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ÖZET

Bu tez çalışması yedi bölümden oluşmaktadır. Tez çalışmasının ilk bölümünde lit-

eratür taramasına yer verildi ve tezin literatürdeki yeri ifade edildi. İkinci bölümde değme

yarı metrik, Lorentz ve Kenmotsu yarı metrik yapıların Riemann manifoldları üzerinde elde

edilen sonuçları incelendi. Üçüncü bölümde yarı Finsler manifoldları tanıtıldı. Dördüncü,

beşinci ve altıncı bölüm ise özgün kısımlardan oluşmaktadır. Dördüncü bölümde yarı

Finsler manifoldları üzerinde yarı metrik ile birlikte (hemen hemen) değme ve ε-Sasakian

yapılar kuruldu. Beşinci bölümde yarı Finsler manifoldları üzerinde Lorentz yapılar kuru-

larak bu yapıların integrallenebilir (normal) olması için bazı önemli koşullar elde edildi.

Ayrıca Sasakian Lorentz yapılar çalışılıp eğrilikler hesaplandı. Altıncı bölümde yarı Finsler

metriği ile birlikte yarı Finsler manifoldları üzerinde (hemen hemen) Kenmotsu yapılar inşa

edildi. Bu yapıların integrallenebilir (normal) olması için bazı önemli şartlar elde edildi.

Ayrıca Kenmotsu Finsler manifoldlarının eğrilikleri hesaplandı. Son bölüm ise tartışma ve

sonuç kısmına ayrıldı.
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manifold, Lorentz manifold, Kenmotsu manifold, Riemann eğrilik tensörü, Ricci tensör.
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SUMMARY

This thesis consists of seven parts. The first chapter is devoted to literature review

and place of the thesis in the literature. In the second chapter, contact pseudo metric,

Lorentzian and Kenmotsu pseudo metric structures on Riemannian manifolds are men-

tioned. In the third chapter, indefinite Finsler manifolds are remarked. Our original results

are contained in the fourth, fifth and sixth chapters. In the fourth chapter, (almost) contact

and ε-Sasakian structures are constructed on indefinite Finsler manifolds with pseudo-

metric. In the fifth chapter, contact Lorentzian structures are established on indefinite

Finsler manifolds and some important integrability(normality) conditions are given. Also,

Sasakian Lorentzian structures are presented and curvatures of these structures are calcu-

lated. In the sixth chapter, (almost) Kenmotsu structures are set up on indefinite Finsler

manifolds with pseudo Finsler metric. Then, significant integrability(normality) conditions

are found for these structures. Moreover, curvatures of Kenmotsu Finsler manifolds are

calculated. The last chapter is dedicated to discussion and conclusion.

Keywords: Indefinite Finsler manifold, Indefinite Finsler metric, Tangent bundle, Contact

manifold, Lorentz manifold, Kenmotsu manifold, Riemann curvature tensor, Ricci tensor.
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1. GİRİŞ

Diferensiyel geometri, eğrilerin ve yüzeylerin matematiksel analizi sonucu ortaya

çıkmıştır. Karmaşık şekiller ve eğriler arasındaki ilişkilerin nedenleri, seri ve analitik

fonksiyonlar gibi analizde ortaya çıkan bazı cevapsız ve cevaplanmamış soruların yanıtlarını

vermek için eğrilerin ve yüzeylerin matematiksel analizi geliştirilmiştir. Başlangıçta sadece

Öklid uzayına uygulanan araştırmalar daha sonra Öklid dışı alana, metrik ve topolojik

uzaylara genişletilmiştir. Manifold kavramı ise lokal olarak Öklid uzayını andıran topolojik

bir uzaydır. Diferensiyel geometride manifold teorisi, manifold teorisinde ise hemen hemen

değme ve değme manifoldları oldukça önemli bir yere sahiptir. C∞ sınıfından (2n + 1)

boyutlu bir manifoldun tanjant demetlerinin grup yapısı U(n)×1 tipine indirgenebiliyorsa

bu durumda manifold hemen hemen değme manifold olarak adlandırılır. 1950 yılında ilk

kez J. Gray tarafından tek boyutlu manifoldlar üzerine yapılan çalışmada U(n) × 1 grup

yapısının bir indirgenmesi ile hemen hemen değme yapılar tanımlanmıştır. Bu tanıma göre

tek boyutlu bir hemen hemen değme yapı

φ2X = −X + η(X)ξ, η(ξ) = 1

denklemini sağlayan φ, (1, 1) tipinde bir tensör alanı, ξ bir vektör alanı ve η 1-form olmak

üzere (φ, ξ, η) üçlüsü ile gösterilir. 1960 yılında ise Sasaki (φ, ξ, η) hemen hemen değme

yapı üzerinde

η(X) = g(X, ξ)

g(φX, φY ) = g(X,Y )− η(X)η(Y )

eşitlikleri ile ifade edilen uygun bir g metriği tanımlamış ve hemen hemen değme metrik

yapıyı tam olarak ifade etmiştir. η, 1-form ve g yarı-Riemann metrik olmak üzere (η, g)

değme yarı-metrik yapı, değme metrik yapıların doğal bir genelleştirmesi olarak kabul edilir.

Yarı-Riemann metrik ile birleştirilen değme yapılar ilk olarak 1969 yılında Takashi tarafın-

dan ortaya atılmıştır. Takashi daha çok Sasaki yapı üzerine odaklanmıştır. Böylece bu konu

ile ilgili bir çok çalışma Sasaki yarı-metrikler ile bağlantılı hale gelmiştir. Kumar, Rani ve

Nagaich, ε-Sasakian manifoldların eğrilik tensörü için bazı temel sonuçlar elde etmişlerdir.

Ayrıca ε-Sasakian manifoldlar için φ kesitsel eğrilik, total reel kesitsel eğrilik arasındaki
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denklik bağıntısını ispat etmişlerdir. q-indeksine sahip ε-hemen hemen değme metrik M

manifoldu için aşağıda verilen manifold sınıfları mevcuttur.

(1) ε = 1 ve q = 2r ise M space-like hemen hemen değme metrik manifolddur.

(2) ε = −1 ve q = 2r+1 iseM time-like hemen hemen değme metrik manifolddur (Bejancu

ve Deshmukh, 1997).

2010 yılında Calvaruso ve Perrone, hemen hemen değme ve değme manifoldlarını yarı-

Riemann metrik yardımıyla ele almış bu yapılara ait integrallenebilme koşullarını vermişler

ve eğrilikleri çalışmışlardır. ε = −1 ve q = 1 özel durumu ise son zamanlarda, Duggal

tarafından çalışılan Lorentz hemen hemen değme manifold sınıfını içerir. 2011 yılında ise

Calvaruso tarafından Lorentz metrik kullanılarak Lorentz değme yapılar ile ilgili geniş çaplı

bir çalışma yapılmıştır.

Kenmotsu ise 1972 yılında değme manifoldlarının bir diğer önemli alt sınıfı olarak nite-

lendirilen Kenmotsu manifoldlarını tanımlamıştır. M , (2n + 1) boyutlu bir hemen hemen

değme metrik yapıya sahip bir manifold olmak üzere

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX

eşitliği sağlanırsa, bu durumdaM manifoldu Kenmotsu manifoldu olarak adlandırılır. Yarı

metrik ile birlikte ele alınan Kenmotsu manifoldları üzerinde light-like geometri Massamba

2009, 2011 ve Aktan 2008 tarafından çalışılmıştır. Prasad ise quarter simetrik metrik konek-

siyonu ile birlikte Kenmotsu manifoldlar üzerine çalışmıştır (Prasad, 2017). 2004 yılında

hemen hemen Kenmotsu yarı-metrik manifoldlar Wang Y. ve Liu X. tarafından çalışılmış

ve önemli sonuçlar elde edilmiştir (Wang Y. ve Liu X., 2004).

Diğer taraftan 1918 yılında Paul Finsler tarafından yapılan tez çalışması sonucu Finsler

Geometri ortaya çıkmıştır. Paul Finsler’in tezinin yayınlanmasının ardından konu ile ilgili

çalışmalar yapan bilim insanları bu uzayı Finsler uzayı olarak adlandırmışlardır. Böylece

zaman içerisinde Finsler geometrisi diferensiyel geometri alanında ayrı bir çalışma dalı ol-

muştur. Finsler uzayında yapılan çalışmalar yalnızca geometri alanında değil, mühendislik,

istatistik, fizik, dinamik, biyoloji, yer çekim ve uzay zaman teorisi gibi birçok uygulamalı

bilim dalı için de oldukça büyük bir önem arz etmektedir.

Finsler ele aldığı çalışmada geometrisini tanımlarken iç çarpım yerine Minkowski normu

kullanmıştır ve bu normdan elde edilen metrik zamanla Finsler metriği olarak isimlendiril-

imiştir. Finsler geometrisi, Riemann geometrisinin analog bir benzeri olarak düşünülebilir.
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Yani, Riemann uzayda ele alınan ifadeler M manifoldu üzerinde iken Finsler uzayda bu

ifadeler TM tanjant demeti üzerindedir. Örneğin, eğrilik tensörü Riemann geometride

M üzerinde olmasına karşın Finsler geometride TM − {0} üzerindedir. Böylece Finsler

metriğinin Riemann metriğine göre daha genel kapsamlı bir metrik olmasının anlaşılması

ile birlikte bu uzayda yapılan çalışmalarda bir artış söz konusu olmuştur. Ayrıca Finsler’in

tez çalışmasından itibaren Finsler manifoldları üzerinde eğriler ve yüzeyler ile ilgili birçok

çalışma mevcuttur (Antonelli 2003, Miron 1982, Matsumoto 1986, Sinha and Yadav 1988,

Szilazi and Vincze 2000, Asanov 1985). Ancak yarı Finsler manifoldları üzerine yapılan

çok az sayıda çalışma vardır (Bejancu and Farran 2013, Beem 1970, Beem and Chern

1971, Bejancu and Farran 1999 ). Özellikle diferensiyel geometrinin önemli alt sınıflarını

oluşturan hemen hemen değme, değme, Lorentz ve Kenmotsu yapıların yarı Finsler man-

ifoldları üzerindeki özellikleri ile ilgili bir çalışma literatürde mevcut değildir. Bu nedenle

bu tez çalışmasında yarı Finsler metrik tensör alanı kullanılarak bu yapılara ait kapsamlı

bir çalışma yapıldı ve bu yapılara ait önemli sonuçlar elde edildi.

(2n+1) boyutlu düzgün birM manifoldunun tanjant demeti TM olmak üzereM ′ = TM \

θ(M) tanjant demeti üzerinde F 2n+1 = (M,M ′, F ∗) yarı Finsler manifoldu tanımlanır ise

F ∗, Finsler temel fonksiyonu gij = 1
2
∂2F ∗

∂yi∂yj
eşitliği ile ifade edilir. TM ′ = (TM ′)H⊕(TM ′)V

olmak üzere yarı Finsler manifoldunun (TM ′)H yatay vektör demeti ve (TM ′)V dikey

vektör demeti tanımlanır. Böylece, Finsler koneksiyonlarını, Finsler tensör alanlarını, h-

kovaryant ve v-kovaryant türev operatörlerini, diferensiyel formu ve Finsler koneksiyon

eğrilikleri elde edilir. M ′ = (M ′)h ⊕ (M ′)v olmak üzere sırasıyla, (M ′)h ve (M ′)v üzerinde

(φH, ξH, ηH) ve (φV , ξV , ηV) yapıları hemen hemen değme yapıları göstersin. Böylece M ′

üzerinde

G = gF
∗

ij dx
i ⊗ dxj + gF

∗
ij δy

i ⊗ δyj = GH +GV

2q indeksli yarı-Riemann metrik tanımlanabilir. Bu metrik Sasaki Finsler metriği olarak

adlandırılır. Burada gF ∗ , (M ′)h ve (M ′)v üzerindeki metrik olup q indekslidir. Özel olarak,

q = 1 seçilirse Lorentz Finsler metrik olarak adlandırılır.

Tez çalışmasının ikinci bölümünde değme yarı-metrik yapılar, Lorentz ve Kenmotsu yarı-

metrik yapıların Riemann geometride sahip olduğu tanım ve özelliklere yer verildi.

Üçüncü bölümde ise çalışmamızın temeli niteliğinde olan yarı Finsler manifoldları tanıtıldı.

Dördüncü bölümde, yarı Finsler manifoldları üzerinde yarı metrik yapı ile birlikte hemen

hemen değme ve değme yapılar kuruldu. Bu yapıların integrallenebilir ya da normal olması
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için bazı şartlar elde edildi. Yarı Finsler manifoldları üzerinde ε-Sasakian yapılar tanıtılarak

vektör demetleri üzerinde ε-Sasakian yapıların eğrilikleri için sonuçlar elde edildi. Ayrıca

ε-Sasakian Finsler yapılar üzerinde yatay ve dikey Ricci tensörleri hesaplandı.

Tez çalışmasının beşinci bölümünde ise yarı Finsler manifoldları üzerinde değme Lorentz

yapılar tanıtılarak yapıların integrallenebilir olması için yeni şartlar elde edildi. Ayrıca

yarı Finsler manifoldları üzerinde Sasakian Lorentz yapılar tanımlandı ve bu yapılara ait

eğrilikler hesaplandı.

Altıncı bölümde, yarı Finsler manifoldları üzerinde hemen hemen Kenmotsu ve Kenmotsu

yapılar çalışıldı. Bu yapıların integrallenebilir olması için yeni şartlar elde edildi. Ayrıca

yarı metrik yapıya sahip Kenmotsu Finsler manifoldlarının eğrilikleri için önemli sonuçlar

elde edildi.

Tez çalışmasının son bölümünde ise tartışma ve sonuç kısmına yer verildi.
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2. DEĞME YARI-METRİK YAPILAR

Bu bölümde değme yarı-metrik manifoldları, değme Lorentz manifoldları, Sasakian

ve Kenmotsu yarı-metrik manifoldları ile ilgili literatürde yer alan tanım ve sonuçlar verildi.

2.1. Değme Yarı-Metrik Manifoldları

Tanım 2.1.1. (2n+1) boyutlu birM manifoldu üzerinde, φ (1, 1)-tipinde bir tensör alanı,

ξ vektör alanı ve η 1-form olmak üzere, M manifoldu üzerinde herhangi bir X vektör alanı

için

η(ξ) = 1

φ2X = −X + η(X)ξ

φ(ξ) = 0 (2.1)

η ◦ φ = 0

rankφ = 2n

eşitlikleri sağlanıyor ise M üzerinde (φ, ξ, η) yapısı bir hemen hemen değme yapı olarak

adlandırılır. M üzerinde bir g yarı-Riemann metriği için ε = ∓1 olmak üzere,

g(φX, φY ) = g(X,Y )− εη(X)η(Y ) (2.2)

olarak tanımlansın. Böylece g yarı-Riemann metriğine (φ, ξ, η) hemen hemen değme yapısı

ile birleştirilmiş metriktir denir.

(φ, ξ, η) hemen hemen değme yapı ile birleştirilmiş g yarı-Riemann metriği ile birlikte

düzgünM manifoldu, hemen hemen değme yarı-metrik manifold olarak adlandırılır. Ayrıca

(2.1) ve (2.2) eşitliklerinden g(ξ, ξ) = ε olmak üzere η(X) = εg(ξ,X) olur. Diğer taraftan

(2.2) eşitliğinden g(φX, Y ) = −g(X,φY ) elde edilir. Böylece g skew simetrik olur.

(φ, ξ, η, g) hemen hemen değme yarı-metrik yapısının kompleks yapısı

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
)

olsun. (φ, ξ, η) hemen hemen değme yapının normal olması için gerek ve yeter şart J hemen

hemen kompleks yapısının integrallenebilir olmasıdır. J nin integrallenebilir olması için
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gerek ve yeter şart ise J nin Nijenhius tensörünün sıfıra eşit olmasıdır.

[J, J ]((X, 0), (Y, 0)) = (N (1)(X,Y ), N (2)(X,Y )),

[J, J ]((X, 0), (0,
d

dt
) = (N (3)(X), N (4)(X))

olup, buradan

Nφ(X,Y ) = φ2[X,Y ]− φ[φX, Y ]− φ[X,φY ] + [φX, φY ]

olmak üzere dört tensör alanı N (1), N (2), N (3) ve N (4) sırasıyla

N (1)(X,Y ) = Nφ(X,Y ) + 2dη(X,Y )⊗ ξ,

N (2)(X,Y ) = (LφXη)Y − (LφY η)X,

N (3)(X,Y ) = (Lξφ)X,

N (4)(X,Y ) = (Lξη)X

şeklinde tanımlıdır. Ayrıca N (1) = 0 olması N (2) = N (3) = N (4) = 0 olduğunu gösterir.

Böylece J nin integrallenebilmesi için gerek ve yeter şart N (1) = 0 olmasıdır (Calvaruso ve

Perrone, 2010).

Yardımcı Teorem 2.1.2. M nin bir (φ, ξ, η, g) hemen hemen değme yarı-metrik yapısı

için Φ(X,Y ) = g(X,φY ) olmak üzere

2g((∇Xφ)Y,Z) = g(N (1)(Y,Z), φX) + 2εdη(φY,X)η(Z)− 2εdη(φZ,X)η(Y )

+ εN (2)(Y,Z)η(X) + 3dΦ(X,φY, φZ)− 3dΦ(X,Y, Z)

eşitliği vardır (Calvaruso ve Perrone, 2010).

(φ, ξ, η) hemen hemen değme yapısı ile birleştirilmiş g yarı-Rieamann metriği

g(X,φY ) = dη(X,Y ) (2.3)

eşitliğini sağlıyorsa (φ, ξ, η, g) yapısı değme yarı-metrik yapı olarak adlandırılır. Böylece

(M,φ, ξ, η, g) manifolduna da değme yarı-metrik manifoldu denir.
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M nin Levi-Civita koneksiyonu ∇ olmak üzere, (2.1) ve (2.3) ifadelerinden

dη(ξ,X) = −g(X,φξ)

olur (Calvaruso ve Perrone, 2010).

Sonuc. 2.1.3. (M,φ, ξ, η, g) değme yarı-metrik manifold üzerinde

2g((∇Xφ)Y,Z) = g(N (1)(Y,Z), φX) + 2εdη(φY,X)η(Z)− 2εdη(φZ,X)η(Y ) (2.4)

olur (Calvaruso ve Perrone, 2010).

Değme yarı-metrik manifoldu üzerinde ξ nin Killing vektör alanı olması için gerek ve yeter

koşul N (3) = 0 olmasıdır. (2.3) eşitliğini dikkate alırsak Lξη = 0 olmasından

0 = (Lξdη)(X,Y ) = ξ(dη(X,Y ))− dη([ξ,X], Y )− dη(X, [ξ, Y ])

= (Lξg)(X,φY ) + g(X, (Lξφ)Y )

elde ederiz. Yani Lξg = 0 sağlanması için gerek ve yeter şart Lξφ = 0 olmasıdır. Buradan

h =
1

2
Lξφ =

1

2
N (3) (2.5)

tensörü tanımlanabilir. Diğer taraftan (2.4) ifadesi kullanılarak kovaryant türeve ait aşağı-

daki özellikler verilebilir.

∇ξφ = 0, (2.6)

∇Xξ = −εφX − φhX. (2.7)

Ayrıca Riemann olma durumunda, (2.6) ve (2.7) ifadelerinden h nin self-adjoint olduğu,

hφ = −φh ve hξ = trh olduğu gösterilebilir. Diğer taraftan τ = Lξg alınırsa,

τ(X,Y ) = 2g(X,hφY )

olur.

Standart ortonormalleştirme işlemi (M,φ, ξ, η, g) (hemen hemen) değme yarı-metrik man-
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ifoldunun, özel lokal yarı-ortonormal bir bazı olduğunu gösterir. Bu baz φ-baz olarak ad-

landırılır ve {ξ, e1, ..., en, φe1, ..., φen} şeklinde gösterilir. Burada ei space-like (time-like)

ise φei space-like (time-like) olur (Calvaruso ve Perrone, 2010).

Yardımcı Teorem 2.1.4. (M,φ, ξ, η, g) değme yarı-metrik manifoldunda

divξ = 0, divη = 0

olur (Calvaruso ve Perrone, 2010).

Tanım 2.1.5. (M,φ, ξ, η, g) değme yarı-metrik manifoldu

(i) Normal yani, [φ, φ] + 2dη ⊗ ξ = 0 ise Sasakian,

(ii) h = 0 yani ξ Killing vektör alanı ise K-değme olarak adlandırılır (Calvaruso ve Perrone,

2010).

Teorem 2.1.6. (M,φ, ξ, η, g) hemen hemen değme yarı-metrik manifoldunun Sasakian

olması için gerek ve yeter şart

(∇Xφ)Y = g(X,Y )ξ − εη(Y )X (2.8)

eşitliğinin sağlanmasıdır (Calvaruso ve Perrone, 2010).

(2.8) eşitliğinde Y = ξ alınırsa, aşağıdaki sonuç elde edilir.

Sonuc. 2.1.7. Sasakian yarı-metrik manifoldu K-değmedir (Calvaruso ve Perrone, 2010).

2.2. Değme Lorentz Manifoldları

Tanım 2.2.1. (2n+1) boyutlu birM manifoldu üzerinde, φ (1, 1)-tipinde bir tensör alanı,

ξ vektör alanı ve η 1-form olmak üzere, M manifoldu üzerinde herhangi bir X vektör alanı

için

η(ξ) = 1

φ2X = −X + η(X)ξ

φ(ξ) = 0 (2.9)

η ◦ φ = 0

rankφ = 2n
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eşitlikleri gerçekleniyor ve g, M üzerinde Lorentz metriği olmak üzere

g(φX, φY ) = g(X,Y ) + η(X)η(Y ) (2.10)

özellikleri sağlanıyorsa (φ, ξ, η, g) yapısına, M üzerinde bir hemen hemen değme Lorentz

metrik yapıdır denir (Calvaruso, 2011).

(2.9) ve (2.10) ifadelerinden η(X) = −g(ξ,X) olur. Ayrıca g(ξ, ξ) = −1 olduğundan ξ

karakteristik vektör alanı time-like dır. Diğer taraftan g(φX, Y ) = −g(X,φY ) dir. Böylece

g nin skew-simetrik olduğu görülür.

(φ, ξ, η) hemen hemen değme yapısı ve g Lorentz metriği ile birlikteM manifolduna hemen

hemen değme Lorentz manifoldu denir ve (M,φ, ξ, η, g) ile gösterilir.

(φ, ξ, η) hemen hemen değme yapısının normal olması için gerek ve yeter koşul J hemen

hemen kompleks yapısının integrallenebilir olmasıdır. J nin integrallenebilir olması için

gerek ve yeter şart ise J nin Nijenhuis tensörünün integrallenebilir olmasıdır (Calvaruso,

2011).

Yardımcı Teorem 2.2.2. M nin bir (φ, ξ, η, g) hemen hemen değme Lorentz metrik

yapısı için Φ(X,Y ) = g(X,φY ) olmak üzere

2g((∇Xφ)Y,Z) = g(N (1)(Y,Z), φX)− 2dη(φY,X)η(Z) + 2dη(φZ,X)η(Y )

−N (2)(Y,Z)η(X) + 3dΦ(X,φY, φZ)− 3dΦ(X,Y, Z)

eşitliği vardır (Calvaruso, 2011).

Eğer g Lorentz metriği

dη(X,Y ) = g(X,φY ) (2.11)

eşitliğini sağlıyor ise o zaman η, M üzerinde bir değme form olur ve (M,φ, ξ, η, g) yapısı

değme Lorentz manifold olarak adlandırılır (Calvaruso, 2011).

Sonuc. 2.2.3. (M,φ, ξ, η, g) değme Lorentz manifoldu için

2g((∇Xφ)Y,Z) = 2dη(φZ,X)η(Y )− 2dη(φY,X)η(Z) + g(N (1)(Y,Z), φX) (2.12)

olur (Calvaruso, 2011).
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Ayrıca değme Lorentz manifoldu üzerinde ξ nin Killing vektör alanı olması için gerek ve

yeter şart N (3) = 0 olmasıdır.

Standart ortonormalleştirme işlemi ile birlikte (hemen hemen) değme Lorentz mani-

foldunun yarı-ortonormal bir baza sahip olduğu görülür ve bu baz φ-baz olarak adlandırılır.

Böyle bir baz {ξ, e1, ..., en, φe1, ..., φen} formundadır (Calvaruso, 2011).

Yardımcı Teorem 2.2.4. (M,φ, ξ, η, g) değme Lorentz manifoldunda

divξ = 0, divη = 0

olur (Calvaruso, 2011).

Tanım 2.2.5. (M,φ, ξ, η, g) değme Lorentz manifoldu

(i) Normal yani, [φ, φ] + 2dη ⊗ ξ = 0 ise Sasakian,

(ii) h = 0 yani ξ Killing vektör alanı ise K-değme olarak adlandırılır (Calvaruso, 2011).

Teorem 2.2.6. (M,φ, ξ, η, g) hemen hemen değme Lorentz manifoldunun Sasakian olması

için gerek ve yeter şart

(∇Xφ)Y = η(Y )X + g(X,Y )ξ (2.13)

olmasıdır (Calvaruso, 2011).

(2.13) eşitliğinde Y = ξ alınırsa aşağıdaki sonuç elde edilir.

Sonuc. 2.2.7. Sasakian yarı-metrik manifoldu K-değmedir (Calvaruso, 2011).

2.3. Kenmotsu Yarı Metrik Manifoldları

(2n + 1) boyutlu bir M manifoldu üzerinde (φ, ξ, η, g) hemen hemen değme yarı-

metrik yapısı Tanım 2.1.1 deki gibi tanımlanmış olsun. Φ ikinci temel form olmak üzere

her X,Y ∈ Γ(TM) için

g(X,φY ) = Φ(X,Y )

dir. Böylece dη = 0 ve dΦ = 2η ∧Φ ile birlikte hemen hemen değme yarı metrik manifold,

hemen hemen Kenmotsu yarı- metrik manifold olarak adlandırılır.
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Hemen hemen değme yapıların normallik şartının

Nφ = [φ, φ] + 2dη ⊗ ξ

Nijenhius tensör alanının sıfıra eşit olması olduğunu biliyoruz. M hemen hemen Kenmotsu

yarı metrik manifoldu normal hemen hemen değme yapıya sahip olduğunda, Kenmotsu

yarı metrik manifold olarak adlandırılır (Wang ve Liu, 2014).

