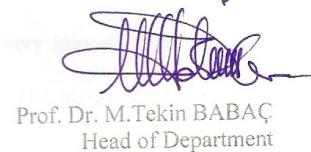
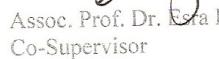

**EFFECTS OF N-ACETYL CYSTEINE (NAC), FERMENTED SUMACH and
EAU DE ROSE ON THE FORMATION OF SLIME LAYER OF
STAPHYLOCOCCUS spp.**

by
SAHRA KIRMUSAOĞLU

**THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
THE ABANT IZZET BAYSAL UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF MASTER OF SCIENCE
IN
THE DEPARTMENT OF BIOLOGY**


JUNE 2010

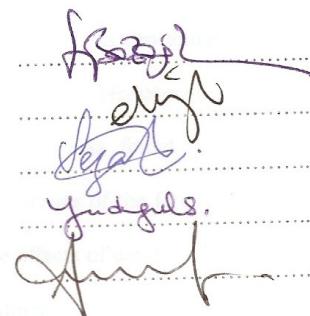
Approval of the Graduate School of Natural and Applied Science.


Prof. Dr. Nihat ÇELEBİ
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
the Master of Science.

Prof. Dr. M.Tekin BABAÇ
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science in Biology.


Assoc. Prof. Dr. Esra KOÇOĞLU
Co-Supervisor

Assoc. Prof. Dr. Seyhun YURDUGÜL
Supervisor

Examining Committee Members

1. Prof. Dr. Faruk BOZOĞLU
2. Assoc. Prof. Dr. Esra KOÇOĞLU
3. Assoc. Prof. Dr. Seza ARSLAN
4. Assoc. Prof. Dr. Seyhun YURDUGÜL
5. Assist. Prof. Dr. Alper KARAKAŞ

Faruk Bozoğlu
Esra Koçoğlu
Seza Arslan
Seyhun Yurdugül
Alper Karakaş

ABSTRACT

EFFECTS OF N-ACETYL CYSTEINE (NAC), FERMENTED SUMACH and EAU DE ROSE ON THE FORMATION OF SLIME LAYER OF *STAPHYLOCOCCUS* spp.

KIRMUSAOĞLU, Sahra
Master of Science, Department of Biology
Supervisor: Assoc. Prof. Dr. Seyhun YURDUGÜL
Co-Supervisor: Assoc. Prof. Dr. Esra KOÇOĞLU

June 2010, 90 pages

Implant associated infections are reported to cause very important problems in hospitalized and immunocompressed patients in worldwide. The genus *Staphylococcus* spp., mostly known with its severe pathogenic strains are responsible to secrete glycocalyx reported to be a polysaccharide coating, attach bacteria to prosthetic surfaces and after colonization the bacteria can spread out of the infected area to entire body forming the slime layer. In this study, N-acetyl cysteine (NAC), a mucolytic and an antioxidative agent, fermented sumach (*Rhus coriaria*); widely used in south eastern Turkey as a salad dressing; and Eau de rose, an antiseptic was used as in solely and/or in combination to investigate the effect on the slime formation of *Staphylococcus* spp. A total number of 89 *Staphylococcus* strains were studied and 41 of them were found as slime producing strains. Significant differences between various concentrations of sole treatments were observed in the methicillin resistant Staphylococci (MRS) and methicillin sensitive Staphylococci (MSS) ($p<0.05$). It was found that the slime formation was decreased due to the increased concentrations of the fermented sumach, NAC and eau de rose treatments respectively, and the effects of combination treatments were not found to be better effective than the sole treatment.

Keywords: *Staphylococcus*, Slime layer, NAC, Fermented Sumach (*Rhus coriaria*), Eau de rose.

ÖZET

N-ASETİL SİSTEİN (NAC), SUMAK EKİSİ ve GÜL SUYU' NUN STAPHYLOCOCCUSTÜRLERİNDE BİYOFİLM TABAKASI OLUŞUMUNA ETKİLERİ

KIRMUSAOĞLU, Sahra
Yüksek Lisans, Biyoloji Bölümü
Tez Danışmanı: Doç. Dr. Seyhun YURDUGÜL
Yardımcı Tez Danışmanı: Doç. Dr. Esra KOÇOĞLU

Haziran 2010, 90 sayfa

İmplant ilişkili infeksiyonların, dünyanın her yerinde hastaneye yatırılmış ve immunitesi baskılanmış hastalarda çok önemli problemlere sebep olduğu bildirilmiştir. Çoğunlukla şiddetli patojenik suşlar olduğu bilinen Stafilocoklar, polisakkarit yapısında olduğu bildirilen, bakteriyi protez yüzeye yapıştıran glikokaliksi salgılar ve kolonizasyondan sonra bakteri biyofilm tabakasını oluşturarak vücudun her yerine infekte olmuş alandan yayılabilir. Bu çalışmada, mukolitik ve antioksidan bir ajan olan N-acetylcysteine, çoğunlukla salatalarda Türkiye' nin güney doğusunda geniş çapta kullanılan sumak ekşisi (*Rhus coriaria*); ve bir antiseptik olan gül suyu yanız başlarına ve bileşik olarak Stafilocokların biyofilm oluşumuna etkilerini araştırmak için kullanıldı. Toplam 89 Stafilocok suşu çalışılmış ve bunların 41'inin slime oluşturduğu bulunmuştur. Kontrol ve eklentiler ile ilgili çalışmalardan sonra, metisilin dirençli Stafilocoklar (MRS) ve metisilin duyarlı Stafilocoklar (MSS)' da her bir eklentinin çeşitli konsantrasyonları arasındaki farklılıklar incelendi ($p<0.05$). Sumak ekşisi, NAC ve gül suyu eklentilerinin konsantrasyon artışlarından dolayı biyofilm oluşumunun azaldığı ayrıca bileşik uygulamaların etkisinin yalnız uygulamalardan daha etkili olmadığı bulunmuştur.

Anahtar Kelimeler: Stafilocok, Biyofilm tabakası, N-asetil sistein, Sumak ekşisi (*Rhus coriaria*), Gülsuyu.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Assoc. Prof. Dr. Seyhun YURDUGÜL, for his support and suggestions in this thesis. I would also like to thank to my co-supervisor, Assoc. Prof. Dr. Esra KOÇOĞLU, who has advised and guided me through this research. I thank to Assist. Prof. Dr. Aysu KIYAN and Assist. Prof. Dr. Alper KARAKAŞ for their support.

I offer my special thanks to Assoc. Prof. Dr. Oğuz KARABAY who were responsible of Microbiology Laboratory of AIBU IBMF Hospital had encouraged me to continue my master of science studies when i had worked there.

And I offer my special thanks to Assist. Dr. Burçin BALABAN, Bio. Özgür GÜNGÖREN, Bio. Yasemin KARAKAYA and Lab. Tekn. Ali Savaş YILDIZ for support and for their endless friendship.

Finally, I am grateful to my family for their encouragement, support and love... Especially, I am grateful to my mother Nurhan KIRMUSAOĞLU for coming with me to laboratory at nights.

TABLE OF CONTENTS

ABSTRACT.....	iii
ÖZET.....	v
ACKNOWLEDGEMENTS.....	vii
TABLE OF CONTENTS.....	viii
LIST OF TABLES.....	xii
LIST OF FIGURES.....	xiv
LIST OF ABBREVIATIONS.....	xv
CHAPTER	
1 INTRODUCTION.....	1
1.1 N- acetylcysteine.....	3
1.1.1 The Functional Properties of NAC.....	3
1.1.2 The Structure and Biological Components of NAC.....	5
1.2 Sumach.....	6
1.2.1 The Functional Properties of Sumach.....	6
1.2.2 The Biological Components of Sumach.....	7
1.2.2.1 Tannin.....	7
1.2.2.2 Gallic acid.....	8
1.2.2.3 Flavonoids.....	9
1.2.2.4 Malic acid.....	10
1.2.2.5 Citric acid.....	10
1.2.2.6 Methyl gallate (ester of 3,4,5-trihydroxybenzoic acid).....	10

1.2.2.7 Other Compounds.....	11
1.3. Eau de rose.....	11
1.3.1 The Biological Components of Eau de rose.....	11
1.3.1.1 Corilagin.....	12
1.3.1.2 Tellimagrandin.....	13
1.3.1.3 Other compounds.....	13
1.4 <i>Staphylococcus</i>	13
1.4.1 Methicilline Resistance of <i>Staphylococcus</i>	14
1.4.2 The Pathogenesis.....	15
1.4.2.1 The Slime Production.....	15
1.4.2.2 The Structure of Biofilm.....	16
1.4.3 The Resistance To Antimicrobial Agents Due To Biofilm.....	17
1.4.4 Indwelling Medical Device Associated Biofilm Infections.....	18
1.4.4.1 The Prosthetic Valves.....	18
1.4.4.2 The Prosthetic Joints and Knees.....	18
1.4.4.3 Central Venous Catheters.....	19
1.4.4.4 Urinary (Foley) Catheters.....	20
1.4.4.5 Intrauterine Devices.....	21
1.4.5 Clinical Practice & Prevention.....	21
1.4.6. Treatment.....	22
2 THE AIM AND THE SCOPE OF THE STUDY.....	23
3 MATERIALS AND METHOD.....	24
3.1 The Microorganisms.....	24
3.2 The Treatment with The Supplements.....	24
3.3 The Experimentation.....	25

3.4 The Qualitative Determination of Slime.....	27
3.5 The Quantitative Determination of Slime.....	27
3.6 The Determination of The Slime Index (SI).....	28
3.7 The Effect of pH and Temperature on the Inhibitory Activity of the Treatment Groups.....	29
3.8 The Effects of The Combined Treatments on the Inhibitory Activity of <i>Staphylococcus</i>	29
3.9 The Statistical Evaluation.....	30
4 RESULTS AND DISCUSSIONS.....	31
4.1 The Effects of NAC on Biofilm Formation and Growth of <i>Staphylococcus</i>	31
4.2 The Effects of Sumach on Biofilm Formation and Growth of <i>Staphylococcus</i>	33
4.3 The Effects of Eau de rose on Biofilm Formation and Growth of <i>Staphylococcus</i>	35
4.4 The Effects of Supplements on Biofilm Formation and growth of MRS and MSS.....	37
4.4.1 The Effects of NAC on Biofilm Formation and Growth of MRS and MSS.....	39
4.4.2 The Effects of Sumach on Biofilm Formation and Growth of MRS and MSS.....	42
4.4.3 The Effects of Eau de rose on Biofilm Formation and Growth of MRS and MSS.....	45
4.5 The Effects of pH on the Growth of <i>Staphylococcus</i>	47
4.6 The Effects of Temperature on the Growth of <i>Staphylococcus</i>	48

4.7 The Effects of The Combined Treatments on The Growth and Biofilm formation of all types of <i>Staphylococcus aureus</i> and <i>Staphylococcus epidermidis</i>	48
5 CONCLUSION.....	51
6 REFERENCES.....	52
7 APPENDICES.....	73
1. SI of Strains which was Treated with NAC.....	73
2. Slime of Strains which was Treated with NAC.....	75
3. Growth of Strains which was Treated with NAC.....	76
4. SI of Strains which was Treated with Sumach.....	78
5. Slime of Strains which was Treated with Sumach.....	79
6. Growth of Strains which was Treated with Sumach.....	81
7. SI of Strains which was Treated with Eau de rose.....	82
8. Slime of Strains which was Treated with Eau de rose.....	84
9. Growth of Strains which was Treated with Eau de rose.....	85
10. Controls of Slime of 41 strains.....	87
11. Controls of Growth of 41 strains.....	88
12. OD Values of Sterile Supplements.....	90

LIST OF TABLES

TABLE

3.1 The Treatments in The Experiment.....	26
4.1.1 The Friedman test results which show the effects of different concentrations of NAC on the growth and biofilm formation of 41 strains.....	31
4.1.2 The Wilcoxon test results which show the effects of different concentrations of NAC on the growth and biofilm formation of 41 strains.....	32
4.2.1 The Friedman test results which show the effects of different concentrations of sumach on the growth and biofilm formation of 41 strains.....	33
4.2.2 The Wilcoxon test results which show the effects of different concentrations of sumach on the growth and biofilm formation of 41 strains.....	34
4.3.1 The Friedman test results which show the effects of different concentrations of eau de rose on the growth and biofilm formation of 40 strains.....	36
4.3.2 The Wilcoxon test results which show the effects of different concentrations of eau de rose on the growth and biofilm formation of 40 strains.....	36
4.4 Two Independent Study results which show the effects of supplements on the growth and biofilm formation of 22 MSS and 19 MRS.....	38

4.4.1.1 The Friedman test results which show the effects of different concentrations of NAC on the growth and biofilm formation of MSS and MRS.....	39
4.4.1.2 The Wilcoxon test results which show the effects of different concentrations of NAC on the growth and biofilm formation of MSS.....	40
4.4.1.3 The Wilcoxon test results which show the effects of different concentrations of NAC on the growth and biofilm formation of MRS.....	41
4.4.2.1 The Friedman test results which show the effects of different concentrations of Sumach on the growth and biofilm formation of MSS and MRS.....	42
4.4.2.2 The Wilcoxon test results which show the effects of different concentrations of sumach on the growth and biofilm formation of MSS.....	43
4.4.2.3 The Wilcoxon test results which show the effects of different concentrations of sumach on the growth and biofilm formation of MRS.....	44
4.4.3.1 The Friedman test results which show the effects of different concentrations of eau de rose on the growth and biofilm formation of MSS and MRS.....	45
4.4.3.2 The Wilcoxon test results which show the effects of different concentrations of eau de rose on the growth and biofilm formation of MSS.....	46
4.4.3.3 The Wilcoxon test results which show the effects of different concentrations of eau de rose on the growth and biofilm formation of MRS.....	47

LIST OF FIGURES

FIGURES

1 The Structure of NAC (URL 2).....	5
2 The Structure Unit of Hydrolyzable Tannins (URL 3).....	8
3 The Structure of Tannin (URL 4).....	8
4 The Structure of Flavonoid (URL 5).....	10
5 The Structure of Corilagin (URL 6).....	12
6 The Structure of Tellimagrandin (URL 7).....	13
7 Strain inoculated cuvettes which contained treatment groups and TSB.....	27
8 Stained Slimes of strains in 96-well flat-bottomed microplate.....	28
9 Combination zones by Disc diffusion method.....	49
10 Zones were effected by temperature and pH.....	50

LIST OF ABBREVIATIONS

CG	: Control Group
CoNS	: Coagulase Negative <i>Staphylococcus</i>
EGP	: Eau de rose Group
ERK	: Extracellular signal Regulated Kinase
GSH	: Glutathione
IL	: Interleukine
IUD	: Intra Uterine Device
IV	: Intravenous
MRS	: Methicillin Resistant <i>Staphylococcus</i>
MRSA	: Methicillin Resistant <i>Staphylococcus aureus</i>
MRSE	: Methicillin Resistant <i>Staphylococcus epidermidis</i>
MSS	: Methicillin Sensitive <i>Staphylococcus</i>
MSSA	: Methicillin Sensitive <i>Staphylococcus aureus</i>
MSSE	: Methicillin Sensitive <i>Staphylococcus epidermidis</i>
NAC	: N-acetylcysteine
NACGP	: NAC Group
NAPQI	: N-acetyl-p benzoquinone imine
NF-κB	: Nuclear Factor Kappa-light-chain-enhancer of activated B cells
NO	: Nitric oxide
PBP	: Penicilin Binding Protein
PIA	: Polysaccharide Intercellular Adhesin
PJI	: Prosthetic joint infections

PSA	: Polysaccharide Adhesin
PVE	: Prosthetic Valve Endocarditis
S. aureus	: <i>Staphylococcus aureus</i>
S. epidermidis	: <i>Staphylococcus epidermidis</i>
SGP	: Sumach Group
TNF	: Tumor Necrosis Factor
TSB	: Triptic Soya Broth
WES	: Water Extracted Sumach
PBS	: Phosphate-Buffered Saline
OD	: Optical Density
MIC	: Minimum Inhibitory Concentration
SI	: Slime Index

CHAPTER 1

INTRODUCTION

Staphylococcus epidermidis and other coagulase-negative Staphylococci (CoNS) are the most common causes of prosthetic device and catheter-related infections (Kloos and Bannerman, 1994).

The rates of resistance of pathogenic microorganisms to antimicrobial agents are increasing with an alarming frequency. The emergence of bacterial resistance to antibiotics has consequently become a worldwide concern (Edmond et al., 1999; Ge et al., 2002). Therefore, combination therapy is often beneficial for patients with serious infections caused by drug-resistant pathogens (Meletiadis et al., 2003; Pankey et al. 2005). The use of combination therapy can broaden the spectrum of antibacterial activity, minimize the emergence of resistant bacterial variants and can sometimes result in synergic interaction (Eliopoulos and Eliopoulos, 1998).

Salicyclic acid and certain other non-steroidal anti-inflammatory drugs decrease the production of slime and therefore prevent the formation of biofilms and the adherence of *S. epidermidis* to medical polymers (Farber and Wolff, 1992). Subinhibitory concentrations (sub-MICs) of some antimicrobial agents may also modify slime production (Carsenti-Etesse et al., 1993; Pérez-Giraldo et al., 1994).

The increasing occurrence, particularly in hospitals, of *S. aureus*' resistance including methicillin and a wide range of antimicrobial agents like all kinds of β -lactams, has made therapy more difficult (Fluit et al., 2001; Adwan et al., 2005; Fridkin et al., 2005; Schito, 2006). Although strategies have been proposed in an attempt to

control the spread (Blatnik and Lesnicar, 2006), the search for new ways to treat MRSA infections stimulates the investigation of natural compounds as an alternative treatment of these infections.

In a biofilm, bacteria are well protected from the host immune defense. An increase in antibiotic resistance is the consequence (von Eiff, 1999; Darouiche, 2004; Costerton et al., 2005) even high local concentrations of antibiotics do not completely eradicate bacteria in biofilms (Dunne et al., 1993; Darouiche, 2004).

Aiming at the identification of new therapeutic and preventive targets the pathogenesis of staphylococcal biomaterial-related infections has gained much attention. Today, it is anticipated that the implant is colonized at the time of implantation due to the introduction of commensal skin bacteria (Frank, 2004).

N-acetylcysteine (NAC) is a non-antibiotic drug that has antibacterial properties. It is a mucolytic agent that disrupts disulphide bonds in mucus and reduces the viscosity of secretions (Pérez-Giraldo et al., 1997).

Sumach (*Rhus coriaria*) is commercially available in the local markets (Turkey and the Middle East) prepared by grinding with up to 20% salt in the fermented form. In folk medicine, it is used for treatment of indigestion, anorexia, diarrhea, hemorrhagia and hyperglycemia (Wetherilt and Pala, 1994). Spices and herbs, in addition to imparting flavor, exhibit antimicrobial activity and may help preserve the food (Beuchat and Golden, 1989).

It is known that Rosaceae is rich in corilagin and tellimagrandin (Shiota, 2004) and this class of compounds has antimicrobial activity.

1.1 N- acetylcysteine (NAC)

1.1.1 The Functional Properties of NAC

N-acetylcysteine (NAC), a derivative of the aminoacid cysteine, acts as a sulfhydryl donor for glutathione synthesis, as surrogate glutathione, and may increase the nontoxic sulfation pathway resulting in conjugation of NAPQI (N-acetyl-p benzoquinone imine) (Rakel and Bope, 2004).

