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CS-HALKA VE MODÜL SINIFLARI
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Başkan :............................................

Prof. Dr. ALİ BÜLENT EKİN
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Üye :.................................................
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ONAY

Bu tez ... / ... / 2008 tarihinde Enstitü Yönetim Kurulunca kabul edilmiştir.
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CS-MODÜLLER VE GENELLEŞTİRİLMİŞ CS-HALKA VE MODÜL

SINIFLARI ÜZERİNE ARAŞTIRMALAR

Canan CELEP YÜCEL

ÖZ

Bu çalışmada komplement altmodülleri dik toplanan olan modüllerin (yani

CS-modüllerin) temel özellikleri ile C11, FI-extending ve özel dönüşümlerin

genişletilmesi türünden genelleştirmeleri ayrıntılı olarak incelenmiştir. CS-

modüllerin yeni genelleştirmeleri tanımlanıp incelenmiş, mevcut genelleştirmeler

ile bağlantıları araştırılmıştır. Elde edilen sonuçların bütünlüğü açısından gerek

duyuldukça örnekler verilmiştir.

Birinci bölüm, çalışmamızda kullandığımız temel tanımlardan essential, kom-

plement altmodül tanımları, CS-modüller ve nonsingular CS-modüller ile bu tür

modüllere ilişkin sonuçlara ayrılmıştır.

İkinci bölümde, sürekli ve yarı-sürekli modüllerin belirli altmodüllerinden M

ye olan dönüşümlerin, M den M ye olan dönüşümlere genişletilmesi anlamında

karekterizasyonları verilmiştir. Buradan da CS-modüller için benzer sonuçlar elde

edilmiştir.

Üçüncü bölümde, CS-modüllerin bir genelleştirmesi olarak ECS-modüller

tanımlanıp bu yeni modül sınıfının özellikleri araştırılmıştır. Diğer yandan, 2.

bölümde ayrıntılı verilen P1 özelliğinden daha genel bir modül sınıfı ele alınmış

ve ec-kapalı altmodüllerden, modüle olan dönüşümlerin modüle genişletilmesi an-

lamında ec-injektiflik özelliği incelenmiştir.

Son bölümde, CS-modüllerin, C11 (yani, her altmodül dik toplanan olan

komplemente sahiptir) ve FI-extending (yani, her fully invariant altmodül bir dik

toplananda essential altmodüldür) olarak bilinen genelleştirmelerinin yanında

yeni bir genelleştirme tanımlayıp ayrıntılı olarak incelenmiştir. C11 ve FI-

extending modüller konusunda, yakın zaman önce yayınlanan bazı ilgili sonuçlar
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çalışmanın bütünlüğünü sağlamak amacıyla ispatlarıyla birlikte verilmiştir.

Anahtar Kelimeler: Essential altmodül, Komplement altmodül, CS-modül,

C11-modül, FI-extending modül.

Danışman: Prof. Dr. Adnan TERCAN
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CS-MODULES AND INVESTIGATIONS ON CLASSES OF GEN-

ERALIZED CS-RINGS AND MODULES

Canan CELEP YÜCEL

ABSTRACT

In this work, fundamental properties of modules whose complement submod-

ules are direct summand (i.e., CS-modules) are investigated in details with the

generalizations of the C11, FI-extending and extension of special homomorphisms.

New generalizations of CS-modules are defined and investigated, the connections

with the existing generalizations are searched. For the completeness of the ob-

tained results, examples are given when necessary.

The first chapter is devoted to the basic definitions used in our work which

are the definitions of essential and complement submodules, CS-modules and

nonsingular CS-modules, and the results related to these kind of modules.

In the second chapter, the characterizations in the sense of generalizations

between the homomorphisms from the specified submodules of continuous and

quasi-continuous modules to M and the homomorphism from M to M are given.

And then similar result are obtained for the CS-modules.

In the third chapter, as a generalizations of CS-modules, ECS-modules are

defined and properties of this new class of modules are investigated. On the other

hand, a more general class of modules than property P1, as given in details in

the second chapter as the generalizations of CS-modules, is considered and the

property of ec-injectivity, in the sense of generalizations of the homomorphisms

from ec-closed submodules to module, are searched.

In the last chapter, in addition to the C11 (i.e., every submodules has a

complement which is a direct summand) and FI-extending (i.e., every fully

invariant submodule is essentially contained in a direct summand) known as the

generalizations of CS-modules, a new generalization is defined and investigated
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in details. Recently published some related results with proofs in the subject of

C11 and FI-extending modules are given for the sake of completeness of this work.

Keywords: Essential module, Complement module, CS-module, C11-module,

FI-module.

Advisor: Prof. Dr. Adnan TERCAN
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TEŞEKKÜR

Bu tezin oluşmasında değerli bilgilerinden ve deneyimlerinden yararlandığım,
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Prof. Dr. Adnan TERCAN’a sonsuz teşekkürlerimi sunarım.
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m−1N : R nin {r ∈ R : mr ∈ N} sağ ideali
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1 Temel Kavramlar ve Özellikler

1.1 Giriş

Bu çalışmada R değişmeli olması gerekmeyen ve birimli bir halka, M de sağ

R-modül olarak alınacaktır. Çalışmaya başlangıç oluşturan CS-modül kavramının

literatürdeki gelişimini kısaca vurgulayarak başlayalım.

CS (yada extending)-modül kavramının orjini 1930 lu yıllarda John von

Neumann’nın çalışmalarına uzanır. Von Neumann’nın Kuantum Mekaniği’ndeki

çalışmaları onu ”Sürekli Geometri” yi tanımlamasına ve geliştirmesine

yönlendirmiştir. Bu günümüzde üst ve alt sürekli tam modüler Latis olarak ad-

landırılır. (L,∧,∨,0,1) bir tam modüler latis olsun. Eğer a ∈ L ve {bλ : λ ∈ Λ}, L

nin tam sıralı bir alt kümesi iken,

a ∧∨
λ∈Λ bλ =

∨
λ∈Λ(a ∧ bλ)

oluyorsa, (L,∧,∨,0,1) latisine üst sürekli (upper continuous) denir.

R bir halka ve M de bir sağ R-modül olsun. Bu durumda M nin alt-

modüllerinin oluşturduğu latis üst sürekli tam modüler bir latisdir (Genel olarak

alt sürekli olması gerekmez).

Von Neumann [29,30,31] çalışmalarında sürekli geometrilerin teorisini

geliştirdi ve özellikle bunları von Neumann (regüler) halkanın sol temel ideal-

lerinin oluşturduğu latisde inceledi. Regüler halkalarda eğer temel sol ideallerin

latisi üst ve alt sürekli ise bu halkaya süreklidir dedi. Bu çalışmalara Utumi [27]

devam etti. Bu kavramları Jeremy [13] modüllere taşıdı. Chatters ve Hajarnavis

”CS” kısaltmasını ”complements are summands” için kullandılar [7]. Bir

çok araştırmacı CS yerine extending veya C1 gösterimlerini kullanarak bu modül

sınıflarını yada genelleştirilmiş sınıflarını araştırmalara devam etmektedir.
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Bu çalışmada CS-modüller ve mevcut genelleştirmeleri verilmiş bunun yanında

yeni genelleştirmeler tanımlanıp araştırılmıştır.

1.2 Essential ve Komplement Altmodüller

Bu kesimde, çalışmamıza temel oluşturan bazı özel tipteki altmodüllerin tanım

ve özelliklerini ayrıntılı olarak vereceğiz. Bu kesimdeki sonuçlar için [1], [9], [11]

önerilir.

Tanım 1.2.1 M bir R-modül ve N ≤ M olsun. Eğer her 0 6= K ≤ M için

N ∩K 6= 0 oluyorsa veya buna denk olarak bir L ≤ M için N ∩L = 0 olduğunda

L = 0’ı gerektiriyorsa N ye M nin essential (large, geniş) altmodülü (veya

M ye N nin essential genişlemesi) denir ve N ≤e M ile gösterilir.

Önerme 1.2.2 M bir modül olsun. Bu durumda;

1. N ≤ M olsun. N ≤e M olması için gerek ve yeter koşul her 0 6= m ∈ M

için N ∩mR 6= 0 olmasıdır.

2. K ≤ N ≤ M olmak üzere K ≤e M olması için gerek ve yeter koşul K ≤e N

ve N ≤e M olmasıdır.

3. N ≤e M ve K ≤ M ise N ∩K ≤e K dır.

4. 1 ≤ i ≤ t olmak üzere her t ≥ 1 için Ni ≤e Ki ise (N1 ∩ N2 ∩ ... ∩ Nt) ≤e

(K1 ∩K2 ∩ ... ∩Kt) dır.

5. K ≤ N ≤ M olmak üzere N/K ≤e M/K ise N ≤e M dir.

6. Bir m ∈ M için N ≤e M ise m−1N ≤e RR dir.

7. Her sıfırdan farklı indis kümesi I için, i ∈ I olmak üzere Ni ≤e Mi olması

için gerek ve yeter koşul
⊕

i∈I Ni ≤e

⊕
i∈I Mi olmasıdır.

8. A,B,C ≤ Molmak üzere eğer f : B → C bir homomorfizma ve A ≤e C ise

f−1(A) ≤e B dir.
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Yukarıdaki (7) ve (4) özellikleri ile ilgili olarak, (7) de A ≤e B ve A′ ≤e B′

iken A+A′ ≤e B +B′ olmayabilir [11]. (4) de ise t sonlu değil ise
⋂

t Ni ≤e

⋂
t Ki

doğru olmayabilir.

Önteorem 1.2.3 M bir R-modül, M = K ⊕K ′ ve N ≤ K olsun. Bu durumda

M/N = K/N ⊕ (K ′ + N)/N olur.

Kanıt. K/N+(K ′+N)/N ≤ M/N dir. (m+N) ∈ M/N alalım. Buradan k ∈ K ve

k′ ∈ K ′ olmak üzere m+N = (k+k′)+N = (k+N)+(k′+N) ∈ K/N+(K ′+N)/N

elde edilir. Yani M/N ⊆ K/N + (K ′ + N)/N olduğundan M/N = K/N + (K ′ +

N)/N dir. Şimdi K/N∩(K ′+N)/N = 0 yani K∩(K ′+N) = N olduğunu görelim.

x ∈ K ∩ (K ′ + N) olsun. Bu durumda x ∈ K ve n ∈ N , k′ ∈ K ′ olmak üzere

x = k′ + n olur. O halde x−n = k′ ∈ K ∩K ′ = 0 olduğundan x = n dir. Böylece

x ∈ N elde edilir. Yani, K ∩ (K ′ + N) = N olup K/N ∩ (K ′ + N)/N = N/N = 0

olur. Dolayısıyla M/N = K/N ⊕ (K ′ + N)/N dir. ¤

Önteorem 1.2.4 M bir sağ R-modül, 0 6= a ∈ M ve K ≤e M olsun. Bu du-

rumda, aL 6= 0 ve aL ⊆ K olacak şekilde R nin bir essential sağ L ideali vardır.

Kanıt. L = {r ∈ R : ar ∈ K} olsun. Buradan, L, R nin bir sağ idealidir ve

aL ⊆ K dır. Böylece aR ∩K 6= 0 olur. Bazı r ∈ R için ar, K nın sıfırdan farklı

elemanıdır. Yani, r ∈ L için aL 6= 0 dır. I, R nin sıfırdan farklı sağ ideali olsun.

Şimdi I ∩ L 6= 0 olduğunu görelim. Eğer aI = 0 ise I ⊆ L olduğundan I ∩ L 6= 0

olur. Farzedelim ki, aI 6= 0 olsun. Bu durumda aI ∩ K 6= 0 dır. Böylece bazı

x ∈ I için ax, K nın sıfırdan farklı elemanıdır. Buradan x ∈ L dır. Dolayısıyla

I ∩ L 6= 0 dır. Böylece L ≤e R olur. ¤

Sonuç 1.2.5 Herhangi bir M modülü için Soc(MR) =
⋂{N : N ≤e M} dir.

Tanım 1.2.6 M bir R-modül ve L, M nin bir altmodülü olsun. K ∩ L = 0

özelliğine göre maksimal olan bir K altmodülüne L nin (M deki) komplementi

denir.
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Tanım 1.2.6 daki K altmodülü tek olmak zorunda değildir. Şimdi vereceğimiz

önermeden, bir M modülündeki her altmodülün bir komplement altmodülünün

(M de) varlığı elde edilir ki, bu komplement altmodülleri oldukça kullanışlı yap-

maktadır.

Önerme 1.2.7 M bir modül ve L,N ≤ M altmodülleri için N ∩ L = 0 olsun.

Bu durumda L nin M de bir K komplementi vardır ki, N ⊆ K dır.

Kanıt. S = {X ≤ M : N ≤ X ve X ∩ L = 0} kümesini tanımlayalım. N ∈ S

olduğundan S 6= ∅ dır. {Xi : i ∈ I}, S de bir zincir olsun. S tam sıralıdır.

U =
⋃

i∈I Xi alalım. Herhangi iki Xi, Xj ∈ S için Xi ⊆ Xj yada Xj ⊆ Xi

olduğundan U bir altmodüldür. Her i ∈ I için N ≤ Xi olduğundan N ≤ ⋃
i∈I Xi

dir. Her i ∈ I için Xi ∩L = 0 olduğundan
⋃

i∈I Xi ∩L = 0 olup U ∈ S olur. Yani

U , {Xi : i ∈ I} zincirinin bir üst sınırıdır. Böylece Zorn’s Lemma ile S nin bir

maksimal elemanı vardır. Bu K ile gösterilirse, K ∩ L = 0 olduğundan K, L nin

M deki bir komplementidir. Ayrıca S nin tanımından N ⊆ K dır. ¤

Şimdi ispatlayacağımız önerme, bir modülde essential altmodüller üretmek

anlamında bir teknik sağlamaktadır.

Önerme 1.2.8 M bir modül, L ≤ M ve K, L nin M içinde herhangi bir kom-

plementi olsun. Bu durumda K ⊕ L ≤e M dir.

Kanıt. N ≤ M ve (K ⊕ L) ∩ N = 0 alalım. K ⊆ K + N olduğu açıktır. Bu

durumda K, L nin M içinde herhangi komplementi olduğundan (K +N)∩L 6= 0

olur. Buradan n ∈ N ve 0 6= x ∈ L için x = k + n olacak şekilde bir k ∈ K

vardır. Böylece n = x − k ∈ (K ⊕ L) ∩ N = 0 olduğundan n = 0 elde edilir.

x = k ∈ K ∩ L = 0 ise x = 0 olur. Bu ise bir çelişkidir. O halde K = K + N dir.

Böylece N ≤ K ise N ≤ K ⊕ L olur. (K ⊕ L) ∩N = N = 0 olduğundan N = 0

dır. Dolayısıyla K ⊕ L ≤e M elde edilir. ¤

Teorem 1.2.9 M bir modül, A,B ≤ M ve A ∩B = 0 olsun. Bu durumda B, A

nın M de bir komplementi olabilmesi için gerek ve yeter koşul (A+B)/B ≤e M/B

olmasıdır.
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Kanıt. B, A nın M içinde bir komplementi ve A ∩ B = 0 olsun. (A + B)/B ∩
(U/B) = 0 olacak şekilde B ≤ U ≤ M alalım. (A + B) ∩ U = B olur. Modüler

kuralından (A ∩ U) + B = B dır. Böylece A ∩ U ≤ B olduğundan A ∩ U ≤
A ∩ B = 0 olur. B maksimal olduğundan B = U dur. Buradan U/B = 0 olup

(A + B)/B ≤e M/B olduğu elde edilir.

Diğer taraftan (A + B)/B ≤e M/B olduğunu kabul edelim. A∩U = 0, B ≤ U ≤
M olacak şekilde keyfi bir U ve x ∈ (A+B)∩U alalım. Bu durumda x ∈ (A+B)

ve x ∈ U dur. a ∈ A, b ∈ B olmak üzere x = a + b dir. a = x − b ∈ A ∩ U = 0

olduğundan a = 0 olur ve böylece x = b ∈ B elde edilir. Buradan (A+B)∩U = B

olur. Yani (A+B)/B∩ (U/B) = 0 dır. Kabulümüzden U/B = 0 olur. Dolayısıyla

B = U olduğundan B maksimaldir. Böylece B, A nın M deki komplementidir. ¤

Tanım 1.2.10 M bir modül ve K, M nin bir altmodülü olsun. Eğer K, M de

herhangi bir altmodülün komplementi ise K ya (M de) bir komplement denir

ve K ≤c M ile gösterilir.

Açıktır ki, bir M modülü için 0, M ≤c M dir.

Daha genel olarak;

Sonuç 1.2.11 Bir M modülünün her dik toplananı M de bir komplementtir.

Sonuç 1.2.11 deki ifadenin tersi genel olarak doğru olmayabilir. Örneğin; F bir

cisim ve V de 2 boyutlu bir vektör uzayı olmak üzere RR = {[ f v
0 f

]
: f ∈ F, v ∈

V = (v1F ⊕ v2F )} ve I = {[ 0 v1f
0 0

]
: f ∈ F}, J = {[ 0 v2f

0 0

]
: f ∈ F} olarak alalım.

Bu durumda I, J nin R deki (benzer olarak J , I nın) komplementidir. Yani I, R

nin komplementidir. Ancak I, R nin bir dik toplananı değildir.

Önerme 1.2.12 M bir modül ve N ≤ M olsun. Bu durumda N ≤e K olacak

şekilde bir K ≤c M vardır.

Kanıt. N ′, M de N nin komplementi olsun. Böylece N ′ ∩N = 0 dir ve N ′ nün

bir K komplementi vardır ve Önerme 1.2.7 den N ⊆ K dır.
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0 6= L ≤ K olsun. N ′ ⊆ L + N ′ olduğundan (L + N ′) ∩ N 6= 0 olur. Böylece

0 6= n ∈ (L + N ′) ∩ N ise n ∈ (L + N ′) ve n ∈ N olur. x ∈ L, n′ ∈ N ′ olmak

üzere n = x + n′ dır. Buradan n′ = n− x ∈ N ′ ∩K = 0 olduğundan n′ = 0 dır.

Böylece n = x ∈ N ∩ L olup N ∩ L 6= 0 olur. Yani N ≤e K elde edilir. ¤

Önerme 1.2.12 de varlığı ispatlanan K altmodülüne N nin M deki kapanışı

(closure) denir.

Önerme 1.2.13 M bir modül ve K, M nin altmodülü olsun. Bu durumda K ≤c

M olması için gerek ve yeter koşul K ≤e L ≤ M ise K = L olmasıdır.

Kanıt. Farzedelim ki K ≤c M ve K ≤e L ≤ M olsun. Bu durumda K bir X

in M de komplementi olacak şekilde X ≤ M vardır. Böylece K ∩ X = 0 olur.

0 = K ∩X ≤e L ∩X olduğundan L ∩X = 0 dır. K, K ∩X = 0 koşulu altında

maksimal olduğundan K = L olur.

Tersine, K ≤ M olduğundan Önerme 1.2.12 den K nın M de bir L bir kapanışı

vardır. Yani K ≤e L ≤c M dır. K = L olduğundan K ≤c M dır. ¤

Önerme 1.2.14 M bir modül ve K,N ≤ M olsun. Eğer K ≤c N ve N ≤c M

ise K ≤c M dir.

Kanıt. K ≤c N ve N ≤c M olduğunu kabul edelim. Buradan bir K ′ ≤ N için

K, K ′ nün N deki komplementi ve bir N ′ ≤ M için de N , N ′ nün M deki

komplementi olur. x ∈ K ∩ (K ′ + N ′) alalım. k′ ∈ K ′, n′ ∈ N ′ için x = k′ + n′

dür. x − k′ = n′ ∈ N ′ ∩ N = 0 olur. Böylece x = k′ ∈ K ′ ∩K = 0 olduğundan

K ∩ (K ′ + N ′) = 0 elde edilir. Farzedelim ki, K ≤e L ≤ M olsun. O halde

0 = K ∩ (K ′ + N ′) ≤e L ∩ (K ′ + N ′) olup L ∩ (K ′ + N ′) = 0 dır. Buradan

[N ∩ (L + N ′)] ∩ K ′ = (N ∩ K ′) ∩ (L + N ′) = K ′ ∩ (L + N ′) = 0 olur. Fakat

K ⊆ N ve K ⊆ L + N ′ olduğundan K ⊆ N ∩ (L + N ′) dır. K, K ′ nün N deki

komplementi olduğundan K ∩K ′ = 0 koşulu altında K ′ maksimal altmodüldür.

K ⊆ N ∩ (L + N ′) ve [N ∩ (L + N ′)] ∩K ′ = 0 olduğundan K = N ∩ (L + N ′)

olur. Böylece (N + L)∩N ′ = 0 dır. N , N ′ nün M deki komplementi olduğundan
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N ∩N ′ = 0 koşulu altında N ′ maksimal altmodüldür ve N ⊆ N + L olduğundan

N = N + L dir. Buradan L ≤ N olur. L = L ∩ (L + N ′) ≤ N ∩ (L + N ′) = K

olduğundan K = L dir. Önerme 1.2.13 den K ≤c M elde edilir. ¤

Önerme 1.2.15 M bir modül, K ≤c M ve K ≤ N ≤ M olsun. Bu durumda

N ≤e M olması için gerek ve yeter koşul N/K ≤e M/K olmasıdır.

Kanıt. İlk olarak N/K ≤e M/K olduğunu kabul edelim. N ≤e M olduğu Önerme

1.2.2 (5) den açıktır.

Tersine N ≤e M olsun. M ′ = M/K, N ′ = N/K ve N ′ ∩ L′ = 0 olacak şekilde

L′ ≤ M ′ alalım. Bu durumda bir L ≤ M için K ⊆ L olmak üzere L′ = L/K

ve N ∩ L = K dır. K, K ′ nün M deki komplementi olsun. Böylece K ∩K ′ = 0

olduğundan N∩L∩K ′ = 0 dır. N ≤e M olduğundan da L∩K ′ = 0 olur. Buradan

K ⊆ L ve K, K ′ nün M deki komplementi olduğundan K = L dir. L′ = 0 olup

N ′ ≤e M ′ olur. Yani N/K ≤e M/K dir. ¤

Önerme 1.2.16 M bir modül, K ≤c M ve L ≤c M olsun. Bu durumda K, M de

L nin komplementi olması için gerek ve yeter koşul L, M de K nın komplementi

olmasıdır.

Kanıt. İlk olarak K, M de L nin komplementi olsun. L ⊆ L′ ≤ M ve L′∩K = 0

alalım. Önerme 1.2.8 den K⊕L ≤e M olur. Böylece Önerme 1.2.2 (1) den k ∈ K,

x ∈ L için mr = k + x olacak şekilde bir 0 6= m ∈ M vardır. L′ ≤ M olduğundan

0 6= y ∈ L′ için 0 6= yr = k + x dir. Buradan k = (yr − x) ∈ K ∩ L′ = 0 olur.

Böylece yr = x olduğundan yr ∈ L elde edilir. Önerme 1.2.2 (1) den L ≤e L′

olur. Fakat L ≤c M olduğundan Önerme 1.2.13 den L = L′ dür. O halde L, M

de K nın komplementidir. Terside benzer şekilde gösterilir. ¤

Önerme 1.2.17 M bir modül ve N ≤ K ≤ M olsun. Bu durumda,

1. K ≤c M ise K/N ≤c M/N dir.
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2. K/N ≤c M/N ve N ≤c M ise K ≤c M dir.

Kanıt. (1) L ≤ M altmodülü K ⊆ L ve K/N ≤e L/N koşullarını sağlasın. Bu

durumda Önerme 1.2.15 den K/N ≤e L/N olduğundan K ≤e L olur. K ≤c M

ve K ≤e L koşulları ile Önerme 1.2.13 den K = L dir. Böylece K/N = L/N olur.

Dolayısıyla Önerme 1.2.13 den K/N ≤c M/N dir.

