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CS-MODULLER VE GENELLESTIRILMIS CS-HALKA VE MODUL
SINIFLARI UZERINE ARASTIRMALAR

Canan CELEP YUCEL

0z

Bu galigmada komplement altmodiilleri dik toplanan olan modiillerin (yani
CS-modiillerin) temel ozellikleri ile Ch;, Fl-extending ve 6zel doniigtimlerin
genigletilmesi tiiriinden genellegtirmeleri ayrintili olarak incelenmigtir. CS-
modiillerin yeni genellegtirmeleri tanimlanip incelenmis, mevcut genellegtirmeler
ile baglantilar1 aragtirilmigtir. Elde edilen sonuclarin biitiinliigii acisindan gerek
duyuldukca ornekler verilmistir.

Birinci boliim, ¢aligmamizda kullandigimiz temel tanimlardan essential, kom-
plement altmodiil tanimlari, CS-modiiller ve nonsingular CS-modiiller ile bu tiir
modiillere iligkin sonuclara ayrilmigtir.

Ikinci boliimde, siirekli ve yari-siirekli modiillerin belirli altmodiillerinden M
ye olan doniigtimlerin, M den M ye olan doniigtimlere genisletilmesi anlaminda
karekterizasyonlar1 verilmistir. Buradan da CS-modiiller i¢in benzer sonuglar elde
edilmigtir.

Uciincii boliimde, CS-modiillerin bir genellestirmesi olarak ECS-modiiller
tanimlanip bu yeni modiil sinifinin 6zellikleri aragtirilmigtir. Diger yandan, 2.
boliimde ayrintili verilen P; ozelliginden daha genel bir modiil sinifi ele alinmig
ve ec-kapali altmodiillerden, modiile olan dontigiimlerin modiile genisletilmesi an-
laminda ec-injektiflik ozelligi incelenmistir.

Son boélimde, CS-modiillerin, Cj; (yani, her altmodiil dik toplanan olan
komplemente sahiptir) ve Fl-extending (yani, her fully invariant altmodiil bir dik
toplananda essential altmodiildiir) olarak bilinen genellegtirmelerinin yaninda
yeni bir genellegstirme tanmimlayip ayrintih olarak incelenmigtir. C7; ve FI-

extending modiiller konusunda, yakin zaman once yayinlanan baz ilgili sonuclar
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c¢aligmanin biitinligiini saglamak amaciyla ispatlariyla birlikte verilmigtir.

Anahtar Kelimeler: Essential altmodiil, Komplement altmodiil, CS-modiil,

C11-modiil, Fl-extending modiil.

Danigman: Prof. Dr. Adnan TERCAN
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CS-MODULES AND INVESTIGATIONS ON CLASSES OF GEN-
ERALIZED CS-RINGS AND MODULES

Canan CELEP YUCEL

ABSTRACT

In this work, fundamental properties of modules whose complement submod-
ules are direct summand (i.e., CS-modules) are investigated in details with the
generalizations of the C}1, Fl-extending and extension of special homomorphisms.
New generalizations of CS-modules are defined and investigated, the connections
with the existing generalizations are searched. For the completeness of the ob-
tained results, examples are given when necessary.

The first chapter is devoted to the basic definitions used in our work which
are the definitions of essential and complement submodules, CS-modules and
nonsingular CS-modules, and the results related to these kind of modules.

In the second chapter, the characterizations in the sense of generalizations
between the homomorphisms from the specified submodules of continuous and
quasi-continuous modules to M and the homomorphism from M to M are given.
And then similar result are obtained for the CS-modules.

In the third chapter, as a generalizations of CS-modules, ECS-modules are
defined and properties of this new class of modules are investigated. On the other
hand, a more general class of modules than property P, as given in details in
the second chapter as the generalizations of CS-modules, is considered and the
property of ec-injectivity, in the sense of generalizations of the homomorphisms
from ec-closed submodules to module, are searched.

In the last chapter, in addition to the Cj; (i.e., every submodules has a
complement which is a direct summand) and Fl-extending (i.e., every fully
invariant submodule is essentially contained in a direct summand) known as the

generalizations of CS-modules, a new generalization is defined and investigated
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in details. Recently published some related results with proofs in the subject of

(11 and Fl-extending modules are given for the sake of completeness of this work.

Keywords: Essential module, Complement module, CS-module, C;-module,

Fl-module.

Advisor: Prof. Dr. Adnan TERCAN
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SIMGELER VE KISALTMALAR DIZINI

X< M

SocM

End(MR)

Hom(N,M):

m N

Si(R)

dim(M)

: X, M nin altmodiili

: X, M nin essential altmodiili

: M nin socle kiimesi

: X, M nin komplementi

: M nin singular(tekil) altmodiilii

: M nin ikinci singular(tekil) altmodiilii

: M nin sag sifirlayicist

: Artan zincir kurali

: Mr modiiliinin endomorfizmalar halkasi

N den M ye olan homomorfizmalarin kiimesi

: Rnin {r € R:mr € N} sag ideali

: M nin injektif hull1

: R nin sol merkezil idempotentlerinin kiimesi

: M nin Goldie (diizgiin) buyutu

Vil



1 Temel Kavramlar ve Ozellikler

1.1 Giris

Bu caligmada R degismeli olmasi gerekmeyen ve birimli bir halka, M de sag
R-modil olarak alinacaktir. Caligsmaya baslangic olusturan CS-modiil kavraminin

literatiirdeki gelisimini kisaca vurgulayarak baglayalim.

CS (yada extending)-modiil kavramimin orjini 1930 lu yillarda John von
Neumann'nin ¢aligmalarina uzanir. Von Neumann’'nin Kuantum Mekanigi'ndeki
caligmalar1 onu ”Siirekli Geometri” yi tamimlamasina ve gelistirmesine
yonlendirmigtir. Bu gliniimiizde iist ve alt siirekli tam modiiler Latis olarak ad-
landirilir. (L,A,V,0,1) bir tam modiiler latis olsun. Eger a € L ve {by : A € A}, L

nin tam sirali bir alt kiimesi iken,

aAVyenbr = Viyeala Aby)

oluyorsa, (I,,A,V,0,1) latisine iist siirekli (upper continuous) denir.

R bir halka ve M de bir sag R-modil olsun. Bu durumda M nin alt-
modiillerinin olugturdugu latis iist siirekli tam modiiler bir latisdir (Genel olarak

alt stirekli olmasi gerekmez).

Von Neumann [29,30,31] c¢aligmalarinda siirekli geometrilerin teorisini
geligtirdi ve ozellikle bunlar1 von Neumann (regiiler) halkanm sol temel ideal-
lerinin olugturdugu latisde inceledi. Regiiler halkalarda eger temel sol ideallerin
latisi iist ve alt siirekli ise bu halkaya siireklidir dedi. Bu ¢aligmalara Utumi [27]
devam etti. Bu kavramlar1 Jeremy [13] modiillere tagidi. Chatters ve Hajarnavis
7CS” kisaltmasini ”complements are summands” i¢in kullandilar [7]. Bir
¢ok aragtirmaci CS yerine extending veya C gosterimlerini kullanarak bu modiil

simiflarin yada genellegtirilmig siniflarin1 arastirmalara devam etmektedir.



Bu galigmada CS-modiiller ve mevcut genellegtirmeleri verilmig bunun yaninda

yeni genellestirmeler tanimlanip aragtirilmigtir.

1.2 Essential ve Komplement Altmodiiller

Bu kesimde, ¢alismamiza temel olusturan bazi ozel tipteki altmodiillerin tanim
ve Ozelliklerini ayrintili olarak verecegiz. Bu kesimdeki sonuglar icin [1], [9], [11]

Onerilir.

Tanim 1.2.1 M bir R-modul ve N < M olsun. Eger her 0 # K < M ig¢in
NN K # 0 oluyorsa veya buna denk olarak bir L < M i¢in NN L = 0 oldugunda
L = 0" gerektiriyorsa N ye M nin essential (large, genis) altmodilii (veya

M ye N nin essential genislemesi) denir ve N <, M ile gésterilir.

Onerme 1.2.2 M bir modiil olsun. Bu durumda;

1. N < M olsun. N <. M olmasu i¢in gerek ve yeter kosul her 0 £ m € M
icin N NmR # 0 olmasidar.

2. K <N < M olmak uizere K <. M olmas i¢in gerek ve yeter kosul K <., N
ve N <. M olmasidar.

S N, Mve K<Mise NNK <, K d.

4. 1 <i <t olmak dizere her t > 1 i¢in N; <. K; ise (NN Na N ... N Ny) <,
(KiNKyn...NKy) dor.

5. K <N <M olmak tizere NJK <, M/K ise N <. M dir.
6. Birm € M i¢cin N <, M ise m~'N <, Rp dir.

7. Her sifirdan farkl indis kumesi I i¢in, © € I olmak tizere N; <., M; olmasi

igin gerek ve yeter kosul @,.; Ni <c @,c; M; olmasidar.

8. A, B,C < Molmak tizere eger f : B — C' bir homomorfizma ve A <., C' ise
f~YA) <. B dir.



Yukaridaki (7) ve (4) ozellikleri ile ilgili olarak, (7) de A <. Bve A’ <., B’
iken A+ A" <, B+ B’ olmayabilir [11]. (4) de ise ¢ sonlu degil ise (), NV; <. ), K

dogru olmayabilir.

Onteorem 1.2.3 M bir R-modil, M = K ® K' ve N < K olsun. Bu durumda
M/N = K/N @& (K'+ N)/N olur.

Kamit. K/N+(K'+N)/N < M/N dir. (m+N) € M/N alalm. Buradan k € K ve
k' € K’ olmak iizere m+N = (k+k')+N = (k+N)+(k'+N) € K/N+(K'+N)/N
elde edilir. Yani M/N C K/N + (K’ + N)/N oldugundan M /N = K/N + (K’ +
N)/N dir. §imdi K/NN(K'+N)/N = 0yani KN(K'+N) = N oldugunu gorelim.
r € KN (K" 4+ N) olsun. Bu durumda x € K ve n € N, k' € K’ olmak iizere
x =k +nolur. O halde z —n =k € KN K’ =0 oldugundan x = n dir. Boylece
z € N elde edilir. Yani, KN(K'+ N)= N olup K/NN(K'+N)/N =N/N =0
olur. Dolaywsiyla M/N = K/N & (K'+ N)/N dir. O

Onteorem 1.2.4 M bir sag R-modil, 0 # a € M ve K <, M olsun. Bu du-

rumda, al. # 0 ve al. C K olacak sekilde R nin bir essential sag L ideali vardar.

Kanit. L = {r € R : ar € K} olsun. Buradan, L, R nin bir sag idealidir ve
al. C K dir. Boylece aR N K # 0 olur. Bazi r € R i¢in ar, K nin sifirdan farkh
elemanidir. Yani, r € L igin aL # 0 dir. I, R nin sifirdan farkli sag ideali olsun.
Simdi I N L # 0 oldugunu gorelim. Eger al = 0 ise I C L oldugundan I N L # 0
olur. Farzedelim ki, al # 0 olsun. Bu durumda al N K # 0 dir. Boylece bazi
x € I i¢in az, K mn sifirdan farkli elemanidir. Buradan x € L dir. Dolayisiyla

INL#0 dir. Boylece L <. R olur. O

Sonug 1.2.5 Herhangi bir M modiili i¢in Soc(Mg) = (\{N : N <. M} dir.

Tanim 1.2.6 M bir R-modul ve L, M nin bir altmodili olsun. K N L = 0
ozelligine gore maksimal olan bir K altmodiline L nin (M deki) komplementi

denir.



Tanim 1.2.6 daki K altmodiilii tek olmak zorunda degildir. Simdi verecegimiz
onermeden, bir M modiiliindeki her altmodiiliin bir komplement altmodiiliiniin
(M de) varhig: elde edilir ki, bu komplement altmodiilleri olduk¢a kullanigh yap-

maktadir.

Onerme 1.2.7 M bir modiil ve L,N < M altmodilleri i¢cin N N L = 0 olsun.
Bu durumda L nin M de bir K komplementi vardwr ki, N C K dur.

Kanit. S = {X < M : N < X ve X N L = 0} kiimesini tamimlayalim. N € S
oldugundan S # 0 dir. {X; : i € I}, S de bir zincir olsun. S tam siralidir.
U = UieIXi alalim. Herhangi iki X;, X; € S icin X; C X, yada X; C X,
oldugundan U bir altmodiildiir. Her i € I igin N < X; oldugundan N < |J,; X;
dir. Her i € I igin X; N L = 0 oldugundan | J,.; X; N L = 0 olup U € S olur. Yani
U, {X; : i € I} zincirinin bir {ist simiridir. Béylece Zorn’s Lemma ile S nin bir
maksimal elemani vardir. Bu K ile gosterilirse, K N L = 0 oldugundan K, L nin

M deki bir komplementidir. Ayrica S nin tanimindan N C K dur. U

Simdi ispatlayacagimiz onerme, bir modiilde essential altmodiiller iiretmek

anlaminda bir teknik saglamaktadir.

Onerme 1.2.8 M bir modul, L < M ve K, L nin M i¢inde herhangi bir kom-
plementi olsun. Bu durumde K & L <, M dir.

Kamit. N < M ve (K ® L)N N = 0 alalm. K C K + N oldugu agktir. Bu
durumda K, L nin M iginde herhangi komplementi oldugundan (K +N)NL # 0
olur. Buradan n € N ve 0 # = € L i¢in x = k + n olacak sekilde bir £ € K
vardir. Boylece n = 2 —k € (K & L) N N = 0 oldugundan n = 0 elde edilir.
x=ke KNL=0isex =0 olur. Bu ise bir celigkidir. O halde K = K + N dir.
Boylece N < Kise N < K@ Lolur. (K® L)NN = N =0 oldugundan N =0
dir. Dolayisiyla K & L <. M elde edilir. 0

Teorem 1.2.9 M bir modil, A, B < M ve AN B =0 olsun. Bu durumda B, A
nin M de bir komplementi olabilmesi i¢in gerek ve yeter kosul (A+B)/B <. M/B

olmasaidar.



Kanit. B, A nin M iginde bir komplementi ve AN B = 0 olsun. (A + B)/B N
(U/B) = 0 olacak sekilde B < U < M alalhm. (A + B) N U = B olur. Modiiler
kuralindan (ANU) + B = B dir. Béylece ANU < B oldugundan ANU <
AN B = 0 olur. B maksimal oldugundan B = U dur. Buradan U/B = 0 olup
(A+ B)/B <. M/B oldugu elde edilir.

Diger taraftan (A+ B)/B <. M/B oldugunu kabul edelim. ANU =0, B< U <
M olacak gekilde keyfi bir U ve x € (A4 B)NU alalim. Bu durumda z € (A+ B)
vexelUdur.a € A, b€ Bolmak tizere x =a+bdir.a=x—be ANU =0
oldugundan a = 0 olur ve boylece x = b € B elde edilir. Buradan (A+B)NU = B
olur. Yani (A+ B)/BN(U/B) = 0 dir. Kabuliimiizden U/B = 0 olur. Dolayisiyla
B = U oldugundan B maksimaldir. Boylece B, A nin M deki komplementidir. []

Tanim 1.2.10 M bir modil ve K, M nin bir altmodili olsun. Eger K, M de
herhangi bir altmodilin komplementi ise K ya (M de) bir komplement denir
ve K <. M 1le gosterilir.

Acgiktur ki, bir M modiili i¢in 0, M <. M dir.

Daha genel olarak;
Sonug 1.2.11 Bir M modilinun her dik toplanant M de bir komplementtir.

Sonug 1.2.11 deki ifadenin tersi genel olarak dogru olmayabilir. Ornegin; F' bir
cisim ve V' de 2 boyutlu bir vektor uzay1 olmak lizere Rp = {[{; ﬂ . feFve
V=wFouF)}vel={[%]:feF}, J={[{%]:f¢€F} olarak alahm.
Bu durumda I, J nin R deki (benzer olarak J, I min) komplementidir. Yani I, R

nin komplementidir. Ancak I, R nin bir dik toplanan degildir.

Onerme 1.2.12 M bir modiil ve N < M olsun. Bu durumda N <, K olacak
sekilde bir K <. M wvardr.

Kanat. N', M de N nin komplementi olsun. Boylece N’ N N = 0 dir ve N’ niin
bir K komplementi vardir ve Onerme 1.2.7 den N C K dur.



0 # L < K olsun. N’ C L + N’ oldugundan (L + N') N N # 0 olur. Boylece
0#ne(L+N)NNisene (L+N')ven € N olur. x € L, n' € N’ olmak
tizere n = x +n' dir. Buradan n’ =n —x € N'N K = 0 oldugundan n’ = 0 dur.

Boylece n =2 € NN Lolup NN L # 0 olur. Yani N <, K elde edilir. U

Onerme 1.2.12 de varhigi ispatlanan K altmodiiliine N nin M deki kapanage

(closure) denir.

Onerme 1.2.13 M bir modiil ve K, M nin altmodiilii olsun. Bu durumda K <.

M olmasi icin gerek ve yeter kosul K <, L < M 1ise K = L olmasidar.

Kamit. Farzedelim ki K <, M ve K <, L < M olsun. Bu durumda K bir X
in M de komplementi olacak sekilde X < M vardir. Boylece K N X = 0 olur.
0=KnNX <, LNX oldugundan L N X =0 dir. K, K N X = 0 kosulu altinda
maksimal oldugundan K = L olur.

Tersine, K < M oldugundan Onerme 1.2.12 den K mmn M de bir L bir kapamst
vardir. Yani K <, L <, M dir. K = L oldugundan K <. M dur. O

Onerme 1.2.14 M bir modiil ve K, N < M olsun. Eger K <. N ve N <. M
ise K <. M dir.

Kamit. K <. N ve N <. M oldugunu kabul edelim. Buradan bir K’ < N i¢in
K, K" nin N deki komplementi ve bir N/ < M i¢in de N, N’ niin M deki
komplementi olur. x € K N (K’ 4+ N’) alahm. ¥’ € K, n’ € N' igin x = k' +n’
dir. z — k' =n’ € NN N = 0 olur. Boylece z = k' € K’ N K = 0 oldugundan
K N (K" 4+ N') = 0 elde edilir. Farzedelim ki, K <, L < M olsun. O halde
0=Kn(K'+N') <., LNn(K'+N'") olup LN (K" + N’) = 0 dir. Buradan
INN(L+N)NK =(NNK')N(L+N') =K n(L+ N') =0 olur. Fakat
K C Nve K C L+ N oldugundan K C NN (L+ N') dir. K, K’ niin N deki
komplementi oldugundan K N K’ = 0 kogulu altinda K’ maksimal altmodiildiir.
KCNN(L+N)ve|[NNn(L+ N")]NK'"=0oldugundan K = N N (L + N’)
olur. Boylece (N + L)NN" =0 dir. N, N’ niin M deki komplementi oldugundan



N N N’ =0 kosgulu altinda N’ maksimal altmodildiir ve N C N + L oldugundan
N =N+ Ldir. Buradan L < Nolur. L=LN(L+N)<NN(L+N')=K
oldugundan K = L dir. Onerme 1.2.13 den K <. M elde edilir. O

Onerme 1.2.15 M bir modil, K <. M ve K < N < M olsun. Bu durumda
N <. M olmasu i¢in gerek ve yeter kosul N/K <. M /K olmasidar.

Kanat. Tk olarak N/K <, M/K oldugunu kabul edelim. N <, M oldugu Onerme
1.2.2 (5) den agiktr.

Tersine N <, M olsun. M' = M/K, N' = N/K ve N'N L' = 0 olacak sekilde
L' < M'" alalim. Bu durumda bir L < M igin K C L olmak tizere L' = L/K
ve NN L =K dir. K, K’ niin M deki komplementi olsun. Béylece K N K’ = 0
oldugundan NNLNK’ =0 dir. N <, M oldugundan da LN K’ = 0 olur. Buradan
K C L ve K, K niin M deki komplementi oldugundan K = L dir. L' = 0 olup
N’ <. M’ olur. Yani N/K <, M/K dir. O

Onerme 1.2.16 M bir modil, K <. M ve L <. M olsun. Bu durumda K, M de
L nin komplementi olmasi i¢in gerek ve yeter kosul L, M de K nin komplement:

olmasidar.

Kamit. Tlk olarak K, M de L nin komplementi olsun. L C L' < M ve L' MK =0
alalim. Onerme 1.2.8 den K ® L <, M olur. Boylece Onerme 1.2.2 (1) den k € K,
x € L igin mr = k + x olacak sekilde bir 0 # m € M vardir. L' < M oldugundan
0#y e L ic¢in 0 # yr = k+ « dir. Buradan k£ = (yr —2) € KN L' = 0 olur.
Boylece yr = x oldugundan yr € L elde edilir. Onerme 1.2.2 (1) den L <. L'
olur. Fakat L <, M oldugundan Onerme 1.2.13 den L = L’ diir. O halde L, M

de K nin komplementidir. Terside benzer sekilde gosterilir. O

Onerme 1.2.17 M bir modiil ve N < K < M olsun. Bu durumda,

1. K <. M ise K/N <. M/N dir.



2. K/N <. M/N ve N <. M ise K <. M dir.

Kanat. (1) L < M altmodiili K C L ve K/N <. L/N kogullarin1 saglasin. Bu
durumda Onerme 1.2.15 den K/N <. L/N oldugundan K <, L olur. K <. M
ve K <, L kogullar ile Onerme 1.2.13 den K = L dir. Béylece K/N = L/N olur.
Dolayisiyla Onerme 1.2.13 den K/N <. M/N dir.