N-acetylcysteine is a synthetic precursor of GSH, which stimulates the intracellular synthesis of GSH, acts as a nucleophile to conjugate with reactive metabolites and enhances glutathione S-transferase (GST) activity (Tylickiet al., 2003).

N-Acetyl-L-cysteine, used in medical treatment of chronic bronchitis, cancer, and paracetamol intoxication (Riise et al., 2000; Stey et al., 2000), is one of the smallest drug molecules in use (Noszal et al., 2000), and it has antibacterial properties. The molecule is a thiol containing antioxidant that disrupts disulfide bonds in mucus (Sheffner, 1963; Blanco et al., 1997) and competitively inhibits amino acid (cysteine) utilization (Zygmunt and Martin, 1968; Ventura et al., 1999).

N-acetylcysteine decreases biofilm formation by a variety of bacteria (Pe'rez-Giraldo et al., 1997; Marchese et al., 2003; Schwandt et al., 2004) and reduces the production of extracellular polysaccharide matrix (Olofsson et al., 2003) while promoting the disruption of mature biofilm (Marchese et al., 2003; Schwandt et al., 2004). NAC is widely used in medical practice via inhalation and oral and intravenous routes (Yip et al., 1998; Oldemeyer et al., 2003; Marzullo, 2005), and it has an excellent safety profile (Kao et al., 2003).

NAC also suppresses the activation of neutrophils and macrophages (Kharazmi et al., 1988), attenuates leukocyte–endothelial cell adhesion and capillary leakage

(Kharazmi et al., 1988), and blocks the release of tumour necrosis factor alpha and IL-8, probably by modulating gene expression of these mediators at the transcriptional level (Patterson et al., 2003).

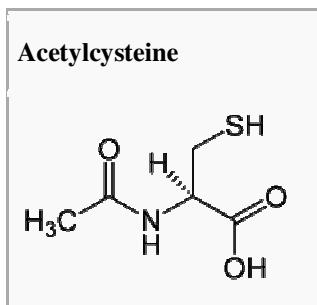
NAC can rescue neurons from apoptotic death in the absence of growth factors by activation of the Ras-Extracellular signal regulated kinase (ERK) pathway, an effect due to direct action on transcription factors by the thiol group, rather than anti-oxidant effects (Yan, 1998). GSH (NAC or whey) can promote immune cell clonal expansion, restore natural killer cell activity and induce p53-dependent apoptosis in cancer cells (Gustavo, 2003). NAC can prevent insulin resistance due to high blood glucose, and this effect was attributed to NAC's anti-oxidant action (Haber, 2003).

NAC can reduce the inflammatory symptoms of chronic obstructive pulmonary disease by direct inhibition of the pro-inflammatory transcription factor NF- κ B (increases transcription of genes coding for TNF- α and IL-1), in addition to its GSH-boosting action (Dekhuijzen, 2004). NAC blocks the inducible form of Nitric Oxide (NO) synthetase from producing inflammatory cytokines, by inhibition of NF- κ B activation (Pahan, 1998).

NAC is the antidote of choice for paracetamol overdose (Vale and Proudfoot, 1995). Reports suggests prompt IV therapy with acetylcysteine may help to minimize hepatorenal damage in acute poisoning with carbon tetrachloride (Mathieson et al., 1985; Ruprah et al., 1985).

Local installation of acetylcysteine into the cavity containing the fungus ball has been used to treat aspergilloma (Kauffman, 1996). There is some evidence in vitro that acetylcysteine has inhibitory properties against *Aspergillus* and *Fusarium* spp (De Lucca et al., 1996).

NAC has been used to regenerate oxidative phosphorylation complexes in mitochondria from age-related decline in function by sulfhydryl group action, rather than antioxidant effect (Miquel, 1995).


1.1.2 The Structure and Biological Components of NAC

N-Acetyl Cysteine (NAC, N-Acetyl-L-Cysteine) is the amino acid L-Cysteine plus an acetyl (-CO-CH₃) group attached to the amino (NH₂) group (URL 1).

Acetylcysteine have thiol (-SH) groups; if this group is free it may be substituted for disulfide bonds in mucus and therefore break the mucus chain (Sweetman, 2002) and act as an electron for neutralizing free-radicals (URL 1). So, NAC is a mucolytic agent and a precursor of L-cysteine and reduced glutathione (Rieutord, 1999).

L-cysteine is neither easily water soluble, nor it is absorbed well by the intestine. Cystine competes with glutamate for transport into cells such that conditions of elevated extracellular glutamate can lead to glutathione depletion, worsened oxidative stress and cell death (Sato, 1999).

Cysteine can significantly decrease binding of copper ions (97% inhibition) to LDL-cholesterol. But cysteine can also reduce copper (Cu²⁺ to Cu⁺) and iron -- resulting an increase in free-radical damage (Patterson, 2003).

Figure 1 The Structure of NAC (URL 2)

1.2 Sumach

Sumach is a member of approximately 250 species of flowering plants in the genus *Rhus* and related genera, in the family Anacardiaceae (URL 8).

Sumach grows wild in the region extending from the Canary Islands to the Mediterranean and southeastern Anatolian region of Turkey. The ground spice is used as a condiment and sprinkled over kebabs, grilled meats, soups, and some salads (Wetherilt and Pala, 1994; Digrak et al., 2001; Nasar-Abbas and Halkman, 2004).

1.2.1 The Functional Properties of Sumach

Food antimicrobials are mostly synthetic chemicals, and some are restricted in foods, because they may cause adverse effects on public health and reluctance by consumers. Therefore, much attention in recent years has been focused on extracts from herbs and spices, which have been used for many centuries to improve the sensory characteristics and to extend the shelf life of foods. Various tanniniferous plants, including sumach (*Rhus coriaria* L.), have been known to contain naturally occurring compounds with antimicrobial activities (Wetherilt and Pala, 1994; Cowan, 1999; Nasar-Abbas and Halkman, 2004).

The bacteriostatic and bactericidal effects of water extracted sumach (WES) on foodborne bacteria, including pathogens, have been demonstrated in broth and agar media (Digrak et al., 2001; Nasar-Abbas and Halkman, 2004).

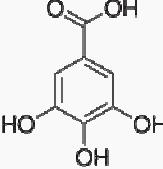
Rhus coriaria and some other species of *Rhus* brought powdered leaves and fruits that they have antibacterial properties have also been reported by other researchers (Saxena et al., 1994; Mc Cutcheon et al., 1994) and this species in the Black Sea region, by people who were used as wound healing was determined (Sezik, 1991).

1.2.2 The Biological Components of Sumach

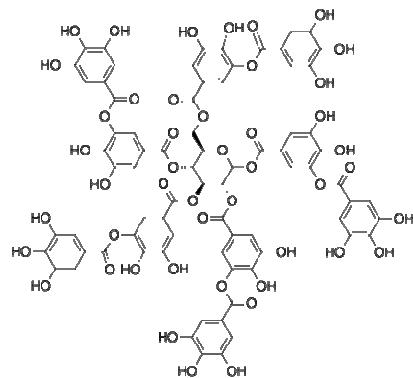
The main compounds in sumach are hydrolyzable tannins and substantial amounts of flavonoids. It has been demonstrated that gallotannins in sumach leaves are decomposed by heating above 50°C (Zalacain et al., 2003).

Nasar-Abbas and Halkman (2004) have demonstrated that not only the organic acids but also other substances in WES are effective antimicrobial agents.

It is generally believed that the fully protonated species of organic acids can diffuse into the bacterial cells, and cause cell death (Booth and Kroll, 1989; Stradford and Anslow, 1998; Brul and Coote, 1999). Other factors affecting the antimicrobial activity of organic acids include pH, acid concentration, and ionic strength as well as the bacterial strains and environment (growth phase, induced acid resistance, and temperature) of the microbial cultures (Conner and Kotrola, 1995; Buchanan and Edelson, 1996; Entani et al., 1998; Cheng et al., 2003).


1.2.2.1 Tannin

Sumach is rich in water-soluble tannins, and the antimicrobial activity of tannins is well documented (Chung et al., 1998).


Tannins dissolve better in water than in methanol and ethanol (Pansera et al., 2004). Tannins have molecular weights ranging from 500 to over 3,000 (Bate-Smith and Swain, 1962).

Anti-HIV activity of hydrolysable tannin was demonstrated to be mediated, at least in part, by inhibition of HIV adsorption to the cells (Nakashima et al., 1992).

Transaminases and nitrate reductase activities of the cyanobacterium were inhibited by all tannin compounds in a concentration dependent manner (Zaki and Fathy, 2000).

Base Unit:	 Gallic Acid
Class/Polymer:	Hydrolyzable tannins

Figure 2 The Structure Unit of Hydrolyzable Tannins (URL 3)

Figure 3 The Structure of Tannin (URL

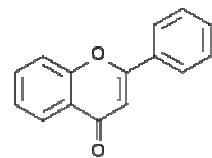
1.2.2.2 Gallic acid

Gallic acid is an organic acid, known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumach, witch hazel, tea leaves and other plants. It exists as free acid and as a part of tannins (URL 5).

Structure-activity relationship analysis showed that the o-dihydroxy group of gallic acid is important for the inhibitory activity in vitro (Kroes et al., 1992).

A few researchers believe that gallic acid may benefit people at risk of neural degeneration. Basically, gallic acid induced apoptosis in a dose-dependent manner as evidenced by analyses of DNA fragmentation, changes in cell morphology and loss of viability (Ohno et al., 1999).

In vitro studies have shown its anti-cancer activities against leukemia HL-60RG, as well as certain prostate, colon and lung cancer cells (Inoue et al., 1994; Ohno et al., 1999; Yoshioka et al., 2000; Raina et al., 2008). An in-vitro study showed that gallic acid inhibited on Abeta (25-35) (10 microM)-induced apoptotic neuronal death (Ban et al., 2008).


Improved formulations of pharmaceutical compounds include the gallic acid ester to enhance the bioavailability of the active ingredient of the pharmaceutical compounds (Wacher, 2000).

1.2.2.3 Flavonoids

Flavonoids (specifically flavanoids such as the catechins) are "the most common group of polyphenolic compounds in the human diet and are found ubiquitously in plants" (Spencer, 2008).

Flavonoids have been referred to as "nature's biological response modifiers" because of strong experimental evidence of their inherent ability to modify the body's reaction to allergens, viruses, and carcinogens. They show anti-allergic, anti-inflammatory (Yamamoto and Gaynor, 2001), anti-microbial (Cushnie and Lamb, 2005) and anti-cancer activity (De Sousa et al., 2007).

In 2007, research conducted at the Linus Pauling Institute and published in *Free Radical Biology and Medicine* indicates that inside the human body, flavonoids themselves are of little or no direct antioxidant value (Lotito and Frei, 2006). Flavonoids could also induce mechanisms that help kill cancer cells and inhibit tumor invasion (URL 9). Flavonoids and related polyphenols possess promising anti-HIV activity. A number of flavonoids inhibit reverse transcriptase (RT), induce interferons and inactivate viral protease (Havsteen, 2002).

Figure 4 The Structure of Flavonoid (URL 5)

1.2.2.4 Malic acid

Malic acid is widely distributed in small amounts in many natural food products. It is the predominant acid in many fruits, being known as “apple acid” because it is found in high concentration in apples, apricots, peaches, grapes as well as various citrus fruits, berries, figs, carrots, peas, beans and tomatoes (Gardner, 1973).

1.2.2.5 Citric acid

Its antibacterial effect is probably by a mechanism different than that for lipophilic acids. The antibacterial effect is partially due to its ability to chelate divalent cations (Baird-Parker, 1980; Doors, 1993).

1.2.2.6 Methyl gallate (ester of 3,4,5-trihydroxybenzoic acid)

It was reported to be a strong antimicrobial agent (Ahn et al., 1998).

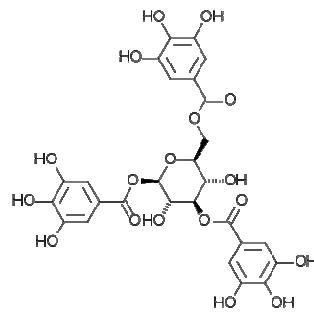
1.2.2.7 Other compounds

4-methoxy-3,5-dihydroxybenzoic acid was also present in fermented sumach extract (Saxena et al., 1994).

1.3 Eau de rose

Rose (*Rosa damascena* Mill.) is a species being used to produce attar of rose by distilling volatile oils from the flowers (Tosun et al., 2002).

In recent years, antioxidant, antibacterial and antimicrobial activities of *R. damascena* essential oil have been demonstrated (Ardogan et al., 2002; Achuthan et al., 2003; Basim and Basim, 2003; Ozkan et al., 2004). Also rose oil is famous not only with its wide application in perfumery and cosmetics, but also, along with its aroma properties, it is a valuable natural drug agent possessing bacteriostatic, antihistological, gall curative, antispasmodic and relaxing etc. (Basim and Basim, 2003). Avicenna showed that rose oil has use in aroma-therapy for treatment of cardiac disease (Abdolhammid, 1982).


1.3.1 Biological Components of Eau de rose

It has a solid component (Stearoptene) and a liquid one (Oleoptene). The nice odor of rose oil is due to the component which itself is composed of Geraniol (45-75%) and Citronellol (20-40%) (Momeni and Shahrokh, 1991). It is known that Rosaceae is rich in corilagin and tellimagrandin (Shiota et al., 2004) and this class of compounds has remarkable antimicrobial activity.

The major constituents of rose oil are (-)-citronellol, certain specific paraffines, geraniol and nerol, phenethyl alcohol, and methyleugenol - in decreasing order. Some of the important minor- and trace constituents are (-)-cis- rose oxide, beta-damascenone, beta-ionone, beta-damascone, 1-p-menthen-9-al, and rose furan. More than 350 compounds have been identified (Müller et al., 1991; Jirovetz et al., 2005; Joichi et al., 2005).

1.3.1.1 Corilagin

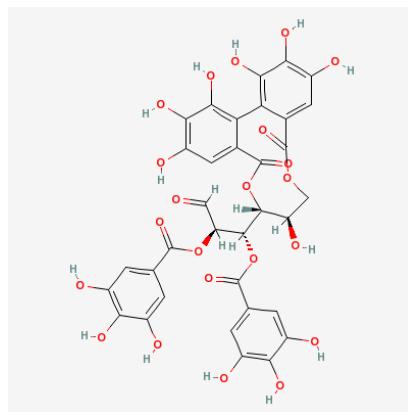

Corilagin (beta-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-D-glucose) is a novel member of the tannin family which has been discovered in many medicinal plants such as *Phyllanthus* species etc. (Shen et al., 2003). The molecular formula of corilagin is C₂₇H₂₂O₁₈ (Duan et al., 2005). It has been reported that Corilagin has strong antioxidative (Kinoshita et al., 2007), thrombolytic (Shen et al., 2003), hepatoprotective (Kinoshita et al., 2007), antiatherogenic (Duan et al., 2005) and antihypertensive (Cheng et al., 1995) effects and has potential activity on beta-lactams against methicillin-resistant *Staphylococcus aureus* (Shiota et al., 2004). A preliminary study has reported that Corilagin is a TNF- α inhibitor (Okabe et al., 2001).

Figure 5 The Structure of Corilagin (URL 6)

1.3.1.2 Tellimagrandin

Observed synergistic effects of certain polyphenols such as tellimagrandin I have been suggested as a means to restore the effectiveness of β -lactam antibiotics against MRSA. When used together with these tannins, the MICs of oxacillin against MRSA strains were markedly lowered to 1/250 or 1/500 (Hatano et al., 2005).

Figure 6 The Structure of Tellimagrandin (URL 7)

1.3.1.3 Other compounds

Geraniol and Citronellol was reported to be the other compounds in eau de rose (URL 10).

1.4 Staphylococcus

Staphylococcus aureus

Staphylococcus aureus is a leading cause of nosocomial and community-acquired infections. Although the types and severity of diseases produced by this opportunistic pathogen vary, it is a frequent cause of infections associated with indwelling medical devices (e.g., catheters and artificial heart valves) (Vuong and Otto, 2002).

Staphylococcus epidermidis

Staphylococcus epidermidis normally colonizes the human skin and mucous membranes and represents a major component of the normal bacterial flora of this habitat. In predisposed hosts, usually with an indwelling medical device, *S. epidermidis* has become a significant nosocomial pathogen (Souvenir et al., 1998; Vermont, 1998; de Viedma, 2000; O'Gara and Humphreys, 2001).

At present, coagulase-negative staphylococci (CoNS), mostly *Staphylococcus epidermidis*, represent the most frequent cause by far of nosocomial sepsis and are the most prominent organisms responsible for infections associated with implanted biomaterials like intravascular catheters, peritoneal dialysis catheters, cerebrospinal fluid shunts, prosthetic heart valves, and prosthetic joints, resulting in substantial morbidity and mortality (Pfaller and Herwaldt, 1988; Emori and Gaines, 1993; Kloos and Bannerman, 1994; Rupp and Archer, 1994). The prevalence of methicillin-resistant *S. epidermidis* (MRSE) strains (Jarlov, 1999; Giacometti et al., 2000; Tammelin et al., 2000) and the emergence of vancomycin resistance in this species further complicate treatment of biomaterial infections (Raad, 1998; Villari, 2000).

1.4.1 The Methicillin Resistance of *Staphylococcus*

The increasing numbers of multidrug-resistant Gram-positive pathogens have generated worldwide concern in the medical community. The emergence and spread of MRSA has been shown to be associated with both hospital- and community-acquired infections. Effective treatment options for these infections are limited and the situation may become more severe soon. For these reasons, a proactive management of MRSA in healthcare facilities is needed (Harbarth et al., 2006; Kluytmans, 2007).

The use of different types of antibiotics over the years has led to the emergence of multi-resistant MRSA strains (Livermore, 2000).

Methicillin resistance in clinical isolates has been reported to arise from expression of a chromosomal or plasmid mediated methicillin-hydrolysing β -lactamase (Montanari, 1996) and is conferred by the *mecA* gene (Wu et al., 1996), which acquired from another species (Chambers, 1997) and encodes a penicillin-binding protein (PBP2A) with decreased affinity for β -lactam antibiotics (Wu et al., 1996). This has resulted in the development of multidrug resistance against β -lactam and other antibiotics.

1.4.2 The Pathogenesis

1.4.2.1 The Slime Production

Indwelling device-associated infections commonly involve the formation of a bacterial biofilm on an uncoated plastic surface or on a plastic surface coated with host proteins (Vuong and Otto, 2002).

The major virulence factor associated with this organism's ability to cause infections is dependent on adherence to medical devices and formation of a biofilm (Vuong and Otto, 2002). Microbial adhesion to surfaces has been shown to be a complex process, involving physicochemical, protein and polysaccharide factors (Busscher and Weerkamp, 1987; Jucker, 1996; Busscher et al., 1997; Cunliffe et al., 1999; Mohamed et al., 1999; Azeredo and Oliveira, 2000; Bruinsma et al., 2001; Gross et al., 2001; Koerner et al., 2002; Dunne, 2003).

After their “race to the surface” (Gristina, 1987) staphylococci establish persistent infections due to their capability to grow as a biofilm (Mack et al., 2006):

multilayered communities on the surface of the implant that protect the bacteria from the host immune system (Vuong, 2004) and renders them less susceptible to antibiotics (Knobloch, 2002).

