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ABSTRACT

ANALYTICAL INVESTIGATION OF MULTI-LAYER COMPOSITE
TUBES SUBJECT TO PRESSURE

Atli, Ahmet
M.S., Civil Engineering Department
Supervisor: Asst. Prof. Dr. Tolga Akis

January 2010, 98 pages

The aim of this study is to present an analytical approach for the stress analysis of multi-layer
composite tubes under internal and external pressure. The expressions of stresses and
displacements for single, two and three-layer tubes are obtained and the critical cases of
yielding are examined using Tresca’s and von Mises yield criterion. The analytical solutions
are checked numerically for different material sets and the stress and displacement
distributions are obtained. It is found that yielding begins at the inner surface of the single
layer tubes under internal or external pressure. For the two-layer tubes, yielding may begin at
the inner surface of the inner or outer tubes or simultaneously at both locations. For the three-
layer tubes different cases of yielding may occur depending on the material properties. In the

study, the conditions for these various yielding cases are thoroughly examined.

Key words: Stress analysis; Composite tubes; Tresca’s criterion; von Mises criterion
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BASINC ALTINDAKI COK KATMANLI KOMPOZIT TUPLERIN
ANALITIK OLARAK INCELENMESI

Atli, Ahmet
Yiiksek Lisans, insaat Miithendisligi Boliimii
Tez Danigsmani: Yrd. Dog. Dr. Tolga Akis

Ocak 2010, 98 sayfa

Bu caligmanin amaci i¢ ve dis basing altindaki ¢ok katmanli kompozit tiiplerin gerilme analizi
icin analitik bir yaklasim sunmaktir. Tek, iki ve ti¢c katmanli tiipler i¢in gerilme ve yer
degistirme ifadeleri elde edilmis ve kritik akma kosullar1 von Mises ve Tresca akma kriterleri
kullanilarak incelenmistir. Bulunan analitik ¢oziimler ¢esitli malzeme setleri i¢in uygulanmis,
gerilme ve yer degistirme dagilimlar1 bulunmustur. i¢ veya dis basing altindaki tek katmanli
tiiplerde akmanin i¢ yiizeyden basladig1 bulunmustur. iki katmanl tiiplerde akma i¢ veya dis
tiiplerin i¢ yiizeyinden veya aym anda bu iki yerden baslayabilir. U¢ katmanl tiiplerde ise
malzeme Ozelliklerine gore farkli akma durumlar1 olusabilir. Calismada bu farkli akma

durumlarini olusturan kosullar etraflica incelenmistir.

Anahtar Kelimeler: Gerilme analizi; Kompozit tiipler; Tresca kriteri; von Mises kriteri
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CHAPTER 1

INTRODUCTION

The analysis of cylindrical structural members (shafts, pipes, tubes, etc.) is quite
important especially in engineering design. These members are widely used in
different areas of engineering practice. Among them, the pressurized thick-walled
tube is a classical problem in mechanics. In this work, this problem is extended to the
yielding of multi-layer tubes (with two and three layers) under pressure. In the
literature, there are several studies investigating the stresses and deformations of
these assemblies under different loading and boundary conditions in elastic, plastic
or elastoplastic stress states. In this chapter, a summary about these studies is given

first, and then the aim of the study is presented.

Tightly-fitted two-layer concentric tubes with fixed ends subjected to internal or
external pressure are studied by Akis and Eraslan [1]. In that study, Tresca’s yield
criterion and associated flow rule are used to investigate the elastic-plastic stress
distribution in the assembly. Elastic and elastic-plastic solutions are obtained and
some numerical results are presented using brass and copper materials. A similar
study using von Mises yield criterion is made by the same authors [2] in elastic stress

state and the numerical results of a steel-aluminum tube is presented.

Three layer tubes under internal pressure are studied by You et al. [3]. The aim of
their study was to analyze a three layer system which consists of a functionally
graded layer in the middle of two homogeneous layers. According to the paper, the
tube with the combination of metal-functionally graded material-ceramic could be

used for withstanding the high temperatures. The paper also examines the thick-



walled spherical pressure vessels consisting of the functionally graded material only

and compares it to the assembly explained above.

The effect of temperature on the behaviour of the pressure tubes are also an
interesting subject and several studies were performed on it. In the study of Liew et
al. [4], the analysis of the thermal stress behaviour of the functionally graded hollow
cylinders is presented. Similar subject is studied in a different paper by Shao [5], but
the problem is the cylinder with finite length under thermal and mechanical loads.
The material combination used to monitor the stresses and the displacements are
mullet and molybdenum. A comprehensive study is made by Tarn [6] on the thermo
mechanical states in a series of functionally graded cylinders subjected to extension,
torsion, shearing, pressuring and temperature changes. Besides, thermo elastic

equations of rotating cylinders are obtained.

The thermal and mechanical properties of a thick hollow sphere made of functionally
graded material subjected to the internal pressure is studied by Eslami et al. [7] in
which the radial stress and temperature distribution is obtained by using the solution
of the Navier equation. Another study on the analytical solution of nonlinear strain
hardening pressure pipe having a temperature difference at the inner and the outer
surfaces is made by Eraslan and Apatay [8]. The main objective of their study was to
investigate an internally pressurized tube with a negative temperature change of the
order of 20 °C. Elastic, partially plastic, fully plastic stress states are investigated
where Tresca’s yield criterion with its associated flow rule is used. Their study
demonstrates that elastic and plastic limit pressures are significantly affected by the

existence of a small temperature changes within the tube.

Another interesting subject on the functionally graded pressure vessels is studied by
Dai et al. [9]. In their paper, the exact solutions are obtained for the magneto elastic
behaviour of the functionally graded vessel located in a uniform magnetic field and
subjected to internal pressure. The main objectives of their study are to design the
optimum functionally graded cylindrical and spherical vessels and to understand the
effect of the volumetric ratio of constituents and porosity on magneto elastic stresses
and perturbation of magnetic field vector.
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In the study of Zhifei et al. [10], a comparison between elastic hollow cylinders,
multi-layer cylinders and elastic cylinders with continuously graded properties is
made. The solution for both cases is based on Lamé’s [11] solution. At the end of the
paper, an example problem showing the differences between these two cases is
given. One of the findings of the study is the fact that under external or internal
pressure, the absolute value of the displacement in the radial direction in the n-
layered tube decreases with the increase in the number of layers. It is also found that,
with the increase of the number of layers, the discontinuity for the circumferential

stress (0, ) can significantly be reduced.

The problem of the elastic and elastic-plastic behaviour of functionally graded
spherical pressure vessels is studied by Akis [12] using Tresca’s yield criterion. It is
found in this study that, different from a homogeneous spherical pressure vessel,
different modes of plasticization may take place due to the radial variation of the

functionally grading parameters.

Similar to the problem summarized above, elastic, partially plastic and plastic stress
states of the plain strain functionally graded tube problem is studied by Eraslan and
Akis [13]. The analytical plastic model is based on Tresca’s yield criterion. What
makes this study interesting is the fact that the elastoplastic behaviour of functionally

graded tube may be different from a homogenous tube.

Functionally graded isotropic spheres subjected to internal pressure is investigated by
Giiven and Baykara [14]. The objective of the study is to understand the acceptable
stress distributions in a hollow sphere under internal pressure for ductile and brittle
material behaviours. It is stated that in a functionally graded isotropic hollow sphere
designed according to the maximum shear stress failure theory, the material usage

can be improved efficiently.

In the study of Tutuncu and Ozturk [15] closed-form solutions for functionally
graded cylindrical and spherical vessels under internal pressure is presented. The

study defines an inhomogeneity constant £ and by using this constant, the stresses

for the functionally graded tubes are obtained.
3



As seen from the studies presented above, there is still a wide research area on the
subject of the behaviour of the cylindrical tubes under pressure. Therefore, the main
objectives of this study are to obtain the analytical solutions for the problem of the
multi-layer tubes under internal and external pressure and to investigate the yielding
behavior of these assemblies. In the study, single layer, two-layer and three-layer

tube assemblies are taken into consideration.

For the single, two and three layer tubes, a stands for the inner radius and b stands

for the outer radius of the tube. For the two-layer tubes, # is the interface coordinate
between the two tube layers. For the three layer tubes, 7 and 7, are the location of

the inner and outer interfaces, respectively. The geometries of these assemblies are

shown in Figs. 1.1, 1.2 and 1.3.

Figure 1.1 The section of a single-layer tube under internal pressure



Figure 1.2 The section of a two-layer tube under internal pressure

Ny

Figure 1.3 The section of a three-layer tube under internal pressure
5



In the second chapter, the formulation for the stresses and displacement are derived
starting with the single layer tube. Afterwards, the studies are carried on with two
and three-layer tubes. After obtaining the basic expressions, the elastic limit
pressures and the corresponding critical interface radii values are obtained in Chapter

Three by using the two common yield criteria, Tresca’s and von Mises criterion.

In Chapter Four, using real-engineering materials, some numerical results about the
yielding behavior of the multi-layer tubes are presented graphically. It is shown that
the determination of the yielding behaviour is not as simple as the yielding of the
single layer tube, since there may be more than one possible yielding location.
Finally, in the last chapter, a brief summary of the study is made and some important

findings are highlighted.



CHAPTER 2

FORMULATION

2.1 General

Throughout this study, cylindrical polar coordinates (» , 6 and z) are used in all
derivations (Fig. 2.1). First, the governing differential equations and stress and
displacement relations for the single layer tubes are derived. Afterwards, the
expressions for the two and three-layer tubes are presented. In the derivations, a state

of plane strain and infinitesimal deformations are presumed.