Yardımcı Teorem 2.3.1. (M,φ, ξ, η, g) hemen hemen değme yarı metrik manifold, LX ,

X yönündeki Lie türev ve ∀X,Y, Z ∈ Γ(TM) olmak üzere N(X,Y ) = (LφXη)Y −(LφY η)X

ifadesi ile birlikte

2g((∇Xφ)Y,Z) = 3dΦ(X,φY, φZ)− 3dΦ(X,Y, Z) + g(Nφ(Y,Z), φX)

+ εN(Y,Z)η(X) + 2εdη(φY,X)η(Z)− 2εdη(φZ,X)η(Y )

eşitliği vardır (Wang ve Liu, 2014).

Önerme 2.3.2. (M,φ, ξ, η, g) hemen hemen Kenmotsu yarı metrik manifold ve X,Y, Z ∈
Γ(TM) için

2g((∇Xφ)Y,Z) = g(Nφ(Y,Z), φX) + 2g(εg(φX, Y )ξ − η(Y )φX,Z)

eşitliği vardır (Wang ve Liu, 2014).

Önerme 2.3.3. (M,φ, ξ, η, g) hemen hemen Kenmotsu yarı metrik manifold olsun.

Böylece

Ric(ξ, ξ) = −2n− trh2

divξ = 2n, divη = −2nε

olur (Wang ve Liu, 2014).

Teorem 2.3.4. (M,φ, ξ, η, g) hemen hemen Kenmotsu yarı metrik manifoldun Kenmotsu

yarı metrik manifold olması için gerek ve yeter şart ∀X,Y ∈ Γ(TM) için

(∇Xφ)Y = εg(φX, Y )ξ − η(Y )φX

eşitliğinin sağlanmasıdır (Wang ve Liu, 2014).
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3. YARI FINSLER MANİFOLDLARI

Bu bölümde tez çalışmamızın temelini oluşturan yarı Finsler manifoldları tanıtıldı,

vektörel Finsler koneksiyonları ve Finsler koneksiyon eğrilikleri verildi.

3.1. Yarı Finsler Manifoldları

M , (2n+ 1) boyutlu düzgün bir reel manifold ve TM ise bu manifolda ait tanjant

demeti olsun. U , M manifoldunun açık alt kümesi olmak üzere M üzerinde bir koordinat

sistemi {(U,ϕ) : x1, ..., x2n+1} ya da kısaca {(U,ϕ) : xi} ile gösterilir. π : TM →M kanonik

projeksiyonu ile x ∈ M noktasında TxM fibresi bulunur, yani TxM = π−1(x) olur ve M

deki koordinat sistemi sayesinde TM de {(U∗,Φ) : x1, ..., x2n+1, y1, ..., y2n+1} = {(U∗,Φ) :

xi, yi} şeklinde yeni bir koordinat sistemi tanımlanabilir, burada U∗ = π−1(U) olur ve

Φ : U∗ → R4n+2 diffeomorfizmi her x ∈ U ve yx ∈ TxM için (x1, ..., x2n+1, y1, ..., y2n+1) =

Φ(yx) şeklinde tanımlıdır. yx nin koordinatları kısaca (x, y) ile gösterilir. Şimdi M de

U∩Ũ 6= ∅ olacak şekilde bir diğer koordinat sistemi olan {(Ũ , ϕ̃) : x̃i} yi ele alalım. Böylece

TM üzerinde (x, y) ve (x̃, ỹ) lokal koordinatlar arasındaki bağıntı aşağıdaki gibidir:

x̃i = x̃i(x1, ..., x2n+1),

ỹi = Bi
j(x)yj . (3.1)

Burada Bi
j(x) = ∂x̃i

∂xj
şeklindedir. Ayrıca (3.1) ifadesinden { ∂

∂xi
, ∂
∂yi
} ve { ∂

∂x̃i
, ∂
∂ỹi
} lokal

çatıları aşağıdaki eşitlikleri sağlar:

Bj
ik(x) =

∂2x̃j

∂xi∂xk
, (3.2)

∂

∂xi
= Bj

i (x)
∂

∂x̃j
+Bj

ik(x)yk
∂

∂ỹj
,

ve

∂

∂yi
= Bj

i (x)
∂

∂ỹj
. (3.3)
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Diğer taraftan M nin T ∗M kotanjant demeti üzerindeki {dxi, dyi} ve {dx̃i, dỹi} lokal dual

çatıları arasındaki bağıntılar ise aşağıdaki gibidir:

dx̃i = Bi
j(x)dxj , (3.4)

dỹi = Bi
jk(x)yjdxk +Bi

j(x)dyj . (3.5)

TM nin sıfır kesiti θ olmak üzere θ(M)∩M ′ = ∅ ve π(M ′) = M için TM nin boştan farklı

bir açık alt manifoldu M ′ ile gösterilsin. M ′x = TxM ∩M ′ pozitif konik set yani her k > 0

ve y ∈ M ′x için ky ∈ M ′x olur. Açıkçası M ′, bir Finsler manifoldu tanımı için gerekli olan

TM0 = TM \ θ(M) eşitliğini sağlar.

F : M ′ → (0,∞) düzgün fonksiyon ve F ∗ = F 2 olsun. M ′ deki her {(U ′,Φ′) : xi, yi}

koordinat sistemi için aşağıdaki koşullar sağlanır.

(F1) F in (y1, ..., y2n+1) e göre pozitif olarak homojenlik derecesi 1 dir. Yani her (x, y) ∈

Φ′(U ′) ve k > 0 için

F (x1, ..., x2n+1, ky1, ..., ky2n+1) = kF (x1, ..., x2n+1, y1, ..., y2n+1) (3.6)

eşitliği sağlanır.

(F2) Her (x, y) ∈ Φ′(U ′) noktasında

gij =
1

2

∂2F 2

∂yi∂yj
, i, j ∈ {1, 2, ..., 2n+ 1}, (3.7)

ifadeleri R2n+1 de pozitif tanımlı kuadratik formun bileşenleridir. (F1) ve (F2) koşullarını

gerçekleyen F temel fonksiyonu ile birlikte F 2n+1 = (M,M ′, F ) bir Finsler manifoldu

olur. Ancak (F2) koşulu Finsler geometrisinin bazı uygulamaları için uygun değildir. Bu

sorunu ortadan kaldırmak için q < 2n+ 1 olmak üzere F ∗ : M ′ → R düzgün bir fonksiyon

tanımlansın. AyrıcaM ′ de ki her {(U ′,Φ′) : xi, yi} koordinat sistemi için aşağıdaki şartların

sağlandığını kabul edelim.

(F1∗) F ∗ ın (y1, ..., y2n+1) e göre pozitif olarak homojenlik derecesi 2 dir. Yani her (x, y) ∈

Φ′(U ′) ve k > 0 için

F ∗(x1, ..., x2n+1, ky1, ..., ky2n+1) = k2F ∗(x1, ..., x2n+1, y1, ..., y2n+1) (3.8)
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eşitliği sağlanır.

(F2∗) Her (x, y) ∈ Φ′(U ′) noktasında gij(x, y) (3.7) deki gibi tanımlı olup R2n+1 de q

negatif eigen değerli ve (2n + 1) − q pozitif eigen değerli, 0 < q < 2n + 1, bir kuadratik

formun bileşenleridir. Böylece F 2n+1 = (M,M ′, F ∗) q indeksli bir yarı Finsler manifoldu

olur (Bejancu ve Farran, 2000).

Özel olarak q = 1 ise F 2n+1 Lorentz Finsler manifoldu ve q = 0 ise Finsler manifoldu olur.

Finsler fonksiyonu ile yarı Finsler fonksiyonu arasındaki bağıntı ise

F (x, y) = |F ∗(x, y)|
1
2 (3.9)

eşitliği ile verilir. (3.8) ve (3.9) kullanılarak

F (x1, ..., x2n+1, ky1, ..., ky2n+1) = |F ∗(x1, ..., x2n+1, ky1, ..., ky2n+1)|
1
2

= |k2F ∗(x1, ..., x2n+1, y1, ..., y2n+1)|
1
2

= k|F ∗(x1, ..., x2n+1, y1, ..., y2n+1)|
1
2

= kF (x1, ..., x2n+1, y1, ..., y2n+1)

bulunur. Yani F 2n+1 yarı-Finsler manifoldunun temel fonksiyonu olan F , (3.6) yı sağlar.

Şimdi (3.6) ifadesinin k ya göre diferensiyelini alalım.

yi
∂F

∂yi
= F, (3.10)

buradan

yi
∂2F

∂yi∂yj
= 0 (3.11)

olur. (3.7) ifadesinde F ∗ yerine F 2 alınırsa,

gij = F
∂2F

∂yi∂yj
+
∂F

∂yi
∂F

∂yj
(3.12)

bulunur. Ayrıca (3.10) ve (3.12) ifadelerinden

gijy
j = F

∂F

∂yi
(3.13)

ve

gijy
iyj = F ∗ (3.14)
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bulunur. (3.14) eşitliği yarı Finsler manifoldu için geçerlidir. (3.8) ifadesinde k ya göre

türev alınıp, k = 1 yazılırsa

yi
∂F ∗

∂yi
= 2F ∗ (3.15)

olur. Elde edilen son ifadenin yj ye göre türevi alınırsa

2yigij = yi
∂2F ∗

∂yi∂yj
=
∂F ∗

∂yj
(3.16)

elde edilir. Son olarak (3.16) ifadesinin yk ya göre türevi alınırsa

yi
∂3F ∗

∂yi∂yj∂yk
= 0

bulunur. Buradan her F 2n+1 yarı Finsler manifoldu için aşağıdaki ifadeler geçerlidir.

∂gij
∂yk

(x, y)yi = 0,
∂gij
∂yk

(x, y)yj = 0,
∂gij
∂yk

(x, y)yk = 0. (3.17)

(F2) ve (F2∗) ifadelerinden ∀(x, y) ∈ Φ′(U ′) için

det[gij(x, y)] 6= 0 (3.18)

olduğunu yani, [gij(x, y)] nin m × m tipinde terslenebilir bir matris olduğu söylenebilir.

Karşıt olarak, (3.11) den

det[
∂2F

∂yi∂yj
] = 0,

olup (3.12) ile birlikte

det[gij −
∂F

∂yi
∂F

∂yj
] = 0 (3.19)

olur.

R2n+1 in bir açık pozitif konik alt cümlesi D ve D üzerinde bir düzgün reel fonksiyon olan

f fonksiyonunu ele alalım. Tensör alanlarının lokal bileşenlerinin çoğu pozitif homojen

fonksiyonlar olduğundan aşağıdaki tanım verilebilir:

f pozitif homojenlik derecesi r olan bir fonksiyon ise ∀k > 0 ve (y1, ..., y2n+1) ∈ D için

f(ky1, ..., ky2n+1) = krf(y1, ..., y2n+1) (3.20)
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olur. Buradan i ∈ {1, ..., 2n+ 1} için ∂f
∂yi

nin pozitif homojenlik derecesinin r− 1 olduğunu

söyleyebiliriz (Bejancu ve Farran, 2000).

Teorem 3.1.1. (Euler Teoremi) D üzerinde düzgün bir f fonksiyonunun pozitif homo-

jenlik derecesinin r olması için gerek ve yeter koşul

yi
∂F

∂yi
= rf (3.21)

olmasıdır.

Önerme 3.1.2. (i) ∂F ∗

∂yi
nin (y1, ..., y2n+1) e göre pozitif homojenlik derecesi 1 dir.

(ii) ∂F
∂yi

ve gij nin (y1, ..., y2n+1) e göre pozitif homojenlik derecesi 0 dır.

(iii) (3.10), (3.11), (3.15) ve (3.17) ifadelerinden (3.21) kullanılarak ∀x ∈ M , M ′x =

TxM ∩ M ′ alıp F 2n+1 = (M,M ′, F ∗) yarı Finsler manifoldunun her tanjant uzayında

üç hiperyüzey tanımlanır. Bu yüzeyler aşağıdaki gibi ifade edilir.

IM+
x = {y ∈M ′x;F ∗(x, y) = 1},

IM−x = {y ∈M ′x;F ∗(x, y) = −1},

ΛMx = {y ∈M ′x;F ∗(x, y) = 0}

(Bejancu ve Farran, 2000).

TxM de alınan IM+
x , IM−x ve ΛMx hiperyüzeyleri, sırasıyla pozitif indikatriks, negatif

indikatriks ve x noktasındaki null(lightlike) Finsler koni olarak adlandırılır. IM−x ve ΛMx

sadece yarı Finsler manifoldlarında tanımlıdır. Özel olarak F 2n+1 bir Riemann manifoldu

ise sadece IM+
x vardır ki o da birim küredir. F 2n+1, 0 < q < 2n+ 1 indeksli yarı Riemann

manifoldu olduğunda IM+
x , IM−x ve ΛMx, sırasıyla, birim yarı-küre, birim yarı-hiperbolik

uzay ve null(lightlike) koni olarak adlandırılır. Ayrıca

IM+ =
⋃
x∈M

IM+
x , IM

− =
⋃
x∈M

IM−x ,ΛM =
⋃
x∈M

ΛMx

yazılabilir.

F 2n+1 bir Riemann manifoldu olduğunda IM+,M üzerinde bir küre demeti olur (Bejancu

ve Farran, 2000).

Örnek 3.1.3. M , indeksi 0 ≤ q < 2n + 1 olan g = (gij) yarı Riemann metriği ile verilmiş

(2n+ 1) boyutlu bir yarı Riemann manifoldu olsun. Böylece F 2n+1 = (M,M ′, F ∗) bir yarı
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Finsler manifoldu olur. Burada M ′ = TM0 ve F ∗(x, y) = gij(x)yiyj şeklindedir.

R2n+1 de öklidyen yapı

F (x, y) =

(
2n+1∑
i=1

(
yi
)2) 1

2

(3.22)

ve R2n+1 de 0 ≤ q < 2n+ 1 indeksli yarı öklidyen yapı

F ∗(x, y) = −
q∑
i=1

(
yi
)2

+
2n+1∑
a=q+1

(ya)2 (3.23)

ile verilir (Bejancu ve Farran, 2000).

3.2. Vektörel Finsler Koneksiyonları

Bu bölümde yarı-Finsler manifoldları için yatay ve dikey distribüsyonlar, Finsler

tensör alanları, Finsler koneksiyonu için yatay ve dikey kovaryant türev operatörleri ve dış

diferensiyel operatörü gibi temel kavramlamlara yer verildi.

0 < q < 2n + 1 indeksli yarı Finsler manifoldu F 2n+1 = (M,M ′, F ∗) olsun. π : M ′ →

M submersiyonunun π∗ : TM ′ → TM tanjant dönüşümünü ele alalım ve (TM ′)V =

kerπ∗ vektör demetini tanımlayalım. U ′ ⊂M ′ koordinat komşuluğunda πi(x, y) = xi lokal

koordinatlar cinsinden πi∗(
∂
∂xj

) = δij ve πi∗(
∂
∂yj

) = 0 bulunur. Yani { ∂
∂yi
}, Γ(TM ′|U ′)V nin

bir bazıdır. Böylece (TM ′)V , F 2n+1 in dikey vektör demeti olarak adlandırılır.

Lokal olarak, U ′ ⊂ M ′ koordinat komşuluğunda Xi ler U ′ üzerinde düzgün fonksiyonlar

olmak üzere

XV = Xi(x, y)
∂

∂yi
(3.24)

olur. Ayrıca (TM ′)V nin dual vektör demeti (T ∗M ′)V ile gösterilir. Böylece Finsler 1-form

(T ∗M ′)V nin düzgün kesitidir. { ∂
∂y1

, ..., ∂
∂y2n+1 } nin dual bazının {δy1, ..., δy2n+1} olduğunu

kabul edelim. Böylece δyi( ∂
∂yj

) = δij olur. Yani w ∈ (T ∗M ′)V için wi(x, y) = w( ∂
∂yi

) olmak

üzere

wV = wi(x, y)δyi (3.25)

yazılır.

TM ′ de (TM ′)V nin tamamlayıcı distribüsyonu (TM ′)H ile gösterilir ve nonlineer konek-
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siyon ya da yatay distribüsyon olarak adlandırılır. Böylece

TM ′ = (TM ′)H ⊕ (TM ′)V (3.26)

eşitliği yazılır.

{ δ
δx1
, ..., δ

δx2n+1 } lokal vektör alanlarının seti Γ(TM ′|U ′)H üzerinde bir bazdır. Yani,

δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
(3.27)

olur.

M ′ üzerinde X vektör alanını düşünelim. X ∈ TM ′ için, lokal olarak

X = Xi(x, y)
δ

δxi
+ X̃i(x, y)

∂

∂yi
(3.28)

yazılır. Açık olarak, X̃i(x, y) = 0 için (M ′)h ⊂ M ′ ve Xi(x, y) = 0 için (M ′)v ⊂ M ′ elde

edilir. { δ
δx1
, ..., δ

δx2n+1 } nın dual bazı {dx1, ..., dx2n+1}, yani, dxi( δ
δxj

) = δij olsun. Böylece

her bir w ∈ Γ(T ∗M ′)H için w̃i(x, y) = w(dxi) ve w̃i = wi −N j
i wj olmak üzere

wH = w̃i(x, y)dxi (3.29)

eşitliği yazılır. Buradan

δyi = dyi +N i
j(x, y)dxj (3.30)

olur (Bejancu ve Farran, 2000).

w 1-form ve w = w̃i(x, y)dxi + wi(x, y)δyi ve w = wH + wV olmak üzere

wH(XV) = 0, wV(XH) = 0 (3.31)

yazılır.M ′ üzerinde

 p r

q s

 tipinde bir Finsler tensör alanı aşağıdaki lokal forma sahip-

tir.

T = T
i1...ip,a1...ar
ji...,jq ,b1...bs

(x, y)
δ

δxi1
⊗ ...⊗ δ

δxip
⊗dxa1⊗ ...⊗dxar⊗ ∂

∂yj1
⊗ ...⊗ ∂

∂yjq
⊗δyb1⊗ ...⊗δybs

(3.32)

(Sinha ve Yadav, 1988).
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Tanım 3.2.1. M ′ üzerinde tanımlanan ∇ Finsler koneksiyonu, yine M ′ üzerinde tanım-

lanan ∇ = FΓ lineer koneksiyonudur ve bu koneksiyon yx ∈ M ′ olmak üzere (TyxM
′)H

yatay lineer uzayı ∇ ya göre paraleldir. Benzer şekilde yx ∈M ′ için (TyxM
′)V dikey lineer

uzayı da ∇ ya göre paraleldir.

M ′ üzerindeki ∇ lineer koneksiyonunun M ′ üzerinde Finsler koneksiyonu olması için gerek

ve yeter şart

(∇XY H)V = 0, (∇XY V)H = 0,∀X,Y ∈ TyxM ′, (3.33)

∇XY = (∇XY H)H + (∇XY V)V , (3.34)

∇Xw = (∇XwH)H + (∇XwV)V , ∀w ∈ T ∗yxM
′ (3.35)

eşitliklerinin sağlanmasıdır (Sinha ve Yadav, 1991).

Uyarı 3.2.2. ∇, M ′ üzerinde bir Finsler koneksiyonu olsun. Böylece aşağıdaki eşitlikler

elde edilir.

Y ∈ (TyxM
′)V ⇒ ∀X ∈ TyxM ′;∇XY ∈ (TyxM

′)V ,

Y ∈ (TyxM
′)H ⇒ ∀X ∈ TyxM ′;∇XY ∈ (TyxM

′)H (3.36)

(Szilasi ve Vincze, 2000).

Tanım 3.2.3. M ′ üzerinde bir ∇ Finsler koneksiyonu için Finsler tensör alanları cebirinde

h ve v kovaryant türev operatörleri mevcuttur. ∀X ∈ TyxM ′ için

∇HXY = ∇XHY,∇HXf = XH(f), ∀Y ∈ TyxM ′,∀f ∈ =(M ′) (3.37)

olsun. Eğer w ∈ T ∗yxM
′ ise ∀Y ∈ TyxM ′ için

(∇HXw)(Y ) = XH(w(Y ))− w(∇HXY ) (3.38)

yazılır ve ∇HX , h kovaryant türev operatörü olarak adlandırılır.

Benzer şekilde ∀X ∈ TyxM ′ için

∇VXY = ∇XVY,∇VXf = XV(f),∀Y ∈ TyxM ′, ∀f ∈ =(M ′) (3.39)

olsun. Eğer w ∈ T ∗yxM
′ ise ∀Y ∈ TyxM ′ için

(∇VXw)(Y ) = XV(w(Y ))− w(∇VXY ) (3.40)
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yazılır ve ∇VX , v kovaryant türev operatörü olarak adlandırılır (Antonelli, 2003).

Tanım 3.2.4. w ∈ T ∗yxM
′, M ′ üzerinde bir diferensiyel q-form, ∇; M ′ üzerinde bir lineer

koneksiyon ve T ; ∇ nın torsiyon tensörü olsun. Bu durumda dw dış diferensiyeli ∀Xi ∈
TyxM

′ için

dw(X1, ..., Xq+1) =

q+1∑
i=1

(−1)i+1 (∇Xiw)(X1, ...X̂i, ...Xq+1)

−
∑

1≤i≤j≤q+1

(−1)i+j w(T (Xi, Xj), X1, ..., X̂i, ..., X̂j , ..., Xq+1) (3.41)

şeklinde tanımlanmıştır (Sinha ve Yadav, 1988).

Önerme 3.2.5. ∇, M ′ üzerinde bir Finsler koneksiyonu ve w ∈ T ∗yxM
′ 1-form olmak

üzere ∀X,Y ∈ TyxM ′ için dw dış diferensiyeli aşağıdaki eşitlikler ile ifade edilir.

dw(XV , Y V) = (∇VXw)(Y V)− (∇VY w)(XV) + w(T (XV , Y V)), (3.42)

dw(XH, Y H) = (∇HXw)(Y H)− (∇HY w)(XH) + w(T (XH, Y H)) (3.43)

(Miron, 1982).

Bir Finsler koneksiyonunun T torsiyon tensör alanı beş Finsler tensör

alanı ile karakterize edilir. Bu tensör alanları aşağıdaki gibi ifade edilir:

[T (XH, Y H)]V , [T (XH, Y V)]V , [T (XH, Y V)]H, [T (XV , Y V)]V , [T (XH, Y H)]H (Miron,

1982).

3.3. Finsler Koneksiyon Eğrilikleri

∀X,Y, Z ∈ TyxM ′ için, ∇ Finsler koneksiyon eğriliği

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (3.44)

eşitliği ile verilir. R(X,Y )Z operatörü yatay vektör alanlarını yatay vektör alanlarına ve

dikey vektör alanlarını dikey vektör alanlarına dönüştürür. Sonuç olarak her X,Y, Z ∈

TyxM
′ için

R(X,Y )Z = RH(X,Y )ZH +RV(X,Y )ZV (3.45)

yazılır. R(X,Y )Z, X ve Y ye göre skew simetriktir. Böylece aşağıdaki teorem verilir:
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Teorem 3.3.1. TyxM ′ tanjant uzayı üzerinde ∇ Finsler koneksiyon eğriliği aşağıda verilen

altı Finsler tensör alanı ile ifade edilir.

R(XH, Y H)ZH = ∇HX∇HY ZH −∇HY ∇HXZH −∇[XH,YH]Z
H, (3.46)

R(XV , Y H)ZH = ∇VX∇HY ZH −∇HY ∇VXZH −∇[XV ,YH]Z
H, (3.47)

R(XH, Y H)ZV = ∇HX∇HY ZV −∇HY ∇HXZV −∇[XH,YH]Z
V , (3.48)

R(XV , Y V)ZH = ∇VX∇VY ZH −∇VY∇VXZH −∇[XV ,Y V ]Z
H, (3.49)

R(XV , Y H)ZV = ∇VX∇HY ZV −∇HY ∇VXZV −∇[XV ,YH]Z
V , (3.50)

R(XV , Y V)ZV = ∇VX∇VY ZV −∇VY∇VXZV −∇[XV ,Y V ]Z
V (3.51)

(Antonelli, 2003).

Böylece ∇ Finsler koneksiyon eğrilik tensörü Berwald bazına göre üç farklı şekilde ifade

edilir.

R(
δ

δxk
,
δ

δxj
)
δ

δxh
= Rihjk

δ

δxi
, (3.52)

R(
∂

∂yk
,
δ

δxj
)
δ

δxh
= P ihjk

δ

δxi
, (3.53)

R(
∂

∂yk
,
∂

∂yj
)
δ

δxh
= Sihjk

δ

δxi
. (3.54)

Bu üç bileşen Teorem 3.3.1 de ifade edilen birinci, üçüncü ve beşinci Finsler tensörlerine

karşılık gelmektedir. Diğer üç Finsler tensörü ise aşağıda verilen eşitliklere karşılık gelmek-

tedir.

R(
δ

δxk
,
δ

δxj
)
∂

∂yh
= Rihjk

∂

∂yi
, (3.55)

R(
∂

∂yk
,
δ

δxj
)
∂

∂yh
= P ihjk

∂

∂yi
, (3.56)

R(
∂

∂yk
,
∂

∂yj
)
∂

∂yh
= Sihjk

∂

∂yi
. (3.57)

Böylece ∇Γ = (N i
j , F

i
jk, C

i
jk) Finsler koneksiyonları R

i
hjk, P

i
hjk ve S

i
hjk olmak üzere üç lokal

bileşene sahiptir (Antonelli, 2003).
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4. YARI FINSLER MANİFOLDLARI ÜZERİNDE DEĞME YAPILAR

Bu bölümde yarı Finsler manifoldları üzerinde yarı Finsler metriği kullanılarak

hemen hemen değme, değme ve ε-Sasakian yapılar kuruldu. İlk olarak hemen hemen değme

Finsler manifoldlarını ele alalım.

4.1. Hemen Hemen Değme Finsler Yapılar

M ′ üzerinde φ tensör alanı, η 1-form ve ξ vektör alanı olmak üzere

φ = φH + φV = φij(x, y)
δ

δxi
⊗ dxj + φ̃ij(x, y)

∂

∂yi
⊗ δyj , (4.1)

η = ηH + ηV = ηi(x, y)dxi + η̃i(x, y)δyi,

ξ = ξH + ξV = ξi(x, y) δ
δxi

+ ξ̃i(x, y) ∂
∂yi

(4.2)

olsun.

