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OZET
POLIGAMMA FONKSIYONLARI iLE ILGILI ESITSIZLIKLER

KELES, Yusuf
Yiiksek Lisans Tezi, Matematik Anabilim Dali
Tez Danigsmani: Yrd. Dog. Dr. Necdet BATIR
Ocak 2008, 49 sayfa

Bilindigi iizere klasik gamma fonksiyonu Re(x) >0 i¢in

I(x)= I et dt
0

integrali ile tanimlanir. Gamma fonksiyonunun logaritmik tiirevine digamma

fonksiyonu denir ve ¥ ile gosterilir. Bir bagka ifade ile

v (x)

dir. Literatiirde digamma fonksiyonunun tiirevlerine poligamma fonksiyonlar1 denir.

_I'(x)
CT(x)

Bu calismada; digamma ve poligamma fonksiyonlari ile bazi temel 6zellikleri
verip bu fonksiyonlarla ilgili son yillarda elde edilen baz1 6nemli esitsizlikleri bir araya

getirmeye calistik.

Anahtar Kkelimeler: Digamma fonksiyonu, Poligamma fonksiyonu, Gamma

fonksiyonu, Esitsizlikler.






ABSTRACT

POLYGAMMA FUNCTION INEQUALITIES

KELES, Yusuf
Msc, Mathematics Science
Supervisor: Assist. Prof. Necdet BATIR
January 2008, 49 pages

As it is well known the classical gama function I is defined by the integral
for Re(x)>0
I'(x)= I et dr
0

The logarithmic derivative of the gamma function is called the digamma function. An

other words the digamma function is defined by
I'(x)
v(x)=

ST
The derivatives of the digamma function are called polygamma function in the

literature. In this thesis, after presenting some fundamental properties of these
function, we collected some important inequalities for these function discovered in

the last years.

Key words : Digamma function, Polygamma function, Gamma function, Inequalities.






ON SOZ

Bu calismada; 6zel bir fonksiyon olan gamma fonksiyonu, bu fonksiyonun
logaritmik tiirevi olan digamma fonksiyonu ve digamma fonksiyonunun ardisik
tirevleri olan poligamma fonksiyonlar ile ilgili esitsizlikler ve bazi ozelikler ele
alinmaktadir. Son yillarda bu fonksiyonlarla ilgili yapilan yogun c¢alismalar bu
fonksiyonlarin onemine dikkat cekmektedir.

Bu ¢alismanin baslangicinda belirtilen fonksiyonlarla ilgili bazi1 temel tanim ve
teoremler sirasiyla verilmistir. Son boliimde ise fonksiyonlar arasindaki birtakim
esitsizlikler ayrintili bir sekilde incelenmistir.

Bu calismay1 bana veren ve calismalarim siiresince karsilastigim giicliiklerde
yardimlarini esirgemeyen hocam, Sayin Yrd. Dog. Dr. Necdet BATIR’a tesekkiir eder

saygilarimi sunarim.

Yusuf KELES
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1. GIRIS ve KAYNAK BILDIRISLERI

Re(x)>0 icin F(X ) = J. e't''dt  integrali ile tanimlanan gamma
0

fonksiyonu ilk defa 1729 yilinda Isve¢’li iinlii matematik¢i Leonarol Euler ( 1707-
1783) tarafindan tamimlanmistir. Euler’in bu fonksiyonu tanimlamaktaki amaci n!

sayisint her reel sayr icin tanimli hale getirmek olmustur. Gercekten n bir pozitif

tamsay1 ise I'(n+1)=n! dir. I'’'nin tammindan her x>0 ic¢in I'(x+1)=x I'(x)

fonksiyonel denkleminin saglandigi kolayca goriiliir. Bu denklem yardimiyla I
fonksiyonu tiim kompleks diizlemde tanimlanabilir. Gamma fonksiyonunun &nemi
anlasildiktan sonra aralarinda Marie Legendre ( 1752—-1833 ), Carl Fredrich Gauss (
1777-1855 ), Christoph Gudermann ( 1798-1852 ), Joseph Liouville ( 1809-1882 ),
Karl Weierstrass ( 1815-1897 ) ve Charles Hermite ( 1882-1901 ) gibi pek cok seckin
matematikcinin de aralarinda bulundugu bir¢ok matematik¢i bu fonksiyon iizerine
calismiglardir.
Gamma fonksiyonu ve
<

§(n)=2—

m=l1

seklinde tanimlanan riemann zeta fonksiyonunu iceren
.1
{(z)=¢(1-2)T(1-z)2° 7" smEﬂ'Z

fonksiyonel denklemi analitik sayilar teorisinin en 6énemli konularindan birini teskil

eder. Gamma fonksiyonunun tarihi ve temel 6zelikleri hakkinda detayli incelemeler
yapilmistir [Srinivaran, 2007].
Gamma fonksiyonunun istatistikte, fizikte ve analitik sayilar teorisinde onemli

birtakim uygulamalar1 vardir.

Gamma fonksiyonunun logaritmik tiirevi Yy ile gosterilir ve digamma

fonksiyonu olarak tanimlanir. Yani Re(z)>0 olmak iizere




seklinde ifade edilir. Digamma fonksiyonunun harmonik sayilarla yakin bir iligkisi

vardir. Ornegin n bir pozitif tamsay1 ise ' (n+1)=—y+H, dir.

n

Burada H, = Z% ve y=lim(H, —logn)=0.57721... seklinde tanimlanan
k=1
Euler sabitidir.

Digamma fonksiyonunun  ¥’,y”,w”,...seklindeki tiirevleri poligamma

fonksiyonlart olarak bilinirler. Biz bu tezimizde g//(") (x) =y, (x) , n=12,3,... olarak

alacagiz. Poligamma fonksiyonlarinin

v, ()= Y —

o (k+ x)n+1
seklinde seri temsilleri vardir. Bu temsil yardimiyla
w,(1)=(-1)"n'{ (n+1) , n=1,2,3,..
oldugu kolayca goriiliir. Yani poligamma fonksiyonlar1 Riemann zeta fonksiyonunun

bir genellemesini teskil eder. Biz bu c¢alismamizda poligamma fonksiyonlari

esitsizlikleri ile ilgili son yapilan ¢aligmalari bir araya getirmeye calistik.



2. ON BIiLGIiLER

Bu boliimde konuyla ilgili daha sonraki boliimlerde kullanilacak olan temel tanim ve

teoremler verilecektir.

Tamm 2.1.(Gamma Fonksiyonu)

x>0 i¢in gamma fonksiyonu

=
—_
S
N—
Il

) S—

et dt
seklinde tanimlanir.
Tamm 2.2.(Poligamma Fonksiyonlari)
x>0 icin
y(x)= ?((;C))

fonksiyonuna digamma veya psi fonksiyonu denir. ¥(x) fonksiyonunun /", w”,...

tiirevlerine de poligamma fonksiyonlar1 denir.
Tanim 2.3.(Euler-Mascheroni Sabiti)

Euler-Mascheroni sabiti ¥ ile gosterilir ve

y= lim(Z%—lognj =0,5772156...

n—oo k=1

ile tanimlanir.
Teorem 2.4.

Digamma fonksiyonu

V/(x) :_7/+J’e_;e_tdt
0

1-e



seklinde integral temsiline sahiptir[Srivastava ve Choi, 2001].