Figure 2.1 The cylindrical polar coordinates used in the derivations



2.2 Single Tube Under Pressure

The generalized Hooke’s Law in cylindrical coordinates can be written as

6, =l ~vio, o)) M
Ey = %[0'9 -v(o, + az)], ()
g = %[0‘2 -v(o, + 69)], 3)

For the tube with fixed ends &, = 0 and the stress in axial direction can be written as

o, =v(o, +0,). (4)

Inserting Eq. (4) into Egs. (1) and (2) and using the strain-displacement relations

du
£ =—, 5
= (5)
g ==, (6)
r

the stress expressions in terms of displacements can be obtained. Putting these

expressions into the equation of equilibrium in radial direction, which is

do, L0, =0 _ 0, 7

dr




the governing differential equation is obtained as

2
RN (8)

dr? dr

The solution of this differential equation for u(7) is

u(r):Q+C2r. 9)

r

Putting u(7) into the stress-displacement relations give

E C C,
ol\r)=——/|[—-—+ . 10
(r) 1+v{ r 1—21/} (19)
E | C C,
o,\r)= —+ , 11
o) 1+vL2 1—21/} ()

The stress in axial direction can be obtained by putting the above expressions into

Eq. (4) which yields

2VEC,
o, (r ==
(1+v)(1-2v)

(12)
In order to complete the solution, the integration constantsC, and C, should be
determined. For this purpose, the corresponding boundary conditions are used. For
the tube under internal pressure o, (a)=-P ando,(b)=0, and the integration

constants are obtained as

@b P(1+v)

C
LW -d)E

; (13)



_a’P(+v)(1-2v)

(b* —a*)E (14

2

For the tube under external pressure, the boundary conditions become o, (a) =0,

o (b) =—P . The corresponding integration constants are obtained as

212
LI Gl (15)
(a° =b")E
b’P(1-2v)(1+v
C, = ( 5 3( ) . (16)
(a" —=b")E
2.3 Two-Layer Composite Tube Under Pressure
The generalized Hooke’s Law for the two-layered tubes can be written as
1
&= _[O-rl —Vi(oy + Gzl)] ) (17)
El
1
€2 = E[O-rZ —V,(0p, + 0-22)]’ (18)
2
1
€o1 :_[051_V1(0r1+0z1)]a (19)
El
1
Epy = _[0-6'2 —v,(0,, + 0-22)]’ (20)
E2
1
€ :E[O-zl -v,(o, +O'91)], (21)

10



1
&, = _[022 -V, (0-1‘2 + 0y, )] (22)
E,

Here E, and E, are the modulus of elasticity of the inner and outer tubes,

respectively. Similarly v, and v, are the Poisson’s ratio of the two tube layers.

The corresponding stresses and displacements can be written as

= {—%H < } 23)
I+v, | r 1-2v
o, =L | G, G | (24)
l+v,| r° 1-2v,
El Cl C2
O = —+ . 25
g 1+v1[r2 1—2VJ 22)
E, |C
Opy =7 [—§+ < } (26)
l+v,| r° 1-2v,
2v,E
o, =G @7)
1+v)d-2v))
o - 2v,E,C, ’ 08)
(1+v,)(1-2v,)
ul(r) :£+C2r, (29)
r
u,(r) :§+C4r. (30)
r

11



In the above equations, C, and C, are the integration constants of the inner tube and

C, and C, are the integration constants of the outer tube.

For the two-layer composite tubes under internal pressure, the boundary conditions

are o, (a)=—-P ando, ,(b) =0. In addition, two interface conditions can be written
as: o,(n)=0,,(r) , u,(r)=u,(r,). Using these boundary and interface conditions,

the corresponding integration constants are obtained as

a’M P P(b*M, + M 1)

C. = , (31)
1 El[rlz(sz7 +M5r12)—a2(b2M6 +M8r12)]
~ a’M M P(b’M, + Mr,) 32)
’ E1[712(b2M7+M5r12)_a2(b2M6+M8r12)]’
2a°0* M1 P(1-v,’
A 271 ( 1 ) (33)

R OM, + M) —at (B M+ M)

2a°M,M r>PA-v,
C,=—5— a 22471 2( 2"1) — (34)
[n" ("M, + M) —a” ("M g+ Mgr,7)]

where

M, =1+v,, (35)
M, =1+v,, (36)
M, =1-2v, (7
M, =1-2v,, (38)
Mg =M,M,E —MM,E,, (39)

12



M, =M,E -ME,, (40)
M; = M,E, + M M,E,, (41)
M¢=M,ME +ME,. (42)
For the two-layer composite tubes under external pressure, the stress and
displacement expressions are the same with the internal pressure case. The only
difference is on the boundary conditions. For the external pressure case, the boundary

conditions become o ,(a)=0 ando, ,(b)=—P. On the other hand, the interface

conditions remain the same.

Using these boundary and interface conditions, the corresponding integration

constants are obtained as

2a°b*M > P1-v,%)

C =~ : (43)
1 [7’12(sz7 +M5r12)—a2(b2M6 +M8r12)]

c - 2b° M\ M,r" P(1-v,") 44)
’ [rlz(b2M7+M5r12)_a2(b2M6+M8r12)]’

c b*M,r>P(a’M — M%) 45)

T Ez[rlz(sz7 +M5r12)_a2(b2M6 +M8r12)] ’

c - b*M M ,P(r’M, —a’M,) 46)
) Ez[r12(b2M7+M5r12)_a2(b2M6+M8r12)].

2.4 Three-Layer Composite Tube Under Pressure

The generalized Hooke’s Law for the three layer composite tubes can be written as

13



1
& = E[O-rl Vi (0-91 + Gzl)] > 47)
1

1
& = _[Urz —V,(0y, + 0-22)]’ (48)
E,
1
&3 = _[O-r3 —V3(0p; + st)] > (49)
E,
1
86’1 = _[0-6’1 - Vl (Grl + O-zl)]’ (50)
E,
1
Eg2 :_[692 -v,(0,, +0-22)]’ (51)
E,
1
Eo3 :_[0'53 —-v,(0,, +523)], (52)
E,
1
gzl = _[O-zl - Vl (O-rl + 0-01 )]’ (53)
E,
1
& = _[022 —-v,(0,, +0y, )], (54)
E,
1
823 = E[GZS - V3 (O-r3 + 0-193)] > (55)

3

Here E,, E, and FE, are the modulus of elasticity of the inner, middle and outer
tubes, respectively. Similarly,v, v, and v, are the Poisson’s ratio of the tube layers.

The corresponding stresses for each layer can be written as

E
o, = -Sy C ] (56)
I+v, r 1-2v,
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E3 CS C6
o T, 2 T |
s LY Vs

. 2nEC,
To+v)a-2v))’

_ 2nE,C,
o (+vy)(A-2v,)’

_ 2vEC
P A+vy)(-2vy)

In addition, the displacements for each layer become

ul(r) :Q+C2r,

uz(r) :&+C4r,

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)



uy(r) =%+C6r. (67)

Here,C, and C, are the integration constants of the inner tube, C, and C, are the
integration constants of the middle tube, and C, and C, are the integration constants

of the outer tube. For the internally pressurized three—layer composite tubes, the

boundary conditions become o,,(a) =—P ando,,(b) =0. In addition, four different
interface  conditions can be written:o, (1) =0,,(r), u,(n)=u,(r),
o,,(r)=0,(r) and u,(r,)=u,(r,). Using these conditions, the corresponding

integration constants can be obtained as

a’Dr’P(b°D,, +1,°D,;)

1 = 2 2 2 2 2 2 bl (68)
E\[r"(0°Dyy +1r,"Dis)—a”(b"D,;, +1,"Di4)]
_ a’D,D,P(b’D,, +1,°D,;) (69)
’ El[rlz(szM +7’22D15)—a2(b2D17 +r22D16)] ’
2a°D, 1’1, P(b*D,, + D,.1, Y1 -V,
A 271 "2 ( 19 1872 )( 1 ) (70)

[”12(sz14 + rzles)_az(szn +r22D16)] ’

C = 2a2D2D5’”12P(b2D20+D217"22)(1_V12) 1)
) [’ﬂz(szM +r22D15)—a2(b2D17 +r22D16)] ’

_ 4D DET P -y, (-, )
[r>(b*D,, +1,° D) —a*(b>D,, +1,°D,)]’

(72)

5

_ 4a’DDE, R P(L-v, )1 -v))
[l”lz(szM +7’22D15)—az(b2D17 +r22D16)] ’

(73)

6

where
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D =1+v,,

D,=1+v,,

D, =1+v,,

D,=1-2v,,

D, =1-2v,,

2 2
Dy =r"+ Dy,

D,,=D,D.D,E, + D,D.D,E,,

D11 = D3D7E2 - D2D9E3 >

D,, = D,D,D,E, + D,D.D.E,

D,, = D,D,D.E, + D,D,DE;,

D\, =D,D,E, - DD,D,E,,

D15 = D10D2E1 - D1D13D4E2 >

17

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)



D16 = D10D2E1 + D1D13E2 > (39)

D,, = D,D,E, + DD,E,, (90)
D, = D,D,E, - D,D.E, , (91)
D,, = D,E, + D,D.E,, (92)
D,, = D,E, — D,E, (93)
D,, = D,E, + D,D,E, . (94)

For the external pressure case, the boundary conditions are o,(a)=0 and
0,4b)=—P, and the interface conditions remain the same. Using these, the

corresponding integration constants are obtained as

C - ACEDER T Py, )1 -vy) 95)
| s
[rlz(b2D14 +r22D15)—a2(b2D17 + 722D16)]

c —__ A'DDE PA-vy)(1-vy) 9%6)
2 — D)
[’ﬁz(szm +”221)15)_‘12@21)17 +r22D16)]

c - 2b°D,r’r," P(a> Dy, — D,y )1 —vY) o7
’ [r12(b2D14 +r22D15)_‘12(b2D17 +r22D16)]

