sa¼glan¬r;

(B0;1) 1 62 b(CG) ve 1�un u(�) � �(j� � aj) + t; 8� 2 G \ V özelli¼ginin

sa¼gland¬¼g¬bir V �ne komşulu¼gu, ayr¬ca t 2 R sabiti mevcuttur;

(A0; a) a 2 b(CG) ve a 2 b(T ) olmak üzere G kümesinin �ne ba¼glant¬l¬T bileşeni

için uaz;G < +1 eşitsizli¼gi sa¼glan¬r;

(B0; a) a 62 b(CG) ve a�n¬n u(�) � �(j��aj)+t; 8� 2 G\V özelli¼ginin sa¼gland¬¼g¬

bir V �ne komşulu¼gu, ayr¬ca t 2 R sabiti mevcuttur.



13

3 HARDY-L·ITTLEWOODT·IP·I TEOREMLER

3.1 Yerel Karakterli Teoremler

Teorem 4 a 2 C sabit nokta; G � Cn fag �ne s¬n¬r¬ (@fG) polar olmayan �ne

aç¬k küme; � 2M; f : G! bC sonlu say¬da kutba sahip �nely meromorf fonksiyon

ve p1; p2; :::; pN ; f � in tüm farkl¬kutup noktalar¬olsun. Varsayal¬m ki,

finelim
�!z;�2G

jf (�)j � � (jz � aj) 8z 2 (@fG) n fag : (3.1.1)

z1 := a; z2 := 1 olmak üzere, birbirinden ba¼g¬ms¬z olarak her s = 1; 2 için

(A; zs) veya (B; zs) koşullar¬ndan biri sa¼glans¬n.

Bu taktirde 8� 2 Gn fp1; p2; :::; pNg için

jf (�)j � � (j� � aj) exp

24 NX

=1

gG (p
; �) k (f; p
)�
X

w:f(w)=0

gG (w; �) k (f; w)+

+gG (a; �) s (a; f (:)) + gG (1; �) s (1; f (:))] (3.1.2)

eşitsizli¼gi sa¼glan¬r.

Not 5 gG (a; �) s (a; f (:)) ve gG (1; �) s (1; f (:)) ifadeleri pozitif de¼gildir ve bun-

dan dolay¬(2.1) eşitsizli¼gi genellikle [16] çal¬̧smas¬ndaki (3) eşitsizli¼ginden daha

kesindir.

Teorem 6 a 2 C sabit nokta; G � Cn fag �ne s¬n¬r¬ (@fG) polar olmayan �ne

aç¬k küme; Q � FG kümesi a ve 1 noktalar¬n¬içersin; � 2M; f : G! C �nely

meromorf fonksiyon olsun. z1 := a, z2 := 1 olmak üzere, birbirinden ba¼g¬ms¬z

olarak her s = 1; 2 için (A, zs) veya (B, zs) koşullar¬ndan biri sa¼glans¬n. f�in

G�deki tüm kutup noktalar¬kümesi P ve

� (x) := log � (x) 8x > 0;

u (�) := log jf (�)j �
X
p2P
gG (p; �) k (f; p) 8� 2 G

olsun. Varsayal¬m ki, G kümesinin her �ne ba¼glant¬l¬T bileşeni için aşa¼g¬daki

koşullar sa¼glan¬yor:
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Q kümesi T�ye nazaran nearly negligible olup,

euT;f <1 8z 2 (@fT ) n fag ;

euT;f (z) � � (jz � aj) 8z 2 (@fT ) nQ:

Bu taktirde

�(b) = s

 
b; f (:) exp

"
�
X
p2P
gG (p; �) k (f; p)

#
; G; �

!
; b 2 bC

olmak üzere

jf (�)j exp
"
�
X
p2P
gG (p; �) k (f; p)

#
� � (j� � aj)�

� exp

24� X
w:f(w)=0

gG (w; �) k (f; w) + gG (a; �) � (a) + gG (1; �) � (1)

35 8� 2 Gn P

(3.1.3)

eşitsizli¼gi sa¼glan¬r.