Biofilm formation is a two-step process in which the staphylococci first adhere to the foreign-body surface and then accumulate into a complex biofilm architecture (Mack et al., 2006). A variety of different mechanisms and factors which can contribute to primary attachment of *S. epidermidis* cells to polymer surfaces, including nonspecific van der Waals and hydrophobic interactions (Costerton et al., 1987). Specific binding mediated by a capsular polysaccharide adhesin (PSA) (Tojo, 1988) or a 220-kDa cell wall-associated protein (Timmerman, 1991). Specific interaction with plasma proteins which is adsorbed to the polymer surface (Russell et al., 1987; Herrmann et al., 1988; Vaudaux et al., 1989), binding to activated platelets on the surface (Wang et al., 1993), and lipoteichoic acid-mediated binding to fibrin-platelet clots (Chugh et al., 1990).

In the second, accumulative phase of biofilm formation most Staphylococci have no direct contact with the surface but remain in the biofilm via expression of intercellular adhesive mechanisms. One of the first factors described mediating biofilm accumulation in *S. epidermidis* was the polysaccharide intercellular adhesin (PIA), synthesized by icaADBC encoded proteins (Heilmann, 1996; Mach et al., 1996; Trautner and Darouiche, 2004). Later it was demonstrated that PIA mediates biofilm formation in *S. aureus* too (Cramton, 1999; McKenney, 1999).

1.4.2.2 The Structure of Biofilm

Costerton et al. (1978) observed that communities of attached bacteria in aquatic systems were found to be encased in a “glycocalyx” matrix that was found to be polysaccharide in nature, and this matrix material was shown to mediate adhesion.

Polysaccharide intercellular adhesin (PIA)/polysaccharide adhesin (PSA) produced by *S. epidermidis* is composed primarily of N-acetyl-glucosamine in β -1,6-glycosidic linkages containing deacetylated amino groups and succinate and phosphate substitutions (Marc et al., 1994; Mack et al., 1996; McKenney et al., 1998).

1.4.3 The Resistance To Antimicrobial Agents Due To Biofilm

Mechanisms responsible for resistance may be due to one or more of the following: (i) delayed penetration of the antimicrobial agent through the biofilm matrix, (ii) altered growth rate of biofilm organisms, and (iii) other physiological changes due to the biofilm mode of growth (Donlan and Costerton, 2002).

In the first case (i), Hoyle et al. (1992) found that dispersed bacterial cells were 15 times more susceptible to tobramycin than were cells in intact biofilms. DuGuid et al. (1992) examined *Staphylococcus epidermidis* susceptibility to tobramycin and concluded that the organization of cells within biofilms could in part explain the resistance of this organism to this antimicrobial agent. Souli and Giamarellou (1998) demonstrated that not all antimicrobial agents were equally affected; glycopeptides such as vancomycin and teicoplanin were significantly affected, whereas agents such as rifampin, clindamycin, and the macrolides were either unaffected or minimally affected.

In (ii) biofilm-associated cells grow significantly more slowly than planktonic cells and, as a result, take up antimicrobial agents more slowly. DuGuid (1990) showed that *S. epidermidis* biofilm growth rates strongly influenced susceptibility; the faster the rate of cell growth, the more rapid the rate of inactivation by ciprofloxacin.

In (iii) the conditions that elicit the slowing of bacterial growth, such as nutrient limitation or build-up of toxic metabolites, favor the formation of biofilms (Donlan and Costerton, 2002).

1.4.4 Indwelling Medical Device Associated Biofilm Infections

1.4.4.1 The Prosthetic Valves

The surgical implantation of the prosthetic valve results in tissue damage, leading to the accumulation of platelets and fibrin at the suture site and on the device. There is a greater susceptibility for initial microbial colonization in these locations (Douglas and Cobbs, 1992).

Illingworth et al. (1998) noted that prosthetic valve endocarditis (PVE) is predominantly caused by colonization of the sewing cuff fabric of the prosthetic valve by microorganisms. Karchmer and Gibbons (1994) added that the microorganisms will commonly invade the valve annulus into which the prosthetic valve has been sewn, potentially leading to a separation between the valve and the tissue and resulting in leakage.

CoNS are the predominant early colonizers (Hancock, 1994; Karchmer and Gibbons, 1994), probably resulting from initial contamination of the surgical site during the procedure. For late PVE, which by definition is from 12 months onward following the valve replacement, the organisms responsible may be streptococci, CoNS, enterococci, *S. aureus*, gram-negative coccobacilli, or fungi (Karchmer and Gibbons, 1994).

1.4.4.2 The Prosthetic Joints and Knees

Today, it is anticipated that the implant is colonized at the time of implantation due to the introduction of commensal skin bacteria (Frank et al., 2004). Consequently, *Staphylococcus* species, especially *Staphylococcus aureus* (22–23.6%) and

Staphylococcus epidermidis (19–37.5%), are isolated most frequently in prosthetic joint infections (PJI) (Lentino, 2003).

The increased use of implanted prosthetic joints has provided a physiological niche for pathogenic organisms to cause septic arthritis (Bengtson and Knutson, 1991).

Implanted medical devices produce local immune compromise through frustrated phagocytosis (Roisman et al., 1983). In this case, professional phagocytes may undergo apoptosis when encountering a substrate of a size that is beyond their phagocytic capability. The resulting release of reactive products of oxygen and lysosomal enzymes may cause accidental host tissue damage and local vascular insufficiency, thereby increasing the predisposition of osteomyelitis development. Some of the normal phagocytic processes are also devoted to removal of the implant foreign material (particularly with metals, methylmethacrylate, and polyglycolic acid), thereby utilizing the energy and resources of the immune system that would normally be used to fight infection (Santavirta et al., 1990; Santavirta et al., 1991; Wang et al., 1997).

1.4.4.3 Central Venous Catheters

Catheters may be inserted for administration of fluids, blood products, medications, nutritional solutions, and hemodynamic monitoring (Flowers et al., 1989).

The characteristic flora migrating to the catheter surface from the skin site include coagulase-negative staphylococci and *Staphylococcus aureus* (Raad and Hana, 2002).

Because device is in direct contact with the bloodstream; the surface becomes coated with platelets, plasma, and tissue proteins such as albumin, fibrinogen, fibronectin, and laminin (Raad, 1998). These materials act as conditioning films; *S.*

aureus adheres to proteins such as fibronectin, fibrinogen, and laminin, and *S. epidermidis* adheres only to fibronectin (Raad, 1998).

Although epidemics of infusate related sepsis do occur, these cases are very rare in comparison with the numbers of cases of bacteremia arising from primary catheter infection (Raad and Bodey, 1992).

Colonization and biofilm formation may occur within 3 days of catheterization (Anaissie et al., 1995). Raad et al. (1993) also showed that catheters in place for less than 10 days tended to have more extensive biofilm formation on the external surface of the catheter; for longer-term catheters (up to 30 days), biofilms were more extensive on the internal lumen.

1.4.4.4 Urinary (Foley) Catheters

Urinary catheters are tubular, latex, or silicone devices that are inserted through the urethra into the bladder to measure urine output, collect urine during surgery, prevent urinary retention, or control urinary incontinence (Kaye and Hessen, 1994).

The organisms that attach to the catheter and develop the biofilm originate from one of several sources: (i) organisms are introduced into the urethra or bladder as the catheter is inserted, (ii) organisms gain entry through the sheath of exudate that surrounds the catheter, or (iii) organisms travel intraluminally from the inside of the tubing or collection bag (Kaye and Hessen, 1994).

Initially, catheters are colonized by single species, such as *S. epidermidis*, *Enterococcus faecalis*, *E. coli*, or *Proteus mirabilis* (Stickler, 1996).

1.4.4.5 Intrauterine Devices (IUD)

IUD use has been shown to result in pelvic inflammatory disease (Wolf and Kreiger, 1986; Chesney, 1994; Lewis, 1998). IUDs removed from asymptomatic women have been shown to be heavily contaminated with *S. epidermidis*, enterococci, and anaerobic lactobacilli (Wolf and Kreiger, 1986). In addition, IUDs removed from women with pelvic inflammatory disease may also contain beta-hemolytic streptococci, *S. aureus*, *E. coli*, and some anaerobic bacteria (Wolf and Kreiger, 1986).

One study determined that contamination was heaviest on the distal portions of the tail, which is directly exposed to the vaginal flora (Bank and Williamson, 1983).

1.4.5 Clinical Practice & Prevention

There are 4 main intervention strategies in clinical practice for biofilm-associated infections. The first strategy is to prevent initial device contamination through maintaining optimal aseptic techniques and minimizing duration of catheter placement. Second, steps are taken to minimize initial microbial cell attachment, for example, the use of antimicrobial-coated central venous catheters (Darouiche et al., 1999; Darouiche, 1999). Third, for an established infection, agents are used to penetrate the biofilm matrix and kill the embedded organisms, such as high dose of antibiotics or ethanol in a catheter lock solution (Sherertz et al., 2006). Lastly, removal of the infected device is the definitive treatment strategy (O'Grady et al., 2002).

The silver cuff has been found to reduce the risk of extraluminal contamination in short-term catheters (Maki et al., 1988).

Antibiotics already incorporated in controlled-release devices include vancomycin, tobramycin, cefamandol, cephalothin, carbenicillin, amoxicillin and gentamicin (Price, 1996; Stigter, 2004).

1.4.6. Treatment

Once a staphylococcal biofilm has formed on an implanted medical device or damaged tissue, it is difficult to disrupt. A biofilm-infected implant often must be removed and replaced, placing the patient at increased risk for complications due to these additional procedures (Raad et al., 1998; Chamis et al., 2001).

Although many strains of MRSA are susceptible to trimethoprim sulfamethoxazole, treatment with trimethoprim-sulfamethoxazole has been associated with clinical failure, especially in the presence of significant tissue damage (Proctor, 2008).

β -lactam antibiotics are the preferred drugs against *S. aureus* infections. Although, *S. aureus* has developed resistance to the β -lactam antibiotics (Dennesen et al., 1998; Bachi and Rohrer, 2002). The incidence of methicillin-resistant *S. aureus* is increasing in most hospitals, vancomycin seems, at this stage, the most appropriate antibiotic for empiric therapy (Mylotte and McDermott 1987; Widmer, 1997).

Vancomycin-resistant isolates have been reported; isolates with an increased minimum inhibitory concentration (MIC) to vancomycin are becoming more common. Increased dosing of vancomycin (through >15 mcg/mL) may be required to treat infections with these isolates (Hidayat, 2006).

CHAPTER 2

THE AIM AND THE SCOPE OF THE STUDY

The main objective of the study is to investigate the effects of NAC, fermented sumach and eau de rose on the slime layer of *Staphylococcus* spp. and its serotypes of MRSA, MSSA, MRSE, MSSE. Also, the effects of NAC, fermented sumach and eau de rose on the growth of *Staphylococcus* spp. were investigated. The inhibition of strains due to the pH and temperature changes of the NAC, fermented sumach and eau de rose were also examined by disc diffusion method.

CHAPTER 3

MATERIALS AND METHOD

3.1 The microorganisms

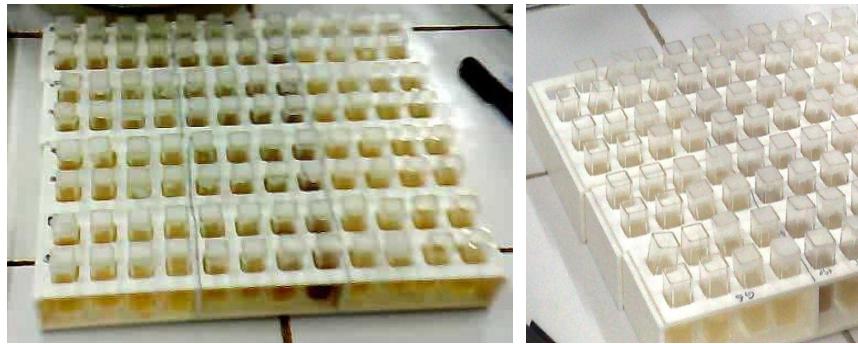
89 Staphylococci isolates were investigated in this study and 41 of them were found to be the slime producer isolates, following the growth in triptic soy broth (TSB) agar at 37° C for a period of 24 hours. The isolates were previously recruited from the samples of the patients from the microbiology laboratory of the hospital of Abant Izzet Baysal University, The Faculty of Medicine, Bolu, Turkey.

3.2 The Treatment with The Supplements

In this experiment, there were three supplements. These were the NAC (Merck TM), fermented sumach, obtained from a local vendor in Gaziantep, Turkey and eau de rose (Gülbirlik A.Ş. Isparta, Turkey).

The supplements were mixed with TSB and the relevant isolates were treated with the related supplements which is in the TSB at 24 hours and 37° C in the incubator with respect to the controls of isolates, which were studied in non-treated TSB at 24 hours and 37° C in the incubator.

3.3 The Experimentation


The slime production capacity of 89 isolates were tested with TSB. 41 slime positive isolates were selected for further experiments. Then, each, treatment including four different concentrations were added to each microtiter plate containing TSB and analyzed separately.

The concentrations were as follows: NAC: 0.03, 0.12, 0.5 and 2.0 mg/mL, fermented sumach: 0.1, 0.2, 0.5 and 1 μ L/mL, eau de rose: 0.1, 0.2, 0.5 and 1 μ L/mL. In all cuvettes TSB was used and the process was repeated in triplicates. These processes are summarized in Table 3.1.

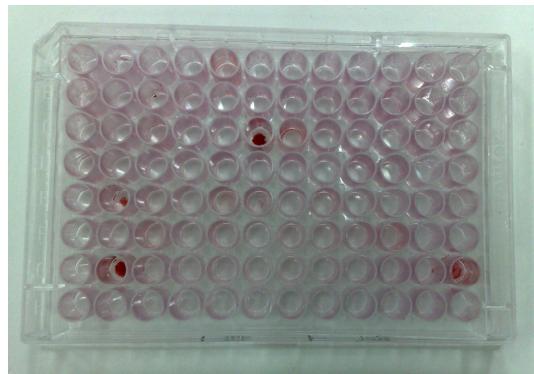
Table 3.1 The Treatments in The Experiment

Without Treatment	The Controls of Isolates
1. Treatment	0.03 mg/ml NAC
	0.12 mg/ml NAC
	0.5 mg/ml NAC
	2.0 mg/ml NAC
2. Treatment	0.1 μ l/ml Sumach
	0.2 μ l/ml Sumach
	0.5 μ l/ml Sumach
	1 μ l/ml Sumach
3. Treatment	0.1 μ l/ml Eau de rose
	0.2 μ l/ml Eau de rose
	0.5 μ l/ml Eau de rose
	1 μ l/ml Eau de rose
4. treatment	Eau de rose-NAC combination
5. treatment	Sumach-NAC combination
6. treatment	Sumach-Eau de rose combination
7. treatment	Sumach-Eau de rose-NAC combination
8. treatment	Control

Isolates were inoculated to cuvettes (LP Italiana SPA TM) which contained treated and non-treated groups.

Figure 7 Isolate inoculated cuvettes which contained treatment groups and TSB.

3.4 The Qualitative Determination of Slime


For screening biofilm formation by the *S. epidermidis* and *S. aureus*, bacteria were grown on Congo red agar (Merck TM) as described by Freeman et al. (1989). Colony morphology was examined after 24 h at 37°C. Also, the biofilm formation by bacteria was detected by another method described by Christensen et al. (1985) by overnight cultures of *S. epidermidis* and *S. aureus*, inoculated in polystyrene test tube which contained TSB as an alternative.

3.5 The Quantitative Determination of Slime

Non-treated TSB were used for controls. TSB (Merck TM), supplemented with the different concentrations of NAC, sumach and eau de rose were used. The OD value of the inoculum was approximately 0.600 (Hitachi TM). 200 µl of bacterial suspension were inoculated into 96-well flat-bottomed sterile polystyrene microplate (LP Italiana SPA TM) cuvettes which contained TSB. Some wells were left free of NAC, sumach and eau de rose as controls and incubated for 24 h at 37°C.

The biofilm formation by bacteria was detected by the method described by Christensen et al. (1985) as follows. The biofilms formed on the plates were washed

twice with phosphate-buffered saline (PBS) to remove the planktonic cells. Then, the cells were stained with saphranin for 1 hour. After removal of saphranin from microplate, microplate was washed twice with PBS and followed the air drying of the wells. Adherent bacterial films were measured spectrophotometrically at 540 nm in a microplate reader (Thermo Instruments TM). This process was repeated with 0.03, 0.12, 0.5, 2.0 mg/mL concentrations of NAC treated TSB, 0.1, 0.2, 0.5 and 1 μ l/mL concentrations of sumach treated TSB and 0.1, 0.2, 0.5 and 1.0 μ l/mL of eau de rose treated TSB to determine the effects of NAC, sumach and eau de rose on slime production of isolates.

Figure 8 Stained slimes of isolates in 96-well flat-bottomed microplate

3.6 The Determination of The Slime Index (SI)

Following a period of 24 hours' incubation of isolates which are treated with the different concentrations of NAC, the fermented sumach and eau de rose, the growth of *Staphylococcus* were confirmed with the microelisa reader instrument (Thermo Instruments TM).

The OD value of the biofilm was corresponding with the value in OD of bacterial growth determined spectrophotometrically, before the aspiration of the culture in order to compensate the partial inhibition in growth caused by NAC, sumach and eau de rose

and this was termed as the slime index (SI). The result was expressed as percentage relative to the control without NAC, fermented sumach and eau de rose. For this purpose the following formula was applied: $SI = 100 \times (\text{mean density of biofilm with supplement/mean growth with treatment}) / (\text{mean density of biofilm without treatment/mean growth without treatment})$ (C. Pérez-Giraldo et al., 1997).

3.7 The Effect of pH and Temperature on the Inhibitory Activity of the Treatment Groups

The pH of the treatment groups were adjusted to 2, 7 and 10 by HCl and NaOH (Gül Biyoloji TM) respectively. The temperature of the treatment groups were adjusted to 4, 25, 50 and 100° C. Then, by using disc diffusion method (Bauer et al. 1966) inhibitions of isolates by the treatment groups were determined on Mueller-Hinton agar (Gül Biyoloji TM). The pH of the treatment groups were checked by a pH meter (Hanna Instruments TM).

3.8 The Effects of The Combined Treatments on the Inhibitory Activity of *Staphylococcus*

The combinations of supplements were studied by disc diffusion method (Bauer et al. 1966). For combination treatments, 10 grams of NAC was diluted with 10 ml distilled water. Pure eau de rose and sumach was used. 30 μ l of each of these supplements were added to discs on the Mueller-Hinton agar (Gül Biyoloji TM).

3.9 The Statistical Evaluation

The data were shown as means of standard deviation and analyzed by the SPSS program. Friedman test was used to detect the existence of differences in different concentrations of each treatment group. If significant differences were found, the comparison between the concentrations of each treatment group was carried out by the two related sample test (Wilcoxon test). The significant level was set for $p<0,05$ at the beginning of the study.

CHAPTER 4

THE RESULTS AND DISCUSSION

In all of the experiments, significant differences were observed between the concentrations of each treatment group.

4.1 The Effects of NAC on Biofilm formation and Growth of *Staphylococcus*

The 41 isolates of *S. epidermidis* and *S. aureus* were found to be biofilm-producing among the analyzed 89. The results of biofilm formation and growth in the presence of different concentrations of NAC, determined by microelisa assay are shown in the Table 4.1.1.

