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Uyku apnesi, uyku esnasında, nefesin en az 10 saniye boyunca durması olarak 

tanımlanmaktadır. Bu apneler hastalığın şiddetine bağlı olarak gece boyunca yüzlerce 

kez  meydana gelebilir. Hastanelerde yer alan uyku odalarındaki doluluk ve maliyet, apne 

tespit sürecini zorlaştırmaktadır. Bu nedenle uyku odalarının yoğunluğunu azaltmak ve 

uyku apne tespit oranını artırmak için, hastane dışında taşınabilir cihazlar ile bir ön 

elemeye ihtiyaç duyulmaktadır. 

 

Bu çalışmada amaç, apne hastası için, polisomnografi gibi standart ancak daha karmaşık 

testlerin gerekliliğine karar verecek, ön tarama amaçlı kullanılan taşınabilir kayıt 

cihazlarıyla kayıt edilen fizyolojik sinyalleri inceleyerek, sınıflandırmada kullanılabilecek 

en iyi veri grubunu ortaya çıkarmaktır. Bunun için öncelikle hava akışı, oksijen doyum 

oranı ve EKG sinyallerini ayrı ayrı kullanarak gerçek zamanlı apne tespiti yapılmaktadır. 

Apne tespiti için sinyallerin her birinden farklı dinamik özellik çıkarımları elde edilerek, 

yapay sinir ağlarına giriş olarak verilmektedir. Yapay sinir ağları örnek bir durumda 

taşınabilir cihazlardan elde edilen gürültülü kayıtlarda, karma veri girişi ile eğitilen yapay 
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sinir ağı, uzman tarafından işaretlenmiş veriler üzerinden %89.6 gibi yüksek tespit oranı 

ile çalışmaktadır. 

 

Çalışmanın devamında apne şüphesi olan kişiler için, elde edilen fizyolojik sinyalleri 

inceleyen ve apne işaretlemesi amaçlı veri eşleşmesi analizi yapan, bir yazılım platformu 

geliştirilmiştir. Bu yazılım platformu ile üçüncü düzey kayıt sistemlerinden elde edilen 

hava akışı, oksijen saturasyonu ve EKG sinyalleri kullanılarak apne tespiti 

yapılabilmektedir. Apne tespiti için sinyallere uygun öznitelik çıkarımları yapılarak, 

arayüzden seçilebilen yapay sinir ağlarına giriş olarak verilmekte, öğrenme ve test 

aşamaları gerçekleştirilmektedir. 

  

 

Anahtar Kelimeler: Apne; Polisomnografi; Yapay Sinir Ağı; Otomatik Apne Tespiti  
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Onur PEKER 

Master of Science, Department of Electric-Electronin Engineering 

Supervisor: Assoc. Prof. Dr. Atila YILMAZ 

February 2018, 76 pages 

 

 

Sleep apnea is described as a cessation of breath for at least 10 seconds during the 

sleeping. These apneas can occur in hundreds depending on the severity of the disease 

during the sleep. Busy schedules and high costs of sleep laboratories in hospitals make 

apnea diagnosis in the society difficult task. In order decrease loads of sleep laboratories 

and increase the number diagnostic attempts with a low cost, there is a need for using 

portable apnea devices which can trace possible apnea patients out of hospitals.  

 

The purpose of this study is to analyze and reveal the proper combination sets of 

physiological signals for detecting apnea episodes in order to decide whether the 

standard but more complicated polysomnography test stage might be required or not for 

possible apnea patients by examining physiological signals recorded by portable 

recording devices used for prescreening purposes. Thus, air flow, oxygen saturation and 

ECG signals are used separately for apnea detections. For this reason, neural networks 

are trained and tested by extracted dynamic features associated with each signal. For a 

sample case, the neural network trained with hybrid (including three channels) data 
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generated from the recordings obtained by the portable recording device has shown 

89.6% high detection rate based on the expert scores. 

 

In the last phase of the study, a software interface was also developed in order to examine 

obtained physiological signals for possible apnea patients and the data analysis useful 

for apnea scoring and labeling. With the tools provided by the interface using third level 

portable apnea device definition, three channels, namely air flow, oxygen saturation and 

ECG signal, can be examined comprehensively for general apnea analysis. In order to 

have detailed analysis, embedded neural network topologies can be chosen through the 

designed interface and associated features that are derived for each corresponding 

channels can be used in this platform for implementing training and testing phases. 

 

 

Keywords: Sleep Apnea, Portable Apnea Devices; Neural Networks; Automatic Apnea 

Detection 
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1. GİRİŞ 

Uyku sırasında nefes alışverişinin durmasına sebep olan uyku apnesi bir uyku 

bozukluğudur. Bu uyku bozukluğu merkezi sinir sistemiyle ilişkili olursa merkezi uyku 

apnesi (Central Sleep Apnea - CSA) olarak adlandırılır. Bu durumda uyku sırasında üst 

solunum yolu ve akciğer sisteminde en az 10 saniye boyunca nefes alışverişi durmaktadır. 

Sadece üst solunum yolu tıkanması nedeniyle uyku sırasında nefes alışverişinin durması 

ise obstrüktif (tıkayıcı) uyku apnesi (Obstructive Sleep Apnea - OSA) olarak 

adlandırılmaktadır [1]. 

 

Klinik olarak apne, yetişkinlerde 10 saniyeden daha uzun süre solunumun tamamen 

kesilmesi olarak tanımlanır [2]. Olay, tam bir kesilme yerine solunum miktarında önemli bir 

azalma (genellikle% 50'den daha fazla)  şeklinde gerçekleşirse bu hipopne olarak 

tanımlanır [3]. 

 

Uyku sırasında, üst hava yolundaki tıkanıklıklar nedeniyle tekrarlayan solunumsal 

bozukluklar (apne, hipopne) birçok vücut sistemini ilgilendirmektedir [4]. Bu tıkanıklıklar 10 

saniye veya daha fazla sürmekte ve kandaki oksijen seviyelerinin düşmesine neden 

olmaktadır [5]. Eğer kandaki oksijen saturasyon oranı, bir önceki sinyal bölümünün yüzde 

95’inin altına düşer ve bu 10 saniyeden fazla sürerse bu kliniksel önem arz etmektedir.  

Desaturasyon olayı sempatik sinir sistemini de etkilemektedir. Bunun sonucunda kan 

basıncının ve kalp atım hızının artmasıyla, kardiyovasküler sistem hasar görebilir, hormon 

seviyelerindeki düzensizlik uzun vadede, insülin direnci, diyabet, metillus ve obezite gibi 

metabolik düzensizliklere neden olabilir [6]. 

 

Gündüz aşırı uyku hali ve yorgunluk, uyku bozukluklarının en önemli belirtileridir. Uyku 

bölünmeleri ve tekrarlayan oksijen yetmezlikleri, fizyolojik birtakım hastalıklara neden 

olmaktadır. Uyku bozukluğunun diğer semptomları arasında, sabahları iyi dinlenememiş 

hissi, baş ağrıları, kronik yorgunluk, hafıza ve muhakeme bozukluğu, konsantrasyon 

bozukluğu, yüksek sesle horlama, cinsel fonksiyon bozuklukları, okul ve iş performansında 

düşme yer almaktadır. Bu belirtiler, yaşam kalitesini önemli ölçüde düşürebilir ve kaza 
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riskini artırabilir. Uyku apnesi, yüksek tansiyon, kalp rahatsızlığı, diyabet ve depresyon gibi 

diğer tıbbi durumların olası sebebi olabilir. Bu nedenle hafife alınacak bir sorun değildir. 

 

Toplam insan nüfusunun neredeyse yüzde 5’i uyku apne sendromundan etkilenmektedir 

[6]. İstatistikler, 18 milyondan fazla Amerikalının uyku apne hastası olduğunu 

söylemektedir. Fakat aynı zamanda yaklaşık olarak 10 milyon Amerikalının uyku apne 

teşhisinin yapılamadığını da göstermektedir [7]. Bunun temel nedeni uyku 

laboratuvarlarının doluluğu ve maliyetidir. Uyku testlerinde hastalar, geceleri yataklarından 

uzakta kalmakta ve derin uykuya geçmeleri kolay olmamaktadır. Ayrıca uyku testleri, 

hastanelerde, uyku makinelerinin gece boyunca çalışması ve bu makinelere personelin 

eşlik etmesi gerekliliği nedeniyle pahalıya mal olmaktadır. Ayrıca uyku hastanelerinin dolu 

olması nedeniyle bekleme listesindeki hastalar bazen 6 ay süre boyunca tedavi 

edilememektedir [7]. Bu yüzden kullanımı nispeten daha basit ve daha ucuz donanımlarla, 

hastalığın ön tanısı için, ideal, yüksek kaliteli, taşınabilir veri kayıt cihazlarının geliştirilmesi 

üzerine yapılan çalışmalar önem kazanmaktadır. Taşınabilir veri kayıt cihazlarında, 

herhangi bir yardımcı personele ve özel donanımlı odaya ihtiyaç duyulmaksızın kolay, 

rahat ve sağlıklı veri toplanabilmesi önemlidir. Böylece hastalığın tanısında uyku 

laboratuvarı için beklenen zamandan ve harcanan iş gücünden tasarruf edilmesi mümkün 

olabilecektir [8]. 