(2) K/N <. M/N ve N <. M olsun. Bu durumda kabulden K’, N < M i¢in
N C K’ olmak tizere K/N, M/N de K'/N nin ve N, M de N’ niin komple-
mentidir. Béylece K/N N K'/N = 0 olacak sekilde K/N < M/N maksimal
altmodiilii vardir. Buradan K N K’ = N dir. Benzer gekilde N N N’ = 0 olur.
O halde (KNK')NN' = KN (K'NN') =0 dir. Farzedelim ki K < L < M
ve LN(K'NN')=0o0lsun. N C K'"ve N C K C L oldugundan N C LN K’
olur. Ayrica (LN K')N N’ = 0 ifadesini kullanarak N, M de N’ niin komplementi
oldugundan L N K’ = N olur. Buradan L/N N K’'/N = 0 dir. Bu kosul altinda
K /N maksimal altmodiil oldugundan ve K C L ise K/N C L/N olacagimdan
K/N = L/N dir. Boylece L = K olur. Bu durumda K, K N (K'NN') = 0 kosulu
altinda maksimal altmodiil oldugundan K, M de K’ N N’ niin komplementidir.
Yani K <, M dir. O

Simdi 1.3 kesimde incelenecek olan CS-modiiller de sikca kullanacagimiz ve

temel aldig1 sonlu Goldie boyut ve Injektif modiil tanimlar1 verilecektir.

Tanim 1.2.18 M bir R-modul olsun. Eger M sifir olmayan altmodillerin bir
sonsuz dik toplamin kapsamiyorsa M ye sonlu Goldie boyutlu (yada sonlu
diizgin boyutlu) modil denir.

M sifirdan farkly sonlu Goldie boyutlu bir R-modil olsun. Bu durumda M bir
dizgin U altmodil (yani U # 0 ve her 0 # X, Y < U i¢in X NY # 0) kapsar.
Ustelik, bir n pozitif tamsayist ve i # j olmak tizere U; N U; = 0 olacak bigimde
Ui (1 < i < n) dizgin altmodiilleri vardwr ki, Uy @ Uy & ... & U, <. M dir.
Bu durumda n sayist M nin Goldie boyutu (yada diizgin boyutu) olarak
adlandvrilir. Eger 1 < i < k olmak tizere 0 # N; < M ve Ny ® Ny @ ... & Ny



bir dik toplam ise k < n dir. Goldie boyutu ile ilgili temel ozellikler i¢in [8], [1]

onerilir.

Tanim 1.2.19 R bir halka J, R-modil, g : A — B ve f : A — J homomorfiz-

malar olmak tzere 0 — A — B kisa tam dizi olsun.

00— A——-

J
diagrame degismeli yani hog = [ olacak sekilde h : B — J, R-modil homomor-

fizmasi varsa J ye injektif modil denir.

Sonug 1.2.20 N bir R-modil olsun. Bu durumda asagidaki kosullar denktir.
1. N njektif modiildir.
2. N < Mg ise N, M de dik toplanandur.

Kanat. (1) = (2): N < M ve N injektif bir modiil olsun.

00— N—M

.

N

diagraminda N injektif oldugundan 6 : M — N ye bir homomorfizma vardir. m €
M alalim. §(m) € N olur. Buradan 6(m) = 6(6(m)) dir. O halde (m—6(m)) =0
olup (m — 6(m)) € kerf dir. Yani m € kerf + 6(m) dir. Boylece M C kerf + N
elde edilir. Ayrica (m) C N < M ve kerf < M oldugundan kerf + N C M
olur. Dolayisiyla M = kerf + N dir. x € kerf N N alalm. O halde 6(x) = 0 ve
x € N olur. z € N oldugundan 6(z) = = dir. Béylece x = 0 olup ker6 N N =0
oldugundan M = N & kerf dir. Yani N, M nin dik toplananidir.

(2) = (1): Tersine N < My ise N, M de dik toplanan olsun. [21, Theorem 2.11]
den her modiiliin bir injektif geniglemesi oldugundan Iz injektif modiil olmak
tizere N < I dir. Kabuliimiizden dolay1 I = N @ N’ olacak sekilde N’ < Ig
vardir. [21, Proposition 2.3] den I injektif oldugu i¢in N de injektiftir. O
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Tanim 1.2.21 R bir halka P, R-modiil, g : A — B ve f : P — B homomorfiz-

malar olmak tzere A — B — 0 kisa tam dizisi olsun.

P
A—B——=0

diagrama degismeli yani goh = f olacak sekilde h : P — A, R-modil homomor-

fizmasi varsa P ye projektif modil denir.

Sonug 1.2.22 R bir halka ve P bir R-modil olsun. O halde, asagidakiler denktir.
1. P projektiftir.

2. Her

0 A B P 0

kisa tam dizisi split dizidir.

3. F bir serbest modil ve K, R-modil olmak tzere FF = K & P dir.

Kanit. (1) = (2):
p
1pi
B—P——=0
diagramini goz ontine alalim. P projektif oldugundan goh = 1, olacak sekilde bir
R-modiil homomorfizmasi vardir. Boylece kisa tam dizi
g

0—=A—=B >p—>0

h
oldugundan split dizidir. Buradan, B = A & P dir.
(2) = (3): R halkas iizerindeki her A modiilii serbest ' modiiliiniin homomorfik
gortintiistidiir. O halde, P de bir R-modiil oldugundan g : F' — P epimofizmasi
vardir. Eger K = kerg alirsak,
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dizisi tamdir. Hipotezden dizi split tam dizidir. Dolayisiyla F' = K & P dir.
3)= (1):7: F = K®P — P kanonik epimorfizma ve i : P - F 2 K @ P

kanonik monomorfizma olsun. Alt satir tam olmak tizere

P
f

A—>B—=0

R-modiil homomorfizma diagrami verilsin. Bu durumda,

A——>B—>0
diagramini ele alalim. F' serbest modiil oldugundan projektif modiildiir. Boylece
gohi = fom olacak sekilde hy : F' — A bir R-modiil homomorfizmasi vardir. h =
hioi : P — A, R-modiil homomorfizma olsun. O halde, gh = ghyi = (for)oi =
fo(moi) = fol, = f oldugundan diagram degismelidir ve P projektiftir. ([l

1.3 CS-Moduller

Onceki kesimde gerekli ézel altmodiiller ve ézelliklerinin verilmis olmasi, 1930
lu yillarda von Neumann'in stirekli geometrilerinde kullanmasi ile ilk olarak
tanmimlanan, daha sonra Utumi ve Ogrencileri tarafindan halka ve modiillere
genigletilen ve giintimiizde de bir cok arastirmacinin odaklandigr ”CS-modiil”
kavramini incelememizi miimkiin yapar. Caligmalarimizda esas olan kimi CS teori

teorem ve sonuglariin ispatlar: da biitiinliik olugturmasi anlaminda yapilacaktir.

Tanim 1.3.1 M bir R-modul olsun. Eger M nin her K komplement alt-
modili M de bir dik toplanan oluyor ise M ye CS-modiil (extending modiil)
denir.

Bu tanima denk kosullardan birt M nin her N altmodulunin M nin bir dik
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toplananin da essential olarak kapsanmasidir. Yine bir R halkast i¢cin Rg
CS-modiil ise R ye sag CS-halka denir. Yani, her I < Rpg sag ideali i¢in bir
e? = e € R vardir ki, I <, eR dir. CS-modiillere yarbasit modiiller, diizgiin
modiiller, injektif modiller ve sonlu rankl serbest Abel gruplar érnek verilebilir.

Diger yandan @;°, Z = Mz, CS olmayan bir modildir. [9]

CS bir modiilin her alt modili CS olmayabilir. Ornegin; M, CS olmayan bir
R-modiil ve E(M) de M nin injektif hulls olsun. Bu durumda, M < E(M) ve
E(M), CS-modildir.

Onteorem 1.3.2 M, CS-modul ve N, M nin bir dik toplanan altmodilii olsun.
Bu durumda N, CS-modiildir.

Kanit. N, M de dik toplanan oldugundan M = N @ K olacak sekilde K < M
vardir. X <, N alalm. N, M de dik toplanan oldugundan X <. N <. M olur.
Komplementlerde gecisme ozelliginden X <. M dir ve M, CS-modiil oldugundan
ise X, M de dik toplanandir. Buradan M = X @Y olacak sekilde Y < M vardir.
N=NNM=NnNXa&Y)=X&(NnY) oldugundan X, N nin bir dik
toplananidir. Boylece N, CS-modiildiir. U

Sonug 1.3.3 M, CS-modiil ve N <. M ise N, CS-moduldir.
Kanit. Onteorem 1.3.2 den aciktir. O

Onteorem 1.3.2 nin tersine CS-modiillerin bir dik toplami CS-modiil olmaya-
bilir.
Ornek 1.3.4 p bir pozitif asal tamsay olmak tizere My = (Z)Zp) ® (Z)Zp®)

modulint alalim. Mz moduli CS-modil degildir.

Kamt. My = Z/Zp ® 0, My = 0 & Z/Zp?® olsun. Boylece M, ve M, diizgiin
modiil olduklarindan CS-modiillerdir. Simdi M nin CS-modiil olmadigini gostere-
lim. Once b ¢ Zp® olmak iizere K = Z(14 Zp, b+ Zp®*) altmodiiliiniin Mz de kom-

plement oldugunu gosterelim. K devirli ve p? K = 0 oldugundan K nin mertebesi
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p? olur. Boylece K = Z/Zp* oldugundan K diizgiin modiildiir. K <, L < M
alahm. Buradan dimK = dimL oldugundan L de diizgiin modildiir. Mz sonlu
tiretilmig oldugundan L devirlidir. Boylece ¢, d € Z i¢in, L = Z(c + Zp,d + Zp?)
tiir. Buradan bir n € Z vardir ki, (1 + Zp,b + Zp?) = n(c + Zp,d + Zp?) olur.
Yani, 1 = nc(modp) ve b = nd(modp?) dir. Eger p|n ise 1 = 0(modp) olur ki bu
geligkidir. O halde, p 1 n dir. Béoylece (p,n) = 1 olup 1 = nc + sp olacak sekilde
bir s € Z vardir. Buradan (1 — nc)® = s%p® dir. (1 — 3nc + 3n?c* — 3n3c?) =
1 —n(3c + 3nc® — 3n%c3) = 1 — nt = $*p? olur. t(1 + Zp,b + Zp*) = nt(c +
Zp,d+Zp®) = (1 — s*p®)(c+ Zp,d + Zp?) = (c + Zp,d + Zp?) olup L < K elde
edilir. O halde K = L dir. Boylece K, Mz nin komplement altmodiiliidiir. N, M
nin komplement altmodiilii ve N # 0, My, My, M olsun. Bu durumda N, M de
maksimal diizgiin altmodiildir. N diizgiin modiil oldugundan N # 0 ve a ¢ Zp,
b ¢ Zp* olmak iizere (a + Zp,b+ Zp®) € N vardir. a = 1 alahm. Bu durumda
Z(1+4Zp,b+Zp*) C N olur ve Z(1+Zp, b+ Zp*) <. N oldugundan M nin biitiin
komplementleri N = Z(1 + Zp,b + Zp?*) seklindedir. Simdi p?® 1 p olmak tizere
N = Z(1 + Zp,p + Zp?) olsun. N, M nin komplementidir ve |N| = p? dir. Eger
N, M de dik toplanan olsaydi M = N & N’ olacak sekilde N/ < M olurdu ve
|N’| = p? elde edilirdi. Buradan, p>M = p?(N & N’) = 0 olurdu. Bu ise geligkidir.
Ciinkii, |[M| = p? diir. Boylece M nin komplement N altmodiilii M de bir dik

toplanan olamaz. Yani M, CS-modiil degildir. ([l

Onceki Ornek 1.3.4 teki Mz modiiliiniin Goldie boyutu 2 dir. Bu érnekten
hareketle, sonlu Goldie boyutlu CS-modiillerin asagida verecegimiz kullanigh bir
ozelligi elde edilir. Oncelikle, M bir modiil ve U da M nin bir diizgiin alt-
modiilii olsun. O halde, Onerme 1.2.12 den U <. K <. M olacak bi¢cimde bir
K < M vardir. Agikga, K da diizgiindiir. Yine, U, M nin bir altmodiili ol-
sun. U <. M olmasi igin gerek ve yeter kosul U, M nin bir maksimal diizgiin

altmodiiliidiir. (Yani, U, M nin diizgiin altmodiiller ailesinde maksimaldir.)

Onteorem 1.3.5 M, her maksimal dizgun altmoduliu bir dik toplanan olan bir

modil olsun. Bu durumda K <. M ve K min Goldie boyutu sonlu ise K, M nin
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bur dik toplananadar.

Kamit. U, K nin bir maksimal diizgiin altmodiilii olsun. Onerme 1.2.14 den, U, M
nin bir maksimal diizgiin altmodiiliidiir. O halde, varsayimdan M = U@ U’ olacak
bicimde bir U’ < M vardir. Boylece K = U @ (K N U') diir. Yine Onerme 1.2.14
den, KNU' <, M dir. K NU’ niin Goldie boyutunun K nmin Goldie boyutundan
kiigiik oldugu agiktir. Tiimevarimla K NU’ altmodiilit M nin ve bdylecede U’ niin

bir dik toplananidir. Buradan K, M nin bir dik toplanamdair. 0

Sonug 1.3.6 M sonlu Goldie boyutlu bir modiil olsun. Bu durumda M nin CS-
modul olmasi i¢in gerekli ve yeterli kosul her maksimal dizgin altmodilin bir dik

toplanan olmasidr.
Kanat. Onerme 1.3.5 den elde edilir. O

Simdi CS-modiillerin bir dik toplaminin CS-modiil olmasi i¢in yeterli kogullar

verelim. Bu amacimiz i¢in gerek duyacagimiz tanimlar: hatirlatarak baglayalim.

R bir halka ve M, X de R-modiiller olsun. Eger her N < M igin,

seklinde verilen R-modiil ve R-homomorfizmalarin her diyagraminda fa = ¢
olacak bigimde bir § : M — X, R-homomorfizmasi varsa, X modiiliine M-
injektif *tir denir. M = M, ® My ®...®M,, olsun. Eger ¢ # j i¢in M; modiili M;-
injektif ise M; (1 < i < n) modiillerine goreceli injektif (relatively injective)

modiiller denir. [9],[18].

Onteorem 1.3.7 M ile My, CS-modiiller ve M = My ® My olsun. Bu durumda
M nin CS-modul olmast i¢in gerek ve yeter kosul M nin K N M; = 0 yada
K N My =0 olacak bi¢imdeks her K komplementinin bir dik toplanan olmasidar.
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Kanat. Gereklilik aciktir. Tersine K N M; = 0 yada K N My = 0 olan her K
komplementi M de bir dik toplanan olsun. L <. M alalim. Bir H <. L vardir
ki, L N M, <, H dir. Onerme 1.2.14 den, H <, M dir. H N M; = 0 oldugu
agiktir. Varsayimdan M = H & H' olacak bigimde bir H' < M vardir. Boylece
L = H® (LN H) diir. Onerme 1.2.14 den, L N H' <, M dir. Diger yandan
(LNH")NM; = 0 oldugu agiktir. Varsayimdan LN H’, M nin bir dik toplananidir.
Buradan L N H', H' niin de bir dik toplanani olur. O halde L, M nin bir dik
toplananidir. Yani M, CS-modiildiir. U

Teorem 1.3.8 M; (1 < i < n) ler géreceli injektif modiller olmak tizere M =
My & My @ ... ® M, olsun. Bu durumda M nin CS-modil olmas: i¢in gerek ve

yeter kosul her bir 1 <1 < n i¢in M; modulinin CS-modil olmasidar.

Kanit. Gereklilik Onteorem 1.3.2 den agiktir. Tersine her bir 1 < ¢ < n igin
M; bir CS-modiil olsun. Tiimevarimla ispat1 tamamlayacagiz. Bunun i¢in n = 2
durumunda M nin CS-modiil oldugunu ispatlamak yetecektir. K N M; = 0 olacak
bigimde bir K <. M alalim. [9, Lemma 7.5] den, M = M; & M' ve K C M’
olacak bigimde bir M’ < M vardir. Agiktir ki, M’ = M, ve boylece de M’ bir CS-
modiildiir. K <. M’ oldugundan K, M’ niin bir dik toplananmidir. Buradan K, M
nin bir dik toplananidir. Benzer olarak X N M, = 0 olacak bicimdeki herhangi bir
X <. M de bir dik toplanandir. Béylece Onerme 1.3.7 den, M bir CS-modiildiir.
O

Herhangi bir p asal tamsay1 i¢in Z-modiil Z/Zp ® Z/Zp? iin bir CS-modiil
olmadigim biliyoruz. Z/Zp?® modiilii Z /Zp-injektiftir ancak Z/Zp modili Z/Zp>-
injektif degildir. Diger yandan, Z/Zp modiilii Z/Zp?*-injektif olmadigi halde
Z]Zp & 7./ Zp* modiilii CS-modiildiir. (bakimz, [9])

Bir sonraki Teorem CS-modiillerin karekterizasyonundaki en temel
sonuclardan birisidir. Bu teoremde ve ilgili kimi sonuclarda sik¢a kullanacagimiz

tanimlar: vermemiz uygun olacaktir.
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Tanim 1.3.9 R bir halka ve M bir R-modil olsun. Bu durumda, Z(M) = {m €
M : bir E <. Rg i¢in mE = 0} kiimesi M nin bir altmodilidir ki, buna M
nin singular (tekil) altmodili denir. Z(M) = 0 ise M ye nonsingular (tekil
olmayan), Z(M) = M ise M ye singular (tekil) modiil denildigini hatirlayalim.
Yine bir M modili i¢in Zo(M) = {m € M : bir E <., Rg i¢cin mE C Z(M)}
kiimesi M nin bir altmodilidir ki, buna M nin ikinci (second) singular (ik-
inci tekil) altmodili denir. Agiktir ki, Z(M) < Zy(M) ve Zo(M) <. M dir.
Z(M) ve Zy(M) ye iliskin kapsamly sonug ve dzellikler [11], [7] de verilmistir.

Teorem 1.3.10 R bir halka olsun. Bu durumda bir R-modil M nin CS-modiil
olmasu i¢in gerek ve yeter kogul M' ve Zy(M), CS-modiiller ve Zy(M), M'-injektif
olacak bigimde bir M' < M vardwr ki, M = M' & Zy(M) dir.

Kanmit. M, CS-modiil olsun. Zy(M) <. M oldugundan M = Zy(M) @ M’ olacak
bicimde bir M’ < M vardir ki, M’ nonsingular 'dir. O halde Onteorem 1.3.2
den Zy(M) ve M’ CS-modiillerdir. Simdi X < M’ ve ¢ : X — Zy(M) bir
homomorfizma olsun. X’ = {z—¢(x) : x € X} kiimesini olugturalim. X’ < M dir.
Varsayimdan X’ <, L olacak bigimde M nin bir L dik toplanam vardir. Y < M
icin M = LY yazalim. X' N Zy(M) =0 ve X’ <, L oldugundan L nonsingular
'dir ve Zo(M) = Zy(Y) dir. Boylece Zo(M), Y nin bir dik toplanamdir. Y =
Y' @ Zy(M) olarak yazahm. 7 : L @Y’ & Zy(M) — Zy(M) kanonik projeksiyon
olsun. 7|x = ¢ oldugu aciktir. O halde Zy(M), M’-injektiftir.

Tersine M = Zy(M) & M', Zy(M) ile M', CS-modiiller ve Zy(M), M’-injektif
olsun. A <. M olarak alahm. Z5(A) <. A oldugundan Z(A) <. M dir. O halde
Zy(A) <. Zy(M) dir. Boylece Z5(A), Zo(M) nin bir dik toplanamdir ki, buradan
Z5(A), A nmin bir dik toplanani olarak bulunur. A = Z5(A) @ B olarak yazalim.
Burada B nonsingular 'dir. BN Zy(M) = 0 ve Zy(M), M'-injektif oldugundan bir
0 : M — Zy(M) homomorfizmasi vardir ki, m : M — Zy(M) ve mg : M — M’
projeksiyon doniigiimler olmak iizere 0my|p = m|p dir. O halde B C N’ = {n +
O(n):n e M'} dir. N' = M’ ve M’, CS-modiil oldugundan N’ de CS-modiildiir.
Béylece B, N’ niin bir dik toplanamdir. M = Zy(M)@® N’ oldugu aciktir. Buradan
A, M nin bir dik toplananidir. O
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Tanim 1.3.11 M bir sag R-modiil olsun. Herhangi bir m € M i¢in r(m) = {r €
R :mr =0} ye M nin sag ssfirlayicisy denir. r(m) nin R de sag ideal oldugu

aciktar.
Simdi ispatsiz verecegimiz Teoremin 3. boliimde bir genellegtirmesi verilmigtir.

Teorem 1.3.12 R bir halka ve Mg de bir modil olsun. R, r(m) lerde ACC yi

saglar ve My de CS-modil ise, Mg dizgin altmodillerin bir dik toplamadar.

Tanim 1.3.13 M bir sag R-modil olsun. Eger M nin her altmodili sonlu

tretilmis ise M ye yerel Noether denir.

Sonug 1.3.14 R bir halka, Mg de bir yerel Noether CS-modiil olsun. Bu durumda

M diizgun altmodillerin bir dik toplamaudar.

Kanit. Mp bir yerel Noether CS-modiil olsun. m € M alalim. R/r(m) = mR
dir. M yerel Noether oldugundan sonlu itiretilmig her altmodiili Noetherdir ve
Noetherlik izomorfizma altinda invariantdir. Bu durumda mR ve R/r(m) Noether
R-modiillerdir. Buradan = € M olmak tizere R, r(x) tizerinde ACC yi saglar.

Teorem 1.3.12 den de M nin diizgiin altmodiillerin bir dik toplami oldugunu elde
ederiz. ]

1.4 Nonsingular CS-Modiiller

Birinci boliimiin son kesimi olarak, Teorem 1.3.10 dan dolay1 nonsingular CS-
modiilleri ve matris halkalarini inceleyecegiz. Nonsingular modiillerin en temel

ozelligini veren agagidaki énteorem ile baglayalim.

Onteorem 1.4.1 1. Mg bir nonsingular modil olsun. Bu durumda M nin

her alt modulinin M deki kapanise tektir.

