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ABSTRACT 

 

ANALYTICAL INVESTIGATION OF MULTI-LAYER COMPOSITE 

TUBES SUBJECT TO PRESSURE 

 

Atlı, Ahmet 

M.S., Civil Engineering Department 

Supervisor: Asst. Prof. Dr. Tolga Akış 

January 2010, 98 pages 

 

 

The aim of this study is to present an analytical approach for the stress analysis of multi-layer 

composite tubes under internal and external pressure. The expressions of stresses and 

displacements for single, two and three-layer tubes are obtained and the critical cases of 

yielding are examined using Tresca’s and von Mises yield criterion. The analytical solutions 

are checked numerically for different material sets and the stress and displacement 

distributions are obtained. It is found that yielding begins at the inner surface of the single 

layer tubes under internal or external pressure. For the two-layer tubes, yielding may begin at 

the inner surface of the inner or outer tubes or simultaneously at both locations. For the three- 

layer tubes different cases of yielding may occur depending on the material properties. In the 

study, the conditions for these various yielding cases are thoroughly examined. 

 

Key words: Stress analysis; Composite tubes; Tresca’s criterion; von Mises criterion 
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ÖZ 
 

BASINÇ ALTINDAKİ ÇOK KATMANLI KOMPOZİT TÜPLERİN 

ANALİTİK OLARAK İNCELENMESİ 

 

Atlı, Ahmet 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Danışmanı: Yrd. Doç. Dr. Tolga Akış 

Ocak 2010, 98 sayfa 

 

 

Bu çalışmanın amacı iç ve dış basınç altındaki çok katmanlı kompozit tüplerin gerilme analizi 

için analitik bir yaklaşım sunmaktır. Tek, iki ve üç katmanlı tüpler için gerilme ve yer 

değiştirme ifadeleri elde edilmiş ve kritik akma koşulları von Mises ve Tresca akma kriterleri 

kullanılarak incelenmiştir. Bulunan analitik çözümler çeşitli malzeme setleri için uygulanmış, 

gerilme ve yer değiştirme dağılımları bulunmuştur. İç veya dış basınç altındaki tek katmanlı 

tüplerde akmanın iç yüzeyden başladığı bulunmuştur. İki katmanlı tüplerde akma iç veya dış 

tüplerin iç yüzeyinden veya aynı anda bu iki yerden başlayabilir. Üç katmanlı tüplerde ise 

malzeme özelliklerine göre farklı akma durumları oluşabilir. Çalışmada bu farklı akma 

durumlarını oluşturan koşullar etraflıca incelenmiştir.    

 

 

Anahtar Kelimeler: Gerilme analizi; Kompozit tüpler; Tresca kriteri; von Mises kriteri  
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CHAPTER 1 

INTRODUCTION 

 

The analysis of cylindrical structural members (shafts, pipes, tubes, etc.) is quite 

important especially in engineering design. These members are widely used in 

different areas of engineering practice. Among them, the pressurized thick-walled 

tube is a classical problem in mechanics. In this work, this problem is extended to the 

yielding of multi-layer tubes (with two and three layers) under pressure. In the 

literature, there are several studies investigating the stresses and deformations of 

these assemblies under different loading and boundary conditions in elastic, plastic 

or elastoplastic stress states. In this chapter, a summary about these studies is given 

first, and then the aim of the study is presented. 

 

Tightly-fitted two-layer concentric tubes with fixed ends subjected to internal or 

external pressure are studied by Akış and Eraslan [1]. In that study, Tresca’s yield 

criterion and associated flow rule are used to investigate the elastic-plastic stress 

distribution in the assembly. Elastic and elastic-plastic solutions are obtained and 

some numerical results are presented using brass and copper materials. A similar 

study using von Mises yield criterion is made by the same authors [2] in elastic stress 

state and the numerical results of a steel-aluminum tube is presented. 

 

Three layer tubes under internal pressure are studied by You et al. [3]. The aim of 

their study was to analyze a three layer system which consists of a functionally 

graded layer in the middle of two homogeneous layers. According to the paper, the 

tube with the combination of metal-functionally graded material-ceramic could be 

used for withstanding the high temperatures. The paper also examines the thick-
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walled spherical pressure vessels consisting of the functionally graded material only 

and compares it to the assembly explained above.  

 

The effect of temperature on the behaviour of the pressure tubes are also an 

interesting subject and several studies were performed on it. In the study of Liew et 

al. [4], the analysis of the thermal stress behaviour of the functionally graded hollow 

cylinders is presented. Similar subject is studied in a different paper by Shao [5], but 

the problem is the cylinder with finite length under thermal and mechanical loads. 

The material combination used to monitor the stresses and the displacements are 

mullet and molybdenum. A comprehensive study is made by Tarn [6] on the thermo 

mechanical states in a series of functionally graded cylinders subjected to extension, 

torsion, shearing, pressuring and temperature changes. Besides, thermo elastic 

equations of rotating cylinders are obtained.  

 

The thermal and mechanical properties of a thick hollow sphere made of functionally 

graded material subjected to the internal pressure is studied by Eslami et al. [7] in 

which the radial stress and temperature distribution is obtained by using the solution 

of the Navier equation. Another study on the analytical solution of nonlinear strain 

hardening pressure pipe having a temperature difference at the inner and the outer 

surfaces is made by Eraslan and Apatay [8]. The main objective of their study was to 

investigate an internally pressurized tube with a negative temperature change of the 

order of 20 ºC. Elastic, partially plastic, fully plastic stress states are investigated 

where Tresca’s yield criterion with its associated flow rule is used. Their study 

demonstrates that elastic and plastic limit pressures are significantly affected by the 

existence of a small temperature changes within the tube. 

 

Another interesting subject on the functionally graded pressure vessels is studied by 

Dai et al. [9]. In their paper, the exact solutions are obtained for the magneto elastic 

behaviour of the functionally graded vessel located in a uniform magnetic field and 

subjected to internal pressure. The main objectives of their study are to design the 

optimum functionally graded cylindrical and spherical vessels and to understand the 

effect of the volumetric ratio of constituents and porosity on magneto elastic stresses 

and perturbation of magnetic field vector.  
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In the study of Zhifei et al. [10], a comparison between elastic hollow cylinders, 

multi-layer cylinders and elastic cylinders with continuously graded properties is 

made. The solution for both cases is based on Lamé’s [11] solution. At the end of the 

paper, an example problem showing the differences between these two cases is 

given. One of the findings of the study is the fact that under external or internal 

pressure, the absolute value of the displacement in the radial direction in the n-

layered tube decreases with the increase in the number of layers. It is also found that, 

with the increase of the number of layers, the discontinuity for the circumferential 

stress ( θσ ) can significantly be reduced. 

 

The problem of the elastic and elastic-plastic behaviour of functionally graded 

spherical pressure vessels is studied by Akis [12] using Tresca’s yield criterion. It is 

found in this study that, different from a homogeneous spherical pressure vessel, 

different modes of plasticization may take place due to the radial variation of the 

functionally grading parameters.  

 

Similar to the problem summarized above, elastic, partially plastic and plastic stress 

states of the plain strain functionally graded tube problem is studied by Eraslan and 

Akis [13]. The analytical plastic model is based on Tresca’s yield criterion. What 

makes this study interesting is the fact that the elastoplastic behaviour of functionally 

graded tube may be different from a homogenous tube. 

 

Functionally graded isotropic spheres subjected to internal pressure is investigated by 

Güven and Baykara [14]. The objective of the study is to understand the acceptable 

stress distributions in a hollow sphere under internal pressure for ductile and brittle 

material behaviours. It is stated that in a functionally graded isotropic hollow sphere 

designed according to the maximum shear stress failure theory, the material usage 

can be improved efficiently.  

 

In the study of Tutuncu and Özturk [15] closed-form solutions for functionally 

graded cylindrical and spherical vessels under internal pressure is presented. The 

study defines an inhomogeneity constant  β  and by using this constant, the stresses 

for the functionally graded tubes are obtained. 



 4

As seen from the studies presented above, there is still a wide research area on the 

subject of the behaviour of the cylindrical tubes under pressure. Therefore, the main 

objectives of this study are to obtain the analytical solutions for the problem of the 

multi-layer tubes under internal and external pressure and to investigate the yielding 

behavior of these assemblies. In the study, single layer, two-layer and three-layer 

tube assemblies are taken into consideration. 

 

For the single, two and three layer tubes, a stands for the inner radius and b stands 

for the outer radius of the tube. For the two-layer tubes,  1r  is the interface coordinate 

between the two tube layers. For the three layer tubes, 1r  and  2r  are the location of 

the inner and outer interfaces, respectively. The geometries of these assemblies are 

shown in Figs. 1.1, 1.2 and 1.3.  

 

 

 
 

Figure 1.1 The section of a single-layer tube under internal pressure 
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Figure 1.2 The section of a two-layer tube under internal pressure 

 
  

 Figure 1.3 The section of a three-layer tube under internal pressure 
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In the second chapter, the formulation for the stresses and displacement are derived 

starting with the single layer tube. Afterwards, the studies are carried on with two 

and three-layer tubes. After obtaining the basic expressions, the elastic limit 

pressures and the corresponding critical interface radii values are obtained in Chapter 

Three by using the two common yield criteria, Tresca’s and von Mises criterion. 

 

In Chapter Four, using real-engineering materials, some numerical results about the 

yielding behavior of the multi-layer tubes are presented graphically. It is shown that 

the determination of the yielding behaviour is not as simple as the yielding of the 

single layer tube, since there may be more than one possible yielding location. 

Finally, in the last chapter, a brief summary of the study is made and some important 

findings are highlighted.  
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CHAPTER 2 

FORMULATION 

 

2.1 General 

 

Throughout this study, cylindrical polar coordinates (r , θ and z) are used in all 

derivations (Fig. 2.1). First, the governing differential equations and stress and 

displacement relations for the single layer tubes are derived. Afterwards, the 

expressions for the two and three-layer tubes are presented. In the derivations, a state 

of plane strain and infinitesimal deformations are presumed. 

