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ÖZET 

 

 

POLİGAMMA FONKSİYONLARI İLE İLGİLİ EŞİTSİZLİKLER  

 

 

KELEŞ, Yusuf 

Yüksek Lisans Tezi, Matematik Anabilim Dalı 

Tez Danışmanı: Yrd. Doç. Dr. Necdet BATIR 

Ocak 2008, 49 sayfa 

 

 

 Bilindiği üzere klasik gamma fonksiyonu ( )Re 0x >  için  

( )xΓ =
0

∞

∫ 1t x
e t dt

− −  

integrali ile tanımlanır. Gamma fonksiyonunun logaritmik türevine digamma 

fonksiyonu denir ve ψ  ile gösterilir. Bir başka ifade ile  

( )
( )

( )

x
x

x
ψ

′Γ
=

Γ
 

dır.  Literatürde digamma fonksiyonunun türevlerine poligamma fonksiyonları denir.  

Bu çalışmada; digamma ve poligamma fonksiyonları ile bazı temel özellikleri 

verip bu fonksiyonlarla ilgili son yıllarda elde edilen bazı önemli eşitsizlikleri bir araya 

getirmeye çalıştık. 

  

 

Anahtar kelimeler: Digamma fonksiyonu, Poligamma fonksiyonu, Gamma 

fonksiyonu, Eşitsizlikler. 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 
ABSTRACT 

 

 

POLYGAMMA FUNCTION INEQUALITIES 

 

KELEŞ, Yusuf 

Msc, Mathematics Science 

Supervisor: Assist. Prof. Necdet BATIR 

January 2008, 49 pages 

 

 

 

 As it is well known the classical gama function  Γ  is defined by the integral  

for ( )Re 0x >    

( )xΓ =
0

∞

∫ 1t x
e t dt

− −  . 

The logarithmic derivative of the gamma function is called the digamma function. An 

other words the digamma function is defined by  

( )
( )

( )

x
x

x
ψ

′Γ
=

Γ
. 

The derivatives of the digamma function are called polygamma function in the 

literature. In this thesis, after presenting some fundamental properties of these 

function, we collected  some important inequalities for these function  discovered in 

the last years.  

 

Key words : Digamma function, Polygamma function, Gamma function, Inequalities. 

 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 



ÖN SÖZ 

 

 

Bu çalışmada; özel bir fonksiyon olan gamma fonksiyonu, bu fonksiyonun 

logaritmik türevi olan digamma fonksiyonu ve digamma fonksiyonunun ardışık 

türevleri olan poligamma fonksiyonları ile ilgili eşitsizlikler ve bazı özelikler ele 

alınmaktadır. Son yıllarda bu fonksiyonlarla ilgili yapılan yoğun çalışmalar bu 

fonksiyonların önemine dikkat çekmektedir.  

Bu çalışmanın başlangıcında belirtilen fonksiyonlarla ilgili bazı temel tanım ve 

teoremler sırasıyla verilmiştir. Son bölümde ise fonksiyonlar arasındaki birtakım 

eşitsizlikler ayrıntılı bir şekilde incelenmiştir.  

Bu çalışmayı bana veren ve çalışmalarım süresince karşılaştığım güçlüklerde 

yardımlarını esirgemeyen hocam, Sayın Yrd. Doç. Dr. Necdet BATIR’a teşekkür eder 

saygılarımı sunarım.  

 

Yusuf KELEŞ 
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1. GİRİŞ ve KAYNAK BİLDİRİŞLERİ  

 

 

 ( )Re 0x >  için  ( )xΓ =
0

∞

∫ 1t x
e t dt

− −   integrali ile tanımlanan gamma 

fonksiyonu ilk defa 1729 yılında İsveç’li ünlü matematikçi Leonarol Euler ( 1707-

1783) tarafından tanımlanmıştır. Euler’in bu fonksiyonu tanımlamaktaki amacı !n  

sayısını her reel sayı için tanımlı hale getirmek olmuştur. Gerçekten n  bir pozitif 

tamsayı ise ( )1 !n nΓ + =  dir. Γ ’nın tanımından her 0x >  için ( )1x xΓ + = ( )xΓ  

fonksiyonel denkleminin sağlandığı kolayca görülür. Bu denklem yardımıyla Γ  

fonksiyonu tüm kompleks düzlemde tanımlanabilir. Gamma fonksiyonunun önemi 

anlaşıldıktan sonra aralarında Marie Legendre ( 1752–1833 ), Carl Fredrich Gauss ( 

1777–1855 ), Christoph Gudermann ( 1798–1852 ), Joseph Liouville ( 1809–1882 ), 

Karl Weierstrass ( 1815–1897 ) ve Charles Hermite ( 1882–1901 ) gibi pek çok seçkin 

matematikçinin de aralarında bulunduğu birçok matematikçi bu fonksiyon üzerine 

çalışmışlardır.  

 Gamma fonksiyonu ve  

( )
1

1
n

m

n
m

ζ
∞

=

=∑  

şeklinde tanımlanan riemann zeta fonksiyonunu içeren  

 ( ) ( ) ( ) 1 1
1 1 2 sin

2
z z

z z z zζ ζ π π−= − Γ −  

fonksiyonel denklemi analitik sayılar teorisinin en önemli konularından birini teşkil 

eder. Gamma fonksiyonunun tarihi ve temel özelikleri hakkında detaylı incelemeler 

yapılmıştır[ ]Srinivaran, 2007 .  

 Gamma fonksiyonunun istatistikte, fizikte ve analitik sayılar teorisinde önemli 

birtakım uygulamaları vardır.  

 Gamma fonksiyonunun logaritmik türevi ψ  ile gösterilir ve digamma 

fonksiyonu olarak tanımlanır. Yani ( )Re 0z >  olmak üzere  

 ( )
( )
( )

z
z

z
ψ

′Γ
=

Γ
 



şeklinde ifade edilir. Digamma fonksiyonunun harmonik sayılarla yakın bir ilişkisi 

vardır. Örneğin n  bir pozitif tamsayı ise ( )1 nn Hψ γ+ = − +  dir.  

 

Burada  
1

1n

n

k

H
k=

=∑   ve ( )lim log 0.57721...nH nγ = − =   şeklinde tanımlanan  

Euler sabitidir.  

 Digamma fonksiyonunun , , ,...ψ ψ ψ′ ′′ ′′′ şeklindeki türevleri poligamma 

fonksiyonları olarak bilinirler. Biz bu tezimizde ( ) ( ) ( )n

nx xψ ψ=    , 1, 2,3,...n =  olarak 

alacağız. Poligamma fonksiyonlarının  

 ( ) ( )
( )

1

1
0

1
1 !

n

n n
k

x n
k x

ψ
∞

+

+
=

= −
+

∑  

şeklinde seri temsilleri vardır. Bu temsil yardımıyla  

 ( ) ( ) ( )
1

1 1 ! 1
n

n
n nψ ζ

+
= − +   ,  1, 2,3,...n =  

olduğu kolayca görülür. Yani poligamma fonksiyonları Riemann zeta fonksiyonunun 

bir genellemesini teşkil eder. Biz bu çalışmamızda poligamma fonksiyonları 

eşitsizlikleri ile ilgili son yapılan çalışmaları bir araya getirmeye çalıştık.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. ÖN BİLGİLER  

 

Bu bölümde konuyla ilgili daha sonraki bölümlerde kullanılacak olan temel tanım ve 

teoremler verilecektir. 

 

Tanım 2.1.(Gamma Fonksiyonu) 

 

0x >  için gamma fonksiyonu 

( )xΓ =
0

∞

∫ 1t x
e t dt

− −  

şeklinde tanımlanır. 

 

Tanım 2.2.(Poligamma Fonksiyonları) 

 

0x >  için   

( )
( )

( )

x
x

x
ψ

′Γ
=

Γ
 

fonksiyonuna digamma veya psi fonksiyonu denir. ( )xψ  fonksiyonunun , , ,...ψ ψ ψ′ ′′ ′′′  

türevlerine de poligamma fonksiyonları denir. 

 

Tanım 2.3.(Euler-Mascheroni Sabiti) 

 

Euler-Mascheroni sabiti γ  ile gösterilir ve  

1

1
lim log 0,5772156...

n

n
k

n
k

γ
→∞

=

 
= − ≅ 

 
∑  

ile tanımlanır. 

 

Teorem 2.4.  

 

Digamma fonksiyonu  

0

( )
1

t tx

t

e e
x dt

e
ψ γ

∞ − −

−

−
= − +

−∫  



şeklinde integral temsiline sahiptir[ ]Srivastava ve Choi, 2001 .  

 

Teorem 2.5.  

 

0x >  için digamma fonksiyonu  

1

1
( )

( )n

x
x

x n x n
ψ γ

∞

=

= − − +
+

∑  

şeklinde seri temsiline sahiptir [ ]Srivastava ve Choi, 2001 .  

 

Teorem 2.6. 

 

0x >  için digamma fonksiyonunun 

( ) logx xψ = +
0

∞

∫  
1 1

1
tx

t
e dt

t e

−

−

 
− − 

 

şeklinde integral temsili vardır[ ]Srivastava ve Choi, 2001 .   

 

Teorem 2.7. 

 

Her 0x >  ve m N∈  için  digamma fonksiyonu  

1

0

1
( ) log ( )

m

k

k
mx m x

m m
ψ ψ

−

=

= + +∑  

olacak şekilde bir özelliğe sahiptir [ ]Srivastava ve Choi, 2001 . . 

 

Lemma 2.8. 

 

0x >  ve n N∈  için  poligamma fonksiyonları için  

( ) 1

1
0

1
( ) ( 1) !

( )
n n

n
k

x n
k x

ψ
∞

+

+
=

= −
+

∑  

şeklindeki seri temsili geçerlidir[ ]Srivastava ve Choi, 2001 .  