Teorem 2.5.

x>0 i¢in digamma fonksiyonu

X

| =
‘//(X)Z—V—;+z

i n(x+n)

seklinde seri temsiline sahiptir [Srivastava ve Choi, 2001].

Teorem 2.6.

x>0 icin digamma fonksiyonunun

]

w(x)=logx+ J. B— ! - }e‘”‘dt

0 l1-e

seklinde integral temsili vardir [Srivastava ve Choi, 2001].

Teorem 2.7.

Her x>0 ve me N i¢in digamma fonksiyonu

m—1
v (mx)= logm+i2y/(x+£

)
m - m

olacak sekilde bir 6zellige sahiptir [Srivastava ve Choi, 2001]..

Lemma 2.8.

x>0 ve ne N i¢in poligamma fonksiyonlari i¢in
- 1

(n) — _1 n+l '
y U (x)=(=1 nkzo—(k+x)”“

seklindeki seri temsili gegerlidir[Srivastava ve Choi, 2001].



Lemma 2.9.

Her x>0 , n>0tamsay1 ve ¥”(x) =w(x) olmakiizere;

~1)"n!
y )y (= T x3+1n

dir [Srivastava ve Choi, 2001].

Teorem 2.10.

x>0 ve ne N i¢in poligamma fonksiyonlari

tne—xt
—di
—e

Ity = | 1
0

seklindeki integral temsiline sahiptir.
ispat.

Teorem 2.4. te ¥(x)’in n. tiirevini alirsak hemen cikar.
Lemma 2.11.

n =2 tamsayisi ve x pozitif reel sayis1 icin

n—1 [‘//(n) (x)]z n

n " @ [y ] S+l

dir [Alzer ve Wells, 1998].

Tanim 2.12.

B,.B,,B,,....B,,... Bernoulli sayilar

0>71°
e
e -1 ‘=T n!




seklinde tanimlanir [Apostol, 1976]. Ornegin B, =1, B, = —%, B, =

ve k=1 i¢in B,,,, =0 dur.

Lemma 2.13.

Poligamma fonksiyonlari icin asagidaki asimptotik acilim gecerlidir.

(n=1! n! - 2k +n-1)!
B
le z }

+ —_—
2xn+l = 2k (2]{) !x2k+n

(x > ;n=12,3,...)

v @0 =) {

dir [ Abramowitz ve Stegun, 1965]. Burada B,, 'lar Bernoulli sayilaridir.

Lemma 2.14.

Digamma fonksiyonunun tek bir pozitif kokii vardir ve bu kok ¢=1,4616321...dir

[ Abramowitz ve Stegun, 1965].

Tanim 2.15.

I bir aralk ve feC”(I) olsun. Eger her xel ve k=0 tamsayis1 icin

(1) f®(x)20 ise f I arahiginda tam monotondur (Completely monotonic) deriz. Eger

buradaki esitsizlikte ">" yerine ">" gecerliise f [ iizerinde kesin tam monotondur deriz.

Tanim 2.16.

f x=0 icin taniml bir fonksiyon olmak iizere f ’'nin Laplace doniisiimii f(s) ile

gosterilir ve

]

fs)= _[ e f(x)dx

0

seklinde tanimlanir.( Tabif ki bu integralin yakinsak olmasi sartiyla)



Tanim 2.17.

f,g:R— Rparcali ve siirekli (piecewise continous) fonksiyonlar ise f ve g ’nin

konvulasyon carpimi f * g ile gosterilir ve

(f*g)(x)=f f(D)g(x-1)dr
0

biciminde tanimlanir.
Teorem 2.18.

f ve g ’nin konvulasyonunun Laplace doniisiimii f(s).g(s) dir.
Teorem 2.19.

n 2 0 bir tamsay1 olsun. O zaman

1 1 2n B
F,(x)=log[(x)—| x—= [log(x)+ x——=log(27) -y ———2
+{x)=log T (x 2) 080+ logm) ;2i(2i—1)x21‘1
ve
G (x)=—10 F(X)+(x—ljlo (x)—x+llo (27[)+§L
" : 2)°* 2% = 2i(2i—1) x*"

fonksiyonlar1 (0,oo) araliginda kesin tam monotondur [Alzer, 1997]. Burada B, ’lar

Tanim 2.12°de verilen Bernoulli sayilaridir.
Lemma 2.20.

s ve t pozitif reel sayilar1 ¢ > s seklinde olsun. Bu durumda her n >1 tamsayisi i¢in
1

lim| (- ) [(x+1).(x+5)] ﬁ_ et
x| | (x+1)" =(x+9)" 2

—_

dir [Batlr, 2007] .



Tanim 2.21.

a ve b pozitif reel sayilar olsun. Bu durumda a ve b ’nin Stolarsky ortalamasi her

PE R i¢in S (a,b) ile gosterilir ve
L
P _ [P p-1
S (a.b)= a’-b"
p(a-b)

seklinde tanimlanir.

Tanim 2.22.

I bir aralik, s,re I ve f:I — R siirekli ve kesin monoton bir fonksiyon olsun. Bu

durumda integral i¢in ortalama deger teoremine gore

t

.

r—s B
saglanacak sekilde bir £ e [s,7] vardir. Iste bu &’ya s ve #’nin f - ortalamasi denir.
‘
L=t =r (] rwa |

ile gosterilir.

Lemma 2.23.

I bir aralik ve f:I — R monoton artan bir fonksiyon olsun. Eger f* I iizerinde tam

monoton ise x — I, (x+s,x+1)—x I iizerinde monoton artan konkav bir fonksiyondur

[Elezovic ve ark., 2000].



Lemma 2.24.

x> Y icin ¥’ fonksiyonu

seklinde siirekli kismi kesirlere sahiptir. Burada a, katsayilant p =1,2,3,... i¢cin

4

a = p
’ 4.(2p—1).(2p+1)

bagintisi ile verilir. [Wall, 1948].



3. POLIGAMMA FONKSiIYONLARI ESiTSIZLIKLERI
Lemma 3.1.

n =2 bir tamsay1 ve
1

In(a)zj. [(2n-1)x"—1] £, (a(1-x)) f, (a(1+x))dx

0

olsun. Burada

n-1

t
—t

L= |

dir. O zaman her a >0 igin 1, (a) <0 dir [Alzer ve Wells, 1998].

ispat.
h (0 =[(2n-1)2 -1](1-2%)""

veE

al-x) a(l+x)
1_ e—a(l—x) ° 1 _ e—a(1+,\t)

u(x;a)=

olsun. Bu takdirde

1
I (a)=a’""? J. h, (x)u(x;a)dx (3.1)
0

yazabiliriz.
Simdi x —u(x;a) fonksiyonunun (0,1) araliginda kesin monoton azaldigim

gosterelim. Bunun i¢in

%u(x;a)<0 (0<x<l;a>0)
oldugunu gostermek kafidir.

v(x;a) =logu(x;a)
dersek

1 1
w(z)=———
z e —1

olmak tizere



iv(x; a)=a [W(a(l +x))—w(a(l- x))]
ox
oldugunu goriiriiz. 0 < a(l-x) <a(l+x) ve z>0 i¢in
2.2 e E 2
[(2) (sinh 2) }

. 2
nh—
(zsi 2)

d
d—ZW(Z) =

<0

oldugundan
w(a(l+ x)) < w(a(l—x))

elde edilir. Boylece

—u(x;a)= u(x;a)iv(x; a)<0
ox

ox

1
olur. Buradanda O0<x<1 ,x#(2n—1) 2 ve a>0 i¢in

h (X)u(x;a)<h ()u((2n—1) 2;a) (3.2)

elde edilir. (3.1),(3.2) den ve
1
j h,(x)dx=[-x(1-2*)" ] =0
0
oldugundan
1
1
I (a)<a™"Pu((2n-1) ?;a) I h,(x)dx =0
0
buluruz.

