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OZET

Bu tez calismasi yedi béliimden olusmaktadir. Tez caligmasinin ilk boltimiinde lit-
eratiir taramasina yer verildi ve tezin literatiirdeki yeri ifade edildi. Tkinci béliimde degme
yar1 metrik, Lorentz ve Kenmotsu yar1 metrik yapilarin Riemann manifoldlar: tizerinde elde
edilen sonuclar1 incelendi. Ugiincii béliimde yar1 Finsler manifoldlar: tanitildi. Dordiinci,
beginci ve altinci boliim ise 6zgiin kisimlardan olusmaktadir. Dordiincii béliimde yar:
Finsler manifoldlar: tizerinde yar1 metrik ile birlikte (hemen hemen) degme ve e-Sasakian
yapilar kuruldu. Besinci boliimde yar: Finsler manifoldlar: iizerinde Lorentz yapilar kuru-
larak bu yapilarin integrallenebilir (normal) olmasi i¢in baz1 énemli kosullar elde edildi.
Ayrica Sasakian Lorentz yapilar ¢alisilip egrilikler hesaplandi. Altinci boliimde yari Finsler
metrigi ile birlikte yar1 Finsler manifoldlari tizerinde (hemen hemen) Kenmotsu yapilar inga
edildi. Bu yapilarin integrallenebilir (normal) olmasi i¢in baz1 énemli sartlar elde edildi.
Ayrica Kenmotsu Finsler manifoldlarinin egrilikleri hesaplandi. Son boliim ise tartigma ve

sonug kismina ayrildi.

Anahtar Kelimeler: Yar: Finsler manifoldu, Yar: Finsler metrik, Tanjant demet, Degme

manifold, Lorentz manifold, Kenmotsu manifold, Riemann egrilik tensorii, Ricci tensor.
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SUMMARY

This thesis consists of seven parts. The first chapter is devoted to literature review
and place of the thesis in the literature. In the second chapter, contact pseudo metric,
Lorentzian and Kenmotsu pseudo metric structures on Riemannian manifolds are men-
tioned. In the third chapter, indefinite Finsler manifolds are remarked. Our original results
are contained in the fourth, fifth and sixth chapters. In the fourth chapter, (almost) contact
and e-Sasakian structures are constructed on indefinite Finsler manifolds with pseudo-
metric. In the fifth chapter, contact Lorentzian structures are established on indefinite
Finsler manifolds and some important integrability(normality) conditions are given. Also,
Sasakian Lorentzian structures are presented and curvatures of these structures are calcu-
lated. In the sixth chapter, (almost) Kenmotsu structures are set up on indefinite Finsler
manifolds with pseudo Finsler metric. Then, significant integrability (normality) conditions
are found for these structures. Moreover, curvatures of Kenmotsu Finsler manifolds are

calculated. The last chapter is dedicated to discussion and conclusion.
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1. GIRIS

Diferensiyel geometri, egrilerin ve yiizeylerin matematiksel analizi sonucu ortaya
gikmigtir. Karmagik sekiller ve egriler arasindaki iligkilerin nedenleri, seri ve analitik
fonksiyonlar gibi analizde ortaya ¢ikan bazi cevapsiz ve cevaplanmamig sorularin yanitlarini
vermek icin egrilerin ve ylizeylerin matematiksel analizi geligtirilmigtir. Baglangicta sadece
Oklid uzayma uygulanan arastirmalar daha sonra Oklid digi alana, metrik ve topolojik
uzaylara genisletilmistir. Manifold kavrami ise lokal olarak Oklid uzayini andiran topolojik
bir uzaydir. Diferensiyel geometride manifold teorisi, manifold teorisinde ise hemen hemen
degme ve degme manifoldlar oldukga 6nemli bir yere sahiptir. C°° simifindan (2n + 1)
boyutlu bir manifoldun tanjant demetlerinin grup yapisi U(n) x 1 tipine indirgenebiliyorsa
bu durumda manifold hemen hemen degme manifold olarak adlandirihir. 1950 yilinda ilk
kez J. Gray tarafindan tek boyutlu manifoldlar {izerine yapilan ¢aliymada U(n) x 1 grup
yapisinin bir indirgenmesi ile hemen hemen degme yapilar tamimlanmistir. Bu tanima gore

tek boyutlu bir hemen hemen degme yapi

P*X = X + (X)) =1

denklemini saglayan ¢, (1,1) tipinde bir tensor alani, £ bir vektor alani ve i 1-form olmak
tizere (¢,&,n) tgclist ile gosterilir. 1960 yilinda ise Sasaki (¢,&,n) hemen hemen degme

yap1 iizerinde

n(X) = g(X,§)

9(dX,8Y) = g(X,Y) —n(X)n(Y)

egitlikleri ile ifade edilen uygun bir g metrigi tanimlamig ve hemen hemen degme metrik
yapiyl tam olarak ifade etmigtir. 7, 1-form ve g yari-Riemann metrik olmak iizere (1, g)
degme yari-metrik yapi, degme metrik yapilarin dogal bir genellestirmesi olarak kabul edilir.
Yari-Riemann metrik ile birlegtirilen degme yapilar ilk olarak 1969 yilinda Takashi tarafin-
dan ortaya atilmigtir. Takashi daha gok Sasaki yap1 tizerine odaklanmigtir. Boylece bu konu
ile ilgili bir ¢ok caligma Sasaki yari-metrikler ile baglantili hale gelmisgtir. Kumar, Rani ve
Nagaich, e-Sasakian manifoldlarin egrilik tensorii igin bazi temel sonuglar elde etmiglerdir.

Ayrica e-Sasakian manifoldlar i¢in ¢ kesitsel egrilik, total reel kesitsel egrilik arasindaki



denklik bagintisini ispat etmislerdir. g-indeksine sahip e-hemen hemen degme metrik M
manifoldu igin agagida verilen manifold siniflar1 mevcuttur.

(1) e =1 ve g = 2r ise M space-like hemen hemen degme metrik manifolddur.

(2) e = —1ve g = 2r+1ise M time-like hemen hemen degme metrik manifolddur (Bejancu
ve Deshmukh, 1997).

2010 yilinda Calvaruso ve Perrone, hemen hemen degme ve degme manifoldlarini yari-
Riemann metrik yardimiyla ele almig bu yapilara ait integrallenebilme kogullarini vermisler
ve egrilikleri calismiglardir. ¢ = —1 ve ¢ = 1 6zel durumu ise son zamanlarda, Duggal
tarafindan ¢aligilan Lorentz hemen hemen degme manifold sinifini igerir. 2011 yilinda ise
Calvaruso tarafindan Lorentz metrik kullanilarak Lorentz degme yapilar ile ilgili genis ¢aph
bir ¢aligma yapilmigtir.

Kenmotsu ise 1972 yilinda degme manifoldlarinin bir diger 6énemli alt sinifi olarak nite-
lendirilen Kenmotsu manifoldlarini tanimlamigtir. M, (2n + 1) boyutlu bir hemen hemen

degme metrik yapiya sahip bir manifold olmak iizere

(Vx@)Y = g(¢X,Y)E —n(Y)oX

esitligi saglanirsa, bu durumda M manifoldu Kenmotsu manifoldu olarak adlandirilir. Yar:
metrik ile birlikte ele alinan Kenmotsu manifoldlar: tizerinde light-like geometri Massamba
2009, 2011 ve Aktan 2008 tarafindan ¢alisilmigtir. Prasad ise quarter simetrik metrik konek-
siyonu ile birlikte Kenmotsu manifoldlar iizerine ¢ahigmigtir (Prasad, 2017). 2004 yilinda
hemen hemen Kenmotsu yari-metrik manifoldlar Wang Y. ve Liu X. tarafindan caligilmig
ve onemli sonuglar elde edilmistir (Wang Y. ve Liu X., 2004).

Diger taraftan 1918 yilinda Paul Finsler tarafindan yapilan tez galigmasi sonucu Finsler
Geometri ortaya ¢ikmigtir. Paul Finsler’in tezinin yayinlanmasinin ardindan konu ile ilgili
calismalar yapan bilim insanlari bu uzay1 Finsler uzay: olarak adlandirmiglardir. Béylece
zaman igerisinde Finsler geometrisi diferensiyel geometri alaninda ayri bir galigma dal ol-
mustur. Finsler uzayinda yapilan ¢aligmalar yalnizca geometri alaninda degil, miihendislik,
istatistik, fizik, dinamik, biyoloji, yer ¢ekim ve uzay zaman teorisi gibi bir¢ok uygulamal
bilim dali i¢in de oldukca biiyiik bir 6nem arz etmektedir.

Finsler ele aldig1 caligmada geometrisini tanimlarken i¢ ¢arpim yerine Minkowski normu
kullanmistir ve bu normdan elde edilen metrik zamanla Finsler metrigi olarak isimlendiril-

imigtir. Finsler geometrisi, Riemann geometrisinin analog bir benzeri olarak diisiiniilebilir.



Yani, Riemann uzayda ele alinan ifadeler M manifoldu iizerinde iken Finsler uzayda bu
ifadeler TM tanjant demeti iizerindedir. Ornegin, egrilik tensérii Riemann geometride
M iizerinde olmasina kargin Finsler geometride TM — {0} iizerindedir. Boylece Finsler
metriginin Riemann metrigine gore daha genel kapsamli bir metrik olmasinin anlagilmasi
ile birlikte bu uzayda yapilan galigmalarda bir artig s6z konusu olmugtur. Ayrica Finsler’in
tez calismasindan itibaren Finsler manifoldlar: tizerinde egriler ve yiizeyler ile ilgili bir¢cok
galigma mevcuttur (Antonelli 2003, Miron 1982, Matsumoto 1986, Sinha and Yadav 1988,
Szilazi and Vincze 2000, Asanov 1985). Ancak yar1 Finsler manifoldlar: iizerine yapilan
¢ok az sayida galigma vardir (Bejancu and Farran 2013, Beem 1970, Beem and Chern
1971, Bejancu and Farran 1999 ). Ozellikle diferensiyel geometrinin énemli alt simiflarmi
olusturan hemen hemen degme, degme, Lorentz ve Kenmotsu yapilarin yar1 Finsler man-
ifoldlar: tizerindeki 6zellikleri ile ilgili bir calisma literatiirde mevcut degildir. Bu nedenle
bu tez calisgmasinda yar1 Finsler metrik tensor alani kullanilarak bu yapilara ait kapsamli
bir ¢aligma yapildi ve bu yapilara ait 6nemli sonuglar elde edildi.

(2n+1) boyutlu diizgiin bir M manifoldunun tanjant demeti 7'M olmak tizere M’ = T M \
6(M) tanjant demeti iizerinde F?"*! = (M, M’, F*) yan Finsler manifoldu tanimlanir ise

F*, Finsler temel fonksiyonu g;; = %6‘?;5; esitligi ile ifade edilir. TM' = (TM")*q(TM')Y

olmak iizere yar1 Finsler manifoldunun (7TM’)* yatay vektor demeti ve (TM')Y dikey
vektor demeti tamimlanir. Boylece, Finsler koneksiyonlarini, Finsler tensor alanlarini, h-
kovaryant ve v-kovaryant tiirev operatorlerini, diferensiyel formu ve Finsler koneksiyon
egrilikleri elde edilir. M’ = (M")" @ (M') olmak iizere sirasiyla, (M’)" ve (M')? iizerinde
(@7, M n™) ve (¢Y, €Y, 1Y) yapilart hemen hemen degme yapilar gostersin. Boylece M’
iizerinde

G= gg*d:vi ® da? + gf;*éyi ® oy =G+ Y

2q indeksli yari-Riemann metrik tanimlanabilir. Bu metrik Sasaki Finsler metrigi olarak
adlandirilir. Burada g7, (M) ve (M')" iizerindeki metrik olup ¢ indekslidir. Ozel olarak,
q = 1 segilirse Lorentz Finsler metrik olarak adlandirilir.

Tez caligmasinin ikinci béliimiinde degme yari-metrik yapilar, Lorentz ve Kenmotsu yari-
metrik yapilarin Riemann geometride sahip oldugu tanim ve 6zelliklere yer verildi.
Uciincii boliimde ise calismamizin temeli niteliginde olan yar1 Finsler manifoldlar: tanitilda.
Dérdiincii boliimde, yari Finsler manifoldlar iizerinde yar1 metrik yapi ile birlikte hemen

hemen degme ve degme yapilar kuruldu. Bu yapilarin integrallenebilir ya da normal olmasi



i¢in bazi gsartlar elde edildi. Yar1 Finsler manifoldlar: iizerinde e-Sasakian yapilar tanitilarak
vektor demetleri iizerinde e-Sasakian yapilarin egrilikleri igin sonuglar elde edildi. Ayrica
e-Sasakian Finsler yapilar tizerinde yatay ve dikey Ricci tensorleri hesaplandi.

Tez galigmasinin beginci boliimiinde ise yar1 Finsler manifoldlar: iizerinde degme Lorentz
yapilar tamitilarak yapilarin integrallenebilir olmas: igin yeni gartlar elde edildi. Ayrica
yar1 Finsler manifoldlar: tizerinde Sasakian Lorentz yapilar tanimlandi ve bu yapilara ait
egrilikler hesaplandi.

Altinct boliimde, yar1 Finsler manifoldlar: tizerinde hemen hemen Kenmotsu ve Kenmotsu
yapilar calisildi. Bu yapilarin integrallenebilir olmas: i¢in yeni sartlar elde edildi. Ayrica
yar1l metrik yapiya sahip Kenmotsu Finsler manifoldlarinin egrilikleri i¢in énemli sonuglar
elde edildi.

Tez calismasinin son boliimiinde ise tartisma ve sonug¢ kismina yer verildi.



2. DEGME YARI-METRIK YAPILAR

Bu boliimde degme yari-metrik manifoldlar1, degme Lorentz manifoldlari, Sasakian

ve Kenmotsu yari-metrik manifoldlar ile ilgili literatiirde yer alan tanim ve sonuglar verildi.

2.1. Degme Yari-Metrik Manifoldlar:

Tanim 2.1.1. (2n-+1) boyutlu bir M manifoldu tizerinde, ¢ (1, 1)-tipinde bir tensor alani,
¢ vektor alan1 ve 1 1-form olmak iizere, M manifoldu {izerinde herhangi bir X vektor alani

icin

n(€) =1

¢*X = —X +n(X)¢

P(§) =0 (2.1)
no¢ =20

rank¢ = 2n

esitlikleri saglaniyor ise M tizerinde (¢,&,n) yapist bir hemen hemen degme yap1 olarak

adlandirilir. M iizerinde bir g yari-Riemann metrigi i¢in € = F1 olmak {izere,

9(¢X,9Y) = g(X,Y) —en(X)n(Y) (2.2)

olarak tanimlansim. Boylece g yari-Riemann metrigine (¢, £,n) hemen hemen degme yapisi

ile birlegtirilmis metriktir denir.

(¢,&,m) hemen hemen degme yapi ile birlestirilmiy ¢ yari-Riemann metrigi ile birlikte
diizgiin M manifoldu, hemen hemen degme yari-metrik manifold olarak adlandirilir. Ayrica
(2.1) ve (2.2) esitliklerinden g(&, &) = € olmak tizere n(X) = eg(&, X) olur. Diger taraftan
(2.2) esitliginden g(¢X,Y) = —g(X, ¢Y) elde edilir. Boylece g skew simetrik olur.
(¢,€,m,g) hemen hemen degme yari-metrik yapisinin kompleks yapisi

TS = (0X — fen(X) 0

olsun. (¢, £, n) hemen hemen degme yapimin normal olmas: i¢in gerek ve yeter sart J hemen

hemen kompleks yapisinin integrallenebilir olmasidir. J nin integrallenebilir olmasi igin



gerek ve yeter sart ise J nin Nijenhius tensoriiniin sifira esit olmasidir.

[‘]’ J]((Xv 0)’ (K 0)) = (N(l)(va)v N(2)(X7Y))’
d

) = (VO (), NO(x)

[J, J1((X0), (0,
olup, buradan

Ny(X,Y) = ¢*[X, Y] = 9[¢X, Y] = 0[X, ¢V ] + [.X, ¢Y]

olmak iizere dort tensér alam1 N, N@) NG ve N® girasiyla

NO(X,Y) = Ny(X,Y) + 2dn(X,Y) @&,
N®(X,Y) = (Lyxn)Y — (Lgyn) X,
NO(X,Y) = (Leg) X,

NW(X,Y) = (Len) X

seklinde tammlidir. Ayrica N = 0 olmasi N® = NG = N® = 0 oldugunu gosterir.
Boylece J nin integrallenebilmesi icin gerek ve yeter sart N = 0 olmasidir (Calvaruso ve

Perrone, 2010).

Yardimci Teorem 2.1.2. M nin bir (¢,&,n,g) hemen hemen degme yari-metrik yapisi
icin ®(X,Y) = g(X, ¢Y) olmak iizere

29((Vx9)Y, Z) = g(N(Y, Z), 6 X) + 2edn(6Y, X)n(Z) — 2edn($Z, X)n(Y)
+eNO(Y, Z)n(X) + 3dD(X, ¢Y, pZ) — 3dD(X,Y, Z)

esitligi vardir (Calvaruso ve Perrone, 2010).
(¢,&,m) hemen hemen degme yapisi ile birlegtirilmig g yari-Rieamann metrigi
9(X,9Y) = dn(X.Y) (2.3)

esitligini saghyorsa (¢,&,n,g) yapisi degme yari-metrik yapi olarak adlandirilir. Boylece

(M, ¢,&,m, g) manifolduna da degme yari-metrik manifoldu denir.



M nin Levi-Civita koneksiyonu V olmak tizere, (2.1) ve (2.3) ifadelerinden

dn(&, X) = —g(X, ¢€)
olur (Calvaruso ve Perrone, 2010).
Sonuc 2.1.3. (M, ¢,&,n,g) degme yari-metrik manifold {izerinde
29((Vx9)Y, Z) = g(NU(Y, Z),6X) + 2edn(6Y, X)n(Z) — 2edn(6Z, X)n(Y)  (2.4)
olur (Calvaruso ve Perrone, 2010).

Degme yari-metrik manifoldu iizerinde ¢ nin Killing vektor alani olmasi i¢in gerek ve yeter

kosul N®) = 0 olmasidir. (2.3) esitligini dikkate alirsak L¢n = 0 olmasindan

0= (Ledn)(X,Y) = &(dn(X,Y)) — dn([§, X],Y) = dn(X, [€,Y])

= (Leg) (X, 9Y) + g(X, (Leg)Y)

elde ederiz. Yani L¢g = 0 saglanmasi icin gerek ve yeter sart L¢¢ = 0 olmasidir. Buradan

1 1
h=5Leo= §N(3) (2.5)

tensorii tanimlanabilir. Diger taraftan (2.4) ifadesi kullanilarak kovaryant tiireve ait agagi-

daki ozellikler verilebilir.

Vep =0, (2.6)

Vyé=—codX — ohX. (2.7)

Ayrica Riemann olma durumunda, (2.6) ve (2.7) ifadelerinden h nin self-adjoint oldugu,

h¢ = —¢h ve h§ = trh oldugu gosterilebilir. Diger taraftan 7 = L¢g alinirsa,
T(X,Y) =29(X, h¢Y')

olur.

Standart ortonormallestirme iglemi (M, ¢, &, 7, g) (hemen hemen) degme yari-metrik man-



ifoldunun, 6zel lokal yari-ortonormal bir bazi oldugunu gosterir. Bu baz ¢-baz olarak ad-
landirilir ve {, e1, ..., e, Pe1, ..., pen } seklinde gosterilir. Burada e; space-like (time-like)

ise ¢e; space-like (time-like) olur (Calvaruso ve Perrone, 2010).

Yardimci Teorem 2.1.4. (M, ¢,£,n,g) degme yari-metrik manifoldunda
div€ = 0,divn =0

olur (Calvaruso ve Perrone, 2010).

Tanim 2.1.5. (M, ¢,&,n,g) degme yari-metrik manifoldu
(i) Normal yani, [¢, ¢] + 2dn ® £ = 0 ise Sasakian,
(ii) h = 0 yani £ Killing vektor alani ise K-degme olarak adlandirilir (Calvaruso ve Perrone,

2010).

Teorem 2.1.6. (M,¢,£,n,9) hemen hemen degme yari-metrik manifoldunun Sasakian

olmasi icin gerek ve yeter sart
(Vx@)Y =g(X,Y)§ —en(Y)X (2.8)
esitliginin saglanmasidir (Calvaruso ve Perrone, 2010).

(2.8) esitliginde Y = ¢ alinirsa, agagidaki sonug elde edilir.

Sonuc 2.1.7. Sasakian yari-metrik manifoldu K-degmedir (Calvaruso ve Perrone, 2010).

2.2. Degme Lorentz Manifoldlar:

Tanim 2.2.1. (2n+1) boyutlu bir M manifoldu tizerinde, ¢ (1, 1)-tipinde bir tensor alani,
¢ vektor alan1 ve 1 1-form olmak iizere, M manifoldu {izerinde herhangi bir X vektor alani

icin

n(§) =1

P*X = —X +n(X)§

P(§) =0 (2.9)
nod=0

rank¢ = 2n



esitlikleri gergekleniyor ve g, M {izerinde Lorentz metrigi olmak iizere

9(¢X,9Y) = g(X,Y) +n(X)n(Y) (2.10)

ozellikleri saglaniyorsa (¢,&,1,g) yapisina, M {izerinde bir hemen hemen degme Lorentz

metrik yapidir denir (Calvaruso, 2011).

(2.9) ve (2.10) ifadelerinden n(X) = —g(&, X) olur. Ayrica g(&,§) = —1 oldugundan &
karakteristik vektor alani time-like dir. Diger taraftan g(¢X,Y) = —g(X, ¢Y) dir. Boylece
¢ nin skew-simetrik oldugu goriiliir.

(¢,&,m) hemen hemen degme yapisi ve g Lorentz metrigi ile birlikte M manifolduna hemen
hemen degme Lorentz manifoldu denir ve (M, ¢, &, n, g) ile gosterilir.

(¢,&,m) hemen hemen degme yapisinin normal olmas: i¢in gerek ve yeter kosul J hemen
hemen kompleks yapisinin integrallenebilir olmasidir. J nin integrallenebilir olmasi igin
gerek ve yeter sart ise J nin Nijenhuis tensoriiniin integrallenebilir olmasidir (Calvaruso,

2011).

Yardimci Teorem 2.2.2. M nin bir (¢,£,7n,9) hemen hemen degme Lorentz metrik

yapist i¢gin ®(X,Y) = g(X, ¢Y) olmak iizere

29((Vx9)Y, Z) = g(NW(Y, 2), X) — 2dn(8Y, X)n(Z) + 2dn(Z, X)n(Y)
— NO(Y, Z)n(X) + 3d®(X, ¢Y, pZ) — 3d®(X,Y, Z)

esitligi vardir (Calvaruso, 2011).

Eger g Lorentz metrigi
dn(X,Y) = g(X, ¢Y) (2.11)

esitligini sagliyor ise o zaman 7, M {izerinde bir degme form olur ve (M, ¢,&,n,g) yapisi

degme Lorentz manifold olarak adlandirilir (Calvaruso, 2011).