 

 

 



Lemma 2.9. 

 

Her 0x >  , 0n ≥ tamsayı ve (0) ( ) ( )x xψ ψ=  olmaküzere; 

( ) ( )

1

( 1) !
( 1) ( )

n
n n

n

n
x x

x
ψ ψ

+

−
+ − =  

dır [ ]Srivastava ve Choi, 2001 .  

 

Teorem 2.10.  

 

0x >  ve n N∈  için  poligamma fonksiyonları  

 

1 ( )( 1) ( )n n xψ−− =
0

∞

∫  
1

n xt

t

t e
dt

e

−

−−
 

şeklindeki integral temsiline sahiptir. 

 

İspat.  

 

Teorem 2.4. te ( )xψ ’in n. türevini alırsak hemen çıkar. 

 

Lemma 2.11. 

 

2n ≥  tamsayısı ve x  pozitif reel sayısı için  

1n

n

−
<  

2( )

( 1) ( 1)

( )

( ) ( )

n

n n

x

x x

ψ

ψ ψ− +

  
      

 
1

n

n
<

+
 

dır [ ]Alzer ve Wells, 1998 .     

 

 

Tanım 2.12. 

 

0 1 2, , ,..., ,...
n

B B B B  Bernoulli sayıları 

01 !
nn

x
n

Bx
x

e n

∞

=

=
−

∑  



şeklinde tanımlanır [ ]Apostol, 1976 .  Örneğin 0 1B = , 1

1

2
B = − , 4

1

6
B = , 4

1

30
B = − , 0

1

42
B =  

ve 1k ≥  için 2 1 0
k

B + = ’dır.  

 

 

Lemma 2.13. 

 

Poligamma fonksiyonları için aşağıdaki asimptotik açılım geçerlidir. 

( ) 1
21 2

1

( 1)! ! (2 1)!
( ) ( 1)

2 (2 )!
n n

kn n k n
k

n n k n
x B

x x k x
ψ

∞
−

+ +
=

 − + −
− + + 

 
∑�          ( ; 1,2,3,...)x n→ ∞ =  

dır [ ]Abramowitz ve Stegun, 1965 . Burada 2k
B ’lar Bernoulli sayılarıdır.  

 

Lemma 2.14. 

 

Digamma fonksiyonunun tek bir pozitif kökü vardır ve bu kök 1, 4616321...c = dır 

[ ]Abramowitz ve Stegun, 1965 . 

 

Tanım 2.15. 

 

I  bir aralık ve ( )f C I∞∈  olsun. Eğer her x I∈  ve 0k ≥  tamsayısı için 

( ) ( )1 ( ) 0
k k

f x− ≥  ise f  I  aralığında tam monotondur (Completely  )monotonic deriz. Eğer 

buradaki eşitsizlikte '' ''≥  yerine '' ''>  geçerli ise f  I  üzerinde kesin tam monotondur deriz. 

 

Tanım 2.16. 

 

f  0x ≥  için tanımlı bir fonksiyon olmak üzere f ’nin Laplace dönüşümü ( )f s  ile 

gösterilir ve  

( )f s =
0

∞

∫ ( )sxe f x− dx  

şeklinde tanımlanır.( Tabiî ki bu integralin yakınsak olması şartıyla) 

 



Tanım 2.17. 

 

, :f g R R→ parçalı ve sürekli (piecewise continous) fonksiyonlar ise f ve g ’nin 

konvulasyon çarpımı f g∗  ile gösterilir ve  

( ) ( )f g x∗ =
0

x

∫ ( ) ( )f g x dτ τ τ−  

biçiminde tanımlanır. 

 

Teorem 2.18. 

 

f ve g ’nin konvulasyonunun Laplace dönüşümü ( ). ( )f s g s ’dir. 

 

Teorem 2.19. 

 

0n ≥ bir tamsayı olsun. O zaman  

( )
( )

2
2

2 1
1

1 1
log ( ) log( ) log(2 )

2 2 2 2 1

n
i

n i
i

B
F x x x x x

i i x
π

−
=

 
= Γ − − + − − 

− 
∑  

ve 

( )
( )

2 1
2

2 1
1

1 1
log ( ) log( ) log(2 )

2 2 2 2 1

n
i

n i
i

B
G x x x x x

i i x
π

+

−
=

 
= − Γ + − − + + 

− 
∑  

fonksiyonları ( )0,∞ aralığında kesin tam monotondur [ ]Alzer, 1997 .  Burada 
k

B ’lar  

Tanım 2.12’de verilen Bernoulli sayılarıdır. 

 

Lemma 2.20. 

 

s  ve t  pozitif reel sayıları t s>  şeklinde olsun. Bu durumda her 1n ≥  tamsayısı için  

( )
( ) ( )

( ) ( )

1

1
1

1
.

lim .( ) .
2

n n

n
n n

x

x t x s s t
n t s x

x t x s

+

+

→∞

 
 + +   +  − − = 
 + − +  

 

 

dır[ ]Batır, 2007 .  

 

 



Tanım 2.21. 

 

 

a  ve b  pozitif reel sayılar olsun. Bu durumda a  ve b ’nin Stolarsky ortalaması her 

p R∈  için ( , )
p

S a b  ile gösterilir ve  

( )

1

1

( , )
p p p

p

a b
S a b

p a b

− −
=   − 

 

şeklinde tanımlanır. 

 

 

Tanım 2.22. 

 

I  bir aralık, ,s t I∈  ve :f I R→  sürekli ve kesin monoton bir fonksiyon olsun. Bu 

durumda integral için ortalama değer teoremine göre  

1
.

t s
=

−

t

s

∫ ( )f u du = ( )f ξ  

sağlanacak şekilde bir [ ],s tξ ∈  vardır. İşte bu ξ ’ya s  ve t ’nin f - ortalaması denir.  

( ) 1 1
,f fI I s t f

t s

− = = 
−

t

s

∫ ( )f u du




 

ile gösterilir. 

 

 

Lemma 2.23. 

 

I  bir aralık ve :f I R→  monoton artan bir fonksiyon olsun. Eğer f ′  I  üzerinde tam 

monoton ise ( ),fx I x s x t x→ + + −  I  üzerinde monoton artan konkav bir fonksiyondur 

[ ]Elezovic ve ark., 2000 . 

 

 

 

 



Lemma 2.24. 

 

1
2x >  için ψ ′  fonksiyonu  

( )
1

2

1
1

12
12 ...
2

x
a

x
a

x

x

ψ ′ =

− +

− +

− +

 

şeklinde sürekli kısmi kesirlere sahiptir. Burada 
p

a  katsayıları 1,2,3,...p =  için  

( ) ( )

4

4. 2 1 . 2 1p

p
a

p p
=

− +
 

 

bağıntısı ile verilir. [ ]Wall, 1948 .   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. POLİGAMMA FONKSİYONLARI EŞİTSİZLİKLERİ 

 

Lemma 3.1. 

 

2n ≥  bir tamsayı ve  

( )
n

I a =

1

0
∫ ( ) 22 1 1n x − −   ( )( ) ( )( )1 1n nf a x f a x dx− +  

olsun. Burada  

1

( )
1

n

n t

t
f t

e

−

−
=

−
 

dır. O zaman her 0a >  için  ( ) 0
n

I a < ’dır [ ]Alzer ve Wells, 1998 .  

 

İspat. 

( ) ( )
22 2( ) 2 1 1 1

n

n
h x n x x

−
 = − − −   

ve 

(1 ) (1 )

(1 ) (1 )
( ; ) .

1 1a x a x

a x a x
u x a

e e
− − − +

− +
=

− −
 

olsun. Bu takdirde  

2( 2)( ) n

n
I a a

−=

1

0
∫ ( ) ( ; )

n
h x u x a dx           ( )3.1  

yazabiliriz. 

 Şimdi ( ; )x u x a→  fonksiyonunun ( )0,1  aralığında kesin monoton azaldığını 

gösterelim. Bunun için  

( ; ) 0u x a
x

∂
<

∂
  ( )0 1; 0x a< < >  

olduğunu göstermek kafidir. 

( ; ) log ( ; )v x a u x a=  

dersek 

1 1
( )

1z
w z

z e
= −

−
 

olmak üzere 



[ ]( ; ) ( (1 )) ( (1 ))v x a a w a x w a x
x

∂
= + − −

∂
 

olduğunu görürüz. 0 (1 ) (1 )a x a x< − < +  ve 0z >  için 

2 2

2

( ) (sinh )
2 2

( ) 0
( sinh )

2

z z

d
w z

zdz
z

 
−  = <  

olduğundan 

( (1 )) ( (1 ))w a x w a x+ < −  

elde edilir. Böylece 

( ; ) ( ; ) ( ; ) 0u x a u x a v x a
x x

∂ ∂
= <

∂ ∂
 

olur. Buradan da 0 1x< <  ,
1

2(2 1)x n
−

≠ −  ve 0a >  için  

1

2( ) ( ; ) ( ) ((2 1) ; )
n n

h x u x a h x u n a
−

< −        ( )3.2  

elde edilir. ( )3.1 , ( )3.2 ’den ve  

1

0
∫ 12 1

0
( ) (1 ) 0n

n
h x dx x x

− = − − =   

olduğundan  

1
2( 2) 2( ) ((2 1) ; )n

n
I a a u n a

−
−< −

1

0
∫ ( ) 0

n
h x dx =  

buluruz. 

 

Teorem 3.2. 

