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OZET

TEZ BASLIGI: Finely Meromorf Fonksiyonlarm Siir Ozellikleri

YAZAR ADI: Tugba AKYEL

Dort bolimden olusan bu tezde kompleks diizlemin fine agik alt kiimelerinde
tanimlanmis finely meromorf fonksiyonlarin Hardy-Littlewood tipi teoremlerle
verilen smir oOzellikleri incelenmistir. Bu teoremlerde fonksiyonun yalinkat
olmamasinin etkisi ve fonksiyon ile majorantin u¢ noktalardaki davranis1 dikkate
almmugtir. Standart topolojide holomorf fonksiyonlar ig¢in verilen bu 0Ozellik

asagidaki gibidir:

G Dbolgesinde analitik, G -de siirekli olan f fonksiyonu ve tezin birinci
boliimiinde bahsedilen o6zellikleri saglayan ,u:(0,+00)—>[0,+00) majorant! i¢in
siirdaki

(€)= f(z) < ulg -2)) V(zedG, ¢ %2

ozelliginden
FO-rGEsule-4)  VizeG.i#z

bolge 6zelligi elde edilir.

Bu tezde bu tip problemler standart topolojiden farkli olarak fine topolojide

tanimlanmis finely meromorf fonksiyonlar i¢in incelenmistir.

Tezin birinci boliimiinde problemin kisa tarihgesi ve ortaya konulusu ele
almmustir. ikinci boliim iki kisimdan olusmaktadir. Birinci kisimda, konkav
fonksiyonun tanimi verilmis ve bilogaritmik konkav majorantlar sinifi tanitilmistir.
Ikinci kistmda daginiklik kavrammin tanimi, hipoharmonik, finely holomorf, finely
meromorf fonksiyonlarin tanimlar1 ve kullanilan temel ozellikleri hakkinda bilgi
verilmistir. Uciincii boliimde finely meromorf fonksiyonlar i¢in Hardy-Littlewood
tipi teoremler verilmistir. Dordiincii boliim de iki kisimdan olugmaktadir. Birinci
kisimda yerel karakterli teoremler, ikinci kisimda ise, global karakterli teoremler

ispatlanmistir.



SUMMARY

THESIS TITLE: Contour-Solid Theorems for Finely Meromorphic Functions

THESIS AUTHOR: Tugba AKYEL

In this thesis which is divided into four parts, boundary properties of finely
meromorphic functions, defined on finely open subsets of complex plane, given with
theorems of Hardy-Littlewood type, are investigated. In these theorems the effect of
multivalence and the behaviours of the function and majorant on the end points are
taken into account. In Standard topology, for holomorphic functions these properties

are given as follows:

The function f is holomorphic in open set G and continuous in G, the
majorant 4 : (0,+oo)—> [O,+oo) is satisfying the mentioned properties in the second
part of the thesis. Using the following property at the boundary

A~ fEfsule—=)  vizedG.o =z

the domain property

|f(év)—f(2)5ﬂq5—2|) V(zeG, ¢ #z

is obtained.

In this thesis, such types of problems are examined for the finely meromorphic

functions, defined on the fine topology differently from standard topology.

In the first part of the thesis, brief history and display of the problem exist. The
second part consists of two sections. In the first section, the defination of concave
function is given and the class of bilogaritmic concave majorant is introduced. In the
second section, the information about the term thinness, the defination and the used
basic characteristics of the finely hypoharmonic, finely holomorphic, finely
meromorphic functions is given. In the third part, theorems of Hardy-Littlewood
types are given. The forth part consists of two sections. In the first section, theorems
with local character, in the second section, theorems with global character are

proved.
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1 GIRIS

Bu tezde, finely meromorf fonksiyonlarin yalinkat olmamasinin etkisi ve ug nok-
talarda fonksiyon ile majorantin davramigi dikkate alinarak bilogaritmik konkav
majorantli Hardy-Littlewood tipi teoremler yerel ve global karakterli olarak ince-
lenmistir.

Bu tip teoremler ¢ncelikle holomorf fonksiyonlar icin ele alinmigtir. Holo-
morf fonksiyonlar i¢in bu teoremlerin uygulandigi alanlar olarak Riemann sinir
deger problemi, Cauchy tipi ve singiiler integraller, yaklagim teorisinin diiz ve ters
problemleri v.s. gosterilebilir.

C genellestirilmis kompleks diizlem, G C C acik kiime, f fonksiyonu G—da
stirekli ve G—de analitik olsun. G C C kiimesi ve p : (0,400) — [0, +00)
seklinde tanimlanan y (0) majorant: hangi 6zellikleri saglamalidirlar ki, agagidaki

gerektirmeler dogru olsunlar:

1. Eger
F O =f@EI<p(C—2) V(z2€0G, (#=2
ise,
FQO)—fEI<Cu(¢—2) V(2€G, (#2 (1.1)

elde edilir; burada C' > 1 sabiti ( ve z—den bagimsizdir.

2. zg € OG sabit noktasi igin

(O = f o)l Su(C—2l)  VCeIG, ¢# 2

ise,

[F(Q) = f(2)]l <Cu(C—2l)  VYCEG, ¢#2

elde edilir; burada C' > 1 sabiti (—den bagimsizdir.

Holomorf fonksiyonlar i¢in bu tip problemler ilk G. H. Hardy, J.E. Littlewood,
S. E. Warschawski, J. L. Walsh, W. E. Sewell tarafindan ortaya konmustur. G.
H. Hardy [6], J.E. Littlewood 1 gerektirmesini, G daire ve u (§) = §* (a € (0, 1])
durumunda ispatlamiglardir. Ayrica S. E. Warschawski [21] 2 gerektirmesini, J.