Sonuc 2.2.3. (M, ¢,£,n,9) degme Lorentz manifoldu igin
29((Vx9)Y, Z) = 2dn(6Z, X)n(Y) — 2dn(eY, X)n(Z) + g(ND(Y, 2),6X)  (2.12)

olur (Calvaruso, 2011).
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Ayrica degme Lorentz manifoldu iizerinde £ nin Killing vektor alani olmasi i¢in gerek ve
yeter sart N3 = 0 olmasidir.

Standart ortonormallegtirme iglemi ile birlikte (hemen hemen) degme Lorentz mani-
foldunun yari-ortonormal bir baza sahip oldugu goriiliir ve bu baz ¢-baz olarak adlandirilir.

Béyle bir baz {¢, e1, ..., en, ¢ei, ..., pe, } formundadir (Calvaruso, 2011).

Yardimci Teorem 2.2.4. (M, ¢,£,n,g) degme Lorentz manifoldunda
divé = 0,divn =0

olur (Calvaruso, 2011).

Tanim 2.2.5. (M, ¢,£,n,g) degme Lorentz manifoldu
(i) Normal yani, [¢, ¢] + 2dn ® £ = 0 ise Sasakian,
(ii) A = 0 yani £ Killing vektor alan ise K-degme olarak adlandirilir (Calvaruso, 2011).

Teorem 2.2.6. (M, ¢,&,n, g) hemen hemen degme Lorentz manifoldunun Sasakian olmasi

icin gerek ve yeter sart
(Vxo)Y =n(Y)X + g(X,Y)¢ (2.13)
olmasidir (Calvaruso, 2011).

(2.13) esitliginde Y = £ alinirsa agagidaki sonug elde edilir.

Sonuc 2.2.7. Sasakian yari-metrik manifoldu K-degmedir (Calvaruso, 2011).

2.3. Kenmotsu Yar1 Metrik Manifoldlar:

(2n 4 1) boyutlu bir M manifoldu iizerinde (¢,&,n,g) hemen hemen degme yari-
metrik yapist Tamim 2.1.1 deki gibi tamimlanmig olsun. ® ikinci temel form olmak {izere

her X, Y € I'(TM) igin
9(X;9Y) = ®(X,Y)

dir. Boylece dn = 0 ve d® = 2n A @ ile birlikte hemen hemen degme yar1 metrik manifold,

hemen hemen Kenmotsu yari- metrik manifold olarak adlandirilir.
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Hemen hemen degme yapilarin normallik sartinin

Ny = [¢, 0] +2dn @ ¢

Nijenhius tensor alaninin sifira egit olmasi oldugunu biliyoruz. M hemen hemen Kenmotsu
yar1 metrik manifoldu normal hemen hemen degme yapiya sahip oldugunda, Kenmotsu

yar1 metrik manifold olarak adlandirilir (Wang ve Liu, 2014).

Yardimci Teorem 2.3.1. (M, ¢,&,n, g) hemen hemen degme yar1 metrik manifold, Lx,
X yoniindeki Lie tiirev ve VX, Y, Z € I'(T'M) olmak iizere N(X,Y) = (Lgxn)Y — (Loyn) X
ifadesi ile birlikte

29((Vx )Y, Z) = 3d®(X, Y, ¢Z) — 3d®(X,Y, Z) + g(Ny(Y, Z), 9 X)
+eN(Y, Z)n(X) + 2edn(¢Y, X)n(Z) — 2edn(¢pZ, X)n(Y)

esitligi vardir (Wang ve Liu, 2014).

Onerme 2.3.2. (M, ¢,£, 1, g) hemen hemen Kenmotsu yar1 metrik manifold ve X,Y, Z €
[(TM) igin

29((Vx@)Y, Z) = g(Ng(Y, Z), ¢ X) 4 29(eg(¢ X, Y)§ — n(Y )X, Z)
esitligi vardir (Wang ve Liu, 2014).

Onerme 2.3.3. (M, $,&,m,9) hemen hemen Kenmotsu yari metrik manifold olsun.

Boylece

Ric(€,€) = —2n — trh?

div€ = 2n, divn = —2ne
olur (Wang ve Liu, 2014).

Teorem 2.3.4. (M, ¢,&, 1, g) hemen hemen Kenmotsu yar: metrik manifoldun Kenmotsu

yar1 metrik manifold olmasi igin gerek ve yeter sart VX, Y € I'(T'M) igin

(Vxo)Y =eg(¢X,Y)E —n(Y)pX

esitliginin saglanmasidir (Wang ve Liu, 2014).
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3. YARI FINSLER MANIiFOLDLARI

Bu boliimde tez galismamizin temelini olugturan yar1 Finsler manifoldlar: tanitildi,

vektorel Finsler koneksiyonlar1 ve Finsler koneksiyon egrilikleri verildi.

3.1. Yar:1 Finsler Manifoldlar:

M, (2n + 1) boyutlu diizgiin bir reel manifold ve T'M ise bu manifolda ait tanjant
demeti olsun. U, M manifoldunun agik alt kiimesi olmak tizere M iizerinde bir koordinat
sistemi {(U, ) : o', ..., 2?1} ya da kisaca {(U, o) : 2%} ile gosterilir. 7 : TM — M kanonik
projeksiyonu ile z € M noktasinda T, M fibresi bulunur, yani T,M = 7~!(x) olur ve M
deki koordinat sistemi sayesinde TM de {(U*, ®) : z!, ..., 22T b 421} = {(U*, ®) :
2%y} seklinde yeni bir koordinat sistemi tanimlanabilir, burada U* = 7~ 1(U) olur ve
® : U* — R**2 diffeomorfizmi her = € U ve y, € T, M icin (2, ..., 22"+ 41, .. 2 =
®(y,) seklinde tamimhdir. y, nin koordinatlar kisaca (z,y) ile gosterilir. Simdi M de
UNU # 0 olacak sekilde bir diger koordinat sistemi olan {(U, @) : #'} yi ele alalim. Boylece
TM fizerinde (x,y) ve (Z,y) lokal koordinatlar arasindaki bagmti agagidaki gibidir:

=2t 2?

)

g = Bj(x)y’. (3.1)

Burada B;(a:) = gﬁ; seklindedir. Ayrica (3.1) ifadesinden { a?c“ d%z} ve {%, 8%1} lokal

catilar1 agagidaki esitlikleri saglar:

023

J _
9 _ pigy 9 ik 0
ve
0 0
= B/ (z)—.
ayz 7 (.%‘) 8:(]] (3 3)



13

Diger taraftan M nin T* M kotanjant demeti iizerindeki {dz?, dy'} ve {d*, djj*} lokal dual

gatilart arasindaki bagintilar ise agagidaki gibidir:

di' = Bj(x)da’, (3.4)
dij’ = ;k(x)yjdxk + B}(x)dyj. (3.5)

TM nin sifir kesiti 6 olmak tizere 0(M)NM' = 0 ve 7(M') = M igin T'M nin bogtan farkh
bir agik alt manifoldu M’ ile gosterilsin. M., = T, M N M’ pozitif konik set yani her k > 0
ve y € M) i¢in k, € M, olur. Agkgast M’, bir Finsler manifoldu tanim i¢in gerekli olan
TM® =TM\ 0(M) esitligini saglar.

F : M' — (0,00) diizgiin fonksiyon ve F* = F? olsun. M’ deki her {(U’,®') : 2%, ¢}
koordinat sistemi i¢in agagidaki kosullar saglanir.

(F1) F in (y',...,y?"*1) e gore pozitif olarak homojenlik derecesi 1 dir. Yani her (z,y) €
o' (U’) ve k > 0 igin

F(zt, . 2?7 kyt, k) = kR (2 L 22yt P (3.6)

esitligi saglanir.
(F2) Her (z,y) € ®(U’) noktasinda

1 0%F?

_ iw,i,j €{1,2,...2n + 1}, (3.7)

Gij
ifadeleri R?"*1 de pozitif tanimli kuadratik formun bilegenleridir. (F1) ve (F2) kogullarim
gercekleyen F temel fonksiyonu ile birlikte F?"*! = (M, M’ F) bir Finsler manifoldu
olur. Ancak (F2) kogulu Finsler geometrisinin baz1 uygulamalar i¢gin uygun degildir. Bu
sorunu ortadan kaldirmak i¢in ¢ < 2n + 1 olmak iizere F* : M’ — R diizgiin bir fonksiyon
tanimlansm. Ayrica M’ de ki her {(U’, ®') : 2%, 4"} koordinat sistemi i¢in agagidaki sartlarin
saglandigini kabul edelim.

(F1*) F* 1n (y!, ..., 42" ") e gore pozitif olarak homojenlik derecesi 2 dir. Yani her (z,y) €
o' (U') ve k > 0 i¢in

Frat, . a® T kgl Ry = BPEr (2t L P P (3.8)
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esitligi saglanir.

(F2*) Her (x,y) € ®(U’) noktasinda g;;(x,y) (3.7) deki gibi tammh olup R?"! de ¢
negatif eigen degerli ve (2n 4 1) — ¢ pozitif eigen degerli, 0 < ¢ < 2n + 1, bir kuadratik
formun bilegenleridir. Béylece F2"+t! = (M, M’ F*) ¢ indeksli bir yar1 Finsler manifoldu
olur (Bejancu ve Farran, 2000).

Ozel olarak ¢ = 1 ise F?"*! Lorentz Finsler manifoldu ve ¢ = 0 ise Finsler manifoldu olur.

Finsler fonksiyonu ile yar1 Finsler fonksiyonu arasindaki baginti ise

Nl
—
©
Ne)
S~—

Fz,y) = [F"(z,y)]
esitligi ile verilir. (3.8) ve (3.9) kullamlarak

1
F(a:l, 22 eyt ...,k:y2”+1) = |F*(:zcl7 ...,:UZ”H,k:yl,...,k’anH)]?
1
il |k2}7>’<($17 ”‘7x2n+17y1’ m’y2n+1)‘2
1
= k:|F*($1, ...,x2"+1,y1, ...,y2”+1)|2

= kF(zt, .. 2yt 2

bulunur. Yani F?"*! yari-Finsler manifoldunun temel fonksiyonu olan F, (3.6) y1 saglar.

Simdi (3.6) ifadesinin k ya gore diferensiyelini alalim.

OF
'— =F 3.10
y ayz ? ( )
buradan
, O°F
———— =0 3.11
Y oy (3.11)
olur. (3.7) ifadesinde F* yerine F? alinirsa,
O°F  OF OF
Gij 8y1(‘)y1 + (‘9y2 ay] ( )
bulunur. Ayrica (3.10) ve (3.12) ifadelerinden
; OF
95y’ = F oy (3.13)

ve

gijyiyj =F* (3.14)



15

bulunur. (3.14) esitligi yar1 Finsler manifoldu igin gegerlidir. (3.8) ifadesinde k ya gore

tirev alinip, k = 1 yazilirsa
,OF*
Y oy

=2F" (3.15)
olur. Elde edilen son ifadenin y/ ye gére tiirevi alinirsa

i i OPF_OF
V95 =Y 55 = oy

(3.16)

elde edilir. Son olarak (3.16) ifadesinin y* ya gére tiirevi alinirsa

;. O3F*
Y 7 —
Oy’ Oyl Oy*
bulunur. Buradan her F?"*! yar1 Finsler manifoldu icin asagidaki ifadeler gecerlidir.
3gz‘j

09ij 09ij

By (z,y)y’ =0, Tyk(’% )y =0, oy (z,y)y"* = 0. (3.17)
(F2) ve (F2*) ifadelerinden V(z,y) € ®'(U’) igin
det[gij(z,y)] # 0 (3.18)

oldugunu yani, [g;j(x,y)] nin m x m tipinde terslenebilir bir matris oldugu séylenebilir.

Kargit olarak, (3.11) den

O°F
det[———] =
€ [ayzayj] 07
olup (3.12) ile birlikte
OF OF
(§] [g] 8y2 ayj] 0 (3 9)

olur.

R27+1 in bir acik pozitif konik alt ciimlesi D ve D iizerinde bir diizgiin reel fonksiyon olan
f fonksiyonunu ele alalim. Tensor alanlarimin lokal bilegenlerinin gogu pozitif homojen
fonksiyonlar oldugundan asagidaki tanim verilebilir:

f pozitif homojenlik derecesi r olan bir fonksiyon ise Vk > 0 ve (y!,...,4*>"*!) € D igin

flky's o ky? T = K f(yt Ly (3.20)



16

olur. Buradan i € {1,...,2n+ 1} i¢in g yfz nin pozitif homojenlik derecesinin r — 1 oldugunu

soyleyebiliriz (Bejancu ve Farran, 2000).

Teorem 3.1.1. (Euler Teoremi) D iizerinde diizgiin bir f fonksiyonunun pozitif homo-

jenlik derecesinin r olmasi i¢in gerek ve yeter kosul

JOF

rf (3.21)

olmasidir.

Onerme 3.1.2. (i) %Z: nin (y!,...,4?"*1) e gore pozitif homojenlik derecesi 1 dir.
(ii) 351 ve g;j nin (yl,...,y
(i) (3.10), (3.11), (3.15) ve (3.17) ifadelerinden (3.21) kullamlarak Vz € M, M. =

T.M N M ahp F?"*1 = (M, M’, F*) yan Finsler manifoldunun her tanjant uzaymda

Int1y ¢ gore pozitif homojenlik derecesi 0 dir.

ii¢ hiperylizey tanimlanir. Bu yiizeyler agagidaki gibi ifade edilir.

IM; = {y € My; F*(z,y) = 1},
IM; ={y € M; F*(z,y) = -1},
AM, ={y € M,;; F*(x,y) = 0}

(Bejancu ve Farran, 2000).

T.M de alman IM;, IM, ve AM, hiperyiizeyleri, sirasiyla pozitif indikatriks, negatif
indikatriks ve x noktasindaki null(lightlike) Finsler koni olarak adlandirihir. TM ve AM,
sadece yar1 Finsler manifoldlarinda tanimhdir. Ozel olarak F2"*! bir Riemann manifoldu
ise sadece I M} vardir ki o da birim kiiredir. F?"*1 0 < ¢ < 2n + 1 indeksli yar1 Riemann
manifoldu oldugunda I M, IM; ve AM,, sirasiyla, birim yari-kiire, birim yari-hiperbolik
uzay ve null(lightlike) koni olarak adlandirilir. Ayrica

Mt = | JIM 1M~ = | JIM, ,AM = | AM,
zeM zeM zeEM
yazilabilir.
F?"*+1 bir Riemann manifoldu oldugunda IM™, M iizerinde bir kiire demeti olur (Bejancu

ve Farran, 2000).

Ornek 3.1.3. M, indeksi 0 < g < 2n+ 1 olan g = (94j) yar1 Riemann metrigi ile verilmig
(2n + 1) boyutlu bir yar1 Riemann manifoldu olsun. Boylece F2"*1 = (M, M’, F*) bir yar
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Finsler manifoldu olur. Burada M’ = TM° ve F*(z,y) = g;j(x)y'y’ seklindedir.
R?"+1 de 6klidyen yap1

=1

2n+1 %
F(z,y) = (Z (yi)2> (3.22)

ve R?"1 de 0 < ¢ < 2n + 1 indeksli yar1 6klidyen yap:

q 2n+1

Fray)=-> )+ Y u)? (3.23)

=1 a=q+1

ile verilir (Bejancu ve Farran, 2000).

3.2. Vektorel Finsler Koneksiyonlar:

Bu boéliimde yari-Finsler manifoldlar: ig¢in yatay ve dikey distribiisyonlar, Finsler
tensor alanlari, Finsler koneksiyonu icin yatay ve dikey kovaryant tiirev operatorleri ve dig
diferensiyel operatorii gibi temel kavramlamlara yer verildi.

0 < ¢ < 2n + 1 indeksli yar1 Finsler manifoldu F?"*! = (M, M’, F*) olsun. 7 : M’ —
M submersiyonunun 7, : TM’ — TM tanjant doniigiimiinii ele alahm ve (T'M')Y =
kerm, vektdr demetini tanimlayalim. U’ C M’ koordinat komsulugunda 7(z,y) = x* lokal
koordinatlar cinsinden 7['3;(%) = 6; ve Wi(aiyj) = 0 bulunur. Yani {(%i}, [(TM'|)Y nin
bir bazidir. Boylece (TM')Y, F2"*+! in dikey vektér demeti olarak adlandirilir.

Lokal olarak, U’ ¢ M’ koordinat komsulugunda X* ler U’ iizerinde diizgiin fonksiyonlar

olmak tizere

XV = X¥(x, y)a‘; (3.24)

olur. Ayrica (TM')Y nin dual vektor demeti (T*M’)Y ile gosterilir. Boylece Finsler 1-form
(T*M")Y nin diizgiin kesitidir. {8%1’ ey ay%ﬂ} nin dual bazinm {6y?, ..., 5y*" 1} oldugunu

kabul edelim. Boylece 5y’(%) = ¢ olur. Yani w € (T*M")Y igin w;(x,y) = w(azi) olmak

lzere

wY = wi(x,y)oy’ (3.25)

yazilir.

TM' de (TM')Y nin tamamlayic distribiisyonu (T'M')* ile gosterilir ve nonlineer konek-
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siyon ya da yatay distribiisyon olarak adlandirilir. Boylece
TM' = (TM")" & (TM')Y (3.26)

esitligi yazilir.

{%, . M%H} lokal vektdr alanlarinin seti T'(T'M'|;7)* iizerinde bir bazdir. Yani,

) 0 ; 0
doxt  Ox* b Oyl ( )
olur.
M’ iizerinde X vektor alanim diisiinelim. X € T'M’ icin, lokal olarak

St oyt

yazilir. Agik olarak, X*(z,y) = 0 i¢in (M')* € M’ ve X*(z,y) = 0 i¢in (M')* € M’ elde
edilir. {5%, e M%H} nin dual baz1 {dz!, ..., dx?" "1}, yani, d:ci(ﬁ) = &% olsun. Boylece

her bir w € I'(T* M) icin @;(z,y) = w(dz?) ve w; = w; — Nl-jwj olmak tizere
H _ i
w” = w;(z,y)dz (3.29)

esitligi yazilir. Buradan

Sy’ = dy' + N;((I}, y)da? (3.30)

olur (Bejancu ve Farran, 2000).

w 1-form ve w = w;(x, y)dx® + w;(z,y)0y ve w = w* + wY olmak iizere

wt(XY) = 0,0 (XM") =0 (3.31)

r
yazilir. M’ {izerinde b tipinde bir Finsler tensor alani agagidaki lokal forma sahip-

tir.

o 5 5 o 0
_ lledp,ale.Gr a ar b bs
T =T b b, (@) 5 © O 5 ®dr 8. 0d2" 8 5 5085 780" 8.0y
(3.32)

(Sinha ve Yadav, 1988).
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Tanmim 3.2.1. M’ {izerinde tammlanan V Finsler koneksiyonu, yine M’ {izerinde tanm-
lanan V = FT lineer koneksiyonudur ve bu koneksiyon y, € M’ olmak iizere (T, M')*
yatay lineer uzay1 V ya gore paraleldir. Benzer sekilde y, € M’ i¢in (T, M’ )Y dikey lineer
uzay1 da V ya gore paraleldir.

M’ {izerindeki V lineer koneksiyonunun M’ iizerinde Finsler koneksiyonu olmasi igin gerek

ve yeter sart

(VxYH)Y =0,(VxY) " =0,vX,Y € T, M’, (3.33)
VxY = (VxY)7 4+ (VxYY)Y, (3.34)
Vxw = (Vxw)" + (Vxw”)V,vw € T; M’ (3.35)

esitliklerinin saglanmasidir (Sinha ve Yadav, 1991).

Uyan 3.2.2. V, M’ iizerinde bir Finsler koneksiyonu olsun. Boylece asagidaki esitlikler
elde edilir.

Y € (T,,M")Y = VX € T, M';VxY € (T,,M"),
Y € (T, M " =vX €T, M';VxY € (T,,M")" (3.36)

(Szilasi ve Vincze, 2000).

Tanim 3.2.3. M’ iizerinde bir V Finsler koneksiyonu i¢in Finsler tensor alanlar: cebirinde

h ve v kovaryant tiirev operatorleri meveuttur. VX € T, M" icin
VRY = VnY,VEf = X(f),VY € T,, M’ \Vf € (M) (3.37)
olsun. Eger w € Ty M" ise VY € T, M i¢in
(VEw)(Y) = X (w(Y)) - w(VEY) (3.38)

yazilir ve V%, h kovaryant tiirev operatorii olarak adlandirilir.

Benzer sekilde VX € T, M’ i¢in
VXY =V wY, VX f=XY(f),VY € T, M Vf € (M) (3.39)
olsun. Eger w € T,y M" ise VY € T,,, M icin

(VXw)(Y) = XY (w(Y)) - w(VXY) (3.40)
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yazilir ve V¥, v kovaryant tiirev operatorii olarak adlandirihr (Antonelli, 2003).

Tamim 3.2.4. w € T;; M', M’ iizerinde bir diferensiyel ¢-form, V; M’ iizerinde bir lineer

koneksiyon ve T'; V nin torsiyon tensorii olsun. Bu durumda dw dig diferensiyeli VX; €
T,,M' igin

q+1
dw(X1, ., Xgp1) = > (1) (Vxw) (X1, . X4, . Xg11)

=1
= Y (D)X, Xp), X,y Xy Xy, Xgi) (3.41)

1<i<j<q+1

seklinde tammlanmigtir (Sinha ve Yadav, 1988).

Onerme 3.2.5. V, M’ iizerinde bir Finsler koneksiyonu ve w € T, M' 1-form olmak

tizere VX,Y € T, M’ i¢gin dw dig diferensiyeli agagidaki esitlikler ile ifade edilir.
dw(X, YY) = (Viw)(Y”) = (VYw)(X”) + w(T(XY,Y")), (3.42)
dw (XM, YH) = (Vi) (Y¥) — (V) (X¥) +w(@(XMYH)  (343)
(Miron, 1982).

Bir Finsler koneksiyonunun 7 torsiyon tensor alami beg Finsler tensor

alan1 ile karakterize edilir. Bu tensér alanlar1i asagidaki gibi ifade edilir:
T Y, [T Y)Y, [T, YY) [T, YY), [TOLYHPE (Miron,
1982).

3.3. Finsler Koneksiyon Egrilikleri

VX,Y,Z € T,,M' i¢in, V Finsler koneksiyon egriligi
R(X,Y)Z =VxVyZ -NyVxZ -VixyZ (3.44)

esitligi ile verilir. R(X,Y)Z operatorii yatay vektor alanlarini yatay vektor alanlarima ve
dikey vektor alanlarini dikey vektor alanlarina dontigtiiriir. Sonug olarak her XY, Z €
T, M' igin

R(X,Y)Z = R*(X,Y)Z" + RV(X,Y)Z" (3.45)

yazilir. R(X,Y)Z, X ve Y ye gore skew simetriktir. Boylece agagidaki teorem verilir:
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Teorem 3.3.1. T, M’ tanjant uzay: tizerinde V Finsler koneksiyon egriligi agagida verilen

alt1 Finsler tensor alani ile ifade edilir.

