
IMPROVING TEXT CLASSIFICATION PERFORMANCE WITH THE ANALYSIS

OF LEXICAL DEPENDENCIES AND CLASS-BASED FEATURE SELECTION

by

Levent Özgür

B.S. in Computer Engineering, Boğaziçi University, 2001

M.S. in Computer Engineering, Boğaziçi University, 2003

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor

of

Philosophy

Boğaziçi University

2010

ii

IMPROVING TEXT CLASSIFICATION PERFORMANCE WITH THE ANALYSIS

OF LEXICAL DEPENDENCIES AND CLASS-BASED FEATURE SELECTION

APPROVED BY:

Assoc. Prof. Tunga Güngör

(Thesis Supervisor)

Prof. H. Levent Akın

Prof. Fikret S. Gürgen

Assoc. Prof. M. Borahan Tümer

Dr. Suzan Üsküdarlı

DATE OF APPROVAL: 03.06.2010

iii

ACKNOWLEDGEMENTS

My foremost acknowledgement goes to my supervisor Assoc. Prof. Tunga Güngör

- without his support and patience in very critical milestones and his continuous guid-

ance, this thesis would not be possible. I want to thank Prof. Fikret Gürgen and

Assoc. Prof. Borahan Tümer for their continuous support, constructive criticism and

feedbacks throughout all the thesis progress period. I would like to thank Dr. Suzan

Üsküdarlı for her enthusiasm towards research ideas in general, and her comments and

detailed corrections for my thesis report. I also would like to thank to Prof. Levent

Akın for his valuable comments during the thesis defense and also his trust on me for

offering a part-time instructorship position in the department during my studies.

I had a long and confusing journey for this thesis in the last seven years. Unfor-

tunately, not being an idealist full-time PhD candidate researcher all the time, PhD

dissertation seemed to be the main motivation that seriously affected all my critical

life decisions in this period. During this long time, I had the chance and motivation to

experience many related occupations in parallel - I worked full time in three companies

(including a very tough entrepreneurship experience, Doğa Teknoloji), lectured in two

different universities and participated in a research project besides my PhD studies.

There are a serious number of valuable mates who somehow involved in some parts of

this long journey - some of them even changed the way seriously. Physical limits of

this section is surely not adequate to explicitly mention all of these valuable people. In

general, I want to thank all my work-mates in the former companies (Lipman, Doğa

Teknoloji and TIMw.e.) and universities (Boğaziçi University and Okan University),

lab-mates (AILab), room-mates (ETA14) and more generally all CmpE-mates in the

department, all my former and current house-mates in Akıncı Palace (!) and, of course,

all my beloved buddies.

This thesis would not be completed in its way without the existence of the fol-

lowing core group from different associations - I would try to mention them with their

most specific contributions during the journey: Arzucan Özgür (we, together, shaped

iv

the very critical introductive steps of the thesis), Murat Kayıhan (he was my beloved

manager in Lipman during the lecture period of PhD, who permitted me very valuable

times for PhD classes and research), Mehmet Gürmen (my beloved ex-partner who

supported my PhD challenges during the proposal and early progress period in the

impayable entrepreneurship experience: Doga Teknoloji and SeyYar), Prof. Ahmet

Kaşlı (as the department head in Okan University, he showed great empathy, easiness

and support to allocate very critical time for the thesis), Aslı Uyar Özkaya (most of

the administrative and related decisions with also some critical technical issues in the

long run of the thesis have a sign of her) and Prof. Nadir Yücel (his colorful life-worth

experiences, priceless life advices and wisdom characteristics have a very strong impact

on my thinking - I believe, he will completely recover from his recent illness and get

well soon).

I gratefully acknowledge the financial support of Boğazici University Research

Fund, number 05A103D and the Turkish State Planning Organization (DPT) under

the TAM Project, number 2007K120610.

Finally and most of all, I want to thank my parents Vicdan and Necati, my sister

Demet with my beautiful niece İpek and my brother Murat. This thesis would be

impossible to be finalized without their never ending love, encouragement, patience

and support.

This thesis is dedicated to the memory of my father, Necati Özgür, who was

also one of the pioneer textile engineers of Turkey. He was the first one to teach me

the analytical way of thinking and showed the way to be a successful engineer and

an overall fine and steady man. I am dreaming and feeling just as you are currently

watching us, being happy and proud, Dad.

v

ABSTRACT

IMPROVING TEXT CLASSIFICATION PERFORMANCE

WITH THE ANALYSIS OF LEXICAL DEPENDENCIES

AND CLASS-BASED FEATURE SELECTION

In this thesis, we present a comprehensive analysis of the feature extraction and

feature selection techniques for the text classification problem in order to achieve more

successful results using much smaller feature vector sizes. For feature extraction, 36

different lexical dependencies are included and analyzed independently in the feature

vector as an extension to the standard bag-of-words approach. Feature selection anal-

ysis is twofold. In the first stage, pruning implementation is analyzed and optimal

pruning levels are extracted with respect to dataset properties and feature variations

(words, dependencies, combination of the leading dependencies). In the second stage,

we compare the performance of corpus-based and class-based approaches for feature se-

lection coverage and then, extend pruning implementation by the optimized class-based

feature selection. For the final and most advanced test, we serialize the optimal use

of the leading dependencies for each experimented dataset with the two stage (corpus

and class-based) feature selection approach.

For performance evaluation, we use the state-of-the-art measures for text classi-

fication problems: two different success score metrics and three different significance

tests. With respect to these measures, the results reveal that for each extension in the

methods, a corresponding significant improvement is obtained. The most advanced

method combining the leading dependencies with optimal pruning levels and optimal

number of class-based features mostly outperform the other methods in terms of suc-

cess rates with reasonable feature sizes. To the best of our knowledge, this is the first

vi

study that makes such a detailed analysis on extracting individual dependencies and

employing feature selection with two stage selection approach in text classification and

more generally in text domain.

vii

ÖZET

SÖZCÜKSEL BAĞIMLILIKLARIN VE SINIF BAZLI

ÖZNİTELİK SEÇİMİNİN ANALİZİ İLE METİN

SINIFLANDIRMA PERFORMANSINDA İYİLEŞTİRME

Bu tezde, metin sınıflandırma problemi için öznitelik çıkarımı ve öznitelik seçimi

konuları üzerine çok yönlü çözümlemeler yapılmaktadır. Sınıflandırmanın çözümünde

daha küçük boyutta öznitelik çözüm vektörü kullanarak daha başarılı sonuçlara ulaşmak

hedeflenmiştir. Öznitelik çıkarımı konusunda, 36 değişik sözcüksel bağımlılık incelenmiş

ve geleneksel sözcük-torbası dizisine en uygun halde eklenmiştir. Öznitelik seçimi ise

iki aşamalıdır. İlk aşamada budama uygulaması yapılmış ve veri kümesi özelliklerine ve

öznitelik çeşitlerine (sözcük, bağımlılık ve bağımlılık bileşenleri) göre en uygun budama

düzeyleri bulunmuştur. İkinci adımda veri kümesi tabanlı ve sınıf tabanlı öznitelik

seçimi yaklaşımları karşılaştırılmış; sonrasında budama işlemi, en başarılı olduğu tespit

edilen sınıf tabanlı öznitelik seçimi ile geliştirilmiştir. Tezin son deneyinde; en başarılı

bağımlılık tipleri, iki aşamalı öznitelik seçimi ile beraber kullanılmaktadır.

Başarı değerlendirmesi için, metin sınıflandırma problemlerinde kullanımı herkesçe

kabul edilen iki ölçüm ve ek olarak üç değişik önemlilik testi uygulanmaktadır. Belir-

tilen değerlendirme ölçütlerine göre, önerilen her yeni yöntem, başarıyı önemli ölçüde

arttırmaktadır. Bu duruma paralel olarak; sözcüksel bağımlılıkların en uygun kul-

lanımını, iki aşamalı öznitelik seçiminin en başarılı düzeniyle birleştirdiğimiz son deney,

genel olarak en başarılı sonucu vermektedir. Bu çalışma, bilgimiz dahilinde, metin

sınıflandırmada ve genelde metin temelli problemlerde sözcüksel bağımlılıkların ve iki

aşamalı öznitelik seçiminin çözümlemesi ve eniyilenmesi ile ilgili ilk detaylı çalışmadır.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

ÖZET . vii

LIST OF FIGURES . xiv

LIST OF TABLES . xvi

LIST OF SYMBOLS/ABBREVIATIONS . xviii

1. INTRODUCTION . 1

1.1. Research Overview . 3

1.2. Thesis Outline . 4

2. FUNDAMENTALS OF TEXT CLASSIFICATION 6

2.1. Datasets . 6

2.2. Preprocessing Operations . 7

2.2.1. Feature Formatting (Basic Routines) 7

2.2.2. Feature Extraction (Advanced Routines) 8

2.3. Document Representation . 8

2.4. Term Weighting Approach . 9

2.5. Machine Learning Algorithm . 10

2.6. Feature Selection . 11

2.7. Performance Measures . 12

2.7.1. Success Scores . 12

2.7.2. Significance Measures . 14

2.7.3. Other Measures . 15

3. SUPPLEMENTARY TOOLS FOR PREPROCESSING IN TC 16

3.1. Morphological Knowledge . 16

3.2. Syntactic Knowledge . 17

3.2.1. Document Patterns and Lexical Dependencies 17

3.2.2. Properties of Stanford Parser 18

3.2.3. Usage of Syntactic Information in Text Related Problems 19

3.3. External Knowledge Bases - Ontologies 21

ix

3.3.1. WordNet . 21

3.3.2. WordNet Related Tools . 22

3.3.3. Cyc Ontology . 22

3.3.4. Other Ontologies . 24

3.3.5. The Use of Knowledge Bases in Text Classification 24

4. PRELIMINARY TESTS . 25

4.1. Common Preferences of the Experiments 25

4.1.1. Datasets . 25

4.1.2. Preprocessing Operations . 26

4.1.3. Document Representation . 26

4.1.4. Term Weighting Approach . 27

4.1.5. Machine Learning Algorithm . 27

4.1.6. Feature Selection . 27

4.1.7. Performance Measures . 28

4.2. Implementation Details of the Related Tools in the Experiments 29

4.2.1. Parser Implementation Details 29

4.2.2. SVM Implementation Details 31

4.2.3. Cyc Implementation Details . 32

4.2.4. WordNet and WND Implementation Details 32

4.3. Introductory Experiment - Standard Bow Approach in TC 32

4.3.1. Experiment Configuration According to TC Fundamentals . . . 33

4.3.1.1. Datasets . 33

4.3.1.2. Preprocessing Operations 33

4.3.1.3. Document Representation 33

4.3.1.4. Term Weighting Approach 33

4.3.1.5. Machine Learning Algorithm 33

4.3.1.6. Feature Selection . 33

4.3.1.7. Performance Measures 33

4.3.2. Experiment Design and Results 34

4.3.3. Comments and Conclusion . 34

4.4. Experiment1 - Introduction to Dependency Support in TC 34

4.4.1. Experiment Configuration According to TC Fundamentals . . . 34

x

4.4.1.1. Datasets . 34

4.4.1.2. Preprocessing Operations 34

4.4.1.3. Document Representation 35

4.4.1.4. Term Weighting Approach 35

4.4.1.5. Machine Learning Algorithm 35

4.4.1.6. Feature Selection . 35

4.4.1.7. Performance Measures 35

4.4.2. Experiment Design and Results 35

4.4.3. Comments and Conclusion . 37

4.5. Experiment2 - WordNet and WND Usage with Dependency Support . 38

4.5.1. Experiment Configuration According to TC Fundamentals . . . 38

4.5.1.1. Datasets . 38

4.5.1.2. Preprocessing Operations 38

4.5.1.3. Document Representation 38

4.5.1.4. Term Weighting Approach 39

4.5.1.5. Machine Learning Algorithm 39

4.5.1.6. Feature Selection . 39

4.5.1.7. Performance Measures 39

4.5.2. Experiment Design and Results 39

4.5.3. Comments and Conclusion . 42

4.6. Experiment3 - Different Stemming Alternatives and WordNet Usage

with Dependency Support . 43

4.6.1. Experiment Configuration According to TC Fundamentals . . . 43

4.6.1.1. Datasets . 44

4.6.1.2. Preprocessing Operations 44

4.6.1.3. Document Representation 44

4.6.1.4. Term Weighting Approach 45

4.6.1.5. Machine Learning Algorithm 45

4.6.1.6. Feature Selection . 45

4.6.1.7. Performance Measures 45

4.6.2. Experiment Design . 45

4.6.2.1. AW Analysis . 46

xi

4.6.2.2. AW+ Analysis . 46

4.6.3. Results . 47

4.6.3.1. AW Analysis Results 47

4.6.3.2. AW+ Analysis Results 48

4.6.4. Comments and Conclusion . 50

5. DEPENDENCY USAGE AND PRUNING IN TC 52

5.1. Experiment Configuration According to TC Fundamentals 52

5.1.1. Datasets . 52

5.1.2. Preprocessing Operations . 53

5.1.3. Document Representation . 53

5.1.4. Term Weighting Approach . 53

5.1.5. Machine Learning Algorithm . 53

5.1.6. Feature Selection . 53

5.1.7. Performance Measures . 54

5.2. System Modules . 54

5.2.1. Pruning Implementation . 54

5.2.2. Dependency Analysis . 55

5.3. Experiment Design . 55

5.3.1. AW . 57

5.3.2. AWP . 57

5.3.3. AWDP . 58

5.3.4. AWDCP . 58

5.4. Analysis of Results . 58

5.4.1. Optimal Parameter Decisions 59

5.4.2. Performance of the Methods . 59

5.4.3. Pruning Level Analysis . 60

5.4.4. Optimal Feature Numbers . 61

5.4.5. Significance of the Improvements 61

5.4.6. Dataset Comparison . 65

5.4.6.1. Skewness Factor . 65

5.4.6.2. Optimal PL Values . 65

5.4.6.3. Formality Level . 66

xii

5.4.6.4. Common Successful Dependencies 67

5.5. Comments and Conclusion . 67

6. FEATURE SELECTION APPROACHES: CLASS-BASED AND CORPUS-

BASED . 69

6.1. Overview of Feature Selection Algorithms 69

6.2. Experiment 1 - Introduction to Class-Based and Corpus-Based Approach

in Feature Selection . 71

6.2.1. Experiment Configuration According to TC Fundamentals . . . 72

6.2.1.1. Datasets . 72

6.2.1.2. Preprocessing Operations 72

6.2.1.3. Document Representation 72

6.2.1.4. Term Weighting Approach 72

6.2.1.5. Machine Learning Algorithm 72

6.2.1.6. Feature Selection . 72

6.2.1.7. Performance Measures 72

6.2.2. Experiment Design . 73

6.2.3. Experiment Results and Comments 73

6.2.4. Conclusion . 75

6.3. Experiment 2 - Two Stage Feature Selection 75

6.3.1. Experiment Configuration According to TC Fundamentals . . . 76

6.3.1.1. Datasets . 76

6.3.1.2. Preprocessing Operations 76

6.3.1.3. Document Representation 76

6.3.1.4. Term Weighting Approach 76

6.3.1.5. Machine Learning Algorithm 77

6.3.1.6. Feature Selection . 77

6.3.1.7. Performance Measures 77

6.3.2. Experiment Design . 77

6.3.3. Experiment Results . 77

6.3.4. Comments and Conclusion . 78

6.4. Experiment 3 - Two Stage Feature Selection with Dependency Usage . 78

6.4.1. Experiment Configuration According to TC Fundamentals . . . 80

xiii

6.4.1.1. Datasets . 80

6.4.1.2. Preprocessing Operations 80

6.4.1.3. Document Representation 80

6.4.1.4. Term Weighting Approach 80

6.4.1.5. Machine Learning Algorithm 81

6.4.1.6. Feature Selection . 81

6.4.1.7. Performance Measures 81

6.4.2. Experiment Design . 81

6.4.3. Experiment Results . 81

6.4.4. Significance of the Improvements 82

6.4.5. Comments and Conclusion . 84

7. CONCLUSIONS . 85

REFERENCES . 91

xiv

LIST OF FIGURES

Figure 2.1. SVM fundamentals: support vectors, hyperplane and margin . . . 11

Figure 3.1. Sample parse tree . 19

Figure 4.1. General system architecture . 30

Figure 4.2. Stanford Parser usage and parse file 30

Figure 4.3. Usage of parse file . 31

Figure 4.4. Feature types of Experiment 1 . 36

Figure 4.5. Feature types of Experiment 2 for a sample sentence 41

Figure 4.6. Sample keyword formations due to stemming alternatives for AW

approach . 46

Figure 4.7. Sample keyword formations due to stemming alternatives for de-

pendencies in AW+ approach . 47

Figure 4.8. Improvements of the successful dependencies over the benchmark . 50

Figure 5.1. General system architecture with the proposed methods 56

Figure 5.2. Pruning level analysis with the proposed methods (microF) 62

Figure 5.3. Pruning level analysis with the proposed methods (macroF) 63

Figure 6.1. Feature selection with corpus-based and class-based approaches . . 74

xv

Figure 6.2. Inheritance of AWDCKP from AWKP and AWDCP 82

Figure 7.1. Overview of the improvements of the proposed approaches 88

xvi

LIST OF TABLES

Table 3.1. Stemming rules with their examples 17

Table 4.1. Success rates for different dependencies 37

Table 4.2. Success rates for the experiment: WordNet and WND usage with

dependency support . 42

Table 4.3. Dependencies and their examples 44

Table 4.4. All words stemming . 47

Table 4.5. Comparison of dependency forms 48

Table 4.6. Dependency performance ranks in descending order for Reuters and

NSF . 49

Table 5.1. Dependency types used in the experiments 56

Table 5.2. Success scores of the proposed methods 59

Table 5.3. Success scores of the leading dependencies in AWDP with the op-

timal PL values . 60

Table 5.4. Statistical comparison of the proposed methods - AW, AWP, AWDP

and AWDCP . 64

Table 6.1. Success scores of the two stage feature selection 79

xvii

Table 6.2. Success scores of the dependency support with two stage feature

selection . 82

Table 6.3. Statistical comparison of the proposed methods - AW, AWK, AWKP

and AWDCKP . 83

xviii

LIST OF SYMBOLS/ABBREVIATIONS

FNi False negatives of class i

FPi False positives of class i

O(n2) Space or time complexity representing quadratic complexity

TPi True positives of class i

π Precision

ρ Recall

acomp Adjectival complement

adv Adverbal clause modifier

agent Agent

amod Adjectival modifier

app Appositional modifier

attr Attributive complement

aux Auxiliary passive

avg Average

AW All words

AW+ All words plus

AWDCKP All words and optimal dependency combinations with key-

word selection and pruning

AWDCP All words and dependency combinations with pruning

AWDP All words and dependencies with pruning

AWK All words with keyword selection

AWKP All words with keyword selection and pruning

AWP All words with pruning

bow Bag-of-words

cls Clause modifier

comp Complement

complm Complementizer

xix

conj Conjunctive

Dmns Domain based

dobj Direct object

FtrNo Feature number

Hyp Hypernmy based

idf Inverse document frequency

IN Preposition

infmod Infinitival modifier

iobj Indirect object

LSI Latent Semantic Indexing

macroF Macro-averaged F-measure

microF Micro-averaged F-measure

mark Mark

MiniNg20 Mini 20 Newsgroups

nn Noun compound modifier

NN Singular noun

NNS Plural noun

NP Noun phrase

NSF National Science Foundation Research Award Abstracts

obj Object-verb

part Participle modifier

PL Pruning level

pobj Prepositional object

prep Prepositional modifier

prep-along Prepositional modifier - along

prep-as Prepositional modifier - as

prep-at Prepositional modifier - at

prep-btwn Prepositional modifier - between

prep-by Prepositional modifier - by

prep-for Prepositional modifier - for

prep-from Prepositional modifier - from

xx

prep-in Prepositional modifier - in

prep-into Prepositional modifier - into

prep-none Prepositional modifier - generic

prep-of Prepositional modifier - of

prep-on Prepositional modifier - on

prep-over Prepositional modifier - over

prep-to Prepositional modifier - to

prep-with Prepositional modifier - with

prt Phrasal verb participle

POS Part-of-speech

poss Possession modifier

rcmod Relative clause modifier

rel Relative modifier

Rn Ranked form

Reuters Reuters-21578

S Sentence

std Standard deviation

stm Stemmed form

subj Subject-verb

SVM Support Vector Machine

Syn Synset based

synset synonym set

tf Term frequency

VP Verb phrase

WND WordNet Domains

1

1. INTRODUCTION

Classification can be defined as a process that tries to calculate a decision function

based on training data with explicit input and output (classes) and later predicts the

output of the new input set with minimum error using the estimated decision function

[1]. Text Classification (TC), which is a sub-domain of classification and has been

subject to active research for many years, is a learning task, where pre-defined category

labels are assigned to documents based on the likelihood suggested by a training set of

labeled documents.