L. Walsh ve W. E. Sewell [22] 1 gerektirmesini G Jordan bolgesi ve p () = 0



durumunda ispatlamiglardir, 6yle ki, her iki sonucta da C = 1 elde edilmistir.
1 (9) = 0 |Ind| i¢in de benzer sonuglara ulagilmigtir.

W. E. Sewell 1942 yilinda yayinlanan [23] monografinda, simdi Warschawski-
Walsh-Sewell problemleri olarak adlandirilan bir dizi agik problem ortaya koymus-
tur. Bunlardan birisi Warschawski-Walsh-Sewell’in yukaridaki kosgullar altinda
elde ettikleri sonuglarimi Jordan bolgelerinden daha genel bolgelere ve 1 (0) = 6%,
1 (6) = 4 |Iné| gibi majorantlarmdan daha genel olan siireklilik tipi majorantlara
genellegtirilmesi problemidir.

Bu konuda L. G. Magranadze, M.B.Gagua, Y. L. Geronimus, Y. A. Brudny ve
I. E. Hopenhaus tarafindan bazi sonuglar elde edilmistir. Jordan bolgeleri (bazi
sinirlamalar ile) ve i (0) = |Ind|™” majorant1 (p > 0) (ve buna benzer diger somut
majorantlar) i¢in de sonuglar alinmigtir [8,24]. Daire i¢in genellikle kesin olmayan
(siireklilik modiilii iizerine ek sartlar konuldugunda kesin olan) bazi sonuglar elde
edilmistir [26-20].

Warschawski-Walsh-Sewell problemleri 1971 yilinda P. M. Tamrazov tarafin-
dan tam olarak ¢oziilmiistiir. Elde edilen sonuclar fonksiyonlar teorisi, tekil inte-
gral operatorler teorisi, sinir problemleri gibi cesitli uygulamalarda yer almigtir.
Ayrica P. M. Tamrazov, problemin ¢oziimii i¢in yeni metotlar ortaya koymustur.
Bu metodlar problemi daha genel olarak formiile etmeye imkan vermistir. P. M.
Tamrazov gok genel olan ¢ok baglantili (hatta sonsuz baglantili) bolge siiflar: ve
sinirinin agagl kapasite yogunlugu pozitif olan agik kiimeler ve normal majorant-
lar sinifi (bu siif siireklilik modiilii tipli majorantlar simfindan gok daha genistir)
icin yukaridaki sonuglar1 elde etmistir [27-28].

1979 yilindan baglayarak yukaridaki problemler kuvvet majorantlar (yani
p(6) = 0% icin Y. Y. Trahimchuck [25], A. I. Schekorskii [30], P. M. Tamra-
zov [18], F.W. Gehring, W. K. Hayman ve A. Hinkkanen [29] tarafindan tam
¢oziilmiiglerdir.

1984 yilinda T .H. Aliyev ve P. M. Tamrazov tarafindan asagidaki problemler

ortaya konmustur:

1. (1.1) ve (1.2) egitsizliklerinde fonksiyonun yalinkat olmamasimin etkisinin

incelenmesi,

2. Yukaridaki sonuglarin meromorf fonksiyonlara genellegtirilmesi.



Kuvvet ve daha genel olan bilogaritmik konkav majorantlar icin her iki prob-
lem T. H. Aliyev ve P. M. Tamrazov [1,8] tarafindan Green fonksiyonu dilinde tam
¢oziilmiigtiir. Ayrica (1.1) ve (1.2)-de sinirda yalinkat olmamanin etkisi problemi
de ¢oziilmiigtiir [17]. 1 ve 2 problemleri normal majorantlar ve yeterince genis
kiimeler i¢in T. H. Aliyev tarafindan ¢oziilmiigtiir. T. H. Aliyev ve P. M. Tamra-
zov tarafindan ¢ok katli meromorf fonksiyonlar icin yukaridaki problem incelen-
mig ve genig kogullar altinda teoremler ispatlanmigtir. [1] ¢aligmasinda meromorf
fonksiyonlar i¢in fonksiyonun yalinkat olmamasinin ve sifirlarinin etkisi de g6z
oniinde bulundurularak kesin sonuglar elde edilmistir. Ayrica bu ¢alismada is-
patlanan esitsizlikler daha kesindir. Ciinkii burada ug¢ noktalarda fonksiyonun
ve majorantin davramgi da goz oniine almmigtir. [30,31] ¢ahismalarinda mero-
morf fonksiyonlar ve normal majorantlar siifi i¢in sonuglar elde edilmistir. Yine
[11,12,15] galigmalarinda yukaridaki sonuglar meromorf fonksiyonlara genellegti-
rilmistir ve kesin sonuclar elde edilmistir. Ayrica Oklid topolojisi iizerinde ortaya
konulan bu problemler ve elde edilen tiim bu sonuclar, ondan daha kuvvetli
olan fine topolojiye genellestirilmistir. Holomorf ve meromorf fonksiyon icin elde
edilen sonuclara benzer sonuglar, fine topolojide taniml finely holomorf ve finely
meromorf denilen fonksiyonlar igin de elde edilmistir. [2] calismasinda elde edilen
sonuglar, [16] ¢aligmasinda finely meromorf fonksiyonlara genellestirilmistir; 6yle
ki, ele alinan fonksiyonun yakinkat olmamasi ve sifirlarinin etkisi goz 6éniine alin-
migtar.

Bu tezde 1 ve 2 problemi, uc noktalarda fonksiyon ile majorantin davranisi da
hesaba katilarak, bilogaritmik konkav majorantlar sinifi ve kompleks diizlemin
fine agik kiimesinde tanimlanmig finely meromorf fonksiyonlar igin incelenmis

olup, daha kesin sonuclar elde edilmistir.