(2) K/N ≤c M/N ve N ≤c M olsun. Bu durumda kabulden K ′, N ′ ≤ M için

N ⊆ K ′ olmak üzere K/N , M/N de K ′/N nin ve N , M de N ′ nün komple-

mentidir. Böylece K/N ∩ K ′/N = 0 olacak şekilde K/N ≤ M/N maksimal

altmodülü vardır. Buradan K ∩ K ′ = N dir. Benzer şekilde N ∩ N ′ = 0 olur.

O halde (K ∩ K ′) ∩ N ′ = K ∩ (K ′ ∩ N ′) = 0 dır. Farzedelim ki K ≤ L ≤ M

ve L ∩ (K ′ ∩ N ′) = 0 olsun. N ⊆ K ′ ve N ⊆ K ⊆ L olduğundan N ⊆ L ∩ K ′

olur. Ayrıca (L∩K ′)∩N ′ = 0 ifadesini kullanarak N , M de N ′ nün komplementi

olduğundan L ∩ K ′ = N olur. Buradan L/N ∩ K ′/N = 0 dır. Bu koşul altında

K/N maksimal altmodül olduğundan ve K ⊆ L ise K/N ⊆ L/N olacağından

K/N = L/N dir. Böylece L = K olur. Bu durumda K, K ∩ (K ′∩N ′) = 0 koşulu

altında maksimal altmodül olduğundan K, M de K ′ ∩ N ′ nün komplementidir.

Yani K ≤c M dir. ¤

Şimdi 1.3 kesimde incelenecek olan CS-modüller de sıkça kullanacağımız ve

temel aldığı sonlu Goldie boyut ve İnjektif modül tanımları verilecektir.

Tanım 1.2.18 M bir R-modül olsun. Eğer M sıfır olmayan altmodüllerin bir

sonsuz dik toplamını kapsamıyorsa M ye sonlu Goldie boyutlu (yada sonlu

düzgün boyutlu) modül denir.

M sıfırdan farklı sonlu Goldie boyutlu bir R-modül olsun. Bu durumda M bir

düzgün U altmodül (yani U 6= 0 ve her 0 6= X,Y ≤ U için X ∩ Y 6= 0) kapsar.

Üstelik, bir n pozitif tamsayısı ve i 6= j olmak üzere Ui ∩ Uj = 0 olacak biçimde

Ui (1 ≤ i ≤ n) düzgün altmodülleri vardır ki, U1 ⊕ U2 ⊕ ... ⊕ Un ≤e M dir.

Bu durumda n sayısı M nin Goldie boyutu (yada düzgün boyutu) olarak

adlandırılır. Eğer 1 ≤ i ≤ k olmak üzere 0 6= Ni ≤ M ve N1 ⊕ N2 ⊕ ... ⊕ Nk
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bir dik toplam ise k ≤ n dir. Goldie boyutu ile ilgili temel özellikler için [8], [1]

önerilir.

Tanım 1.2.19 R bir halka J , R-modül, g : A → B ve f : A → J homomorfiz-

malar olmak üzere 0 → A → B kısa tam dizi olsun.

0 −→ A

²²

// B

ÄÄ
J

diagramı değişmeli yani hog = f olacak şekilde h : B → J , R-modül homomor-

fizması varsa J ye injektif modül denir.

Sonuç 1.2.20 N bir R-modül olsun. Bu durumda aşağıdaki koşullar denktir.

1. N injektif modüldür.

2. N ≤ MR ise N , M de dik toplanandır.

Kanıt. (1) ⇒ (2): N ≤ M ve N injektif bir modül olsun.

0 −→ N

²²

// M

~~
N

diagramında N injektif olduğundan θ : M → N ye bir homomorfizma vardır. m ∈
M alalım. θ(m) ∈ N olur. Buradan θ(m) = θ(θ(m)) dir. O halde θ(m−θ(m)) = 0

olup (m− θ(m)) ∈ kerθ dır. Yani m ∈ kerθ + θ(m) dir. Böylece M ⊆ kerθ + N

elde edilir. Ayrıca θ(m) ⊂ N ≤ M ve kerθ ≤ M olduğundan kerθ + N ⊆ M

olur. Dolayısıyla M = kerθ + N dir. x ∈ kerθ ∩ N alalım. O halde θ(x) = 0 ve

x ∈ N olur. x ∈ N olduğundan θ(x) = x dır. Böylece x = 0 olup kerθ ∩ N = 0

olduğundan M = N ⊕ kerθ dır. Yani N , M nin dik toplananıdır.

(2) ⇒ (1): Tersine N ≤ MR ise N , M de dik toplanan olsun. [21, Theorem 2.11]

den her modülün bir injektif genişlemesi olduğundan IR injektif modül olmak

üzere N ≤ IR dir. Kabulümüzden dolayı I = N ⊕ N ′ olacak şekilde N ′ ≤ IR

vardır. [21, Proposition 2.3] den IR injektif olduğu için N de injektiftir. ¤
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Tanım 1.2.21 R bir halka P , R-modül, g : A → B ve f : P → B homomorfiz-

malar olmak üzere A → B → 0 kısa tam dizisi olsun.

P

ÄÄ ²²
A // B // 0

diagramı değişmeli yani goh = f olacak şekilde h : P → A, R-modül homomor-

fizması varsa P ye projektif modül denir.

Sonuç 1.2.22 R bir halka ve P bir R-modül olsun. O halde, aşağıdakiler denktir.

1. P projektiftir.

2. Her

0 // A
f // B

g // P // 0

kısa tam dizisi split dizidir.

3. F bir serbest modül ve K, R-modül olmak üzere F ∼= K ⊕ P dir.

Kanıt. (1) ⇒ (2) :

P

1p

²²
B // P // 0

diagramını göz önüne alalım. P projektif olduğundan goh = 1p olacak şekilde bir

R-modül homomorfizması vardır. Böylece kısa tam dizi

0 // A
f // B

g
))
P

h

ii // 0

olduğundan split dizidir. Buradan, B ∼= A⊕ P dir.

(2) ⇒ (3) : R halkası üzerindeki her A modülü serbest F modülünün homomorfik

görüntüsüdür. O halde, P de bir R-modül olduğundan g : F → P epimofizması

vardır. Eğer K = kerg alırsak,

0 // K
⊂ // F

g // P // 0
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dizisi tamdır. Hipotezden dizi split tam dizidir. Dolayısıyla F ∼= K ⊕ P dir.

(3) ⇒ (1) : π : F ∼= K ⊕ P → P kanonik epimorfizma ve i : P → F ∼= K ⊕ P

kanonik monomorfizma olsun. Alt satır tam olmak üzere

P

f
²²

A g
// B // 0

R-modül homomorfizma diagramı verilsin. Bu durumda,

F

h1

¨¨

π

ªª
P

hÄÄ
f

²²

i

II

A // B // 0

diagramını ele alalım. F serbest modül olduğundan projektif modüldür. Böylece

goh1 = foπ olacak şekilde h1 : F → A bir R-modül homomorfizması vardır. h =

h1oi : P → A, R-modül homomorfizma olsun. O halde, gh = gh1i = (foπ)oi =

fo(πoi) = fo1p = f olduğundan diagram değişmelidir ve P projektiftir. ¤

1.3 CS-Modüller

Önceki kesimde gerekli özel altmodüller ve özelliklerinin verilmiş olması, 1930

lu yıllarda von Neumann’ın sürekli geometrilerinde kullanması ile ilk olarak

tanımlanan, daha sonra Utumi ve öğrencileri tarafından halka ve modüllere

genişletilen ve günümüzde de bir çok araştırmacının odaklandığı ”CS-modül”

kavramını incelememizi mümkün yapar. Çalışmalarımızda esas olan kimi CS teori

teorem ve sonuçlarının ispatları da bütünlük oluşturması anlamında yapılacaktır.

Tanım 1.3.1 M bir R-modül olsun. Eğer M nin her K komplement alt-

modülü M de bir dik toplanan oluyor ise M ye CS-modül (extending modül)

denir.

Bu tanıma denk koşullardan biri M nin her N altmodülünün M nin bir dik
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toplananın da essential olarak kapsanmasıdır. Yine bir R halkası için RR

CS-modül ise R ye sağ CS-halka denir. Yani, her I ≤ RR sağ ideali için bir

e2 = e ∈ R vardır ki, I ≤e eR dir. CS-modüllere yarıbasit modüller, düzgün

modüller, injektif modüller ve sonlu ranklı serbest Abel gruplar örnek verilebilir.

Diğer yandan
⊕∞

i=1 Z = MZ, CS olmayan bir modüldür. [9]

CS bir modülün her alt modülü CS olmayabilir. Örneğin; M , CS olmayan bir

R-modül ve E(M) de M nin injektif hull’ı olsun. Bu durumda, M ≤ E(M) ve

E(M), CS-modüldür.

Önteorem 1.3.2 M , CS-modül ve N , M nin bir dik toplanan altmodülü olsun.

Bu durumda N , CS-modüldür.

Kanıt. N , M de dik toplanan olduğundan M = N ⊕K olacak şekilde K ≤ M

vardır. X ≤c N alalım. N , M de dik toplanan olduğundan X ≤c N ≤c M olur.

Komplementlerde geçişme özelliğinden X ≤c M dir ve M , CS-modül olduğundan

ise X, M de dik toplanandır. Buradan M = X⊕Y olacak şekilde Y ≤ M vardır.

N = N ∩ M = N ∩ (X ⊕ Y ) = X ⊕ (N ∩ Y ) olduğundan X, N nin bir dik

toplananıdır. Böylece N , CS-modüldür. ¤

Sonuç 1.3.3 M , CS-modül ve N ≤c M ise N , CS-modüldür.

Kanıt. Önteorem 1.3.2 den açıktır. ¤

Önteorem 1.3.2 nin tersine CS-modüllerin bir dik toplamı CS-modül olmaya-

bilir.

Örnek 1.3.4 p bir pozitif asal tamsayı olmak üzere MZ = (Z/Zp) ⊕ (Z/Zp3)

modülünü alalım. MZ modülü CS-modül değildir.

Kanıt. M1 = Z/Zp ⊕ 0, M2 = 0 ⊕ Z/Zp3 olsun. Böylece M1 ve M2 düzgün

modül olduklarından CS-modüllerdir. Şimdi M nin CS-modül olmadığını göstere-

lim. Önce b /∈ Zp3 olmak üzere K = Z(1+Zp, b+Zp3) altmodülünün MZ de kom-

plement olduğunu gösterelim. K devirli ve p3K = 0 olduğundan K nın mertebesi
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p3 olur. Böylece K ∼= Z/Zp3 olduğundan K düzgün modüldür. K ≤e L ≤ M

alalım. Buradan dimK = dimL olduğundan L de düzgün modüldür. MZ sonlu

üretilmiş olduğundan L devirlidir. Böylece c, d ∈ Z için, L = Z(c + Zp, d + Zp3)

tür. Buradan bir n ∈ Z vardır ki, (1 + Zp, b + Zp3) = n(c + Zp, d + Zp3) olur.

Yani, 1 ≡ nc(modp) ve b ≡ nd(modp3) dir. Eğer p|n ise 1 ≡ 0(modp) olur ki bu

çelişkidir. O halde, p - n dir. Böylece (p, n) = 1 olup 1 = nc + sp olacak şekilde

bir s ∈ Z vardır. Buradan (1 − nc)3 = s3p3 dır. (1 − 3nc + 3n2c2 − 3n3c3) =

1 − n(3c + 3nc2 − 3n2c3) = 1 − nt = s3p3 olur. t(1 + Zp, b + Zp3) = nt(c +

Zp, d + Zp3) = (1 − s3p3)(c + Zp, d + Zp3) = (c + Zp, d + Zp3) olup L ≤ K elde

edilir. O halde K = L dir. Böylece K, MZ nin komplement altmodülüdür. N ,M

nin komplement altmodülü ve N 6= 0,M1,M2,M olsun. Bu durumda N , M de

maksimal düzgün altmodüldür. N düzgün modül olduğundan N 6= 0 ve a /∈ Zp,

b /∈ Zp3 olmak üzere (a + Zp, b + Zp3) ∈ N vardır. a = 1 alalım. Bu durumda

Z(1+Zp, b+Zp3) ⊆ N olur ve Z(1+Zp, b+Zp3) ≤e N olduğundan M nin bütün

komplementleri N = Z(1 + Zp, b + Zp3) şeklindedir. Şimdi p3 - p olmak üzere

N = Z(1 + Zp, p + Zp3) olsun. N , M nin komplementidir ve |N | = p2 dir. Eğer

N , M de dik toplanan olsaydı M = N ⊕ N ′ olacak şekilde N ′ ≤ M olurdu ve

|N ′| = p2 elde edilirdi. Buradan, p2M = p2(N ⊕N ′) = 0 olurdu. Bu ise çelişkidir.

Çünkü, |M | = p3 dür. Böylece M nin komplement N altmodülü M de bir dik

toplanan olamaz. Yani M , CS-modül değildir. ¤

Önceki Örnek 1.3.4 teki MZ modülünün Goldie boyutu 2 dir. Bu örnekten

hareketle, sonlu Goldie boyutlu CS-modüllerin aşağıda vereceğimiz kullanışlı bir

özelliği elde edilir. Öncelikle, M bir modül ve U da M nin bir düzgün alt-

modülü olsun. O halde, Önerme 1.2.12 den U ≤e K ≤c M olacak biçimde bir

K ≤ M vardır. Açıkça, K da düzgündür. Yine, U , M nin bir altmodülü ol-

sun. U ≤c M olması için gerek ve yeter koşul U , M nin bir maksimal düzgün

altmodülüdür. (Yani, U , M nin düzgün altmodüller ailesinde maksimaldir.)

Önteorem 1.3.5 M , her maksimal düzgün altmodülü bir dik toplanan olan bir

modül olsun. Bu durumda K ≤c M ve K nın Goldie boyutu sonlu ise K, M nin



14

bir dik toplananıdır.

Kanıt. U , K nın bir maksimal düzgün altmodülü olsun. Önerme 1.2.14 den, U , M

nin bir maksimal düzgün altmodülüdür. O halde, varsayımdan M = U⊕U ′ olacak

biçimde bir U ′ ≤ M vardır. Böylece K = U ⊕ (K ∩ U ′) dür. Yine Önerme 1.2.14

den, K ∩ U ′ ≤c M dir. K ∩ U ′ nün Goldie boyutunun K nın Goldie boyutundan

küçük olduğu açıktır. Tümevarımla K∩U ′ altmodülü M nin ve böylecede U ′ nün

bir dik toplananıdır. Buradan K, M nin bir dik toplananıdır. ¤

Sonuç 1.3.6 M sonlu Goldie boyutlu bir modül olsun. Bu durumda M nin CS-

modül olması için gerekli ve yeterli koşul her maksimal düzgün altmodülün bir dik

toplanan olmasıdır.

Kanıt. Önerme 1.3.5 den elde edilir. ¤

Şimdi CS-modüllerin bir dik toplamının CS-modül olması için yeterli koşullar

verelim. Bu amacımız için gerek duyacağımız tanımları hatırlatarak başlayalım.

R bir halka ve M , X de R-modüller olsun. Eğer her N ≤ M için,

0 −→ N

ϕ

²²

α // M

X

.....tam

şeklinde verilen R-modül ve R-homomorfizmaların her diyagramında θα = ϕ

olacak biçimde bir θ : M → X, R-homomorfizması varsa, X modülüne M-

injektif ’tir denir. M = M1⊕M2⊕...⊕Mn olsun. Eğer i 6= j için Mi modülü Mj-

injektif ise Mi (1 ≤ i ≤ n) modüllerine göreceli injektif (relatively injective)

modüller denir. [9],[18].

Önteorem 1.3.7 M1 ile M2, CS-modüller ve M = M1⊕M2 olsun. Bu durumda

M nin CS-modül olması için gerek ve yeter koşul M nin K ∩ M1 = 0 yada

K ∩M2 = 0 olacak biçimdeki her K komplementinin bir dik toplanan olmasıdır.
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Kanıt. Gereklilik açıktır. Tersine K ∩ M1 = 0 yada K ∩ M2 = 0 olan her K

komplementi M de bir dik toplanan olsun. L ≤c M alalım. Bir H ≤c L vardır

ki, L ∩ M2 ≤e H dir. Önerme 1.2.14 den, H ≤c M dir. H ∩ M1 = 0 olduğu

açıktır. Varsayımdan M = H ⊕ H ′ olacak biçimde bir H ′ ≤ M vardır. Böylece

L = H ⊕ (L ∩ H ′) dür. Önerme 1.2.14 den, L ∩ H ′ ≤c M dir. Diğer yandan

(L∩H ′)∩M2 = 0 olduğu açıktır. Varsayımdan L∩H ′, M nin bir dik toplananıdır.

Buradan L ∩ H ′, H ′ nün de bir dik toplananı olur. O halde L, M nin bir dik

toplananıdır. Yani M , CS-modüldür. ¤

Teorem 1.3.8 Mi (1 ≤ i ≤ n) ler göreceli injektif modüller olmak üzere M =

M1 ⊕ M2 ⊕ ... ⊕ Mn olsun. Bu durumda M nin CS-modül olması için gerek ve

yeter koşul her bir 1 ≤ i ≤ n için Mi modülünün CS-modül olmasıdır.

Kanıt. Gereklilik Önteorem 1.3.2 den açıktır. Tersine her bir 1 ≤ i ≤ n için

Mi bir CS-modül olsun. Tümevarımla ispatı tamamlayacağız. Bunun için n = 2

durumunda M nin CS-modül olduğunu ispatlamak yetecektir. K∩M1 = 0 olacak

biçimde bir K ≤c M alalım. [9, Lemma 7.5] den, M = M1 ⊕ M ′ ve K ⊆ M ′

olacak biçimde bir M ′ ≤ M vardır. Açıktır ki, M ′ ∼= M2 ve böylece de M ′ bir CS-

modüldür. K ≤c M ′ olduğundan K, M ′ nün bir dik toplananıdır. Buradan K, M

nin bir dik toplananıdır. Benzer olarak X ∩M2 = 0 olacak biçimdeki herhangi bir

X ≤c M de bir dik toplanandır. Böylece Önerme 1.3.7 den, M bir CS-modüldür.

¤

Herhangi bir p asal tamsayı için Z-modül Z/Zp ⊕ Z/Zp3 ün bir CS-modül

olmadığını biliyoruz. Z/Zp3 modülü Z/Zp-injektiftir ancak Z/Zp modülü Z/Zp3-

injektif değildir. Diğer yandan, Z/Zp modülü Z/Zp2-injektif olmadığı halde

Z/Zp⊕ Z/Zp2 modülü CS-modüldür. (bakınız, [9])

Bir sonraki Teorem CS-modüllerin karekterizasyonundaki en temel

sonuçlardan birisidir. Bu teoremde ve ilgili kimi sonuçlarda sıkça kullanacağımız

tanımları vermemiz uygun olacaktır.
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Tanım 1.3.9 R bir halka ve M bir R-modül olsun. Bu durumda, Z(M) = {m ∈
M : bir E ≤e RR için mE = 0} kümesi M nin bir altmodülüdür ki, buna M

nin singular (tekil) altmodülü denir. Z(M) = 0 ise M ye nonsingular (tekil

olmayan), Z(M) = M ise M ye singular (tekil) modül denildiğini hatırlayalım.

Yine bir M modülü için Z2(M) = {m ∈ M : bir E ≤e RR için mE ⊆ Z(M)}
kümesi M nin bir altmodülüdür ki, buna M nin ikinci (second) singular (ik-

inci tekil) altmodülü denir. Açıktır ki, Z(M) ≤ Z2(M) ve Z2(M) ≤c M dir.

Z(M) ve Z2(M) ye ilişkin kapsamlı sonuç ve özellikler [11], [7] de verilmiştir.

Teorem 1.3.10 R bir halka olsun. Bu durumda bir R-modül M nin CS-modül

olması için gerek ve yeter koşul M ′ ve Z2(M), CS-modüller ve Z2(M), M ′-injektif

olacak biçimde bir M ′ ≤ M vardır ki, M = M ′ ⊕ Z2(M) dir.

Kanıt. M , CS-modül olsun. Z2(M) ≤c M olduğundan M = Z2(M)⊕M ′ olacak

biçimde bir M ′ ≤ M vardır ki, M ′ nonsingular ’dır. O halde Önteorem 1.3.2

den Z2(M) ve M ′ CS-modüllerdir. Şimdi X ≤ M ′ ve ϕ : X → Z2(M) bir

homomorfizma olsun. X ′ = {x−ϕ(x) : x ∈ X} kümesini oluşturalım. X ′ ≤ M dir.

Varsayımdan X ′ ≤e L olacak biçimde M nin bir L dik toplananı vardır. Y ≤ M

için M = L⊕ Y yazalım. X ′ ∩Z2(M) = 0 ve X ′ ≤e L olduğundan L nonsingular

’dır ve Z2(M) = Z2(Y ) dir. Böylece Z2(M), Y nin bir dik toplananıdır. Y =

Y ′ ⊕ Z2(M) olarak yazalım. π : L ⊕ Y ′ ⊕ Z2(M) → Z2(M) kanonik projeksiyon

olsun. π|X = ϕ olduğu açıktır. O halde Z2(M), M ′-injektiftir.

Tersine M = Z2(M) ⊕ M ′, Z2(M) ile M ′, CS-modüller ve Z2(M), M ′-injektif

olsun. A ≤c M olarak alalım. Z2(A) ≤c A olduğundan Z2(A) ≤c M dir. O halde

Z2(A) ≤c Z2(M) dir. Böylece Z2(A), Z2(M) nin bir dik toplananıdır ki, buradan

Z2(A), A nın bir dik toplananı olarak bulunur. A = Z2(A) ⊕ B olarak yazalım.

Burada B nonsingular ’dır. B∩Z2(M) = 0 ve Z2(M), M ′-injektif olduğundan bir

θ : M ′ → Z2(M) homomorfizması vardır ki, π1 : M → Z2(M) ve π2 : M → M ′

projeksiyon dönüşümler olmak üzere θπ2|B = π1|B dir. O halde B ⊆ N ′ = {n +

θ(n) : n ∈ M ′} dür. N ′ ∼= M ′ ve M ′, CS-modül olduğundan N ′ de CS-modüldür.

Böylece B, N ′ nün bir dik toplananıdır. M = Z2(M)⊕N ′ olduğu açıktır. Buradan

A, M nin bir dik toplananıdır. ¤
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Tanım 1.3.11 M bir sağ R-modül olsun. Herhangi bir m ∈ M için r(m) = {r ∈
R : mr = 0} ye M nin sağ sıfırlayıcısı denir. r(m) nin R de sağ ideal olduğu

açıktır.

Şimdi ispatsız vereceğimiz Teoremin 3. bölümde bir genelleştirmesi verilmiştir.

Teorem 1.3.12 R bir halka ve MR de bir modül olsun. R, r(m) lerde ACC yi

sağlar ve MR de CS-modül ise, MR düzgün altmodüllerin bir dik toplamıdır.

Tanım 1.3.13 M bir sağ R-modül olsun. Eğer M nin her altmodülü sonlu

üretilmiş ise M ye yerel Noether denir.

Sonuç 1.3.14 R bir halka, MR de bir yerel Noether CS-modül olsun. Bu durumda

M düzgün altmodüllerin bir dik toplamıdır.

Kanıt. MR bir yerel Noether CS-modül olsun. m ∈ M alalım. R/r(m) ∼= mR

dır. M yerel Noether olduğundan sonlu üretilmiş her altmodülü Noetherdir ve

Noetherlik izomorfizma altında invariantdir. Bu durumda mR ve R/r(m) Noether

R-modüllerdir. Buradan x ∈ M olmak üzere R, r(x) üzerinde ACC yi sağlar.

Teorem 1.3.12 den de M nin düzgün altmodüllerin bir dik toplamı olduğunu elde

ederiz. ¤

1.4 Nonsingular CS-Modüller

Birinci bölümün son kesimi olarak, Teorem 1.3.10 dan dolayı nonsingular CS-

modülleri ve matris halkalarını inceleyeceğiz. Nonsingular modüllerin en temel

özelliğini veren aşağıdaki önteorem ile başlayalım.