3.2 Global Karakterli Teoremler

Teorem 7 G � C �ne aç¬k küme; � 2M; f : eG \ C! bC ise, eG \ C�deki tüm
kutup noktalar¬kümesi P olan G�de �nely meromorf bir fonksiyon olsun ve

jf(z)� f(�)j 6 �(jz � �j) 8z; � 2 @fG; � 6= z

koşulunu sa¼glas¬n.

f�in G�ye k¬s¬tlan¬̧s¬(A;1) veya (B0;1) koşullar¬ndan birini sa¼glas¬n.

Varsayal¬m ki, G kümesinin her �ne ba¼glant¬l¬T bileşeni için f�in
�eT \ C� nP

kümesine k¬s¬tlan¬̧s¬�nely süreklidir. Bu taktirde

jf (�)� f (z)j exp
"
�
X
p2P

(gG (p; �) + gG (p; z)) k (f; p)

#
� � (j� � zj)�
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� exp

24� X
w2G;f(w)=f(�)

gG (w; z) k (f; w) + gG (z; �) s (z; (f (:)� f (z))) +

+ gG (1; �) s (1; (f (:)� f (z)))] 8z 2 (@fG)r ; 8� 2
� eG \ C� nP ; z 6= �:

Teorem 8 G; �; f Teorem 7-nin tüm koşullar¬n¬sa¼glas¬n. Ek olarak varsayal¬m

ki, z0 2 (CG)i [G sabit bir nokta, �0 < +1 ve

jf (�)� f (z0)j = fineo
�
j� � z0jm0�1� (� ! z0; � 2 GnP ) :

Bu taktirde

jf (�)� f (z0)j exp
"
�
X
p2P

(gG (p; �) + gG (p; z0)) k (f; p)

#
� � (j� � z0j)�

� exp�

24 X
w2G;f(w)=f(�)

gG (w; z0) k (f; w) + gG (z0; �) s (z0; (f (:)� f (z0)))

+ gG (1; �) s (1; (f (:)� f (z0)))] 8� 2 eGnP; � 6= z0;1:

Teorem 9 G; �; f Teorem 7-nin tüm koşullar¬n¬sa¼glas¬n. Ek olarak varsayal¬m

ki, �0 < 1. Bu taktirde

jf (�)� f (z)j exp
"
�
X
p2P

(gG (p; �) + gG (p; z)) k (f; p)

#
� � (j� � zj)�

� exp�

24 X
w2G;f(w)=f(�)

gG (w; z) k (f; w) + gG (z; �) s (z; (f (:)� f (z)))

+ gG (1; �) s (1; (f (:)� f (z)))] 8z; � 2
� eG \ C� nP z 6= �.

[16] çal¬̧smas¬nda yer alan aşa¼g¬daki önermeyi verelim:

Lemma 10 a 2 C sabit nokta; Gn fag �nely aç¬k küme; � 2 M; f : eG ! bC
fonksiyonu �nely meromorf olsun. z1 := a; z2 := 1 olmak üzere, birbirinden

ba¼g¬ms¬z olarak her s = 1; 2 için (A; zs) ve ya (B; zs) koşullar¬ndan biri sa¼glans¬n.

O halde,G kümesi, log jf (�)j, � (x) := log � (x), ve ayn¬s = 1; 2 için (A0; zs) veya

(B0; zs) koşullar¬sa¼glan¬r ve zs, f�in G�deki tüm kutup noktalar¬kümesi P�den

�nely ayr¬k ve f fonksiyonunun zs�e �nely holomorf devam¬mevcuttur.
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4 ·ISPATLAR

·Ispat. (Teorem 6)