 

Bu çalışmada bu amaca uygun olarak taşınabilir cihazlar için, apne hastasına 

polisomnografi uygulanıp uygulanmayacağa karar verilmesini sağlayacak fizyolojik 

sinyalleri incelemek ve sınıflandırma amaçlı yeterli sinyal yapılandırma setini bulmaktır. 

Bunun için hava akışı, oksijen doyum oranı ve ECG sinyallerini kullanarak, girişimsel 

olmayan biçimde otomatik apne tespiti yapılmaktadır. Apne tespiti için sinyallerin her 

birinden farklı özellik çıkarımları yapılarak yapay sinir ağlarına giriş olarak verilmektedir.  

Daha önce yapılan tez çalışmalarında, III. Seviye taşınabilir bir kayıt cihazı Hacettepe 

Üniversitesi’nde tasarlanmıştır. Bu kayıt cihazı kullanılarak, Hacettepe Üniversitesi uyku 

laboratuvarlarında polisomnografi cihazı ile eş zamanlı kayıt alınmıştır. III. Düzey 

taşınabilir kayıt cihazı ile alınan kayıtlar, Düzey PSG verisi ile yüzde 90 oranında çapraz 

ilintili çıkmıştır [8]. Daha sonraki çalışmalarda bu cihazın performansını iyileştirmek için bir 



3 
 

dizi çalışma daha yapılmıştır. Başka bir tez çalışmasında EKG üzerindeki gürültü modelleri 

üzerinde çalışılmıştır. Burada Sapoz Nikov ve Wavelet yöntemleri ile sinyaller 

gürültülerden temizlenmeye çalışılmıştır. Daha sonra temizlenen sinyaller yapay sinir 

ağları ile eğitilmiş ve yüksek tespit oranları sağlanmıştır.  

Bu çalışmada yapılan kaynak taramaları sonucu apne tespit aracı olarak Yapay Sinir Ağları 

ve Lomb fonksiyonu kullanılmasına karar verilmiştir. Doğrusal olmayan ve özellikle 

problemin çözümünde kesin bir matematiksel modelin bulunmadığı durumlarda yapay sinir 

ağları doğrusal fonksiyonlara göre daha yüksek performansa sahiptir. Yapay sinir ağları 

giriş, çıkış ve gizli katmanlardan oluşur. Doğrusal ayrıştırılamayan problemlerin çözümü 

bu gizli katmanların sayesinde olur. Eğer bir yapay sinir ağının girdi ve çıktıları doğru olarak 

tanımlanıp, yapay sinir ağları düzgün bir şekilde eğitilebilirse, daha sonra hiç tanımadığı 

bir veri geldiğinde de genelleme özelliğini kullanarak bu girdi hakkında sonuç üretebilir. 

Eğer giriş vektörü çok özelleştirilip, gereğinden çok fazla girdi verilirse sinir ağı sadece o 

girdiye göre özelleşir ve durumu ezberler. Bu durumda sinir ağının sınıflandırma 

performansı tanımadığı veriler için başarısız olabilmektedir. Daha önceki yapılan 

çalışmalarda, III. düzey veriler için yapay sinir ağları uzman tarafından işaretlenmiş verileri 

ile eğitildikten sonra, sinir ağlarının görmediği veriler ile test edilip başarı oranları not 

edilmiş ve benzer sonuçlar elde edilmiştir.  

Tezin ikinci bölümünde apne ve apne çeşitleri ile ilgili genel bilgiler verilmektedir. Üçüncü 

bölümde apne ve hipopne skorlanmasının nasıl yapıldığı anlatılmaktadır. Bu bölümde 

apne ve hipopne tanısı için belirlenen ölçütler üzerinde durulmaktadır. Dördüncü bölümde 

apne tespiti için gerekli kuramsal altyapı ayrıntılı olarak anlatılmıştır. Beşinci bölümde Pan 

Tomkins ve Eşikleme algoritmaları ile Ampirik Kip Ayrıştırma yöntemi sinyal temizleme 

işlemleri için kullanılmıştır. Son bölümde ise yapay sinir ağları ile apne tespiti yapılmıştır. 

Ayrıca son bölümde bu tez için MATLAB arayüzünde tasarlanan apne analiz aracı ekran 

görüntüleri ile anlatılmıştır. 
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2. UYKU APNE SENDROMU 

Uykuda solunum bozukluklarının büyük kısmını Uyku Apne Sendromu(UAS) 

oluşturmaktadır. Uyku apnesinin en yaygın türü Tıkayıcı Uyku Apne sendromudur. Uyku 

apnesi hastalarının %84’ü Tıkayıcı Uyku Apne hastasıdır [9]. Tıkayıcı Uyku Apne 

Sendromu (Obstrüktif Uyku Apne Sendromu-OUAS) üst solunum yollarında oluşan bir 

engel neticesinde gelişmektedir. Hastalarda gece boyunca, solunum eforu eşliğinde 

tekrarlayan solunum durması şeklinde tanımlanmaktadır ve bu solunum durmaları en az 

10 saniye sürmektedir. Solunumun durma süresi ve derinliği ile doğru orantılı olarak 

oksijen doyumunda düşme görülmektedir.  

 

Charles Dickens’in , horlama ve uyku apnesi ile ilgili yaptığı 1836’daki çalışma ilk tanım 

olarak ortaya çıkmıştır. Daha sonra Guilleminault 1973’de bu günkü uyku apnesi 

sendromunun tanımını yapmıştır [9] [2]. 

 

2.1. UAS Çeşitleri 

Bu bölümde uyku apne çeşitleri üzerinde durulacak ve her bir durum için ayrıntılı bilgi 

verilecektir. 

Tıkayıcı Uyku Apnesi  

Tıkayıcı Uyku Apnesi, uyku esnasında solunum çabası devam etmesine rağmen hava 

akışının sağlanamaması şeklinde tariflenmektedir. Diyafram ve göğüs kas aktivitesi devam 

etmekte fakat ağız ve burunda hava alışverişi durmaktadır. Bu sırada, hastada nefes 

alışverişi durduğundan dolayı kandaki oksijen seviyesi düşmektedir. Uyku Apnesi 

hastalarının %84’ü Tıkayıcı Uyku Apnesi hastasıdır [10]. Şekil 2.1’de termistör verisi genliği 

sıfıra düşmüşken, yani solunum durmuşken, abdomen kasta salınımın devam ettiği, yani 

halen solunum çabasının devam ettiği görülmektedir.  

Merkezi Uyku Apnesi 

Merkezi Uyku Apnesi, uyku esnasında üst solunum yollarında hava akışının ve vücutta 

solunum çabasının olmaması şeklinde tariflenmektedir. Merkezi apneler, beynin, soluk alış 
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verişini kontrol eden kaslara doğru sinyalleri gönderememesi sonucunda oluşmaktadır. 

UAS hastalarının yüzde 1’ini içermektedir [10]. 

 

Şekil 2.1: Tıkayıcı Uyku Apnesi [11] 
 

Şekil 2.2’de termistör verisi genliği sıfıra düştüğünde, yani solunum durduğunda, abdomel 

kasta da salınımın durduğu, yani solunum çabasının olmadığı görülmektedir. 

 

Şekil 2.2: Merkezi Uyku Apnesi [11]  
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Birleşik Uyku Apnesi 

Birleşik Uyku Apnesi, önce merkezi olan apnenin daha sonra vücutta solunum çabası 

olmasına rağmen, üst solunum yolunda hava akımın başlamaması şeklinde 

tariflenmektedir. Tedavide birleşik apneler, tıkayıcı apneler gibi değerlendirilir [10]. Şekil 

2.3’de ilk anda termistör verisi genliği sıfıra düşmüşken, yani solunum durmuşken, 

abdomen kasta salınımında durduğu, yani solunum çabasının olmadığı görülmektedir. 

Daha sonra ise soluk alışverişi başlamamasına rağmen, solunum çabasının başladığı 

görülmektedir. 

 

Şekil 2.3: Birleşik Uyku Apnesi [11]  
 

2.2. UAS Tanısı ve Değerlendirilmesi 

Apne ve hipopne en az 10 saniye süresince solunumun durması veya azalması olarak 

tanımlanmıştır [6]. Uykuda kısa süreli solunum durması veya solunum azalması, tek 

başına hastalık anlamına gelmez. Uyku esnasında ara sıra meydana gelen tıkanıklıklar 

zararsızdır ve normal yetişkin popülasyonda oldukça yaygındır. Apnenin patolojik kabul 

edilmesi için, her apne 10 saniyeden uzun olmalı, bir saat içerisinde 7-10 seferden fazla 
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gerçekleşmeli ve bu olay gece boyunca 30 sefer olmalıdır. Apne vakalarının birçoğunda 

tıkanıklıklar 30 saniyeden uzun olurken, bu gece boyunca yüzlerce kez oluşmaktadır [7]. 