Tanım 4.1.1. M ′ üzerinde φ, η ve ξ (4.1) ve (4.2) deki gibi tanımlansın. Böylece

ηH = ηi(x, y)dxi,

ηV = η̃i(x, y)δyi,

ξH = ξi(x, y) δ
δxi
,

ξV = ξ̃i(x, y) ∂
∂yi

olmak üzere

(φH)2 = −IH + ηH ⊗ ξH, (φV)2 = −IV + ηV ⊗ ξV (4.3)

ηH(ξH) = ηV(ξV) = 1 (4.4)

eşitlikleri varsa, bu durumda (φH, ξH, ηH) ve (φV , ξV , ηV) yapıları sırasıyla (M ′)h ve (M ′)v

üzerinde hemen hemen değme Finsler yapılar olarak adlandırılırlar. Burada M ′ = (M ′)h⊕
(M ′)v bir Finsler vektör demetidir.
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Teorem 4.1.2. (M ′)h ve (M ′)v Finsler vektör demetleri üzerindeki hemen hemen değme

Finsler yapılar (φH, ηH, ξH) ve (φV , ηV , ξV) olsunlar. Böylece

φH(ξH) = φV(ξV) = 0, ηH ◦ φH = ηV ◦ φV = 0 (4.5)

eşitlikleri sağlanır.

İspat. (4.3) yardımıyla

(φH)2(ξH) = −ξH + ηH(ξH)(ξH)

yazılır. Ayrıca φH(ξH) = 0 ya da φH(ξH), sıfır eigen değerine karşılık gelen φH ın nontrivial

eigen vektörüdür. (4.3) kullanılarak

0 = (φH)2(φH(ξH)) = −φH(ξH) + ηH(φ(ξH))ξH

veya

φH(ξH) = ηH(φ(ξH))ξH

elde edilir. Eğer φH(ξH) nontrivial eigen vektör ise ηH(φH(ξH)) 6= 0 olur. Böylece

0 = (φH)2(ξH) = ηH(φH(ξH))φH(ξH) = (ηH(φH(ξH)))2ξH 6= 0

elde edilir. Ancak bu bir çelişkidir. Yani φH(ξH) = 0 olur. Benzer şekilde φV(ξV) = 0

ifadesi de elde edilir.

Diğer taraftan φH(ξH) = 0 olduğundan ∀XH ∈ (TM ′)H, XV ∈ (TM ′)V için

ηH(φ(XH))ξH = φ3(XH) + φ(XH) = −φH(XH) + φH(XH) + ηH(φH(XH)ξH) = 0

ve

ηV(φV(XV))ξV = 0

elde edilir. Böylece ηH ◦ φH = 0 ve ηV ◦ φV = 0 olur.

Teorem 4.1.3. (M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH) ve (φV , ξV , ηV) hemen

hemen değme Finsler yapılar ise rankφH = rankφV = 2n dir.
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İspat.

φH : (TyxM
′)H → (TyxM

′)H,∀yx ∈M ′,

rankφH + kerφH = 2n+ 1 = dimM ′x, (∀x ∈M). (4.6)

∀XH ∈ kerφH için φHXH = 0 olduğunu biliyoruz. Böylece 0 = φ2XH = −XH+ηH(XH)ξH

ya da XH = ηH(XH)ξH elde edilir. Yani XH ∈ Sp{ξH} = kerφH olur. Buradan kerφH =

dim(kerφH) = 1 olur ve (4.6) den, rankφH = 2n bulunur.

Benzer şekilde

φV : (TyxM
′)V → (TyxM

′)V , ∀yx ∈M ′,

rankφV + kerφV = 2n+ 1 = dimM ′x, (∀x ∈M) (4.7)

∀XV ∈ kerφV için φVXV = 0 olduğundan 0 = φ2XV = −XV + ηV(XV)ξV ya da

XV = ηV(XV)ξV elde edilir. Böylece XV ∈ Sp{ξV} = kerφV bulunur. Buradan kerφV =

dim(kerφV) = 1 olur ve (4.7) eşitliğinden, rankφV = 2n elde edilir.

Uyarı 4.1.4. (M ′)h ve (M ′)v tek boyutlu olmak üzere (M ′)h ve (M ′)v alt demet-

leri üzerinde (φH, ξH, ηH) ve (φV , ξV , ηV) hemen hemen değme yapıları ile birlikte

((M ′)h, φH, ξH, ηH) ve ((M ′)v, φV , ξV , ηV) hemen hemen değme Finsler manifoldları olarak

adlandırılırlar.

4.2. Yarı Finsler Manifoldları Üzerinde Hemen Hemen Değme Yarı Metrik

Yapılar

F 2n+1 = (M,M ′, F ∗) yarı Finsler manifoldu olsun. (V i) ve (W j) lokal bileşenler

ile birlikte V ve W vektör alanları için gF ∗ij , (3.7) eşitliğindeki gibi tanımlanmak üzere,

gF
∗

: Γ(TM ′)V × Γ(TM ′)V → =(M ′),

gF
∗
(V,W )(x, y) = gF

∗
ij (x, y)V i(x, y)W j(x, y) (4.8)

tanımlayalım. Böylece

gF
∗

ij (x, y) = gF
∗
(
∂

∂yi
,
∂

∂yj
)(x, y) (4.9)

yazılır. Açık olarak gF ∗ simetrik Finsler tensör alanı olur. gF ∗ , yarı-Finsler metrik olarak ad-

landırılır. Ayrıca gF ∗ , (TM ′)V Finsler vektör demeti üzerinde yarı-Riemann metrik olarak

düşünülebilir.
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Benzer şekilde gF ∗ij , (3.7) deki gibi olmak üzere,

gF
∗

: Γ(TM ′)H × Γ(TM ′)H → =(M ′),

gF
∗
(V,W )(x, y) = gF

∗
ij (x, y)V i(x, y)W j(x, y), (4.10)

gF
∗

ij (x, y) = gF
∗
(
δ

δxi
,
δ

δxj
)(x, y) (4.11)

tanımlanabilir. gF ∗ , yarı Finsler metrik olarak adlandırılır. Ayrıca gF ∗ , (TM ′)H Finsler vek-

tör demeti üzerinde yarı Riemann metrik olarak düşünülebilir (Bejancu ve Farran, 2000).

Bir Finsler vektörü X ∈ (TM ′)V(X ∈ (TM ′)H) için gF
∗

yx = gF
∗
(yx), (yx) = (x, y) ∈ M ′

olmak üzere

gF
∗

yx (X,X) > 0 veya X = 0⇒ Space− like,

gF
∗

yx (X,X) < 0⇒ time− like, (4.12)

gF
∗

yx (X,X) = 0, X 6= 0⇒ light− like(null)

şeklinde tanımlanmıştır. Diğer taraftan bir Finsler normu(uzunluk)

‖X‖ = |gF ∗yx (X,X)|
1
2 . (4.13)

eşitliği ile verilir (Bejancu ve Farran, 2000).

gF
∗

yx (X,X) = 1 ise X birim space-like Finsler vektör, gF ∗yx (X,X) = −1 ise X birim time-like

Finsler vektör olarak adlandırılır. X birim Finsler vektör ise ε = gF
∗

yx (X,X) ifadesinde yer

alan ε, X in işareti olarak adlandırılır. ∀X,Y ∈ Γ(TM ′) için

G : Γ(TM ′)× Γ(TM ′)→ =(M ′),

G(X,Y ) = GH(X,Y ) +GV(X,Y ) (4.14)

tanımlayalım. Açık olarak G, M ′ üzerinde (0, 2) tipinde bir simetrik tensör alanı olur.

Ayrıca G, non-dejenere ve sabit indekslidir. q yarı Finsler metriğinin indeksi olmak üzere,

M ′ üzerinde G yarı-Riemann metriğinin indeksi 2q olur.

G = gF
∗

ij dx
i ⊗ dxj + gF

∗
ij δy

i ⊗ δyj = GH +GV (4.15)
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M ′ üzerinde G Sasaki Finsler metriği olarak adlandırılır.

Tanım 4.2.1. (M ′)h yatay vektör demeti ve (M ′)v dikey vektör demeti üzerinde, sırasıyla,

(φH, ξH, ηH) ve (φV , ξV , ηV) hemen hemen değme yapılar olsunlar. GH ve GV metrik

yapıları

GH(φXH, φY H) = GH(XH, Y H)− εηH(XH)ηH(Y H),

GV(φXV , φY V) = GV(XV , Y V)− εηV(XV)ηV(Y V), (4.16)

G(φX, φY ) = GH(φX, φY ) +GV(φX, φY )

eşitliklerini sağlarsa, bu durumda (φH, ξH, ηH, GH) yapısı (M ′)h üzerinde hemen hemen

değme yarı metrik Finsler yapı olarak ve (φV , ξV , ηV , GV) yapısıda (M ′)v üzerinde hemen

hemen değme yarı metrik Finsler yapı olarak adlandırılır. Burada ε = ±1 olmak üzere

ηH(XH) = εGH(XH, ξH), ηV(XV) = εGV(XV , ξV) (4.17)

şeklinde tanımlanmıştır.

Sonuc. 4.2.2. (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) sırasıyla (M ′)h ve (M ′)v üzerinde

hemen hemen değme yarı metrik Finsler yapılar olsunlar. (4.16) ve (4.17) ifadelerinden

GH(φXH, Y H) = −GH(XH, φY H),

GV(φXV , Y V) = −GV(XV , φY V) (4.18)

ve

GH(φXH, φY H) = −GH(φ2XH, Y H),

GV(φXV , φY V) = −GV(φ2XV , Y V) (4.19)

eşitlikleri elde edilir.

Bu eşitlikler yardımıyla

Ω(XH, Y H) = GH(XH, φY H),

Ω(XV , Y V) = GV(XV , φY V), (4.20)

Ω(X,Y ) = G(X,φY )

ikinci temel form tanımlanabilir (Sinha ve Yadav, 1991).
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Önerme 4.2.3. Yukarıda tanımlanan ikinci temel form için aşağıdaki eşitlikler geçerlidir.

Ω(φXH, φY H) = Ω(XH, Y H),

Ω(φXV , φY V) = Ω(XV , Y V) (4.21)

ve

Ω(XH, Y H) = −Ω(Y H, XH),

Ω(XV , Y V) = −Ω(Y V , XV) (4.22)

(Sinha ve Yadav, 1991).

Önerme 4.2.4. ∇, M ′ üzerinde Finsler koneksiyonu ve Ω; Ω(X,Y ) = dη(X,Y ) şartını

sağlayan ikinci temel form olmak üzere aşağıdaki eşitlikler sağlanır.

Ω(XH, Y H) = (∇HXη)(Y H)− (∇HY η)(XH) + η(T (XH, Y H)),

Ω(XV , Y V) = (∇VXη)(Y V)− (∇VY η)(XV) + η(T (XV , Y V)). (4.23)

Böylece M ′ üzerinde hemen hemen değme yarı metrik Finsler yapı hemen hemen ε-

Sasakian Finsler yapı olarak adlandırılır. Ayrıca (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

yapıları sırasıyla (M ′)h ve (M ′)v üzerinde hemen hemen ε-Sasakian yapılar olarak ad-

landırılır.

Teorem 4.2.5. Ω ikinci temel form ve M ′ üzerinde torsiyonu sıfır olan ∇ hemen hemen

ε-Sasakian Finsler koneksiyonu olmak üzere aşağıdaki eşitlikler sağlanır.

Ω(XH, Y H) = (∇HXη)Y H − (∇HY η)XH,

Ω(XV , Y V) = (∇VXη)Y V − (∇VY η)XV (4.24)

(Sinha ve Yadav, 1991).

Tanım 4.2.6. M ′ üzerinde hemen hemen ε-Sasakian Finsler yapı, η; 1-formu Killing

vektör alanı olduğunda ε-Sasakian Finsler yapı olarak adlandırılır.

(∇HXη)(Y H) + (∇HY η)(XH) = 0,

(∇VXη)(Y V) + (∇VY η)(XV) = 0. (4.25)
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M ′ üzerindeki ∇ torsiyonsuz Finsler koneksiyonu Sasakian Finsler koneksiyonu olarak ad-

landırılır (Sinha ve Yadav, 1991).

Teorem 4.2.7. M ′ üzerinde ε-Sasakian Finsler yapı ile birlikte ∇ torsiyonsuz Finsler

koneksiyonu ve Ω ikinci temel form olsun. Böylece aşağıdaki eşitlikler sağlanır.

Ω(XH, Y H) = 2(∇HXη)(Y H) = −2(∇HY η)(XH),

Ω(XV , Y V) = 2(∇VXη)(Y V) = −2(∇VY η)(XV). (4.26)

(4.20) ve (4.23) ifadelerinden GH(XH, φY H) = dηH(XH, Y H) ve GV(XV , φY V) =

dηV(XV , Y V) yazılır. Böylece

dη(XH, Y H) = GH(XH, φY H) = ΩH(XH, Y H) (4.27)

ve

dη(XV , Y V) = G(XV , φY V) = ΩV(XV , Y V) (4.28)

elde edilir (Sinha ve Yadav, 1991).

4.3. Yarı Finsler Manifoldları Üzerinde Değme Yapıların İntegrallenebilir

Tensör Alanları

F 2n+1 = (M,M ′, F ∗), 0 ≤ q < 2n+ 1 indeksli yarı Finsler manifoldu olsun. (M ′)h

ve (M ′)v üzerinde (φH, ξH, ηH) ve (φV , ξV , ηV) hemen hemen değme Finsler yapılarının inte-

grallenebilir tensör alanı ∀ξH, XH, Y H ∈ (TM ′)H ve ∀ξV , XV , Y V ∈ (TM ′)V için aşağıdaki

gibidir.

NH(X,Y ) = [φXH, φY H]− φ[φXH, Y H]− φ[XH, φY H] + φ2[XH, Y H] + dηH(XH, Y H)ξH

ve

NV(X,Y ) = [φXV , φY V ]− φ[φXV , Y V ]− φ[XV , φY V ] + φ2[XV , Y V ] + dηV(XV , Y V)ξV .
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Ayrıca ∀ξH, XH, Y H ∈ (TM ′)H ve ∀ξV , XV , Y V ∈ (TM ′)V için N (1), N (2), N (3) ve N (4)

tensör alanı aşağıdaki gibidir.

N (1)(XH, Y H) = Nφ(XH, Y H) + dηH(XH, Y H)ξH, (4.29)

N (2)(XH, Y H) = (LHφXη
H)(Y H)− (LHφY η

H)(XH),

N (3)(XH) = (LHξ φ)(XH), N (4)(XH) = (LHξ η
H)(XH)

ve

N (1)(XV , Y V) = Nφ(XV , Y V) + dηV(XV , Y V)ξV , (4.30)

N (2)(XV , Y V) = (LVφXη
V)(Y V)− (LVφY η

V)(XV),

N (3)(XV) = (LVξ φ)(XV), N (4)(XV) = (LVξ η
V)(XV).

Hemen hemen değme Finsler yapının normal olması için gerek ve yeter şart yukarıda tanım-

lanan dört tensör alanının sıfır olmasıdır.

Yardımcı Teorem 4.3.1. N (1) = 0 ise N (2) = N (3) = N (4) = 0 (Yalınız ve Çalışkan,

2013).

Önerme 4.3.2. (M ′)h ve (M ′)v Finsler vektör demetleri üzerinde (φH, ξH, ηH) ve

(φV , ξV , ηV) hemen hemen değme Finsler yapılarının normal olması için gerek ve yeter

şart

NHφ + dηH ⊗ ξH = 0,

NVφ + dηV ⊗ ξV = 0 (4.31)

eşitliklerinin sağlanmasıdır.

F 2n+1 = (M,M ′, F ∗) manifoldunun yarı Finsler metriği ile birlikte (M ′)h ve (M ′)v

vektör demetleri üzerindeki hemen hemen değme yarı metrik Finsler yapıları sırasıyla,

(φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) olsunlar. (M ′)h ve (M ′)v vektör demetleri üzerinde,

GH ve GV yarı-Riemann metrik olarak düşünülebilir. Eğer ξH karakteristik vektör alanı

GH yarı Riemann metriğine göre ve ξV karakteristik vektör alanı da GV yarı Riemann

metriğine göre bir Killing vektör alanı ise bu durumda (M ′)h ve (M ′)v üzerindeki değme
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yarı metrik yapıya bir K-değme yarı metrik yapı ve (M ′)h ve (M ′)v demetleri de K- değme

yarı-metrik Finsler vektör demetleri olarak adlandırılır.

Yardımcı Teorem 4.3.3. (M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve

(φV , ξV , ηV , GV) değme yarı Finsler metrik yapılar olsunlar. Böylece N (2) = 0 ve N (4) = 0

olur. Diğer taraftan N (3) = 0 olması için gerek ve yeter şart GH ve GV metriklerine göre

ξH ve ξV vektör alanlarının Killing vektör alanı olmasıdır.

İspat. (4.20) ve (4.27) ifadelerinden

dηH(φXH, φY H) = Ω(φXH, φY H) = GH(φXH, φ2Y H) = GH(XH, φY H) = dηH(XH, Y H)

eşitliği elde edilir. Buradan dηH(φXH, Y H) + dηH(XH, φY H) = 0 olur. Böylece N (2) = 0

olur. Diğer taraftan

0 = GH(XH, φξH) = dηH(XH, ξH) = XHηH(ξH)− ξHηH(XH)− ηH[XH, ξH]

elde edilir. Böylece

ξHηH(XH)− ηH([ξH, XH]) = 0

olur. Buradan (LHξ η
H) = 0 elde edilir. Yani N (4) = 0 olur. Ayrıca

(LHξ G)(XH, ξH) = εξH(ηH(XH))− εηH[ξH, XH] = ε(LHξ η
H)XH = 0

olduğundan (LHξ dη
H) = 0 bulunur. Sonuç olarak

(LHξ dη
H)(XH, Y H) = (LHξ Ω)(XH, Y H) = 0

elde edilir. Buradan

0 = ξHGH(XH, φY H)−GH([ξH, XH], φY H)−G(XH, φ[ξH, Y H])

= (LHξ G
H)(XH, φY H) +GH(XH, (LHξ φ)Y H) = (LHξ G

H)(XH, φY H) +GH(XH, N3(Y H))

bulunur. Böylece N (3) = 0 eşitliğinin sağlanması için gerek ve yeter şart ξH ın Killing

vektör alanı olmasıdır. Benzer şekilde N (2) = 0 ve N (4) = 0 olur. Ayrıca N (3) = 0 eşitliğinin

sağlanması için gerek ve yeter şart ξV nın Killing vektör alanı olmasıdır.
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Yardımcı Teorem 4.3.4. (M ′)h ve (M ′)v Finsler vektör demetleri üzerinde, sırasıyla,

(φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) hemen hemen değme yarı Finsler metrik yapılar ol-

sunlar.

Böylece ∀XH, Y H, ZH ∈ (TM ′)H için

2GH((∇HXφ)Y H, ZH) = GH(N (1)(Y H, ZH), φXH)− dΩ(XH, Y H, ZH) + dΩ(XH, φY H, φZH)

+εN (2)(Y H, ZH)ηH(XH)− εdηH(φZH, XH)ηH(Y H) + εdηH(φY H, XH)ηH(ZH) (4.32)

ve ∀XV , Y V , ZV ∈ (TM ′)V için

2GV((∇VXφ)Y V , ZV) = GV(N (1)(Y V , ZV), φXV)− dΩ(XV , Y V , ZV) + dΩ(XV , φY V , φZV)

+εN (2)(Y V , ZV)ηV(XV)− εdηV(φZV , XV)ηV(Y V) + εdηV(φY V , XV)ηV(ZV) (4.33)

olur.

İspat. ∇ bir Finsler koneksiyonu olmak üzere

2GH(∇HXY H, ZH) = XHGH(Y H, ZH) + Y HGH(XH, ZH)− ZHGH(XH, Y H)

+GH([XH, Y H], ZH) +GH([ZH, XH], Y H)−GH([Y H, ZH], XH) (4.34)

ve

2GV(∇VXY V , ZV) = XVGV(Y V , ZV) + Y VGV(XV , ZV)− ZVGV(XV , Y V)

+GV([XV , Y V ], ZV) +GV([ZV , XV ], Y V)−GV([Y V , ZV ], XV) (4.35)

eşitlikleri mevcuttur. Ayrıca

dΩ(XH, Y H, ZH) = XHΩ(Y H, ZH) + Y HΩ(ZH, XH) + ZHΩ(XH, Y H)

− Ω([XH, Y H], ZH)− Ω([ZH, XH], Y H)− Ω([Y H, ZH], XH) (4.36)

ve

dΩ(XV , Y V , ZV) = XVΩ(Y V , ZV) + Y VΩ(ZV , XV) + ZVΩ(XV , Y V) (4.37)

− Ω([XV , Y V ], ZV)− Ω([ZV , XV ], Y V)− Ω([Y V , ZV ], XV)
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yazılır. (4.20) ve (4.35) kullanılarak

2GV((∇VXφ)Y V , ZV) = φY VGV(XV , ZV)− ZVΩ(XV , Y V) +GV([XV , φY V ], ZV) + Ω([ZV , XV ], Y V)

−GV([φY V , ZV ], XV) + Y VΩ(XV , ZV)− φZVGV(XV , Y V) + Ω([XV , Y V ], ZV

+GV([φZV , XV ], Y V)−GV([Y V , φZV ], XV) (4.38)

elde edilir. (4.37) ifadesinden, (4.20), (4.21) ve (4.22) kullanılarak

dΩ(XV , φY V , φZV) = XVΩ(Y V , ZV) + φY VGV(ZV , XV)− εφY V(ηV(ZV)ηV(XV))

+ εφZV(ηV(Y V)ηV(XV))− φZVGV(XV , Y V) +GV([XV , φY V ], ZV)− εηV [XV , φY V ]ηV(ZV)

+GV([φZV , XV ], Y V)− εηV(Y V)ηV [φZV , XV ]− Ω([φY V , φZV ], XV) (4.39)

bulunur. Diğer taraftan (4.30) ve (4.20) kullanılarak

GV(N (1)(Y V , ZV), φXV) = −Ω([Y V , ZV ], XV) + Ω([φY V , φZV ], XV) (4.40)

−GV([φY V , ZV ], XV) + εηV [φY V , ZV ]ηV(XV)−GV([Y V , φZV ], XV) + εηV [Y V , φZV ]ηV(XV)

eşitliği elde edilir. (4.29) ifadesinden

N (2)(Y V , ZV)ηV(XV) = φY V(ηV(ZV))− φZV(ηV(Y V))− ηV [φY V , ZV ]

− ηV [Y V , φZV ]ηV(XV) (4.41)

bulunur. (4.37), (4.39), (4.40) ve (4.41) kullanılarak (4.33) elde edilir. Benzer şekilde (4.34),

(4.20), (4.21), (4.22), (4.34) ve (4.36) kullanılarak

dΩ(XH, φY H, φZH)− dΩ(XH, Y H, ZH) +GH(N (1)(Y H, ZH), φXH) + εN (2)(Y H, ZH)ηH(XH)

+ εdηH(φY H, XH)ηH(ZH)− εdηH(φZH, XH)ηH(Y H)

= φY HGH(ZH, XH)− φZHGH(XH, Y H) +GH([XH, φY H], ZH) +GH([φZH, XH], Y H)

− Ω([φY H, φZH], XH) + Y HΩ(XH, ZH)− ZHΩ(XH, Y H) + Ω([XH, Y H], ZH)

+ Ω([ZH, XH], Y H) + Ω([Y H, ZH], XH) + Ω([φY H, φZH], XH)

− Ω([Y H, ZH], XH)−GH([φY H, ZH], XH)−GH([Y H, φZH], XH)

= 2GH((∇HXφ)Y H, ZH)

elde edilir.
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Yardımcı Teorem 4.3.5. Ω = dη ve N (2) = 0 ile birlikte (M ′)h ve (M ′)v üzerinde,

sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) değme yarı metrik yapılar olmak üzere

∀XH, Y H, ZH ∈ (TM ′)H ve ∀XV , Y V , ZV ∈ (TM ′)V için

(a) 2GH((∇HXφ)Y H, ZH) = GH(N (1)(Y H, ZH), φXH) + εdηH(φY H, XH)ηH(ZH)

−εdηH(φZH, XH)ηH(Y H) (4.42)

ve

2GV((∇VXφ)Y V , ZV) = GV(N (1)(Y V , ZV), φXV) + εdηV (φY V , XV)ηV(ZV)

−εdηV(φZV , XV)ηV(Y V) (4.43)

(b) ∇Hξ φ = 0,∇Vξ φ = 0 (4.44)

eşitlikleri vardır.

İspat. (a) (4.42) ve (4.43) ifadelerinden elde edilmek istenilen eşitliğin varlığı aşikardır.

(b) N (2)(XH, ξH) = 0 olmasından

N (2)(XH, ξH) = ηH[φXH, ξH] = −dηH(φXH, ξH) = 0

olur. Böylece (4.42) den ∀XH, Y H, ZH ∈ (TM ′)H için

GH((∇Hξ φ)XH, ZH) = 0

elde edilir. Yani ∇Hξ φ = 0 olur. Benzer şekilde ∀XV , Y V , ZV ∈ (TM ′)V için

GV((∇Vξ φ)XV , ZV) = 0

olur. Yani ∇Vξ φ = 0 bulunur.

Önerme 4.3.6. (M ′)h ve (M ′)v üzerinde (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) değme

yarı Finsler metrik yapılar olmak üzere, bu yapıların K-değme yarı Finsler metrik yapılar

olması için gerek ve yeter şart N (3) = 0 olmasıdır.

Sonuc. 4.3.7. (M ′)h ve (M ′)v üzerinde ε-Sasakian Finsler yapılar K-değme yarı-metrik

yapılardır.
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Teorem 4.3.8. (M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

değme yarı Finsler metrik yapılar olmak üzere, bu yapıların K-değme yarı metrik Finsler

yapılar olmaları için gerek ve yeter şart

∇HXξH = −ε
2
φXH,∇VXξV = −ε

2
φXV (4.45)

eşitliklerinin sağlanmasıdır.

İspat. (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) yapıları birer K-değme yarı metrik yapı olsun.