Text classification is not an emerging problem in computer science, it is even

one of the most historical and discussed topics in Artificial Intelligence. It is defined

as elephant among blind researchers [2] which indicates its possible alternate views

and several solution strategies. The solutions benefit directly from many other related

disciplines in Computer Science (e.g. machine learning, natural language processing,

Information Retrieval) or Mathematics (e.g. statistics, analytical geometry).

Text classification task may also be synonymously referred to as text categoriza-

tion, document classification, topic classification, or topic spotting in the literature [3].

Automatic email sorting (or specifically filtering spam emails), sentiment detection of

a text, assignment of news articles to topic channels, classification of the e-commerce

customer logs / notes, detecting a document’s encoding (ASCII, Unicode, UTF-8, etc.),

or detecting the document language (English, Turkish, etc.) are all examples or sub-

problems of text classification [2, 3]. Document management systems, search engines,

semantic web applications, file organization, database organization / optimization are

some examples of practical and widely used tools / concepts which are highly related

with text classification by employing several common algorithms or approaches.

The main methods of TC domain problems are mostly supervised (with com-

pletely labeled training data) and parametric (fitting to a model and its parameters).

In this sense, the bag-of-words (bow) form is accepted to be the simplest and the most

2

successful approach to TC problems. In this approach, only the words in the docu-

ments are considered as features of the solution vector used for classification. It mostly

relies on morphological concern by directly focusing on term frequencies and ignoring

word order and possible relations between words.

The important issues and stages of text classification may be summarized as

dataset selection, machine learning algorithms, preprocessing alternatives, feature rep-

resentation, extracting new feature types (syntactic or semantic types), feature selec-

tion and performance measures. In this work, we focus on feature extraction and feature

selection and delegate the remainder components to state-of-the-art approaches. Fea-

ture extraction extends the morphological concern of the bow approach by extracting

new and informative features. The extracted features are mostly syntactic or seman-

tic oriented which are expected to improve the classification performance by including

some possible missing information of the standard approach. On the other hand, fea-

ture selection filters unimportant and uninformative features with particular statistical

ranking rules in order to reach more scalable and accurate solutions.

For feature extraction, we make use of some syntactic features (e.g. part-of-speech

(POS), lexical dependencies between words in a sentence) and some semantic features

(e.g. synonym sets, concepts, etc.) retrieved from parsers and external knowledge

bases, respectively.

For feature selection, there are various filtering methods (e.g. pruning, tf-idf,

chi-square, information gain, etc.) which are analyzed and compared deeply in the

literature [12, 58, 59]. In this work, we deal with the coverage approach of the metrics

(class-based or corpus-based coverage of features) instead of another analysis of the

selection methods which have been already discussed in many recent studies. The

corpus-based approach uses a single feature vector for the discrimination of all the

classes, while the class-based approach enables us to provide a distinct feature vector

for each class. Pruning (filtering words according to their occurrence rates in the

dataset) and selecting terms according to particular frequency formulas (i.e. tf-idf

ranking [3]) of the features for each class are implemented for the basic and alternative

3

selection metrics.

Our main goal is to develop a robust method in text classification that serializes

the extraction of the most informative feature types with the optimal use of feature

selection approaches.

1.1. Research Overview

The motivation of this thesis is to extend the standard bow approach used in the

text classification problem with possible syntactic and semantic feature extraction by

using optimal feature selection approaches. The main contributions are twofold.

On one hand, we performed an analysis for the optimal pruning of the features

within 10 different levels. In the literature, usually an arbitrarily selected and small

value (e.g. 2 or 3) has been used for this level. The analysis in this thesis was performed

with respect to three main feature types (words, dependencies, and dependency combi-

nations) and three datasets. Several optimal values were extracted according to these

parameters (e.g. optimal level was analyzed as 13 for words and 8 for combination of

dependencies in two datasets). We evaluated the incremental effect of 36 lexical depen-

dencies in independent experiments with the optimal pruning levels and implemented

the final experiment set-up by using the combination of the leading dependencies in

addition to all the words in the documents. On the other hand, we compared the

performance of corpus-based and class-based approaches for feature selection coverage

and then, extended corpus-based pruning implementation by the tf-idf class-based fea-

ture selection. We examined a range between 10 and 4000 keywords and achieved the

optimal parameters for the experimented datasets. For the final test, we serialized the

optimal use of the leading dependencies for each experimented dataset with the two

stage (corpus and class-based) feature selection approach.

Three significance tests have been implemented to test the robustness of the re-

sults and the significance of the improvements. Besides the classical micro and macro

sign tests, we derived an extended version of the micro sign test for this study. The

4

results show that for each extension in the methods, a corresponding significant im-

provement was observed in the success rates. The most advanced method, combining

the leading dependencies with optimal pruning levels and optimal number of class-

based features, mostly outperformed the other methods in terms of success rates with

reasonable feature sizes.

The improvements achieved by the approaches were analyzed according to the

algorithm details and a detailed study was performed to understand the reasons of

these improvements with respect to the dataset properties. Significant patterns were

extracted (e.g. formality level, skewness and text length) for the datasets which leads

to the improvement rates with respect to the proposed algorithms (e.g. a massive

improvement of macroF with a specific dataset was observed after the implementa-

tion of class-based feature selection due to the high skewness of the dataset). Another

related analysis was performed with dependency use and it was shown that the for-

mal datasets resulted in common and more complicated dependencies in the leading

dependency analysis, while the informal dataset yielded other dependency types.

1.2. Thesis Outline

Chapter 2 presents a review of the state-of-the-art text classification fundamentals

with an overview of the widely used supplementary methods and tools. Chapter 3

provides a detailed background of the current morphological, syntactic and semantic

tools for the processing of the words and sentences in text classification.

Contributions of the thesis are presented mainly in Chapters 4-6. Chapter 4

presents the set-up details of the preliminary experiments with related tools and algo-

rithms. Corresponding configuration settings are explained in order to analyze their

practical discriminative power in the solution and find the possible most successful

configuration pattern that will be informative and beneficial for text classification.

Based on the outcomes of the experiments presented in Chapter 4, Chapter 5

presents a comprehensive analysis of the lexical dependency and pruning concepts

5

for the text classification problem. The pruning levels for words, dependencies, and

dependency combinations for different datasets are analyzed. Statistically significant

improvements are presented with the proposed approaches.

Chapter 6 focuses on feature selection approaches for text classification and in-

troduces an extension of the optimum approach (presented in Chapter 5) with the

analysis of class-based feature selection.

Although we provide a separate conclusion section for each experiment, Chapter

7 presents an overall conclusion and discussion of the contributions of this thesis.

6

2. FUNDAMENTALS OF TEXT CLASSIFICATION

In this chapter, text classification is discussed from several perspectives in all

possible dimensions: datasets, solution alternatives, machine learning algorithms, pre-

processing alternatives, feature properties (feature types, feature representation, fea-

ture selection, feature extraction) and performance measures. The set-up of all our

experiments are introduced according to these fundamentals of text classification.

2.1. Datasets

We chose to work with English documents, since many well formatted and stan-

dardized English text classification datasets that contain training and test documents

with predefined topics are available when compared to any other language.

Three well-known datasets from the UCI Machine Learning Repository [4] may

be listed as: Reuters-21578 (Reuters), National Science Foundation Research Award

Abstracts (NSF), and Mini 20 Newsgroups (MiniNg20). These datasets all include plain

text without tagging or meta-data content - tagging is only used for the distinction

and identification of each document topic and content in the dataset. These datasets

have different characteristics, which may be critical for the classification performance.

Skewness is one of the key properties of datasets that reflects the distribution of number

of documents over classes. When a dataset’s skewness rate is low, this means that it

is a balanced dataset with approximately the same number of document samples per

class. Allowance of multiple classes per document (indicating that documents in the

dataset may belong to more than one topic), document length (short abstracts or long

news articles), split (training and test sets) proportions, formality level (e.g. formal

journals vs informal internet forum messages) are other properties of datasets.

Reuters is a well-known formal dataset that has been used in many TC algorithms

[5, 6]. Standard Mod-Apte split partitions the dataset into 9603 training documents

and 3299 test documents [5]. All the topics in both the training set and the test set

7

were used in the experiments. The dataset, thus, consists of 90 classes, which is highly

skewed. For instance, seven classes have only one document in the training set and

most of the classes have less than ten documents. Also, the dataset allows multiple

topics.

The NSF dataset consists of 129,000 abstracts describing NSF awards for basic

research between the years 1990 and 2003 [4]. The level of formality of the dataset

is high. It allows multiple topics. NSF is not a perfectly balanced dataset but its

skewness rate is also not as high as Reuters. Document lengths are short due to its

abstract content.

The MiniNg20 dataset consists of 2000 messages (split as 1600 for training and

400 for test), which is a collection of 100 messages from 20 different usenet newsgroups.

Unlike the other two datasets, MiniNg20 is informal, with many grammatical errors,

allows only one topic per text, and is a balanced dataset having equal number of

messages for each topic.

2.2. Preprocessing Operations

Preprocessing is the initial step in dealing with the datasets that transforms the

raw text into the required format for the feature representations of tools / algorithms

for text classification. We may divide the preprocessing operations into two main parts:

basic routines for feature formatting and more advanced routines with supplementary

methods / tools for feature extraction.

2.2.1. Feature Formatting (Basic Routines)

These routines include the phases where documents are parsed, non-alphabetic

characters and mark-up tags are discarded, case-folding is performed, stopwords are

eliminated and morphological stemming is performed. Stopwords are some extremely

common words that would appear to be of little value in classification of documents.

Stoplists are used as the common groupings of stopwords for a particular problem.

8

Using a stoplist significantly reduces the size of the feature vector and the required

system memory [3]. There is the standard list of 571 stopwords of the Smart system

[7].

2.2.2. Feature Extraction (Advanced Routines)

Parsing (syntactic process where the POS information and dependencies of the

sentences are extracted) and support of external knowledge bases for implicit features

(semantic process which is covered by WordNet, Cyc, etc.) may be classified as ad-

vanced routines of preprocessing for text classification. Details about these processes

and supplementary tools are explained in Chapter 3.

2.3. Document Representation

Bow form is accepted as the simplest and the most successful approach used in

the TC problem. In this standard approach, only the words in the documents are con-

sidered as the features of the machine learning algorithm used for classification. Using

a machine learning algorithm with this basic form is the straightforward, fundamental

and conventional approach for text classification problems [3, 6]. In this approach, doc-

uments are represented by the widely-used vector-space model introduced by Salton

et al. [7]. We represent each document vector as d = (w1, w2,, wn) where wi is the

weight of the ith term of document d. Each dimension in the vector d stands for a

distinct term (word) in the term space of the document collection based on the bow

approach.

Representing the terms in this way causes the word ordering information within

the sentences to be lost. String kernels with n-gram sequences, in which n consecutive

words correspond to a single feature in the solution vector, feature were proposed to

compensate for the ordering information and yielded promising results [8]. But this

method has to deal with performance problems in large datasets - it suffers large space

and time complexity issues and thus uses some approximation algorithms instead of

representing the full structure. A different approach is making use of a language model

9

(representing a document by the generation of new sentences from the document itself

based on finite automata and probabilistic models) for text classification. Language

models are sophisticated approaches used in information retrieval and they are consid-

ered as complicated for text classification [3]. These models are more appropriate for

problems like query generation from texts, speech recognition, etc.

There are also recent studies that focus not only on the words, but, also the

semantic concepts (synonyms, hypernyms, etc.) or syntactic features (POS, phrases,

lexical dependencies, etc) in the solution vector by extending the bow approach. The

syntactic and semantic feature types are extracted after applying the advanced prepro-

cessing routines.

2.4. Term Weighting Approach

As stated in Section 2.3, the bow form is the conventional approach to the text

classification problems in which documents are represented by the widely-used vector-

space model. Term weighting approach is the key parameter for the stated feature

representation.

As the common weighting approach, tf-idf metric is a simple and direct measure

that takes the term frequency (tf) and the term’s presence in the entire dataset (df)

into account as shown in Equation 2.1. Boolean weighting checks only the occurrence

of the term and does not consider the occurrence frequency so it is simpler than tf-

idf but outperformed by tf-idf in related studies [5, 9]. Another alternative metric,

Okapi BM25 is a non-binary model used mainly for query-document similarity measure,

related search algorithms and relevance feedback [10].

tf–idf = tft,d ∗ log
N

dft

(2.1)

We use the standard form of tf-idf [3] to calculate the weight of a term t in a document d,

where tf is the frequency of term t in document d (each document vector is normalized

to unit length to account for documents of different lengths), N is the total number of

10

documents, and df is the number of documents in the dataset that include t.

2.5. Machine Learning Algorithm

In text classification, we have the document space X and there is a description

of a document d ∈ X and a set of classes C = c1, c2,...,cm, where m is the number of

classes. By using machine learning algorithms, we try to learn a classification function

f that maps documents to classes [3]:

f : X → C (2.2)

The main machine learning approaches used in the TC domain may be classified as

supervised (e.g. Support Vector Machine (SVM)) vs semi-supervised (e.g. Naive

Bayes with Expectation Maximization), parametric (e.g. SVM, Naive Bayes) vs. non-

parametric (e.g. k nearest neighbor) methods, linear (e.g. SVM with linear kernel)

vs. non-linear (e.g. SVM with radial basis kernel) classifiers, vector space (e.g. SVM,

artificial neural network, Rocchio) vs. probabilistic (e.g. Naive Bayes) classification,

and decision tree modeling (e.g. rule-based decision trees). Clustering (e.g. k-means,

which is unsupervised and semi-parametric) may also be employed in the case of the

existence of a dataset without labeled training data.

SVM is a technique introduced in 1995 by Vapnik, which is based on the Struc-

tural Risk Minimization principle [13]. It is mainly designed for solving two-class

pattern recognition problems. Figure 2.1 represents the members of the two classes

with positive (+) and negative (−) signs. The main motivation is to find the decision

surface (hyperplane) that separates the positive and negative training examples of a

class with maximum margin as seen in Figure 2.1 in order to decrease the classifica-

tion errors with the test data. The dashed lines which are parallel to the main line

show how much the decision surface can be moved without resulting in classification

errors. Margin is the distance between these parallel lines. Support vectors, which

are marked with circles, are the members of the two classes which are closest to the

decision surface.

11

Figure 2.1. SVM fundamentals: support vectors, hyperplane and margin

Several studies have compared the performances of these approaches and in gen-

eral, SVM with linear kernel was shown to yield the best results [5, 6, 11, 12]. For the

fundamental challenges in the text classification domain (high dimensionality, sparse

instances, separability of classes), SVM provides efficient solutions by being more im-

mune to the overfitting problem, using an incremental algorithm with an inductive

bias that suits problems with dense concepts and sparse instances, and employing a

basic linear separation model that fits the discrimination of most of the classes [11].

In the initial tests, we also experimented neural networks with multiple layers as an

alternative approach for the machine learning part, but the method caused much more

time complexity without yielding more successful results when compared with SVM.

2.6. Feature Selection

The basic idea of the feature selection implementation is to select the most dis-

criminative ones among all the features for the classification problem. More successful

scores with less (but more informative) feature numbers is aimed with this selection

process.

Pruning is a simple and efficient approach to reach this smaller but more dis-

criminative feature set. The pruning process basically focuses on the total frequency

of the features in the whole dataset and filters out less frequent ones. This is generally

12

performed with predefined static levels (e.g. words occurring less than 2 or 3 times are

eliminated) without an optimization study.

Other metrics (mutual information, chi square selection, bi-normal separation, tf-

idf, etc.) may also be used for term selection. These metrics involve mostly arithmetic

calculations of true / false positives and true / false negatives with their counts, rates

or percentages. They usually differ with their decision criteria with respect to the recall

and precision metrics. Tf-idf is one of the most widely used algorithms in this scope [3].

Tf-idf is basically the multiplication of tf and idf values that has been used for term

weighting approach. This metric focuses on the frequency of the term in a document

with a discount of its general occurrence in the whole dataset.

Latent Semantic Indexing (LSI) is another type of feature reduction approach

but differs from the other mentioned ones with its semantic perspective - the method

represents the documents and terms in the same space by allowing the underlying

semantic relationships between them [14]. Co-occurrence of data is important in LSI,

the words that occur together in the same document are said to be semantically related

and similar. This method has been stated as not satisfactory enough when applied

directly to the whole training dataset, instead local LSI methods have been analyzed

to improve classification performance [15].

2.7. Performance Measures

Performance measures are needed in classification problems to evaluate the suc-

cess of each of the proposed algorithm (success scores) and provide a mechanism for

statistical testing to compare the success scores of these algorithms (significance mea-

sures).

2.7.1. Success Scores

To evaluate the performance of the proposed approaches, we use the commonly

used F-measure metric, which is equal to the harmonic mean of precision (π) and recall

13

(ρ) [3]. π and ρ are formulated as follows:

πi =
TPi

TPi + FPi

, ρi =
TPi

TPi + FNi

(2.3)

Here, TPi (True Positives) is the number of documents assigned correctly to class i ;

FPi (False Positives) is the number of documents that do not belong to class i, but are

assigned to this class incorrectly; FNi (False Negatives) is the number of documents

that are not assigned to class i by the classifier but which actually belong to this class.

The F-measure values are in the interval (0,1) and larger F-measure values cor-

respond to higher classification quality. The overall F-measure score of the entire clas-

sification problem can be computed by two different types of average, micro-average

and macro-average [3].

In micro-averaging, F-measure is computed globally over all category decisions:

F (micro–averaged) =
2 ∗ π ∗ ρ

π + ρ
(2.4)

Micro-averaged F-measure (microF) gives equal weight to each document and is there-

fore considered as an average over all the document/category pairs. It tends to be

dominated by the classifier’s performance on common categories.