Gecelik uyku çalışmalarından, uyku esnasında saat başına apne, hipopne ve solunum 

uyanışlarının toplamını tutan bir solunum bozukluğu indeksi (RDI) ve bir apne hiponesi 

indeksi (AHİ) standardize edilmiştir. RDE değeri, uyku apnesinin şiddetini teşhis etmek ve 

derecelendirmek için kullanılırken, AHİ, Chicago kriterlerine göre apnenin şiddetini 

değerlendirmek için kullanılır [7]. AHİ, uyku sırasındaki apne ve hipopnelerin toplamının 

uyku saatine bölünmesiyle elde edilmektedir. AHİ indeksi Denklem 2.2’deki gibi 

hesaplanmaktadır.  

 

AHİ =
[apne (10 sn hava akışı yok)  +  hipopne ( %4 desaturayon ile hava akışı azalımı )]

Toplam uyku zamanı(saat)
 

 
            (2.2) 

 

Hastalık tanısı için kullanılan Apne - Hipopne İndeksi (AHİ) eşik değeri “5”, araştırmalar 

sonucunda belirlenmiştir. AHİ’si 5 ve üstünde olan hastalarda, gündüz uyku hali, 

hipertansiyon ve motorlu araç kaza riskinin artış gösterdiği görülmüştür [4].  

 

AHİ indeksi, 5-14 arası olanlar için hafif, 15-30 arası olanlar için orta, 30’dan büyük olanlar 

için ağır olarak hastalığın şiddeti belirlenmektedir [2]. Apne tanısı, AHİ indeksi 5 veya 

üstündeki hastalarda, gündüz yorgunluğu, uykuda boğulma hissi, sık uyanma veya 

konsantrasyon problemi gibi yakınmalardan en az ikisinin olması durumunda 

koyulmaktadır [4]. 

 

Uyku apnesi tanı ve değerlendirme akış diyagramı American Academy of Sleep Medicine 

(AASM)’nin, 2009’da yayınladığı dokümanda [2] gösterilmektedir (Şekil 2.4). Burada ilk 

önce hastanın rutin testleri ya da şikayetleri üzerinden genel uyku bozukluğu belirtileri ile 

ilk OAS şüphesi başlamaktadır. Daha sonra şüphelenilen hastanın uyku değerlendirilmesi 

için geçmişteki hastalıklarına ve fiziki durumuna göre risk değerlendirilmesi yapılmaktadır. 

Eğer OAS belirtileri varsa hastanın polisomnografi ya da taşınabilir kayıt cihazına 

bağlanması ve sonuçlarının bir uzman tarafından değerlendirilmesi gereklidir. AHİ indeksi 
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15’in üzerinde çıkarsa bölüm 2.6’da anlatılan tedavi yöntemleri hasta ile birlikte 

değerlendirilir.   

 

Şekil 2.4: Uyku Apnesi Tanı ve Değerlendirme Akış Diyagramı [2] 



9 
 

2.3. UAS Nedenleri ve Semptomları 

Genel olarak, bir kişi uykudayken, yutma ve konuşma sırasında ani kapanmalar dışında 

üst hava yolu açık kalır ve akciğerlere hava akışı sağlar. Bununla birlikte, zaman zaman 

uyku esnasında boğaz lümeninin fiziksel olarak engellenmesi mümkündür. Ağızdan gelen 

havanın engellenmesi sonucu, akciğerlere giden hava miktarı azalır (Şekil 2.5). Beyin ve 

vücutta yeterli oksijen ulaşmayınca, vücut uyanır. Bu bir gecede birkaç kez olabileceği gibi, 

yüzlerce kez de olabilir [5].  

 

Şekil 2.5: Tıkayıcı (Obstrüktif) Uyku Apnesi [12] 
 

Hastaların çoğunda apneye, boğazda yer alan dokuların sarkmasının ya da dilin gece 

uykuda geriye doğru gitmesinin sebep olduğu tespit edilmiştir. Ayrıca boğaz içinde hava 

akışının daralması, horultu veya hırıltıya da neden olmaktadır [5].  

 

En yaygın gözlem horlamadır. Fakat her horlayan insanda apne var denemez. Horlama 

dışında, sabah dinlenmemiş bir şekilde uyanma, baş ağrısı, gün içinde yorgunluk,  
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konsantrasyon kaybı, hafıza problemi ve asabiyet gibi başka belirtileri de vardır. Bütün 

bunlar, gece boyunca insanın bilinci açık olmamasına rağmen, sayısız defa vücudun 

uyanması nedeniyle olmaktadır.  Uzun vadede vücutta oksijen eksikliği yüksek tansiyon, 

kalp hastalıkları, felç, diyabet ve depresyona neden olabilir [5]. 

2.4. UAS Risk Grupları 

Apne riski, vücut kitle indeksi yirmi beşin üzerinde olan, boyun genişliği bayanda 40 cm, 

erkekte 43 cm’den daha fazla olan insanlarda daha fazladır. Ayrıca apne orta yaş 

insanlarda, erkeklerde, yüksek tansiyon hastalarında, ailesinde apne olan insanlarda,  üst 

solunum yolu anomalileri olan, alkol, sigara kullanan, horlama şikâyeti olan ve obezite 

sorunu olan insanlarda daha yaygın olarak görülmektedir [13]. 

2.5. UAS Tespiti  

Bu bölümde uyku apne sendromu tespiti için kullanılan yöntem ve araçlar anlatılmaktadır. 

2.5.1. Polisomnografi 

Günümüzde uyku apne düzensizliğinin tespiti için tek güvenilir yöntem Polisomnografidir 

(PSG). PSG ile tüm uyku boyunca çok sayıda farklı kanaldan sinyaller kaydedilmektedir.  

 

Şekil 2.6: PSG Kaydı EOG, EMG ve EEG Elektrotları (Yukarıdan Aşağıya) [15] 



11 
 

Polisomnografi de temel olarak uyku ve solunum ile ilgili fizyolojik değişiklikler 

izlenmektedir. Uyku kaydı ve evrelemesi EEG, EOG (elektrookulogram) ve EMG 

(elektromiyogram) ile yapılmaktadır. Uyku evrelemesi için EEG elektrotları 

kullanılmaktadır. Bu elektrotların kafa üzerine yerleşimi Şekil 2.6’da görülmektedir. 

 

Horlama, boyun üzerine yerleştirilen küçük bir mikrofonla kaydedilmektedir. Apne anında 

horlama sesinin kesilmesi, apne işaretlemede yardımcı parametre olarak kullanılmaktadır 

(Şekil2.8). Göğüs ortasına yerleştirilen ivmeölçerle vücut pozisyonu belirlenmekte, gece 

boyunca devam eden hasta hareketleri kayıt edilmektedir. Bu sayede horlama ve apnelerin 

hangi pozisyonda daha fazla olduğu belirlenmektedir (Şekil2.8). 

 

Elektrokardiyogram (EKG) elektrotları kalp ritmindeki değişiklikleri izlemek için 

kullanılmaktadır. EKG kaydı, Şekil 2.8’deki gibi bilek ve ayaklara takılan elektrotlar ile 

yapılmaktadır.  

 

Göğüs ve karına takılan direnç sensörlü kemerlerle, karın veya göğüsteki daralma ve 

genişleme hareketleri kayıt edilmektedir (Şekil 2.8). 

 

Pnömotakometre, hava akımının miktarının ölçümünü sağlayabilecek hassas bir metotdur. 

Oronazal hava akımı ölçümünde “American Academy of Sleep Medicine (AASM)”e göre 

altın standart Pnömotakometredir. Pnömotakometre, yüz maskesinin içerisine yerleştirilir 

ve bu şekilde hava akımının sürekli görüntülenmesini sağlanır. Pnömotakometre ile tidal 

volüm ölçümü yapılır, böylece apne ve hipopne birbirinden ayırt edilebilir.  

 

Termistör ve nazal basınçölçer ile ağız ve burundan hava akışı ölçülmektedir.  Termistor, 

ağza veya burna takılan ısı değişimine duyarlı sensörler ile hava akımını ölçmektedir. 

Nazal basınç ölçer ise buruna takılmakta ve burun ucundaki basınç değişimini ölçmektedir. 

Burun ucunda basınç, nefes alırken azalırken, nefes verirken artmaktadır. Termistöre oda 

sıcaklığından dahi etkilenir. Nazal kanül, termistöre göre daha hassastır fakat ağızdan 

nefes alan hastalarda dezavantaj yaratır (Şekil 2.8).  
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Oksijen doyum oranı, parmak üzerine yerleştirilen “nabız oksimetresi” ile ölçülmektedir. 

Kanda oksijen hemoglobin ile taşınır. Kandaki oksijen oranını temel olarak, oksijenli ve 

oksijensiz hemoglobinin ışık geçirgenlik farkı yoluyla ölçülmektedir (Şekil 2.7). Bu 

sensörler Şekil 2.8’de görselleştirilmiştir. 

 

Şekil 2.7: Nabız Oksimetresi Çalışma Şekli [39] 
 

 

Şekil 2.8: Polisomnografi için Hastaya Bağlanan Sensörler [16] 
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Şekil 2.9’da yukarıda özellikleri verilen sinyallerin bilgisayar ekranındaki gösterimleri 

mevcuttur. Standart PSG de en az 7 kanal olmak zorundadır ve kayıt işlemi gözetimlidir. 