Böylece ξH ve ξV Killing vektör alanı olmak üzere, aşağıdaki eşitlikler sağlanır.

LHξ G
H = LVξ G

V = 0.

Ayrıca

GH(∇HXξH, Y H) = −GH(XH,∇HY ξH),

GV(∇VXξV , Y V) = −GV(XV ,∇VY ξV) (4.46)

elde edilir. Diğer taraftan Kozsul formülünden

2GH(∇HXξH, Y H) = εXHηH(Y H) + ξHGH(XH, Y H)− εY H(ηH(XH))

+GH([XH, ξH], Y H) + εηH[Y H, XH] +GH([Y H, ξH], XH) (4.47)

ve

2GH(∇HY ξH, XH) = εY HηH(XH) + ξHGH(Y H, XH)− εXH(ηH(Y H)

+GH([Y H, ξH], XH) + εηH[XH, Y H] +GH([XH, ξH], Y H) (4.48)

bulunur. (4.47) ve (4.48) ifadelerinden

GH(∇HXξH, Y H)−GH(∇HY ξH, XH) = εdηH(XH, Y H)

olur ve (4.40), (4.46) kullanılarak, ∀XH, Y H, ξH ∈ (TM ′)H için

GH(∇HXξH, Y H) = GH(−ε
2
φXH, Y H)
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bulunur. Böylece ∇HXξH = − ε
2φX

H olur. Benzer şekilde ∀XV , Y V , ξV ∈ (TM ′)V için, ξV

Killing vektör alanı olduğundan, Kozsul formülünden, ∀Y V ∈ (TM ′)V olmak üzere

GV(∇VXξV , Y V) = GV(−ε
2
φXV , Y V)

elde edilir. Böylece

∇VXξV = −ε
2
φXV

bulunur.

ξH ın Killing vektör alanı olması için gerek ve yeter şart N (3) = 0 olmasıdır. Diğer taraftan

(4.27) ve (4.28) göz önüne alınırsa ve LξHηH = 0 olmasından

0 = (LHξ dη
H)(XH, Y H) = ξH(dηH(XH, Y H))− dηH([ξH, XH], Y H)− dηH(XH, [ξH, Y H])

= (LHξ G
H)(XH, Y HφY H) +GH(XH, (LHξ φ)Y H)

elde edilir ve böylece LHξ G
H = 0 eşitliğinin sağlanması için gerek ve yeter şart LHξ φ = 0

eşitliğinin sağlanmasıdır. Böylece

h =
1

2
LHξ φ =

1

2
N (3) (4.49)

şeklinde bir tensör ortaya çıkar. Bu tensör değme yarı Finsler metrik yapıların geometrisinin

tanımlanmasında önemli bir rol oynar. Ayrıca (4.42) ve (4.43) kullanılarak kovaryant türev

operatörüne ait aşağıdaki özellikler ispatlanabilir.

∇Hξ φ = 0,∇Vξ φ = 0 (4.50)

ve

∇HXξH = − ε
2φX

H − φhXH,

∇VXξV = − ε
2φX

V − φhXV . (4.51)
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Riemann durumda (4.50) ve (4.51) ifadeleri kullanılarak h tensörünün self-adjoint olduğu,

yani hφ = −φh ve hξ = trh = 0 olduğu ispatlanabilir. Ayrıca τ = LξG alınırsa

τ(XV , Y V) = 2GV(XV , hφY V),

τ(XH, Y H) = 2GH(XH, hφY H)

bulunur.

Standart ortonormalleştirme işlemi ile birlikte her bir ((M ′)h, φH, ξH, ηH, GH) (hemen

hemen) değme yarı Finsler metrik manifoldu φH- bazı olarak adlandırılan özel bir çeşit lokal

yarı ortonormal baza sahiptir. Böyle bir baz {EH1 , ..., EHn , φEH1 , ..., φEHn , ξH} formundadır.

Benzer şekilde ((M ′)v, φV , ξV , ηV , GV) (hemen hemen) değme yarı Finsler metrik manifoldu

ise φV - bazı olarak adlandırılan özel bir çeşit lokal yarı ortonormal baza sahiptir. Böyle bir

baz {EV1 , ..., EVn , φEV1 , ..., φEVn , ξV} formundadır. Özel olarak, yarı-Riemann metrik, ξ nin

space-like yada time-like olmasına göre, (q, 2n + 1 − q) ya da (q + 1, 2n − q) olması du-

rumunda hemen hemen değme Finsler yapı ile uyumludur. Şimdi bununla ilgili aşağıdaki

yardımcı teoremi verelim.

Yardımcı Teorem 4.3.9. ((M ′)h, φH, ξH, ηH, GH) ve ((M ′)v, φV , ξV , ηV , GV) değme yarı

metrik Finsler manifoldları olsunlar. Böylece

divξH = 0, divηH = 0,

divξV = 0, divηV = 0

olur.

İspat. (TM ′)H üzerinde {EH1 , ..., EHn , φEH1 , ..., φEHn , ξH} φH- bazını ele alalım. Böylece

∇Hξ ξH = 0 ve hφ = −φh olduğundan, (4.3), (4.4) ve (4.51) ifadelerinden yararlanarak

divξH = tr∇ξH =
n∑
i=1

εiG
H(∇HEi

ξH, EHi ) +
n∑
i=1

εiG
H(∇HφEi

ξH, φEHi )

= −1

2

n∑
i=1

εiG
H(εφEHi , E

H
i )−

n∑
i=1

εiG
H(φhEHi , E

H
i ) +

1

2

n∑
i=1

εiG
H(εEi, φEi)−

n∑
i=1

εiG
H(φhEi, Ei)

= −
n∑
i=1

εiG
H(φhEHi , E

H
i ) +

n∑
i=1

εiG
H(φhEHi , E

H
i ) = 0
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ve

divηH = −tr∇Hη = −εdivξH = 0

bulunur. Benzer olarak (TM ′)V üzerinde {EV1 , ..., EVn , φEV1 , ..., φEVn , ξV} φV - bazını ele

alınırsa

divηV = −tr∇Vη = −εdivξV = 0

elde edilir.

4.4. Yarı Finsler Manifoldları Üzerinde ε-Sasakian Yapılar

Tanım 4.4.1. (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) değme yarı metrik Finsler yapıları

(i) Normal, yani [φH, φH] + dηH ⊗ ξH = 0, [φV , φV ] + dηV ⊗ ξV = 0 ise Sasakian olarak

adlandırılır.

(ii) h = 0, yani ξH ve ξV Killing vektör alanları ise K-değme olarak adlandırılır.

Teorem 4.4.2. (M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

hemen hemen değme yarı metrik Finsler yapıların ε-Sasakian yapı olması için gerek ve

yeter koşul

(∇HXφ)Y H =
1

2
[GH(XH, Y H)ξH − εηH(Y H)XH], (4.52)

(∇VXφ)Y V =
1

2
[GV(XV , Y V)ξV − εηV(Y V)XV ] (4.53)

olmasıdır.

İspat. Yapı normal ise N (1) = N (2) = 0 ve Ω = dη olur. Böylece (4.42) ifadesini kullanarak

2GH((∇HXφ)Y H, ZH) = εGH(XH, Y H)ηH(ZH)− εGH(XH, ZH)ηH(Y H)

= εGH(XH, Y H)εGH(ZH, ξH)− εGH(ηH(Y H)XH, ZH)

= GH(XH, Y H)GH(ZH, ξH)− εGH(ηH(Y H)XH, ZH)

= GH(GH(XH, Y H)ξH − εηH(Y H)XH, ZH)

eşitliği elde edilir. Ayrıca ∀XH, Y H, ξH ∈ (TM ′)H için

(∇HXφ)Y H =
1

2
(GH(XH, Y H)ξH − εηH(Y H)XH)
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olur. Benzer şekilde (4.43) ifadesini kullanarak ∀XV , Y V , ξV ∈ (TM ′)V için

(∇VXφ)Y V =
1

2
(GV(XV , Y V)ξV − εηV(Y V)XV)

bulunur. Diğer taraftan yapı (4.52) ve (4.53) eşitliklerini sağlar. Ayrıca (4.52) eşitliğinde

Y H = ξH alınırsa

(∇HXφ)ξH =
1

2
(GH(XH, ξH)ξH − εXH),

−φ(∇HXξH) =
1

2
ε(ηH(XH)ξH −XH),

−φ2(∇HXξH) = −ε
2

(φXH),

∇HXξH = −ε
2
φXH

elde edilir. Benzer şekilde (4.53) eşitliğinde de Y V = ξV alınırsa

∇VXξV = −ε
2
φXV

olur. ξ skew-simetrik olduğundan ξH ve ξV nin Killing vektör alanı olduğunu söyleyebiliriz.

Ayrıca

Nφ(XH, Y H) + dηH(XH, Y H)ξH = −φ(∇HXφY H − φ∇HXY H) + φ(∇HY φXH − φ∇HY XH)

+ (∇HφXφY H − φ∇HφXY H)− (∇HφY φXH − φ∇HφYXH) + dηH(XH, Y H)ξH

= −φ(∇HXφ)Y H + φ(∇HY φ)XH + (∇HφXφ)Y H − (∇HφY φ)XH

=
1

2
{−φ(GH(XH, Y H)ξH − εηH(Y H)XH) + φ(GH(Y H, XH)ξH − εηH(XH)Y H)

+GH(φXH, Y H)ξH − εηH(Y H)φXH −GH(φY H, XH)ξH − εηH(XH)φY H}+ dηH(XH, Y H)ξH

= −GH(XH, φY H)ξH + dηH(XH, Y H)ξH

= −dηH(XH, Y H)ξH + dηH(XH, Y H)ξH

= 0
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elde edilir ve benzer şekilde

Nφ(XV , Y V) + dηV(XV , Y V)ξV = 0

olup yapı ε-Sasakian yapı olur.

Teorem 4.4.3. (M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

yapılarının K-değme olması için gerek ve yeter koşul aşağıda verilen iki durumun sağlan-

masıdır.

(1) (M ′)h üzerinde ξH, GH metriğine göre Killing vektör alanı ve (M ′)v üzerinde ξV , GV

metriğine göre Killing vektör alanıdır.

(2) (M ′)h demetinin her noktasında flag eğriliği ε4 ve (M ′)v demetinin her noktasında flag

eğriliği ε4 tür.

İspat. (M ′)h üzerinde (φH, ξH, ηH, GH) K-değme yapı olsun. XH, ξH a ortogonal birim

vektör alanı olmak üzere (3.45) ifadesinden,

GH(R(XH, ξH)ξH, XH) = GH(∇HX∇Hξ ξH −∇Hξ ∇HXξH −∇[XH,ξH]ξ
H, XH)

= GH(
ε

2
∇Hξ (φXH) +

ε

2
(−ε

2
(φ2XH))− ε

2
φ(∇Hξ XH), XH)

=
1

4
{GH(XH, XH)− ηH(XH)GH(ξH, XH)}

=
1

4
GH(XH, XH)

bulunur. XH bir space-like vektör ise ξH bir time-like vektör olur veya XH bir time-like

vektör ise ξH bir space-like vektör olur.

Şimdi (M ′)v üzerinde (φV , ξV , ηV , GV) K-değme yapı olsun. Benzer olarak, XV , ξV a or-

togonal birim vektör alanı olmak üzere, (3.45) ifadesinden

GV(R(XV , ξV)ξV , XV) =
1

4
{GV(XV , XV)− ηV(XV)GV(ξV , XV)} =

1

4
GV(XV , XV)

bulunur. XV bir space-like vektör ise ξV bir time-like vektör olur ya da XV bir time-like

vektör ise ξV bir space-like vektör olur. Böylece

K(XH, ξH) =
GH(R(XH, ξH)ξH, XH)

εGH(XH, XH)
=
ε

4

ve

K(XV , ξV) =
GV(R(XV , ξV)ξV , XV)

εGV(XV , XV)
=
ε

4
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elde edilir. Diğer taraftan (M ′)h üzerinde ξH, GH metriğine göre Killing vektör alanı

olduğundan ∀XH, Y H ∈ (TM ′)H için

εdηH(XH, Y H) = GH(∇HXξH, Y H)−GH(∇HY ξH, XH)

= −2GH(∇HY ξH, XH)

= −2GH(− ε
2φY

H, XH)

= εGH(XH, φY H),

dηH(XH, Y H) = GH(XH, φY H)

bulunur. Sonuç olarak (M ′)h üzerinde (φH, ξH, ηH, GH) yapısı K-değme yapı olur. Benzer

şekilde (M ′)v üzerinde ξV , GV metriğine göre Killing vektör alanı olduğundan ∀XV , Y V ∈
(TM ′)V için

dηV(XV , Y V) = GV(XV , φY V)

elde edilir ki bu da (M ′)v üzerinde (φV , ξV , ηV , GV) yapısın K-değme yapı olduğunu gös-

terir.

Teorem 4.4.4. (M ′)h ve (M ′)v Finsler vektör demetleri üzerinde, sırasıyla,

(φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) ε-Sasakian Finsler yapılar olsunlar. Böylece ∇ Finsler

koneksiyonunun Riemann eğriliği aşağıdaki gibidir:

R(XV , Y V)ξV =
1

4
{ηV(Y V)XV − ηV(XV)Y V}, (4.54)

R(XH, Y H)ξH =
1

4
{ηH(Y H)XH − ηH(XH)Y H}. (4.55)

İspat. (φH, ξH, ηH, GH), (M ′)h üzerinde ε-Sasakian Finsler yapı olsun. (3.45) ifadesinden

R(XH, Y H)ξH = ∇HX∇HY ξH −∇HY ∇HXξH −∇[XH,YH]ξ
H

= ∇HX(−ε
2
φY H)−∇HY (−ε

2
φXH)−∇∇HXYH−∇HY XHξ

H

= −ε
2

(∇HXφ)Y H +
ε

2
(∇HY φ)XH =

ε2

4
(ηH(Y H)XH

− ηH(XH)Y H) =
1

4
(ηH(Y H)XH − ηH(XH)Y H)
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elde edilir. Benzer şekilde (φV , ξV , ηV , GV), (M ′)v üzerinde ε-Sasakian Finsler yapı olsun.

(3.45) ifadesinden

R(XV , Y V)ξV = ∇VX∇VY ξV −∇VY∇VXξV −∇[XV ,Y V ]ξ
V

= ∇VX(−ε
2
φY V)−∇VY (−ε

2
φXV)−∇∇VXY V−∇VYXV ξ

V

= −ε
2

(∇VXφ)Y V +
ε

2
(∇VY φ)XV =

ε2

4
(ηV(Y V)XV

− ηV(XV)Y V) =
1

4
(ηV(Y V)XV − ηV(XV)Y V)

bulunur.

Teorem 4.4.5. (M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

ε-Sasakian Finsler yapılar olmak üzere

R(X,Y )φZ = R(X,Y )φZH +R(X,Y )φZV , (4.56)

R(XV , Y V)φZV = φR(XV , Y V)ZV +
ε

4
{GV(φXV , ZV)Y V −GV(Y V , ZV)φXV

+GV(XV , ZV)φY V −GV(φY V , ZV)XV}, (4.57)

R(XH, Y H)φZH = φR(XH, Y H)ZH +
ε

4
{GH(φXH, ZH)Y H −GH(Y H, ZH)φXH

+GH(XH, ZH)φY H −GH(φY H, ZH)XH} (4.58)

eşitlikleri sağlanır.

İspat. (3.45) ve (4.52) ifadelerini kullanarak

R(XH, Y H)φZH =
1

2
∇HX(GH(Y H, ZH)ξH)− ε

2
∇HX(ηH(ZH)Y H) +

1

2
{GH(XH,∇HY ZH)ξH

− εηH(∇HY ZH)XH}+ φR(XH, Y H)ZH − 1

2
∇HY (GH(XH, ZH)ξH) +

ε

2
∇HY (ηH(ZH)XH)

− 1

2
GH(∇HXZH, Y H)ξH +

ε

2
(ηH(∇HXZH))Y H − 1

2
GH([XH, Y H], ZH)ξH

+
ε

2
ηH(ZH)[XH, Y H] = φR(XH, Y H)ZH +

ε

4
(GH(XH, ZH)φY H −GH(Y H, ZH)φXH)

+
ε

2
((∇HY ηH)ZHXH − (∇HXηH)ZHY H) = φR(XH, Y H)ZH +

ε

4
{GH(XH, ZH)φY H

−GH(Y H, ZH)φXH + Ω(Y H, ZH)XH − Ω(XH, ZH)Y H} = φR(XH, Y H)ZH

+
ε

4
{GH(XH, ZH)φY H −GH(Y H, ZH)φXH −GH(φY H, ZH)XH +GH(φXH, ZH)Y H}
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elde ederiz. Ayrıca (3.45) ve (4.53) ifadelerini kullanarak

R(XV , Y V)φZV =
1

2
∇VX(GV(Y V , ZV)ξV)− ε

2
∇VX(ηV(ZV)Y V) +

1

2
{GV(XV ,∇VY ZV)ξV

− εηV(∇VY ZV)XV}+ φR(XV , Y V)ZV − 1

2
∇VY (GV(XV , ZV)ξV) +

ε

2
∇VY (ηV(ZV)XV)

− 1

2
GV(∇VXZV , Y V)ξV +

ε

2
(ηV(∇VXZV))Y V − 1

2
GV([XV , Y V ], ZV)ξV

+
ε

2
ηV(ZV)[XV , Y V ] = φR(XV , Y V)ZV +

ε

4
(GV(XV , ZV)φY V −GV(Y V , ZV)φXV)

+
ε

2
((∇VY ηV)ZVXV − (∇VXηV)ZVY V) = φR(XV , Y V)ZV +

ε

4
{GV(XV , ZV)φY V

−GV(Y V , ZV)φXV + Ω(Y V , ZV)XV − Ω(XV , ZV)Y V} = φR(XV , Y V)ZV

+
ε

4
{GV(XV , ZV)φY V −GV(Y V , ZV)φXV −GV(φY V , ZV)XV +GV(φXV , ZV)Y V}

bulunur.

Sonuc. 4.4.6. (4.57), (4.58), (4.56) eşitliklerini kullanarak

R(XH, Y H)ZH = −φR(XH, Y H)φZH +
ε

4
{GH(Y H, ZH)XH −GH(XH, ZH)Y H

−GH(φY H, ZH)φXH +GH(φXH, ZH)φY H}, (4.59)

R(XV , Y V)ZV = −φR(XV , Y V)φZV +
ε

4
{GV(Y V , ZV)XV −GV(XV , ZV)Y V

−GV(φY V , ZV)φXV +GV(φXV , ZV)φY V} (4.60)

ve

GH(R(φXH, φY H)φZH, φWH) = GH(R(XH, Y H)ZH,WH) +
1

4
{−ηH(Y H)ηH(ZH)GH(XH,WH)

− ηH(XH)ηH(WH)GH(Y H, ZH) + ηH(Y H)ηH(WH)GH(XH, ZH)

+ ηH(XH)ηH(ZH)GH(Y H,WH)}, (4.61)

GV(R(φXV , φY V)φZV , φWV) = GV(R(XV , Y V)ZV ,WV) +
1

4
{−ηV(Y V)ηV(ZV)GV(XV ,WV)

− ηV(XV)ηV(WV)GV(Y V , ZV) + ηV(Y V)ηV(WV)GV(XV , ZV)

+ ηV(XV)ηV(ZV)GV(Y V ,WV)} (4.62)

olur.



43

İspat. (4.57) eşitliğinden

R(φXV , φY V)φZV = φR(φXV , φY V)ZV +
ε

4
{−GV(XV , ZV)φY V + εηV(XV)ηV(ZV)φY V

+GV(φY V , ZV)XV −GV(φY V , ZV)ηV(XV)ξV −GV(φXV , ZV)Y V

+ ηV(Y V)GV(φXV , ZV)ξV +GV(Y V , ZV)φXV − εηV(Y V)ηV(ZV)φXV}

ve

GV(R(φXV , φY V)φZV , φWV) = GV(φR(φXV , φY V)ZV , φWV)

+
ε

4
{−GV(XV , ZV)GV(φY V , φWV) + εηV(XV)ηV(ZV)GV(φY V , φWV)

+GV(φY V , ZV)GV(XV , φWV)−GV(φXV , ZV)GV(Y V , φWV)

+GV(Y V , ZV)GV(φXV , φWV)− εηV(Y V)ηV(ZV)GV(φXV , φWV)

= GV(R(XV , Y V)ZV ,WV) +
1

4
{−ηV(Y V)ηV(ZV)GV(XV ,WV)

− ηV(XV)ηV(WV)GV(Y V , ZV)

+ ηV(Y V)ηV(WV)GV(XV , ZV) + ηV(XV)ηV(ZV)GV(Y V ,WV)}

elde edilir.

Benzer şekilde (4.58) eşitliğinden

R(φXH, φY H)φZH = φR(φXH, φY H)ZH +
ε

4
{−GH(XH, ZH)φY H + εηH(XH)ηH(ZH)φY H

+GH(φY H, ZH)XH −GH(φY H, ZH)ηH(XH)ξH −GH(φXH, ZH)Y H

+ ηH(Y H)GH(φXH, ZH)ξH +GH(Y H, ZH)φXH − εηH(Y H)ηH(ZH)φXH}

ve

GH(R(φXH, φY H)φZH, φWH) = GH(φR(φXH, φY H)ZH, φWH)

+
ε

4
{−GH(XH, ZH)GH(φY H, φWH) + εηH(XH)ηH(ZH)GH(φY H, φWH)

+GH(φY H, ZH)GH(XH, φWH)−GH(φXH, ZH)GH(Y H, φWH)

+GH(Y H, ZH)GH(φXH, φWH)− εηH(Y H)ηH(ZH)GH(φXH, φWH)

= GH(R(XH, Y H)ZH,WH) +
1

4
{−ηH(Y H)ηH(ZH)GH(XH,WH)

− ηH(XH)ηH(WH)GH(Y H, ZH)

+ ηH(Y H)ηH(WH)GH(XH, ZH) + ηH(XH)ηH(ZH)GH(Y H,WH)}
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bulunur.

XH ∈ (TM ′)H birim vektörü ξH a ortogonal ise (TM ′)H deki düzlem kesit olan

{XH, φXH} yatay φ-kesit olarak adlandırılır. Benzer olarak XV ∈ (TM ′)V birim vek-

törü ξV a ortogonal ise (TM ′)V deki düzlem kesit olan {XV , φXV} dikey φ-kesit olarak

adlandırılır. Böylece yatay flag eğriliği K∗(XH) ile dikey flag eğriliği ise K∗(XV) ile gös-

terilir. Ayrıca

K∗(XH, φXH) = GH(R(XH, φXH)φXH, XH) (4.63)

K∗(XV , φXV) = GV(R(XV , φXV)φXV , XV) (4.64)

eşitlikleri ile ifade edilir. Sırasıyla yatay φ-kesitsel eğrilik ve dikey φ-kesitsel eğrilik olarak

adlandırılır.

Sasakian yarı Finsler manifoldunda φ-kesitsel eğrilik

K∗(X) = K∗(XH) +K∗(XV)

formundadır.

Önerme 4.4.7. (M ′)h üzerinde (φH, ξH, ηH, GH) yapısı K-değme Finsler yapı olsun.

(M ′)h lokal olarak simetrik ise, ε-Sasakian Finsler yapının sabit eğriliği ε4 tür.

İspat. (4.52) ve (4.55) eşitliklerinden ∀XH, Y H, ZH, ξH ∈ (TM ′)H için

(∇HZR)(XH, Y H, ξH) =
ε

4
{GH(ZH, Y H)XH −GH(ZH, XH)Y H} −R(XH, Y H)ZH

(4.65)

elde edilir. (M ′)h lokal simetrik yani (∇HZR) = 0 olduğundan (4.65) yardımıyla

R(XH, Y H)ZH =
ε

4
{GH(Y H, ZH)XH −GH(XH, ZH)Y H} (4.66)

yazılır. {XH, Y H} ortonormal çifti için, XH time-like bir vektör olduğunda, Y H space-like

olmak zorundadır. Çünkü aynı anda iki vektör time-like ya da space-like olduğu zaman

birbirine dik olamaz. Böylece

K(XH, Y H) =
GH(R(XH, Y H)Y H, XH)

GH(XH, XH)GH(Y H, Y H)
=
ε

4
{G
H(Y H, Y H)GH(XH, XH)

GH(XH, XH)GH(Y H, Y H)
} =

ε

4

elde edilir.
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Önerme 4.4.8. (M ′)v üzerinde (φV , ξV , ηV , GV) yapısı K-değme Finsler yapı olsun. (M ′)v

lokal olarak simetrik ise, ε-Sasakian Finsler yapının sabit eğriliği ε4 tür.

İspat. (4.53) ve (4.54) eşitliklerinden ∀XV , Y V , ZV , ξV ∈ (TM ′)V için

(∇VZR)(XV , Y V , ξV) =
ε

4
{GV(ZV , Y V)XV −GV(ZV , XV)Y V} −R(XV , Y V)ZV (4.67)

elde edilir. (M ′)v lokal simetrik yani (∇VZR) = 0 olduğundan (4.67) yardımıyla

R(XV , Y V)ZV =
ε

4
{GV(Y V , ZV)XV −GV(XV , ZV)Y V} (4.68)

yazılır. {XV , Y V} ortonormal çifti için, XV time-like bir vektör olduğunda, Y V space-like

olmak zorundadır. Çünkü aynı anda iki vektör time-like ya da space-like olduğu zaman

birbirine dik olamaz. Böylece

K(XV , Y V) =
GV(R(XV , Y V)Y V , XV)

GV(XV , XV)GV(Y V , Y V)
=
ε

4
{G
V(Y V , Y V)GV(XV , XV)

GV(XV , XV)GV(Y V , Y V)
} =

ε

4

elde edilir.

(M ′)h, ε-Sasakian Finsler manifoldun SH yatay Ricci tensörü, {EH1 , ..., EH2n, ξH}, (TM ′)H

nin lokal ortonormal çatısı olmak üzere

SH(XH, Y H) =
2n∑
i=1

GH(R(XH, EHi )EHi , Y
H) +GH(R(XH, ξH)ξH, Y H)

=
2n∑
i=1

GH(R(EHi , X
H)Y H, EHi ) +GH(R(XH, ξH)ξH, Y H) (4.69)

eşitliği ile verilir.