In macro-averaging, F-measure is computed locally over each category i first and

then the average over all categories is taken:

Fi =
2 ∗ πi ∗ ρi

πi + ρi

, F (macro–averaged) =

∑M
i=1 Fi

M
(2.5)

where M is total number of categories. Macro-averaged F-measure (macroF) gives

equal weight to each category, regardless of its frequency. It is influenced more by the

classifier’s performance on rare categories. We provide both measurement scores to be

more informative.

14

2.7.2. Significance Measures

Sign test is the common algorithm in TC related problems to understand the

significance of the improvements of the proposed approaches [6]. Similar to success

scores, two types are employed:

• Micro sign test: This is an instance-based test that compares the system based on

the micro perspective of the results. A document-category pair is the basic unit to

decide whether the document belongs to the category (positive instance - 1) or not

(negative instance - 0). In this significance test, two systems are compared based

on their binary decisions on all the document-category pairs. The correctness of

the decisions are compared for each pair [6]. Standard z values are calculated

and the corresponding confidence levels are determined according to the standard

normal distribution [16, 17].

• Macro sign test: This is a category-based test that compares the two systems

based on their F-scores on each category of the dataset. The test considers the

number of times that the two systems yield different scores and the number of

times that the score of one of the systems is larger than the score of the other

system [6]. The z value calculation and confidence level determination processes

are the same as in the micro sign test.

• Micro sign test with positive instances: This a variance of the Micro sign test

that we have suggested in order to consider only positive document-category

matches for significance calculation. The document-category matrix in the micro

sign test is a highly sparse matrix with a large number of negative instances

(0). This is not surprising because each document belongs to usually three or

four categories at most and has a negative value for the remaining categories.

The micro sign test takes all the positive and negative instances between the

compared systems into consideration, which in fact favors the negative ones since

they occur much more frequently. Based on this observation, we decided to derive

an extension of the micro sign test by redesigning the test considering only the

positive instances. In this way, the test focuses only on the instances in which the

document belongs to that category. The rest of the test (comparison algorithm,

15

z value calculation, confidence level determination, etc.) is the same as in the

micro sign test. In specific situations that we want to consider only the positive

matches of document-category matrix for performance comparison, the outcome

of this extended version of micro sign test should be analyzed.

2.7.3. Other Measures

Space complexity and time complexity are also two other main properties of a

proposed computational system. Space complexity provides information about the

amount of storage space required by an algorithm, this measure is parameterized with

the size of the problem. For example, if the space complexity is mentioned as O(n2),

the required space expands to four times of its previous value in case the problem size

doubles. On the other hand, time complexity measures the number of steps (time)

required by an algorithm varying with the size of the problem. Its symbology is the

same as the space complexity. O(n2) indicates the expansion of required steps in terms

of time domain with respect to problem size.

16

3. SUPPLEMENTARY TOOLS FOR PREPROCESSING

IN TC

After discussing the main stages of TC in the previous chapter, we will now

analyze the necessary supplementary tools for the problem. This chapter provides the

details of the current morphological (e.g. stemmer that finds the root form of the

words), syntactic (e.g. parser that extracts the POS information and dependencies

of the sentences) and semantic (e.g. ontology that extracts implicit concepts of the

words) tools for the processing of the words and sentences in text classification.

3.1. Morphological Knowledge

Besides the basic preprocessing routines of the words in the documents (discard-

ing non-alphabetic characters and mark-up tags, case-folding, and stopwords elimina-

tion), stemmer analysis in text processing is the main perspective of the morphological

concern with text classification. From the classical view of morphological stemming,

implementation is based on only morphological issues that are completely independent

from the syntactic and semantic structure of the sentence.

Porter stemmer is the most common algorithm for stemming in English [3]. The

algorithm consists of five phases of word reductions which are applied sequentially.

Within each phase, there are various conventions to select rules. Table 3.1 lists an

example set of rules and the corresponding samples for the conventions used in the

first phase [3].

An alternative to stemming is the lemmatizer concept, which performs syntactic

analysis in addition to morphological analysis. In this process, stemming is performed

by removing inflections of the word but conserving the derivational affixes based on

the syntactic analysis of the sentence. We utilize both ways of stemming by employing

Porter Stemmer as the morphological stemmer and Stanford Lemmatizer, the built-in

stemmer of Stanford Parser, as the alternative one.

17

Rule Example

Before After Before After

sses ss caresses caress

ies i ponies poni

ss ss caress caress

s cats cat

Table 3.1. Stemming rules with their examples

3.2. Syntactic Knowledge

This section provides details about the lexical dependency concept which is a

type of document pattern. The Properties of the Stanford Parser, dependency extrac-

tion with this parser and the use of dependencies in Information Retrieval problems

(including text classification related references) will be explained.

3.2.1. Document Patterns and Lexical Dependencies

Document patterns represent domain specific information with a specific struc-

ture (pattern) which are extracted from unstructured machine readable documents

[18]. Different dependency types (predicate-argument model, chains, linked chains,

subtrees, etc.) have been studied in the literature using alternative approaches to lin-

guistic analysis [19]. Building a model based on document patterns basically aims to

extract sufficiently expressive patterns from the documents without introducing much

complexity.

Lexical dependency is an extended model of document pattern in which sen-

tence structure is represented using the grammatical relations (object-verb, conjunc-

tive, prepositional modifier, etc.) between the words in a sentence [20]. A dependency

is simply formed as the combination of any two words with any of these grammatical

relations. For example, three sample dependencies extracted from a sample sentence

18

“We use combination of dependencies in text classification.” may be listed as we-

use (subject-verb), classification-text (noun compound modifier), and dependencies-

classification (prepositional modifier). Here, we is the subject and use is the main

verb of the sentence and the combined dependency forms the subject-verb dependency.

Text and classification are both nouns and the preceding one affects the meaning of the

other, so this dependency couple is named as noun compound modifier. For the last de-

pendency, dependency is modified by the noun classification through the in preposition

which forms the prepositional modifier dependency.

3.2.2. Properties of Stanford Parser

Stanford Parser is known to be one of the most powerful and efficient parsers

having the least error rate [19]. Given a sentence, the parser identifies the dependen-

cies in the sentence in two phases. In the first phase, the sentence is parsed using a

statistical phrase structure parser based on a probabilistic context-free grammar, which

was trained on the Penn Wall Street Journal treebank [21]. The POS tags of the to-

kens, the semantic heads in the sentence, and the dependents of the heads (auxiliaries,

complement, etc.) are determined. In Table 3.1, we show the parse tree of the example

sentence “We use combination of dependencies in text classification.”.

Here, S stands for the main sentence, NP is noun phrase while VP is verb phrase.

Other abbreviations stand for the POS information mainly. PRP is proper noun, VBP

is verb with present tense, NN is singular noun, IN is preposition and NNS is plural

noun.

In the second phase, the dependencies extracted are labeled with grammatical

relations by using the tree-expression syntax defined by the tregex tool [22]. We list

below the dependencies obtained for the example sentence (details of the dependencies

will be explained in Section 5.2.2):

• subject-verb (We, use)

• object-verb (combination, use)

19

Figure 3.1. Sample parse tree

• prepositional modifier - of (combination, dependencies)

• noun compound modifier (classification, text)

• prepositional modifier - in (dependencies, classification)

In our tests with the Stanford Parser, we observed that the parser averts syntactic

ambiguities in the sentences successfully and gives the first probable parse as the result.

3.2.3. Usage of Syntactic Information in Text Related Problems

A study in the literature focused on syntactic tools for text categorization and

showed some advantages of the context-sensitive text categorization methods [23]. POS

information has been utilized in another study in which only the type of the POS

information is used (not the content) [24], which has been analyzed to be surprisingly

effective for text classification.

Another POS utilized algorithm considers only specific POS information for fea-

ture selection criteria (e.g. only nouns, verbs or proper nouns are selected as keywords)

[25]. Their results suggest that relevance of POS information may be a strong indicator

20

for the preprocessing phase of feature selection in text classification.

The concept of lexical dependency was previously used in many information re-

trieval applications such as sentiment analysis [26], parse disambiguation [27], machine

translation [28], textual entailment [29] and discourse coherence [30]. It was also em-

ployed as a common framework for interactive, multimodal, and multilingual informa-

tion retrieval problems that also included text classification implementation [31].

There are studies that specifically focus on dependencies for text classification.

The pioneering studies in this topic include noun phrases and main argument depen-

dencies (subject-verb, object-verb, etc.) in text classification, however, no significant

improvement was achieved [32, 33]. In a more recent study, dependencies (extracted

by n-gram rules) were used in the solution vector in addition to words and significantly

more successful results were yielded, however, only the leading dependencies were used

and the selection process required human interaction, which was performed by human

annotators [34]. In another recent study, many linguistic features (e.g. POS informa-

tion, complex nominals, proper nouns, and word senses) were experimented in addition

to the words, but no significant improvements were observed [35]. Another study [36]

reported that linguistic processing did not improve the bow approach and also pointed

out the negative effect of a specific dependency: subject-object-verb. In a related

study which used dependencies by capturing frequently occurring keyword combina-

tions within short segments (rule-based algorithms), reported successful results with a

specific and not widely used dataset [37]. Another recent study increased the success

rates of the classifier by combining the bow approach with a necessary noun-modifier

dependencies and word senses [38].

In almost all of these studies, dependencies were altogether included in the solu-

tion vector without any further analysis. Another drawback regards pruning: It was

mostly performed during tests but with a predefined static level (e.g. two or three).

In a very recent study which performed a distinct analysis of dependencies, a slight

improvement over the baseline of the standard bow approach was achieved [39]. On

the other hand, due to the lack of pruning, most of the dependency types used in [39]

21

yielded many instances (distinct word pairs), which resulted in an excessive number of

features and a highly sparse solution set in the machine learning algorithm.

3.3. External Knowledge Bases - Ontologies

Ontology refers to the shared understanding of some domains of interest. It is

often conceived as a set of classes (concepts), relations, functions, axioms and instances

[40]. It is defined as a formal, explicit specification of a shared conceptualization.

Conceptualization refers to an abstract model of phenomena in the world by having

identified the relevant concepts of those phenomena. Explicit means that the type of

concepts used and the constraints on their use are explicitly defined. Formal refers to

the fact that the ontology should be machine readable. Shared implies that an ontology

should capture consensual knowledge accepted by the communities [40].

WordNet and Cyc are accepted as the most general ontologies with extensive

content. In this part of the report, we focus on these ontologies.

3.3.1. WordNet

WordNet is an online lexical reference system whose design is inspired by current

psycholinguistic theories of human lexical memory. English nouns, verbs, adjectives and

adverbs are organized into synonym sets (synsets), each representing one underlying

lexical concept.

Different relationships interrelate the WordNet synsets. The well-known and

most useful ones are the hyponymy / hypernymy and meronymy / holonymy relation

couples.

The hyponymy / hypernymy is the main relation group of the WordNet hierarchy

which defines isA relationship between concepts. For example, student is a hyponym

(child) relation of the person synset and a person is a hypernymy (or parent) of stu-

dent. Both relations are transitive and asymmetrical. Each concept has a single parent,

22

except the root concept which is the hypernmy of all the other concepts and is seman-

tically empty.

Another relation couple is the meronymy / holonymy which defines the has part /

part of relationships, respectively, between synsets. For example, wheel is a holonymy

of car synset and car is a meronymy of wheel synset.

As for the drawbacks of Wordnet, it is said to be an ontology heavily based on the

lexicon concept and a hierarchy without any further analysis on the syntactic features

and semantic concepts of the whole sentence. Also, WordNet has a limited number of

private names / instances (people, organizations, geographic locations, books, songs,

etc.) of the concepts.

3.3.2. WordNet Related Tools

There are some recent supplementary tools utilized with WordNet. One of them

is WordNet Domains (WND). In WND, there are about 200 uniquely defined domains.

Each synset in WordNet is annotated with some domain(s)[41, 42].

Another supplementary tool is WordNet Affect which is in fact an extension of

WND [45]. A linguistic resource has been presented for the lexical representation of

the affective knowledge. WordNet Similarity tool is another supplementary tool of

Wordnet. This tool mainly computes a meaning / similarity distance between two

WordNet synsets.

3.3.3. Cyc Ontology

Cyc ontology is accepted to be the most general ontology in the world [46]. It

is a formalized representation of a vast quantity of fundamental human knowledge:

facts, rules of thumb, and heuristics for reasoning about the objects and events of

everyday life. The medium of representation is the formal language CycL [47]. CycL is

a large and extraordinarily flexible knowledge representation language. It is essentially

23

an augmentation of first-order predicate calculus, with extensions to handle equality,

default reasoning and some second-order features. OpenCyc is the open source version

of the Cyc system and ResearchCyc is the extended version of OpenCyc with a license

granted for academic research.

ResearchCyc supports several user interfaces for skill levels ranging from expert to

novice. The Cyc Browser consists of dynamic (CGI-generated) HTML pages that allow

experienced users to query, browse, edit, and add contents to the knowledge base. The

Cyc Fact Editor is a template-based Java interface that allows users to add, view, edit

facts (ground assertions) to the knowledge base. The Query Library is a Java interface

that allows users to pose pre-formulated queries (i.e. libraries of queries already defined

for particular domains), and to compose new, arbitrarily complex queries by assembling

and modifying pre-existing query fragments and templates.

From the perspective of implementation detail, Cyc holds the isA relation (e.g.

Bill Clinton is a (PastOrPresentPresidentFn UnitedStatesOfAmerica) HumanAdult In-

dividual MaleHuman LeftHandedHuman FamousHuman UnitedStatesPresident). The

membership relation is also held (e.g. Dog is a member of (CanisGenus CanineAnimal

DomesticatedAnimal). Query implementation is possible through several interfaces

(e.g. web and application programming interface) in Cyc (e.g. isQueryTrue : (LIST

likesAsFriend BillClinton JimmyCarter) PeopleDataMt). Relative concepts may be

listed or queried (e.g. Ankara and Athens are both capitals). We may modify the

internal data with specific functions such as assertGaf and unassertGaf. Concept

extraction for a given word or word group is stated to be possible with functions: sget-

DenotsOfString-getMWSDenotsOfString. Cyc is also stated to support lexical analysis

and give related concepts for the words in the sentence with the specific function de-

notationMapper. However, since the analysis is performed word by word, it does not

yield an optimal time complexity and does not consider the structure of the sentence.

24

3.3.4. Other Ontologies

As an example of other general-purpose ontology variants, Wikipedia is a human-

readable and global knowledge base that contains millions of articles collaboratively

written by volunteers [48]. However, Wikipedia lacks one of the fundamentals of ontol-

ogy standards: the concepts and hierarchical relationships among them are not formally

defined.

Another general-purpose ontology is Open Mind Common Sense, which aims to

build and utilize a large common sense knowledge base formed by many global vol-

unteers [49]. ConceptNet is the semantic engine for this ontology [50]. ConceptNet

was employed to retrieve images with text descriptions by focusing on spatial relation-

ships. The evaluation on test data of the 2005 ImageCLEF showed that integrating

commonsense knowledge in information retrieval was feasible [51].

3.3.5. The Use of Knowledge Bases in Text Classification

WordNet is the most common and popular lexical tool utilized in text classifica-

tion studies [52]. Most of the studies focuses mainly on synsets for text classification

and expands the keyword vector with synsets of the words. One of the studies has

stated an increase in the overall success but synset disambiguation has been performed

manually instead of a successful and ideal sense disambiguation [53]. There is also a

recent study focusing on WordNet features [54]. They have implemented a text clas-

sifier shell that has incorporated various WordNet features into the standard category

model and they have reported no effective success increase with their detailed tests.

In one of the recent studies, WND has been utilized for domain acquisition [43].

The purpose was to identify how the global conceptual representation of a sentence

could contribute to the resolution of the classification problem. For this purpose, they

presented an approach where the meaning of a sentence has been represented with

its associated relevant domains. Another domain-specific study covers domain-specific

sense extraction [44].

25

4. PRELIMINARY TESTS

The main motivation of this chapter is to recognize and experiment with several

tools and algorithms using different configuration settings in order to analyze their

practical discriminative power and discover the possible most successful configuration

pattern which is informative and beneficial for text classification. The configuration

with the optimal performance is extensively analyzed and improved in the following

chapters.

4.1. Common Preferences of the Experiments

We have provided the main definitions and properties of the fundamentals of text

classification in Chapter 2. In this section, we discuss and explain our main preferences

(e.g. algorithms, tools, etc.) for the discussed topics. We will use these preferences in

the following experiments in this thesis, so the below given discussion may be considered

as a structural outline of the experiments.

4.1.1. Datasets

Preliminary experiments will be performed mainly with Reuters, and partially

with NSF datasets. For the discriminative experiments of the proposed approaches,

the experiments will be performed in all the three datasets from the UCI machine

learning repository: Reuters, NSF and MiniNg20 [4].

We perform the standard use and split of Reuters and MiniNg20 datasets. We

randomly selected the year 2001 data from NSF and used five sections (four sections

for training and one section for test). We form five different splits, repeat all the tests

with these five cross folds, and take their average as the final result.

26

4.1.2. Preprocessing Operations

We analyze the preprocessing operations in two main parts: basic routines for

feature formatting and more advanced routines with supplementary methods / tools

for feature extraction.

Preprocessing for feature formatting is the initial and basic step of text pro-

cessing where documents are parsed, non-alphabetic characters and mark-up tags are

discarded, case-folding is performed, and stopwords (for word features) are eliminated.

We use the list of 571 stopwords of the Smart system [7]. Using a stoplist significantly

reduces the feature vector size and the memory requirements of the system [3]. In our

initial tests where stopwords were not eliminated in extracting the word features, we

observed a 2%-10% (depending on the dataset and the pruning level) increase in the

size of the solution vector with no significant change in the success rates. On the other

hand, when used with phrases and dependencies, it was stated that stopwords lead to

a more effective and precise analysis [3]. So we did not use stoplist filtering during

dependency extraction, which led to dependencies including stopwords as well (e.g.

write down - a phrasal verb participle dependency). For stemming, after analyzing

several alternatives, we chose the Porter stemmer which is one of the most experienced

stemmers for word forms [39, 55].

For feature extraction, POS and dependency extraction by the parser and the

support of external knowledge base (WordNet, WND, Cyc, etc.) is alternatively used

with respect to the properties of the experiments.

4.1.3. Document Representation

Documents will be generally represented as a feature vector in accordance with

the classical learning algorithms. The bow approach will be employed as the benchmark

in most of the algorithms (exceptions are the experiments that use only concepts or

dependencies without words) and will be extended by dependencies, POS information,

synsets, domains, etc. according to the experiment properties.

27

4.1.4. Term Weighting Approach

Our main motivation in this study is not to analyze the feature representation

methods for text classification but instead, utilize the most efficient and simple method

to measure the improvement of the proposed approaches. So we have selected the

commonly used tf-idf for our study and tried to optimize its use in the experimented

algorithms. For the optimized tf-idf calculation, each document vector is normalized

so that it is of unit length to account for documents of different lengths [5].

4.1.5. Machine Learning Algorithm

SVM with linear kernel is the machine learning module we use as the classification

algorithm in all the experiments.

4.1.6. Feature Selection

Our main motivation in this study is to extract the most successful features for

the TC problem and use them optimally in order to benefit from them in the most

efficient way.

Preliminary experiments are performed using all possible features without a se-

lection process. For the advanced experiments, the basic feature selection algorithm

(pruning) is implemented based on the term’s frequency in the whole dataset. Op-

timization of the pruning levels with different feature types (word, dependency) and

different datasets are performed.