 

Şekil 2.9: Polisomnografi Cihazı Arayüzündeki Sinyaller [10] 

2.5.1. Taşınabilir kayıt cihazları 

Uyku olaylarının, hastane dışında, daha az sensör seti ile gözetimli yada gözetimsiz olarak 

kayıt edilmesini sağlayan cihazlardır.  

 

Şekil 2.10: Taşınabilir Kayıt Cihazı (3.Düzey) ve Sensörlerin Yerleşimi [41] 
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Amerikan Uyku Bozuklukları Derneği (Amerikan Uyku Tıbbı Akademisi'nin habercisi) 

1994'de yaptığı bir çalışmada ev uyku testinin sadece aşağıdaki durumlarda 

kullanılabileceğini önermişti: 

1. Şiddetli semptomları olan veya tedavisi acil olan ve PSG'nin mevcut olmadığı 

durumlarda, 

2. Laboratuvarda çalışılamayan hastalar olduğu durumlarda,  

3. Tedaviye cevabı değerlendirmek için polisomnografi ile saptanan tanı sonrası izleme 

çalışması yapılmak istendiğinde, 

1997'de tekrarlanan bir gözden geçirme, bu önerileri tekrarladı ve evde uyku test 

cihazlarının gözetimsiz kullanımı için yeterli doğrulanmış veri olmadığına işaret etti. Üçlü 

bir topluluk (American Academy of Sleep Medicine, American Thoracic Society, ve The 

American College of Chest Journal of Clinical Physicians), katılımlı ortamda Düzey-III 

çalışmaların (sınırlı kanal evde uyku testleri) kabul edilebilir olduğunu, ancak bu test 

yöntemlerinin katılımsız ortamlarda, genel tarama için veya komorbid durumdaki hastalar 

için önerilmediğini belirtti. 

Evde uyku testi, yanlış pozitifleri ve yanlış negatifleri en aza indirirken OSA'nın doğru bir 

şekilde teşhis edilmesini sağlamaktadır. Çoğu cihaz, hastanın uyku düzenini bozan 

solunumu değerlendirmek için 3 temel sinyal kullanır: 

1. Hava akışı (burun-ağız termistörü, burun basıncı veya tercihen her ikisi), 

2. Solunum çabası 

3. Oksimetre (standart maksimum sinyal ortalamalı zaman ≤ 3 saniyede bir kalp atış hızı 

dakikada ≥ 80 atım) 

Taşınabilir monitörler 1994 Amerikan Uyku Bozuklukları Derneği incelemesinde kullanılan 

yaklaşıma göre sınıflandırılmıştır [17].  



15 
 

Düzey I 

Düzey 1 (standart polisomnografi), diğer monitör türlerinin karşılaştırıldığı referans 

standart olarak düşünülmüştür [18]. 

Tablo 2.1’de bu kanalların hangi elektrotlar ile elde edildiği, hassasiyet seviyesini, frekans 

bandında nerede yer aldıkları ve önerilen örnekleme hızı bilgileri verilmiştir.   

Düzey II 

Bu monitörler, EEG, EMG, Çene EMG’si, EKG veya kalp atış hızı, hava akışı, solunum 

çabası ve oksijen satürasyonu da dâhil olmak üzere en az yedi kanal içerir. Bu tür monitör, 

uyku evrelemesine ve dolayısıyla bir AHI hesaplamasına izin verir [18]. 

Düzey III 

Bu tür monitör, havalandırma veya hava akışı (en az iki solunum hareketi kanalı veya hava 

akışı), kalp atış hızı veya EKG ve oksijen doygunluğu da dâhil olmak üzere en az dört 

izlenen kanalı kapsar [18]. 

 

Tablo 2.1: Standart PSG Kanalları ve Fiziksel Özellikleri [15] 
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Düzey IV 

Bu tip çoğu monitör, oksijen saturasyonu veya hava akışı gibi tek bir parametreyi veya iki 

parametreyi ölçer. Düzey 3 için kıstas karşılamayan bir monitör (yani, bir ila üç kanalı ölçen 

ya da dört kanala sahip olmasına rağmen hava akımı içermeyen bir monitör) düzey 4 

olarak sınıflandırılmıştır [18]. 

Uyku apne cihazlar özelliklerinin özeti Tablo 2.2 de verilmiştir.  

 

Tablo 2.2: AASM Uyku apne değerlendirmesinde kullanılan cihazlarla ilgili sınıflandırma 
(asgari altı saat kayıt koşuluyla) [19] 

Bir ev test cihazı, laboratuvar polisomnografisine karşı yeterli seviyede işlev görmek için 

onaylanmalıdır. AASM, 2011'de, 2007 Klinik Yönergelerini güncelleyerek, bir 

değerlendirme yapmıştır. 2011’deki makaleye göre bir merkez dışı test cihazının, 

laboratuvar ortamında polisomnografi (PSG) tarafından üretilen apne-hipopne indeksi 

(AHI) ≥ 5 ve uygun bir hassasiyet (≥ 0.825) oranı olmalıdır [17]. 

Evde uyku testleri genel olarak etkili olmakla birlikte, bazı önemli kısıtlamalar vardır. Birçok 

taşınabilir test, obstrüktif olayları ve uyku miktarını tespit etmenin yöntemlerindeki 

farklılıklar nedeniyle OSA şiddetini daha düşük çıkartabilir. 

AHI (solunum olayları) taşınabilir bir test cihazı için sayısı laboratuvar testlerinden daha 

daha düşüktür. Çünkü laboratuvar içi bir testte olduğu gibi kolayca anlaşılamayan zayıf 

şiddette uyku bozukluğu olan hastaların olayları tespit edilememektedir.  
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Ayrıca, taşınabilir testlerle, test edilen verinin zamanı, laboratuvar ortamına göre daha 

fazladır. Çünkü kayıt zamanı uyku süresinden bağımsız değerlendirilmiştir. Uyku 

puanlaması için, uyku evrelemesini gösteren EEG sinyali birçok ev test cihazında mevcut 

değildir.   

2.6. UAS Tedavisi  

Tıkayıcı UAS’nın tedavisi hastalığın şiddeti ve diğer birçok koşul değerlendirilerek 

bulundurularak yapılmaktadır. Ana tedavi yöntemleri ağız içi araçlar, cerrahi tedavi ve 

CPAP tedavisidir [14].  

Hastalığın kesin tedavisi olmamakla birlikte, CPAP (Continuous Positive Airway Pressure) 

cihazı ile yapılan terapiler, ameliyat, kilo verme, uyku pozisyonunu değiştirme veya hayat 

tarzının değişimi (sigara, alkolü bırakma) ile iyileşmeler görülebilir.  

2.6.1. CPAP 

CPAP Tıkayıcı uyku apne sendromunun en etkili tedavi yöntemidir. Bu tedavi ile horlama, 

uykuda solunum durmaları ve bunların sebep olduğu kısa ve uzun dönemli problemler 

ortadan kalkmaktadır [14].  

CPAP (Continious Positive Airway Pressure) cihazının kullanılmasındaki amaç hastaya 

devamlı hava basıncı uygulamasıyla uyku sırasında kapanan üst hava yollarını açık 

tutmaktır. CPAP cihazı temelde basıncı ayarlanabilen bir hava kompresörüdür. Hastanın 

burnuna yerleştirilen, yumuşak silikonlu maske ve bir hortum aracılığı ile CPAP cihazına 

bağlanır (Şekil 2.11). Bu tedavi için hastanın uyku laboratuvarında bir gece daha yatması, 

bu sırada uygun basıncın ayarlanması ve hastanın cihazı tolere edip edemeyeceğinin 

belirlenmesi gerekmektedir. Cihazın olumlu etkisi birkaç gün içinde görülür [14]. 

 

Şekil 2.11: CPAP Tedavisi [20] 

http://www.sleepeducation.com/essentials-in-sleep/cpap
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2.6.2. Cerrahi tedavi:  

Cerrahi tedavi, kulak burun boğaz muayenesinde gözlemlenen sorunlar sonrasında 

uygulanmaktadır [14]. Ağır apne hastalarında cerrahi tedavi daha sınırlı oranda 

yapılabilmektedir. Cerrahi tedavi sonrasında, bazı vakalarda birkaç ay sonra hastalık 

belirtileri tekrar etmektedir. Bu yüzden apne şiddeti hafif olan hastalara daha çok bu tedavi 

uygulanmaktadır.  

Muayene esnasında gözlemlenen CPAP tedavisine de engel olabilecek burundaki eğrillik 

problemleri cerrahi ile düzeltilebilir. Çocuklukta sık karşılaşılan geniz eti ve bademciklerin 

cerrahi ile çıkartılması apne sorununu ortadan kaldırmaktadır. Hava yolu daralmasına bir 

örnek Şekil 2.12’da görülmektedir [14]. 