 

2n ≥  bir tamsayı,α bir reel sayı ve x  bir pozitif reel sayı olmak üzere 

( )
2( ) ( 1) ( 1)( ; ) ( ) ( ) ( )n n n

n
F x x x xα ψ αψ ψ− += −  

tanımlayalım. O zaman  

 

a) x → ( ; )
n

F x α  fonksiyonunun ( )0,∞ aralığında kesin tam monoton olması için gerek ve 

yeter şart 



1n

n
α

−
≤  

olmasıdır. 

 

b) x → ( ; )
n

F x β−  fonksiyonunun ( )0,∞ aralığında kesin tam monoton olması için gerek ve 

yeter şart 

1

n

n
β ≥

+
 

olmasıdır [ ]Alzer ve Wells, 1998 .  

İspat. a)   

( ; ( 1) / )
n

x F x n n→ −  

fonksiyonunun ( )0,∞  aralığında kesin tam monoton olduğunu gösterelim.Teorem 2.10.’dan 

dolayı 

1

( )
1

n

n t

t
f t

e

−

−
=

−
 

olmak üzere 0x >  ve 2n ≥  için  

( 1)( 1) ( )n n xψ −− =
0

∞

∫ ( )xt

n
e f t dt

− ,       ( )3.3  

 

1 ( )( 1) ( )n n xψ+− =
0

∞

∫ xt
e t

− ( )
n

f t dt ,       ( )3.4  

 

2 ( 1)( 1) ( )n n xψ+ +− =
0

∞

∫ 2xt
e t

− ( )
n

f t dt        ( )3.5  

yazabiliriz. ( )3.3 , ( )3.4  ve ( )3.5  integral temsillerini kullanırsak 

( ) ( ) ( )21
( ) ( ) ( ) ( ) ( )

n n n n n

n
g t tf t tf t f t t f t

n

−
= ∗ − ∗                                                         ( )3.6  

olmak üzere 

 

( ) ( ) ( )
21 2( ) ( 1) ( 1)1

( ;( 1) / ) 1 ( ) 1 ( ) 1 ( )
n n nn n n

n

n
F x n n x x x

n
ψ ψ ψ

+ +− +−   − = − − − −
   

 



            =
0

∞

∫ ( )xt

n
e g t dt

−                               ( )3.7  

elde ederiz.Burada ∗  konvulasyon çarpımıdır. ( )3.6  eşitliğinde konvulasyon çarpımlarını 

hesaplarsak 

( )
n

g t =
0

t

∫ ( )
2 1

( )n n

n
t s sf t s f s ds

n

− 
− − 

 
 

buluruz. Bu integralde 

( )1
2

t
s x= +  

değişken değişimi yaparsak 

3

( )
8n

t
g t

n
=

1

1−

∫ ( ) ( ) 21 2 1 2 1n x n x − − − −  ( ) ( )( 1 ( 1
2 2n n

t t
f x f x dx− +  

sonucunu buluruz. 

( ) ( )( 1 ( 1
2 2n n

t t
x xf x f x→ − +  

bir tek fonksiyon olduğundan 

3

( )
8n

t
g t

n
=

1

1−
∫ ( ) 21 2 1n x − −  ( ) ( )( 1 ( 1

2 2n n

t t
f x f x dx− +

3

4 2n

t t
I

n

 
= −  

 
 

olur. Burada 
n

I  Lemma 3.1.’de tanımlandığı gibidir. Böylece Lemma 3.1. ve ( )3.7 ’den 

0x > ve 0,1, 2,...k = için  

( ) ( )( )1 ; 1 /
k

k

nk

d
F x n n

dx
− − =

0

∞

∫ ( ) 0xt k

ne t g t dt
− >  

elde ederiz. Bu da ( )( ); 1 /nx F x n n→ −  fonksiyonunun  ( )0,∞ aralığında kesin tam monoton 

olduğunu ispatlar. Teorem 2.8.’den dolayı ( )
1 ( )1 ( 1)

m m
mψ

+
− ≥   ( )0,∞  aralığında kesin tam 

olarak monotondur. İki kesin tam olarak monoton fonksiyonun toplamı ve çarpımı da yine 

kesin tam monoton olduğundan  

( ) ( )( ) ( ) ( )
2( 1) ( 1)( ; ) ( ; 1 / ) 1 / 1 ( ) 1 ( )

n nn n

n n
F x F x n n n n x xα α ψ ψ

+− += − + − − − −  

 

eşitliği  ( ; )
n

x F x α→ ’nın 
1n

n
α

−
≤  için kesin tam monoton olduğunu ispatlar. 



 

Karşıt olarak, eğer ( );nx F x α→  ( )0,∞ aralığında kesin tam monoton ise 

 

α <

2( )

( 1) ( 1)

( )

( ) ( )

n

n n

x

x x

ψ

ψ ψ− +

  
  

    ( )0x >        ( )3.8  

 

elde ederiz. Lemma 2.13.’den dolayı  

( ) ( )( ) 1lim ( 1) 1 !m m m

x
x x mψ −

→∞
= − −  

 

olup buradan  

( )
2( )

( 1) ( 1)

( ) 1
lim

( ) ( )

n

n nx

x n

x x n

ψ

ψ ψ− +→∞

−
=         ( )3.9  

elde ederiz. ( )3.8  ve ( )3.9  bağıntıları 
1n

n
α

−
≤  sonucunu verir. 

 

b)    

Şimdi ;
1

n

n
x F x

n

 
→ −  

+ 
 fonksiyonunun ( )0,∞ aralığında kesin tam monoton 

olduğunu gösterelim. Teorem 2.18 ve Langrange özdeşliğinden  

       ( )
2( 1) ( 1) ( ); ( ) ( ) ( )

1 1
n n n

n

n n
F x x x x

n n
ψ ψ ψ− +   

− = −   
+ +   

 

( ) ( ) ( ) ( ) ( ) ( )( )
2

2 2 2 2

0 0 0 1

! !
n

n n

i i i j i

n x i x i n j i x i x j

− −∞ ∞ ∞ ∞
− − −

= = = = +

 
= + + − − + +   

 
∑ ∑ ∑∑  

elde ederiz. Böylece 0k ≥ tamsayıları için 

( )1 ( ; )
1

k
k

nk

d n
F x

dx n

 
− − 

+ 
 

 

( ) ( ) ( ) ( ) ( ) ( )
1 1

2 2 2 2

0 1 0 0 0

! ( , ) 2 2 0
r k rk

n r n k r

i j i r s s

n j i C k r x i x j n s n s
− − −∞ ∞

− − − − − − +

= = + = = =

= − + + + + + + >∑∑ ∑ ∏ ∏

 

eşitsizliğine ulaşılır. 



( ) ( )
2( 1) ( 1)( ; ) ; 1 ( ) 1 ( )

1 1

n nn n

n n

n n
F x F x x x

n n
β β ψ ψ

+− +   
− = − + − − −   

+ +   
 

temsili 
1

n

n
β ≥

+
 için  ( );nx F x β→ −  fonksiyonunun ( )0,∞  aralığında kesin tam monoton 

olduğunu ispatlar. 

 Son olarak ( );nx F x β→ −  fonksiyonunun ( )0,∞  aralığında kesin tam monoton 

olduğunu kabul edelim. Bu durumda ( ); 0nF x β− > olacağından  

( )( )
( ) ( )

2( )

( 1) ( 1)

n

n n

x

x x

ψ
β

ψ ψ− +
<   ( )0x >                 ( )3.10  

olur. Diğer taraftan Teorem 2.19.’dan dolayı 0x >  ve  0,1, 2,...m =  için  

( )
1( ) ( ) 1( ) ( 1) 1 !

mm m m
x x m xψ ψ

+ − −= + + −                      ( )3.11  

olduğundan 

            
( )

2( )

( 1) ( 1)0

( )
lim

( ) ( ) 1

n

n nx

x n

x x n

ψ

ψ ψ− +→
=

+
                    ( )3.12  

sonucuna ulaşırız. ( )3.10  ve ( )3.12  beraberce 
1

n

n
β ≥

+
 olduğunu ispatlar. Bu da teoremin 

ispatını tamamlar. 

 

 

Teorem 3.3. 

  

2n ≥  bir tamsayı olsun. Bu durumda her 0x >  için  

2( )

( 1) ( 1)

( )1

( ) ( ) 1

n

n n

xn n

n x x n

ψ

ψ ψ− +

 −  < <
+

 

dır. 

 

İspat. 

 

( )3.9  ve ( )3.12  limitlerinden hemen çıkar. 

 

 

 



Teorem 3.4. 

 

0x >  için  

              [ ]
2

( ) ( ) 0x xψ ψ′ ′′+ >                   ( )3.13  

dır[ ]Batır, 2005 .  

 

İspat. 

 

0x >  için  

[ ]
2

( ) ( ) ( )f x x xψ ψ′ ′′= +  

tanımlayalım. 

lim ( ) 0
x

f x
→∞

=  

 

olduğundan ( ) 0f x >  olduğunu göstermek için ( ) ( 1) 0f x f x− + >  olduğunu göstermek 

kafidir. Buna göre 

[ ] [ ]
2 2

( ) ( 1) ( ) ( ) ( 1) ( 1)f x f x x x x xψ ψ ψ ψ′ ′′ ′ ′′− + = + − + − +  

olduğundan Teorem 2.19.’dan dolayı  

2 2

2 1 1
( ) ( 1) ( )

2
f x f x x

x x x
ψ
 

′− + = − − 
 

 

elde ederiz. Teorem 2.19.’u  2n =  için uygularsak  

2

1 1
( ) 0

2
x

x x
ψ ′ − − >  

olduğunu görürüz. O halde ( ) 0f x > ’dır. 

 

Teorem 3.5. 

 

0x >  için  

( )( ). 1xx eψψ ′ <  

dir [ ]Batır, 2005 .  

 

 



İspat. 