In the initial tests, we also used tf-idf as an alternative method for feature selec-

tion, which is one of the most widely used feature selection metrics [3]. We obtained

similar success rates as the pruning implementation when only the words were used, but

the success decreased when the dependencies were included in the feature vector. Thus,

we decided to continue with the pruning technique. Using a feature selection metric on

dependencies may necessitate a detailed analysis and we leave the study of combining

28

possible feature selection metrics with pruning for both word and dependency features

to Chapter 6 as an independent analysis.

4.1.7. Performance Measures

All the experiments are evaluated with microF and macroF scores. For the dis-

criminative experiments of the proposed approaches, the algorithms will be statistically

compared with micro sign test, macro sign test and micro sign test with positive in-

stances in order to measure the significance of the improvement.

For the significance tests, we use the following symbols and terminology to denote

the result of a comparison:

• À : significantly outperform (more successful with at least 99% confidence level)

• > : significantly better (more successful within 95% - 99% confidence level)

• ∼ : similar - not significantly better or worse (success confidence level is less than

95% and more than 5%)

• < : significantly worse (less successful within 95% - 99% confidence level)

• ¿ : significantly defeated (less successful with at least 99% confidence level)

Space and time complexities are two important performance measures which are

also very critical for some related and specific problems in the literature (query op-

timization in a search engine or a data warehouse). But these measures are not the

main concern for the text classification problem within the predefined datasets, hence

we will not explicitly analyze the corresponding complexities in detail.

For a brief outline, we will provide the general situation for the implementations.

All experiments are implemented in Hp Workstation xw6200 with Xeon CPU 3.2 GHz

and 4 GByte RAM.

The most time consuming parts of the experiments involve access to external re-

sources (WordNet, Stanford Parser, etc.). Dataset parsing is the most time consuming

29

part of the overall process. Reuters was parsed in 55 hours while the same operation

took 15 hours for NSF. However, this parsing operation is performed offline and only

once to be utilized for all the test modes for that dataset. For the WordNet support,

the preprocessing phase in the training phase is another relatively time consuming part

which takes about approximately 15 minutes for only pattern synset extraction and

about 90 minutes for the synset extraction of all words within approximately 10000

documents.

For the proposed algorithms, the most time consuming part is the creation of tf-

idf values for all existing terms in the training and test phases. This process is analyzed

as O(n2) - it takes approximately 50 minutes with about 20,000 keywords.

4.2. Implementation Details of the Related Tools in the Experiments

This section discusses the implementation details of the related tools / methods

(SVM, Cyc, Stanford Parser, WordNet and WND) that will be used commonly or op-

tionally in the experiments. As seen in Figure 4.1, a brief system architecture covering

the generic parts of the system is presented. The proposed system implements the

preprocessing of the dataset documents, uses external knowledge bases (e.g. WordNet)

for conceptual features, parses the sentences with Stanford Parser and finally performs

classification of the documents by using SVM. Further details with specific use and

parameters of the tools / methods will be explained in the related experiment sections.

4.2.1. Parser Implementation Details

We use Stanford Parser tool (version 1.5) as the parsing module, which is known

to be one of the most powerful and efficient parsers having the least error rate [19].

Two main submodules are implemented with Stanford Parser as seen in Figure 4.2 :

PreParse: Dataset documents are preprocessed to obey the Stanford Parser input

file regulations - mostly the headers and taggers are regulated in order not to interfere

with the sentence parse structure.

30

Figure 4.1. General system architecture

Figure 4.2. Stanford Parser usage and parse file

31

Figure 4.3. Usage of parse file

GetParseStucture: Two main features types are extracted from each sentence:

POS (noun, verb, etc.) and dependency (object-verb, prepositional modifier, etc.)

property. All the related features for all the sentences in each dataset are processed

once and kept in parse file for any further use (e.g. all possible classification tests).

Thus, the extracted parse file is dataset specific and used in the system by the machine

learning module as in Figure 4.3. Size of the parse file is quite large when compared

with the original dataset sizes: Reuters parse file is about 62 MByte while NSF and

MiniNg20 are about 15 Mbyte.

4.2.2. SVM Implementation Details

We use the SV M light system which is an efficient implementation by Joachims

[11] and has been commonly used in previous studies. Three main submodules are

implemented with SVM:

PreSVM: Input files are standardized in accordance with SVM style.

BatchSVM: Batch SVM program is executed for all classes. Class comparisons

are performed by the one-versus-all style in which each class is compared against the

aggregation of all the possible classes for the assignment of each document so the batch

program is called for each different class [56].

PostSVM: SVM output data is formatted for success scores (microF and macroF).

32

4.2.3. Cyc Implementation Details

The last release of Cyc within ResearchCyc project (Release 1.1) claims to per-

form POS disambiguation in addition to lexical study with sentence-level syntactic

analysis with an extended semantic analysis. On the other hand, the current imple-

mentation of Cyc was not yet satisfactory when compared with the stated properties.

Cyc handles membership, definitions and related concepts at lexicon level but it lacks

critical aspects such as syntactic and semantic analysis at sentence level. In addition,

our implementation attempts suffered from large time complexities (even halted in

some cases) of the function calls. Therefore, we did not continue the Cyc support in

the system.

4.2.4. WordNet and WND Implementation Details

We use the online lexical reference system WordNet 2.0 as the external knowledge

resource and its related tool WND to extract more general information about the

words. The basic use of WordNet and additional WND support is implemented with

the following steps:

(i) Stem each word in the corpus with the selected stemmer / lemmatizer

(ii) Find POS information for the word with Stanford Parser support

(iii) Find the corresponding synset id by querying WordNet with the stemmed word

and its POS information. If synonmy option is selected, return the corresponding

synset id. Else if hypernymy option is selected, return the corresponding synset

id of the hypernymy (parent) of the synset by querying WordNet with the synset

id. Else if WND option is selected, return the corresponding domain by querying

WND with the WordNet synset id.

4.3. Introductory Experiment - Standard Bow Approach in TC

For the initial experiment set-up of the proposed system, the details of the bench-

mark method is the standard use of bow approach with all words (AW) for TC.

33

4.3.1. Experiment Configuration According to TC Fundamentals

Below sections discuss the main preferences of the proposed experiment according

to the fundamentals of text classification described in Chapter 2.

4.3.1.1. Datasets. Reuters is used as the main dataset for the experiments.

4.3.1.2. Preprocessing Operations. Preprocessing is performed with the below rou-

tines.

• Feature Formatting: Non-alphabetic characters and mark-up tags are discarded,

case-folding and removal of stopwords are performed. Porter is used for stemming

implementations.

• Feature Extraction: Experiments are performed without parser and external

knowledge base (WordNet, WND, Cyc, etc.) support.

4.3.1.3. Document Representation. Bow approach is implemented without any gener-

ated features besides the words of the documents.

4.3.1.4. Term Weighting Approach. We choose the standard tf-idf metric for term

weighting in our methods.

4.3.1.5. Machine Learning Algorithm. SVM with linear kernel is the machine learning

module we use as the classification algorithm.

4.3.1.6. Feature Selection. No feature selection algorithm is used.

4.3.1.7. Performance Measures. Experiments are evaluated with microF and macroF

scores.

34

4.3.2. Experiment Design and Results

The main motivation of the experiment is to implement the standard bow ap-

proach. the experiment yielded the microF score as 85.5 and macroF as 43.7 for the

Reuters dataset.

4.3.3. Comments and Conclusion

We take the result achieved in the AW test as the benchmark score and try to

improve it with the proposed algorithms in the following experiments.

4.4. Experiment1 - Introduction to Dependency Support in TC

In this experiment, we want to test the discriminative power of some of the widely

used dependency types (object, subject, preposition, participles) as an extension to the

bow approach with all words. Two parameters are varied in the experiments: the first

parameter is about the form of the dependencies (stemmed or raw) in the feature

vector, the second parameter determines whether dependencies are tested singly (e.g.

object-verb as single feature type) or with an inter-combination (e.g. combination of

object-verb, subject verb).

4.4.1. Experiment Configuration According to TC Fundamentals

Below sections discuss the main preferences of the proposed experiment according

to the fundamentals of text classification described in Chapter 2.

4.4.1.1. Datasets. Reuters is used as the main dataset for the experiments.

4.4.1.2. Preprocessing Operations. Preprocessing is performed with the below rou-

tines.

35

• Feature Formatting: Non-alphabetic characters and mark-up tags are discarded,

case-folding and removal of stopwords are performed. Porter is used for stemming

implementations.

• Feature Extraction: Dependencies are extracted by Stanford Parser. Experi-

ments are performed without external knowledge base (WordNet, WND, Cyc,

etc.) support.

4.4.1.3. Document Representation. Bow approach is extended with basic dependen-

cies (object, subject, preposition, participles) extracted by Stanford Parser.

4.4.1.4. Term Weighting Approach. We choose the standard tf-idf metric for term

weighting in our methods.

4.4.1.5. Machine Learning Algorithm. SVM with linear kernel is the machine learning

module we use as the classification algorithm.

4.4.1.6. Feature Selection. No feature selection algorithm is used.

4.4.1.7. Performance Measures. Experiments are evaluated with microF and macroF

scores.

4.4.2. Experiment Design and Results

Motivation of this experiment is to integrate syntactic information of the sen-

tences with the traditional bow approach.

In this experiment, the bow approach is extended with the widely used depen-

dency types (object-verb (obj), subject-verb (subj), prepositional modifier (prep), par-

ticiple (part)) as seen in Figure 4.4. A sample sentence “The teachers organized the

dinner” is processed according to alternative approaches in the figure. The dependen-

36

Figure 4.4. Feature types of Experiment 1

37

cies, success rates and number of features are summarized in Table 4.1. AW means

standard use of SVM with all words (bow approach). subj stands for subject-verb de-

pendency, obj is object-verb dependency, part stands for participle modifier and prep

is prepositional modifier. stm denotes that stemmed form of the dependency is used.

We list the results in Table 4.1.

Definition microF macroF FeatureNo

AW 85.5 43.7 20674

AW+subj+obj 85.6 42.0 35940

AW+subj+obj (stm) 85.7 42.0 35247

AW+obj 85.8 43.6 27096

AW+obj (stm) 85.8 43.4 26583

AW+prep 85.6 42.9 35887

AW+prep (stm) 85.6 42.8 35326

AW+part 85.7 43.5 22088

Table 4.1. Success rates for different dependencies

4.4.3. Comments and Conclusion

As can be seen from Table 4.1, no significant change was observed in the success

rates. This result is probably due to the limited type of experimented dependencies

(only four dependencies were experimented with). Also too many dependency type

features were observed in the experiment. For a dependency feature to reoccur in the

dataset, both of the words in the word pair must be repeated with the same pattern

which caused the repetition of this feature type harder than the word features (e.g.

report-price dependency occurs much less than the independent occurrences of report

and price). Using the stemmed forms of the dependencies (e.g. report-price instead of

reported-price) did not decrease the feature vector size. This type of feature number

increase caused more complexity with solution vector, which might also impact the

success rates negatively.

38

4.5. Experiment2 - WordNet and WND Usage with Dependency Support

As an extension of the previous experiment set-up with some well known de-

pendencies, our motivation in this part is to employ external knowledge resources like

WordNet and its related domain oriented tool WND in addition to dependency use.

In this section, the main motivation is to explore the optimal use of related

syntactic and semantic tools (WordNet, WND, Stanford Parser, etc.) and if possible,

provide a generic, efficient and successful framework to enrich the bow approach in TC.

4.5.1. Experiment Configuration According to TC Fundamentals

Below sections discuss the main preferences of the proposed experiment according

to the fundamentals of text classification described in Chapter 2.

4.5.1.1. Datasets. Reuters is used as the main dataset for the experiments.

4.5.1.2. Preprocessing Operations. Preprocessing is performed with the below rou-

tines.

• Feature Formatting: Non-alphabetic characters and mark-up tags are discarded,

case-folding and removal of stopwords are performed. Porter is used for stemming

implementations.

• Feature Extraction: Dependencies are extracted by Stanford Parser. WordNet

and WND are used as the external knowledge resources for the extraction of

conceptual information.

4.5.1.3. Document Representation. Bow approach is extended with basic dependen-

cies (object-verb) and POS (noun, verb) extracted by Stanford Parser and related

concepts and domains extracted from WordNet and WND.

39

4.5.1.4. Term Weighting Approach. We choose the standard tf-idf metric for term

weighting in our methods.

4.5.1.5. Machine Learning Algorithm. SVM with linear kernel is the machine learning

module we use as the classification algorithm.

4.5.1.6. Feature Selection. No feature selection algorithm is used.

4.5.1.7. Performance Measures. Experiments are evaluated with microF and macroF

scores.

4.5.2. Experiment Design and Results

By using the Stanford Parser, WordNet and WND, we extract new feature types

(POS: noun, verb; Dependency: object-verb; semantic: synset id, synset id of the

hypernmy of the synset) as mentioned in Section 4.2.

These new feature types are employed in the feature vector with two main alter-

natives:

• Single Approach : Each algorithm is employed by its own in alternative runs, so

the feature vector consists of only those terms belonging to that specific algorithm

• AW Plus (AW+) Approaches : We append the extracted features of correspond-

ing algorithms in addition to the AW features for the SVM algorithm, so the

feature vector consists of all the words plus the new extracted terms specific to

the algorithm.

Features extracted by WordNet and WND support are employed with the follow-

ing alternatives:

• Domain Based (Dmns) : Wordnet and WND are used together to extract the

40

related domains as keywords for our tests.

• Synset Based (Syn) : Synset based extraction employs only WordNet as lexical

reference and extract synset id as keyword without utilizing WND.

• Hypernmy Based (Hyp) : Hypernmy property of WordNet is also employed

by using the hypernmy of the corresponding synset to extract more generalized

synsets.

The support of the Stanford Parser enables additional feature types to be used

in the experiments in the following alternative forms:

• POS Based: POS information extracted from the Stanford Parser is employed for

each word in each sentence in this approach. The widely-used POS types noun

(Nn) and verb (V) are used in the experiment set-up.

• Dependency Based: Dependencies within words in each sentence are extracted

in this approach. The most generic and experimented object-verb dependency is

used. This method is also classified according to the utilization style.

Couple (cpl) Usage: Dependency components are used together as one com-

posite feature. e.g. go-school is used as one feature instance, which belongs to

object-verb dependency type.

Single Usage: Dependency components are used independently. e.g. go and

school are used as two feature instances, which are oriented from object-verb

dependency type.

Figure 4.5 summarizes the sample feature types of the experiment. Below, we

additionally simulate the preprocessing phases of the sample sentence “The teachers

organized the dinner” with AW+obj(stm,cpl) and AW+obj(dmn) options.

(i) Removal of non-alphabetic characters and case folding: “the, teachers, organized,

the, dinner”

(ii) Elimination of stopwords: “teachers, organized, dinner”

(iii) Stemming: “teacher, organ, dinner”

(iv) Parsing (obj dependency extracted with stemming) : “teacher, organ, dinner,

41

Figure 4.5. Feature types of Experiment 2 for a sample sentence

42

dinner organ”

(v) Generating all features according to the option: “teacher, organ, dinner, din-

ner organ” for AW+obj(stm,cpl) option and “teacher, organ, dinner, gastronomy”

for AW+obj(dmn) option where dinner belongs to gastronomy domain but organ

does not belong to a specific domain.

Table 4.2 is the result table for the tests containing the mentioned feature types

with different combinations.

Methods microF/macroF Keyword Number

SINGLE APPROACHES

AW 85.7/43.7 20674

Nn Dmn 46.6/5.5 136

Nn/V Dmn 46.4/5.4 140

Obj Cpl Dmn 49.1/10.0 10000

Obj Dmn 40.8/1.8 117

Nn/V Hyp Syn 73.4/32.4 117

Nn/V Syn 76.0/40.9 117

AW+ EXPERIMENTS

Nn Dmn 81.0/36.8 20789

Obj Dmn 85.7/43.4 20753

Nn/V Syn 85.4/43.2 27786

Obj Cpl Syn 85.8/43.2 35183

Obj Syn 85.4/42.9 23856

Table 4.2. Success rates for the experiment: WordNet and WND usage with

dependency support

4.5.3. Comments and Conclusion

Similar to the previous experiment, no significant improvement was observed in

this experiment. WordNet lists the most common synset as the first one among all

43

synsets for each word and we preferred to use these most common synsets, however, we

still experienced ambiguity problem due to the possibility of other possible meanings

of the words. On the other hand, WordNet synsets were analyzed to be more power-

ful than WND domains in achieving successful classification results. WND domains

seemed to be too generic and not discriminative for the Reuters dataset.

As shown in Table 4.2, dependency based methods have shown better performance

than POS based methods, which is a promising and original result among the related

text classification approaches.

4.6. Experiment3 - Different Stemming Alternatives and WordNet Usage

with Dependency Support

The main outcome of the previous section is that WordNet and WND use did not

yield successful results in the TC problem. Also, if we compare the use of dependencies

and POS (main outcomes of the Stanford Parser) in TC, lexical dependencies have

shown more promising results.

In this section, we do not continue the implementation of WND and POS in-

formation, but rather focus on the dependency concept (including also a WordNet

oriented alternative). In addition, we extend the syntactic analysis by including all

possible dependencies. One of the main motivations of the current section is to com-

pare the supplementary benefit of all possible dependencies. The other related aim is

to analyze the optimal stemming algorithm for both raw words and dependency cou-

ples existing in the documents. In this part of the thesis, we question the effectiveness

of the straightforward style of morphological stemming by analyzing lemmatizers in

addition to the morphological stemmers.

4.6.1. Experiment Configuration According to TC Fundamentals

Below sections discuss the main preferences of the proposed experiment according

to the fundamentals of text classification described in Chapter 2.

44

Table 4.3. Dependencies and their examples

Symbol dependency Type Example Couples Symbol dependency Type Example Couples

subj subject-verb they-break obj object-verb glass-break

aux auxiliary auxpassive expected-are conj conjunctive energy-petrochemical

attr attributive remain-year comp complement decline-disclose

complm complementizer is-that, have-that mark mark account-while

rel relative sell-of acomp adjectival complement turn-bad

agent agent approve-bank adv adverbal clause modifier quickly-open

rel relative clause modifier begin-season amod adjectival modifier scientific-experience

infmod infinitival modifier way-invest rcmod relative clause modifier begins-season

app appositional modifier monitoring-detection nn noun compound modifier source-laser

poss possession modifier Asia-nations prt phrasal verb participle cover-up

part participle modifier costs-related prep prepositional modifier focus-research

4.6.1.1. Datasets. We use two datasets from the UCI machine learning repository:

Reuters and NSF.

4.6.1.2. Preprocessing Operations. Preprocessing is performed with the below rou-

tines.

• Feature Formatting: Non-alphabetic characters and mark-up tags are discarded,

case-folding and removal of stopwords are performed. For both word and depen-

dency features, stemming (lemmatizing) is performed with different alternatives:

no stem, stemmed with Porter, stemmed with Stanford Parser and stemmed with

combination of them.

• Feature Extraction: Dependencies are extracted by Stanford Parser. WordNet is

alternatively used for synset identification.

4.6.1.3. Document Representation. 22 Dependencies are included in the feature vector

independently and as an extension to the standard bow approach. Table 4.3 lists the

related dependencies. Dependencies with number contents are eliminated (e.g. num -

numeric modifier). The content of these features are so generic that their contribution

will not be meaningful. Some of the similar dependencies are combined in the hierarchy

(e.g. dobj, iobj and pobj as obj) in order to sum up their frequencies and discriminative

power.