2 TEMEL TANIMLAR

2.1 Majorantlar

Majorantlar, fonksiyonlarin sonlu fark, diizgiinliik ve aproksimatif tzelliklerine

gore siiflandirilmasi amaciyla kullanilirlar.
Tanim 1 v(t) fonksiyonu (a,b) araliginda tanvmlanmag olsun. Eger

t1 + 2
2

v(t) ;U(t2),Vt1,t2 € (a,b)

v

) >

ozelligi saglanyorsa v(t)—ye konkav fonksiyon denir.

Tamm 2 p: [1,+00) — (0, +00) seklinde tanvmlanan p fonksiyonu iginlog u (e')
fonksiyonu (0, +00) aralginda konkav ise, p (t) —ye bilogaritmik konkav fonksiyon

denir.
M ile agagidaki kogullar: saglayan ;1 fonksiyonlar sinifini isaretleyecegiz:
i. w:(0,400) — [0,400);
ii. I, = {x: p(x) > 0} baglantih kiimedir;
iii. log p1 (z) fonksiyonunun I, —ye kisitlanisi log x fonksiyonuna gore konkavdir.

p majorant olarak isimlendirilir. /,, kiimesinin bog olmadig: biitiin p € 9 —lerin
smifin1 M ile isaretleyelim. p € M* icin [, araligimin sol ve sag ug noktalarimi
sirasiyla x, ve mfj ile isaretleyelim. Agiktir ki, 0 < z, < xlf < +00o esitsizligi
saglanir.

r, < x: oldugunda kastedilen konkavlik kosulu asagidaki kogullarin kombi-

nasyonuna denktir:
i. log u (x) fonksiyonu (x;, m:[) araliginda log x fonksiyonuna gére konkavdir;
ii. log y1 (v) fonksiyonu I, kiimesinde alttan yar: siireklidir.

€ M icin

log 11 ()
m —
z—oo logx



limitleri mevcut olup,
—00 < g <400, —00 < o <00, [y > foo- (2.1.1)

x;, > 0 (benzer olarak x} < +00) ise, piy = +oo (uygun olarak pi, = —00) kabul
edecegiz. Eger p = 0 ise, ug ve p., olarak (2.1.1) esitsizliklerini saglayan keyfi
sonlu sayilar: kabul etmek olur. 1, < +o00 esitsizligi saglandiginda, my ile mo—1 <
to < mo kogulunu saglayan tam sayisini, p,, > —oo esitsizligi saglandiginda mq,
ile Mmoo < iy, < Moo + 1 kogulunu saglayan tam sayisini isaretleyecegiz.

Her sabitlenmis o € R, € (0, +00) i¢in u (z) := Sz fonksiyonu 9* simifin-
dandir ve buradan p, = ., = a alirnz. Eger a tamsay1 ise, my = my = « olur.
M ve M* smuflar1 [18]-de incelenmistir.

Acgiktir ki, 1 (0) = 0 kuvvet majorantlart 9t simifindandirlar.

Teoremlerin ispatlarinda da kullanmlacak olan ve [16]-da yer alan agagidaki

notasyonlar1 verelim:

i. A:(0,400) — [—o0, +00);

ii. I, ={z: A(x) > —oo} baglantih kiimedir;

iii. A (z) fonksiyonunun 7, —ya kisitlanisi log « fonksiyonuna gore konkavdir.

I, kiimesinin bog olmadig biitiin p € L—lerin simifin1 L* ile isaretleyelim. p €
L* igin I araliginin sol ve sag ug noktalarim sirasiyla z,; ve .CL': ile igaretleyelim.
Agiktir ki, 0 < 7, < xf < 400 esitsizligi saglamir. A (.) fonksiyonu L veya L*
siifindayken, exp A (.) fonksiyonu 9 veya 9* simflarinda yer alir.

z, < x) oldugunda kastedilen konkavlik kosulu asagidaki kosullarm kombi-
nasyonuna denktir:
i. A\ (z) fonksiyonu (x;, a::[) araliginda log z fonksiyonuna gore konkavdir;

ii. log A (z) fonksiyonu I, kiimesinde alttan yar: siireklidir.

w1 € L icgin

, A% = lim Az)

z—oolog x



limitleri mevcut olup,
AN >A2 0 A0 — o0, A° < + 0.

Her sabitlenmis o € R, 6 € R sayilar1 ve L*—dan olan A(z) := alogz + 6

fonksiyonu icin A\ = Ao = « esitligi elde edilir.

2.2 Finely Hipoharmonik ve Finely Meromorf Fonksiyon-

lar

Fine topoloji, 1940 yilinda Henri Cartan tarafindan biitiin subharmonik fonksiy-
onlarmm siirekli oldugu topolojilerin en zayifi olarak tanmimlanmigtir. O halde,
siirekli olmayan fonksiyonlarin varligindan dolayi, fine topoloji bildigimiz Fuclid
topolojisinden daha kuvvetlidir. Marcel Brelot [4, s.6, 9-17] tarafindan tanim-
lanmig dagimiklik kavramiyla fine civarlar1 karakterize etmek miimkiindiir. Fine
topoloji Hausdorff 6zelligini saglar ve tam regiilerdir. Ote yandan fine topoloji
sayilabilirligin birinci aksiyomunu da, ikinci aksiyomunu da saglamaz [9, s.21].
Standart topolojide kapali olan fine civarlar, fine civarlarin bazini olusturmak-

tadir.

Tamim 3 Asagidaki kosullardan biri saglandiginda E C C kiimesi xo noktasinda

dagimaktir diyecegiz:

i. C kapali diizleminin standart topolojisinde o noktas1 E\{zo} kiimesinin sinir

noktasi degil;

ii. 2o noktast E\{zo} kiimesinin sinir noktasidir ve x¢-mn bir civarinda subhar-

monik olan 6yle u fonksiyonu mevcuttur ki,

( O) z—x0,2€E\ {0} ( )

esitsizligi saglanir.