Teorem 3.2.

n =2 bir tamsay1, & bir reel say1 ve x bir pozitif reel say1 olmak tizere

F (e =(y" () -y oy (x)

tanimlayalim. O zaman

a) x — F,(x;a) fonksiyonunun (0,c0)araliginda kesin tam monoton olmasi igin gerek ve

yeter sart



olmasidir.

b) x — —F,(x; ) fonksiyonunun (0,c0)araliginda kesin tam monoton olmasi i¢in gerek ve

yeter sart

olmasidir [Alzer ve Wells, 1998].

Ispat. a)
x—=>F (x;(n=1)/n)

fonksiyonunun (0,c0) araliginda kesin tam monoton oldugunu gosterelim.Teorem 2.10.’dan

dolay1
tn—l
)=
10 =
olmak tizere x>0 ve n>2 i¢in
(_1)nl//(n—l)(x) — J. e—xtfn (t)dt , (33)
0
(—1)n+ll//(n)(X):_[ e—xtt fn(t)dt, (34)
0
(_1)n+21//(n+1) (X) — J. e—xzt2 fn (t)dt (35)
0

yazabiliriz. (3.3),(3.4) ve (3.5) integral temsillerini kullanirsak

g, (O =(tf, )= (tf, (1))

_n-1
n

(£, £,() (3.6)

olmak uizere

Fn ()C; (n _ 1)/n) _ |:(_1)n+1 l//(n)(x)T _nT—][(_l)n l//("_l)(x) (_1)n+2 l//(n+l)(x):|



oo

=j e'g, (t)dt (3.7)

0
elde ederiz.Burada * konvulasyon carpimudir. (3.6) esitliginde konvulasyon carpimlarini

hesaplarsak

! s) sf, (t—s) f,(s)ds

gn<r>=](t—2"_
0

buluruz. Bu integralde
t
s=—(1+x
~(1+3)

degisken degisimi yaparsak
1

gn(t)— I 1-2(n—1)x—(2n—1)x ]f( 1x)f((1+x)x

sonucunu buluruz.
X f, (%(l—x) 7 (%(1+ %)

bir tek fonksiyon oldugundan

1
3

t J' (1
H=—1_11-(2n-1 —(1- 1+ =——I | —

&0=g, ] [1=(2n-D)x ] £,G0=x) £, (14 x)dx 4nn(2j

olur. Burada /, Lemma 3.1.’de tanimlandig1 gibidir. Boylece Lemma 3.1. ve (3.7) den

x>0ve k=0,1,2,...icin

oo

d .
kd"F( (n—l)/n):_([e t*g,(t)dt>0

(=1)
elde ederiz. Bu da x — F, (x;(n—1)/n) fonksiyonunun (0,cc)araliginda kesin tam monoton

oldugunu ispatlar. Teorem 2.8.’den dolayi (—1)"" w™ (m>1) (0,e0) araliginda kesin tam

olarak monotondur. Iki kesin tam olarak monoton fonksiyonun toplami ve ¢arpimi da yine

kesin tam monoton oldugundan

F(x;a)=F,(x;(n=1)/n)+((n-1)/n-a)(-1)" y" ™" ) (=1 p " (x)

e , n—1. . . - .
esitligi x — F, (x;¢) ’'nin @ < —— i¢in kesin tam monoton oldugunu ispatlar.
n



Karsit olarak, eger x — F, (x;&) (0,0) araliginda kesin tam monoton ise

y ]
< [l//mE) (x)l//(nl) (x)] (x > O) (3'8)

elde ederiz. Lemma 2.13.”den dolay1

lim x"y " (x) = (=" (m -1)!

x—>00

olup buradan

2
im (W(n)(x)) _n -1
F—s00 l//(n—l) (X)W(VH—]) (x) n

(3.9)

elde ederiz. (3.8) ve (3.9) bagintilari a<?L sonucunu verir.
n

b)

Simdi x —-F, (x;ilj fonksiyonunun (0,c0) araliginda kesin tam monoton
n+

oldugunu gosterelim. Teorem 2.18 ve Langrange 6zdesliginden

_ L P (n-1) (n+1) m ¢ N2
F( n+1j( j (" ()= (" ()

+1

—n—=2

oo

(n' Zx+l ix+l_n_} n'
=0

i=0

oo

z j—i [x+l (x+j):|

M8

elde ederiz. Boylece k = 0 tamsayilari icin

(-1)" d—k(—Fnu; L )j

dx n+1

k—r—1

ZZZ —i)ziC(k,r)(xH)_"_z_ (x+j)"7" "ﬁ n+2+s) [ (n+2+5)>0

i=0 j s=0

esitsizligine ulasilir.



_Fn (X;IB) = —Fn (X;Lj—i_ (ﬁ_ij(_l)n l//(n_l)(X)(—l)n+2 l//(n+l)(_x)
n

+1 n+l1
temsili g > Ll icin x> —F,(x; ) fonksiyonunun (0,) aralifinda kesin tam monoton
n+

oldugunu ispatlar.
Son olarak x ——F, (x;/) fonksiyonunun (0,c0) aralifinda kesin tam monoton
oldugunu kabul edelim. Bu durumda —F, (x; ) > 0 olacagindan
2
(¥ (x))
l//(n—l) (x) W(nﬂ) (x)

olur. Diger taraftan Teorem 2.19.’dan dolay1 x>0 ve m=0,1,2,... i¢in

<B (x>0) (3.10)

y () =y (D +(=1)" mix ! (3.11)

oldugundan

m )
(‘// (x)) n
im =
=0 "D ()" (x)  n+l

(3.12)

sonucuna ulasiriz. (3.10) ve (3.12) beraberce S ZLI oldugunu ispatlar. Bu da teoremin
n+

ispatin1 tamamlar.

Teorem 3.3.

n =2 bir tamsay1 olsun. Bu durumda her x >0 i¢in

2
n—1 [l//(n)(x)] n
n < (n-1) (n+1) <
yr oy () ntl

dir.

ispat.

(3.9) ve (3.12) limitlerinden hemen ¢ikar.



Teorem 3.4.

x>0 i¢in
[v' )]+ (x)>0 (3.13)

dir[Batir, 2005].

ispat.

x>0 igin
F@ =[Ol +¥' @)
tanimlayalim.

lirg f(x)=0

oldugundan f(x)>0 oldugunu gostermek icin f(x)— f(x+1)>0 oldugunu gostermek

kafidir. Buna gore

F = foD =y @ +97 0= [y 4 D) =y (x+D)
oldugundan Teorem 2.19.’dan dolay1

2 , 1 1
FOO= FGr+1) =—2(w ) ————zj
X x 2x
elde ederiz. Teorem 2.19.’u n =2 icin uygularsak

, 1 1
————>0
v x 2x

oldugunu goriiriiz. O halde f(x) >0 dir.

Teorem 3.5.

x>0 i¢in
v(x).e’ <1

dir [Batir, 2005].



ispat.