C —_ 2b2D2D5r22P(r12D25 _D24a2)(1_"32) (98)
4 = 5
[rlz(szM +I’22D15)—a2(b2D17 +’"22D16)]

C I b2D3r22P(a2D16 _D15r12) (99)
’ ES[rlz(szH +r22D15)—a2(b2D17 +r22D16)] ’
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C _ b2D3D6P(r12D14 _D17a2) (100)
6 2,72 2 2,72 2 ’
E\[r"(b"Dy, +1,"Dys)—a”(b"Dy; +r," D)l

where

D, =D,E, +D,D/E, , (101)
D,,=D,D.E -DD,E,, (102)
D, =D,E, -DE,, (103)
D,,=D,E, +DD,E,. (104)

In the next chapter, the yielding behavior of the single, two-layer and three-layer

tubes will be presented.
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CHAPTER 3

YIELDING OF COMPOSITE TUBES UNDER PRESSURE

3.1 General

So far, in order to investigate the yielding behavior of single, two-layer and three-
layer tubes under the effect of internal or external pressure, the stress and
deformation expressions have been derived. In this chapter, the elastic limit pressures
and the locations of the yielding in the assemblies will be determined by using the
two common Yyield criteria, Tresca’s and von Mises yield criteria. In the next part,
brief information about these two criteria is given. Then, the yielding behaviour of

the tube assemblies is presented.
3.2 Tresca’s Yield Criterion

This criterion takes its name from a French mechanical engineer Henri Edouard
Tresca (1814-1885). It is also called the maximum shear stress yield criterion [16].
According to this criterion, the initial yielding occurs when the highest of the
maximum shear stresses reaches to a critical value. In other words, yielding begins
when the maximum shear stress at a point equals to the maximum shear stress at

yield in uniaxial tension (or compression). Yielding under a multiaxial stress state

can occur for any one of these conditions: o, —o, :|Y | , Oy—0, :|Y | or

o,—0, =|Y | Here |Y | is the uniaxial yield stress. The yield surface for the

maximum shear stress criterion is a regular hexagon in principal stress space. For a

biaxial stress state (o, = 0), the yield surface takes the form of an elongated hexagon
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in the (o, , o,) plane. The sketch in Fig 3.1 shows this hexagon plane and compares

Tresca’s and von Mises yield criteria.

o von Mises

Tresca
(maximal
shear)

Figure 3.1 Comparison between Tresca’s and von Mises yield criteria

For our problem, it is found that the maximum stress difference is between o, and
o, , therefore, for each layer of the tube, the yielding starts when o, -0, = o, for
the internal pressure case and it starts when o, —o, = o, for the external pressure
case. Introducing the dimensionless stress components ¢, =o,/0,, 0, =0,/0, ,
and o, =o0,/0,, the dimensionless form of the criterion can be obtained as
o,—0, =1 for the internal pressure case and o, —o, =1 for the external pressure

case. Throughout this study, the dimensionless values of the stresses are used since
the monitoring of the yielding at the tubes becomes easier. It should be noted that, for

the internal pressure case, when o, -0, <1 the tube is in elastic stress state.

Similarly, for the external pressure case the tube is in elastic stress state for

o, -0, <l.
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3.3 von Mises Yield Criterion

It is also called the distortional energy density criterion, and according to this
criterion, yielding begins when the distortional strain energy density at a point equals
the distortional strain energy density at yield in uniaxial tension (or compression)
[16]. The distortional strain energy is the energy associated with a change in the

shape of a body. The total strain energy density U, is divided into two parts: one part
that causes volumetric change U, and the one that causes distortionU,. The

distortional strain energy density is

(o, _62)2 + (o, _63)2 + (0, _01)2

U. =
P 12G

(105)

For a multiaxial stress state, the distortional energy density criterion states that

yielding begins whenU, =Y 2/6G. Here, Y is the difference of the maximum

stresses which s \/%[(al -0,) +(0,-0,) +(0,-0,)’], and G 1is the shear

modulus. Introducing the dimensionless stress variable

4= \/é[@ 5, +(F,-5.) +(5,-5.)]. (106)

the yielding behaviour of the tube assemblies can be monitored. For the values of

@ <1 the assembly is in elastic stress state and for ¢ =1, the yielding begins. In von

Mises criterion, different from Tresca’s yield criterion, stress in z direction is

included in the expressions for the considered problem.
3.4 Yielding of Single Tubes Under Internal Pressure

It is found that for the tubes under internal or external pressure yielding begins at the

inner surface of the assembly. Using the stress expressions derived in the second
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chapter, the elastic limit internal pressure according to Tresca’s yield criterion

(0, -0, =1)1s obtained as

‘1:5:1@_5J. (107)

On the other hand, by using von Mises yield criterion (Eq. (106)), one can find the

elastic limit internal pressure for the single tubes as

k= \/ 3b4(fza4_(f2—)22v)2 ’ (108)
for g=1.

3.5 Yielding of Single Tubes Under External Pressure

Under external pressure, the yielding commences when &, —o, =1 according to

Tresca’s yield criterion. By inserting the stress expressions obtained in the previous

chapter, the elastic limit external pressure can be found as
2
E:l@_ﬁﬂ' (109)

Similarly, using von Mises yield criterion, the elastic limit external pressure becomes

a’—b’ 1
20 \v(v-1)+1"

P - (110)

3.6 Yielding of Two-Layer Tubes Under Internal Pressure

By considering the stress expressions for the two-layer tubes, which are derived in

the second chapter, it is found that for both internal and external pressure cases,
23



yielding may begin at the inner surface of the assembly, at the interface or
simultaneously at both locations. According to Tresca’s criterion, for internal

pressure case, yielding starts when o, —o, =0, at the inner surface of the
assembly (r=a) and it starts at the interface (r=7) when o,,-0,=0,.

r

Inserting the stress expressions into the first equation gives

- (2M,1,"P(b* M, + M1,"))

=0, (111)
(-1 (O M + M) + @ B M + M)A +v)
and the second equation becomes
272 2
4a’b"E,M,P(1-v,") oo, (112)

1 BM, + M)+ @ (DM g+ My (1 +v,)

The elastic limit internal pressure that causes yielding starting from the inner surface

(7 = a) is found by the solution of Eq. (111) as

(B*Mr> + M —a®> (M + M)A +v,)
2M1r12(b2M7 +M5”12)

P, = (113)

- P
where P, = —.
O

Similarly, the elastic limit internal pressure that causes yielding at the interface

(r =r) 1s found as

WM, + M —a® (b Mg+ M)A +v,)o,,

E: 272 2
4a’b"E,M,(1-v,")o,,

(114)

As mentioned above, for the two-layer tubes under internal pressure, the yielding

may begin simultaneously at both locations (at » = a and r = 7). In order to find the
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elastic limit internal pressure and the corresponding critical interface radius (7, ) that

cause simultaneous yielding, Eqgs. (111) and (112) should be solved at the same time

for P andr, . An example for this case will be given in the next chapter.

Similar to the case for Tresca’s criterion, two equations that define the yielding at the
above mentioned locations can also be written according to von Mises criterion (Eq.

(106)). At the inner surface

M'P*Gr (0° My + M)’ +a* MY ("M + M) _ (115)
(b2M7]"12 +M5]/'14 _a2(b2M6 +M8]"12))2(1+V1)2 01 »
and at the interface (7 =r,)
4a°E, M PP GBbY + MR (1 -v,)? (116)
=0,,.
(b2M77”12 "‘]‘45”14 _az(b2M6 +M8”12))2(1+V2)2 ;

Similar to Tresca’s criterion, the elastic limit internal pressure that causes yielding
which starts from the inner surface (7 = a) is found from the solution of Eq. (115),

which is

P =

L\/(szmz + My’ —a’ (0 M+ M) (1+v,)" (117)

M\ 355 0°M, + M) +a* M (b M, + M)

On the other hand, the elastic limit internal pressure that causes yielding which

commences at the interface (7 = r,) is found from Eq. (116) as

P Oy, \/(b2M7r12+M5r14_az(b2M6+M8r12))2(1+V2)2 . (118)

© 2a’E,M,0,, Gb + M, Hw’ -1)
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The simultaneous yielding behaviour which is explained for the Tresca’s yield
criterion is also observed for this condition of yielding. The details of this case will

be given in the next chapter.
3.7 Yielding of Two-Layer Tubes Under External Pressure

According to Tresca’s yield criterion, for the two-layer tubes under external pressure,

the yielding begins when o, -0, =0, at the inner surface and when
o,, —0,, =0, atthe interface. Inserting the stress expressions into these equations,

the following relations can be obtained for the external pressure case:

4b*E M > P(1-v,") ~
rE(DPM, + M2y +a> (B M+ M )1 +v,)

O » (119)

20°M,P(a* My —Mr’) ~
R(O*M, + M) +a (B M+ M )(1+v,)

G- (120)

Using Eq. (119), the elastic limit external pressure that starts yielding at » = a is

found as

5 _ (W O°M; + Mr)+a’ (0" M + My ))(1+v,) (121)
‘ Ab°EMr(1-v,)

Using Eq. (120) the elastic limit external pressure that starts yielding at the interface

becomes

O*M, 1> + Mt —a>(B* M, + M)A +v,)o,,
2b°M,(a* M _Msrlz)gm

Fe: (122)