R(X™, Y )Z% = VRVEZ? - VEVRZY — Vo yu 27, (3.46)
R(XY, Y Z" = VY VIZ" - VPIVRZH =V xv ya ZH, (3.47)
R(X™YM) 2V = VVIEZY - VIVEZY — VixuynZ”, (3.48)
R(XY, YY) Z" = VY VyZ" — VYV ZH — Vv yv 27, (3.49)
R(XV,YM)ZV = VYVIEZY —VPVRZY — Vixv yn ZY, (3.50)

R(XYV,YV)ZV =VXVyZY = VYV ZY — Vv yv ZY (3.51)

(Antonelli, 2003).

Boylece V Finsler koneksiyon egrilik tensérii Berwald bazina gore iig farkh gekilde ifade

edilir.

5 5.8 6

(6:7‘3’ @)ﬁ = R (3.52)
o 5.5 .5

(873/’“’@)&71 = Prjkso (3.53)
o 9.6 )

(aT/k’ Tgﬂ)ﬁ = S;ijﬁ' (3.54)

Bu {i¢ bilegen Teorem 3.3.1 de ifade edilen birinci, iigiincii ve beginci Finsler tensorlerine

karsilik gelmektedir. Diger {i¢ Finsler tensorii ise agagida verilen egitliklere karsilik gelmek-

tedir.
(éﬂ’(%ij)aga/h: ijg,ayw (3.55)
(aik’éfcj)a(zh: }gjkaayi, (3.56)
(E)(Z’f’fgj)@(zh: ;’ija‘zi_ (3.57)

Boylece VI' = (V. ]’ , F;,W ;k) Finsler koneksiyonlari szk, P}ijk ve S,ijk olmak iizere iig lokal

bilesene sahiptir (Antonelli, 2003).
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4. YARI FINSLER MANIFOLDLARI UZERINDE DEGME YAPILAR

Bu béliimde yar1 Finsler manifoldlar1 iizerinde yar1 Finsler metrigi kullanilarak
hemen hemen degme, degme ve e-Sasakian yapilar kuruldu. Ilk olarak hemen hemen degme

Finsler manifoldlarini ele alalim.
4.1. Hemen Hemen Degme Finsler Yapilar
M’ tizerinde ¢ tensor alani, n 1-form ve & vektor alani olmak tizere

. ) - ~. o -
— 4H Vo i J 7 J

n=n"+nY =n(z,y)dz’ + 7;(z,y)dy",

E=E" 48V =E(n,y) 5 +E(x,9) 5% (4.2)

olsun.

Tanim 4.1.1. M’ iizerinde ¢, n ve & (4.1) ve (4.2) deki gibi tamimlansin. Boylece

't = ni(z, y)da',
77V = ﬁl(x7 y)éyZ’
H _ ¢ )
5 fz(ﬂ'},y) ozt

olmak tizere
("2 =T+ (¢V) =1V +9n 0 ¢ (4.3)

() =n"(€) =1 (4.4)

esitlikleri varsa, bu durumda (¢, %, n7) ve (¢Y, €Y, 1Y) yapilan sirasiyla (M')" ve (M)
iizerinde hemen hemen degme Finsler yapilar olarak adlandirilirlar. Burada M’ = (M')" @

(M'")? bir Finsler vektor demetidir.
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Teorem 4.1.2. (M’')" ve (M')" Finsler vektér demetleri iizerindeki hemen hemen degme

Finsler yapilar (¢*, 77, %) ve (¢Y,nY,£Y) olsunlar. Béylece
6™(EM) = 6"(€) = 0,0 0 9™ =1V 06" =0 (4.5)
esitlikleri saglanir.
Ispat. (4.3) yardimiyla
(™) (™) = =™ + 0™ (€™)(€%)

yazilir. Ayrica ¢ (€M) = 0 ya da ¢ (€7), sifir eigen degerine karsilik gelen ¢ 1 nontrivial
eigen vektoriidiir. (4.3) kullanilarak

0 = (¢7)*(¢7 (€M) = —0™(€") + 0™ (4(¢7))¢™
veya
¢T(E™) = 0" (o(7))E"
elde edilir. Eger ¢ (£7) nontrivial eigen vektor ise n7¢(¢™(£%)) # 0 olur. Boylece
0= (67)%(&7) = ™ (@™ (7))9™ (%) = (™ (¢™(€7)))% # 0

elde edilir. Ancak bu bir celiskidir. Yani ¢*(¢) = 0 olur. Benzer sekilde ¢Y(¢Y) = 0
ifadesi de elde edilir.
Diger taraftan ¢ () = 0 oldugundan YX* € (TM")*, XV € (TM")Y igin

1 O(XT))E" = *(XT) + ¢(X7) = =™ (XT) + ™ (XT) + ™ (67 (XT)EH) = 0
ve
" (0¥ (XV)g" =0
elde edilir. Boylece ™ o ¢ =0 ve n¥ 0 ¢¥ = 0 olur.

Teorem 4.1.3. (M')" ve (M')? iizerinde, sirasiyla, (¢7, &%, n™) ve (¢Y,€Y,nY) hemen

hemen degme Finsler yapilar ise rank¢™ = rank¢Y = 2n dir.
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fspat.
o™t (T, M"* — (T, M"Y Yy, € M,

ranke™ + ker¢™ = 2n + 1 = dimM,, (Vo € M). (4.6)

VXM € ker¢™ icin ¢t XM = 0 oldugunu biliyoruz. Béylece 0 = ¢? X" = — X ypH(XH)eH
ya da X" = p"(X)M elde edilir. Yani X € Sp{¢"} = ker¢™ olur. Buradan ker¢ =
dim(ker¢™) = 1 olur ve (4.6) den, rank¢™ = 2n bulunur.
Benzer sekilde

oV (T, M"Y — (T, M")V Yy, € M,

ranke” + ker¢¥ = 2n + 1 = dimM_,, (Vx € M) (4.7)

VXY € ker¢? icin ¢¥XV = 0 oldugundan 0 = ¢’XV = —XV + p¥(XV)¢Y ya da
XV = pY(XV)¢Y elde edilir. Béylece XY € Sp{¢Y} = ker¢? bulunur. Buradan ker¢? =
dim(ker¢Y) = 1 olur ve (4.7) esitliginden, rank¢” = 2n elde edilir.

Uyar1 4.1.4. (M')" ve (M')” tek boyutlu olmak iizere (M')" ve (M')" alt demet-
leri iizerinde (o™, 7)) ve (¢#Y,€Y,17Y) hemen hemen degme yapilar ile birlikte
(M"Y, @™ € ) ve (M), Y, €Y, 1Y) hemen hemen degme Finsler manifoldlar: olarak

adlandirilirlar.

4.2. Yar1 Finsler Manifoldlar1 Uzerinde Hemen Hemen Degme Yar: Metrik
Yapilar

F?+l — (M, M’, F*) yan Finsler manifoldu olsun. (V%) ve (W7) lokal bilegenler

ile birlikte V' ve W vektor alanlar: igin 95*, (3.7) esitligindeki gibi tanimlanmak tizere,
g (@MY x T(TM)Y = (M),

gF*(Vv W)(xay) :gi};*(x7y)vi(xvy)wj(xvy) (4'8)

tanimlayalim. Boylece
« 0 0

g5 (x,y) =g~ (57 99 @) (4.9)

yazilir. Acik olarak ¢¥”* simetrik Finsler tensor alani olur. g, yari-Finsler metrik olarak ad-
landirilir. Ayrica g, (TM')Y Finsler vektor demeti iizerinde yari-Riemann metrik olarak

diiglintilebilir.
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Benzer gekilde gf;-*, (3.7) deki gibi olmak iizere,

g (MY x T(TM)HY — (M),

9" (VW) (x,y) = gf; (@, 9)V (@, )W (x,y), (4.10)
, I
95 (@y) = 9" (55 55)(@v) (4.11)

*
)

tanimlanabilir. g, yar1 Finsler metrik olarak adlandirilir. Ayrica gt , (T'M’)* Finsler vek-
tor demeti tizerinde yar1 Riemann metrik olarak diigiiniilebilir (Bejancu ve Farran, 2000).
Bir Finsler vektori X € (TM")V(X € (TM")") igin gi: = " (y), (ye) = (z,y) € M’

olmak tizere

ggf:(X7X) >0 veya X =0= Space — like,
gl (X, X) < 0= time — like, (4.12)

gE" (X, X) = 0, X # 0 = light — like(null)
seklinde tammlanmigtir. Diger taraftan bir Finsler normu(uzunluk)
* 1
1X1 = lgy, (X, X)|>. (4.13)

esitligi ile verilir (Bejancu ve Farran, 2000).
g?i (X, X) = 1ise X birim space-like Finsler vektor, g?i (X, X) = —1ise X birim time-like
Finsler vektor olarak adlandirilir. X birim Finsler vektor ise € = gi (X, X) ifadesinde yer

alan e, X in igareti olarak adlandirihr. VX, Y € I'(TM’) igin
G T(TM') x T(TM') — S(M"),

G(X,Y)=G"X,Y)+GY(X,Y) (4.14)

tamimlayalim. Agik olarak G, M’ {izerinde (0,2) tipinde bir simetrik tensor alami olur.
Ayrica G, non-dejenere ve sabit indekslidir. ¢ yar1 Finsler metriginin indeksi olmak iizere,

M’ {izerinde G yari-Riemann metriginin indeksi 2q olur.

G = gg*dxi ® da’ + g?&yi ® oy =G+ G (4.15)
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M’ {izerinde G Sasaki Finsler metrigi olarak adlandirilir.

Tanim 4.2.1. (M’)" yatay vektor demeti ve (M')? dikey vektor demeti iizerinde, sirasiyla,
(@™, M ") ve (¢Y,€Y,nY) hemen hemen degme yapilar olsunlar. G ve GY metrik
yapilari
GH (X, Y ™) = GHHXTLYT) — en™ (X )™ (Y7),
GY(¢XY, YY) = GY(XV, YY) —enV(XV)nV (YY), (4.16)
G(6X,8Y) = GH(6X,6Y) + G¥(6X, 6Y)
esitliklerini saglarsa, bu durumda (¢, €%, n*, G™M) yapisi (M')" {izerinde hemen hemen

degme yar1 metrik Finsler yap1 olarak ve (¢Y, &Y, nY, GY) yapisida (M’)V iizerinde hemen

hemen degme yari metrik Finsler yap1 olarak adlandirilir. Burada € = 41 olmak {izere
(X7 = eGH (X, 7),nY (XY) = eGY (XY, €Y) (4.17)
seklinde tanimlanmigtir.

Sonuc 4.2.2. (M, &M n" GM) ve (¢Y,€Y,nY,GY) sasiyla (M')* ve (M')? iizerinde

hemen hemen degme yar1 metrik Finsler yapilar olsunlar. (4.16) ve (4.17) ifadelerinden

GV(¢XV7YV) = _GV(XV7¢YV) (418)

ve

GH(¢XH7 d)YH) = _GH(¢2XH7 YH)?
GV (¢XV,9YY) = ~GYV(¢* XV, YY) (4.19)
esitlikleri elde edilir.
Bu esitlikler yardimiyla
QX YT) = GH(XT, oY),
QXY YY) = V(XY 67Y), (4.20)

QX,Y)=G(X,9Y)

ikinci temel form tammlanabilir (Sinha ve Yadav, 1991).
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Onerme 4.2.3. Yukarida tanimlanan ikinci temel form icin agagidaki esitlikler gecerlidir.

QXM gV H) = QXM YH),
QpXY,6YY) = QXY YY) (4.21)

ve

QXY = QY XH),
QXY YY) = -QYV, XV) (4.22)

(Sinha ve Yadav, 1991).

Onerme 4.2.4. V, M’ iizerinde Finsler koneksiyonu ve ; Q(X,Y) = dn(X,Y) sartim

saglayan ikinci temel form olmak tizere asagidaki esitlikler saglanir.

QXY = (VEn) (V) = (Vi) (XT) + n(T(X7,Y™),
QXY YY) = (Vi) (V) = (Vi) (XY) +9(T(XY,YY)). (4.23)

Boylece M’ {izerinde hemen hemen degme yari metrik Finsler yapr hemen hemen e-
Sasakian Finsler yapi olarak adlandirilir. Ayrica (¢, &% ™, GM) ve (¢Y,€Y,nY,GY)
yapilar1 sirasiyla (M')" ve (M')? iizerinde hemen hemen e-Sasakian yapilar olarak ad-

landirilir.

Teorem 4.2.5. € ikinci temel form ve M’ {izerinde torsiyonu sifir olan V hemen hemen

e-Sasakian Finsler koneksiyonu olmak iizere agagidaki egitlikler saglanir.

QXM YH) = (Vi)Y H — (Vi) X ™,
QXY YY) = (Vn)YY — (Vin) XY (4.24)

(Sinha ve Yadav, 1991).

Tanim 4.2.6. M’ iizerinde hemen hemen e-Sasakian Finsler yapi, n; 1-formu Killing

vektor alan1 oldugunda e-Sasakian Finsler yap1 olarak adlandirilir.

(VEn)(Y™) + (Vi (X™) =0,
(VEDYY) + (VEn)(XY) =0. (4.25)
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M’ iizerindeki V torsiyonsuz Finsler koneksiyonu Sasakian Finsler koneksiyonu olarak ad-

landirilir (Sinha ve Yadav, 1991).

Teorem 4.2.7. M’ iizerinde e-Sasakian Finsler yapi ile birlikte V torsiyonsuz Finsler

koneksiyonu ve €2 ikinci temel form olsun. Boylece agagidaki esitlikler saglanir.

QXY = 2(VEn)(Y™) = —2(ViEn)(X™),
QXY YY) = 2(Vin)(YY) = —2(VYn)(X). (4.26)

(4.20) ve (4.23) ifadelerinden GH"(X™M, oY) = dn™(XM,YH) ve GY(XV, YY) =
dn¥ (XV,YY) yazilir. Béylece

dp(X, Y = GH(XT oY M) = QM( X YT (4.27)

ve

dn(XY, YY) = G(XY,¢YY) = QV(XV, YY) (4.28)

elde edilir (Sinha ve Yadav, 1991).

4.3. Yar1 Finsler Manifoldlar1 Uzerinde Degme Yapilarin Integrallenebilir

Tensor Alanlar:

F2+l = (M, M', F*), 0 < q < 2n + 1 indeksli yar1 Finsler manifoldu olsun. (M’)"
ve (M")? iizerinde (¢, €7, n™) ve (¢Y, €Y, 1Y) hemen hemen degme Finsler yapilarinin inte-
grallenebilir tensor alam VM, X Y ¢ (TM")" ve VeV, XV, YV € (TM')Y icin agagidaki

gibidir.
NH(X,Y) = [pXT, oYM — g[p X7 Y] — [ X, oY ] + ?[ X, Y] 4+ dnP (XH, Y )M
ve

NY(X)Y) = [¢XY, VY] — ¢[o XY, VY] — ¢[XV, 0YV] + *[XV, VY] + dn¥ (XY, YY)V
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Ayrica VEH XM YH ¢ (TM)" ve VeV, XV YV € (TM')Y icin N, N® NG ye N

tensor alam agagidaki gibidir.

NOXH,YH) = Ny(XH, 1) 4 dn (X4, Y H)eX, (4.29)
N@(XH,YH) = (L ™) (Y H) — (L) (X ™),

NEO(XH) = (L) (XH), NW(XH) = (L") (X™H)

NOXY YY) = Ny(XY, YY) + dn¥ (XY, YV)EY, (4.30)
NO(XY, YY) = (LYnV)(YY) — (LYynY)(XY),

NO(XY) = (L{¢)(XY), N (XY) = (L¥n")(X).

Hemen hemen degme Finsler yapiin normal olmasi i¢in gerek ve yeter sart yukarida tanim-

lanan dort tensor alaninin sifir olmasidir.

Yardimc1 Teorem 4.3.1. N1 = 0 ise N& = NG = N¥) = g (Yalinmiz ve Galigkan,
2013).

Onerme 4.3.2. (M")* ve (M')" Finsler vektér demetleri iizerinde (¢,&M, n™) ve
(¢Y,€Y,1nY) hemen hemen degme Finsler yapilarinin normal olmasi icin gerek ve yeter

sart

Nt +dn" @ e =0,
NY +dn¥ @€Y =0 (4.31)

esitliklerinin saglanmasidir.

F2n+l — (M, M’', F*) manifoldunun yari Finsler metrigi ile birlikte (M’)* ve (M')
vektor demetleri iizerindeki hemen hemen degme yari metrik Finsler yapilari sirasiyla,
(¢, 7 M, GM) ve (¢V, €Y, 1Y, GY) olsunlar. (M')"* ve (M')? vektor demetleri iizerinde,
G™" ve GV yari-Riemann metrik olarak diisiiniilebilir. Eger ¢* karakteristik vektor alam
G™ yar1 Riemann metrigine gore ve &Y karakteristik vektor alani da GY yari Riemann

metrigine gore bir Killing vektor alani ise bu durumda (M")" ve (M’)V iizerindeki degme
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yar1 metrik yapiya bir K-degme yar1 metrik yapi ve (M’)" ve (M')" demetleri de K- degme

yari-metrik Finsler vektor demetleri olarak adlandirilir.

Yardimcit Teorem 4.3.3. (M')" ve (M')? iizerinde, sirasiyla, (¢7¢, &%, n™ G™) ve
(¢Y,€Y,1nY,GY) degme yan Finsler metrik yapilar olsunlar. Béylece N @ =0ve N =0
olur. Diger taraftan N®) = 0 olmasi icin gerek ve yeter sart G* ve GV metriklerine gore

£ ve €Y vektor alanlarinin Killing vektor alani olmasidir.

Ispat. (4.20) ve (4.27) ifadelerinden
A (XM, oY M) = Q(p XM, oY M) = GH(pX ™M, 9?Y ™) = GHH(XM, oY ) = an™ (X, v

esitligi elde edilir. Buradan dn™(¢X™, YH) + dn™(X™, oY) = 0 olur. Boylece N(?) =0

olur. Diger taraftan
0= GH(XH, 98%) = dnt(X¥,€4) = XPH(EH) — € (X) — XM,
elde edilir. Boylece
(X =" ([, X)) = 0
olur. Buradan (LZ{UH) = 0 elde edilir. Yani N®* = 0 olur. Ayrica
(LEG) (X, €M) = e (" (X)) — en™[€™, X7] = o(Lfn™) X = 0
oldugundan (Lg"dnﬂ) = 0 bulunur. Sonug olarak
(LR (XM, H) = (LEQ)(XH, ™) =0
elde edilir. Buradan

0 ="GM(XM, oY) — P, X7, 0Y ™) — G(X, 9l¢™, Y T))
= (LEG™) (X, oY ™) + GH(XT (LEQ)Y ™) = (LEGH)(XH, oY) + GH(XH, N3 (Y™H))
bulunur. Boylece N®) = 0 esitliginin saglanmasi icin gerek ve yeter sart €% m Killing

vektor alam olmasidir. Benzer sekilde N2 = 0 ve N*) = 0 olur. Ayrica N®) = 0 esitliginin

saglanmasi icin gerek ve yeter sart €Y nin Killing vektor alan olmasidir.
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Yardimeci Teorem 4.3.4. (M’)" ve (M')V Finsler vektor demetleri iizerinde, sirasiyla,
(¢, 7 M, GM) ve (¢Y,€Y,1Y,GY) hemen hemen degme yar1 Finsler metrik yapilar ol-
sunlar.

Boylece VX, YH, ZH ¢ (TM') icin

2GM(VES)Y, ZM) = GH(ND(YH, ZM), pX M) — dUXT Y, ZH) 4+ dU(XTE, gV, 0 Z7)
+eNOYH 2P (XH) — edn™ (o ZH, X )" (YH) + edn™ (oY, X )" (Z7)  (4.32)

ve VXV, YV, ZV € (TM')Y igin

2GY (Vo) YV, Z2V) = GY(ND(YY, Z2Y),6XY) — dUXV, YV, ZY) + dUXY, ¢YV, $Z")
+eNO WYY, ZV)Y(XV) — edn¥ (¢ZY, XV)nY (YY) + edn¥ (oYY, XV)nY (ZV)  (4.33)

olur.

Ispat. V bir Finsler koneksiyonu olmak iizere

2GH(VRYH 77 = XHGH(Y M, Z2M) + YHGH (X, ZM) — ZMGH (X YT
+ GH(XT Y, Z7) + GH( 27, X Y ) - G, 27, X (4.34)

ve

2GV (VXYY Z2Y) = XYaY(YY, Z2V) + YYGY (XY, ZV) — Z2VGY (XY, YY)
+GV(XY, YY), Z2Y) + GY((2Y, XV, YY) - GY([YY, 2], XY) (4.35)

esitlikleri mevcuttur. Ayrica

dQX*YH Z7M) = XHoyH, z%) YRz, X 4+ ZHo(x T v H)

ve

dXY, YV, ZV) = XYYV, ZV) + YYQ(ZY, XV) + 2V XY, YY) (4.37)
- Q([va Yv]v ZV) - Q([ZV7XV]7 YV) - Q([YV’ ZV]7XV)
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yazilir. (4.20) ve (4.35) kullanilarak

2GY(VXo)YY, ZY) = ¢YYGY(XY,2Y) — ZVQXY, YY) + GY (XY, Y], Z¥) + Q([2Y, XY], YY)
—GY([pYY, 2V, XV) + YYUXY, Z2Y) - 92V GV (XY, YY) + (XY, YY), ZY
+ Y ([92Y, XV, YY) = GY(YY,$2Y], XY) (4.38)

elde edilir. (4.37) ifadesinden, (4.20), (4.21) ve (4.22) kullanilarak

dQ(XY, YV, 02Y) = XYQYY,Z2Y) + ¢oYVGY(Z2Y, XV) — oYY (0¥ (2 )Y (XV))
+e¢Z" (n” (Y)Y (XY) = 02V GV (XY, YY) + GY([XY,9YV], ZY) — enV[XY, 0Y V] (2Y)
+GY([62Y, XV, YY) —en’ (YV)nV[92Y, XV] - [V, 62"], XV) (4.39)

bulunur. Diger taraftan (4.30) ve (4.20) kullanilarak

GY(INO(YY, 2Y),6XY) = —Q([YY, ZY], XV) + Q([¢Y"”, 2], X V) (4.40)
= GY([0YY, 2¥], XY) +en’[oYY, ZV " (XY) = GY(IYY,02”], X¥) + en”[Y”, 02" (XV)

esitligi elde edilir. (4.29) ifadesinden

NOEY, 2V (XY) = ¢YV(n¥(2Y)) — 2V (" (YY) =V [oY", ZV]
—nY[YY, 02Y Y (XV) (4.41)

bulunur. (4.37), (4.39), (4.40) ve (4.41) kullanilarak (4.33) elde edilir. Benzer sekilde (4.34),
(4.20), (4.21), (4.22), (4.34) ve (4.36) kullamlarak

dQUX oY ¢ 27 — dU XY, 2 + G(INW (YT, 27, o X ) + e N (Y, 2 (X7
+edn (oY, X (Z7) — edn™ (027, X (V)

= oY G (2 X)) — pZMGH (X, Y + G (XM, oY M), ZM) + G ([0 27", XM, V)

— QoY pZ2], X M) + YQXT, 27 — 27X Y + QX Y, 27

+Q([Z%, XM, v + (YT, 27, XM + QoY T, 927, X )

— QY™ 27, XH) - GH (oY T, 2%], X7) — GH([Y ™, 927, X7

= 26" ((VEo)Y™, Z7)

elde edilir.
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Yardimci Teorem 4.3.5. Q = dn ve N® = 0 ile birlikte (M’)" ve (M’)" iizerinde,
sirasiyla, (¢, €%, 0", G™) ve (¢V,€Y,nY,GY) degme yar1 metrik yapilar olmak iizere
VX Y ZH e (TM)" ve VXY, YV, ZV € (TM')Y igin

(a) 2GH((VE)YH, ZM) = GH(NWD(YH, ZM), 6 XH) + edn™ (oY ™, XM )M (ZH)
—edn™ (@27, Xt (YH) (4.42)

ve
2GY((VX)YY, 2Y) = GY(NID(YY, 2Y),¢XY) + edn" (oYY, XV )V (ZY)
—edn¥ (p2Y, XV )V (YY) (4.43)
(b) VHEp=0,V{p=0 (4.44)
esitlikleri vardir.