2. Mg modiliinde her alt modilin kapanisy tek olsun. K, K', L, L' < M we
K< ,K',L<,L'ise K+L<,K + 1L dir.
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Kamit. (1): N < M alalm. ¢(N) = {m € M : bir £ <, Rp i¢cin mE < N}
diyelim. O halde, ¢(N) < M ve N < ¢(N) dir. N <. K <. M olacak bi¢imde
K < M vardir. 0 # x € K alalm. N <, K oldugundan xR N N # 0 dir.
Buradan £ = 27'N = {r € R : 2r € N} <. Rg olur. Boylece zE < N dir.
z € ¢(N) dir. Yani K < ¢(N) elde edilir. Simdi 0 # a € ¢(N) olsun. Buradan
al < N olacak bi¢cimde I <, Rp vardir. Z(M) = 0 oldugundan al # 0 dir.
al < NNaR < K NaR oldugundan K NaR # 0 dir. O halde, K <, ¢(N)
dir. K <, M oldugundan K = ¢(N) bulunur. Boylece ¢(N), N nin Mp deki tek
kapanigidir.

(2): K,L < M oldugundan K + L < M diir. Buradan My de her altmodiiliin
kapanisi tek oldugundan K + L <. H olacak sekilde bir H <. M vardir ve tektir.
Yine K <. J <. H olacak sgekilde bir J < H vardir. H <, M oldugundan J <, M
dir. K <., K’ oldugundan ise K’ < J < H dir. Benzer olarak L’ < H dir. O halde,
K+ L <., K'+ L bulunur. O

Onteorem 1.4.1 (1) den Ornegin nonsingular modiillerin sagladigi her alt-
modiiliin essential olarak kapsandigi komplementin tek olmasi 6zelligi yani her alt-
modiiliin kapaniginin tek oldugu modiiller sinifinin kendisi ilgingtir. Bu modiiller

UC-modiil adi altinda [22] de ayrintili olarak incelenmigtir.

Onteorem 1.4.2 Mpg bir modiil ve K < Mg olsun. Bu durumda M /K mn non-
singular modul olmasu i¢in gerek ve yeter kosulm € M ve E <., Rp i¢cin mE < K

1sem € K dir.

Kamt. M/K nonsingular modil ve m € M ve F <, Ry i¢cin mE < K olsun.
Buradan (m + K)E = 0 dir. Ayrica N/K nonsingular oldugundan (m + K) =0
dir. Boylece m € K elde edilir.

Tersine mE < K ise m € K olsun. z € Z(M/K) alahm. O halde y € M olmak
tizere x = y + K dir ve bir F <., Ry igin (y + K)F = 0 olur. Bu durumda
yF + K = 0 ise yF' < K dir ve buradan y € K dir. Boylece z € K dir. Yani
M/K da x = 0 dir. O halde M/K nonsingular modiildiir. O
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Onteorem 1.4.3 Mg bir nonsingular modul ve K < Mpg olsun. Bu durumda
K mn M de komplement olmasi i¢in gerek ve yeter kosul M/K nin nonsingular

modul olmasidar.

Kanit. M /K nonsingular modil ve K <, N < M olsun. O halde N/K =
Z(N/K) < Z(M/K) = 0 olur. Buradan N/K = 0 dir. Yani N = K elde edilir.
Boylece K, M de komplementtir.

Tersine K, M de komplement olsun. M /K nm nonsingular modiil olmadigim
kabul edelim. O halde bir m € M ve m ¢ K elemam vardir ki, mE < K ve
E <. Rgp dir. r € Rve k € K i¢in mr+k elemanini ele alalim. FF = {s € R:rs €
E} kiimesini diigtintirsek, F' <, Rg ve (mr + k)F < K dir. Eger (mr + k) # 0
alirsak, (mr 4+ k)F # 0 olur ve buradan K N (mr + k)F # 0 olur. Bu durumda
K <. mR+ K olur. Buise K nin M de komplement olmasiyla celisir. Dolayisiyla
M /K nonsingular modiildiir. O

Simdi CS o6zelliginin nonsingular kosulu ile birlikte olsa dahi dik toplamlara

taginmadigina iligkin iki temel ornek verelim.

Ornek 1.4.4 Ry = [22] modiili CS-modiil degildir.

Kanit. Rg nin nonsingular modil oldugu agiktir. M; = [44] ve My = [JY]

olarak alirsak Rp = M; & M, olur. M; ve M, diizgiin modiiller oldugundan
CS-modiillerdir. Fakat Rp, CS-modiil degildir. Gergekten, u = [§3] € R alalim.
uR = [33]1155] = {[0£] : © € Z} olup uR, R nin dizgin altmodiilidiir ve
boylece dim(uR) = 1 dir. dimR = 2 ve dim(uR) = 1 oldugundan uR £, R dir.
Diger yandan, eger R, CS-modiil olsaydi uR <. eR olacak bicimde bir e? = e € R

olurdu. Buradan u € R oldugundan u € eR dir. O halde, » € R i¢in u = er ise

ew =er =wolur. Yani [8 8] [§3] = [§ 3] dwr ve [J932°] = [§ 1] elde edilir. Buradan
¢ =1ve a+2b=1 bulunur. Béylece [&%][a?%] = [&?] olur. [%2 (‘L*ll)b} = [a?]

olup, a = 0,1 elde edilir. a =0 ise b =1/2 ¢ Z dir. Eger a = 1 ise e = [} 9] olur.
Buradan eR = R bulunur. Fakat uR £, R oldugu i¢in bu bir geligkidir. O halde
Rp, CS-modiil degildir. OJ
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Ornek 1.4.5 My = (Z[z] ® Z[z])zi modiili CS-modiil degildir.

Kanat. Oncelikle Mz m nonsingular modiil oldugunu not edelim. Z[x] z[o) dilzgiin
modiil oldugundan CS-modiildiir. Simdi C = {(zr,2r) : r € R} < My
modiliini ele alahm. Bu durumda Z(M/C) = 0 dir. Gergekten, (f,g9) + C €
Z(M/C) olsun. O halde [(f,g) + C]E = C olacak sekilde bir £ <, Ry vardir.
Yani (fE,gFE) € C dir. Boylece fE = xr ve gE = 2r dir. Buradan 2f = xg olur.
f=x(g9/2) € R ve g/2 € R dir. Bu durumda (f,g9) + C = (x(9/2),9) + C =
(z(g/2),2(9/2)) + C = C olur. Yani (f,g) € C dir. (f,g) + C = 0 elde edilir.
Dolayisiyla Z(M/C) = 0 dir. Onteorem 1.4.3 den C' <, Mp dir. Farzedelim ki,
C, M de dik toplanan olsun. O halde M = C & D olacak gekilde D < Mg
vardir. m : M — C kanonik projeksiyon olsun. a € C, b € D olmak iizere
m(a,b) = a olarak tamimlansin. 7(1,0) = (xr,2r) ve w(0,1) = (xs,2s) olsun.
Boylece (z,2) € C i¢in (z,2) = 7(z,2) = 7(z,0) + 7(0,2) = zw(1,0) +27(0,1) =
x(xr, 2r) + 2(xs,2s) = (x°r + 2xs, 2zr + 4s) olur. Buradan 1 = xr + 2s dir. yani
R = xR + 2R dir. Bu ise ¢eligkidir. Dolayisiyla Mg, CS-modiil degildir. U

Tanim 1.4.6 R bir halka olsun. Eger her a € R i¢in a = axa olacak bicimde bir

zr € R varsa R ye (von Neumann) regular (dizenli) halka denir.

R diizenli bir halka ise R nin her sonlu iiretilmig sag-ideali R nin bir dik
toplanamdir. Yani idempotentle {iretilmigtir [12]. Bu kullamgh sonugla birlikte

asagidaki sonug, regular halkalarin en temel o6zelliklerindendir.
Sonug 1.4.7 R bir dizenli halka ise Rr modili nonsingulardar.

Kamit. R diizenli halka oldugundan a € R i¢in aR, R de dik toplanandir. z € Z(R)
alalm. Bu durumda xR, R serbest modiiliintin dik toplanani olacagindan xR

projektif modiildiir. Boylece;

0 r(z) R—1-2R

tam dizisi z R projektif oldugunan Sonug 1.2.20 den R = r(x) @ xR olur. Buradan

r(z), R nin dik toplanamidir. Dolayisiyla r(x), R nin komplement altmodiiliidiir.
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z € Z(R) oldugundan r(z) <. R dir. Onerme 1.2.13 den r(z) = R olur. Buradan
xR = 0 olup = 0 diwr. Yani Z(R) = 0 bulunur. Boylece Rz modiilii nonsingu-
lardur. U

Yukarida verilen Ornek 1.4.4 ve Ornek 1.4.5 in sonuclari olarak CS olma
ozelliginin polinom halkalarina taginip tasinmayacagi ve CS o6zelliginin Morita
invariant bir ozellik olup olmadigin1 arastirmak dogaldir ki, bundan sonraki

sonuclarimiz bu dogrultuda olacaktir.

Tanim 1.4.8 (P) bir halka ézelligi olsun. Eger bir R halkast i¢in asagidaki

kosullar saglanirsa (P) ozelligine Morita invariant denir.

1. R halkasimin (P) yi saglamasi My(R) (n > 2) halkasiman da (P) yi

saglamasini gerektirir.

2. R = ReR yi saglayan her ¢* = e € R i¢in R halkast (P) yi saglarsa eRe
modilide (P) yi saglar.

Bu boliimiin sonuna kadar verecegimiz sonuclarimizda, aksi belirtilmedikce R
bir birimli halka ve bir e = e € R icin R = ReR, S = eRe de R nin althalkas
olarak alinacaktir. Eger M bir sag R-modiil ise Me de bir sag R-modiildiir.

Onteorem 1.4.9 M bir R-modiil K, K" < Mgp ve N,N' < (Me)g olsun. Bu

durumda, asagidaki kosullar saglanar.
1. K = KeR ve N = NRe dir.
2. KN K'=0 olmas i¢in gerek ve yeter kosul KeN K'e =0 olmasidar.

3. NN N’ =0 olmasu i¢cin gerek ve yeter kosul NRN N'R = 0 olmasudar.

Kamit. (1): K < M oldugundan K = KR = KReR = KeR dir. Benzer sekilde
N < (Me)g ve Ne = N oldugundan N = NS = NeRe = N Re elde edilir.

(2): Ik olarak KN K’ = 0 olsun. Bu durumda KeNK’e < KNK' = 0 oldugundan
Ken K'e =0 olur.
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Tersine Ke N K'e = 0 olsun. x € K N K’ alalim. Boylece v € K ve x € K’
oldugundan zRe < KeN K'e = 0 olur. Yani zRe = 0 dir. Buradan zReR = 0
bulunur. O halde, xR = 0 olup R birimli oldugunda = = 0 elde edilir. Yani
KN K' =0 olur.

(3): Bu denkligin ispat1 (1) ve (2) den agiktir. O

Sonug 1.4.10 Mg bir modil ve L < Mg olsun. Bu durumda L <., Mg olmas:

icin gerek ve yeter kosul Le <, (Me)g olmasidur.

Kanit. L <, Mg olsun. 0 # N < (Me)g alalim. NR < M oldugundan LNNR # 0
olur. Buradan Le N NRe # 0 olup Le N N # 0 elde edilir. Boylece Le <, (Me)g
dir.

Tersine Le <., (Me)g olsun. 0 # K < My alalim. Onteorem 1.4.9 (1) den K =
KeR dir. Boylece 0 # Ke < (Me)g dir. Kabuliimiizden Ke N Le # 0 olur.
Ken Le < KN L oldugundan K N L # 0 dir. Dolaywsiyla L <., Mg bulunur. [J

Onteorem 1.4.11 M bir R-modiil ve L, N < (Me)g olsun. Bu durumda L, N
nin (Me)g de bir komplementi olmasu i¢in gerek yeter kosul LR, NR nin Mg de

bir komplementi olmasidar.

Kanat. Ik olarak L, N nin (Me)s de bir komplementi olsun. Bu durumda LNN =
0 olur. Boylece LRNNR =0 dir. Simdi LR < K < Mp ve K N NR = 0 olsun.
Onteorem 1.4.9 (1) den L = LRe < Ke < Me dir. Ken N < KNNR =0
olur. O halde L. = Ke ve LR = KeR = K dir. Yani LR, NR nin Mg de bir
komplementidir.

Tersine LR, N R nin My de bir komplementi olsun. Buradan LR N NR = 0 olur
ve LON =0dir. L< H < (Me)s ve HNN =0 olsun. O halde LR < HR < Mg
ve HRN NR = 0 dir. Varsayimdan LR = HR olur. Boylece LRe = H Re olup
L = H elde edilir. Dolayisiyla L, N nin (Me)g de bir komplementidir. O

Sonug 1.4.12 Mp bir modul ve L < Mg olsun. Bu durumda L <. Mg olmast

icin gerek ve yeter kosul Le <. (Me)g olmasidar.
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Kanit. Onteorem 1.4.11 deki gibi benzer sekilde yapilir. U

Onteorem 1.4.13 M bir R-modiil ve K < Mg olsun. Bu durumda K nin Mg
de dik toplanan olmasi i¢in gerek ve yeter kosul Ke nin (Me)s de dik toplanan

olmasaidar.

Kamit. Onteorem 1.4.9 kullamlarak elde edilir. ]

Teorem 1.4.14 M bir R-modiil olsun. Mg nin bir CS-modil olmas: i¢in gerek

ve yeter kosul (Me)s nin bir CS-modil olmasidur.

Kanit. Ispat Sonug 1.4.12 den ve Onteorem 1.4.13 aciktir. U

Sonug 1.4.15 R bir halka olsun. R nin sag CS-halka olmasi i¢in gerek ve yeter

kosul Re min sag CS, eRe-modil olmasidur.

Kanat. Teorem 1.4.14 de M = R olarak alinarak ispatlanir. 0

10..0
00 ..0
Sonug 1.4.16 T birimli bir halka ve e = €11 = [;

00..0
M, (T) olsun. Bu durumda R nin sag CS-halka olmasu i¢in gerek ve yeter kosul

] olmak tzere R =
nxn

T =@, | T serbest modiliniin sag CS, T-modil olmasidur.

Kanit. R = Re R ve ej1Rey; = T dir. Ustelik 7' modiil olmak {izere Req; =
Tey +Texy + ... + Tepy =T olup Sonug 1.4.15 den aciktar. [

Rpg, CS-modiil olsun. Re = eRe & (1 — e) Re seklinde yazilabileceginden Sonug
1.4.15 den Re, CS-modiildiir. Ote yandan eRe, Re nin dik toplanani oldugundan
eRe de CS-modiildiir. Béylece Tanim 1.4.8 nin (2). kogulu saglanmig olur. Ancak
T =Z[z]ve R = My(T) = [ém ég” olarak alalm. Buradan 77 = (Z[z]®Z[x])z}
modiilii CS degildir. Sonug 1.4.16 dan R = My (T'), CS-halka degildir. Boylece CS
ozelligi Morita invariant degildir.

Diger yandan, Z&Z modiili CS, Z-modiil oldugundan Sonug 1.4.16 dan Ms(Z)
halkasida CS tir. Ancak My (Z)[z] = My(Z|x]) halkas1 CS degildir. Boylece R bir

sag CS halka iken R[x] polinomlar halkas1 CS olmayabilir.
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2 Surekli ve Yari-Surekli Moduller

Bu boliimde, siirekli ve yari-siirekli modiillerin belirli altmodiillerinden M ye olan
doniigtimlerin, M den M ye olan doniigtimlere genisletilmesi anlaminda karekter-
izasyonlar: verilecektir. Buradan da CS-modiiller i¢in benzer sonuclar elde edile-
cektir [24]. Stirekli ve yari-siirekli modiillerin tamminda gerekli olan ve bir M

modiilii igin [18] de verilen agagidaki kogullarla baglayalim.

2.1 Tanimlar ve Ozellikler

(Cy) M nin herhangi alt modiilii bir dik toplanana izomorf iken, M nin bir dik
toplananidir.

(C3) My ve My, M nin M;N M, = 0 kogulunu saglayan herhangi iki dik toplanani
ise, M1 @& Ms, M de bir dik toplanandir.

Tanim 2.1.1

(1) M bir CS-modil olsun. Eger M, (C3) ((Cs)) kosulunu saglarsa M ye
stirekli (yari-sirekli) modil denir.

(i) M nin her N altmodilii i¢in her ¢ : N — M homomorfizmasi bir
0 : M — M homomorfizmasina genisletilebiliyor ise M ye yary (quasi)-injektif

modul denir.

Injektif ve yaribasit modiiller yari-injektif modiillerdir. Yari-injektif modiiller

stirekli modiillerdir.([24, Theorem 7] veya [18, Proposition 2.1]).

Onteorem 2.1.2 M bir modiil olsun.
1. M modili strekli ise, yari-streklidir. Genel olarak tersi dogru degildir.

2. M modiili stirekli (yari-sirekli) ise, M nin her dik toplanamda siirekli (yari-

strekli) dir.

Kant. (1) M bir siirekli modiil olsun. M nin (C3) i sagladigim gosterelim. K
ve L, M nin K N L = 0 kogulunu saglayan dik toplananlari olsun. M = K & K’
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olacak bi¢cimde bir K’ < M vardir. 7 : M — K’ kanonik projeksiyonu gostersin.
KNL=0oldugundan (L) = L ve boylece de 7(L), M nin bir dik toplanamdir.
O halde, M = w(L) & L' olacak bi¢imde bir L' < M vardir. Buradan;
K=nl)ye(K'NnL)ve M = K®&n(L)® (K'NL' diir. Béylece; K & 7(L),
M nin bir dik toplanamdir. K @ L = K & m(L) oldugundan M, (C3) kosulunu
saglar.

Tersinin dogru olmadigina iligkin bir ornek olarak Mz; = Zz alimirsa, M yari-
surekli ancak siirekli degildir.

(2) Ispat1 yarr-siirekli modiiller i¢in yapacagiz. Benzer olarak, siirekli modiiller
icin de yapilabilir. M yari-siirekli bir modiil ve N, M nin bir dik toplanani olsun.
Onteorem 1.3.2 den N, CS-modiil olur.

Simdi K ve Ky yi N nin K; N Ky = 0 olacak bi¢gimde iki dik toplanani olarak
alalim. O halde M = K; & K5 & L olacak bi¢imde bir L < M vardir.
N=NNM=NN(Ki®Ky®L) =K, O[NN(K2D L) =K, ®Ky® (NNL)
oldugundan N, (C3) kogulunu saglar. O halde N, yari-siireklidir. O

Onteorem 2.1.3 Bir M modiiliniin (C3) kosulunu saglamast i¢in gerek ve yeter
sart M min her K altmoduli, M nin K, ve Ky dik toplananlar: icin K = K &
Ky ise, her ¢ : K — M homomorfizmasi bir 0 : M — M homomorfizmasina

genagletilir.

Kanat. Eger M modiili (C5) kogulunu saglarsa, M nin M; N My = 0 kosulunu
saglayan M; ve M, dik toplananlar: icin My & My, M de dik toplanandir. K =
Ky & K, dersek, Ky ve Ko, M nin dik toplanani oldugundan K, M nin bir dik
toplanamdir. O halde M = K & K’ olacak bi¢cimde bir K’ < M vardir. Eger
¢ : K — M bir homomorfizma ise, §# : M — M yi k € K, k' € K’ olmak iizere
O(k + k') = p(k) olarak tammlarsak, 0| = ¢ dir.

Tersine, farzedelimki M nin her K altmodiili M nin K; ve K5 dik toplananlar
icin K = K; @& K ise, her ¢ : K — M homomorfizmast bir § : M — M
homomorfizmasina genisletilsin. Ny ve Ny, M nin Ny N Ny = 0 kogulunu saglayan

herhangi iki dik toplanan alt modiilleri olsun. O halde, dik toplanan tanimindan
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M nin oyle Ly ve Ly altmodiili vardir oyleki, M = Ny & Ly = Ny & Lo dir.
o : Ny@® Ny — M, x € N, y € Ny olmak {izere p(x + y) = x seklinde bir
homomorfizma tanimlansin. Hipotezden ¢ nin bir genislemesi olan 6 : M — M
homomorfizmasi vardir ve x € Ny, y € Ny olmak tizere 0(x + y) = x dir. Simdi
m : M — Nj kanonik projeksiyon ve y = w6 : M — N; olsun. O zaman, her
z € Nj igin, x(x) = 70(x) = w(z) = x olur. Ny C M ve Kerxy C M oldugundan
Ny + Kerxy C M dir. Simdi, m € M ve n; € Ny igin m = ny + (m — ny) alalim.
ny € Ny ve x(m —ny) = x(m) — x(n1) = ny —ny = 0 oldugundan m — n; €
Kery olur ve M C N; + Kery elde edilir. Boylece M = Ny + Kery dir. Ayrica
x € Ny N Kery olsun. Buradan x € Ny ve x € Kery dir. z € N; ise, bir ny € N
icin x = ny dir. « € Kery ise, x(z) = 0 dir. Buradan y(n;) = n; = 0 elde edilir.
Boylece, Ny N Kery = 0 oldugundan M = N; & Kery dir. Ayrica ny € Ny ise,
X(n2) = m0(n2) = w(0) = 0 oldugundan ny € Kery olur. Yani, Ny C Kery dir.
Modiilar kuralindan, Kery = KerxyNM = KerxN(No@ Ly) = No® (KerxNLsy)
olur. Boylece, M = N; & Kery = Ny & No @ (Kery N L) oldugundan N; & Na,
M nin bir dik toplanamdir. Dolayisiyla M, (C3) kogulunu saglar. O

Onteorem 2.1.4 K, M de bir komplement olsun. O zaman, K min M de bir
dik toplanan olmasi i¢in gerek ve yeter sart K nin M deki bir L komplement:
wein her ¢ : K & L — M homomorfizmasy bir 8 : M — M homomorfizmasina

genisletilir.

Kanat. K, M nin bir dik toplanani olsun. O zaman M nin &6yle bir K’ alt-
modiili vardir ki, M = K @& K’ olur. Burada L = K’ olarak alinmasi ispati
tamamlar.