G kümesine ve f fonksiyonuna Lemma 10-u uygularsak, G kümesi, u (�) :=

log jf (�)j, � (x) := log � (x) fonksiyonlar¬ve s = 1; 2 için (A0; zs) veya (B0; zs)

koşullar¬sa¼glan¬r.
X

p2P\G(�)

gG (p; �) k (f; p) serisininG�nin ba¼glant¬l¬bileşenlerindeki

¬raksak oldu¼gu noktalar¬göz önüne almayaca¼g¬z. Bu taktirde genelli¼gi kaybetmeden

varsayaca¼g¬z ki, seri GnP kümesinde yak¬nsakt¬r. Şimdi varsayal¬m ki, Z kümesi

f fonksiyonunun G�deki sonlu say¬da herhangi s¬f¬rlar¬kümesidir. G�de aşa¼g¬-

daki fonksiyonu göz önüne alal¬m:

vZ(�) := u(�) +
X
z2Z

gG(w; �)k(h;w); � 2 G:

QZ := Q[ (FG)i şeklinde i̧saretlenen QZ kümesi, G kümesinin her �ne ba¼glant¬l¬

T bileşenine nazaran nearly negligible olur. vZ(�) fonksiyonu G�de hipohar-

moniktir ve

�uG;f (z) = (�vZ)G;f (z) 8z 2 (@fG)nQZ :

Bu taktirde vZ(�) fonksiyonu [2]-deki Teorem 8.2-nin tüm koşullar¬n¬gerçekler ve

vZ(�) � �(j� � aj); 8� 2 GnP (4.1)

eşitsizli¼gi sa¼glan¬r. Bu taktirde 8� 2 Gn P için

jf(�)j exp
"
�
X
p2P

gG(p; �) � k(h; p)
#
6 �(j� � aj) exp

"
�
X
z2Z

gG(w; �)k(h;w)

#
:

(4.2)

eşitsizli¼gini elde ederiz. Buradan � (a) � 0 ve � (1) � 0 elde edilir. � (a) := � 1 ve

� (1) := � 2 i̧saretleyelim. i = 1; 2 olmak üzere ya � i = 0 = � i ya da � i 2 (� i; 0]

şeklindedir.

� (x) � �x� 8x > 0 (4.3)

8x > 0 olmak üzere herhangi � > 0 ve � 2 (�1;+1) say¬lar¬n¬ele alal¬m.Yeni
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bir fonksiyon dahil edelim:

vZ;�1;�2 (�) := vZ(�)� log (� j� � aj
�)� gG (a; �) � 1 � gG (1; �) � 2:

vZ;�1;�2 fonksiyonu G�de hipoharmoniktir ve G�nin a ve 1 dan �ne ayr¬k her

�ne alt bölgesinde üstten s¬n¬rl¬d¬r. Ayr¬ca tüm regüler z 2 (@fG) n fag s¬n¬r

noktalar¬nda (2.2.3) eşitli¼gini de göz önüne al¬rsak, aşa¼g¬dakini al¬r¬z:

finelim
�!z;�2G

vZ;�1;�2 (�) � 0:

(4.2)-den

vZ(�) � log (� j� � aj�) (4.4)

eşitsizli¼gini elde ederiz.

8� 2 G : j� � aj � 1 için gG (a; �) � C1 ve gG (1; �) � C2 + log j� � aj

eşitsizliklerini sa¼glayan C1 ve C2 sabit say¬lar¬mevcuttur.

E¼ger � 2 = 0 ise, vZ;�1;�2 fonksiyonunda (4.4) eşitsizli¼gini de kullan¬rsak

vZ;�1;�2 (�) � �� 1C1 8� 2 G : j� � aj � 1 (r � 1)

eşitsizli¼gini al¬r¬z.