 

( )3.13  eşitsizliğinin her iki tarafını ( )xψ ′ ’e bölersek 0x >  için 

( )( )( ) ln ( ) 0
d

x x
dx

ψ ψ ′+ >  

 

buluruz. O halde  ( )( ) ln ( )x xψ ψ ′+  ( )0,∞  aralığında monoton artar. Teorem 2.19.’dan dolayı  

1
log x

x
− < ( )xψ  <  

1
log

2
x

x
−  

elde ederiz. Bu ise  

                   
1

( ) xx x eψ
−

′  <  ( )( ). xx eψψ ′  <  
1

2( ) xx x eψ
−

′                ( )3.14  

sonucunu verir. Lemma 2.13’de 1n =  alındığında  

2 3 5

1 1 1 1
( ) ...

2 6 30
x

x x x x
ψ ′ + + − +�        ( )x → ∞  

olacağından ( )3.14 ’deki eşitsizliğin her tarafı 1’e gider.Bu ise 

( )lim ( ) 1x

x
x e

ψψ
→∞

′ =  

değerini verir. ( )( ) ln ( )x xψ ψ ′+  monoton arttığından ispat biter. 

 

Teorem 3.6. 

 

1x >  için  

( ) ( )logx x xψ α ψ β+ < < +  

eşitsizlikleri sağlanacak şekilde en iyi α  ve β  değerleri  

1 0, 4616321...cα = − =  ve 0,5β =  

değerleridir. Burada  c  Lemma 2.14’te verildiği gibidir [ ]Batır, 2005 .   

 

İspat. 

 

log ( )xΓ  fonksiyonuna [ ], 1u u +   ( )0u >  aralığında ortalama değer teoremini 

uygularsak ( 1) . ( )u u uΓ + = Γ  fonksiyonel denklemi yardımıyla  



               ( )( ) logu u uψ θ+ =                   ( )3.15  

olacak şekilde u ’ya bağlı ve 0 ( ) 1uθ< <  ( )0u >  şeklinde bir ( )uθ  elde ederiz. ( )3.15 ’te 

( )t
u e

ψ=  değişken değişimi yaparsak ( )t tψ→  fonksiyonu birebir ve örten olduğundan 0t >  

için  

 

( )( ) ( )t te t eψ ψθ = −  

olur. Burada t ’ye göre türev alırsak  

( )( )

( )

1
1

( ).
t

t
e

t e

ψ

ψ
θ

ψ
′ = −

′
 

elde ederiz. O halde Teorem 3.5.’ten dolayı her 0t >  için 

( )( ) 0teψθ ′ >  

dır. Halbuki ( )t
t e

ψ→  fonksiyonu birebir ve örten olduğundan her 0t >  için ( ) 0tθ ′ >  dır. 

Yani ( )tθ  her 0t >  için monoton artar. Şimdi  
1

lim ( )
2x

tθ
→∞

=  olduğunu gösterelim.  

Teorem 2.19.’dan dolayı  

1
( ) log

2
t t

t
ψ < −  

ve 

2

1 1
( ) log

2 12
t t

t t
ψ > − −  

olduğundan  

( ) 2

1 11
( ) ( ) 22 12. .t t tt tt t e e t e t t eψ ψθ

− −−

− < = − < −  

 

olur. Buradaki her iki sınırında limitinin 
1

2
 olduğu kolayca görülebilir. O halde 

1
lim ( )

2x
tθ

→∞
= ’dir. Bu nedenle  

1
( 1) ( (1)) ( ( )) ( ( )) ( )

2
x c x x x x xψ ψ θ ψ θ ψ θ ψ+ − = + < + < + ∞ = +  

olur. ( )3.15 ’i kullanırsak ispat biter. 

 

 



Teorem 3.7. 

 

α  bir reel sayı olsun. O zaman  

( )( ) log( ) ( )f x x x x
α

α ψ= −  

fonksiyonunun ( )0,∞  aralığında kesin tam monoton olması için gerek ve yeter şart 1α ≤  

olmasıdır. 

 

İspat. 

 

Teorem 2.6.’dan dolayı  

1 1
( )

1 t
t

e t
ϕ

−
= −

−
 

olmak üzere  

            1( ) .f x x=
0

∞

∫ ( ). txt e dtϕ −        ( )3.16  

dır. ϕ ’nin ( )0,∞  aralığında monoton attığını ve  

0

1
lim ( )

2t
tϕ

→
=    ve   lim ( ) 1

t
tϕ

→∞
=  

olduğunu kolayca gösterebiliriz. ( )3.16 ’dan dolayı 1n ≥  için  

( ) ( )( )
11 ( ) . 1

n
n nn

n

d y
f x x

dx
− = −

0

∞

∫ ( )
1

1

1
( ) 1

n
nxt

n

d y
t e dt

dx
ϕ

−
−−

−
− −

0

∞

∫ ( ) xtt e dtϕ −  

                                     x=
0

∞

∫ ( ) xt nt e t dt nϕ − −
0

∞

∫ 1( ) xt nt e t dtϕ − −  

  =
0

n
x

∫ ( )1( ) xt n
t e t tx n dtϕ − − − +

n
x

∞

∫ ( )1( ) xt n
t e t tx n dtϕ − − −             ( )3.17  

olur. ( )tϕ  monoton artan olduğundan 0 n
xt< <  için ( )( ) n

xtϕ ϕ<   ve  n
x t<  için ( ) ( )n

x tϕ ϕ<  

olur. Şu halde ( )3.17 ’ye göre  

 



( ) ( )( )
11 ( )

n n n
xf x ϕ− >

0

n
x

∫ ( ) ( )1xt n n
xe t tx n dt ϕ− − − +

n
x

∞

∫ ( )1xt n
e t tx n dt

− − −  

                                         ( )n
xϕ=

0

∞

∫ ( )1xt n
e t tx n dt

− − −              ( )3.18  

elde ederiz. 0x >   ve  0,1, 2,...m =  için  

0

∞

∫ 1

!xt m

m

m
e t dt

x

−

+
=  

olduğundan  

0

∞

∫ ( )1 0xt n
e t tx n dt

− − − =  

elde edilir. Böylece ( )3.18  eşitliği 0x >  ve 0,1,2,...n =   için  

( ) ( )
11 ( ) 0

n n
f x− >  

sonucunu verir. Verilen u  ve v  fonksiyonları için Leibniz kuralı  

( ) ( ) ( ) ( )
( ) ( ) ( )

0

1 ( ). ( ) 1 ( ) 1 ( )
n

n n i n ii n i

i

n
u x v x u x v x

i

− −

=

 
− = − − 

 
∑  

olduğunu ifade eder. Bu kurala göre kesin tam monoton iki fonksiyonun çarpımları da kesin 

tam monotondur. 1α <  için 1( )u x x
α

α
−=   fonksiyonu ( )0,∞  aralığında kesin tam monoton 

olduğundan 1α ≤  için 1( ) ( ) ( )f x u x f xα α=   fonksiyonu da ( )0,∞  aralığında kesin tam 

monotondur.  

Şimdi fα   fonksiyonunun ( )0,∞  aralığında kesin tam monoton olduğunu kabul 

edelim. Bu durumda  

( )1( ) log( ) ( ) 1 . ( ) 0f x x x x x xα
α α ψ ψ−′ ′= − + − <    

olacağından  

                                               
( )

2 ( )

log( ) ( )

x x x

x x x

ψ
α

ψ

′ −
<

−
                                    ( )3.19  

elde ederiz. 

[ ] [ ]
0 0

lim . log ( ) lim .log . ( 1) 1 1
x x

x x x x x x xψ ψ
→ →

− = − + + =  

ve 



2 2

0 0
lim ( ) lim 1 ( 1) 1
x x

x x x x x xψ ψ
→ →

′ ′   − = + + − =     

olduğundan ( )3.19  eşitsizliği 1α ≤   sonucunu verir. Bu da teoremin ispatını bitirir. 

 

Teorem 3.8. 

 

1n ≥  bit tamsayı olsun. Bu taktirde her 0x >  için  

( )
( )

1
11

1 1
( 1) ( ) 1 ( )

1 !

nn n

n n

n

n
x x

n

ψ ψ
+−

+
 − < −
 

−  

 

dır [ ]Batır, 2007 .  

 

İspat. 

 

Sonuç 3.3’ten dolayı 2n ≥  tamsayısı ve 0x >  için  

[ ]
2

1 1

( )

1 ( ) ( ) 1
n

n n

xn n

n x x n

ψ

ψ ψ− +

< <
− +

 

olduğundan 1n ≥  için  

( )[ ]
2

2 1. ( ) ( ) 1 ( ) 0
n n n

n x x n xψ ψ ψ+ +− + <  

yazabiliriz. Bu eşitsizliğin her iki tarafını 1( ) ( )
n n

x xψ ψ + ’e bölersek 1( ) ( ) 0
n n

x xψ ψ + <  

olduğundan  

( )2 1

1

( ) ( )
. 1 . 0

( ) ( )
n n

n n

x x
n n

x x

ψ ψ

ψ ψ
+ +

+

− + >  

sonucunu elde ederiz. Bu eşitsizliği de  

[ ]
[ ]

[ ]
[ ]

1 1

1 1

( ) ( )
log log 0

( ) ( )

n n

n n

n n

n n

x xd d

dx dxx x

ψ ψ

ψ ψ

+ +

+ +

 
 = − >
 
 

 

şeklinde yazabiliriz. Parantez içindeki fonksiyon pozitif olduğundan bu durum 

[ ]
[ ]

1

1

( )
0

( )

n

n

n

n

xd

dx x

ψ

ψ

+

+

>  

olmasını gerektirir. Lemma 2.13’ü kullanırsak 1, 2,3,...m =  için  

( )1lim ( ) ( 1) 1 !m m

m
x

x x mψ −

→∞
= − −  

olduğunu görürüz. Bu ise   



[ ]
[ ]

1

1

1

( ) !
lim

( )

n

n

n nx
n

x n

nx

ψ

ψ

+

+→∞
+

< −  

eşitsizliğini verir. Bu da ispatı tamamlar. 