Tersine, farzedelimki L verilen kogulu saglayan K nin M deki komplementi olsun.
¢ : K& L — M homomorfizmasini, x € K,y € Li¢in ¢(x+y) = = olarak alalim.
Hipotezden bir 6 : M — M, 6(x 4+ y) = z olacak sekilde homomorfizma vardir.
Buradan K C Im# ve L C Kerf dir. 0 # v € Imf olsun. O zaman bir u € M
vardir dyle ki, v = 0(u) dur. u ¢ L olsun. Bu durumda L C L + uR olur ve L,

K nin M deki komplement altmodiilii oldugundan K N L = 0 kosulunu saglayan
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maksimal altmodiildiir. Béylece K N (L + uR) # 0 olur. O halde z € K, y € L
ver € Rigin, 0 # x = y+ ur dir. Buradan x = 6(z) = 0(y + ur) = vr elde edilir.
Her 0 # v € Im# i¢in vR N K # 0 oldugu i¢in K <, I'mf olur. Fakat K, M de
komplement oldugundan K = I'm# dir. Bu durumda M = K & Ker6 oldugu icin
K, M de dik toplanandir. O]

Bir sonraki sonucumuzda CS-modiillerin dontigtimler cinsinden karakterizasy-

onu verilmektedir.

Sonuc 2.1.5 Bir M modilinin CS olmasi i¢in gerek ve yeter kosul M de ki her
K komplementi i¢in, K nin bir L komplementi vardwr ki, her o : K & L — M

homomorfizmasy bir 0 : M — M homomorfizmasina genisletilebilir.

Kanit. Onteorem 2.1.4 dan aciktar. 0

2.2 Karakterizasyonlar

Yukaridaki kosullar1 sonlu tane komplement altmodiiliin dik toplamina
genigletmek mimkiindiir. Bunun i¢in n pozitif bir tamsayr olsun. Bir M

modiilii i¢in agagidaki kogulu goz oniine alalim.

(P,): M nin her K altmodilii, M nin K; (1 < i < n) komple-
mentleri olmak tizere K = K1 @ ... & K,, ise, her ¢ : K — M homomorfizmasi

bir 0 : M — M homomorfizmasina genisletilir.

Bir M modiili her n > 2 i¢in (P,) kosulunu saglarsa (P,_;) kogulunuda

saglar. (P;) kosulunu saglayan modiiller [24] de incelenmigtir.
Teorem 2.2.1 Bir M modili i¢in asaqidaki kosullar denktir.

1. M, yari-siureklidir.

2. M her n pozitif tamsayisi icin (P,) kosulunu saglar.
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3. n > 2 olan baz tamsaylar i¢in M, (P,) kosulunu saglar.

4. M, (P) kosulunu saglar.

Kamat. Onteorem 2.1.3 ve Sonuc 2.1.5 den, (1) = (2) = (3) = (4) ve (4) = (1)

oldugu gortliir. 0

Onteorem 2.2.2 K, M nin bir dik toplananina izomorf olan altmodiili olsun.
O zaman K mn M de bir dik toplanan olmasu i¢in gerek ve yeter kosul her ¢ :

K — M homomorfizmasinin bir 0 : M — M homomorfizmaya genisletilmesidir.

Kanit. K, M de bir dik toplanan oldugunda Onteorem 2.1.4 dan aciktir.

Tersine, M nin bir dik toplananina izomorf olan K altmodiilii i¢in her ¢ : K — M
homomorfizmasi bir § : M — M homomorfizmasina genisletilsin. Bu durumda
¢(K), M de dik toplanan olacak gekilde bir ¢ : K’ — M monomorfizmasi vardir.
Hipotezden ¢ bir 6 : M — M homomorfizmasina genigletilir. 7 : M — ¢(K)
kanonik projeksiyon olarak tammmlansin. O zaman, y = 76 : M — @(K) bir
homomorfizmadir. Her x € K igin, x(z) = 70(x) = mp(x) = ¢(x) dir. M =
K @& Kery oldugundan K, M nin bir dik toplananidir. U

Sonug 2.2.3 Bir M modiiliinin (Cy) kosulunu saglamast i¢in gerek ve yeter kosul
M nin bir dik toplanamina izomorf olan her K altmodiliu i¢in, her ¢ : K — M

homomorfizmasi bir 0 : M — M homomorfizmasina genislemesidir.
Kamt. Onteorem 2.2.2 den aciktir. O

Yari-stirekli modiiller icin verilen sonucun benzerini simdi siirekli modiiller
icin elde edecegiz. n pozitif bir tamsayi olsun. Bir M modiili i¢in asagidaki

kogulu goz oniine alalim.

(Qn): M nin bir dik toplananina izomorf olan her K altmodiilii i¢in K;

(1 < i < n), M nin komplementleri olmak tizere K = K; & ... ® K,, ise, her
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¢ : K — M homomorfizmasi bir § : M — M homomorfizmasina genisletilir.

Eger bir M modili her n > 2 igin (Q,) kosulunu saghyor ise, (Q,_1)
kogulunuda saglar.
Ayrica M modiili her n > 1 igin (Q,) kogulunu saghyorsa agktir ki, (P,)

kosulunuda saglar.

Teorem 2.2.4 Bir M modili i¢in asaqidaki kosullar denktir.
1. M, sureklidir.
2. M her n pozitif tamsayisi igin (Q,) kosulunu saglar.
3. M, n >2 olan baz tamsaylar i¢in (Q,) kosulunu saglar.
4. M, (Q2) kosulunu saglar.

5. M, (@) kosulunu saglar ve CS-modildir.

Kanat. (1) = (2) oldugu Sonug 2.2.3 den goriiliir. (2) = (3) = (4) ve (1) = (5)
aciktir.(4) = (1) oldugu Sonug 2.1.5 ve Sonug 2.2.3 den ve (5) = (1) oldugu ise
Sonug 2.2.3 den goriiliir. 0

Ornek 2.2.5 M, bir serbest Z-modil ve rank: 0 # k < oo olsun. Bu durumda,
1. M, CS-modiildiir.

2. M modilinin (Cs) kosulunu saglamast i¢in gerek ve yeter kosul k = 1

olmasaidar.

Kanat. (1) N, M de bir komplement olsun. O zaman, M /N torsion-free dir ve
boylece serbest modiil olur. Buradan N, M nin bir dik toplananidir.

(2) Eger k =1 ise M uniform modiildiir ve boylece (C3) kogulunu saglar.
Tersine farzedelim ki, k > 2 ve fi, f2, ..., fx, M nin bir tabam olsun. K; = Zf;
ve Ky = Z(f1 + 2f5) oldugunu kabul edelim. L = Zf; + ... + Zf; olmak iizere
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M=K ®&L=KydL dir. KjN K5 =0 olmasina ragmen K, ® Ky = Zf, ® Z2f5
altmodiilii Z f, @ Z f> nin bir dik toplanani olmadigindan M nin de dik toplanani
olmaz. Boylece M, (C3) kogulunu saglamaz. Dolayisiyla k = 1 olmahdir. 0

Ornek 2.2.6 p herhangt bir asal tamsayr ve R lokal halka Z, ve M, Z-modiil
(Z)Zp) ® Q olsun. Bu durumda,

1. M bir R-moduldiir.

2. K nwin M modilinde komplement olmasi i¢in gerek ve yeter kosul K, M de
bir dik toplanandir veya bazi 0 # q € Q i¢in K = R(1 + Zp, q) olmasidur.

3. M, (Py) kosulunu saglar fakat Cs-modil degildir.

Kanat. (1): M nin M, = (Z/Zp) & 0 ve My = 0 & Q altmodiillerini alalim. Bu
durumda, M = M; ® M, dir. s,t € Z,t # 0 ve t ile p aralarinda asal olmak tizere
s/t rasyonel sayilarimin olugturdugu R halkas1 Q da althalkadir.

Ik 6nce herhangi bir m € M ve herhangi p 1 s kogulunu saglayan s,t € Z igin
tm' = sm olacak sekilde tek bir m’ € M vardir ve m’, (s/t)m olarak tanimlanir.
Bu durumda M, R-modiildiir.

(2): g € Q ve K = R(1 + Zp,q) olsun. Ik olarak K nin Mz, modiiliinde kom-
plement oldugunu gosterelim. K, M nin diizgiin altmodiiliidiir. Farzedelim ki,
K <. N olacak gekilde M nin bir N altmodiili ve x € N olsun. O zaman,
U = Zx + Z(1 + Zp, q) bir sonlu iiretilmis uniform Z-modiil olur ve béylece U
devirlidir. a € Z ve b € Q i¢in, U = Z(a + Zp, b) olsun. (1 + Zp, q) = n(a + Zp, b)
olacak gekilde n € Z vardir. Buradan 1 — na € Zp, n ile p aralarinda asal olmak
tizere (a + Zp,b) € R(1+ Zp,q) = K olur. Boylece = € K olur. Yani, K = N dir
ve K, M de komplement olur.

Diger taraftan L, Mz modiiliintin bir komplementi ve L # 0 olsun. M nin uniform
boyutu 2 dir ve bundan dolay1 L uniformdur [8, Lemma 1.9]. Ilk olarak L nin
M de bir R-altmodiil oldugunu gosterelim. O halde ¢ ile p aralarinda asal olmak

tizere L' = {m € M : baz1 t € Z i¢gin tm € L} olsun. Bu taktirde, L’ = RL olan
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M nin bir altmodiiliidiir. Eger 0 £ m € L’ ise, bazi t € Z ve t ile p aralarinda
asal olmak tizere tm € L olup tm # 0 olur. Boylece, L, L’ de bir essential alt-
modiildiir. O halde, L = L' ve L, M nin bir R-altmodiil oldugu elde edilir. Simdi,
M, My,Ms veya bir ¢ € Q olmak tizere R(1+ Zp, q) i¢in L = 0 oldugunu gostere-
lim. Farzedelim ki, M, M; veya M, i¢in L # 0 olsun. M; ve M, modiilleri diizgiin
oldugundan L yi M; ve My modiilleri icermez. Boylece, bazi ¢ € Z ile p arasinda
asal ve 0 # d € Q igin (¢+Zp,d) € L dir. Genelligi bozmadan ¢ = 1 kabul edelim.
L, M nin bir R-altmodiilii oldugundan R(1 + Zp,d) C L dir. Fakat R(1+ Zp,d),
M de bir komplementtir ve boylece L = R(1 + Zp, d) olur. Dolayisiyla (2) ispat-
lanmaig olur.

(3): R(14+Zp, 1), M de dik toplanan olmayan M nin bir komplementidir. Boylece
M, CS-modiil degildir. M nin (P;) kosulunu sagladiginm1 gostermek igin her
0+#qe€Qveher ¢: R(1+ Zp,q) — M homomorfizmasinin bir § : M — M ho-
momorfizmasina genigletilebildigini gostermek yeterli olacaktir. K = R(1+Zp, q)
ve bazi a € Z ve b € Q i¢in ¢(1 + Zp,q) = (a + Zp,b) olsun. 6 : M — M
doniigiimiinii ¢ € Z, d € Q igin, 6(c+Zp, d) = (ca+Zp, db/q) olarak tanimlayalim.
0 iyi tanimhidir. 6 : M — M bir homomorfizmadir ve # nin K ya kisitlanis1 ¢ dir.

Boylece, M, (P;) kogulunu saglar. O

Sonug 2.2.7 Bir onceki dérnekte ki M modiili (Q1) kosulunu saglamaz.

Kanit. K = R(14+Zp, 1) olsun. O zaman, K, M nin KNM; = 0 kogulunu saglayan
bir komplementidir. 7 : M — M, kanonik projeksiyon olsun. L = (K alalim.
O halde, L = K dir. L = R(0+Zp, 1) dir. ¢ : L — M déniigiimiinii » € R olmak
tizere o(r(0+ Zp, 1)) = r(1 + Zp, 1) olarak tanimlayayim. O zaman, ¢ homomor-
fizmas1 M ye genisletilemez. Farzedelim ki, ¢ bir 6 : M — M homomorfizmasina
genigletilsin. O zaman, (14 Zp,1) = ¢(0+Zp, 1) = 6(0+Zp, 1) = pd(0+Zp, 1/p)
olur ki, bu ¢eligkidir. Yani M, (Q1) kogulunu saglamaz. O
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3 Ec-Kapali Altmodiilleri Dik Toplanan Olan
Modiiller ve Ec-Injektiflik

Bu béliimde CS-modiillerin bir genellegtirmesi ile [24] de incelenmig ve 2. boliimde
ayrintili olarak verilen P; Ozelliginden daha genel olarak, ec-kapali altmodiiller-
den, modiile olan doéniigiimlerin modiile genisgletilmesi anlaminda ec-injektiflik
ozelligi aragtirilmigtir. Bu boliimde elde ettigimiz sonuclardan bazilar1 ve verilen
kimi 6rnekler [15] deki baz1 varsayimlarin gegersizligini ve bu varsayimlara bagl

olan [15] deki baz1 sonuglarin diizeltilmig yeni bigimlerini vermektedir.

3.1 ECS-Modiiller

Bu boliimde sikga kullandigimiz ve caligmalarimizda temel olan ec-kapali alt-

modiil tanimini vererek baglayalim.

Tanim 3.1.1 M bir sag R-modul ve N < M olsun.

(i) Eger N, devirli bir altmodiili genis (essential) olarak kapsiyorsa yani tR <., N
olacak bicimde bir x € N varsa, N ye M nin ec-altmodiilt denir.

(1) N, M de bir ec-altmodiil olsun. Eger N <. M ise N ye M de bir ec-kapal

altmodil denir.

Onteorem 3.1.2 N, M de bir ec-altmodil olsun. Bu durumda, N nin her dik

toplanant M de bir ec-altmoduldir.

Kanat. N, M de bir ec-altmodiil olsun. Budurumda, bir x € N i¢in xR <, N
dir. Ny, N nin bir dik toplanani olsun. O halde N = N; & N, olacak bicimde

bir Ny < N vardir. 1 € Ny, 9 € Ny olmak lizere x = x1 + x9 yazalim. Boylece

1R <. Ny dir. Ny, M de ec-altmodiil olur. O

Sonug 3.1.3 1. N, M de ec-kapalr altmodil olsun. N nin her dik toplanan:
M de bir ec-kapalr altmodiildir.
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2. A< B< M ve A, B de ec-kapalr, B de M de ec-kapal, altmodiil ise A, M

de ec-kapaly altmodiildir.

Kamt. Onteorem 3.1.2 ve 1. boliimden aciktir. 0

Tanim 3.1.1'den her ec-kapali altmodiil acikca kapal altmodiildiir. Boylece
kapali altmodiil olup ec-kapali olmayan (yani, ec-altmodiil olmayan) modiillerin
var olup olmadiklar1 sorusunu diigiinmek dogaldir ki, bir sonraki 6rnegimiz [26]
(yada [33]) den almmmug olup, kapali ve ec-kapali altmodiillerin farkli olduklarim

gosterecektir.

Ornek 3.1.4 R gercel cisim ve S de Rlx,y,z] polinomlar halkasi olsun. s =
22 +y? + 22 — 1 olmak dizere R = S/Ss degismeli halkasi olsun. Bu durumda

Mr = R® R ® R modiili ec-kapalr olmayan, kapali altmodil kapsar.

Kanit. ¢ : M — R, a,b,c € S olmak tizere p(a + Ss,b + Ss,c + Ss) =
azx + by + cz + Ss olarak tanimlayalim. ¢ 6rten homomorfizmadir. O halde Kery,
M nin bir dik toplanamdir. K = kery denirse, M = K @& K’ olacak bi¢imde bir
K' < M vardir. Agiktir ki, K’ = R ve K diizgiin altmodiil degildir.

Aslhinda K altmodiilii, 2-kiire S? nin diizgiin kesitlerinin R-modiiliidiir ve S?
nin Euler karateristigi 2 # 0 oldugundan 2-kiirenin teget demeti, K indecom-
posable R-modiiliidiir [26]. K, Mg de bir dik toplanan oldugundan K, M de
komplement altmodiildiir ve dimK = 2 dir.

K nin My de ec-altmodiil oldugunu varsayalim. O halde xR <., K olacak bi¢cimde
bir z € K vardir. Buradan dim(zR) = dimK = 2 dir. Ancak a : 2R — R, r € R
olmak tizere a(zr) = r bigiminde tanimlanan doniigiim bir izomorfizmadir. Yani
dim(zR) = dimR = 1 dir. O halde xR diizglin modiildiir ki, dimK = 1 geligkisine

ulagiriz. Boylece K, My de ec-altmodiil olamaz. O

Ornek 3.1.4 den hareketle bir modiilde komplement ve ec-komplement alt-

modiillerinin ayni1 olmasi kogulunu asagidaki énteorem de ispatlayacagiz.

Not 3.1.5 Ornek 3.1.4 te Mr = R® R® R yerine n > 3 ve n tek tamsay olmak

tizere Mp = @._| R serbest altmodili alinabilir.
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Onteorem 3.1.6 Bir Mg modilli CS ve Y = xR <, Mpg olacak sekilde bir
altmodiili olsun. Bu durumda K, Mg de komplement ise, K, Mg de ec-kapal

altmoduldiir.

Kamit. K, Mg de komplement olsun. Bu durumda M = K & K’ olacak sekilde
K' < M vardir. Simdi 7 : M — K kanonik projeksiyon olsun. O halde, tRN K =
YNK < 7n(Y) = n(x)R < K olur. xR <, M oldugundan zRN K <, K
dir. Buradan xRN K < w(z)R < K ve ztRN K <, K oldugunu goz éniinde
bulundurursak 7(z)R <. K olur. 7(x)R devirli oldugundan K, Mg de ec-kapali
altmodiildiir. O

Tanim 3.1.7 M bir sag R-modil olsun. Eger M nin her ec-kapali altmodiilu M
nin bir dik toplananiy oluyorsa M ye bir ECS-modul denir. Bir R halkasi i¢in
Rg, ECS-modiil oluyorsa R ye sag ECS-halka denir.

Boylece tanimlarin bir sonucu olarak agiktir ki, her CS-modiil, ECS-modiil ve

her (von Neumann) diizenli halka ECS-halkadur.

Onteorem 3.1.8 Mp bir ECS-modul olsun.
1. M indecomposable ise Mg dizgindir.

2. My, M nin bir dik toplanani ise My de ECS-moduldiir.

Kanat. (1) M indecomposable ve 0 # X < Mpg olsun. O halde 0 # x € X vardir
ki, tR < Mg dir. xR nin M deki kapanmisina C' diyelim. O halde, xR <, C' <,
Mpg dir. Bu durumda C' ec-kapali altmodiildiir. Varsayimdan C, M nin bir dik
toplanamidir. Boylece C' = M dir. xR <. M den X <, M elde edilir. Yani Mg
diizgiin modiildiir.

(2) My, M nin bir dik toplanani olsun. O halde M = M; & M, olacak bi¢imde bir
My < M vardir. X, M; de ec-kapali altmodiil olsun. Sonug 3.1.3 (ii) den X, M de
ec-kapalidir. O halde, X, M nin bir dik toplananidir. Bir Y < M icin M = X @Y
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dir. Buradan, M; = MiN (X ®Y) = X @& (M; NY) bulunur ki, X, M; in dik
toplanani olur yani M7, ECS-modiildiir. O

Mp bir modiil olsun. CS-modiil tanimini devirli altmodiillere kisitlayip, her
devirli altmodiilii bir dik toplananda genig olarak kapsanan modiiller yani, her
xr € M icin xR <. D olacak bicimde M nin bir D dik toplanani1 vardir, P-
extending modiiller olarak [15] de incelenmistir.

Simdi verecegimiz onerme CS, ECS ve P-extending kosullar1 arasindaki gerek-

tirmeleri belirleyecektir.

Onerme 3.1.9 M bir sag R-modil olsun. Asagidaki kosullar: disinelim.
1. M, CS dir.
2. M, ECS dir.
3. M, P-extending modildiir.

Bu durumda (1) = (2) = (3) dir. Bu gerektirmelerin tersleri genel olarak dogru
degildir.

Kanit. (1) = (2) gerektirmesi aciktir.

(2) = (3): mR nin Mg deki kapanigt L, M nin bir ec-kapal altmodiiliidiir.
Varsayimdan, L, M nin bir dik toplananidir. O halde Mg, P-extending modiildiir.
Simdi Ms(R), [12, Example 13.8] deki halka olarak alinirsa, M(R) von Neumann
diizenli ve Baer halka degildir. Béylece Ms(R) ne sag nede sol CS halka degildir. O
halde (2) % (1) dir. Son olarak, R halkas: [2, Example 3.2] deki halka olsun. Yani
R = [% 2] olarak alahm. Bu durumda, R sag P-extending dir. Ancak Rp, CS
degildir [32]. Rg sonlu Goldie boyutlu oldugundan, Rg de bir maksimal diizgiin
(ve boylece ec-kapall) altmodiil vardir ki, Rg nin bir dik toplanan degildir. O

halde, Rr ECS-modiil degildir. Boylece (3) # (2) O

Onerme 3.1.9 dan CS, ECS ve P-extending modiil simflar1 birbirinden

farklidir. [15] de ECS ve P-extending kosullar1 denk aliip sonuglar ispatlanmigtir.
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Ancak Onerme 3.1.9 un ispat1 bu kosullarin farkli oldugunu acikliga kavusturan
ters bir ornek vermektedir.

ECS ozelligi CS ve P-extending ozellikleri arasinda oldugundan P-extending
bir modiiliin ECS veya bir ECS-modiliin CS olmasini saglayan kogullarin
aragtirilmasi dogaldir ki bu tiirden kogullar1 bir sonra verecegimiz teoremde ispat-
layacagiz. Once teoremin varsayimlarindan birisi olan End(Mpz) nin Abel olmasi
kosulunu M modiiliiniin dik toplam ayrigimlari cinsinden karakterize edecegiz.

Bunun i¢in gerekli olan 6nteorem ile baglayalim.

Onteorem 3.1.10 M bir saj R-modiil ve e = ¢* € End(Mg) olsun. Birt = t*> €
End(Mpg) i¢in Ime = Imt olmas igin gerek ve yeter kosul x € End(Mg) igin

t=e+ex(l—e) olmasidir.