The simultaneous yielding behaviour observed for the internal pressure case is also

found in external pressure case. The details will be given in the next chapter.
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According to von Mises criterion, the yielding begins when ¢ =1. Considering the
yield criterion given in Eq. (106) and inserting the stress expressions, which are
obtained previously, into this equation, the condition for the yielding at the inner

surface becomes

4b*E’M (M, +3)Pr (1-v,%)?
\/ 1 1 ( 3 + ) rl ( VZ ) =O-01, (123)

B’ Mor” + My =@ (b M+ M) (1+v,)?

and at the interface (» = r, ), it becomes

b*M, P (a* (MM +3M)-2a°Nr” + M + M M)t (124)
=0 .
(O* M1+ Mry* —a® (0P M + M) (14 v,)* :
Using Eq. (123), the elastic limit external pressure is obtained as
5__ 1 (B*M "+ M —a’ (O M+ Mr*)  (1+v,)’ (125)
© 2D’E M’ G+ M, H(1-v,")

Similarly, the elastic limit external pressure that causes yielding at the interface is

found as

> __ O O°M,r” + M —a’ (M + M) (1+v,)’ (126)
© Mo \a* MM +3MP)-2a* N +(BM S + M M)t

where

N, =M/MM,+3M.M,. (127)

Before coming to the three-layer tubes, the importance of the critical interface radius
should be highlighted. For the two-layer tube assemblies under internal or external
pressure;
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a. For the yielding that starts at the inner surface (» = a), r, should be higher
than the critical interface radius (7, >7,, ).

b. For the yielding that starts at the interface (» =r,), the interface radius should
be lower than the critical interface radius ( r; <7, ).

c. For the simultaneous yielding at the inner surface and at the interface of the

assembly r, =17, .

These results show that the critical interface radius is an important factor that affects

the yielding behaviour.
3.8 Yielding of Three-Layer Tubes Under Internal Pressure

It is found that, for the three-layer tubes under internal or external pressure, yielding
may first begin at the inner surface of the assembly (» = a), at one of the interfaces
of the assembly (r = r, , r = r,), at the two locations of the assembly at the same
time (r=aandr =1 orr=aandr=r, orr =1 and r = r,) or it may begin at the
three layers at the same time. According to Tresca’s criterion, the yield conditions for

the internal pressure become o, -0, =0, , 0, —0,, =0, Oy —0,; =0, . The

first equation is the criterion of yielding that starts at the inner surface (» = a) of the
assembly, the second equation is the criterion of yielding that starts at the inner
interface (» = 1) of the assembly, and the last equation is the criterion of yielding
that starts at the outer interface (r = r,) of the assembly. Inserting the stress

expressions, the first condition becomes

2D1r12P(b2D14 + Dlsrzz)

=0,. (128)
(5" (B*Dyy + Dy, ) =a* 0° Dy + Dy, NA+v)
Similarly, the second and third conditions become
4a’D,E,r,’ P(r,’Dys + D, ,b*)Y(1 - v,
a D,E,r, P(r, Dy + Diyb”)(1-v,") —o,, (129)

(7”12(sz14 + Dlsrzz) - az(sz” + Dlérzz))(l +v,)
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8a’b’D,E,Eyr  P(1—v,))(1-v,%)
(”12(sz14 + Dlsrzz) - az(szw + Dlerzz))(l +vs)

=0y (130)

The elastic limit internal pressure causing the yielding at the inner surface ( = a) is

obtained by using Eq. (128) as

5 (r’(0*Dy, + Dys1,")—a’ (b*Dy; + Dy, N1 +v,) (131)
‘ 2D1’”12(b2D14 +D157’22)

Similarly, the elastic limit internal pressure that starts yielding at the inner interface

(r = 1) is obtained by using Eq. (129) as

P - (rlz(b2D14 +D15r22)—a2(b2D17 +D16r22))(1+vz)0'02 (132)
‘ 4a2D2E2r22(b2D19 +D18r22)(1_v12)001

Finally, the elastic limit internal pressure that causes yielding at the outer interface (»

=r, ) 1s obtained by using Eq. (130) as

5 _ (0D + D1y ) —a’ (B Dy + Dyt N1+ V)0, (133)
‘ 8a’b’D,E,Eyr” (1-v, " )(1-v, )y,

As mentioned above, for the three layer tubes under internal or external pressure,
yielding may begin simultaneously at more than one location. The elastic limit
pressure and the corresponding interface coordinates at which the yielding begins
simultaneously at the three locations can be found by solving Eqgs. (128), (129), and
(130) together. Investigations have revealed that simultaneous yielding only occurs
under the restrictions of the properties of the materials. For the simultaneous yielding
at the three locations mentioned above, the first layer’s yield limit should be the

highest, and the outer layer’s yield limit should be the lowest.

Different from the case presented above, it is also possible that yielding may begin
simultaneously at two different layers of the assembly. In order to find the elastic
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limit pressure and the corresponding interface radius of the assembly, the
corresponding two equations belonging to the yielding locations should be solved
together. In addition, while solving the elastic limit pressure and critical interface
radius, one of the interface radii at which the yielding has not yet begun and the inner
surface radius a should be given. The given interface radius should be higher than the
critical interface radius of the assembly for both internal and external pressure cases.

All these cases will be clarified in the next chapter.

According to von Mises criterion, the yielding begins when ¢ =1 for each layer.

Using this condition, the yielding equations at the inner surface (» = a), at the inner

interface (» =7;), and at the outer interface (» =r, ) are obtained as

D2P23 4b2D D 2\2 4D2b2D D 2\2
\/ I Br ( T D) +a D, ( 7 T 16’”2))=O_01’ (134)

(n*(b°D,, + Dys1,")—a*(b° Dy, + D1, ") (1+v,)’

4a*Dy"E," PX(Dy"Di™ri'n," +3Dyry” +26°r," Ny +b*N)(1=v,")* _ (135)
(’”12(sz14 +D15r22)—a2(b2D17 +D16V22))2(1+V2)2 "
16a*D,"E,"E;" P (3b* + D )1-v ") (1-v,")* _ - (136)
(rlz(szM +D15r22)—a2(b2D17 +D16r22))2(1+v3)2 7

where

N, = 1)201)211)52"14 + 3D18D19r24 > (137)

N.=D,’Dr*+3D " . 138
3 20 57 19 72

Using Eq. (134), the elastic limit internal pressure causing the yielding start from » =

a 1s obtained as
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E:L\/(rlz(bzl)m +D15r22) —a’(b’Dy; +1)167”22))2(14“/12) ‘ (139)

D, 37’14(b2D14 +D15”22)2 + a4D42(b2D17 +D16’"22)2

For the yielding that starts at the inner interface (» =#), using Eq. (135), the

corresponding elastic limit internal pressure is found as

F, = :
2a’D,E,o, \ (D, ’DS’r'r, +3D,°r" +2b%r,° N, +b*N)(-1+v,>)?

D Oy \/ (’”12(sz14 +D15r22)—a2(b2D17 +D16r22))2(1+‘/22)
(140)
Finally, using Eq. (136), the elastic limit internal pressure causing the yielding at the

outer interface (r =r,) is found as

P =

e

O3 \/(712(sz14 +D15r22)—a2(b2D17 +D16r22))2(1+"3)2 (141)

4a2D3E2E3r120'01 (3b* +D62r24)(1—1/12)2(1—v22)2
3.9 Yielding of Three-Layer Tubes Under External Pressure

Studies show that the yielding behaviour of the three-layer tubes under external
pressure is similar to the case of internally pressurized three-layer tubes. The only
difference is the yield condition. According to Tresca’s criterion, the yield conditions
for the three layers are: o, —o0, =0, 0,, —0,4, =0, and o, —0, =0,. The

first equation is the criterion of yielding that starts at the inner surface (» = a) of the
assembly, the second equation is the criterion of yielding that starts at the inner

interface (r = 7;) of the assembly, and the last equation is the criterion of yielding

that starts at the outer interface (» = r,) of the assembly.
Using these expressions, the following yielding equations can be obtained:

8b°D,E E,r,’r," P(1—v, )1 -v,?)
(_rlz(szM + Dlsrzz) + az(sz” + Dlérzz))(l +v)

=0y, (142)
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4b°D,E,P(Dya’* — Dyr,> ), (1-v,7)
(=2 (b*D,, + D,;r," )+ a*>(b°D,, + D, o1, N1+ v,)

=0y, (143)

2b2D3P(a2D16 —Di; 7’12)
(_’ﬂz(szM +D15r22)+a2(b2D17 +D16r22))(1+v3)

Oy - (144)

The elastic limit external pressure that causes yielding at the inner surface (» = a) is

obtained by using Eq. (142) as

P = (”12(b2D14 +D15r22)—a2(b2D17 +D16r22))(1+vl) (145)
’ 8b2D1E1E27’12”22(1_V22)(1_V32)

Similarly, the elastic limit external pressure causing the yielding start at the inner

interface (» = ) is obtained by using Eq. (143) as

& _ (CH ("D + Dygry" ) +a’ (5°Dyy + Dy )1+ V,)0, (146)
’ 4b2D2E2(r12D23 _Dzzaz)”zz(l_v32)001

Finally, the elastic limit external pressure that causes yielding at the outer interface (»

= r,) is obtained by using Eq. (144) as

P = (”12(b2D14 +D15r22)—a2(b2D17 +D16r22))(1+v3)0'03 (147)
’ 2b2D3(a2D16 _D15r12)0'01

Similar to the internal pressure case, for the three-layer tubes under external pressure,
according to von Mises criterion, yielding begins as soon as ¢ =1. Using Eq. (106),
the relations for the yielding that starts at the inner surface (r=a), at the inner

interface (» =7,), and at the outer interface (r =r, ) can be obtained as

=0y » (148)

166*D,* (D, +3)E, E,"P*r'r, 1-v,)) (1-v,%)?
(1’ (0* Dy, + Dys1,") =@’ (0* Dy, + Dy, ) (1+v,)’
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\/4b4D22E22P2(a4(3D222 + Dy D) =207 N+ N D (v ) )
— Y02
(”12(sz14 + Dlsi’zz) —a’(b*Dy, + Dlérzz))z(l +v,)’
\/b4D32P2(a4(3D162 + Dy D) =2a*Ngi” + 3Dy + DD _ (15
— Y03
(7’12(b2D14 + D151’22) —a*(b*D,; + D16r22))2 (1+v3)*
where
N, =3D,, D,, +D,,D,.D.’, (151)
NS _ 3D232 +D252D52 , (152)
N, =3D,.D,, + D,,D,,D,’ . (153)

Using Eq. (148), the elastic limit external pressure causing the yielding start from (r

= a) is obtained as

P -

e

1 \/(7'12(sz14 +D15r22) _az(sz” +D16r22))2(1+‘/12) (154)

4b*D\E E,r’r,’ (D, +3)1-v,")* (1-v,")?