 

Teorem 3.9. 

 

x  pozitif reel sayısı ve n  doğal sayısı için 
n

θ  

                                               ( )
( )1

1 ( 1) . 1 !
( )

n

n n n

n
x x

x
θ ψ

−
−  − −

= − 
 

                                    ( )3.20  

şeklinde tanımlanmış olsun. O zaman  

(a) Her 0u >  için ( ) 0
n

uθ ′ > ’dır. 

(b) Her n  doğal sayısı ve 0u ≥  için 
1

0 ( )
2n

uθ≤ <  

(c) Her 0u >  için ( )
n

n uθ→  dizisi monoton azalır. 

(d) Her 0u >  için ( ) 0
n

uθ ′′ < ’dır [ ]Batır, 2007 .  

 

İspat. 

 

( )3.20  denklemini 1, 2,3,...n =  için  

           ( )
1( 1) ( 1)!

( )
n

n nn

n
x x

x
ψ θ

−− −
= +                                      ( )3.21  

şeklinde yazabiliriz. Lemma 2.19’dan dolayı 0n ≥  tamsayısı için  

1

1 1

( 1) ( 1)!
( 1) ( )

n

n n n

n
x x

x
ψ ψ

−

− −

− −
+ − =                                                                      ( )3.22  

olduğundan ( )3.21  eşitliğini  

( )1 1( 1) ( ) ( )n n n nx x x xψ ψ ψ θ− −+ − = +  

biçiminde yazabiliriz. Bu durum ortalama değer teoreminden dolayı her 0x >  için 

0 ( ) 1
n

xθ< <  sonucunu verir.  ( )3.21 ’de x  yerine  

( )

( )

1

1
1

1 !

1 ( )

n

nn

n

n
x

uψ
−

−  =
 −
 

 



alırsak  

( )

( )

( )

( )

1 1

1 1
1 1

1 ! 1 !
( )

1 ( ) 1 ( )

n n

n n
n n n

n n

n n

n n
u

u u

ψ θ ψ
ψ ψ

− −

  
− −        + =  

    − −      

 

elde ederiz. 
n

ψ  fonksiyonu birebir ve örten olduğundan bu eşitlik bize  
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    

                                                     ( )3.23  

bağıntısını verir. Bu eşitliğin her iki tarafının türevini alırsak  
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n

n n

n n

n

n n
n

n
n

un n

unu

ψ
θ

ψψ

+−

−
+
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−−    −    

                               ( )3.24  

olur. Bu ise Teorem 3.8’den dolayı her 0u >  için 

( )

( )

1

1
1

1 !
0

1 ( )

n

n
n

n

n

n

u

θ
ψ

−

 
−   ′ > 

  −
  

 

 

sonucunu verir. Fakat ( )
1

1 ( )
n

n
u uψ

−
→ −  fonksiyonu ( )0,∞  aralığından ( )0,∞  aralığına 

birebir ve örten olduğundan her 0u >  için ( ) 0
n

uθ ′ >  olur. Bu da ( )a ’nın ispatını tamamlar. 

n
θ  sınırlı ve kesin arttığından x → ∞  için ( )

n
xθ ’in bir limiti vardır. Şimdi ( )b ’yi 

ispatlayalım. ( )3.21 ’de x  yerine ( )1x +  alırsak 

( )
( )

1( 1) ( 1)!
1 ( 1)

1

n

n n n

n
x x

x
ψ θ

−− −
+ + + =

+
 

eşitliğini elde ederiz. Bu eşitliğe ( )3.22 ’yi uygularsak  

( )
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1( 1)

n n

n nn n
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−
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sonucuna ulaşırız. Buradan da  
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− − 
+ + − + 

 



eşitliği bulunur. lim ( 1) lim ( )
n n

x x
x xθ θ

→∞ →∞
+ =  olduğundan ( )3.21 ’i tekrar kullanırsak  
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1 1
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n
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 
 
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eşitliğini elde ederiz. Bu eşitliği sadeleştirerek  

( )

( )

( )
1

11

1

1

1
lim ( ) lim

1 1

nn

n
n n

x x
x

x
x n xθ

+

+

→∞ →∞

  + = − 
  − +  

 

ifadesini elde ederiz. Bu limitin değerinin 1
2  olduğunu kolayca görebiliriz. Bu ise ( )a ’nın 

yardımıyla ( )b ’nin ispatını verir. ( )c ’yi ispatlamak için ( )3.21 ’in her iki tarafının türevini 

alırsak  

 ( ) ( )11

( 1) . !
1 ( ) ( )

n

n n nn

n
x x x

x
θ ψ θ++

− ′= + +                                                                     ( )3.25  

bulunur. ( )3.21 ’de n  yerine ( )1n +  alınırsa  

 ( )1 1 1

( 1) . !
( )

n

n n n

n
x x

x
ψ θ+ + +

−
+ =                                                                                    ( )3.26  

sonucu bulunur. ( )3.25  ve ( )3.26 ’dan  
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( ) 1

( )
n n
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n n

x x
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x x

ψ θ
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ψ θ
+ +

+

+
′ = −
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elde edilir. ( )a ’dan dolayı ( ) 0
n

xθ ′ >  ve 1( 1) ( )n

n
x xψ +→ −  kesin monoton azaldığından bu 

bağıntı 1, 2,3,...n =  için 1( ) ( )
n n

x xθ θ+ <  eşitsizliğini verir. Bu ise ( )
n

n xθ→  fonksiyon 

dizisinin monoton azaldığını gösterir. Böylece ( )c ’de ispatlanmış olur. ( )3.24 ’ün her iki 

tarafının türevini alırsak  
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sonucunu elde ederiz. Teorem 3.3’ü kullanırsak bu da her 0u >  için  
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1
1

1 !
0

1 ( )

n

n
n n

n

n

u

θ

ψ
−

 
−   ′′ < 
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sonucunu verir. Parantez içindeki fonksiyon u ’ya göre birebir ve örten olduğundan her 0u >  

için ( ) 0
n

uθ ′′ <  eşitsizliğini buluruz. Bu da teoremin ispatını tamamlar. 

 

Teorem 3.10. 

 

n  pozitif bir tamsayı ve x  pozitif bir reel sayı olsun. O zaman 

 

 ( ) ( )( ) ( ) ( ) ( )( )1
21 !exp . 1 !exp .

n
n n x x n n xψ ψ ψ− − + < < − −               ( )3.27  

eşitsizlikleri sağlanır [ ]Batır, 2007 .  

 

İspat. 

 

0x >  için  

( )1
0 ( ) logx x xθ ψ −= −               ( )3.28  

şeklinde tanımlayalım. ( )3.20 ’de 1n =  alınırsa  

 ( )
1

1

1
( )x x

x
θ ψ

−  
′= − 

 
                             ( )3.29  

elde ederiz. Şimdi her 0x >  için 0( ) ( )
n

x xθ θ<  olduğunu gösterelim. Teorem 3.9.(c)’den 

dolayı ( )
n

n xθ→  monoton arttığından 1 0( ) ( )x xθ θ<  olduğunu göstermek yeterlidir. 

( )3.28 ’den dolayı  

( )0 ( ) logx x xψ θ+ =  

yazabiliriz. Her iki tarafın türevini alırsak  

( ) ( )0 0

1
1 ( ) . ( )x x x

x
θ ψ θ′ ′= + +                           ( )3.30  

elde edilir. ( )3.29  denklemi  1n =  için  

 ( )1

1
( )x x

x
ψ θ′= +                                        ( )3.31  



 

eşitliğine denk olduğundan ( )3.30  ve ( )3.31 ’den  
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1
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( )
( ) 1

( )

x x
x

x x

ψ θ
θ

ψ θ

′ +
′ = −

′ +
                                      ( )3.32  

yazabiliriz. Teorem 3.5’den dolayı 0 ( ) 0xθ ′ > ’dır. ψ  fonksiyonu monoton arttığından ( )3.32  

eşitliği her 0x >  için 1 0( ) ( )x xθ θ<  sonucunu verir. Böylece her n  doğal sayısı ve 0x >  için 

0( ) ( )
n

x xθ θ<  elde ederiz. 
n

θ ’in ve 0θ ’ın sırasıyla ( )3.20  ve ( )3.28 ’de verilen değerlerini 

burada yerine yazarsak  
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1 11 1 !
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n

n n

n
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x
ψ ψ

−
− −
 − −

< 
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elde ederiz. Burada x  yerine ( )x
e

ψ  alırsak  

 ( ) ( ) ( )
1 1 ( )1 1 !

n n x

n n e x
ψψ

− − − − − <
 

                                     ( )3.33  

sonucu elde edilir. Eğer n  çift bir doğal sayı ise ( )
n

x xψ→  monoton arttığından bu ifade 

 ( ) . ( )( ) 1 ! n x

n x n e
ψψ −> − −                  ( )3.34   

eşitsizliğine denktir. Aynı şekilde n  tek bir doğal sayı ise ( )3.33  eşitsizliği  

 ( ) . ( )( ) 1 ! n x

n x n e
ψψ −< −                  ( )3.35  

ifadesine denktir. ( )3.34  ve ( )3.35  birlikte ( )3.27 ’deki sağ eşitsizliğin ispatını verir.  