Kamit. [1]’e bakiniz. O

Onteorem 3.1.11 M bir sag R-modil olsun. Bu durumda asagidaki kosullar
denktir.

1. S = End(Mg) halkasy Abeldir.

2 M=N&®OK=N&L ise K=L dir.

Kamit. (1) = (2): M = N® K = N® L olsun. eile 1 —e ve t ile 1 —t ortogonal
idempotent endomorfizmalar olmak tizere M = eM & (1 —e)M =tM & (1 —t)M
ve Ime = Imt oldugunu kabul edelim. Onteorem 3.1.10 dan, = € End(Mg)
icin t = e+ ex(1 — e) dir. S deki tiim idempotentler merkezde oldugundan ¢ =

2r = e+ ex — ex = e dir. O halde,

etexr(l—e)=e+er—cre=c+er—e
(1—e)M = (1—1t)M dir.

(2) = (1): € = ¢ € End(Mg) olsun. Bir z € End(Mg) icin t = e + ex(1 —
e) bir idempotent oldugundan, onteorem 3.1.10 dan Ime = Imt dir. O halde,
varsayimdan (1 —e)M = (1 — t)M dir. Bir modiiliin ayrigimina karsilik gelen

ortogonal idempotentlerin bir tam kiimesinin tekliginden e = t dir. Yani her
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r € End(Mg) igin, ex(l —e) = ex — exe = 0 bulunur. O halde ex = exe

oldugundan e, S nin merkezindedir. Buradan da S, Abel’dir. O

Teorem 3.1.12 1. Mg bir nonsingular modil olsun. Bu durumda, M
modulinin P-extending olmasi i¢in gerek ve yeter kosul M modilunin ECS

olmasaidar.

2. M bir sag R-modiil, End(Mpg) Abel ve X < M ‘i¢in h; € End(Mg) ol-

mak tzere X = ., hi(M) olsun. Bu durumda M modilinin P-extending

icl

olmasu i¢in gerek ve yeter kosul M modilinin ECS olmasidur.

3. M, sonlu Goldie boyutlu bir modil olsun. Bu durumda M modilinin CS

olmasi i¢in gerek ve yeter kosul M modulinin ECS olmasidar.

Kamt. (1): M modiiliiniin P-extending sag R-modiil oldugunu kabul edelim.
X, M de bir ec-kapali altmodiil olsun. O halde bir z € X ic¢in xR <, X dir.
Varsayimdan M nin bir L dik toplanani vardir ki, xR <. L dir. Mg nonsingular
oldugundan X = L dir. Boylece, Mz, ECS dir. Tersi Onerme 3.1.9 dan kolayca
elde edilir.

(2): M nin P-extending modiil oldugunu kabul edelim. C, M de bir ec-kapal
altmodiil olsun. Bu durumda cR, C' de essential olacak bicimde bir ¢ € C' vardir.
Varsayimdan, cR <., eM = D olacak bigimde bir e = ¢ € End(Mpg) vardir.
Boylece M = eM @& D' ve D' = (1—e)M dir. O halde C® D’ <, M dir. Jimdi 0 #
x € C alahm. = ex + (1 —e)x dir. Ancak m; € M olmak tizere x = ), h;(m;)
dir. Boylece (1 —e)z = (1 —e) > ;e  hi(ms) = >, hi((1 —e)m;) €e CND =0
dir. Yani, x = ex olur. Buradan z € D ve bdylece de C' < D bulunur. O halde
C <. D ve C kapali oldugundan C' = D elde edilir. Boylece C', Mr modiiliinde
dik toplanandir. Dolayisiyla My, ECS modiildiir. Tersi, Onerme 3.1.9 dan aciktir.
(3): M, ECS-modiil olsun. N, M nin herhangi bir maksimal diizgiin altmodiilii ol-
sun. O halde, N, M de ec-kapal altmodiildiir. (bakiniz, 1.3 sayfa 13) Varsayimdan
N, M nin bir dik toplanamdir. O halde M, CS modiildiir. Tersi Onerme 3.1.9
dan kolayca elde edilir. 0
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Bir sonra ispatlayacagimiz sonugta kullanilan garpim modil (Multiplication

modiil) tanimini verelim.

Tanim 3.1.13 M bir R-modil olsun. Eger her X < M i¢in X = MA olacak

bigimde Ar < Rp varsa M ye ¢carpym moddl denir.

Sonug 3.1.14 M asagqidaki kosullardan herhangi birini saglayan bir R-modiil ol-
sun. Bu durumda M min P-extending olmasi i¢in gerek ve yeter kosul M nin

ECS-modul olmasidar.
1. Mr = Rr ve R, Abel’dir.
2. Mg devirli ve R, degismelidir.
3. Mg bir carpim modili ve R, degismelidir.

Kanit. (1) Teorem 3.1.12 (2) den agiktir.

(2) Simdi M nin devirli ve R nin degismeli oldugunu kabul edelim. Mp = R/B
olacak bigimde Br < Rpg vardir. Y/B < R/B alalim. O halde, y; € Y olmak
tizere Y/B = (3 ,c;viR) + B = (3 ;¥ + B)R dir. h; : R/B — R/B yi,
hi(r + B) = y;r + B olarak tamimlayahm. O halde, h; € End((R/B)g) dir.
Béylece Y/B = % .., hi(R/B) bulunur. R degismeli oldugundan End((R/B)g)
de degismelidir. Teorem 3.1.12 (2) den sonug elde edilir.

(3) M yi bir garpim modiilii ve R yi degismeli kabul edelim. Ar < Rg olmak iizere
X = MA olsun. Her bir a € A i¢in h, : M — M doniigimi m € M olmak tizere
hqe(m) = ma olarak tamimlayalim. A, min bir R-homomorfizma oldugu kolayca
goriilebilir. O halde, X = MA =" _, ho(M) dir. Bir ¢arpim modiiliin her alt
modili fully invariant oldugundan, [4, Lemma 1.9] dan End(Mg), Abel’dir. O
halde Teorem 3.1.12 (2) den sonug elde edilir. O

Bu kesimdeki baz sonuglarimizda kullanacagimiz bir modiil siifinin tanimini
ve gerekli olan bir 6zelligini verelim. Bu tiir modiil simflar i¢in 6zellikle [28], [10]

caligmalar1 onerilir.
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Tanim 3.1.15 M bir R-modil olsun. Eqer M nin herhangi ikt dik toplanani K,
L i¢in KN L de M nin bir dik toplanani oluyorsa (yani her dik toplanan ¢iftinin
kesigimide bir dik toplanan ise), M ye toplanan kesigim ozelligine sahiptir

(kisaca SIP-modil) denir.
Onteorem 3.1.16 M bir SIP-modiil ise, her dik toplanani da SIP-modiildiir.

Kamt. X, M nin bir dik toplanani ve K, L de X modiiliinde herhangi iki dik
toplanan olsun. O halde K ve L, M de dik toplananlardir. Varsayimdan, (K N
L)® F = M olacak bigimde bir ' < M vardir. Boylece X = XNM = XN [(KN
LY F]=(KNL)® (X NL)olur. Yani (K N L), X in bir dik toplananmidir. O
halde X, SIP-modildiir. O

Teorem 3.1.17 M bir P-extending modil olsun. Bu durumda;

1. Eger X < M wve X ile M nin her dik toplananimn kesisimi X in dik

toplanansy ise X, P-extending’ dir.

2. M nin her ¢* = ¢ € End(Mg) icin e(X) C X kosulunu saglayan bir X

altmodiilu P-extending’ dir.
3. M, SIP-modiil ise M nin her dik toplanani P-extending’ dir.

4. M dagilimly ise M nin her altmodili P-extending’ dir.

Kanat. (1): A, X in bir devirli altmodiilii olsun. O halde = € X olmak {izere
A = xR dir. Boylece A <. D olacak bicimde M nin bir D dik toplanani vardir.
A<.DnNX ve DN X, X in bir dik toplanani oldugundan X, P-extending olur.
(2): X, M nin bir altmodiilii olsun. D yi M nin herhangi bir dik toplanani ve
e : M — D projeksiyonu dyle ki, e(X) C X olarak tanimlayalim. O halde e(X) =
DN X, X in bir dik toplananidir. Béylece (1) den X, P-extending olur.

(3): My, M nin bir dik toplanani olsun. O halde M = M; & My ve My < M
dir. xR, M; in bir devirli altmodiili olsun. Boylece xR <. D olacak bicimde

M nin bir D dik toplanam vardir. M = D & D’ ve D’ < M diyelim. O halde



40

R <. D N M, dir. SIP-6zelliginden M = (D N M;) & U olacak bigimde bir
U< M vardir. My = MyN[(DNM,) @ U] = (DnNM)d (M NU) oldugundan
My, P-extending’ dir.

(4): X, M nin bir altmodilii ve xR < X olsun. M nin bir D dik toplanam
vardir ki, R <. D dir. O halde, xR <, DN X dir. D’ < M olmak {izere
X=XnDaD)=(XNnD)d (XND) oldugundan X N D, X in bir dik
toplanamidir. Boylece X, P-extending’ dir. ([l

Sonug 3.1.18 R bir halka ve M de SIP ye sahip projektif bir P-extending modiil
olsun. Bu durumda bir I indis kiimesi vardir ki, M modili M; altmodiillerinin

bir dik toplami, @,.; M; dir ve i € I igin M; ler M de ec-kapalr altmodiillerdir.

Kanat. Kaplansky’ nin teoreminden [23], M modiilii sayilabilir tiretilmis alt-
modiillerin bir dik toplamidir. Teorem 3.1.17 (3) den, M yi sayilabilir iiretilmis
kabul edebiliriz. M nin my, mo, ... sayilabilir sayida elemanl bir iirete¢ kiimesi
vardir ki, M = Ziel m; R dir. Varsayimdan M = M; & Ny ve miR <, M,
olacak bicimde M;, Ny < M vardir. Her ¢ > 2 icin n;,m; nin N; deki projek-
siyonu olsun. Yine Teorem 3.1.17 (3) den N; in bir M, dik toplanam vardir
ki, noR <., M, dir. Bu gekilde devam edilirse, her pozitif £ tamsayisi icin
miR+moR+...+mipR C M, & My ® ... » M olacak bigcimde bir M; & My & ...
dik toplam elde ederiz. Boylece M = @, ; M; dir. M;’ lerin kurulusu geregi her

biri ec-kapali altmodiil oldugundan, ispat tamamlanir. O

CS ozelliginin Morita invariant bir ozellik olmadigini hatirlayalim. Bu kes-
imi ECS ve P-extending ozelliklerinin de Morita invariant ozellikler olmadigini
gostererek tamamlayacagiz. Bu sonucu elde etmek icin asagidaki 6nermeyi ispat-

layacagiz.
Onerme 3.1.19 R bir bolge ve n > 1 tamsayr olsun. Bu durumda,
1. Eger Rg sag Ore bolge ise, P-extending modildiir.

2. My(R) = S sag P-extending halka ise R sol Ore’ dir.
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Kanit. (1) Rgr sag Ore bolge ise [16, Theorem 10.22] den diizgiin modiildiir.
Boylece P-extending modiil olur.

(2) 0 # z,y € R alalm ve Rz N Ry = 0 varsayahm. u = [58} denirse
(sl € Sigin [28].[4s] = [orys] dir. O halde hipotezden uS <. eS ola-
cak bigimde bir e = e € S vardir. a,b,¢,d € R i¢in e = [2}] olsun. Boylece
(28] =1[25].[28] = [Z;isz 8] olur. Yani z = ax + by ve y = cx + dy bulunur.

Buradan (1 —a)z = by ve (1 —a)z = 0 elde edilir. O halde a =1, b = 0 dir. Yine
(1-d)jy=crdend=1,c=0dir. Yani e = [} ] ve uS <. S dir. Diger yandan

a,\b,d,d € Ricin 0# [§9].[% %] = [r4:] dir. Buradan r = s = 0 ve bdylece
a’ = b =0 elde edilir ki bu bir geligkidir. O halde R sol Ore’ dir. OJ

Sonug 3.1.20 R bir bélge ve My(R) sag ECS-halka olsun. Bu durumda R sol
Ore’dir.

Kanit. Onerme 3.1.9 ve Onerme 3.1.19 dan aciktur. O

Sonug 3.1.20 den ECS olma 6zelliginin Morita invariantligi hakkinda yorum
yapilabilir. Oncelikle [16] da sag Ore bolgesi olup sol Ore olmayan 6rnek ver-
ilmigtir. O halde, sag P-extending (ECS) olan R halkalar1 vardir ki, My(R) = S
sag P- extending (ECS) halka degildir. Boylece P-extending ve ECS o6zellikleri

Morita invariant 6zellikler degildirler.

3.2 Ec-Injektiflik

2. Bolumde inceledigimiz P; Ozelliginden ve [20] de arastirilan kapah
diizglin altmodiillerden modiile tanimli homomorfizmalarin modiiliin kendisine
genisletilmesi 6zelliginden hareketle ec-kapali altmodiillerden modiile olan homo-
morfizmalarin modiiliin kendisine genigletilmesi 6zelligini aragtiracagiz. [20] de
verilen bazi tanimlarin ec-kapali altmodiiller alinarak elde edilen karsiliklarini

tanmimlayarak baglayalim.

Tanim 3.2.1 M; ve My, R-modiller olsun. Eger My in her K ec-kapali alt-

moduli i¢in her ¢ : K — My homomorfizmasiy bir 8 : My — My homomor-
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fizmasina genisletilebiliyorsa yani, 0|x = ¢ ise My modiline M,-ec-injektif’
tir denir. A¢iktir ki, eger My modilii My -c-injektif (bakiniz [20]) veya daha da
genel olarak eger My moduliu My-injektif ise My-ec-injektif’ tir. Yine, eger M
moduli M -ec-injektif ise M ye self-ec-ingektif’ tir denir.

2. Bolimde CS-modiillerin belirli altmodiillerden modiile olan homomorfiz-
malarin genisletilebilmeleri tiiriinden karakterizasyonlar: verilmistir. Simdi benzer

olarak ECS-modiiller igin ilgili sonuglar ispatlayacagiz.

Onteorem 3.2.2 M bir modiil olsun. Bu durumda M nin ECS-modiil olmas:
wein gerek ve yeter kosul M nin her K ec-kapaly altmodiliu i¢in, K mwn bir L
komplementi vardwr ki, her ¢ : K & L — M homomorfizmasinn bir 6 : M — M

homomorfizmasina genisletilebilmesidir.

Kanit. Onteorem 2.1.4 deki ispata benzer olarak kanitlanir. U

Onteorem 3.2.3 M bir modiil ve K, M nin bir ec-kapalr altmodiili olsun. Eger

K, M-ec-injektif ise K, M nin bir dik toplananidar.

Kamt. @ : K — K birim homomorfizmay1 gostersin. O halde hipotezden bir
0 : M — K homomorfizmas1 vardir ki, 0|x = i dir. Boylece M = K @& Kerf
oldugunu gormek kolaydir. Yani K, M nin bir dik toplananidir. 0

Onerme 3.2.4 Bir M modiilii wein asaqrdaki kosullar denktir.
1. M, ECS dir.
2. Her modiil M -ec-injektif’ tir.
3. M nin her ec-kapaly altmoduli M -ec-injektif tir.

Kanit. (1) = (2) ve (2) = (3) gerektirmeleri agiktir. (3) = (1) gerektirmeside
Onteorem 3.2.3 den elde edilir. O



43

Onerme 3.2.4 den dzel olarak, her ECS-modiiliin self-ec-injektif modiil oldugu
sonucunu elde ederiz. Ancak, self-ec-injektif modiillerin genel olarak ECS-modiil
olmayacagina iligkin 6rnek verecegiz. Yine bu 6rnegimiz, [15] deki ” M = M; @ M,
ise My modiiliiniin M;-ec-injektif olmasi i¢in gerek ve yeter kosul M nin NNM,; =
0 olan her N ec-kapali altmodiilii icin N < N’ ve M = N’ & M, olacak bicimde

bir N < M vardir.” varsaymminin gecersizligini de gosterecektir.

Ornek 3.2.5 p bir asal tamsayr ve R = Z, local (yerel) halka olsun. M
modili olarak Q & Z/Zp Abel grubunu (Z-modili) alalvm. Bu durumda M self-
ec-injektif” tir fakat ECS-modil degildir. Ustelik Mz énceki paragraftaki denkligi

de saglamaz.

Kanit. Mz nin CS-modiil olmadigini biliyoruz ([24], [20]). Mz sonlu Goldie
boyutlu oldugundan, Teorem 3.1.12 (3) den Mz ECS-modiil degildir. Ornek 2.2.6
dan M7z self-ec-injektif’ tir. Son kisim i¢in, M; = Q& 0 ve My = 0 ® Z/Zp diye-
lim. My, M, diizgiin modiiller oldugundan My modiili M;-ec-injektif” tir. Simdi
N = R(1,1) diyelim. O halde, N, Mz nin bir ec-kapali altmodiiliidiir. Ustelik
N N My, =0ve N, Mz de bir dik toplanan degildir. N < N’ ve M = N' & M,
olacak bicimde bir N’ < M oldugunu kabul edelim. N, M de maksimal diizgiin
altmodiil oldugundan N’ niin Goldie boyutu 2 den biiylik yada esittir ki, bu M
nin Goldie boyutunun 2 olusuyla celigir. O halde, boyle bir N < Mz yoktur. [

Ornek 3.2.5 ile ilgili olarak, M, modiiliiniin M;-ec-injektif olmasi i¢in gerek
ve yeter bir kogulu ispatlayacagiz. Oncelikle, M = M; & M, icin m; (i=1,2) ler M
den M; ye projeksiyon doniigtimleri i¢in kullanilacaktir. Diger yandan; ispatlay-

acagimiz teoremin [24], [20] ile kargilagtirmas biitiinliik agisindan uygun olacaktir.

Teorem 3.2.6 M, My modiller ve M = My & My olsun. Bu durumda, My nin
M, -ec-injektif olmasi i¢in gerek ve yeter kosul M nin NNMy = 0 ve m(N), M, de
ec-kapali olacak bicimdeki her ec-kapalr altmodiili N i¢in N < N' ve M = N'& M,
olacak sekilde bir N' < M olmasidar.
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Kanat. M, modiiliiniin M;-ec-injektif oldugunu kabul edelim. N yi M de bir ec-
kapali altmodiil olarak alalim 6yle ki, NN M, = 0 ve w1 (N) de M; de ec-kapali ol-
sun. NN My = 0 oldugundan, 71|y : N — m1(N) izomorfizmadir. o : w1 (N) — My
vi, z € m(N) igin a(z) = ma(m|y) ! (x) olarak tammlayalim. M, M;-ec-injektif
ve m1(N), M, de ec-kapali oldugundan o homomorfizmasi bir 6 : M; — M, homo-
morfizmasina genisletilebilir. N = {z + 6(z) : + € M;} kiimesini tanimlayalim.
N’ niin M de bir altmodiil ve M = N’ & M, oldugu kolayca goriilebilir. Simdi
x € N igin, Om(x) = am(z) = my(x) ve bdylece © = m(z) 4+ Om1(x) € N’ olur. O
halde N < N’ diir.

Tersine, N N My = 0 ve m(IN), M; de ec-kapali olan M nin her ec-kapal alt-
modilit N i¢in, M = N' & M, ve N < N’ olacak bigimde M nin bir N’ alt-
modili var olsun. K, M; in bir ec-kapali altmodiilii ve o : K — My bir ho-
momorfizma olsun. N = {x — a(z) : = € K} diyelim. O halde, N < M ve
NN My =0dr. m(N) = K oldugundan m1(N), M de ec-kapalidir. Varsayimdan,
M = N'@ M, olacak bigimde N < N’ altmodiilii vardir. 7 : M — M,, kerm = N’
olan projeksiyon ve 6 = 7|y, : My — My, 7 nin M;’ e kisitlanmig homomorfiz-
mast olsun. Simdi bir z € K igin, 0(z) = 7(z) = n(z — a(x) + a(x)) = a(z) dir.

Yani, ¢ doniisiimii « y1 genigletir. O halde, Ms modiili M;-ec-injektiftir. 0J

Onteorem 3.2.7 M, ve M, modiilleri icin My, Mj-ec-injektif olsun. Bu du-
rumda, My in her ec-kapali altmodili N i¢in, My modili N -ec-injektif wve

(M /N)-ec-injektif * tir.

Kanat. N, M in bir ec-kapali altmodiilii olsun. /N nin her ec-kapali altmodiilii M;
in ec-kapali altmodiilii oldugundan M, N-ec-injektif’ tir. Simdi M;/N de bir
K /N ec-kapali altmodiiliinii ve o : K/N — M, homomorfizmasini alaim. O halde
Onerme 1.2.17 den K, M; in ec-kapal altmodiiliidiir. 7 : M; — M;/N ve 7’ :
K — K/N kanonik epimorfizmalar olsun. M, modiilii M;-ec-injektif oldugundan
ar’ . K — Mj doniigiimiinii genisleten bir 6 : M; — M, dontistimii vardir. N <

kerf oldugundan vym = 6 olacak bigimde bir v : M;/N — My homomorfizmasi
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vardir. O halde bir a € K i¢in y(a + N) = y7(a) = 0(a) = an’'(a) = a(a + N)
dir. Béylece My modiili (M;/N)-ec-injektif” tir. O

Onteorem 3.2.8 M bir self-ec-injektif modiil ise M nin dik toplananlar: da self-
ec-injektif’ tir.

Kanat. L, M nin bir dik toplanam olsun. O halde M = L & L' olacak bicimde bir
L' < M vardir. X, L nin bir ec-kapali altmodiilii ve ¢ : X — L bir homomorfizma
olsun. X, M de ec-kapali oldugundan 6|x = ¢ olacak bigimde bir § : M —
M homomorfizmas1 vardir. @ : M — L projeksiyonu gostersin; o : L — L

homomorfizmasimni [ € L i¢in a(l) = w(6(l)) olarak tanimlayalim. Buradan a|x =

@ dir. O halde, L self-ec-injektif” tir. O

Onteorem 3.2.8 in tersi genel olarak dogru degildir. Ornegin, p bir asal tamsay1
ise My = Z/Zp, My = 7 olmak {izere Mz = M; & M, modiiliini alalim. Agiktir
ki, My ve M, diizgiin modiiller oldugundan, self-ec-injektif’ tirler. Ancak Mz nin
Goldie boyutu sonlu (ashnda 2) oldugundan, [20, Corollary 3.5] den Mz self-ec-

injektif degildir. Bu duruma iligkin olarak simdi bir teorem ispatlayacagiz.