 

 
 

Figure 2.1 The cylindrical polar coordinates used in the derivations 
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2.2 Single Tube Under Pressure 

 

The generalized Hooke’s Law in cylindrical coordinates can be written as  

 

[ ])(1
zrr E

σσνσε θ +−= ,                                                                                            (1) 

 

[ ])(1
zrE

σσνσε θθ +−= ,                                                                                           (2) 

 

[ ])(1
θσσνσε +−= rzz E

,                                                                                           (3) 

 

For the tube with fixed ends 0=zε  and the stress in axial direction can be written as  

 

)( θσσνσ += rz .                                                                                                       (4) 

 

Inserting Eq. (4) into Eqs. (1) and (2) and using the strain-displacement relations  

 

dr
du

r =ε ,                                                                                                                  (5) 

 

r
u

=θε   ,                                                                                                                     (6) 

 

the stress expressions in terms of displacements can be obtained. Putting these 

expressions into the equation of equilibrium in radial direction, which is                                              

 

0=
−

+
rdr

d rr θσσσ ,                                                                                                   (7) 
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the governing differential equation is obtained as  

 

02

2
2 =−+ u

dr
dur

dr
udr .                                                                                                (8) 

 

The solution of this differential equation for u(r) is   

 

( ) rC
r

Cru 2
1 += .                                                                                                        (9) 

 

Putting u(r) into the stress-displacement relations give 

 

( ) 





−
+−

+
=

νν
σ

211
2

2
1 C

r
CErr ,                                                                                   (10) 

 

( ) 





−
+

+
=

νν
σθ 211

2
2
1 C

r
CEr ,                                                                                     (11) 

 

The stress in axial direction can be obtained by putting the above expressions into 

Eq. (4) which yields  

 

( )
)21)(1(

2 2

νν
νσ

−+
=

ECrz .                                                                                             (12) 

 

In order to complete the solution, the integration constants 1C  and 2C  should be 

determined. For this purpose, the corresponding boundary conditions are used. For 

the tube under internal pressure Par −=)(σ  and 0)( =brσ , and the integration 

constants are obtained as   

 

Eab
PbaC

)(
)1(

22

22

1 −
+

=
ν ,                                                                                                  (13) 
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Eab
PaC

)(
)21)(1(

22

2

2 −
−+

=
νν .                                                                                          (14) 

 

For the tube under external pressure, the boundary conditions become 0)( =arσ , 

Pbr −=)(σ . The corresponding integration constants are obtained as 

 

Eba
PbaC

)(
)1(

22

22

1 −
+

=
ν ,                                                                                                  (15) 

 

Eba
PbC

)(
)1)(21(

22

2

2 −
+−

=
νν .                                                                                          (16) 

 

2.3 Two-Layer Composite Tube Under Pressure 

 

The generalized Hooke’s Law for the two-layered tubes can be written as  

 

[ ])(1
1111

1
1 zrr E

σσνσε θ +−= ,                                                                                    (17) 

 

[ ])(1
2222

2
2 zrr E

σσνσε θ +−= ,                                                                                  (18) 

 

[ ])(1
1111

1
1 zrE

σσνσε θθ +−= ,                                                                                    (19) 

 

[ ])(1
2222

2
2 zrE

σσνσε θθ +−= ,                                                                                 (20) 

 

[ ])(1
1111

1
1 θσσνσε +−= rzz E

,                                                                                  (21)                        
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[ ])(1
2222

2
2 θσσνσε +−= rzz E

.                                                                               (22) 

 

Here 1E  and 2E  are the modulus of elasticity of the inner and outer tubes, 

respectively. Similarly 1ν  and 2ν  are the Poisson’s ratio of the two tube layers. 

 

The corresponding stresses and displacements can be written as   

 









−

+−
+

=
1

2
2
1

1

1
1 211 νν

σ
C

r
CE

r ,                                                                                  (23)    

 









−

+−
+

=
2

4
2
3

2

2
2 211 νν

σ
C

r
CE

r ,                                                                                 (24) 

 






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=
1

2
2
1

1

1
1 211 νν

σθ
C

r
CE ,                                                                                     (25)   

 









−

+
+

=
2

4
2
3

2

2
2 211 νν

σθ
C

r
CE ,                                                                                    (26) 

 

)21)(1(
2

11

211
1 νν

ν
σ

−+
=

CE
z ,                                                                                             (27)  

 

)21)(1(
2

22

422
2 νν

ν
σ

−+
=

CE
z ,                                                                                            (28) 

 

( ) rC
r

Cru 2
1

1 += ,                                                                                                   (29) 

 

( ) rC
r

C
ru 4

3
2 += .                                                                                                   (30) 
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In the above equations, 1C  and 2C  are the integration constants of the inner tube and 

3C  and 4C  are the integration constants of the outer tube. 

 

For the two-layer composite tubes under internal pressure, the boundary conditions 

are  Par −=)(1σ  and 0)(2 =brσ . In addition, two interface conditions can be written 

as: )()( 1211 rr rr σσ =  , )()( 1211 ruru = . Using these boundary and interface conditions, 

the corresponding integration constants are obtained as 

 

)]()([
)(

2
186

222
157

22
11

2
157

22
11

2

1 rMMbarMMbrE
rMMbPrMa

C
+−+

+
= ,                                                 (31) 
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)(

2
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157

22
11

2
186

2
31

2

2 rMMbarMMbrE
rMMbPMMa

C
+−+

+
= ,                                                 (32) 

 

)]()([
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2
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222
157

22
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2
1

2
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22

3 rMMbarMMbr
PrMbaC

+−+

−
=

ν ,                                                     (33) 

 

)]()([
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2
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157

22
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2
1

2
142

2

4 rMMbarMMbr
PrMMaC

+−+

−
=

ν ,                                                     (34) 

 

where 

 

11 1 ν+=M ,                                                                                                               (35) 

 

22 1 ν+=M ,                                                                                                              (36) 

 

13 21 ν−=M ,                                                                                                             (37) 

 

24 21 ν−=M ,                                                                                                            (38) 

 

2311425 EMMEMMM −= ,                                                                                       (39) 
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21126 EMEMM −= ,                                                                                                 (40) 

 

231127 EMMEMM += ,                                                                                            (41) 

 

211428 EMEMMM += .                                                                                            (42) 

 

For the two-layer composite tubes under external pressure, the stress and 

displacement expressions are the same with the internal pressure case. The only 

difference is on the boundary conditions. For the external pressure case, the boundary 

conditions become 0)(1 =arσ  and Pbr −=)(2σ . On the other hand, the interface 

conditions remain the same. 

 

Using these boundary and interface conditions, the corresponding integration 

constants are obtained as  
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= ,                                                (45) 
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7
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C
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−
−= .                                             (46) 

 

 

2.4 Three-Layer Composite Tube Under Pressure 

 

The generalized Hooke’s Law for the three layer composite tubes can be written as 
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[ ])(1
1111

1
1 zrr E

σσνσε θ +−= ,                                                                                    (47) 

 

[ ])(1
2222

2
2 zrr E

σσνσε θ +−= ,                                                                                  (48) 

 

[ ])(1
3333

3
3 zrr E

σσνσε θ +−= ,                                                                                  (49) 

 

[ ])(1
1111

1
1 zrE

σσνσε θθ +−= ,                                                                                    (50) 

 

[ ])(1
2222

2
2 zrE

σσνσε θθ +−= ,                                                                                 (51) 

 

[ ])(1
3333

3
3 zrE

σσνσε θθ +−= ,                                                                                (52) 

 

[ ])(1
1111

1
1 θσσνσε +−= rzz E

,                                                                                  (53) 

 

[ ])(1
2222

2
2 θσσνσε +−= rzz E

,                                                                               (54) 

 

[ ])(1
3333

3
3 θσσνσε +−= rzz E

,                                                                                  (55) 

 

Here 1E , 2E  and 3E  are the modulus of elasticity of the inner, middle and outer 

tubes, respectively. Similarly, 1ν  2ν  and 3ν  are the Poisson’s ratio of the tube layers. 

The corresponding stresses for each layer can be written as 
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r
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r ,                                                                                  (56)                         
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r ,                                                                                 (57)     
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CE ,                                                                                     (59)                    
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σθ
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r
CE ,                                                                                    (60) 
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3
3 211 νν

σθ
C

r
CE

,                                                                                    (61) 
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2
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211
1 νν

ν
σ

−+
=

CE
z ,                                                                                             (62) 

 

)21)(1(
2

22

422
2 νν

ν
σ

−+
=

CE
z ,                                                                                            (63) 

 

)21)(1(
2

33

633
3 νν

ν
σ

−+
=

CE
z .                                                                                            (64) 

 

In addition, the displacements for each layer become 

 

( ) rC
r

Cru 2
1

1 += ,                                                                                                   (65) 

 

( ) rC
r

C
ru 4

3
2 += ,                                                                                                   (66) 
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( ) rC
r

C
ru 6

5
3 += .                                                                                                   (67) 

 

Here, 1C  and 2C  are the integration constants of the inner tube, 3C  and 4C  are the 

integration constants of the middle tube, and 5C  and 6C  are the integration constants 

of the outer tube. For the internally pressurized three–layer composite tubes, the 

boundary conditions become Par −=)(1σ  and 0)(3 =brσ . In addition, four different 

interface conditions can be written: )()( 1211 rr rr σσ = , )()( 1211 ruru = ,  

)()( 2322 rr rr σσ =  and )()( 2322 ruru = . Using these conditions, the corresponding 

integration constants can be obtained as   

 

)]()([
)(

16
2

217
22

15
2

214
22

11

15
2

214
22

11
2

1 DrDbaDrDbrE
DrDbPrDa

C
+−+

+
= ,                                               (68) 