Teorem 3.5’in ispatından dolayı  

0

1
lim ( )

2x
xθ

→∞
=  

dir. Bu nedenle 0x >  için 0

1
0 ( )

2
xθ< <   dir. Yine Teorem 3.9 ( b )’den dolayı 1, 2,3,...n =  

ve 0x >  için 
1

0 ( )
2n

xθ< <   dir. O halde her 0x >  ve 1, 2,3,...n =  için  

0

1
( ) ( )

2n
x xθ θ− <  

dir. 0 ( )xθ  ve ( )
n

xθ ’in ( )3.28  ve ( )3.20 ’de verilen değerlerini kullanırsak bu eşitsizlik 
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sonucunu verir. Burada x  yerine ( )x
e

ψ  alınırsa  

 ( ) ( ) ( )
1 1 . ( )1

1 . 1 !.
2

n n x

n
x n e

ψψ
− − − − < − −
 

                                     ( )3.36  

elde edilir. Eğer n  tek ise bu ifade 
1

2
x >  için   
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1 !.exp . ( )
2

n x n n xψ ψ
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                                                                       ( )3.37  

eşitsizliğine; n  çift ise  
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1

1 !.exp . ( )
2

n x n n xψ ψ
 

− < − − − 
 

               ( )3.38  

eşitsizliğine denktir. ( )3.37  ve ( )3.38 ’de x  terine 
1

2
x +  alırsak ( )3.27 ’nin sol tarafındaki 

eşitsizliği elde ederiz. 

 

Teorem 3.11. 

 

n  pozitif bir tamsayı ve x  pozitif bir reel sayı olsun. O zaman  

( ) ( ) ( ) ( ) ( ) ( )
1 11 11 1

! 1 1 1 1 1 !
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n nn n x x nζ ψ ψ
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dir. Üstelik buradaki her iki sınır değeri de en iyi değerlerdir [ ]Batır, 2007 .  

 

İspat. 

 

0x >  için  
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1

1
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1 ( )

n

nn

n

n
h x

xψ
−

−  =
 −
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şeklinde tanımlayalım. 
n

θ  ( )3.20  verildiği gibi olmak üzere  

 

 ( ) ( )( ) ( 1) ( )n ng x h x h xθ θ= + −                                                                                ( )3.39  

 

olsun. ( )g x ’in türevini alıp ( )3.24 ’ü kullanırsak  
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elde ederiz. ( )
1

1 ( )
n

n
x xψ

−
→ −  ( )0,∞  aralığında monoton azaldığından ve ( )h x  bu aralıkta 

monoton arttığından Teorem 3.9 ( a )’dan dolayı '( ) 0g x < ’dır. Yani ( )g x  monoton azalır.  

Teorem 3.9 ( b )’den dolayı 

1 1
lim ( ) ( ) ( ) 0

2 2n n
x

g x θ θ
→∞

= ∞ − ∞ = − =  

olduğu görülür. Öyleyse her 0x >  için  
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dır. ( )g x  tanımından dolayı  
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olduğundan g ’nin değerini ( )3.40 ’da yerine yazıp bu eşitsizliği düzenlersek teoremin ispatı 

biter. 

 

Teorem 3.12. 

 

x  pozitif bir reel sayı ve n  pozitif bir tamsayı olsun. Bu durumda 1, 2,3,..., 1k n= −  

için  
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eşitsizliği sağlanır [ ]Batır, 2007 .  

 

İspat. 

 

( )
n

n xθ→  fonksiyon dizisi monoton azaldığından 0x >  ve n k>  için ( ) ( )
n n

x kθ θ>  

olur. 
n

θ  ve 
k

θ ’nın ( )3.20 ’de verilen değerlerini burada yerine yazarsak 
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eşitsizliği elde edilir. Burada x  yerine 
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alırsak ( )2.42  eşitsizliğini tek n  tamsayıları için  
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  ( )0x > ,                                                       ( )3.43      

ve çift n  tamsayıları için de 
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  ( )0x > ,                                                       ( )3.44     

şeklinde yazabiliriz.  ( )3.43  ve ( )3.44  birlikte ( )3.41  eşitsizliğinin sağ tarafının ispatını 

verir. Teorem 3.9. ( b) den dolayı 0x >  ve 1, 2,3,...n =  için 
1

( )
2n

xθ <  olduğundan n k>  için 

1
( ) ( )

2k n
x xθ θ− <  dir.Yine 

n
θ  ve 

k
θ ’nın ( )3.20  de verilen değerlerini burada yerine yazarsak  
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elde ederiz. Burada x  terine  
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alınırsa 
1

2
x >  ve tek n  tamsayıları için  
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                                                          ( )3.46  

eşitsizliğini ve tek n  tamsayıları için de 
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                                                          ( )3.47  

eşitsizliğini elde ederiz. ( )3.47  ve ( )3.47 ’de x  yerine 
1

2
x +  alırsak ( )3.41  eşitsizliğinin sol 

tarafını da elde etmiş oluruz. 

 



Teorem 3.13. 

 

x  bir pozitif reel sayı ve n  pozitif bir tamsayı olsun. Bu durumda       
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eşitsizliği sağlanır. Burada  

( )
1

1 ! nnα
−

= −    ve [ ]
1

! ( !) nn nβ ζ
−

= +  

sayıları en iyi değerlerdir[ ]Batır, 2007 .  

 

İspat. 

 

Teorem 3.10’da  

( ) ( )
11

1
n

n
x tψ

−− = −
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alınıp Lemma 2.9’da kullanılırsa ispat yapılmış olur. 

 

Teorem 3.14. 

 

x  ve y  pozitif reel sayılar ve n  pozitif bir tamsayı olsun. Bu durumda  
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eşitsizliği sağlanır. Burada 
p

S  Stolarsky ortalamasıdır. Tanım 2.21’e bakınız. 

 

İspat. 

 

Lemma 2.8’de verilen seri temsilini kullanırsak , 0x y >  için  
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yazabiliriz. Burada ( ) 1

1
n

u
u

σ
+

= ’dir. Ortalama değer teoremine göre her , 0x y >  için  
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sağlanacak şekilde x  ve y  arasında bir ( ) ( ), ,k k x yη η η= =  vardır. Şu halde ( )3.49  

eşitliğini  
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biçiminde yazabiliriz. ( )3.49 ’dan  
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∫  

ifadesi elde edilir. ( )k kσ ′′→  ( )0,∞   aralığında tam monoton olduğundan Lemma 2.23’ten 

dolayı η  monoton artar. Bu durumda ( )3.49 ’dan dolayı  

( )
( )( ) ( ) ( )( )

( ) ( )

1
1 1 2

1 1

1 .
n n n

n n

n y x k x k y
k k

k y k x
η

+ + +

+ +

 + − + +
 = −
 + − + 
 

 

şeklinde yazabiliriz. Burada  

( )
( )( ) ( )

1
1 2

1 1

1 .
0

n n

n n

n y x xy

y x
η

+ +

+ +

 + −
=  
 − 

 

şeklinde bulunur. Böylece ( )3.50  eşitliğinden  

( )
( )( )

( ) ( ) ( ) ( ) ( )( )
( )

( )( )
2 2

0 0

11 1
1 ! 1 !

0

n n n

n n
k k

x y
n n

x yk k

ψ ψ

η η

∞ ∞

+ +
= =

− −
+ < < +

−+ ∞ +
∑ ∑  

yazabiliriz.  ( )0η  ve ( )η ∞  ‘un değerleri burada yerine yazılırsa ispat tamamlanır. 

 

Teorem 3.15. 

0x >  için  

 ( ) ( ) ( )1 1

log 1 log 1x xe x eα ψ β− − < < − −                                                              ( )3.51  

eşitsizlikleri sağlanır. Burada α γ= −  ( )Euler sabiti γ =  ve  0β =  değerleri  en iyi 

değerlerdir. 



İspat. 

 

( )3.28  denkleminde x  yerine ( )x
e

ψ  alınırsa  

( ) ( )
0 ( )x x

e x e
ψ ψθ = −  

elde edilir. Şimdi 0x >  için  

 

 ( ) ( )1

0 0( ) ( ) ( )x x
g x e e

ψ ψθ θ+
= −                                                                                    ( )3.52  

 

tanımlayalım. ( )g x ’in türevini alırsak ( )( ) xv x eψ=  olmak üzere  

 ( ) ( ) ( 1)g x v x v x′ ′ ′= − +                                                                                            ( )3.53   

elde edilir. ( )v x ’in ikinci türevini alırsak  

( )
2 ( )( ) ( ) ( ) x

v x x x e
ψψ ψ ′′ ′ ′′= +

 
 

ifadesi elde edilir. Teorem 2.4’ten dolayı ( )
2

( ) ( ) 0x xψ ψ′ ′′+ > ’dır. Bu da v ’nin monoton 

arttığını gösterir. ( )3.53 ’ten dolayı ise g  monoton azalır. Teorem 3.6’nın ispatında 

0

1
lim ( )

2t
tθ

→∞
=  olduğu gösterilmişti. Buna göre g  monoton azaldığından 0x >  için  

0 ( ) ( ) (0) 1g g x g e γ−= ∞ < < = −  

yazabiliriz. Bu eşitsizliği düzenlersek istenen sonuç bulunur. 

 

Lemma 3.16. 

 

3, 203171...a = , ( ) 1aψ =  denklemini sağlayan tek pozitif sayı olsun. O zaman her 

1x >  için  

 ( ) ( ) ( )2.x a x a x a xψ ψ ψ′ ′+ < + +                                                                          ( )3.54  

dır [ ]Alzer ve Ruehr, 1999 .  

 

 

 

 

 



İspat. 