The elastic limit external pressure that causes yielding at the inner interface (r =r,),

is found by using Eq. (149) as

P = N,o, (’ﬂz(szM +D15r22)—a2(b2D17 +D16r22))2(1+V22) (155)
oy \@GD, +D,’D.)-2a* N>+ Ny HY(1-v,")?
where
_ 1 (156)
" 2°D,E,r
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Finally, using Eq. (150), the elastic limit external pressure causing the yielding at the

outer interface (» =r,) is found as

P —_ %0 (r12(b2D14 +D15r22)—a2(b2D17 +D16V22))2(1+V3)2 (157)
© b’Dyoy, \a*GD, +D,,’D’)-2a*Ngr” +(3D,s° + DD

where

Ny =3DsDyg + D14D17D62 : (158)

Similar to the two-layer tubes, the critical radii that are obtained for the three-layer
tubes are quite important in the determination of the yielding behaviour. If the
yielding of only one layer is desired, there are some restrictions related to the critical
interface radii of the considered three-layer tube. For instance, if we want the tube
yield from the inner surface (» = a) first, then the corresponding interface radii

should be chosen as follows: 7 > 7, and r, >r, . Secondly, for the yielding that
starts at the inner interface (» =# ) first, the conditions should be # < r,, and r,
=r,,, . Thirdly, when r, =r,_, and r, <r,,, the yielding starts at the outer interface (r

=r,) first. In the next part, some numerical examples are handled to clarify the

yielding behavior of the multi-layer tubes under pressure.
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CHAPTER 4

NUMERICAL RESULTS

4.1 General

In Chapter Two, the derivations of the basic expressions of the composite tubes
under internal and external pressure were presented. The stresses, displacements and
integration constants for single, two and three-layer tubes were given in that chapter.
In Chapter Three, the two yielding criteria, Tresca’s yield criterion and von Mises
yield criterion, were presented first. Then, the yielding behavior of one, two and
three-layer composite tubes under internal and external pressure were analyzed
according to the above mentioned yield criteria. The equations of the elastic limit
pressures were also given in that chapter. In this chapter, some numerical results of
the pressurized multi-layer tubes will be given. The yielding behavior of one layer
tubes under pressure will be presented first; afterwards the behaviour of the two and
three-layer composite tubes will be given. In addition, the results obtained by
Tresca’s criterion and von Mises criterion will be compared for the cases that are
considered. Finally, an example problem given in the study of Hongjun et al. [17]

will be handled.

In Table 4.1, the material properties that are used in this study are given. In the

presentation of the numerical results the following dimensionless variables are used:

;U= ;O o=—-. (159)

7 =

r
b
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Table 4.1. Mechanical properties of the materials used in the numerical analyses

E (GPa) Y o, (MPa)
Aluminum 70 0.35 100
Brass 105 0.35 410
Copper 120 0.365 265
Steel 200 0.30 430

4.2 Single Layer Tube Results

For a single layer tube, as it was mentioned in the previous chapter, yielding begins
at the inner surface. According to Tresca’s yield criterion, the stress and
displacement distributions in a single layer steel tube under internal pressure are

given in Fig 4.1. Here, the inner radius a =a/b=0.7 and the elastic limit internal
pressure is obtained as I_’e =0.255 using Eq. (107). By using Egs. (13) and (14), the
dimensionless integration constants are found as C, = C,/bh*=6.52925x10"" and
Z’z = C,=2.61170x107*. The stress variable according to Tresca’s yielding criterion
is given by ¢=0,- o, . It can be observed from the figure that ¢=1 at r=a which

shows the commencement of the yielding.

In Fig. 4.2, the distributions of stresses and displacement of an internally pressurized
tube having the same dimensions is shown. The only difference from the previous

graph is the consideration of von Mises criterion to monitor the yielding. The elastic

limit internal pressure is found as P =0.292581 by using Eq. (108). The
corresponding integration constants are found as C,=7.49150x10" and

C, =2.99660x10~* by the help of Egs. (13) and (14).

Coming to the external pressure case, it is known that yielding begins at the inner
surface of the tube as well. In Fig. 4.3, the stresses and displacement of a single layer

steel tube with a =0.7 under external pressure is given for which the yielding begins
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at I_’e =0.255 according to Tresca’s yield criterion. The elastic limit external pressure
P, is obtained by using Eq. (109). Using Egs. (15) and (16), the integration constants

are evaluated as C, =-6.52925x10™ and C, =-5.33000x10* .

The behaviour of a single layer steel tube (a =0.7 under the elastic limit external
pressure considering the von Mises criterion is shown in Fig.4.4. Using Eq. (114),
the elastic limit external pressure is calculated as I_’e =0.286897. The corresponding
integration constants are C, =-7.34597x107* and C, =-5.99670x107". It should be

noted that ¢ =1 at the inner surface of the tube.

37



1.2

stresses and displacement

0.7 0.8 0.9 1.0

radial coordinate

Figure 4.1 The distributions of stresses and displacement in a single layer steel tube

(@=0.7) under elastic limit internal pressure P,=0.255
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Figure 4.2 The distributions of stresses and displacement in a single layer steel tube

(@ =0.7) under elastic limit internal pressure P,=0.292581
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Figure 4.3 The distributions of stresses and displacement in a single layer steel tube

(a =0.7) under elastic limit external pressure }_’e =0.255
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Figure 4.4 The distributions of stresses and displacement in a single layer steel tube

(a =0.7) under elastic limit external pressure I_’e =0.286897
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4.3 Two-Layer Tube Results

Before considering different material combinations, the verification of the
expressions derived in the previous chapters is needed. For this purpose, a
comparison between single layer tubes and two-layer tubes is made. A number of
single layer tubes with different material properties are considered first. Using the
expressions derived, the integration constants and elastic limit pressures are
calculated for both internal and external pressure cases. On the other hand, these
tubes are also modeled using two layer tubes (first tube: a to 7, , second tube: 7, to
b ). These two tubes are assumed to have the same material properties. The results
show that for both pressure cases, the elastic limit pressures and the integration
constants are identical for single and two-layer tubes. It can be concluded that the

expressions derived for the two-layer tubes are correct.

Fig. 4.5 shows the simultaneous yielding of a two layer tube under internal pressure.
The yielding criterion that is used is the Tresca’s yield criterion and the inner layer of
the tube is made of brass and the outer layer is made of copper. Here, a =0.6, elastic

limit internal pressure and the corresponding critical interface radius is found as
EZO.334O61 and 7, =0.794711 by solving Eq. (111) and Eq. (112) together. Using
Egs. (31), (32), (33) and (34) the integration constants are obtained as
C, =C, /b*=9.48856x107*, C, = C,= 2.62420x10™* , C,=C,/b*=9.51190x10™"
and 6’4 = C,=2.58723x107*. For this graph, it is worth underlying that the stress

variable ¢=1 at r =a and at » =7 which shows the simultaneous yielding.

In order to present the yielding that starts at the inner surface (»=a ), same two-layer
tube assembly is considered. Taking a =0.6 and 7 =0.85, the elastic limit internal
pressure is obtained as E=O.329630 using Eq.(113). Tresca’s yield criterion is used
to examine the behaviour. The corresponding integration constants are calculated as

C, =9.48857x107*,  C, =2.69428x10"*, C, =9.55704x10* and C,=

2.59951x107*. Fig. 4.6 shows the consequent stresses and deformation. It should be

noted that since the radius of the first layer is selected to be higher than the value of
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the critical interface radius causing simultaneous yielding (7,>7,, ), yielding begins

from the inner layer of the tube.

1.2
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Figure 4.5 The distributions of stresses and displacement in a two layer brass-copper

tube (@ =0.6, 7,=r_ =0.794711) under elastic limit internal pressure P,=0.334061
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Figure 4.6 The distributions of stresses and displacement in a two layer brass-copper

tube (@ =0.6, 7 =0.85) under elastic limit internal pressure P,=0.329630
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Considering the same tube assembly, for 7 =0.65 the yielding begins at the outer
tube of the assembly according to Tresca’s yield criterion as shown in Fig. 4.7. Here,
the only difference from the previous case is the fact that the radius of the first layer

is chosen to be smaller than the value of the critical interface radius (7,<r,, ). The
elastic limit internal pressure is computed as P, =0.236648 by using Eq. (114) and
constants of integration are obtained as C, =6.41648x107*, C, =1.60465x107*,

C, =6.36319x10™ and C, =1.73078x10™".

For the two layer tubes under internal pressure, von Mises yield criterion is also
considered to monitor the yielding. Similar yielding behaviour in the tube assembly
is observed when von Mises criterion is used. In order to compare these two criteria,
Table 4.2 is prepared. For the three cases of yielding, the elastic limit pressures and

the interface radii are shown in this table.