 

Şekil 2.12: Apneye Neden Olan Kapanmış Hava Yolu [12] 

2.6.3. Ağız içi araçlar:  

Uyku apne hastalarında alt çeneyi veya dili önde tutmaya yarayan araçlardır. Bu araçlar 

diş doktorları tarafından oluşturulmaktadır (Şekil 2.13). Bu araçlar diş doktorları tarafından 

yapılmaktadır [14]. 

 

Şekil 2.13: Apne Hastaları için Ağız İçi Araçlar [21]  
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3. APNE SKORLAMA 

Uyku laboratuvarlarındaki hastaların büyük bir kısmı UAS ön tanısı ile geldiği düşünülürse, 

polisomnografi kaydı sırasında solunumsal olayların görüntülenmesi büyük önem 

taşımaktadır. 

 

1970-1980 yılları arasında sadece apneler skorlanmaktaydı. Daha sonra solunum 

sinyalleri içerisinde farklı oranda azalmaların hipopneler olduğu belirlenmiştir.  Bu durumda 

hipopneler ile apneler için apne-hipopne skorlama kriterleri belirlenmesi zorunlu olmuştur.  

 

AASM, 1999’da “Chicago kriterleri”ni yayınlamıştır. Burada, hipopne tespiti için hava 

akımındaki azalmaya, oksijen doyumundaki azalmanın eşlik etmesini gündeme almıştır. 

2001’de tekrar güncellenen kriterlerde hipopne; hava akımında en az %30’luk azalmaya 

oksijen saturasyonunda 4 birimlik düşmenin eşlik etmesi olarak tanımlanmıştır. Son olarak 

AASM, 2007 yılında, “Manual for Scoring Sleep” adı altında, skorlama kriterlerini 

belirlemiştir. 

 

Apne skorlaması için,  hava akımı genliği en az yüzde 90 oranında düşmüş olmalı, bu 

solunum olayı en az 10 sn devam etmeli ve olayın en az yüzde 90’ında genlikteki bu düşme 

devam etmelidir  [22]. Apne skorlama örneği Şekil 3.1’de gösterilmektedir. 

 

 

Şekil 3.1: Apne Skorlaması Örneği [11] 
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Hipopne skorlaması için,  hava akımı genliği en az yüzde 30 oranında düşmüş olmalı, bu 

solunum olayı en az 10 sn devam etmeli, oksijen doyumu en az 4 birim düşmeli ve olayın 

en az yüzde 90’ında genlikteki bu düşme devam etmelidir [22]. Apne skorlama örneği Şekil 

3.2’de gösterilmektedir. 

 

 

Şekil 3.2: Hipopne Skorlaması Örneği [11] 
 

Termistör sinyalleri ile hipopne skorlamak doğru değildir. Altın standart ölçüm tekniği olan 

pnömotakograf ile yapılan kontrollerde, termistör kullanıldığında uykuda solunum 

bozukluğu ağırlığını ifade eden indekslerin daha düşük çıktığı fark edilmiştir. Nazal 

basınçölçer, pnömotakograf ile benzer sonuçlar veren bir yöntemdir [22].   
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4.  APNE TESPİT ÇALIŞMALARI İÇİN KURAMSAL ALTYAPI 

4.1. Yapay Sinir Ağları  

Genel anlamda yapay sinir ağları (YSA), beynin bir işlevi yerine getirme yöntemini 

modellemek için tasarlanan bir sistem olarak tanımlanabilir. Yapay sinir ağları, yapay sinir 

hücrelerinin birbirleri ile çeşitli şekillerde bağlanmasından oluşur ve genellikle katmanlar 

halinde düzenlenmektedir. Beynin bilgi işleme yöntemine uygun olarak yapay sinir ağları, 

bir öğrenme sürecinden sonra bilgiyi saklama ve genelleme yeteneğine sahip paralel 

dağılmış bir işlemcidir [23].  

Yapay sinir ağları, bilgisayar teknolojisindeki gelişmelerden sonra özellikle mühendislik 

alanında güçlü bir araç olarak kullanılmaktadır. Sinir ağları, biyolojik sinir sisteminden ilham 

alarak modellenmiştir. Pek çok sinir ağı, biyolojik sinir ağlarının, öğrenme ve tepki verme 

gibi çeşitli özelliklerini gerçeklemek için geliştirilmiştir.  

Yapay sinir ağları, bir giriş katmanı, bir veya daha fazla gizli katman ve bir çıkış katmanı 

içermektedir. Analiz, sınıflandırma, model tanıma ve işlevsel izleme konularında yüksek 

umutlar vaat etmektedir.  

 
Yapay sinir ağları uygulanan ağ modeline göre değişik karakteristik özellikler 

göstermelerine karsın öğrenme, ilişkilendirme, sınıflandırma, tahminde bulunma, özellik 

belirleme ve optimizasyon gibi temel birkaç ortak özelliğe sahiptirler [35]. 

4.1.1. Yapay Sinir Ağlarının Yapısı  

Yapay sinir ağları biyolojik sinir hücrelerine benzer yapıdadırlar. Biyolojik sinir hücreleri, 

aralarında bağlar kurarak sinir sistemini oluştururlar. Yapay sinir hücreleri de aralarında 

bağ kurarak yapay sinir ağlarını oluştururlar. Aynı gerçek sinir hücrelerinde olduğu gibi, 

yapay sinir hücrelerinin de giriş sinyallerini aldıkları (Dentrit), bu sinyalleri toplayıp 

işledikleri (Çekirdek) ve çıktıları ilettikleri bölümleri (Akson ve Bağlantılar) bulunmaktadır.  

Şekil 4.1’de bir biyolojik sinir hücresi görülmektedir.  
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Şekil 4.1: Biyolojik Sinir Hücresi [24]  

 

En basit yapay sinir hücresi Şekil 4.2’de görüldüğü gibi beş ana kısımdan oluşmaktadır 

[24];  

 Girdiler 

 Ağırlıklar 

 Toplama Fonksiyonu 

 Eşik 

 Aktivasyon fonksiyonu 

 

Şekil 4.2: Yapay Sinir Ağı Hücresi [24] 
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Girdiler, hücreye gelen bilgilerdir. Bunlar, ağın öğrenmesi istenen örnekler tarafından 

belirlenir. Her bir girdi, o girdiyi işlem elemanına bağlayan ağırlık çarpanı ile çarpılarak, 

toplam fonksiyonu ile birleştirilir. Toplam fonksiyonu aşağıdaki denklem ile hesaplanır [25]. 

 

𝑛𝑒𝑡 = ∑ 𝑤𝑖𝑋𝑖

𝑛

𝑖=1

+ 𝑏 (4.1) 

 

Toplam fonksiyonu çıktısı doğrusal ya da doğrusal olmayan türevlenebilir bir transfer 

fonksiyonundan geçirilerek sinir hücresinin çıktısı hesaplanmaktadır [25]. 

 

𝑦 = 𝑓(𝑛𝑒𝑡) = 𝑓(∑ 𝑤𝑖𝑋𝑖

𝑛

𝑖=1

+ 𝑏) 
(4.2) 

 

4.1.2. Çok Katmanlı Yapay Sinir Ağları 

Tek katmandan oluşan bir yapay sinir ağı sadece doğrusal fonksiyonları çözümleyebilir. 

Çok katmanlı bir yapay sinir ağı modeli, bir giriş, bir veya daha fazla gizli katman ve bir de 

çıkış katmanından oluşur (Şekil 4.3). Her bir katmanda da bir veya daha fazla sayıda işlem 

elemanı bulunur. Bir katmandaki bütün işlem elemanları bir üst katmandaki bütün işlem 

elemanlarına bağlıdır. 

 
 

Şekil 4.3: Çok Katmanlı Yapay Sinir Ağı [26] 

Yapay sinir ağlarında belirsiz olan konulardan birisi gizli katmanların sayısıdır. Giriş ve 

çıkış katmanındaki işlemci elemanı sayısı tamamen uygulanan probleme bağlıdır. Gizli 
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katmanların sayısı hakkında kesin bir kural yoktur. Gizli katmanlar düğümlerden 

oluşmaktadır. Gizli düğüm sayısı çok az olan bir ağ, karmaşık yapıları ayırt edemez ve 

gerçek sonucu sadece doğrusal bir yönde tahmin edebilir. Buna karşılık, ağda çok fazla 

gizli düğüm varsa, aşırı ezberleme nedeniyle verilerin içindeki gürültüyü izleyerek, 

eğitimsiz veriler için genellemenin zayıflamasına neden olur. Gizli katmanların sayısı 

arttıkça, eğitim aşırı derecede zaman almaktadır. En iyi gizli katman sayısını bulma 

yaklaşımı deneme yanılma yöntemidir. Bu çalışmada 10 düğümlü gizli katmanın en iyi 

sonuç verdiği bulunmuştur. 

4.1.3. İleri Beslemeli Yapay Sinir Ağları  

İleri beslemeli ağlarda bilgi akışı, çıkışa doğru düzenli olarak ilerler. Her katman bir sonraki 

katmanın giriş vektörünü oluşturur. Giriş katmanına gelen bilgiler değişikliğe uğramadan 

önce gizli katmanlara ilerler daha sonra gizli katmanlardan çıkış katmanına gidip orda 

değerlendirildikten sonra ağ çıkışı belirlenir. Bu akış Şekil 4.4 de gösterilmektedir [24]. 