E¼ger � 2 < � 2 � 0 ise, � !1, � 2 G için

vZ;�1;�2 (�) � u(�)� log (� j� � aj
�)� C1� 1 � [C2 + log j� � aj] � 2 � O (1) :

Çünkü

u1 =

 
f (:) exp

"
�
X
p2P
gG (p; �) k (f; p)

#!
1;G

ya �1�a eşittir ve o halde, yeterince büyük j�j için, 1�un

u (�) < (�+ � 2) log j� � aj

özelli¼ginin sa¼gland¬¼g¬bir �ne komşulu¼gu mevcuttur ya da u1 6= �1, �1 6= �1

ve yeterince büyük j�j için, 1�un u (�) <
�
u1G;f + � 2 � � 2

�
özelli¼ginin sa¼gland¬¼g¬
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bir �ne komşulu¼gu mevcuttur. Buradan

u (�)� (�+ � 2) log j� � aj <
�
u1 � � 2 � �

�
log j� � aj = (�1 � �) log j� � aj � 0

u (�) < (�+ � 2) log j� � aj

eşitsizli¼gi elde edilir.

8� 2 G : 0 < j� � aj � 1 için gG (1; �) � C3 ve gG (a; �) � C4 � log j� � aj

eşitsizliklerini sa¼glayan C3 ve C4 sabit say¬lar¬mevcuttur.

E¼ger � 1 = 0 ise, VZ;�1;�2 fonksiyonunda (4.4) eşitsizli¼gini de kullan¬rsak

vZ;�1;�2 (�) � �� 2C3 8� 2 G : 0 < j� � aj � 1 r 2 (0; 1]

eşitsizli¼gini al¬r¬z.

E¼ger � 1 < � 1 � 0 ise, � ! a; � 2 G için

vz;�1;�2 (�) � u(�)� log (� j� � aj
�)� [C4 � log j� � aj] � 1 � C3� 2 � O (1) :

Çünkü

ua =

 
f (:) exp

"
�
X
p2P
gG (p; �) k (f; p)

#!
a;G

ya �1�a eşittir ve o halde, a�n¬n u (�) < (�� � 1) log j� � aj özelli¼ginin sa¼g-

land¬¼g¬bir �ne komşulu¼gu mevcuttur ya da ua 6= �1; �a 6= +1 ve a�n¬n

u (�) <
�
�uaG;f � � 1 + � 1

�
özelli¼ginin sa¼gland¬¼g¬bir �ne komşulu¼gu mevcuttur. Buradan

u (�)� (�� � 1) log j� � aj <
�
�ua + � 1 � �

�
log j� � aj = (�0 � �) log j� � aj � 0

u (�) < (�� � 1) log j� � aj

eşitsizli¼gi elde edilir.

Böylece gösterdik ki, vZ;�1;�2 (�) fonksiyonu a�n¬n ve 1�un �ne komşuluk-
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lar¬nda üstten s¬n¬rl¬d¬r. Bu taktirde,

evZ;�1;�2 (z) � 0 8z 2 b@fG:
Regüler s¬n¬r noktalar¬nda da evz;�1;�2 (z) � 0 eşitsizli¼gi do¼grudur. Buradan

[2]-deki Lemma 1-den (�nely hipoharmonik fonksiyonlar için maksimum prensibi)

8� 2 G için vZ;�1;�2 (�) � 0 eşitsizli¼gini al¬r¬z. � 1 ! � 1 ve � 2 ! � 2 i̧slemlerini

yapal¬m. Bu taktirde

vz (�) � log (� j� � aj�) + gG (a; �) � 1 + gG (1; �) � 2 (4.5)

eşitsizli¼gi elde edilir.

�0 2 GnP olsun. (4.2)-ye dayanarak sadece � 2 M� durumunu göz önüne

almam¬z yeterlidir. E¼ger x�� < j�0 � aj < x+� ise, o halde, (4.3) eşitsizli¼gini ve

� (j�0 � aj) = � j�0 � aj
� eşitli¼gini sa¼glayacak � > 0 ve � 2 R say¬lar¬seçebiliriz.