Önteorem 1.4.1 1. MR bir nonsingular modül olsun. Bu durumda M nin

her alt modülünün M deki kapanışı tektir.

2. MR modülünde her alt modülün kapanışı tek olsun. K, K ′, L, L′ ≤ M ve

K ≤e K ′, L ≤e L′ ise K + L ≤e K ′ + L′ dür.
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Kanıt. (1): N ≤ M alalım. c(N) = {m ∈ M : bir E ≤e RR için mE ≤ N}
diyelim. O halde, c(N) ≤ M ve N ≤ c(N) dir. N ≤e K ≤c M olacak biçimde

K ≤ M vardır. 0 6= x ∈ K alalım. N ≤e K olduğundan xR ∩ N 6= 0 dır.

Buradan E = x−1N = {r ∈ R : xr ∈ N} ≤e RR olur. Böylece xE ≤ N dır.

x ∈ c(N) dir. Yani K ≤ c(N) elde edilir. Şimdi 0 6= a ∈ c(N) olsun. Buradan

aI ≤ N olacak biçimde I ≤e RR vardır. Z(M) = 0 olduğundan aI 6= 0 dır.

aI ≤ N ∩ aR ≤ K ∩ aR olduğundan K ∩ aR 6= 0 dır. O halde, K ≤e c(N)

dır. K ≤c M olduğundan K = c(N) bulunur. Böylece c(N), N nin MR deki tek

kapanışıdır.

(2): K,L ≤ M olduğundan K + L ≤ M dür. Buradan MR de her altmodülün

kapanışı tek olduğundan K +L ≤e H olacak şekilde bir H ≤c M vardır ve tektir.

Yine K ≤e J ≤c H olacak şekilde bir J ≤ H vardır. H ≤c M olduğundan J ≤c M

dir. K ≤e K ′ olduğundan ise K ′ ≤ J ≤ H dir. Benzer olarak L′ ≤ H dir. O halde,

K + L ≤e K ′ + L′ bulunur. ¤

Önteorem 1.4.1 (1) den örneğin nonsingular modüllerin sağladığı her alt-

modülün essential olarak kapsandığı komplementin tek olması özelliği yani her alt-

modülün kapanışının tek olduğu modüller sınıfının kendisi ilginçtir. Bu modüller

UC-modül adı altında [22] de ayrıntılı olarak incelenmiştir.

Önteorem 1.4.2 MR bir modül ve K ≤ MR olsun. Bu durumda M/K nın non-

singular modül olması için gerek ve yeter koşul m ∈ M ve E ≤e RR için mE ≤ K

ise m ∈ K dır.

Kanıt. M/K nonsingular modül ve m ∈ M ve E ≤e RR için mE ≤ K olsun.

Buradan (m + K)E = 0 dır. Ayrıca N/K nonsingular olduğundan (m + K) = 0

dır. Böylece m ∈ K elde edilir.

Tersine mE ≤ K ise m ∈ K olsun. x ∈ Z(M/K) alalım. O halde y ∈ M olmak

üzere x = y + K dır ve bir F ≤e RR için (y + K)F = 0 olur. Bu durumda

yF + K = 0 ise yF ≤ K dır ve buradan y ∈ K dır. Böylece x ∈ K dır. Yani

M/K da x = 0 dır. O halde M/K nonsingular modüldür. ¤
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Önteorem 1.4.3 MR bir nonsingular modül ve K ≤ MR olsun. Bu durumda

K nın M de komplement olması için gerek ve yeter koşul M/K nın nonsingular

modül olmasıdır.

Kanıt. M/K nonsingular modül ve K ≤e N ≤ M olsun. O halde N/K =

Z(N/K) ≤ Z(M/K) = 0 olur. Buradan N/K = 0 dır. Yani N = K elde edilir.

Böylece K, M de komplementtir.

Tersine K, M de komplement olsun. M/K nın nonsingular modül olmadığını

kabul edelim. O halde bir m ∈ M ve m /∈ K elemanı vardır ki, mE ≤ K ve

E ≤e RR dır. r ∈ R ve k ∈ K için mr+k elemanını ele alalım. F = {s ∈ R : rs ∈
E} kümesini düşünürsek, F ≤e RR ve (mr + k)F ≤ K dır. Eğer (mr + k) 6= 0

alırsak, (mr + k)F 6= 0 olur ve buradan K ∩ (mr + k)F 6= 0 olur. Bu durumda

K ≤e mR+K olur. Bu ise K nın M de komplement olmasıyla çelişir. Dolayısıyla

M/K nonsingular modüldür. ¤

Şimdi CS özelliğinin nonsingular koşulu ile birlikte olsa dahi dik toplamlara

taşınmadığına ilişkin iki temel örnek verelim.

Örnek 1.4.4 RR = [ Z Z0 Z ] modülü CS-modül değildir.

Kanıt. RR nin nonsingular modül olduğu açıktır. M1 = [ Z Z0 0 ] ve M2 = [ 0 0
0 Z ]

olarak alırsak RR = M1 ⊕ M2 olur. M1 ve M2 düzgün modüller olduğundan

CS-modüllerdir. Fakat RR, CS-modül değildir. Gerçekten, u = [ 0 1
0 2 ] ∈ R alalım.

uR = [ 0 1
0 2 ] [ Z Z0 Z ] = {[ 0 x

0 2x ] : x ∈ Z} olup uR, R nin düzgün altmodülüdür ve

böylece dim(uR) = 1 dir. dimR = 2 ve dim(uR) = 1 olduğundan uR �e R dir.

Diğer yandan, eğer R, CS-modül olsaydı uR ≤e eR olacak biçimde bir e2 = e ∈ R

olurdu. Buradan u ∈ R olduğundan u ∈ eR dir. O halde, r ∈ R için u = er ise

eu = er = u olur. Yani [ a b
0 c ] [ 0 1

0 2 ] = [ 0 1
0 2 ] dır ve [ 0 a+2b

0 2c ] = [ 0 1
0 2 ] elde edilir. Buradan

c = 1 ve a + 2b = 1 bulunur. Böylece [ a b
0 1 ] [ a b

0 1 ] = [ a b
0 1 ] olur.

[
a2 (a+1)b
0 1

]
= [ a b

0 1 ]

olup, a = 0, 1 elde edilir. a = 0 ise b = 1/2 /∈ Z dir. Eğer a = 1 ise e = [ 1 0
0 1 ] olur.

Buradan eR = R bulunur. Fakat uR �e R olduğu için bu bir çelişkidir. O halde

RR, CS-modül değildir. ¤
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Örnek 1.4.5 MR = (Z[x]⊕ Z[x])Z[x] modülü CS-modül değildir.

Kanıt. Öncelikle MR ın nonsingular modül olduğunu not edelim. Z[x]Z[x] düzgün

modül olduğundan CS-modüldür. Şimdi C = {(xr, 2r) : r ∈ R} ≤ MR

modülünü ele alalım. Bu durumda Z(M/C) = 0 dır. Gerçekten, (f, g) + C ∈
Z(M/C) olsun. O halde [(f, g) + C]E = C olacak şekilde bir E ≤e RR vardır.

Yani (fE, gE) ∈ C dir. Böylece fE = xr ve gE = 2r dir. Buradan 2f = xg olur.

f = x(g/2) ∈ R ve g/2 ∈ R dir. Bu durumda (f, g) + C = (x(g/2), g) + C =

(x(g/2), 2(g/2)) + C = C olur. Yani (f, g) ∈ C dir. (f, g) + C = 0̄ elde edilir.

Dolayısıyla Z(M/C) = 0 dır. Önteorem 1.4.3 den C ≤c MR dır. Farzedelim ki,

C, M de dik toplanan olsun. O halde M = C ⊕ D olacak şekilde D ≤ MR

vardır. π : M → C kanonik projeksiyon olsun. a ∈ C, b ∈ D olmak üzere

π(a, b) = a olarak tanımlansın. π(1, 0) = (xr, 2r) ve π(0, 1) = (xs, 2s) olsun.

Böylece (x, 2) ∈ C için (x, 2) = π(x, 2) = π(x, 0)+π(0, 2) = xπ(1, 0)+2π(0, 1) =

x(xr, 2r) + 2(xs, 2s) = (x2r + 2xs, 2xr + 4s) olur. Buradan 1 = xr + 2s dır. yani

R = xR + 2R dir. Bu ise çelişkidir. Dolayısıyla MR, CS-modül değildir. ¤

Tanım 1.4.6 R bir halka olsun. Eğer her a ∈ R için a = axa olacak biçimde bir

x ∈ R varsa R ye (von Neumann) regular (düzenli) halka denir.

R düzenli bir halka ise R nin her sonlu üretilmiş sağ-ideali R nin bir dik

toplananıdır. Yani idempotentle üretilmiştir [12]. Bu kullanışlı sonuçla birlikte

aşağıdaki sonuç, regular halkaların en temel özelliklerindendir.

Sonuç 1.4.7 R bir düzenli halka ise RR modülü nonsingulardır.

Kanıt. R düzenli halka olduğundan a ∈ R için aR, R de dik toplanandır. x ∈ Z(R)

alalım. Bu durumda xR, R serbest modülünün dik toplananı olacağından xR

projektif modüldür. Böylece;

0 // r(x) // R
f // xR

tam dizisi xR projektif olduğunan Sonuç 1.2.20 den R = r(x)⊕xR olur. Buradan

r(x), R nin dik toplananıdır. Dolayısıyla r(x), R nin komplement altmodülüdür.
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x ∈ Z(R) olduğundan r(x) ≤e R dir. Önerme 1.2.13 den r(x) = R olur. Buradan

xR = 0 olup x = 0 dır. Yani Z(R) = 0 bulunur. Böylece RR modülü nonsingu-

lardır. ¤

Yukarıda verilen Örnek 1.4.4 ve Örnek 1.4.5 in sonuçları olarak CS olma

özelliğinin polinom halkalarına taşınıp taşınmayacağı ve CS özelliğinin Morita

invariant bir özellik olup olmadığını araştırmak doğaldır ki, bundan sonraki

sonuçlarımız bu doğrultuda olacaktır.

Tanım 1.4.8 (P) bir halka özelliği olsun. Eğer bir R halkası için aşağıdaki

koşullar sağlanırsa (P) özelliğine Morita invariant denir.

1. R halkasının (P) yi sağlaması Mn(R) (n ≥ 2) halkasının da (P) yi

sağlamasını gerektirir.

2. R = ReR yi sağlayan her e2 = e ∈ R için R halkası (P) yi sağlarsa eRe

modülüde (P) yi sağlar.

Bu bölümün sonuna kadar vereceğimiz sonuçlarımızda, aksi belirtilmedikçe R

bir birimli halka ve bir e2 = e ∈ R için R = ReR, S = eRe de R nin althalkası

olarak alınacaktır. Eğer M bir sağ R-modül ise Me de bir sağ R-modüldür.

Önteorem 1.4.9 M bir R-modül K, K ′ ≤ MR ve N,N ′ ≤ (Me)S olsun. Bu

durumda, aşağıdaki koşullar sağlanır.

1. K = KeR ve N = NRe dir.

2. K ∩K ′ = 0 olması için gerek ve yeter koşul Ke ∩K ′e = 0 olmasıdır.

3. N ∩N ′ = 0 olması için gerek ve yeter koşul NR ∩N ′R = 0 olmasıdır.

Kanıt. (1): K ≤ M olduğundan K = KR = KReR = KeR dir. Benzer şekilde

N ≤ (Me)S ve Ne = N olduğundan N = NS = NeRe = NRe elde edilir.

(2): İlk olarak K∩K ′ = 0 olsun. Bu durumda Ke∩K ′e ≤ K∩K ′ = 0 olduğundan

Ke ∩K ′e = 0 olur.
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Tersine Ke ∩ K ′e = 0 olsun. x ∈ K ∩ K ′ alalım. Böylece x ∈ K ve x ∈ K ′

olduğundan xRe ≤ Ke ∩ K ′e = 0 olur. Yani xRe = 0 dır. Buradan xReR = 0

bulunur. O halde, xR = 0 olup R birimli olduğunda x = 0 elde edilir. Yani

K ∩K ′ = 0 olur.

(3): Bu denkliğin ispatı (1) ve (2) den açıktır. ¤

Sonuç 1.4.10 MR bir modül ve L ≤ MR olsun. Bu durumda L ≤e MR olması

için gerek ve yeter koşul Le ≤e (Me)S olmasıdır.

Kanıt. L ≤e MR olsun. 0 6= N ≤ (Me)S alalım. NR ≤ M olduğundan L∩NR 6= 0

olur. Buradan Le ∩NRe 6= 0 olup Le ∩N 6= 0 elde edilir. Böylece Le ≤e (Me)S

dir.

Tersine Le ≤e (Me)S olsun. 0 6= K ≤ MR alalım. Önteorem 1.4.9 (1) den K =

KeR dir. Böylece 0 6= Ke ≤ (Me)S dir. Kabulümüzden Ke ∩ Le 6= 0 olur.

Ke ∩ Le ≤ K ∩ L olduğundan K ∩ L 6= 0 dır. Dolayısıyla L ≤e MR bulunur. ¤

Önteorem 1.4.11 M bir R-modül ve L,N ≤ (Me)S olsun. Bu durumda L, N

nin (Me)S de bir komplementi olması için gerek yeter koşul LR, NR nin MR de

bir komplementi olmasıdır.

Kanıt. İlk olarak L, N nin (Me)S de bir komplementi olsun. Bu durumda L∩N =

0 olur. Böylece LR ∩NR = 0 dır. Şimdi LR ≤ K ≤ MR ve K ∩NR = 0 olsun.

Önteorem 1.4.9 (1) den L = LRe ≤ Ke ≤ Me dır. Ke ∩ N ≤ K ∩ NR = 0

olur. O halde L = Ke ve LR = KeR = K dır. Yani LR, NR nin MR de bir

komplementidir.

Tersine LR, NR nin MR de bir komplementi olsun. Buradan LR ∩NR = 0 olur

ve L∩N = 0 dır. L ≤ H ≤ (Me)S ve H∩N = 0 olsun. O halde LR ≤ HR ≤ MR

ve HR ∩ NR = 0 dır. Varsayımdan LR = HR olur. Böylece LRe = HRe olup

L = H elde edilir. Dolayısıyla L, N nin (Me)S de bir komplementidir. ¤

Sonuç 1.4.12 MR bir modül ve L ≤ MR olsun. Bu durumda L ≤c MR olması

için gerek ve yeter koşul Le ≤c (Me)S olmasıdır.
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Kanıt. Önteorem 1.4.11 deki gibi benzer şekilde yapılır. ¤

Önteorem 1.4.13 M bir R-modül ve K ≤ MR olsun. Bu durumda K nın MR

de dik toplanan olması için gerek ve yeter koşul Ke nin (Me)S de dik toplanan

olmasıdır.

Kanıt. Önteorem 1.4.9 kullanılarak elde edilir. ¤

Teorem 1.4.14 M bir R-modül olsun. MR nın bir CS-modül olması için gerek

ve yeter koşul (Me)S nin bir CS-modül olmasıdır.

Kanıt. İspat Sonuç 1.4.12 den ve Önteorem 1.4.13 açıktır. ¤

Sonuç 1.4.15 R bir halka olsun. R nin sağ CS-halka olması için gerek ve yeter

koşul Re nin sağ CS, eRe-modül olmasıdır.

Kanıt. Teorem 1.4.14 de M = R olarak alınarak ispatlanır. ¤

Sonuç 1.4.16 T birimli bir halka ve e = e11 =

[ 1 0 ... 0
0 0 ... 0
.
.
.
0 0 .... 0

]

n×n

olmak üzere R =

Mn(T ) olsun. Bu durumda R nin sağ CS-halka olması için gerek ve yeter koşul

T n =
⊕n

i=1 T serbest modülünün sağ CS, T -modül olmasıdır.

Kanıt. R = Re11R ve e11Re11
∼= T dir. Üstelik T modül olmak üzere Re11 =

Te11 + Te21 + ... + Ten1
∼= T n olup Sonuç 1.4.15 den açıktır. ¤

RR, CS-modül olsun. Re = eRe⊕ (1− e)Re şeklinde yazılabileceğinden Sonuç

1.4.15 den Re, CS-modüldür. Öte yandan eRe, Re nin dik toplananı olduğundan

eRe de CS-modüldür. Böylece Tanım 1.4.8 nın (2). koşulu sağlanmış olur. Ancak

T = Z[x] ve R = M2(T ) =
[
Z[x] Z[x]
Z[x] Z[x]

]
olarak alalım. Buradan T 2

T = (Z[x]⊕Z[x])Z[x]

modülü CS değildir. Sonuç 1.4.16 dan R = M2(T ), CS-halka değildir. Böylece CS

özelliği Morita invariant değildir.

Diğer yandan, Z⊕Zmodülü CS, Z-modül olduğundan Sonuç 1.4.16 dan M2(Z)

halkasıda CS tir. Ancak M2(Z)[x] ∼= M2(Z[x]) halkası CS değildir. Böylece R bir

sağ CS halka iken R[x] polinomlar halkası CS olmayabilir.
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2 Sürekli ve Yarı-Sürekli Modüller

Bu bölümde, sürekli ve yarı-sürekli modüllerin belirli altmodüllerinden M ye olan

dönüşümlerin, M den M ye olan dönüşümlere genişletilmesi anlamında karekter-

izasyonları verilecektir. Buradan da CS-modüller için benzer sonuçlar elde edile-

cektir [24]. Sürekli ve yarı-sürekli modüllerin tanımında gerekli olan ve bir M

modülü için [18] de verilen aşağıdaki koşullarla başlayalım.

2.1 Tanımlar ve Özellikler

(C2) M nin herhangi alt modülü bir dik toplanana izomorf iken, M nin bir dik

toplananıdır.

(C3) M1 ve M2, M nin M1∩M2 = 0 koşulunu sağlayan herhangi iki dik toplananı

ise, M1 ⊕M2, M de bir dik toplanandır.

Tanım 2.1.1

(i) M bir CS-modül olsun. Eğer M , (C2) ((C3)) koşulunu sağlarsa M ye

sürekli (yarı-sürekli) modül denir.

(ii) M nin her N altmodülü için her ϕ : N → M homomorfizması bir

θ : M → M homomorfizmasına genişletilebiliyor ise M ye yarı (quasi)-injektif

modül denir.

İnjektif ve yarıbasit modüller yarı-injektif modüllerdir. Yarı-injektif modüller

sürekli modüllerdir.([24, Theorem 7] veya [18, Proposition 2.1]).

Önteorem 2.1.2 M bir modül olsun.

1. M modülü sürekli ise, yarı-süreklidir. Genel olarak tersi doğru değildir.

2. M modülü sürekli (yarı-sürekli) ise, M nin her dik toplananıda sürekli (yarı-

sürekli) dir.

Kanıt. (1) M bir sürekli modül olsun. M nin (C3) ü sağladığını gösterelim. K

ve L, M nin K ∩ L = 0 koşulunu sağlayan dik toplananları olsun. M = K ⊕K ′
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olacak biçimde bir K ′ ≤ M vardır. π : M → K ′ kanonik projeksiyonu göstersin.

K ∩L = 0 olduğundan π(L) ∼= L ve böylece de π(L), M nin bir dik toplananıdır.

O halde, M = π(L)⊕ L′ olacak biçimde bir L′ ≤ M vardır. Buradan;

K ′ = π(L) ⊕ (K ′ ∩ L′) ve M = K ⊕ π(L) ⊕ (K ′ ∩ L′) dür. Böylece; K ⊕ π(L),

M nin bir dik toplananıdır. K ⊕ L = K ⊕ π(L) olduğundan M , (C3) koşulunu

sağlar.

Tersinin doğru olmadığına ilişkin bir örnek olarak MZ = ZZ alınırsa, M yarı-

sürekli ancak sürekli değildir.

(2) İspatı yarı-sürekli modüller için yapacağız. Benzer olarak, sürekli modüller

için de yapılabilir. M yarı-sürekli bir modül ve N , M nin bir dik toplananı olsun.

Önteorem 1.3.2 den N , CS-modül olur.

Şimdi K1 ve K2 yi N nin K1 ∩ K2 = 0 olacak biçimde iki dik toplananı olarak

alalım. O halde M = K1 ⊕K2 ⊕ L olacak biçimde bir L ≤ M vardır.

N = N ∩M = N ∩ (K1 ⊕K2 ⊕ L) = K1 ⊕ [N ∩ (K2 ⊕ L)] = K1 ⊕K2 ⊕ (N ∩ L)

olduğundan N , (C3) koşulunu sağlar. O halde N , yarı-süreklidir. ¤

Önteorem 2.1.3 Bir M modülünün (C3) koşulunu sağlaması için gerek ve yeter

şart M nin her K altmodülü, M nin K1 ve K2 dik toplananları için K = K1 ⊕
K2 ise, her ϕ : K → M homomorfizması bir θ : M → M homomorfizmasına

genişletilir.

Kanıt. Eğer M modülü (C3) koşulunu sağlarsa, M nin M1 ∩M2 = 0 koşulunu

sağlayan M1 ve M2 dik toplananları için M1 ⊕M2, M de dik toplanandır. K =

K1 ⊕K2 dersek, K1 ve K2, M nin dik toplananı olduğundan K, M nin bir dik

toplananıdır. O halde M = K ⊕ K ′ olacak biçimde bir K ′ ≤ M vardır. Eğer

ϕ : K → M bir homomorfizma ise, θ : M → M yi k ∈ K, k′ ∈ K ′ olmak üzere

θ(k + k′) = ϕ(k) olarak tanımlarsak, θ|K = ϕ dır.

Tersine, farzedelimki M nin her K altmodülü M nin K1 ve K2 dik toplananları

için K = K1 ⊕ K2 ise, her ϕ : K → M homomorfizması bir θ : M → M

homomorfizmasına genişletilsin. N1 ve N2, M nin N1∩N2 = 0 koşulunu sağlayan

herhangi iki dik toplanan alt modülleri olsun. O halde, dik toplanan tanımından
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M nin öyle L1 ve L2 altmodülü vardır öyleki, M = N1 ⊕ L1 = N2 ⊕ L2 dır.

ϕ : N1 ⊕ N2 → M , x ∈ N1, y ∈ N2 olmak üzere ϕ(x + y) = x şeklinde bir

homomorfizma tanımlansın. Hipotezden ϕ nin bir genişlemesi olan θ : M → M

homomorfizması vardır ve x ∈ N1, y ∈ N2 olmak üzere θ(x + y) = x dir. Şimdi

π : M → N1 kanonik projeksiyon ve χ = πθ : M → N1 olsun. O zaman, her

x ∈ N1 için, χ(x) = πθ(x) = π(x) = x olur. N1 ⊆ M ve Kerχ ⊆ M olduğundan

N1 + Kerχ ⊆ M dir. Şimdi, m ∈ M ve n1 ∈ N1 için m = n1 + (m− n1) alalım.

n1 ∈ N1 ve χ(m − n1) = χ(m) − χ(n1) = n1 − n1 = 0 olduğundan m − n1 ∈
Kerχ olur ve M ⊆ N1 + Kerχ elde edilir. Böylece M = N1 + Kerχ dir. Ayrıca

x ∈ N1 ∩Kerχ olsun. Buradan x ∈ N1 ve x ∈ Kerχ dir. x ∈ N1 ise, bir n1 ∈ N1

için x = n1 dir. x ∈ Kerχ ise, χ(x) = 0 dır. Buradan χ(n1) = n1 = 0 elde edilir.

Böylece, N1 ∩Kerχ = 0 olduğundan M = N1 ⊕Kerχ dir. Ayrıca n2 ∈ N2 ise,

χ(n2) = πθ(n2) = π(0) = 0 olduğundan n2 ∈ Kerχ olur. Yani, N2 ⊆ Kerχ dır.