(M ′)v, ε-Sasakian Finsler manifoldun SV dikey Ricci tensörü {EV1 , ..., EV2n, ξV}, (TM ′)V

nin lokal ortonormal çatısı olmak üzere

SV(XV , Y V) =
2n∑
i=1

GV(R(XV , EVi )EVi , Y
V) +GV(R(XV , ξV)ξV , Y V)

=

2n∑
i=1

GV(R(EVi , X
V)Y V , EVi ) +GV(R(XV , ξV)ξV , Y V) (4.70)

eşitliği ile verilir.
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Önerme 4.4.9. q indeksli (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV ) değme yarı metrik

yapıların K- değme olması için gerek ve yeter koşul

SH(ξH, ξH) =


(
2n−q
4

)
, ξH space-like ise(

2n−q+1
4

)
, ξH time-like ise

,

SV(ξV , ξV) =


(
2n−q
4

)
, ξV space-like ise(

2n−q+1
4

)
, ξV time-like ise

eşitliklerinin sağlanmasıdır.

İspat. (4.55) ve (4.69) göz önünde bulundurulursa

SH(ξH, ξH) =
2n∑
i=1

GH(R(EHi , ξ
H)ξH, EHi )

=
1

4

2n∑
i=1

GH(ηH(ξH)EHi − ηH(EHi )ξH, EHi )

=
1

4

2n∑
i=1

GH(EHi , E
H
i ) =

ε1 + ...+ ε2n
4

elde edilir. F 2n+1 = (M,M ′, F ∗), q indeksli yarı Finsler manifoldu olduğundan,

GH(ξH, ξH) = ε = 1 ise ξH space-like vektör olur. Böylece

SH(ξH, ξH) =
1

4

q∑
i=1

GH(EHi , E
H
i ) +

1

4

2n∑
i=q+1

GH(EHi , E
H
i ) =

2n− q
4

bulunur. GH(ξH, ξH) = ε = −1 ise ξH time-like vektör olur. Böylece

SH(ξH, ξH) =
1

4

q−1∑
i=1

GH(EHi , E
H
i ) +

1

4

2n∑
i=q+1

GH(EHi , E
H
i ) =

2n− q + 1

4

elde edilir. Benzer şekilde (4.54) ve (4.70) göz önünde bulundurulursa, ξV space-like vektör

için

SV(ξV , ξV) =
2n− q

4

elde edilir. ξV time-like vektör için ise

SV(ξV , ξV) =
2n− q + 1

4
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eşitliği bulunur.

Yardımcı Teorem 4.4.10. (M ′)h, ε-Sasakian Finsler manifoldun SH yatay Ricci tensörü

ve (M ′)v, ε-Sasakian Finsler manifoldun SV dikey Ricci tensörü aşağıda verilen eşitlikleri

sağlar.

SH(XH, ξH) =


(
2n−q
4

)
ηH(XH), ξHspace-like ise(

2n−q+1
4

)
ηH(XH), ξH time-like ise,

,

SV(XV , ξV) =


(
2n−q
4

)
ηV(XV), ξV space-like ise(

2n−q+1
4

)
ηV(XV), ξV time-like ise.

İspat. ξH space-like vektör olsun. (4.55) ve (4.69) eşitliklerini kullanarak

SH(XH, ξH) =
2n∑
i=1

GH(R(EHi , X
H)ξH, EHi ) +GH(R(ξH, XH)ξH, ξH)

=
1

4

2n∑
i=1

GH(ηH(XH)EHi − ηH(EHi ), EHi ) +
1

4
GH(ηH(XH)ξH − ηH(ξH)XH, ξH)

=
1

4
{

2n∑
i=1

ηH(XH)GH(EHi , E
H
i )}+

1

4
{ηH(XH)GH(ξH, ξH)−GH(XH, ξH)}

=
1

4
ηH(XH)(2n− q) +

1

4
{ηH(XH)− ηH(XH)} =

2n− q
4

ηH(XH)

ifadesi bulunur. ξH time-like vektör ise

SH(XH, ξH) = (
2n− q + 1

4
)ηH(XH)

olur. Benzer şekilde (4.54) ve (4.70) eşitliklerini kullanarak, ξV bir space-like vektör ise

SV(XV , ξV) = (
2n− q

4
)ηV (XV )

olur ve ξV bir time-like vektör ise

SV(XV , ξV) = (
2n− q + 1

4
)ηV(XV)

bulunur.
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5. YARI FINSLER MANİFOLDLARI ÜZERİNDE DEĞME LORENTZ

YAPILAR

Bu bölümde yarı Finsler manifoldları üzerinde hemen hemen değme Lorentz yapılar,

değme Lorentz yapılar ve Sasakian Lorentz yapılar kuruldu. Ayrıca bu yapılara ait eğrilik-

ler hesaplandı. İlk olarak yarı Finsler manifoldları üzerinde hemen hemen değme Lorentz

yapıları ele alalım.

5.1. Yarı Finsler Manifoldları Üzerinde Hemen Hemen Değme Lorentz

Yapılar

F 2n+1 = (M,M ′, F ∗) q indeksli bir yarı Finsler manifoldu olsun. Özel olarak q = 1

olarak alınırsa F 2n+1 Lorentz Finsler manifoldu olarak adlandırılır. (V i) ve (W j) lokal

bileşenleri ile birlikte V ve W vektör alanları için gF ∗ij , (3.7) deki gibi olmak üzere,

gF
∗

: Γ(TM ′)V × Γ(TM ′)V → =(M ′),

gF
∗
(V,W )(x, y) = gF

∗
ij V

i(x, y)W j(x, y) (5.1)

tanımlayalım. Böylece

gF
∗

ij (x, y) = gF
∗
(
∂

∂yi
,
∂

∂yj
)(x, y) (5.2)

yazılır. Açık olarak gF
∗ simetrik Finsler tensör alanı olur. gF ∗ , Lorentz Finsler metrik

olarak adlandırılır. Ayrıca gF
∗ , (TM ′)V Finsler vektör demeti üzerinde Lorentz metrik

olarak düşünülebilir.

Benzer şekilde gF ∗ij , (3.7) deki gibi olmak üzere,

gF
∗

: Γ(TM ′)H × Γ(TM ′)H → =(M ′),

gF
∗
(V,W )(x, y) = gF

∗
ij (x, y)V i(x, y)W j(x, y), (5.3)

gF
∗

ij (x, y) = gF
∗
(
δ

δxi
,
δ

δxj
)(x, y) (5.4)

tanımlanabilir. gF ∗ simetrik Finsler tensör alanı olur. Ayrıca gF ∗ , (TM ′)H Finsler vektör

demeti üzerinde Lorentz metrik olarak düşünülebilir. Diğer taraftan ∀X,Y ∈ Γ(TM ′)

G : Γ(TM ′)× Γ(TM ′)→ =(M ′),
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G(X,Y ) = GH(X,Y ) +GV(X,Y ) (5.5)

tanımlayalım. Burada TM ′ = (TM ′)H⊕ (TM ′)V şeklindedir. Açık olarak G, (0, 2) tipinde

simetrik bir tensör alanı olur. Ayrıca G, M ′ üzerinde non-dejenere ve sabit indekslidir. M ′

üzerinde G yarı-Riemann metriğinin indeksi 2 dir. Böylece

G = gF
∗

ij dx
i ⊗ dxj + gF

∗
ij δy

i ⊗ δyj = GH +GV (5.6)

yazılır. Burada gF ∗ Lorentz Finsler metriğidir. Yatay vektör demeti (M ′)h üzerinde GH ve

dikey vektör demeti (M ′)v üzerinde GV Lorentz metrik olarak düşünülebilir.

Tanım 5.1.1. F 2n+1 = (M,M ′, F ∗) indeksi 1 olan yarı Finsler manifoldu olmak üzere

(φH, ξH, ηH) ve (φV , ξV , ηV) hemen hemen değme Finsler yapılar olsun. GH(ξH, ξH) =

GV(ξV , ξV) = −1, yani ξH ve ξV time-like vektörler olmak üzere G, M ′ üzerinde yarı-

Finsler metriği ise

G(φX, φY ) = GH(φXH, φY H) +GV(φXV , φY V), (5.7)

GV(φXV , φY V) = GV(XV , Y V) + ηV(XV)ηV(Y V),

GH(φXH, φY H) = GH(XH, Y H) + ηH(XH)ηH(Y H),

ηH(XH) = −GH(XH, ξH), ηV(XV) = −GV(XV , ξV) (5.8)

eşitlikleri vardır. Böylece (φH, ξH, ηH, GH), (M ′)h üzerinde hemen hemen değme Lorentz

Finsler yapı ve (φV , ξV , ηV , GV) ise (M ′)v üzerinde hemen hemen değme Lorentz Finsler

yapı olarak adlandırılır.

(TM ′)H nin {EH1 , ..., EHn , φEH1 , ..., φEHn , ξH} lokal φH- bazını ele alalım. (M ′)h üzerinde

GH Lorentz metriği olduğundan

GH(ξH, ξH) = ε0 = −1,

GH(EHi , E
H
i ) = εi = +1,

GH(EHi , E
H
j ) = δij

eşitlikleri yazılır. ξH time-like vektör ise diğer tüm EHi , (1 ≤ i ≤ 2n), vektörleri space-like

olur.
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Şimdi (TM ′)V nin {EV1 , ..., EVn , φEV1 , ..., φEVn , ξV} lokal φV - bazını ele alalım. (M ′)v üz-

erinde GV Lorentz metriği olduğundan

GV(ξV , ξV) = ε0 = −1

GV(EVi , E
V
i ) = εi = +1

GV(EVi , E
V
j ) = δij

eşitlikleri yazılır. ξV time-like vektör ise diğer tüm EVi , (1 ≤ i ≤ 2n),vektörleri space-like

olur. Böylece (TM ′) in φ- bazı {E1, ..., E2n, ξ} = {EH1 +EV1 , ..., E
H
2n+EV2n, ξ

H+ξV} şeklinde

ifade edilir.

Sonuc. 5.1.2. (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV), sırasıyla, (M ′)h ve (M ′)v Finsler

vektör demetleri üzerinde hemen hemen değme Lorentz Finsler yapılar olsunlar. (5.7) ve

(5.8) eşitliklerinden

GV(φXV , Y V) = −GV(XV , φY V),

GH(φXH, Y H) = −GH(XH, φY H). (5.9)

GV(φXV , φY V) = −GV(φ2XV , Y V),

GH(φXH, φY H) = −GH(φ2XH, Y H) (5.10)

ifadeleri elde edilir. Ayrıca ikinci temel form

Ω(XV , Y V) = GV(XV , φY V),

Ω(XH, Y H) = GH(XH, φY H) (5.11)

eşitlikleri ile verilir (Sinha ve Yadav, 1991).

Önerme 5.1.3. Yukarıda tanımlanan ikinci temel form

Ω(φXH, φY H) = Ω(XH, Y H),Ω(φXV , φY V) = Ω(XV , Y V) (5.12)

ve

Ω(XH, Y H) = −Ω(Y H, XH),Ω(XV , Y V) = −Ω(Y V , XV) (5.13)

eşitliklerini sağlar (Sinha ve Yadav, 1991).
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Önerme 5.1.4. ∇, M ′ üzerinde Finsler koneksiyonu ve Ω ikinci temel form olmak üzere

Ω(X,Y ) = dη(X,Y ), (5.14)

Ω(XH, Y H) = (∇HXη)(Y H)− (∇HY η)(XH) + η(T (XH, Y H)),

Ω(XV , Y V) = (∇VXη)(Y V)− (∇VY η)(XV) + η(T (XV , Y V)) (5.15)

eşitlikleri sağlansın. Böylece hemen hemen değme Lorentz Finsler yapı hemen hemen

Sasakian Lorentz Finsler yapı olarak adlandırılır. (M ′)h ve (M ′)v üzerinde sırasıyla

(φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) yapıları hemen hemen Sasakian Lorentz Finsler

yapılar olarak adlandırılır.

Teorem 5.1.5. Ω ikinci temel form ve∇ torsiyonsuz Lorentz Sasakian Finsler koneksiyonu

olmak üzere

Ω(X,Y ) = (∇Xη)Y − (∇Y η)X,

Ω(XH, Y H) = (∇HXη)Y H − (∇HY η)XH, (5.16)

Ω(XV , Y V) = (∇VXη)Y V − (∇VY η)XV

eşitlikleri sağlanır.

İspat. (5.1.4) ve (5.15) eşitliklerinden (5.16) elde edilir.

Tanım 5.1.6. η Killing vektör alanı, yani

(∇HXη)(Y H) + (∇HY η)(XH) = 0,

(∇VXη)(Y V) + (∇VY η)(XV) = 0 (5.17)

ise M ′ üzerinde hemen hemen Sasakian Lorentz Finsler yapı Sasakian Lorentz Finsler

yapı olarak adlandırılır. M ′ üzerinde ∇ torsiyonsuz Finsler koneksiyonu Sasakian Finsler

koneksiyonu olarak adlandırılır (Sinha ve Yadav, 1991).

Teorem 5.1.7. M ′ üzerinde Sasakian Lorentz Finsler yapı ile birlikte ∇ torsiyonsuz

Finsler koneksiyonu ve Ω ikinci temel form olsun. Böylece

Ω(XH, Y H) = 2(∇HXη)(Y H) = −2(∇HY η)XH,

Ω(XV , Y V) = 2(∇VXη)(Y V) = −2(∇VY η)XV (5.18)
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eşitlikleri sağlanır.

(5.12) ve (5.15) ifadelerinden dη(X,Y ) = G(X,φY ) bulunur. Böylece

dηH(XH, Y H) = GH(XH, φY H) = Ω(XH, Y H), (5.19)

dηV(XV , Y V) = GV(XV , φY V) = Ω(XV , Y V) (5.20)

eşitlikleri elde edilir.

5.2. Yarı Finsler Manifoldları Üzerinde Değme Lorentz Yapıların İntegral-

lenebilir Tensör Alanları

F 2n+1 = (M,M ′, F ∗) indeksi 1 olan Finsler manifoldu olsun. (M ′)h ve (M ′)v üz-

erinde (φH, ξH, ηH) ve (φV , ξV , ηV) yapılarının integrallenebilir tensör alanı, ∀ξH, XH, Y H ∈

(TM ′)H ve ∀ξV , XV , Y V ∈ (TM ′)V için aşağıdaki gibidir:

NH(X,Y ) = [φXH, φY H]−φ[φXH, Y H]−φ[XH, φY H] +φ2[XH, Y H] + dηH(XH, Y H)ξH,

NV(X,Y ) = [φXV , φY V ]− φ[φXV , Y V ]− φ[XV , φY V ] + φ2[XV , Y V ] + dηV(XV , Y V)ξV .

Ayrıca ∀ξH, XH, Y H ∈ (TM ′)H ve ∀ξV , XV , Y V ∈ (TM ′)V için N (1), N (2), N (3) ve N (4)

tensör alanı aşağıdaki gibidir.

N (1)(XH, Y H) = Nφ(XH, Y H) + dηH(XH, Y H)ξH, (5.21)

N (2)(XH, Y H) = (LHφXη
H)(Y H)− (LHφY η

H)(XH),

N (3)(XH) = (LHξ φ)(XH), N (4)(XH) = (LHξ η
H)(XH)

ve

N (1)(XV , Y V) = Nφ(XV , Y V) + dηV(XV , Y V)ξV , (5.22)

N (2)(XV , Y V) = (LVφXη
V)(Y V)− (LVφY η

V)(XV),

N (3)(XV) = (LVξ φ)(XV), N (4)(XV) = (LVξ η
V)(XV).

Hemen hemen değme Finsler yapının normal olması için gerek ve yeter şart yukarıda tanım-

lanan dört tensör alanının sıfır olmasıdır.
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Yardımcı Teorem 5.2.1. Eğer N (1) = 0 ise N (2) = N (3) = N (4) = 0 olur (Yalınız ve

Çalışkan, 2013).

Önerme 5.2.2. (M ′)h ve (M ′)v Finsler vektör demetleri üzerinde (φH, ξH, ηH) ve

(φV , ξV , ηV) hemen hemen değme Finsler yapılarının normal olması için gerek ve yeter

şart

NHφ + dηH ⊗ ξH = 0,

NVφ + dηV ⊗ ξV = 0 (5.23)

eşitliklerinin sağlanmasıdır.

F 2n+1 = (M,M ′, F ∗) Lorentz Finsler manifoldu olmak üzere (M ′)h ve (M ′)v üzerinde

(φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) yapıları hemen hemen değme Lorentz yapılar olsunlar.

Böylece Finsler vektör demetleri üzerinde GH ve GV metrikleri Lorentz metrik olarak

düşünülebilir. ξH ve ξV vektör alanları GH ve GV metriklerine göre Killing vektör alanları

ise (M ′)h ve (M ′)v üzerinde değme Lorentz Finsler yapıları, K-değme Lorentz Finsler

yapılar olarak adlandırılır. (M ′)h ve (M ′)v ise K-değme Lorentz Finsler vektör demetleri

olarak adlandırılır.

Yardımcı Teorem 5.2.3. (M ′)h ve (M ′)v üzerinde, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

yapıları değme Lorentz Finsler yapılar olsunlar. Böylece N (2) = 0 ve N (4) = 0 olur. Ayrıca

N (3) = 0 eşitliğinin sağlanması için gerek ve yeter şart GH ve GV metriklerine göre ξH ve

ξV vektör alanlarının Killing vektör alanı olmasıdır.

İspat. (5.12) ve (5.19) eşitliklerinden

dηH(φXH, φY H) = Ω(φXH, φY H) = GH(φXH, φ2Y H) = GH(XH, φY H) = dηH(XH, Y H)

bulunur. Buradan dηH(φXH, Y H)+dηH(XH, φY H) = 0 elde edilir. Böylece N (2) = 0 olur.

Diğer taraftan

0 = GH(XH, φξH) = dηH(XH, ξH) = XHηH(ξH)− ξHηH(XH)− ηH[XH, ξH]

olur ve

ξHηH(XH)− ηH([ξH, XH]) = 0
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elde edilir. Böylece (LHξ η
H) = 0 yani N (4) = 0 olur. Buradan

(LHξ G
H)(XH, ξH) = −ξH(ηH(XH)) + ηH[ξH, XH] = −(LHξ η

H)XH = 0

yani, (LHξ dη
H) = 0 bulunur. Sonuç olarak

(LHξ dη
H)(XH, Y H) = (LHξ Ω)(XH, Y H) = 0

olur ve buradan

0 = ξHGH(XH, φY H)−GH([ξH, XH], φY H)−GH(XH, φ[ξH, Y H])

= (LHξ G
H)(XH, φY H) +GH(XH, (LHξ φ)Y H)

= (LHξ G
H)(XH, φY H) +GH(XH, N (3)(Y H))

elde edilir. Yani N (3) = 0 eşitliğinin sağlanması için gerek ve yeter şart ξH ın Killing

vektör alanı olmasıdır. Benzer olarak N (2) = 0 ve N (4) = 0 ifadelerini ele alırsak, N (3) = 0

eşitliğinin sağlanması için gerek ve yeter şart ξV nin Killing vektör alanı olmasıdır.

Yardımcı Teorem 5.2.4. (M ′)h ve (M ′)v üzerinde, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

değme Lorentz Finsler yapılar olsunlar. Böylece ∀XH, Y H, ZH ∈ (TM ′)H ve

∀XV , Y V , ZV ∈ (TM ′)V için

2GH((∇HXφ)Y H, ZH) = dΩ(XH, φY H, φZH)− dΩ(XH, Y H, ZH) +GH(N (1)(Y H, ZH), φXH)

− dηH(φY H, XH)ηH(ZH) + dηH(φZH, XH)ηH(Y H)−N (2)(Y H, ZH)ηH(XH) (5.24)

ve

2GV((∇VXφ)Y V , ZV) = dΩ(XV , φY V , φZV)− dΩ(XV , Y V , ZV) +GV(N (1)(Y V , ZV), φXV)

− dηV(φY V , XV)ηV(ZV) + dηV(φZV , XV)ηV(Y V)−N (2)(Y V , ZV)ηV(XV) (5.25)

eşitlikleri sağlanır.

İspat. ∇ bir Finsler koneksiyonu olmak üzere

2GH(∇HXY H, ZH) = GH([XH, Y H], ZH) +GH([ZH, XH], Y H)−GH([Y H, ZH], XH)

+XHGH(Y H, ZH) + Y HGH(XH, ZH)− ZHGH(XH, Y H), (5.26)
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2GV(∇VXY V , ZV) = GV([XV , Y V ], ZV) +GV([ZV , XV ], Y V)−GV([Y V , ZV ], XV)

+XVGV(Y V , ZV) + Y VGV(XV , ZV)− ZVGV(XV , Y V) (5.27)

olur. Ayrıca

dΩ(XH, Y H, ZH) = XHΩ(Y H, ZH) + Y HΩ(ZH, XH) + ZHΩ(XH, Y H) (5.28)

− Ω([XH, Y H], ZH)− Ω([ZH, XH], Y H)− Ω([Y H, ZH], XH),

dΩ(XV , Y V , ZV) = XVΩ(Y V , ZV) + Y VΩ(ZV , XV) + ZVΩ(XV , Y V) (5.29)

− Ω([XV , Y V ], ZV)− Ω([ZV , XV ], Y V)− Ω([Y V , ZV ], XV)

yazılır. (5.27) eşitliğinden

2GV((∇VXφ)Y V , ZV) = φY VGV(XV , ZV)− ZVΩ(XV , Y V) +GV([XV , φY V ], ZV)

+ Ω([ZV , XV ], Y V)−GV([φY V , ZV ], XV) + Y VΩ(XV , ZV)− φZVGV(XV , Y V)

+ Ω([XV , Y V ], ZV) +GV([φZV , XV ], Y V)−GV([Y V , φZV ], XV) (5.30)

yazılır ve (5.30) ifadesinden

dΩ(XV , φY V , φZV) = XVΩ(Y V , ZV) + φY VGV(ZV , XV)− φY V(ηV(ZV)ηV(XV))

− φZV(ηV(Y V)ηV(XV))− φZVGV(XV , Y V) +GV([XV , φY V ], ZV) + ηV [XV , φY V ]ηV(ZV)

+GV([φZV , XV ], Y V) + ηV(Y V)ηV [φZV , XV ]− Ω([φY V , φZV ], XV) (5.31)

hesaplanır. Böylece

GV(N (1)(Y V , ZV), φXV) = −Ω([Y V , ZV ], XV) + Ω([φY V , φZV ], XV)−GV([φY V , ZV ], XV)

− ηV [φY,Z]η(X)−GV(([Y V , φZV ]XV)− ηV [Y V , φZV ]ηV(XV)) (5.32)

olur ve N (2)(XV , Y V) = (LVφXη
V)(Y V)− (LVφY η

V)(XV) olmasından

N (2)(Y V , ZV)ηV(XV) = φY V(ηV(ZV))−φZV(ηV(Y V))−ηV [φY V , ZV ]−ηV [Y V , φZV ]ηV(XV)

(5.33)

bulunur. Benzer işlemler yapılarak ve (5.29), (5.31), (5.32) ve (5.33) eşitlikleri kullanılarak

(5.25) eşitliği elde edilir.
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(5.21), (5.22), (5.12), (5.13), (5.26) ve (5.28) ifadeleri kullanılarak

dΩ(XH, φY H, φZH)− dΩ(XH, Y H, ZH) +GH(N (1)(Y H, ZH), φXH)

−N (2)(Y H, ZH)ηH(XH)− dηH(φY H, XH)ηH(ZH) + dηH(φZH, XH)ηH(Y H)

= φY HGH(ZH, XH)− φZHGH(XH, Y H) +GH([XH, φY H], ZH)

+GH([φZH, XH], Y H)− Ω([φY H, φZH], XH)

+ Y HΩ(XH, ZH)− ZHΩ(XH, Y H)

+ Ω([XH, Y H], ZH) + Ω([ZH, XH], Y H) + Ω([Y H, ZH], XH)

+ Ω([φY H, φZH], XH)− Ω([Y H, ZH], XH)

−GH([φY H, ZH], XH)−GH([Y H, φZH], XH)

= 2GH((∇HXφ)Y H, ZH)

bulunur.

Yardımcı Teorem 5.2.5. Ω = dη ve N (2) = 0 ile birlikte (M ′)h ve (M ′)v üz-

erinde (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) değme Lorentz Finsler yapılar olmak üzere,

∀XH, Y H, ZH ∈ (TM ′)H, ∀XV , Y V , ZV ∈ (TM ′)V için

(a)2GH((∇HXφ)Y H, ZH) = GH(N (1)(Y H, ZH), φXH)− dηH(φY H, XH)

ηH(ZH) + dηH(φZH, XH)ηH(Y H), (5.34)

2GV((∇VXφ)Y V , ZV) = GV(N (1)(Y V , ZV), φXV)− dηV(φY V , XV)

ηV(ZV) + dηV(φZV , XV)ηV(Y V) (5.35)

(b)∇Hξ φ = 0, ∇Vξ φ = 0 (5.36)

eşitlikleri sağlanır.

İspat. (a)(5.34) ve (5.35) ifadelerinden ispat açıktır.

(b) N (2) = 0 olmasından

N (2) = (XH, ξH) = ηH[φXH, ξH] = −dηH(φXH, ξH) = 0
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bulunur. Böylece (5.34) ifadesinden ∀XH, Y H, ZH ∈ (TM ′)H için

GH((∇Hξ φ)XH, ZH) = 0

yani, ∇Hξ φ = 0 olur. Benzer olarak (5.35) yardımıyla ∀XV , ξV , ZV ∈ (TM ′)V için

GV((∇Vξ φ)XV , ZV) = 0

yani, ∇Vξ φ = 0 olur.

Önerme 5.2.6. (M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

değme Lorentz Finsler yapılar olsunlar. Bu yapıların K-değme olmaları için gerek ve yeter

şart N (3) = 0 olmasıdır.

Sonuc. 5.2.7. (M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

Sasakian Lorentz yapılar, K-değme Lorentz Finsler yapılardır.

Teorem 5.2.8. (M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

değme Lorentz Finsler yapılar olmak üzere bu yapıların K-değme Lorentz Finsler yapılar

olması için gerek ve yeter şart

∇HXξH =
1

2
φXH,

∇VXξV =
1

2
φXV (5.37)

eşitliklerinin sağlanmasıdır.