Ispat. (a) (4.42) ve (4.43) ifadelerinden elde edilmek istenilen esitligin varligi agikardir.
(b) N@(XH M) = 0 olmasimdan

NE(XH, €)= 0 [pX ™, €] = —dn™ (X, €%) = 0
olur. Béylece (4.42) den VX YH Z" € (TM')* icin
GH(VHp) XM, Z") =0
elde edilir. Yani V¢ = 0 olur. Benzer sekilde VXV, YV, 2V € (TM')Y igin
GY((VE{$)XY,Z¥) =0
olur. Yani Vggb = 0 bulunur.

Onerme 4.3.6. (M")" ve (M')? iizerinde (¢™, €%, 0™, G™) ve (¢Y,€Y,1nY,GY) degme
yar1 Finsler metrik yapilar olmak tizere, bu yapilarin K-degme yar1 Finsler metrik yapilar

olmasi icin gerek ve yeter sart N () = 0 olmasidir.

Sonuc 4.3.7. (M')" ve (M')? iizerinde e-Sasakian Finsler yapilar K-degme yari-metrik
yapilardir.
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Teorem 4.3.8. (M')" ve (M')? iizerinde, sirasiyla, (¢7, €%, 0™ G™) ve (¢¥, €Y, nY,GY)
degme yar1 Finsler metrik yapilar olmak tizere, bu yapilarin K-degme yar1 metrik Finsler

yapilar olmalari i¢in gerek ve yeter sart

CpxV (4.45)

€
VR = —DoX M, Ve = -2

esitliklerinin saglanmasidir.

Ispat. (o™, M, G™) ve (¢Y,€Y,nY,GY) yapilan birer K-degme yar1 metrik yap1 olsun.

Boylece ¢M ve €Y Killing vektor alani olmak {izere, asagidaki esitlikler saglanir.
LEGH =LYGY =0.
Ayrica

GH(VHEN, YY) = —GH (XM, VM),
GY(V%EY, YY) = -GY(XV,VieY) (4.46)

elde edilir. Diger taraftan Kozsul formiiliinden

2GH(VRE, YY) = e XMt (YH) 4 HGH (XM, VM) — v (nt (X ™))
+ GH(IXM, Y 4 en™ YR XM + Gy, M), X (4.47)

ve

2GH(VHEH, XM) = e M (X 4+ €4GH (I, XH) — e XM ()
T+ GH(Y™, €M, XM + e (XM, Y]+ (XM, €M, Y (4.48)

bulunur. (4.47) ve (4.48) ifadelerinden
GH(VELLY) = GV, X)) = edn™ (X7, V)
olur ve (4.40), (4.46) kullamlarak, VX Y* ¢ ¢ (TM")* igin

9
GH(VEEYT) = GH(—5oX ™ Y™)
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bulunur. Béylece V& = —%¢X” olur. Benzer sekilde VXY, YY &Y € (TM")Y igin, ¢¥
Killing vektor alani oldugundan, Kozsul formiiliinden, VY'Y € (T'M’)Y olmak iizere

GV (VX YY) = G¥(~ 50XV, YY)
elde edilir. Boylece
VX = —JoxY
bulunur.

¢" m Killing vektor alam olmas icin gerek ve yeter sart N = 0 olmasidir. Diger taraftan

(4.27) ve (4.28) goz oniine almirsa ve Lgxn™ = 0 olmasmdan

0= (LEdn™) (X7 Y7) = ™ (dn™ (X, Y7) — d™ ([€7, X7, Y7) — dn™ (X7, [, Y 7))

= (LEGM)(X™ YHoy™) + GPH(XM, (L o)y ™)

elde edilir ve boylece L?G% = 0 esitliginin saglanmas igin gerek ve yeter sart Lg"qﬁ =0

esitliginin saglanmasidir. Boylece
1 1
h = §L§¢ = 5N(?’) (4.49)

seklinde bir tensor ortaya ¢ikar. Bu tensér degme yar: Finsler metrik yapilarin geometrisinin
tanimlanmasinda 6nemli bir rol oynar. Ayrica (4.42) ve (4.43) kullanilarak kovaryant tiirev

operatoriine ait agagidaki ozellikler ispatlanabilir.
VEp=0,Vip=0 (4.50)
ve

VN = —50X™ — ohx™,

VReY = —5oXY — ghXV. (4.51)
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Riemann durumda (4.50) ve (4.51) ifadeleri kullanilarak h tensoriintin self-adjoint oldugu,

yani h¢ = —¢h ve h§ = trh = 0 oldugu ispatlanabilir. Ayrica 7 = L¢G alnirsa

(XY, YY) = 2GY (XY, hoYV),

(XM, YH) = 2GR (X" hoY'H)

bulunur.

Standart ortonormallestirme iglemi ile birlikte her bir ((M’)", ¢™ % n G™) (hemen
hemen) degme yar1 Finsler metrik manifoldu ¢*- bazi olarak adlandirilan 6zel bir cesit lokal
yar1 ortonormal baza sahiptir. Boyle bir baz {EJt, ..., E* ¢E ... ¢EM ¢M} formundadr.
Benzer sekilde ((M")?, ¢Y, ¢, 7Y, GY) (hemen hemen) degme yar1 Finsler metrik manifoldu
ise ¢Y- bazi olarak adlandirilan 6zel bir cesit lokal yar1 ortonormal baza sahiptir. Béyle bir
baz {EY,...,EY ¢EY, ...,¢EY ¢V} formundadir. Ozel olarak, yari-Riemann metrik, ¢ nin
space-like yada time-like olmasina gore, (¢,2n + 1 — q) ya da (¢ + 1,2n — ¢) olmasi du-
rumunda hemen hemen degme Finsler yapi ile uyumludur. Simdi bununla ilgili agagidaki

yardimci teoremi verelim.

Yardimci Teorem 4.3.9. ((M")" ¢, % M G™) ve (M), ¢V, €Y, nY,GY) degme yar

metrik Finsler manifoldlar1 olsunlar. Boylece

divE™ = 0, divn™ = 0,
diveY =0, divnv =0

olur.

Ispat. (TM')M iizerinde {EJ, ..., E}* ¢EN .. ¢oE M} ¢*- bazim ele alahm. Boylece
V?f” = 0 ve h¢p = —¢h oldugundan, (4.3), (4.4) ve (4.51) ifadelerinden yararlanarak

divg" = trveh =3 e, GM(VIEC BN+ eV M 0BT
=1 =1

— 2;&(} (eQE;", EiY) ;&G (PhE[*, E[*) + QZX;EZG (eE;, dE;) ;g,g (ShE;, E;)

= —Y aG*(¢hEI EfY) + ) G (ohE}. EF) =0
=1 =1
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ve
divn™ = —trVnH = —edive™ =0

bulunur. Benzer olarak (T'M’')Y iizerinde {EY,...,EY,¢EY,...,¢EY £V} ¢Y- bazim ele

alinirsa
divnY = —trvx = —edive¥ =0

elde edilir.

4.4. Yar: Finsler Manifoldlar1 Uzerinde s-Sasakian Yapilar

Tanim 4.4.1. (¢, &% 0" G™) ve (¢Y, €Y, 7Y, GY) degme yar1 metrik Finsler yapilar:
(i) Normal, yani [¢7¢, "] + dn” @ " = 0, [¢¥, ¢Y] + dn¥ ® €Y = 0 ise Sasakian olarak
adlandirilir.

(ii) h = 0, yani £ ve ¢V Killing vektor alanlar ise K-degme olarak adlandirilir.

Teorem 4.4.2. (M')" ve (M')? iizerinde, sirasiyla, (¢, % n*, G™M) ve (¢V, €Y, 10V, GY)
hemen hemen degme yari metrik Finsler yapilarin e-Sasakian yapi olmasi i¢in gerek ve

yeter kosul
1
(VXY = S[GM(XM Y )eM — e (Y7 X7, (4.52)

(VEa)YY = LGV (XY, Y)Y — e’ ()X (15)
olmasidir.

Ispat. Yapi normal ise N = N2 = 0 ve Q = dn olur. Boylece (4.42) ifadesini kullanarak

2GT((VEQ)Y™, Z7) = eGM(X, Y ) (27) — eG™H(XT, 27 (Y T)
= eGH(XM™, Y MG (2, M) — GH (™ (Y ) XM, Z7)

— GH(XH,YH)GH(ZH@H) _ EGH(T]H(YH)XH, ZH)

— GH(GH(X”,YH)gH _ €nH(YH)XH, ZH)

esitligi elde edilir. Ayrica VX, Y " ¢ (TM')" igin

(VY = L(@HXM Y Men — a (Y ) XH)
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olur. Benzer sekilde (4.43) ifadesini kullanarak VXY, YV &Y € (TM")Y igin
1
(VoYY = LEV (XY 1) — en’(¥V)XY)

bulunur. Diger taraftan yapi (4.52) ve (4.53) esitliklerini saglar. Ayrica (4.52) esitliginde

YH = ¢M alinirsa

(VEOEH = S(GH(XM, ¥ — ex),
OV = S (XPE - XM,

—? (VM) = S (6x™),

§¢X"H

HeH
Vx&™ = 5

elde edilir. Benzer sekilde (4.53) esitliginde de YV = ¢Y alinirsa

EqﬁXV

Vev_
V& = 5

olur. ¢ skew-simetrik oldugundan ¢7 ve ¢Y nin Killing vektdr alani oldugunu séyleyebiliriz.

Ayrica

No(XTYH) + d' (XYY = —p(VESY T = oVRY ™) + o(VioX T — oVEXT)

+ (Vi oY — oVIRYM) — (VI 0 XH — oV XH) + dn' (X7, Y H)eH

= —p(VEO)Y " + (V) X + (Vi)Y = (Vi 0) X

= %{—qﬁ(G”(X”, YH)EH —en™(YH)XH) + o(GH (Y, XM — en™(XP)YH)

+ G (@XM, Y — e (Y )X — GH (oY ™, XM — en™ (XYY MY + dn (X, Y H) ™
_ _GH(XH’d)Y}t)gH + dnH(XH’YH)gﬂ

— —dnH(XH,Y%)fH + dnH(XH,YH)fH

=0
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elde edilir ve benzer gekilde
No(XV, YY) +dn¥ (X7, Y)e¥ =0
olup yap1 e-Sasakian yapi olur.

Teorem 4.4.3. (M')" ve (M')? iizerinde, sirasiyla, (¢, %, n*, G™) ve (¢V, €Y, 7V, GY)
yapilarmin K-degme olmasi icin gerek ve yeter kosul asagida verilen iki durumun saglan-
masidir.

(1) (M")" {izerinde £, G™ metrigine gore Killing vektdr alani ve (M’)Y iizerinde ¢¥, GV
metrigine gore Killing vektor alanidir.

(2) (M")" demetinin her noktasinda flag egriligi £ ve (M’)" demetinin her noktasinda flag

egriligi § tiir.

Ispat. (M")" iizerinde (¢7¢, €%, n™ G™) K-degme yapi olsun. X7, ¢ a ortogonal birim

vektor alani olmak tizere (3.45) ifadesinden,

GMR(X™, M, XH) = GHVEVES — VEVE — YV xu g™, XH)

= GHCVEOX™M) + (=5 (6°X™) = So(VEX™), xH)

2° 2
= LML XM (MG, XM

= iG”(X”,X”)

bulunur. X bir space-like vektor ise €% bir time-like vektor olur veya X7 bir time-like
vektor ise €7t bir space-like vektor olur.
Simdi (M")? iizerinde (¢Y,¢Y,nY,GY) K-degme yap1 olsun. Benzer olarak, XV, ¢V a or-

togonal birim vektor alani olmak iizere, (3.45) ifadesinden
1 1
GY(R(XY,€9)8", X¥) = {GY(XY, X¥) =" (XV)GY (€Y, X)} = 1GV(XY, XY)
bulunur. XV bir space-like vektor ise €V bir time-like vektor olur ya da XY bir time-like

vektor ise €Y bir space-like vektor olur. Boylece

GH(R(X™, Mg XMy«
K(X™ & = — o xm =4

ve

GY(R(XY, V)V, XV)
K(X",¢") = GV(XV,XY) %
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elde edilir. Diger taraftan (M’)" iizerinde ¢*, GM metrigine gore Killing vektor alani
oldugundan VX" Y* ¢ (TM")" igin

edn™ (XM, V) = GH(VEE, V) — MV, X7)
= “2GH(VEE, X
= —2G"(—5¢Y M, XH)
= eGH (X, oY),

(XY ) = GH(XT, oY ™)

bulunur. Sonug olarak (M’)" iizerinde (¢, €M, n™, G™) yapisi K-degme yapi olur. Benzer
sekilde (M) iizerinde ¢¥, GY metrigine gore Killing vektér alani oldugundan VXV, YV €
(TM")Y icin

dn’ (XY, YY) = GY(XY, YY)

elde edilir ki bu da (M’)" iizerinde (¢Y,¢Y,nY,GY) yapisin K-degme yap1 oldugunu gos-

terir.

Teorem 4.4.4. (M ve (M')" Finsler vektér demetleri fiizerinde, sirasiyla,
(@7, M ", GMY ve (¢V, €Y, 1Y, GY) e-Sasakian Finsler yapilar olsunlar. Béylece V Finsler

koneksiyonunun Riemann egriligi agagidaki gibidir:

ROXY,YV)E = L (V)XY — ¥ (XV)YYy, (454
ROXM Y = ()X — (X v . (1.55)

Ispat. (pM, &M, n™ G™M), (M')" iizerinde e-Sasakian Finsler yap1 olsun. (3.45) ifadesinden

R(XM Y™ eM = VEVEH — VIV — Vion yn €™
g &
= V%(—iquH) - Vg}(—iqﬁXH) - Vv%yﬂ—vyxﬂfﬁﬂ
2
& g g
= 5 (VROY™ + S (Vi) X = — (" (V) X7

Loty xm - g xy ™)

= XY = o
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elde edilir. Benzer sekilde (¢Y,£Y, 7Y, GY), (M')? iizerinde e-Sasakian Finsler yap1 olsun.
(3.45) ifadesinden

R(XY,YV)&¥ = VWYY — VivReY — Vixv yvi”

19 &
= v}f((_§¢yv) - Vy(‘?bXV) - Vv};w*v;ﬁxve)
2
€ € €
= —§(V}/<¢)YV + §(V¥¢)XV = Z(UV(YV)XV

Loy a)xy - p(xv)v)

— P (XY) =

bulunur.

Teorem 4.4.5. (M')" ve (M')? iizerinde, sirasiyla, (¢7¢, €%, n™ G™) ve (¢¥, €Y, nY,GY)

e-Sasakian Finsler yapilar olmak tizere

R(X,Y)¢Z = R(X,Y)pZ™ + R(X,Y)pZY, (4.56)

R(XY,YY)92" = 6R(XY,¥¥) 2 + H{G¥ (6x¥, 2V)YY = ¥ (YY, 27)px

+ GV (XY, ZV)pYY — QY (oYY, ZV) XV, (4.57)

R(X™ yM)pz™ = pR(XM YH) ZM 4 Z{G”H((pxﬂ, ZhMyH gy, 2" ex M

+ GH(XT 2 ey — G (pY M, ZM) X (4.58)
esitlikleri saglanir.

Ispat. (3.45) ve (4.52) ifadelerini kullanarak

3

RO Y677 = SURGH Y, 296 — SVRGH (277 + (G, Tz

e (VP XM 4 SR Y2 STRGH (X, 26M) + SR XY

 SGHTEZ Y 4 S (TR G (X Y] 2P

2 2
+ o (ZXMYH) = RO YH) ZH 4 SR (!, 2oy M — GV, ZM)ex )

3 9
+ S (V™) 278X — (VEn™) 27V ™) = oR(XT, Y ™) 27 4 {GH (X, 7)oy ™
— GHYH ZM)px ™+ Q(vH 2 XM — (XM, Z)Y MY = pr(XM, VM) ZH
T+ G 2 r T - Y, 27X - G oY, 2 X 4 G XM, 27y T
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elde ederiz. Ayrica (3.45) ve (4.53) ifadelerini kullanarak

R(XY,¥V)97” = VNG (VY 2))6¥) - SO (Y (2))¥Y) + {6V (XY, WY 2¥)e
—en” (VY 2Y)XV} + oR(XY, YY) 2 — %W(GV(XV, 2")§¥) + %W(n"(Z")XV)
— SCUTRZY Y 4 S (XYY - 6V (XY, YY), 7)Y

+ %nV(ZV)[XV, YV =¢R(XV,YV)ZY + Z(GV(XV, ZV)eyY —GY(YY,ZV)pXY)
+ (V) 2YXY = (V") 2VYY) = 6R(XY, YY) 2Y + H{GY (XY, 2Y)evY
—~GY(YY,ZY) XY + QYY, ZV)XY — (XY, ZYV)YV} = oR(XY,YV)ZY

+ GV, 2)0YY - GV (YY, 27)6XY — GV (97, 2Y)XY + GV(¢XV, 2)Y V)
bulunur.
Sonuc 4.4.6. (4.57), (4.58), (4.56) esitliklerini kullanarak

R(XM YyM)z" = —gR(X™ Y pZM + Z{GH(YH, ZhHxH gt xH ZzH)yH

— G (Y™, ZM)px T + GH(oX ™, Z2M)pY M}, (4.59)

R(XV, YY) Z¥ = —¢R(XY,YV)pZ" + E{GV(YV, ZNHXY - oY (XY, Z2V)YY

— GV (oYY, ZV)pXY + GV (XY, ZV)pYV} (4.60)
ve

GHR(GXM, GV )07, 6WH) = GHR(X Y2, WH) 4 L (V276 (X, )
= (X WG, 28 g (T (W GH(XTE, 27
+ (X2 G, W), (4.61)

GV (RGXY, 6¥V)62”,6WY) = G (ROX, Y127, WY) + (- (V)" (29)6Y (X7, W)
— WP )GV Y, 2) P (V)Y (W) GV (XY, 2%)
MG (Y, W) (1.62)

olur.
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Ispat. (4.57) esitliginden

R(6XY,0YV)62” = 6R(6XY, 0¥V 2" + L{~C¥ (XY, 27)oYY + e (X V)" (2")oY
+GY(eYY, Z2V)XY = GV (@YY, 27V (XV)EY - GV (XY, 27)YY
+ Y (Y)GY(9XY, 2Y)eY + GY(YY, Z2V)o XY —en¥ (YV)i¥ (Z2¥)o X"}

ve

GY(R(¢XY,0YV)9ZY, oWY) = G¥ (pR(¢XY, YY) 2V, e WY)
+ -GV (XY, 2)GY (Y Y W) + en¥ (XYY (2V)GY (Y Y, W)
+GY(eYY, ZV)GY (XY, oWY) — GY(6XY, Z2V)GY (Y'Y, oW)
+GV(YY, ZV)GY (XY, oWY) —en’ (YY) (Z2V)GY (6 XY, o W)
= QY (R(XY, YY) 2%, W) 4 - (Y (29)6Y (XY, W)
— V(XYY (WGY (Y, ZV)
+ 0 (Y)Y (WHGY(XY, 27) + 0 (XV)n)¥ (2Y)GY (Y Y, W)}
elde edilir.
Benzer sekilde (4.58) esitliginden
R(oXM, 0YM)02" = GR(OX™, 6¥ M) 2% 4 Z{=GH(X™, ZM)6¥ ™ 4 en™ (XM (ZM) sy ™
+ G (eY ™, 2P XM — GH (oY ™, 2P (X e — QP (o X, ZH)Y
+ (YOG (XM, ZM) M 4+ G (Y M, ZM) XM — en™ (Y (ZM) g XM}

ve

G*(R(¢XT, Y )92, oW ) = G (9R(p X, 9Y 1) Z7, o W)

+ H{=GHX ZHGH (Y M, oW H) 4+ e (XM (2GR (oY ¥, oW )
+ G (oY, 2 G (X, oW ) — G (o X, ZH)GT (YT, oW )

+ G M, ZM G (e XM, oW H) —en™ (Y™ (ZM)GH (X, oW H)

= GUREXM Y2 WH) L (V2 G W

— (XMW GH (Y, 27

+ (YW G (XM, ZH) 4 P (XM (2GR (YR W)
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bulunur.

X" e (TM")" birim vektorii % a ortogonal ise (TM')* deki diizlem kesit olan
{XH" XM} yatay ¢-kesit olarak adlandirihir. Benzer olarak XY € (T'M’)Y birim vek-
torii ¥ a ortogonal ise (T'M’)Y deki diizlem kesit olan {XV, ¢ XV} dikey ¢-kesit olarak
adlandirilir. Boylece yatay flag egriligi K*(X™) ile dikey flag egriligi ise K*(XV) ile gos-
terilir. Ayrica

K* (X", ¢X™) = G*(R(XT, pXM)p X", XH) (4.63)
K*(XY,0XV) = GY(R(XY,$XV)p XY, XV) (4.64)

esitlikleri ile ifade edilir. Sirasiyla yatay ¢-kesitsel egrilik ve dikey ¢-kesitsel egrilik olarak
adlandirilir.

Sasakian yar1 Finsler manifoldunda ¢-kesitsel egrilik
K*(X) = K*(X*) + K*(X")

formundadar.

Onerme 4.4.7. (M) iizerinde (¢™, &% n™ GH) yapisi K-degme Finsler yapi olsun.

(M')" lokal olarak simetrik ise, e-Sasakian Finsler yapinin sabit egriligi g tiir.