Modülar kuralından, Kerχ = Kerχ∩M = Kerχ∩(N2⊕L2) = N2⊕(Kerχ∩L2)

olur. Böylece, M = N1 ⊕Kerχ = N1 ⊕N2 ⊕ (Kerχ ∩ L2) olduğundan N1 ⊕N2,

M nin bir dik toplananıdır. Dolayısıyla M , (C3) koşulunu sağlar. ¤

Önteorem 2.1.4 K, M de bir komplement olsun. O zaman, K nın M de bir

dik toplanan olması için gerek ve yeter şart K nın M deki bir L komplementi

için her ϕ : K ⊕ L → M homomorfizması bir θ : M → M homomorfizmasına

genişletilir.

Kanıt. K, M nin bir dik toplananı olsun. O zaman M nin öyle bir K ′ alt-

modülü vardır ki, M = K ⊕ K ′ olur. Burada L = K ′ olarak alınması ispatı

tamamlar.

Tersine, farzedelimki L verilen koşulu sağlayan K nın M deki komplementi olsun.

ϕ : K⊕L → M homomorfizmasını, x ∈ K, y ∈ L için ϕ(x+y) = x olarak alalım.

Hipotezden bir θ : M → M , θ(x + y) = x olacak şekilde homomorfizma vardır.

Buradan K ⊆ Imθ ve L ⊆ Kerθ dır. 0 6= v ∈ Imθ olsun. O zaman bir u ∈ M

vardır öyle ki, v = θ(u) dur. u /∈ L olsun. Bu durumda L ⊆ L + uR olur ve L,

K nin M deki komplement altmodülü olduğundan K ∩ L = 0 koşulunu sağlayan



27

maksimal altmodüldür. Böylece K ∩ (L + uR) 6= 0 olur. O halde x ∈ K, y ∈ L

ve r ∈ R için, 0 6= x = y + ur dir. Buradan x = θ(x) = θ(y + ur) = vr elde edilir.

Her 0 6= v ∈ Imθ için vR ∩K 6= 0 olduğu için K ≤e Imθ olur. Fakat K, M de

komplement olduğundan K = Imθ dır. Bu durumda M = K ⊕Kerθ olduğu için

K, M de dik toplanandır. ¤

Bir sonraki sonucumuzda CS-modüllerin dönüşümler cinsinden karakterizasy-

onu verilmektedir.

Sonuç 2.1.5 Bir M modülünün CS olması için gerek ve yeter koşul M de ki her

K komplementi için, K nın bir L komplementi vardır ki, her ϕ : K ⊕ L → M

homomorfizması bir θ : M → M homomorfizmasına genişletilebilir.

Kanıt. Önteorem 2.1.4 dan açıktır. ¤

2.2 Karakterizasyonlar

Yukarıdaki koşulları sonlu tane komplement altmodülün dik toplamına

genişletmek mümkündür. Bunun için n pozitif bir tamsayı olsun. Bir M

modülü için aşağıdaki koşulu göz önüne alalım.

(Pn) : M nin her K altmodülü, M nin Ki (1 ≤ i ≤ n) komple-

mentleri olmak üzere K = K1 ⊕ ... ⊕ Kn ise, her ϕ : K → M homomorfizması

bir θ : M → M homomorfizmasına genişletilir.

Bir M modülü her n ≥ 2 için (Pn) koşulunu sağlarsa (Pn−1) koşulunuda

sağlar. (P1) koşulunu sağlayan modüller [24] de incelenmiştir.

Teorem 2.2.1 Bir M modülü için aşağıdaki koşullar denktir.

1. M , yarı-süreklidir.

2. M her n pozitif tamsayısı için (Pn) koşulunu sağlar.
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3. n ≥ 2 olan bazı tamsayılar için M , (Pn) koşulunu sağlar.

4. M , (P2) koşulunu sağlar.

Kanıt. Önteorem 2.1.3 ve Sonuç 2.1.5 den, (1) ⇒ (2) ⇒ (3) ⇒ (4) ve (4) ⇒ (1)

olduğu görülür. ¤

Önteorem 2.2.2 K, M nin bir dik toplananına izomorf olan altmodülü olsun.

O zaman K nın M de bir dik toplanan olması için gerek ve yeter koşul her ϕ :

K → M homomorfizmasının bir θ : M → M homomorfizmaya genişletilmesidir.

Kanıt. K, M de bir dik toplanan olduğunda Önteorem 2.1.4 dan açıktır.

Tersine, M nin bir dik toplananına izomorf olan K altmodülü için her ϕ : K → M

homomorfizması bir θ : M → M homomorfizmasına genişletilsin. Bu durumda

ϕ(K), M de dik toplanan olacak şekilde bir ϕ : K → M monomorfizması vardır.

Hipotezden ϕ bir θ : M → M homomorfizmasına genişletilir. π : M → ϕ(K)

kanonik projeksiyon olarak tanımlansın. O zaman, χ = πθ : M → ϕ(K) bir

homomorfizmadır. Her x ∈ K için, χ(x) = πθ(x) = πϕ(x) = ϕ(x) dir. M =

K ⊕Kerχ olduğundan K, M nin bir dik toplananıdır. ¤

Sonuç 2.2.3 Bir M modülünün (C2) koşulunu sağlaması için gerek ve yeter koşul

M nin bir dik toplananına izomorf olan her K altmodülü için, her ϕ : K → M

homomorfizması bir θ : M → M homomorfizmasına genişlemesidir.

Kanıt. Önteorem 2.2.2 den açıktır. ¤

Yarı-sürekli modüller için verilen sonucun benzerini şimdi sürekli modüller

için elde edeceğiz. n pozitif bir tamsayı olsun. Bir M modülü için aşağıdaki

koşulu göz önüne alalım.

(Qn) : M nin bir dik toplananına izomorf olan her K altmodülü için Ki

(1 ≤ i ≤ n), M nin komplementleri olmak üzere K = K1 ⊕ ... ⊕ Kn ise, her
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ϕ : K → M homomorfizması bir θ : M → M homomorfizmasına genişletilir.

Eğer bir M modülü her n ≥ 2 için (Qn) koşulunu sağlıyor ise, (Qn−1)

koşulunuda sağlar.

Ayrıca M modülü her n ≥ 1 için (Qn) koşulunu sağlıyorsa açıktır ki, (Pn)

koşulunuda sağlar.

Teorem 2.2.4 Bir M modülü için aşağıdaki koşullar denktir.

1. M , süreklidir.

2. M her n pozitif tamsayısı için (Qn) koşulunu sağlar.

3. M , n ≥ 2 olan bazı tamsayılar için (Qn) koşulunu sağlar.

4. M , (Q2) koşulunu sağlar.

5. M , (Q1) koşulunu sağlar ve CS-modüldür.

Kanıt. (1) ⇒ (2) olduğu Sonuç 2.2.3 den görülür. (2) ⇒ (3) ⇒ (4) ve (1) ⇒ (5)

açıktır.(4) ⇒ (1) olduğu Sonuç 2.1.5 ve Sonuç 2.2.3 den ve (5) ⇒ (1) olduğu ise

Sonuç 2.2.3 den görülür. ¤

Örnek 2.2.5 M , bir serbest Z-modül ve rankı 0 6= k < ∞ olsun. Bu durumda,

1. M , CS-modüldür.

2. M modülünün (C3) koşulunu sağlaması için gerek ve yeter koşul k = 1

olmasıdır.

Kanıt. (1) N , M de bir komplement olsun. O zaman, M/N torsion-free dir ve

böylece serbest modül olur. Buradan N , M nin bir dik toplananıdır.

(2) Eğer k = 1 ise M uniform modüldür ve böylece (C3) koşulunu sağlar.

Tersine farzedelim ki, k ≥ 2 ve f1, f2, ..., fk, M nin bir tabanı olsun. K1 = Zf1

ve K2 = Z(f1 + 2f2) olduğunu kabul edelim. L = Zf2 + ... + Zfk olmak üzere
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M = K1⊕L = K2⊕L dır. K1 ∩K2 = 0 olmasına rağmen K1⊕K2 = Zf1⊕Z2f2

altmodülü Zf1⊕Zf2 nin bir dik toplananı olmadığından M nin de dik toplananı

olmaz. Böylece M , (C3) koşulunu sağlamaz. Dolayısıyla k = 1 olmalıdır. ¤

Örnek 2.2.6 p herhangi bir asal tamsayı ve R lokal halka Zp ve M , Z-modül

(Z/Zp)⊕Q olsun. Bu durumda,

1. M bir R-modüldür.

2. K nın M modülünde komplement olması için gerek ve yeter koşul K, M de

bir dik toplanandır veya bazı 0 6= q ∈ Q için K = R(1 + Zp, q) olmasıdır.

3. M , (P1) koşulunu sağlar fakat Cs-modül değildir.

Kanıt. (1): M nin M1 = (Z/Zp) ⊕ 0 ve M2 = 0 ⊕ Q altmodüllerini alalım. Bu

durumda, M = M1⊕M2 dir. s, t ∈ Z, t 6= 0 ve t ile p aralarında asal olmak üzere

s/t rasyonel sayılarının oluşturduğu R halkası Q da althalkadır.

İlk önce herhangi bir m ∈ M ve herhangi p - s koşulunu sağlayan s, t ∈ Z için

tm′ = sm olacak şekilde tek bir m′ ∈ M vardır ve m′, (s/t)m olarak tanımlanır.

Bu durumda M , R-modüldür.

(2): q ∈ Q ve K = R(1 + Zp, q) olsun. İlk olarak K nın MZ, modülünde kom-

plement olduğunu gösterelim. K, M nin düzgün altmodülüdür. Farzedelim ki,

K ≤e N olacak şekilde M nin bir N altmodülü ve x ∈ N olsun. O zaman,

U = Zx + Z(1 + Zp, q) bir sonlu üretilmiş uniform Z-modül olur ve böylece U

devirlidir. a ∈ Z ve b ∈ Q için, U = Z(a +Zp, b) olsun. (1 +Zp, q) = n(a +Zp, b)

olacak şekilde n ∈ Z vardır. Buradan 1− na ∈ Zp, n ile p aralarında asal olmak

üzere (a + Zp, b) ∈ R(1 + Zp, q) = K olur. Böylece x ∈ K olur. Yani, K = N dir

ve K, M de komplement olur.

Diğer taraftan L, MZ modülünün bir komplementi ve L 6= 0 olsun. M nin uniform

boyutu 2 dir ve bundan dolayı L uniformdur [8, Lemma 1.9]. İlk olarak L nin

M de bir R-altmodül olduğunu gösterelim. O halde t ile p aralarında asal olmak

üzere L′ = {m ∈ M : bazı t ∈ Z için tm ∈ L} olsun. Bu taktirde, L′ = RL olan
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M nin bir altmodülüdür. Eğer 0 6= m ∈ L′ ise, bazı t ∈ Z ve t ile p aralarında

asal olmak üzere tm ∈ L olup tm 6= 0 olur. Böylece, L, L′ de bir essential alt-

modüldür. O halde, L = L′ ve L, M nin bir R-altmodül olduğu elde edilir. Şimdi,

M , M1,M2 veya bir q ∈ Q olmak üzere R(1 +Zp, q) için L = 0 olduğunu göstere-

lim. Farzedelim ki, M , M1 veya M2 için L 6= 0 olsun. M1 ve M2 modülleri düzgün

olduğundan L yi M1 ve M2 modülleri içermez. Böylece, bazı c ∈ Z ile p arasında

asal ve 0 6= d ∈ Q için (c+Zp, d) ∈ L dir. Genelliği bozmadan c = 1 kabul edelim.

L, M nin bir R-altmodülü olduğundan R(1 +Zp, d) ⊆ L dir. Fakat R(1 +Zp, d),

M de bir komplementtir ve böylece L = R(1 + Zp, d) olur. Dolayısıyla (2) ispat-

lanmış olur.

(3): R(1+Zp, 1), M de dik toplanan olmayan M nin bir komplementidir. Böylece

M , CS-modül değildir. M nin (P1) koşulunu sağladığını göstermek için her

0 6= q ∈ Q ve her ϕ : R(1 + Zp, q) → M homomorfizmasının bir θ : M → M ho-

momorfizmasına genişletilebildiğini göstermek yeterli olacaktır. K = R(1+Zp, q)

ve bazı a ∈ Z ve b ∈ Q için ϕ(1 + Zp, q) = (a + Zp, b) olsun. θ : M → M

dönüşümünü c ∈ Z, d ∈ Q için, θ(c+Zp, d) = (ca+Zp, db/q) olarak tanımlayalım.

θ iyi tanımlıdır. θ : M → M bir homomorfizmadır ve θ nın K ya kısıtlanışı ϕ dir.

Böylece, M , (P1) koşulunu sağlar. ¤

Sonuç 2.2.7 Bir önceki örnekte ki M modülü (Q1) koşulunu sağlamaz.

Kanıt. K = R(1+Zp, 1) olsun. O zaman, K, M nin K∩M1 = 0 koşulunu sağlayan

bir komplementidir. π : M → M2 kanonik projeksiyon olsun. L = π(K) alalım.

O halde, L ∼= K dır. L = R(0 +Zp, 1) dir. ϕ : L → M dönüşümünü r ∈ R olmak

üzere ϕ(r(0 +Zp, 1)) = r(1 +Zp, 1) olarak tanımlayayım. O zaman, ϕ homomor-

fizması M ye genişletilemez. Farzedelim ki, ϕ bir θ : M → M homomorfizmasına

genişletilsin. O zaman, (1+Zp, 1) = ϕ(0+Zp, 1) = θ(0+Zp, 1) = pθ(0+Zp, 1/p)

olur ki, bu çelişkidir. Yani M , (Q1) koşulunu sağlamaz. ¤
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3 Ec-Kapalı Altmodülleri Dik Toplanan Olan

Modüller ve Ec-İnjektiflik

Bu bölümde CS-modüllerin bir genelleştirmesi ile [24] de incelenmiş ve 2. bölümde

ayrıntılı olarak verilen P1 özelliğinden daha genel olarak, ec-kapalı altmodüller-

den, modüle olan dönüşümlerin modüle genişletilmesi anlamında ec-injektiflik

özelliği araştırılmıştır. Bu bölümde elde ettiğimiz sonuçlardan bazıları ve verilen

kimi örnekler [15] deki bazı varsayımların geçersizliğini ve bu varsayımlara bağlı

olan [15] deki bazı sonuçların düzeltilmiş yeni biçimlerini vermektedir.

3.1 ECS-Modüller

Bu bölümde sıkça kullandığımız ve çalışmalarımızda temel olan ec-kapalı alt-

modül tanımını vererek başlayalım.

Tanım 3.1.1 M bir sağ R-modül ve N ≤ M olsun.

(i) Eğer N , devirli bir altmodülü geniş (essential) olarak kapsıyorsa yani xR ≤e N

olacak biçimde bir x ∈ N varsa, N ye M nin ec-altmodülü denir.

(ii) N , M de bir ec-altmodül olsun. Eğer N ≤c M ise N ye M de bir ec-kapalı

altmodül denir.

Önteorem 3.1.2 N , M de bir ec-altmodül olsun. Bu durumda, N nin her dik

toplananı M de bir ec-altmodüldür.

Kanıt. N , M de bir ec-altmodül olsun. Budurumda, bir x ∈ N için xR ≤e N

dir. N1, N nin bir dik toplananı olsun. O halde N = N1 ⊕ N2 olacak biçimde

bir N2 ≤ N vardır. x1 ∈ N1, x2 ∈ N2 olmak üzere x = x1 + x2 yazalım. Böylece

x1R ≤e N1 dir. N1, M de ec-altmodül olur. ¤

Sonuç 3.1.3 1. N , M de ec-kapalı altmodül olsun. N nin her dik toplananı

M de bir ec-kapalı altmodüldür.
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2. A ≤ B ≤ M ve A, B de ec-kapalı, B de M de ec-kapalı altmodül ise A, M

de ec-kapalı altmodüldür.

Kanıt. Önteorem 3.1.2 ve 1. bölümden açıktır. ¤

Tanım 3.1.1’den her ec-kapalı altmodül açıkca kapalı altmodüldür. Böylece

kapalı altmodül olup ec-kapalı olmayan (yani, ec-altmodül olmayan) modüllerin

var olup olmadıkları sorusunu düşünmek doğaldır ki, bir sonraki örneğimiz [26]

(yada [33]) den alınmış olup, kapalı ve ec-kapalı altmodüllerin farklı olduklarını

gösterecektir.

Örnek 3.1.4 R gerçel cisim ve S de R[x, y, z] polinomlar halkası olsun. s =

x2 + y2 + z2 − 1 olmak üzere R = S/Ss değişmeli halkası olsun. Bu durumda

MR = R⊕R⊕R modülü ec-kapalı olmayan, kapalı altmodül kapsar.

Kanıt. ϕ : M → R, a, b, c ∈ S olmak üzere ϕ(a + Ss, b + Ss, c + Ss) =

ax+ by + cz +Ss olarak tanımlayalım. ϕ örten homomorfizmadır. O halde Kerϕ,

M nin bir dik toplananıdır. K = kerϕ denirse, M = K ⊕K ′ olacak biçimde bir

K ′ ≤ M vardır. Açıktır ki, K ′ ∼= R ve K düzgün altmodül değildir.

Aslında K altmodülü, 2-küre S2 nin düzgün kesitlerinin R-modülüdür ve S2

nin Euler karateristiği 2 6= 0 olduğundan 2-kürenin teğet demeti, K indecom-

posable R-modülüdür [26]. K, MR de bir dik toplanan olduğundan K, M de

komplement altmodüldür ve dimK = 2 dir.

K nın MR de ec-altmodül olduğunu varsayalım. O halde xR ≤e K olacak biçimde

bir x ∈ K vardır. Buradan dim(xR) = dimK = 2 dir. Ancak α : xR → R, r ∈ R

olmak üzere α(xr) = r biçiminde tanımlanan dönüşüm bir izomorfizmadır. Yani

dim(xR) = dimR = 1 dir. O halde xR düzgün modüldür ki, dimK = 1 çelişkisine

ulaşırız. Böylece K, MR de ec-altmodül olamaz. ¤

Örnek 3.1.4 den hareketle bir modülde komplement ve ec-komplement alt-

modüllerinin aynı olması koşulunu aşağıdaki önteorem de ispatlayacağız.

Not 3.1.5 Örnek 3.1.4 te MR = R⊕R⊕R yerine n ≥ 3 ve n tek tamsayı olmak

üzere MR =
⊕n

i=1 R serbest altmodülü alınabilir.
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Önteorem 3.1.6 Bir MR modülü CS ve Y = xR ≤e MR olacak şekilde bir

altmodülü olsun. Bu durumda K, MR de komplement ise, K, MR de ec-kapalı

altmodüldür.

Kanıt. K, MR de komplement olsun. Bu durumda M = K ⊕K ′ olacak şekilde

K ′ ≤ M vardır. Şimdi π : M → K kanonik projeksiyon olsun. O halde, xR∩K =

Y ∩ K ≤ π(Y ) = π(x)R ≤ K olur. xR ≤e M olduğundan xR ∩ K ≤e K

dır. Buradan xR ∩ K ≤ π(x)R ≤ K ve xR ∩ K ≤e K olduğunu göz önünde

bulundurursak π(x)R ≤e K olur. π(x)R devirli olduğundan K, MR de ec-kapalı

altmodüldür. ¤

Tanım 3.1.7 M bir sağ R-modül olsun. Eğer M nin her ec-kapalı altmodülü M

nin bir dik toplananı oluyorsa M ye bir ECS-modül denir. Bir R halkası için

RR, ECS-modül oluyorsa R ye sağ ECS-halka denir.

Böylece tanımların bir sonucu olarak açıktır ki, her CS-modül, ECS-modül ve

her (von Neumann) düzenli halka ECS-halkadır.

Önteorem 3.1.8 MR bir ECS-modül olsun.

1. M indecomposable ise MR düzgündür.

2. M1, M nin bir dik toplananı ise M1 de ECS-modüldür.

Kanıt. (1) M indecomposable ve 0 6= X ≤ MR olsun. O halde 0 6= x ∈ X vardır

ki, xR ≤ MR dır. xR nin M deki kapanışına C diyelim. O halde, xR ≤e C ≤c

MR dır. Bu durumda C ec-kapalı altmodüldür. Varsayımdan C, M nin bir dik

toplananıdır. Böylece C = M dir. xR ≤e M den X ≤e M elde edilir. Yani MR

düzgün modüldür.

(2) M1, M nin bir dik toplananı olsun. O halde M = M1⊕M2 olacak biçimde bir

M2 ≤ M vardır. X, M1 de ec-kapalı altmodül olsun. Sonuç 3.1.3 (ii) den X, M de

ec-kapalıdır. O halde, X, M nin bir dik toplananıdır. Bir Y ≤ M için M = X⊕Y
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dir. Buradan, M1 = M1 ∩ (X ⊕ Y ) = X ⊕ (M1 ∩ Y ) bulunur ki, X, M1 in dik

toplananı olur yani M1, ECS-modüldür. ¤

MR bir modül olsun. CS-modül tanımını devirli altmodüllere kısıtlayıp, her

devirli altmodülü bir dik toplananda geniş olarak kapsanan modüller yani, her

x ∈ M için xR ≤e D olacak biçimde M nin bir D dik toplananı vardır, P -

extending modüller olarak [15] de incelenmiştir.

Şimdi vereceğimiz önerme CS, ECS ve P -extending koşulları arasındaki gerek-

tirmeleri belirleyecektir.

Önerme 3.1.9 M bir sağ R-modül olsun. Aşağıdaki koşulları düşünelim.

1. M , CS dir.

2. M , ECS dir.

3. M , P -extending modüldür.

Bu durumda (1) ⇒ (2) ⇒ (3) dür. Bu gerektirmelerin tersleri genel olarak doğru

değildir.

Kanıt. (1) ⇒ (2) gerektirmesi açıktır.

(2) ⇒ (3) : mR nin MR deki kapanışı L, M nin bir ec-kapalı altmodülüdür.

Varsayımdan, L, M nin bir dik toplananıdır. O halde MR, P -extending modüldür.

Şimdi M2(R), [12, Example 13.8] deki halka olarak alınırsa, M2(R) von Neumann

düzenli ve Baer halka değildir. Böylece M2(R) ne sağ nede sol CS halka değildir. O

halde (2) ; (1) dir. Son olarak, R halkası [2, Example 3.2] deki halka olsun. Yani

R =
[ Z2 Z2

0 Z
]

olarak alalım. Bu durumda, R sağ P -extending dir. Ancak RR, CS

değildir [32]. RR sonlu Goldie boyutlu olduğundan, RR de bir maksimal düzgün

(ve böylece ec-kapalı) altmodül vardır ki, RR nin bir dik toplananı değildir. O

halde, RR ECS-modül değildir. Böylece (3) ; (2) ¤

Önerme 3.1.9 dan CS, ECS ve P -extending modül sınıfları birbirinden

farklıdır. [15] de ECS ve P -extending koşulları denk alınıp sonuçlar ispatlanmıştır.
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Ancak Önerme 3.1.9 un ispatı bu koşulların farklı olduğunu açıklığa kavuşturan

ters bir örnek vermektedir.

ECS özelliği CS ve P -extending özellikleri arasında olduğundan P -extending

bir modülün ECS veya bir ECS-modülün CS olmasını sağlayan koşulların

araştırılması doğaldır ki bu türden koşulları bir sonra vereceğimiz teoremde ispat-

layacağız. Önce teoremin varsayımlarından birisi olan End(MR) nin Abel olması

koşulunu M modülünün dik toplam ayrışımları cinsinden karakterize edeceğiz.

Bunun için gerekli olan önteorem ile başlayalım.

Önteorem 3.1.10 M bir sağ R-modül ve e = e2 ∈ End(MR) olsun. Bir t = t2 ∈
End(MR) için Ime = Imt olması için gerek ve yeter koşul x ∈ End(MR) için

t = e + ex(1− e) olmasıdır.

Kanıt. [1]’e bakınız. ¤

Önteorem 3.1.11 M bir sağ R-modül olsun. Bu durumda aşağıdaki koşullar

denktir.