  

Şekil 4.4: İleri Beslemeli Yapay Sinir Ağları [24] 

4.1.4. Geri Beslemeli Yapay Sinir Ağları 

Geri beslemeli YSA’larda, ileri beslemelilerin aksine bir yapay sinir hücresi çıktısı yalnızca 

kendinden sonraki yapay sinir hücresinin katmanına giriş olarak verilmez. Kendinden 

önceki katmanda veya kendi katmanında bulunan herhangi bir hücreye de giriş olarak 
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bağlanabilir. Bu yapısı ile geri beslemeli yapay sinir ağları doğrusal olmayan, dinamik bir 

davranış göstermektedir. Geri besleme özelliğini kazandıran bağlantıların bağlanış şekline 

göre, aynı yapay sinir ağıyla farklı davranışta ve yapıda geri beslemeli yapay sinir ağları 

elde edilebilir [24]. 

 

 

Şekil 4.5: Geri Beslemeli Yapay Sinir Ağları [24] 

4.1.5. Zaman Gecikmeli Yapay Sinir Ağları 

Girişteki bir gecikme hattına sahip ileri beslemeli bir ağdan oluşan dinamik ağına zaman 

gecikmeli sinir ağı (Time Delay Neural Network-TDNN) denir.  

TDNN bir ileri beslemeli sinir ağları yapısıdır. Giriş ile çıkış özellikleri arasında zamandaki 

pozisyonlarından bağımsız olarak geçici bir ilişki oluşturur. İçerisindeki sinir hücreleri, diğer 

sinir hücrelerinin aksine, sadece ağırlıklandırılmış anlık giriş özelliklerinin değil, sınırlı 

sayıda geçmiş giriş özelliklerini de değerlendiren bir yapıdadır. Bu nedenle, bu ağ diğer 

dinamik ağlardan daha hızlı eğitilmektedir. Aşağıdaki şekilde tek katmanlı bir TDNN 

gösterilmektedir [3]. 
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Şekil 4.6: Zaman Gecikmeli Yapay Sinir Ağı [26].  

TDNN sinir ağı yapısı, giriş verisi üzerinde bir zaman penceresi oluşturarak, önceki 

verilerin bir bölümünü de hafızada tutar. Bu sayede aralarında ilgileşim farkı olan veriler 

arasında bir çözüm sunmaktadır [1]. 

4.2. Lomb Transformu 

Düzgün şekilde örneklenmemiş (nonuniform) sinyaller biyomedikal alanında sıkça 

karşımıza çıkmaktadırlar. Bu sinyallere örnek EKG, EMG ya da ECG sinyalleri olabilir. 

Düzgün örneklenememesinin sebebi sadece sinyalin karakteristiği gereği olabileceği gibi, 

örnekleme hızı ya da veri kaydı esnasında çeşitli nedenlerle veri kaybı yaşandığı için 

olabilir [27].   

Düzgün şekilde örneklenmemiş sinyallerde sinyal karakteristiğini incelemek, düzgün 

olanlara göre daha zordur. Bu sinyallerin periyodiklik karakteristiğini, yani hangi 

frekanslarda güç yoğunluğunun fazla olduğunu tespit etmek istediğimizde, sinyalin 

interpole edilmesi ya da tekrar örneklenmesi gerekmektedir. Fakat bu durum frekansta 

kaymalara ya da hatalı örneklemelere neden olabilir. Düzgün örneklenmemiş verilerin 

analizi için yaygın kullanılan yöntemlerden biri Lomb-Scargle Periyodogramdır. 

Periyodogram ve Welch method gibi geleneksel spektral analiz yöntemlerinin aksine, 

Lomb-Scargle periyodogram eşit şekilde örneklenmemiş verilerin, interpolasyon ya da 
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tekrar örneklemeye gerek kalmadan, direk olarak verinin kendisini girdi olarak 

kullanabilmektedir [27].  

Çoğu cihaz bir periyodogram oluşturmak için genellikle Hızlı Fourier Dönüşümünü (Fast 

Fourier Transform- FFT) kullanır. Bununla birlikte, FFT, analizde kullanılan tüm örneklerin 

(diğer bir deyişle, tüm RR aralıkları) zamanla eşit aralıklarla yerleştirildiği varsayımına 

dayanır. Bu, örnekleme aralığının, ortalama RR aralığına eşit olduğu varsayıldığı anlamına 

gelir [28]. 

Lomb transformu, en küçük kareler yöntemini kullanarak, bir frekansta merkezlendirilmiş 

bir frekans bandındaki sinyalin enerjisini, sinyale bir sinüsoidal model uyumlandırarak 

tahmin eder. Bir düzgün örneklenmemiş sinyal serisinin {[tn,x(n)} bir sinyal gözlem dizisi 

ile donatılmış modeli [42]; 

 
(4.3) 

Tahmin hatasının asgari düzeyde olacağı şekilde;  

 

(4.4) 

İstenilen frekanstaki periyodogram aşağıdaki denklemle elde edilir.  

 

(4.5) 

Burada gecikme( ); 

 

(4.6) 

Bu gecikme sinüs çiftlerinin karşılıklı olarak ortogonal olması için bir gerekliliktir [42].  
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5. SİNYAL TEMİZLEME 

5.1. Pam Tompkins Algoritması 

İnsan vücudu üzerinde, kalbin elektriksel aktivitesinin sonucu olarak ortaya çıkan belli 

tipteki biyolojik işaretlere elektrokardiyogram (EKG) denir. Çağdaş klinik uygulamalarda, 

EKG işaretlerinin işlenmesi, saklanması ve sayısal haberleşme ağları üzerinden iletilmesi 

uygulamaları büyük önem taşımaktadır. EKG sinyalleri temel olarak P dalgası, QRS 

kompleksi ve T dalgasından oluşmaktadır. P dalgası Atrial depolarizasyon süresini ifade 

eder. Normal koşullarda ortalama dalga süresi 0.06 -0.08 saniye arasıdır. Repolarizasyonu 

QRS içine karışmıştır. P dalgasının başlangıcından QRS’in başlangıcına kadar geçen süre 

P-Q segmenti olarak ifade edilir ve uyarının ventriküllere iletilme süresini gösterir. QRS 

Kompleksi, ventriküler depolarizasyon ve atrial repolarizasyon sürelerinin toplamını verir. 

EKG’de en yüksek pozitif dalgadır, Normal koşullarda ortalama 0.08- 0.1 saniyedir ve 1-2 

mV genliğindedir. QRS süresinin uzaması iletinin ventriküllerde anormal bir yol izlediğini 

gösterir. T dalgası ise, ventriküler repolarizasyon süresini belirtir ve normal koşullarda 120-

160 milisaniye sürmektedir [30]. QRS Kompleksi Şekil 5.1 de gösterilmektedir. 

 

Şekil 5.1: QRS Kompleksi [30] 
 

Sinyali gürültülerden arındırmak için Şekil 5.2 deki gibi EKG’ye, Yüksek Geçiren Filtre 

(YGF) ve Alçak Geçiren Filtre (AGF) arka arkaya sinyale uygulanmaktadır. Tasarlanan 

AGF, için kesim frekansı 11 Hz’dir. YGF kesim frekansı 5 Hz’dir [37][38]. AGF (5.1), (5.2) 

ve YGF (5.3) fark denklemleri sırasıyla aşağıda verilmiştir [30].  
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Şekil 5.2: Pam Tompkins Algoritması Akış Diyagramı 
 

𝑦[𝑛] = 2 ∗ 𝑦[𝑛 − 1] − 𝑦[𝑛 − 2] (5.1) 

𝑦[𝑛] = 𝑦[𝑛] +
1

32
∗ (𝑥[𝑛] − 2 ∗ 𝑥[𝑛 − 6] + 2 ∗ 𝑥[𝑛 − 12]) 

(5.2) 

𝑦[𝑛] = 𝑥[𝑛 − 16] −
1

32
∗ (𝑦[𝑛 − 1] + 𝑥[𝑛] − 𝑥[𝑛 − 32]) 

(5.3) 

Türev operatörü ile AGF ve YGF uygulanan EKG sinyalinde hızlı değişimlerin ifadesi olan 

QRS bileşiklerinin ortaya çıkarılır, yavaş ve düşük frekanslı olan P ile T dalgalarından 

temizlenir. Daha sonra kare alma ile sinyal kuvvetlendirilir. İntegrasyon işlemi ardından 

eşikleme ile QRS tepe noktası kararı verilir. 

𝑦[𝑛] =
1

𝑁
∗ (𝑥[𝑛] + 𝑥[𝑛 − 1] + ⋯ + 𝑥[𝑛 − (𝑁 − 1)]) (5.4) 

Pam Tomkins algoritmasının, 200 Hz de örneklenmiş olan bir ham EKG sinyaline 

uygulanması esnasındaki ara adımların gösterimi Şekil 5.3’deki gibidir.  

5.2. Eşikleme  

Biyomedikal alanında incelenen sinyaller genel olarak milivolt seviyelerindedir. Bu nedenle 

çevre değişkenlerinden sıkça etkilenir.  