 

)]()([
)(

16
2

217
22

15
2

214
22

11

16
2

217
2

41
2

2 DrDbaDrDbrE
DrDbPDDa

C
+−+

+
= ,                                                (69) 

 

)]()([
)1)((2

16
2

217
22

15
2

214
22

1

2
1

2
21819

22
2

2
12

2

3 DrDbaDrDbr
rDDbPrrDa

C
+−+

−+
=

ν
,                                                    (70) 
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where 
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11 1 ν+=D ,                                                                                                                (74) 

 

22 1 ν+=D ,                                                                                                               (75) 

 

33 1 ν+=D ,                                                                                                               (76) 

 

14 21 ν−=D ,                                                                                                             (77) 

 

25 21 ν−=D ,                                                                                                             (78) 

 

36 21 ν−=D ,                                                                                                             (79) 

 
2

2
2

17 rrD −= ,                                                                                                            (80) 

 
2

2
2

158 rrDD += ,                                                                                                        (81) 

 
2

25
2

19 rDrD += ,                                                                                                        (82) 

 

3752286310 EDDDEDDDD += ,                                                                                  (83) 

 

39227311 EDDEDDD −= ,                                                                                          (84) 

 

3752286312 EDDDEDDDD += ,                                                                                  (85) 

 

392276313 DEDDEDDDD += ,                                                                                   (86) 

 

21141121214 EDDDEDDD −= ,                                                                                     (87) 

 

24131121015 EDDDEDDD −= ,                                                                                     (88) 
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2131121016 EDDEDDD += ,                                                                                         (89) 

 

2111121217 EDDEDDD += ,                                                                                         (90) 

 

35226318 EDDEDDD −= ,                                                                                          (91) 

 

3522319 EDDEDD += ,                                                                                              (92) 

 

322320 EDEDD −= ,                                                                                                  (93) 

 

2633221 EDDEDD += .                                                                                              (94) 

 

For the external pressure case, the boundary conditions are 0)(1 =arσ  and 

Pbr −=)(3σ , and the interface conditions remain the same. Using these, the 

corresponding integration constants are obtained as   
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where 

 

2633222 EDDEDD +=  ,                                                                                         (101) 

 

24115223 EDDEDDD −= ,                                                                                      (102) 

 

211224 EDEDD −= ,                                                                                               (103) 

 

2411225 EDDEDD += .                                                                                           (104) 

 

In the next chapter, the yielding behavior of the single, two-layer and three-layer 

tubes will be presented. 
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CHAPTER 3 

YIELDING OF COMPOSITE TUBES UNDER PRESSURE 

 

3.1 General 

 

So far, in order to investigate the yielding behavior of single, two-layer and three-

layer tubes under the effect of internal or external pressure, the stress and 

deformation expressions have been derived. In this chapter, the elastic limit pressures 

and the locations of the yielding in the assemblies will be determined by using the 

two common yield criteria, Tresca’s and von Mises yield criteria. In the next part, 

brief information about these two criteria is given. Then, the yielding behaviour of 

the tube assemblies is presented.  

 

3.2 Tresca’s Yield Criterion  

 

This criterion takes its name from a French mechanical engineer Henri Édouard 

Tresca (1814-1885). It is also called the maximum shear stress yield criterion [16]. 

According to this criterion, the initial yielding occurs when the highest of the 

maximum shear stresses reaches to a critical value. In other words, yielding begins 

when the maximum shear stress at a point equals to the maximum shear stress at 

yield in uniaxial tension (or compression). Yielding under a multiaxial stress state 

can occur for any one of these conditions: Y=− 32 σσ  , Y=− 13 σσ   or  

Y=− 21 σσ . Here Y  is the uniaxial yield stress. The yield surface for the 

maximum shear stress criterion is a regular hexagon in principal stress space. For a 

biaxial stress state ( 03 =σ ), the yield surface takes the form of an elongated hexagon 
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in the ( 1σ  , 2σ ) plane. The sketch in Fig 3.1 shows this hexagon plane and compares 

Tresca’s and von Mises yield criteria. 

 

 

 
Figure 3.1 Comparison between Tresca’s and von Mises yield criteria 

   

For our problem, it is found that the maximum stress difference is between rσ  and 

θσ , therefore, for each layer of the tube, the yielding starts when 0σσσθ =− r  for 

the internal pressure case and it starts when 0σσσ θ =−r  for the external pressure 

case. Introducing the dimensionless stress components 0/σσσ rr = , 0/σσσ θθ =  ,  

and 0/σσσ zz = , the dimensionless form of the criterion can be obtained as 

1=− rσσθ  for the internal pressure case and 1=− θσσ r  for the external pressure 

case. Throughout this study, the dimensionless values of the stresses are used since 

the monitoring of the yielding at the tubes becomes easier. It should be noted that, for 

the internal pressure case, when  1<− rσσθ  the tube is in elastic stress state. 

Similarly, for the external pressure case the tube is in elastic stress state for 

1<− θσσ r . 

 

 

Tresca 
(maximal 
shear) 

von Mises 

yieldσ  

yieldσ  
yieldσ−  

yieldσ−  

2σ  

1σ  
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3.3  von Mises Yield Criterion 

 

It is also called the distortional energy density criterion, and according to this 

criterion, yielding begins when the distortional strain energy density at a point equals 

the distortional strain energy density at yield in uniaxial tension (or compression) 

[16]. The distortional strain energy is the energy associated with a change in the 

shape of a body. The total strain energy density 0U  is divided into two parts: one part 

that causes volumetric change vU  and the one that causes distortion DU . The 

distortional strain energy density is  

 

G
UD 12

)()()( 2
13

2
32

2
21 σσσσσσ −+−+−

= .                                                            (105) 

 

For a multiaxial stress state, the distortional energy density criterion states that 

yielding begins when =DU GY 62 . Here, Y is the difference of the maximum 

stresses which is ])()()[(
2
1 2

13
2

32
2

21 σσσσσσ −+−+− , and G is the shear 

modulus. Introducing the dimensionless stress variable  

 

=φ ])()()[(
2
1 222

zzrr σσσσσσ θθ −+−+− ,                                                 (106) 

 

the yielding behaviour of the tube assemblies can be monitored. For the values of 

1<φ  the assembly is in elastic stress state and for 1=φ , the yielding begins. In von 

Mises criterion, different from Tresca’s yield criterion, stress in z direction is 

included in the expressions for the considered problem. 

 

3.4 Yielding of Single Tubes Under Internal Pressure 

 

It is found that for the tubes under internal or external pressure yielding begins at the 

inner surface of the assembly. Using the stress expressions derived in the second 
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chapter, the elastic limit internal pressure according to Tresca’s yield criterion 

( 1=− rσσθ ) is obtained as     

 









−== 2

2

0

1
2
1

b
aPPe σ

.                                                                                           (107) 

 

On the other hand, by using von Mises yield criterion (Eq. (106)), one can find the 

elastic limit internal pressure for the single tubes as  
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for 1=φ . 

 

3.5 Yielding of Single Tubes Under External Pressure 

 

Under external pressure, the yielding commences when  1=− θσσ r  according to 

Tresca’s yield criterion. By inserting the stress expressions obtained in the previous 

chapter, the elastic limit external pressure can be found as 
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Similarly, using von Mises yield criterion, the elastic limit external pressure becomes 

 

( ) 11
1

2 2
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ννb
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3.6 Yielding of Two-Layer Tubes Under Internal Pressure 

 

By considering the stress expressions for the two-layer tubes, which are derived in 

the second chapter, it is found that for both internal and external pressure cases, 
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yielding may begin at the inner surface of the assembly, at the interface or 

simultaneously at both locations. According to Tresca’s criterion, for internal 

pressure case, yielding starts when 0111 σσσθ =− r  at the inner surface of the 

assembly ( ar = ) and it starts at the interface ( 1rr = ) when 0222 σσσθ =− r . 

Inserting the stress expressions into the first equation gives     
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and the second equation becomes  
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The elastic limit internal pressure that causes yielding starting from the inner surface 

( ar = ) is found by the solution of Eq. (111) as 
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where 
01σ

PPe = . 

 

Similarly, the elastic limit internal pressure that causes yielding at the interface 

( 1rr = )  is found as   
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As mentioned above, for the two-layer tubes under internal pressure, the yielding 

may begin simultaneously at both locations (at ar =  and 1rr = ). In order to find the 
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elastic limit internal pressure and the corresponding critical interface radius ( crr1 ) that 

cause simultaneous yielding, Eqs. (111) and (112) should be solved at the same time 

for P and 1r . An example for this case will be given in the next chapter. 

 

Similar to the case for Tresca’s criterion, two equations that define the yielding at the 

above mentioned locations can also be written according to von Mises criterion (Eq. 

(106)). At the inner surface 
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and at the interface ( 1rr = )  
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Similar to Tresca’s criterion, the elastic limit internal pressure that causes yielding 

which starts from the inner surface ( ar = ) is found from the solution of Eq. (115), 

which is  
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On the other hand, the elastic limit internal pressure that causes yielding which 

commences at the interface ( 1rr = ) is found from Eq. (116) as  
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The simultaneous yielding behaviour which is explained for the Tresca’s yield 

criterion is also observed for this condition of yielding. The details of this case will 

be given in the next chapter. 