Tanim 4 F kiimesi g € C noktasinda dagimik olmak fizere @\E = CFE bigi-

mindeki kiimeye zo—n fine civary denir [4, s.11].



Tanim 5 F kiimesinin daginik olmadign x € C noktalar: kiimesine E—nin C— daki
baz denir ve b(E) ile isaretlenir. E := E U b(E) kiimesine E —nin C—daki fine
kapanisy denir. E ile E—nin C—daki standart kapanising gosterilir. Acgiktur ki,
E C E. E ile E C C—nin C—deki standart kapanast, 8AfE ile ise, E—mnin C—daki
fine sinury isaretlenir. OpE == CN (9AfE olsun. (E); :== E\b(FE) kiimesi, E—nin
biitiin irreqular noktalar: kiimesini, (E), := E\(E); ise, biitin regiler noktalar:

kiimesini gostermektedir.

Asagidaki ozellik ancak iki boyutlu hal igin gegerlidir. Eger G fine agik ve
fine baglantil kiime ise (yani fine bolge), a € C noktasmm G icin fine dig nokta
olmasi i¢in gerek ve yeter kogul bu noktanin G icin standart topolojide disg noktasi
olmasidir. Yani fine bolgenin fine kapanisi standart topolojide de kapalidir.

E C C kiimesi xTo € C noktasinda dagiik ise, zy merkezli, istenildigi kadar
kiigiik yaricapli ve F ile ortak noktasi olmayan gemberler mevcuttur [4, s.97].

z € C noktas1 igin {z} —de toplanmig Dirac olgiisiinii ¢, ile, e,—in W C C

kiimesine balayage (=sweeping out) m1 "V ile isaretleyelim [3, s.25].

Tanim 6 Fine a¢ik D C C kiimesinde tanimlanmis, u : D — [—o00, +00) fonksi-
yonu asagidaki kosullary sagladiginda, ona D—de finely hipoharmonik fonksiyon

denir:

i. u fonksiyonu D—de yukaridan finely yar: siireklidir;

ii. Fine topolojinin D—ye izi, fine kapaniglar1 D—ye dahil olan sinirh fine agik V

kiimelerinin olusturdugu

u(z) < /udazcv VzeV

*

esitsizligini saglayan bir baza sahiptir.

Yukaridaki [ ile agag: integral isaretlenmektedir (degisken igaretli fonksiyon-
larin agag1 ve yukar integralleri igin [29, s.163-164]).

Tanmim 7 Fine a¢ik D kiimesinde tanymlanmas ve D—nin fine yogun alt kiimesinde

sonlu olan hipoharmonik fonksiyona finely subharmonik fonksiyon denir.



Tanim 8 £ C C w¢in, E—de -oo degerini alip, C—da subharmonik olan bir

fonksiyon mevcut ise, E—ye polar kiime denir.

E c C i¢in ((A:\E = FFE ve E C Cigin C\F := CF olsun.

G C C fine acik kiime ve z € GG olsun.

Eger F'G polar olmayan kiime ise, w¢ ile G—ye gore genellestirilmis harmonik
Olciiyii isaretleyecegiz. Eger F'G polar kiime ise, G—ye gore harmonik olgiiyii

G:

w 0 esitligi ile tamimlayacagiz. Agiktir ki, F'G polar degil ise, o halde, w% # 0.

w¢ icin herhangi durumda z € G noktasinda G—ye gore harmonik ¢l¢ii terimini

kullanacagiz.

Tanim 9 Eger G—nin her finely baglantily bileseni T' i¢in, Q N OfT kiimesi, z €
T noktalarinda pozitif harmonik dlgiiye (wZT (K) > 0) sahip hicbir K kompakt:
icermiyorsa, Q C FG kiimesine G—e nazaran nearly negligible-dir denir. Bu
gerektirme asagudaki duruma denktir: Ya FG polardur (o halde, Q—da polardir)
yada G—mnin her finely baglantil bileseni T i¢in OfT polar degildir ve Q) kiimest i¢
harmonik dlgiisii sifir olan bir kilmedir ve z € T'. Eger E C FG kiimesi G—nin
her finely baglantily bileseni T' i¢in logaritmik kapasitesi pozitif olan (Cap(K) > 0)
K C 0;T kompakt alt kiimesi icermiyorsa, E kiimesine G—e nazaran nearly

negligible-dvr denir. Ozel halde i¢ logaritmik kapasitesi sifur olan herhangi E C

FG kiimesi G—e nazaran nearly negligible-dar.

Eger T, G—nin finely baglantili bilegeni ve z € G ise, w¢ = w! (K) esitligi

z

dogrudur.

Tanim 10 D ¢ C fine agik ciimle olsun. ¢ : D — C fonksiyonu asagidaki
kosulu sagladige taktirde ona D—de finely holomorf fonksiyon denir: Keyfi z € D
noktasinin C—da kompakt olan éyle V- C D fine civart mevcuttur ki, o—nin V —ye

121, V—nin bir agik civarinda holomorf olan fonksiyonun V —ye 12i ile ¢akisiyor

[8].

C—da finely D acik kiimesini ele alalim.

B.Fuglede agagidakini ispatlamigtir [3, s.96], [3, Teorem 4].

Onerme 1 E, fine agik D kiimesinin polar alt kiimesi, u fonksiyonu D\E—de

hipoharmonik ve E—mnin her noktasinin bir fine civarinda yukaridan sinirl olsun.



Bu takdirde u fonksiyonunun D\E—ye tek hipoharmonik devami vardir ve bu
devam

= f1 li Ve &
u(z) oneCHz,E?D\Eu <) z

formdilii ile belirlenir.