Teorem 3.2.9 M, torsion ve My sonsuz devirli gruplar olsun. Eqer Mz = M; ®

My modiilii self-ec-injektif ise her p asal tamsayist icin My, = pM;y dir.

Kamit. 0 # mo € My icin My = Zms olsun. Bir p asal sayisi icin My, # pM;
oldugunu kabul edelim. m; € M; ve my; ¢ pM; igin K = Z(mq,pms) alt-
modiliini alalim. Bir L < M i¢in K <., L varsayalim. O halde herhangi bir
n € Z i¢in n(my, pms) = (nmy,npms) = (0,0) olmasi n = 0 olmasin gerektirir.
Buradan K sonsuz devirlidir. O halde K diizgin Z-modiildiir. z € L alalim.
a = (mq,pmsy) diyelim. O halde K + Zz = Za + Zx sonlu iiretilmis modiildiir.
Boylece K+7Zx < L ve K+Zx devirli modiillerin bir dik toplamidir. Fakat K +Zx
diizgiindiir, o halde K + Zx devirlidir. Boylece y € M i¢in Za C K + Zx = Zy
dir. m{ € M; ve k € Z i¢in y = (m/, kms) olsun. Buradan s € Z i¢in a = sy dir.

O halde, (my,pmsy) = s(m!, kmsy) den m; = sm}, pme = skmy elde edilir. My
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sonsuz devirli oldugundan, s = £1 veya k = £1 dir. Eger k = £1 olsa s = £p
olur ve buradan m; = £pm/, € pM; celigkisi elde edilir. Boylece s = £1 olmalidir.
O halde y € Za ve x € Zy C Za yani L C Za = K dir ki, bu L = K y1 verir.
Boylece K, M de komplementtir. K devirli oldugundan K ec-kapalidir. Simdi
¢ : K — M homomorfizmasim p(my, pms) = (0,ms) olarak tanmmlayalim. ¢
nin bir § : M — M homomorfizmasina genisletilebildigini kabul edelim. O halde
u,v € My ve t € Z igin 0(mq,0) = (u,0) ve 6(0,m2) = (v,tmy) dir. Boylece
(0,mg) = w(my,pma) = 0(my, pmsy) = 6(my,0) + pd(0,ms) = (u,0) + p(v,tms)
dir. Buradan 0 = u + pv ve my = ptmsy elde ederiz. O halde 1 = pt dir ki, bu
bir geligkidir. Boylece, ¢ genisletilemez. Yani, her p asal sayisi i¢cin M; = pM,;

olmalidir. ]

Bu kesimi self-ec-injektif olup self-c-injektif olmayan modiillerin varhgini
gostererek tamamlayacagiz. Bunun igin [20] den alman agagidaki tammi kul-

lanacagiz.

Tanim 3.2.10 M; ve My modiilleri verilsin. Bu durumda, eger her A < Mg i¢in
kera <., A olan o : A — My homomorfizmas: bir 3 : M; — My homomorfiz-

masina genisletilebiliyorsa My modulune essentially M, -ingektif’ tir denir.

Onerme 3.2.11 M, CS ve M, de dizgin modiller olsun. Eger My essentially
Mi-ingektif 1se asagqidaki kosullar denktir.

1. My & My self-c-ingektif ’ tir.
2. My & My self-ec-injektif ’ tir.
3. My & My self-cu-ingektif ’ tir.
Kanat. (1) = (2) ve (2) = (3) gerektirmeleri tamimlardan aciktir. (3) = (1) [20,

Proposition 2.9] den elde edilir. O

Sonug 3.2.12 R cisim olmayan bir Prifer bolgesi olsun. Bu durumda, herhangi
bir sonlu tretilmis olmayan serbest R-modil self-ec-injektif’ tir ancak self-c-

injektif degildar.
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Kanat. M tabani {m; : i € I} olan bir serbest R-modiil ve U, M de ec-kapali bir
altmodiil olsun. Eger U = 0 ise ispat biter. O halde U # 0 varsayalim. Buradan
xR <. U olacak bigimde bir 0 # x € U vardir. Boylece I indis kiimesinin bir
sonlu F altkiimesi vardir ki, x € €, m; R dir. U/x R torsion modiil oldugundan,
U C @P,.pmiR dir. [9, Corollary 12.10] dan, U modiilii €, m; R nin ve boylece
de M nin bir dik toplanamdir. O halde Mg self-ec-injektif’ tir. Diger yandan |20,
Theorem 3.1] den, Mg self-c-injektif degildir. ([l

3.3 ECS-modiillerin dik toplamlari

ECS-modiillerin dik toplamlarinm ECS-modiil olmasi gerekmez. Ornegin M, =
Z]Zp, My = Q ve Mz = M; & M, alimirsa, M iki, ECS-modiiliin (aslinda iki
diizgiin modiiliin) dik toplamidir ancak Mz, ECS degildir. (bakiniz, 6rnek 3.2.5).
Bu kesimde, ECS-modiillerin dik toplamimin hangi kogullar altinda ECS-modiil
oldugu tartigilacaktir. Buradaki sonuglar [15] de P-extending yerine ECS kogulu

yazilip diizeltilmig formdaki karsilik gelen sonuclar olacaktir.

Onerme 3.3.1 M = M, & M, ve M nin her ec-kapaly altmodiilii C' i¢in C'N Mj,
M de ec-kapalr altmodil olsun. Bu durumda; M nin ECS-modil olmas i¢in gerek
ve yeter kosul C'N My = 0 veya C' N My = 0 olan her C ec-kapaly altmodulin M

nin bir dik toplanant olmasidar.

Kamit. Gereklilik agiktir. Yeterlilik i¢in, C'yi M de ec-kapali altmodiil ve cR <, C'
olarak alalim. Eger C'N M; = 0 ise ispat biter.

C'N M, # 0 ise, varsayimdan C'N M; altmodiilii M de ec-kapalidir. C;, C'N M; in
C deki kapanigi olsun. O halde, C, M de ec-kapalidir ve C1 N My = 0 dir. Boylece
varsayimdan C7, M nin bir dik toplananmidir. Bir Cy < M i¢in M = C & C, dir.
Simdi, C =CNM =CnN(C; & Cy) =C, & (CNCy) dir. Sonug 3.1.3 (1) den
C'NCy, M de ec-kapali altmodiildiir ve (C'N Cy) N M; = 0 dir. O halde, C'N Cy,
M nin bir dik toplananidir. Boylece C'; M nin bir dik toplanamidir. Yani M,
ECS-modiildiir. OJ
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Teorem 3.3.2 M, sonlu Goldie boyutlu bir modil olmak tizere M = My & M,
olsun. Bu durumda M nin ECS-modil olmasi i¢in gerek ve yeter kosul M nin
C' N My =0 veya sonlu Goldie boyutlu olan her ec-kapalr altmodilu C' nin bir dik

toplanan olmasidar.

Kamit. Gereklilik agiktir. Yeterlilik i¢in, C', M nin bir ec-kapali altmodiilii ve
mR <. C olsun. Eger C'N M; = 0 ise ispat biter.

O halde, 0 # ¢ € C N M; alalim. ¢R nin C deki kapanigi C; olsun. C' sonlu
Goldie boyutlu oldugundan C; de sonlu Goldie boyutludur. Varsayimdan, C,
M nin bir dik toplanamidir. Bir K < M vardir ki, M = C & K dir. Boylece
C*=KnCdCign C = C; & C* olur ve C*, M de komplementtir. ¢; € C; ve
c* € C*icin m = ¢ + ¢* diyelim. C*, ec-kapali altmodiilii C' nin bir dik toplanam
oldugundan Sonug 2.1.3.(1) den C* bir ec-kapali altmodiildiir. Eger C*NM; =0
ise, varsayimdan C* bir dik toplanandir. O halde, C'; M nin bir dik toplanani olur.
Diger yandan, eger C* N M; # 0 ise, bu durumda 6nceki adimlar: tekrarlayip Cs
nin bir dik toplanan ve Cy N M; # 0 olmak tizere C* = C} & Cs elde ederiz. Bu
sekilde devam edilirse M; modiiliiniin Goldie boyutu sonlu oldugundan sonlu bir
adimdan sonra bu iglem durmak zorundadir. O halde i = 1,3, ...,n i¢cin C; ler M
nin dik toplananlari, C, N M; = 0 ve C,, essential devirli bir altmodiil kapsamak
tizere C' = C; ® Cy @ .... & C, dir. Boylece C,, M nin bir dik toplananmdir ki,
varsayim geregi C';, M nin bir dik toplanani olur. O halde M, ECS-modiildiir. [J

Sonug 3.3.3 M; sonlu Goldie boyutlu bir modil olmak tzere M = M, & My
olsun. Bu durumda M nin ECS-modil olmasi i¢in gerek ve yeter kosul CNM; = 0
yada C' N My = 0 olan M nin her C ec-kapalr altmodilinin bir dik toplanan

olmasaidar.

Kanit. Teorem 3.3.2 den hemen elde edilir. O

Onerme 3.3.4 M = My & My olsun. Bu durumda, M nin her sonlu Goldie

boyutlu ec-kapaly altmodiiliinin M nin bir dik toplananiy olmasu i¢in (M nin ECS-
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modil olmasi igin) gerek ve yeter kosul CNM; = 0 yada CN My = 0 olan M nin

her sonlu Goldie boyutlu ec-kapali altmoduli C' nin bir dik toplanan olmasidir.

Kanat. Teorem 3.3.2 nin ispatina benzer olarak yapilabilir. O

Onerme 3.3.5 My yaribasit bir modil olmak tizere M = M, & My olsun. Bu
durumda, M nin ECS-modil olmasi i¢in gerek ve yeter kosul C N My = 0 olan

M nin her C ec-kapaly altmodilinin bir dik toplanan olmasidar.

Kanat. Gereklilik kogulu agiktir. Yeterlilik kogulu igin, M de bir C' ec-kapali alt-
modiili alalim. CNM; = 0 ise ispat biter. Diger yandan; M; yaribasit oldugundan
C'N M, altmodiilii, M; in bir dik toplanamdir. O halde C' = (C'N M;) & C* dur.
C*, M de ec-kapali altmodiil ve C* N M; = 0 oldugundan C*, M de bir dik
toplanandir. Boylece C'; M nin bir dik toplanamdair. ([l

Bu kesimi iki diizgiin modiiliin dik toplaminin homolojik kosullar altinda ECS
modiil olacagini ispatlayarak tamamlayacagiz. Bunun i¢in dnce [14] de ispatlanan

asagidaki Onteoremi verelim.

Onteorem 3.3.6 M ve N, R-modiil olsun. Her f € Hom(M, E(N)) igin X; =
{m € M : f(m) € N} olmak tzere By = {m + f(m) : m € Xy} ve N, M & N
icinde birbirlerinin komplementleridir. Eger Hom(N, E(M)) = 0 ise N, By nin
M & N icinde tek komplementidir.

Kamt. Bf " N = 0 olursa ispat aciktir. Simdi L, M @ N nin LN N = 0 ve
By C L olan bir altmodiili olsun. 7 ve 7* m M & N dan sirasiyla M ve N ye
projeksiyonlar oldugunu kabul edelim. Eger her [ € L i¢in 7%(l) = fn(l) oldugunu
gosterirsek By = L olur. Bu durumda baz1 | € L i¢in (7" — fm)(l) # 0 olsun.
E(N) nin N iizerindeki essentialligindan 0 # 7*(Ir) — fr(lr) € N olacak sekilde
r € R vardir. Fakat 7*(Ir) — fr(lr) = lr — [w(Ir) + fn(lr)] € NN L = 0 olmasiyla
geligir. Dolayisiyla (7* — frr)(l) = 0 dir. Yani her [ € L igin 7%(l) = fr(l) elde

edilir.
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Onteoremin ikinei kismimin ispat1 i¢in Y, M @ N nin Y N By = 0 kosulunu
saglayan bir altmodiilii olsun. Eger Y N Xy # 0 olsa, f in Y N X e kisitlanmas:
Hom(N, E(M)) nin sifirdan farkli bir elemani olur ki bu da kabuliimiizle celigir.
O zaman, Y N Xy = 0 dir ve buradan Xy <, M oldugundan da Y "M = 0 olur.
Boylece 7*|y bir monomorfizmadir ve m(Y) = 0 dir. Aksi taktirde geligki elde
edilir. Dolayisiyla Y C N olur. 0

Onerme 3.3.7 M, M, dizgin modiller ve i = 1,2 icin End(M;) yerel halka

olsun. Bu durumda asagidakiler denktir.

1. M = M, ® My, CS-modiil ve i # j i¢in M; — M; olan her monomorfizma

bir izomorfizmadar.

2. M = M, ® M,, ECS-modiil ve i # j i¢in M; — M; olan her monomorfizma

bir izomorfizmadar.
3. 1 # j i¢in M; modilu M;-injektiftir.

Kanat. (1) = (2): Onerme 3.1.9 dan aciktir.

(2) = (3): f € Hom(E(M;),M;) ve i # j olsun. X = {x € M; : f(x) €
M;} olarak tamimlayalim. O halde A = {z + f(z) : * € X} altmodili M de
komplement ve diizgiindir. Boylece A, M de ec-komplement altmodiildiir. M,
ECS-modiil ve End(M;) yerel oldugundan M = A @ M; veya M = A @ M; dir.
Eger M = A® M; ise bu durumda M; = f(z) ve boylece f~1: M; — X < M;
olup varsayimdan izomorfizma vardir. Yani X = M, dir. Diger yandan, eger
M = A @ M; ise bu durumda X = M; olur. Boylece ispat tamamlanir.

(3) = (1): [14, Corollary 2.25] den agiktir. O

3.4 Diizgin Altmodiillere Ayrisim

Bu kesimde CS-modiiller i¢in Okado'nun Teorem 1.3.12 de elde ettigi diizgiin
altmodiillere ayrigim tiriinde bir sonug¢ elde edip bunu ECS-modiillere in-
dirgeyecegiz. Simdi gerekli olan yerel dik toplanan tanimini ve ECS-modiillere

iligkin bir sonucu verelim.
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Tanim 3.4.1 M bir modil ve {X; : i € I}, M nin altmodiillerinin bir ailesi
olsun. Eger I mn her sonlu I' altkiimesi icin @, Xi altmodiilii M nin bir dik

toplanana oluyor ise, {X; : i € I} ailesine M igin bir yerel dik toplanan denir.

Sonug 3.4.2 M bir ECS-modiil olsun ve M bir devirli essential Y altmodili kap-

sasin. Bu durumda M nin dik toplanan ve ec-kapaly altmodiilleri aynidar.

Kanat. K, M nin bir dik toplanani ve Y = 2R, x € M olsun. O zaman M = K &
K’ olacak gekilde K’ < M vardir. Simdi 7 : M — K projeksiyon doniigiimii olsun.
O halde, YN K =2zRNK Cn(Y) =7(x)R C K olup, n(z)R <. K dir ve K, M
de komplement oldugundan K, M de ec-komplementtir.

Tersine K, M de ec-komplement altmodiil olsun. Bu durumda M, ECS-modiil
oldugundan K, M de dik toplanandir. O

Simdi verecegimiz onteorem yerel dik toplananlar ile komplement altmodiiller

arasindaki kullanigh bir iligkiyi belirtecektir.

Onteorem 3.4.3 M bir R-modil ve R, m € M olmak iizere r(m) sag
sifirlayncilar izerinde ACC yi saglasin. Bu durumda M nin her yerel dik toplanana

M de bir komplementtar.

Kanit. N = @,.; N;, M nin bir yerel dik toplanam olsun. M de bir L alt-

iel
modilii alalim &yle ki, N <, L olsun. N # L varsayalim. m € N\L yi r(m)
ideali {r(z) : * € L\N} de maksimal olacak bigimde segelim. O halde m # 0
dir ve 0 # mr € N olacak bi¢cimde bir » € R vardir. Béylece I nin bir I’ sonlu

altkiimesi vardir ki, mr € K = @, N; dir. Buradan M = K & K’ olacak

ier’
bi¢imde bir K’ < M vardir. Simdi m = y + ¢’ olacak bi¢imde y € K ve yr € K’
vardir. Boylece mr = yr+y'r, y'r = 0 olmasin gerektirir. Yani r(m) & r(y') diir.

Ancak vy = m —y € L\N olup, m nin segilisi ile geligir. O halde N = L dir ki bu

da N nin komplement olmasini verir. 0

Teorem 3.4.4 M, her dik toplananit P-extending olan bir modil ve M nin her
yerel dik toplanana bir dik toplanan olsun. Eger R, m € M olmak tizere r(m) sag

idealleri tizerinde ACC yi saglarsa M dizgin altmodiillerin bir dik toplamadar.
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Kanat. 0 # m € M alalim &yle ki r(m), {r(x) : 0 # x € M} de maksimal olsun. O
halde M nin bir K dik toplanam vardir ki, mR <, K dir. K nin indecomposable
olmadigini varsayalim. O halde K nin sifirdan farkhh K7, K5 altmodiilleri vardir ve
K = K1 ® K, dir. Boylece m = mj+ms olacak bicimde m, € Ky, my € Ky vardir.
Eger m; = 0 olsaydi, m = my € Ky ve mRN K; = 0 dan K; = 0 bulunurdu
ki bu bir ¢eligkidir. Yani m; # 0 dir. Agktir ki, #(m) C r(m4) dir. Boylece, m
nin segilisinden r(m) = r(m;) dir. Benzer olarak mq # 0 ve r(m) = r(msy) dir.
Simdi my # 0 oldugundan 0 # rymy = roms = r9(my + Mma) = remy + romy
olacak bigimde 71,79 € R vardir. Boylece romq = 0 ve buradan ry € r(msg)\r(m)
olur. Bu bir celigkidir. O halde K indecomposable olmalidir. K, P-extending
oldugundan K diizgiin modiil olur. O halde M nin her dik toplanani bir diizgiin

dik toplanan kapsar. Zorn Lemma’dan, M bir N = €,_; N; maksimal yerel dik

i€l
toplanan kapsar ki burada N; ler diizgiin modiildiir. Varsayimdan M = N & N’
olacak bigimde bir N’ < M vardir. Eger N' 2 0 olsaydi yukaridaki tartigmadan U
diizgiin olmak tizere N’ = U @& U’ olacak bicimde U, U’ altmodiilleri var olurdu.
O halde N & U, M nin bir yerel dik toplanani olurdu ki, bu N nin secilisi ile
celigirdi. Boylece N' =0 ve M = &,

dik toplamidir. O

N; dir. Yani M diizgiin altmodiillerin bir

Sonug 3.4.5 M bir ECS-modiil ve M nin her yerel dik toplanana bir dik toplanan
olsun. Eger R, m € M olmak dizere r(m) sag idealleri izerinde ACC yi saglarsa

M diizgun altmodillerin bir dik toplamadar.

Kanit. Onerme 3.1.9 ve Onteorem 3.1.8 ve Teorem 3.4.4 ten aciktir. U

Teorem 3.4.6 M bir R-modil ve M nin her yerel dik toplanani bir dik toplanan
olsun. Eger M nin her sifir olmayan altmodiili sifir olmayan bir devirli dizgin
altmodiil kapsiyorsa bu durumda M nin CS-modil olmasi i¢in gerek ve yeter kosul

M nin P-extending olmasidar.

Kanat. M, CS-modiil ise agik¢ga P-extending’dir.
Tersi icin 0 # K < M ve K, M de bir komplement olsun. O halde varsayimdan K



53

bir diizgiin devirli U altmodiilii kapsar ve U bir U’ dik toplananinda essentialdir.
Boylece U’, M nin diizgiin bir dik toplanamdir. Zorn Lemma’dan, K nin bir N
altmodiilii vardir ki, N = ,.; N;, M nin bir yerel dik toplanam ve N; lerin
diizglin olmas: ozelligine gore maksimaldir. Varsayimdan M = N & N’ olacak
bigimde N’ < M vardir. §imdi, K = KNM = KN(N@&N') = N&(KNN') diir.
O halde K N N’, M de bir komplementtir. Eger K N N’ # 0 olsaydi1 yukaridaki
tartigmadan, K N N’ altmodiili bir diizgiin V' dik toplanani kapsar. Bu durumda
N @&V, M nin bir yerel dik toplananmdir ki, bu N nin secilisi ile geligir. Boylece
KNN' =0ve K =N bulunur. Yani K, M nin bir dik toplananmidir. O halde M,
CS-modiildiir. OJ
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4 CS-Modiillerin Genellestirmeleri

(aligmalarimizin bu son biiliimii CS-modiillerin genellestirilmig bazi formlarindan
olugacaktir. C1; ve Fl-extending olarak bilinen genellestirmelerin yaninda yeni
bir genellegtirme tanimlayip ayrintili olarak incelenecektir. C; ve Fl-extending
modiiller konusunda, Birkenmeier ve Tercan’in [6] yakin zaman 6nce yaymladig:

bazi ilgili sonuclar ispatlariyla birlikte verilecektir.

4.1 (Cy;) ve Fl-extending Modiiller

Smith ve Tercan’in CS-modiillerin bir genellestirmesi olarak [25], [26]

caligmalarinda ayrintih olarak inceledikleri C';-modiil tanimi ile baglayalm.

Tanim 4.1.1 M modilunde eger her N < M altmodilinin dik toplanan olan

bir komplementi varsa M ye Ci1-modul (veya M, Cyy ézelligini saglar) denir.