İspat. (M ′)h ve (M ′)v üzerinde sırasıyla (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) K-değme

Lorentz Finsler yapılar olsunlar. GH ve GV metriklerine göre ξH ve ξV Killing vektör

alanıları olmak üzere

LHξ G
H = LVξ G

V = 0

eşitliği sağlanır. Yani

GH(∇HXξH, Y H) = −GH(XH,∇HY ξH), GV(∇VXξV , Y V) = −GV(XV ,∇VY ξV) (5.38)

olur. Ayrıca Kozsul formülünden

2GH(∇HXξH, Y H) = ξHGH(XH, Y H) + Y H(ηH(XH))−XH(ηH(Y H))

− ηH[Y H, XH] +GH([XH, ξH], Y H) +GH([Y H, ξH], XH) (5.39)
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elde edilir. Benzer şekilde

2GH(∇HY ξH, XH) = ξHGH(Y H, XH)− Y H(ηH(XH)) +XH(ηH(Y H))

− ηH[XH, Y H] +GH([Y H, ξH], XH) +GH([XH, ξH], Y H) (5.40)

eşitliği bulunur. (5.39) ve (5.40) eşitliklerinden

GH(∇HXξH, Y H)−GH(∇HY ξH, XH) = −dηH(XH, Y H)

olur. ∀XH, Y H, ξH ∈ (TM ′)H için (5.32) ve (5.38) ifadelerinden

GH(∇HXξH, Y H) = GH(
1

2
φXH, Y H)

bulunur, yani ∇HXξH = 1
2φX

H olur.

Benzer olarak, ∀XV , Y V , ξV ∈ (TM ′)V için GV metriğine göre ξV Killing vektör alanı

olduğundan, Kozsul formülü yardımıyla

GV(∇VXξV , Y V) = GV(
1

2
φXV , Y V)

elde edilir. Yani

∇VXξV =
1

2
φXV

olur.

ξH ın Killing vektör alanı olması için gerek ve yeter şart N (3) = 0 olmasıdır. Diğer taraftan

(5.12) ve (5.13) göz önüne alınırsa ve LξHηH = 0 olmasından

0 = (LHξ dη
H)(XH, Y H) = ξH(dηH(XH, Y H))− dηH([ξH, XH], Y H)− dηH(XH, [ξH, Y H])

= (LHξ G
H)(XH, φY H) +GH(XH, (LHξ φ)Y H)

olur ve LHξ G
H = 0 eşitliğinin sağlanması için gerek ve yeter şart LHξ φ = 0 eşitliğinin

sağlanmasıdır. Böylece

h =
1

2
LHξ φ =

1

2
N (3) (5.41)

şeklinde bir tensör ortaya çıkar. Bu tensör değme Lorentz Finsler yapıların geometrisinin

tanımlanmasında önemli bir rol oynar. Ayrıca (5.34) ve (5.35) ifadeleri kullanılarak, ko-
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varyant türev operatörüne ait aşağıdaki özellikler ispatlanabilir:

∇Hξ φ = 0,∇Vξ φ = 0, (5.42)

∇HXξH =
1

2
φXH − φhXH,∇VXξV =

1

2
φXV − φhXV . (5.43)

Riemann durumda (5.42) ve (5.43) kullanılarak, h tensörünün self-adjoint olduğu, yani

hφ = −φh ve hξ = trh = 0 olduğu ispatlanabilir. Ayrıca τ = LξG alınırsa

τ(XH, Y H) = 2GH(XH, hφY H), τ(XV , Y V) = 2GV(XV , hφY V) (5.44)

elde edilir.

Standart ortonormalleştirme işlemi ile birlikte her bir ((M ′)h, φH, ξH, ηH, GH) (hemen

hemen) değme Lorentz Finsler manifoldu φH- bazı olarak adlandırılan özel bir çeşit lokal

yarı ortonormal baza sahiptir. Böyle bir baz {EH1 , ..., EHn , φEH1 , ..., φEHn , ξH} formundadır.

Benzer şekilde ((M ′)v, φV , ξV , ηV , GV) (hemen hemen) değme Lorentz Finsler manifoldu

ise φV - bazı olarak adlandırılan özel bir çeşit lokal yarı ortonormal baza sahiptir. Böyle bir

baz {EV1 , ..., EVn , φEV1 , ..., φEVn , ξV} formundadır.

Yardımcı Teorem 5.2.9. ((M ′)h, φH, ξH, ηH, GH) ve ((M ′)v, φV , ξV , ηV , GV) değme

Lorentz Finsler yapılar olmak üzere

divξH = divηH = 0,

divξV = divηV = 0

olur.
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İspat. ∇Hξ ξH = 0 ve hφ = −φh olduğundan, (5.43) kullanılarak

divξH = tr∇ξH =

n∑
i=1

GH(∇HEi
ξH, EHi ) +

n∑
i=1

GH(∇HφEi
ξH, φEHi )

=

n∑
i=1

GH(
1

2
φEHi − φhEHi , EHi ) +

n∑
i=1

GH(
1

2
φ2EHi − φh(φEHi ), φEi)

= −
n∑
i=1

GH(φhEHi , E
H
i ) +

n∑
i=1

1

2
GH(−EHi , φEHi )

+

n∑
i=1

GH(−φh(φEHi ), φEHi ) +

n∑
i=1

1

2
GH((φEHi ), EHi )

=

n∑
i=1

GH(hEHi , φE
H
i ) +

n∑
i=1

GH(hφ2EHi , φE
H
i )

=

n∑
i=1

GH(hEHi , φE
H
i )−

n∑
i=1

GH(hEHi , φE
H
i ) = 0,

divηH = −tr∇ηH = divξH = 0

elde edilir. Benzer işlem adımları kullanılarak

divξV = tr∇ξV = 0

olduğu görülür.

5.3. Yarı Finsler Manifoldları Üzerinde Sasakian Lorentz Yapılar

Tanım 5.3.1. (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) değme Lorentz Finsler yapıları

(i) Normal, yani [φH, φH] + dηH ⊗ ξH = 0, [φV , φV ] + dηV ⊗ ξV = 0 ise Sasakian olarak

adlandırılır.

(ii) h = 0, yani ξH ve ξV , sırasıyla, GH ve GV Lorentz metriklerine göre Killing vektör

alanı ise K-değme olarak adlandırılır.

Teorem 5.3.2. (M ′)h ve (M ′)v üzerinde (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) hemen

hemen değme Lorentz Finsler yapıların Sasakian yapı olması için gerek ve yeter şart

(∇HXφ)Y H =
1

2
[GH(XH, Y H)ξH + ηH(Y H)XH], (5.45)

(∇VXφ)Y V =
1

2
[GV(XV , Y V)ξV + ηV(Y V)XV ] (5.46)

olmasıdır.
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İspat. Yapı normal ise Ω = dη ve N (1) = N (2) = 0 olur. Böylece (5.34) yardımıyla

2GH((∇HXφ)Y H, ZH) = −GH(XH, Y H)ηH(ZH) +GH(XH, ZH)ηH(Y H)

= GH(XH, Y H)GH(ZH, ξH) +GH(ηH(Y H)XH, ZH)

= GH(GH(XH, Y H)ξH + ηH(Y H)XH, ZH)

elde edilir. Buradan ∀XH, Y H, ξH ∈ (TM ′)H için

(∇HXφ)Y H =
1

2
(GH(XH, Y H)ξH + ηH(Y H)XH)

bulunur. Benzer olarak (5.35) yardımıyla ∀XV , Y V , ξV ∈ (TM ′)V için

(∇VXφ)Y V =
1

2
(GV(XV , Y V)ξV + ηV(Y V)XV)

olur. Diğer taraftan yapı (5.45) ve (5.46) eşitliklerini sağlasın. Böylece (5.45) eşitliğinde

Y H = ξH alınırsa

(∇HXφ)ξH =
1

2
(GH(XH, ξH)ξH +XH),

−φ(∇HXξH) =
1

2
(−ηH(XH)ξH +XH),

−φ2(∇HXξH) =
1

2
(φXH),

∇HXξH =
1

2
φXH

elde edilir. Benzer olarak (5.46) eşitliğinde Y V = ξV alınırsa

∇VXξV =
1

2
φXV
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bulunur. ξ skew-simetrik olduğundan ξH ve ξV nin Killing vektör alanı olduğunu söyleye-

biliriz. Ayrıca

Nφ(XH, Y H) + dηH(XH, Y H)ξH = −φ(∇HXφY H − φ∇HXY H)

+ φ(∇HY φXH − φ∇HY XH) + (∇HφXφY H − φ∇HφXY H)

− (∇HφY φXH − φ∇HφYXH) + dηH(XH, Y H)ξH

= −φ(∇HXφ)Y H + φ(∇HY φ)XH + (∇HφXφ)Y H − (∇HφY φ)XH

=
1

2
{−φ(GH(XH, Y H)ξH + ηH(Y H)XH) + φ(GH(Y H, XH)ξH + ηH(XH)Y H)

+GH(φXH, Y H)ξH + ηH(Y H)φXH −GH(φY H, XH)ξH

+ ηH(XH)φY H}+ dηH(XH, Y H)ξH

= −GH(XH, φY H)ξH + dηH(XH, Y H)ξH

= −dηH(XH, Y H)ξH + dηH(XH, Y H)ξH

= 0

elde edilir. Benzer şekilde

NVφ + dηV ⊗ ξV = 0

bulunur ve yapı Sasakian Lorentz yapı olur.

Teorem 5.3.3. (M ′)h ve (M ′)v üzerinde (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) yapılarının

K-değme Lorentz yapılar olması için gerek ve yeter şart aşağıda verilen iki durumun sağlan-

masıdır:

(1)(M ′)h üzerinde ξH, GH metriğine göre Killing vektör alanı ve (M ′)v üzerinde ξV , GV

metriğine göre Killing vektör alanıdır.

(2) ξH vektörünü içeren düzlemsel kesit için (M ′)h nin her noktasında flag eğriliği −1
4 ve

ξV vektörünü içeren düzlemsel kesit için (M ′)v nin her noktasında flag eğriliği −1
4 olur.
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İspat. (M ′)h üzerinde (φH, ξH, ηH, GH), K-değme Lorentz yapı olsun. (3.45) den, XH, ξH

a ortogonal birim vektör alanı olmak üzere

GH(R(XH, ξH)ξH, XH) = GH(∇HX∇Hξ ξH −∇Hξ ∇HXξH −∇H[XH,ξH]ξ
H, XH)

= GH(−1

2
(∇Hξ (φXH))− 1

4
(φ2XH) +

1

2
φ(∇Hξ XH), XH)

= GH(−1

2
(∇Hξ φ)XH) +

1

4
GH(XH, XH)− 1

4
GH(ηH(XH)ξH, XH)

=
1

4
{GH(XH, XH)− ηH(XH)GH(XH, ξH)}

=
1

4
GH(XH, XH) =

1

4

elde edilir. ξH birim time-like vektör alanı olduğundan XH birim space-like vektör alanı

olmak zorundadır. Böylece GH(XH, XH) = 1 ve GH(XH, ξH) = 0 olur. Benzer işlem

adımları yardımıyla

GV(R(XV , ξV)ξV , XV) =
1

4

eşitliği yazılır. Böylece

K(XH, ξH) =
GH(R(XH, ξH)ξH, XH)

−GH(XH, XH)
= −1

4

ve

K(XV , ξV) =
GV(R(XV , ξV)ξV , XV)

−GV(XV , XV)
= −1

4

elde edilir.

Diğer taraftan ∀XH, Y H ∈ (TM ′)H için (M ′)h üzerinde ξH, GH metriğine göre Killing

vektör alanı olduğundan

dηH(XH, Y H) = −GH(∇HXξH, Y H) +GH(∇HY ξH, XH)

= 2GH(∇HY ξH, XH)

= 2GH(
1

2
φY H, XH) = GH(XH, φY H)

eşitliği yazılır. Sonuç olarak, (φH, ξH, ηH, GH), K-değme Lorentz yapı olur.

Benzer olarak, (M ′)v üzerinde ξV , GV metriğine göre Killing vektör alanı olsun. Böylece

dηV(XV , Y V) = GV(XV , φY V)

bulunur ve (φV , ξV , ηV , GV) K-değme Lorentz yapı olur.
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Teorem 5.3.4. (M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

Sasakian Lorentz yapılar olsunlar. ∇ Finsler koneksiyonunun Riemann eğriliği

R(XH, Y H)ξH =
1

4
{ηH(Y H)XH − ηH(XH)Y H}, (5.47)

R(XV , Y V)ξV =
1

4
{ηV(Y V)XV − ηV(XV)Y V} (5.48)

eşitlikleri ile verilir.

İspat. (M ′)h üzerinde (φH, ξH, ηH, GH) Sasakian Lorentz yapı olsun. (3.45) ifadesinden

R(XH, Y H)ξH = ∇HX∇HY ξH −∇HY ∇HXξH −∇[XH,YH]ξ
H

= ∇HX(
1

2
φY H)−∇HY (

1

2
φXH)−∇∇HXYH−∇HY XHξ

H

=
1

2
(∇HXφH)Y H − 1

2
(∇HY φH)XH

=
1

4
(ηH(Y H)XH − ηH(XH)Y H)

bulunur.

(M ′)v üzerinde (φV , ξV , ηV , GV) Sasakian Lorentz yapı olsun. Böylece (3.45) ifadesinden

(5.48) elde edilir.

Teorem 5.3.5. (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) Sasakian Lorentz Finsler yapılar

olmak üzere

R(XH, Y H)φZH = φR(XH, Y H)ZH +
1

4
{GH(Y H, ZH)φXH (5.49)

−GH(φXH, ZH)Y H +GH(φY H, ZH)XH −GH(XH, ZH)φY H},

R(XV , Y V)φZV = φR(XV , Y V)ZV +
1

4
{GV(Y V , ZV)φXV (5.50)

−GV(φXV , ZV)Y V +GV(φY V , ZV)XV −GV(XV , ZV)φY V}

eşitlikleri vardır.
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İspat. (3.45) ve (5.45) yardımıyla

R(XH, Y H)φZH =
1

2
∇HX(GH(Y H, ZH)ξH) +

1

2
∇HX(ηH(ZH)Y H) +

1

2
{GH(XH,∇HY ZH)ξH

+ ηH(∇HY ZH)XH}+ φR(XH, Y H)ZH − 1

2
∇HY (GH(XH, ZH)ξH)− 1

2
∇HY (η(Z)HXH)

− 1

2
GH(∇HXZH, Y H)ξH − 1

2
(ηH(∇HXZH))Y H − 1

2
GH([XH, Y H], ZH)ξH − 1

2
ηH(ZH)[XH, Y H]

= φR(XH, Y H)ZH − 1

4
(GH(XH, ZH)φY H −GH(Y H, ZH)φXH)

− 1

2
((∇HY ηH)ZHXH − (∇HXηH)ZHY H

= φR(XH, Y H)ZH − 1

4
{GH(XH, ZH)φY H −GH(Y H, ZH)φXH

+ Ω(Y H, ZH)XH − Ω(XH, ZH)Y H

= φR(XH, Y H)ZH − 1

4
(GH(XH, ZH)φY H −GH(Y H, ZH)φXH

−GH(φY H, ZH)XH +GH(φXH, ZH)Y H)

elde edilir. Benzer şekilde (3.45) ve (5.46) ifadelerinden yararlanılarak (5.50) elde edilir.

Sonuc. 5.3.6. (5.49) ve (5.50) ifadelerinden

R(XH, Y H)ZH = −φR(XH, Y H)φZH (5.51)

+
1

4
{GH(XH, ZH)Y H +GH(φY H, ZH)φXH −GH(Y H, ZH)XH −GH(φXH, ZH)φY H},

R(XV , Y V)ZV = −φR(XV , Y V)φZV (5.52)

+
1

4
{GV(XV , ZV)Y V +GV(φY V , ZV)φXV −GV(Y V , ZV)XV −GV(φXV , ZV)φY V},

GH(R(φXH, φY H)φZH, φWH) = GH(R(XH, Y H)ZH,WH)

+
1

4
{−ηH(Y H)ηH(ZH)GH(XH,WH)− ηH(XH)ηH(WH)GH(Y H, ZH)

+ ηH(Y H)ηH(WH)GH(XH, ZH) + ηH(XH)ηH(ZH)GH(Y H,WH)}, (5.53)

GV(R(φXV , φY V)φZV , φWV) = GV(R(XV , Y V)ZV ,WV)

+
1

4
{−ηV(Y V)ηV(ZV)GV(XV ,WV)− ηV(XV)ηV(WV)GV(Y V , ZV)

+ ηV(Y V)ηV(WV)GV(XV , ZV) + ηV(XV)ηV(ZV)GV(Y V ,WV)} (5.54)
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eşitlikleri elde edilir.

XH ∈ (TM ′)H birim vektörü ξH a ortogonal ise (TM ′)H deki düzlemsel kesit olan

{XH, φXH} yatay φ-kesit olarak adlandırılır. Benzer olarak, XV ∈ (TM ′)V birim vek-

törü ξV a ortogonal ise (TM ′)V deki düzlemsel kesit olan {XV , φXV} dikey φ-kesit olarak

adlandırılır. Böylece yatay flag eğriliği

K∗(XH, φXH) = GH(R(XH, φXH)φXH, XH) (5.55)

şeklinde ifade edilir. Yatay φ-kesitsel eğrilik olarak adlandırılır ve K∗(XH) ile gösterilir.

Dikey flag eğriliği ise

K∗(XV , φXV) = GV(R(XV , φXV)φXV , XV) (5.56)

eşitliği ile ifade edilir ve dikey φ-kesitsel eğrilik olarak adlandırılır, K∗(XV) ile gösterilir.

Önerme 5.3.7. (M ′)h üzerinde (φH, ξH, ηH, GH), K-değme Lorentz Finsler yapı olsun.

(M ′)h lokal olarak simetrik ise Sasakian Lorentz Finsler yapının sabit eğriliği −1
4 olur.

İspat. ∀XH, Y H, ZH, ξH ∈ (TM ′)H için, (5.45) ve (5.47) eşitlikleri yardımıyla

(∇HZR)(XH, Y H, ξH) = −1

4
{GH(ZH, Y H)XH −GH(ZH, XH)Y H} −R(XH, Y H, ZH)

(5.57)

elde edilir. (M ′)h lokal olarak simetrik olduğundan (∇HZR) = 0 olur. (5.57) ifadesinden

R(XH, Y H, ZH) = −1

4
{GH(Y H, ZH)XH −GH(XH, ZH)Y H} (5.58)

bulunur. Aynı anda time-like ya da space-like olan iki vektör birbirine dik olamaz. Bu

nedenle {XH, Y H} ortonormal çifti için, XH time-like vektör olduğunda Y H space-like

olmalıdır. Böylece

K(XH, Y H) =
GH(R(XH, Y H)Y H, XH)

GH(XH, XH)GH(Y H, Y H)
= −1

4
{G
H(Y H, Y H)GH(XH, XH)

GH(XH, XH)GH(Y H, Y H)
} = −1

4

elde edilir.

Önerme 5.3.8. (M ′)v üzerinde (φV , ξV , ηV , GV) yapısı K-değme Lorentz Finsler yapı

olsun. (M ′)v lokal olarak simetrik ise, Sasakian Lorentz Finsler yapının sabit eğriliği −1
4

olur.
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İspat. ∀XV , Y V , ZV , ξV ∈ (TM ′)V için, (5.46) ve (5.48) eşitlikleri yardımıyla

(∇VZR)(XV , Y V , ξV) = −1

4
{GV(ZV , Y V)XV −GV(ZV , XV)Y V} −R(XV , Y V , ZV) (5.59)

bulunur. (M ′)V lokal olarak simetrik olduğundan (∇VZR) = 0 olur. (5.59) ifadesinden

R(XV , Y V , ZV) = −1

4
{GV(Y V , ZV)XV −GV(XV , ZV)Y V} (5.60)

olur. İki vektör aynı anda time-like yada space-like olur ise bu durumda birbirine dik

olamaz. Bu nedenle {XV , Y V} ortonormal çifti için, XV time-like vektör olduğunda Y V

space-like olmalıdır. Böylece

K(XV , Y V) =
GV(R(XV , Y V)Y V , XV)

GV(XV , XV)GV(Y V , Y V)
= −1

4
{G
V(Y V , Y V)GV(XV , XV)

GV(XV , XV)GV(Y V , Y V)
} = −1

4

elde edilir.

(M ′)h Sasakian Lorentz Finsler manifoldun SH yatay Ricci tensörü, {EH1 , ..., EH2n, ξH},

(TM ′)H nin lokal ortonormal çatısı olmak üzere

SH(XH, Y H) =
2n∑
i=1

GH(R(XH, EHi )EHi , Y
H) +GH(R(XH, ξH)ξH, Y H)

=

2n∑
i=1

GH(R(EHi , X
H)Y H, EHi ) +GH(R(ξH, XH)Y H, ξH) (5.61)

eşitliği ile verilir.

Benzer olarak, (M ′)v Sasakian Lorentz Finsler manifoldun SV dikey Ricci tensörü

{EV1 , ..., EV2n, ξV}, (TM ′)V nin lokal ortonormal çatısı olmak üzere

SV(XV , Y V) =
2n∑
i=1

GV(R(XV , EVi )EVi , Y
V) +GV(R(XV , ξV)ξV , Y V)

=
2n∑
i=1

GV(R(EVi , X
V)Y V , EVi ) +GV(R(ξV , XV)Y V , ξV) (5.62)
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eşitliği ile verilir. Böylece M ′ Lorentz Finsler manifoldun S Ricci tensörü

S(X,Y ) = SH(XH, Y H) + SV(XV , Y V)

=
2n∑
i=1

GH(R(XH, EHi )EHi , Y
H) +GH(R(XH, ξH)ξH, Y H)

+

2n∑
i=1

GV(R(XV , EVi )EVi , Y
V) +GV(R(XV , ξV)ξV , Y V) (5.63)

eşitliği ile verilir.

Önerme 5.3.9. (M ′)h üzerinde (φH, ξH, ηH, GH) değme Lorentz Finsler yapısının K-

değme olması için gerek ve yeter şart

SH(ξH, ξH) =
n

2
(5.64)

olmasıdır.

(M ′)v üzerinde (φV , ξV , ηV , GV) değme Lorentz Finsler yapısınınK-değme olması için gerek

ve yeter şart

SV(ξV , ξV) =
n

2
(5.65)

olmasıdır.

İspat. (5.47) ifadesinden

SH(ξH, ξH) =
2n∑
i=1

GH(R(EHi , ξ
H)ξH, EHi )

=
1

4

2n∑
i=1

GH(ηH(ξH)EHi − ηH(EHi )ξHEHi )

=
1

4

2n∑
i=1

GH(EHi , E
H
i )

=
n

2

bulunur. Benzer şekilde (5.48) ve (5.62) yardımıyla SV(ξV , ξV) = n
2 eşitliği elde edilir.
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Yardımcı Teorem 5.3.10. SH ve SV Sasakian Lorentz Finsler manifoldunun Ricci ten-

sörü olmak üzere

SH(XH, ξH) =
n

2
ηH(XH),

SV(XV , ξV) =
n

2
ηV(XV) (5.66)

eşitlikleri sağlanır.

Örnek 5.3.11. F 3 = (R3, (R3)′, F ∗) bir Lorentz Finsler manifoldu olsun. Burada

(R3)′ = R6\θ nın 6-boyutlu bir C∞ manifold olduğu açıktır. R3 deki {x1, x2, x3} koordinat
sistemi sayesinde (R3)′ de {x1, x2, x3; y1, y2, y3} koordinat sistemi elde edilebilir. (T (R3)′)H

demetinin lokal bazı { δ
δx1
, δ
δx2
, δ
δx3
} ve (T (R3)′)V demetinin lokal bazıda { ∂

∂y1
, ∂
∂y2

, ∂
∂y3
} dir.

Her XH ∈ (T (R3)′)H için XH = XH1
δ
δx1

+ XH2
δ
δx2

+ XH3
δ
δx3

ve her XV ∈ (T (R3)′)V için

XV = XV1
∂
∂y1

+ XV2
∂
∂y2

+ XV3
∂
∂y3

olsun. Böylece her X ∈ (T (R3)′) için X = XHi
δ
δxi

+

XVi
∂
∂yi
, 1 ≤ i ≤ 3 şeklindedir. η ∈ (T ∗(R3)′) 1-formu η = ηHi dx

i + ηVi δyi, 1 ≤ i ≤ 3

olup ηH ∈ (T ∗(R3)′)H ve ηV ∈ (T ∗(R3)′)V için ηH = ηH1 dx
1 + ηH2 dx

2 + ηH3 dx
3 ve ηV =

ηV1 δy1+ηV2 δy2+ηV3 δy3 dir. Sasaki yarı-metrik Finsler tensör alanı G = GH+GV olmak üzere

G = gF
∗

ij dxi ⊗ dxj + gF
∗

ij δyi ⊗ δyj , 1 ≤ i ≤ 3 olup gF ∗ij , (T (R3)′)H ve (T (R3)′)V demetleri

üzerinde Lorentz metriğidir. ((R3)′)h manifoldunun her noktasında lineer bağımsız olan

EH1 =
δ

δx1
, EH2 = x22

δ

δx2
+ x1

δ

δx3
, EH3 = − δ

δx3
= ξH

vektörleri ile ((R3)′)v manifoldunun her noktasında lineer bağımsız olan

EV1 =
∂

∂y1
, EV2 = y22

∂

∂y2
+ y1

∂

∂y3
, EV3 = − ∂

∂y3
= ξV

vektörlerini alalım. GH ve GV Lorentz metrikleri

GH =


1 0 0

0
1−x21
x42

x1
x22

0 x1
x22

−1

 , GV =


1 0 0

0
1−y21
y42

y1
y22

0 y1
y22

−1


şeklinde tanımlı olup GH(EH1 , ξ

H) = GH(EH2 , ξ
H) = GH(EH1 , E

H
2 ) = 0, GH(EH1 , E

H
1 ) =

GH(EH2 , E
H
2 ) = 1, GH(ξH, ξH) = −1 ve GV(EV1 , ξ

V) = GV(EV2 , ξ
V) = GV(EV1 , E

V
2 ) = 0,

GV(EV1 , E
V
1 ) = GV(EV2 , E

V
2 ) = 1, GV(ξV , ξV) = −1 dir. Ayrıca ηH(EH1 ) = −GH(EH1 , ξ

H) =

0, ηH(EH2 ) = −GH(EH2 , ξ
H) = 0, ηH(ξH) = −GH(ξH, ξH) = 1 ve ηV(EV1 ) =

−GV(EV1 , ξ
V) = 0, ηV(EV2 ) = −GV(EV2 , ξ

V) = 0, ηV(ξV) = −GV(ξV , ξV) = 1 dir. Böylece
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her ZH ∈ (T (R3)′)H, ZH = ZHi E
H
i ve ZV ∈ (T (R3)′)V , ZV = ZVi E

V
i , 1 ≤ i ≤ 3, için

ηH(ZH) = ZH3 ve ηV(ZV) = ZV3 olur.