( )
( )
( )

2.x a x
r x

a x

ψ

ψ

′ +
=

′ +
 

olsun. Eğer 2x >  için  ( )
3

2
r x <  olduğunu gösterebilirsek 

( ) ( ) ( )1.550... 2r x a a xψ ψ< = + < +  

elde edilir ki bu 2x >  için Lemma’nın ispatını verir. Lemma 2.24’ten dolayı 
1

2
x >  için  

( )
( )

1
2

2 11 1 22 12

1x
x

xx
ψ

−
′≤ ≤

−− +
 

eşitsizliği sağlanır. Bu da 1
2b a= −  olmak üzere 

 ( )
( )

( ) ( )

2
1
12

2

.

.

x b x
r x

b x b x

 + +
 ≤
+ +

    ( )0x >                                                                        ( )3.55  

sonucunu verir. O halde 2x >  için ( )
3

2
r x <  olduğunu göstermek için ( )3.55  eşitsizliğinin 

sağ tarafının 
3

2
’den küçük olduğunu göstermek yeterlidir. Bu ise  

2
0 3 21.9214...b b= =  

2
1

1
2 3 6.6714...

6
b b b= − + − = −  

2 2.7031...b b= − = −  

olmak üzere 2x >  için  

3 2
2 1 00 x b x b x b< + + +  

olduğunu göstermeye denktir.  

3 2
1( ) 2.7032 6.6715 21.9214P x x x x= − − +  

polinomunun tek bir reel kökü vardır ve bu kök negatif sayıdır. ( )1 0 0P >  olduğundan her 

0x >  için ( )1 0P x > ’dır. O halde 2x >  için ( )
3

2
r x < ’dir. Şimdi ( ]1, 2x ∈  için ( )3.54  

eşitsizliğini gösterelim. ψ  fonksiyonu konkav olduğundan 1 2x< ≤  için  

( ) ( ) ( ) ( ) ( )1 2 2 1x a x a a xψ ψ ψ− + + − + ≤ +  

dır. ( )3.55 ’e göre  



 ( )
( )

( ) ( )
( ) ( ) ( ) ( )

2
1
12

2

.
1 2 2 1

.

x b x
r x x a x a

b x b x
ψ ψ

 + +
 ≤ < − + + − +
+ +

                               ( )3.56  

olduğunu göstermek yeterlidir. İyi bilinen  

( ) ( )
1

1z z
z

ψ ψ+ = +  

bağıntısı kullanılırsa ( )3.56  eşitsizliği  

 4 3 2
4 3 2 1 00 c x c x c x c x c< + + + +    ( )1 2x< ≤                                                           ( )3.57  

eşitsizliğine denktir. Burada  

2

0

1 1 1
. 1 7.8498...

2 1
c a

a a

   
= − + − =   

+   
, 

2

0

1 1 1 1 1 1
. 1 . 1 2.7480...

2 1 2 1 12
c a a

a a a

       
= − − + − + − − = −       

+ +       
, 

0

1 1
. 1 1.8592...

2
c a

a

   
= − − = −   
   

, 

0

3 1 1
. 0.7174...

2 1
c a

a a

 
= − + = 

+ 
, 

0

1
0.2379...

1
c

a
= =

+
 

dır.  

4 3 2
2 ( ) 0.2379 0.7174 1.8593 2.7481 7.8498P x x x x x= + − − +  

 

polinomunun iki tane kompleks ve iki tane de reel kökü vardır ve bu reel kökler de negatiftir. 

( )2 0 0P >  olduğundan her 0x >  için ( )2 0P x > ’dır. Bu da ( )3.57  eşitsizliğini ispatlar. Bu da  

Lemma’nın ispatını tamamlar.  

 

Lemma 3.17. 

 

1
2c ≥  ise  

( )
( )

( )c

x c x
f x

c x

ψ

ψ

′′ +
=

′ +
 

fonksiyonu [ )0,∞  aralığında kesin monoton azalır [ ]Alzer ve Ruehr, 1999 .  

 



İspat. 

 

1

2
c ≥  ve 0x ≥  olsun. ( )cf x ’in türevini alırsak  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2 2

. . .
c

d
c x f x c x c x x c x c x c x

dx
ψ ψ ψ ψ ψ ψ ′ ′ ′′ ′ ′′′ ′′+ = + + + + + − +    

 

ifadesi elde edilir. Bilinen  

( ) ( ) ( )( )
2

.y y yψ ψ ψ′ ′′′ ′′<       ( )0y >  

eşitsizliğini kullanırsak  

            ( ) ( ) ( ) ( ) ( )( )
2 2

. .
c

d
c x f x c x c x x c x

dx
ψ ψ ψ ψ ′ ′ ′′ ′′+ < + + + +    

 

    ( ) ( ) ( ).c x c x x c xψ ψ ψ′′ ′ ′′= + + + +                                   ( )3.58      

sonucunu buluruz. ψ ′  ve ψ ′′  ifadelerinin Teorem 2.10’da verilen integral temsillerini ve  

1

y
=

0

∞

∫ yt
e dt

−        ( )0y >  

bağıntısını kullanırsak  

( ) ( )
1

c x c x
x

ψ ψ′ ′′+ + + =
0

∞

∫ xt
e dt

−

0

∞

∫
1

ct
xt

t

te
e dt

e

−
−

−
−

− 0

∞

∫
2

1

ct
xt

t

t e
e dt

e

−
−

−−
 

ifadesini elde ederiz. Teorem 2.18’de verilen Laplace konvülasyonunu kullanırsak bu 

bağıntıyı  

 ( ) ( )
1

c x c x
x

ψ ψ′ ′′+ + + =
0

∞

∫ xt
e

− 



1

0
∫ ( ) ( )c cg s ds tg t−





dt                                    ( )3.59  

şeklinde yazabiliriz. Burada  

( )
.

1

ct

c t

t e
g t

e

−

−
=

−
 

dir. Basit bir hesaplama ile 
1

2
c ≥  ve 0x >  için 

c
g ’nin kesin monoton azaldığını 

gösterebiliriz. Öyleyse 0t >  için  

 
0

t

∫ ( ) ( )c cg s ds tg t>                                                                                                 ( )3.60  

dır. ( )3.59  ve ( )3.60  birlikte   



( ) ( ). 0c x x c xψ ψ′ ′′+ + + >    ( )0x >                                                                      ( )3.61  

 

olduğunu ispatlar. 0y >  için ( ) 0yψ ′′ <  olduğundan ( )3.58  ve ( )3.61 ’den dolayı 0x >  için 

( ) 0cf x′ <  dır. Bu da Lemma’nın ispatını tamamlar.  

 

Teorem 3.18. 

 

0a >  bir reel sayı olsun. O zaman her 0x ≥  ve 0y ≥  için  

 

 ( ) ( ) ( ).a xy a x a yψ ψ ψ+ ≤ + +                                                                              ( )3.62  

 

eşitsizliğinin sağlanması için gerek ve yeter şart 0 3.203171...a a≥ =  olmasıdır. Burada 

( )1
0 1a ψ −=  bağıntısı ile verilir.  

 

İspat. 

 

Önce ( )3.62  eşitsizliği sağlanacak şekilde bir 0a >  reel sayısının var olduğunu kabul 

edelim. O zaman yeterince büyük x ’ler için  

( )
( )

( )
a xy

a y
a x

ψ
ψ

ψ

+
≤ +

+
 

olur. 

( )
lim

logz

z

z

ψ
→∞

 

olduğundan 0y >  için   

( )
( )

( )lim 1
x

a xy
a y

a x

ψ
ψ

ψ→∞

+
= ≤ +

+
 

olur. Eğer burada 0y →  alınırsa ( ) ( )0 1a aψ ψ= ≤  

 

olur. ψ  ( )0,∞  aralığında kesin monoton arttığından 0a a≥  elde edilir. Şimdi her 0x ≥ , 

0y ≥  ve 0a a≥  için ( )3.62  eşitsizliğinin sağlandığını gösterelim. 



 

1.Durum: 

 

[ ]0,1x ∈  veya [ ]0,1y ∈  olsun. 0 1x≤ ≤  ve 0y ≥  kabul edebiliriz. O zaman 

a y a xy+ ≥ +  olur. Bu ise  

 ( ) ( ) 1a y a xyψ ψ+ ≥ + ≥                                                                        ( )3.63  

olmasını gerektirir. ( )3.63  ve  

( ) ( )0 1a x aψ ψ+ ≥ =  

eşitsizliğinden dolayı  

( ) ( ) ( )a x a y a xyψ ψ ψ+ + ≥ +  

elde edilir. Eşitlik durumu sadece ve sadece 0x y= =  ve 0a a=  durumunda sağlanır.  

 

2.Durum: 

( ) ( ) ( ) ( )P a a x a y a xyψ ψ ψ= + + − +  

şeklinde tanımlansın. ψ ′  fonksiyonu ( )0,∞  aralığında pozitif ve monoton azaldığından  

 

( ) ( ) ( ) ( ) ( ) ( )P a a x a y a x a y a xyψ ψ ψ ψ ψ′ ′ ′ ′= + + + + + − +  

                    ( ) ( ) ( ) ( )a x a y a y a xyψ ψ ψ ψ′ ′ ′> + + + + − +    

                     0>  

sonucu bulunur. Bu da  

( ) ( )0P a P a≥  

sonucunu verir. Bu nedenle ( )3.62  eşitsizliğini sadece 1x > , 1y >  ve 0a a=  durumunda 

ispatlamak yeterlidir. Burada 3, 203171...a =  sayısını ( ) 1aψ =  denklemini sağlayan tek 

pozitif reel sayı ve 1y x≥ >  kabul edelim.  