Hastanın apne/hipopne endeksini doğru olarak belirleyebilmek için, Polisomnografi (PSG) 

kaydı esnasında hasta üzerine çok sayıda sensör takılmaktadır. Bu sensörlerden birisi de 

EKG’dir. EKG sinyali hasta üzerine takılan elektrotlar ile kaydedilir. Gece boyunca çeşitli 

nedenlerle elektrotlar hasta üzerinde hareket edebilir. Bu hareketler, EKG sinyalinde 

yüksek genlikte bozulmalara ve QRS kompleksinin alınamamasına neden olur. 

Eşiklemenin temel amacı da beklenenden çok daha büyük genlikte sinyaller geldiğinde bu 

alanları elemektir. Şekil 5.4’de örnek ham EKG sinyali görülmektedir. Bu şekilde bazı 
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yerlerde EKG de küçük genlik bozulmaları varken en genliği normalden yaklaşık 300 kat 

fazla olan bir EKG bozulması görülmektedir. 

 

Şekil 5.3: Pam Tompkins Algoritması Çıktıları 
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Şekil 5.4: Ham EKG Sinyali 

EKG sinyalindeki bu sinyale Şekil 5.5’deki gibi daha yakından bakıldığında burada QRS 

kompleksinin bozulduğu görülmektedir. Şekil 5.6’da ise QRS tespitinin QRS kompleksi 

kaybolmasından dolayı hatalı yapıldığı görülmektedir. 

 

Şekil 5.5: EKG Sinyali Gürültüsü 

 

Şekil 5.6: Gürültü Nedeniye Bozulan EKG Sinyalinin QRS Tespiti  
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Eşikleme yapmadan önce EKG sinyalindeki genlik dalgalanmaları olamaması için sinyal 

önce yüksek geçiren filtreden geçirilmelidir. Şekil 5.7 de gürültü nedeniyle bozulmuş 

alanın yüksek geçiren filtre sonrası durumu görülmektedir.  

 

Şekil 5.7: Yüksek Geçiren Filtre Sonrası Gürültü Nedeniyle Bozulan EKG Sinyali 

Daha sonra bu sinyal normalize edilerek eşiklenmektedir. Eşikleme yaparken örnekleme 

hızı göz önünde bulundurularak sinyal atma işlemi gerçekleştirilmektedir (Şekil 5.8). 

 

Şekil 5.8: Eşikleme Algoritması 
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Eşikleme ile atılan sinyaller diğer ortak kullanan sinyaller ve apne anlarından çıkartılması 

için kayıt edilmektedir. Kayıt ekranı Şekil 5.9 da görülmektedir. 

 

Şekil 5.9: Eşikleme Sonrası Silinen Sinyal İndeksleri 

5.3. Ampirik Kip Ayrıştırma  

Ampirik Kip Ayrıştırma (Empirical Mode Decomposition-EMD) 1998’de Huand tarafından 

ortaya konulmuştur. Bir sinyal içinde salınım yapan tüm frekansları, Fourier’in aksine, 

sinyalde durağanlık ya da doğrusallık kriteri aramaksızın ortaya çıkartan bir sinyal işleme 

yöntemidir [31].  

EMD’nin temel özelliği, içinde yüksek ve düşük frekanslı bileşenler içeren bir sinyali IMF 

(Intrinsic Mode Function) denilen fonksiyonlara ayrıştırmasıdır.  

Huang’ın tarifine göre IMF fonksiyonu iki koşulu mutlaka sağlamalıdır; 

1) IMF fonksiyonunun tepe ve çukur sayısı ile sıfırdan geçiş sayısı birbirine eşit 

olmalıdır. 

 

2) Herhangi bir noktadaki alt ve üst zarfların ortalaması sıfıra eşit olmalıdır [32]. 

Bunların ne demek olduğu aşağıda bir örnekle detaylı olarak anlatılmaktadır.  

EMD düşük frekansları eleyerek başlar. İlk IMF fonksiyonu en yüksek frekans bileşenlerini 

içermektedir.  Elde edilen IMF fonksiyonu orijinal sinyalden çıkartıldığında artık sinyal 

(residue-r) elde edilir. Bu artık sinyal farklı frekans bileşenlerini içermektedir. Bu sinyal 
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kullanılarak iteratif olarak bir sonraki IMF fonksiyonları elde edilir. En sonda tüm elde edilen 

fonksiyonlar ile artık sinyal toplanırsa, orijinal sinyalin elde edildiği görülür [31].  

𝑋(𝑡) = ∑ ℎ𝑖(𝑡) + 𝑟(𝑡)     , 𝑟 = 𝑋 − ℎ

𝑛

𝑖=1

 (5.5) 

Burada;  

X: Orijinal Sinyal,  

h: IMF Fonksiyonu 

r: Artık Sinyal 

t: Zaman(sn) 

 

Aşağıdaki Şekil 5.10’da farklı frekans bileşenlerinden oluşan bir sinyal görülmektedir.  

𝑥(𝑡) = 0.5𝑡 + sin(𝜋𝑡) + sin(2𝜋𝑡) +  sin(6𝜋𝑡) (5.6) 

X(t) Sinyali 

 

Şekil 5.10: Farklı Frekansta Bileşenlerden Oluşan Sinusodial Sinyal [14]  
 

IMF fonksiyonunu elde etmek için ilk olarak Şekil 5.11’deki gibi sinyalin tepe ve çukurlar 

belirlenir. 
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Şekil 5.11: X(t) Sinyalinin Tepe ve Çukur Noktaları [32] 

 

Daha sonra bir sonraki Şekil 5.12’da görüldüğü gibi bu tepe ve çukurlardan alt ve üst zarflar 

oluşturulur.  

 

Şekil 5.12: X(t) Sinyalinin Üzerinde Oluşturulan Alt ve Üst Zarflar [32] 
 

Daha sonra bu iki zarfın ortalaması hesaplanır. Ortalama değeri Şekil 5.13’de siyah zarf 

ile gösterilmiştir. 

 

Şekil 5.13: Tepe ve Çukur Zarflarının Ortalamasının Sinyal  
Üzerinde Gösterimi [32] 

 

Son olarak IMF’yi elde etmek için bu zarf, Şekil 5.7 de gösterilen orijinal sinyalden çıkartılır 

ve Şekil 5.14’de görülen birinci IMF sinyali elde edilir. 
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Şekil 5.14: Birinci IMF Sinyali [32] 
 

Yukarıdaki bölümde tariflenen iki koşul sağlanana kadar bu işlem iteratif olarak devam 

eder. Sinyalden IMF fonksiyonunu ayrıştırma işlemine eleme (sifting) denir. Eleme işlemi 

aday IMF mutlak değerleri, tolerans düzeyinden daha küçük olana kadar,  

ℎ𝑖(𝑡) < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑠 𝑑𝑒ğ𝑒𝑟𝑖 (5.7) 

ya da ardışık aday IMF'lerin varyasyonu tolerans seviyesinden düşük olana kadar, 

∑(
ℎ𝑖(𝑡) − ℎ𝑖−1(𝑡)

ℎ𝑖−1(𝑡)
)2

 

𝑡

< 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑠 𝑑𝑒ğ𝑒𝑟𝑖 (5.8) 

devam eder. 
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6. UYGULAMALAR 

6.1. SİNYAL ÖZNİTELİK ÇIKARIMI 

6.1.1. Hava Akışı Alanı Özniteliği 

Filtrelenmiş hava akışı sinyali Ahavaakışı ve standart sapması her bir saniyelik pencereler 

halinde aşağıdaki formüllere göre hesaplanmaktadır.  

  Ahavaakisi(𝑘) = ∑ 𝑎𝑏𝑠(𝑥(𝑖))
𝑘∗𝐾+𝐾−1

𝑖=𝑘∗𝐾
 (6.1) 

σhavaakisi(𝑘) = √
1

K − 1

 

∑ (𝑥(𝑖) − 𝑥(𝑘) )2
𝑘∗𝐾+𝐾−1

𝑖=𝑘∗𝐾
 

 

(6.2) 

Burada K,1 saniyelik pencerelerdeki örnek sayısı; k, 1 saniyelik pencerelerin sayısı; 𝑥(𝑖), 

1 saniyelik penceredeki örnekler, 𝑥̅ (i)dir.  

Hava akış sinyali ve bu sinyalden çıkarılan hava akışı alanı, hava akışı standart sapması 

öznitelikleri Şekil 6.1’de görülmektedir. 

 

Şekil 6.1: Hava Akışı Sinyali ve Öznitelikleri 
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akış sinyal özelliği uzun süreli kayıt esnasında sensor ya da hasta hareketleri nedeniyle 

değişiklik gösterebilir. Bu nedenle TDNN fonksiyonuna gönderilmeden önce hava akışı 

sinyaline adaptif normalizasyon uygulanması gereklidir. Bu normalizasyon faktörü 

aşağıdaki formüller ile belirlenmiştir. 