(3.13) esitsizliginin her iki tarafin1 ¥’(x) e bolersek x>0 i¢in

d 7
E(l//(x)+ln(w(x))) >0

buluruz. O halde w(x)+In(y’(x)) (0,e) araliginda monoton artar. Teorem 2.19.”dan dolay1
1 1
logx——< y(x) < logx——
x 2x

elde ederiz. Bu ise

A b
w (x)e * < W (x).e"” < xyp'(x)e (3.14)
sonucunu verir. Lemma 2.13’de n =1 alindiginda

1+1_ 1 N
2x* 6x° 30X

, 1
vix)—+ (x - 00)
x
olacagindan (3.14) deki esitsizligin her tarafi 1’e gider.Bu ise

limy/(x)e¥™ =1

degerini verir. (x)+In(y’(x)) monoton arttigindan ispat biter.

Teorem 3.6.

x>1 icin
y(x+a)<logx<y(x+p)
esitsizlikleri saglanacak sekilde en iyi & ve £ degerleri
a=c—1=0,4616321... ve =0,5

degerleridir. Burada ¢ Lemma 2.14’te verildigi gibidir [Batir, 2005].
Ispat.

logI'(x) fonksiyonuna [u,u +1] (u>0) arahginda ortalama deger teoremini

uygularsak I'(u +1) =u.I'(u) fonksiyonel denklemi yardimiyla



y(u+6(u))=logu (3.15)
olacak sekilde u’ya bagh ve 0<8u)<1 (u>0) seklinde bir 6(u) elde ederiz. (3.15)’te

u=e"" degisken degisimi yaparsak t — w/(t) fonksiyonu birebir ve 6rten oldugundan ¢ >0

icin

e(ew(t) ) —f—eV®
olur. Burada ¢ ’ye gore tiirev alirsak

4 t 1
g(ewu):W_l

elde ederiz. O halde Teorem 3.5.’ten dolay1 her ¢ >0 icin
9’(6“’“) ) >0
dir. Halbuki ¢t — ¢ fonksiyonu birebir ve 6rten oldugundan her >0 icin 8'(t)>0 dur.

Yani 8(¢) her ¢t >0 i¢cin monoton artar. Simdi lim 8(¢) =% oldugunu gosterelim.

X—00

Teorem 2.19.’dan dolay1
y(r)<lo t—i
s 2t

vE

1
12¢°

w(t) > logt—i—
2t
oldugundan

1 A
t—te <@’ )=t—e"" <t—te ¥ 27

olur. Buradaki her iki smirinda limitinin % oldugu kolayca goriilebilir. O halde

limO(t) = % "dir. Bu nedenle

X—>00

y(x+e=D=yp(x+00) <y(x+0(x)) <y(x+6()) =y (x+ %)

olur. (3.15)’i kullanirsak ispat biter.



Teorem 3.7.

« bir reel say1 olsun. O zaman
Ja ()= x (log(x) ~y(x))
fonksiyonunun (0,e0) araliginda kesin tam monoton olmast i¢in gerek ve yeter sart o <1

olmasidir.

ispat.

Teorem 2.6.’dan dolay1

1 1
o) = ——=
l1-e t

olmak iizere
fi(x)=x. J. o(t).e " dt (3.16)
0
dir. @ nin (0,0) araliginda monoton attigini ve
. 1 .
lrln(’)l o) = 5 ve }1m pt)=1

oldugunu kolayca gosterebiliriz. (3.16) *dan dolay1 n>1 i¢in

]

n—1
R P 1Mjnff¢mawa
0
=X J. ¢(t)e_xrtndt—n J. ¢(t)e—xttn—1dt
0 0
= j ¢(t)€_)€ft"—1 (tx—l’l)dt'i‘ j ¢(t)e—xttn_1 (Z_x—n)dt (317)
0

olur. @(r) monoton artan oldugundan 0<7 <%, icin @(t)<@(%) ve Y.<t i¢cin @(%)< @(t)

olur. Su halde (3.17) ye gore



A
()" £ 0> @) ) et (x—n)di+9(%)

Sy 8

O‘—.

elde ederiz. x>0 ve m=0,1,2,... icin

m+1

—Xt  m m!
J.e ‘t"dt =
0

oldugundan
J e " (tx—n)dt=0
0

elde edilir. Boylece (3.18) esitligi x>0 ve n=0,1,2,... i¢in

(-1)" £ (x) >0

sonucunu verir. Verilen u# vev fonksiyonlar: i¢in Leibniz kurali

(=1)" (u(x)v(x))" = j{f’j(—l)" u® () (=1)"" v (x)

i=0

et (tx—n)dt

(3.18)

oldugunu ifade eder. Bu kurala gore kesin tam monoton iki fonksiyonun carpimlar1 da kesin

tam monotondur. @ <1 igin u,(x)=x*"

fonksiyonu (0,c0) araliginda kesin tam monoton

oldugundan a <1 i¢in f, (x)=u,(x)f,(x) fonksiyonu da (0,oo) araliginda kesin tam

monotondur.

Simdi f, fonksiyonunun (0,e0) araliginda kesin tam monoton oldugunu kabul

edelim. Bu durumda
£ () =x"[a(log(x) -y (x))+1-xy'(x) | <0
olacagindan

XY (x)—x
x(log(x) ¥ (x))

elde ederiz.

lirr(} x.[logx—w(x)]= lirr(}[x.log x—xy(x+)+1]=1

vE

(3.19)



{iir(}[le//(x) -x|= £i£r3[l+ Y (x+1)-x]=1

oldugundan (3.19) esitsizligi @ <1 sonucunu verir. Bu da teoremin ispatini bitirir.

Teorem 3.8.

n >1 bit tamsay1 olsun. Bu taktirde her x >0 icin

1+l

At (A
[(n—1)!]r

dir [Batir, 2007].

Ispat.

Sonug 3.3’ten dolayr n =2 tamsayisit ve x >0 i¢in

L VA0
n-1 v _ (0w,  (x) n+l

oldugundan n =1 i¢in
Y, (W, ()= (n+D)[p,, ()] <0

yazabiliriz. Bu esitsizligin her iki tarafim ¥, (x)y, ., (x)’e bolersek v, (X)), (x)<0

oldugundan
p Y X) () _ (n+1) .—W”H(X) >0
l//n+1 (x) l//n ('x)
sonucunu elde ederiz. Bu esitsizligi de
ilo [Wn+l (le]—l :ilog _ [l//n+l (X)n:_!_l > 0
dx ly, ]| dx [w, (]
seklinde yazabiliriz. Parantez i¢indeki fonksiyon pozitif oldugundan bu durum
d [y,»]"
dx [l//n+l (x)]n

olmasini gerektirir. Lemma 2.13’ii kullanirsak m =1,2,3,... icin
limx"y, (x)=(-1)"" (m—1)!

oldugunu goriiriiz. Bu ise



Wn (x)]lﬁ-l - n'

n+l

lim [ -
>y,

esitsizligini verir. Bu da ispat1 tamamlar.
Teorem 3.9.

x pozitif reel sayis1 ve n dogal sayisi i¢in 6,

X

6,09=(v,)" {M} (320)
seklinde tanimlanmis olsun. O zaman
(a) Her u >0 i¢in Qn/(u) > (0’dur.
(b) Her n dogal sayist ve u =0 i¢cin 0< 86, (u) <%
(c) Her u >0 i¢in n — 6@, (1) dizisi monoton azalir.