Ispat. (4.52) ve (4.55) esitliklerinden VX, YH Z7 M ¢ (TM')" icin

(VER)(XM,YH,6H) = S(GM(ZM, v )X — GR(Z™, X M)y} — RO, yH) 2%
(4.65)

elde edilir. (M’)" lokal simetrik yani (V¥ R) = 0 oldugundan (4.65) yardimiyla
R(XM yH)zH = Z{G”(Y”, ZM) XM - GH(XM, 2y M) (4.66)

yazilir. {X™, Y*} ortonormal gifti igin, X* time-like bir vektor oldugunda, Y7 space-like
olmak zorundadir. Ciinkii ayni anda iki vektor time-like ya da space-like oldugu zaman
birbirine dik olamaz. Boylece

GH(R(XT, YM)YH XH) ¢ GHYH YH)GH(X™ XH), ¢

KXH" yH) = _— _ <
(X7, Y7 GH(XH, XH)GH(YH, YH) 4{GH(XH,XH)GH(YH,YH)} 4

elde edilir.
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Onerme 4.4.8. (M) iizerinde (Y, ¢V, 7V, GY) yapisi K-degme Finsler yap1 olsun. (M’)

lokal olarak simetrik ise, e-Sasakian Finsler yapimin sabit egriligi § tiir.
Ispat. (4.53) ve (4.54) esitliklerinden VXV, YV, ZV, &Y € (TM')Y icin
(VYR)(XY, YV, ¢Y) = {GV(ZV Y)XY -GY(zY,XV)YY} — R(XV,YV)ZY (4.67)
elde edilir. (M’)? lokal simetrik yani (VY R) = 0 oldugundan (4.67) yardimiyla
R(XY,YV\zY {GV(YV ZNHXY - GYV(XY, ZV)YV} (4.68)

yazilir. {XV, YV} ortonormal cifti i¢in, XV time-like bir vektor oldugunda, YV space-like
olmak zorundadir. Ciinkii ayni anda iki vektor time-like ya da space-like oldugu zaman

birbirine dik olamaz. Boylece

GY(R(XV, Y)YV XV) YV, YV)GY (XY, XVY)

@
K(XV Yv) G’V(XV XV)GV(YV YV) - Z{G (XV XV)GV(YV YV)} T4

elde edilir.

(M"), e-Sasakian Finsler manifoldun S™ yatay Ricci tensorii, {EJ, ..., E3t "}, (TM')H

nin lokal ortonormal catisi olmak {iizere

SH(XM yH) = ZGH R(X™ EMEM Y™+ GH(R(X™M Mh)eh vy

= ZGH(R(EZ{’ XMy ) + GH(R(XM, eh)e, v (4.69)
esitligi ile verilir.

(M')V, e-Sasakian Finsler manifoldun S dikey Ricci tensérii {EY, ..., EY &Y}, (TM')Y

nin lokal ortonormal catisi olmak iizere
V(XY YY) = ZGV (XY, EY)EY. YY) + GY(R(XY, )", YY)
= ZG"(R(EQ’ XYY EY) + GY(R(XY, €)Y, YY) (4.70)

esitligi ile verilir.
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Onerme 4.4.9. ¢ indeksli (¢™,%, 0" GM) ve (¢V,¢V,1nV,GY) degme yari metrik

yapilarin K- degme olmasi igin gerek ve yeter kosul

(2"4_ q) . &M space-like ise

SH é-H’éfH —
( ) (%), €M time-like ise

4

(2n—q) , fV space-like ise
(w) , &V time-like ise

sV(€".€Y)
esitliklerinin saglanmasidir.

Ispat. (4.55) ve (4.69) gz oniinde bulundurulursa
2n
SMEM ) = Y GMUR(ER, €M, BT
1 2n
p ZZGH(HH@H)EZ{ — (B, BT

4 ZGH EH E'H €1+ ... + &9y
4

elde edilir. F?"*1 = (M,M’' F*), q indeksli yar1 Finsler manifoldu oldugundan,

GH(EM, M) = ¢ = 1 ise €M space-like vektor olur. Béylece

2n —
H(eH ey = ZGH (EX, EM) + - Z GH(EM, EN) = “n—q

4
z q+1
bulunur. GH (M, ") = ¢ = —1 ise £" time-like vektor olur. Boylece
H My HEM, BN H(EH, B n—q+1
H(M, e ZG EN E] Z GME] B} = ———
z q+1

elde edilir. Benzer sekilde (4.54) ve (4.70) goz 6niinde bulundurulursa, &Y space-like vektor
icin

V(e ey = 21

elde edilir. £ time-like vektor icin ise

SV(e¥.ev) = AT
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esitligi bulunur.

Yardimci Teorem 4.4.10. (M’)" e-Sasakian Finsler manifoldun S* yatay Ricci tensorii
ve (M')?, e-Sasakian Finsler manifoldun SV dikey Ricci tensorii agagida verilen esitlikleri

saglar.

<%%q) nH(XH), EHSpace—like ise

SH(XM M) = \
(%) (X)), €M time-like ise,

(%T_q) nv(XV)7 fV space-like ise

SY(XV,eY) =
(%) Y (XY), ¢ time-like ise.

Ispat. €M space-like vektor olsun. (4.55) ve (4.69) esitliklerini kullanarak
SH(xH M) = ZG” (EJL, XP)e™, Bl + GH(R(¥, XM, ¢7)
1 1
= ZZGH(WH(XH)EZ{ =B, Blf) + G (" (XT)E™ — (e XT €7

- {Zn (XGHE, B} + 3 (XGH(E €) — UM€1)

1 1 2n —q
= 1 X2 - q) + (X0 — (04} = T
ifadesi bulunur. £ time-like vektor ise
HoyH oM n—q+1 3 ou
SR, €M) = (T

olur. Benzer sekilde (4.54) ve (4.70) esitliklerini kullanarak, £V bir space-like vektor ise

2n —q
SV(XY,¢Y) = (T)UV(XV)
olur ve &Y bir time-like vektor ise
2n—qg+1
V(XY ey = (AT ()

bulunur.
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5. YARI FINSLER MANIFOLDLARI UZERINDE DEGME LORENTZ
YAPILAR

Bu boliimde yar: Finsler manifoldlari tizerinde hemen hemen degme Lorentz yapilar,
degme Lorentz yapilar ve Sasakian Lorentz yapilar kuruldu. Ayrica bu yapilara ait egrilik-
ler hesaplandi. Ilk olarak yar1 Finsler manifoldlar: iizerinde hemen hemen degme Lorentz

yapilari ele alalim.

5.1. Yar1 Finsler Manifoldlar1 Uzerinde Hemen Hemen Degme Lorentz

Yapilar

F2n+l — (M, M', F*) q indeksli bir yar1 Finsler manifoldu olsun. Ozel olarak ¢ = 1
olarak alinirsa F2"*! Lorentz Finsler manifoldu olarak adlandirihr. (V) ve (W) lokal

bilegenleri ile birlikte V' ve W vektor alanlar: igin gf;-*, (3.7) deki gibi olmak iizere,
gF" (T MY x T(TM"Y — (M),

9" (VW) () = gl Vi@, )W (2,y) (5.1)

tanimlayalim. Boylece

@,@)(x,y) (5.2)

9 (zy) =g

yazilir. Acik olarak ¢ simetrik Finsler tensor alam olur. g¥", Lorentz Finsler metrik
olarak adlandirihir. Ayrica gf", (TM' )V Finsler vektor demeti iizerinde Lorentz metrik
olarak diisiiniilebilir.

Benzer gekilde 95*, (3.7) deki gibi olmak {izere,

gt DT MY x T(TM')YH — (M),

9" (VW) (@ y) = oy (2, 9)V (@, y)W (2, ), (5.3)
o () = 0 (o ) (5.4

tanimlanabilir. g simetrik Finsler tensor alani olur. Ayrica g, (TM’)* Finsler vektor

demeti iizerinde Lorentz metrik olarak diigiiniilebilir. Diger taraftan VX,Y € I'(T'M')

G:T(TM') x T(TM') — (M),
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G(X,Y)=G"X,Y)+GY(X,Y) (5.5)

tanimlayalim. Burada TM’ = (TM')" @ (T M")Y seklindedir. Acik olarak G, (0,2) tipinde
simetrik bir tensor alani olur. Ayrica G, M’ {izerinde non-dejenere ve sabit indekslidir. M’

iizerinde G yari-Riemann metriginin indeksi 2 dir. Boylece
G = gi];*d:ri ® dz’ + gf;-*éyi ® oy =G +GY (5.6)

yazilir. Burada gf" Lorentz Finsler metrigidir. Yatay vektor demeti (M’)" iizerinde G* ve

dikey vektor demeti (M')? iizerinde GV Lorentz metrik olarak diisiiniilebilir.

Tamim 5.1.1. F?"*! = (M, M’, F*) indeksi 1 olan yar1 Finsler manifoldu olmak iizere
(@™, M) ve (¢Y,€Y,nY) hemen hemen degme Finsler yapilar olsun. G™(¢%, ¢7) =
GY(£Y,¢Y) = —1, yani £ ve £V time-like vektorler olmak iizere G, M’ iizerinde yari-

Finsler metrigi ise
G(pX,Y) = GH (X T, V™) + GV (pXY, YY), (5.7)
GV (0XY,6YY) = GY(XV, YY) + Y (XV)nV (YY),
G (@XM, oY ™) = GH(XM, YH) + ™ (X ™ (v,
(XM = —GH(XM, ),V (XY) = —GY(XV,¢Y) (5.8)

esitlikleri vardir. Boylece (¢, &7 n*, G™), (M')" iizerinde hemen hemen degme Lorentz
Finsler yap1 ve (¢¥,¢Y,nY,GY) ise (M')? iizerinde hemen hemen degme Lorentz Finsler

yap1 olarak adlandirilir.

(TM")M nin {EJt,...,Elt oET, ..., 6EM, "} lokal ¢t~ bazim ele alalim. (M')" iizerinde

G™M Lorentz metrigi oldugundan
GH (™€) =20 = -1,
GMEM EM) =¢ = +1,
GM(E EY) = 6

esitlikleri yazilir. £ time-like vektor ise diger tiim EZ{, (1 < i < 2n), vektorleri space-like

olur.
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Simdi (TM')Y nin {EY,...,EY,¢EY, ..., ¢EY £V} lokal ¢Y- bazim ele alahm. (M')V iiz-

erinde GY Lorentz metrigi oldugundan
GY(€", &) = =-1

GY(E} EY) =& =+1

GY(EY,EY) = &;

esitlikleri yazilir. €Y time-like vektor ise diger tiim Elv , (1 <4 < 2n),vektorleri space-like

olur. Boylece (TM') in ¢- baz {Ey, ..., Eon, &} = {EFt+EY, ..., B}t + EY €74V} seklinde

ifade edilir.

Sonuc 5.1.2. (¢’ &M 0™ GM) ve (¢¥,£Y,nY,GY), srasiyla, (M')" ve (M')" Finsler

vektor demetleri iizerinde hemen hemen degme Lorentz Finsler yapilar olsunlar. (5.7) ve

(5.8) esitliklerinden
GY (XY, YY) = ~G¥(XY, 677,
GH(oXTY) = —GH(XT, 0¥ ™).
GY(@XY, ¢YY) = —G¥(6"X", YY),
G (oX™, 9V ™) = —GT(¢* X7, Y T)
ifadeleri elde edilir. Ayrica ikinci temel form

QXY YY) = GY(XY, 0YY),
QX YH) = GHHXH, 97 ™)

esitlikleri ile verilir (Sinha ve Yadav, 1991).
Onerme 5.1.3. Yukarida tanimlanan ikinci temel form
QX oY ™) = QX Y7), (XY, 9YY) = (XY, YY)

ve

Q(XH7YH) = _Q(YHaXH))Q(Xvayv) = _Q(YV7XV)

esitliklerini saglar (Sinha ve Yadav, 1991).

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
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Onerme 5.1.4. V, M’ iizerinde Finsler koneksiyonu ve € ikinci temel form olmak iizere

QX,Y) = dn(X,Y), (5.14)

QXY = (VE) (V) — (V) (X7 + (T (X7, Y7),
QXY YY) = (VEn (YY) = (Ve (XY) + n(T(XY, YY) (5.15)

esitlikleri saglansin. Boylece hemen hemen degme Lorentz Finsler yapr hemen hemen
Sasakian Lorentz Finsler yapi olarak adlandirilir. (M) ve (M')? iizerinde sirasiyla
(@7, &M "t . GMY ve (¢Y,€Y,17Y,GY) yapilarni hemen hemen Sasakian Lorentz Finsler

yapilar olarak adlandirilir.

Teorem 5.1.5. 2 ikinci temel form ve V torsiyonsuz Lorentz Sasakian Finsler koneksiyonu

olmak tizere

QX,Y) = (Vxn)Y — (Vyn)X,
QX YH) = (VYT — (Vi) X ™, (5.16)
QXY YY) = (Vin)YY — (Vyn)XY

esitlikleri saglanir.
Ispat. (5.1.4) ve (5.15) esitliklerinden (5.16) elde edilir.

Tanim 5.1.6. 7 Killing vektor alani, yani

(VEn)(Y™) + (Vi) (X™) =0,
(VEN(YY) + (V¥n)(XY) =0 (5.17)

ise M’ tizerinde hemen hemen Sasakian Lorentz Finsler yapi Sasakian Lorentz Finsler
yap1 olarak adlandirilir. M’ {izerinde V torsiyonsuz Finsler koneksiyonu Sasakian Finsler

koneksiyonu olarak adlandirihir (Sinha ve Yadav, 1991).

Teorem 5.1.7. M’ iizerinde Sasakian Lorentz Finsler yapi ile birlikte V torsiyonsuz

Finsler koneksiyonu ve €2 ikinci temel form olsun. Boylece

QXY = 2(VEn (Y ™) = -2V X,
QXY YY) = 2(Vin) (YY) = —2(Vyn) XY (5.18)
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esitlikleri saglanir.

(5.12) ve (5.15) ifadelerinden dn(X,Y) = G(X, ¢Y) bulunur. Boylece
dn’ (XM YH) = GTHXH, oY H) = (X7, v, (5.19)

dn” (XY, YY) = GY(XY, YY) = XV, YY) (5.20)

esitlikleri elde edilir.

5.2. Yar1 Finsler Manifoldlar1 Uzerinde Degme Lorentz Yapilarin integral-

lenebilir Tensor Alanlar:

F?+l = (M, M', F*) indeksi 1 olan Finsler manifoldu olsun. (M’")" ve (M')? iiz-
erinde (¢, €7, n™) ve (¢Y, €Y, nY) yapilarinm integrallenebilir tensor alani, VE?, X7 YH ¢

(TM" ve VeV, XV YV € (TM')Y icin asagidaki gibidir:
NM(X)Y) = [¢X", oV H] = ¢[o X, Y] — o[ XM, oY ] + ¢? (X, Y] + dnH (X, Y )N,

NY(X,Y) = [¢XY, Y] — ¢[p XY, VY] = [ XV, 0Y V] + ¢°[ XV, YV] + dn¥ (XY, YY)V,

Ayrica VER, XM YH ¢ (TM)H ve V&V, XV, YV € (TM")Y icin N, N@ NG ye N&

tensor alam agagidaki gibidir.

NOXH Yy = Ny(XH, YH) + dnP (X, Y H)ER, (5.21)
N®) (XH7 YH) = (L?;XWH)(YH) - (L?;YUHXXH%

NE(XH) = (L) (X M), NW(XH) = (L") (X™H)

NO(XY YY) = Ng(XV, YY) +dnY (XY, YV)eY, (5.22)
NO(XV, YY) = (LYxn")(YY) = (LYyn¥)(XY),
NO(XY) = (L}%)(X"),N(‘*)(X") = (L{nY)(XY).

Hemen hemen degme Finsler yapiin normal olmasi igin gerek ve yeter sart yukarida tanim-

lanan dort tensor alanimnin sifir olmasidir.
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Yardimci Teorem 5.2.1. Eger N® =0ise N = NG = N® = 0 olur (Yahniz ve
CGaligkan, 2013).

Onerme 5.2.2. (M")* ve (M')" Finsler vektér demetleri iizerinde (¢, &M, n™) ve
(gﬁv,fv,nv) hemen hemen degme Finsler yapilarinin normal olmasi igin gerek ve yeter

sart

NIt +dnt @ et =0,
NY +dpY ¢ =0 (5.23)

esitliklerinin saglanmasidir.

F?n+l — (M, M’ F*) Lorentz Finsler manifoldu olmak iizere (M')" ve (M')? iizerinde
(@™, M 0 GM) ve (¢V, €Y, 1Y, GY) yapilart hemen hemen degme Lorentz yapilar olsunlar.
Boylece Finsler vektor demetleri tizerinde G7* ve GY metrikleri Lorentz metrik olarak
diisiiniilebilir. &% ve &Y vektor alanlar1 G* ve GY metriklerine gore Killing vektor alanlar:
ise (M')" ve (M') iizerinde degme Lorentz Finsler yapilari, K-degme Lorentz Finsler
yapilar olarak adlandirilir. (M')* ve (M')? ise K-degme Lorentz Finsler vektor demetleri

olarak adlandirilir.

Yardimci Teorem 5.2.3. (M')" ve (M) iizerinde, (¢™, 7, n*, GM) ve (¢Y,€Y, 1V, GY)
yapilar1 degme Lorentz Finsler yapilar olsunlar. Boylece N2 = 0 ve N = 0 olur. Ayrica
N®) =0 egitliginin saglanmas icin gerek ve yeter sart G* ve GY metriklerine gore €% ve

€Y vektor alanlarimin Killing vektor alani olmasidir.
Ispat. (5.12) ve (5.19) esitliklerinden
i (9 XM, 0¥ ™) = QoX ™, ¢Y¥) = GH(pX ™, ?YH) = GH (X, oY) = an™ (X, Y

bulunur. Buradan dn™ (¢ X", YH) +dn™(X™, ¢Y™) = 0 elde edilir. Boylece N?) = 0 olur.

Diger taraftan
0= GM(X™, ¢€™) = dip (X7, €7) = X ™ (€7) — 7P (X7) — P [X7, €7

olur ve

™ (X =™ ([, X)) = 0
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elde edilir. Boylece (L?n”) =0 yani N = 0 olur. Buradan
(LEG™) (X, 67 = = (' (X7) + ™[, X7 = (L") X =0
yani, (L?dn”) = 0 bulunur. Sonug¢ olarak
(LEdn™) (X", YH) = (LEQ)(XT,Y™) =0
olur ve buradan

0= HGH(XT, oY ™) — GH(IE™, XM, Y ™) — GH (X, 0[6%, )
= (LEGT) (X, oY) + GH(XT, (LE)Y)
= (LEGH) (XM, ¢YH) + GH(X™, N (Y1)
elde edilir. Yani N®) = 0 esitliginin saglanmasi icin gerek ve yeter sart ¢% m Killing

vektor alani olmasidir. Benzer olarak N2 = 0 ve N = 0 ifadelerini ele alirsak, N®) =0

esitliginin saglanmasi icin gerek ve yeter sart ¢¥ nin Killing vektor alani olmasidar.

Yardimci Teorem 5.2.4. (M')" ve (M') iizerinde, (¢™, " ™, GM) ve (¢Y, €Y, 1V, GY)
degme Lorentz Finsler yapilar olsunlar. Boylece VX YH ZH ¢ (TM)" ve
VXYYV, ZY € (TM')Y igin

2GH(VEQ)YH, ZH) = d(XM, oYM, ¢2M) — aQ(X ", YH, ZH) + GH(IND(YH, ZH), ¢ X M)
—dnH (@Y, XM (ZM) + dn* (027, XM (Y — NO (v R, 2t (x T (5.24)

ve

2GY(VXo)YY,2Y) = dUXY,¢YY,62Y) —dXY, YV, 2Y) + GY(ND(YY, ZY), 6 XV)
—dn’ (eYY, XY (ZY) + dn¥ (92Y, XV )Y (YY) - ND(¥Y, 2V )Y (XY) (5.25)

esitlikleri saglanir.

Ispat. V bir Finsler koneksiyonu olmak iizere

2GP(VRY T, Z7) = GP((X, Y], 27) + GH([ 27, X7, YT = GPY(IY ™, 27, X7
+ XMGH(YH, ZM)  YHGH (XM, M) — 27 G (XM Y, (5.26)
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2GV(VXYY, 2Y) = GY([XV, YY), 2Y) + GY([27, XV, YY) - &Y (Y, 2], X)
+ XYYV, Z2V) +YVYGY (XY, Z2Y) - VGV (XY, YY) (5.27)

olur. Ayrica

d X Y™ zM) = XMy ZzM) + YHoZz", xM) + ZHox v ) (5.28)
- Q([XH7YH]7 ZH) - Q([ZHvXH]7YH) - Q([YH7 ZH]aXH)a

dAXY, YV, ZV) = XVQ(YY, ZV) + YYQ(ZY, XV) + ZVQ(XV, YY) (5.29)
- Q([va Yv]v ZV) - Q([ZV7XV]7 YV) - Q([Yva ZVLXV)

yazilir. (5.27) esitliginden

2GV((VX)YY, Z2Y) = oY YGY(XY, 2Y) = ZVUXY, YY) + GY([XY,0YY], ZY)
+Q([2Y, XY, YY) - GY([¢YY, Z2Y], XV) + YVQUXY, ZV) — 2V GV (XY, YY)
+ QXY YY), Z2Y) + GY([¢2Y, XV, YY) = GY(YY, 2], XV) (5.30)

yazilir ve (5.30) ifadesinden

dUXY,¢YY,02Y) = XVQYY, ZY) + ¢YVGY(ZV, XV) — ¢VY (0¥ (Z2V)nV (X))
—¢ZV (Y (Y)Y (XY)) = ¢ZVGY (XY, YY) + GY(IXY, 0¥, ZY) + V[ XY, ¢Y V¥ (ZY)
+GY([02Y, XV, YY) + 0V (YY) [92Y, XY — Q([¢YY, 2], XV) (5.31)

hesaplanir. Boylece

GY(ND(YY,2Y),0XY) = =YY, 2"], XV) + Q([¢Y"Y,02V], XV) = G¥([¢Y", ZV], X ")
—nV[Y, Zn(X) = GV(([YY,02V]XV) =V [YY, 62" ]In¥ (XY)) (5.32)

olur ve N®(XV, YY) = (L};Xnv)(YV) - (Lzynv)(XV) olmasindan

NEEY, 290" (XY) = oYY (1"(27)) =02 ()" (Y V)=V [0V, 2V =0 [V ¥, 02V " (X7)

(5.33)
bulunur. Benzer islemler yapilarak ve (5.29), (5.31), (5.32) ve (5.33) esitlikleri kullamlarak
(5.25) esitligi elde edilir.
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(5.21), (5.22), (5.12), (5.13), (5.26) ve (5.28) ifadeleri kullamlarak

dUXT oY 927y — AU XY, ZM) + G(IND (YT, 27, o X )

— NOEH 240" (X)) — dn™ (Y™, X (2%) + dn (92, X ) (Y M)
= oY GM (27, XM — pZGM (XM Y + G (X, 9V M, Z7)

+ G ([9Z7 XM, YT — QoY 027, X7)

+YHQXHM, ZM) - 27X v

+Q(XM, Y™, 2" + (27, X", Y + (YT, 27, X7

+Q[oY ™, 027, X7 — (Y™, 27, x7)

- GM([pY™, 27, X7) - G*(YH, 927, X7

=2G"((VRo)Y™, 2%)

bulunur.