1. S = End(MR) halkası Abeldir.

2. M = N ⊕K = N ⊕ L ise K = L dir.

Kanıt. (1) ⇒ (2) : M = N ⊕K = N ⊕L olsun. e ile 1− e ve t ile 1− t ortogonal

idempotent endomorfizmalar olmak üzere M = eM ⊕ (1− e)M = tM ⊕ (1− t)M

ve Ime = Imt olduğunu kabul edelim. Önteorem 3.1.10 dan, x ∈ End(MR)

için t = e + ex(1 − e) dir. S deki tüm idempotentler merkezde olduğundan t =

e + ex(1 − e) = e + ex − exe = e + ex − e2x = e + ex − ex = e dir. O halde,

(1− e)M = (1− t)M dir.

(2) ⇒ (1) : e2 = e ∈ End(MR) olsun. Bir x ∈ End(MR) için t = e + ex(1 −
e) bir idempotent olduğundan, önteorem 3.1.10 dan Ime = Imt dir. O halde,

varsayımdan (1 − e)M = (1 − t)M dir. Bir modülün ayrışımına karşılık gelen

ortogonal idempotentlerin bir tam kümesinin tekliğinden e = t dir. Yani her
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x ∈ End(MR) için, ex(1 − e) = ex − exe = 0 bulunur. O halde ex = exe

olduğundan e, S nin merkezindedir. Buradan da S, Abel’dir. ¤

Teorem 3.1.12 1. MR bir nonsingular modül olsun. Bu durumda, M

modülünün P -extending olması için gerek ve yeter koşul M modülünün ECS

olmasıdır.

2. M bir sağ R-modül, End(MR) Abel ve X ≤ M için hi ∈ End(MR) ol-

mak üzere X =
∑

i∈I hi(M) olsun. Bu durumda M modülünün P -extending

olması için gerek ve yeter koşul M modülünün ECS olmasıdır.

3. M , sonlu Goldie boyutlu bir modül olsun. Bu durumda M modülünün CS

olması için gerek ve yeter koşul M modülünün ECS olmasıdır.

Kanıt. (1): M modülünün P -extending sağ R-modül olduğunu kabul edelim.

X, M de bir ec-kapalı altmodül olsun. O halde bir x ∈ X için xR ≤e X dir.

Varsayımdan M nin bir L dik toplananı vardır ki, xR ≤e L dir. MR nonsingular

olduğundan X = L dir. Böylece, MR, ECS dir. Tersi Önerme 3.1.9 dan kolayca

elde edilir.

(2): M nin P -extending modül olduğunu kabul edelim. C, M de bir ec-kapalı

altmodül olsun. Bu durumda cR, C de essential olacak biçimde bir c ∈ C vardır.

Varsayımdan, cR ≤e eM = D olacak biçimde bir e2 = e ∈ End(MR) vardır.

Böylece M = eM⊕D′ ve D′ = (1−e)M dir. O halde C⊕D′ ≤e M dir. Şimdi 0 6=
x ∈ C alalım. x = ex+(1− e)x dir. Ancak mi ∈ M olmak üzere x =

∑
i∈I hi(mi)

dir. Böylece (1 − e)x = (1 − e)
∑

i∈I hi(mi) =
∑

i∈I hi((1 − e)mi) ∈ C ∩ D′ = 0

dır. Yani, x = ex olur. Buradan x ∈ D ve böylece de C ≤ D bulunur. O halde

C ≤e D ve C kapalı olduğundan C = D elde edilir. Böylece C, MR modülünde

dik toplanandır. Dolayısıyla MR, ECS modüldür. Tersi, Önerme 3.1.9 dan açıktır.

(3): M , ECS-modül olsun. N , M nin herhangi bir maksimal düzgün altmodülü ol-

sun. O halde, N , M de ec-kapalı altmodüldür. (bakınız, 1.3 sayfa 13) Varsayımdan

N , M nin bir dik toplananıdır. O halde M , CS modüldür. Tersi Önerme 3.1.9

dan kolayca elde edilir. ¤
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Bir sonra ispatlayacağımız sonuçta kullanılan çarpım modül (Multiplication

modül) tanımını verelim.

Tanım 3.1.13 M bir R-modül olsun. Eğer her X ≤ M için X = MA olacak

biçimde AR ≤ RR varsa M ye çarpım modül denir.

Sonuç 3.1.14 M aşağıdaki koşullardan herhangi birini sağlayan bir R-modül ol-

sun. Bu durumda M nin P -extending olması için gerek ve yeter koşul M nin

ECS-modül olmasıdır.

1. MR = RR ve R, Abel’dir.

2. MR devirli ve R, değişmelidir.

3. MR bir çarpım modülü ve R, değişmelidir.

Kanıt. (1) Teorem 3.1.12 (2) den açıktır.

(2) Şimdi M nin devirli ve R nin değişmeli olduğunu kabul edelim. MR
∼= R/B

olacak biçimde BR ≤ RR vardır. Y/B ≤ R/B alalım. O halde, yi ∈ Y olmak

üzere Y/B = (
∑

i∈I yiR) + B = (
∑

i∈I yi + B)R dir. hi : R/B → R/B yi,

hi(r + B) = yir + B olarak tanımlayalım. O halde, hi ∈ End((R/B)R) dir.

Böylece Y/B =
∑

i∈I hi(R/B) bulunur. R değişmeli olduğundan End((R/B)R)

de değişmelidir. Teorem 3.1.12 (2) den sonuç elde edilir.

(3) M yi bir çarpım modülü ve R yi değişmeli kabul edelim. AR ≤ RR olmak üzere

X = MA olsun. Her bir a ∈ A için ha : M → M dönüşümü m ∈ M olmak üzere

ha(m) = ma olarak tanımlayalım. ha nın bir R-homomorfizma olduğu kolayca

görülebilir. O halde, X = MA =
∑

a∈A ha(M) dir. Bir çarpım modülün her alt

modülü fully invariant olduğundan, [4, Lemma 1.9] dan End(MR), Abel’dir. O

halde Teorem 3.1.12 (2) den sonuç elde edilir. ¤

Bu kesimdeki bazı sonuçlarımızda kullanacağımız bir modül sınıfının tanımını

ve gerekli olan bir özelliğini verelim. Bu tür modül sınıfları için özellikle [28], [10]

çalışmaları önerilir.
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Tanım 3.1.15 M bir R-modül olsun. Eğer M nin herhangi iki dik toplananı K,

L için K ∩L de M nin bir dik toplananı oluyorsa (yani her dik toplanan çiftinin

kesişimide bir dik toplanan ise), M ye toplanan kesişim özelliğine sahiptir

(kısaca SIP-modül) denir.

Önteorem 3.1.16 M bir SIP-modül ise, her dik toplananı da SIP-modüldür.

Kanıt. X, M nin bir dik toplananı ve K,L de X modülünde herhangi iki dik

toplanan olsun. O halde K ve L, M de dik toplananlardır. Varsayımdan, (K ∩
L)⊕F = M olacak biçimde bir F ≤ M vardır. Böylece X = X ∩M = X ∩ [(K ∩
L) ⊕ F ] = (K ∩ L) ⊕ (X ∩ L) olur. Yani (K ∩ L), X in bir dik toplananıdır. O

halde X, SIP-modüldür. ¤

Teorem 3.1.17 M bir P -extending modül olsun. Bu durumda;

1. Eğer X ≤ M ve X ile M nin her dik toplananının kesişimi X in dik

toplananı ise X, P -extending’ dir.

2. M nin her e2 = e ∈ End(MR) için e(X) ⊆ X koşulunu sağlayan bir X

altmodülü P -extending’ dir.

3. M , SIP-modül ise M nin her dik toplananı P -extending’ dir.

4. M dağılımlı ise M nin her altmodülü P -extending’ dir.

Kanıt. (1): A, X in bir devirli altmodülü olsun. O halde x ∈ X olmak üzere

A = xR dır. Böylece A ≤e D olacak biçimde M nin bir D dik toplananı vardır.

A ≤e D ∩X ve D ∩X, X in bir dik toplananı olduğundan X, P -extending olur.

(2): X, M nin bir altmodülü olsun. D yi M nin herhangi bir dik toplananı ve

e : M → D projeksiyonu öyle ki, e(X) ⊆ X olarak tanımlayalım. O halde e(X) =

D ∩X, X in bir dik toplananıdır. Böylece (1) den X, P -extending olur.

(3): M1, M nin bir dik toplananı olsun. O halde M = M1 ⊕ M2 ve M2 ≤ M

dir. xR, M1 in bir devirli altmodülü olsun. Böylece xR ≤e D olacak biçimde

M nin bir D dik toplananı vardır. M = D ⊕ D′ ve D′ ≤ M diyelim. O halde
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xR ≤e D ∩ M1 dir. SIP-özelliğinden M = (D ∩ M1) ⊕ U olacak biçimde bir

U ≤ M vardır. M1 = M1 ∩ [(D ∩M1)⊕ U ] = (D ∩M1)⊕ (M1 ∩ U) olduğundan

M1, P -extending’ dir.

(4): X, M nin bir altmodülü ve xR ≤ X olsun. M nin bir D dik toplananı

vardır ki, xR ≤e D dir. O halde, xR ≤e D ∩ X dir. D′ ≤ M olmak üzere

X = X ∩ (D ⊕ D′) = (X ∩ D) ⊕ (X ∩ D′) olduğundan X ∩ D, X in bir dik

toplananıdır. Böylece X, P -extending’ dir. ¤

Sonuç 3.1.18 R bir halka ve M de SIP ye sahip projektif bir P -extending modül

olsun. Bu durumda bir I indis kümesi vardır ki, M modülü Mi altmodüllerinin

bir dik toplamı,
⊕

i∈I Mi dir ve i ∈ I için Mi ler M de ec-kapalı altmodüllerdir.

Kanıt. Kaplansky’ nin teoreminden [23], M modülü sayılabilir üretilmiş alt-

modüllerin bir dik toplamıdır. Teorem 3.1.17 (3) den, M yi sayılabilir üretilmiş

kabul edebiliriz. M nin m1,m2, ... sayılabilir sayıda elemanlı bir üreteç kümesi

vardır ki, M =
∑

i∈I miR dir. Varsayımdan M = M1 ⊕ N1 ve m1R ≤e M1

olacak biçimde M1, N1 ≤ M vardır. Her i ≥ 2 için ni,mi nin N1 deki projek-

siyonu olsun. Yine Teorem 3.1.17 (3) den N1 in bir M2 dik toplananı vardır

ki, n2R ≤e M2 dir. Bu şekilde devam edilirse, her pozitif k tamsayısı için

m1R + m2R + ... + mkR ⊆ M1 ⊕M2 ⊕ ...⊕Mk olacak biçimde bir M1 ⊕M2 ⊕ ...

dik toplam elde ederiz. Böylece M =
⊕

i∈I Mi dir. Mi’ lerin kuruluşu gereği her

biri ec-kapalı altmodül olduğundan, ispat tamamlanır. ¤

CS özelliğinin Morita invariant bir özellik olmadığını hatırlayalım. Bu kes-

imi ECS ve P -extending özelliklerinin de Morita invariant özellikler olmadığını

göstererek tamamlayacağız. Bu sonucu elde etmek için aşağıdaki önermeyi ispat-

layacağız.

Önerme 3.1.19 R bir bölge ve n ≥ 1 tamsayı olsun. Bu durumda,

1. Eğer RR sağ Ore bölge ise, P -extending modüldür.

2. M2(R) = S sağ P -extending halka ise R sol Ore’ dir.
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Kanıt. (1) RR sağ Ore bölge ise [16, Theorem 10.22] den düzgün modüldür.

Böylece P -extending modül olur.

(2) 0 6= x, y ∈ R alalım ve Rx ∩ Ry = 0 varsayalım. u =
[

x 0
y 0

]
denirse

[ r s
w v ] ∈ S için

[
x 0
y 0

]
. [ r s

w v ] = [ xr xs
yr ys ] dir. O halde hipotezden uS ≤e eS ola-

cak biçimde bir e2 = e ∈ S vardır. a, b, c, d ∈ R için e = [ a b
c d ] olsun. Böylece

[
x 0
y 0

]
= [ a b

c d ] .
[

x 0
y 0

]
=

[
ax+by 0
cx+dy 0

]
olur. Yani x = ax + by ve y = cx + dy bulunur.

Buradan (1− a)x = by ve (1− a)x = 0 elde edilir. O halde a = 1, b = 0 dır. Yine

(1− d)y = cx den d = 1, c = 0 dır. Yani e = [ 1 0
0 1 ] ve uS ≤e S dir. Diğer yandan

a′, b′, c′, d′ ∈ R için 0 6= [ 1 0
0 0 ] .

[
a′ b′
c′ d′

]
= [ xr xs

yr ys ] dir. Buradan r = s = 0 ve böylece

a′ = b′ = 0 elde edilir ki bu bir çelişkidir. O halde R sol Ore’ dir. ¤

Sonuç 3.1.20 R bir bölge ve M2(R) sağ ECS-halka olsun. Bu durumda R sol

Ore’dir.

Kanıt. Önerme 3.1.9 ve Önerme 3.1.19 dan açıktır. ¤

Sonuç 3.1.20 den ECS olma özelliğinin Morita invariantliği hakkında yorum

yapılabilir. Öncelikle [16] da sağ Ore bölgesi olup sol Ore olmayan örnek ver-

ilmiştir. O halde, sağ P -extending (ECS) olan R halkaları vardır ki, M2(R) = S

sağ P - extending (ECS) halka değildir. Böylece P -extending ve ECS özellikleri

Morita invariant özellikler değildirler.

3.2 Ec-İnjektiflik

2. Bölümde incelediğimiz P1 özelliğinden ve [20] de araştırılan kapalı

düzgün altmodüllerden modüle tanımlı homomorfizmaların modülün kendisine

genişletilmesi özelliğinden hareketle ec-kapalı altmodüllerden modüle olan homo-

morfizmaların modülün kendisine genişletilmesi özelliğini araştıracağız. [20] de

verilen bazı tanımların ec-kapalı altmodüller alınarak elde edilen karşılıklarını

tanımlayarak başlayalım.

Tanım 3.2.1 M1 ve M2, R-modüller olsun. Eğer M1 in her K ec-kapalı alt-

modülü için her ϕ : K → M2 homomorfizması bir θ : M1 → M2 homomor-
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fizmasına genişletilebiliyorsa yani, θ|K = ϕ ise M2 modülüne M1-ec-injektif’

tir denir. Açıktır ki, eğer M2 modülü M1-c-injektif (bakınız [20]) veya daha da

genel olarak eğer M2 modülü M1-injektif ise M1-ec-injektif ’ tir. Yine, eğer M

modülü M-ec-injektif ise M ye self-ec-injektif’ tir denir.

2. Bölümde CS-modüllerin belirli altmodüllerden modüle olan homomorfiz-

maların genişletilebilmeleri türünden karakterizasyonları verilmiştir. Şimdi benzer

olarak ECS-modüller için ilgili sonuçları ispatlayacağız.

Önteorem 3.2.2 M bir modül olsun. Bu durumda M nin ECS-modül olması

için gerek ve yeter koşul M nin her K ec-kapalı altmodülü için, K nın bir L

komplementi vardır ki, her ϕ : K ⊕ L → M homomorfizmasının bir θ : M → M

homomorfizmasına genişletilebilmesidir.

Kanıt. Önteorem 2.1.4 deki ispata benzer olarak kanıtlanır. ¤

Önteorem 3.2.3 M bir modül ve K, M nin bir ec-kapalı altmodülü olsun. Eğer

K, M-ec-injektif ise K, M nin bir dik toplananıdır.

Kanıt. i : K → K birim homomorfizmayı göstersin. O halde hipotezden bir

θ : M → K homomorfizması vardır ki, θ|K = i dir. Böylece M = K ⊕ Kerθ

olduğunu görmek kolaydır. Yani K, M nin bir dik toplananıdır. ¤

Önerme 3.2.4 Bir M modülü için aşağıdaki koşullar denktir.

1. M , ECS dir.

2. Her modül M-ec-injektif ’ tir.

3. M nin her ec-kapalı altmodülü M-ec-injektif ’ tir.

Kanıt. (1) ⇒ (2) ve (2) ⇒ (3) gerektirmeleri açıktır. (3) ⇒ (1) gerektirmeside

Önteorem 3.2.3 den elde edilir. ¤
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Önerme 3.2.4 den özel olarak, her ECS-modülün self-ec-injektif modül olduğu

sonucunu elde ederiz. Ancak, self-ec-injektif modüllerin genel olarak ECS-modül

olmayacağına ilişkin örnek vereceğiz. Yine bu örneğimiz, [15] deki ”M = M1⊕M2

ise M2 modülünün M1-ec-injektif olması için gerek ve yeter koşul M nin N∩M2 =

0 olan her N ec-kapalı altmodülü için N ≤ N ′ ve M = N ′ ⊕M2 olacak biçimde

bir N ′ ≤ M vardır.” varsayımının geçersizliğini de gösterecektir.

Örnek 3.2.5 p bir asal tamsayı ve R = Zp local (yerel) halka olsun. M

modülü olarak Q ⊕ Z/Zp Abel grubunu (Z-modülü) alalım. Bu durumda M self-

ec-injektif ’ tir fakat ECS-modül değildir. Üstelik MZ önceki parağraftaki denkliği

de sağlamaz.

Kanıt. MZ nin CS-modül olmadığını biliyoruz ([24], [20]). MZ sonlu Goldie

boyutlu olduğundan, Teorem 3.1.12 (3) den MZ ECS-modül değildir. Örnek 2.2.6

dan MZ self-ec-injektif’ tir. Son kısım için, M1 = Q⊕ 0 ve M2 = 0⊕ Z/Zp diye-

lim. M1, M2 düzgün modüller olduğundan M2 modülü M1-ec-injektif’ tir. Şimdi

N = R(1, 1) diyelim. O halde, N , MZ nin bir ec-kapalı altmodülüdür. Üstelik

N ∩M2 = 0 ve N , MZ de bir dik toplanan değildir. N ≤ N ′ ve M = N ′ ⊕M2

olacak biçimde bir N ′ ≤ M olduğunu kabul edelim. N , M de maksimal düzgün

altmodül olduğundan N ′ nün Goldie boyutu 2 den büyük yada eşittir ki, bu M

nin Goldie boyutunun 2 oluşuyla çelişir. O halde, böyle bir N ′ ≤ MZ yoktur. ¤

Örnek 3.2.5 ile ilgili olarak, M2 modülünün M1-ec-injektif olması için gerek

ve yeter bir koşulu ispatlayacağız. Öncelikle, M = M1⊕M2 için πi (i=1,2) ler M

den Mi ye projeksiyon dönüşümleri için kullanılacaktır. Diğer yandan; ispatlay-

acağımız teoremin [24], [20] ile karşılaştırması bütünlük açısından uygun olacaktır.

Teorem 3.2.6 M1, M2 modüller ve M = M1 ⊕M2 olsun. Bu durumda, M2 nin

M1-ec-injektif olması için gerek ve yeter koşul M nin N∩M2 = 0 ve π1(N), M1 de

ec-kapalı olacak biçimdeki her ec-kapalı altmodülü N için N ≤ N ′ ve M = N ′⊕M2

olacak şekilde bir N ′ ≤ M olmasıdır.
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Kanıt. M2 modülünün M1-ec-injektif olduğunu kabul edelim. N yi M de bir ec-

kapalı altmodül olarak alalım öyle ki, N ∩M2 = 0 ve π1(N) de M1 de ec-kapalı ol-

sun. N∩M2 = 0 olduğundan, π1|N : N → π1(N) izomorfizmadır. α : π1(N) → M2

yi, x ∈ π1(N) için α(x) = π2(π1|N)−1(x) olarak tanımlayalım. M2, M1-ec-injektif

ve π1(N), M1 de ec-kapalı olduğundan α homomorfizması bir θ : M1 → M2 homo-

morfizmasına genişletilebilir. N ′ = {x + θ(x) : x ∈ M1} kümesini tanımlayalım.

N ′ nün M de bir altmodül ve M = N ′ ⊕ M2 olduğu kolayca görülebilir. Şimdi

x ∈ N için, θπ1(x) = απ1(x) = π2(x) ve böylece x = π1(x) + θπ1(x) ∈ N ′ olur. O

halde N ≤ N ′ dür.

Tersine, N ∩ M2 = 0 ve π1(N), M1 de ec-kapalı olan M nin her ec-kapalı alt-

modülü N için, M = N ′ ⊕ M2 ve N ≤ N ′ olacak biçimde M nin bir N ′ alt-

modülü var olsun. K, M1 in bir ec-kapalı altmodülü ve α : K → M2 bir ho-

momorfizma olsun. N = {x − α(x) : x ∈ K} diyelim. O halde, N ≤ M ve

N ∩M2 = 0 dır. π1(N) = K olduğundan π1(N), M de ec-kapalıdır. Varsayımdan,

M = N ′⊕M2 olacak biçimde N ≤ N ′ altmodülü vardır. π : M → M2, kerπ = N ′

olan projeksiyon ve θ = π|M1 : M1 → M2, π nin M1’ e kısıtlanmış homomorfiz-

ması olsun. Şimdi bir x ∈ K için, θ(x) = π(x) = π(x− α(x) + α(x)) = α(x) dır.

Yani, θ dönüşümü α yı genişletir. O halde, M2 modülü M1-ec-injektiftir. ¤

Önteorem 3.2.7 M1 ve M2 modülleri için M2, M1-ec-injektif olsun. Bu du-

rumda, M1 in her ec-kapalı altmodülü N için, M2 modülü N-ec-injektif ve

(M1/N)-ec-injektif ’ tir.

Kanıt. N , M1 in bir ec-kapalı altmodülü olsun. N nin her ec-kapalı altmodülü M1

in ec-kapalı altmodülü olduğundan M2, N -ec-injektif’ tir. Şimdi M1/N de bir

K/N ec-kapalı altmodülünü ve α : K/N → M2 homomorfizmasını alalım. O halde

Önerme 1.2.17 den K, M1 in ec-kapalı altmodülüdür. π : M1 → M1/N ve π′ :

K → K/N kanonik epimorfizmalar olsun. M2 modülü M1-ec-injektif olduğundan

απ′ : K → M2 dönüşümünü genişleten bir θ : M1 → M2 dönüşümü vardır. N ≤
kerθ olduğundan γπ = θ olacak biçimde bir γ : M1/N → M2 homomorfizması
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vardır. O halde bir a ∈ K için γ(a + N) = γπ(a) = θ(a) = απ′(a) = α(a + N)

dır. Böylece M2 modülü (M1/N)-ec-injektif’ tir. ¤

Önteorem 3.2.8 M bir self-ec-injektif modül ise M nin dik toplananları da self-

ec-injektif ’ tir.

Kanıt. L, M nin bir dik toplananı olsun. O halde M = L⊕L′ olacak biçimde bir

L′ ≤ M vardır. X, L nin bir ec-kapalı altmodülü ve ϕ : X → L bir homomorfizma

olsun. X, M de ec-kapalı olduğundan θ|X = ϕ olacak biçimde bir θ : M →
M homomorfizması vardır. π : M → L projeksiyonu göstersin; α : L → L

homomorfizmasını l ∈ L için α(l) = π(θ(l)) olarak tanımlayalım. Buradan α|X =

ϕ dir. O halde, L self-ec-injektif’ tir. ¤

Önteorem 3.2.8 in tersi genel olarak doğru değildir. Örneğin, p bir asal tamsayı

ise M1 = Z/Zp, M2 = Z olmak üzere MZ = M1 ⊕M2 modülünü alalım. Açıktır

ki, M1 ve M2 düzgün modüller olduğundan, self-ec-injektif’ tirler. Ancak MZ nin

Goldie boyutu sonlu (aslında 2) olduğundan, [20, Corollary 3.5] den MZ self-ec-

injektif değildir. Bu duruma ilişkin olarak şimdi bir teorem ispatlayacağız.

Teorem 3.2.9 M1 torsion ve M2 sonsuz devirli gruplar olsun. Eğer MZ = M1⊕
M2 modülü self-ec-injektif ise her p asal tamsayısı için M1 = pM1 dir.