( )
( )
( )

,
a xy

u x y
a y

ψ

ψ

′ +
=

′ +
 

fonksiyonunu tanımlayalım. Bu fonksiyonun y ’ye göre kısmi türevi alınırsa 

( )
( )
( )a

a t
f t

a t

ψ

ψ

′′ +
=

′ +
 



olmak üzere  

( )
( ) ( )

( )
( )

,
,a a

u x y a xy
f x y f y

y y a y

ψ

ψ

 ′∂ +
= − 

′∂ + 
 

eşitliği elde edilir. 
1

2
a >  olduğundan Lemma 3.17’den dolayı 

a
f  ( )0,∞  aralığında kesin 

monoton azalır. Bu ise  

( ),
0

u x y

y

∂
<

∂
 

sonucunu verir. Yani u  fonksiyonu y ’ye göre kesin monoton azalır. 1y x≥ >  olduğundan  

 ( ) ( ), ,u x y u x x<                                            ( )3.64  

eşitsizliği elde edilir.  ( )3.64   eşitsizliği ve Lemma 3.16’dan dolayı da  

 
( )
( )

( )
( )

( )
2

a xa xy a x

a y a x x

ψψ ψ

ψ ψ

′ +′ + +
≤ <

′ ′+ +
                ( )3.65  

elde edilir.  

 ( ) ( ) ( ) ( ),v x y a x a y a xyψ ψ ψ= + + − +                          ( )3.66  

fonksiyonunu tanımlayalım. Burada y ’ye göre türev alıp ( )3.65 ’i kullanırsak  

( )
( ) ( ) ( )

,
0

v x y
a x a y x a xy

y
ψ ψ ψ

∂
′ ′= + + − + >

∂
 

bağıntısı elde edilir. 1y x≥ >  olduğundan bu da  

 ( ) ( ) ( ) ( )
2 2, ,v x y v x x a x a xψ ψ≥ = + − +                            ( )3.67  

sonucunu verir. Eşitliğin sağ tarafındaki fonksiyonu ( )w x  ile gösterirsek Lemma 3.16’dan 

dolayı 1x >  için  

( ) ( ) ( ) ( )21
0

2
w x a x a x x a xψ ψ ψ′ ′ ′= + + − + >  

sonucu elde edilir.  

( ) ( )
1 1

1 1a a
a a

ψ ψ+ = + = +  

olduğundan  

 ( ) ( ) ( ) ( )
1 1

1 1 1 1 1 0w x w a a
a a

ψ ψ
 

> = + + − = + >    
 

                          ( )3.68  

elde edilir. ( )3.66 , ( )3.67  ve ( )3.68  eşitsizliklerinden  1y x≥ >  için  



( ) ( ) ( )a x a y a xyψ ψ ψ+ + > +  

elde edilir. Bu da teoremin ispatını verir.  

 

Lemma 3.19. 

 

1k ≥  bir tamsayı ve c  bir reel sayı ve ( ) ( )c

c k
f x x xψ=  olsun. O zaman 

c
f  

fonksiyonu 1c k≥ +  için monoton artar[ ]Alzer, 2001 .  

 

Lemma 3.20. 

 

1n ≥  ve 0x >  için  

( ) ( )
1

!

n

n n

x
x x

n
ψ

+

∆ =   

tanımlayalım. O zaman 
n

∆  ve 
n
′∆  fonksiyonları ( )0,∞  aralığında monoton artar. Üstelik  

( )
0

lim 1n
x

x
→

∆ =   ve ( )
0

lim 0n
x

x
→

′∆ =  

dır[ ]Alzer, 2005 . 

 

İspat. 

 

Lemma 3.19’den dolayı 
n

∆  ve 
n
′∆  fonksiyonları ( )0,∞  aralığında monoton artar.  

Lemma 2.20’dan dolayı  

 ( ) ( ) 1

!
1

n n n

n
x x

x
ψ ψ

+
= + +                                                                                      ( )3.69  

olduğundan  

 ( ) ( )
1

1 1
!

n

n n

x
x x

n
ψ

+

∆ = + +                  ( )3.70  

ve  

( ) ( ) ( )
1

1

1
1 1

! !

n
n

n n n

n x
x x x x

n n
ψ ψ

+

+

+′∆ = + − +               ( )3.71  

elde edilir. ( )3.70  ve ( )3.71  birlikte ( )3.69 ’un ispatını verir. 

 



Teorem 3.21. 

 

1n ≥  bir tamsayı ve 0r ≠  bir reel sayı olsun. O zaman ,x y ve z  sayıları r r rx y z+ =  

bağıntısını sağlamak üzere  

( ) ( ) ( )1n n nx y z∆ + ∆ < + ∆  

olması için gerek ve yeter şart 0 1r< ≤  olmasıdır. Yine ,x y ve z  pozitif reel sayıları 

r r rx y z+ =  bağıntısını sağlamak üzere  

( ) ( ) ( )1 n n nz x y+ ∆ < ∆ + ∆  

eşitsizliğinin sağlanması için gerek ve yeter şart 0r <  veya 1r n≥ +  olmasıdır[ ]Alzer, 2005 . 

 

İspat. 

 

, 0x y >  için  

( ) ( ) ( ) ( )
1

, , 1 r r r
n r n n nf x y x y x y

 
= + ∆ + − ∆ − ∆ 

 
 

şeklinde tanımlanmış olsun. Her , 0x y >  için ( ), , 0n rf x y >  olduğunu kabul edelim. Bu 

durumda  

( ) ( )
1

, , 1 2 2 0r
n r n nf x x x x

 
= + ∆ − ∆ > 

 
 

olur. Lemma 2.13’ten dolayı  

( ) 1
lim n

x

x

x n→∞

∆
=  

olduğundan  

( ) 1
, , 1

0 lim 2 2n r r

x

f x x

x n→∞

 
≤ = − 

 
 

sonucunu buluruz. Bu da 0 1r< ≤  olduğunu gösterir. Şimdi ise 0 1r< ≤  ve her , 0x y >  için 

( ), , 0n rf x y >  olduğunu gösterelim. ( )
1

r r rr x y+a  fonksiyonu ( )0,∞  aralığında monoton 

azaldığından Lemma 3.19’den dolayı ( ), ,n rr f x ya  fonksiyonu da ( )0,∞  aralığında 

monoton azalır. Böylece  

 



 ( ) ( ) ( ) ( ) ( ) ( ), ,1, , 1 ,n r n n n n nf x y f x y x y x y g x y≥ = + ∆ + − ∆ − ∆ =                         ( )3.72  

bağıntısı elde edilir. Bu bağıntıya Lemma 3.19 uygulanırsa  

 ( ) ( ) ( ), 0
n n n

g x y x y x
x

∂ ′ ′= ∆ + − ∆ >
∂

                                            ( )3.73  

ifadesi elde edilir. Bu da  

( ) ( ), 0, 0n ng x y g y> =  

sonucunu verir. ( )3.72  ve ( )3.73  birlikte kullanılırsa  

( ), , 0n rf x y >  ve , 0x y >  

sonucu bulunur. Şimdi ise 0r >  olsun. , 0x y >  için  

( ) ( ), ,, 0 0,n r n rf x y f y< =                            ( )3.74  

olduğunu kabul edelim. Burada ( ), ,n rf x y  ifadesinin x ’e göre kısmi türevini alırsak  

 ( ) ( ) ( ) ( )1 1
11

,

1
, nr n r r r rr r

n r nn n

x
f x y x x y x y

x x x

−− −
′∆ ∂ ′= + ∆ + + − 

∂  
             ( )3.75  

sonucunu elde ederiz. ( )3.71 ’den dolayı  

 
( )

( )
0

1
lim 1

!
n

nnx

x n

x n
ψ

→

′∆ +
=                    ( )3.76  

dır. Lemma 3.19’i kullanırsak  

 

( ) ( ) ( )
1 1

1 1

0
lim 0r r r r rr r

n n
x

x y x y y y
− −

→

 ′ ′∆ + + = ∆ > 
 

                ( )3.77  

 

ifadesini elde ederiz. ( )3.74 - ( )3.77  bağıntıları kullanılırsa 1 0r n− − ≥  sonucu bulunur. 

Şimdi ise  0r <  veya 1r n≥ +  olduğunda , 0x y >  için  

 ( ), , 0n rf x y <                     ( )3.78  

olduğunu göstermeliyiz. 0r <  olduğunu kabul edelim. O zaman  

( ) ( )
1

min ,r r rx y x y+ <  

olduğundan Lemma 3.19’u kullanırsak  

 ( ) ( ) ( ) ( ) ( ), , 1 ,n r n n n nf x y s x y u x y≤ + ∆ − ∆ − ∆ =               ( )3.79  

sonucunu buluruz. 
n

u  fonksiyonunun x ’e göre kısmi türevini alırsak  



( )
( )n

n n

x
v x

x

′∆
=  

olmak üzere  

 ( ) ( ) ( ), n

n n n
u x y x v s v x

x

∂
= −  ∂

                ( )3.80  

bağıntısını elde ederiz. 

1

x
=

0

∞

∫ xt
e dt

−  ,  ( )0x >  

integral temsilini, Teorem 2.10 ve Teorem 2.18’i kullanırsak  

 
( )

( ) ( )1 2

2
! n

n n

v x n
n x x

x x
ψ ψ+ +

′ +
= − =

0

∞

∫ ( )xt

ne z t dt
−              ( )3.81  

elde edilir. Burada  

( ) ( )
2

2
1

n

n t

t
z t n

e

+

−
= − +

− 0

t

∫
1

1

n

s

s

e

+

−−
 ds  

dır. ( )0 0nz =  ve  

( )
( )

2

2
1

n t

n
t

t e
z t

e

+ −

−

′ =
−

 

olduğundan 
n

z  ( )0,∞  aralığında negatiftir. Yani 
n

v  ( )0,∞  aralığında monoton azalır. s x>  

ise ( )3.80 ’den dolayı 

( ) ( ), 0, 0n nu x y u y< =  

sonucunu buluruz. Burada ( )3.79 ’u kullanırsak ( )3.78 ’i ispatlamış oluruz.  
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