Yardimer Teorem 5.2.5. Q = dn ve N® = 0 ile birlikte (M) ve (M')Y iiz-
erinde (¢, &M n" GM) ve (¢Y,£Y,nY,GY) degme Lorentz Finsler yapilar olmak iizere,
VXH YR 72" c (TM)Y?, VXY, YV, ZY € (TM')Y igin

(@)2GH (Vi) Y™, 2%) = GHND(YH, 21), X M) — d (97 ™, X )

™ (ZM) + dn (o2, X (YT, (5.34)

2GY (VX)) YV, 2Y) = G¥Y(NV(YY, 2Y),¢XY) = dn” ¢V, XV)
W(ZY) +dnY (0ZY, XV )Y (YY) (5.35)
(b)VEe =0, Vi =0 (5.36)
esitlikleri saglanir.

Ispat. (a)(5.34) ve (5.35) ifadelerinden ispat aciktir.
(b) N = 0 olmasmdan

N® = (XM ") = pM[pX ™M, M) = —dnH (X, ) =0
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bulunur. Béylece (5.34) ifadesinden VX" YY" ZH ¢ (TM')* igin
GH(VEQ)X™,Z7) =0

yani, V?qﬁ = 0 olur. Benzer olarak (5.35) yardimiyla VXV, ¢V, ZY € (TM")Y icin
GY(VE{)XY,2Y) =0

yani, ng) = 0 olur.

Onerme 5.2.6. (M')" ve (M")? iizerinde, sirasiyla, (¢%, %, 0™ GH) ve (¢V,€V,nY,GY)
degme Lorentz Finsler yapilar olsunlar. Bu yapilarin K-degme olmalar1 i¢in gerek ve yeter

sart N® = 0 olmasidur.

Sonuc 5.2.7. (M')" ve (M')" iizerinde, sirasiyla, (¢, &%, n*, GM) ve (¢V,€Y,nY,GY)

Sasakian Lorentz yapilar, K-degme Lorentz Finsler yapilardir.

Teorem 5.2.8. (M) ve (M')? iizerinde, sirasiyla, (¢, %, n*, G™) ve (¢V,€Y,1nV,GY)
degme Lorentz Finsler yapilar olmak iizere bu yapilarin K-degme Lorentz Finsler yapilar

olmasi i¢in gerek ve yeter sart

VA = Lox™,
1
vk = §¢5XV (5.37)

esitliklerinin saglanmasidir.

Ispat. (M")" ve (M')? iizerinde sirasiyla (¢, €7 ', GM) ve (¢V,€V,nY,GY) K-degme
Lorentz Finsler yapilar olsunlar. G* ve GY metriklerine gore £ ve ¢V Killing vektor

alanilar: olmak tizere

LEGH = LYGY =0
esitligi saglanir. Yani
GPUVRE™, YT = —GH (X, V™), GV (Ve", YY) = -GY(XY, vyeY)  (5.38)
olur. Ayrica Kozsul formiiliinden

2GTH(VRE YT = XY + YR (H(XTY) - X (YY)
- nH[YHvXH] + GH([XH7€H]7 YH) + G’H([YHvé‘HLXH) (5'39)
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elde edilir. Benzer gekilde

2GTH (VI XT) =GP (YT X — YR (X)) + X (YY)
= XY+ GH(Y M X + GHY(X 1 YT (5.40)

esitligi bulunur. (5.39) ve (5.40) esitliklerinden
GH(VEE YH) - GV, X7) = —dn™(X™, Y7
olur. VXM YH ¢M ¢ (TM")* igin (5.32) ve (5.38) ifadelerinden
GUVEE, YY) = GH(ox ™ Y ™)

bulunur, yani V%f}‘ = %ng H olur.
Benzer olarak, VXV, YV &Y ¢ (TM')V icin GY metrigine gore ¢V Killing vektoér alani

oldugundan, Kozsul formiilii yardimiyla
1
GV(VKS]/’}A)) GV(id)X*V,]fV)

elde edilir. Yani
1
vv gV id) X'V

olur.

¢ m Killing vektor alani olmas icin gerek ve yeter sart N3) = 0 olmasidir. Diger taraftan

(5.12) ve (5.13) gbz oniine alinirsa ve Lgw n’t = 0 olmasmdan

0 = (LEd™) (XM, YT) = ™ (X7, Y ™) — dn™ (17, X7, vH) — d™ (X7, [, v ™))

= (LEG™M)(X™, ¢v™) + G*(X™M, (LEp)YH)

olur ve LZ{GH = 0 esitliginin saglanmas1 i¢in gerek ve yeter sart Lg‘lgi) = 0 esitliginin
saglanmasidir. Boylece

1 1
h:ingfN@ (5.41)

seklinde bir tensor ortaya cikar. Bu tensor degme Lorentz Finsler yapilarin geometrisinin

tanimlanmasinda 6nemli bir rol oynar. Ayrica (5.34) ve (5.35) ifadeleri kullanilarak, ko-
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varyant tlirev operatoriine ait agagidaki ozellikler ispatlanabilir:
Vi =0,V{¢=0, (5.42)

1 1
Vien = §¢XH — phX ™ VXeY = §¢XV — phXV. (5.43)

Riemann durumda (5.42) ve (5.43) kullamlarak, h tensoriiniin self-adjoint oldugu, yani

h¢ = —ph ve h{ = trh = 0 oldugu ispatlanabilir. Ayrica 7 = L¢G almirsa
(X7, VM) = 2GH (XM hoY™), 7(XV, YY) = 2GV(XY, hoYY) (5.44)

elde edilir.

Standart ortonormallestirme iglemi ile birlikte her bir ((M’)", ¢, ¢ n G™) (hemen
hemen) degme Lorentz Finsler manifoldu ¢*- bazi olarak adlandirilan ézel bir cesit lokal
yar1 ortonormal baza sahiptir. Boyle bir baz {EJ, ..., EX*, ¢ ET, ..., o B}, ¢M} formundadir.
Benzer sekilde ((M')?,¢Y,£Y,nY,GY) (hemen hemen) degme Lorentz Finsler manifoldu
ise ¢Y- baz1 olarak adlandirilan 6zel bir cesit lokal yar1 ortonormal baza sahiptir. Boyle bir

baz {EY, ..., EY, ¢EY,...,pEY £V} formundadr.

Yardimer Teorem 5.2.9. ((M")" ¢™, " 0™ GM) ve (M), ¢Y,€V,nY,GY) degme

Lorentz Finsler yapilar olmak tizere
diveM = divn” =0,

diveY = divn¥ =0

olur.
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Ispat. V?{H = 0 ve h¢p = —¢h oldugundan, (5.43) kullanilarak

divg™ = trve™ = "GH(VIES BN + > GV ¢ oB])

i=1 =1

= S GH(oEN — phEI BN + S GMG B — oh(6E1), 9B
i=1 =1

n n 1
= - GH(¢hEM, EM) +Y —G"(—EM, ¢EM
Z (¢ ) 22 (B}, ¢E})

+ DG oh(oBI), 0BN) + 3 (6B, B

i=1 =1

= S GMhE! 0B + Y GM(he*EN, 9B
=1

i=1

=Y GMhE} ¢El) - Y GM(hE] ¢E]) =0,
i=1 i=1

divn™ = —trvn’ = dive™ =0

elde edilir. Benzer igslem adimlar: kullanilarak
diveY = trveY =0
oldugu goriiliir.

5.3. Yar: Finsler Manifoldlar1 Uzerinde Sasakian Lorentz Yapilar

Tanmim 5.3.1. (o™, % ™ G™) ve (¢Y,€Y,nY,GY) degme Lorentz Finsler yapilar:

(i) Normal, yani [¢", ¢™] + dn™ @ € = 0, [¢Y,8Y] + dn¥ @ €Y = 0 ise Sasakian olarak
adlandirilir.

(i) h = 0, yani & ve £V, sirasiyla, G* ve GV Lorentz metriklerine gore Killing vektor

alani ise K-degme olarak adlandirilir.

Teorem 5.3.2. (M’)" ve (M')? iizerinde (¢, &M n*, G™) ve (¢¥,¢V,nY,GY) hemen

hemen degme Lorentz Finsler yapilarin Sasakian yapi olmasi igin gerek ve yeter sart

(Vo™ = JIGHX Y () XY, (5.45)

(VXY = JIGY (XY YV) 4 " (7¥)XV) (5.16)

olmasidir.



61

Ispat. Yapi normal ise Q = dn ve N = N = 0 olur. Boylece (5.34) yardimiyla

2GH(VEQ)YH, Z27) = —GH(XT YT (27 + X 2 (YT
= GMXMYMGH(ZM €M) + G (Y XM, 2
— GH(GH(XH,YH)§H+77H(YH)XH,ZH)

elde edilir. Buradan VX7 Y* ¢" € (TM")" igin
(VEO)Y™ = S YHE" 4 (v )X
bulunur. Benzer olarak (5.35) yardimiyla VXY, YV, &Y € (TM")Y icin
(V5aYY = (G (XY, Y)Y + 7" (V¥)X)

olur. Diger taraftan yap1 (5.45) ve (5.46) esitliklerini saglasin. Boylece (5.45) esitliginde
Y = &M alimirsa

(VE9E" = S(GHXH 296" + XM,
BV = L (XM + XM,
PV = S (6X7),
VA = Jox*
elde edilir. Benzer olarak (5.46) esitliginde YV = ¢Y almirsa

1
Vie” = Sox¥
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bulunur. ¢ skew-simetrik oldugundan ¢7* ve €Y nin Killing vektor alam oldugunu séyleye-

biliriz. Ayrica

Ny(XYH) 4 dn' (X7, Y )™ = —p(VEgYH — oV RYH)

+O(VPOX™ = oVEXT) + (VoY — oV Y™)

— (VI o X — oV XM + dn™ (XM, Y )™

= —p(VEO)Y " + (V) X + (Vi)Y = (Vi) X

= (@M Y L (XM oG XE 4 (XY
+ G XY+ (Yo XTE — GTH(pY 7 X7

+ (XYY 4 dn (X, YR

- —GH(XH,chH)fH + dT]H(XH,YH)§H

— —dnH(XH,YH)fH + dnH(XH,YH)§H

=0

elde edilir. Benzer sekilde
N} +dn¥ @& =0

bulunur ve yap1 Sasakian Lorentz yap olur.

Teorem 5.3.3. (M')" ve (M')V iizerinde (¢, £, n™, G™) ve (¢V, €Y, nY,GY) yapilarmin
K-degme Lorentz yapilar olmasi i¢in gerek ve yeter gsart agagida verilen iki durumun saglan-
masidir:

(1)(M")" iizerinde €%, G™ metrigine gore Killing vektor alani ve (M')? iizerinde ¢, GV
metrigine gore Killing vektor alanmidir.

(2) €M vektoriinii iceren diizlemsel kesit icin (M’)" nin her noktasinda flag egriligi —% ve

¢V vektoriinii iceren diizlemsel kesit icin (M’)? nin her noktasinda flag egriligi —% olur.
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Ispat. (M')" iizerinde (¢, ™ n*, GM), K-degme Lorentz yapi olsun. (3.45) den, X*, ¢#
a ortogonal birim vektor alani olmak tizere

GHM(R(XM, )™, X7) = GHVEVEE = VEVEE — Ve € X7

= (=5 (VEOX™) ~ 1(@*XH) + 2o(VEXH), X7

= (S (VEXM) + LGH(XH, XH) - LGP (X MM, X
= LK XM - MG (XM, M)

= iG”(X”,X”) =

e

elde edilir. £” birim time-like vektor alani oldugundan X7 birim space-like vektor alani
olmak zorundadir. Béylece G (X7, X7) = 1 ve G*(X, &) = 0 olur. Benzer isglem

adimlar1 yardimiyla

GV(R(XV7£V)§V7XV) = i

esitligi yazilir. Boylece

GH(R(X™, M) XH) 1
K(X7,¢7) = —GA(XH XH) T 4

ve
GY(R(XY,EV)¢V, XV) 1
V ¢V [
K(X 75 )_ *GV(XV,XV) - 4

elde edilir.
Diger taraftan VX" Y™ ¢ (TM")" i¢in (M')" iizerinde ¢, G™ metrigine gore Killing

vektor alani oldugundan

(X7 VM) = —GH(VEEH, Y + GH(VIEE, X
=267V, X

= aGM (oY, XH) = GH(XM, oY)

esitligi yazilir. Sonug olarak, (¢, & n*, GM), K-degme Lorentz yapi olur.

Benzer olarak, (M')V iizerinde ¢, G¥ metrigine gore Killing vektor alani olsun. Boylece
dn’ (XY, YY) = GY(XY, ¢Y")

bulunur ve (¢Y,£Y,1nY,GY) K-degme Lorentz yap1 olur.
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Teorem 5.3.4. (M')" ve (M')? iizerinde, sirasiyla, (¢7, €%, 0™ G™) ve (¢¥, €Y, nY,GY)

Sasakian Lorentz yapilar olsunlar. V Finsler koneksiyonunun Riemann egriligi
1
RX™ Y = AP (V)X = (X7)Y7Y, (5.47)

RV YV = L ()XY - P (X)) (5.45)

esitlikleri ile verilir.
Ispat. (M) iizerinde (¢, M n*, G™) Sasakian Lorentz yapi olsun. (3.45) ifadesinden

R(XM YM)eM = VEVEH — VIV — Vion yn €™
1 1
= V§(§¢YH) F V¥(§¢XH) - Vvyyﬂfvgj)ﬁ%ﬁ%
1 1
= S(VE™)Y™ — S(Vife™)X™
1

= JOM XM XY™

bulunur.
(M')? iizerinde (¢Y,&Y,nY,GY) Sasakian Lorentz yapi olsun. Béylece (3.45) ifadesinden
(5.48) elde edilir.

Teorem 5.3.5. (¢, &% M GM) ve (¢V,¢Y,nY,GY) Sasakian Lorentz Finsler yapilar

olmak tizere

R(X™ yM)pz™ = pR(XM YH)ZM 4 i{GH(Y”, ZMpxH (5.49)

— G X ™, ZY" + GH (oYM, ZM) XM — GH(XH, ZH)pv M},

R(XY,YV)¢ZY = ¢R(XY,YV)Z" + %{GV(YV, AR, &4 (5.50)

— GY (XY, ZV)YY + GV (oYY, ZV)XY - GY(XY,ZV)pY "}

esitlikleri vardir.
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Ispat. (3.45) ve (5.45) yardimiyla

ROX Y97 = VG, 2964 + STRPZMY ™) + S {GH (X, T3z
FVEZ XY 1 RO Y 2 - LRGN, 29EM) — SR n(2)H XM
GV Y (TR ORI Y, 2 (2 Y
= pR(XM YH) 77 — %(G”(X”, 7MYy — GH (Y™, ZM)ex M)

- (T 24X = (T 2y

= ¢R(X™, Y™ 7 — %{GH(XH, ZMey ™ — GH(YM, ZM) e x ™

+ QM 2" X" —(xH, ZzH)y "

= pR(X™, Y™ 7" - i(GH(XH, ZMey ™ — GH(YH, 27 x T

=GP YT, Z7) X7+ GM (o X, Z7)Y ™)
elde edilir. Benzer gekilde (3.45) ve (5.46) ifadelerinden yararlamlarak (5.50) elde edilir.
Sonuc 5.3.6. (5.49) ve (5.50) ifadelerinden

R(XM" Y z" = —gpR(XM, Y p 2™ (5.51)

+ i{GWX”, ZYT+ GHOY T, ZP)pXT - GR(YT 2T X - GP (o X, Z7) gy T,

R(XY, YV ZY = —¢R(XV,YV)9pZ" (5.52)

GV XY, 2V 4 GYoYY, 2%)0X” — @YY, 21XV - GV (6XY, 2%)ov ),

G(R(pX, oY ™) p 2™, oWy = GTH(R(X, YT ZH W)
+ i{—n”(Y”)n”(Z”)G”(X”, WH) — (Xt (WG (YR, Z7)

+ (YW G X, Z7) + (X (27 G (YT, W)Y, (5.53)

GY(R(pXY, oY V)2V, oWY) = GY(R(XY,YV)2Y, WY)
+ %{—nV(Y")nV(Z")G"(X", WY) — ¥ (XV)nY (WY)GY(YY, ZY)

+n (Y)Y (WY)GY (XY, ZY) + 0" (XY )" (ZV)GY (Y, W)} (5.54)
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esitlikleri elde edilir.

XM ¢ (TM')" birim vektorii €7 a ortogonal ise (T'M’)™ deki diizlemsel kesit olan
{XH" XM} yatay ¢-kesit olarak adlandirihir. Benzer olarak, XY € (T'M')Y birim vek-
torii €Y a ortogonal ise (T'M’)Y deki diizlemsel kesit olan { XV, $XV} dikey ¢-kesit olarak

adlandirilir. Boylece yatay flag egriligi
KX (X7, ¢X™) = GHR(X™, 0 X)X, XH) (5.55)

seklinde ifade edilir. Yatay ¢-kesitsel egrilik olarak adlandirihir ve K*(X™) ile gosterilir.

Dikey flag egriligi ise
K* (XY, ¢XY) = G¥(R(XY,9X”)pXY, XY) (5.56)

esitligi ile ifade edilir ve dikey ¢-kesitsel egrilik olarak adlandirilir, K*(XV) ile gosterilir.

Onerme 5.3.7. (M")" iizerinde (¢, €%, 0 G™), K-degme Lorentz Finsler yap1 olsun.

(M")" lokal olarak simetrik ise Sasakian Lorentz Finsler yapimm sabit egriligi —% olur.
Ispat. YXH" Y ZH " c (TM")* igin, (5.45) ve (5.47) esitlikleri yardimiyla

1
(vyZ-LR)(XrHa Y’H) gH) = _Z{G’H(ZHv YH)XH - GH(ZH> XH)YH} - R(XH7 YHa ZH)
(5.57)
elde edilir. (M’)" lokal olarak simetrik oldugundan (V¥ R) = 0 olur. (5.57) ifadesinden

R(X™ YH 77 = —i{GH(YH, ZH XM - g xM, 7MYy (5.58)

bulunur. Aym1 anda time-like ya da space-like olan iki vektoér birbirine dik olamaz. Bu
nedenle {X*, Y*} ortonormal cifti i¢in, X™ time-like vektér oldugunda Y space-like
olmalidir. Boylece

GH(R(XM, YH)Y X™H) 1 GHY" YM)GH(XH X™M) 1

HoyHY _ =—- -
K(X Y') = GH(XH’XH)GH(YH,Y’H) - 4{G'H(XH,XH)GH(YH,YH)} 4

elde edilir.

Onerme 5.3.8. (M')V iizerinde (¢, &Y, nY,GY) yapisi K-degme Lorentz Finsler yap:
olsun. (M")? lokal olarak simetrik ise, Sasakian Lorentz Finsler yapimn sabit egriligi —%

olur.



67

Ispat. YXV YV, ZV €V € (TM')Y icin, (5.46) ve (5.48) esitlikleri yardimiyla
(VIR (XY, YV, &V = —%{GV(ZV,YV)XV -GV (ZV, XYYV} - R(XV.YY, ZY) (5.59)
bulunur. (M’)Y lokal olarak simetrik oldugundan (VY R) = 0 olur. (5.59) ifadesinden
R(XV, YV, zY) = {GV(YV ZNHXY - GY (XY, Z2V)YV} (5.60)

olur. Tki vektér aym anda time-like yada space-like olur ise bu durumda birbirine dik
olamaz. Bu nedenle {XV, YV} ortonormal cifti icin, XV time-like vektor oldugunda Y

space-like olmalidir. B&ylece

KXV YY) = GY(R(XV,YV)YV, XV) I{GV(YV YV)GY (XY, XV)} 1
GYV(XV, XV)GY(YV, YY)  4'GY(XV,XV)GY(YV,YV) 4
elde edilir.
M')" Sasakian Lorentz Finsler manifoldun S™ yatay Ricci tensorii, {E7, ..., B}t &M},
1 2n
(TM")™ nin lokal ortonormal catisi olmak iizere
SHXHM Y M) = ZG’“‘ (X7 EIENYH) + GH(R(X™, e YT)
= ZG”"‘(R(EZ*,XH)YH, El) + GH(R(EM, XMy M, ¢%) (5.61)

esitligi ile verilir.
Benzer olarak, (M')" Sasakian Lorentz Finsler manifoldun SY dikey Ricci tensorii
{EY,...,EY €V}, (TM')Y nin lokal ortonormal catisi olmak iizere

V(XY YY) = ZG" (XY, EY)EY, YY) + GY(R(XY,€V)e, YY)

= ZGV(R(E;’, XYY EY)+GY(R(EY, XYYV, ¢V) (5.62)
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esitligi ile verilir. Boylece M’ Lorentz Finsler manifoldun S Ricci tensorii

S(X,Y) = SHX" yH)+ 8V (XY, YY)

2n
= Y GMRXM™ EME! YH) + GHR(XM, M)t v
=1
2n
+ Y GY(R(XY,ENEY YY) + GY(R(XY,€")eV. YY) (5.63)
=1
esitligi ile verilir.

Onerme 5.3.9. (M) iizerinde (¢, &M, n™, GM) degme Lorentz Finsler yapisiin K-

degme olmasi igin gerek ve yeter sart
SH(eM, e = g (5.64)

olmasidir.
(M'")V iizerinde (¢, €Y, 1Y, GY) degme Lorentz Finsler yapismin K-degme olmast igin gerek

ve yeter sart
n

SV(EY, &) = <

; (5.65)

olmasidir.
Ispat. (5.47) ifadesinden
2n
SHE M = Y GHUR(EN, M BT
i=1
1 2n
= D GHMEEN (BB
i=1
1 2n
- IS e
i=1

n

2

bulunur. Benzer sekilde (5.48) ve (5.62) yardimiyla SY(¢Y,¢Y) = 5 esitligi elde edilir.
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Yardimci1 Teorem 5.3.10. S* ve SY Sasakian Lorentz Finsler manifoldunun Ricci ten-

sori olmak tizere

SMXLEM) = Dot (X,
SY(XV,&Y) = gn"(XV) (5.66)

esitlikleri saglanir.