 

3.7 Yielding of Two-Layer Tubes Under External Pressure 

 

According to Tresca’s yield criterion, for the two-layer tubes under external pressure, 

the yielding begins when 0111 σσσ θ =−r  at the inner surface and when 

0222 σσσ θ =−r  at the interface. Inserting the stress expressions into these equations, 

the following relations can be obtained for the external pressure case: 
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Using Eq. (119), the elastic limit external pressure that starts yielding at r = a is 

found as  
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Using Eq. (120) the elastic limit external pressure that starts yielding at the interface 

becomes   
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The simultaneous yielding behaviour observed for the internal pressure case is also 

found in external pressure case. The details will be given in the next chapter. 
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According to von Mises criterion, the yielding begins when 1=φ . Considering the 

yield criterion given in Eq. (106) and inserting the stress expressions, which are 

obtained previously, into this equation, the condition for the yielding at the inner 

surface becomes  
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 and at the interface (r = 1r ), it becomes  
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Using Eq. (123), the elastic limit external pressure is obtained as  
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Similarly, the elastic limit external pressure that causes yielding at the interface is 

found as  
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where 
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41 3 MMMMMN += .                                                                                   (127) 

 

Before coming to the three-layer tubes, the importance of the critical interface radius 

should be highlighted. For the two-layer tube assemblies under internal or external 

pressure; 



 28

a. For the yielding that starts at the inner surface (r = a), 1r  should be higher 

than the critical interface radius ( 1r  > crr1 ).  

b. For the yielding that starts at the interface (r = 1r ), the interface radius should 

be lower than the critical interface radius ( 1r  < crr1 ).  

c. For the simultaneous yielding at the inner surface and at the interface of the 

assembly  crrr 11 = . 

 

These results show that the critical interface radius is an important factor that affects 

the yielding behaviour. 

 

3.8 Yielding of Three-Layer Tubes Under Internal Pressure 

 

It is found that, for  the three-layer tubes under internal or external  pressure, yielding 

may first begin at the inner surface of the assembly (r = a),  at one of the interfaces 

of the assembly (r = 1r  , r = 2r ), at the two locations of the assembly at the same 

time ( r = a and r = 1r  or r =a and r = 2r  or r = 1r  and r = 2r )  or it may begin at the 

three layers at the same time. According to Tresca’s criterion, the yield conditions for 

the internal pressure become  0111 σσσθ =− r  , 0222 σσσθ =− r , 0333 σσσθ =− r . The 

first equation is the criterion of yielding that starts at the inner surface (r = a) of the 

assembly, the second equation is the criterion of yielding that starts at the inner 

interface (r = 1r ) of the assembly, and the last equation is the criterion of yielding 

that starts at the outer interface (r = 2r ) of the assembly. Inserting the stress 

expressions, the first condition becomes 
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Similarly, the second and third conditions become 
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The elastic limit internal pressure causing the yielding at the inner surface (r = a) is 

obtained by using Eq. (128) as 
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Similarly, the elastic limit internal pressure that starts yielding at the inner interface 

(r = )1r is obtained by using Eq. (129) as  
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Finally, the elastic limit internal pressure that causes yielding at the outer interface (r 

= 2r ) is obtained by using Eq. (130) as 
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As mentioned above, for the three layer tubes under internal or external pressure, 

yielding may begin simultaneously at more than one location. The elastic limit 

pressure and the corresponding interface coordinates at which the yielding begins 

simultaneously at the three locations can be found by solving Eqs. (128), (129), and 

(130) together. Investigations have revealed that simultaneous yielding only occurs 

under the restrictions of the properties of the materials. For the simultaneous yielding 

at the three locations mentioned above, the first layer’s yield limit should be the 

highest, and the outer layer’s yield limit should be the lowest.  

 

Different from the case presented above, it is also possible that yielding may begin 

simultaneously at two different layers of the assembly. In order to find the elastic 
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limit pressure and the corresponding interface radius of the assembly, the 

corresponding two equations belonging to the yielding locations should be solved 

together. In addition, while solving the elastic limit pressure and critical interface 

radius, one of the interface radii at which the yielding has not yet begun and the inner 

surface radius a should be given. The given interface radius should be higher than the 

critical interface radius of the assembly for both internal and external pressure cases. 

All these cases will be clarified in the next chapter. 

 

According to von Mises criterion, the yielding begins when 1=φ  for each layer. 

Using this condition, the yielding equations at the inner surface (r = a), at the inner 

interface (r = )1r , and at the outer interface (r = 2r ) are obtained as  
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where 
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Using Eq. (134), the elastic limit internal pressure causing the yielding start from r = 

a  is obtained as 
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For the yielding that starts at the inner interface (r = )1r , using Eq. (135), the 

corresponding elastic limit internal pressure is found as  
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Finally, using Eq. (136), the elastic limit internal pressure causing the yielding at the 

outer interface (r = 2r ) is found as 
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3.9 Yielding of Three-Layer Tubes Under External Pressure 

 

Studies show that the yielding behaviour of the three-layer tubes under external 

pressure is similar to the case of internally pressurized three-layer tubes. The only 

difference is the yield condition. According to Tresca’s criterion, the yield conditions 

for the three layers are: 0111 σσσ θ =−r , 0222 σσσ θ =−r  and  0333 σσσ θ =−r . The 

first equation is the criterion of yielding that starts at the inner surface (r = a) of the 

assembly, the second equation is the criterion of yielding that starts at the inner 

interface (r = 1r ) of the assembly, and the last equation is the criterion of yielding 

that starts at the outer interface (r = 2r ) of the assembly. 

 

Using these expressions, the following yielding equations can be obtained:   
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The elastic limit external pressure that causes yielding at the inner surface (r = a) is 

obtained by using Eq. (142) as 
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Similarly, the elastic limit external pressure causing the yielding start at the inner 

interface (r = )1r  is obtained by using Eq. (143) as   
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Finally, the elastic limit external pressure that causes yielding at the outer interface (r 

= 2r ) is obtained by using Eq. (144) as 
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Similar to the internal pressure case, for the three-layer tubes under external pressure,  

according to von Mises criterion, yielding begins as soon as 1=φ . Using Eq. (106), 

the relations for the yielding that starts at the inner surface (r=a), at the inner 

interface (r = )1r , and at the outer interface (r = 2r ) can be obtained as  
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where 
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Using Eq. (148), the elastic limit external pressure causing the yielding start from (r 

= a) is obtained as  
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The elastic limit external pressure that causes yielding at the inner interface (r = )1r , 

is found by using Eq. (149) as   
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Finally, using Eq. (150), the elastic limit external pressure causing the yielding at the 

outer interface (r = 2r ) is found as  
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where 
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Similar to the two-layer tubes, the critical radii that are obtained for the three-layer 

tubes are quite important in the determination of the yielding behaviour. If the 

yielding of only one layer is desired, there are some restrictions related to the critical 

interface radii of the considered three-layer tube. For instance, if we want the tube 

yield from the inner surface (r = a) first, then the corresponding interface radii 

should be chosen as follows:   1r  > crr1  and  2r  > crr2 . Secondly, for the yielding that 

starts at the inner interface (r = 1r  ) first, the conditions should be  1r  < crr1  and 2r  

= crr2 . Thirdly, when 1r  = crr1  and 2r  < crr2 , the yielding starts at the outer interface (r 

= 2r ) first. In the next part, some numerical examples are handled to clarify the 

yielding behavior of the multi-layer tubes under pressure. 
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CHAPTER 4 

NUMERICAL RESULTS 

 

4.1 General 

 

In Chapter Two, the derivations of the basic expressions of the composite tubes 

under internal and external pressure were presented. The stresses, displacements and 

integration constants for single, two and three-layer tubes were given in that chapter. 

In Chapter Three, the two yielding criteria, Tresca’s yield criterion and von Mises 

yield criterion, were presented first. Then, the yielding behavior of one, two and 

three-layer composite tubes under internal and external pressure were analyzed 

according to the above mentioned yield criteria. The equations of the elastic limit 

pressures were also given in that chapter. In this chapter, some numerical results of 

the pressurized multi-layer tubes will be given. The yielding behavior of one layer 

tubes under pressure will be presented first; afterwards the behaviour of the two and 

three-layer composite tubes will be given. In addition, the results obtained by 

Tresca’s criterion and von Mises criterion will be compared for the cases that are 

considered. Finally, an example problem given in the study of Hongjun et al. [17] 

will be handled.  

In Table 4.1, the material properties that are used in this study are given. In the 

presentation of the numerical results the following dimensionless variables are used:  

b
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b
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i = .                                                                             (159) 
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Table 4.1. Mechanical properties of the materials used in the numerical analyses 

 

       E  (GPa) ν σo  (MPa) 

Aluminum 70 0.35 100 

Brass 105 0.35 410 

Copper 120 0.365 265 

Steel 200 0.30 430 

 

 

4.2 Single Layer Tube Results 

For a single layer tube, as it was mentioned in the previous chapter, yielding begins 

at the inner surface. According to Tresca’s yield criterion, the stress and 

displacement distributions in a single layer steel tube under internal pressure are 

given in Fig 4.1. Here, the inner radius a = ba =0.7 and the elastic limit internal 

pressure is obtained as  255.0=eP  using Eq. (107). By using Eqs. (13) and (14), the 

dimensionless integration constants are found as =1C 2
1 / bC =6.52925× 410− and 

=2C 2C = 2.61170× 410− . The stress variable according to Tresca’s yielding criterion 

is given by φ = θσ - rσ . It can be observed from the figure that φ =1 at r = a  which 

shows the commencement of the yielding. 

 

In Fig. 4.2, the distributions of stresses and displacement of an internally pressurized 

tube having the same dimensions is shown. The only difference from the previous 

graph is the consideration of von Mises criterion to monitor the yielding. The elastic 

limit internal pressure is found as =eP 0.292581 by using Eq. (108). The 

corresponding integration constants are found as =1C 7.49150× 410−  and 

=2C 2.99660× 410−  by the help of Eqs. (13) and (14). 

 

Coming to the external pressure case, it is known that yielding begins at the inner 

surface of the tube as well. In Fig. 4.3, the stresses and displacement of a single layer 

steel tube with a =0.7 under external pressure is given for which the yielding begins 
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at =eP 0.255 according to Tresca’s yield criterion. The elastic limit external pressure 

eP  is obtained by using Eq. (109). Using Eqs. (15) and (16), the integration constants 

are evaluated as =1C -6.52925× 410−  and =2C -5.33000× 410−  .  