φH ve φV ; (1, 1) tipinde yatay ve dikey tensör alanları aşağıdaki gibi tanımlı olsun.

φH =


0 1

x22
0

−x22 0 0

−x1 0 0

 , φV =


0 1

y22
0

−y22 0 0

−y1 0 0


Böylece

φH(EH1 ) = −EH2 , φH(EH2 ) = EH1 , φ
H(ξH) = 0,

φV(EV1 ) = −EV2 , φV(EV2 ) = EV1 , φ
V(ξV) = 0

olur. Her ZH ∈ (T (R3)′)H ve ZV ∈ (T (R3)′)V için

φH(ZH) = −ZH1 EH2 + ZH2 E
H
1 , φ

V(ZV) = −ZV1 EV2 + ZV2 E
V
1

(φH)2(ZH) = −ZH + ηH(ZH)ξH, (φV)2(ZV) = −ZV + ηV(ZV)ξV

bulunur. Ayrıca her ZH,WH ∈ (T (R3)′)H ve ZV ,WV ∈ (T (R3)′)V için

GH(φZH, φWH) = GH(ZH,WH) + ηH(ZH)ηH(WH)

GV(φZV , φWV) = GV(ZV ,WV) + ηV(ZV)ηV(WV)

dır. Böylece (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) yapıları, sırasıyla, ((R3)′)h ve ((R3)′)v

manifoldları üzerinde birer hemen hemen değme Lorentz metrik Finsler yapılardır. Kozsul

formülü kullanılarak aşağıdaki eşitlikler elde edilir:

∇HE1
ξH = −1

2
EH2 ,∇HE1

EH2 = −1

2
ξH,∇Hξ ξH = 0,∇HE1

EH1 = 0,∇HE2
EH2 = 0

∇Hξ E1
H = −1

2
EH2 ,∇HE2

EH1 = −1

2
ξH,∇Hξ E2

H =
1

2
EH1 ,∇HE2

ξH =
1

2
EH1 .

Bu eşitlikler sayesinde her XH ∈ (T (R3)′)H ve XV ∈ (T (R3)′)V için

∇HXξH =
1

2
φXH,∇VXξV =

1

2
φXV
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olup, her XH, Y H ∈ (T (R3)′)H ve XV , Y V ∈ (T (R3)′)V için

(∇HXφH)Y H = ∇HX(φHY H)− φH(∇HXY H) =
1

2
{GH(XH, Y H)ξH + ηH(Y H)XH}

(∇VXφV)Y V = ∇VX(φVY V)− φV(∇VXY V) =
1

2
{GV(XV , Y V)ξV + ηV(Y V)XV}

elde edilir. Böylece (((R3)′)h, φH, ξH, ηH, GH) ve (((R3)′)v, φV , ξV , ηV , GV) birer Sasakian

Lorentz Finsler yapı olur.
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6. YARI FINSLER MANİFOLDLARI ÜZERİNDE KENMOTSU YAPILAR

Bu bölümde yarı Finsler manifoldları üzerinde yarı Finsler metriği ile birlikte hemen

hemen Kenmotsu ve Kenmotsu yapılar kuruldu. Ayrıca Kenmotsu yarı Finsler manifold-

larının eğrilikleri hesaplandı. İlk olarak Kenmotsu yarı Finsler metrikli yapıları inceleyelim.

6.1. Kenmotsu Yarı Finsler Metrikli Yapılar

∇1 ve ∇2 Cartan koneksiyonları, f : R → R+ düzgün fonksiyon olmak üzere,

(R, F1) ve (N2n, F2) yarı Finsler manifoldları olsun, ayrıca p1 : R×N2n → R ve

p2 : R × N2n → N2n olarak tanımlansın. R0 = TR \ θ, (N0)2n = TN2n \ θ olmak üzere

F ∗ : R0 × (N0)2n → R, F ∗(v1, v2) = F 2
1 (v1) + f2(π1(v1))F

2
2 (v2) şeklinde tanımlanan yarı-

Riemann metriği ile birlikte R×N2n = M2n+1 çarpım manifoldunu ele alalım. Bu çarpım

R ×f N2n ile gösterilir ve (R ×f N2n, F ∗) bir yarı Finsler manifoldu olur. V1 = ker(dπ1)

ve dπ1 : TTR → TR olmak üzere π1 kanonik dönüşümü (V1, dπ1, TR) dikey demetini

verir. V2 = ker(dπ2) ve dπ2 : TTN2n → TN2n olmak üzere π2 kanonik dönüşümü de

(V2, dπ2, TN
2n) dikey demetini verir. Ayrıca

dπ1 × dπ2 = d(π1 × π2) : TTR× TTN2n → TR× TN2n

ve

kerd(π1 × π2) = kerdπ1 ⊕ kerdπ2

olsun. Buradan manifoldun dikey uzayı R×N2n = M2n+1, V = V1⊕V2 elde edilir. Böylece

V1 ve V2 üzerinde g1 ve g2 yarı-Riemann metrikleri, v ∈ TR, w ∈ TN2n ve π1(v) ∈ R olmak

üzere

GV = gV11 + f2(π1(v))gV22

GV(XV , Y V)(v,w) = f2(π1(v))g2(X
V
w , Y

V
w )

şeklinde tanımlanır. Böylece

ZVGV(XV , Y V)(v,w) = 2fZV((f(π1(v))g2(X
V
w , Y

V
w ))) = 2fZVf(π1(v))

1

f2(π1(v))
GV(XV , Y V)(v,w)
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bulunur. Bu bağıntılardan

ZVGV(XV , Y V) = 2(
ZVf

f
)GV(XV , Y V)

olur.

(R, F1) ve (N2n, F2) Finsler manifoldları üzerinde ∇1 ve ∇2 Cartan koneksiyonlarına göre

H1 ve H2 yatay uzaylar olsun. Böylece direkt toplam ayrışımı

TT (R×N2n) = TTM2n+1 = TTR⊕ TTN2n = V1 ⊕H1 ⊕ V2 ⊕H2

şeklinde yazılır. R ve N2n manifoldları üzerinde F1, F2 Finsler metrikleri sayesinde H1 ve

H2 yatay uzayları üzerinde g1 ve g2 Riemann metrikleri ortaya çıkar. Ayrıca bu Riemann

metrikleri T (TR× TN2n) üzerinde yarı-Riemann metrik oluştururlar. Böylece

GH(XH, Y H)(v,w) = f2(π1(v))g2(X
H, Y H)

yazılır. Buradan

ZHGH(XH, Y H)(v,w) = 2fZH(f(π1(v))g2(X
H
w , Y

H
w )) = 2(

ZHf

f
)GH(XH, Y H)

olur.

Önerme 6.1.1. M2n+1 = R ×f N2n çarpım uzayı ile birlikte F 2n+1 = (M,M ′, F ∗) yarı

Finsler manifoldu olsun. (N)2n = TN2n \ θ Kahlerian yarı-metrik manifold ve f(t) =

ce
t
2 olduğunu kabul edelim. (M ′)h ve (M ′)v üzerinde (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

hemen hemen Kenmotsu yarı-metrik yapılar olmak üzere, ηH, ηV 1-formları ve ΩH, ΩV

ikinci temel formları ise aşağıdaki özellikleri sağlarlar.

dηH = dηV = 0, dΩH = ηH ∧ ΩH, dΩV = ηV ∧ ΩV , dΩ = η ∧ Ω, dη = 0.

İspat. G = GH+GV : TTM×TTM → =(TM) ve G2 : TTN×TTN → =(TN) metrikleri

Sasaki metrikler olsunlar. TN Kahlerian vektör demeti üzerinde G2 Kahlerian metriğine

göre Ω∗ ikinci temel form olmak üzere

G(X,φY ) = G(XH +XV , φY H + φY V) = f2(π1(v))G2(X,φY )

= f2(π1(v))G2(X
H +XV , φY H + φY V),
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GH(XH, φY H) +GV(XV , φY V) = f2(π1(v))[G2(X
H, φY V) +G2(X

V , φY H)],

Ω(XH, Y H) + Ω(XV , Y V) = f2(π1(v))[Ω∗(XH, Y V) + Ω∗(XV , Y H)]

eşitlikleri vardır. Yani dΩ∗ = 0 olur. Böylece

dΩ(XH, Y H) + dΩ(XV , Y V) = 2f(t)f ′(t)dt ∧ [Ω∗(XH, Y V) + Ω∗(XV , Y H)]

dΩH + dΩV = (
2f ′

f
)dt ∧ [ΩH + ΩV ]

f(t) = e
t
2 → 2f ′(t)

f(t)
= 1

ve

dt = η, dηH = dηV = 0, dΩH = ηH ∧ ΩH, dΩV = ηV ∧ ΩV , dΩ = η ∧ Ω, dη = 0

elde edilir.

6.2. Yarı Finsler Manifoldları Üzerinde Hemen Hemen Kenmotsu Yarı Metrik

Yapılar

Tanım 6.2.1. dη(X,Y ) = 0 eşitliği sağlanmak üzere, η temel 1-form ve ∇, M ′ üzerinde
Finsler koneksiyonu olsun. Böylece η = df olacak şekilde M ′ üzerinde bir f fonksiyonu

varsa

(∇HXηH)(Y H)− (∇HY ηH)(XH) + ηH(T (XH, Y H)) = 0,

(∇VXηV)(Y V)− (∇VY ηV)(XV) + ηV(T (XV , Y V)) = 0 (6.1)

eşitlikleri sağlanır (Sinha ve Yadav, 1991).

Böylece hemen hemen değme yarı-Finsler metrikli yapı, hemen hemen Kenmotsu yarı-

metrik yapı olarak adlandırılır ve (6.1) eşitliklerini sağlayan ∇ koneksiyonu ise hemen

hemen Kenmotsu Finsler koneksiyonu adı verilir. Ayrıca ((M ′)h, φH, ξH, ηH, GH) ve

((M ′)v, φV , ξV , ηV , GV) yapıları ise hemen hemen Kenmotsu yarı-metrik Finsler manifold-

ları ya da hemen hemen ε-Kenmotsu Finsler manifoldları olarak adlandırılırlar.
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Teorem 6.2.2. Hemen hemen Kenmotsu Finsler koneksiyonu ∇ torsiyonsuz ise,

∀XH, Y H ∈ (TM ′)H ve ∀XV , Y V ∈ (TM ′)V olmak üzere aşağıdaki eşitlikler sağlanır.

(∇HXηH)(Y H)− (∇HY ηH)(XH) = 0, (∇VXηV)(Y V)− (∇VY ηV)(XV) = 0 (6.2)

(Sinha ve Yadav, 1991).

6.3. Hemen Hemen Kenmotsu Yarı-Metrik Yapıların İntegrallenebilir Tensör

Alanları

F 2n+1 = (M,M ′, F ∗) yarı Finsler manifoldu olmak üzere, (M ′)h ve (M ′)v üz-

erinde (φH, ξH, ηH) ve (φV , ξV , ηV) hemen hemen Kenmotsu yarı-metrik yapılarının inte-

grallenebilir tensör alanları, ∀XH, Y H ∈ (TM ′)H ve ∀XV , Y V ∈ (TM ′)V için

NHφ (XH, Y H) = [φXH, φY H]− φ[φXH, Y H]− φ[XH, φY H] + φ2[XH, Y H],

NVφ (XV , Y V) = [φXV , φY V ]− φ[φXV , Y V ]− φ[XV , φY V ] + φ2[XV , Y V ]

eşitlikleri ile verilir. Böylece

N (1)(XH, Y H) = NHφ (XH, Y H), (6.3)

N (2)(XH, Y H) = (LHφXη
H)(Y H)− (LHφY η

H)(XH),

N (3)(XH) = (LHξ φ)(XH), N (4)(XH) = (LξHη
H)(XH)

ve

N (1)(XV , Y V) = NVφ (XV , Y V), (6.4)

N (2)(XV , Y V) = (LVφXη
V)(Y V)− (LVφY η

V)(XV),

N (3)(XV) = (LVξ φ)(XV), N (4)(XV) = (LξVη
V)(XV)

dört tensör alanı tanınımlanabilir.

Önerme 6.3.1. (M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

hemen hemen Kenmotsu yarı metrik yapılarının normal olması için gerek ve yeter şart

NHφ = 0 ve NVφ = 0 olmasıdır.
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Yardımcı Teorem 6.3.2. (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) hemen hemen Kenmotsu

yarı metrik yapılarının normal olması için gerek ve yeter şart N (1) = N (2) = N (3) = N (4) =

0 olmasıdır.

Yardımcı Teorem 6.3.3. (M ′)h ve (M ′)v üzerinde sırasıyla (φH, ξH, ηH, GH) ve

(φV , ξV , ηV , GV) hemen hemen Kenmotsu yarı metrik yapıları için

2GH((∇HXφ)Y H, ZH) = GH(N (1)(Y H, ZH), φXH) + εN (2)(Y H, ZH)ηH(XH)

+ dΩ(XH, φY H, φZH)− dΩ(XH, Y H, ZH), (6.5)

2GV((∇VXφ)Y V , ZV) = GV(N (1)(Y V , ZV), φXV) + εN (2)(Y V , ZV)ηV(XV)

+ dΩ(XV , φY V , φZV)− dΩ(XV , Y V , ZV) (6.6)

eşitlikleri sağlanır.

İspat. ∇, Finsler koneksiyonu olmak üzere

2GH(∇HXY H, ZH) = XHGH(Y H, ZH) + Y HGH(XH, ZH)− ZHGH(XH, Y H)

+GH([XH, Y H], ZH) +GH([ZH, XH], Y H)−GH([Y H, ZH], XH), (6.7)

2GV(∇VXY V , ZV) = XVGV(Y V , ZV) + Y VGV(XV , ZV)− ZVGV(XV , Y V)

+GV([XV , Y V ], ZV) +GV([ZV , XV ], Y V)−GV([Y V , ZV ], XV) (6.8)

olur. Ayrıca

dΩ(XH, Y H, ZH) = XHΩ(Y H, ZH) + Y HΩ(ZH, XH) + ZHΩ(XH, Y H)

− Ω([XH, Y H], ZH)− Ω([ZH, XH], Y H)− Ω([Y H, ZH], XH) (6.9)

ve

dΩ(XV , Y V , ZV) = XVΩ(Y V , ZV) + Y VΩ(ZV , XV) + ZVΩ(XV , Y V)

− Ω([XV , Y V ], ZV)− Ω([ZV , XV ], Y V)− Ω([Y V , ZV ], XV) (6.10)



77

eşitlikleri vardır. (6.7) ve (4.20) ifadelerinden

2GH((∇HXφ)Y H, ZH) = φY HGH(XH, ZH)− ZHΩ(XH, Y H) +GH([XH, φY H], ZH)

+ Ω([ZH, XH], Y H)−GH([φY H, ZH], XH) + Y HΩ(XH, ZH)− φZHGH(XH, Y H)

+ Ω([XH, Y H], ZH) +GH([φZH, XH], Y H)−GH([Y H, φZH], XH) (6.11)

elde edilir. Ayrıca (6.3) ifadesinde (4.18) kullanılırsa

GH(N (1)(Y H, ZH), φXH) = −Ω([Y H, ZH], XH) + Ω([φY H, φZH], XH) (6.12)

−GH([φY H, ZH], XH) + ηH[φY H, ZH]ηH(XH)−GH([Y H, φZH], XH) + ηH[Y H, φZH]ηH(XH)

bulunur. (6.4) yardımıyla,

N (2)(Y H, ZH)ηH(XH) = φY H(ηH(Y H))ηH(XH)− φZH(ηH(Y H))ηH(XH)

− ηH[φY H, ZH]ηH(XH)− ηH[Y H, φZH]ηH(XH) (6.13)

olur ve (6.9) ifadesinden,

dΩ(XH, φY H, φZH) = XHΩ(Y H, ZH) + φY HGH(ZH, XH)− εφY H(ηH(ZH)ηH(XH))

− φZHGH(XH, Y H) + εφZH(ηH(XH)ηH(Y H)) +GH([XH, φY H], ZH)

− εηH[XH, Y H]ηH(ZH) +GH([φZH, XH], Y H)− εηH[φZH, XH]ηH(Y H)

− Ω([φY H, φZH], XH) (6.14)

bulunur. Ayrıca (6.12), (6.13) ve (6.14) eşitliklerinden faydalanarak (6.5) bulunur. Benzer

olarak, (4.18), (6.8) ve (6.12) eşitlikleri kullanılarak (6.6) elde edilir.

Yardımcı Teorem 6.3.4. dΩ = η ∧ Ω ve N (1) = N (2) = 0 ile birlikte (φH, ξH, ηH, GH)

ve (φV , ξV , ηV , GV) hemen hemen Kenmotsu yarı metrik yapıları için

(∇VXφ)Y V =
1

2
{εGV(φXV , Y V)ξV − ηV(Y V)φXV}, (6.15)

(∇HXφ)Y H =
1

2
{εGH(φXH, Y H)ξH − ηH(Y H)φXH} (6.16)

eşitlikleri vardır.
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İspat. (6.6) eşitliğinden,

2GV((∇VXφ)Y V , ZV) = −ηV(Y V)GV(φXV , ZV)− εGV(ξV , ZV)GV(XV , φY V)

= GV(−εG(XV , φY V)ξV − ηV(Y V)φXV , ZV),

(∇VXφ)Y V =
1

2
{εGV(φXV , Y V)ξV − ηV(Y V)φXV}

elde edilir. Benzer olarak, (6.5) kullanılarak (6.16) elde edilir.

Teorem 6.3.5. (M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

hemen hemen Kenmotsu yarı metrik yapılarının Kenmotsu yarı metrik yapı olması için

gerek ve yeter şart

(∇HXφ)Y H =
1

2
{εGH(φXH, Y H)ξH − ηH(Y H)φXH},

(∇VXφ)Y V =
1

2
{εGV(φXV , Y V)ξV − ηV(Y V)φXV}

olmasıdır.

İspat. (6.15) ve (6.16) eşitlikleri sağlansın. (6.15) eşitliğinde Y V = ξV yazılırsa

(∇VXφ)ξV =
1

2
{εGV(φXV , ξV)ξV − ηV(ξV)φXV},

−φ(∇VXξV) = −1

2
φXV ,

∇VXξV = −1

2
φ2XV =

1

2
(XV − ηV(XV)ξV) (6.17)

bulunur. Benzer şekilde (6.16) eşitliği kullanılırsa

∇HXξH = −1

2
φ2XH =

1

2
(XH − ηH(XH)ξH) (6.18)

elde edilir. Ayrıca (6.17) ve (6.18) ifadelerinden

(∇HXηH)Y H + (∇HY ηH)XH = GH(φXH, φY H) = Ω(φXH, Y H), (6.19)

(∇VXηV)Y V + (∇VY ηV)XV = GV(φXV , φY V) = Ω(φXV , Y V), (6.20)

2(∇HXηH) = GH(φXH, φY H) = Ω(φXH, Y H), (6.21)

2(∇VXηV) = GV(φXV , φY V) = Ω(φXV , Y V) (6.22)
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bulunur. Böylece yapılar Kenmotsu yarı metrik yapılar olurlar.

6.4. Kenmotsu Yarı Finsler Manifoldlarının Eğrilikleri

Teorem 6.4.1. (M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

Kenmotsu yarı metrik Finsler yapılar ise, (3.46), (3.51), (4.4), (6.17) ve (6.18) ifadelerinden

R(XH, Y H)ξH =
1

4
{ηH(XH)Y H − ηH(Y H)XH} (6.23)

ve

R(XV , Y V)ξV =
1

4
{ηV(XV)Y V − ηV(Y V)XV} (6.24)

olur. Böylece

R(X,Y )ξ = R(XH, Y H)ξH +R(XV , Y V)ξV (6.25)

=
1

4
{ηH(XH)Y H + ηV(XV)Y V − ηH(Y H)XH − ηV(Y V)XV}

elde edilir.

Teorem 6.4.2. (M ′)h ve (M ′)v üzerinde sırasıyla (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

Kenmotsu yarı metrik yapılar olsunlar. Böylece (6.15), (6.16), (6.19), (6.20), (6.21) ve

(6.22) ifadelerinden

R(XH, Y H)φZH = φR(XH, Y H)ZH − ε

4
{GH(φXH, ZH)Y H

−GH(φY H, ZH)XH +GH(XH, ZH)φY H −GH(Y H, ZH)φXH}, (6.26)

R(XV , Y V)φZV = φR(XV , Y V)ZV − ε

4
{GV(φXV , ZV)Y V

−GV(φY V , ZV)XV +GV(XV , ZV)φY V −GV(Y V , ZV)φXV} (6.27)

elde edilir.

Sonuc. 6.4.3. (6.26) ve (6.27) eşitliklerinden yararlanarak

R(XH, Y H)ZH = −φR(XH, Y H)φZH − ε

4
{GH(Y H, ZH)XH −GH(XH, ZH)Y H

−GH(φY H, ZH)φXH +GH(φXH, ZH)φY H}, (6.28)
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R(XV , Y V)ZV = −φR(XV , Y V)φZV − ε

4
{GV(Y V , ZV)XV −GV(XV , ZV)Y V

−GV(φY V , ZV)φXV +GV(φXV , ZV)φY V} (6.29)

eşitlikleri elde edilir.

Tanım 6.4.4. XH ∈ (TM ′)H birim vektörü ξH a ortogonal ise (TM ′)H deki düzlemsel

kesit olan {XH, φXH} yatay φ-kesit olarak adlandırılır. Benzer olarak, XV ∈ (TM ′)V

birim vektörü ξV a ortogonal ise (TM ′)V deki düzlemsel kesit olan {XV , φXV} dikey φ-

kesit olarak adlandırılır. Böylece yatay flag eğriliği

K(XH, φXH) =
GH(R(XH, φXH)φXH, XH)

G(XH, XH)G(φXH, φXH)
(6.30)

ile ifade edilir. Yatay φ-kesitsel eğrilik olarak adlandırılır ve K(XH) ile gösterilir. Dikey

flag eğriliği ise

K(XV , φXV) =
GV(R(XV , φXV)φXV , XV)

G(XV , XV)G(φXV , φXV)
(6.31)

ile verilir. Dikey φ-kesitsel eğrilik olarak adlandırılır ve K(XV) ile gösterilir.

Kenmotsu yarı metrik Finsler manifoldları üzerinde φ-kesitsel eğrilik

K(X) = K(XH) +K(XV)

eşitliği ile gösterilir.

Önerme 6.4.5. (M ′)h ve (M ′)v üzerinde sırasıyla (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV)

Kenmotsu yarı metrik yapılar olsunlar. (M ′)h ve (M ′)v lokal olarak simetrik ise Kenmotsu

yarı Finsler manifoldların sabit eğriliği − ε
4 olur.

İspat. (6.15), (6.16), (6.23) ve (6.24) eşitlikleri kullanarak, ∀XH, Y H, ZH, ξH ∈ (TM ′)H

için,

(∇HZR)(XH, Y H, ξH) = −ε
4
{GH(Y H, ZH)XH −GH(XH, ZH)Y H} −R(XH, Y H)ZH

(6.32)

olur. (M ′)h lokal olarak simetrik yani ∇HZR = 0 olduğundan, (6.32) ifadesinden

R(XH, Y H)ZH = −ε
4
{GH(Y H, ZH)XH −GH(XH, ZH)Y H} (6.33)

bulunur. Aynı anda iki vektör time-like ya da space-like olduğu zaman birbirine dik olamaz.

Bu nedenle {XH, Y H} ortonormal çifti için, XH time-like bir vektör olduğunda, Y H space-
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like olmak zorundadır. Böylece

GH(R(XH, Y H)Y H, XH) = −ε
4
{GH(Y H, Y H)GH(XH, XH)} =

ε

4
,

K(XH, Y H) =
GH(R(XH, Y H)Y H, XH)

GH(Y H, Y H)GH(XH, XH)
= −ε

4

elde edilir. Elde edilen son eşitlikte ξH time-like vektör olarak göz önüne alınırsa

K(XH, Y H) = 1
4 , ξ

H space-like vektör olarak düşünülürse K(XH, Y H) = −1
4 olur.

Diğer taraftan ∀XV , Y V , ZV , ξV ∈ (TM ′)V için,

R(XV , Y V)ZV = −ε
4
{GV(Y V , ZV)XV −GV(XV , ZV)Y V}

olur. Aynı anda iki vektör time-like ya da space-like olduğu zaman birbirine dik olamaz. Bu

nedenle {XV , Y V} ortonormal çifti için, XV time-like bir vektör olduğunda, Y V space-like

olmak zorundadır. Böylece

GV(R(XV , Y V)Y V , XV) = −ε
4
{GV(Y V , Y V)GV(XV , XV)} =

ε

4
,

K(XV , Y V) =
GV(R(XV , Y V)Y V , XV)

GV(Y V , Y V)GV(XV , XV)
= −ε

4

olur.

{X,Y } ortonormal çifti için,

K(X,Y ) =
GH(R(XH, Y H)Y H, XH) +GV(R(XV , Y V)Y V , XV)

GH(XH, XH)GH(Y H, Y H) +GV(XV , XV)GV(Y V , Y V)
= −ε

4
(6.34)

bulunur.

(M ′)h Kenmotsu yarı Finsler manifoldun SH yatay Ricci tensörü, {EH1 , ..., EH2n, ξH},

(TM ′)H nin lokal ortonormal çatısı olmak üzere

SH(XH, Y H) =

2n∑
i=1

GH(R(XH, EHi )EHi , Y
H) +GH(R(XH, ξH)ξH, Y H)

=
2n∑
i=1

GH(R(EHi , X
H)Y H, EHi ) +GH(R(ξH, XH)Y H, ξH) (6.35)

eşitliği ile verilir.