Table 4.1.1 The Friedman test results which show the effects of different concentrations of NAC on the growth and biofilm formation of 41 isolates

	NAC (mean \pm std.deviation)				df	N	p
	0,03 mg/mL	0,12 mg/mL	0,5 mg/mL	2,0 mg/mL			
SI	83,99 \pm 28,97	75,61 \pm 24,37	71,60 \pm 2,51	73,69 \pm 3,56	3	41	,000*
Slime	80,54 \pm 32,56	73,94 \pm 31,95	66,67 \pm 2,58	57,23 \pm 2,39	3	41	,000*
Growth	97,48 \pm 32,96	94,91 \pm 25,30	88,70 \pm 2,25	79,22 \pm 2,33	3	41	,000*

* p < 0,05

There were significant differences in biofilm formation and growth between the concentrations of NAC (Table 4.1.1). As seen from the table 4.1.1 the significant

reduced formation of biofilms and growth were observed between different concentrations ($p < 0,05$).

Table 4.1.2 The Wilcoxon test results which show the effects of different concentrations of NAC on the growth and biofilm formation of 41 isolates

		Concentrations of NAC (mg/mL - mg/mL)					
		0,12 –0,03	0,5 – 0,03	2,0 – 0,03	0,5 – 0,12	2,0 – 0,12	2,0 – 0,5
p	SI	,008 *	,001 *	,001 *	,161	,065	,214
	Slime	,000 *	,000 *	,000 *	,000 *	,000 *	,000 *
	Growth	,368	,002 *	,000 *	,009 *	,000 *	,000 *

* $p < 0,05$

In all of the concentrations (0,03–2,0 mg/mL) dose dependent reduced formation of biofilms was detected as statistically significant ($p < 0,05$) (Table 4.1.2). SI was found to be significant with the concentrations of 0,03 and 0,12–2,0 mg/ml ($p < 0,05$). On the other hand, with the concentrations of 0,12 and 0,5 mg/ml, 0,12 and 2,0 mg/ml, 0,5 and 2,0 mg/ml, the decrease in the formation of biofilms were not statistically significant according to SI ($p > 0,05$).

The growth was significantly reduced with the increased NAC concentrations ($p < 0,05$), but these data were found to be significant except with the concentrations of 0,03 and 0,12 mg/ml. The growth with the concentrations of 0,03 and 0,12 mg/mL were not significantly reduced ($p > 0,05$). The growth reduction with the concentration of 0,03 and 0,12 mg/ml was not found to be dose dependent ($p > 0,05$), but growth reduction with the other concentrations were found to be dose dependent. The findings were consistent with those suggested by C. Pérez-Giraldo et al. (1997) that NAC may

prevent the formation of biofilms and adherence of *S. epidermidis* to prosthetic and intravascular devices, as well as the NAC-tigecycline combination consistently decreased viable biofilm-associated bacteria with relative to the control (Alsam et al., 2007).

4.2 The Effects of Sumach on Biofilm formation and Growth of *Staphylococcus*

The results in biofilm formation and growth in the presence of different concentrations of sumach determined by microelisa assay are shown in the Table 4.2.1. Probably the decrease in the OD of the biofilms was directly proportional to the sumach concentration.

Table 4.2.1 The Friedman test results which show the effects of different concentrations of sumach on the growth and biofilm formation of 41 isolates

	Sumach (mean±std.deviation)				df	N	p
	0,1 µl/ml	0,2 µl/ml	0,5 µl/ml	1,0 µl/ml			
SI	85,98 ± 3,30	79,13 ± 3,13	73,68 ± 2,98	54,60 ± 2,39	3	41	,000 *
Slime	7,65 ± 3,08	7,12 ± 3,12	6,37 ± 2,55	5,40 ± 2,33	3	41	,000 *
Growth	92,43 ± 2,28	91,06 ± 2,49	88,62 ± 2,35	1,02 ± 2,90	3	41	,000 *

* p < 0,05

There were significant differences in biofilm formation and growth between concentrations of sumach (Table 4.2.1).

Table 4.2.2 The Wilcoxon test results which show the effects of different concentrations of sumach on the growth and biofilm formation of 41 isolates

		Concentrations of sumach intervals (μl/ml)					
		0,2μl/ml	0,5μl/ml	1,0μl/ml	0,5μl/ml	1,0μl/ml	1,0μl/ml
p	SI	,001 *	,000 *	,000 *	,007*	,000 *	,000 *
	Slime	,000 *	,000 *	,000 *	,000 *	,000 *	,000 *
	Growth	,464	,043 *	,001 *	,131	,000 *	,000 *

* p < 0,05

Sumach demonstrated a dose-dependent slime reducing activity (Table 4.2.2). Slime formation significantly decreased with the increased sumach concentration (p < 0,05).

The growth was significantly reduced with the increased sumach concentration (p < 0,05), but these data were found to be significantly different except the concentrations of 0,1 and 0,2 μl/mL, and between the concentrations of 0,2 and 0,5 μl/mL (p > 0,05). So, growth reduction in this group was not found to be dose dependent (p > 0,05).

The sumach extract displayed a variable degree of antimicrobial activity on different bacteria. *L. monocytogenes* was found to be the most resistant among Gram positive isolates followed by *S. aureus* (Nasar-Abbas et al., 2004). In general, Gram negative bacteria were found to be more resistant to sumach treatment than Gram positive bacteria except *P. vulgaris* and *C. freundii*. Studies by the other researchers reveal same type of results (Shelef et al., 1980; Marino et al., 1999).

The water extracted sumach (WES) exerted an antibacterial effect against coliforms and presumptive fecal coliforms. WES can be used at each decontamination point. Nasar-Abbas and Halkman (2004) have demonstrated that not only the organic acids but also the other substances in WES are effective antimicrobial agents and they were implied that the inhibitory action was not only due to its acid content but also due to some antimicrobial substances present in sumach. The results indicate that the effect of sumach to all of the bacterial isolates tested was not only bacteriostatic but it was also bactericidal because it caused an irreversible damage (death) to the test organisms (Nasar-Abbas et al., 2004).

Sumach is rich in water-soluble tannins, and the antimicrobial activity of tannins is well documented (Chung et al., 1998).

Diğrak et al. (2001) determined antibacterial and antifungal activities of some medical plants grown in Turkey which include *Rhus coriaria*. A diameter of 35-51 mm inhibition zones against bacteria was determined in all trials with *Rhus coriaria*.

The other researchers determined that *Rhus coriaria*'s leaves and fruits which were in powdered form had antibacterial effects (Saxena et al., 1994; Mc Cutcheon et al., 1994).

4.3 The Effects of Eau de rose on Biofilm formation and Growth of *Staphylococcus*

The 40 isolates of *S. epidermidis* and *S. aureus* included in this study were biofilm-producing. The results in biofilm formation and growth in the presence of different concentrations of eau de rose determined by microelisa assay are shown in the Table 4.3.1

Table 4.3.1 The Friedman test results which show the effects of different concentrations of eau de rose on the growth and biofilm formation of 40 isolates

	Eau de rose concentrations (mean±std.deviation)				df	N	P
	0,1 µl/ml	0,2 µl/ml	0,5 µl/ml	1,0 µl/ml			
SI	8,13 ± 3,32	8,27 ± 3,19	8,20 ± 3,32	7,51 ± 3,91	3	40	,000 *
Slime	7,44 ± 2,85	7,27 ± 2,52	8,26 ± 8,50	6,94 ± 2,56	3	40	,037 *
Growth	8,91 ± 1,76	8,96 ± 1,87	8,80 ± 1,98	9,71 ± 1,94	3	40	,000 *

* p < 0,05

There were significant differences in the reduction of biofilm formation and growth between the concentrations of eau de rose (p < 0,05) (Table 4.3.1).

Table 4.3.2 The Wilcoxon test results which show the effects of different concentrations of eau de rose on the growth and biofilm formation of 40 isolates

		Concentration intervals of Eau de rose (µl/ml)					
		0,2µl/ml	0,5µl/ml	1,0µl/ml	0,5µl/ml	1,0µl/ml	1,0µl/ml
		–	–	–	–	–	–
P	SI	,844	,260	,002 *	,181	,001 *	,001 *
	Slime	,545	,077	,057	,051	,101	,050
	Growth	,600	,582	,000 *	,819	,000 *	,000 *

* p < 0,05

SI was found to be significantly different only with the concentrations of 1,0 and 0,1–0,5 mg/ml (p < 0,05) (Table 4.3.2). But between the concentrations of 0,1 and 0,2 mg/ml and 0,2 and 0,5 mg/ml; a decrease in biofilm formation were not found to be statistically significantly different (p > 0,05). Although, between the concentrations of

0,2 and 0,5 mg/ml, a reduction of biofilm formation was detected, these data were not statistically significant according to SI ($p > 0,05$).

4.4 The Effects of Supplements on Biofilm formation and growth of MRS and MSS

The 41 isolates of *Staphylococcus* included 9 MSSA, 4 MRSA, 13 MSSE and 15 MRSE. The choice of drugs, to be used against MRSA, is shrinking day by day as susceptibility of MRSA to drugs is decreasing by target site alteration, enzyme modification and permeability changes (Brumfitt and Miller, 1989).

The results of biofilm formation and growth in the presence of different concentrations of NAC, sumach and eau de rose was determined according to methicillin sensitivity of *Staphylococcus*.

Table 4.4 The effects of supplements on the growth and biofilm formation of 22 MSS and 19 MRS

		SI	Slime	Growth
NAC	0,03mg/ml	,537	,647	,513
	0,12mg/ml	,386	,774	,583
	0,5 mg/ml	,217	,539	,937
	2,0 mg/ml	,211	,565	,210
Sumach	0,1 µl/ml	,803	,676	,937
	0,2 µl/ml	,646	,896	,657
	0,5 µl/ml	,833	,937	,513
	1,0 µl/ml	,619	,784	,875
Eau de rose	0,1 µl/ml	,684	,774	,490
	0,2 µl/ml	,870	,464	,507
	0,5 µl/ml	,860	,896	,409
	1,0 µl/ml	,645	,308	,394

* p < 0,05

The supplements which include four different concentrations had the same effect on biofilm formation and growth of MSS and MRS (p > 0,05) (Table 4.4). These data were not statistically significant (p > 0,05).

4.4.1 The Effects of NAC on Biofilm Formation and Growth of MRS and MSS

Table 4.4.1.1 The Friedman test results which show the effects of different concentrations of NAC on the growth and biofilm formation of MSS and MRS

		(mean ± std. deviation)			df	N
		SI	Slime	Growth		
MSS	0,03mg/ml	80,18±31,47	81,18±39,54	101,62±38,54	3	22
	0,12mg/ml	72,55±27,91	73,75±35,34	96,42±26,51		
	0,5 mg/ml	67,34±2,86	65,81±2,87	89,72±2,77		
	2,0 mg/ml	66,30±2,40	56,35±2,60	82,43±2,40		
	p	,002 *	,000 *	,001 *		
MRS	0,03mg/ml	88,39±25,88	79,80±23,02	92,68±25,22	3	19
	0,12mg/ml	79,15±19,65	74,15±28,50	93,17±24,43		
	0,5 mg/ml	76,53±1,99	67,70±2,27	87,53±1,49		
	2,0 mg/ml	82,24±4,48	58,25±2,19	75,50±2,25		
	p	,111	,000 *	,000 *		

* p < 0,05

There were significant differences in biofilm formation and growth of MSS and in growth of MRS between concentrations of NAC (p < 0,05) (Table 4.4.1.1). It seemed that there were differences in biofilm formation of MRS between concentrations of NAC but in contrast the data of SI indicated that there were no significant differences in biofilm formation of MRS between concentrations of NAC (p > 0,05).

Table 4.4.1.2 The Wilcoxon test results which show the effects of different concentrations of NAC on the growth and biofilm formation of MSS

		Concentration intervals of NAC (mg/ml - mg/ml)					
		0,12 – 0,03	0,5 – 0,03	2,0 – 0,03	0,5 – 0,12	2,0 – 0,12	2,0 – 0,5
p	SI	,070	,008 *	,001 *	,296	,144	,327
	Slime	,000 *	,000 *	,000 *	,000 *	,000 *	,000 *
	Growth	,211	,005 *	,003 *	,053	,007*	,013*

* p < 0,05

There were significant differences in biofilm formation of MSS with all of the concentrations of NAC, but SI was found to be significantly different between the concentrations of 0,03 and 0,5 mg/ml, 0,03 and 2,0 mg/ml (p < 0,05) (Table 4.4.1.2). There were significant dose dependent reduction of biofilm formation of MSS between the concentrations of 0,03 and 0,5 mg/ml, 0,03 and 2,0 mg/ml (p < 0,05). There were significant differences in growth of MSS with all of the concentration intervals (p < 0,05) except with the concentration of 0,12 and 0,03 mg/ml and 0,12 and 0,5 mg/ml (p > 0,05). Dose dependent reduction of growth of MSS was observed with all of the concentration (p < 0,05) except with the concentration 0,03 and 0,12 mg/ml and 0,12 and 0,5 mg/ml (p > 0,05).

Table 4.4.1.3 The Wilcoxon test results which show the effects of different concentrations of NAC on the growth and biofilm formation of MRS

		Concentration intervals of NAC (mg/ml - mg/ml)					
		0,12 – 0,03	0,5 – 0,03	2,0 – 0,03	0,5 – 0,12	2,0 – 0,12	2,0 – 0,5
p	SI	-	-	-	-	-	-
	Slime	,002 *	,001 *	,000 *	,006 *	,000 *	,000 *
	Growth	,904	,107	,006 *	,070	,000 *	,005 *

* p < 0,05

There were significant differences in biofilm formation of MRS with all of the concentrations of NAC (Table 4.4.1.3), but in table 4.4.1.1 SI had indicated that there were no significant differences in biofilm formation of MRS between all of the concentrations of NAC ($p > 0,05$). Also, Table 4.4.1.3 indicated that there were a significant dose dependent reduction of growth of MRS, with the concentrations of 2,0 and 0,03-0,5 mg/ml ($p < 0,05$).

4.4.2 The Effects of Sumach on Biofilm Formation and Growth of MRS and MSS

Table 4.4.2.1 The Friedman test results which show the effects of different concentrations of sumach on the growth and biofilm formation of MSS and MRS

		(mean ± std. deviation)			df	N
		SI	Slime	Growth		
MSS	0,1 µl/ml	83,65±3,54	73,09±2,66	93,18±2,78	3	22
	0,2 µl/ml	76,80±3,37	68,40±2,64	93,21±2,97		
	0,5 µl/ml	72,54±3,10	62,87±2,46	91,16±2,56		
	1,0 µl/ml	52,94±2,06	52,66±1,93	1,03±3,45		
	P	,000 *	,000 *	,061		
MRS	0,1 µl/ml	88,68±3,07	80,38±3,55	91,55±1,59	3	19
	0,2 µl/ml	81,82±3,01	74,38±3,65	88,57±1,84		
	0,5 µl/ml	75,00±2,92	64,63±2,71	85,68±2,12		
	1,0 µl/ml	56,51±2,77	55,51±2,77	1,01±2,18		
	p	,000 *	,000 *	,005 *		

* p < 0,05

There were significant differences in biofilm formation of MSS and MRS and in growth of MRS between concentrations of sumach (p < 0,05) (Table 4.4.2.1). No significant differences in growth of MSS were observed between varying concentrations of sumach (p > 0,05).

Table 4.4.2.2 The Wilcoxon test results which show the effects of different concentrations of sumach on the growth and biofilm formation of MSS

		Concentrations of Sumach (μ l/ml - μ l/ml)					
		0,2 μ l/ml	0,5 μ l/ml	1,0 μ l/ml	0,5 μ l/ml	1,0 μ l/ml	1,0 μ l/ml
p	SI	,019 *	,003 *	,000 *	,063	,000 *	,000 *
	Slime	,001 *	,000 *	,000 *	,001 *	,000 *	,000 *
	Growth	-	-	-	-	-	-

* $p < 0,05$

There were significant differences in biofilm formation of MSS with all concentrations of sumach ($p < 0,05$), but SI was not showed significant differences between the concentration of 0,2 and 0,5 μ l/ml ($p > 0,05$). A significant dose dependent reduction of biofilm formation of MSS was present with all of the concentrations except with 0,2 and 0,5 μ l/ml (Table 4.4.2.2).

There were no significant differences in growth of MSS between concentrations of sumach ($p > 0,05$) (Table 4.4.2.1).

Table 4.4.2.3 The Wilcoxon test results which show the effects of different concentrations of sumach on the growth and biofilm formation of MRS

		Concentration intervals of Sumach (μ l/ml - μ l/ml)					
		0,2 μ l/ml	0,5 μ l/ml	1,0 μ l/ml	0,5 μ l/ml	1,0 μ l/ml	1,0 μ l/ml
		-	-	-	-	-	-
p	SI	,013 *	,004 *	,000 *	,047 *	,000 *	,000 *
	Slime	,001 *	,000 *	,000 *	,000 *	,000 *	,001 *
	Growth	,227	,091	,027 *	,084	,010 *	,001 *

* $p < 0,05$

There were significant differences in biofilm formation of MRS with all concentrations of sumach ($p < 0,05$). A significant dose dependent reduction of biofilm formation of MRS was present with all of the concentrations ($p < 0,05$). There were a significant dose dependent reduction of growth of MRS with the concentrations of 1,0 and 0,1-0,5 μ l/ml ($p < 0,05$) (Table 4.4.2.3).

4.4.3 The Effects of Eau de rose on Biofilm Formation and Growth of MRS and MSS

Table 4.4.3.1 The Friedman test results which show the effects of different concentrations of eau de rose on the growth and biofilm formation of MSS and MRS

		(mean \pm std. deviation)			Df	N
		SI	Slime	Growth		
MSS	0,1 μl/ml	8,40 \pm 3,27	7,18 \pm 2,43	8,63 \pm 1,41	3	22
	0,2 μl/ml	8,18 \pm 3,26	6,99 \pm 2,31	8,62 \pm 1,71		
	0,5 μl/ml	8,11 \pm 3,07	8,86 \pm 1,12	8,44 \pm 1,91		
	1,0 μl/ml	7,48 \pm 4,56	6,47 \pm 2,05	9,37 \pm 2,11		
	p	,000 *	,003 *	,002 *		
MRS	0,1 μl/ml	7,83 \pm 3,42	7,73 \pm 3,31	9,23 \pm 2,07	3	19
	0,2 μl/ml	8,37 \pm 3,20	7,60 \pm 2,77	9,34 \pm 2,01		
	0,5 μl/ml	8,31 \pm 3,66	7,57 \pm 3,78	9,19 \pm 2,03		
	1,0 μl/ml	7,54 \pm 3,17	7,49 \pm 3,01	1,01 \pm 1,70		
	p	,060	,875	,001 *		

* $p < 0,05$

There were significant differences in biofilm formation of MSS between the concentrations of eau de rose ($p < 0,05$) (Table 4.4.3.1). But there were no significant differences in biofilm formation of MRS between the different concentrations of eau de rose ($p > 0,05$). The biofilm formation of MRS was reduced by eau de rose but this reduction was not dose dependent. The biofilm formation was found to be almost the same with an increase in the eau de rose concentration. There were significant

differences in growth of MSS and MRS between concentrations of eau de rose ($p < 0,05$) (Table 4.4.3.1).