 

The behaviour of a single layer steel tube ( a =0.7 under the elastic limit external 

pressure considering the von Mises criterion is shown in Fig.4.4. Using Eq. (114), 

the elastic limit external pressure is calculated as =eP 0.286897. The corresponding 

integration constants are =1C -7.34597× 410−  and =2C -5.99670× 410− . It should be 

noted that φ =1 at the inner surface of the tube.  
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Figure 4.1 The distributions of stresses and displacement in a single layer steel tube 

( a =0.7) under elastic limit internal pressure eP =0.255 
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Figure 4.2 The distributions of stresses and displacement in a single layer steel tube 

( a =0.7) under elastic limit internal pressure eP =0.292581 
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Figure 4.3 The distributions of stresses and displacement in a single layer steel tube 

( a =0.7) under elastic limit external pressure eP =0.255 
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Figure 4.4 The distributions of stresses and displacement in a single layer steel tube 

( a =0.7) under elastic limit external pressure eP =0.286897 

 

 



 42

4.3 Two-Layer Tube Results 

 

Before considering different material combinations, the verification of the 

expressions derived in the previous chapters is needed. For this purpose, a 

comparison between single layer tubes and two-layer tubes is made. A number of 

single layer tubes with different material properties are considered first. Using the 

expressions derived, the integration constants and elastic limit pressures are 

calculated for both internal and external pressure cases. On the other hand, these 

tubes are also modeled using two layer tubes (first tube: a  to  1r  , second tube:  1r  to 

b  ). These two tubes are assumed to have the same material properties. The results 

show that for both pressure cases, the elastic limit pressures and the integration 

constants are identical for single and two-layer tubes. It can be concluded that the 

expressions derived for the two-layer tubes are correct.  

 

Fig. 4.5 shows the simultaneous yielding of a two layer tube under internal pressure. 

The yielding criterion that is used is the Tresca’s yield criterion and the inner layer of 

the tube is made of brass and the outer layer is made of copper. Here, a =0.6, elastic 

limit internal pressure and the corresponding critical interface radius is found as 

eP =0.334061 and crr1 =0.794711 by solving Eq. (111) and Eq. (112) together. Using 

Eqs. (31), (32), (33) and (34) the integration constants are obtained as 

=1C 2
1 / bC =9.48856× 410− , =2C 2C = 2.62420× 410−  , =3C 2

3 / bC =9.51190× 410−  

and =4C 4C =2.58723× 410− . For this graph, it is worth underlying that the stress 

variable φ =1 at r = a  and at r = 1r  which shows the simultaneous yielding. 

 

In order to present the yielding that starts at the inner surface ( r = a ), same two-layer 

tube assembly is considered. Taking a =0.6 and 1r =0.85, the elastic limit internal 

pressure is obtained as eP =0.329630 using Eq.(113). Tresca’s yield criterion is used 

to examine the behaviour. The corresponding integration constants are calculated as 

=1C 9.48857× 410− , =2C 2.69428× 410− , =3C 9.55704× 410−  and =4C  

2.59951× 410− . Fig. 4.6 shows the consequent stresses and deformation. It should be 

noted that since the radius of the first layer is selected to be higher than the value of 
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the critical interface radius causing simultaneous yielding ( 1r > crr1 ), yielding begins 

from the inner layer of the tube.  
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Figure 4.5 The distributions of stresses and displacement in a two layer brass-copper 

tube ( a =0.6, 1r = crr1 =0.794711) under elastic limit internal pressure eP =0.334061 



 44

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.6 0.7 0.8 0.9 1.0

radial coordinate

st
re

ss
es

 a
nd

 d
is

pl
ac

em
en

t

φ
φ

θσ
θσ

u
u

zσ

rσ

zσ

rσ

 
 

Figure 4.6 The distributions of stresses and displacement in a two layer brass-copper 

tube ( a =0.6, 1r =0.85) under elastic limit internal pressure eP =0.329630 
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Considering the same tube assembly, for 1r =0.65 the yielding begins at the outer 

tube of the assembly according to Tresca’s yield criterion as shown in Fig. 4.7. Here, 

the only difference from the previous case is the fact that the radius of the first layer 

is chosen to be smaller than the value of the critical interface radius ( 1r < crr1 ). The 

elastic limit internal pressure is computed as eP =0.236648 by using Eq. (114) and 

constants of integration are obtained as =1C 6.41648× 410− , =2C 1.60465× 410− , 

=3C 6.36319× 410−  and =4C 1.73078× 410− .  

 

For the two layer tubes under internal pressure, von Mises yield criterion is also 

considered to monitor the yielding. Similar yielding behaviour in the tube assembly 

is observed when von Mises criterion is used. In order to compare these two criteria, 

Table 4.2 is prepared. For the three cases of yielding, the elastic limit pressures and 

the interface radii are shown in this table.   

 

Table 4.2. Elastic limit pressures and interface radii for different yielding cases of 

the two-layer tubes under internal pressure ( a =0.6) 

 

Location(s) of yielding 

and yielding criterion 

Elastic limit internal 

pressure ( eP ) 
Interface radius ( 1r ) 

Simultaneous yielding at ar =  

and at 1rr =   (Tresca’s criterion) 
0.334061 0.794711 

Simultaneous yielding at ar =  

and at 1rr =   (von Mises criterion) 
0.384971 0.796058 

Yielding at the inner surface 

ar = (Tresca’s criterion) 
0.329630 0.85 

Yielding at the inner surface 

ar = (von Mises criterion) 
0.379963 0.85 

Yielding at the interface 1rr =  

(Tresca’s criterion) 
0.236648 0.65 

Yielding at the interface 1rr =  

(von Mises criterion) 
0.272659 0.65 
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Figure 4.7 The distributions of stresses and displacement in a two layer brass-copper 

tube ( a =0.6, 1r =0.65) under elastic limit internal pressure eP =0.236648 
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The yielding behaviour of a two-layer tube under external pressure is also 

investigated. In Fig. 4.8, the stresses and displacement graph of a two-layer brass-

copper tube under external pressure according to von Mises criterion is given. Here, 

a =0.5 and the elastic limit external pressure and the critical interface radius is found 

as eP =0.458597 and crr1 =0.6898 by solving the Eqs. (123) and (124) together. The 

corresponding integration constants are calculated as  =1C -7.49702× 410−  , =2C -

8.99643× 410−  , =3C -7.97900× 410− and =4C    -7.98351× 410−  using Eqs.(43), (44), 

(45) and  (46). As seen in this figure, yielding begins at r = a  and at r = crr1  

simultaneously, as 1=φ  at these locations. 

 

On the other hand, for the same tube assembly, taking 1r =0.85, the yielding begins at 

the inner surface ( r = a ). The corresponding elastic limit external pressure is found 

as eP =0.440648 by using Eq. (125).  The integration constants are obtained as =1C -

7.49702× 410−  , =2C -8.99642× 410−  , =3C -8.32520× 410−  and =4C -7.85015× 410− . 

The consequent stresses and deformation are given in Fig.4.9. 

 

Finally, by choosing a radius lower than the critical interface radius of the two-layer 

brass-copper tube under external pressure ( 1r  = 0.65 < crr1 ), the yielding begins at 

the interface (r = 1r ) as shown in Fig. 4.10. The elastic limit external pressure is 

obtained as eP =0.418738 by using Eq.(126). The corresponding integration constants 

are calculated as =1C 6.76437× 410− , =2C -8.11725× 410− , =3C -7.13172× 410−  and 

=4C -7.24779× 410− . 

 

For the two layer tubes under external pressure, when Tresca’s yield criterion is used, 

same yielding behavior but with different values of elastic limit pressures and critical 

interface radii is evaluated. In order to compare these two criteria, Table 4.3 is 

prepared. For the three cases of yielding, the elastic limit pressures and the interface 

radii are seen in this table. In the next part, the yielding of three layer-tubes under 

pressure will be presented.   
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Figure 4.8 The distributions of stresses and displacement in a two-layer brass-copper 

tube ( a =0.5, 1r = crr1 =0.6898) under elastic limit external pressure eP =0.458597 
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Figure 4.9 The distributions of stresses and displacement in a two-layer brass-copper 

tube ( a =0.5, 1r =0.85) under elastic limit external pressure eP =0.440648 
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Figure 4.10 The distributions of stresses and displacement in a tw- layer brass-

copper tube ( a =0.5, 1r =0.65) under elastic limit internal pressure eP =0.418738 
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Table 4.3 Elastic limit pressures and interface radii for different yielding cases of the 

two-layer tubes under external pressure ( a =0.5)  

 

Location(s) of yielding 

and yielding criterion 

Elastic limit external 

pressure ( eP ) 

Interface radius 

( 1r ) 

Simultaneous yielding at ar =  and 

at 1rr =   (Tresca’s criterion) 
0.40401 0.681711 

Simultaneous yielding at ar =  and 

at 1rr =   (von Mises criterion) 
0.458597 0.689800 

Yielding at the inner surface 

ar = (Tresca’s criterion) 
0.387295 0.85 

Yielding at the inner surface 

ar = (von Mises criterion) 
0.440648 0.85 

Yielding at the interface 1rr =  

(Tresca’s criterion) 
0.373615 0.65 

Yielding at the interface 1rr =  (von 

Mises criterion) 
0.418738 0.65 

 

4.4 Three-Layer Tube Results 

 

In order to check the derivations of the stress and displacement expressions of the 

three-layer tubes, a verification study is also performed as it was done for the two-

layer tubes. Firstly, a single layer tube is taken, subsequently a second tube which is 

made of the same material and having the same dimension is considered. What 

makes the second tube different is the fact that it is composed of three layers, which 

have the same material properties as the single tube. The results show that the two 

assemblies are identically the same for both pressure cases. 