(d) Her u>0 icin 8, (u) <0 dir [Batir, 2007].
ispat.
(3.20) denklemini n=1,2,3,... i¢in

D" (n-D! _
x" -

v, (x+6,(x) (3.21)

seklinde yazabiliriz. Lemma 2.19°dan dolay1r n >0 tamsayisi i¢in

_ n—1 _ |
v, (D -y, (o =D (322)

oldugundan (3.21) esitligini

l//n—l ('x + 1) - l//n—l (‘x) = l//n ('x + 0}1 ('x))
biciminde yazabiliriz. Bu durum ortalama deger teoreminden dolayr her x>0 i¢in

0<8,(x)<1 sonucunu verir. (3.21)’de x yerine

[(n-1)1]" |
(), (”)T

X =



alirsak

(=07 | L)
n—1 % n n—1 %

[ ww] [ w]

elde ederiz. ¥, fonksiyonu birebir ve orten oldugundan bu esitlik bize

[(n-1)]" [(n-1)]"

=u- | (3.23)
() ww] ] [ ]

bagintisini verir. Bu esitligin her iki tarafinin tiirevini alirsak

v, =y, (u)

n

1t

| [e-n] | [ ]
() ] ) L= G v

olur. Bu ise Teorem 3.8’den dolay1 her u >0 i¢in

o [(n-1)1]"
n 1 %
[SUNAT]

(3.24)

>0

sonucunu verir. Fakat u—(=1)"" y, (u) fonksiyonu (0,e0) arahgindan (0,e0) arahigmna
birebir ve orten oldugundan her u# >0 icin Hn’(u) >0 olur. Bu da (a)’mn ispatin1 tamamlar.
@, siurll ve kesin arttifindan x —eo icin 6 (x)’in bir limiti vardir. Simdi (b)’yi
ispatlayalim. (3.21) ’de x yerine (x+1) alirsak

W"(x+1+9n(x+l))=L(”n_l)!
(x+1)

esitligini elde ederiz. Bu esitlige (3.22) yi uygularsak

-1)" ! -1 (n-1)!
( ) . n+l+l//n(x+0n(x+1)):L(nnl).

[x+86,(x+1)] (x+1)

sonucuna ulasiriz. Buradan da
%)H—])
—1)* n!
6,(x+1)= SUEE | "
V,n(an(x“))_w

(x+1)"



esitligi bulunur. lim@,(x+1) =1im @, (x) oldugundan (3.21) i tekrar kullanirsak

%nﬂ)

lim 6, (x+1) = lim| —— DL —x
xoe = (D" (n-D! D" (n-D!

n

X (x+1)"

esitligini elde ederiz. Bu esitligi sadelestirerek
| o ey Y
limé, (x) =lim| n"*'| ——— —X
X—o0 X—o0 1 — (1 + %{)

ifadesini elde ederiz. Bu limitin degerinin )% oldugunu kolayca gorebiliriz. Bu ise (@) nin
yardimiyla (b) nin ispatimt verir. (¢)’yi ispatlamak i¢in (3.21) ’in her iki tarafinin tiirevini
alirsak

SOEL (146, 00y, (x+6,) (3.25)
X

bulunur. (3.21)de n yerine (n+1) alinirsa

Vi (X+ 0n+1(x)) = (_):Zl.n! (3.26)

sonucu bulunur. (3.25) ve (3.26) *dan

en’(x) _ Y (x +6,,,(%)) _1

l//n+1 (X + en (.X))

elde edilir. (a)’dan dolay Qn/(x) >0 ve x—=(=1)"y,, (x) kesin monoton azaldigindan bu
baginti n=1,23,... i¢cin 6,,,(x)<8,(x) esitsizligini verir. Bu ise n— 6, (x) fonksiyon
dizisinin monoton azaldigim gosterir. Bdylece (c)’de ispatlanmis olur. (3.24)’iin her iki
tarafinin tlirevini alirsak
n
, n=1)"
| -0y

e vw]”

n’ v, | v w [n+l :
[(n—l)‘]% l//n+l(u) l//n+1(u) '

n

l//n+l (I/t)]2 - l//n (u)'l//n+2 (u):|

sonucunu elde ederiz. Teorem 3.3’ kullanirsak bu da her u >0 i¢in



o [(n—l)!]%

n ]

)"y, (u)y

<0

sonucunu verir. Parantez i¢indeki fonksiyon u ’ya gore birebir ve orten oldugundan her u >0

icin Qn”(u) <0 esitsizligini buluruz. Bu da teoremin ispatini tamamlar.

Teorem 3.10.

n pozitif bir tamsay1 ve x pozitif bir reel say1 olsun. O zaman

(n=1)lexp(—ny (x+ %)) < ‘l//n (x)‘ <(n-1)lexp(-ny(x)) (3.27)

esitsizlikleri saglanir [Batir, 2007].

ispat.

x>0 i¢in
6,(x)=y " (logx)—x (3.28)

seklinde tanimlayalim. (3.20) de n=1 alinirsa

60 =(y)" ﬁ—x (3.29)

X

elde ederiz. Simdi her x>0 i¢in 6, (x)<6,(x) oldugunu gosterelim. Teorem 3.9.(c)’den
dolay1 n— 6 (x) monoton artifindan 6,(x)<6,(x) oldugunu gostermek yeterlidir.
(3.28)den dolay1

y(x+6,(x))=logx

yazabiliriz. Her iki tarafin tiirevini alirsak

l=(1+6?0’(x)).y/(x+6>0(x)) (3.30)
X

elde edilir. (3.29) denklemi n=1 igin

l=1/(x+t91(x)) (3.31)
X



esitligine denk oldugundan (3.30) ve (3.31) ’den

PR A ol 1C0) B (3.32)

Y (x+6,(x))
yazabiliriz. Teorem 3.5’den dolay1 00' (x)>0’dir. ¥ fonksiyonu monoton arttigindan (3.32)
esitligi her x>0 i¢in 6,(x) <g,(x) sonucunu verir. Boylece her n dogal sayis1 ve x>0 i¢in

0,(x)<6,(x) elde ederiz. 8,’in ve 6,’mn sirasiyla (3.20) ve (3.28)’de verilen degerlerini

burada yerine yazarsak

elde ederiz. Burada x yerine ¢’ alirsak

(v,)" [~ (n=1)te ) |<x (3.33)
sonucu elde edilir. Eger n ¢ift bir dogal say1 ise x — ¥, (x) monoton artti§indan bu ifade

W, (x)>—(n-1)le""™ (3.34)
esitsizligine denktir. Ayni sekilde n tek bir dogal say1 ise (3.33) esitsizligi

v, (x)<(n—-1)le"?™ (3.35)
ifadesine denktir. (3.34) ve (3.35) birlikte (3.27) deki sag esitsizligin ispatin1 verir.