Table 4.4.3.2 The Wilcoxon test results which show the effects of different concentrations of eau de rose on the growth and biofilm formation of MSS

		The concentration intervals of Eau de rose ($\mu\text{l}/\text{ml}$ - $\mu\text{l}/\text{ml}$)					
		0,2 $\mu\text{l}/\text{ml}$	0,5 $\mu\text{l}/\text{ml}$	1,0 $\mu\text{l}/\text{ml}$	0,5 $\mu\text{l}/\text{ml}$	1,0 $\mu\text{l}/\text{ml}$	1,0 $\mu\text{l}/\text{ml}$
		-	-	-	-	-	-
p	SI	,276	,107	,004 *	,058	,003 *	,010 *
	Slime	,390	,054	,030 *	,035 *	,025 *	,366
	Growth	,768	,986	,009 *	,498	,012 *	,003 *

* $p < 0,05$

It was observed that there were significant differences in biofilm formation of MSS between the concentrations of 0,1 and 1 $\mu\text{l}/\text{ml}$, 0,2 and 1 $\mu\text{l}/\text{ml}$, 0,5 and 1 $\mu\text{l}/\text{ml}$ of eau de rose ($p < 0,05$) (Table 4.4.3.2). The growth of MSS was lowered by all of the concentrations of eau de rose but a significant reduction of biofilm production of MSS was not observed between the concentration of 0,1 and 0,2 $\mu\text{l}/\text{ml}$, 0,1 and 0,5 $\mu\text{l}/\text{ml}$, 0,2 and 0,5 $\mu\text{l}/\text{ml}$ ($p > 0,05$). In table 4.4.3.2 it was inferred that there were significant differences in growth of MSS between the concentrations of 1,0 and 0,1-0,5 $\mu\text{l}/\text{ml}$ ($p < 0,05$), this difference was also confirmed by the table 4.4.3.1 that showed an increase in the growth of MSS with the concentration of 1,0 $\mu\text{l}/\text{ml}$ when compared with the concentrations of 0,1 $\mu\text{l}/\text{ml}$, 0,2 $\mu\text{l}/\text{ml}$ and 0,5 $\mu\text{l}/\text{ml}$.

Table 4.4.3.3 The Wilcoxon test results which show the effects of different concentrations of eau de rose on the growth and biofilm formation of MRS

		The concentration intervals of Eau de rose ($\mu\text{l}/\text{ml}$ - $\mu\text{l}/\text{ml}$)					
		0,2 $\mu\text{l}/\text{ml}$	0,5 $\mu\text{l}/\text{ml}$	1,0 $\mu\text{l}/\text{ml}$	0,5 $\mu\text{l}/\text{ml}$	1,0 $\mu\text{l}/\text{ml}$	1,0 $\mu\text{l}/\text{ml}$
p	SI	-	-	-	-	-	-
	Slime	-	-	-	-	-	-
	Growth	,658	,334	,008 *	,445	,010 *	,007 *

* $p < 0,05$

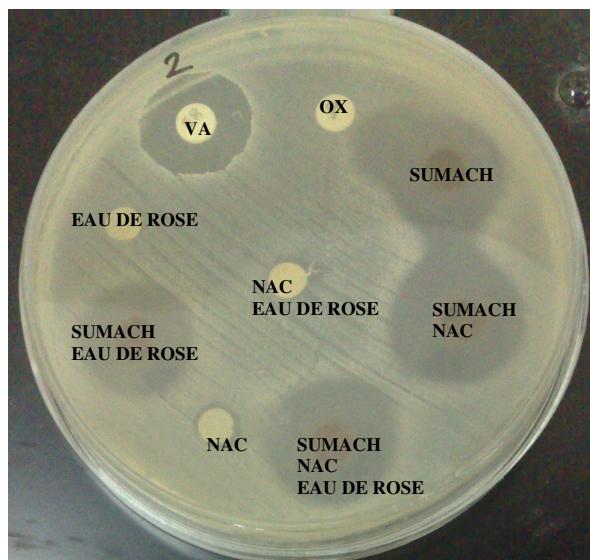
There were significant differences in growth of MRS with the concentrations of 1,0 and 0,1-0,5 $\mu\text{l}/\text{ml}$ ($p < 0,05$) (Table 4.4.3.3). There were significant reduction of growth of MRS with the concentration of 1,0 and 0,1-0,5 $\mu\text{l}/\text{ml}$.

Table 4.4.3.1 had indicated that there were no significant differences in the biofilm production of MRS between the different concentrations of eau de rose ($p > 0,05$).

4.5 The Effects of pH on the Growth of *Staphylococcus*

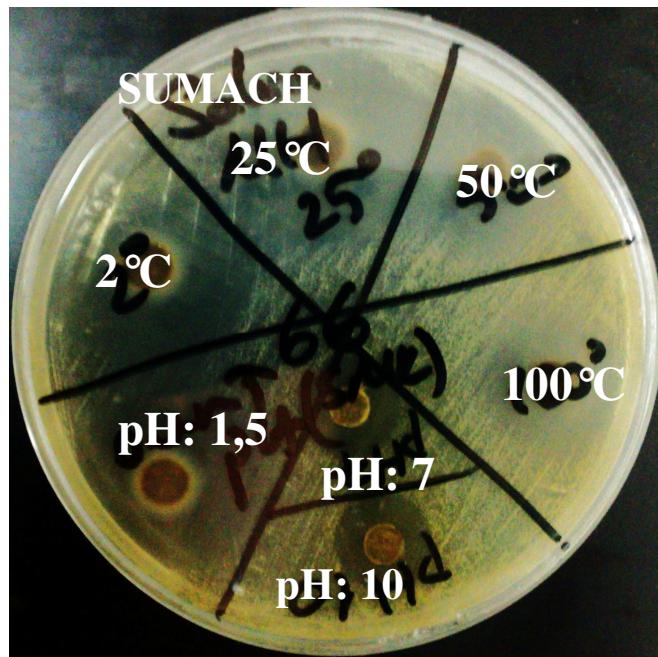
NAC and eau de rose effects were not varied much by changing the values of pH 7 and 10. NAC and eau de rose did not inhibit the isolates by disc diffusion method. Following an increase in the pH of the sumach (pH=7 and pH=10) the diameter of the inhibition zone was decreased. The best inhibition of isolates by sumach was observed at its original pH (pH=1.5).

4.6 The Effects of Temperature on the Growth of *Staphylococcus*


The changes in temperature (2 °C, 50 °C, 100°C) were not reduced the effects of NAC and eau de rose. The best inhibition of isolates by sumach was observed at 2 °C and 25 °C and the zone diameters were larger than those 50 °C and 100 °C application.

4.7. The Effects of The Combined Treatments on The Growth and Biofilm formation of all types of *Staphylococcus aureus* and *Staphylococcus epidermidis*

It was found that the combined treatments (Eau de rose-NAC combination, Sumach-NAC combination, Sumach-Eau de rose combination and Sumach-Eau de rose-NAC combination) had no difference on the inhibition of the isolates compared with the sole treatments of Sumach, Eau de rose and NAC, Therefore the combined effects of these sole treatments were found to be negligible.


a. MSSA

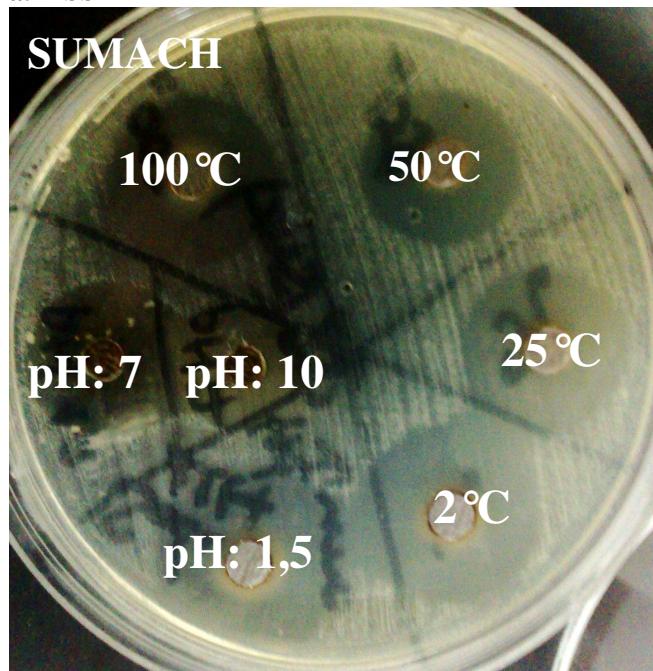

b. MRSE

Figure 9 Combination zones by disc diffusion method. **a. MSSA, b. MRSE.**

(By starting from the top to the bottom) Discs were placed due to following the order: Vancomycin, oxacillin, sumach, sumach-NAC, sumach-NAC-eau de rose, NAC, sumach-eau de rose, eau de rose, NAC-eau de rose was added to the disc located at the middle of the plate.

a. MSSA

b. MRSE

Figure 10 The effect of the temperature (2°, 25°, 50° and 100° C) and pH (2, 7 and 10).

a. MSSA, b. MRSE.

CHAPTER 5

CONCLUSION

It is urgently desirable to discover or synthesize new drugs that are effective against drug-resistant microorganisms. Spices not only provide flavor and aroma but also retard microbial growth in food. In these experiments it was observed that sumach and eau de rose showed a remarkable reduction of the biofilm and growth of MRS and MSS.

It can be concluded that the effect of NAC, sumach and eau de rose statistically affect and decrease biofilm formation and growth of *Staphylococcus* including MRS and MSS.

By disc diffusion method, the bacteriostatic effect of sumach on the isolates were sensitive to pH and temperature. The diameters of the inhibition zones around discs were decreased by increased pH and temperature of sumach. The effects of NAC and eau de rose were not changed by increasing the pH and temperature.

Consequently this study was demonstrated that the higher the concentrations of NAC, sumach and eau de rose, the lower the OD values of the biofilm and growth.

This study may form an opinion that NAC, sumach and eau de rose may be used in medicine and food industry. NAC, sumach and eau de rose coated catheters and prostheses may be produced to prevent implant associated infections. They may be used for decontamination of industrial machines too.

REFERENCES

Abdolhammid, H., 1982. Avicenna 's Tract on Cardiac Drugs.

Abu-Shanab B, Adwan G, Abu-Safiya D et al., 2004. Antibacterial activities of some plant extracts utilized in Palestine in popular medicine. *Turk Journal Biology* 28: 99-102.

Achuthan CR, Babu BH, Padikkala J., 2003. Antioxidant and hepatoprotective effects of *Rosa damascena*. *Pharmaceutical Biology*, 41:357-361.

Adwan K, Abu-Hasan N, Adwan G et al., 2005. Nosocomial infection caused by methicillin-resistant *Staphylococcus aureus* in Palestine. *Journal of Microbial Drug Resistance* 11: 75-77.

Ahn, Y.J.; Lee, C.O.; Kweon, J.H.; Ahn, J.W.; Park, J.H., 1998. Growth-inhibitory effects of Gala Rhois-derived tannins on intestinal bacteria. *Journal of Applied Microbiology*, 84, 439-443.

Alsam S., Trautner B. W., Ramanathan V., and Darouiche R. O., 2007. Combination of Tigecycline and N-Acetylcysteine Reduces Biofilm-Embedded Bacteria on Vascular Catheters. *Antimicrobial Agents And Chemotherapy*, p. 1556–1558.

Anaissie, E., G. Samonis, D. Kontoyiannis, J. Costerton, U. Sabharwal, G. Bodey, and I. Raad. 1995. Role of catheter colonization and infrequent hematogenous seeding in catheter-related infections. *European Journal of Clinic Microbiology and Infectious Diseases*. 14:135–137.

Ardogan BC, Baydar H, Kaya S, Demirci M, Ozbasar D, Mumcu E., 2002. Antimicrobial activity and chemical composition of some essential oils. *Archives of Pharmacal Research*, 25:860-864.

Azeredo J, Oliveira R., 2000. The role of exopolymers in the attachment of *Sphingomonas paucimobilis*. *Biofouling*;61:59–67.

Bachi, B. B. and Rohrer, S., 2002. Factors influencing methicillin resistance in staphylococci. *Archiv Microbiol.*, 178, 165–171.

Baird-Parker, A.C., 1980. Organic acids, in *Microbial Ecology*, Vol. I, Silikler, J.H., Ed., Academic Press, New York, p.126.

Ban JY, et al, 2008. Neuroprotective properties of gallic acid from *Sanguisorbae radix* on amyloid beta protein (25--35)-induced toxicity in cultured rat cortical neurons. *Biol Pharm Bull.* Jan;31(1):149-53.

Bank, H. L., and H. O. Williamson. 1983. Scanning electron microscopy of Dalkon Shield tails. *Fertil. Steril.* 40:334–339.

Basim, E. and Basim, H. 2003. “Antibacterial activity of *Rosa damascena* essential oil”, *Fitoterapia*, 74 (4), pp 394-396.

Bate-Smith and Swain, 1962, Flavonoid compounds. In : Comparative biochemistry. Florkin M. Mason H.S. Eds. Vol III. 75-809. Academic Press, New-York.

Bauer, A. W., Kirby, W. M. M., Sherris, J. C. and Turch, M., 1966. Antibiotic susceptibility testing by a standardized single disc method. *American. J. Clin Pathol.*, 45, 494–496.

Bengtson, S., and K. Knutson. 1991. The infected knee arthroplasty. A 6-year follow-up of 357 cases. *Acta Orthop. Scand.* 62:301–311.

Beuchat, L.R., Golden, D.A., 1989. Antimicrobials occurring naturally in foods. *Food Technol.* 43, 134– 142.

Blanco, M. T., J. Blanco, R. Sanchez-Benito, C. Perez-Giraldo, F. J. Moran, C. Hurtado, and A. C. Gomez-Garcia. 1997. Incubation temperatures affect adherence to plastic of *Candida albicans* by changing the cellular surface hydrophobicity. *Microbios* 89:23–28.

Blatnik J, Lesnicar G., 2006. Propagation of methicillin-resistant *Staphylococcus aureus* due to the overloading of medical nurses in intensive care units. *Journal of Hospital Infection*, 63: 162-166.

Booth, I. R., and Kroll, R. G., 1989. The preservation of foods by low pH, p. 119–160. In G. W. Gould (ed.). Mechanisms of action of food preservation procedures. Elsevier Science Publishers, New York, N.Y.

Bruinsma G, van der Mei H, Busscher H., 2001. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. *Biomaterials*; 22:3217–3224.

Brul S., and Coote P., 1999. Preservative agents in foods: mode of action and microbial resistance mechanism. *International Journal of Food Microbiology*. 50:1–17.

Brumfitt, W. and Hamilton-Miller, J., 1989. Methicillin resistant *Staphylococcus aureus*. *New England Journal of Medicine*, 320, 1188–1196.

Buchanan, R. L., and Edelson S. G., 1996. Culturing enterohemorrhagic *Escherichia coli* in the presence and absence of glucose as a simple means of evaluating the acid tolerance of stationary-phase cells. *Applied and Environmental Microbiology*. 62:4009–4013.

Busscher H, Geertsema-Doornbusch G, van der Mei H., 1997. Adhesion to silicone rubber of yeast and bacteria isolated from voice prostheses: Influence of salivary conditioning films. *Journal of Biomedical Materials Research*; 34:201–210.

Busscher H, Weerkamp A., 1987. Specific and non-specific interactions in bacterial adhesion to solid substrata. *FEMS Microbiology Reviews*; 46:165–173.

Carsenti-Etesse, H., Durant, J., Entenza, J., Mondain, V., Pradier, C., Bernard, E. et al., 1993. Effects of subinhibitory concentrations of vancomycin and teicoplanin on adherence of staphylococci to tissue culture plates. *Antimicrobial Agents and Chemotherapy* 37, 921–3.

Chamis, A., G. Peterson, C. Cabell, G. Corey, G. Sorrentino, R. Greenfield, R. Thomas, L. Reller, and V. Fowler. 2001. *Staphylococcus aureus* bacteraemia in patients with permanent pacemakers or implantable cardioverter-defibrillators. *Circulation* 104:1029–1033.

Cheng JT, Lin TC, Hsu FL., 1995. Antihypertensive effect of corilagin in the rat. *Canadian Journal of Physiology and Pharmacology*. 73:1425–9.

Cheng, H. Y., R.-C. Ye, and C.-C. Chou. 2003. Increased acid tolerance of *Escherichia coli* O157:H7 by acid adaptation time and conditions of acid challenge. *Food Research International*, 36:49–56.

Chesney, P. J. 1994. Infections of the female genital tract, p. 347–374. *In* A. L. Bisno and F. A. Waldovogel (ed.), *Infections associated with indwelling medical devices*, 2nd ed. American Society for Microbiology, Washington, D.C.

Christensen, G. D., W. A. Simpson, J. J. Younger, L. M. Baddour, F. F. Barrett, D. M. Melton, and E. H. Beachey. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. *Journal of Clinical Microbiology*, 22:996–1006.

Chugh, T. D., G. J. Burns, H. J. Shuhaiber, and G. M. Bahr. 1990. Adherence of *Staphylococcus epidermidis* to fibrin-platelet clots in vitro mediated by lipoteichoic acid. *Infection and Immunity*, 58:315–319.

Chung, K. T., T. Y. Wong, C. I. Wei, Y. W. Huang, and Y. Lin. 1998. Tannins and human health: A review. *Critical Reviews in Food Science and Nutrition*. 38:421–464.

Conner D. E., and Kotrola J. S., 1995. Growth and survival of *Escherichia coli* O157:H7 under acidic conditions. *Applied and Environmental Microbiology*. 61:382–385.

Costerton, J. W., Cheng K.-J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., and Marrie T. J., 1987. Bacterial biofilms in nature and disease. *Annual Review of Microbiology*. 41:435–464.

Costerton, J. W., Geesey G. G., and Cheng G. K., 1978. How bacteria stick. *Scientific American*. 238:86–95.

Costerton, J. W., L. Montanaro, and C. R. Arciola. 2005. Biofilm in implant infections: its production and regulation. *International Journal of Artificial Organs*; 28:1062–1068.

Cowan, M. M. 1999. Plant products as antimicrobial agents. *Clinical Microbiology Reviews*. 12:564–582.

Cramton SE, Gerke C, Schnell NF, Nichols WW, 1999. Go[“] tz F. The intercellular adhesion (ica) locus is present in *Staphylococcus aureus* and is required for biofilm formation. *Infection and Immunity*. 67:5427–33.

Cunliffe D, Smart C, Alexander C, Vulfson E., 1999. Bacterial adhesion at synthetic surfaces. *Applied and Environmental Microbiology*; 65:4995–5002.

Cushnie TPT, Lamb AJ, 2005. "Antimicrobial activity of flavonoids". *International Journal of Antimicrobial Agents*; 26 (5): 343–356.

Darouiche RO, Raad II, Heard SO, Thornby JI, Wenker OC, Gabrielli A, et al., 1999. A comparison of two antimicrobial-impregnated central venous catheters. *New England Journal of Medicine*; 340:1-8.

Darouiche RO., 1999. Anti-infective efficacy of silver-coated medical prostheses. *Clinical Infectious Disease*; 29:1371-7.

Darouiche, R. O. 2004. Treatment of infections associated with surgical implants *New England Journal of Medicine*; 350:1422–1429.

De Lucca AJ, et al., 1996. N-acetylcysteine inhibits germination of conidia and growth of *Aspergillus* spp. and *Fusarium* spp. *Antimicrobial Agents and Chemotherapy*; 40: 1274-6.

De Sousa RR, Queiroz KC, Souza AC, Gurgueira SA, Augusto AC, Miranda MA, Peppelenbosch MP, Ferreira CV, Aoyama H., 2007. "Phosphoprotein levels, MAPK activities and NF κ B expression are affected by fisetin". *Journal of Enzyme Inhibition and Medicinal Chemistry*; 22 (4): 439–444.

de Viedma D, Rabandan P, Díaz M, Cercenado E, Bouza E., 2000. Heterogeneous antimicrobial resistance patterns in polyclonal populations of coagulase-negative staphylococci isolated from catheters. *Journal of Clinical Microbiology*; 34:1359–1363.