Ornek 5.3.11. F3 = (R3,(R?), F*) bir Lorentz Finsler manifoldu olsun. Burada
(R3) = RS\ # nin 6-boyutlu bir C* manifold oldugu agiktir. R? deki {z1, x9, 73} koordinat
sistemi sayesinde (R3)’ de {1, 29, 23; Y1, Y2, y3} koordinat sistemi elde edilebilir. (T'(R3)")*
demetinin lokal baz {2~ Sors 522, 5%} ve (T(R3)")Y demetinin lokal bazida {-2- Byr 8y2, ays} dir.
Her X € (T(R3))" i¢in X7 = Xf{(sx + X7t 5902 + XH73 ve her XV € (T(R?)") igin
XY = XVl + XY 2 + XY 52 olsun. Béylece her X € (T(R%)) i¢in X = X[15-
leay ,1 < i < 3 geklindedir. € (T*(R3)) 1-formu n = nltds® + nYéy;,1 < i < 3
olup n™ € (T*(R3) ve ¥ € (T*(R?))Y igin 07t = nftdx! + nitdx?® + nitdx® ve n¥ =
nY dy1+n5 Sya+n¥ dys dir. Sasaki yari-metrik Finsler tensor alan1 G = G+ GV olmak fizere
G = 9@] “dr; @ dxj + gm "0y; @ 6y;,1 < i < 3 olup gZ , (TR ve (T(R3))Y demetleri

iizerinde Lorentz metrigidir. ((R?)")" manifoldunun her noktasinda lineer bagimsiz olan

J ) 5
EH— — pit—2 7 SR ) S —
! (5.%'1’ 2 $25$2+x15$37 3 3 g

vektorleri ile ((R3)’)? manifoldunun her noktasinda lineer bagimsiz olan

0 0 0 0
Evzi’EV: 27_’_ 7,EV:—7:V
1 ayl 2 Yo ay2 Y1 6y3 3 ayg 5

vektorlerini alalim. G* ve GV Lorentz metrikleri

1 0 0 1 0 0

H 1—x2 x1 Vv l—y2 Y1
GR=10 = & |, & =10 5 ¢
_ Y _

0 = 1 0 y% 1

seklinde tamimh olup G (EJt, €M) = GM(E}, ") = GH(E, E}Y) = 0, G'(EJ, EJt) =
GHM(E, EY) = 1, GM(E7,€%) = —1 ve GY(EY,¢Y) = GY(EY,¢Y) = GY(EY, EY) = 0,
GY(BY, BY) = G (BY, BY) = 1, G¥(€¥,€%) = —1 dir. Aynca () = ~GH(E}!, £¥) =
0, n(Bf) = -GH(EBF.&") = 0, (") = -GHE &) = 1 ve nV(BY) =
—GY(EY,€Y) = 0, nV(EY) = —~GY(EY,€¥) = 0, n¥(¢¥) = —GY(§”,€") = 1 dir. Boylece
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her Z7 € (T(R®))H, Z" = ZHEM ve ZV € (T(R?))Y, Z¥ = ZYEY, 1 < i < 3, i¢in

nt(ZM) = Z3t ve nY(ZV) = ZY olur.
™ ve ¢V; (1,1) tipinde yatay ve dikey tensor alanlar agagidaki gibi tanimli olsun

0 L o 0o L o0
T3 Y2
o"=1 22 0 0].¢"=| -2 0 0
—X1 0 0 —Y1 0 0
Boylece
"(Eft) = —E, o™ (E}') = B, ¢™(¢M) =0,

¢¥(EY) = —EY,¢Y(EY) = EY, 0¥ (") =0

olur. Her ZM € (T(R?))* ve ZY € (T(R?)")Y icin
¢*(2") = —Z1'EYf + ZJ'El, ¢¥(2Y) = 2V By + ZYEY
(0")2(Z27%) = =27 + 0" (27, (V)2 (2Y) = = 2¥ + Y (27)€Y
bulunur. Ayrica her Z% W € (T(R?) )" ve ZV, WY € (T(R3)")Y i¢in
G (7™, oW ™) = G (ZH, W) + ) (2P (W)
GY(92, W) = GV(2, W) + n¥(Z2¥ )" (W)
dir. Boylece (¢, ", 0" GM) ve (¢Y,£Y,nY,GY) yapilar, sirasiyla, ((R?))* ve ((R3))?
manifoldlar: tizerinde birer hemen hemen degme Lorentz metrik Finsler yapilardir. Kozsul
formiilti kullanilarak agsagidaki esitlikler elde edilir:
1 1
Vi ¢t = =S B VE B = =08 VI =0, VI Bl = 0, VI, Bl =0

1 1 1 1
VEE" = — Bl VLBl = — ¢ VIR = (Bl Vi = S Bl

Bu esitlikler sayesinde her X € (T(R3))* ve XV € (T(R?)")Y i¢in

VieH = %¢XH, viey = %¢XV
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olup, her X* Y* ¢ (T(R3))" ve XV, YY € (T(R?)")Y i¢in
(VESYH = VYY) — T = LGy (v )Xy
(V5 = TH(0"YY) - Y (VEYY) = (&Y (X7 Y)Y 4+ (1Y) xY)

elde edilir. Boylece (((R*))", p*, M, n™, GM) ve (((R?))?, ¢V, €Y, 7V, GY) birer Sasakian

Lorentz Finsler yap1 olur.
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6. YARI FINSLER MANIFOLDLARI UZERINDE KENMOTSU YAPILAR

Bu béliimde yar1 Finsler manifoldlar: iizerinde yar1 Finsler metrigi ile birlikte hemen
hemen Kenmotsu ve Kenmotsu yapilar kuruldu. Ayrica Kenmotsu yar1 Finsler manifold-

larimin egrilikleri hesaplandi. Ilk olarak Kenmotsu yar1 Finsler metrikli yapilar: inceleyelim.

6.1. Kenmotsu Yar: Finsler Metrikli Yapilar

V! ve V? Cartan koneksiyonlari, f : R — R* diizgiin fonksiyon olmak iizere,
(R, F1) ve (N?", Fy) yar Finsler manifoldlari olsun, ayrica p; : R x N?* — R ve
p2 : R x N2 — N?" olarak tanimlansin. R® = TR\ 4, (N9)?" = TN?"\ § olmak iizere
F*:RY x (N9)2" - R, F*(vy,v9) = F2(v1) + f2(m1(v1))F3(v2) seklinde tanimlanan yari-
Riemann metrigi ile birlikte R x N2* = M?"*! carpim manifoldunu ele alalim. Bu ¢arpim
R x s N?" ile gosterilir ve (R x s N2, F*) bir yar1 Finsler manifoldu olur. Vi = ker(dm)
ve dm; : TTR — TR olmak tizere m kanonik doniigimii (Vi,dm, TR) dikey demetini
verir. Vo = ker(dmg) ve dmy : TTN n _y TN?" olmak {izere 7o kanonik dontigiimii de

(Va, dma, TN?"™) dikey demetini verir. Ayrica
dry x dry = d(my X w9) : TTR x TTN*" — TR x TN*"

ve

kerd(m x my) = kerdm & kerdms

olsun. Buradan manifoldun dikey uzay1 R x N2* = M?"*t1 vV = V; @V, elde edilir. Boylece
V1 ve V4 lizerinde g; ve go yari-Riemann metrikleri, v € TR, w € TN n ye m1(v) € R olmak
lizere

GY = g/" + fA(m1(v)) gy
GY(XY, YY) (o) = [P (m1(0))g2(X ), YY)

wI T w

seklinde tanimlanir. Boylece

ZVGY (XY YY) ) = 2F 27 ((F(m1(0))g2( X, Ya)) = 2f 2Y f(m1(v))

wr T w

f2(m(v))
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bulunur. Bu bagintilardan

VAaViyV vV _ LVf VvV vV
ZG(X,Y)_2(f)G(X,Y)

olur.
(R, F) ve (N?", %) Finsler manifoldlar iizerinde V! ve V2 Cartan koneksiyonlarma gére

H, ve Hy yatay uzaylar olsun. Boylece direkt toplam ayrigimi
TT(R x N*") = TTM*" ™ = TTR@ TTN*" =V, @ H; & Vo @ H,

seklinde yazilir. R ve N2" manifoldlar {izerinde Fy, Fy Finsler metrikleri sayesinde H; ve
Hs yatay uzaylan lizerinde g1 ve g2 Riemann metrikleri ortaya gikar. Ayrica bu Riemann

metrikleri T(TR x TN?") iizerinde yari-Riemann metrik olugtururlar. Béylece
GH(XHv Y%)(v,w) = f2 (771 (v))QQ (XH7 YH)
yazilir. Buradan

ws Y JGH(XT YT

H M yvH H H Y i
ZRGH XY ) ) = 227 (f(11(v))g2( Xy, Y, )):2(7

olur.

Onerme 6.1.1. M2+ =R x ¢ N2 carpim uzayt ile birlikte F2"1 = (M, M’, F*) yan
Finsler manifoldu olsun. (N)?" = TN?" \ § Kahlerian yari-metrik manifold ve f(t) =
ce’ oldugunu kabul edelim. (M")" ve (M')? iizerinde (¢™, M, n™ G™) ve (¢Y,€Y,nV,GY)
hemen hemen Kenmotsu yari-metrik yapilar olmak iizere, n’t, n¥ 1-formlan ve Q*, QV

ikinci temel formlar ise agagidaki ozellikleri saglarlar.
dn™ = dnY =0,d0" =gt AQR dQY =Y AQY,dQ=nAQ,dy = 0.

Ispat. G = G +GY : TTM xTTM — I(TM) ve Gy : TTN xTTN — (T N) metrikleri
Sasaki metrikler olsunlar. TN Kahlerian vektor demeti iizerinde G2 Kahlerian metrigine

gore Q0 ikinci temel form olmak {izere

G(X,9Y) = GXM" + XV, Y™ + ¢YY) = f2(m1(v))Ga(X, ¢Y)
= fA(m1(v))Ga(X ™ + XY, 0V + gYY),
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G, oY ™) + GY(XY, 0YY) = f2(m1(v))[G2(X™, 9YY) + Go (XY, 9Y )],
QXY + QXY YY) = f2(m(0) [ (X7 YY) + 95 (XY, YT

esitlikleri vardir. Yani d2* = 0 olur. Béylece

dXH YY) +d(XY YY) = 2f (1) f/ (t)dt A [Q (X, YY) + Q5 (XY, Y]

a0 +dQY = (2ff,)dt A Q7+ QY
o2
flt)=e2 — TON 1

ve
dt =n,dn™* = dn¥ = 0,dQ" =t AQ7,dQY =Y AQY,dQ=nAQ,dp=0

elde edilir.

6.2. Yar1 Finsler Manifoldlar:1 Uzerinde Hemen Hemen Kenmotsu Yar1 Metrik

Yapilar

Tanim 6.2.1. dn(X,Y) = 0 esitligi saglanmak tizere, n temel 1-form ve V, M’ {izerinde
Finsler koneksiyonu olsun. Boylece n = df olacak sekilde M’ iizerinde bir f fonksiyonu

varsa

(VE) ) = (V™) (X)) + ™ (T (X, Y7™) =0,
(VXY (YY) = (VEn)(XY) + 07 (T(XV, YY) = 0 (6.1)

esitlikleri saglanir (Sinha ve Yadav, 1991).

Boylece hemen hemen degme yari-Finsler metrikli yapi, hemen hemen Kenmotsu yari-
metrik yapi olarak adlandirilir ve (6.1) esitliklerini saglayan V koneksiyonu ise hemen
hemen Kenmotsu Finsler koneksiyonu adi verilir. Ayrica ((M")*, ¢ " n* GM) ve
(M"Y, ¢Y, €Y, nY, GY) yapilar ise hemen hemen Kenmotsu yari-metrik Finsler manifold-

lar1 ya da hemen hemen e-Kenmotsu Finsler manifoldlar: olarak adlandirilirlar.
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Teorem 6.2.2. Hemen hemen Kenmotsu Finsler koneksiyonu V torsiyonsuz ise,

VXH YH ¢ (TM)" ve VXY, YY € (TM')Y olmak iizere agagidaki esitlikler saglanir.
(V) (Y) = (Vi) (XT) = 0, (VX)) (YY) = (V0 )(XY) =0 (6.2)
(Sinha ve Yadav, 1991).

6.3. Hemen Hemen Kenmotsu Yari-Metrik Yapilarin integrallenebilir Tensér

Alanlar:

F2+l — (M, M’', F*) yan Finsler manifoldu olmak iizere, (M")" ve (M')? {iz-
erinde (¢, %, n™) ve (¢¥, €Y, 1Y) hemen hemen Kenmotsu yar-metrik yapilarmin inte-

grallenebilir tensor alanlar, VX7 Y* ¢ (TM')" ve VXV, YY € (TM')Y i¢in

NZHXM YH) = [pXM, oY M] — g[pX ™, YH] — g[ XM gV H] + ¢?[ X7, VH],

NY(XV, YY) = [¢XY,0YY] — ¢[p XV, VY] — o[ XV, VY] + ¢* (XY, Y]
esitlikleri ile verilir. Boylece
NO(xH yH) = N} X" vH), (6.3)

NE (X YH) = (Lixn™) (V™) = (L) (x7),
NEO(XH) = (L) (X ™), NW(XH) = (Lgen™)(XT)

ve

NO(XY, YY) = NY(XV, YY), (6.4)
N(2)<XV>YV) = (LEXUV)(YV) - (LZW?V)(XV),
NO(XY) = (LEg)(XV), N (XY) = (L) (XY)
dort tensor alani taninimlanabilir.

Onerme 6.3.1. (M')" ve (M")? iizerinde, sirasiyla, (¢™, %, 0™ GM) ve (¢V, €V, nY,GY)
hemen hemen Kenmotsu yari metrik yapilarimin normal olmasi icin gerek ve yeter sart

N;" =0 ve N;j = 0 olmasidir.
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Yardimci Teorem 6.3.2. (¢7, &% ™ G™) ve (¢¥, €Y, 1Y, GY) hemen hemen Kenmotsu
yar1 metrik yapilarinim normal olmast i¢in gerek ve yeter sart N = N2 = NGO = y(4) =

0 olmasidir.

Yardimci Teorem 6.3.3. (M')" ve (M')V iizerinde sirasiyla (¢, &% n*, GM) ve

(¢Y,€Y,nY,GY) hemen hemen Kenmotsu yar1 metrik yapilar igin
2GM(VE)Y ™, Z27) = GH(INO (Y™, 27), 6 X™) + eNP (v, 27 ™ (X ™)
+dQXM, oYM 7™ — dQ(XH Y ZM), (6.5)
26V((VX)Y”, 2%) = G¥(NO(YY, 2Y),6XY) +eNP(YY, 2V)" (XV)
+dUXY, oYY, 0ZY) —dUXY,YY, ZY) (6.6)
esitlikleri saglanir.
Ispat. V, Finsler koneksiyonu olmak iizere
2GH(VEY M, ZM) = XHGH (Y™, Z2M) + YHGH (XM, 21 — ZHGH (XM Y ™)
2GY (VXYY Z2Y) = XVaY(YY, z2V) + YYGY (XY, ZV) — ZVGV (XY, YY)
+ Gv([va YV]? ZV) + GV([Zvv XV]) Yv) - GV([va ZV]? XV) (68)
olur. Ayrica

dX*YH Z7M) = XMy H, 27 YRz, X 4+ ZHo(x T v )
— QX" YN, 27 — (2", XM, v — YT, Z2M), X (6.9)

ve

AAXY, YV, ZV) = XVQ(YY, ZV) + YVQ(ZY, XV) + ZVQ(XY, YY)
- Q([XV, YV]7 Zv) - Q([ZV’ XV]: YV) - Q([YV’ Zv]vXV) (610)
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esitlikleri vardir. (6.7) ve (4.20) ifadelerinden

2GH(VEQ)Y, 27 = oY G (XM, ZM) — 27X Y + G (X, oY ™, Z7)
+Q(ZM XM, YH) - GH([pY ™, ZM), X M) + YHQ(X M, ZM) — g ZM G (XM Y )
+ QXYM ZH) + GR([p2™, XM, YH) - GR(YH, 2], XM (6.11)

elde edilir. Ayrica (6.3) ifadesinde (4.18) kullanilirsa

GHIND(YH 27 o X)) = (Y, ZM], X ) + Q([oY T, 927, X ) (6.12)
— GH([pY™, ZH], X7 + " (oY, ZH ™ (X7 — GPH(IY T, 27, X7 + ) [Y T, 0 27 P (X

bulunur. (6.4) yardimiyla,

NOYH 24" (XH) = oY (" (VM) (XM) — oZM (™ (V™))™ (X ™)
— oY, ZM M (XM — MY M g 2P (X (6.13)

olur ve (6.9) ifadesinden,

dQUXH™, oY, 9Z7) = XHQ(YH, ZH) + oY HGH (27, XH) — coY " (™ (2P (X))
— ¢ZMGH (XY ) 4 epZ M (M (XM (YY) + GH(IXH, oY, Z27)

—en™ X Y (Z27) + GP (027, X M), YY) — enP[p 27, XM (YT

— QoY M, 2], X 1) (6.14)

bulunur. Ayrica (6.12), (6.13) ve (6.14) esitliklerinden faydalanarak (6.5) bulunur. Benzer
olarak, (4.18), (6.8) ve (6.12) esitlikleri kullamlarak (6.6) elde edilir.

Yardimci Teorem 6.3.4. dQ =nAQ ve NU = N® =0 ile birlikte (@7, &M Mt GH)

ve (¢Y,€Y,nY,GY) hemen hemen Kenmotsu yari metrik yapilar igin

(VEO)YY = S=CY (X, YV)e” — P (r¥)ox7), (615)

(VRO = LIGHoX M Y — (Y H)ex™) (6.16)

esitlikleri vardir.
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Ispat. (6.6) esitliginden,

2GV((VXo)YY, Z2V) = -V (YV)GY (XY, ZY) — G (€Y, 2V)GY (XY, ¢YY)
= GY(—eG(XY,oYV)EY — Y (YY) XY, ZY),

1
(VXYY = {eGY(0XY, YV)eY =0 (Y¥)o X"}
elde edilir. Benzer olarak, (6.5) kullamlarak (6.16) elde edilir.

Teorem 6.3.5. (M')" ve (M')? iizerinde, sirasiyla, (¢, %, n*, G™M) ve (¢V, €Y, 10V, GY)
hemen hemen Kenmotsu yari metrik yapilarimin Kenmotsu yari metrik yapi1 olmasi igin

gerek ve yeter sart
(VRYH = L {cGH(6XH, Y — (Y )sx ),
(V%)Y = L{eG¥(6X¥, YV)E” P (V)oXV)
olmasidir.
Ispat. (6.15) ve (6.16) esitlikleri saglansin. (6.15) esitliginde YV = ¢Y yazilirsa

(V50)E” = L{eGY (0X”, )6 — ¥ (110X V),

~H(VREY) = —oxY,
VEE = LKV = L(XY - (X)) (617)

bulunur. Benzer sekilde (6.16) esitligi kullanilirsa
1 1
VR = =0 X7 = S (X7 = (X7)ET) (6.18)

elde edilir. Ayrica (6.17) ve (6.18) ifadelerinden

(VEYH + (VI XM = GH(pX™, oY) = Qo X YH), (6.19)
(VEM)YY + (Vi) XY = GY(oXY, 0YY) = Q(¢ XY, YY), (6.20)
2VEN) = GH(pX™M, Y ™) = Q(pX ™, YT, (6.21)

2(V¥nY) = GY(¢XY,9YY) = Q¢ XV, YY) (6.22)
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bulunur. Béylece yapilar Kenmotsu yar1 metrik yapilar olurlar.

6.4. Kenmotsu Yar1 Finsler Manifoldlarinin Egrilikleri

Teorem 6.4.1. (M")" ve (M')? iizerinde, sirasiyla, (o7, €%, 0™ G™) ve (¢¥, €Y, nY,GY)
Kenmotsu yari metrik Finsler yapilar ise, (3.46), (3.51), (4.4), (6.17) ve (6.18) ifadelerinden

ROCLYMEH = L (7Y = (X7 (6.23)
e
ROXV,YV)EY = L (XYY = (vV)xXV) (624
olur. Béylece
R(X,Y)¢ = R(XM Yy + R(XV, YV)eV (6.25)

= LY Y (XYY - M X (rY)xY)

elde edilir.

Teorem 6.4.2. (M')" ve (M')V iizerinde sirasiyla (¢, %, n* GM) ve (¢V, €Y, 1V, GY)
Kenmotsu yar1 metrik yapilar olsunlar. Boylece (6.15), (6.16), (6.19), (6.20), (6.21) ve
(6.22) ifadelerinden

R(XM, )02 = oR(XH, Y1) 2% = L{GM(0X ™, 277 ¥

— G (Y™, 2O X + GM(XM, 2oy M — GTH(Y, 29 XY, (6.26)

R(XY,YV)62¥ = 6R(X”, YY) 2" = {G¥ (XY, 2¥)Y"

—GY (oYY, ZNXY + GV (XY, Z2Y)eYY — GV (YY, Z2V)p XV} (6.27)
elde edilir.
Sonuc 6.4.3. (6.26) ve (6.27) esitliklerinden yararlanarak

R(XM yM)z" = —pR(X™, Y)pzM — Z{GH(YH, 4D T el b GV AL g

— GH (Y M, ZM) X ™ + G (o XM, Z) oY ™}, (6.28)
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R(XY, YV ZY = —¢R(XV,YV)pZ" — Z{GV(YV, ZHXY - GY (XY, ZV)YY

— GV (pYY, ZV)o XY + GV (6 XY, ZV)pY "V} (6.29)
esitlikleri elde edilir.

Tamim 6.4.4. X ¢ (TM’') birim vektorii €% a ortogonal ise (TM')* deki diizlemsel
kesit olan {X™ ¢X™M} yatay ¢-kesit olarak adlandirihir. Benzer olarak, XY € (TM')Y
birim vektorii €Y a ortogonal ise (TM’)Y deki diizlemsel kesit olan {XY, ¢ XV} dikey ¢-
kesit olarak adlandirilir. Boylece yatay flag egriligi

GM(R(XM, X p XM XH)
G(XH, XH)G(pXH, pXH)

K(XH XM = (6.30)

ile ifade edilir. Yatay ¢-kesitsel egrilik olarak adlandirilir ve K(X™) ile gosterilir. Dikey
flag egriligi ise

GV (R(XY, 6XV)6XY, XV)
G(XV, XV)G(9XV, $XV)

K(XV,¢XY) = (6.31)

ile verilir. Dikey ¢-kesitsel egrilik olarak adlandirilir ve K (XV) ile gosterilir.

Kenmotsu yar1 metrik Finsler manifoldlar lizerinde ¢-kesitsel egrilik
K(X)=K(X") + K(XY)
esitligi ile gosterilir.

Onerme 6.4.5. (M')" ve (M') iizerinde sirasiyla (¢, % 0" GM) ve (¢V,€Y,1V,GY)
Kenmotsu yar1 metrik yapilar olsunlar. (M’)" ve (M’)? lokal olarak simetrik ise Kenmotsu

yar1 Finsler manifoldlarin sabit egriligi —§ olur.

Ispat. (6.15), (6.16), (6.23) ve (6.24) esitlikleri kullanarak, VX7t Y7 Z" " ¢ (TM')*

icin,
(VER)(X™, Y™, %) = —{GH(y ™, 27X — GH(XM, 2y M) — RO, yH) 27

(6.32)
olur. (M) lokal olarak simetrik yani V#R = 0 oldugundan, (6.32) ifadesinden

R(XM" Yy zH = —Z{GH(YH, ZHxH _ gh(xH, zhyHty (6.33)

bulunur. Ayni anda iki vektor time-like ya da space-like oldugu zaman birbirine dik olamaz.