Teorem 3.5’in ispatindan dolay1

) 1

im0, ()=
dir. Bu nedenle x>0 i¢in 0<6,(x) <% dir. Yine Teorem 3.9 ( b )’den dolay1 n=1,2,3,...
ve x>0 i¢in 0< 8, (x) <% dir. O halde her x>0 ve n=1,2,3,... i¢in

1
6,(x)—6, (x)< 5

dir. 6,(x) ve 6,(x)’in (3.28) ve (3.20) ’de verilen degerlerini kullanirsak bu esitsizlik




sonucunu verir. Burada x yerine ¢’ alinirsa
x—%< (w,)" [(—1)”‘1 .(n—l)!.e_"""(x)] (3.36)

elde edilir. Eger n tek ise bu ifade x >% icin

l//n(x—%j>(n—1)!.exp(—n.l//(x)) (3.37)
esitsizligine; n c¢ift ise

v, (x—%j<—(n—l)!.exp(—n.w(x)) (3.38)
esitsizligine denktir. (3.37) ve (3.38)’de x terine x+% alirsak (3.27) ’nin sol tarafindaki

esitsizligi elde ederiz.
Teorem 3.11.

n pozitif bir tamsay1 ve x pozitif bir reel say1 olsun. O zaman

(¢ (ne1)] <[y, ()] [ v ()] <))

dir. Ustelik buradaki her iki simir degeri de en iyi degerlerdir [Batlr, 2007].

ispat.

x>0 igin

[(n-1)1]" |
(), <x>]A

seklinde tamimlayalim. 8, (3.20) verildigi gibi olmak iizere

h(x)=

g(x)=86,(h(x+1))-86,(h(x)) (3.39)

olsun. g(x)’in tiirevini alip (3.24) *ii kullanirsak



0, (h(x+1))—8, (h(x))
8, (h(x)).8, (h(x+1))

g (x)=

elde ederiz. x — (1) ,(x) (0,e0) aralizinda monoton azaldigindan ve h(x) bu aralikta

monoton arttigindan Teorem 3.9 (a )’dan dolay1 g (x)<0’dir. Yani g(x) monoton azalir.

Teorem 3.9 (b )’den dolay1

11
lim =6 (0)—0 (0)=———=0
lim g(x) = 6, (=) 6, (=) =~ —

oldugu goriiliir. Oyleyse her x>0 icin
0=g() < g(x)<g(0) (3.40)

dir. g(x) tammmindan dolay1

[(n—l)!]i ]

N L —
[y | [ @]

oldugundan g ’nin degerini (3.40) da yerine yazip bu esitsizligi diizenlersek teoremin ispati

g(0)=

biter.
Teorem 3.12.

x pozitif bir reel say1 ve n pozitif bir tamsay1 olsun. Bu durumda k =1,2,3,...,n—1
icin

(n_l)!,(mJC
(

~1)" (k=1)!

v, (x) !
Wn(x)‘<(n—l)!.(mJ (3.41)

esitsizligi saglamir [Batir, 2007].

ispat.

n — 6 (x) fonksiyon dizisi monoton azaldigindan x>0 ve n>k i¢in 8, (x)> 8 (k)

olur. 8, ve g, mn (3.20) *de verilen degerlerini burada yerine yazarsak

v.)"' (M}(w )y {M} (3.42)

X X



esitsizligi elde edilir. Burada x yerine

(=) (k=1)!
¥, (x)

alirsak (2.42) esitsizligini tek n tamsayilari i¢in

(n—1)!y, (x)
l//n(x)<{m] (x>0), (3.43)

ve ¢ift n tamsayilari icin de

B (n—l)!l//k(x) ‘s
v, (x)> {(_1)1(—1(]{_1)!} ( 0)’ (3'44)

seklinde yazabiliriz. (3.43) ve (3.44) birlikte (3.41) esitsizliginin sag tarafinin ispatini

|-

verir. Teorem 3.9. ( b) den dolayr x>0 ve n=1,2,3,... i¢in 8, (x) <% oldugundan n > k icin

0, (x)— 86, (x) <% dir.Yine 6, ve 6, nin (3.20) de verilen degerlerini burada yerine yazarsak
L[ (=1)" (n=1)! (=D (k=1)) 1
) {— AR Ll (349
elde ederiz. Burada x terine

(=) (k=1)!
¥, (x)

~
==

1 .
alinirsa x >§ ve tek n tamsayilari i¢in

A AT
v (3=3)> (- [(_1)k_l(k_l)!] (3.46)

esitsizligini ve tek n tamsayilari i¢in de

AT QAT
v (=3 )< 1).[(_1)k_l(k_l)!] (3.47)

esitsizligini elde ederiz. (3.47) ve (3.47) de x yerine x+% alirsak (3.41) esitsizliginin sol

tarafin1 da elde etmis oluruz.



Teorem 3.13.

x bir pozitif reel say1 ve n pozitif bir tamsay1 olsun. Bu durumda
1
1

(n!)nt [x - (x_% + 0{)_" ]"“ < [(—1)"_1 l//n}

esitsizligi saglanir. Burada

a= [(n—l)!ﬁ ve f= [nzg(n+!)]‘ﬁ

sayilari en iyi degerlerdir[Batir, 2007].

Ispat.

Teorem 3.10°da

=[] 0)

alinip Lemma 2.9’da kullanilirsa ispat yapilmis olur.
Teorem 3.14.

x ve y pozitif reel sayilar ve n pozitif bir tamsay1 olsun. Bu durumda

(=) y (S—(n+l) (x+ )’))

1) (n) )
(_l)nw(n+1)(x+yj<( ) (v -y )
2 —y

esitsizligi saglamir. Burada S, Stolarsky ortalamasidir. Tanim 2.21°e bakiniz.
Ispat.

Lemma 2.8’de verilen seri temsilini kullanirsak x, y >0 icin

=)

(-1 (¥ (x) =y (y)) =nLY. (o (k+x) -0 (k+y))

k=0

1

l(X)<(n!)ﬁ [x—(x‘% +ﬁ)-"}‘n+l

(3.48)

(3.49)



yazabiliriz. Burada o (u) = "dir. Ortalama deger teoremine gore her x, y >0 i¢in

n+l
u

o(htx)— o :(n+1)(x—y)
(k+x)-o(k+y) ()"

saglanacak sekilde x ve y arasinda bir 7=7(k)=n(k,x,y) vardir. Su halde (3.49)
esitligini
(=) (" () -9 ()

xX=Yy

(3.50)

n+1 i
k=l

(k+77 k)"

bi¢iminde yazabiliriz. (3.49) *dan

n(k):(o“)_l[ ! kfa'(u)du}k

X = y k+x
ifadesi elde edilir. k — 0" (k) (0,00) araliginda tam monoton oldugundan Lemma 2.23’ten

dolay1 77 monoton artar. Bu durumda (3.49) *dan dolay:

1

(n+1) (=) ((k+2)"" (k+y)™) 2

77 = n+l n+l

(k) (k)

-k

seklinde yazabiliriz. Burada

n+l n+l

y —X

ﬂ(o):((ml)(y—x).(xy)"“ }

seklinde bulunur. Boylece (3.50) esitliginden

n+1 i ! < n+1 'i

k= (k+7]( ))n+2 x=y ko(k+77 ))n+2

yazabiliriz. 77(0) ve 77(e0) ‘un degerleri burada yerine yazilirsa ispat tamamlanur.

Teorem 3.15.

x>0 i¢in

a-log(e —1)<y(x) < B-log(e -1) (3.51)
esitsizlikleri saglanir. Burada a=-y (y=Eulersabiti) ve [=0 degerleri en iyi

degerlerdir.



ispat.