Dekhuijzen, PNR., 2004. *European Respiratory Journal*, 23(4):629-636.

Dennesen, P. J. W., Bonten, M. J. M. and Weinstein, R. A., 1998. Multiresistant bacteria as a hospital epidemic problem. *Trends Clinical Practice*, 30, 176–185.

Diğrak, M., Alma, M. H., İlçim, A., 2001. Antibacterial and Antifungal Activities of Turkish Medicinal Plants. *Pharmaceutical Biology*, 39 (5): 346 – 350.

Donlan R.M., Costerton J. W., 2002, Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. *Clinical Microbiology Reviews*. American Society for Microbiology. p. 167–193.

Doors, S., 1993. Organic acid, in *Antimicrobials in Foods*, Davidson, P.M. and Branen, A.L., Eds., Marcel Dekker, New York, p. 95.

Douglas, J. L., and C. G. Cobbs. 1992. Prosthetic valve endocarditis, p. 375–396. *In* D. Kaye (ed.), *Infective endocarditis*, 2nd ed. Raven Press Ltd., New York, N.Y.

Duan W, Yu Y, Zhang L., 2005. Antiatherogenic effects of *phyllanthus emblica* associated with corilagin and its analogue. *Yakugaku Zasshi*; 125:587–91.

DuGuid, I. G., E. Evans, M. R. W. Brown, and P. Gilbert. 1990. Growthrate- dependent killing by ciprofloxacin of biofilm-derived *Staphylococcus epidermidis*; evidence for cell-cycle dependency. *Journal of Antimicrobial Chemotherapy*. 30:791–802.

DuGuid, I. G., E. Evans, M. R. W. Brown, and P. Gilbert. 1992. Effect of biofilm culture on the susceptibility of *Staphylococcus epidermidis* to tobramycin. *Journal of Antimicrobial Chemotherapy*; 30:803–810.

Dunne W Jr., 2003. Bacterial adhesion: Seen any good biofilms lately? *Clinical Microbiology Reviews*; 15:155– 166.

Dunne, W. M., Jr., E. O. Mason, Jr., and S. L. Kaplan. 1993. Diffusion of rifampin and vancomycin through a *Staphylococcus epidermidis* biofilm. *Antimicrobial Agents Chemotherapy*. 37:2522–2526.

Edmond, M.B.; Wallace, S.E.; McClish, D.K.; Pfaller, M.A.; Jones, R.N.;Wenzel, R.P., 1999. Nosocomial bloodstream infection in United States hospitals: a three-year analysis. *Clinical Infectious Diseases*. 29, 239-244.

Eliopoulos, G.M.; Eliopoulos, C.T., 1998. Antibiotic combinations: should they be tested. *Clinical Microbiology Reviews*. 1, 139-156.

Emori, T. G., and Gaines R. P., 1993. An overview of nosocomial infections, including the role of the microbiology laboratory. *Clinical Microbiology Reviews*. 6: 428–442.

Entani, E., M. Asai, S. Tsujihata, Y. Tsukamoto, and M. Ohta. 1998. Antibacterial action of vinegar against food-borne pathogenic bacteria including *Escherichia coli* O157:H7. *Journal of Food Protection*. 61:953–95.

Farber, B. F. & Wolff, A. G. 1992. The use of nonsteroidal antiinflammatory drugs to prevent adherence of *Staphylococcus epidermidis* to medical polymers. *Journal of Infectious Diseases* 166, 861–5.

Flowers, R. H., K. J. Schwenzer, R. F. Kopel, M. J. Fisch, S. I. Tucker, and B. M. Farr. 1989. Efficacy of an attachable subcutaneous cuff for the prevention of intravascular catheter-related infection. *Journal of the American Medical Association*. 261:878–883.

Fluit AC, Wielders CLC, Verhoef J et al., 2001. Epidemiology and susceptibility of 3,051 *Staphylococcus aureus* isolates from 25 university hospitals participating in the European SENTRY Study. *Journal of Clinical Microbiology*. 39: 3727-3732.

Frank KL, Hanssen AD, Patel R., 2004. *icaA* is not a useful diagnostic marker for prosthetic joint infection. *Journal of Clinical Microbiology*. 42:4846–9.

Freeman, D. J., F. R. Falkiner, and C. T. Keane. 1989. New method for detecting slime production by coagulase negative staphylococci. *Journal of Clinical Pathology*. 42:872–874.

Fridkin SK, Hageman JC, Morrison et al., 2005. Active Bacterial Core Surveillance Program of the Emerging Infections Program Network. Methicillin-resistant *Staphylococcus aureus* disease in three communities. *New England Journal of Medicine*. 352: 1436-1444.,

Gardner, W.H., 1973. In *Handbook of Food Additives*, 2nd Edition; Furia, T.E., Ed.; CRC Press: Cleveland, OH. p. 239.

Ge, Y.; Difuntorum, S.; Touami, S.; Critchley, I.; Burli, R.; Jiang, V.; Drazan, K.; Moser, H., 2002. In vitro antimicrobial activity of GSQ1530, a new heteroaromatic polycyclic compound. *Antimicrobial Agents of Chemotherapy*. 46, 3168-3174.

Giacometti A, Cirioni O, Schimizzi AM, et al., 2000. Epidemiology and microbiology of surgical wound infections. *Journal of Clinical Microbiology*; 38: 918-922.

Gristina AG., 1987. Biomaterial-centered infection: microbial adhesion versus tissue integration. *Science*; 237:1588–95.

Gross M, Crampton S, Gotz F, Peschel A., 2001. Key role of teichoic acid net charge in *Staphylococcus aureus* colonization of artificial surfaces. *Infection and Immunity*; 69:3423–3426.

Gustavo, B., 2003. Anticancer Research, 23:1411-1416.

Haber, CA., 2003. American Journal of Physiology, 285(4):E744-E753.

Hancock, E. W. 1994. Artificial valve disease, p. 1539–1545. In R. C. Schlant, R. W. Alexander, R. A. O'Rourke, R. Roberts, and E. H. Sonnenblick (ed.), The heart arteries and veins, 8th ed., vol. 2. McGraw-Hill, Inc., New York, N.Y.

Harbarth S, Masuet-Aumatell C, Schrenzel J et al., 2006. Evaluation of rapid screening and pre-emptive contact isolation for detecting and controlling methicillin-resistant *Staphylococcus aureus* in critical care: an interventional cohort study. Critical Care; 10: R25.

Hatano, T.; Kusuda, M.; Inada, K.; Ogawa, T.; Shiota, S.; Tsuchiya, T.; Yoshida, T., 2005. Effects of tannins and related polyphenols on methicillin-resistant *Staphylococcus aureus*. Phytochemistry. 66, 2047–2055.

Havsteen BH., 2002. The biochemistry and medical significance of the flavonoids. Pharmacology and Therapeutics. 96: 67–202.

Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Goetz F., 1996. Molecular basis of intercellular adhesion in the biofilmforming *Staphylococcus epidermidis*. Molecular Microbiology; 20: 1083–91.

Herrmann, M., P. E. Vaudaux, D. Pittet, R. Auckenthaler, P. D. Lew, F. Schumacher-Perdreau, G. Peters, and F. A. Waldvogel. 1988. Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. Journal of Infectious Diseases. 158:693–701.

Hidayat LK, Hsu DI, Quist R, et al., 2006. High-dose vancomycin therapy for methicillin-resistant *Staphylococcus aureus* infections: efficacy and toxicity. Archives of Internal Medicine. Oct 23 ;166(19):2138-44.

Hoyle, B. D., C. K. W. Wong, and J. W. Costerton. 1992. Disparate efficacy of tobramycin on Ca₂₊, Mg₂₊, and HEPES-treated *Pseudomonas aeruginosa* biofilms. Canadian Journal of Microbiology. 38:1214–1218.

Illingworth, B. L., K. Twenden, R. F. Schroeder, and J. D. Cameron. 1998. In vivo efficacy of silver-coated (silzone) infection-resistant polyester fabric against a biofilm-producing bacteria, *Staphylococcus epidermidis*. *Journal of Heart Valve Diseases*. 7:524–530.

Inoue M et al, 1994. Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. *Biochemical Biophysical Research Communications*. Oct 28; 204(2):898-904.

Jarlov JO., 1999. Phenotypic characteristics of coagulase-negative staphylococci: typing and antibiotic susceptibility. *APMIS Supplement*. 91: 1-42.

Jirovetz L et al., 2005. Solid phase microextraction/gas chromatographic and olfactory analysis of the scent and fixative properties of the essential oil of *Rosa damascena* from China. *Flavour and Fragrance Journal*; 20:7–12.

Joichi A et al., 2005. Volatile components of tea-scented modern roses and ancient Chinese roses. *Flavour and Fragrance Journal*; 20:152–157.

Jucker B, Harms H, Zehnder A., 1996. Adhesion of the positively charged bacterium *Stenotrophomonas (Xanthomonas) maltophilia* 70401 to glass and Teflon. *Journal of Bacteriology*. 5472;78:5479.

Kao, L. W., M. A. Kirk, R. B. Furbee, N. H. Mehta, J. R. Skinner, and E. J. Brizendine. 2003. What is the rate of adverse events after oral N-acetylcysteine administered by the intravenous route to patients with suspected acetaminophen poisoning? *Ann. Emerg. Med.* 42:741–750.

Karchmer, A. W., and G. W. Gibbons. 1994. Infections of prosthetic heart valves and vascular grafts, p. 213–249. *In* A. L. Bisno and F. A. Waldvogel (ed.), *Infections associated with indwelling medical devices*, 2nd ed. American Society for Microbiology, Washington, D.C.

Kauffman CA., 1996. Quandary about treatment of aspergillomas persists. *Lancet*. 347: 1640.

Kaye, D., and M. T. Hessen. 1994. Infections associated with foreign bodies in the urinary tract, p. 291–307. *In* A. L. Bisno and F. A. Waldovogel (ed.), *Infections associated with indwelling medical devices*, 2nd ed. American Society for Microbiology, Washington, D.C.

Kharazmi A, Nielsen H, Schiottz PO, 1988. N-acetylcysteine inhibits human neutrophil and monocyte chemotaxis and oxidative metabolism. International Journal of Immunopharmacology, 10:39-46.

Kinoshita S, Inoue Y, Nakama S, Ichiba T, Aniya Y., 2007. Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin. Phytomedicine; 14:755–62.

Kloos, W. E. & Bannerman, T. L., 1994. Update on clinical significance of coagulase-negative *Staphylococci*. Clinical Microbiology Reviews 7, 117–40.

Kluytmans J., 2007. Control of meticillin-resistant *Staphylococcus aureus* (MRSA) and the value of rapid tests. Journal of Hospital Infection; 65 Supplement 2: 100–4.

Knobloch JK, Von Osten H, Horstkotte MA, Rohde H, Mack D., 2002. Minimal attachment killing (MAK): a versatile method for susceptibility testing of attached biofilm-positive and -negative *Staphylococcus epidermidis*. Medical Microbiology and Immunology. (Berl);191:107–14.

Koerner R, Butterworth L, Mayer I, Dasbach R, Busscher H., 2002. Bacterial adhesion to titanium-oxynitride (TiNOX) coatings with different resistivities: A novel approach for the development of biomaterials. Biomaterials; 23:2835–2840.

Kroes BH et al, 1992. Anti-inflammatory activity of gallic acid. Planta Medica. Dec; 58(6):499-504.

Lentino JR., 2003. Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clinical Infectious Diseases; 36:1157–61.

Lewis, R. 1998. A review of bacteriological culture of removed intrauterine contraceptive devices. British journal of family planning. 24:95–97.

Livermore DM., 2000. Antibiotic resistance in staphylococci. International Journal of Antimicrobial Agents. 16:S3–S10.

Lotito SB, Frei B, 2006. "Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon?". Free Radical Biology and Medicine. 41 (12): 1727–46.

Mack D, Fischer W, Krokotsch A *et al.*, 1996. The intercellular adhesin involved in biofilm accumulation of *Staphylococcus epidermidis* is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. *Journal of Bacteriology*; 178: 175-183.

Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, et al., 1996. The intercellular adhesin involved in biofilm accumulation of *Staphylococcus epidermidis* is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. *Journal of Bacteriology*; 178: 175-83.

Mack D, Rohde H, Harris LG, Davies AP, Horstkotte MA, Knobloch JK., 2006. Biofilm formation in medical device-related infection. *International Journal of Artificial Organs*. 29:343-59.

Maki, D.G., Cobb, L., Garmann, J.K., Shapiro, J.M., Ringer, M., Helgerson, R.B., 1988. An attachable silver-impregnated cuff for prevention of infection with central venous catheters: a prospective randomized multicenter trial. *American Journal of Medicine*. 85:307.

Marc D, Nedelmann M, Krokotsch A, Schwarzkoph A, Heesemann J, Laufs R., 1994. Characterization of transposon mutants of biofilm-producing *Staphylococcus epidermidis* impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin. *Infection and Immunology*; 62: 3244-3253.

Marchese, A., M. Bozzolasco, L. Gualco, E. A. Debbia, G. C. Schito, and Schito, A. M., 2003. Effect of fosfomycin alone and in combination with *N*-acetylcysteine on *E. coli* biofilms. *International Journal of Antimicrobial Agents*. 22 (Supplement 2): 95–100.

Marino, M., Bersani, C., Comi, M., 1999. Antimicrobial activity of the essential oils of *Thymus vulgaris* L. measure using a bioimpedimetric method. *Journal of Food Protection*; 62:1017– 1023.

Marzullo, L. 2005. An update of N-acetylcysteine treatment for acute acetaminophen toxicity in children. *Current Opinion in Pediatrics*; 17:239–245.

Mathieson PW, et al., 1985. Survival after massive ingestion of carbon tetrachloride treated by IV infusion of acetylcysteine. *Human Toxicology*; 4: 627-31.

McCutcheon, A.R., Ellis, S.M., Hancock, R.E.W., Towers G.H.N., 1994. Antifungal screening of medicinal plants of British Columbian native peoples. *Journal of Ethnopharmacology*. 44(3), 157-169.

McKenney D, Pouliot KL, Wang Y, Murthy V, Ulrich M, Doering G, et al., 1999. Broadly protective vaccine for *Staphylococcus aureus* based on an in vivo-expressed antigen. *Science*; 284:1523-7.

McKenney D, Hübner J, Muller E, Wang Y, Goldmann DA, Pier GB., 1998. The *ica* locus of *Staphylococcus epidermidis* encodes production of the capsular polysaccharide/adhesin. *Infection and Immunity*; 66: 4711-4720.

Meletiadis, J.; Mouton, J.W.; Meis, J.F.; Verweij, P.E., 2003. In vitro drug interaction modeling of combinations of azoles with terbinafine against clinical *Scedosporium prolificans* Isolates. *Antimicrobial Agents of Chemotherapy*; 47:106-117.

Miquel, J., 1995. *European Journal Of Pharmacology*; 292:333-335.

Mohamed N, Teeters M, Patti J, Hook M, Ross J., 1999. Inhibition of *Staphylococcus aureus* adherence to collagen under dynamic conditions. *Infection and Immunity*; 67:589-594.

Momeni, T. and Shahrokh, N. 1991. Essential oils and their therapeutic actions. Tehran Universal press, Tehran, Iran (In Persian).

Montanari MP, Massidda O, Mingoia M, Varaldo PE., 1996. Borderline susceptibility to methicillin in *Staphylococcus aureus*: a new mechanism of resistance? *Microbial Drug Resistance*; 2:257-260.

Müller PM, Lamparsky D., 1991. *Perfumes: Art, Science & Technology*. Amsterdam, New York: Elsevier.

Mylotte, J.M., McDermott, C. 1987. *Staphylococcus aureus* bacteremia caused by infected intravenous catheters. *American Journal of Infection Control* 15:1.

Nakashima H., Murakami T., Yamamoto N., Sakagami H., Tanuma S., Hatano T., Yoshida T., Okuda T., 1992. *Antiviral Research*; 18:91-103.

Nasar-Abbas, S. M., and A. K. Halkman. 2004. Antimicrobial effect of water extract of sumac (*Rhus coriaria* L.) on the growth of some food borne bacteria including pathogens. International Journal of Food Microbiology. 97:63–69.

Noszal, B., D. Visky, and M. Kraszni. 2000. Population, acid-base, and redox properties of N-acetylcysteine conformers. Journal of Medicinal Chemistry; 43:2176–2182.

O'Gara J., Humphreys H., 2001. *Staphylococcus epidermidis* biofilms: Importance and implications. Journal of Medical Microbiology; 50:582–587.

O'Grady, N. P., Alexander, M., Dellinger, E. P., Gerberding, J. L., Heard, S. O., Maki, D. G., et al., 2002. Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. Morbidity and Mortality Weekly Report (Recommendations and Reports), 51(RR-10), 1-29.

Ohno Y. et al., 1999. Induction of apoptosis by gallic acid in lung cancer cells. Anticancer Drugs. Oct; 10(9):845-51.

Okabe S, Suganuma M, Imayoshi Y, Taniguchi S, Yoshida T, Fujiki H., 2001. New TNF-alpha releasing inhibitors, geraniin and corilagin, in leaves of *Acer nikoense*, Megusurino-ki. Biological & Pharmaceutical Bulletin.; 24:1145–8.

Oldemeyer, J. B., W. P. Biddle, R. L. Wurdeman, A. N. Mooss, E. Cichowski, and Hilleman D. E., 2003. Acetylcysteine in the prevention of contrastinduced nephropathy after coronary angiography. American Heart Journal; 146:E23.

Olofsson, A. C., M. Hermansson, and Elwing H., 2003. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Applied Environmental Microbiology; 69:4814–4822.

Ozkan G, Sagdic O, Baydar NG, Baydar H, 2004. Antioxidant and antibacterial activities of *Rosa damascena* flower extracts. Food Science and Technology International, 10:277-281.

Pahan,K., 1998. Free Radical Biology & Medicine; 24(1):39-48.

Pankey, G., Ashcraft, D., Patel, N., 2005. In vitro synergy of daptomycin plus rifampin against enterococcus faecium resistant to both linezolid and vancomycin. Antimicrobial Agents of Chemotherapy; 49:5166-5128.

Pansera, M. R., G. A. Iob, A. C. Atti-Santos, M. Rossato, L. Atti- Serafini, and Cassel E., 2004. Extraction of tannin by *Acacia mearnsii* with supercritical fluids. Brazilian Archives of Biology and Technology; 47:995–998.

Patterson RL, Galley HF, Webster NR, 2003. The effect of *N*-acetylcysteine on nuclear factor- κ B activation, interleukin-6, interleukin- 8, and intercellular adhesion molecule-1 expression in patients with sepsis. Critical Care Medicine; 31:2574-2578.

Patterson, RA., 2003. Atherosclerosis, 169:87-94.

Pérez-Giraldo, C., Rodríguez-Benito, A., Morán, F. J., Hurtado, C., Blanco, M. T. & Gómez-García, A. C., 1994. In-vitro slime production by *Staphylococcus epidermidis* in presence of subinhibitory concentrations of ciprofloxacin, ofloxacin and sparfloxacin. Journal of Antimicrobial Chemotherapy; 33, 845–8.

Pérez-Giraldo, C., Rodríguez-Benito, A., Morán, F. J., Hurtado, C., Blanco, M. T. and Gómez-García, A. C., 1997. Influence of *N*-acetylcysteine on the formation of biofilm by *Staphylococcus epidermidis*. Journal of Antimicrobial Chemotherapy; 39, 643–646.