Table 4.2. Elastic limit pressures and interface radii for different yielding cases of

the two-layer tubes under internal pressure (a =0.6)

Location(s) of yielding Elastic limit internal B
— Interface radius (7;)
and yielding criterion pressure (P))
Simultaneous yielding at » = a
o 0.334061 0.794711
and at 7 =1, (Tresca’s criterion)
Simultaneous yielding at » = a
_ o 0.384971 0.796058
and at =7, (von Mises criterion)
Yielding at the inner surface
o 0.329630 0.85
7 = a (Tresca’s criterion)
Yielding at the inner surface
_ o 0.379963 0.85
r = a (von Mises criterion)
Yielding at the interface r =1,
0.236648 0.65
(Tresca’s criterion)
Yielding at the interface r = r;
0.272659 0.65
(von Mises criterion)
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Figure 4.7 The distributions of stresses and displacement in a two layer brass-copper

tube (a =0.6, r,=0.65) under elastic limit internal pressure }_’e =0.236648
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The yielding behaviour of a two-layer tube under external pressure is also
investigated. In Fig. 4.8, the stresses and displacement graph of a two-layer brass-
copper tube under external pressure according to von Mises criterion is given. Here,

a =0.5 and the elastic limit external pressure and the critical interface radius is found
as P.=0.458597 and 7, =0.6898 by solving the Eqs. (123) and (124) together. The
corresponding integration constants are calculated as 51 =-7.49702x107" | (72 =-
8.99643x107* , C, =-7.97900x10*and C, = -7.98351x10™* using Eqs.(43), (44),
(45) and (46). As seen in this figure, yielding begins at »=a and at r=r,,

simultaneously, as ¢ =1 at these locations.

On the other hand, for the same tube assembly, taking 7 =0.85, the yielding begins at
the inner surface (»=a ). The corresponding elastic limit external pressure is found
as f_’e =0.440648 by using Eq. (125). The integration constants are obtained as 51 =-
7.49702x10™ | C, =-8.99642x10™* , C, =-8.32520x10™* and C, =-7.85015x10*.

The consequent stresses and deformation are given in Fig.4.9.

Finally, by choosing a radius lower than the critical interface radius of the two-layer

brass-copper tube under external pressure (7; = 0.65 < 7, ), the yielding begins at
the interface (r = 7;) as shown in Fig. 4.10. The elastic limit external pressure is
obtained as I_’e =0.418738 by using Eq.(126). The corresponding integration constants
are calculated as C, =6.76437x10™*, C, =-8.11725x10™, C, =-7.13172x10™* and

C, =-7.24779x107".

For the two layer tubes under external pressure, when Tresca’s yield criterion is used,
same yielding behavior but with different values of elastic limit pressures and critical
interface radii is evaluated. In order to compare these two criteria, Table 4.3 is
prepared. For the three cases of yielding, the elastic limit pressures and the interface
radii are seen in this table. In the next part, the yielding of three layer-tubes under

pressure will be presented.
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Figure 4.8 The distributions of stresses and displacement in a two-layer brass-copper

tube (@ =0.5, 7 =7_,=0.6898) under elastic limit external pressure P,=0.458597
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Figure 4.9 The distributions of stresses and displacement in a two-layer brass-copper

tube (a =0.5, 7,=0.85) under elastic limit external pressure I_’e =0.440648
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Figure 4.10 The distributions of stresses and displacement in a tw- layer brass-

copper tube (a =0.5, r,=0.65) under elastic limit internal pressure I_’e =0.418738
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Table 4.3 Elastic limit pressures and interface radii for different yielding cases of the

two-layer tubes under external pressure (a =0.5)

Location(s) of yielding Elastic limit external | Interface radius
and yielding criterion pressure (E) (n)
Simultaneous yielding at » = @ and
o 0.40401 0.681711
at r =1, (Tresca’s criterion)
Simultaneous yielding at » = @ and
] o 0.458597 0.689800
at ¥ =7, (von Mises criterion)
Yielding at the inner surface
0.387295 0.85
7 = a (Tresca’s criterion)
Yielding at the inner surface
. o 0.440648 0.85
7 = a (von Mises criterion)
Yielding at the interface r = r;
0.373615 0.65
(Tresca’s criterion)
Yielding at the interface » = 7; (von
0.418738 0.65
Mises criterion)

4.4 Three-Layer Tube Results

In order to check the derivations of the stress and displacement expressions of the
three-layer tubes, a verification study is also performed as it was done for the two-
layer tubes. Firstly, a single layer tube is taken, subsequently a second tube which is
made of the same material and having the same dimension is considered. What
makes the second tube different is the fact that it is composed of three layers, which
have the same material properties as the single tube. The results show that the two

assemblies are identically the same for both pressure cases.

In Fig. 4.11, the simultaneous yielding behavior of a three-layer tube under internal
pressure according to the Tresca’s criterion is shown. The first layer of the tube is
made of brass, second layer is copper and the outer layer is aluminum. Since there
are three different layers in the tube, two different critical interface radii should be
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considered. For a =0.3, the elastic limit internal pressure and corresponding interface
radii are calculated as P =0.429459, 7 _=0.394202 and 7, =0.507988 by the

numerical solution of Egs. (128), (129) and (130) together. The corresponding

integration constants are computed as C,=C,/b*=2.37214x10"*, C,=C,=
1.11555x10™, C, = C,/b*=2.34038x10", C, = C,=1.31993x10™*, C,=C,/b’=
2.48835x10™ and C, = C,/b*=7.46506x10™* by the help of Eqgs. (68) to (73). It
can be seen in this graph that ¢=1 at » =a, r =5, and r =r, which shows the

simultaneous yielding.

For the same material combination, the yielding begins at the inner surface (» = a)

first when the interface radii are selected as », > r,, and r, > r,,. For a=0.3,
7=0.45 and 7,=0.55, the elastic limit pressure is found as P,=0.432391 by using
Esq. (131). The integration constants are calculated as a =2.37214x10""
C,=1.06918x10™* , C,=2.34711x10"*, C,=1.19277x10"*, C, =2.48262x10"*
and (76 = 7.44788x107*. The consequent stresses and displacement are given in Fig.

4.12.
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Figure 4.11 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit internal pressure E =0.429459

(=03, 7. =0.394202, 7_ =0.507988)
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Figure 4.12 The distributions of stresses and displacement in a three layer brass-

copper-aluminum tube under elastic limit internal pressure P, =0.432391

(@=0.3, 7 =0.45, 7,=0.55)
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For a three-layer tube with the same material combination, yielding may begin at the

inner interface (» =r,) first. In order to have such yielding behaviour, the following
criteria should be satisfied: », < r, and r,=r,,. For a=03, , = 0.35 and 7, =
7,..,=0.507988, the corresponding elastic limit internal pressure is obtained as P,=
0.346022 by using Eq. (132). The integration constants are calculated as
C, =1.87650x10" , C, =7.82928x107*, C, =1.84495x10™*, C, =1.04051x107",
C, =1.96160x10* and C, =5.88480x10*. Fig. 4.13 shows the corresponding

stresses and displacement.

Similar to the case presented above, by changing the thickness of the layers, it is
possible to have the yielding starting from the outer interface (» =r, ) first. For this
purpose, 1, = r,,, and r,<r, are the two criteria to be considered. For a =0.3, r, =

7., =0.394202 and r, = 0.45, the elastic limit pressure is obtained by using Eq. (133)

as P= 0.319417. The corresponding constants of integration are computed as

e

follows: C, =1.84381x107™*, C, =1.09470x10™, C, =1.82464x10™, C, = 1.21805
x107, C5=1.95267x10" and C, =5.85803x10™". The stresses and displacement

for this case is given in Fig.4.14.

Figure 4.15 is given in order to represent the behaviour of yielding at two different
layers at the same time. For the same material combination, the interface radius, at
which the yielding has not been started yet, should be selected to be higher than the
critical interface radius belonging to the three-layer-simultaneous-yielding case. In
the figure, yielding begins at the inner surface (#=a) and at the inner interface

(r=r,) at the same time. For the outer interface, the condition r, >r,,, is valid and, it
is selected as 7,=0.55. By solving Eqs. (128) and (129) together, the critical inner

interface is calculated as 7;,, = 0.393877 and the corresponding elastic limit internal
pressure is computed as I_’e: 0.439437. The integration constants are calculated as
C, =2.37214x107*, C,=9.57768x10™ , C,=2.33652x10", C, =1.18748x107*,
C, =2.47142x10*and C, =7.41427x10™".
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Figure 4.13 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube (a =0.3, 1, =0.35, r,=r,,,=0.507988) under elastic limit

internal pressure P, =0.346022
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Figure 4.14 The distributions of stresses and displacement in a three layer brass-

copper-aluminum tube (a =0.3, 7 =0.394202, r, = 0.45) under elastic limit internal

pressure at P.=0.319417
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Figure 4.15 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit internal pressure E =0.439437

(a=03, 7, =0.393877, ,=0.55)
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The case where the inner and the outer layers start yielding simultaneously according

to Tresca’s yield criterion is shown in Fig. 4.16. For a =0.3 and 7 = 0.45, the elastic

limit internal pressure and the critical outer interface radius is obtained by solving

Egs. (128) and (130) together as 1‘_’620.422694 and 7,,=0.509206. The
corresponding integration constants are calculated as a =2.37214x107", 6’2 =
1.22254x10™, C, =2.35196x10"*, C,=1.32220x10"*, C,=2.50030x10"* and

C, =7.50091x10".