 

In Fig. 4.11, the simultaneous yielding behavior of a three-layer tube under internal 

pressure according to the Tresca’s criterion is shown. The first layer of the tube is 

made of brass, second layer is copper and the outer layer is aluminum. Since there 

are three different layers in the tube, two different critical interface radii should be 
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considered. For a =0.3, the elastic limit internal pressure and corresponding interface 

radii are calculated as eP =0.429459, crr1 =0.394202 and crr2 =0.507988 by the 

numerical solution of Eqs. (128), (129) and (130) together. The corresponding 

integration constants are computed as =1C 2
1 /bC =2.37214× 410− , =2C 2C = 

1.11555× 410− , =3C 2
3 /bC =2.34038× 410− , =4C 4C =1.31993× 410− , =5C 2

5 /bC = 

2.48835× 410−  and   =6C 2
6 /bC =7.46506× 410−  by the help of Eqs. (68) to (73). It 

can be seen in this graph that  1=φ  at r = a , r = 1r  and r = 2r  which shows the 

simultaneous yielding. 

 

For the same material combination, the yielding begins at the inner surface (r = a) 

first when the interface radii are selected as 1r  > crr1  and  2r  > crr2 . For a =0.3, 

1r =0.45 and 2r =0.55, the elastic limit pressure is found as eP =0.432391 by using 

Esq. (131). The integration constants are calculated as =1C 2.37214× 410−   

=2C 1.06918× 410−  , =3C 2.34711× 410− , =4C 1.19277× 410− , =5C 2.48262× 410−  

and =6C  7.44788× 410− .  The consequent stresses and displacement are given in Fig. 

4.12. 
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Figure 4.11 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit internal pressure eP =0.429459    

( a =0.3, crr1 =0.394202, crr2 =0.507988) 
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Figure 4.12 The distributions of stresses and displacement in a three layer brass-

copper-aluminum tube under elastic limit internal pressure eP =0.432391                     

( a =0.3, 1r =0.45, 2r =0.55)   
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For a three-layer tube with the same material combination, yielding may begin at the 

inner interface ( r = 1r ) first. In order to have such yielding behaviour, the following 

criteria should be satisfied: 1r  < crr1  and 2r = crr2 . For a =0.3, 1r  = 0.35 and 2r  = 

crr2 =0.507988, the corresponding elastic limit internal pressure is obtained as eP = 

0.346022 by using Eq. (132). The integration constants are calculated as 

=1C 1.87650× 410−  , =2C 7.82928× 410− , =3C 1.84495× 410− , =4C 1.04051× 410− , 

=5C 1.96160× 410−  and =6C 5.88480× 410− . Fig. 4.13 shows the corresponding 

stresses and displacement.  

 

Similar to the case presented above, by changing the thickness of the layers, it is 

possible to have the yielding starting from the outer interface ( r = 2r ) first. For this 

purpose, 1r  = crr1  and 2r < crr2  are the two criteria to be considered. For a =0.3, 1r  = 

crr1 =0.394202 and 2r  = 0.45, the elastic limit pressure is obtained by using Eq. (133) 

as eP = 0.319417. The corresponding constants of integration are computed as 

follows: =1C 1.84381× 410− , =2C 1.09470× 410− , =3C 1.82464× 410− , =4C  1.21805 

× 410− , =5C 1.95267× 410−  and =6C 5.85803× 410− . The stresses and displacement 

for this case is given in Fig.4.14. 

 

Figure 4.15 is given in order to represent the behaviour of yielding at two different 

layers at the same time.  For the same material combination, the interface radius, at 

which the yielding has not been started yet, should be selected to be higher than the 

critical interface radius belonging to the three-layer-simultaneous-yielding case. In 

the figure, yielding begins at the inner surface ( r = a ) and at the inner interface 

( r = 1r ) at the same time. For the outer interface, the condition 2r > crr2  is valid and, it 

is selected as 2r =0.55. By solving Eqs. (128) and (129) together, the critical inner 

interface is calculated as crr1  = 0.393877 and the corresponding elastic limit internal 

pressure is computed as eP = 0.439437. The integration constants are calculated as 

=1C 2.37214× 410− , =2C 9.57768× 410−  , =3C 2.33652× 410− , =4C 1.18748× 410− , 

=5C 2.47142× 410− and   =6C 7.41427× 410− . 
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Figure 4.13 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube ( a =0.3, 1r =0.35, 2r = crr2 =0.507988) under elastic limit 

internal pressure eP =0.346022 
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Figure 4.14 The distributions of stresses and displacement in a three layer brass-

copper-aluminum tube ( a =0.3,  1r  = 0.394202, 2r  = 0.45) under elastic limit internal 

pressure at eP =0.319417 
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Figure 4.15 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit internal pressure eP =0.439437                

( a =0.3,  crr1  = 0.393877, 2r =0.55)   
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The case where the inner and the outer layers start yielding simultaneously according 

to Tresca’s yield criterion is shown in Fig. 4.16. For a =0.3 and  1r  = 0.45, the elastic 

limit internal pressure and the critical outer interface radius is obtained by solving 

Eqs. (128) and (130) together as eP =0.422694 and crr2 =0.509206. The 

corresponding integration constants are calculated as =1C 2.37214× 410− , =2C  

1.22254× 410− , =3C 2.35196× 410− , =4C 1.32220× 410− , =5C 2.50030× 410−  and   

=6C 7.50091× 410− . 

 

Finally, in Fig. 4.17, the case in which the middle and the outer layers starts yielding 

at the same time according to Tresca’s yield criterion is shown. For a =0.3 and 

assigning the elastic limit internal pressure eP = 0.3, the critical inner and the outer 

interface radii are obtained by solving Eqs. (129) and (130) together as crr1 = 

0.334590 and crr2 =0.432958, respectively. The corresponding integration constants 

are calculated as =1C 1.71171× 410− , =2C 9.61421× 410− , =3C 1.68607× 410− , =4C  

1.19045× 410− , =5C 1.80757× 410−  and   =6C 5.42272× 410− . 

 

In order to make a comparison between Tresca’s and von Mises yield criterion for 

the considered assemblies, Table 4.4 is prepared.  
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Figure 4.16 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit internal pressure eP =0.422694                

( a =0.3,  1r  = 0.45, 2r = crr2 =0.509206)   
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Figure 4.17 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit internal pressure eP =0.3 

( a =0.3,  1r = crr1  = 0.334590, 2r = crr2 =0.432958)   
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Table 4.4 Elastic limit pressures and interface radii for different yielding cases of the 

three-layer tubes under internal pressure ( a =0.3)  

 

Location(s) of yielding 

and yielding criterion 

Elastic limit external 

pressure ( eP ) 

Interface radii 

( 1r and 2r ) 

Simultaneous yielding at ar = , 1rr =  
and 2rr =   (Tresca’s criterion) 

0.429459 0.394202, 0.507988 

Simultaneous yielding at ar = , 1rr =  
and 2rr =   (von Mises criterion) 

0.495768 0.394397, 0.508163 

Yielding at the inner surface 
ar = (Tresca’s criterion) 

0.432391 0.45 , 0.55 

Yielding at the inner surface ar =  
(von Mises criterion) 

0.499146 0.45,  0.55 

Yielding at the inner interface 1rr =  
(Tresca’s criterion) 

0.346022 0.35, 0.507988 

Yielding at the inner interface 1rr =  
(von Mises criterion) 

0.399279 0.35, 0.508163 

Yielding at the outer interface 2rr =  
(Tresca’s criterion) 

0.319417 0.394202, 0.45 

Yielding at the outer interface 2rr =  
(Tresca’s criterion) 

0.368570 0.394397, 0.45 

Simultaneous yielding at ar = and 
1rr =   (Tresca’s criterion) 

0.439437 0.393877, 0.55 

Simultaneous yielding at ar = and 
1rr =   (von Mises criterion) 

0.507278 0.394040, 0.55 

Simultaneous yielding at ar =  and 
2rr =   (Tresca’s criterion) 

0.422694 0.45, 0.509206 

Simultaneous yielding at ar =  and 
2rr =   (von Mises criterion) 

0.487959 0.45, 0.509365 

Simultaneous yielding at 1rr =  and 

2rr =   (Tresca’s criterion) 
0.3 0.334590, 0.432958 

Simultaneous yielding at 1rr =  and 

2rr =   (von Mises criterion) 
0.3 0.357289, 0.461533 

 

Coming to the external pressure case, using the same material combination (the inner 

layer is brass, the middle layer is copper and the outer layer is aluminum), a 

simultaneous yielding behaviour (at the three locations at the same time) is observed 

according to von Mises yield criterion. As shown in Fig. 4.18, the assembly may 
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yield at the three locations simultaneously when a =0.3, crr1 =0.413880, 

crr2 =0.481949 at the elastic limit external pressure eP =0.451869. These values are 

calculated using Eqs. (148), (149) and (150). The corresponding integration constants 

are obtained as =1C -2.69892× 410− , =2C -8.99642× 410− , =3C -2.87243× 410− , =4C  

-7.98350× 410− , =5C -2.09132× 410−  and =6C -1.13463× 410− . using Eqs. (95) to 

(100). 

Similar to the internal pressure case, the assembly may also yield at the inner layer 

( r = a ) first. This kind of behaviour is shown in Fig. 4.19. For a =0.3, 1r =0.45 and  

2r =0.55, by using Eq. (154), the elastic limit external pressure is found as 

eP =0.470063 and the corresponding  integration constants are calculated as  =1C -

2.69892× 410− , =2C -8.99642× 410− , =3C -2.91623× 410− , =4C -7.92332× 410− , 

=5C -1.77858× 410−  and =6C -1.16841× 410− . It should be noted that 1r = 0.45> crr1  

and 2r =0.55 > crr2 . 