45

4.6.1.4. Term Weighting Approach. We choose the standard tf-idf metric for term

weighting in our methods.

4.6.1.5. Machine Learning Algorithm. SVM with linear kernel is the machine learning

module we use as the classification algorithm.

4.6.1.6. Feature Selection. No feature selection algorithm is used.

4.6.1.7. Performance Measures. Experiments are evaluated with microF and macroF

scores.

4.6.2. Experiment Design

The main goal of this section is to compare the supplementary benefit of all

possible dependencies and also analyze the optimal stemming algorithm for both raw

words and dependency couples existing in the documents. For this purpose, we devise

a two-stage analysis for our problem. We name the first and second stages as AW and

AW+ Analysis, respectively.

Four stemming alternatives and one semantic oriented method are employed with

the support of Porter Stemmer, Stanford Lemmatizer and WordNet utilization for both

stages to be used in both AW Analysis and AW+ Analysis:

• Raw Form: No stemming process is implemented for the classification algorithm

and the words are used in their raw forms.

• Only Porter Form: Morphological Porter stemmer is used for stemming.

• Only Stanford Form: Stanford lemmatizer is used for stemming.

• WordNet Synsets Form: After stemming by the Stanford lemmatizer, WordNet

is employed to extract the synset variations of all the words. Porter stemmer is

not implemented as an alternative because Porter output is not compatible with

WordNet for two basic reasons. First, we need the correct POS information and

46

Figure 4.6. Sample keyword formations due to stemming alternatives for AW

approach

the root form for the semantic analysis but this stemmer does not conserve the

POS information of the derived word by extracting the possible shortest base

form; and second, the outcome of this stemmer is not always in the standard

base forms (e.g. earli instead of early, continu instead of continue, etc.).

• Stanford+Porter Form: Stanford lemmatizer is implemented initially for inflec-

tion removal, then Porter stemmer is used for the removal of derivational affixes

of the same word.

4.6.2.1. AW Analysis. In this stage, the classical bow approach is implemented with

the mentioned variations in order to find the optimal strategy for the bow approach.

Representation of an example sentence in the solution vector is shown in Fig. 4.6.

Fig. 4.6.b shows Raw Form for the example sentence without any stemming process.

Only Porter Form and Only Stanford Form are shown in Fig. 4.6.c and Fig. 4.6.d,

respectively. Fig. 4.6.e shows WordNet Synsets Form while Stanford+Porter Form is

shown in Fig. 4.6.f.

4.6.2.2. AW+ Analysis. In the second stage, we perform the re-examination of the

stemming alternatives; this time, not for the words but for the dependency couples.

From another related perspective, we extend the bow approach by including the de-

pendency couples which are varied by the stemming alternatives as shown in Fig. 4.7.

For the required format of the bow approach for all words, we use the Porter form

47

Figure 4.7. Sample keyword formations due to stemming alternatives for

dependencies in AW+ approach

Table 4.4. All words stemming

Reuters NSF

Approach Key# microF macroF Key# microF macroF

Raw 27094 85.63 43.86 21632 61.41 46.75

Only Porter 20292 85.58 43.83 14878 61.74 47.34

Only Stanford 23094 80.88 45.57 18062 61.21 46.02

WordNet Synsets 25202 80.62 44.87 21510 58.73 44.44

Stanford+Porter 18253 80.75 45.29 14186 61.74 47.42

as seen in Fig. 4.7.a. Fig. 4.7.b shows Raw Form utilization for the dependencies

in addition to the optimally stemmed words for the example sentence. Only Porter

Form and Only Stanford Form are used for dependency stemming as shown in Fig.

4.7.c and Fig. 4.7.d, respectively. Fig. 4.7.e represents WordNet Synsets Form while

Stanford+Porter Form is shown in Fig. 4.7. Briefly, we use the optimally preprocessed

allwords in the documents as the base keyword features for our algorithm and extend

it with the dependency variations in each alternative implementation.

4.6.3. Results

4.6.3.1. AW Analysis Results. The results for AW analysis are shown in Table 4.4. As

can be seen in the table, morphological stemming of Porter Stemmer with low keyword

numbers and high success rates is found to be the optimal approach for stemming of

the words in both datasets.

48

Table 4.5. Comparison of dependency forms

Reuters NSF

Approach Key# microF macroF Key# microF macroF

Raw 27387 85.60 43.90 19534 61.91 47.21

Only Porter 27152 85.62 43.87 20631 61.90 47.15

Only Stanford 25561 85.60 43.85 19856 61.91 47.19

WordNet Synsets 26184 85.60 43.83 19892 61.92 47.20

Stanford+Porter 26693 85.61 43.82 20487 61.88 47.20

The raw form outperforms Porter stemmer in Reuters but falls far behind it in

NSF with also many more keywords. Stanford lemmatizer, which is a more complicated

stemmer with parser support, has mainly lower success rates and higher keyword num-

bers with respect to the Porter stemmer. The main reason for this difference is that the

Stanford lemmatizer extracts many different forms for the same base form of the word

because it only removes inflection, conserving the derivational affixes. For example,

for the words arrivals and arrived, Stanford lemmatizer finds the base forms as arrival

and arrive, respectively. On the other hand, Porter stemmer finds the same base form

arriv for both words by removing both the derivational affixes and inflections.

4.6.3.2. AW+ Analysis Results. For AW+ approach, we can analyze the results from

two points of view. The first view is the re-analysis of all the stemming approaches,

this time within the dependency usage as shown in Table 4.5. We calculate the average

of all results for each approach in both datasets. One of the outcomes of the analy-

sis is that the differences between the stemming approaches is low, in terms of both

number of keywords and success rate when compared with AW stemming alternatives

(summarized in Table 4.4). A possible reason for this similarity is that dependency

couples are integrated in only certain forms, which decreases the role of stemming. In

parallel to this idea, the raw stemming process, which is the simplest form without any

stemming process, yields slightly better scores than the others in both datasets.

For the other part of the analysis, we compare the dependency usage perfor-

mance by analyzing the results through all stemming modes. Dependencies are ranked

(Rn) according to their microF and macroF average scores (avg) with standard devia-

49

Table 4.6. Dependency performance ranks in descending order for Reuters and NSF

Reuters Key# microF macroF NSF Key# microF macroF

Rn dependencies avg avg+/-std avg±std Rn dependencies avg avg±std avg±std

1 Part 25937 85,71±0,01 44,08±0,05 1 Adv 21112 62,22±0,11 47,51±0,01

2 Subj 29721 85,68±0,07 44,10±0,30 2 Comp 19975 62,24±0,12 47,49±0,04

3 Adv 28425 85,71±0,03 44,04±0,10 3 Cls 16227 62,00±0,04 47,53±0,04

4 Conj 32026 85,64±0,12 44,03±0,07 4 Part 18255 62,07±0,06 47,41±0,01

5 Poss 27401 85,68±0,03 43,89±0,04 5 Poss 16186 61,95±0,08 47,52±0,01

6 Amod 31690 85,66±0,06 43,91±0,12 6 Mark 15672 61,89±0,02 47,48±0,03

7 Rcmod 26673 85,60±0,02 43,94±0,04 7 Conj 29144 62,00±0,09 47,35±0,20

8 Agent 21603 85,63±0,01 43,91±0,04 8 Complm 15386 61,83±0,03 47,46±0,01

9 App 24676 85,61±0,02 43,91±0,02 9 App 15993 61,83±0,03 47,41±0,00

10 Comp 34414 85,73±0,02 43,78±0,13 10 Prt 15018 61,88±0,05 47,35±0,01

11 Obj 34907 85,67±0,09 43,79±0,08 11 Rcmod 18365 61,81±0,03 47,36±0,00

12 Acomp 20705 85,59±0,01 43,86±0,00 12 Infmod 15417 61,81±0,00 47,34±0,00

13 Attr 20378 85,58±0,00 43,83±0,00 13 Rel 16250 61,77±0,10 47,35±0,02

14 Cls 24202 85,55±0,01 43,86±0,01 14 Agent 15529 61,77±0,04 47,33±0,01

– Benchmark 20292 85,58±0,00 43,83±0,00 15 Attr 14892 61,74±0,00 47,34±0,00

15 Complm 21442 85,57±0,01 43,83±0,02 – Benchmark 14878 61,74±0,00 47,34±0,00

16 Prt 21122 85,55±0,03 43,84±0,03 16 Acomp 15035 61,67±0,00 47,36±0,04

17 Infmod 21922 85,54±0,01 43,82±0,00 17 Amod 27535 62,13±0,16 46,83±0,06

18 Mark 22638 85,53±0,01 43,82±0,01 18 Obj 27737 61,88±0,13 47,06±0,33

19 Rel 20977 85,52±0,05 43,80±0,05 19 Subj 29355 62,28±0,17 46,49±0,02

20 Prep 33487 85,71±0,05 43,55±0,16 20 Prep 31546 62,15±0,22 46,35±0,33

21 Nn 31220 85,45±0,07 43,66±0,04 21 Nn 27726 61,79±0,09 46,23±0,06

22 Aux 29528 85,45±0,04 43,50±0,27 22 Aux 19390 61,19±0,17 46,60±0,44

tions (std) according to the alternative stemming modes in Table 4.6. As can be seen

from the table, 14 dependencies in Reuters and 15 dependencies in NSF out of the

possible 22 dependency types, have the power of outperforming the benchmark. The

critical point is that nine qualified dependencies that increase the benchmark, achieve

this performance in both datasets consistently with also very low standard deviations.

Out of these nine positive dependencies, we focus on the highest four dependencies,

namely : part-participle modifier, adv-adverbal clause modifier, conj-conjunctive and

poss-possession modifier.

Fig. 4.8 shows the incremental effect of these dependencies in Reuters and NSF.

This improvement is shown by the dark colored part over the light gray color of the

benchmark score for each dependency in the figure. These dependency types, when

utilized standalone, improve the benchmark by around 0.4%-0.5%.

There is also consistency for the three most unsuccessful dependency types in

both Reuters and NSF: preposition modifier - prep, noun compound modifier - nn, and

50

Figure 4.8. Improvements of the successful dependencies over the benchmark

auxiliaries-aux. The aux dependency gives the worst results for both datasets in both

microF and macroF values. The main factor for this failure seems to be the fact that

the relationship within the dependency structure is generic (e.g. : make-is, running-

are) which is not feasible for the classification problem. The nn dependency is the

second worst dependency with low scores in both microF and macroF measures. The

prep dependency is an interesting dependency with leading scores in microF but lowest

results with macroF in both datasets. There are many sub-dependencies of it (e.g.

prep-of, prep-with) that may confuse the context and affect the success rates.

4.6.4. Comments and Conclusion

Main outcome of this section is the result that the benchmark of the classical

approach in TC is improved by the support of dependency utilization. The most

successful dependency types improve the benchmark by around 0.4%-0.5%.

Another contribution of this study is its approach in stemmer utilization. Stem-

ming is analyzed not only for the words but also for all the extracted dependency

couples in the texts. Porter stemming is observed to be the optimal stemmer for all

51

words, while the raw form without stemming slightly outperforms the other approaches

in dependency stemming.

One of the main observations of the experiments is that most of the dependency

types (see Table 4.3) yielded many instances (distinct word pairs) for a dataset that

also caused an excessive number of features with mostly zero or quite low frequencies

in most of the documents. This factor causes the solution vectors of the machine

learning algorithms to be highly sparse which points out a feature filtering / selection

implementation to be an explicit need for the proposed system.

In the next chapter, we will deal with pruning analysis of features as the basic

feature selection algorithm and perform further analysis of dependencies (e.g. combi-

nation of the leading ones) in text classification.

52

5. DEPENDENCY USAGE AND PRUNING IN TC

In the previous chapter, we analyzed that support of specific dependency types in

addition to the all words improves the performance of the benchmark bow approach.

The improvement was analyzed to be low with a significant increase in the number

of features. This inefficient usage was stated to be due to the sparsity of the solution

vector (caused by the large number of dependencies with low frequencies) and the lack

of further analysis of dependencies.

In this chapter, we present a comprehensive analysis of the lexical dependency

and pruning concepts for the text classification problem. Dependencies are included in

the feature vector as an extension to the standard bow approach. The pruning process

filters features with low frequencies so that fewer but more informative features remain

in the solution vector. We analyze in detail the pruning levels for words, dependencies,

and dependency combinations for different datasets. The main motivation in this

chapter is to make use of dependencies and pruning efficiently in text classification and

to achieve more successful results using much smaller feature vector sizes. We used

three independent datasets in the experiments and obtained statistically significant

improvements for most of the proposed approaches.

5.1. Experiment Configuration According to TC Fundamentals

Below sections discuss the main preferences of the proposed experiment according

to the fundamentals of text classification described in Chapter 2.

5.1.1. Datasets

We use three datasets from the UCI machine learning repository: Reuters, NSF

and MiniNg20 [4]. We choose datasets with different characteristics in order to be able

to analyze the effect of the proposed methods on different types of documents and to

make comparisons between them.

53

5.1.2. Preprocessing Operations

Preprocessing is performed with standard routines.

• Feature Formatting: Non-alphabetic characters and mark-up tags are discarded,

case-folding and removal of stopwords are performed. Stemming of the words is

implemented by Porter Stemmer.

• Feature Extraction: Dependencies are extracted by Stanford Parser without stem-

ming. Experiments are performed without external knowledge base (WordNet,

WND, Cyc, etc.) support.

5.1.3. Document Representation

36 Dependencies are included in the feature vector independently and as an ex-

tension to the standard bow approach. Combination of the leading dependencies are

also experimented.

5.1.4. Term Weighting Approach

We choose the standard tf-idf metric for term weighting in our methods.

5.1.5. Machine Learning Algorithm

SVM with linear kernel is the machine learning module we use as the classification

algorithm.

5.1.6. Feature Selection

Basic feature selection algorithm (pruning) is implemented based on the term’s

frequency in the whole dataset. Optimization of the pruning levels with different feature

types (word, dependency) and different datasets are performed.

54

5.1.7. Performance Measures

Experiments are evaluated with microF and macroF scores. Micro sign test,

macro sign test and micro sign test with positive instances are performed to measure

the significance of the improvement.

5.2. System Modules

In this section, we discuss the details of the main utilities proposed in the exper-

iment: pruning implementation and the dependency usage.

5.2.1. Pruning Implementation

We use pruning in order to filter low-frequency features so that fewer but more

informative features remain in the final solution vector. This process is implemented

by eliminating the terms that occur less than a certain threshold value in the whole

training set. This threshold is named the pruning level (PL). We analyze the pruning

levels for words, dependencies, and dependency combinations separately. PL=n (n≥1)

indicates that features occurring less than n times in the training set are filtered, thus

only the features with at least n occurrences are used in the solution vector. Note that

PL=1 means that no pruning is implemented for that feature type.

The pruning concept is especially useful for dependency features. As mentioned

in Section 1, a dependency is formed by combining any two dependent words. Most

of the dependency types (see Table 5.1) yield many instances (distinct word pairs) for

a dataset. This causes an excessive number of features. Moreover, for a dependency

feature to reoccur in the dataset, both of the words in the word pair must be repeated

with the same pattern. This indicates that the majority of these features have zero or

quite low frequencies in most of the documents [39]. This makes the solution vectors

used in the machine learning algorithms highly sparse. As will be seen later, pruning

such features has a significant effect on both the accuracy and the efficiency of the

methods.

55

One of the main contributions of this study is that we perform parameter tuning

by analyzing different values for each method and dataset to reach the optimal PL

values. These methods and the details of the pruning analysis will be explained in

Section 5.3.

5.2.2. Dependency Analysis

36 dependency types are used in the tests. Table 5.1 shows the complete list of

dependency types accompanied with their definitions and some examples. Dependency

types formed of numeric tokens (e.g. numeric modifier) were eliminated because they

did not improve the accuracy of the system in the experiments. Some of the similar

dependency types were combined in order to sum up their frequencies and thus increase

the discriminative power of the classifier. For instance, the types dobj, iobj , and pobj

that denote dependencies formed of the indicated object and the main verb of a sentence

yield many overlapping instances and thus they were considered as a single dependency

type (obj).

5.3. Experiment Design

We designed an incremental framework for the analysis of the dependency and

pruning concepts in the TC domain. As can be seen in Figure 5.1, the framework

consists of four main stages. At each stage, the method of the preceding stage is

improved by adding a new property in order to increase the overall performance of the

system. The details of the stages are explained in the following subsections.

In the methods where pruning is applied, we repeat the experiments with incre-

mental PL values. In order to discover the optimal value, we stop incrementing the

PL value when the success rates start to drop consistently. Pruning for words and de-

pendencies were analyzed separately since the optimal pruning levels will be different

in each case. Since dependencies are formed as pairs of words, they occur with much

less frequencies than words and thus they are expected to be optimized at smaller PL

values.

56

Table 5.1. Dependency types used in the experiments

Symbol Type Examples

acomp adjectival complement turn-bad, make-clear

adv adverbal clause modifier modifier quickly-open, also-plan

agent agent approve-bank, approach-vector

amod adjectival modifier scientific-study, principal-investigator

app appositional modifier monitoring-detection, eigenvalues-separation

attr attributive complement remain-year, payable-april

aux auxiliary passive expected-are, study-to

cls clause modifier use-determine, determine-interact

comp complement decline-disclose, plan-study

complm complementizer is-that, make-that

conj conjunctive energy-chemical, variables-observations

infmod infinitival modifier way-invest, project-study

mark mark account-while, although-beginning

nn noun compound modifier source-laser, detection-problem

obj object-verb glass-break, study-questions

part participle modifier costs-related, measurements-needed

poss possession modifier Asia-nations, their-regulations

prep-along prepositional modifier - along moves-chromosomes, come-way

prep-as prepositional modifier - as farming-strategy, treat-human

prep-at prepositional modifier - at available-institution, glass-table

prep-btwn prepositional modifier - between relation-algebra, black-white

prep-by prepositional modifier - by displayed-species, performed-actor

prep-for prepositional modifier - for use-study, hunt-food

prep-from prepositional modifier - from show-studies, come-home

prep-in prepositional modifier - in low-cost, holiday-june

prep-into prepositional modifier - into extend-regions, divide-parts

prep-none prepositional modifier - generic clarify-by, prevent-from

prep-of prepositional modifier - of modeling-behavior, problems-students

prep-on prepositional modifier - on work-project, put-table

prep-over prepositional modifier - over stayed-time, talk-subjects

prep-to prepositional modifier - to similar-theory, seem-me

prep-with prepositional modifier - with vary-depth, gone-wind

prt phrasal verb participle cover-up, pointed-out

rcmod relative clause modifier modifier begins-season, type-large

rel relative modifier which-allows, numbers-large

subj subject-verb they-break, student-studies

Figure 5.1. General system architecture with the proposed methods

57

We see that the effect of pruning diminishes at higher pruning levels since most of

the features have already been pruned at earlier levels. For instance, while pruning the

dependencies on the MiniNg20 dataset, increasing the PL value from PL=1 to PL=2

eliminates about 75% of the dependencies, indicating that most of the dependency

pairs occur only once in the whole dataset. On the other hand, when we increment the

PL value, for instance, from PL=20 to PL=30, only one dependency is pruned among

the dependencies in the solution vector with PL=20. The same situation occurs during

word pruning and on the other datasets too. Based on this observation, we performed

the pruning analysis with small increments in initial pruning levels (e.g. PL=1, 2, 3)

and larger increments in higher levels (e.g. PL=20, 30, 50).