(M ′)v Kenmotsu yarı Finsler manifoldun SV dikey Ricci tensörü ise {EV1 , ..., EV2n, ξV},
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(TM ′)V nin lokal ortonormal çatısı olmak üzere

SV(XV , Y V) =
2n∑
i=1

GV(R(XV , EVi )EVi , Y
V) +GV(R(XV , ξV)ξV , Y V)

=
2n∑
i=1

GV(R(EVi , X
V)Y V , EVi ) +GV(R(ξV , XV)Y V , ξV) (6.36)

eşitliği ile verilir.

Önerme 6.4.6. q indeksli yarı Finsler manifoldunun (M ′)h vektör demeti üzerindeki

(φH, ξH, ηH, GH) değme yarı metrik yapının Kenmotsu yarı metrik yapı olması için gerek

ve yeter şart

SH(ξH, ξH) =


(
q−2n
4

)
, ξH space-like ise(

q−2n−1
4

)
, ξH time-like ise

,

olmasıdır.

İspat. (6.23) ve (6.35) eşitliklerinden

SH(ξH, ξH) =
2n∑
i=1

GH(R(EHi , ξ
H)ξH, EHi )

=
1

4

2n∑
i=1

GH(ηH(EHi )ξH − ηH(ξH)EHi , E
H
i )

=
1

4

2n∑
i=1

−GH(EHi , E
H
i )

= −ε1 + ...+ ε2n
4

elde edilir. F 2n+1 = (M,M ′, F ∗) yapısı q indeksli yarı Finsler manifoldu olduğundan,

G(ξH, ξH) = ε = 1, yani ξH space-like vektör ise,

SH(ξH, ξH) = −1

4

q∑
i=1

GH(EHi , E
H
i )− 1

4

2n∑
i=q+1

GH(EHi , E
H
i ) =

q − 2n

4

olur. GH(ξH, ξH) = ε = −1, yani ξH time-like vektör ise,

SH(ξH, ξH) = −1

4

q−1∑
i=1

GH(EHi , E
H
i )− 1

4

2n∑
i=q

GH(EHi , E
H
i ) =

q − 2n− 1

4
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elde edilir.

Önerme 6.4.7. q indeksli yarı Finsler manifoldunun (M ′)v vektör demeti üzerinde

(φV , ξV , ηV , GV) değme yarı metrik yapının Kenmotsu yarı metrik yapı olması için gerek

ve yeter şart

SV(ξV , ξV) =


(
q−2n
4

)
, ξV space-like ise(

q−2n−1
4

)
, ξV time-like ise

,

olmasıdır.

İspat. (6.24) ve (6.36) eşitliklerinden

SV(ξV , ξV) =
2n∑
i=1

GV(R(EVi , ξ
V)ξV , EVi ) = −1

4

2n∑
i=1

GV(EVi , E
V
i )

bulunur. F 2n+1 = (M,M ′, F ∗) yapısı q indeksli yarı Finsler manifoldu olduğundan,

G(ξV , ξV) = ε = 1, yani ξV space-like vektör ise,

SV(ξV , ξV) =
q − 2n

4

olur. Eğer GV(ξV , ξV) = ε = −1, yani ξV time-like vektör ise

SV(ξV , ξV) =
q − 2n− 1

4

elde edilir.

Yardımcı Teorem 6.4.8. (M ′)h ve (M ′)v Kenmotsu yarı Finsler manifoldları üzerinde,

sırasıyla, SH yatay Ricci tensörü ve SV dikey Ricci tensörü aşağıda verilen eşitlikleri sağlar:

SH(XH, ξH) =


(
−2n+q

4

)
ηH(XH), ξHspace-like ise(

−2n+q−1
4

)
ηH(XH), ξH time-like ise

, (6.37)

SV(XV , ξV) =


(
−2n+q

4

)
ηV(XV), ξVspace-like ise(

−2n+q−1
4

)
ηV(XV), ξV time-like ise

(6.38)

S(X, ξ) =


(
−2n+q

4

)
η(X), ξspace-like ise(

−2n+q−1
4

)
η(X), ξtime-like ise.

(6.39)
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İspat. ξH space-like bir vektör olsun. (6.26) ve (6.35) eşitliklerinden yararlanarak

SH(XH, ξH) =
2n∑
i=1

GH(R(EHi , X
H)ξH, EHi ) +GH(R(ξH, XH)ξH, ξH)

= −1

4

2n∑
i=1

GH(ηH(XH)EHi − ηH(EHi )XH, EHi )− 1

4
GH(ηH(XH)ξH − ηH(ξH)XH, ξH)

= −1

4
{

2n∑
i=1

ηH(XH)GH(EHi , E
H
i )} − 1

4
{ηH(XH)GH(ξH, ξH)− εηH(XH)}

= −2n− q
4

ηH(XH) =
q − 2n

4
ηH(XH)

elde edilir. Eğer ξH time-like vektör ise

SH(XH, ξH) = (
q − 2n− 1

4
)ηH(XH)

olur. Benzer şekilde ξV space-like ise

SV(XV , ξV) = (
q − 2n

4
)ηV(XV)

ve ξV time-like ise

SV(XV , ξV) = (
q − 2n− 1

4
)ηV(XV)

eşitlikleri elde edilir.

Örnek 6.4.9. F 3 = (R3, (R3)′, F ∗) bir Lorentz Finsler manifoldu olsun. Burada

(R3)′ = R6\θ nın 6-boyutlu bir C∞ manifold olduğu açıktır. R3 deki {x1, x2, x3} koordinat
sistemi sayesinde (R3)′ de {x1, x2, x3; y1, y2, y3} koordinat sistemi elde edilir. (T (R3)′)H

demetinin lokal bazı { δ
δx1
, δ
δx2
, δ
δx3
} ve (T (R3)′)V demetinin lokal bazıda { ∂

∂y1
, ∂
∂y2

, ∂
∂y3
}

dir. Her XH ∈ (T (R3)′)H için XH = XH1
δ
δx1

+ XH2
δ
δx2

+ XH3
δ
δx3

ve her XV ∈ (T (R3)′)V

için XV = XV1
∂
∂y1

+XV2
∂
∂y2

+XV3
∂
∂y3

olsun. Böylece her X ∈ (T (R3)′) için X = XHi
δ
δxi

+

XVi
∂
∂yi
, 1 ≤ i ≤ 3, şeklindedir. η ∈ (T ∗(R3)′) 1-formu η = ηHi dx

i + ηVi δyi, 1 ≤ i ≤ 3,

olup ηH ∈ (T ∗(R3)′)H ve ηV ∈ (T ∗(R3)′)V için ηH = ηH1 dx
1 + ηH2 dx

2 + ηH3 dx
3 ve ηV =

ηV1 δy1+ηV2 δy2+ηV3 δy3 dir. Sasaki yarı-metrik Finsler tensör alanı G = GH+GV olmak üzere

G = gF
∗

ij dxi ⊗ dxj + gF
∗

ij δyi ⊗ δyj , 1 ≤ i ≤ 3 olup gF ∗ij , (T (R3)′)H ve (T (R3)′)V demetleri

üzerinde Lorentz metriğidir. ((R3)′)h manifoldunun her noktasında lineer bağımsız olan

EH1 =
x3
2

δ

δx1
, EH2 =

x3
2

δ

δx2
, EH3 = −x3

2

δ

δx3
= ξH
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vektörleri ile ((R3)′)v manifoldunun her noktasında lineer bağımsız olan

EV1 =
y3
2

∂

∂y1
, EV2 =

y3
2

∂

∂y2
, EV3 = −y3

2

∂

∂y3
= ξV

vektörlerini alalım. GH ve GV Lorentz metrikleri

GH =
4(dx21 + dx22 − dx23)

x23
, GV =

4(δy21 + δy22 − δy23)

y23

şeklinde tanımlı olup GH(EH1 , ξ
H) = GH(EH2 , ξ

H) = GH(EH1 , E
H
2 ) = 0, GH(EH1 , E

H
1 ) =

GH(EH2 , E
H
2 ) = 1, GH(ξH, ξH) = −1 ve GV(EV1 , ξ

V) = GV(EV2 , ξ
V) = GV(EV1 , E

V
2 ) = 0,

GV(EV1 , E
V
1 ) = GV(EV2 , E

V
2 ) = 1, GV(ξV , ξV) = −1 dir. Her ZH ∈ (T (R3)′)H, ZH = ZHi E

H
i

ve her ZV ∈ (T (R3)′)V , ZV = ZVi E
V
i , 1 ≤ i ≤ 3 için ηH(EH1 ) = −GH(EH1 , ξ

H) = 0,

ηH(EH2 ) = −GH(EH2 , ξ
H) = 0, ηH(ξH) = −GH(ξH, ξH) = 1 ve ηV(EV1 ) = −GV(EV1 , ξ

V) =

0, ηV(EV2 ) = −GV(EV2 , ξ
V) = 0, ηV(ξV) = −GV(ξV , ξV) = 1 olduğundan ηH(ZH) = ZH3 ve

ηV(ZV) = ZV3 olur.

φH ve φV ; (1, 1) tipinde yatay ve dikey tensör alanları aşağıdaki gibi tanımlı olsun.

φH(EH1 ) = −EH2 , φH(EH2 ) = EH1 , φ
H(EH3 ) = 0 = φH(ξH),

φV(EV1 ) = −EV2 , φV(EV2 ) = EV1 , φ
V(EV3 ) = 0 = φV(ξV).

O halde her ZH ∈ (T (R3)′)H ve ZV ∈ (T (R3)′)V için

(φH)2(ZH) = −ZH + ηH(ZH)ξH, (φV)2(ZV) = −ZV + ηV(ZV)ξV

dir. Ayrıca her ZH,WH ∈ (T (R3)′)H ve ZV ,WV ∈ (T (R3)′)V için

GH(φZH, φWH) = GH(ZH,WH) + ηH(ZH)ηH(WH),

GV(φZV , φWV) = GV(ZV ,WV) + ηV(ZV)ηV(WV)

olur. Böylece (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) yapıları, sırasıyla, ((R3)′)h ve ((R3)′)v

manifoldları üzerinde birer hemen hemen değme Lorentz metrik Finsler yapılardır. Diğer
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taraftan, Kozsul formülü kullanılarak aşağıdaki eşitlikler elde edilir.

∇HE1
EH1 =

1

2
ξH,∇HE2

EH1 = 0,∇Hξ E1
H = 0,∇HE1

EH2 = 0,∇Hξ E2
H = 0

∇HE2
EH2 =

1

2
ξH,∇HE1

ξH =
1

2
EH1 ,∇HE2

ξH =
1

2
EH2 ,∇Hξ ξH = 0

∇VE1
EV1 =

1

2
ξV ,∇VE2

EV1 = 0,∇Vξ E1
V = 0,∇VE1

EV2 = 0,∇Vξ E2
V = 0

∇VE2
EV2 =

1

2
ξV ,∇VE1

ξV =
1

2
EV1 ,∇VE2

ξV =
1

2
EV2 ,∇Vξ ξV = 0.

Bu eşitlikler sayesinde (T (R3)′)H demetinde XH = XH1 E1
H +XH2 E2

H +XH3 ξ
H ve Y H =

Y H1 E1
H + Y H2 E2

H + Y H3 ξH vektörleri için φY H = Y H2 E1
H − Y H1 E2

H eşitliği kullanılarak

(∇XHφH)Y H = ∇XH(φHY H)− φH(∇XHY H)

=
1

2
{−GH(φHXH, Y H)ξH − ηH(Y H)φHXH}

elde edilir. Böylece (((R3)′)h, φH, ξH, ηH, GH) bir Kenmotsu Lorentz Finsler manifoldu

olur. Benzer şekilde (T (R3)′)V demetinde XV = XV1 E1
V + XV2 E2

V + XV3 ξ
V ve Y V =

Y V1 E1
V + Y V2 E2

V + Y V3 ξ
V vektörleri için φY V = Y V2 E1

V − Y V1 E2
V eşitliği kullanılarak

(∇XVφV)Y V = ∇XV (φVY V)− φV(∇XVY V)

=
1

2
{−GV(φVXV , Y V)ξV − ηV(Y V)φVXV}

elde edilir. Böylece (((R3)′)v, φV , ξV , ηV , GV) bir Kenmotsu Lorentz Finsler manifoldu olur.

Ayrıca aşağıdaki sonuçlar da elde edilebilir:

GH(RH(E1
H, XH)Y H, E1

H) = −1

4
(XH3 Y

H
3 −XH2 Y H2 )

GH(RH(E2
H, XH)Y H, E2

H) = −1

4
(XH3 Y

H
3 −XH1 Y H1 )

GH(RH(E3
H, XH)Y H, E3

H) = −1

4
(−XH1 Y H1 −XH2 Y H2 )

GV(RV(E1
V , XV)Y V , E1

V) = −1

4
(XV3 Y

V
3 −XV2 Y V2 )

GV(RV(E2
V , XV)Y V , E2

V) = −1

4
(XV3 Y

V
3 −XV1 Y V1 )

GV(RV(E3
V , XV)Y V , E3

V) = −1

4
(−XV1 Y V1 −XV2 Y V2 )
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τH = GH(RH(E1
H, E2

H)E2
H, E1

H) +GH(RH(E1
H, E3

H)E3
H, E1

H)

+GH(RH(E2
H, E1

H)E1
H, E2

H)

+GH(RH(E2
H, E3

H)E3
H, E2

H) +GH(RH(E3
H, E1

H)E1
H, E3

H)

=
1

2

τV = GV(RV(E1
V , E2

V)E2
V , E1

V) +GV(RV(E1
V , E3

V)E3
V , E1

V)

+GV(RV(E2
V , E1

V)E1
V , E2

V)

+GV(RV(E2
V , E3

V)E3
V , E2

V) +GV(RV(E3
V , E1

V)E1
V , E3

V)

=
1

2
.
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7. TARTIŞMA ve SONUÇ

Literatürde yer alan çalışmalar incelendiğinde Riemann ve yarı Riemann metrik

kullanılarak (2n+1) boyutlu birM manifoldu üzerinde değme yapılar kurulmuştur. Ancak

bu doktora tez çalışmasında diğer çalışmalardan farklı olarak tanjant demetleri üzerinde

yarı Finsler metrik kullanılarak değme yapılar inşa edilmiştir. Tanjant demetleri üzerinde

değme yapıları kurmak istediğimizde ise çift boyutlu bir yapı ile karşı karşıya kalırız. Elde

edilen tanjant demeti çift boyutlu olduğundan bu yapı üzerinde değme yapının kurulması

mümkün değildir. Ancak, Finsler uzayındaM ′ tanjant demetiniM ′ = (M ′)h⊕(M ′)v olmak

üzere yatay ve dikey distrübüsyonlara ayırırsak tanjant demetleri üzerinde değme yapılar

kurulabilir.

Böylece bu tez çalışmasında yarı Finsler manifoldları üzerinde yarı Finsler metrik kul-

lanılarak değme yapılara ait sonuçlar elde edildi. Hemen hemen değme yapılar ele alı-

narak yapıların integrallenebilir olması için kayda değer sonuçlar elde edildi. Yarı Finsler

manifoldları üzerinde ε-Sasakian yapılar tanıtıldı. Vektör demetleri üzerinde ε-Sasakian

yapıların eğrilikleri için sonuçlar elde edildi. Ayrıca ε-Sasakian Finsler yapılar üzerinde

yatay ve dikey Ricci tensörleri hesaplandı. q = 1 indekse sahip değme yapıların özel bir

sınıfı olan Lorentz manifoldları yarı Finsler metrik tensör alanı ile birleştirilerek değme

Lorentz Finsler yapılar tanıtıldı. Ayrıca bu yapıların integrallenebilir ya da normal olması

için bazı önemli koşullar elde edildi. Yarı Finsler manifoldları üzerinde Sasakian Lorentz

yapılar çalışılarak bu yapılara ait eğrilikler hesaplandı. Yarı Finsler manifoldları üzerinde

hemen hemen Kenmotsu ve Kenmotsu yapılar kuruldu. Bu yapıların integrallenebilir ol-

ması için yeni şartlar elde edildi. Yarı Finsler metrikli Kenmotsu manifoldlarının eğrilikleri

için önemli sonuçlar verildi. Tez çalışmamızda elde ettiğimiz bu sonuçlar, yarı Riemann

geometri ile karşılaştırılarak aşağıda ifade edilmiştir:

M manifoldu üzerinde φ̃; (1, 1) tipinde tensör alanı, ξ̃; vektör alanı, η̃; 1-form, g̃; yarı Rie-

mann metrik ve (M, φ̃, ξ̃, η̃, g̃) yapısı yarı metrik manifold olsun. Böylece (φ̃, ξ̃, η̃, g̃) yapısı
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için aşağıdaki özellikler sağlanır:

η̃(ξ̃) = 1

φ̃2X = −X + η̃(X)ξ̃

φ̃ξ̃ = 0

η̃(φ̃X) = 0

rankφ̃ = 2n

g̃(φ̃X, φ̃Y ) = g̃(X,Y )− εη̃(X)η̃(Y )

η̃(X) = εg̃(X, ξ̃)

g̃(X, φ̃Y ) = dη̃(X,Y )

(∇X φ̃)Y = g̃(X,Y )ξ̃ − εη̃(Y )X

R(X,Y )ξ̃ = −η̃(X)Y + η̃(Y )X

R(X,Y )Z = ε{g̃(Y, Z)X − g̃(X,Z)Y }

S(X̃, ξ̃) =

 (q − 2n) η(X), ξ̃ space-like ise

(q − 2n− 1) η(X), ξ̃ time-like ise
,

S(ξ̃, ξ̃) =

 (q − 2n) , ξ̃ space-like ise

(q − 2n− 1) , ξ̃ time-like ise.

F 2n+1 = (M,M ′, F ) Finsler manifoldu olmak üzere (M ′)h ve (M ′)v üzerinde, sırasıyla,

(φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) metrik Finsler yapıları için aşağıdaki özellikler

sağlanır:

ηH(ξH) = 1, ηV(ξV) = 1

(φH)2XH = −XH + ηH(XH)ξH, (φV)2XV = −XV + ηV(XV)ξV

φH(ξH) = 0, φV(ξV) = 0,

ηH(φHXH) = 0, ηV(φVXV) = 0

GH(φXH, φY H) = GH(XH, Y H)− ηH(XH)ηH(Y H)

GV(φXV , φY V) = GV(XV , Y V)− ηV(XV)ηV(Y V)
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ηH(XH) = GH(XH, ξH), ηV(XV) = GV(XV , ξV)

dη(XH, Y H) = GH(XH, φY H), dη(XV , Y V) = GV(XV , φY V)

(∇XHφH)Y H = 1
2{G

H(XH, Y H)ξH − ηH(Y H)XH}

(∇XVφV)Y V = 1
2{G

V(XV , Y V)ξV − ηV(Y V)XV}

R(XH, Y H)ξH = 1
4{η
H(Y H)XH − ηH(XH)Y H}

R(XV , Y V)ξV = 1
4{η
V(Y V)XV − ηV(XV)Y V}

SH(XH, ξH) = n
2 η
H(XH), S(XV , ξV) = n

2 η
V(XV)

SH(ξH, ξH) = n
2 , S(ξV , ξV) = n

2

∇XHξH = −1
2φX

H,∇XV ξV = −1
2φX

V

K∗(XH, Y H) = 1
4 ,K

∗(XV , Y V) = 1
4

∇ξHφ = 0,∇ξVφ = 0.

F 2n+1 = (M,M ′, F ∗) yarı Finsler manifoldu olmak üzere (M ′)h ve (M ′)v üzerinde,

sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) yarı metrik Finsler yapıları için aşağıdaki

özellikler sağlanır:

ηH(ξH) = 1, ηV(ξV) = 1

(φH)2XH = −XH + ηH(XH)ξH, (φV)2XV = −XV + ηV(XV)ξV

φH(ξH) = 0, φV(ξV) = 0,

ηH(φHXH) = 0, ηV(φVXV) = 0

GH(φXH, φY H) = GH(XH, Y H)− εηH(XH)ηH(Y H)

GV(φXV , φY V) = GV(XV , Y V)− εηV(XV)ηV(Y V)

ηH(XH) = εGH(XH, ξH), ηV(XV) = εGV(XV , ξV)

dη(XH, Y H) = GH(XH, φY H), dη(XV , Y V) = GV(XV , φY V)

(∇XHφH)Y H = 1
2{G

H(XH, Y H)ξH − εηH(Y H)XH}

(∇XVφV)Y V = 1
2{G

V(XV , Y V)ξV − εηV(Y V)XV}

R(XH, Y H)ξH = 1
4{η
H(Y H)XH − ηH(XH)Y H}

R(XV , Y V)ξV = 1
4{η
V(Y V)XV − ηV(XV)Y V}
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R(XH, Y H)ZH = ε
4{G

H(Y H, ZH)XH −GH(XH, ZH)Y H}

R(XV , Y V)ZV = ε
4{G

V(Y V , ZV)XV −GV(XV , ZV)Y V}

∇XHξH = − ε
2φX

H,∇XV ξV = − ε
2φX

V

K∗(XH, Y H) = ε
4 ,K

∗(XV , Y V) = ε
4

∇ξHφ = 0,∇ξVφ = 0

SH(ξH, ξH) =


(
2n−q
4

)
, ξH space-like ise(

2n−q+1
4

)
, ξH time-like ise

,

SV(ξV , ξV) =


(
2n−q
4

)
, ξV space-like ise(

2n−q+1
4

)
, ξV time-like ise

SH(XH, ξH) =


(
2n−q
4

)
ηH(XH), ξH space-like ise(

2n−q+1
4

)
ηH(XH), ξH time-like ise

,

SV(XV , ξV) =


(
2n−q
4

)
ηV(XV), ξV space-like ise(

2n−q+1
4

)
ηV(XV), ξV time-like ise.

(M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) yarı metrik Finsler

Lorentz yapılar olmak üzere XH, Y H, ZH, ξH ∈ (TM ′)H ve XV , Y V , ZV , ξV ∈ (TM ′)V için

aşağıdaki özellikler sağlanır:

ηH(ξH) = 1, ηV(ξV) = 1

(φH)2XH = −XH + ηH(XH)ξH, (φV)2XV = −XV + ηV(XV)ξV

φH(ξH) = 0, φV(ξV) = 0,

ηH(φHXH) = 0, ηV(φVXV) = 0

GH(φXH, φY H) = GH(XH, Y H) + ηH(XH)ηH(Y H)

GV(φXV , φY V) = GV(XV , Y V) + ηV(XV)ηV(Y V)
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ηH(XH) = −GH(XH, ξH), ηV(XV) = −GV(XV , ξV)

dη(XH, Y H) = GH(XH, φY H), dη(XV , Y V) = GV(XV , φY V)

(∇XHφH)Y H = 1
2{G

H(XH, Y H)ξH + ηH(Y H)XH}

(∇XVφV)Y V = 1
2{G

V(XV , Y V)ξV + ηV(Y V)XV}

R(XH, Y H)ξH = 1
4{η
H(Y H)XH − ηH(XH)Y H}

R(XV , Y V)ξV = 1
4{η
V(Y V)XV − ηV(XV)Y V}

R(XH, Y H)ZH = −1
4{G

H(Y H, ZH)XH −GH(XH, ZH)Y H}

R(XV , Y V)ZV = −1
4{G

V(Y V , ZV)XV −GV(XV , ZV)Y V}

∇XHξH = 1
2φX

H,∇XV ξV = 1
2φX

V

K∗(XH, Y H) = −1
4 ,K

∗(XV , Y V) = −1
4

∇ξHφ = 0,∇ξVφ = 0

SH(ξH, ξH) = n
2 , S(ξV , ξV) = n

2

SH(XH, ξH) = n
2 η
H(XH), SV(XV , ξV) = n

2 η
V(XV).

(M ′)h ve (M ′)v üzerinde, sırasıyla, (φH, ξH, ηH, GH) ve (φV , ξV , ηV , GV) Kenmotsu yarı

metrik Finsler yapılar olmak üzere XH, Y H, ZH, ξH ∈ (TM ′)H ve XV , Y V , ZV , ξV ∈

(TM ′)V için aşağıdaki özellikler sağlanır:

ηH(ξH) = 1, ηV(ξV) = 1

(φH)2XH = −XH + ηH(XH)ξH, (φV)2XV = −XV + ηV(XV)ξV

φH(ξH) = 0, φV(ξV) = 0,

ηH(φHXH) = 0, ηV(φVXV) = 0

GH(φXH, φY H) = GH(XH, Y H)− εηH(XH)ηH(Y H)

GV(φXV , φY V) = GV(XV , Y V)− εηV(XV)ηV(Y V)

ηH(XH) = εGH(XH, ξH), ηV(XV) = εGV(XV , ξV)

(∇XHηH)Y H = 1
2G
H(φXH, φY H)

(∇XVηV)Y V = 1
2G
V(φXV , φY V)
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(∇XHφH)Y H = 1
2{εG

H(φHXH, Y H)ξH − ηH(Y H)φHXH}

(∇XVφV)Y V = 1
2{εG

V(φVXV , Y V)ξV − ηV(Y V)φVXV}

R(XH, Y H)ξH = 1
4{η
H(XH)Y H − ηH(Y H)XH}

R(XV , Y V)ξV = 1
4{η
V(XV)Y V − ηV(Y V)XV}

R(XH, Y H)ZH = − ε
4{G

H(Y H, ZH)XH −GH(XH, ZH)Y H}

R(XV , Y V)ZV = − ε
4{G

V(Y V , ZV)XV −GV(XV , ZV)Y V}

∇XHξH = −1
2φ

2XH,∇XV ξV = −1
2φ

2XV

K∗(XH, Y H) = − ε
4 ,K

∗(XV , Y V) = − ε
4 ,

SH(XH, ξH) =


(
q−2n
4

)
ηH(XH), ξH space-like ise(

q−2n−1
4

)
ηH(XH), ξH time-like ise

,

SV(XV , ξV) =


(
q−2n
4

)
ηV(XV), ξV space-like ise(

q−2n−1
4

)
ηV(XV), ξV time-like ise

SH(ξH, ξH) =


(
q−2n
4

)
, ξH space-like ise(

q−2n−1
4

)
, ξH time-like ise

,

SV(ξV , ξV) =


(
q−2n
4

)
, ξV space-like ise(

q−2n−1
4

)
, ξV time-like ise.
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