The yielding may also begin at the inner interface ( r  =  1r ) first and this situation is 

shown in Fig. 4.20. For a =0.3, 1r =0.35 and 2r = crr2 =0.481949, the elastic limit 

external pressure is obtained by the help of  Eq. (155) is eP =0.346921, and the 

integration constants are calculated as =1C -2.0086× 410− , =2C -6.6956× 410− , =3C -

2.0868× 410− , =4C -6.0575× 410− , =5C -1.4792× 410−  and =6C -8.6732× 410− . It 

should be noted that 1r =0.35 < crr1 . 

 

By changing the thickness of the layers, it is possible to have the yielding beginning 

from the outer interface ( r = 2r ) first. For this purpose, 1r  = crr1   and 2r < crr2  are the 

two criteria to be considered. For a =0.3, 1r  = crr1 = 0.413880 and 2r  = 0.44, the 

elastic limit external pressure is obtained by using Eq. (157) as eP = 0.358066 

considering von Mises yield criterion. The constants of integration are computed as 

follows: =1C -2.23439× 410− , =2C -7.44798× 410− , =3C -2.37804× 410− , =4C            



 64

-6.60940× 410− , =5C -1.90270× 410−  and =6C -9.06465× 410− . The stresses and 

displacement for this case is given in Fig. 4.21. 
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Figure 4.18 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit external pressure eP =0.451869               

( a =0.3, crr1 =0.413880, crr2 =0.481949)   
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Figure 4.19 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit external pressure eP =0.470063               

( a =0.3, 1r =0.45, 2r =0.55)   
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Figure 4.20 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit external pressure eP =0.346921               

( a =0.3, 1r =0.35, 2r = crr2 =0.481949)   
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Figure 4.21 The distributions of stresses and displacement in a three layer brass-

copper-aluminum tube under elastic limit external pressure eP =0.358066               

( a =0.3, 1r = crr1 =0.413880, 2r =0.44)   
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Having seen the situation where yielding under external pressure begins at a single 

layer first, different from the situations presented above, the yielding may start at two 

different layers at the same time according to von Mises yield criterion. In Fig. 4.22, 

the yielding begins at the inner surface ( r = a ) and at the inner interface ( r = 1r ) of 

the assembly for the same material combination. For a =0.3 and 2r =0.5, the elastic 

limit external pressure and the critical inner interface radius is calculated as 

eP =0.459011 and crr1 =0.413880 by solving Eqs. (148) and (149) together. The 

corresponding integration constants are obtained as =1C -2.69892× 410− , =2C -

8.99642× 410− , =3C -2.87243× 410− , =4C -7.98350× 410− , =5C -1.99657× 410−  and 

=6C -1.14873× 410− .  

 

In Fig 4.23 yielding starts at the inner layer ( r = a ) and the outer interface ( r = 2r ) of 

the composite tube at the same time.  For a =0.3, 1r =0.45, the elastic limit external 

pressure and the critical outer interface are found as eP  =0.447096, and 

crr2 =0.485581 which is obtained by solving Eqs. (148) and (150) together. The 

integration constants are calculated as =1C -2.69892× 410− , =2C -8.99642× 410− , 

=3C -2.91623× 410− , =4C -7.92331× 410− , =5C -2.13296× 410−  and =6C -

1.12466× 410− . 

 

Finally, in Fig. 4.24, the case in which the middle and the outer layers starts yielding 

simultaneously according to von Mises’s yield criterion is shown. For a =0.3 and 

assigning the elastic limit external pressure eP = 0.3, the inner and the outer interface 

radii are obtained by solving Eqs. (149), (150) together as crr1 =0.338355, 

crr2 =0.401616, respectively. The corresponding integration constants are calculated 

as =1C -1.88905× 410− , =2C -6.29685× 410− , =3C -1.95469× 410− , =4C -

5.72354× 410− , =5C -1.65017× 410−  and =6C -7.61148× 410− . 

 

In order to make a comparison between Tresca’s and the von Mises yield criteria for 

the considered assemblies, Table 4.5 is prepared.  
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Figure 4.22 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit external pressure eP =0.459011               

( a =0.3, 1r = crr1 =0.413880, 2r =0.5)   
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Figure 4.23 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit external pressure eP =0.447096               

( a =0.3, 1r =0.45, crr2 =0.485581)   
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Figure 4.24 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit external pressure at eP =0.3               

( a =0.3, 1r = crr1 =0.338355, 2r = crr2 =0.401616)   
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Table 4.5 Elastic limit pressures and interface radii for different yielding cases of the 

three-layer tubes under external pressure ( a =0.3)  

 

Location(s) of yielding 

and yielding criterion 

Elastic limit external 

pressure ( eP ) 

Interface radii 

( 1r and 2r ) 

Simultaneous yielding at ar = , 1rr =  
and 2rr =  (Tresca’s criterion) 

0.385997 0.409026, 0.451441 

Simultaneous yielding at ar = , 1rr =  
and 2rr =  (von Mises criterion) 

0.451869 0.413880, 0.481949 

Yielding at the inner surface 
ar = (Tresca’s criterion) 

0.413148 0.45, 0.55 

Yielding at the inner surface ar =  
(von Mises criterion) 

0.470063 0.45, 0.55 

Yielding at the inner interface 1rr =  
(Tresca’s criterion) 

0.297893 0.35, 0.451441 

Yielding at the inner interface 1rr =  
(von Mises criterion) 

0.346921 0.35, 0.481949 

Yielding at the outer interface 2rr =  
(Tresca’s criterion) 

0.353278 0.409026, 0.44 

Yielding at the outer interface 2rr =  
(Tresca’s criterion) 

0.358066 0.413880, 0.44 

Simultaneous yielding at ar = and 
1rr =   (Tresca’s criterion) 

0.404234 0.409026, 0.50 

Simultaneous yielding at ar = and 
1rr =   (von Mises criterion) 

0.459011 0.413880, 0.50 

Simultaneous yielding at ar =  and 
2rr =   (Tresca’s criterion) 

0.385875 0.45, 0.455964 

Simultaneous yielding at ar =  and 
2rr =   (von Mises criterion) 

0.447096 0.45, 0.485581 

Simultaneous yielding at 1rr =  and 

2rr =   (Tresca’s criterion) 
0.3 0.361651, 0.412416 

Simultaneous yielding at 1rr =  and 

2rr =   (von Mises criterion) 
0.3 0.338355, 0.401616 
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4.5 An Example Problem 

 

In order to check the validity of the derivations, an example problem, which was 

given by Hongjun et al. [17], is considered. According to their example problem, a 

three-layer hollow cylinder made of steel and concrete is taken into consideration 

and the inner and the outer layers of the tube assembly are made of steel and the 

middle layer is made of concrete. The radius of the inner and outer surfaces of the 

tubes is taken as 0.5 m. and 1.0 m, respectively. The thickness of the inner layer is 

0.05 m and the thickness of the outer layer is 0.02 m. The middle layer is filled with 

concrete with 0.43 meters thickness. The modulus of elasticity for the steel layers is 

taken as 210 GPa and for the concrete layer it is taken as 23 GPa. The Poisson’s ratio 

for the steel layers is taken as 0.28 and for the concrete layer it is taken as 0.18.  

 

According to the study, the considered composite tube is faced with uniform pressure 

acting at the inner surface, which is 2/100 mkNq = (0.1 MPa). The distributions of 

the stress components rσ  and θσ  and the radial displacement u are given in that 

study and as it was expected, a large difference between the tangential stresses θσ  is 

observed. The paper only considers the distribution of the stresses in the composite 

tube, where the dimensional variables are used.  

 

As it was mentioned previously, the aim for examining this example problem is to 

validate the derivations of our study. For this purpose, the composite tube with the 

same uniform pressure, same dimensions and material properties are considered in 

our solution and the distributions of stresses rσ  and θσ  and the displacement u are 

obtained. As seen in Figs. 4.23 to 4.25, same distributions of stresses and 

displacement are obtained which shows the correctness of our study. In these figures, 

the lines represent our results, while the thick dot points are the results of the study 

performed by Hongjun et al. [17]. 
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Figure 4.25 The distribution of the tangential stress ( θσ ) in a three-layer steel-

concrete-steel tube under internal pressure (r=0.5, q=100kN/m² (0.1 MPa)) 
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Figure 4.26 The distributions of the radial stress ( rσ ) in a three-layer steel-concrete-

steel tube under internal pressure (r=0.5, q=100kN/m² (0.1 MPa)) 
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Figure 4.27 The distributions of the displacement in a three-layer steel-concrete-steel 

tube under internal pressure (r=0.5, q=100kN/m² (0.1 MPa))
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CHAPTER 5 

SUMMARY AND CONCLUSION 

 

In this study, the deformation behavior of the single, two and three-layer tubes under 

internal and external pressure is presented. Firstly, the expressions of the stresses and 

displacement for the single layer tubes are derived considering the plane strain 

assumption. Afterwards, studies are carried on with finding the expressions of the 

stresses and displacements of two and three-layer tubes under pressure loading. By 

using the stress expressions, the yielding behaviour of the tubes is studied in details. 

For a set of combination of materials, Tresca’s and von Mises yield criteria are used 

to monitor the commencement of the plastic flow at the tubes. Finally, the elastic 

limit pressures and critical interface radii that are obtained by these two criteria are 

compared. It should be noted that the material properties of the tube layers are quite 

important in determining the yielding behavior of the assemblies. 

 

It is found in the studies that, for a single layer tube, the yielding begins at the inner 

surface of the assembly (r = a) under both internal and external pressure case. On the 

other hand, for the two-layer tubes under external or internal pressure, yielding may 

start; 

1. At the inner surface (r = a) first, 

2. At the interface of the two-layer tubes (r = 1r ) first. 

3. Simultaneously at the inner layer (r = a) and at the interface (r = 1r ) of the 

assembly. 