Pfaller, M. A., and Herwaldt L. A., 1988. Laboratory, clinical, and epidemiological aspects of coagulase-negative *staphylococci*. Clinical Microbiology Reviews; 1: 281–299.

Price J.S. et al., 1996. Controlled release of antibiotics from coated orthopedic implants, Journal of Biomedical Materials Research; 30(3):281–286.

Proctor RA., 2008. Role of folate antagonists in the treatment of methicillin-resistant *Staphylococcus aureus* infection. Clinical Infectious Diseases. Feb 15, 46(4):584-93.

Raad I, Alrahwan A, Rolston K., 1998. *Staphylococcus epidermidis*: emerging resistance and need for alternative agents. Clinical Infectious Diseases; 26: 1182-1187.

Raad I, Bodey G., 1992. Infectious complications of indwelling vascular catheters. Clinical Infectious Diseases; 15:197-210.

Raad I, Hanna H., 2002. Intravascular catheter-related infections. *Archives of Internal Medicine*; 162:871-878.

Raad, I. 1998. Intravascular-catheter-related infections. *Lancet* 351:893–898.

Raad, I., R. Darouiche, R. Hachem, D. Abi-Said, H. Safar, T. Darnule, M. Mansouri, and Morck D. 1998. Antimicrobial durability and rare ultrastructural colonization of indwelling central catheters coated with minocycline and rifampin. *Critical Care Medicine*; 26:219–224.

Raad, I., Costerton W., Sabharwal U., Sacilowski M., Anaissie W., and Bodey G. P. 1993. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. *Journal of Infectious Diseases*; 168:400–407.

Raina K, et al., 2008. Chemopreventive effects of oral gallic acid feeding on tumor growth and progression in TRAMP mice. *Molecular Cancer Therapeutics*. May; 7(5):1258-67.

Rakel R. E., M.D. Bope E. T., M.D. 2004. *Conn's Current Therapy*, Elsevier Inc. Saunders an imprint of Elsevier. Philadelphia, Pennsylvania, USA., 1222.

Rieutord A, Arnaud P, Dauphin JF, Brion F., 1999. Stability and compatibility of an aerosol mixture including N-acetylcysteine, netilmicin and betamethasone. *International Journal of Pharmaceutics*; 190:103–107.

Riise, G. C., I. Qvarfordt, S. Larsson, V. Eliasson, and B. A. Andersson, 2000. Inhibitory effect of N-acetylcysteine on adherence of *Streptococcus pneumoniae* and *Haemophilus influenzae* to human oropharyngeal epithelial cells in vitro. *Respiration* 67:552–558.

Roisman, F. R., Walz D. T., and Finkelstein. A. E., 1983. Superoxide radical production by human leukocytes exposed to immune complexes: inhibitory action of gold compounds. *Inflammation*; 7:355–362.

Rupp, M. E., and Archer G. D., 1994. Coagulase-negative staphylococci: pathogens associated with medical progress. *Clinical Infectious Diseases*; 19:231–245.

Ruprah M, et al., 1985. Acute carbon tetrachloride poisoning in 19 patients: implications for diagnosis and treatment. *Lancet*: i: 1027-9.

Russell, P. B., Kline J., Yoder M. C., and Polin R. A., 1987. Staphylococcal adherence to polyvinyl chloride and heparin-bonded polyurethane catheters is species dependent and enhanced by fibronectin. *Journal of Clinical Microbiology*; 25: 1083–1087.

Santavirta, S., Konttinen Y. T., Saito T., Gronblad M., Partio E., Kemppinen P., and Rokanken P., 1990. Immune response to polyglycolic acid implants. *Journal of Bone and Joint Surgery [Br.]* 72:597–600.

Santavirta, S., Konttinen Y. T., Bergroth V., and Gronblad M., 1991. Lack of immune response to methyl methacrylate in lymphocyte cultures. *Acta Orthopaedica Scandinavica*; 62:29–32.

Sato, H., 1999. *Journal Of Biological Chemistry*, 274(17):11455-11458.

Saxena, G., McCutcheon, A.R., Farmer, S., Towers G.H.N., Hancock, R.E.W., 1994. Antimicrobial constituents of *Rhus glabra*. *J. Ethnopharmacology*. 42(2), 95-99.

Schito GC., 2006. The importance of the development of antibiotic resistance in *Staphylococcus aureus*. *Clinical Microbiology and Infection*; 1: 3-8.

Schwandt, L. Q., Van Weissenbruch R., Stokroos I., Van der Mei H. C., Busscher H. J., and Albers F. W., 2004. Prevention of biofilm formation by dairy products and N-acetylcysteine on voice prostheses in an artificial throat. *Acta Otolaryngologica*; 124:726–731.

Sezik, E., Tabata, M., Yeşilada, E., Honda, G., Goto, K., IkeshiroY., 1991. Traditional medicine in Turkey I, Folk medicine in Northeast Anatolia. *J. Ethnopharmacology*; 35, 191-196.

Sheffner, A. L. 1963. The reduction in vitro in viscosity of mucoprotein solutions by a new mucolytic agent, N-acetyl-L-cysteine. *Annals of the New York Academy of Sciences*; 106:298–310.

Shelef, L.A., Naglik, O.A., Bogen, B.W., 1980. Sensitivity of some common food borne bacteria to the spices sage, rosemary and all spice. *Journal of Food Sciences*; 45: 1042–1044.

Shen ZQ, Dong ZJ, Peng H, Liu JK., 2003. Modulation of PAI-1 and tPA activity and thrombolytic effects of corilagin. *Planta Medica*; 69:1109–12.

Sherertz RJ, Boger MS, Collins CA, Mason L. Raad II., 2006. Comparative in vitro efficacies of various catheter lock solutions. *Antimicrobial Agents and Chemotherapy*; 50:1865-8.

Shiota S, Shimizu M, Sugiyama J, Morita Y, Mizushima T, Tsuchiya T., 2004. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant *Staphylococcus aureus*. *Microbiology and Immunology*; 48: 67-73.

Souli, M., and Giamarellou H., 1998. Effects of slime produced by clinical isolates of coagulase-negative staphylococci on activities of various antimicrobial agents. *Antimicrobial Agents and Chemotherapy*; 42:939-941.

Souvenir D, Anderson D Jr, Palpant S, Mroch H, Askin S, Anderson J, Claridge J, Eiland J, Malone C, Garrison M, Watson P, Campbell D., 1998. Blood Cultures positive for coagulase negative staphylococci: Antisepsis, pseudobacteremia and therapy of patient. *Journal of Clinical Microbiology*; 36:1923-1926.

Spencer, J. P. E., 2008. "Flavonoids: modulators of brain function?". *The British journal of nutrition* 99 E Supplement 1: ES60-ES77.

Stey, C., Steurer J., Bachmann S., Medici T. C., and Tramer M. R., 2000. The effect of oral N-acetylcysteine in chronic bronchitis: a quantitative systematic review. *European Respiratory Journal*; 16:253-262.

Stigter M., et al., 2004. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy, *Journal of Controlled Release*; 99 (1) 127-137.

Stradford M., and Anslow P. A., 1998. Evidence that sorbic acid does not inhibit yeast as a classic 'weak acid preservative.' *Letters in Applied Microbiology*; 27:2.

Sweetman S. C., 2002. *Martindale The complete drug reference*. Thirty-third edition. Pharmaceutical Press. Great Britain, 1083.

Tammelin A; Domicel P; Hambraeus A; Stähle E., 2000. Dispersal of methicillin-resistant *Staphylococcus epidermidis* by staff in an operating suite for thoracic and cardiovascular surgery: relation to skin carriage and clothing. *Journal of Hospital Infection*; 44: 119-126.

Tatum, H. J., F. H. Schmidt, D. Phillips, M. McCarty, and W. M. O'Leary. 1975. The Dalkon Shield controversy. *JAMA* 231:711–717.

Timmerman, C. P., Fleer A., Besnier J. M., de Graaf L., Cremers F., and Verhoef J., 1991. Characterization of a proteinaceous adhesin of *Staphylococcus epidermidis* which mediates attachment to polystyrene. *Infection and Immunity*. 59:4187–4197.

Tojo, M., Yamashita N., Goldmann D. A., and Pier G. B., 1988. Isolation and characterization of a capsular polysaccharide adhesin from *Staphylococcus epidermidis*. *Journal of Infectious Diseases*; 157:713–722.

Tosun, I, Gonullu, M.T. & Gunay, A., 2002. Anaerobic digestion of residues from rose oil production. ISWA 2002 World Environmental Congress and Exhibition, 8-12 July, Istanbul. pp.703-710.

Trautner BW, Darouiche RO., 2004. Catheter-associated infections: pathogenesis affects prevention. *Archives of Internal Medicine*; 164:842-50.

Tylicki L, Rutkowski B, Horl WH, 2003. Antioxidants: a possible role in kidney protection. *Kidney Blood Pressure Research*; 26: 303–314.

Vale JA, Proudfoot AT., 1995. Paracetamol (acetaminophen) poisoning. *Lancet*: 346: 547-52.

Vaudaux, P., D. Pittet, A. Haeberli, E. Huggler, U. E. Nydegger, D. P. Lew, and F. A. Waldvogel. 1989. Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin. *Journal of Infectious Diseases*; 160:865–875.

Ventura, P., R. Panini, M. C. Pasini, G. Scarpetta, and G. Salvioli. 1999. N-Acetyl-cysteine reduces homocysteine plasma levels after single intravenous administration by increasing thiols urinary excretion. *Pharmacological Research*; 40, 345–350.

Vermont C, Hartwig N, Fleer A, de Man P, Verbrugh H, van der Anker J, de Groot R, van Belkum A., 1998. Persistence of clones of coagulase-negative staphylococci among premature neonates in neonatal intensive care units: Two-center study of bacterial genotyping and patient risk factors. *Journal of Clinical Microbiology*; 36:2485–2490.

Villari P, Sarnataro C, Lacuzio, L., 2000. Molecular epidemiology of *Staphylococcus epidermidis* in a neonatal intensive care unit over a three-year period. *Journal of Clinical Microbiology*; 38:1740-6.

von Eiff, C., C. Heilmann, M. Herrmann, and G. Peters. 1999. Basic aspects of the pathogenesis of staphylococcal polymer-associated infections. *Infection* 27(Supplement. 1):S7–S10.

Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, et al., 2004. Polysaccharide intercellular adhesin (PIA) protects *Staphylococcus epidermidis* against major components of the human innate immune system. *Cell Microbiology*; 6:269–75.

Vuong, C., and Otto M., 2002. *Staphylococcus epidermidis* infections. *Microbes Infection*; 4:481–489.

Wacher V., 2000. L. PCT Int. Appl. WO 2000051643 A1, 38 pp.

Wang, I. W., Anderson J. M., and Marchant R. E., 1993. *Staphylococcus epidermidis* adhesion to hydrophobic biomaterials is mediated by platelets. *Journal of Infectious Diseases*. 167:329–336.

Wang, J. Y., B. H. Wicklund, R. B. Gustilo, and D. T. Tsukayama. 1997. Prosthetic metals impair murine immune response and cytokine release in vivo and in vitro. *Journal of Orthopaedic Research*; 15:688–699.

Wetherilt, H., Pala, M., 1994. Herbs and spices indigenous to Turkey. In: Charalambous, G. (Ed.), Spices, Herbs and Edible Fungi. Developments in Food Science, vol. 34. Elsevier, Amsterdam, pp. 285–307.

Widmer, A., 1997. Management of catheter-related bacteremia and fungemia in patients on total parenteral nutrition. *Nutrition* 13(Supplement):18S.

Wolf, A. S., and D. Kreiger. 1986. Bacterial colonization of intrauterine devices (IUDs). *Archives of Gynecology*; 239:31–37.

Wu S, Piscitelli C, de LH, Tomasz A., 1996. Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of *mecA* from a methicillin susceptible isolate of *Staphylococcus sciuri*. *Microbial Drug Resistance*; 2:435–41.

Yamamoto Y. and Gaynor R. B., 2001. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. *Journal of Clinical Investigation*; 107(2): 135-142.

Yan,CY., 1998. *The Journal Of Neuroscience*, 18(11):4042-4049.

Yip, L., R. C. Dart, and K. M. Hurlbut. 1998. Intravenous administration of oral N-acetylcysteine. *Critical Care Medicine*; 26:40–43.

Yoshioka K et al., 2000. Induction of apoptosis by gallic acid in human stomach cancer KATO III and colon adenocarcinoma COLO 205 cell lines. *Oncology Reports*; Nov-Dec;7(6):1221-3.

Zaki F., Fathy A., 2000. Egypt. *Journal of Biotechnology*; 7, 308-315.

Zalacain, A., M. Prodanov, M. Carmona, and G. L. Alonso. 2003. Optimisation of extraction and identification of gallotannins from sumac leaves. *Biosystems Engineering*; 84:211–216.

Zygmunt, W. A., and T. A. Martin. 1968. Cysteine analogs as potential amino acid antagonists in bacteria. *Journal of Medical Chemistry*; 11:623–625.

URL 1:

<http://www.benbest.com/>

URL 2:

<http://en.wikipedia.org/wiki/Acetylcysteine>

URL 3:

<http://en.wikipedia.org/wiki/Tannin>

URL 4:

http://en.wikipedia.org/wiki/Tannic_acid

URL 5:

http://en.wikipedia.org/wiki/Flavonoid#cite_ref-LPI_9-0

URL 6:

<http://en.wikipedia.org/wiki/Corilagin>

URL 7:

<http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=73179>

URL 8:

<http://en.wikipedia.org/wiki/Sumac>

URL 9:

http://www.eurekalert.org/pub_releases/2007-03/osu-sfn030507.php

URL 10:

<http://en.wikipedia.org/wiki/Rose>

7. APPENDICES

1. The SI of isolates which was treated with NAC

Bacteria no	Bacteria	NAC (mg/ml)			
		0.03	0.12	0.5	2.0
30	MSSE	43.478	50	41.667	43.478
72	MRSE	37.037	33.333	35.714	37.037
50	MRSE	58.824	62.500	50	52.632
83	MSSA	90.909	83.333	71.429	71.429
27	MSSA	100	100	76.923	55.556
53	MRSE	90.909	76.923	76.923	66.667
31	MSSE	100	83.333	11.111	62.500
84	MSSA	43.478	43.478	38.462	32.258
45	MSSE	125	125	100	83.333
23	MRSE	90.909	71.429	76.923	52.632
62	MRSE	142.857	76.923	50	66.667
2	MRSE	111.111	111.111	90.909	76.923
11	MSSE	58.824	50	55.556	76.923
12	MRSE	71.429	90.909	83.333	83.333
17	MSSE	71.429	76.923	62.500	71.429
35	MSSE	83.333	66.667	76.923	76.923
37	MSSE	100	100	111.111	90.909
49	MSSE	37.037	37.037	37.037	25.641
86	MSSA	26.316	23.810	22.222	24.390
66	MSSA	41.667	47.619	40	35.714
60	MSSA	62.500	58.824	71.429	66.667
13	MRSA	43.478	37.037	45.455	40
25	MRSE	83.333	90.909	83.333	250
38	MRSE	100	90.909	90.909	83.333
10	MRSE	83.333	100	100	90.909
51	MSSA	111.111	125	111.111	111.111
3	MRSE	71.429	71.429	71.429	83.333

5	MSSE	71.429	100	90.909	76.923
33	MRSE	76.923	76.923	83.333	83.333
28	MSSE	90.909	83.333	83.333	83.333
26	MSSA	125	90.909	111.111	100
16	MRSA	100	71.429	100	83.333
63	MSSE	111.111	55.556	76.923	71.429
76	MRSE	100	100	83.333	83.333
4	MSSE	100	58.824	71.429	76.923
75	MRSE	90.909	76.923	66.667	55.556
19	MSSA	125	90.909	76.923	83.333
34	MRSA	125	90.909	83.333	90.909
1	MRSE	111.111	90.909	111.111	111.111
18	MSSE	45.455	45.455	43.478	38.462
20	MRSA	90.909	83.333	71.429	71.429

2. The slime formation of isolates which was treated with NAC

Bacteria no	Bacteria	NAC (mg/ml)			
		0.03	0.12	0.5	2.0
30	MSSE	52.151	48.925	45.161	35.215
72	MRSE	28.846	26.573	24.301	22.378
50	MRSE	43.182	42.532	41.234	32.468
83	MSSA	229.070	201.163	163.953	144.186
27	MSSA	90.395	79.096	68.362	45.198
53	MRSE	89.655	82.069	72.414	52.414
31	MSSE	75.309	72.840	70.370	61.728
84	MSSA	47.619	43.810	42.857	39.048
45	MSSE	97.059	89.706	83.824	75
23	MRSE	85	80	70	61.250
62	MRSE	74.016	51.969	42.520	38.583
2	MRSE	90	77.273	73.636	56.364
11	MSSE	91.176	72.059	67.647	58.824
12	MRSE	93.590	91.026	79.487	61.538
17	MSSE	73.494	73.494	71.084	65.060
35	MSSE	65.487	62.832	59.292	53.097
37	MSSE	94.186	91.860	88.372	60.465
49	MSSE	45.638	39.262	38.591	20.470
86	MSSA	26.168	21.807	20.249	19.315
66	MSSA	95.876	86.598	74.227	58.763
60	MSSA	69.307	65.347	61.386	55.446
13	MRSA	38.817	37.789	35.990	30.848
25	MRSE	90.805	80.952	77.143	70.115
38	MRSE	99.048	89.524	80.952	68.571
10	MRSE	120.270	159.459	125.676	118.919
51	MSSA	96.386	93.976	90.361	83.133
3	MRSE	98.765	96.296	81.481	79.012
5	MSSE	97.368	94.737	81.579	76.316

33	MRSE	100	97.436	84.615	76.923
28	MSSE	100	98.667	73.333	68
26	MSSA	86.667	78.095	66.667	59.048
16	MRSA	69.412	68.235	82.353	64.706
63	MSSE	86.957	56.522	43.243	37.838
76	MRSE	71.552	60.345	55.172	44.828
4	MSSE	71.910	60.674	56.180	48.315
75	MRSE	77.778	61.438	50.324	38.562
19	MSSA	52.147	51.534	44.172	42.945
34	MRSA	97.297	75.676	71.622	67.568
1	MRSE	77.333	64	73.333	66.667
18	MSSE	41.611	39.597	36.913	32.215
20	MRSA	70.787	66.292	64.045	55.056

3. The growth of isolates which was treated with NAC

Bacteria no	Bacteria	NAC (mg/ml)			
		0.03	0.12	0.5	2.0
30	MSSE	119.649	98.270	109.486	80.541
72	MRSE	78.956	80.995	67.210	60.522
50	MRSE	72.595	66.431	81.838	63.162
83	MSSA	75.514	79.806	61.111	63.316
27	MSSA	86.066	82.355	90.385	82.557
53	MRSE	99.867	109.329	93.028	80.578
31	MSSE	72.224	84.953	62.504	96.057
84	MSSA	111.247	100.746	112.020	121.775
45	MSSE	75.892	69.158	87.778	89.899
23	MRSE	89.299	108.052	89.351	116.338
62	MRSE	49.282	70.035	86.737	56.867
2	MRSE	85.437	72.480	84.348	74.054
11	MSSE	156.611	143.549	119.383	74.968