CS-modiillerin C7;-modiil oldugu aciktir. Yine bir indecomposable C1;-modiil
diizgiindiir. Cy;-modiillerin, CS-modiil olmasi gerekmez. Ornegin, bir p asal tam
sayis1 i¢in M = (Z/Zp) ® (Z)Zp?), Z-modiilinii alalim. Mz, C1;-modiil ancak
CS-modiil degildir [25]. Birinci boliimde belirtildigi iizere, CS-modiillerin dik
toplananlarida CS-modiildiir ancak CS-modiillerin bir dik toplami, genel olarak
CS-modiil olmak zorunda degildir. Oysa C};-modiillerde bu iki durum farkhdir.
Soyle ki, Cq;-modiiliin her dik toplanani Ci;-modiil olmayabilir ki bunu Ornek
3.1.4 acgikhiga kavugturacaktir. Diger yandan C4;-modiillerin dik toplamlarina

iligkin olarak simdi verecegimiz teorem [25, Theorem 2.4] de ispatlanmigtir.
Teorem 4.1.2 C4y-modillerin bir dik toplama da Chi-moduldiir.

Birkenmeier ve diger yazarlarm [3], [4], [5] de CS-modiillerin bir genellestirmesi
olarak tamimladigi ve arastirdigr ki literatiirde yer alan bir ¢ok modil sinifim

kapsamaktadir, Fl-extending modiil tanimini verelim.

Tanim 4.1.3 M modulinun her fully invariant altmoduli, M nin bir dik

toplananinda essential olarak kapsaniyorsa M ye FI-extending modil denir.
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CS-modiillerin, Fl-extending modiil oldugu Tanim 4.1.3 iin bir sonucu olarak
agiktir. Fl-extending modiillerin, CS-modiillerden farkl oldugunu gosteren 6rnek

verecegiz. Oncelikle asagidaki sonuglar1 vermek uygun olacaktir.

Onteorem 4.1.4 M bir modiil olsun.

1. M nin fully invariant altmodullerinin herhangi toplami veya kesisimi de

fully invariant altmoduldir.

2. Eger X <Y < M wveY, M nin ve X de 'Y nin fully invariant bir alt-

modili ise, X, M nin fully invariant bir altmodiiliidir.

8. Eger M = @,.; X ve S, M nin bir fully invariant altmodiili ise, m;, M nin
i. projeksiyon homomorfizmasi olmak iizere S = @,c; mi(S) = @, (XiNS)

dar.
Kanat. [4, Lemma 1.1] e bakiniz. O

Teorem 4.1.5 X;, (i € I) ler Fl-extending modiller ise, M = @@,.; X,

modult de Fl-extending moduldir.

Kanat. Farzedelim ki her X, Fl-extending modiil ve S de M nin fully invariant
altmodulii olsun. 0 # s € S alalhm. S < M oldugundan s = z7 + x93 + ... +
x, dir. Bir i € [ igin s # 0 kabul ettigimizden z; # 0 dir. m;(S) = x; # 0
olur. f : X; — X, endomorfizma olsun. Buradan f(m;(S)) = f(X;) = X; =
m;(S) dir. Dolaysiyla her ¢ € [ i¢in m;(S) # 0 olacak sekilde m;(.S), X; nin fully
invariant altmodiilii olur. Buradan X;, Fl-extending modiil oldugundan 7;(S) <,
D; olacak bicimde X; nin bir D; dik toplanam vardir. Onteorem 4.1.4(3) den
S =@, mi(S) <e B,¢; Di dir. Buradan €,.; D;, M nin bir dik toplanamdir.
Boylece M, Fl-extending modiildiir. 0

Sonug 4.1.6 R bir sag Fl-extending halka ise her n pozitif tamsays icin M,(R)
matris halkasy da Fl-extending halkadar.
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Kanat. [4, Proposition 2.3 e bakiniz. a

Ornek 4.1.7 D Priifer olmayan bir degismeli bolge olsun. n > 2 bir tamsaiyn ve
R = M, (D) olarak alalim. Sonu¢ 4.1.6 ten Rg, Fl-extending modildir. Ancak D
Priifer olmadigindan [9, Corollary 12.10] dan R, CS-modil degildir.

Onteorem 4.1.8 M bir modiil olsun. Asaqidaki kosullar denktir.
1. M, Fl-extending modildiir.

2. M nin her fully invariant altmodilunin dik toplanan olan bir komplementi

vardar.

3. M nin her fully invariant altmodili X, i¢in M nin bir komplement alt-
modili L ve L nin bir K komplementi vardwr ki; X <, Lve f: L&K — M

her homomorfizmasy bir g : M — M endomorfizmasina genisletilebilir.

Kamat. (1) < (2): X, M nin bir fully invariant altmodiilii olsun. Ik énce M nin
Fl-extending modiil oldugunu kabul edelim. Bu durumda X <, eM olacak sekilde
e = e* € End(Mg) vardir. Boylece (1 —€)? = (1 — €) idempotent oldugundan
(1—e)M de M nin dik toplanamidir. Buradan XN(1—e)M <, eMN(1—e)M =0
olur ve X N (1 —e)M = 0 elde edilir. Ayrica X @ (1 —e)M <., eM @ (1 —
e)M = M oldugundan X @ (1 —e)M <., M dir. Béylece (1 —e)M, X in M deki
komplementidir.

Tersine ¢ = ¢* € End(Mpg) olmak iizere cM, X in komplementi olsun. z € X
alalim. Bu durumda x = cx+(1—c¢)zx olur. X fully invariant altmodiil oldugundan
cx € X NeM =0 dir. Buradan X C (1 — ¢)M dir. Béylece X <. (1 —¢)M elde
edilir. Yani M, Fl-extending modiildiir.

(2) < (3): Bu denklik [6, Lemma 1.1] den agiktir. O

Onerme 4.1.9 M bir modiil olsun.

1. M, CS-modiildiir.
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2. M, Cyy kosulunu saglar.
3. M, Fl-extending modiildiir.

(1) = (2) = (3) gerektirmeleri saglanar. Fakat genel olarak gerektirmelerin tersi

dogru degildir.

Kanat. (1) = (2) agiktir.
(2) = (3) Onteorem 4.1.8 deki (2) = (1) gerektirmesinden agiktir.
O

Tanim 4.1.10 M bir modil olsun. Eger M nin her sifirdan farkly komplement
altmodiilic M nin bir sifirdan farkl fully invariant altmodilini icerirse M ye

komplement sinarly modil denir.

Onteorem 4.1.11 M komplement sinarl bir modiil olsun. Bu durumda 0 # K,
M nin komplementi ise M de bir fully invariant U altmodil vardwr oyleki, U <, K
dar.

Kanit. X < M ve K, X in M deki komplementi olsun. Simdi U = > {B: B,M
nin fully invariant altmodiilii, B C K} alalim. Buradan U < K dir. U nun K daki
komplementi Y olsun. Béylece YN (X @U)=0veY & (XdU) <. KX <. M
oldugundan Y @ (X @ U) <. M olur. Bu durumda Y, X & U nun M deki
kopmlementidir. Buradan Y = 0 dir. Aksi taktirde Y # 0 olsaydi, M komplement
sinirli bir modiil oldugundan Y, M nin bir fully invariant altmodiiliinii kapsardi.
Dolayisiyla Y NU # 0 olurdu. Bu ise Y nin U nun K daki komplementi olmasiyla
gelisir. Dolayisiyla Y = 0 oldugundan U <, K olur. U

Teorem 4.1.12 1. Bir Mg modili i¢in End(Mg) Abel ve X < M ig¢in h; €
End(Mg) olmak iizere X = Y. , hi(M) olsun. Bu durumda M nin yar:.-

surekli olmas i¢in gerek ve yeter kosul M nin Cy kosulunu saglamasidar.

2. M komplement simaurly bir modil olsun. Bu durumda M nin Ciy kosulunu

saglamasi i¢in gerek ve yeter kosul M nin Fl-extending modul olmasidir.
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Kanit. (1): Farzedelim ki, M, Cy; kogulunu saglasin ve X < M olsun. Bu durumda
her h; € End(Mpg) icin X =Y, hy(M) dir. e* = e € End(Mpg) homomorfizmas:
icin eM, X in bir komplementidir. 0 # = € X alalim. Boylece x = ex + (1 — e)x
hi(m;) dir. Boylece ex = e) .., hi(m;) =
Yo hilem;) € X NeM = 0 elde edilir. eM & X <, eM @& (1 —e)M = M ve
X < (1 —=e)M oldugundan X <. (1 —e)M dir. Dolayisiyla M, CS-modiildiir.

End(Mpg) Abel oldugundan M, (C3) kosulunuda saglar.

olur. Fakat m; € M i¢in v = >,

Gergekten; K ve L, M nin K N L = 0 kogulunu saglayan iki dik toplanan alt-
modiilii olsun. Bu durumda K = eM ve L = fM olacak sekilde > = e €
End(Mg) ve f? = f € End(Mg) vardir. (e+ f)*> = e+ f +2ef ve End(Mpg) Abel
oldugundan (ef)(m) = e(f(m)) € eM, (ef)(m) = (fe)(m) = f(e(m)) € fM
elde edilir. Boylece ef € eM N fM = KN L = 0 oldugundan (e + f)? =
e+ f € End(Mg) olur. (e+ f)M C K+ L ve K+ L C (e+ f)M oldugundan
K+ L= (e+ f)M dir. Dolayisiyla K + L, M nin dik toplanamdir. Béylece M,
yari-siirekli modiil olur. O halde M modiilii yari-siirekli modiildiir.

Tersi Onerme 4.1.9 den aciktir.

(2): M komplement sinirh ve Fl-extending modiil olsun. Y < M ve K, Y nin bir
komplementi olarak alalim. Eger K = 0 ise, K, M nin bir dik toplanamidir. K # 0
oldugunu kabul edelim. Bu durumda M nin bir X fully invariant altmodiilii vardir
ki, X, K nin igerdigi M nin fully invariant altmodiillerinin toplamidir. Bu
durumda Onteorem 4.1.11 den X <, K dir. Ayrica M, Fl-extending modiil
oldugundan e* = e € End(Mg) i¢gin X <. eM dir. Boylece Y NeM = 0 ve
Y ®eM <, M dir. [25, Proposition 2.3] den M, Cy; kosulunu saglar.

Tersi Onerme 4.1.9 den aciktir. ([l

Sonug 4.1.13 M bir R-modil olsun. Asagidaki kosullardan herhangi biri
saglamirsa, M modulinin CS olmast i¢in gerek ve yeter kosul M, Ci1-modiil ol-

masidar.

1. Mr = Ry ve R Abeldir.

2. M modili devirli ve R degismelidir.



59

3. M bir carpimsal modul ve R degismelidir.

Kanat. (1): R Abel oldugundan dolay1 End(Rg) de Abeldir. Simdi 0 # X < Rpg
sag idealini alalim. 0 # z; € X i¢in h; : R — R homomorfizmasi h;(r) = z;r
olarak tanimlayalim. O halde X = ., h;(R) olup Teorem 4.1.12 (1) den sonug
elde edilir.

(2): Simdi M modiili devirli ve R degismeli olsun. Buradan Br < Rp i¢in
M, R/B ya izomorftur. Y/B R-modiilii R/B nin bir altmodiilii olsun. Boylece
her y; € YV icin Y/B = (3 _,c;iR) + B = (3_;c;vi + B)R dir. h; : R/B —
R/B dontigimii h;(r + B) = y;r + B olarak tammlansin. Bu durumda h; €
End((R/B)g) olur. Buradan Y/B = _,_, hy(R/B) dir. R degismeli oldugundan
End((R/B)g) de degigmelidir. Boylece Onerme 4.1.12 (1) den saglanir.

(3): Farzedelim ki, M carpimsal ve R degismeli olsun. A < M olmak iizere
X = MA alalm. Her a € A igin h, : M — M doniigimi m € M olmak
lizere hq(m) = ma olarak tammlansin. Bu durumda X = MA = > _, h,(M)
dir. Ayrica N < M olsun. M garpimsal oldugundan N = M A olacak sekilde
A < M vardir. Her f € End(Mg) igin x € f(N) ise z = f(ma) dir. f ho-
momorfizma oldugundan = = f(m)a € MA = N olur. Buradan z € N elde
edilir. Boylece f(N) C N olur ve N, M nin fully invariant altmodiildiir. Yani
carpimsal bir modiiliin her alt modiilii fully invariant altmodiildiir. [4, Lemma
1.9] dan e = €® € End(Mg) ise e ve (1 —e) € S;(End(Mg)) dir. M nin her
altmodiili fully invariant altmodiil oldugundan e = e* € End(Mg) igin eM,
M nin fully invariant altmodiil olup e € S;(End(Mg)) ve (1 —e)M de M nin
fully invariant altmodiil olup (1 —e) € S;(End(Mg)) olur. Buradan ex = exe
ve (1 —e)z = (1 —e)x(1 — e) dir. Yani ex = ze oldugundan e merkezleyendir.

Dolayisiyla End(Mpg) Abeldir. Teorem 4.1.12 (1) den sonug saglanir. O

Onerme 4.1.14 M, Ci1-modiil ve X, M nin bir altmodulii olsun. Eger X ile M
nin herhangi bir dik toplananinin arakasiti X in bir dik toplanani ise X, Ciq-

moduldir.



60

Kanat. A, X in bir altmodiilii olsun. Bu durumda ANN =0ve A® N <, M
olacak gekilde M nin bir N dik toplanani vardir. Simdi M nin bir K altmodiilii igin
M = N@K olsun. Béylece XN(A®N) <, XNM = X ve AN(XNN) < ANN =0
olup AN(XNN) =0 oldugundan XN(AGN) =Ad(XNN) <. X olur. XN N,
X de dik toplanan oldugundan X, C};-modiildiir. 0

Sonug 4.1.15 Mg, Cy1 kosulunu saglayan bir modil olsun.

1. Eger M dagilimly modul ise, M nin her altmodili CS-modildiir.

2. Eger M nin bir X altmodiilii her e = €* € End(Mg) i¢in eX C X kosulunu
saglarsa, X bir Cy1-modildir. Ozel olarak, M nin her fully invariant alt-

modtly bir Ci1-moduldir.

3. Eger M, SIP ise, M nin her dik toplanani C1-modildiir.

Kanat. (1): N, M nin komplementi olsun. Bu durumda e = e?> € End(Mpg) olmak
iizere eM, N nin komplementidir. Boylece M dagilimli modiil oldugundan
N=NNM=Nn(EeMa&(l-e)M)=(NneM)® (NN (1L—e)M)=Nn
(1—e)M < (1 —e)M dir. eM, N nin komplementi oldugundan N NeM = 0 ve
N @ eM <, M dir. Buradan N @eM <. M =eM & (1 —e)M ve N < (1 —e)M
oldugundan ise N <, (1—e)M olur ve N, M de komplement oldugunu kullanarak
N = (1—e)M elde edilir. Béylece M, CS-modiildiir. [2, Corollary 1.6] den M nin
her altmodiili CS-modiildir.

(2): D, M nin bir dik toplanan altmodiilii ve e : M — D kanonik projeksiyon
olsun. O halde e(X) C D olur ve eX C X oldugundan e(X) € DN X dir.
a € DN X alahm. Boylece a € D oldugundan a = e(a) olur. Buradan da a =
e(a) € eX olur. Dolayisiyla eX = D N X elde edilir. Onerme 4.1.12 den X bir
CY1-modildir.

(3): Onerme 4.1.14 den aciktur. O

[5] te CS-modiillerin, strongly Fl-extending modiiller olarak bir genellegtirmesi
tanimlanip, aragtirilmigtir. Bu yeni modiil sinifinin Fl-extending modiil sinifinda

kapsandigi agiktir. Bu modiil sinifinin tanimini ve bazi 6zelliklerini verelim.
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Tanim 4.1.16 Mg bir modil olsun. M deki her fully invariant altmodil bir fully
mwvariant dik toplanan altmodilde essential olarak kapsanirsa M ye strongly FI-

extending modil denir [5].

Sonug 4.1.17 M bir sag R-modiil olsun. Asagidaki kosullary alalim.
1. M, CS-modiildiir.
2. M, strongly Fl-extending dir.
3. M, Fl-extending dir.

Bu durumda, (1) = (2) = (3) tir. Bu dnermelerin tersleri genel olarak dogru

degildir.

Kanat. (1) = (2) = (3) agiktir.

(2) # (1): Rg = [£%] alalm. Ornek 1.4.4 den Rp nin CS-modiil olmadigimi biliy-
oruz. Diger yandan Z(Rpg) = 0 oldugundan Rpg strongly Fl-extending modiildiir
[5, proposition 1.5].

(3) # (2): p bir asal tamsay1 olmak tizere M = Z & Z/Zp, Z-modiiliinii (Abel
grubunu) alalim. Teorem 4.1.5 ten Mz, Fl-extending modiildiir. Ancak, [3, The-
orem 7.1] den Mz, strongly Fl-extending degildir. 0

Onteorem 4.1.18 My bir modil, A = End(Mg) ve ¢*> = e € A olsun. Bu

durumda asaqidaki kosullar saglanar.

1. e € Si(A) ={e € A: ze = exe, her x € A} olmasu i¢in gerek ve yeter kosul

eM nin M de fully invariant altmodil olmasidar.

2. Eger M bir strongly Fl-extending modul ve K, M nin fully invariant alt-
modilii ise, K, M nin tek bir (fully invariant) dik toplananinda essential

olarak kapsanar.

Kamit. (1): e € Si(A) = {e € A : ze = exe, her v € A}, h € Avem € M

olsun. Bu durumda hem = ehem € eM olur. Boylece eM, M nin fully invariant
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altmodiuldiir.

Diger taraftan eM, M nin fully invariant altmodiili, h € A ve m € M olsun.
Buradan hem = ek olacak sekilde bir k& € M vardir. Boylece ehem = e’k = ek =
hem olur. O halde her m € M igin (ehe)(m) = (he)(m) oldugundan ehe = he
elde edilir. Yani e € S;(A) olur.

(2):M bir strongly Fl-extending modiil ve K, M nin fully invariant altmodiilii ol-
sun. (1) den K <. eM olacak sekilde bir e € S;(A) vardir. Farzedelim ki,
A =ce Ave K <, cM olsun. O zaman (ce)? = cece = cce = ce olur.
K, M nin fully invariant altmodiili oldugundan ce K C K dir. x € K alalim.
K <. cM oldugundan z = cm ve K <, eM oldugundan ise x = en olur. Buradan
x = cex € ceK olur ve boylece K C ceK elde edilir. Yani K = ceK dir. Boylece
K <. ceM < cM dir. Ayrica K <, cM oldugundan ceM <, cM dir. ceM, M de
dik toplanan oldugundan ceM, M de komplementtir. ceM <., cM oldugundan
ceM = cM dir. [18, Lemma 3.1] den f € A i¢in ce(f) = c(ef) € cA oldugundan
ceA < el olur. ceM < eM olup, buradan ¢cM < eM bulunur. Fakat, K <, eM
oldugundan cM = eM elde edilir. Dolayisiyla K tektir. 0

C1i-modiillerinin dik toplananlarinin C;-modiil olmasi gerekmez. Diger yan-
dan, Fl-extending modiillerinin dik toplananlarinin Fl-extending olup olmadig:
sorusu hala acik bir sorudur [4]. Agagidaki teoremde strongly Fl-extending

ozelliginin dik toplananlara tagindigini gosterecegiz.

Teorem 4.1.19 Bir M strongly Fl-extending modilinun her dik toplanan
strongly FIl-extending modildir.

Kanat. M strongly Fl-extending modiil ve B, M nin dik toplanani, A = End(MEg)
olsun. Boylece B = eM olacak sekilde e? = e € A vardir. X, B nin fully invari-
ant altmodiilii olsun. Her f € A i¢in f(AX) C AX oldugundan AX, M nin
fully invariant altmodiiliidiir. M strongly Fl-extending modiil oldugundan ise
AX <, fM olacak sekilde f2 = f € A vardir. Actkca X C AX NeM dir.
ke AX NeM alalm. f € A i¢in k = f(x) = e(m) dir ve X, M nin fully in-
variant altmodiilii oldugundan k& = f(x) C X olur. Boylece AX NeM C X dir.
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Dolayisiyla X = AXNeM <., fMNeM olur. Buradan f € S;(A) ={e € A:xe=
exe,Vx € A} icin eX C efM ve (ef)? = (ef).(ef) = e(fef) = e(ef) = ef olur.
M, Fl-extending modiil oldugundan ef(M) C eM ve ef (M) C fM dir. Boylece
efM CeMnN fM olur. Simdi © € eM N fM alahm. Bu durumda x = em = fm/
olacak sekilde m, m’ € M vardir. Boylece ex = em = efm’ = fefm' = fem = fz
olur. (ef)? =ef € Aigin efM = eM N fM dir. O halde her z € X i¢in z = ex
oldugundan X =eX <, efM dir. ef M, M de dik toplanan oldugundan da e f M,
eM nin de dik toplanamdir. k € End((eM)gr) C End(Mg) alalim. k € End(eM),
feS(A)isek(efM) =k(ef)M = k(fef)M = kfe(f(M)) C f(M) olur. Ayrica
k:eM — eM oldugundan k(efM) C eM olur. O halde, k(efM) C fM NeM =
efM dir. Yani ef M, eM nin fully invariant altmodiilii olur. Buradan X <, efM
ve ef M, eM nin fully invariant dik toplanan altmodiili oldugundan B = eM
strongly Fl-extending modiildiir. 0

4.2 FEC{;-Modiller

Bu son kesimde, hem P-extending hem de C};-modiillerin bir genellegtirmesi
olarak FECji;-modiilleri tanimlayip, bu modillerin yapisiyla ilgili sonuglari

verecegiz.

Tanim 4.2.1 Mpg bir modul olsun. Eger M nin her K ec-altmodilu i¢in M nin
bir D dik toplanani var ve D, K nin M deki komplementi ise M ye ECY1-modiil
denir.

Eger bir R halkasy sag R-modil olarak ECy1-modil (yani Rg, EC11-modiil) ise
R ye sag EC11-halka denir.

O halde, Cy;-modiillerin (ve bdylece CS-modiillerin) ECji-modiil oldugu
aciktir. ECy;-modiillere iligkin sonuclara baglamadan 6nce, kullamsgh bir Onte-

orem verelim.