 

For the three-layer tubes, monitoring the yielding behaviour is more difficult. Studies 

show that for both internal and external pressure cases, the plastic flow may start; 
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1. At the inner surface of the assembly (r = a) first. 

2. At the inner interface (r = 1r ) first. 

3. At the outer interface (r = 2r ) first. 

4. Simultaneously at the inner surface (r = a) and at the inner interface           

(r = 1r ) first. 

5. Simultaneously at the inner surface (r = a) and at the outer interface          

(r = 2r ) first. 

6. Simultaneously at the inner interface (r = 1r ) and at the outer interface       

(r = 2r ) first. 

7. Simultaneously at the inner surface (r = a), at the inner interface (r = 1r ), 

and at the outer interface (r = 2r ) of the assembly. 

 

For single layer tubes, the yielding starts at the inner layer r = a, however, different 

case of plastic flow can be observed for two and three-layer tubes as listed above. 

Moreover, for these tubes, yielding does not only begin at only one location, it is also 

possible that it may start at several locations at the same time. Apart from the 

simultaneous yielding of all layers for two and three-layer tube assemblies, it is 

beneficial to refresh the conditions for different yielding cases: 

 

1. For the two-layer tubes, yielding may begin from the inner surface or at the 

interface first under internal or external pressure. It is found that if the 

thickness of the inner tube material is selected to be higher than the critical 

radius ( 1r > crr1 ), yielding begins at the inner surface (r = a) first. On the other 

hand, if the thickness of the inner tube is smaller than the critical radius 

( 1r < crr1 ), yielding starts at the interface (r = 1r ), which is the surface of the 

outer layer.  

 

2. For the three-layer tubes, comparing to single and two-layer tubes, the 

yielding behaviour is quite different. After using a number of material 

combinations, the simultaneous yielding case at the three locations (r = a, r = 

1r  and r = 2r  ) can be observed. It is found that, the yield limit ( 0σ ) of the 
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materials affect the condition of the yielding significantly. If the yield limit of 

the material of the inner tube is higher than the yield limit of the middle tube, 

and the yield limit of the material of the middle tube is higher than the yield 

limit of the outer tube ( 01σ > 02σ > 03σ ), the assembly may yield 

simultaneously at the three locations stated above. Similar to the two-layer 

tubes, if the inner interface 1r  is selected to be higher than the critical inner 

radius crr1  and the outer interface 2r  is selected to be higher than the outer 

critical radius crr2 , the yielding begins at the inner surface of the tube (r = a) 

first.  For yielding that starts at the inner interface 1r , the outer interface 

radius should be equal to crr2  and the thickness of the inner tube should be 

smaller than the critical inner radius crr1  . For the yielding which starts from 

the outer interface 2r , 1r  should be equal to crr1 , and  2r  < crr2 . 

 

3. Coming to the simultaneous yielding at the two locations of the assembly, 

it is known that by solving two of the three equations together, it is possible 

to find the elastic limit pressure and the corresponding critical interface 

radius; however, the value of the other interface radius should be in some 

limits. For the yielding from the inner surface a and from the inner interface 

1r  , the value of the outer interface 2r  should be higher than the critical outer 

interface radius crr2 , which is obtained by the numerical solution of the three 

equations given in the previous chapter. The assembly may also yield from 

the inner and the outer interfaces ( 1r  and 2r ) simultaneously. For this purpose, 

the inner radius, 1r , should be higher than the critical inner radius crr1 , which 

is obtained by the numerical solution of the corresponding equations. 

 

Another aim of this study was to compare Tresca’s yield criterion with von Mises 

yield criterion. According to the results obtained after the analyses, the following 

findings can be listed: 

 

1. For the single layer tubes under internal or external pressure, the elastic 

limit pressure according to von Mises criterion is higher than the one which is 
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found by Tresca’s criterion. This means that Tresca’s criterion is safer than 

von Mises criterion. It should be noted that von Mises criterion makes more 

sense since the stress component in ‘’z’’ direction (axial stress) is also 

considered while calculating the elastic limit pressures. 

 

2. For the simultaneous yielding of the two-layer tubes under internal 

pressure, similar to single layer tubes, the elastic limit pressure calculated by 

using von Mises criterion is approximately 15 percent higher than the one 

which is found by Tresca’s criterion. On the other hand, the corresponding 

critical interface radii are nearly the same for both criteria. Coming to the 

external pressure case, similar to the internal pressure case, the elastic limit 

pressure according to von Mises criterion is approximately 13 percent higher 

than the one which is found by Tresca’s criterion. Same as the internal 

pressure case, the critical interface radii calculated by the two criteria are 

nearly the same. 

 

3. Focusing on the simultaneous yielding behaviour of the three-layer tubes 

under internal pressure,  it is seen that there is a small difference between the 

critical interface radii, whereas the elastic limit pressures calculated using von 

Mises criterion is approximately 15 percent higher than the one obtained by 

Tresca’s criterion. These results show that Tresca’s criterion is safer than von 

Mises’s criterion, but von Mises’s outcomes are closer to the reality because 

of the fact that was mentioned above.  For the external pressure case, the 

elastic limit pressures according to von Mises criterion are approximately 17 

percent higher than the ones obtained by Tresca’s criterion.  

 

4. For the yielding cases of the three-layer tubes, in which the yielding starts 

from two different locations at the same time, it is observed that the 

differences between the pressure values obtained by using Tresca’s and von 

Mises criteria are not significant. For internal pressure case, it can be stated 

that Tresca’s criterion is safer, whereas it is far away from the findings 

calculated by the values calculated by von Mises’s criterion. On the other 

hand, it is difficult to make a comment on the external pressure case since the 



 81

elastic limit pressures calculated by using von Mises criterion is higher than 

that is obtained by using Tresca’s criterion whereas in some cases the 

thickness of the corresponding tube layers obtained by using von Mises 

criterion is higher than that are obtained by Tresca’s criterion. 

 

In general, for the internal pressure cases of the single, two and three-layer tubes, if 

the assembly is to be designed by using Tresca’s criterion, it would be safer since 

lower elastic limit pressures can be obtained while compared with von Mises 

criterion. For the external pressure case, a result like internal pressure case can not be 

stated as the yielding behaviour of the multi-layer tubes under external pressure is 

quite complex. 

 

For the future studies, this study may be a step to develop analytical solutions for the 

pressurized tubes under different loading and boundary conditions. Moreover, 

experimental studies based on multi-layer pressurized tubes can be performed. 

Lastly, the elastic-plastic analysis of multi-layer tubes can be studied in the future. 

 

 

 

 

 



 82

 
REFERENCES 

 

[1] Akış T., Eraslan A.N., Deformation analysis of elastic-plastic two-layer tubes 

subject to pressure: an analytical approach, Turkish J. Eng. Env. Sci.  28 

(2004) , 261- 268. 

[2] Akis T., Eraslan A.N., Yielding of two-layer shrink-fitted composite tubes 

subject to radial pressure, Forschung Ingenieurwes 69, (2005): 187–196. 

[3] You L.H., Zhang J.J., You X.Y., Elastic analysis of internally pressurized 

thick-walled spherical pressure vessels of functionally graded materials, 

International Journal of Pressure Vessels and Piping, 82 (2005) 347–354. 

[4] Liew K.M., Kitipornchai S., Zhang X.Z., Lim C.W., Analysis of the thermal 

stress behaviour of functionally graded hollow circular cylinders,  

International Journal of Solids and Structures, 40 (2003) 2355–2380.  

[5] Shao Z.S., Mechanical and thermal stresses of a functionally graded circular 

hollow cylinder with finite length,  International Journal of Pressure Vessels 

and Piping, 82 (2005) 155–163. 

[6] Tarn J.Q., Exact solutions for functionally graded anisotropic cylinders 

subjected to thermal and mechanical loads, International Journal of Solids and 

Structures, 38 (2001) 8189-8206. 

[7] Eslami M.R., Babaei M.H., Poultangari R., Thermal and mechanical stresses 

in a functionally graded thick sphere, International Journal of Pressure 

Vessels and Piping, 82 (2005) 522–527. 



 83

[8] Eraslan A.N., Apatay T., Analytical solution of nonlinear strain hardening                             

preheated pressure tube, Turkish J. Eng. Env. Sci., 32 (2008), 41-50. 

 

[9] Dai H.L., Fu Y.M., Dong Z.M., Exact solutions for functionally graded    

pressure vessels in a uniform magnetic field, International Journal of Solids 

and Structures, 43 (2006) 5570–5580. 

 

[10] Zhifei S., Taotao Z., Hongjun X., Exact solutions of heterogeneous elastic 

hollow cylinders, Composite Structures, 79 (2007) 140–147. 

[11] Timoshenko, S.P., Goodier J.N., Theory of elasticity. 3rd ed. New York: 

McGraw-Hill Book Company; 1970.  

[12] Akis T., Elastoplastic analysis of functionally graded spherical pressure 

vessels, Computational Materials Science, 46 (2009) 545–554. 

[13]   Akis T., Eraslan A.N., Plane strain analytical solutions for a functionally 

graded elastic–plastic pressurized tube, International Journal of Pressure 

Vessels and Piping, 83 (2006) 635–644. 

[14] Güven U., Baykara C., On stress distributions in functionally graded isotropic 

spheres subjected to internal pressure, Mechanics Research Communications, 

28 (2001), 277-281. 

[15] Tutuncu N., Ozturk M., Exact solutions for stresses in functionally graded 

pressure vessels, Composites Part B 32 (2001), 683-686. 

[16] Boresi A.P., Schmidt, R.J., Sidebottom, O.M., Advanced Mechanics of 

Materials. 5th ed., John Wiley and Sons, 1993.  

[17] Hongjun X., Zhifei S., Taotao Z., Elastic analyses of heterogeneous hollow  

cylinders, Mechanics Research Communications 33(2006), 681-691.            