(x

(3.28) denkleminde x yerine ¢”") alinirsa

00 (ey/(x)) =x— eW(X)

elde edilir. Simdi x>0 i¢in
g(0)=6,("")-,(")

V() olmak tizere

tanimlayalim. g(x) ’in tiirevini alirsak v(x) =e
g’ () =v(0)-V(x+1)
elde edilir. v(x) ’in ikinci tiirevini alirsak

V= (W 0) +7 () | e

(3.52)

(3.53)

ifadesi elde edilir. Teorem 2.4’ten dolay1 (l//'(x))2+l/'(x) >0’dir. Bu da v’nin monoton

artiginl gosterir. (3.53)’ten dolayr ise g monoton azalir. Teorem 3.6’nin ispatinda

lim 6, (¢) =% oldugu gosterilmisti. Buna gore g monoton azaldigindan x >0 i¢in

0=2g(x)<g(x)<g(0)=1-¢""

yazabiliriz. Bu esitsizligi diizenlersek istenen sonug¢ bulunur.

Lemma 3.16.

a=3,203171..., y(a)=1 denklemini saglayan tek pozitif say1 olsun. O zaman her

x>1 i¢in
x.l//(a+x2) <y(a+x)y’'(a+x)

dir [Alzer ve Ruehr, 1999].

(3.54)



ispat.

xy (a+x*

()=o)
¥ (a+x)

olsun. Eger x>2 i¢in r(x) <% oldugunu gosterebilirsek

r(x)<1.550...=y(a+2)<y(a+x)

elde edilir ki bu x >2 i¢in Lemma’nin ispatin1 verir. Lemma 2.24’ten dolay1 x >% icin

x—) , 1
T
(x=1%) + X4, x=%
esitsizligi saglanir. Bu da b =a— ) olmak tizere
x| (b+x) +Y
r(x)< [ J (x>0) (3.55)

B (b+x).(b+x2)
sonucunu verir. O halde x>2 igin r(x) <% oldugunu gostermek icin (3.55) esitsizliginin

sag tarafinin % "den kiiciik oldugunu gostermek yeterlidir. Bu ise
b, =3b> =21.9214...
) 1
b =-2b"+3b 5 =-6.6714...

b, =-b=-2.7031...
olmak iizere x > 2 i¢in
0<x’+b,x> +bx+b,
oldugunu gostermeye denktir.

P(x)=x"—2.7032x" —=6.6715x+21.9214
polinomunun tek bir reel kokii vardir ve bu kok negatif sayidir. B(0)>0 oldugundan her
x>0 i¢in P(x)>0’dir. O halde x>2 igin r(x)<%’dir. Simdi xe (1,2] igin (3.54)
esitsizligini gosterelim. ¥ fonksiyonu konkav oldugundan 1< x <2 i¢in

(x-Dy(a+2)+(2-x)y(a+1)<y(a+x)
dir. (3.55)’e gore



3 x.[(b+x)2 +%2}
H= (b+x).(b+x2)

<(x-Dy(a+2)+(2-x)y(a+1) (3.56)

oldugunu gostermek yeterlidir. Iyi bilinen

v (a+1) =y ()4
bagintist kullanilirsa (3.56) esitsizligi
O<cx+o,x’ +e,x +x+c, (1<x<2) (3.57)
esitsizligine denktir. Burada
¢, =|a —% 2 .(1+é—ﬁj =7.8498...,

¢ =a-1 .(1—1j=—1.8592...,

2)\a
Cy = a—g .L+l=0.7174...,
2)a+l a
1
¢, =——=0.2379...
a+l1

dir.
P (x)= 0.2379x* +0.7174x> —1.8593x% —2.7481x +7.8498

polinomunun iki tane kompleks ve iki tane de reel kokii vardir ve bu reel kokler de negatiftir.
P,(0)>0 oldugundan her x>0 i¢in P,(x)>0’dir. Buda (3.57) esitsizligini ispatlar. Bu da

Lemma’nin ispatini tamamlar.
Lemma 3.17.

c>Y ise

_xy(c+x)
fo(x)= ¥ (c+x)

fonksiyonu [0,0) araliginda kesin monoton azalir [Alzer ve Ruehr, 1999].



ispat.

1 o
c2 ) ve x>0 olsun. f,(x)’in tiirevini alirsak

(¥ (c+x ] —f Y (c+x)y” (c+x)+x.[l//(c+x).l//"(c+x)—(l//”(c+x))2}

ifadesi elde edilir. Bilinen

esitsizligini kullanirsak
’ d ’ ” ”
[l// (c+x)]zafc (x) <y’ (c+x)y (c+x)+x.[(l// (c+x))2}

=y (c+x)[¥ (c+x)+xp " (c+x)] (3.58)

sonucunu buluruz. ¥’ ve y” ifadelerinin Teorem 2.10’da verilen integral temsillerini ve

oo

1 J. e”'dt (y>0)
Y oo
bagintisini kullanirsak

oo oo ]

—ct 2 —ct
ll//(c+x)+l//’(c+x) =I e‘”dtj et — dt—j e‘x’te—_tdt
X 0 0 1-e 0 1-e

ifadesini elde ederiz. Teorem 2.18’de verilen Laplace konviilasyonunu kullanirsak bu

bagintiy1

ily(c+x +y¥" (c+x) _([ {J. s)ds—1g, (1) }dt (3.59)

seklinde yazabiliriz. Burada

. o . 1 . . . 9
dir. Basit bir hesaplama ile CZE ve x>0 i¢cin g 'nin kesin monoton azaldigini

gosterebiliriz. Oyleyse ¢ >0 icin

t

| & (s)ds . (1) (3.60)

0

dir. (3.59) ve (3.60) birlikte



Y (c+x)+xy’(c+x)>0 (x>0) (3.61)

oldugunu ispatlar. y>0 i¢in ¥”(y)<0 oldugundan (3.58) ve (3.61) den dolay1 x>0 igin

fC’ (x) <0 dir. Bu da Lemma’nin ispatin1 tamamlar.

Teorem 3.18.

a >0 bir reel say1 olsun. O zaman her x>0 ve y >0 icin

y(a+xy)<y(a+x)y(a+y) (3.62)

esitsizliginin saglanmas: i¢in gerek ve yeter sart a=>a, =3.203171... olmasidir. Burada

a, =y (1) bagintst ile verilir.
Ispat.

Once (3.62) esitsizligi saglanacak sekilde bir a >0 reel sayisinin var oldugunu kabul

edelim. O zaman yeterince biiyiik x ’ler i¢in

w(a+xy)

<w(a+
v(atx) via+y)
olur.

i ¥ ()
Z7—>00 IOg z

oldugundan y >0 icin

lim (24 2)

=1< +
lim= ) (a+y)

olur. Eger burada y — 0 alinirsa ¥ (a,) =1<y(a)

olur. ¥ (0,00) araliginda kesin monoton arttigindan @ >a, elde edilir. Simdi her x>0,

y20 ve a2aq, igin (3.62) esitsizliginin saglandigim gosterelim.



1.Durum:

xe[0,1] veya ye[0,] olsun. 0<x<1 ve y=0 kabul edebiliriz. O zaman
a+y=a+xy olur. Buise
y(a+y)zy(a+xy)21 (3.63)
olmasini gerektirir. (3.63) ve
p(a+x)2p(a)=1
esitsizliginden dolay1
v(a+x)y(a+y)zy(a+ry)

elde edilir. Esitlik durumu sadece ve sadece x =y =0 ve a =q, durumunda saglanir.