Finely holomorf fonksiyonlarin sifirlar1 hakkindaki asagidaki 6nerme Fuglede’nin
[3] caligmasinda yer almaktadir.
Eger f fonksiyonu G'—de finely holomorf ise, k (f,w) ile f (w) degerinin w

noktasindaki mertebesi gosterilsin.

Onerme 2 D fine bélgesinde tanimlanmas finely holomorf fonksiyonun sifurlary
kiimesinin kuvveti saylabilirden fazla degildir. Fine a¢ik D kiimesinde finely holo-
morf fonksiyonun her a sifiriman mertebesi sonlu olup asagidaki esdeger kosullarla

belirlenir:
i. f"(a)# 0 veVk < n igin f*(a) = 0;

i’. D—de finely holomorf olan IF fonksiyonu vardir ki, F (a) # 0 ve f(z) =
(z —a)" F(2), Vz € D;

ii. k(f,a), f fonksiyonunun sifirinin mertebesi.

Tanim 11 a noktas: civarinda tanmamlanan f : D — C fonksiyonu, k negatif tam
sayr ve F, F(a) # 0 foksiyonu bu civarda finely holomorf olmak iizere f (() =
(¢ — ot)]‘C F(() seklinde yazlabiliyorsa, ona a noktasinda finely meromorf fonksiyon
denir. D—nin her noktasinda finely meromorf olan fonksiyona D—de finely mero-

morf fonksiyon denir.

Tiimleyeni (yani C'G) polar olmayan fine agitk G C C kiimesi i¢in, w, z € C,

w # ( olmak iizere,

gc (w, z) = /log ;z : z;dg?G (2)

formiilii ile tanimlanan Green fonksiyonu mevcuttur.
g (w, ¢) ile sinirmin logaritmik kapasitesi pozitif olan fine agik G C C kiimesinin

genellegtirilmis Green fonksiyonunu isaretleyelim.
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B c Cagik kiime ¢ € (0,1), w, z € C olmak iizere l; (w, z) = log max {¢, |w — z|}

olsun.

Hay (e (w,.),¢) = /zt (w, ) dC® (2) (2.2.1)

isaretleyelim.
Asagidaki 6nerme P.M.Tamrazov un [18] ¢aligmasindaki 6nermenin benz-

eridir.

Onerme 3 Keyfi ( € B ve w € C degiskeni icin

limHp (I, (w,.), C) = hg (w, () (2.2.2)

t—0

limiti mevcut olup, w € C degigskenine gore finely subharmoniktir ve
hg (w, () —log|w — ¢| = ga (w, () V(e B,weC (2.2.3)

formiilii saglanar.

Ispat. ¢,w € Bigint — 0kosulunda I, (w, ¢) monoton azalarak log |w — ¢| —ye

yaklagir. (2.2.1)-e gore (2.2.2) limiti mevcut olup,

hB(w,C):/log]w—nggB(z) V(e B, weC

kosulunu saglar. Green fonksiyonunun tanimina gore, (2.2.3) formiiliinii aliriz. =
@ kiimesi C—da fine agik ve z € 8AfG olsun. v : G — [—o0,+00] ve f: G —

C fonksiyonlar: i¢in agagidaki fine iist limitleri tanitalim:

finelimsupu (¢) =: ug,s (2)
(—2z,(eG

finelimsup | f (¢)] =: fa (2)

(—z,CeG
G kiimesi C—da fine acgik ve a € CG sabit bir nokta olsun.ve f : G — C

fonksiyonu igin
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finem%, a € 0/G
fac =1 —agec 8l ! (2.2.4)
O, a ¢ afG
fineﬁbgjﬂ, 00 € 8AfG
frog =4 moocea - (2.2.5)
0, 0@ §é 8fG

isaretleyelim.

Eger f fonksiyonu G—de finely meromorf bir fonksiyon ise, k (f,w) ile f (w)
degerinin w noktasindaki mertebesi gosterilsin.

z € ((A:, G, p € MM ve f fonksiyonu icin agagidaki formiillerle belirlenen

s(z, f () =s(z, f(.),G,p) sayilarn igaretleyelim.

/0 .
s(z, f ()= <“('Z|)>Z,G , x,=0, VzeC
0, z,>0, VzeC

RAOK + _
s(00, () = (u(H))OOG ozl =400
Y ’ 0 +
! mu < 400

Eger u = 0 ise, z € C icin s(z, f(.) = 0 varsayihr. p € 9 icin eger
o # +oo ve z € Cise, s(z, f(.)) = foa + Ho; eger p,, # —oo ve z € C ise,
S (OO7 f ()) = fOO,G — Moo

G C C fine acik kiime, f: G — C seklinde tanimlanmig meromorf fonksiyon

ve 1 € M olsun. Asagidaki kogullara bakalim:

(A,00) 00 € b(CQ) ve oo € b(T) olmak iizere G kiimesinin fine baglantilh T

bilegeni i¢in foo ¢ < +o00 esitsizligi saglanir;
(B, 00) 00 ¢ b(CQ), e > =00 ve [ (¢) = fineo (|¢|""), ( — o0, C € G;
(Bo, 20) 00 ¢ b(CG), piog > 0 ve [ (¢) = fimeo (¢["=""), ¢ = 00, C € G
ve z € C sabit bir nokta ise, agagidaki kosullara bakalim:

(A,z) z € b(CG) ve z € b(T') olmak tizere G kiimesinin fine baglantili 7" bilegeni

icin f, ¢ < 400 esitsizligi saglanir;

(B,2) = ¢ H(CG), 1y < +00 ve f(¢) = fineo (¢ = 2™), ¢ = 2, ¢ € Gs
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(Bi,2) 2z ¢ b(CG), g < 1ve f(¢) = fineo (¢ —2™"), ¢ — 2, ¢ € G.