Onteorem 4.2.2 My bir modil, N, Mg de bir ec-altmodul ve K da M nin bir
dik toplanant olsun. Bu durumda, K, N nin M deki komplementi olmasi i¢in

gerek ve yeter kosul K NN =0 ve K & N <, M olmasudar.
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Kanat. Tk olarak K, N nin M deki komplementi olsun. Bu durumda K N N = 0
dir. 0 # x € M alalm. Eger x € K ise, 0 # 2R = 2RNK C zRN (K & N)
dir. Eger x ¢ K ise, NN (zR + K) # 0 olur. Bu durumda her 0 # x € M igin
zRN (K & N) # 0 dir. Boylece K & N <, M dir.

Tersine N < M ve K da M nin bir dik toplanan olmak tizere K N N = 0 ve
K @& N <, M olsun. Oyleyse bir K’ < M icin M = K & K’ diir. Farzedelim
ki, M nin bir K; altmodiilii i¢cin, K € K; ve K; N N = 0 olsun. Bu durumda,
Ki=KnNnM=KnNnKeK)=Kao (K NK)olur. 0 #y e KjNK
alalm. Buradan y € M ve K @ N <, M oldugundan (K & N) NyR # 0 dir.
O halde n € N, k € K ve r € R olmak tizere 0 # yr = n + k dir. Boylece
yr—k=n¢€ NNK; =0 oldugundan yr = k € KNK' =0 dir. Yani yr = 0 olur.
Bu ise celigkidir. Dolayisiyla K = K7 olup K, N nin M deki komplementidir. []

Onerme 4.2.3 My bir modiil olsun. Bu durumda asagidakiler denktir.
1. Mg, ECi1-moduldiir.

2. Mg nin her L ec-kapaly altmodili icin M nin bir K dik toplanany varder

oyleki, K, L nin M deki komplementidir.

3. Mg nin her N ec-altmoduli v¢in M nin bir K dik toplanany vardwr oylek:,
NNK=0ve N K <, M dir.

4. Mg nin her L ec-kapal altmoduli icin M nin bir K dik toplanant vardwr
oyleki, LN K =0ve L& K <, M dir.

Kanat. (1) = (2) ve (3) = (4) gerektirmeleri agiktir.

(1) & (3) ile (2) < (4) denklikleri Onteorem 4.2.2 den aciktir,

(4) = (1): A, M nin ec-altmodiilii olsun. O halde bir B <. M vardir ki,

A <. B dir. A ec-altmodiil oldugundan bir z € A vardir ki ztR <, Adir. A <, B
oldugundan xR <. B <. M olur. Boylece B, M nin ec-kapali altmodiilidiir. Bu
durumda kabuliimiizden M nin bir K dik toplananii¢cin KNB =0ve KB <, M
dir. Onteorem 4.2.2 den K, M de B nin komplementidir. KN A <, KN B =0
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oldugundan K N A = 0 dir. Farzedelim ki, K C K’ olacak sekilde K’ < M olsun.
Buradan K N B = 0 olacak gekilde K maksimal oldugundan K' N B # 0 dur.
Ayrica0 # K'NB < Bve A<, Bicin, K'NBNAZ#0Qolur. K'NBNA< K'NA
oldugundan K’ N A # 0 elde edilir. Boylece K, A mn M deki komplementidir.
Ayrica K, M nin dik toplanani oldugundan M, EC};-modiildiir. 0

Onerme 4.2.4 M bir R-modil olsun. M, P-extending modil ise, M, EC;-

moduldir.

Kamit. K, M nin ec-altmodiilii olsun. O halde xR <. K olacak sekilde bir z € K
vardir. M, P-extending modiil oldugundan xR <., D olacak sekilde M nin bir
D dik toplanami vardir. Boylece M = D @ D’ olacak sekilde D’ < M vardir.
xRND' <., DND' = 0 oldugundan xt RND’' = 0 dir. AyricaxReD’' <, D@D’ = M
elde edilir. tRND" <, KND' oldugundan KND' = 0 olur. tR&D' < KeD' < M
ve tR® D' <. M oldugundan K & D" <, M dir. Dolayisiyla M, EC;;-modildiir.
O

Not 4.2.5 Her ECh1-modil P-extending modul olmayabilir.

Ornek 4.2.6 R = Z[z| polinomlar halkass ve M = (Z[z] & Z[])z[a]
modiliint alalim. Onerme 1.4.5 den Mg, CS-modil degildir. Béoylece M sonlu
Goldie boyutlu oldugu i¢in Teorem 3.1.12 (8) den ECS-modil degildir. Ayrica
Z(M) = 0 oldugundan M, nonsingular olur Teorem 3.1.12 (1) den P-extending
modiil degildir. Fakat Z[x)ziy modiili diizgiin oldugundan CS-modildir. Béylece
C11 modiil olur. Teorem 4.1.2 den M, Cyy modul oldugundan EC4i-modildiir.

Dolayisiyla M, EC11-modil olmasina ragmen P-extending modil degildir.

Onerme 4.2.7 Mj bir modiil olsun. Asagqidaki kosullary alalim.
1. Mg, ECS-modildiir.

2. Mg, P-extending moduldir.
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3. Mg, ECy1-modildiir.

Bu durumda (1) = (2) = (3) kosulu saglanir. Bu gerektirmelerin tersi genel

olarak dogru degildir.

Kanit. (1) = (2) gerektirmesi Onerme 3.1.9 dan ve (2) = (3) gerektirmesi
Onerme 4.2.4 dan aciktir.

Simdi Ornek 4.2.6, (3) # (2) ’i verir. Yine Onerme 3.1.9 dan (2) % (1) dir. O

Sonug 4.2.8 Mpr bir indecomposable modil olsun. Bu durumda asagidaki

kosullar denktir.
1. Mg, ECS-modildiir.
2. Mg, P-extending modildiir.

3. MR, EC’H—moddlddr.

4. Mg diizgun modildir.

Kamit. (1) = (2) = (3) Onerme 4.2.7 den elde edilir.

(4) = (1) agiktr.

(3) = (4): 0 # X < M olsun. O halde bir 0 # z € X vardir. xR < X alalim.
Boylece xR <. L <. M olacak sekilde xR nin bir L kapanigi vardir. Buradan L,
M nin ec-altmodiiliidiir. Bu durumda Mg, EC}1-modil oldugundan M nin bir
D dik toplananmi icin LN D =0ve L& D <, M dir. Mg indecomposable modiil
oldugundan D = 0 veya D = M dir. D = M ise LN M = L = 0 olup celiski
elde edilir. O halde D = 0 olmalidir. Yani; LN0=0ve LN0 =L <, M olur.
Boylece L <. M oldugundan Onerme 1.2.11 den L = M dir. Buradan 2R <, M
olur ve zR < X < M oldugundan X <. M elde edilir. Dolayisiyla Mg, diizgiin
modiildiir. U

Chi-modiiller, ECY-modiil olmasima karsin ECY-modiil olup C};-modiil ol-

mayan ornekler vardir. Simdi bu tipteki bir 6rnegi verelim.
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Ornek 4.2.9 R, [16, Ezample 7.54] de verilen komutatif, von Neumann regular,
Baer olmayan halka olsun. R, von Neumann reqular oldugundan ECS-halka olup,
Sonu¢ 4.2.8 den ECii-halkadwr. Bu durumda R, Sonu¢ 1.4.7 den nonsingular
halkadwr. Diger yandan R komutatif oldugundan ac¢ikca komplement sinirlidir. O
halde [4, Theorem 4.7 (iii)] den Fl-extending degildir. Béylece, Teorem 4.1.12
den Rg, Cy1-modil degildir.

Onerme 4.2.7 den P-extending ve EC); kosullar1 genel olarak farkhdir. Bir
sonraki Teorem hangi kogul altinda bu iki modiil ailesinin ayni olacagini verecek-

tir.

Teorem 4.2.10 M bir R-modil, End(Mpg) Abel ve X < M i¢in h; € End(Mg)
olmak tizere X = Y .. hi(M) olsun. Bu durumda Mg nin EC)i-modiil olmas

icin gerek ve yeter kosul Mg nin P-extending modul olmasidar.

Kamit. Mg, P-extending modiil olsun. Bu durumda Mg nin ECY;-modiil oldugu
Onerme 4.2.7 dan aciktir.

Tersine Mg, EC1-modiil ve X = xR < M olsun. Y < M yi M de X in kapanisi
olarak alalim. Bu durumda X <, Y <. M oldugundan xR <. Y olacak gekilde
z € X C Y oldugundan Y, M de ec-altmodiildiir. O halde Y = >, hi(M)
dir. Mg, ECj;-modiil oldugundan bir e? = ¢ € End(Mpg) vardir ki, eM, Y
nin komplementidir. 0 # y € Y alahm. Bu durumda y = ey + (1 — e)y dir.
Fakat m; € M olmak iizere y = .., hi(m;) dir. Boylece ey = e) ., hi(m;) =
Y i hilem;) € YNeM =0 dir. O halde y = (1 —e)y olur. eM @Y <, M =
eM @& (1 —e)M veY < (1 —e)M oldugundan YV <, (1 —e)M dir. Y <. M ve
Y <, (1 — e)M oldugundan Onerme 1.2.11 den Y = (1 — ¢)M olur. Béylece Y,
M nin dik toplanani oldugundan Mg, P-extending modiildiir. ([l

Simdi Sonug 4.2.12 (2) nin ispatinda kullanacagimiz bir énteorem verelim.

Onteorem 4.2.11 f M — T bir izomorfizma ve T, EC1-modiil olsun. Bu
durumda Mg de ECY1-modildiir.
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Kamit. N, M nin ec-altmodiilii olsun. Bu durumda zR <, N < M olacak
sekilde bir € N vardir. x € N ise f(z) € f(N) dir. f(xR) N A = 0 olsun.
[ (f(@R)NA) = zRNf~1(A) =0olur. A < f(N)ise f~'(A) < Nolur. zR <, N
oldugundan f~*(A) = 0 dir. f birebir oldugundan f(f~1(A)) = f(0) = 0 olup
A =0 dir. Boylece f(z)R <. f(N) elde edilir. Yani f(N), T nin ec-altmodiiliidiir.
T, ECi-modil oldugundan 7' nin bir D dik toplanam i¢in f(N) N D = 0 ve
f(N)®D <. T dir. D, T nin dik toplananm oldugundan 7" = D& D’ olacak sekilde
D' < T vardir. f izomorfizma oldugundan M = f~YT) = f~(D) @ f~1(D’) ve
YD) < f7YT) = M olup f~'(D), M nin dik toplanam olur. f~'(f(N) N
D)= Nnf D)= f10) =0 dr. Ayrica f : M — T bir izomorfizma ve
f(Ny @D <. Tise f/Yf(N)® D) =N @& f~1(D) <. M dir. Dolaysiyla Mg,

EC1-modiil olup ECY; ozelligi izomorfizma altinda invariantdir. O

Sonug 4.2.12 Bir Mr modili asagidaki kosullardan birini saglasin. Bu duru-
munda M nin ECi1-modil olmasi igin gerek ve yeter kosul M nin P-extending

modil olmasidar.
1. Mr = R ve R, Abeldir.
2. M devirli ve R degigmelidir.

3. M c¢arpimsal modul ve R degismelidir.

Kamit. (1): Mg = Rg ve R, Abel oldugundan End(R) = R dir. Abellik izomor-
fizma altinda invariant oldugundan End(R) de Abeldir. r € R olmak iizere
hi : R — R, hy(x) = x;r homomorfizmasim ele alalm. x; € X olmak iizere
z;R C X olur ve Y, ;x;R C X elde edilir. z € X i¢in z € >, , ;R dir.
Boylece X C >, ; ;R oldugundan X = )., x;R dir. Yani X = > ., hi(R)

i€l i€l
olur. Boylece Teorem 4.2.10 dan agiktir.

(2): Simdi M devirli ve R degismeli olsun. Bir B < Rp icin Mr = R/B
dir. Gergekten ¢ : R — M = mR, ¢(r) = mr homomorfizmasimi alalim.

kero = {r € R : mr = 0} = B dersek, . izomorfizma teoreminden
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Mg = R/B dir. (Y/B)g modiili R/B nin bir altmodiilii olsun. O halde her
y €Y ignY/B = (3 ,,,yR)+B =,y +B)Rdir. h; : R/B — R/B
doniigimi h;(r + B) = y;r + B olarak tanimlansin. O halde h; € End((R/B)r)
dir. Boylece Y/B = >_._; hi(R/B) olur. R degismeli oldugundan End((R/B)r)
de degigmelidir. Bu durumda denklik (R/B)g icin dolayisiyla Onteorem 4.2.11

il

den Mp i¢in Teorem 4.2.10 dan saglanir.

(3): Son olarak M carpimsal modiil ve R degismeli olsun. A < Rp olmak
tizere X = MA alalim. Her a € A i¢gin h, : M — M, m € M olmak fizere
ha(m) = ma olarak tammlansin. Boylece X = MA = Y _, ho(M) dir. Ayrica
carpimsal bir modiiliin her altmodili fully invariantdir. Gergekten, N < M
olsun. M c¢arpimsal modiil oldugundan bir A < R i¢cin N = MA olur. Her
f € End(Mg) igin z € f(N) alahm. Bu durumda n = ma € N olmak
tzere © = f(ma) = f(m)a € MA = N bulunur. Yani x € N oldugundan
f(N) C N elde edilir ki, N fully invariant altmodiildiir. [4, Lemma 1.9] dan
eger e? = e € End(Mp) ise e merkezildir. Boylece End(Mpg) Abeldir. Dolayisiyla
denklik Teorem 4.2.10 dan aciktir. U

Teorem 4.2.13 R bir halka, X, R nin ec-ideali ve R = R/X olsun. Ejer Rp,
ECy1-modiil ve Z(Rg) = 0 ise, Rg ve Rz, ECy-modiildiir.

Kanit. A, R nin ec-altmodiilii olsun. O zaman baz1 Ar < Rp icin A = A/X dir.
Ik olarak Rz nin FCy;-modiil oldugunu gosterelim. Rg, EC1;-modiil oldugundan
e=e? € End(RR) i¢gin, ANeR=0ve A®eR <, Rgdir. XNeR< ANeR=0
oldugundan X NeR = 0 olur. Ayrica A@® eR <, (1 —e)R® eR = Rr olup X <
(1 — e)R dir. Buradan Onteorem 1.2.3% kullanarak R = R/X = (1 — e)R/X @
(eR®X)/X elde edilir. Dolayisiyla (eR® X)/X, Rg nin dik toplanamdir. Ayrica
A/XN(eR®X)/X = (AN(eR®X))/X = X/X = 0 dir. Simdi, (A®eR)/X <,
R/X = R oldugunu gosterelim. Y = Y/X < Rve (A®eR)/XN(Y/X) = 0 olsun.
y € Y alahm. A @ eR <. Rg oldugunda Onteorem 1.2.4 den bir L <. Rg vardir
oyleki yL C A@eR dir. Buradan, (y+ X)L =yL+X € (A®eR)/XNY/X)=0
olur. Boylece y + X € Z(R/X) dur. Z(R/X) = 0 oldugundan y + X = X olup
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y € X dir. Buradan Y = 0 dir. Dolayisiyla, (A@eR)/X <. R/X = R elde edilir.

Benzer sekilde, R modiiliiniinde EC;-modiil oldugu gosterilir. 0

Ch1-modiillerin dik toplananlar1 C1-modiil olmayabilir [26]. Simdi verecegimiz
ornek F(Cj;-modiillerinde dik toplananlarimin EFCj;-modiil olmasi gerekmedigini
gosterecektir. Bu oOrnekten hareketle caligmalarimizi ECj;-modiillerin hangi
kogullarda dik toplananlarinin da E'CY;-modiil olacagi konusunda elde edilen

sonuclarla tamamlayacagiz.

Ornek 4.2.14 R halkas: Ornek 3.1.4 deki gibi yani, Rz, y, z]/(z2 + y* + 22 — 1)
olsun. Mrp = (R @® R @ R)g olarak alalvm. Bu durumda Mg, Cii-modildir.
Bdéylece ECy;-modiil olur. Kpg indecomposabledir, fakat Ornek 3.1.4 den diizgiin
olmadigindan ECy-modul degildir. Dolayisiyla ECY, ozelligi dik toplananlara

tasinmaz.

Teorem 4.2.15 Mp bir ECi-modul ve X, M nin altmot olsun. Eger X ile M

nin bir dik toplananimn kesisimi X de bir dik toplanan ise X, EC11-modiildiir.

Kanit. A, X de ec-altmodiil olsun. Buradan R <., A olacak sekilde bir z €
A vardir. X < M oldugundan A, M de de ec-altmodiildir. M, ECi;-modiil
oldugundan M nin bir N dik toplanani icin ANN =0ve A& N <. M olur.
Bu durumda N, M nin dik toplanam oldugundan M = N & K olacak sekilde bir
K < M vardir. A < X oldugundan XN(A®N) =Ad(XNN)dwr. AN <. M
oldugundan A & (X N N) <, X N M = X olur. Hipotezden X N N, X de dik
toplanandir. Boylece AN (X NN)=(ANN)NX =0NX = 0 olur. Dolayisiyla
X, ECi1-modiildir. OJ

Sonug 4.2.16 My bir ECii-modil olsun. Bu durumda asaqidaki kosullar

saglanar.

1. X < M ve her e = e € End(Mg) i¢in eX C X (yani X projeksiyon
invariant) ise X bir ECy1-modildiir. Ozel olarak, M nin her fully invariant

altmodild bir EC1-modildir.
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2. Mg SIP-modil ise, M nin her dik toplanani EC4y-modildiir.

Kanat. (1): D, M nin dik toplanani ve e : M — D kanonikal projeksiyon olsun.
Bu durumda bir X < M i¢in eX C D dir. eX C X oldugundan eX € DN X
dir. Simdi @ € D N X alalim. Bu durumda a € D ve a € X olur. a € D ise
a = e(a) € eX oldugundan D N X C eX olup eX = D N X elde edilir. Boylece
DN X, X in dik toplanan oldugundan Teorem 4.2.15 den X, EC4;-modildiir.

(2): N, M nin bir dik toplanam olsun. Ayrica M nin herhangi bir K dik
toplananini alalim. M, SIP-modiil oldugundan N N K, M nin dik toplananidir.
Buradan M = (N N K) @ X olacak gekilde bir X < M vardir. N = NN M =
NN(NNK)e X) = (NNK)® (NnNX) olur. O halde NN K, N nin dik
toplanani oldugundan Onerme 4.2.15 den N, EC};-modiildiir. 0]

Onteorem 4.2.17 M = M, ® My olsun. Bu durumda M, in ECy1-modil olmast
wein gerek ve yeter kosul M nin her N ec-altmodili i¢in M nin bir K dik toplanan:

vardir ki, Mo CTK, KNN =0ve K& N <, M olmasidar.

Kamt. Farzedelim ki, M,, ECi;-modiil ve N, M; in ec-altmodiilii olsun. Bu du-
rumda Onerme 4.2.2 den M in bir L dik toplananiicin NNL =0ve N L <, M
dir. Ayrica (L & M) NN = 0 dir. Gergekten, = € (L @ M) N N alahm. Bu du-
rumda z € L & M, ve x € N oldugundan [ € L, my € My, n € N olmak tizere
x—1=mg € M;N My =0 olur. Boylece x =1 € LN N = 0 olur.

L& N <, M, ve My <, My oldugundan (L & N) & My <., M; & My = M olup
(L® My)® N <, M dir. Ayrica My C L & M; olur.

Tersine M Dbelirtilen kosullar1 saglasin ve H, M; in ec-altmodiilii olsun.
Kabultimiizden M nin bir K dik toplanani i¢in Ms; C K olmak tizere K N H =0
ve K@ H<, Mdir. K=KnNnM=Kn (M & M,) = My,® (KN M) olup
KN M, K da dik toplanandir. Buradan K N M;, K da ve K, M de dik toplanan
oldugundan K N My, M de de dik toplanandir. K N M; < M; ve My, M nin dik
toplanam oldugundan bir 7' < M i¢in My = MiNM =M N (KNM, & T) =
KN M & (M NT) elde edilir. Béylece K N My, M; in de dik toplanamdir.
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HN(KNM;) = (HNK)NM; = 0NM; = 0 dir. Ayrica H(KNM,) = MiN(HBK)
olur. K® H <, M ve Min(H® K) <, M; "M = M oldugundan M;, EC;-
moduldiir. O

Teorem 4.2.18 M = M; & M, ECi1-modil ve M nin K N My = 0 olan her
K ec-altmodiili i¢in K & My, M nin bir dik toplanan ec-altmodili olsun. Bu
durumda M, ECi1-moduldir.

Kamt. N, M; in bir ec-altmodiilii olsun. Hipotezden N & My, M nin bir dik
toplanan ec-altmodili olur. M, ECi;-modiil oldugundan M nin bir K dik
toplanam igin (N & M) N K =0 ve (N & M) & K <, M dir. Aym zamanda
K @& Ms, M nin bir dik toplanani ve My C K @ My ve (K @ M) NN = 0 dir.
Gergekten, x € (K @ M) N N alalim. Bu durumda k& € K, my € My, n € N
olmak tizere n —my =k € (NG My)NK =0o0lurven =ms € NN My, =0
oldugundan z = 0 elde edilir. Béylece M, in EC};-modiil oldugu Onteorem 4.2.17

den saglanir. ([l
Sag E(11-halka olmayan bir matris ornegi ile caligmamizi tamamlayalim.

Ornek 4.2.19 R = (5 %] =A10Y] : .2 € Zy ve y € 2Z4} matris halkasy

olsun. Rr modili EC1-modil degildir.

Kamit. Rgp nin N = [82

Rpr oldugundan N, [8

Zi ] modiiliinii ele alahm. Bu durumda N = [92] R <
g] eleman1 tarafindan fretilir. Yani N, Rz nin ec-
altmodilidir. Fakat Rz nin hi¢ bir D dik toplanani icin N "D = 0 ve

N & D <. Rpg kosulunu saglamaz. Boylece Rg, EC;-modil degildir. 0
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