Kanıt. 0 6= m2 ∈ M2 için M2 = Zm2 olsun. Bir p asal sayısı için M1 6= pM1

olduğunu kabul edelim. m1 ∈ M1 ve m1 /∈ pM1 için K = Z(m1, pm2) alt-

modülünü alalım. Bir L ≤ M için K ≤e L varsayalım. O halde herhangi bir

n ∈ Z için n(m1, pm2) = (nm1, npm2) = (0, 0) olması n = 0 olmasını gerektirir.

Buradan K sonsuz devirlidir. O halde K düzgün Z-modüldür. x ∈ L alalım.

a = (m1, pm2) diyelim. O halde K + Zx = Za + Zx sonlu üretilmiş modüldür.

Böylece K+Zx ≤ L ve K+Zx devirli modüllerin bir dik toplamıdır. Fakat K+Zx

düzgündür, o halde K + Zx devirlidir. Böylece y ∈ M için Za ⊆ K + Zx = Zy

dir. m′
1 ∈ M1 ve k ∈ Z için y = (m′

1, km2) olsun. Buradan s ∈ Z için a = sy dir.

O halde, (m1, pm2) = s(m′
1, km2) den m1 = sm′

1, pm2 = skm2 elde edilir. M2
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sonsuz devirli olduğundan, s = ±1 veya k = ±1 dir. Eğer k = ±1 olsa s = ±p

olur ve buradan m1 = ±pm′
1 ∈ pM1 çelişkisi elde edilir. Böylece s = ±1 olmalıdır.

O halde y ∈ Za ve x ∈ Zy ⊆ Za yani L ⊆ Za = K dır ki, bu L = K yı verir.

Böylece K, M de komplementtir. K devirli olduğundan K ec-kapalıdır. Şimdi

ϕ : K → M homomorfizmasını ϕ(m1, pm2) = (0,m2) olarak tanımlayalım. ϕ

nin bir θ : M → M homomorfizmasına genişletilebildiğini kabul edelim. O halde

u, v ∈ M1 ve t ∈ Z için θ(m1, 0) = (u, 0) ve θ(0,m2) = (v, tm2) dir. Böylece

(0,m2) = ϕ(m1, pm2) = θ(m1, pm2) = θ(m1, 0) + pθ(0,m2) = (u, 0) + p(v, tm2)

dir. Buradan 0 = u + pv ve m2 = ptm2 elde ederiz. O halde 1 = pt dir ki, bu

bir çelişkidir. Böylece, ϕ genişletilemez. Yani, her p asal sayısı için M1 = pM1

olmalıdır. ¤

Bu kesimi self-ec-injektif olup self-c-injektif olmayan modüllerin varlığını

göstererek tamamlayacağız. Bunun için [20] den alınan aşağıdaki tanımı kul-

lanacağız.

Tanım 3.2.10 M1 ve M2 modülleri verilsin. Bu durumda, eğer her A ≤ MR için

kerα ≤e A olan α : A → M2 homomorfizması bir β : M1 → M2 homomorfiz-

masına genişletilebiliyorsa M2 modülüne essentially M1-injektif’ tir denir.

Önerme 3.2.11 M1, CS ve M2 de düzgün modüller olsun. Eğer M2 essentially

M1-injektif ise aşağıdaki koşullar denktir.

1. M1 ⊕M2 self-c-injektif ’ tir.

2. M1 ⊕M2 self-ec-injektif ’ tir.

3. M1 ⊕M2 self-cu-injektif ’ tir.

Kanıt. (1) ⇒ (2) ve (2) ⇒ (3) gerektirmeleri tanımlardan açıktır. (3) ⇒ (1) [20,

Proposition 2.9] den elde edilir. ¤

Sonuç 3.2.12 R cisim olmayan bir Prüfer bölgesi olsun. Bu durumda, herhangi

bir sonlu üretilmiş olmayan serbest R-modül self-ec-injektif ’ tir ancak self-c-

injektif değildir.
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Kanıt. M tabanı {mi : i ∈ I} olan bir serbest R-modül ve U , M de ec-kapalı bir

altmodül olsun. Eğer U = 0 ise ispat biter. O halde U 6= 0 varsayalım. Buradan

xR ≤e U olacak biçimde bir 0 6= x ∈ U vardır. Böylece I indis kümesinin bir

sonlu F altkümesi vardır ki, x ∈ ⊕
i∈F miR dir. U/xR torsion modül olduğundan,

U ⊆ ⊕
i∈F miR dir. [9, Corollary 12.10] dan, U modülü

⊕
i∈F miR nin ve böylece

de M nin bir dik toplananıdır. O halde MR self-ec-injektif’ tir. Diğer yandan [20,

Theorem 3.1] den, MR self-c-injektif değildir. ¤

3.3 ECS-modüllerin dik toplamları

ECS-modüllerin dik toplamlarının ECS-modül olması gerekmez. Örneğin M1 =

Z/Zp, M2 = Q ve MZ = M1 ⊕ M2 alınırsa, M iki, ECS-modülün (aslında iki

düzgün modülün) dik toplamıdır ancak MZ, ECS değildir. (bakınız, örnek 3.2.5).

Bu kesimde, ECS-modüllerin dik toplamının hangi koşullar altında ECS-modül

olduğu tartışılacaktır. Buradaki sonuçlar [15] de P -extending yerine ECS koşulu

yazılıp düzeltilmiş formdaki karşılık gelen sonuçlar olacaktır.

Önerme 3.3.1 M = M1⊕M2 ve M nin her ec-kapalı altmodülü C için C ∩M1,

M de ec-kapalı altmodül olsun. Bu durumda; M nin ECS-modül olması için gerek

ve yeter koşul C ∩M1 = 0 veya C ∩M2 = 0 olan her C ec-kapalı altmodülün M

nin bir dik toplananı olmasıdır.

Kanıt. Gereklilik açıktır. Yeterlilik için, C yi M de ec-kapalı altmodül ve cR ≤e C

olarak alalım. Eğer C ∩M1 = 0 ise ispat biter.

C ∩M1 6= 0 ise, varsayımdan C ∩M1 altmodülü M de ec-kapalıdır. C1, C ∩M1 in

C deki kapanışı olsun. O halde, C1, M de ec-kapalıdır ve C1∩M2 = 0 dır. Böylece

varsayımdan C1, M nin bir dik toplananıdır. Bir C2 ≤ M için M = C1 ⊕ C2 dir.

Şimdi, C = C ∩M = C ∩ (C1 ⊕ C2) = C1 ⊕ (C ∩ C2) dir. Sonuç 3.1.3 (1) den

C ∩C2, M de ec-kapalı altmodüldür ve (C ∩ C2) ∩M1 = 0 dır. O halde, C ∩C2,

M nin bir dik toplananıdır. Böylece C, M nin bir dik toplananıdır. Yani M ,

ECS-modüldür. ¤
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Teorem 3.3.2 M1 sonlu Goldie boyutlu bir modül olmak üzere M = M1 ⊕ M2

olsun. Bu durumda M nin ECS-modül olması için gerek ve yeter koşul M nin

C ∩M1 = 0 veya sonlu Goldie boyutlu olan her ec-kapalı altmodülü C nin bir dik

toplanan olmasıdır.

Kanıt. Gereklilik açıktır. Yeterlilik için, C, M nin bir ec-kapalı altmodülü ve

mR ≤e C olsun. Eğer C ∩M1 = 0 ise ispat biter.

O halde, 0 6= c ∈ C ∩ M1 alalım. cR nin C deki kapanışı C1 olsun. C sonlu

Goldie boyutlu olduğundan C1 de sonlu Goldie boyutludur. Varsayımdan, C1,

M nin bir dik toplananıdır. Bir K ≤ M vardır ki, M = C1 ⊕ K dır. Böylece

C∗ = K ∩ C için C = C1 ⊕ C∗ olur ve C∗, M de komplementtir. c1 ∈ C1 ve

c∗ ∈ C∗ için m = c1 + c∗ diyelim. C∗, ec-kapalı altmodülü C nin bir dik toplananı

olduğundan Sonuç 2.1.3.(1) den C∗ bir ec-kapalı altmodüldür. Eğer C∗ ∩M1 = 0

ise, varsayımdan C∗ bir dik toplanandır. O halde, C, M nin bir dik toplananı olur.

Diğer yandan, eğer C∗ ∩M1 6= 0 ise, bu durumda önceki adımları tekrarlayıp C2

nin bir dik toplanan ve C2 ∩M1 6= 0 olmak üzere C∗ = C1 ⊕ C2 elde ederiz. Bu

şekilde devam edilirse M1 modülünün Goldie boyutu sonlu olduğundan sonlu bir

adımdan sonra bu işlem durmak zorundadır. O halde i = 1, 3, ..., n için Ci ler M

nin dik toplananları, Cn ∩M1 = 0 ve Cn essential devirli bir altmodül kapsamak

üzere C = C1 ⊕ C2 ⊕ .... ⊕ Cn dir. Böylece Cn, M nin bir dik toplananıdır ki,

varsayım gereği C, M nin bir dik toplananı olur. O halde M , ECS-modüldür. ¤

Sonuç 3.3.3 M1 sonlu Goldie boyutlu bir modül olmak üzere M = M1 ⊕ M2

olsun. Bu durumda M nin ECS-modül olması için gerek ve yeter koşul C∩M1 = 0

yada C ∩ M2 = 0 olan M nin her C ec-kapalı altmodülünün bir dik toplanan

olmasıdır.

Kanıt. Teorem 3.3.2 den hemen elde edilir. ¤

Önerme 3.3.4 M = M1 ⊕ M2 olsun. Bu durumda, M nin her sonlu Goldie

boyutlu ec-kapalı altmodülünün M nin bir dik toplananı olması için (M nin ECS-
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modül olması için) gerek ve yeter koşul C ∩M1 = 0 yada C ∩M2 = 0 olan M nin

her sonlu Goldie boyutlu ec-kapalı altmodülü C nin bir dik toplanan olmasıdır.

Kanıt. Teorem 3.3.2 nin ispatına benzer olarak yapılabilir. ¤

Önerme 3.3.5 M1 yarıbasit bir modül olmak üzere M = M1 ⊕ M2 olsun. Bu

durumda, M nin ECS-modül olması için gerek ve yeter koşul C ∩M1 = 0 olan

M nin her C ec-kapalı altmodülünün bir dik toplanan olmasıdır.

Kanıt. Gereklilik koşulu açıktır. Yeterlilik koşulu için, M de bir C ec-kapalı alt-

modülü alalım. C∩M1 = 0 ise ispat biter. Diğer yandan; M1 yarıbasit olduğundan

C ∩M1 altmodülü, M1 in bir dik toplananıdır. O halde C = (C ∩M1)⊕ C∗ dır.

C∗, M de ec-kapalı altmodül ve C∗ ∩ M1 = 0 olduğundan C∗, M de bir dik

toplanandır. Böylece C, M nin bir dik toplananıdır. ¤

Bu kesimi iki düzgün modülün dik toplamının homolojik koşullar altında ECS

modül olacağını ispatlayarak tamamlayacağız. Bunun için önce [14] de ispatlanan

aşağıdaki Önteoremi verelim.

Önteorem 3.3.6 M ve N , R-modül olsun. Her f ∈ Hom(M, E(N)) için Xf =

{m ∈ M : f(m) ∈ N} olmak üzere Bf = {m + f(m) : m ∈ Xf} ve N , M ⊕ N

içinde birbirlerinin komplementleridir. Eğer Hom(N,E(M)) = 0 ise N , Bf nin

M ⊕N içinde tek komplementidir.

Kanıt. Bf ∩ N = 0 olursa ispat açıktır. Şimdi L, M ⊕ N nin L ∩ N = 0 ve

Bf ⊆ L olan bir altmodülü olsun. π ve π∗ ın M ⊕ N dan sırasıyla M ve N ye

projeksiyonlar olduğunu kabul edelim. Eğer her l ∈ L için π∗(l) = fπ(l) olduğunu

gösterirsek Bf = L olur. Bu durumda bazı l ∈ L için (π∗ − fπ)(l) 6= 0 olsun.

E(N) nin N üzerindeki essentiallığından 0 6= π∗(lr)− fπ(lr) ∈ N olacak şekilde

r ∈ R vardır. Fakat π∗(lr)− fπ(lr) = lr− [π(lr)+ fπ(lr)] ∈ N ∩L = 0 olmasıyla

çelişir. Dolayısıyla (π∗ − fπ)(l) = 0 dır. Yani her l ∈ L için π∗(l) = fπ(l) elde

edilir.
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Önteoremin ikinci kısmının ispatı için Y , M ⊕ N nin Y ∩ Bf = 0 koşulunu

sağlayan bir altmodülü olsun. Eğer Y ∩Xf 6= 0 olsa, f in Y ∩Xf e kısıtlanması

Hom(N, E(M)) nin sıfırdan farklı bir elemanı olur ki bu da kabulümüzle çelişir.

O zaman, Y ∩Xf = 0 dır ve buradan Xf ≤e M olduğundan da Y ∩M = 0 olur.

Böylece π∗|Y bir monomorfizmadır ve π(Y ) = 0 dır. Aksi taktirde çelişki elde

edilir. Dolayısıyla Y ⊆ N olur. ¤

Önerme 3.3.7 M1, M2 düzgün modüller ve i = 1, 2 için End(Mi) yerel halka

olsun. Bu durumda aşağıdakiler denktir.

1. M = M1 ⊕M2, CS-modül ve i 6= j için Mi → Mj olan her monomorfizma

bir izomorfizmadır.

2. M = M1⊕M2, ECS-modül ve i 6= j için Mi → Mj olan her monomorfizma

bir izomorfizmadır.

3. i 6= j için Mi modülü Mj-injektiftir.

Kanıt. (1) ⇒ (2): Önerme 3.1.9 dan açıktır.

(2) ⇒ (3): f ∈ Hom(E(Mi),Mj) ve i 6= j olsun. X = {x ∈ Mi : f(x) ∈
Mj} olarak tanımlayalım. O halde A = {x + f(x) : x ∈ X} altmodülü M de

komplement ve düzgündür. Böylece A, M de ec-komplement altmodüldür. M ,

ECS-modül ve End(Mi) yerel olduğundan M = A ⊕Mi veya M = A ⊕Mj dir.

Eğer M = A ⊕Mi ise bu durumda Mj = f(x) ve böylece f−1 : Mj → X ≤ Mi

olup varsayımdan izomorfizma vardır. Yani X = Mi dir. Diğer yandan, eğer

M = A⊕Mj ise bu durumda X = Mj olur. Böylece ispat tamamlanır.

(3) ⇒ (1): [14, Corollary 2.25] den açıktır. ¤

3.4 Düzgün Altmodüllere Ayrışım

Bu kesimde CS-modüller için Okado’nun Teorem 1.3.12 de elde ettiği düzgün

altmodüllere ayrışım türünde bir sonuç elde edip bunu ECS-modüllere in-

dirgeyeceğiz. Şimdi gerekli olan yerel dik toplanan tanımını ve ECS-modüllere

ilişkin bir sonucu verelim.
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Tanım 3.4.1 M bir modül ve {Xi : i ∈ I}, M nin altmodüllerinin bir ailesi

olsun. Eğer I nın her sonlu I ′ altkümesi için
⊕

i∈I′ Xi altmodülü M nin bir dik

toplananı oluyor ise, {Xi : i ∈ I} ailesine M için bir yerel dik toplanan denir.

Sonuç 3.4.2 M bir ECS-modül olsun ve M bir devirli essential Y altmodülü kap-

sasın. Bu durumda M nin dik toplanan ve ec-kapalı altmodülleri aynıdır.

Kanıt. K, M nin bir dik toplananı ve Y = xR, x ∈ M olsun. O zaman M = K⊕
K ′ olacak şekilde K ′ ≤ M vardır. Şimdi π : M → K projeksiyon dönüşümü olsun.

O halde, Y ∩K = xR∩K ⊆ π(Y ) = π(x)R ⊆ K olup, π(x)R ≤e K dır ve K, M

de komplement olduğundan K, M de ec-komplementtir.

Tersine K, M de ec-komplement altmodül olsun. Bu durumda M , ECS-modül

olduğundan K, M de dik toplanandır. ¤

Şimdi vereceğimiz önteorem yerel dik toplananlar ile komplement altmodüller

arasındaki kullanışlı bir ilişkiyi belirtecektir.

Önteorem 3.4.3 M bir R-modül ve R, m ∈ M olmak üzere r(m) sağ

sıfırlayıcılar üzerinde ACC yi sağlasın. Bu durumda M nin her yerel dik toplananı

M de bir komplementtir.

Kanıt. N =
⊕

i∈I Ni, M nin bir yerel dik toplananı olsun. M de bir L alt-

modülü alalım öyle ki, N ≤e L olsun. N 6= L varsayalım. m ∈ N\L yi r(m)

ideali {r(x) : x ∈ L\N} de maksimal olacak biçimde seçelim. O halde m 6= 0

dır ve 0 6= mr ∈ N olacak biçimde bir r ∈ R vardır. Böylece I nın bir I ′ sonlu

altkümesi vardır ki, mr ∈ K =
⊕

i∈I′ Ni dir. Buradan M = K ⊕ K ′ olacak

biçimde bir K ′ ≤ M vardır. Şimdi m = y + y′ olacak biçimde y ∈ K ve yr ∈ K ′

vardır. Böylece mr = yr +y′r, y′r = 0 olmasını gerektirir. Yani r(m) $ r(y′) dür.

Ancak y′ = m− y ∈ L\N olup, m nin seçilişi ile çelişir. O halde N = L dır ki bu

da N nin komplement olmasını verir. ¤

Teorem 3.4.4 M , her dik toplananı P -extending olan bir modül ve M nin her

yerel dik toplananı bir dik toplanan olsun. Eğer R, m ∈ M olmak üzere r(m) sağ

idealleri üzerinde ACC yi sağlarsa M düzgün altmodüllerin bir dik toplamıdır.
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Kanıt. 0 6= m ∈ M alalım öyle ki r(m), {r(x) : 0 6= x ∈ M} de maksimal olsun. O

halde M nin bir K dik toplananı vardır ki, mR ≤e K dir. K nın indecomposable

olmadığını varsayalım. O halde K nın sıfırdan farklı K1, K2 altmodülleri vardır ve

K = K1⊕K2 dir. Böylece m = m1+m2 olacak biçimde m1 ∈ K1, m2 ∈ K2 vardır.

Eğer m1 = 0 olsaydı, m = m2 ∈ K2 ve mR ∩ K1 = 0 dan K1 = 0 bulunurdu

ki bu bir çelişkidir. Yani m1 6= 0 dır. Açıktır ki, r(m) ⊂ r(m1) dir. Böylece, m

nin seçilişinden r(m) = r(m1) dir. Benzer olarak m2 6= 0 ve r(m) = r(m2) dir.

Şimdi m1 6= 0 olduğundan 0 6= r1m1 = r2m2 = r2(m1 + m2) = r2m1 + r2m2

olacak biçimde r1, r2 ∈ R vardır. Böylece r2m2 = 0 ve buradan r2 ∈ r(m2)\r(m)

olur. Bu bir çelişkidir. O halde K indecomposable olmalıdır. K, P -extending

olduğundan K düzgün modül olur. O halde M nin her dik toplananı bir düzgün

dik toplanan kapsar. Zorn Lemma’dan, M bir N =
⊕

i∈I Ni maksimal yerel dik

toplanan kapsar ki burada Ni ler düzgün modüldür. Varsayımdan M = N ⊕ N ′

olacak biçimde bir N ′ ≤ M vardır. Eğer N ′ 6= 0 olsaydı yukarıdaki tartışmadan U

düzgün olmak üzere N ′ = U ⊕ U ′ olacak biçimde U , U ′ altmodülleri var olurdu.

O halde N ⊕ U , M nin bir yerel dik toplananı olurdu ki, bu N nin seçilişi ile

çelişirdi. Böylece N ′ = 0 ve M =
⊕

i∈I Ni dir. Yani M düzgün altmodüllerin bir

dik toplamıdır. ¤

Sonuç 3.4.5 M bir ECS-modül ve M nin her yerel dik toplananı bir dik toplanan

olsun. Eğer R, m ∈ M olmak üzere r(m) sağ idealleri üzerinde ACC yi sağlarsa

M düzgün altmodüllerin bir dik toplamıdır.

Kanıt. Önerme 3.1.9 ve Önteorem 3.1.8 ve Teorem 3.4.4 ten açıktır. ¤

Teorem 3.4.6 M bir R-modül ve M nin her yerel dik toplananı bir dik toplanan

olsun. Eğer M nin her sıfır olmayan altmodülü sıfır olmayan bir devirli düzgün

altmodül kapsıyorsa bu durumda M nin CS-modül olması için gerek ve yeter koşul

M nin P -extending olmasıdır.

Kanıt. M , CS-modül ise açıkça P -extending’dir.

Tersi için 0 6= K ≤ M ve K, M de bir komplement olsun. O halde varsayımdan K
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bir düzgün devirli U altmodülü kapsar ve U bir U ′ dik toplananında essentialdır.

Böylece U ′, M nin düzgün bir dik toplananıdır. Zorn Lemma’dan, K nın bir N

altmodülü vardır ki, N =
⊕

i∈I Ni, M nin bir yerel dik toplananı ve Ni lerin

düzgün olması özelliğine göre maksimaldir. Varsayımdan M = N ⊕ N ′ olacak

biçimde N ′ ≤ M vardır. Şimdi, K = K∩M = K∩ (N⊕N ′) = N⊕ (K∩N ′) dür.

O halde K ∩ N ′, M de bir komplementtir. Eğer K ∩ N ′ 6= 0 olsaydı yukarıdaki

tartışmadan, K ∩N ′ altmodülü bir düzgün V dik toplananı kapsar. Bu durumda

N ⊕ V , M nin bir yerel dik toplananıdır ki, bu N nin seçilişi ile çelişir. Böylece

K ∩N ′ = 0 ve K = N bulunur. Yani K, M nin bir dik toplananıdır. O halde M ,

CS-modüldür. ¤
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4 CS-Modüllerin Genelleştirmeleri

Çalışmalarımızın bu son bülümü CS-modüllerin genelleştirilmiş bazı formlarından

oluşacaktır. C11 ve FI-extending olarak bilinen genelleştirmelerin yanında yeni

bir genelleştirme tanımlayıp ayrıntılı olarak incelenecektir. C11 ve FI-extending

modüller konusunda, Birkenmeier ve Tercan’ın [6] yakın zaman önce yayınladığı

bazı ilgili sonuçlar ispatlarıyla birlikte verilecektir.

4.1 (C11) ve FI-extending Modüller

Smith ve Tercan’ın CS-modüllerin bir genelleştirmesi olarak [25], [26]

çalışmalarında ayrıntılı olarak inceledikleri C11-modül tanımı ile başlayalım.

Tanım 4.1.1 M modülünde eğer her N ≤ M altmodülünün dik toplanan olan

bir komplementi varsa M ye C11-modül (veya M , C11 özelliğini sağlar) denir.

CS-modüllerin C11-modül olduğu açıktır. Yine bir indecomposable C11-modül

düzgündür. C11-modüllerin, CS-modül olması gerekmez. Örneğin, bir p asal tam

sayısı için M = (Z/Zp) ⊕ (Z/Zp3), Z-modülünü alalım. MZ, C11-modül ancak

CS-modül değildir [25]. Birinci bölümde belirtildiği üzere, CS-modüllerin dik

toplananlarıda CS-modüldür ancak CS-modüllerin bir dik toplamı, genel olarak

CS-modül olmak zorunda değildir. Oysa C11-modüllerde bu iki durum farklıdır.

Şöyle ki, C11-modülün her dik toplananı C11-modül olmayabilir ki bunu Örnek

3.1.4 açıklığa kavuşturacaktır. Diğer yandan C11-modüllerin dik toplamlarına

ilişkin olarak şimdi vereceğimiz teorem [25, Theorem 2.4] de ispatlanmıştır.