12	MRSE	133.147	102.552	97.727	75.559
17	MSSE	101.666	95.636	110.526	94.261
35	MSSE	77.455	93.506	74.758	71.406
37	MSSE	97.582	92.078	81.164	66.879
49	MSSE	125.509	105.940	105.308	80.057
86	MSSA	100.661	91.076	91.152	78.617
66	MSSA	231.401	181.438	182.098	161.849
60	MSSA	112.055	109.415	88.263	84.447
13	MRSA	91.173	100.740	83.343	78.588
25	MRSE	104.685	92.033	90.074	30.995
38	MRSE	97.236	87.742	86.494	80.254
10	MRSE	138.588	152.824	123.176	135.176
51	MSSA	89.124	75.756	79.869	77.438
3	MRSE	136.321	130.245	111.685	77.097
5	MSSE	134.065	94.091	90.959	99.257
33	MRSE	126.547	130.302	104.559	89.609
28	MSSE	113.632	119.183	88.640	79.494
26	MSSA	70.299	84.401	61.738	58.876
16	MRSA	68.743	92.100	85.834	83.137
63	MSSE	75.583	67.723	55.888	53.915
76	MRSE	69.185	62.941	66.375	52.451
4	MSSE	73.803	106.026	78.261	63.511
75	MRSE	86.400	80.160	74.160	70.480
19	MSSA	44.217	56.989	56.045	50.197
34	MRSA	81.908	83.479	83.711	74.113
1	MRSE	71.187	70.718	62.884	59.032
18	MSSE	91.492	89.113	86.518	84.102
20	MRSA	80.364	77.072	90.476	76.573

4. The SI of isolates which was treated with Sumach

Bacteria no	Bacteria	Sumach (µl/ml)			
		0.1 µl/ml	0.2 µl/ml	0.5 µl/ml	1.0 µl/ml
30	MSSE	17.544	18.182	13.159	13.333
72	MRSE	27.027	27.778	20.408	11.111
50	MRSE	19.231	20.408	21.739	10
83	MSSA	100	83.333	76.923	55.556
27	MSSA	90.909	100	76.923	41.667
53	MRSE	58.824	58.824	50	32.258
31	MSSE	142.857	111.111	90.909	62.500
84	MSSA	47.619	45.455	40	40
45	MSSE	125	142.857	142.857	71.429
23	MRSE	83.333	71.429	76.923	47.619
62	MRSE	83.333	76.923	62.500	38.462
2	MRSE	90.909	90.909	58.824	37.037
11	MSSE	66.667	66.667	83.333	71.429
12	MRSE	83.333	71.429	71.429	76.923
17	MSSE	71.429	66.667	71.429	66.667
35	MSSE	62.500	62.500	62.500	58.824
37	MSSE	111.111	100	100	71.429
49	MSSE	40	38.462	33.333	28.571
86	MSSA	35.714	28.571	26.316	23.810
66	MSSA	52.632	45.455	50	22.727
60	MSSA	100	111.111	83.333	62.500
13	MRSA	50	41.667	41.667	19.231
25	MRSE	100	100	90.909	90.909
38	MRSE	111.111	90.909	76.923	62.500
10	MRSE	142.857	142.857	90.909	76.923
51	MSSA	100	100	76.923	58.824
3	MRSE	90.909	76.923	71.429	55.556
5	MSSE	100	100	90.909	76.923

33	MRSE	83.333	90.909	90.909	76.923
28	MSSE	111.111	90.909	90.909	90.909
26	MSSA	111.111	100	90.909	62.500
16	MRSA	100	111.111	111.111	90.909
63	MSSE	100	58.824	71.429	43.478
76	MRSE	100	100	90.909	71.429
4	MSSE	142.857	125	125	71.429
75	MRSE	76.923	76.923	71.429	37.037
19	MSSA	66.667	58.824	58.824	41.667
34	MRSA	125	111.111	125	100
1	MRSE	125	111.111	125	83.333
18	MSSE	40	35.714	40	28.571
20	MRSA	100	83.333	76.923	55.556

5. The slime formation of isolates which was treated with sumach

Bacteria no	Bacteria	Sumach (µl/ml)			
		0.1 µl/ml	0.2 µl/ml	0.5 µl/ml	1.0 µl/ml
30	MSSE	18.280	18.011	16.935	16.398
72	MRSE	19.755	18.706	16.958	11.888
50	MRSE	17.532	14.935	13.636	10.390
83	MSSA	88.764	79.775	67.416	58.427
27	MSSA	95.480	83.616	63.277	46.328
53	MRSE	55.862	51.724	48.276	44.138
31	MSSE	79.012	76.543	70.370	61.728
84	MSSA	54.286	51.429	50.476	47.619
45	MSSE	102.941	100	95.588	66.176
23	MRSE	82.500	77.500	71.250	53.750
62	MRSE	70.866	58.268	34.646	33.858
2	MRSE	74.545	70	69.091	40.909
11	MSSE	72.059	75	86.765	76.471

12	MRSE	92.647	79.412	83.824	92.647
17	MSSE	67.470	65.060	63.855	56.627
35	MSSE	53.982	51.327	50.442	47.788
37	MSSE	96.512	91.860	81.395	62.791
49	MSSE	44.631	39.597	33.221	26.175
86	MSSA	33.022	25.545	25.545	22.118
66	MSSA	98.969	92.784	81.443	55.670
60	MSSA	98.020	96.040	89.109	74.257
13	MRSA	36.761	35.476	33.162	16.710
25	MRSE	94.253	88.506	81.609	68.966
38	MRSE	98.095	80.952	63.810	49.524
10	MRSE	179.730	186.486	124.324	118.919
51	MSSA	95.181	91.566	81.928	66.265
3	MRSE	96.296	90.123	82.716	65.432
5	MSSE	96.053	93.421	88.158	78.947
33	MRSE	98.718	97.436	87.179	75.641
28	MSSE	98.667	96	85.333	80
26	MSSA	80.952	68.571	59.048	48.571
16	MRSA	98.824	95.294	83.529	76.471
63	MSSE	63.587	39.674	34.239	32.609
76	MRSE	68.103	56.897	53.448	52.586
4	MSSE	97.753	95.506	92.135	70.787
75	MRSE	64.052	62.092	56.863	39.216
19	MSSA	36.810	39.877	34.356	33.129
34	MRSA	97.297	94.595	87.838	79.730
1	MRSE	89.333	84	70.667	66.667
18	MSSE	35.570	33.557	32.215	29.530
20	MRSA	92.135	70.787	65.169	57.303

6. The growth of isolates which was Treated with Sumach

Bacteria no	Bacteria	Sumach (µl/ml)			
		0.1 µl/ml	0.2 µl/ml	0.5 µl/ml	1.0 µl/ml
30	MSSE	105.027	98.324	128.378	123.541
72	MRSE	73.899	68.108	82.518	107.314
50	MRSE	91.946	72.568	62.622	104.054
83	MSSA	78.454	89.830	72.840	97.149
27	MSSA	105.938	81.680	84.379	109.683
53	MRSE	92.696	86.786	95.817	134.562
31	MSSE	58.146	68.765	79.142	96.783
84	MSSA	113.726	110.901	128.571	118.683
45	MSSE	78.721	66.633	69.327	90.337
23	MRSE	96.468	106.571	94.935	114.442
62	MRSE	86.620	73.263	56.655	87.845
2	MRSE	82.652	79.988	114.260	111.353
11	MSSE	109.788	116.078	104.397	106.418
12	MRSE	98.776	99.895	100.944	101.713
17	MSSE	91.351	98.598	91.325	83.549
35	MSSE	84.839	80.492	82.194	79.393
37	MSSE	86.446	90.710	78.715	86.001
49	MSSE	110.846	103.013	99.799	92.310
86	MSSA	92.449	88.228	97.915	92.906
66	MSSA	192.517	208.291	165.444	244.974
60	MSSA	99.141	89.917	102.863	115.967
13	MRSA	74.943	84.909	78.559	86.304
25	MRSE	95.077	89.254	86.818	77.131
38	MRSE	87.252	90.104	84.555	77.647
10	MRSE	132.647	138.588	137	159.765
51	MSSA	97.195	88.376	99.346	110.284
3	MRSE	107.451	115.342	115.370	118.257
5	MSSE	98.805	89.441	99.677	100.097

33	MRSE	119.441	104.559	93.385	100.514
28	MSSE	93.558	109.922	90.394	86.425
26	MSSA	72.794	66.702	64.811	75.762
16	MRSA	96.164	88.682	72.655	87.885
63	MSSE	62.762	66.019	53.497	75.493
76	MRSE	69.622	57.196	56.978	72.338
4	MSSE	71.491	79.224	74.491	98.459
75	MRSE	85.120	81.760	76.880	105.640
19	MSSA	56.491	66.509	58.169	81.039
34	MRSA	80.628	82.635	71	79.901
1	MRSE	72.176	78.214	61.999	82.015
18	MSSE	89.510	92.934	79.849	104.326
20	MRSA	95.944	84.362	84.891	101.117

7. The SI of isolates which was treated with Eau de rose

Bacteria no	Bacteria	Eau de rose (μ l/ml)			
		0.1 μl/ml	0.2 μl/ml	0.5 μl/ml	1.0 μl/ml
30	MSSE	83.333	66.667	52.632	43.478
72	MRSE	38.462	58.824	27.027	28.571
50	MRSE	45.455	38.462	34.483	27.778
83	MSSA	83.333	76.923	76.923	76.923
27	MSSA	62.500	62.500	58.824	55.556
53	MRSE	45.455	55.556	76.923	76.923
31	MSSE	100	111.111	100	62.500
84	MSSA	58.824	41.667	58.824	38.462
45	MSSE	142.857	125	111.111	111.111
23	MRSE	66.667	76.923	76.923	58.824
62	MRSE	71.429	111.111	83.333	58.824
2	MRSE	83.333	83.333	58.824	71.429
11	MSSE	90.909	83.333	71.429	55.556

12	MRSE	76.923	76.923	62.500	52.632
17	MSSE	62.500	66.667	62.500	58.824
35	MSSE	66.667	55.556	52.632	45.455
37	MSSE	100	90.909	76.923	71.429
49	MSSE	20.408	21.277	21.739	30.303
86	MSSA	29.412	37.037	142.857	250
60	MSSA	83.333	71.429	66.667	66.667
13	MRSA	23.810	22.727	38.462	37.037
25	MRSE	16.667	111.111	166.667	142.857
38	MRSE	142.857	142.857	142.857	125
10	MRSE	100	83.333	125	76.923
51	MSSA	111.111	125	111.111	90.909
3	MRSE	90.909	111.111	111.111	111.111
5	MSSE	100	111.111	125	100
33	MRSE	111.111	111.111	111.111	90.909
28	MSSE	111.111	90.909	90.909	83.333
26	MSSA	142.857	142.857	125	76.923
16	MRSA	66.667	62.500	66.667	62.500
63	MSSE	125	111.111	90.909	83.333
76	MRSE	125	71.429	76.923	71.429
4	MSSE	76.923	111.111	100	83.333
75	MRSE	76.923	62.500	52,632	52,632
19	MSSA	62.500	66.667	58.824	52.632
34	MRSA	111.111	90.909	90.909	100
1	MRSE	111.111	142.857	100	111.111
18	MSSE	50	50	47.619	34.483
20	MRSA	83.333	76.923	76.923	76.923

8. The slime formation of isolates which was treated with Eau de rose

Bacteria no	Bacteria	Eau de rose (µl/ml)			
		0.1 µl/ml	0.2 µl/ml	0.5 µl/ml	1.0 µl/ml
30	MSSE	75.269	69.355	58.065	42.742
72	MRSE	27.622	45.804	31.469	27.972
50	MRSE	44.805	32.792	29.870	30.195
83	MSSA	92.135	87.640	80.899	76.744
27	MSSA	55.932	56.497	56.497	54.802
53	MRSE	57.931	79.310	94.483	89.655
31	MSSE	72.840	80.247	75.309	71.605
84	MSSA	60.952	44.762	60	44.762
45	MSSE	98.529	95.588	91.176	98.529
23	MRSE	60	80	67.500	61.250
62	MRSE	55.906	89.764	54.331	59.843
2	MRSE	67.273	70.909	49.091	77.273
11	MSSE	97.059	88.235	76.471	69.118
12	MRSE	83.333	79.487	73.077	57.692
17	MSSE	57.831	62.651	57.831	59.036
35	MSSE	54.867	47.788	45.133	42.478
37	MSSE	77.907	79.070	66.279	76.744
49	MSSE	20.134	29.195	23.826	27.517
86	MSSA	27.103	36.137	41.433	67.913
60	MSSA	81.881	73.267	63.366	81.881
13	MRSA	23.650	23.650	39.332	38.046
25	MRSE	139.080	101.149	139.080	142.529
38	MRSE	102.857	117.143	105.714	110.476
10	MRSE	152.703	110.811	177.027	114.865
51	MSSA	100	97.590	87.952	74.157
3	MRSE	97.531	116.049	109.877	104.938
5	MSSE	94.737	111.842	102.632	92.105
33	MRSE	101.282	100	98.718	88.462

28	MSSE	106.667	84	82.667	82.667
26	MSSA	89.524	84.762	77.143	60.952
16	MRSA	62.353	61.176	62.353	67.059
63	MSSE	80.435	61.413	62.500	59.783
76	MRSE	62.931	46.552	41.379	50
4	MSSE	77.528	78.652	79.775	77.528
75	MRSE	73.203	56.209	56.209	54.248
19	MSSA	36.810	34.356	33.742	32.515
34	MRSA	93.243	64.865	68.919	87.838
1	MRSE	92	101.333	72	80
18	MSSE	44.295	42.953	40.268	35.570
20	MRSA	71.910	66.292	68.539	80.899

9. The growth of isolates which was treated with Eau de rose

Bacteria No	Bacteria	Eau de rose (µl/ml)			
		0.1 µl/ml	0.2 µl/ml	0.5 µl/ml	1.0 µl/ml
30	MSSE	73.203	56.209	56.209	54.248
72	MRSE	36.810	34.356	33.742	32.515
50	MRSE	93.243	64.865	68.919	87.838
83	MSSA	92	101.333	72	80
27	MSSA	44.295	42.953	40.268	35.570
53	MRSE	71.910	66.292	68.539	80.899
31	MSSE	90.973	101.486	111.757	100.189
84	MSSA	73.002	77.379	115.552	97.336
45	MSSE	97.486	85.703	87	93.135
23	MRSE	89.359	78.953	82.569	86.390
62	MRSE	92.072	91.903	98.043	100.270
2	MRSE	126.594	144.157	119.323	116.336
11	MSSE	71.602	70.875	72.224	117.606
12	MRSE	104.078	107.010	104.451	115.192

17	MSSE	65.017	75.960	80.606	93.064
35	MSSE	90.753	104.519	85.091	105.818
37	MSSE	79.623	77.880	66.808	99.859
49	MSSE	77.990	83.409	85.377	108.840
86	MSSA	110.045	109.692	105.551	123.748
60	MSSA	93.766	99.873	96.915	119.275
13	MRSA	100.028	104.499	101.993	104.641
25	MRSE	87.533	91.345	86.713	97.327
38	MRSE	83.107	83.441	75.262	88.924
10	MRSE	146.765	133.588	138.647	150.588
51	MSSA	85.198	80.804	80.960	89.031
3	MRSE	110.531	105.004	94.556	92.246
5	MSSE	94.446	95.124	85.760	91.799
33	MRSE	95.263	93.095	85.721	100.067
28	MSSE	91.947	95.370	88.697	100.345
26	MSSA	66.702	61.187	63.524	76.917
16	MRSA	92.176	96.658	95.215	108.204
63	MSSE	65.660	53.347	69.845	72.714
76	MRSE	53.387	67.281	54.262	68.467
4	MSSE	100.798	73.528	78.178	93.451
75	MRSE	94.680		92.720	104.080
19	MSSA	105.120	57.330	52.872	56.727
34	MRSA	63.441	80.134	74.316	76.702
1	MRSE	88.482	73.660	66.346	71.161
18	MSSE	74.206	87.058	86.518	85.004
20	MRSA	104.182	83.510	87.478	89.065

10. The controls of slime formation of 41 isolates

Bacteria no	Bacteria	O.D. values
30	MSSE	0.372
72	MRSE	0.572
50	MRSE	0.308
83	MSSA	0.089
27	MSSA	0.177
53	MRSE	0.145
31	MSSE	0.081
84	MSSA	0.105
45	MSSE	0.068
23	MRSE	0.08
62	MRSE	0.127
2	MRSE	0.11
11	MSSE	0.068
12	MRSE	0.078
17	MSSE	0.083
35	MSSE	0.113
37	MSSE	0.086
49	MSSE	0.298
86	MSSA	0.321
60	MSSA	0.101
13	MRSA	0.389
25	MRSE	0.087
38	MRSE	0.105
10	MRSE	0.074
51	MSSA	0.083
3	MRSE	0.081
5	MSSE	0.076
33	MRSE	0.078

28	MSSE	0.075
26	MSSA	0.105
16	MRSA	0.085
63	MSSE	0.184
76	MRSE	0.116
4	MSSE	0.089
75	MRSE	0.153
19	MSSA	0.163
34	MRSA	0.074
1	MRSE	0.075
18	MSSE	0.149
20	MRSA	0.089

11. The controls of growth of 41 isolates

Bacteria no	Bacteria	Incubation Density	Growth after incubation
30	MSSE	0.314	0.989
72	MRSE	0.353	1.127
50	MRSE	0.287	0.889
83	MSSA	0.31	0.901
27	MSSA	0.338	0.876
53	MRSE	0.313	0.814
31	MSSE	0.321	0.807
84	MSSA	0.31	0.987
45	MSSE	0.298	0.759
23	MRSE	0.311	0.015
62	MRSE	0.305	1.087
2	MRSE	0.325	0.926
11	MSSE	0.28	0.737
12	MRSE	0.335	0.839

17	MSSE	0.292	0.926
35	MSSE	0.279	0.885
37	MSSE	0.344	0.944
49	MSSE	0.293	0.862
86	MSSA	0.289	0.949
60	MSSA	0.327	0.891
13	MRSA	0.347	1.058
25	MRSE	0.28	0.88
38	MRSE	0.253	0.912
10	MRSE	0.287	0.443
51	MSSA	0.322	0.892
3	MRSE	0.287	0.875
5	MSSE	0.332	0.894
33	MRSE	0.268	0.977
28	MSSE	0.322	0.961
26	MSSA	0.293	0.936
16	MRSA	0.274	0.617
63	MSSE	0.281	0.79
76	MRSE	0.3	0.82
4	MSSE	0.31	0.958
75	MRSE	0.326	0.719
19	MSSA	0.272	0.857
34	MRSA	0.338	1.006
1	MRSE	0.273	0.867
18	MSSE	0.25	0.58
20	MRSA	0.31	0.901

12. The OD values of sterile treatments

Treatments	O.D. values (read in 540nm)	
	Before incubation	After incubation
0.03 mg/ml NAC	0.07	0.07
0.12 mg/ml NAC	0.07	0.07
0.5 mg/ml NAC	0.07	0.07
2.0 mg/ml NAC	0.07	0.07
0.1 μ l/ml Sumach	0.075	0.08
0.2 μ l/ml Sumach	0.089	0.097
0.5 μ l/ml Sumach	0.094	0.104
1 μ l/ml Sumach	0.235	0.260
0.1 μ l/ml Eau de rose	0.07	0.07
0.2 μ l/ml Eau de rose	0.07	0.07
0.5 μ l/ml Eau de rose	0.07	0.07
1 μ l/ml Eau de rose	0.07	0.07