5.3.1. AW

AW (all words) is the benchmark method that uses the standard bow approach

with all the words in the feature vector. It is implemented once for each dataset without

any variation. Our main motivation in this study is to extend this approach by the

proposed solutions and outperform it in terms of success rate and feature vector size.

5.3.2. AWP

The AWP (all words with pruning) method considers all the words in the docu-

ment collection, but filters them by the pruning process. Algorithms that are similar

to AWP have already been experimented in TC, but they lack a detailed analysis of

alternative pruning levels [38]. We implement this method with several pruning levels

(2, 3, 5, 8, 13, 20, and 30) to determine the optimal word PL value for each dataset.

5.3.3. AWDP

The AWDP (all words and dependencies with pruning) method extends both

the AW and the AWP approaches by using dependencies in addition to words and

also by pruning both feature types to obtain the final feature set. The PL values for

words are fixed at the optimal values found by the AWP method. The dependencies

58

corresponding to a dependency type are generated and they are filtered using varying

pruning levels. Then the classification algorithm is executed using the pruned feature

vector. This process is repeated separately for each dependency type. The main

motivation of this method is to perform pruning level analysis for dependencies. We

use the PL values (2, 3, 5, 8, 13, 20, and 30) in this stage.

5.3.4. AWDCP

The AWDCP (all words and dependency combinations with pruning) method ex-

tends the AWDP method by using the combination of the leading dependencies instead

of using them individually. For this purpose, the five most successful dependency types

are selected and used together for each dataset. We perform pruning level analysis us-

ing 10 different pruning levels: 2, 3, 5, 8, 13, 20, 30, 50, 80, 120. Different from the

previous methods, the PL value was increased up to PL=120 since the success rates

continued to improve past PL=30 for some of the experiments. To the best of our

knowledge, this is the first study that considers the successful dependency types and

uses them as an extension to the bow approach in the TC problem.

5.4. Analysis of Results

In this section, we first explain the optimal values of the pruning level parame-

ter used in the methods. Then we explain the results of the experiments with these

parameter values. Following this, we focus on some specific aspects of the methods

and the experiments and comment on these: pruning level analysis, optimal feature

number, significance of the improvements, and dataset comparison.

5.4.1. Optimal Parameter Decisions

The AW method uses the standard bow approach and does not involve any prun-

ing. For the AWP method, the optimal word pruning level was found as 13 among the

experimented values for all the three datasets. As stated previously, words and depen-

dencies are pruned independent of each other in the AWDP method. The PL value for

59

Table 5.2. Success scores of the proposed methods

Reuters NSF MiniNg20

Key# microF macroF Key# microF macroF Key# microF macroF

AWDCP 4138 86.03 45.26 3908 66.01 47.68 2914 54.23 51.65

AWDP 4198 85.96 45.07 2829 65.07 47.10 3114 54.13 51.53

AWP 3976 85.84 44.85 2478 64.58 46.49 2863 53.62 51.02

AW 20292 85.58 43.83 13424 64.46 46.11 30970 46.42 43.44

Table 5.3. Success scores of the leading dependencies in AWDP with the optimal PL

values
Reuters PL word:13 NSF PL word:13 MiniNg20 PL word:13

PL dep.:8 PL dep.:8 PL dep.:2

microF macroF microF macroF microF macroF

1 prep-in 85.96 45.07 nn 65.07 47.10 prt 54.13 51.53

2 prep-from 85.87 45.14 amod 65.03 47.09 rel 54.04 51.45

3 amod 85.93 45.04 subj 64.97 46.83 app 53.97 51.33

4 part 85.93 45.04 obj 64.79 46.82 infmod 53.97 51.33

5 comp 85.99 44.94 comp 64.78 46.76 prep-btwn 53.87 51.34

words was fixed as 13 (as determined in the previous stage) and among the PL values

analyzed, optimal dependency pruning levels were found as 8, 8, and 2 for Reuters,

NSF, and MiniNg20, respectively. These dependency PL values are the optimal values

corresponding to the dependency type that gave the best success rate in each dataset

(e.g. prep-in in Reuters). However, we observed in the experiments that most of the

successful dependency types converge to similar optimal pruning levels.

For the AWDCP method, the five leading dependency types determined by

AWDP for each dataset (see Table 5.3) were considered. All the dependencies formed

of these five dependency types were included in the feature vector and the method was

tested with varying pruning levels. The optimal PL values for dependency combina-

tions were determined as 50, 8, and 8 for Reuters, NSF, and MiniNg20, respectively.

The success ratios of the methods as a function of the PL values will be compared and

analyzed in Section 5.4.3.

60

5.4.2. Performance of the Methods

Table 5.2 shows the success rates of the methods in terms of their microF and

macroF scores. The results shown represent the most successful result obtained for each

method under the optimal PL value. The AW method that we use as the benchmark

method for comparing with other methods yields the worst results. The AWP method

outperforms the baseline performance when applied with the optimal word PL values.

Similarly, the performance of AWP is exceeded by the AWDP method. The success

rates shown in the table for AWDP correspond to the results obtained using the optimal

dependency PL values and the most successful dependency type (see Table 5.3). In

fact, as can be seen from the tables, using any one of the five best dependency types

gives more successful results than using only words.

Table 5.3 shows the performance of AWDP for the best dependency types for each

dataset. The AWDCP method, which is the most sophisticated approach proposed in

this study, incorporates all the dependencies formed of these dependency types as

features in the feature vector. As a result, it outperforms all the other methods with

the optimal pruning levels for dependency combinations.

5.4.3. Pruning Level Analysis

Figures 5.2 and 5.3 show the microF and macroF scores as a function of PL (AWP

with PL=1 corresponds to AW). The horizontal axes in the figures correspond to the

word PL values for AWP, dependency PL values for AWDP (word PL value is fixed

to the optimal value), and dependency combination PL values for AWDCP (word PL

value is fixed to the optimal value). With both microF and macroF measures and in

almost all PL values, AWDP improves the success rate of AWP and AWDCP gives the

best results for all the datasets. This result is consistent with the analysis discussed in

Section 5.4.2.

We see that the curves in the figures follow a similar pattern with respect to

the PL improvement. Although the optimal pruning level varies depending on the

61

Figure 5.2. Pruning level analysis with the proposed methods (microF)

62

Figure 5.3. Pruning level analysis with the proposed methods (macroF)

63

method and the dataset, each performance curve is bell-shaped and the success scores

first increase up to the optimal PL value and then decrease. This analysis reveals the

fact that the pruning process arrives at fewer but more informative features for TC

at some PL value and after this optimal level the process starts to eliminate rare but

informative features which causes the performance to fall.

5.4.4. Optimal Feature Numbers

Table 5.2 shows the number of keywords for each method and dataset. Since it

does not involve any pruning process, the AW method uses all the words in the dataset

in the feature vector. For the other approaches, the keyword numbers are seen to be

between 2400 and 4200.

In different studies related to feature selection in the literature, several feature

number levels (500, 1000, 2000, 5000, 10000, etc.) were reported to give successful

results with different machine learning algorithms [6, 56, 5]. The optimal feature num-

ber range that we obtained in this work (2400-4200) can be said to be consistent with

these stated results.

5.4.5. Significance of the Improvements

Table 5.4 compares the methods used in this work and shows the statistical

improvement results. Three significance tests that have been defined in Section 2.7.2

were applied. The micro sign test measures the improvement over the whole document-

category matrix. We have derived an extended version of this measure (micro sign test

with positive instances) in order to avoid sparsity, which focuses on only the positive

samples in this matrix. The macro sign test is category oriented and it considers the F-

scores of the two systems for each category of the datasets. The methods were compared

according to the z values and the corresponding confidence areas were checked in the

z -table. We use the symbols and terminology defined in Section 4.1.7 to denote the

result of a comparison:

64

Table 5.4. Statistical comparison of the proposed methods - AW, AWP, AWDP and

AWDCP
Micro Sign, All Micro Sign, + Macro Sign

Reuters

AWP over AW ∼ > À
AWDP over AWP ∼ ∼ ∼
AWDP over AW > À >

AWDCP over AW > À À
AWDCP over AWP > ∼ ∼
AWDCP over AWDP ∼ ∼ ∼

NSF

AWP over AW ∼ > ∼
AWDP over AWP À À >

AWDP over AW ∼ À >

AWDCP over AW À À À
AWDCP over AWP À À À
AWDCP over AWDP À À À

MiniNg20

AWP over AW À À À
AWDP over AWP ∼ ∼ ∼
AWDP over AW À À À
AWDCP over AW À À À
AWDCP over AWP ∼ ∼ ∼
AWDCP over AWDP ∼ ∼ ∼

All datasets

AWP over AW ∼ À À
AWDP over AWP À À À
AWDP over AW À À À
AWDCP over AW À À À
AWDCP over AWP À À À
AWDCP over AWDP À À >

65

From the table, it can be seen that in most cases there is a significant improvement

between a method and its predecessor. The results of the AWDCP method are always

statistically better than the benchmark (AW) method in all the datasets. The last part

of the table shows the overall results by taking into account all the instances from the

three datasets. We observe that each method significantly outperforms its predecessor

method (AWDCP >> AWDP >> AWP >> AW) and AWDCP (the most advanced

method proposed so far) is significantly the best method.

5.4.6. Dataset Comparison

We performed the experiments with three different datasets: Reuters, NSF and

MiniNg20. Reuters and NSF can be regarded as alike with many mutual characteristics,

while MiniNg20 differs from them in terms of formality, skewness, and other related

issues. In this section, we analyze the results from the dataset perspective and compare

the datasets according to these characteristics and results.

5.4.6.1. Skewness Factor. A point that is worth noting is the difference between the

microF and macroF scores in a dataset. As can be seen in Table 5.2, the microF score

of Reuters is about 1.9 times of its macroF score and this ratio is about 1.4 in NSF.

On the other hand, the MiniNg20 dataset yields similar microF and macroF scores in

almost all experiments. As explained in Section 2.7.2, the microF measure gives equal

weight to each document. In the case of the macroF measure, equal weight is given

to each category, which favors the documents in rare categories (categories including a

small number of documents). Based on this fact, the category-document distribution

(skewness factor) becomes an important factor for microF-macroF comparison.

In skewed datasets, there are not sufficient number of documents in some of the

classes, which causes the macroF measure to drop significantly. Reuters is a highly

skewed dataset; NSF is also skewed but its skewness is less than Reuters. On the other

hand, MiniNg20 is a balanced dataset and similar microF and macroF values can be

obtained.

66

5.4.6.2. Optimal PL Values. The optimal PL value shows variation as a function of

the applied method and the dataset. When we compare the pruning levels with respect

to the methods, we observe an expected pattern. The PL values of AWDP are less

than those of AWP. Since dependencies are formed of pairs of words, their frequencies

in the dataset are lower than the frequencies of words, which in turn requires a lower

dependency PL value to eliminate the irrelevant dependencies. A similar behavior

exists between the AWDP and AWDCP methods. The feature vector in AWDCP

includes all the dependencies corresponding to five leading dependency types rather

than dependencies of a single type as in the case of AWDP. Increasing the number of

dependency types causes more dependencies (features) in the solution vector. Thus

higher pruning levels are needed to eliminate the irrelevant dependencies and reach the

optimal feature number.

The dataset type also has an effect on the pruning levels. The word PL values for

the three datasets reach their maxima at similar points and we fixed the optimal values

as PL=13. For dependencies, the optimal PL value of MiniNg20 is much less than the

values of Reuters and NSF. This is due to the informal writing style and misspellings

in this dataset, which makes it difficult to find lots of repeated occurrences of a word

pair. Thus, a low PL value is sufficient to filter most of the irrelevant dependencies.

When we apply the AWDCP method, the PL values of Reuters and MiniNg20 increase

significantly (from 8 to 50 and from 2 to 8, respectively), while it stays the same (8)

for NSF. This is understandable because in the AWDP tests with NSF, we may have

selected the PL value alternatively as 3 or 5 (which, in the next stage, would yield

the improvement of AWDCP) but we have preferred the larger value (PL=8, which

gives a success rate similar to PL=3 and PL=5) to decrease complexity. This shows

that the NSF results are compatible with the other datasets in terms of PL optimality.

Higher PL values in the AWDCP method is closely related with the idea of the optimal

feature number that has been mentioned in the above paragraph. There are additional

possible feature types (so more features) with AWDCP so more pruning implementation

is needed to reach the optimal feature number that gives the most successful results.

67

5.4.6.3. Formality Level. The Reuters and NSF datasets can be stated to have a formal

style, whereas MiniNg20 is mostly informal. Since the efficiency of parsing is directly

effected by the grammatical level of a document, we achieve less accurate parse results

in MiniNg20 due to morphological and syntactic errors. There are many misspellings

and related text errors in MiniNg20 which decreases the success rate of classification:

about 60% of the words and 70% of the dependencies occur only once in the whole

dataset and are eliminated when PL=2. As can be seen by a comparison of AW and

AWP in Table 5.2, this initial pruning process increases the success rates in MiniNg20

much more than Reuters and NSF, which shows the success of pruning especially in

informal datasets.

5.4.6.4. Common Successful Dependencies. Table 5.3 shows that Reuters and NSF

have two common dependencies (shown in bold) in the five leading dependencies, while

MiniNg20 has no common dependencies. One of the common dependencies is comp

which is a structurally complicated dependency formed by integrating two verbs that

have the same subject in the adjacent clauses. However, in the informal MiniNg20

dataset, this complex dependency does not improve the performance of the classifier

due to the simple and ungrammatical sentence structures in the dataset. Instead of it,

prt (phrasal verb participle, e.g. write down) is one of the simplest dependencies and

yields the most successful results with MiniNg20.

5.5. Comments and Conclusion

The main motivation of this chapter was to extend the standard bow method used

in TC by extracting fewer but informative features, so that more successful results can

be achieved with much less features. For this purpose, we incorporated the concepts

of lexical dependencies and pruning into the algorithms and determined the optimal

parameter values for each.

36 dependencies and 10 PL values were experimented in four main methods (AW,

AWP, AWDP, AWDCP). AW is named the standard bow approach and each of the

68

other three methods is an extended version of its predecessor, improved by dependency

and pruning support under the optimal parameter settings. We used SVM for the ma-

chine learning component, which is a state-of-the-art classifier in TC, and the Stanford

Parser as the syntactic tool. We repeated all the experiments in three different datasets

(Reuters, NSF, and MiniNg20).

Three significance tests have been implemented including the extended version

of the micro sign test that we have derived for this study. Using these three tests,

the approaches have been compared and analyzed with respect to several perspectives

providing robust results. The results showed that for each extension in the methods,

a corresponding significant improvement was observed in the success rates. In parallel

with this result, the most advanced method which combines the leading dependencies

(AWDCP) outperformed all the other methods in terms of success rates. We also

observed that the optimal feature numbers showed a consistent behavior (between

2400 and 4200) in all the optimal results of the proposed methods (AWP, AWDP, and

AWDCP) for all three datasets.

From the dataset perspective, an important outcome is about the formality level

of the datasets. The pruning process improved the success rates of the informal Min-

iNg20 dataset much more than the other two formal datasets (Reuters and NSF). In

addition, the formal datasets resulted in common dependencies (adjectival modifier and

complement) in the leading dependency analysis, while the informal MiniNg20 had dif-

ferent types of dependencies (e.g. prt - is one of the simplest dependencies and yields

the most successful results with MiniNg20).

In the next chapter, we incorporate feature selection algorithms into the proposed

methods. In the experiments of the current chapter, pruning implementation was

implemented for feature filtering but feature selection is different from this filtering

process by using specific methods such as information gain, tf-idf, etc. These algorithms

are implemented in accordance with the pruning implementation and dependency usage

for text classification in the following chapter.

69

6. FEATURE SELECTION APPROACHES:

CLASS-BASED AND CORPUS-BASED

Previously, we mostly focused on information extraction, where the main moti-

vation was to extract new feature types (POS, dependencies, synsets, domains, etc.)

in order to improve the classical bow approach. In this chapter, instead of extracting

new features, we implement some kinds of information filtering where the aim is to

reach and use the most critical features.

There are several feature selection algorithms which have been experimented for

TC extensively. We will discuss them briefly in the following section but our aim

in this chapter is not to perform another comparison with these metrics. The main

motivation is to extend our current proposed system (supported by the optimal usage

of dependencies and pruning levels) with an analysis of feature selection approaches,

but mainly from the perspective of coverage: class-based or corpus-based coverage of

features.

The chapter will begin with an overview of feature selection usage in text classi-

fication. After the examination of the overview, related experiments will be detailed.

6.1. Overview of Feature Selection Algorithms

One of the advantages of SVM over the other machine learning algorithms is

its ability to deal successfully with high dimensionality [2]. In traditional studies,

typically all available words in the document set were used instead of limiting to a set

of keywords with satisfactory results [56, 6]. Some studies even stated that using all

words leads to the best performance and using keywords may be unsuccessful without

optimal parameter tuning [12, 57].

On the other hand, recent studies reveal that feature selection may improve the

performance in terms of accuracy and scalability with a significant cut in the solution

70

vector size [2]. There are different types of feature selection implementation: Filter

methods determine a ranking among all features with respect to some statistical metrics,

wrapper methods use classical Artificial Intelligence methods (e.g. greedy hill climbing)

with cross validation, and embedded methods employ a linear prediction model for

optimization [2]. Among them, filter methods are the simplest to implement and most

scalable for text classification problems with large feature spaces [2].

There are various types of feature selection metrics for filter methods such as chi-

square, information gain, tf-idf, odds ratio, probability ratio, document frequency, and

bi-normal separation. Concerning these metrics, there exist many studies analyzing

and comparing the metrics [12, 58], combining them based on specific measurements

[59], providing unsupervised selection algorithms [60], and suggesting related novel

algorithms [61].

Performing another comparison, analysis or extension of these metrics is not the

main concern of this chapter, it is rather the coverage of the selected features: corpus-

based (the terms that achieve the highest tf-idf score in the overall corpus are selected

as the global keywords for any classification case in the dataset) and class-based (local

keywords are selected for each class) feature selection approaches are analyzed with

the appropriate metrics.

Concerning the studies of class-based feature selection, one of the related studies

involves the categorization of internet documents [62]. A method for evaluating the

importance of a term with respect to a class in the class hierarchy was proposed in

that study. Another study about clustering the documents [63] focuses on increasing

the speed of the clustering algorithm. For this purpose, the authors tried to make

the method of extracting meaningful unit labels for document clusters much faster by

using class-based keywords. In both studies, class-based feature selection approach

was considered, however, the comparison was not done with all words approach or

with the corpus-based feature selection approach. Another related study covers the

feature selection metrics for text classification using SVM [12]. While this study makes

extensive use of class-based keywords, it also does not cover an explicit comparison of

71

the two approaches.

Experiment 1 will compare the class and corpus-based approaches by using the

tf-idf metric. In the second experiment, two stage feature selection is implemented:

pruning is employed as the corpus-based algorithm in addition to the class oriented

use of tf-idf. Experiment 3 will be the final set-up that serializes the optimal use of

dependencies (analyzed in the previous chapter) with the proposed two stage feature

selection.