Teorem 4.1.2 C11-modüllerin bir dik toplamı da C11-modüldür.

Birkenmeier ve diğer yazarların [3], [4], [5] de CS-modüllerin bir genelleştirmesi

olarak tanımladığı ve araştırdığı ki literatürde yer alan bir çok modül sınıfını

kapsamaktadır, FI-extending modül tanımını verelim.

Tanım 4.1.3 M modülünün her fully invariant altmodülü, M nin bir dik

toplananında essential olarak kapsanıyorsa M ye FI-extending modül denir.
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CS-modüllerin, FI-extending modül olduğu Tanım 4.1.3 ün bir sonucu olarak

açıktır. FI-extending modüllerin, CS-modüllerden farklı olduğunu gösteren örnek

vereceğiz. Öncelikle aşağıdaki sonuçları vermek uygun olacaktır.

Önteorem 4.1.4 M bir modül olsun.

1. M nin fully invariant altmodüllerinin herhangi toplamı veya kesişimi de

fully invariant altmodüldür.

2. Eğer X ≤ Y ≤ M ve Y , M nin ve X de Y nin fully invariant bir alt-

modülü ise, X, M nin fully invariant bir altmodülüdür.

3. Eğer M =
⊕

i∈I Xi ve S, M nin bir fully invariant altmodülü ise, πi, M nin

i. projeksiyon homomorfizması olmak üzere S =
⊕

i∈I πi(S) =
⊕

i∈I(Xi∩S)

dir.

Kanıt. [4, Lemma 1.1] e bakınız. ¤

Teorem 4.1.5 Xi, (i ∈ I) ler FI-extending modüller ise, M =
⊕

i∈I Xi

modülü de FI-extending modüldür.

Kanıt. Farzedelim ki her Xi, FI-extending modül ve S de M nin fully invariant

altmodulü olsun. 0 6= s ∈ S alalım. S ≤ M olduğundan s = x1 + x2 + ... +

xn dir. Bir i ∈ I için s 6= 0 kabul ettiğimizden xi 6= 0 dır. πi(S) = xi 6= 0

olur. f : Xi → Xi endomorfizma olsun. Buradan f(πi(S)) = f(Xi) = Xi =

πi(S) dir. Dolayısıyla her i ∈ I için πi(S) 6= 0 olacak şekilde πi(S), Xi nin fully

invariant altmodülü olur. Buradan Xi, FI-extending modül olduğundan πi(S) ≤e

Di olacak biçimde Xi nin bir Di dik toplananı vardır. Önteorem 4.1.4(3) den

S =
⊕

i∈I πi(S) ≤e

⊕
i∈I Di dir. Buradan

⊕
i∈I Di, M nin bir dik toplananıdır.

Böylece M , FI-extending modüldür. ¤

Sonuç 4.1.6 R bir sağ FI-extending halka ise her n pozitif tamsayı için Mn(R)

matris halkası da FI-extending halkadır.
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Kanıt. [4, Proposition 2.3] e bakınız. ¤

Örnek 4.1.7 D Prüfer olmayan bir değişmeli bölge olsun. n ≥ 2 bir tamsayı ve

R = Mn(D) olarak alalım. Sonuç 4.1.6 ten RR, FI-extending modüldür. Ancak D

Prüfer olmadığından [9, Corollary 12.10] dan R, CS-modül değildir.

Önteorem 4.1.8 M bir modül olsun. Aşağıdaki koşullar denktir.

1. M , FI-extending modüldür.

2. M nin her fully invariant altmodülünün dik toplanan olan bir komplementi

vardır.

3. M nin her fully invariant altmodülü X, için M nin bir komplement alt-

modülü L ve L nin bir K komplementi vardır ki; X ≤e L ve f : L⊕K → M

her homomorfizması bir g : M → M endomorfizmasına genişletilebilir.

Kanıt. (1) ⇔ (2): X, M nin bir fully invariant altmodülü olsun. İlk önce M nin

FI-extending modül olduğunu kabul edelim. Bu durumda X ≤e eM olacak şekilde

e = e2 ∈ End(MR) vardır. Böylece (1 − e)2 = (1 − e) idempotent olduğundan

(1−e)M de M nin dik toplananıdır. Buradan X∩(1−e)M ≤e eM∩(1−e)M = 0

olur ve X ∩ (1 − e)M = 0 elde edilir. Ayrıca X ⊕ (1 − e)M ≤e eM ⊕ (1 −
e)M = M olduğundan X ⊕ (1− e)M ≤e M dir. Böylece (1− e)M , X in M deki

komplementidir.

Tersine c = c2 ∈ End(MR) olmak üzere cM , X in komplementi olsun. x ∈ X

alalım. Bu durumda x = cx+(1−c)x olur. X fully invariant altmodül olduğundan

cx ∈ X ∩ cM = 0 dır. Buradan X ⊆ (1− c)M dır. Böylece X ≤e (1− c)M elde

edilir. Yani M , FI-extending modüldür.

(2) ⇔ (3): Bu denklik [6, Lemma 1.1] den açıktır. ¤

Önerme 4.1.9 M bir modül olsun.

1. M , CS-modüldür.
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2. M , C11 koşulunu sağlar.

3. M , FI-extending modüldür.

(1) ⇒ (2) ⇒ (3) gerektirmeleri sağlanır. Fakat genel olarak gerektirmelerin tersi

doğru değildir.

Kanıt. (1) ⇒ (2) açıktır.

(2) ⇒ (3) Önteorem 4.1.8 deki (2) ⇒ (1) gerektirmesinden açıktır.

¤

Tanım 4.1.10 M bir modül olsun. Eğer M nin her sıfırdan farklı komplement

altmodülü M nin bir sıfırdan farklı fully invariant altmodülünü içerirse M ye

komplement sınırlı modül denir.

Önteorem 4.1.11 M komplement sınırlı bir modül olsun. Bu durumda 0 6= K,

M nin komplementi ise M de bir fully invariant U altmodül vardır öyleki, U ≤e K

dır.

Kanıt. X ≤ M ve K, X in M deki komplementi olsun. Şimdi U =
∑{B : B,M

nin fully invariant altmodülü, B ⊆ K} alalım. Buradan U ≤ K dır. U nun K daki

komplementi Y olsun. Böylece Y ∩ (X⊕U) = 0 ve Y ⊕ (X⊕U) ≤e K⊕X ≤e M

olduğundan Y ⊕ (X ⊕ U) ≤e M olur. Bu durumda Y , X ⊕ U nun M deki

kopmlementidir. Buradan Y = 0 dır. Aksi taktirde Y 6= 0 olsaydı, M komplement

sınırlı bir modül olduğundan Y , M nin bir fully invariant altmodülünü kapsardı.

Dolayısıyla Y ∩U 6= 0 olurdu. Bu ise Y nin U nun K daki komplementi olmasıyla

çelişir. Dolayısıyla Y = 0 olduğundan U ≤e K olur. ¤

Teorem 4.1.12 1. Bir MR modülü için End(MR) Abel ve X ≤ M için hi ∈
End(MR) olmak üzere X =

∑
i∈I hi(M) olsun. Bu durumda M nin yarı-

sürekli olması için gerek ve yeter koşul M nin C11 koşulunu sağlamasıdır.

2. M komplement sınırlı bir modül olsun. Bu durumda M nin C11 koşulunu

sağlaması için gerek ve yeter koşul M nin FI-extending modül olmasıdır.
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Kanıt. (1): Farzedelim ki, M , C11 koşulunu sağlasın ve X ≤ M olsun. Bu durumda

her hi ∈ End(MR) için X =
∑

i∈I hi(M) dir. e2 = e ∈ End(MR) homomorfizması

için eM , X in bir komplementidir. 0 6= x ∈ X alalım. Böylece x = ex + (1− e)x

olur. Fakat mi ∈ M için x =
∑

i∈I hi(mi) dir. Böylece ex = e
∑

i∈I hi(mi) =
∑

i∈I hi(emi) ∈ X ∩ eM = 0 elde edilir. eM ⊕ X ≤e eM ⊕ (1 − e)M = M ve

X ≤ (1 − e)M olduğundan X ≤e (1 − e)M dir. Dolayısıyla M , CS-modüldür.

End(MR) Abel olduğundan M , (C3) koşulunuda sağlar.

Gerçekten; K ve L, M nin K ∩ L = 0 koşulunu sağlayan iki dik toplanan alt-

modülü olsun. Bu durumda K = eM ve L = fM olacak şekilde e2 = e ∈
End(MR) ve f 2 = f ∈ End(MR) vardır. (e+f)2 = e+f +2ef ve End(MR) Abel

olduğundan (ef)(m) = e(f(m)) ∈ eM , (ef)(m) = (fe)(m) = f(e(m)) ∈ fM

elde edilir. Böylece ef ∈ eM ∩ fM = K ∩ L = 0 olduğundan (e + f)2 =

e + f ∈ End(MR) olur. (e + f)M ⊆ K + L ve K + L ⊆ (e + f)M olduğundan

K + L = (e + f)M dır. Dolayısıyla K + L, M nin dik toplananıdır. Böylece M ,

yarı-sürekli modül olur. O halde M modülü yarı-sürekli modüldür.

Tersi Önerme 4.1.9 den açıktır.

(2): M komplement sınırlı ve FI-extending modül olsun. Y ≤ M ve K, Y nin bir

komplementi olarak alalım. Eğer K = 0 ise, K, M nin bir dik toplananıdır. K 6= 0

olduğunu kabul edelim. Bu durumda M nin bir X fully invariant altmodülü vardır

ki, X, K nın içerdiği M nin fully invariant altmodüllerinin toplamıdır. Bu

durumda Önteorem 4.1.11 den X ≤e K dır. Ayrıca M , FI-extending modül

olduğundan e2 = e ∈ End(MR) için X ≤e eM dir. Böylece Y ∩ eM = 0 ve

Y ⊕ eM ≤e M dir. [25, Proposition 2.3] den M , C11 koşulunu sağlar.

Tersi Önerme 4.1.9 den açıktır. ¤

Sonuç 4.1.13 M bir R-modül olsun. Aşağıdaki koşullardan herhangi biri

sağlanırsa, M modülünün CS olması için gerek ve yeter koşul M , C11-modül ol-

masıdır.

1. MR = RR ve R Abeldir.

2. M modülü devirli ve R değişmelidir.
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3. M bir çarpımsal modül ve R değişmelidir.

Kanıt. (1): R Abel olduğundan dolayı End(RR) de Abeldir. Şimdi 0 6= X ≤ RR

sağ idealini alalım. 0 6= xi ∈ X için hi : R → R homomorfizmasını hi(r) = xir

olarak tanımlayalım. O halde X =
∑

i∈I hi(R) olup Teorem 4.1.12 (1) den sonuç

elde edilir.

(2): Şimdi M modülü devirli ve R değişmeli olsun. Buradan BR ≤ RR için

M , R/B ya izomorftur. Y/B R-modülü R/B nin bir altmodülü olsun. Böylece

her yi ∈ Y için Y/B = (
∑

i∈I yiR) + B = (
∑

i∈I yi + B)R dir. hi : R/B →
R/B dönüşümü hi(r + B) = yir + B olarak tanımlansın. Bu durumda hi ∈
End((R/B)R) olur. Buradan Y/B =

∑
i∈I hi(R/B) dir. R değişmeli olduğundan

End((R/B)R) de değişmelidir. Böylece Önerme 4.1.12 (1) den sağlanır.

(3): Farzedelim ki, M çarpımsal ve R değişmeli olsun. A ≤ M olmak üzere

X = MA alalım. Her a ∈ A için ha : M → M dönüşümü m ∈ M olmak

üzere ha(m) = ma olarak tanımlansın. Bu durumda X = MA =
∑

a∈A ha(M)

dir. Ayrıca N ≤ M olsun. M çarpımsal olduğundan N = MA olacak şekilde

A ≤ M vardır. Her f ∈ End(MR) için x ∈ f(N) ise x = f(ma) dır. f ho-

momorfizma olduğundan x = f(m)a ∈ MA = N olur. Buradan x ∈ N elde

edilir. Böylece f(N) ⊆ N olur ve N , M nin fully invariant altmodüldür. Yani

çarpımsal bir modülün her alt modülü fully invariant altmodüldür. [4, Lemma

1.9] dan e = e2 ∈ End(MR) ise e ve (1 − e) ∈ Sl(End(MR)) dır. M nin her

altmodülü fully invariant altmodül olduğundan e = e2 ∈ End(MR) için eM ,

M nin fully invariant altmodül olup e ∈ Sl(End(MR)) ve (1 − e)M de M nin

fully invariant altmodül olup (1 − e) ∈ Sl(End(MR)) olur. Buradan ex = exe

ve (1 − e)x = (1 − e)x(1 − e) dir. Yani ex = xe olduğundan e merkezleyendir.

Dolayısıyla End(MR) Abeldir. Teorem 4.1.12 (1) den sonuç sağlanır. ¤

Önerme 4.1.14 M , C11-modül ve X, M nin bir altmodülü olsun. Eğer X ile M

nin herhangi bir dik toplananının arakasiti X in bir dik toplananı ise X, C11-

modüldür.
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Kanıt. A, X in bir altmodülü olsun. Bu durumda A ∩ N = 0 ve A ⊕ N ≤e M

olacak şekilde M nin bir N dik toplananı vardır. Şimdi M nin bir K altmodülü için

M = N⊕K olsun. Böylece X∩(A⊕N) ≤e X∩M = X ve A∩(X∩N) ≤ A∩N = 0

olup A∩ (X∩N) = 0 olduğundan X∩ (A⊕N) = A⊕ (X∩N) ≤e X olur. X ∩N ,

X de dik toplanan olduğundan X, C11-modüldür. ¤

Sonuç 4.1.15 MR, C11 koşulunu sağlayan bir modül olsun.

1. Eğer M dağılımlı modül ise, M nin her altmodülü CS-modüldür.

2. Eğer M nin bir X altmodülü her e = e2 ∈ End(MR) için eX ⊆ X koşulunu

sağlarsa, X bir C11-modüldür. Özel olarak, M nin her fully invariant alt-

modülü bir C11-modüldür.

3. Eğer M , SIP ise, M nin her dik toplananı C11-modüldür.

Kanıt. (1): N , M nin komplementi olsun. Bu durumda e = e2 ∈ End(MR) olmak

üzere eM , N nin komplementidir. Böylece M dağılımlı modül olduğundan

N = N ∩ M = N ∩ (eM ⊕ (1 − e)M) = (N ∩ eM) ⊕ (N ∩ (1 − e)M) = N ∩
(1− e)M ≤ (1− e)M dir. eM , N nin komplementi olduğundan N ∩ eM = 0 ve

N ⊕ eM ≤e M dir. Buradan N ⊕ eM ≤e M = eM ⊕ (1− e)M ve N ≤ (1− e)M

olduğundan ise N ≤e (1−e)M olur ve N , M de komplement olduğunu kullanarak

N = (1− e)M elde edilir. Böylece M , CS-modüldür. [2, Corollary 1.6] den M nin

her altmodülü CS-modüldür.

(2): D, M nin bir dik toplanan altmodülü ve e : M → D kanonik projeksiyon

olsun. O halde e(X) ⊆ D olur ve eX ⊆ X olduğundan e(X) ⊆ D ∩ X dir.

a ∈ D ∩ X alalım. Böylece a ∈ D olduğundan a = e(a) olur. Buradan da a =

e(a) ∈ eX olur. Dolayısıyla eX = D ∩ X elde edilir. Önerme 4.1.12 den X bir

C11-modüldür.

(3): Önerme 4.1.14 den açıktır. ¤

[5] te CS-modüllerin, strongly FI-extending modüller olarak bir genelleştirmesi

tanımlanıp, araştırılmıştır. Bu yeni modül sınıfının FI-extending modül sınıfında

kapsandığı açıktır. Bu modül sınıfının tanımını ve bazı özelliklerini verelim.
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Tanım 4.1.16 MR bir modül olsun. M deki her fully invariant altmodül bir fully

invariant dik toplanan altmodülde essential olarak kapsanırsa M ye strongly FI-

extending modül denir [5].

Sonuç 4.1.17 M bir sağ R-modül olsun. Aşağıdaki koşulları alalım.

1. M , CS-modüldür.

2. M , strongly FI-extending dir.

3. M , FI-extending dir.

Bu durumda, (1) ⇒ (2) ⇒ (3) tür. Bu önermelerin tersleri genel olarak doğru

değildir.

Kanıt. (1) ⇒ (2) ⇒ (3) açıktır.

(2) ; (1): RR = [ Z Z0 Z ] alalım. Örnek 1.4.4 den RR nin CS-modül olmadığını biliy-

oruz. Diğer yandan Z(RR) = 0 olduğundan RR strongly FI-extending modüldür

[5, proposition 1.5].

(3) ; (2): p bir asal tamsayı olmak üzere M = Z ⊕ Z/Zp, Z-modülünü (Abel

grubunu) alalım. Teorem 4.1.5 ten MZ, FI-extending modüldür. Ancak, [3, The-

orem 7.1] den MZ, strongly FI-extending değildir. ¤

Önteorem 4.1.18 MR bir modül, Λ = End(MR) ve e2 = e ∈ Λ olsun. Bu

durumda aşağıdaki koşullar sağlanır.

1. e ∈ Sl(Λ) = {e ∈ Λ : xe = exe, her x ∈ Λ} olması için gerek ve yeter koşul

eM nin M de fully invariant altmodül olmasıdır.

2. Eğer M bir strongly FI-extending modül ve K, M nin fully invariant alt-

modülü ise, K, M nin tek bir (fully invariant) dik toplananında essential

olarak kapsanır.

Kanıt. (1): e ∈ Sl(Λ) = {e ∈ Λ : xe = exe, her x ∈ Λ}, h ∈ Λ ve m ∈ M

olsun. Bu durumda hem = ehem ∈ eM olur. Böylece eM , M nin fully invariant
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altmodüldür.

Diğer taraftan eM , M nin fully invariant altmodülü, h ∈ Λ ve m ∈ M olsun.

Buradan hem = ek olacak şekilde bir k ∈ M vardır. Böylece ehem = e2k = ek =

hem olur. O halde her m ∈ M için (ehe)(m) = (he)(m) olduğundan ehe = he

elde edilir. Yani e ∈ Sl(Λ) olur.

(2):M bir strongly FI-extending modül ve K, M nin fully invariant altmodülü ol-

sun. (1) den K ≤e eM olacak şekilde bir e ∈ Sl(Λ) vardır. Farzedelim ki,

c2 = c ∈ Λ ve K ≤e cM olsun. O zaman (ce)2 = cece = cce = ce olur.

K, M nin fully invariant altmodülü olduğundan ceK ⊆ K dır. x ∈ K alalım.

K ≤e cM olduğundan x = cm ve K ≤e eM olduğundan ise x = en olur. Buradan

x = cex ∈ ceK olur ve böylece K ⊆ ceK elde edilir. Yani K = ceK dır. Böylece

K ≤e ceM ≤ cM dir. Ayrıca K ≤e cM olduğundan ceM ≤e cM dir. ceM , M de

dik toplanan olduğundan ceM , M de komplementtir. ceM ≤e cM olduğundan

ceM = cM dir. [18, Lemma 3.1] den f ∈ Λ için ce(f) = c(ef) ∈ cΛ olduğundan

ceΛ ≤ eΛ olur. ceM ≤ eM olup, buradan cM ≤ eM bulunur. Fakat, K ≤e eM

olduğundan cM = eM elde edilir. Dolayısıyla K tektir. ¤

C11-modüllerinin dik toplananlarının C11-modül olması gerekmez. Diğer yan-

dan, FI-extending modüllerinin dik toplananlarının FI-extending olup olmadığı

sorusu hala açık bir sorudur [4]. Aşağıdaki teoremde strongly FI-extending

özelliğinin dik toplananlara taşındığını göstereceğiz.

Teorem 4.1.19 Bir M strongly FI-extending modülünün her dik toplananı

strongly FI-extending modüldür.

Kanıt. M strongly FI-extending modül ve B, M nin dik toplananı, Λ = End(MR)

olsun. Böylece B = eM olacak şekilde e2 = e ∈ Λ vardır. X, B nin fully invari-

ant altmodülü olsun. Her f ∈ Λ için f(ΛX) ⊆ ΛX olduğundan ΛX, M nin

fully invariant altmodülüdür. M strongly FI-extending modül olduğundan ise

ΛX ≤e fM olacak şekilde f 2 = f ∈ Λ vardır. Açıkça X ⊆ ΛX ∩ eM dir.

k ∈ ΛX ∩ eM alalım. f ∈ Λ için k = f(x) = e(m) dir ve X, M nin fully in-

variant altmodülü olduğundan k = f(x) ⊆ X olur. Böylece ΛX ∩ eM ⊆ X dir.
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Dolayısıyla X = ΛX∩eM ≤e fM∩eM olur. Buradan f ∈ Sl(Λ) = {e ∈ Λ : xe =

exe, ∀x ∈ Λ} için eX ⊆ efM ve (ef)2 = (ef).(ef) = e(fef) = e(ef) = ef olur.

M , FI-extending modül olduğundan ef(M) ⊆ eM ve ef(M) ⊆ fM dır. Böylece

efM ⊆ eM ∩ fM olur. Şimdi x ∈ eM ∩ fM alalım. Bu durumda x = em = fm′

olacak şekilde m,m′ ∈ M vardır. Böylece ex = em = efm′ = fefm′ = fem = fx

olur. (ef)2 = ef ∈ Λ için efM = eM ∩ fM dir. O halde her x ∈ X için x = ex

olduğundan X = eX ≤e efM dir. efM , M de dik toplanan olduğundan da efM ,

eM nin de dik toplananıdır. k ∈ End((eM)R) ⊆ End(MR) alalım. k ∈ End(eM),

f ∈ Sl(Λ) ise k(efM) = k(ef)M = k(fef)M = kfe(f(M)) ⊆ f(M) olur. Ayrıca

k : eM → eM olduğundan k(efM) ⊆ eM olur. O halde, k(efM) ⊆ fM ∩ eM =

efM dir. Yani efM , eM nin fully invariant altmodülü olur. Buradan X ≤e efM

ve efM , eM nin fully invariant dik toplanan altmodülü olduğundan B = eM

strongly FI-extending modüldür. ¤

4.2 EC11-Modüller

Bu son kesimde, hem P-extending hem de C11-modüllerin bir genelleştirmesi

olarak EC11-modülleri tanımlayıp, bu modüllerin yapısıyla ilgili sonuçları

vereceğiz.

Tanım 4.2.1 MR bir modül olsun. Eğer M nin her K ec-altmodülü için M nin

bir D dik toplananı var ve D, K nın M deki komplementi ise M ye EC11-modül

denir.

Eğer bir R halkası sağ R-modül olarak EC11-modül (yani RR, EC11-modül) ise

R ye sağ EC11-halka denir.

O halde, C11-modüllerin (ve böylece CS-modüllerin) EC11-modül olduğu

açıktır. EC11-modüllere ilişkin sonuçlara başlamadan önce, kullanışlı bir Önte-

orem verelim.

Önteorem 4.2.2 MR bir modül, N , MR de bir ec-altmodül ve K da M nin bir

dik toplananı olsun. Bu durumda, K, N nin M deki komplementi olması için

gerek ve yeter koşul K ∩N = 0 ve K ⊕N ≤e M olmasıdır.
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Kanıt. İlk olarak K, N nin M deki komplementi olsun. Bu durumda K ∩N = 0

dır. 0 6= x ∈ M alalım. Eğer x ∈ K ise, 0 6= xR = xR ∩ K ⊆ xR ∩ (K ⊕ N)

dir. Eğer x /∈ K ise, N ∩ (xR + K) 6= 0 olur. Bu durumda her 0 6= x ∈ M için

xR ∩ (K ⊕N) 6= 0 dır. Böylece K ⊕N ≤e M dir.