Finally, in Fig. 4.17, the case in which the middle and the outer layers starts yielding

at the same time according to Tresca’s yield criterion is shown. For a =0.3 and

assigning the elastic limit internal pressure I_’ez 0.3, the critical inner and the outer
interface radii are obtained by solving Eqgs. (129) and (130) together as 7, =
0.334590 and r,,=0.432958, respectively. The corresponding integration constants
are calculated as C, =1.71171x10™, C, =9.61421x10™*, C, =1.68607x10*, C, =

1.19045x10™, C, =1.80757x10* and C, =5.42272x107".

In order to make a comparison between Tresca’s and von Mises yield criterion for

the considered assemblies, Table 4.4 is prepared.
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Figure 4.16 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit internal pressure E =0.422694

(@=03, 7 =045, 7,=7, =0.509206)
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Figure 4.17 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit internal pressure E =0.3

(@=03, 7=r_ =0.334590, 7, =7, =0.432958)
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Table 4.4 Elastic limit pressures and interface radii for different yielding cases of the

three-layer tubes under internal pressure (a =0.3)

Location(s) of yielding Elastic limit external Interface radii
and yielding criterion pressure (I_JQ) (r;and r,)
Simultancous yieldingat r =a., r =1, 0.429459 0.394202, 0.507988
and r =r, (Tresca’s criterion)
Simultaneous yielding at 7 =a., r =17, 0.495768 0.394397, 0.508163
and r =r, (von Mises criterion)
Yielding at the inner surface 0.432391 0.45,0.55
7 = a (Tresca’s criterion)
Yielding at the inner surface » = a 0.499146 0.45, 0.55
(von Mises criterion)
Yielding at the inner interface » = 7, 0.346022 0.35. 0.507988
(Tresca’s criterion) ’
Yielding at the inner interface » = 4 0.399279 0.35,0.508163
(von Mises criterion)
Yielding at the outer interface » = r, 0.319417 0.394202. 0.45
(Tresca’s criterion) ,
Yielding at the outer interface r =r, 0.368570 0.394397, 0.45
(Tresca’s criterion)
Simultaneous yielding at » = a and 0439437 0393877, 0.55
r =1, (Tresca’s criterion)
Simultaneous yielding at » = a and 0507278 0.394040, 0.55
r =r, (von Mises criterion)
Simultaneous yielding at » = a and 0422694 0.45, 0.509206
r =r, (Tresca’s criterion)
Simultaneous yielding at » = a and 0.487959 0.45, 0.509365
r =r, (von Mises criterion)
Simultaneous yielding at 7 = 7; and 03 0.334590, 0.432958
r =r, (Tresca’s criterion)
Simultaneous yielding at 7 = 7; and 03 0357289, 0.461533
r =r, (von Mises criterion)

Coming to the external pressure case, using the same material combination (the inner
layer is brass, the middle layer is copper and the outer layer is aluminum), a
simultaneous yielding behaviour (at the three locations at the same time) is observed

according to von Mises yield criterion. As shown in Fig. 4.18, the assembly may
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yield at the three locations simultaneously when a=0.3, 7, =0.413880,

7,,,=0.481949 at the elastic limit external pressure P,=0.451869. These values are

calculated using Egs. (148), (149) and (150). The corresponding integration constants
are obtained as C, =-2.69892x107, C, =-8.99642x10™*, C, =-2.87243x10™*, C, =

-7.98350x10™, C, =-2.09132x10™ and C, =-1.13463x10™". using Egs. (95) to
(100).

Similar to the internal pressure case, the assembly may also yield at the inner layer

(r=a) first. This kind of behaviour is shown in Fig. 4.19. For a =0.3, 7,=0.45 and
7,=0.55, by using Eq. (154), the elastic limit external pressure is found as
P.=0.470063 and the corresponding integration constants are calculated as a =-
2.69892x107, C,=-8.99642x107*, C,=-2.91623x10", C,=-7.92332x107",

C, =-1.77858x10™ and C, =-1.16841x10™*. It should be noted that 7= 0.45> 7

and ,=0.55>r,, .

The yielding may also begin at the inner interface (» = r) first and this situation is

shown in Fig. 4.20. For ¢ =0.3, 7#=0.35 and 7= r,,=0.481949, the elastic limit
external pressure is obtained by the help of Eq. (155) is P.=0.346921, and the
integration constants are calculated as C, =-2.0086x107*, C, =-6.6956x107*, C, =-
2.0868x107*, C, =-6.0575x107, C,=-1.4792x10"* and C,=-8.6732x107*. It

should be noted that 7, =0.35 <7, .

By changing the thickness of the layers, it is possible to have the yielding beginning

from the outer interface (7= r, ) first. For this purpose, r, = r,, and r,<r,_ are the
two criteria to be considered. For a=0.3, = 1, = 0.413880 and 7, = 0.44, the

elastic limit external pressure is obtained by using Eq. (157) as I_’e= 0.358066

considering von Mises yield criterion. The constants of integration are computed as

follows: C, =-2.23439x107*, C, =-7.44798x10", C, =-2.37804x10", C, =
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-6.60940x10™, C, =-1.90270x10* and C, =-9.06465x10™*. The stresses and

displacement for this case is given in Fig. 4.21.
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Figure 4.18 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit external pressure P,=0.451869

(=03, 7., =0.413880, 7, =0.481949)

64



1.2

stresses and displacement

j7

0.4 | = A

L z ~

[ 0, _
-0.6 C O-H
0.8 | G
1.0
_1.2-1111111111111111111111111111111111

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

radial coordinate

Figure 4.19 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit external pressure f_’e =0.470063

(a=0.3, 7: =0.45, 1,=0.55)
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Figure 4.20 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit external pressure }_’e =0.346921

(a=0.3, 7, =0.35, ,=7, =0.481949)
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Figure 4.21 The distributions of stresses and displacement in a three layer brass-

copper-aluminum tube under elastic limit external pressure }_’e =0.358066

(a=03, 7

=7 =0.413880, 7, =0.44)
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Having seen the situation where yielding under external pressure begins at a single
layer first, different from the situations presented above, the yielding may start at two
different layers at the same time according to von Mises yield criterion. In Fig. 4.22,

the yielding begins at the inner surface (#=a) and at the inner interface (r=r) of
the assembly for the same material combination. For a =0.3 and 7, =0.5, the elastic
limit external pressure and the critical inner interface radius is calculated as
P.=0.459011 and 7;,=0.413880 by solving Egs. (148) and (149) together. The
corresponding integration constants are obtained as 51 =-2.69892x107", 52 =-
8.99642x107*, C, =-2.87243x107, C, =-7.98350x10~*, C, =-1.99657x10"" and

C, =-1.14873x107".

In Fig 4.23 yielding starts at the inner layer (» =a ) and the outer interface (7 =7,) of
the composite tube at the same time. For a =0.3, 7,=0.45, the elastic limit external
pressure and the critical outer interface are found as P =0.447096, and
r,.,=0.485581 which is obtained by solving Eqs. (148) and (150) together. The
integration constants are calculated as C, =-2.69892x107*, C, =-8.99642x107*,
C, =-2.91623x107*, C,=-7.92331x10", C,=-2.13296x10" and C,=-

1.12466x107*.

Finally, in Fig. 4.24, the case in which the middle and the outer layers starts yielding

simultaneously according to von Mises’s yield criterion is shown. For a =0.3 and

assigning the elastic limit external pressure E = 0.3, the inner and the outer interface
radii are obtained by solving Egs. (149), (150) together as 7, =0.338355,
r,.,=0.401616, respectively. The corresponding integration constants are calculated
as  C, =-1.88905x10"*, C,=-6.29685x10", C,=-1.95469x10", C,=-

5.72354x10™, C; =-1.65017x10™* and C, =-7.61148x107*.

In order to make a comparison between Tresca’s and the von Mises yield criteria for

the considered assemblies, Table 4.5 is prepared.
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Figure 4.22 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit external pressure f_’e =0.459011

(a=0.3, 7. =7_=0.413880, 7,=0.5)
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Figure 4.23 The distributions of stresses and displacement in a three-layer brass-
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Figure 4.24 The distributions of stresses and displacement in a three-layer brass-

copper-aluminum tube under elastic limit external pressure at E =0.3

(a=03, 7 =7, =0.338355, 7, =r, =0.401616)
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Table 4.5 Elastic limit pressures and interface radii for different yielding cases of the

three-layer tubes under external pressure (a =0.3)

Location(s) of yielding

and yielding criterion

Elastic limit external

pressure ( I_’e )

Interface radii

(r;and r,)

Simultaneous yielding at r =a, r = r

0.385997 0.409026, 0.451441
and r =r, (Tresca’s criterion)
Simultaneous yieldingat r =a, r =1, 0.451869 0.413880, 0.481949
and r = r, (von Mises criterion)
Yielding at the inner surface 0.413148 0.45,0.55
7 = a (Tresca’s criterion)
Yielding at the inner surface » = a 0.470063 0.45,0.55
(von Mises criterion)
Yielding at the inner interface » = 7, 0.297893 0.35. 0.451441
(Tresca’s criterion) ’
Yielding at the inner interface » = 4 0.346921 0.35, 0.481949
(von Mises criterion)
Yielding at the outer interface » = r, 0.353278 0.409026. 0.44
(Tresca’s criterion) ,
Yielding at the outer interface r =r, 0.358066 0.413880, 0.44
(Tresca’s criterion)
Simultaneous yielding at » = a and 0404234 0.409026, 0.50
r =1, (Tresca’s criterion)
Simultaneous yielding at » = a and 0459011 0.413880, 0.50
r =1, (von Mises criterion)
Simultaneous yielding at » = a and 0385875 0.45, 0.455964
r =r, (Tresca’s criterion)
Simultaneous yielding at » = a and 0.447096 0.45, 0.485581
r =r, (von Mises criterion)
Simultaneous yielding at 7 = 7; and 03 0361651, 0.412416
r =r, (Tresca’s criterion)
Simultaneous yielding at 7 = 7; and 03 0.338355, 0.401616

r =r, (von Mises criterion)
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4.5 An Example Problem

In order to check the validity of the derivations, an example problem, which was
given by Hongjun et al. [17], is considered. According to their example problem, a
three-layer hollow cylinder made of steel and concrete is taken into consideration
and the inner and the outer layers of the tube assembly are made of steel and the
middle layer is made of concrete. The radius of the inner and outer surfaces of the
tubes is taken as 0.5 m. and 1.0 m, respectively. The thickness of the inner layer is
0.05 m and the thickness of the outer layer is 0.02 m. The middle layer is filled with
concrete with 0.43 meters thickness. The modulus of elasticity for the steel layers is
taken as 210 GPa and for the concrete layer it is taken as 23 GPa. The Poisson’s ratio

for the steel layers is taken as 0.28 and for the concrete layer it is taken as 0.18.