Bu nedenle { X, Y} ortonormal cifti icin, X* time-like bir vektér oldugunda, Y'* space-
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like olmak zorundadir. Boylece
GH(R(XH’YH)YH7XH) _ _Z{GH<YH’YH)GH(XH’XH)} _°c

T GH(YH, YH)GH(XH XH) 4

elde edilir. Elde edilen son esitlikte & time-like vektor olarak goz oniine almirsa
K(X™ Y™) =1 ¢" space-like vektér olarak diisiiniiliirse K (X7, V) = —1 olur.
Diger taraftan VXV, YV, ZV ¢V € (TM')Y icin,

R(XY,YV)ZV = —Z{GV(Y", ZV)XY - GY(XY, ZzV)YV}

olur. Aym anda iki vektor time-like ya da space-like oldugu zaman birbirine dik olamaz. Bu
nedenle {XV,Y"} ortonormal cifti icin, X" time-like bir vektor oldugunda, Y space-like

olmak zorundadir. Bylece
GV (RIXY Y)YV, XY) = @ (Y )6V (XY, X)) =

v V yVyyY xV
K(XY, YY) = GY(R(XV, Y)YV, XY) e
VYV Y (XV,XV) | 4

olur.

{X,Y} ortonormal ifti igin,

GHRX Y)Y X))+ GY(RXY, Y)YV, XY) e (6.34)

G
GH(XH XH)GH(YH YH) + GV(XV, XV)GY(YV, YY) 4

K(X,Y)=

bulunur.

(M")" Kenmotsu yari1 Finsler manifoldun S* yatay Ricci tensorii, {E7,..., EJt &M}

(TM")™ nin lokal ortonormal catisi olmak iizere
SHXHM Y M) = ZG’“‘ R(X™ EI)E] Y™) + GH(R(X™, )¢, Y™)
= ZGWR(E% XFWYH, BT + G R(ED, XY, ) (6.35)

esitligi ile verilir.

(M')* Kenmotsu yar1 Finsler manifoldun SV dikey Ricci tensorii ise {EY, ..., EY,, ¢V},
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(TM')Y nin lokal ortonormal catisi olmak iizere

V(XY YY) = ZGV (XV,ENEY YY)+ GV(R(XY,eV)eV, YY)

= ZGV(R(E% XYY, EY) + GY(R(EY, XV)YY,¢Y) (6.36)
esitligi ile verilir.
Onerme 6.4.6. ¢ indeksli yar1 Finsler manifoldunun (M’)" vektor demeti iizerindeki

(¢, €7 M, GM) degme yar1 metrik yapmin Kenmotsu yar: metrik yapi olmasi igin gerek

ve yeter sart

(%) . & space-like ise

%), " time-like ise

sHEM M) = (
olmasidir.
Ispat. (6.23) ve (6.35) esitliklerinden
2n
SHEM & = Y GMR(EN, e BN

2n
_ izgﬂwwﬁ)gﬂ — Y EN B
=1

1 2n
S DL
i=1
! + ...+ &9

4

elde edilir. F?"t! = (M, M’', F*) yapis1 q indeksli yar1 Finsler manifoldu oldugundan,

G(EM, €M) = e = 1, yani ¢ space-like vektor ise,
SH(EM M) = ZGH (EM, EM) — Z GH(EM, B = q—2n
z q+1

olur. GH(eM, ") = ¢ = —1, yani £" time-like vektor ise,

—2n—1
(57-[ 5% ZGH EH E?—L ZGH EH EH q n
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elde edilir.

Onerme 6.4.7. ¢ indeksli yar1 Finsler manifoldunun (M’)” vektor demeti iizerinde
(#Y,€Y,nY,GY) degme yar1 metrik yapmm Kenmotsu yar1 metrik yapi olmasi icin gerek

ve yeter sart

(qf") . &Y space-like ise

2L} e timeike ise

SV, ¢Y) =
(

olmasidir.

Ispat. (6.24) ve (6.36) esitliklerinden
gV SV ZGV é-V {V EV ZGV EV EV

bulunur. F?"*1 = (M, M’', F*) yapis1 ¢ indeksli yar1 Finsler manifoldu oldugundan,

G(£Y,¢Y) = =1, yani € space-like vektor ise,

V(e ey = 120

olur. Eger GV (¢Y,¢Y) =& = —1, yani £ time-like vektor ise

q—2n—1

VeV ¢V

elde edilir.

Yardimci Teorem 6.4.8. (M')" ve (M')" Kenmotsu yar1 Finsler manifoldlari {izerinde,

sirastyla, S™ yatay Ricci tensorii ve SV dikey Ricci tensorii asagida verilen esitlikleri saglar:

(%) nt(XH),  EMspace-like ise

SH(xXH 57-[ _ , 6.37
( ) (%) nH(XH)7 §H time-like ise ( )
=2n+q\ ,V/ vV v e i
=) gV (XY),  &Vspace-like ise
SV (XV, 6\)) — (_an_q_? i ])) V. ' ) (638)
(f) n (XY), & time-like ise
—2n+q 3 3
—— I n(X), Espace-like ise

( “2ntg-l ) n(X), Etime-like ise.
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Ispat. €M space-like bir vektor olsun. (6.26) ve (6.35) esitliklerinden yararlanarak
SH(xH, M) ZGH (EJE XM)e™, Bl + GH(R(EH, XM, ¢
- —iZG%”(X”)Eﬁ ~ PUEIXM B — LG X - X0
{Zn (XM)GH(BY, EI)) — LI (XX, €) — e (X))

2 — 2
n4 q H(XH) q— 1 n H(X’H)

elde edilir. Eger € time-like vektor ise

-2 1
SHXM,6%) = (F—— ()
olur. Benzer sekilde ¢V space-like ise
q—2n
SV(XV7§V) = (T)UV(XV)

ve &Y time-like ise
—2n—1

SV, €¥) = (" (x")

esitlikleri elde edilir.

Ornek 6.4.9. F3 = (R3,(R3)’, F*) bir Lorentz Finsler manifoldu olsun. Burada
(R?) = R5\ # nin 6-boyutlu bir C* manifold oldugu agiktir. R? deki {z1, 22, 3} koordinat
sistemi sayesinde (R3)" de {x1,z2,73;¥1,¥2,%3} koordinat sistemi elde edilir. (T'(R3)")%
demetinin lokal bazi {5m1’ 522, 6:v3} ve (T(R3)')Y demetinin lokal bazida {8%17 6%2’ 8%3
dir. Her X™ ¢ ( (R3)NM igin X" = Xf{(;g + X3 o —i—XH%S ve her XV € (T(R3))Y
icin XV = XV.2 3y T X%’% + X%’i olsun. Béylece her X € (T(R3)) igin X = XZH&C +
leay ,1 < i < 3, seklindedir. n € (T*(R3)") 1-formu n = nMtdx’ + nYdy;, 1 < i < 3,
olup n* € (T*(R3))" ve 0¥ € (T*(R3)")Y igin n* = nltdx! + nftdx? + nltdx® ve nY

nY Sy1+n3 Sya+n¥ dys dir. Sasaki yari-metrik Finsler tensor alan1 G = G +GY olmak iizere
G = gij dr; @ dxj + gij 0y ® 0yj,1 < i < 3 olup gij , (T(R3)Y ve (T(R3)")Y demetleri

iizerinde Lorentz metrigidir. ((R?)")? manifoldunun her noktasinda lineer bagimsiz olan
T3 é H T3 ) H T3 )

EH_-22 " pH_ "2 ° pH_ "0 7 _¢H
1 25$1’ 2 2(51‘27 3 25(15'3 g
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vektorleri ile ((R?)")? manifoldunun her noktasinda lineer bagimsiz olan

1 — =2 s 3 - -
2 Oy 2 Oyz 2 Oy

vektorlerini alalim. G* ve GY Lorentz metrikleri

o = Aldet +dry —dag) oy A0y + 0y — 0u5)

2 2
T3 Y3

seklinde tammlh olup G (EJ!, ¢M) = GH(E}, ") = GH(EN, E}) = 0, G'(EJ, Eft) =
GHM(EJ, EIY) =1, GH(M,67) = —1 ve GY(EY,€Y) = GY(BY, &) = GY(EY,EY) = 0,
GY(EY,EY) = GY(EY,EY) =1,GY(¢Y,¢Y) = —1 dir. Her ZM € (T(R®)"*, Z" = ZHEN
ve her ZV € (T(R®))Y, Z¥ = ZYEY, 1 < i < 3 i¢in n*(EJt) = —G*(E, ") = 0,
(B3 = ~GH(EH, ") = 0, n (%) = —GH(¢, €)= 1 ve Y (BY) = —GY(EY,&Y) =
0, nY(BY) = ~GY(EY, ) = 0, n¥(¢¥) = —GY(¢¥,€") = 1 oldugundan n*(Z*) = Z ve
n(ZY) = Z¥ olur.

™ ve ¢V (1,1) tipinde yatay ve dikey tensor alanlar agagidaki gibi tamiml olsun.

o"(EY) = —E¥, ¢™(E}) = Ef, o™ (E}) = 0 = ¢™(¢M),
oY (EY) = —Ey,¢¥(EY) = EY,¢¥(EY) = 0= ¢Y(&).

O halde her Z% € (T(R3)")* ve ZV € (T(R?)")Y igin
(6™ (2%) = =27 + (2N, (0V)(2Y) = =2Y + 0¥ (2V)¢Y
dir. Ayrica her Z% WH € (T(R3)")* ve ZV, WY € (T(R3)")Y igin

GM(pZM, oWy = GH(Z", W) + (2w ™),
GV (¢pZY,oWY) = GY(Z2V, W) + V(2 )Y (W)

olur. Boylece (¢, &% n™, G™) ve (¢V,€Y,nY,GY) yapilar, sirasiyla, ((R?))" ve ((R3)")"

manifoldlar1 izerinde birer hemen hemen degme Lorentz metrik Finsler yapilardir. Diger
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taraftan, Kozsul formiilii kullanilarak agagidaki egitlikler elde edilir.

1
Vit El = 55”, VEE!=0,VEEM =0, VEE! =0, VEE =0
1 1 1
VEEY =S¢ VE ! =SB VE T =SB VET =0
1
VY, EY = 55‘/, Vh,EY =0,V{EY =0,VE, EY =0,V{EY =0
1 1 1
Vi By = 567, Vi = 5B, VEE = 5By, Vie" = 0.
Bu esitlikler sayesinde (T'(R%)')* demetinde X™ = XT{Ey " + XJLE,™ + XJHeM ve Y =
YlHElH + YQHEQH + Y})HSH vektorleri icin Y = YQHElH — YlHEQH esitligi kullanilarak
(Vxud™)Y" = Van(6"Y™) = ™ (VYT
1
= S{=GH(" XY )T — (Y )" X
elde edilir. Boylece (((R3)")", ¢, &M, n, GM) bir Kenmotsu Lorentz Finsler manifoldu
olur. Benzer sekilde (T(R3)")Y demetinde XV = XVEY + XY E)Y + XY¢Y ve YV =
YYEY + YV EY + VY€ vektorleri igin ¢YY = Y EY — Y)Y E5Y esitligi kullanilarak
(Vavg )YV = Vi (@¥YY) = 6" (Vo YY)
1
= S{=GV (VXY Y)Y = (YV)o" X7}
elde edilir. Béylece (((R3)")?, ¢¥,£Y,nY, GY) bir Kenmotsu Lorentz Finsler manifoldu olur.
Ayrica asagidaki sonuglar da elde edilebilir:
1
GH(RM(EY™, XYM, ByM) = — (X} — x2v7)
1
GH(RM (B, XYM, EyM) = — (x] — X v
1
G(RM(E3™, XMy B3y = —Z(—Xﬁyﬁ — X3y}
1
GV (R (B, XYY, BY) =~ (xYY — D)
1
GV (R (B2Y, XV)YY, BY) = — (XYY — XYW)

1
GV (R (B, XYY, By) = (- XVYY = X}V



TH = GH(R’H(Elﬂ, EQH)EQH, E1H) + GH(RH(ElH, E3H)E3H, ElH)
+ GMRYEM, BB B

+ G™(R™ (B, Es™Es™, By + GM(RM(Es™, B\ BV, B3
1

2
V= GY(RY(E\Y, B.Y)EyY, E1Y) + GY(RY(E\Y, Es¥)E3Y, ErY)
+GY(RV(E:Y, E\Y)ErY, EyY)
+ GV(RV(EQV, E3V)E3V7 EQV) + GV<RV(E3V, EIV)E1V7 E3V)

87
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7. TARTISMA ve SONUC

Literatiirde yer alan caligmalar incelendiginde Riemann ve yar1 Riemann metrik
kullanilarak (2n+1) boyutlu bir M manifoldu tizerinde degme yapilar kurulmustur. Ancak
bu doktora tez calismasinda diger calismalardan farkli olarak tanjant demetleri {izerinde
yar1 Finsler metrik kullanilarak degme yapilar inga edilmigtir. Tanjant demetleri tizerinde
degme yapilart kurmak istedigimizde ise ¢ift boyutlu bir yapi ile karg1 kargiya kaliriz. Elde
edilen tanjant demeti ¢ift boyutlu oldugundan bu yap1 iizerinde degme yapinin kurulmasi
miimkiin degildir. Ancak, Finsler uzaymda M’ tanjant demetini M’ = (M’)"@(M')? olmak
ilizere yatay ve dikey distriibiisyonlara ayirirsak tanjant demetleri lizerinde degme yapilar
kurulabilir.

Boylece bu tez ¢alismasinda yari Finsler manifoldlar1 tizerinde yar1 Finsler metrik kul-
lanilarak degme yapilara ait sonuglar elde edildi. Hemen hemen degme yapilar ele ali-
narak yapilarin integrallenebilir olmasi i¢in kayda deger sonuclar elde edildi. Yar1 Finsler
manifoldlar1 lizerinde e-Sasakian yapilar tanitildi. Vektér demetleri iizerinde e-Sasakian
yapilarin egrilikleri i¢in sonuglar elde edildi. Ayrica e-Sasakian Finsler yapilar tizerinde
yatay ve dikey Ricci tensorleri hesaplandi. ¢ = 1 indekse sahip degme yapilarin 6zel bir
siifi olan Lorentz manifoldlar: yari Finsler metrik tensor alani ile birlestirilerek degme
Lorentz Finsler yapilar tanitildi. Ayrica bu yapilarin integrallenebilir ya da normal olmasi
igin baz1 6nemli kogullar elde edildi. Yar1 Finsler manifoldlar iizerinde Sasakian Lorentz
yapilar caligilarak bu yapilara ait egrilikler hesaplandi. Yari Finsler manifoldlar: {izerinde
hemen hemen Kenmotsu ve Kenmotsu yapilar kuruldu. Bu yapilarin integrallenebilir ol-
masi i¢in yeni sartlar elde edildi. Yar1 Finsler metrikli Kenmotsu manifoldlarinin egrilikleri
igin 6nemli sonuglar verildi. Tez ¢aligmamizda elde ettigimiz bu sonuglar, yari Riemann
geometri ile kargilagtirilarak agagida ifade edilmigtir:

M manifoldu iizerinde ¢; (1,1) tipinde tensor alani, &; vektor alani, 7; 1-form, g; yar1 Rie-

mann metrik ve (M, b,€,1, g) yapisi yarlt metrik manifold olsun. Boylece (qg, &7, J) yapisi
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i¢in agagidaki ozellikler saglanir:

(g =1
X ==X +7(X)¢
¢E =0
i(¢X) =0
ranké =2n

§(0X,9Y) = §(X,Y) — ef(X)i(Y)

S(X 5) — (¢ —2n)n(X), é space-like ise
| (g —2n —1)n(X), 5 time-like ise ’

) (g —2n), £~ space-like ise
(g—2n—-1), € time-like ise.

F?+l — (M, M’', F) Finsler manifoldu olmak iizere (M’)" ve (M')? iizerinde, sirasiyla,
(@7, M " GMY ve (¢Y,€Y,7Y,GY) metrik Finsler yapilar icin asagidaki o6zellikler

saglanir:

e = 1,07(€) = 1
(672X H = —XH 4 (X)L, (V)2 XY = =XV 4+ Y (XV)¢
() = 0,0V(€¥) =0,
H(EHXH) = 0,7V (6VXY) = 0
GH(GX™, Y ™) = GH(X™,YH) — (X Pt (vH)

GY(¢XV,9YY) = GY(XV, YY) — (XY )n¥ (YY)
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nH(XH) = GH(XH, ), 9V (XY) = GV (XY, ¢Y)

dp(XM Y M) = GH(XH, oY M), dn(XV, YY) = GV(XVY, YY)
(Vxnd™)YH = G{GH(XH, YH)EH — P (YH) XM}

(Vxvo )YV = 3{GV(XY, YV)&¥ — ¥ (YY) XV}

R(XM YyHM)eH = L {n™(YH) X — ' (XH)YH}
R(XY,YV)&¥ = 1{n" (YY) XY =V (XV)YV}
SH(XH, &%) = 5P (X™), S (X", V) = g0V (XY)

SH(EM, €M) = 5,5(¢Y
Vxult = —%quH,vagV = —%quV
K*(XH,YH) - %,K*(XV,YV) —

Vere = 0,Veve = 0.

F?ntl = (M, M',F*) yar1 Finsler manifoldu olmak iizere (M’)" ve (M’)" iizerinde,
sirasiyla, (@7t €% nM GM) ve (¢Y,€Y,nY,GY) yar1 metrik Finsler yapilar icin asagidaki

ozellikler saglanir:

() =1LV (EY) =1
(@72 X7 = — X7 4 (XPER, (V)P XY = XV + 9V (X)€Y
¢M(EM) = 0,0Y(€Y) =0,
™ (PHXM) = 0,7V (¢ XY) =0
GH(pXM, 9V ) = GH (X, YH) — e (X (YH)
GY (XY, ¢YV) = GV(XV, YY) — e’ (XV)nV (YY)

N (XH) = eGH(XM, %), 0V (XY) = GV (XY, €Y)
dn(XH, YH) = GH(XH oY), dn(XV, YY) = GY(XY, ¢YY)
(Vxng™)YH = G{GH(XM YH)EH — e (V) X}
(Vxvd")YY = {GYV(XV, Y)Y — enV (YY) XV}
R(X™, Y = 1 {n" (Y ) XM — " (XH)Y™H}

R(XY,YV)e¥ = 1{n"(YV)XY —n”(XV)Y"}
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R(XH", YH)ZH = {G*(Y™, ZH) X — GH(X™H, ZH)Y ™}
R(XYV,YV)ZV = {GY(YY,ZV)XY - GY(XV,ZV)YV}
VxnéH = —50XH, Vxvg¥ = —56XY
K*(XH,YH) — i,K*(XV,YV) — %

Verg =0,Vevd =0

(2n4_ q) . & space-like ise

SH(EM, ) =
(%) , &M time-like ise
(%) . &Y space-like ise

SV(gY,¢Y) =
( ) { (M» gV time-like ise

4

SH( xH {H) (#) UH(X H), SH space-like ise
| (%) PH(XM), ¢ time-like ise

V(xV. ¢ev (%) Y (XY), €& spacelike ise

e (M) V(XV) €Y time-like ise

4 n ) .

(M"Y ve (M")? {izerinde, sirasiyla, (¢, % 0™ GH) ve (¢Y, €Y, nY, GV) yari metrik Finsler
Lorentz yapilar olmak iizere X, Y* Z" " c (TM')" ve XV, YV, ZV €V € (TM") igin

agsagidaki ozellikler saglanir:

P = LY () =1
(672X7 = =X 4 X, (V)XY = =XV 4+ M (XV)e
S = 0,07(€") = 0,
PHOXH) = 0,07 (¢7X7) = 0
GH(@X™, M) = GH(XHYH) P (X (v H)

GY(¢XV,0YY) = GY(XV, YY) + V(XY )" (YY)
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N (XH) = —GH(XH, ),V (XY) = -GV(XY,€Y)
dn(XH, Yy = GH(XM oY), dn(XV, YY) = GV(XVY, YY)
(Vxng™)YH = G{GH(XH, Y )& + 0 (Y H) X}
(Vxvd )YV = {GV(XV, YV)e¥ + ¥ (YY) XV}
R(X™, YH)eH = 1 {n" (Y ) XH - (XH)Y™H}
R(XV.YV)EY = {{n"(YV) XY — ¥ (XV)YV}
R(XM Y ZH = —L{GH(YH, ZH) XM — GPH(X, ZH) Y}
R(XV,YV)ZV = —H{GV(YV,Z2V)XY - G¥ (XY, ZV)YV}
V€t = 1oX", VyiveY = 1oXV
KX (X" YH) = -1 K*(XV, YY) = -3
Vernd =0,Vevd =0
SH(EM, ™) =3,5(6%,6¥) = 3
SH(XH, &%) = 50" (X7, SV (XY, €Y) = gV (XY).

(M"" ve (M) iizerinde, sirasiyla, (¢, €% n* GM) ve (¢Y,€Y,nY,GY) Kenmotsu yar
metrik Finsler yapilar olmak iizere XM, Y* Z" " c (TM"" ve XV, YV ZV ¢V ¢

(TM'")Y icin asagidaki zellikler saglanir:

e = 1L,nY(€Y) =1
(72X = XM + (X, (V)XY = - XV + Y (XV)gY
¢™(E7) = 0,0Y(¢Y) =0,
N (@HXH) = 0,7V (Y XY) =0
GH (X, oY) = GH(XM YT — en™ (X )™ (YT)
GY(¢XV,¢YY) = GY(XV, YY) —en¥(XV)nV (YY)
(X)) = eGTHXT 7)Y (XY) = eGY(XY, €Y)
(Vxun™) Y7 = 5GH (o X", ¢Y™)

(Vxon)YY = 3GY (XY, ¢YY)



(Vxnd? )V = LG (M XM, v H)eH — pH (v H)gH XMy
(Vivg")YY = J{eGV (67 XV, YV)e¥ —n¥ (YV)eV XV}
R(XH, YH)§H = %{T]H(XH)YH _ UH(YH)XH}
R(XV, YV)&V = i{nV(XV)YV _ UV(YV)XV}

R(XM YH)ZH = —{GH(YH, 2 XM — GH(XH, ZH)Y ™)
R(XV,YV)ZV = —5{G¥(YY, ZV)XY - GV(XV, Z2V)Y"V}
Vxn€ = =3P XM, Vv = —30° X7

K- (XM, Y") = -4 K*(XV,YY) = -5,
(%) nt(XHM), & space-like ise
(%) n*(XM), €M time-like ise

)

SH(XM ey = {

(%) UV(XV)a fv space-like ise

SV(XV@V) - g—2n=1\ V/ vV W . 1 N
(T)n (XY), ¢ time-like ise

), &M space-like ise
1

SH(fﬂ,fH) _ { ((q42n

q_24n_ ) . & time-like ise

V(YY) = {((‘14%2, €V space-like ise

q_?_ ) , €Y time-like ise.
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