G kiimesi C—de fine acik, a € CG sabit bir nokta ve u : G — [—00, +0]

fonksiyonu igin

nelim ()
, [ il ac oG
Yoy = ’
0 a§é8fG.
el <) )
W BT
Uay = ’ ~

olsun.

A € L olsun. Agagidaki kogullari goz oniine alalim:

(A';00) 0o € b(CG) ve oo € b(T) olmak iizere G kiimesinin fine baglantih T

. Ce e o e e )
bileseni i¢in u7’, < + 00 esitsizligi saglanr;

(B',00) 0o & b(CG) ve co—un u(C) < A(|¢ —al) + ¢, V¢ € G NV bzelliginin

saglandigi1 bir V fine komsulugu, ayrica ¢t € R sabiti mevcuttur;

(A’ a) a € b(CG) ve a € b(T') olmak iizere G kiimesinin fine baglantil 7" bilegeni

igin uf ; < +00 egitsizligi saglanir;

(B'ya) a ¢ b(CG) ve a—nm u(() < A(|¢—al)+t, V¢ € GNV 6zelliginin saglandig

bir V fine komsulugu, ayrica ¢t € R sabiti mevcuttur.
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3 HARDY-LITTLEWOOD TiPI TEOREMLER

3.1 Yerel Karakterli Teoremler

Teorem 4 a € C sabit nokta; G C C\ {a} fine sinari (0;G) polar olmayan fine
agik kiime; p € M; f : G — C sonlu sayrda kutba sahip finely meromorf fonksiyon

ve p1, P2, .-, PN, | — in tim farkl kutup noktalar: olsun. Varsayalim ki,

finelm|f Q] <z —al) V2 € (356)\ {a) (3.1.1)
—2z,(E
21 = a, 29 := 00 olmak tizere, birbirinden bagimsiz olarak her s = 1,2 i¢in

(A, zs) veya (B, zs) kosullarindan biri saglansin.

Bu taktirde ¥( € G\ {p1,p2, ..., PN} i¢in

£ (O < n(¢—al)exp | Y g6 (0, ) k (f.p) = go (w, Q) k (f,w) +
)=l wif (w)=0
+ga (a,¢) s (a, [ () + ga (00,¢) s (00, f ()] (3.1.2)

esitsizligi saglanar.

Not 5 gg (a,() s (a, f(.)) vegg (00,C) s (oo, f(.)) ifadeleri pozitif degildir ve bun-
dan dolayr (2.1) esitsizligi genellikle [16] ¢calismasindaki (3) esitsizliginden daha

kesindir.

Teorem 6 a € C sabit nokta; G C C\{a} fine sinury (0¢G) polar olmayan fine
agik kiime; Q C FG kiimesi a ve oo noktalarine icersin; i € M; f: G — C finely
meromorf fonksiyon olsun. z, := a, z3 := oo olmak tizere, birbirinden bagimsiz
olarak her s = 1,2 i¢in (A, zs) veya (B, zs) kosullarindan biri saglansin. f—in

G—deki tiim kutup noktalar: kiimesi P ve
Az) :=logu(x) Vx>0,

u () =1log|f ()] = g (0, Q) k(f,p) V(eC

peEP
olsun. Varsayalim ki, G kiimesinin her fine baglantilh T bileseni i¢in asagidaki

kosullar saglaniyor:
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Q kiimesi T'—ye nazaran nearly negligible olup,
ury < oo Vze (0/T)\{a};

uryg(2) < Az —al) Vz e (9(T)\Q.

Bu taktirde

T(b):s( exp[Zng, ] G,u),bé@

peEP

olmak tizere

) exp [ > 96 (p,¢ ] p(l¢ —al) x

peP

X exp ! > ga(w.Qk(f, w)+9G(aa<)7(a>"‘QG(OOaC)T(OO)] VCEG\ P
e (3.1.3)

egitsizligi saglanar.

3.2 Global Karakterli Teoremler

Teorem 7 G C C fine agik kiime; up € M; f - GNC — C ise, G N C—deki tiim

kutup noktalar: kiimesi P olan G—de finely meromorf bir fonksiyon olsun ve
1f(2) = FOl < pllz—<l) V2, (€ 0sG, (F#2

kosulunu saglasin.
f—in G—ye kisitlanisi (A, 00) veya (By, 00) kogullarindan birini saglasin.
Varsayalvm ki, G kiimesinin her fine baglantils T' bilegeni i¢in f—in (T N C) \P

kiimesine kisitlamisy finely siireklidir. Bu taktirde

£ Q) = F(2)exp | =) (96 (9. Q) + 9o (p, 2)) k (f, p)] (¢ — 2[) x

pEP
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xexp [— Y ga(w2)k(fiw)+g6(2.0)s (2 (f ()= f(2) +
weG.f(w)=f(0)

+ g6 (00,0) s (00, (f () = £ (2))] Vz € (8,G),, ¥ € (é N <c) \P, 2 # (.

Teorem 8 G, pu, f Teorem 7-nin tim kosullarini saglasin. Ek olarak varsayalim

ki, zo € (CG), UG sabit bir nokta, p, < +oo ve

£ (€)= f (20)| = fineo (J¢ — 2[™ ") ((— 20, ¢ €G\P).

Bu taktirde

£ (€) = f (20)] exp [—Z (9c (p,C) + 9 (P, 20)) k (f,p) | < p(]C = 20]) X

peEP

X exp — { Z g (w, 20) k (f,w) + ga (20, C) s (20, (f (-) — f (20)))

weG, f(w)=£(C)
+ 96 (00,0) s (00, (f (1) = f(20)))] V¢ €G\P, (# z,00.