6.2. Experiment 1 - Introduction to Class-Based and Corpus-Based

Approach in Feature Selection

In this experiment, we focus on the feature selection approach: corpus-based and

class-based. Our motivation is to find an optimal keyword selection algorithm so we

may describe these methods as AWK (All words with keyword selection) with several

variations. In the corpus-based feature selection approach, the terms that achieve the

highest tf-idf score in the overall corpus are selected as the keywords. This approach

favors the prevailing classes with many documents and gives penalty to classes with

small number of training documents in document corpora where there is high skew.

In the class-based feature selection approach, on the other hand, distinct keywords are

selected for each class. This approach gives equal weight to each class in the feature

selection phase. So, less prevailing classes are not penalized as in the corpus-based

approach. This approach is also suitable for the SVM classifier as it solves two class

problems.

Our focus is not on the feature selection metric, any feature selection algorithm

may be utilized as corpus or class-based. We prefer tf-idf, one of the simplest and

commonly experimented metrics for feature selection.

72

6.2.1. Experiment Configuration According to TC Fundamentals

Below sections discuss the main preferences of the proposed experiment according

to the fundamentals of text classification described in Chapter 2.

6.2.1.1. Datasets. Reuters is used as the main dataset for the experiments.

6.2.1.2. Preprocessing Operations. Preprocessing is performed with the below rou-

tines.

• Feature Formatting: Non-alphabetic characters and mark-up tags are discarded,

case-folding and removal of stopwords are performed. Porter is used for stemming

implementations.

• Feature Extraction: Experiments are performed without parser (e.g. no depen-

dency / POS information) and external knowledge base (WordNet, WND, Cyc,

etc.) support.

6.2.1.3. Document Representation. Bow approach is used.

6.2.1.4. Term Weighting Approach. We choose the standard tf-idf metric for term

weighting in our methods.

6.2.1.5. Machine Learning Algorithm. SVM with linear kernel is the machine learning

module we use as the classification algorithm.

6.2.1.6. Feature Selection. Tf-idf is employed as the main feature selection algorithm

with class-based and corpus-based perspective.

6.2.1.7. Performance Measures. Experiments are evaluated with microF and macroF

scores.

73

6.2.2. Experiment Design

In the set-up, we experiment with six different feature number values (10, 30, 100,

300, 1000 and 2000) and perform an additional experiment containing all the words as

the features for the solution vector. We repeat the same set-up for corpus-based and

class-based approach, using the standard tf-idf equation.

6.2.3. Experiment Results and Comments

Figure 6.1 displays the microF and macroF results for class and corpus-based

approaches with tf-idf document representations of all the words and keywords ranging

in number from 10 to 2000.

For the microF results, we can conclude that class-based feature selection achieves

higher microF than corpus-based approach for small number of keywords. In text clas-

sification, most of the learning takes place with a small but crucial portion of keywords

for a class [64]. Class-based feature selection, by definition, focuses on this small por-

tion; on the other hand, corpus-based approach finds general keywords concerning all

classes. So, with few keywords, class-based approach achieves much more success by

finding more crucial class keywords. Corpus-based approach is not successful with

that small portion, but has a steeper learning curve that reaches the peak value of the

experiments (86%) with 2000 corpus-based keywords.

For the macroF results, we analyze that class-based feature selection achieves

consistently higher macroF performance than corpus-based approach. The high skew

in the distribution of the classes in the dataset affects the macroF values in a negative

way because macroF gives equal weight to each class instead of each document and

documents of rare classes tend to be more misclassified. Accordingly, the average

of correct classifications of classes drops dramatically for datasets having many rare

classes. Class-based feature selection is observed to be very useful for this skewness. As

stated above, with even a small portion of words (e.g. 100), class-based tf-idf method

reaches 50% success which is far better than the 43.9% success of tf-idf with all words.

74

Figure 6.1. Feature selection with corpus-based and class-based approaches

75

Rare classes are characterized in a successful way with class-based feature selection,

because every class has its own keywords for the categorization problem. The corpus-

based approach shows worse results because most of the keywords are selected from

prevailing classes which prevents rare classes to be represented fairly by their keywords.

6.2.4. Conclusion

In contrast to the previous studies that did not suggest feature selection in TC, we

found that feature selection improves the success results of SVM. In the corpus-based

approach the keywords tend to be selected from the prevailing classes. Rare classes

are not represented well by these keywords. However, in the class-based approach,

rare classes are represented equally well as the prevailing classes because each class is

represented with its own keywords for the categorization problem. Thus, the class-

based tf-idf approach with small number of keywords (e.g. 100) achieves consistently

higher macroF performance than both the corpus-based approach and the approach

where all the words are used. It also achieves higher microF performance than corpus-

based approach when a small number of keywords is used. This is important as there

is a lot of gain from classification time when a small number of keywords is used.

We can mainly conclude that the class-based approach mostly yields more suc-

cessful results than the corpus-based usage. Based on this conclusion, we will use the

tf-idf metric as the class-based coverage model in the following tests.

6.3. Experiment 2 - Two Stage Feature Selection

Based on the analysis of Experiment 1, we employ the tf-idf metric with the class-

based approach. On the other hand, pruning implementation (which has been used as

corpus-based) yielded successful results with significant improvements in the previous

chapter. In this section, we want to analyze whether the incremental effect of corpus-

based pruning may continue when it is combined with the class-based tf-idf metric. So,

we apply two stage feature selection in this experiment: pruning is employed as the

corpus-based algorithm in addition to the class oriented use of tf-idf.

76

The main goal is to reach features with maximum tf-idf but also with sufficient

occurrence rate in the overall corpus (will be checked by the pruning levels). In this

set-up, features with low occurrence rate in the overall dataset but with high frequency

in a particular class (so high tf-idf) will not be included in the final feature vector of

that class due to its high probability of being an outlier for the classification case.

6.3.1. Experiment Configuration According to TC Fundamentals

Below sections discuss the main preferences of the proposed experiment according

to the fundamentals of text classification described in Chapter 2.

6.3.1.1. Datasets. We use three datasets: Reuters, NSF and MiniNg20 [4] in order

to analyze the effect of the proposed methods on different types of documents and to

make comparisons between them.

6.3.1.2. Preprocessing Operations. Preprocessing is performed with the below rou-

tines.

• Feature Formatting: Non-alphabetic characters and mark-up tags are discarded,

case-folding and removal of stopwords are performed. Porter is used for stemming

implementations.

• Feature Extraction: Experiments are performed without parser (e.g. no depen-

dency / POS information) and external knowledge base (WordNet, WND, Cyc,

etc.) support.

6.3.1.3. Document Representation. Bow approach is used.

6.3.1.4. Term Weighting Approach. We choose the standard tf-idf metric for term

weighting in our methods.

77

6.3.1.5. Machine Learning Algorithm. SVM with linear kernel is the machine learning

module we use as the classification algorithm.

6.3.1.6. Feature Selection. Two stage feature selection algorithm is proposed. First di-

mension is the filtering with pruning implementation (corpus-based). Other dimension

is the tf-idf filtering over each class (class-based).

6.3.1.7. Performance Measures. Experiments are evaluated with microF and macroF

scores.

6.3.2. Experiment Design

For the life cycle of a sample experiment, features are initially filtered according

to the selected PL values, and then later the ones with the sufficient PL value and the

highest tf-idf values for each class are passed to the machine learning algorithm. So

actually, there are two main parameters to be optimized in the experiment: PL value

for the pruning implementation and number of features for the selection of the features

with the highest tf-idf values.

We perform pruning level analysis using three different pruning levels: 1 (no

pruning, all words are used), 2 (initial pruning level that throws away the features

with single occurrence) and 13 (optimal pruning level for the words which has been

analyzed in the previous experiments). For the feature number analysis, experiments

are repeated with five different values: 250, 500, 1000, 2000 and 4000. So we implement

a series of 15 experiments (3 different PL values * 5 different feature numbers) for each

dataset.

6.3.3. Experiment Results

Experiment results for 15 different variations of the two parameters over the three

datasets are listed in Table 6.1. The proposed method is named as All words with

78

keyword selection and pruning (AWKP), the varying parameters are the pruning level

(indicated by PL) and feature number (indicated by FtrNo) and they are separated

by commas in the table. AWKP with PL = 1 (no pruning) is listed as AWK in the

table. Benchmark results of the previous experiments (AW, AWP with PL = 2 and

AWP with PL = 13) are also listed in the table in order to perform the comparison of

the current set-up with the previous scores.

6.3.4. Comments and Conclusion

For the initial observation of the experiment, the parameter values were optimized

in consistency with the preceding experiments: the best performance (maximum suc-

cess with sufficient features) was achieved around the pruning level 13 (as in Chapter 5

during the AWP experiments) and keyword number was optimized around 2000-4000

(similar value was extracted in the previous experiment results) for all the datasets.

This optimal use of the two stage feature selection approach improved the optimal

results of the previous tests significantly. Selecting the best 2000 features for each

class (AWKP,13,2000) improved the previous best performance of the method AWP

(with PL=13) significantly in all the three datasets as shown in Table 6.1. From

the same table, we can also analyze the significant improvement of the same method

(AWKP,13,2000) over the optimal method of the previous experiment without pruning

(AWK,2000; class-based approach without pruning). So, briefly we have arrived at our

goal in this section: we come to the conclusion that the incremental effect of corpus-

based pruning continues when it is combined with the class-based tf-idf metric as the

feature selection algorithm.

6.4. Experiment 3 - Two Stage Feature Selection with Dependency Usage

We now extend the previous set-up by including the optimal dependency use in

all the three datasets and analyze whether the serial use of the proposed methods in

this study (pruning, class-based feature selection and dependency use) improve the

experimented optimal performance or not.

79

Table 6.1. Success scores of the two stage feature selection

Reuters % NSF % MiniNg20 %

Method,PL,FtrNo microF macroF microF macroF microF macroF

AWK,250 83.69 51.15 62.04 49.51 56.65 55.72

AWK,500 84.71 50.92 62.92 49.31 56.16 55.01

AWK,1000 85.16 51.72 64.69 49.33 53.68 52.17

AWK,2000 85.58 52.03 65.19 49.31 54.04 52.10

AWK,4000 85.84 52.10 65.71 49.35 55.25 53.73

AWKP,2,250 83.99 52.49 62.11 49.96 57.19 56.06

AWKP,2,500 84.91 51.26 63.06 49.68 55.30 54.01

AWKP,2,1000 85.23 51.84 64.96 49.74 54.24 52.87

AWKP,2,2000 85.62 52.13 65.76 49.74 56.27 54.84

AWKP,2,4000 86.04 52.19 66.19 49.79 56.37 54.82

AWKP,13,250 84.56 53.35 62.88 50.38 55.47 54.78

AWKP,13,500 85.66 53.74 63.41 50.25 56.11 54.96

AWKP,13,1000 85.90 53.77 65.10 50.15 57.05 55.42

AWKP,13,2000 86.40 53.95 66.06 50.11 57.43 55.66

AWKP,13,4000 86.70 53.98 66.10 50.12 57.43 55.66

Previous Benchmarks:

AW (AWP,1) 85.58 43.83 64.458 46.11 46.42 43.44

AWP,2 85.55 43.84 64.414 46.208 49.73 47.13

AWP,13 85.84 44.85 64.582 46.492 53.62 51.02

80

We apply a two stage feature selection just as the same in the previous experiment:

pruning as the corpus-based algorithm and tf-idf as the class-based metric. We extend

the solution vector with the optimal use of dependencies for each dataset that have been

previously analyzed by the AWDP approach in Chapter 5. So, the current motivation

in this section is to perform a detailed analysis where we study combining possible

feature selection metrics with pruning for both word and dependency features.

6.4.1. Experiment Configuration According to TC Fundamentals

Below sections discuss the main preferences of the proposed experiment according

to the fundamentals of text classification described in Chapter 2.

6.4.1.1. Datasets. We use three datasets: Reuters, NSF and MiniNg20 [4] in order

to analyze the effect of the proposed methods on different types of documents and to

make comparisons between them.

6.4.1.2. Preprocessing Operations. Preprocessing is performed with the below rou-

tines.

• Feature Formatting: Non-alphabetic characters and mark-up tags are discarded,

case-folding and removal of stopwords are performed. Porter is used for stemming

implementations.

• Feature Extraction: We employ Stanford Parser for the extraction of dependen-

cies. Experiments are performed without external knowledge base (WordNet,

WND, Cyc, etc.) support.

6.4.1.3. Document Representation. Bow approach is used.

6.4.1.4. Term Weighting Approach. We choose the standard tf-idf metric for term

weighting in our methods.

81

6.4.1.5. Machine Learning Algorithm. SVM with linear kernel is the machine learning

module we use as the classification algorithm.

6.4.1.6. Feature Selection. Two stage feature selection algorithm is proposed. First

dimension is the filtering with pruning implementation for both types of features (words

and dependencies). Other dimension is the tf-idf filtering over each class.

6.4.1.7. Performance Measures. Experiments are evaluated with microF and macroF

scores. Micro sign test, macro sign test and micro sign test with positive instances are

performed to measure the significance of the improvement.

6.4.2. Experiment Design

In this experiment, we serialize the use of pruning, dependencies and class-based

feature selection in text classification. For the set-up, two types of features employed:

words and dependencies. Both feature types are initially filtered according to their

corresponding optimal PL values, and then later the features with the sufficient PL

value and the highest tf-idf values for each class are passed to the machine learning

algorithm.

For the parameters of the experiment (PL values for dependencies and words,

keyword number), we prefer the values around the optimal values analyzed in the

previous experiments. 2000 and 4000 keywords are analyzed for all the three datasets.

We use 13 as the PL value for words in all the datasets. For dependencies; 50, 8 and

8 are taken as the optimal dependency PL values for Reuters, NSF, and MiniNg20

respectively.

6.4.3. Experiment Results

The proposed method of this section is named as All words and optimal depen-

dency combinations with keyword selection and pruning (AWDCKP). We have designed

82

Figure 6.2. Inheritance of AWDCKP from AWKP and AWDCP

Table 6.2. Success scores of the dependency support with two stage feature selection

Reuters % NSF % MiniNg20 %

Method, Params microF macroF microF macroF microF macroF

AWDCKP,13,opt,2000 86.38 52.65 67.02 50.93 58.10 56.26

AWDCKP,13,opt,4000 86.54 52.68 67.23 50.94 58.10 56.26

Previous Benchmarks

AWKP,13,2000 86.40 53.95 66.06 50.11 57.43 55.66

AWKP,13,4000 86.70 53.98 66.10 50.12 57.43 55.66

AWDCP, opt 86.03 45.26 66.01 47.68 54.23 51.65

the experiment varying with only keyword number (2000 and 4000) for AWDCKP, tak-

ing the other parameters (PL value for words and dependencies) as their optimal values

referencing the previous optimal results. The results are listed in Table 6.2. AWDCKP

inherits its discriminative properties and parameter values directly from the previous

two methods: AWDCP and AWKP as shown in Figure 6.2. So, the benchmark results

of the optimal set-up of these previous experiments are also listed in the table in or-

der to perform the comparison of the current set-up with the previous most successful

scores.

The parameters of the methods are separated by commas, following the method

name. For example, AWDCP, opt is the optimal AWDCP method analyzed in Section

5.4.1. On the other hand, AWKP,13,4000 is the AWKP experiment with PL = 13

for words and 4000 keywords. AWDCKP,13,opt,2000 combines the use of these two

methods with the analyzed optimal values (e.g. 2000 keywords, word PL = 13, etc).

83

Table 6.3. Statistical comparison of the proposed methods - AW, AWK, AWKP and

AWDCKP
Micro Sign, All Micro Sign, + Macro Sign

Reuters

AWK over AW ∼ À À
AWKP over AWK À À >

AWKP over AW À À À
AWDCKP over AW À À À
AWDCKP over AWK À À ∼
AWDCKP over AWKP ∼ < ∼

NSF

AWK over AW À À À
AWKP over AWK ∼ À >

AWKP over AW ∼ À À
AWDCP over AW À À À
AWDCKP over AWK À À À
AWDCKP over AWKP À À À

MiniNg20

AWK over AW À À À
AWKP over AWK ∼ > >

AWKP over AW À À À
AWDCKP over AW À À À
AWDCKP over AWK ∼ > ∼
AWDCKP over AWKP > ∼ >

All datasets

AWK over AW À À À
AWKP over AWK ∼ À À
AWKP over AW À À À
AWDCKP over AW À À À
AWDCKP over AWK À À À
AWDCKP over AWKP À À À

6.4.4. Significance of the Improvements

Table 6.3 compares the methods proposed in this chapter and the standard bench-

mark method, AW. Three significance tests that have been defined in Section 2.7.2 (and

previously used in Chapter 5) were applied. The methods were compared according to

the z values with the corresponding confidence areas in z -table. Repeating the same

significance test set-up with the same terminology, we list the results of the comparisons

in Table 6.3.

It is observed from the table that each method significantly outperforms its pre-

decessor method (AWDCKP >> AWKP >> AWK >> AW) and AWDCKP in most of

the datasets and in the overall case with the three significance measures. So the most

84

advanced proposed method (AWDCKP) is significantly the optimal method. There

is only one exception - according to the micro sign test with positive instances in

Reuters, AWDCKP is observed to be significantly unsuccessful than AWKP. On the

other hand, the other two significance tests claim that both methods are similarly

successful in Reuters.

6.4.5. Comments and Conclusion

We can briefly say that AWDCKP yields generally the best results among all

the discussed algorithms. The proposed method is more successful than AWDCP in

all datasets and this superiority continues over AWKP in NSF and MiniNg20. The

only exception is in the Reuters dataset where AWKP is the most successful method.

AWDCKP yields similar results according to two significance measures but it is worse

than AWKP with respect to the micro sign test with positive instances. AWKP,

having the two stage feature selection approach, directly employs bow approach without

dependency use. Reuters differs from the other two datasets by having more and longer

documents with much more content; its high formality level also improves the positive

effect of the words. So we may conclude that for a formal dataset with sufficient word

coverage in the solution (by employing the optimal feature selection approach), we may

not need dependency support for the optimal classification case. On the other hand,

NSF with short journal abstracts and informal MiniNg20 benefit from the dependency

support as well as the two stage feature selection.

85

7. CONCLUSIONS

In this thesis, preferring the state-of-the-art methods in the other stages as much

as possible, we attack the text classification problem from mainly two fundamentals:

feature extraction and feature selection. Feature extraction mainly focuses on extract-

ing new and informative feature types which are mostly syntactic or semantic oriented.

Main motivation of this process is to extend and improve the solution vector (bow ap-

proach with only morphological concern) by adding the missing points of this standard

approach. On the other hand, feature selection tries to filter uninformative features

with some statistical formulations in order to yield more scalable and accurate solu-

tions.

In the introductive parts of the study, utilization of external knowledge bases for

informative semantic features was the initial motivation and Cyc seemed to be one of

the key ontologies for that purpose with its stated power in the text domain. But, the

practical implementation of Cyc in the text classification domain was far away from

being satisfactory. The ontology lacked critical points such as syntactic and semantic

analysis at sentence level. In addition, our implementation trials suffered from big

time complexities of the function calls. Due to these problems, we have not continued

the experiments with Cyc and decided to use another popular lexical knowledge base,

WordNet. For the WordNet and its related tool WND use, synsets were analyzed to

be more powerful than WND domains in achieving successful classification results but

the overall results were not satisfactory with respect to the benchmark results of the

bow approach due to the ambiguity problem. The mentioned ambiguity problem was

also mentioned in parallel studies with any other ontologies and knowledge bases so

we suggest that the conceptual contribution of ontologies is not an effective way yet to

increase classification accuracy in the document datasets.