Buradan ve (4.5) eşitsizli¼ginden

vz (�0) � log � (j�0 � aj) + gG (a; �0) � 1 + gG (1; �0) � 2 (4.6)

elde edilir. E¼ger j�0 � aj =2
�
x�� ; x

+
�

�
ise, � > 0 ve � 2 R say¬lar¬n¬, (4.3)-ü

sa¼glayacak ve � j�0 � aj
� say¬s¬n¬, büyüklü¼gü önceden verilmi̧s key� " > 0 say¬s¬n¬

aşmayacak şekilde seçmek mümkündür. Bundan dolay¬ (4.4)-den vz(�) = �1

olur. O halde (2.10) �0 2 GnP için sa¼glan¬r. Bu sonucudan Z�in key� sonlu

s¬f¬rlar kümesi oldu¼gu göz önüne al¬narak, (3.1.3) eşitsizli¼gi elde edilir.

·Ispat. (Teorem 7)

Key� bir ! 2 (@fG)r al¬p sabitleyelim. a yerine ! alarak, Teorem 6-n¬n

� (�) := f (�) � f (w) (� 2 G) fonksiyonuna uygulanabilirli¼gini kontrol ederim.

Gerçekten 8z; � 2 @fG için sa¼glanan özellikten, (2.1) eşitsizli¼gine benzer eşit-

sizlik (yani finelim
�!z;�2G

j� (�)j � � (jz � !j) ; 8z 2 (@fG) n f!g) elde edilir. G

kümesinin her �ne ba¼glant¬l¬T bileşeni için f fonksiyonunun
�eT \ C� nP küme-

sine k¬s¬tlan¬̧s¬ �nely sürekli ve ! 2 (@fG)r � b (CG) oldu¼gundan aç¬kt¬r ki,

f fonksiyonu (A; !) koşulunu sa¼glar (yani, ! 2 b(CG) ve ! 2 b(T ) olmak

üzere G kümesinin �ne ba¼glant¬l¬T bileşeni için fz;G < +1 eşitsizli¼gi sa¼glan¬r).

Dolay¬s¬yla � fonksiyonu da bu koşulu sa¼glar. z = 1 noktas¬için (A;1) koşu-
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lundan �1;G < +1 koşulunu al¬r¬z. E¼ger 1 2
� b@fG�

i
ve �1 � 0 ise, (B0;1)

(yani 1 =2 b(CG), �1 � 0 ve f (�) = fineo
�
j�jm1+1

�
, � ! 1, � 2 G) koşulu

� (�) = fineo
�
j�jm1+1

�
; � ! 1; � 2 G koşuluna eşde¼gerdir. Demek ki, � (�)

fonksiyonu Teorem 6-n¬n koşullar¬n¬sa¼glar. (3.1.1)-e benzer bir koşulun sa¼gland¬¼g¬

aç¬kt¬r. Teorem 6-a göre ! 2 (@fG)r, 8� 2
� eG \ C� nP için

jf (�)� f (!)j exp
"
�
X
p2P

(gG (p; �) + gG (p; !)) k (f; p)

#
� � (j� � !j)

exp

24� X
w2G:f(w)=f(�)

gG (w; !) k (f; w) + gG (!; �) s (!; (f (:)� f (!)))

+ gG (1; �) s (1; (f (:)� f (!)))]

elde ederiz. ! yerine z yazarsak, (!�nun seçiminden bunu yapabiliriz) istenilen

eşitsizli¼gi al¬r¬z.

Teorem 8 ve Teorem 9-u ispatlamak için Teorem 7-den faydalanarak, [2]-deki

Teorem 4 ve Teorem 5-in ispat¬ndaki benzer i̧slemleri yapmak gerekiyor.
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5 SONUÇ

Bu tezde kompleks düzlemin �ne aç¬k kümelerinde tan¬mlanm¬̧s �nely meromorf

fonksiyonlar için, yal¬nkat olmaman¬n etkisi de hesaba kat¬larak, uç noktalarda

fonksiyonun ve majorant¬n davran¬̧s¬na ba¼g¬ml¬olarak daha kesin eşitsizlikler is-

patlanm¬̧st¬r.
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