Teorem 9 G, pu, f Teorem 7-nin tim kosullarini saglasin. Ek olarak varsayalim

ki, po < 1. Bu taktirde

/(€)= f (2)]exp [—Z (96 (P, €) + 9c (p,2)) k (f,p)] < p(]¢—2]) x

peP

X exp — |: Z Jda (w,z)k(f,w)+gc (Z, C)s(z, (f () —f(z)))

weG, f(w)=£(¢)
+96:(00,Q) 5 (00, (F () = f (D) ¥z C€ (GNC)\P 2 #£C,
[16] ¢alismasinda yer alan agagidaki énermeyi verelim:

Lemma 10 a € C sabit nokta; G\ {a} finely a¢ik kiime; pn € 9M; f - G — C
fonksiyonu finely meromorf olsun. z; := a, zy := oo olmak tizere, birbirinden
bagimsiz olarak her s = 1,2 i¢in (A, z5) ve ya (B, zs) kosullarindan biri saglansin.
O halde,G kiimest, log | f (C)], A (z) :=log p (x), ve ayni s = 1,2 i¢in (A, z5) veya
(B', zs) kosullar saglanar ve zg, f—in G deki tiim kutup noktalar: kiimesi P—den

finely ayrik ve f fonksiyonunun zs—e finely holomorf devami mevcuttur.
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4 ISPATLAR

Ispat. (Teorem 6) m
G kiimesine ve f fonksiyonuna Lemma 10-u uygularsak, G kiimesi, u ({) :=
log|f (¢)], A(z) := logu (x) fonksiyonlar: ve s = 1,2 i¢in (A4’, z,) veya (B, z)

kogullar1 saglanir. Z gc (p, ¢) k (f, p) serisinin G—nin baglantili bilegenlerindeki

pePNG(C)
iraksak oldugu noktalar1 goz oniine almayacagiz. Bu taktirde genelligi kaybetmeden

varsayacagiz ki, seri G'\ P kiimesinde yakimsaktir. Simdi varsayalim ki, Z kiimesi
f fonksiyonunun GG—deki sonlu sayida herhangi sifirlar1 kiimesidir. G—de agagi-

daki fonksiyonu goz 6niine alalim:

vz(Q) = u(Q) + Y go(w, Ok(h,w), (€G.

z2€Z
Q7 := QU(FG); seklinde igaretlenen ) kiimesi, G kiimesinin her fine baglantili
T bilesenine nazaran nearly negligible olur. wvyz(() fonksiyonu G—de hipohar-

moniktir ve

ies(2) = (02)as(z) ¥z € (0;0)\Qz

Bu taktirde vz(() fonksiyonu [2]-deki Teorem 8.2-nin tiim kosullarin gergekler ve
vz(C) < M| —al), VCeG\P (4.1)

esitsizligi saglanir. Bu taktirde V¢ € G\ P igin

[F(Qlexp | =D ga(p, Q) - k(h,p)] < (¢ — al) exp [—ch(w,ok(h?w)

peP z2€Z

(4.2)
esitsizligini elde ederiz. Buradan 7 (a) < 0 ve 7 (00) < 0 elde edilir. 7 (a) := 7! ve
7 (00) := 72 igaretleyelim. i = 1,2 olmak iizere ya 7; = 0 = 7 ya da 7; € (7%, 0]
seklindedir.

p(z) <ox® Yo >0 (4.3)

Va > 0 olmak tizere herhangi o > 0 ve a € (—o00, +00) sayilarin ele alalim.Yeni
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bir fonksiyon dahil edelim:

V7,7, (€) i=v2(¢) —log (0 |¢ — al”) — ga (a,¢) 1 — ga (00, () Ta.

U7+, 7, fonksiyonu G—de hipoharmoniktir ve G—nin a ve co dan fine ayrik her
fine alt bolgesinde tistten siirhdir. Ayrica tiim regiiler z € (0¢G) \ {a} smnir

noktalarinda (2.2.3) esitligini de gtz niine alirsak, agagidakini aliriz:

{inechTélUZﬂ'lffz (C) <0.
—2z,0€

(4.2)-den
vz(¢) <log (o |C —al”) (4.4)

esitsizligini elde ederiz.
V¢ e G:|C—al > 1igin gg(a,() < Cy ve gg(00,() < Cy + log|C — al
esitsizliklerini saglayan C ve Cy sabit sayilar1t mevcuttur.

Eger 79 = 0 ise, vz, -, fonksiyonunda (4.4) esitsizligini de kullanirsak
Vg (() < —T1C1 YCEG:|C—a|>1(r>1)

esitsizligini aliriz.

Eger 72 < 75 < 0ise, ( — o0, ¢ € G icin
V71,72 (€) S u(C) —log (0 [¢ —al”) — Cimi — [Ca +log [ —al] T2 < O (1).
Ciinkii

peP

u> = (f (.) exp [—ch (p, Q) k (f,p)])
0,G

ya —oo—a esittir ve o halde, yeterince biiyiik |¢| igin, co—un
u () < (a+72)log|C — al

ozelliginin saglandig1 bir fine komsulugu mevcuttur ya da u™ # —oo, A # —o0

ve yeterince biiyiik |(] igin, co—un u ({) < (uOGO FtT2— 72) 6eelliginin saglandigy
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bir fine komsulugu mevcuttur. Buradan

u(Q) = (a+m)logl¢ —al < (u®—7"—a)log|¢ —al = (ky —a)log|{ —al <0

u(¢) < (a+72)log|C—al

esitsizligi elde edilir.
V(e G:0<|C—al <1igin gg(00,() < C3 ve gg(a,() < Cy—log|C — al
esitsizliklerini saglayan C5 ve C4 sabit sayilart mevcuttur.