For the morphological part, one main contribution was the approach in stemmer

utilization. Stemming was analyzed not only for the words but also for all the extracted

dependency couples in the texts. Porter stemming was observed to be the optimal

86

stemmer for all words while the raw form without stemming slightly outperformed the

other approaches in dependency stemming.

For the syntactic part, dependency based methods have shown better perfor-

mance than POS based methods which was a promising and original result for the

future direction of the study at that time. The most successful dependency types were

improving the benchmark by around 0.4%-0.5%. One of the main observations of the

experiments was that most of the dependency types yielded many instances that caused

highly sparse solution vectors. This high sparsity indicated a feature selection imple-

mentation to be an explicit need for the proposed system. So at that point, we decided

to deal with pruning analysis of features as the basic feature selection algorithm and

perform further analysis of dependencies (e.g. combination of the leading ones).

After the completion and the corresponding analysis about the preliminary ex-

periments, the main research directions and possible contributions were mainly shaped.

We performed an analysis for the optimal pruning of the features (10 different levels

were tested for pruning implementation). Pruning was implemented incrementally in

three main stages: pruning of words, pruning of dependencies, and pruning of de-

pendency combinations. We experimented with 36 lexical dependencies independently

with the optimal pruning levels and performed the final test by using the combination

of the leading dependencies in addition to all the words in the documents. Later, we

compared the performance of corpus-based and class-based approaches for feature se-

lection coverage and then extended the corpus-based pruning implementation by the

tf-idf class-based feature selection. We examined a range between 10 and 4000 for

keyword numbers and achieved the optimal parameters for the experimented datasets.

For the final test, we serialized the optimal use of the leading dependencies for each

experimented dataset with the two stage feature selection approach.

By performing pruning level analysis on datasets with different characteristics and

obtaining the optimal results around PL=13 consistently, we arrive at the conclusion

that a pruning level of about 10-15 (removing words occurring less than 10-15 times)

may give the best results for a dataset. In the literature, usually an arbitrarily selected

87

and small value (e.g. PL=2 or PL=3) has been used for this purpose.

We also observed that the optimal feature numbers showed a consistent behavior

(around 2000 and 4000) in all the optimal results of the proposed methods for all

three datasets. From the dataset perspective, an important outcome is about the

formality level of the datasets. The proposed algorithms (pruning, class-based selection,

dependency use) generally improved the success rates of the informal MiniNg20 dataset

much more than the other two formal datasets (Reuters and NSF). In addition, the

formal datasets resulted in common dependencies (adjectival modifier and complement)

in the leading dependency analysis. However, in the informal MiniNg20 dataset, comp

does not improve the performance of the classifier due to the simple and ungrammatical

sentence structures in the dataset. Instead of it, simple prt (phrasal verb participle,

e.g. write down) dependency yields the most successful results with this informal

dataset. Another important analysis is about the massive improvement of macroF

with Reuters data when the class-based feature selection is implemented. Class-based

feature selection compensated the high skewness of the dataset by giving equal weight

to each class in the feature selection phase. So, less prevailing classes were not penalized

which caused the improvement in macroF.

Three significance tests have been implemented to test for the robustness of the

results and the significance of the improvements. Besides the classical micro and macro

sign tests, we derived an extended version of the micro sign test for this study. The

results showed that for each extension in the methods, a corresponding significant

improvement was observed in the success rates. Figure 7.1 shows a general system

topology of all the successfully proposed approaches in the thesis. Each proposed

method is shown with its discriminative properties and the link (stair) is supplied to

its inherited / related method.

The figure also reflects the improvements for each proposed approach: the stairs

show the inheritances between the methods and the size of it roughly indicates the

significance of the improvement. The improvement rates (so the size of the stairs in

the figure) may change with respect to:

88

Figure 7.1. Overview of the improvements of the proposed approaches

89

• Success measure: Class-based methods are usually better with macroF, but mi-

croF performance is not so high.

• Dataset properties: Reuters is highly skewed so its macroF performance is much

more affected by Class-based keywords. For the MiniNg20 case, the bow repre-

sentation was unsuccessful due to the informal content of the dataset with lots

of textual errors. So any proposed algorithm (e.g. pruning, dependency use)

caused much more significant improvement in this dataset by compensating the

insufficient representation of bow. A total of about 25% increase (from about

45% to 57% in both microF and macroF) was achieved in MiniNg20 from AW to

AWKPCP.

The most advanced method combining the leading dependencies with optimal

pruning levels and optimal number of class-based features (AWDCKP) mostly outper-

forms the other methods in terms of success rates with reasonable feature sizes. The

proposed method is more successful than AWDCP in all the datasets and this supe-

riority continues over AWKP in NSF and MiniNg20. The only exception is Reuters

dataset where AWKP is the leading method. Although it yields similar results accord-

ing to two significance measure, AWDCKP is worse than AWKP with respect to the

micro sign test with positive instances in Reuters. This dataset differs from the other

experimented ones by having more and longer documents with much more content that

increases the effect of the bow approach with more consistent word occurrences; its high

formality level also improves this effect. So, for a formal dataset with sufficient content

in the documents, we may not need dependency support for the optimal classification

result in case of the selection of optimal features per class, as in the case of AWKP. On

the other hand, confirming the superiority of the AWDCKP method, NSF with short

journal abstracts and the informal MiniNg20 benefit from the dependency support as

well as the two stage feature selection for classifying their documents.

To the best of our knowledge, this is the first study that makes such a detailed

analysis on individual dependencies and feature selection coverage with a two stage

selection in not only text classification but more generally in the text domain. For

future work, remembering the analogy of text classification with the elephant among

90

blind researchers concept [2], there are many possible research directions related to

this problem with several solution strategies. One possible projection is to repeat the

implementation of the proposed successful methods in more datasets with different for-

mality levels, document lengths, and skewness properties so that we can develop robust

algorithms for automatic detection of possible useful dependencies and corresponding

pruning levels / feature selection approaches according to the dataset properties. An-

other possible extension may be the employment of the proposed approaches in other

document oriented problems. Using the two stage feature filtering or suggesting a

novel index type of the leading lexical dependencies in search engines or file organiza-

tion systems may probably improve the related performance (e.g. ranking with respect

to relevance in search, or success of retrieving the required document) on that sys-

tem. From another perspective, any text classification study preferring the proposed

approaches of this thesis and focusing on the other fundamentals (e.g. improvements

of the SVM implementation, improving the linear kernel, successful use WordNet, etc.)

will be a related novel study in this domain.

91

REFERENCES

1. Alpaydın, E., Introduction to Machine Learning, The MIT Press, 2004.

2. Liu, H. and M. Hiroshi, Computational Methods of Feature Selection, Chapman

and Hall/CRC Press, HPL-2007-16, 2007.

3. Manning, C.D., P. Raghavan and H. Schütze , Introduction to Information Re-

trieval, Cambridge University Press, 2008.

4. Asuncion, A. and D. Newman, UCI Machine Learning Repository, Irvine, CA:

University of California, School of Information and Computer Science, http://

www.ics.uci.edu/~mlearn/MLRepository.html, 2007.

5. Özgür, A., L. Özgür, and T. Güngör, “Text Categorization with Class-Based and

Corpus-Based Keyword Selection”, Proceedings of ISCIS 2005, Lecture Notes in

Computer Science, Vol.3733, pp. 606-615, Springer-Verlag, Berlin Heidelberg, 2005.

6. Yang, Y. and X. Liu, “A Re-examination of Text Categorization Methods”, Pro-

ceedings of SIGIR-99, 22nd ACM International Conference on Research and De-

velopment in Information Retrieval, Berkeley, 1999.

7. Salton, G., C.S. Yang, A. Wong, “A Vector-Space Model for Automatic Indexing”,

Communications of the ACM 18 no.11, 1975.

8. Lodhi, H., C. Saunders, J. Shawe-Taylor, N. Christianini and C. Watkins, “Text

Classification using String Kernels”, Journal of Machine Learning Research, pages

419-444, 2002.

9. Salton, G. and C. Buckley, “Term Weighting Approaches in Automatic Text Re-

trieval”, Information Processing and Management 24, no. 5, pp. 513–523, 1988.

10. Robertson, S.E., S. Walker and M. Beaulieu, “Experimentation as a way of life:

92

Okapi at TREC”, Information Processing and Management 36, pp. 95-108, 2000.

11. Joachims, T., “Advances in Kernel Methods-Support Vector Learning. Making

Large-Scale SVM Learning Practical”, MIT-Press, 1999.

12. Forman, G., “An Extensive Empirical Study of Feature Selection Metrics for Text

Classification”, Journal of Machine Learning Research 3, pp. 1289–1305, 2003.

13. Burges, C. J. C., “A Tutorial on Support Vector Machines for Pattern Recogni-

tion”, Data Mining and Knowledge Discovery, Vol. 2, No. 2, pp. 121–167, 1998.

14. Wang, Z. and D. Zhang, “Feature Selection in Text Classification Via SVM and

LSI”, ISNN 2006, Lecture Notes in Computer Science, Vol. 3971, pp. 1381–1386,

Springer-Verlag, 2006.

15. Liu, T., Z. Chen, B. Zhang, W. Ma and G. Wu, “Improving Text Classification

using Local Latent Semantic Indexing”, Proceedings of the Fourth IEEE Interna-

tional Conference on Data Mining (ICDM–2004), 2004.

16. Larson, R. and B. Farber, Elementary Statistics : Picturing the World, Prentice

Hall, 2000.

17. Montgomery, D. C., Design and Analysis of Experiments, John Wiley, 2001

18. Stevenson, M. and M. Greenwood, “A Semantic Approach to IE Pattern Induc-

tion”, Proceedings of the 43rd Annual Meeting of the ACL, Ann Arbor, 2005.

19. Stevenson, M. and M. Greenwood, “Comparing Information Extraction Pattern

Models”, Proceedings of the Workshop on Information Extraction Beyond the Doc-

ument, pp. 12-19, Sydney, 2006.

20. Marneffe, M.C., B. MacCartney and C. Manning, “Generating Typed Dependency

Parses From Phrase Structure Parses”, LREC2006, 2006.

93

21. Klein, D. and C. Manning, “Fast Exact Inference with a Factored Model for Natural

Language Parsing”, NIPS, volume 15, MIT Press, 2003.

22. Levy, R. and G. Andrew, “Tregex and Tsurgeon: tools for querying and manipu-

lating tree data structures”, 5th International Conference on Language Resources

and Evaluation (LREC 2006), 2006.

23. Wong, A.K.S., J.W.T. Lee and D.S. Yeung, “Using complex linguistic features in

context-sensitive text classification techniques”,Proceedings of Machine Learning

and Cybernetics, Volume 5, Issue, 18-21 Aug. 2005, pp. 3183 - 3188 Vol. 5, 2005.

24. Madsen, R. E., J. Larsen and L.K. Hansen, “Part-of-Speech Enhanced Context

Recognition”, Proceedings of IEEE Workshop on Machine Learning for Signal Pro-

cessing XIV, pp. 635-644, IEEE Press, 2004.

25. Goncalves, T., C. Silva, P. Quaresma and R. Vieira, “Analysing Part-of-Speech for

Portuguese Text Classification”, CICLing 2006, pp. 551-562, 2006.

26. Mullen, T. and N. Collier, “Sentiment analysis using support vector machines with

diverse information sources”, Proceedings of EMNLP 2004, 2004.

27. Cahill, A., U. Heid, C. Rohrer and M. Weller, “Using tri-lexical dependencies in

LFG parse disambiguation”, The 14th International LFG Conference, July 2009,

Trinity College, Cambridge, United Kingdom, 2009.

28. Charniak, E., K. Knight and K. Yamada, “Syntax-based language models for sta-

tistical machine translation”, Proceedings of the MT Summit IX. International

Association for Machine Translation, 2003.

29. Herrera, J., A. Penas, and F. Verdejo, “Textual Entailment Recognition Based on

Dependency Analysis and WordNet”, Lecture Notes in Computer Science, Volume

3944/2006, Springer Berlin / Heidelberg, 2006.

30. Wellner, B., J.D. Pustejovsky, C. Havasi, A. Rumshisky and R. Sauri, “Classifi-

94

cation of Discourse Coherence Relations: An Exploratory Study using Multiple

Knowledge Sources”, Proceedings of the SIGdial Workshop On Discourse And Di-

alogue, 2006.

31. Basili, R., M.T. Pazienza and L. Mazzucchelli, “An Adaptive and Distributed

Framework for Advanced IR”, RIAO 2000, pp. 908-922, 2000.

32. Lewis, D. D., “An Evaluation of Phrasal and Clustered Representations on a Text

Categorization Task”, Proceedings of SIGIR-92, pp. 37-50, Copenhagen, Denmark,

1992.

33. Furnkranz, J., T. Mitchell and E. Rilof, “A Case Study in Using Linguistic Phrases

for Text Categorization on the WWW”, AAAI-98 Workshop on Learning for Text

Categorization, 1998.

34. König, A.C. and E. Brill, “Reducing the Human Overhead in Text Categorization”,

Proceedings of KDD 2006, Association for Computing Machinery Inc., 2006.

35. Moschitti, A. and R. Basili, “Complex Linguistic Features for Text Classification”,

A Comprehensive Study, ECIR 2004, pp. 181-196, 2004.

36. Moschitti, A., “Kernel Methods, Syntax and Semantics for Relational Text Cate-

gorization”, Proceeding of ACM 17th Conference on Information and Knowledge

Management (CIKM), Napa Valley, California, 2008.

37. Ghanem, M., Y. Guo, H. Lodhi and Y. Zhang, “Automatic Scientific Text Classi-

fication using Local Patterns: KDD CUP 2002 (Task1)”, SIGKDD Explorations,

vol. 4, no. 2, pp. 95-96, 2002.

38. Nastase, V., J.S. Shirabad and M.F. Caropreso, “Using Dependency Relations for

Text Classification”, AI 2006, the nineteenth Canadian Conference on Artificial

Intelligence, Québec City, Quebec, Canada, 2006.

39. Özgür, L. and T. Güngör, “Analysis of Stemming Alternatives and Dependency

95

Pattern Support in Text Classification”, CICLing 2009, the tenth International

Conference on Intelligent Text Processing and Computational Linguistics, Mexico

City, Mexico. Research in Computing Science, 41, 2009.

40. Gruber, T., “A Translation Approach to Portable Ontologies”, Knowledge Acqui-

sition, 5(2), pp. 199,220, 1993.

41. Magnini, B. and G. Cavaglia, “Integrating Subject Field Codes into WordNet”,

Proceedings of LREC-2000, Second International Conference on Language Re-

sources and Evaluation, Athens, Greece, 31 May - 2 June, 2000, pp. 1413-1418,

2000.

42. Bentivogli, L., P. Forner, B. Magnini and E. Pianta, “Revising WordNet Domains

Hierarchy: Semantics, Coverage, and Balancing”, Proceedings of COLING 2004

Workshop on Multilingual Linguistic Resources, Geneva, Switzerland, August 28,

2004, pp. 101-108, 2004.

43. Kozareva, Z., S. Vazquez S. and A. Montoyo, “The Usefulness of Conceptual Rep-

resentation for the Identification of Semantic Variability Expressions”, CICLing

2007, pp. 325-336, 2007.

44. Koeling, R., D. McCarthy and J. Carroll, “Text categorization for improved priors

of word meaning”, Proceedings of the Eighth International Conference on Intel-

ligent Text Processing and Computational Linguistics (CICLING 2007), Mexico

City, Mexico, 3rd Best Paper Award, 2007.

45. Strapparava, C. and A. Valitutti, “WordNet-Affect: an affective extension of Word-

Net”, Proceedings of 4th International Conference on Language Resources and

Evaluation (LREC 2004), pp. 1083–1086, Lisbon, May 2004.

46. Ding, Y., “Ontology: The enabler for the Semantic Web”, Technical Report, Divi-

sion of Mathematics and Computer Science, Free University, Amsterdam, 2001.

96

47. Cycorp Inc., Cycorp Cyc ontology homepage, http://www.cyc.com, 2010.

48. Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/wiki/Wikipedia, 2010.

49. Open Mind, MIT Media Lab Project - Open Mind Common Sense homepage,

http://openmind.media.mit.edu, 2010.

50. Liu, H. and P. Singh, “ConceptNet - a practical commonsense reasoning tool-kit”,

BT Technology Journal, Vol 22 No 4, 2004.

51. Hsu, M.H. and H. Chen, “Information retrieval with commonsense knowledge”,

SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference

on Research and development in information retrieval, 2006.

52. Miller, A., “WordNet: Lexical Database for English”, Communications of the

ACM, Vol. 38, pp: 39,41, 1995.

53. Hidalgo, J.M.G and M.B. Rodriguez, “Integrating a Lexical Database and a Train-

ing Collection for Text Categorization”, ACL/EACL Workshop on Automatic Ex-

traction and Building of Lexical Semantic Resources for Natural Language Appli-

cations, 1997.

54. Mansuy, T. and R. Hilderman, “A Characterization of WordNet Features in

Boolean Models for Text Classification”, Proceedings of the 5th Australasian Data

Mining Conference (AusDM’06), Sydney, Australia, November, pp. 103-109, 2006.

55. Porter, M., “An Algorithm for Suffix Stripping”, Program 14, pp. 130-137, 1980.

56. Joachims, T., “Text Categorization with Support Vector Machines: Learning with

Many Relevant Features”, European Conference on Machine Learning (ECML),

pp. 137-142, Berlin, Springer, 1998.

57. Aizawa, A., “Linguistic Techniques to Improve the Performance of Automatic Text

Categorization”, Proceedings of 6th Natural Language Processing Pacific Rim Sym-

97

posium, Tokyo, JP, pp. 307-314, 2001.

58. Yang, Y. and J. O. Pedersen, “A Comparative Study on Feature Selection in

Text Categorization”, Proceedings of the 14th International Conference on Ma-

chine Learning, pp. 412–420, 1997.

59. Shoushan, L., X. Rui, Z. Chengqing and C.R. Huang, “A Framework of Feature

Selection Methods for Text Categorization”, Proceedings of the 47th Annual Meet-

ing of the ACL and the 4t IJCNLP of the AFNLP, pp. 692-700, Suntec, Singapore,

2009.

60. Dasgupta, A., P. Drineas, B. Harb, V. Josifovski and M.W. Mahoney, “Feature

Selection Methods for Text Classification”, Proceedings of 13th Annual SIGKDD,

pp. 230-239, 2007.

61. Shang, W., H. Huang, H. Zhu, Y. Lin, Y. Qu and W. Zhihai, “A Novel Feature

Selection Algorithm For Text Categorization”, Expert Systems with Applications,

Vol. 33, pp. 1-5, 2007.

62. Lin, S-H., C-S. Shih, M. C. Chen and J-M Ho, “Extracting Classification Knowl-

edge of Internet Documents with Mining Term Associations: A Semantic Ap-

proach”, Proceedings of ACM/SIGIR, Melbourne, Australia 241–249, 1998.

63. Azcarraga, A. P., T. Yap, and T. S. Chua, “Comparing Keyword Extraction Tech-

niques for Websom Text Archives”, International Journal of Artificial Intelligence

Tools, 11 no. 2, 2002.

64. Özgür, L., T. Güngör and F. Gürgen, “Adaptive Anti-Spam Filtering for Agglu-

tinative Languages. A Special Case for Turkish”, Pattern Recognition Letters, 25

no.16 pp. 1819–1831, 2004.