2.Durum:
P(a)=y(a+x)y(a+y)-y(a+xy)

seklinde tamimlansin. ¥~ fonksiyonu (0,e) araliginda pozitif ve monoton azaldigindan

P(a)=v'(a+x)y(a+y)+y(a+x)y¥ (a+y)-y (a+xy)
>y (a+x)y(a+ y)+[l//(a+ y)—l//(a+xy):|

>0

sonucu bulunur. Bu da
P(a)>P(a,)
sonucunu verir. Bu nedenle (3.62) esitsizligini sadece x>1, y>1 ve a=aqa, durumunda

ispatlamak yeterlidir. Burada a=3,203171... sayisim ¥(a)=1 denklemini saglayan tek

pozitif reel say1 ve y = x >1 kabul edelim.

u(x,y) v (a+xy)

Y (a+y)
fonksiyonunu tanimlayalim. Bu fonksiyonun y ’ye gore kismi tiirevi alinirsa

y’(a+1)

1=+



olmak uizere

du(x,y)
dy

v (a+xy)

= fa(x’Y)_f“(y)yl//(“”)

esitligi elde edilir. a >% oldugundan Lemma 3.17°den dolay1 f, (0,c0) aralifinda kesin

monoton azalir. Bu ise

du(x,y)
dy

<0

sonucunu verir. Yani # fonksiyonu y ’ye gore kesin monoton azalir. y > x >1 oldugundan
u(x,y)<u(x,x) (3.64)

esitsizligi elde edilir. (3.64) esitsizligi ve Lemma 3.16’dan dolay1 da

v (a+xy) < 1//,(61+X2) Py y(a+x)

V) W) 569
elde edilir.
v(xy)=y(a+x)y(a+y)-y(a+xy) (3.66)
fonksiyonunu tanimlayalim. Burada y ’ye gore tiirev alip (3.65)’i kullamirsak
2y 0y (o) () >0
bagintisi elde edilir. y > x>1 oldugundan bu da
v(x,y)Zv(x,x)zI:W(a+x):|2—l//(a+x2) (3.67)

sonucunu verir. Esitligin sag tarafindaki fonksiyonu w(x) ile gosterirsek Lemma 3.16’dan

dolayr x >1 i¢in

%w’(x) = l//(a+x)l/(a+x)—xl/(a+x2) >0
sonucu elde edilir.
y(a+1)= g//(a)+l:1+l
a a
oldugundan
W(x)>w(l)zw(aﬂ)[w(aﬂ)-l]=(1+ljl>o (3.68)
aja

elde edilir. (3.66),(3.67) ve (3.68) esitsizliklerinden y>x>1 igin



y(a+x)y(a+y)>y(a+xy)

elde edilir. Bu da teoremin ispatini verir.

Lemma 3.19.

k>1 bir tamsayr ve ¢ bir reel say1 ve f,(x)=x°

%(x)‘ olsun. O zaman f.

fonksiyonu ¢ > k +1 i¢in monoton artar [ Alzer, 2001].

Lemma 3.20.

n>1ve x>0 igin

tanimlayalim. O zaman A, ve A, fonksiyonlari (0,c0) araliginda monoton artar. Ustelik
limA, (x)=1 ve limA, (x)=0

x—0 x—0

dir [Alzer, 2005] .

Ispat.

Lemma 3.19°den dolay1 A, ve An' fonksiyonlar1 (0,e0) araliginda monoton artar.

Lemma 2.20’dan dolay1

v, ()] =l (e )+ 22 (369)
oldugundan

A, (x)=1+ x:: v, (x+1) (3.70)
ve

A (=" ey, (-, (1) (3.71)

elde edilir. (3.70) ve (3.71) birlikte (3.69) "un ispatin verir.



Teorem 3.21.

n =1 bir tamsay1 ve r # 0 bir reel say1 olsun. O zaman x, yve z sayilar x" +y =z’
bagintisini saglamak iizere
A, (x)+A, (y)<1+A,(2)
olmasi i¢in gerek ve yeter sart 0 <r <1 olmasidir. Yine x, y ve z pozitif reel sayilari
x"+y" =z  bagintisini saglamak iizere

1+A,(z) <A, (x)+A, (y)

esitsizliginin saglanmasi i¢in gerek ve yeter sart r <0 veya r 2n+1 olma51d1r[Alzer, 2005].

ispat.

x,y >0 icin

1

£ (x0y) =144, [(xwyf)r}An(x)—An(y)

seklinde tanimlanmis olsun. Her x,y>0 igin f,, (x,y)>0 oldugunu kabul edelim. Bu

durumda

1

fo, (x,x)=1+A, {Z’x} —2A,(x)>0

olur. Lemma 2.13’ten dolay1

A

fim 220) 1
¥y n

oldugundan

1
0< hmM :l[Zr _2j

X X n

sonucunu buluruz. Bu da 0<r <1 oldugunu gosterir. Simdi ise 0 <r <1 ve her x,y >0 icin

1
f,, (x,y)>0 oldugunu gosterelim. r|—>(x’+y’)’ fonksiyonu (0,e) araliginda monoton

azaldigindan Lemma 3.19°den dolayt rt> f, (x,y) fonksiyonu da (0,e) araliginda

monoton azalir. Boylece



fur(5,9)2 £, (x,y)=1+A, (x+y)=A, (x)=A, (y) =&, (x,y) (3.72)

bagintis elde edilir. Bu bagintiya Lemma 3.19 uygulanirsa

aign(x,y)zAn’(x+y)—An’(x)>o (3.73)
X
ifadesi elde edilir. Bu da
g, (xy)>g,(0.y)=0
sonucunu verir. (3.72) ve (3.73) birlikte kullanilirsa

fo, (2, y)>0 ve x,y>0

sonucu bulunur. Simdi ise » >0 olsun. x,y >0 icin

S (x,y)<0=f,,(0,7) (3.74)

oldugunu kabul edelim. Burada f,, (x,y) ifadesinin x’e gore kismi tiirevini alirsak

, L LA
)= (e ey A (375)
x" ox x
sonucunu elde ederiz. (3.71) ’den dolay1
A ’
fim 2 ) _ntl (1) (3.76)
=0 x" n!
dir. Lemma 3.19’1 kullanirsak
’ ! l—1 ’
limA, {(x’+y’)’}(x’+y’)’ =A, (y)y™ >0 (3.77)

ifadesini elde ederiz. (3.74)- (3.77) bagmntilari kullanilirsa r—1-n>0 sonucu bulunur.
Simdiise <0 veya r >n+1 oldugunda x,y >0 icin

fw(x,y)<0 (3.78)

oldugunu gostermeliyiz. r <0 oldugunu kabul edelim. O zaman

(x’ + y’)% <min(x,y)

oldugundan Lemma 3.19’u kullanirsak
fn,r ('x’y)S1+An (S)_An ('x)_An(y):un (.X, y) (379)

sonucunu buluruz. u, fonksiyonunun x’e gore kismi tiirevini alirsak



olmak uizere

J ;
L, (53) =4[, (5) v, (+)] (3.80)
bagintisini elde ederiz.

oo

L[ ear | (x50)
integral temsilini, Teorem 2.10 ve Teorem 2.18’1 kullanirsak

’(x) _n+2

v
nl-= =
X

oa()=] e )a (381)

W, (x)|

elde edilir. Burada

dir. z,(0)=0 ve

oldugundan z, (0,e) araliginda negatiftir. Yani v, (0,) araliginda monoton azalr. s> x

ise (3.80) den dolay1

u, (x,y)<un (O,y)=0

sonucunu buluruz. Burada (3.79) *u kullanirsak (3.78)’i ispatlamis oluruz.
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