Eger 71 = 0 ise, Vz,, r, fonksiyonunda (4.4) esitsizligini de kullanirsak

VZ, 1,19 (C) S _7-203 VC € G:0< |C - a| S 1 re (07 1]

esitsizligini aliriz.

Eger 7' <71 <0ise, ( —a, ¢ € G icin

Vs, (C) S u(C) —log (o |¢ = al*) = [Cy —log |¢ —al] 71 — Csm2 < O (1)
Ciinkii

peP

u® = (f (-) exp [—ch (», <) k’(f,p)])
a,G

ya —oo—a esittir ve o halde, a—nn u (¢) < (a — 71)log|( — a| 6zelliginin sag-

landig1 bir fine komgulugu mevcuttur ya da u® # —oo, A* # +00 ve a—nin
u(() < (—u‘é’f -7+ 7'1)

ozelliginin saglandig: bir fine komsulugu mevcuttur. Buradan

u(Q) = (a—7i)log|¢ —al < (~u"+7"—a)log|¢—al = (1 —a)log|¢ —al <0

w(@) < (a—71)log|C—al

esitsizligi elde edilir.

Boylece gosterdik ki, vz, -, (¢) fonksiyonu a—nin ve co—un fine komguluk-
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larinda iistten sinirhdir. Bu taktirde,

Uz (2) <0 Vze é}G.

Regiiler simir noktalarinda da v, ,, -, (2) < 0 esitsizligi dogrudur. Buradan

[2]-deki Lemma 1-den (finely hipoharmonik fonksiyonlar i¢in maksimum prensibi)

V¢ € G igin vz (() < 0 esitsizligini alinz. 71 — 78 ve 79 — 72 iglemlerini
yapalim. Bu taktirde
v: (¢) <log (o |¢ —al”) + gc (a, Q) 7' + gc (00, () 7° (4.5)

esitsizligi elde edilir.

(o € G\P olsun. (4.2)-ye dayanarak sadece p € 9" durumunu goz oniine
almamiz yeterlidir. Eger z; < [(, —a| < x; ise, o halde, (4.3) esitsizligini ve
w(|Co —al) =y — al” esitligini saglayacak o > 0 ve a € R sayilan segebiliriz.

Buradan ve (4.5) esitsizliginden

v: (Go) < log i (|Go — al) + ga (a, o) 7" + g6 (00, Gp) 7° (4.6)

elde edilir. Eger [(, —a| ¢ |z,,2}] ise, ¢ > 0 ve a € R saylanm, (4.3)-i
saglayacak ve o |¢, — a|” sayisin, biiyiikliigii énceden verilmis keyfi e > 0 sayisim
agmayacak sekilde segmek miimkiindiir. Bundan dolay1 (4.4)-den v,({) = —o0
olur. O halde (2.10) {, € G\P igin saglanir. Bu sonucudan Z—in keyfi sonlu
sifirlar kiimesi oldugu goz ¢niine alinarak, (3.1.3) esitsizligi elde edilir.

Ispat. (Teorem 7) m

Keyfi bir w € (0¢G), alip sabitleyelim. a yerine w alarak, Teorem 6-nin
?(C) == f(¢) — f(w) (¢ € G) fonksiyonuna uygulanabilirligini kontrol ederim.
Gergekten Vz, ¢ € 0;G icin saglanan ozellikten, (2.1) esitsizligine benzer esit-

sizlik (yani  finelim|¢ (¢)] < pu(]z —wl|), V2 € (0;G)\{w}) elde edilir. G
¢

—z,(eG

kiimesinin her fine baglantili T bilegeni i¢in f fonksiyonunun (f N (C> \ P kiime-
sine kisitlanigi finely stirekli ve w € (9;G), C b(CG) oldugundan aciktir ki,
f fonksiyonu (A,w) kosulunu saglar (yani, w € b(CG) ve w € b(T) olmak
tizere G kiimesinin fine baglantili 7" bileseni icin f, ¢ < 400 esitsizligi saglanir).

Dolayisiyla ¢ fonksiyonu da bu kogulu saglar. z = oo noktasi igin (A, 0o) kosu-
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lundan ¢, 5 < 400 kogulunu alirz. Eger co € (@G) ve i, > 0 ise, (By,o0)
(yani co ¢ b(CG), piy > 0 ve f(¢) = fineo(]dm‘x’“)j ¢ — 00, ¢ € G) kosulu
¢ (¢) = fineo (|C|m°°+1), ¢ — o0, ( € G koguluna egdegerdir. Demek ki, ¢ (()
fonksiyonu Teorem 6-nin kogullarini saglar. (3.1.1)-e benzer bir kogulun saglandigi

agiktir. Teorem 6-a gore w € (9;G) , V¢ € (GNC) \P icin
)y

£ (C) = f (w)]exp [—Z (96 (P, Q) + gc (p,w)) k (ﬁp)] < p(|¢ —wl)

pEP

exp [— > ga(ww)k(fw)+gow,¢)sw (f() = f ()

weG: f(w)=F(¢)

+9a (00,¢) 5 (00, (f (1) = f (w)))]

elde ederiz. w yerine z yazarsak, (w—nun se¢iminden bunu yapabiliriz) istenilen
esitsizligi alirz.
Teorem 8 ve Teorem 9-u ispatlamak icin Teorem 7-den faydalanarak, [2]-deki

Teorem 4 ve Teorem 5-in ispatindaki benzer iglemleri yapmak gerekiyor.
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5 SONUC

Bu tezde kompleks diizlemin fine agik kiimelerinde tanimlanmig finely meromorf
fonksiyonlar icin, yalinkat olmamanin etkisi de hesaba katilarak, u¢ noktalarda
fonksiyonun ve majorantin davranigina bagimlh olarak daha kesin egitsizlikler is-

patlanmigtir.
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