According to the study, the considered composite tube is faced with uniform pressure

acting at the inner surface, which is g =100kN /m’ (0.1 MPa). The distributions of
the stress components o, and o, and the radial displacement u are given in that
study and as it was expected, a large difference between the tangential stresses o, is

observed. The paper only considers the distribution of the stresses in the composite

tube, where the dimensional variables are used.

As it was mentioned previously, the aim for examining this example problem is to
validate the derivations of our study. For this purpose, the composite tube with the
same uniform pressure, same dimensions and material properties are considered in
our solution and the distributions of stresses o, and o, and the displacement u are
obtained. As seen in Figs. 4.23 to 4.25, same distributions of stresses and
displacement are obtained which shows the correctness of our study. In these figures,
the lines represent our results, while the thick dot points are the results of the study

performed by Hongjun et al. [17].
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Figure 4.25 The distribution of the tangential stress (o, ) in a three-layer steel-

concrete-steel tube under internal pressure (#=0.5, g=100kN/m? (0.1 MPa))
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Figure 4.26 The distributions of the radial stress (o, ) in a three-layer steel-concrete-

steel tube under internal pressure (#=0.5, g=100kN/m? (0.1 MPa))
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Figure 4.27 The distributions of the displacement in a three-layer steel-concrete-steel

tube under internal pressure (#=0.5, g=100kN/m? (0.1 MPa))
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CHAPTERS

SUMMARY AND CONCLUSION

In this study, the deformation behavior of the single, two and three-layer tubes under
internal and external pressure is presented. Firstly, the expressions of the stresses and
displacement for the single layer tubes are derived considering the plane strain
assumption. Afterwards, studies are carried on with finding the expressions of the
stresses and displacements of two and three-layer tubes under pressure loading. By
using the stress expressions, the yielding behaviour of the tubes is studied in details.
For a set of combination of materials, Tresca’s and von Mises yield criteria are used
to monitor the commencement of the plastic flow at the tubes. Finally, the elastic
limit pressures and critical interface radii that are obtained by these two criteria are
compared. It should be noted that the material properties of the tube layers are quite

important in determining the yielding behavior of the assemblies.

It is found in the studies that, for a single layer tube, the yielding begins at the inner
surface of the assembly (» = a) under both internal and external pressure case. On the
other hand, for the two-layer tubes under external or internal pressure, yielding may
start;

1. At the inner surface (» = a) first,

2. At the interface of the two-layer tubes (r =r,) first.
3. Simultaneously at the inner layer (» = @) and at the interface (» =7 ) of the

assembly.

For the three-layer tubes, monitoring the yielding behaviour is more difficult. Studies

show that for both internal and external pressure cases, the plastic flow may start;
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1. At the inner surface of the assembly (r = a) first.

2. At the inner interface (r =r,) first.

3. At the outer interface (r =r,) first.

4. Simultaneously at the inner surface (» = a) and at the inner interface

(r =r,) first.

5. Simultaneously at the inner surface (» = @) and at the outer interface
(r =r,) first.
6. Simultaneously at the inner interface (» =7 ) and at the outer interface
(r =r,) first.
7. Simultaneously at the inner surface (» = a), at the inner interface (r =1,),

and at the outer interface (» =r,) of the assembly.

For single layer tubes, the yielding starts at the inner layer » = a, however, different
case of plastic flow can be observed for two and three-layer tubes as listed above.
Moreover, for these tubes, yielding does not only begin at only one location, it is also
possible that it may start at several locations at the same time. Apart from the
simultaneous yielding of all layers for two and three-layer tube assemblies, it is

beneficial to refresh the conditions for different yielding cases:

1. For the two-layer tubes, yielding may begin from the inner surface or at the
interface first under internal or external pressure. It is found that if the
thickness of the inner tube material is selected to be higher than the critical

radius (7,>7,, ), yielding begins at the inner surface (r = a) first. On the other

hand, if the thickness of the inner tube is smaller than the critical radius

(1, <mn,, ), yielding starts at the interface (r = # ), which is the surface of the

outer layer.

2. For the three-layer tubes, comparing to single and two-layer tubes, the
yielding behaviour is quite different. After using a number of material
combinations, the simultaneous yielding case at the three locations (r = a, r =

r, and r = r, ) can be observed. It is found that, the yield limit (o) of the
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materials affect the condition of the yielding significantly. If the yield limit of
the material of the inner tube is higher than the yield limit of the middle tube,
and the yield limit of the material of the middle tube is higher than the yield

limit of the outer tube (o,>0,>0,), the assembly may yield

simultaneously at the three locations stated above. Similar to the two-layer

tubes, if the inner interface 7 is selected to be higher than the critical inner
radius 7, and the outer interface r, is selected to be higher than the outer
critical radius r,, , the yielding begins at the inner surface of the tube (r = a)
first. For yielding that starts at the inner interface #, the outer interface
radius should be equal to r,, and the thickness of the inner tube should be
smaller than the critical inner radius r, . . For the yielding which starts from

the outer interfacer,, r should be equal tor, ,and r, <r, .
cr cr

3. Coming to the simultaneous yielding at the two locations of the assembly,
it is known that by solving two of the three equations together, it is possible
to find the elastic limit pressure and the corresponding critical interface
radius; however, the value of the other interface radius should be in some
limits. For the yielding from the inner surface a and from the inner interface

7, , the value of the outer interface 7, should be higher than the critical outer
interface radius r,,, , which is obtained by the numerical solution of the three
equations given in the previous chapter. The assembly may also yield from
the inner and the outer interfaces (7 andr, ) simultaneously. For this purpose,

the inner radius, 7, should be higher than the critical inner radius, ., which

is obtained by the numerical solution of the corresponding equations.

Another aim of this study was to compare Tresca’s yield criterion with von Mises
yield criterion. According to the results obtained after the analyses, the following

findings can be listed:

1. For the single layer tubes under internal or external pressure, the elastic

limit pressure according to von Mises criterion is higher than the one which is
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found by Tresca’s criterion. This means that Tresca’s criterion is safer than
von Mises criterion. It should be noted that von Mises criterion makes more
sense since the stress component in “’z’’ direction (axial stress) is also

considered while calculating the elastic limit pressures.

2. For the simultaneous yielding of the two-layer tubes under internal
pressure, similar to single layer tubes, the elastic limit pressure calculated by
using von Mises criterion is approximately 15 percent higher than the one
which is found by Tresca’s criterion. On the other hand, the corresponding
critical interface radii are nearly the same for both criteria. Coming to the
external pressure case, similar to the internal pressure case, the elastic limit
pressure according to von Mises criterion is approximately 13 percent higher
than the one which is found by Tresca’s criterion. Same as the internal
pressure case, the critical interface radii calculated by the two criteria are

nearly the same.

3. Focusing on the simultaneous yielding behaviour of the three-layer tubes
under internal pressure, it is seen that there is a small difference between the
critical interface radii, whereas the elastic limit pressures calculated using von
Mises criterion is approximately 15 percent higher than the one obtained by
Tresca’s criterion. These results show that Tresca’s criterion is safer than von
Mises’s criterion, but von Mises’s outcomes are closer to the reality because
of the fact that was mentioned above. For the external pressure case, the
elastic limit pressures according to von Mises criterion are approximately 17

percent higher than the ones obtained by Tresca’s criterion.

4. For the yielding cases of the three-layer tubes, in which the yielding starts
from two different locations at the same time, it is observed that the
differences between the pressure values obtained by using Tresca’s and von
Mises criteria are not significant. For internal pressure case, it can be stated
that Tresca’s criterion is safer, whereas it is far away from the findings
calculated by the values calculated by von Mises’s criterion. On the other
hand, it is difficult to make a comment on the external pressure case since the
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elastic limit pressures calculated by using von Mises criterion is higher than
that is obtained by using Tresca’s criterion whereas in some cases the
thickness of the corresponding tube layers obtained by using von Mises

criterion is higher than that are obtained by Tresca’s criterion.

In general, for the internal pressure cases of the single, two and three-layer tubes, if
the assembly is to be designed by using Tresca’s criterion, it would be safer since
lower elastic limit pressures can be obtained while compared with von Mises
criterion. For the external pressure case, a result like internal pressure case can not be
stated as the yielding behaviour of the multi-layer tubes under external pressure is

quite complex.

For the future studies, this study may be a step to develop analytical solutions for the
pressurized tubes under different loading and boundary conditions. Moreover,
experimental studies based on multi-layer pressurized tubes can be performed.

Lastly, the elastic-plastic analysis of multi-layer tubes can be studied in the future.
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