Tersine N ≤ M ve K da M nin bir dik toplanan olmak üzere K ∩ N = 0 ve

K ⊕ N ≤e M olsun. Öyleyse bir K ′ ≤ M için M = K ⊕ K ′ dür. Farzedelim

ki, M nin bir K1 altmodülü için, K ⊆ K1 ve K1 ∩ N = 0 olsun. Bu durumda,

K1 = K1 ∩ M = K1 ∩ (K ⊕ K ′) = K ⊕ (K1 ∩ K ′) olur. 0 6= y ∈ K1 ∩ K ′

alalım. Buradan y ∈ M ve K ⊕ N ≤e M olduğundan (K ⊕ N) ∩ yR 6= 0 dır.

O halde n ∈ N , k ∈ K ve r ∈ R olmak üzere 0 6= yr = n + k dır. Böylece

yr−k = n ∈ N ∩K1 = 0 olduğundan yr = k ∈ K ∩K ′ = 0 dır. Yani yr = 0 olur.

Bu ise çelişkidir. Dolayısıyla K = K1 olup K, N nin M deki komplementidir. ¤

Önerme 4.2.3 MR bir modül olsun. Bu durumda aşağıdakiler denktir.

1. MR, EC11-modüldür.

2. MR nin her L ec-kapalı altmodülü için M nin bir K dik toplananı vardır

öyleki, K, L nin M deki komplementidir.

3. MR nin her N ec-altmodülü için M nin bir K dik toplananı vardır öyleki,

N ∩K = 0 ve N ⊕K ≤e M dir.

4. MR nin her L ec-kapalı altmodülü için M nin bir K dik toplananı vardır

öyleki, L ∩K = 0 ve L⊕K ≤e M dir.

Kanıt. (1) ⇒ (2) ve (3) ⇒ (4) gerektirmeleri açıktır.

(1) ⇔ (3) ile (2) ⇔ (4) denklikleri Önteorem 4.2.2 den açıktır.

(4) ⇒ (1): A, M nin ec-altmodülü olsun. O halde bir B ≤c M vardır ki,

A ≤e B dir. A ec-altmodül olduğundan bir x ∈ A vardır ki xR ≤e A dır. A ≤e B

olduğundan xR ≤e B ≤c M olur. Böylece B, M nin ec-kapalı altmodülüdür. Bu

durumda kabulümüzden M nin bir K dik toplananı için K∩B = 0 ve K⊕B ≤e M

dir. Önteorem 4.2.2 den K, M de B nin komplementidir. K ∩ A ≤e K ∩ B = 0
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olduğundan K ∩A = 0 dır. Farzedelim ki, K ⊆ K ′ olacak şekilde K ′ ≤ M olsun.

Buradan K ∩ B = 0 olacak şekilde K maksimal olduğundan K ′ ∩ B 6= 0 dır.

Ayrıca 0 6= K ′∩B ≤ B ve A ≤e B için, K ′∩B∩A 6= 0 olur. K ′∩B∩A ≤ K ′∩A

olduğundan K ′ ∩ A 6= 0 elde edilir. Böylece K, A nın M deki komplementidir.

Ayrıca K, M nin dik toplananı olduğundan M , EC11-modüldür. ¤

Önerme 4.2.4 M bir R-modül olsun. M , P -extending modül ise, M , EC11-

modüldür.

Kanıt. K, M nin ec-altmodülü olsun. O halde xR ≤e K olacak şekilde bir x ∈ K

vardır. M , P -extending modül olduğundan xR ≤e D olacak şekilde M nin bir

D dik toplananı vardır. Böylece M = D ⊕ D′ olacak şekilde D′ ≤ M vardır.

xR∩D′ ≤e D∩D′ = 0 olduğundan xR∩D′ = 0 dır. Ayrıca xR⊕D′ ≤e D⊕D′ = M

elde edilir. xR∩D′ ≤e K∩D′ olduğundan K∩D′ = 0 olur. xR⊕D′ ≤ K⊕D′ ≤ M

ve xR⊕D′ ≤e M olduğundan K⊕D′ ≤e M dır. Dolayısıyla M , EC11-modüldür.

¤

Not 4.2.5 Her EC11-modül P -extending modül olmayabilir.

Örnek 4.2.6 R = Z[x] polinomlar halkası ve M = (Z[x] ⊕ Z[x])Z[x]

modülünü alalım. Önerme 1.4.5 den MR, CS-modül değildir. Böylece M sonlu

Goldie boyutlu olduğu için Teorem 3.1.12 (3) den ECS-modül değildir. Ayrıca

Z(M) = 0 olduğundan M , nonsingular olur Teorem 3.1.12 (1) den P -extending

modül değildir. Fakat Z[x]Z[x] modülü düzgün olduğundan CS-modüldür. Böylece

C11 modül olur. Teorem 4.1.2 den M , C11 modül olduğundan EC11-modüldür.

Dolayısıyla M , EC11-modül olmasına rağmen P -extending modül değildir.

Önerme 4.2.7 MR bir modül olsun. Aşağıdaki koşulları alalım.

1. MR, ECS-modüldür.

2. MR, P -extending modüldür.
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3. MR, EC11-modüldür.

Bu durumda (1) ⇒ (2) ⇒ (3) koşulu sağlanır. Bu gerektirmelerin tersi genel

olarak doğru değildir.

Kanıt. (1) ⇒ (2) gerektirmesi Önerme 3.1.9 dan ve (2) ⇒ (3) gerektirmesi

Önerme 4.2.4 dan açıktır.

Şimdi Örnek 4.2.6, (3) ; (2) ’i verir. Yine Önerme 3.1.9 dan (2) ; (1) dir. ¤

Sonuç 4.2.8 MR bir indecomposable modül olsun. Bu durumda aşağıdaki

koşullar denktir.

1. MR, ECS-modüldür.

2. MR, P-extending modüldür.

3. MR, EC11-modüldür.

4. MR düzgün modüldür.

Kanıt. (1) ⇒ (2) ⇒ (3) Önerme 4.2.7 den elde edilir.

(4) ⇒ (1) açıktır.

(3) ⇒ (4) : 0 6= X ≤ M olsun. O halde bir 0 6= x ∈ X vardır. xR ≤ X alalım.

Böylece xR ≤e L ≤c M olacak şekilde xR nin bir L kapanışı vardır. Buradan L,

M nin ec-altmodülüdür. Bu durumda MR, EC11-modül olduğundan M nin bir

D dik toplananı için L ∩D = 0 ve L⊕D ≤e M dir. MR indecomposable modül

olduğundan D = 0 veya D = M dir. D = M ise L ∩ M = L = 0 olup çelişki

elde edilir. O halde D = 0 olmalıdır. Yani; L ∩ 0 = 0 ve L ∩ 0 = L ≤e M olur.

Böylece L ≤c M olduğundan Önerme 1.2.11 den L = M dir. Buradan xR ≤e M

olur ve xR ≤ X ≤ M olduğundan X ≤e M elde edilir. Dolayısıyla MR, düzgün

modüldür. ¤

C11-modüller, EC11-modül olmasına karşın EC11-modül olup C11-modül ol-

mayan örnekler vardır. Şimdi bu tipteki bir örneği verelim.
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Örnek 4.2.9 R, [16, Example 7.54] de verilen komutatif, von Neumann regular,

Baer olmayan halka olsun. R, von Neumann regular olduğundan ECS-halka olup,

Sonuç 4.2.8 den EC11-halkadır. Bu durumda R, Sonuç 1.4.7 den nonsingular

halkadır. Diğer yandan R komutatif olduğundan açıkça komplement sınırlıdır. O

halde [4, Theorem 4.7 (iii)] den FI-extending değildir. Böylece, Teorem 4.1.12

den RR, C11-modül değildir.

Önerme 4.2.7 den P-extending ve EC11 koşulları genel olarak farklıdır. Bir

sonraki Teorem hangi koşul altında bu iki modül ailesinin aynı olacağını verecek-

tir.

Teorem 4.2.10 M bir R-modül, End(MR) Abel ve X ≤ M için hi ∈ End(MR)

olmak üzere X =
∑

i∈I hi(M) olsun. Bu durumda MR nin EC11-modül olması

için gerek ve yeter koşul MR nin P -extending modül olmasıdır.

Kanıt. MR, P -extending modül olsun. Bu durumda MR nin EC11-modül olduğu

Önerme 4.2.7 dan açıktır.

Tersine MR, EC11-modül ve X = xR ≤ M olsun. Y ≤ M yi M de X in kapanışı

olarak alalım. Bu durumda X ≤e Y ≤c M olduğundan xR ≤e Y olacak şekilde

x ∈ X ⊆ Y olduğundan Y , M de ec-altmodüldür. O halde Y =
∑

i∈I hi(M)

dir. MR, EC11-modül olduğundan bir e2 = e ∈ End(MR) vardır ki, eM , Y

nin komplementidir. 0 6= y ∈ Y alalım. Bu durumda y = ey + (1 − e)y dir.

Fakat mi ∈ M olmak üzere y =
∑

i∈I hi(mi) dir. Böylece ey = e
∑

i∈I hi(mi) =
∑

i∈I hi(emi) ∈ Y ∩ eM = 0 dır. O halde y = (1 − e)y olur. eM ⊕ Y ≤e M =

eM ⊕ (1 − e)M ve Y ≤ (1 − e)M olduğundan Y ≤e (1 − e)M dir. Y ≤c M ve

Y ≤e (1 − e)M olduğundan Önerme 1.2.11 den Y = (1 − e)M olur. Böylece Y ,

M nin dik toplananı olduğundan MR, P -extending modüldür. ¤

Şimdi Sonuç 4.2.12 (2) nin ispatında kullanacağımız bir önteorem verelim.

Önteorem 4.2.11 f : M → T bir izomorfizma ve T , EC11-modül olsun. Bu

durumda MR de EC11-modüldür.
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Kanıt. N , M nin ec-altmodülü olsun. Bu durumda xR ≤e N ≤ M olacak

şekilde bir x ∈ N vardır. x ∈ N ise f(x) ∈ f(N) dir. f(xR) ∩ A = 0 olsun.

f−1(f(xR)∩A) = xR∩f−1(A) = 0 olur. A ≤ f(N) ise f−1(A) ≤ N olur. xR ≤e N

olduğundan f−1(A) = 0 dır. f birebir olduğundan f(f−1(A)) = f(0) = 0 olup

A = 0 dır. Böylece f(x)R ≤e f(N) elde edilir. Yani f(N), T nin ec-altmodülüdür.

T , EC11-modül olduğundan T nin bir D dik toplananı için f(N) ∩ D = 0 ve

f(N)⊕D ≤e T dir. D, T nin dik toplananı olduğundan T = D⊕D′ olacak şekilde

D′ ≤ T vardır. f izomorfizma olduğundan M = f−1(T ) = f−1(D) ⊕ f−1(D′) ve

f−1(D′) ≤ f−1(T ) = M olup f−1(D), M nin dik toplananı olur. f−1(f(N) ∩
D) = N ∩ f−1(D) = f−1(0) = 0 dır. Ayrıca f : M → T bir izomorfizma ve

f(N) ⊕ D ≤e T ise f−1(f(N) ⊕ D) = N ⊕ f−1(D) ≤e M dir. Dolayısıyla MR,

EC11-modül olup EC11 özelliği izomorfizma altında invariantdir. ¤

Sonuç 4.2.12 Bir MR modülü aşağıdaki koşullardan birini sağlasın. Bu duru-

munda M nin EC11-modül olması için gerek ve yeter koşul M nin P -extending

modül olmasıdır.

1. MR = RR ve R, Abeldir.

2. M devirli ve R değişmelidir.

3. M çarpımsal modül ve R değişmelidir.

Kanıt. (1): MR = RR ve R, Abel olduğundan End(R) ∼= R dir. Abellik izomor-

fizma altında invariant olduğundan End(R) de Abeldir. r ∈ R olmak üzere

hi : R → R, hi(x) = xir homomorfizmasını ele alalım. xi ∈ X olmak üzere

xiR ⊆ X olur ve
∑

i∈I xiR ⊆ X elde edilir. x ∈ X için x ∈ ∑
i∈I xiR dir.

Böylece X ⊆ ∑
i∈I xiR olduğundan X =

∑
i∈I xiR dir. Yani X =

∑
i∈I hi(R)

olur. Böylece Teorem 4.2.10 dan açıktır.

(2): Şimdi M devirli ve R değişmeli olsun. Bir BR ≤ RR için MR
∼= R/B

dir. Gerçekten ϕ : R → M = mR, ϕ(r) = mr homomorfizmasını alalım.

kerϕ = {r ∈ R : mr = 0} = B dersek, I. izomorfizma teoreminden
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MR
∼= R/B dir. (Y/B)R modülü R/B nin bir altmodülü olsun. O halde her

y ∈ Y için Y/B = (
∑

i∈I yiR) + B = (
∑

i∈I yi + B)R dir. hi : R/B → R/B

dönüşümü hi(r + B) = yir + B olarak tanımlansın. O halde hi ∈ End((R/B)R)

dir. Böylece Y/B =
∑

i∈I hi(R/B) olur. R değişmeli olduğundan End((R/B)R)

de değişmelidir. Bu durumda denklik (R/B)R için dolayısıyla Önteorem 4.2.11

den MR için Teorem 4.2.10 dan sağlanır.

(3): Son olarak M çarpımsal modül ve R değişmeli olsun. AR ≤ RR olmak

üzere X = MA alalım. Her a ∈ A için ha : M → M , m ∈ M olmak üzere

ha(m) = ma olarak tanımlansın. Böylece X = MA =
∑

a∈A ha(M) dir. Ayrıca

çarpımsal bir modülün her altmodülü fully invariantdir. Gerçekten, N ≤ M

olsun. M çarpımsal modül olduğundan bir A ≤ R için N = MA olur. Her

f ∈ End(MR) için x ∈ f(N) alalım. Bu durumda n = ma ∈ N olmak

üzere x = f(ma) = f(m)a ∈ MA = N bulunur. Yani x ∈ N olduğundan

f(N) ⊆ N elde edilir ki, N fully invariant altmodüldür. [4, Lemma 1.9] dan

eğer e2 = e ∈ End(MR) ise e merkezildir. Böylece End(MR) Abeldir. Dolayısıyla

denklik Teorem 4.2.10 dan açıktır. ¤

Teorem 4.2.13 R bir halka, X, R nin ec-ideali ve R = R/X olsun. Eğer RR,

EC11-modül ve Z(RR) = 0 ise, RR ve RR, EC11-modüldür.

Kanıt. A, R nin ec-altmodülü olsun. O zaman bazı AR ≤ RR için A = A/X dir.

İlk olarak RR nin EC11-modül olduğunu gösterelim. RR, EC11-modül olduğundan

e = e2 ∈ End(RR) için, A ∩ eR = 0 ve A⊕ eR ≤e RR dir. X ∩ eR ≤ A ∩ eR = 0

olduğundan X ∩ eR = 0 olur. Ayrıca A⊕ eR ≤e (1− e)R ⊕ eR = RR olup X ≤
(1 − e)R dir. Buradan Önteorem 1.2.3’ü kullanarak R = R/X = (1 − e)R/X ⊕
(eR⊕X)/X elde edilir. Dolayısıyla (eR⊕X)/X, RR nin dik toplananıdır. Ayrıca

A/X ∩ (eR⊕X)/X = (A∩ (eR⊕X))/X = X/X = 0 dır. Şimdi, (A⊕ eR)/X ≤e

R/X = R olduğunu gösterelim. Y = Y/X ≤ R ve (A⊕eR)/X∩(Y/X) = 0 olsun.

y ∈ Y alalım. A⊕ eR ≤e RR olduğunda Önteorem 1.2.4 den bir L ≤e RR vardır

öyleki yL ⊆ A⊕eR dir. Buradan, (y+X)L = yL+X ∈ (A⊕eR)/X∩(Y/X) = 0

olur. Böylece y + X ∈ Z(R/X) dır. Z(R/X) = 0 olduğundan y + X = X olup



70

y ∈ X dir. Buradan Y = 0 dır. Dolayısıyla, (A⊕ eR)/X ≤e R/X = R elde edilir.

Benzer şekilde, RR modülününde EC11-modül olduğu gösterilir. ¤

C11-modüllerin dik toplananları C11-modül olmayabilir [26]. Şimdi vereceğimiz

örnek EC11-modüllerinde dik toplananlarının EC11-modül olması gerekmediğini

gösterecektir. Bu örnekten hareketle çalışmalarımızı EC11-modüllerin hangi

koşullarda dik toplananlarının da EC11-modül olacağı konusunda elde edilen

sonuçlarla tamamlayacağız.

Örnek 4.2.14 R halkası Örnek 3.1.4 deki gibi yani, R[x, y, z]/(x2 + y2 + z2− 1)

olsun. MR = (R ⊕ R ⊕ R)R olarak alalım. Bu durumda MR, C11-modüldür.

Böylece EC11-modül olur. KR indecomposabledir, fakat Örnek 3.1.4 den düzgün

olmadığından EC11-modül değildir. Dolayısıyla EC11 özelliği dik toplananlara

taşınmaz.

Teorem 4.2.15 MR bir EC11-modül ve X, M nin altmoü olsun. Eğer X ile M

nin bir dik toplananının kesişimi X de bir dik toplanan ise X, EC11-modüldür.

Kanıt. A, X de ec-altmodül olsun. Buradan xR ≤e A olacak şekilde bir x ∈
A vardır. X ≤ M olduğundan A, M de de ec-altmodüldür. M , EC11-modül

olduğundan M nin bir N dik toplananı için A ∩ N = 0 ve A ⊕ N ≤e M olur.

Bu durumda N , M nin dik toplananı olduğundan M = N ⊕K olacak şekilde bir

K ≤ M vardır. A ≤ X olduğundan X ∩ (A⊕N) = A⊕ (X ∩N) dır. A⊕N ≤e M

olduğundan A ⊕ (X ∩ N) ≤e X ∩ M = X olur. Hipotezden X ∩ N , X de dik

toplanandır. Böylece A ∩ (X ∩N) = (A ∩N) ∩X = 0 ∩X = 0 olur. Dolayısıyla

X, EC11-modüldür. ¤

Sonuç 4.2.16 MR bir EC11-modül olsun. Bu durumda aşağıdaki koşullar

sağlanır.

1. X ≤ M ve her e2 = e ∈ End(MR) için eX ⊆ X (yani X projeksiyon

invariant) ise X bir EC11-modüldür. Özel olarak, M nin her fully invariant

altmodülü bir EC11-modüldür.
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2. MR SIP-modül ise, M nin her dik toplananı EC11-modüldür.

Kanıt. (1): D, M nin dik toplananı ve e : M → D kanonikal projeksiyon olsun.

Bu durumda bir X ≤ M için eX ⊆ D dir. eX ⊆ X olduğundan eX ⊆ D ∩ X

dir. Şimdi a ∈ D ∩ X alalım. Bu durumda a ∈ D ve a ∈ X olur. a ∈ D ise

a = e(a) ∈ eX olduğundan D ∩X ⊆ eX olup eX = D ∩X elde edilir. Böylece

D ∩X, X in dik toplananı olduğundan Teorem 4.2.15 den X, EC11-modüldür.

(2): N , M nin bir dik toplananı olsun. Ayrıca M nin herhangi bir K dik

toplananını alalım. M , SIP-modül olduğundan N ∩K, M nin dik toplananıdır.

Buradan M = (N ∩ K) ⊕ X olacak şekilde bir X ≤ M vardır. N = N ∩M =

N ∩ ((N ∩ K) ⊕ X) = (N ∩ K) ⊕ (N ∩ X) olur. O halde N ∩ K, N nin dik

toplananı olduğundan Önerme 4.2.15 den N , EC11-modüldür. ¤

Önteorem 4.2.17 M = M1⊕M2 olsun. Bu durumda M1 in EC11-modül olması

için gerek ve yeter koşul M nin her N ec-altmodülü için M nin bir K dik toplananı

vardır ki, M2 ⊆ K, K ∩N = 0 ve K ⊕N ≤e M olmasıdır.

Kanıt. Farzedelim ki, M1, EC11-modül ve N , M1 in ec-altmodülü olsun. Bu du-

rumda Önerme 4.2.2 den M1 in bir L dik toplananı için N∩L = 0 ve N⊕L ≤e M

dir. Ayrıca (L⊕M2) ∩N = 0 dır. Gerçekten, x ∈ (L⊕M2) ∩N alalım. Bu du-

rumda x ∈ L ⊕M2 ve x ∈ N olduğundan l ∈ L, m2 ∈ M2, n ∈ N olmak üzere

x− l = m2 ∈ M1 ∩M2 = 0 olur. Böylece x = l ∈ L ∩N = 0 olur.

L ⊕ N ≤e M1 ve M2 ≤e M2 olduğundan (L ⊕ N) ⊕M2 ≤e M1 ⊕M2 = M olup

(L⊕M2)⊕N ≤e M dır. Ayrıca M2 ⊆ L⊕M2 olur.

Tersine M belirtilen koşulları sağlasın ve H, M1 in ec-altmodülü olsun.

Kabulümüzden M nin bir K dik toplananı için M2 ⊆ K olmak üzere K ∩H = 0

ve K ⊕ H ≤e M dir. K = K ∩ M = K ∩ (M1 ⊕ M2) = M2 ⊕ (K ∩ M1) olup

K ∩M1, K da dik toplanandır. Buradan K ∩M1, K da ve K, M de dik toplanan

olduğundan K ∩M1, M de de dik toplanandır. K ∩M1 ≤ M1 ve M1, M nin dik

toplananı olduğundan bir T ≤ M için M1 = M1 ∩M = M1 ∩ (K ∩M1 ⊕ T ) =

K ∩ M1 ⊕ (M1 ∩ T ) elde edilir. Böylece K ∩ M1, M1 in de dik toplananıdır.
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H∩(K∩M1) = (H∩K)∩M1 = 0∩M1 = 0 dır. Ayrıca H⊕(K∩M1) = M1∩(H⊕K)

olur. K ⊕H ≤e M ve M1 ∩ (H ⊕K) ≤e M1 ∩M = M1 olduğundan M1, EC11-

modüldür. ¤

Teorem 4.2.18 M = M1 ⊕ M2, EC11-modül ve M nin K ∩ M2 = 0 olan her

K ec-altmodülü için K ⊕ M2, M nin bir dik toplanan ec-altmodülü olsun. Bu

durumda M1, EC11-modüldür.

Kanıt. N , M1 in bir ec-altmodülü olsun. Hipotezden N ⊕ M2, M nin bir dik

toplanan ec-altmodülü olur. M , EC11-modül olduğundan M nin bir K dik

toplananı için (N ⊕ M2) ∩ K = 0 ve (N ⊕ M2) ⊕ K ≤e M dir. Aynı zamanda

K ⊕M2, M nin bir dik toplananı ve M2 ⊆ K ⊕M2 ve (K ⊕M2) ∩ N = 0 dır.

Gerçekten, x ∈ (K ⊕ M2) ∩ N alalım. Bu durumda k ∈ K, m2 ∈ M2, n ∈ N

olmak üzere n − m2 = k ∈ (N ⊕M2) ∩ K = 0 olur ve n = m2 ∈ N ∩M2 = 0

olduğundan x = 0 elde edilir. Böylece M1 in EC11-modül olduğu Önteorem 4.2.17

den sağlanır. ¤

Sağ EC11-halka olmayan bir matris örneği ile çalışmamızı tamamlayalım.

Örnek 4.2.19 R =
[ Z4 2Z4

0 Z4

]
= {[ x y

0 z ] : x, z ∈ Z4 ve y ∈ 2Z4} matris halkası

olsun. RR modülü EC11-modül değildir.

Kanıt. RR nin N =
[

0 2Z4
0 0

]
modülünü ele alalım. Bu durumda N =

[
0 2
0 0

]
R ≤

RR olduğundan N ,
[

0 2
0 0

]
elemanı tarafından üretilir. Yani N , RR nin ec-

altmodülüdür. Fakat RR nin hiç bir D dik toplananı için N ∩ D = 0 ve

N ⊕D ≤e RR koşulunu sağlamaz. Böylece RR, EC11-modül değildir. ¤
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