𝐹𝑛𝑜𝑟𝑚(𝑘) = (1 − 𝑎)𝐹𝑛𝑜𝑟𝑚(𝑘 − 1) + 𝑎. 𝑋(𝑘) (6.3) 

Burada X(k), hava akışı alanı veya standart sapmasını; 𝛼, unutma etkenini; k, 1 saniyelik 

pencerelerin sayısıdır. 

Bu çalışmada 𝛼, 0.05 alınmıştır. Her eleman adaptif olarak hesaplanan normalizasyon 

faktörüne bölünerek elde edilmektedir. 

Hava akış sinyali ve bu sinyalden çıkarılan hava akışı alanı, hava akışı standart 

sapmasının normalize edilmiş öznitelikleri Şekil 6.2’de görülmektedir. 

 

Şekil 6.2: Hava Akışı Sinyali ve Normalleştirilmiş Öznitelikleri 
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6.1.2. Desaturasyon Özniteliği 

Saniyede 1 örnek alınarak elde edilen oksijen saturasyonu bilgisi, yapay sinir ağları 

modeline girmeden sırasıyla baz hattının belirlenmesi, desaturasyon seviyesinin 

hesaplanması ve hesaplanan değerin normalize edilmesi işlemlerinden geçmektedir. 

SpO2’nin baz hattı, 60 saniyelik bölütlerdeki maksimum oksijen doyum seviyesi olarak 

belirlenmiştir. Baz hattı, 

BSpo2(𝑘) = max{SSpo2(𝑘 + 𝑖)} , 𝑖: − 𝐾, −𝐾 + 1, … . , 𝐾 − 1, 𝐾 (6.4) 

Denklemi ile formüle edilmiş olup burada, K, pencere genişliğinin yarısı; k, 1 saniyelik 

bölütlerin sayısı; Sspo2(k+i) ise gerçek oksijen doyum miktarını ifade etmektedir.   

Baz hattı hesaplanan oksijen saturasyonunun desaturasyon miktarı; 
 

 
DSpo2(𝑘) = BSpo2(𝑘) − SSpo2(𝑘) 

 

(6.5) 

  
denklemi ile bulunmaktadır. 
 

Şekil 6.3’de 1 saniye aralıklarla örneklenmiş apneli oksijen saturasyon grafiği ve bu süre 

zarfındaki desaturasyon miktarı gösterilmektedir. 

 

Desaturasyon seviyesinin normalize edilmesi için;  

 

NSpo2(𝑘) = tanh (
1

𝑇ℎ𝑟𝑆𝑝𝑜2
DSpo2(𝑘)) 

(6.6) 

  

denklemi kullanılmakta olup burada, NSpo2(𝑘), normalize edilmiş desaturasyon miktarını, 

𝑇ℎ𝑟𝑆𝑝𝑜2 yüzde 4’lük eşik değerini ifade etmektedir.  

Şekil 6.3’de 1 saniye aralıklarla örneklenmiş apneli oksijen saturasyon grafiği, 

deasturasyon miktarı ve normalize desaturasyon miktarı gösterilmektedir. 
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Şekil 6.3: Saturasyon Sinyali ve Öznitelikleri 
 

Eş zamanlandırma  

Kandaki oksijen saturasyonu seviyesindeki baz hattına göre %3-4’lük düşüş, apne 

anından birkaç saniye sonra gerçekleşmektedir. Yaşanan bu gecikme çeşitli sebeplerden 

dolayı insandan insana değişkenlik göstermektedir. Bu sebepten dolayı hava akış sinyali 

ile oksijen saturasyon değişiminin, yapay sinir ağlarına gönderilmeden önce eş 

zamanlandırılması gerekmektedir. Uygun gecikme zamanını tespit edebilmek için 

öncelikle hava akısı sinyali ile desaturasyon verisi arasındaki ilgileşim Corr(k) ,  

 

𝐶𝑜𝑟𝑟(𝑘) = ∑ 𝑁𝑆𝑝𝑜2(𝑖). 𝑁𝐻𝑎𝑣𝑎𝑎𝑘𝑖𝑠𝑖(𝑖 + 𝑘), 𝑘 = 10, … . . ,40

𝑛

𝑖=0

 (6.7) 

  

denklemi ile hesaplamakta olup burada, 𝑁𝑆𝑝𝑜2(𝑖), normalize edilmiş desaturasyon verisini,  

𝑁𝐻𝑎𝑣𝑎𝑎𝑘𝑖𝑠𝑖(𝑖 + 𝑘), normalize edilmiş hava akışı verisini ifade etmektedir.  
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Şekil 6.4: Hava Akışı Alanı ve Desaturasyon Öznitelikleri Arası Korelasyon Durumu 
 

Korelasyon sonucunda eşzamanlama için gerekli olan gecikme zamanı  

 

TGecikme(𝑘) = min{Corr(𝑘 + 𝑖)} (6.8) 

  

denklemi ile bulunmaktadır. Şekil 6.5’de hava akış alanı ile desaturasyon arasındaki ilinti 

işlevi sonucunda bulunan 5 saniyelik gecikmenin giderilerek birbirleri ile eş 

zamanlandırılması gösterilmektedir. 

 

Şekil 6.5: Hava Akışı Alanı ile Desaturasyon Özniteliklerinin Eşzamanlandırılması 
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PSG cihazları ile uyku apne sendromunun tespitinde sayısız teşhis yöntemi vardır fakat 

var olan sistemlerin birçoğu hava akışı ve solunum hareketi ölçümüne dayanmaktadır. Bu 

sinyaller hastanın hareketine ve çevresel etkilere oldukça duyarlı olup, bazen hiç veri 

alınamadığı durumlar olabilir [1]. Bu nedenle sadece hava akış sinyali solunum 

düzensizliğini tespit etmek için çoğu kez yeterli değildir.  

Hava akış sinyalini doğrulamak için Spo2 sinyali önemli bir yer tutmaktadır. Yapılan bazı 

çalışmalar sadece oksimetre ile uyku apne sendromu teşhisinde yüzde 40 ile 100 arasında 

performans elde etmişlerdir. Bu çalışmalar göz önünde bulundurarak Spo2 sinyali hava 

akışı sinyalini geliştirerek yüksek doğruluk elde edilmesini sağlayacaktır. 

Burada sorun kandaki oksijen oranının, apne gerçekleşme anından, tipik olarak 10 saniye 

veya daha fazla gecikmesidir. Hava akışı öznitelikleri ve Spo2 öznitelikleri TDNN 

fonksiyonu girişinde bu gecikmeye göre senkronize edilmelidir.  

6.1.3. HRV Özniteliği 

Kalp hızı değişkenliği (HRV), kalbin normal ritmini modüle eden birçok fizyolojik faktörün 

güvenilir bir yansımasıdır. Gerçekte, sempatik ve parasempatik sinir sistemleri arasındaki 

etkileşimi gözlemlemek için güçlü bir araç sağlar. Kalp atış hızı (Heart Rate Variability-

HRV), durağan olmayan bir sinyaldir; varyasyonu mevcut hastalığın göstergelerini veya 

yaklaşan kalp hastalıkları ile ilgili uyarıları içerebilir. Göstergeler her zaman mevcut olabilir 

veya günün belli saatlerinde rastgele olabilir. Birkaç saatte toplanan çok miktarda veride 

anormallikleri incelemek ve belirlemek yorucudur ve zaman alıcıdır. Dolayısıyla, HR 

varyasyon analizi (zaman eksenine karşı anlık HR), otonom sinir sisteminin aktivitelerini 

değerlendirmek için popüler bir invazif olmayan araç haline gelmiştir. 

 

Bilgisayar tabanlı analitik araçlar, günlük aralıklarla verilerin derinlikli incelenmesi için 

teşhiste çok yararlı olabilir. Bu nedenle, bilgisayarlar kullanılarak çıkarılan ve analiz edilen 

HRV sinyal parametreleri, teşhiste son derece yararlıdır.  
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Şekil 6.6: R-R Noktalarından HRV Sinyalinin Oluşumu 

 

Şekil 6.6’da gösterildiği gibi, Dakikadaki Kalp Atım Hızı (KAH), QRS sezim algoritmasıyla 

elde edilen RR zaman aralıkları kullanılarak, 

𝐾𝐴𝐻 =
𝐹𝑠

𝑅 − 𝑅
𝑥60 (6.9) 

denklemi ile hesaplanmakta olup burada, 

Fs: Örnekleme hızı  

R − R: İki R arasındaki örnek sayısını ifade etmektedir. 

Şekil 6.7’de dakikadaki kalp hızı değişkenliğinin normalize edilmiş değerleri ile dakikadaki 

kalp atım sayısındaki değişim gösterilmiştir. 
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Şekil 6.7: Kalp Atım Hızı Değişimi Öznitelik Çıkarımı 

6.1.4. Kısa Zamanlı Fourier Dönüşümü 

KZFD, sabit olmayan sinyalleri analiz etmek için sinyal işlemede iyi bilinen bir tekniktir. 

KZFD, sinyali dar zaman aralıklarına ayırır ve her bir bölümün Fourier dönüşümü alır (Şekil 

6.8). 

𝐹(𝜏, 𝜛) = ∫ 𝑓(𝑡). 𝜛(𝑡 − 𝜏)𝑒−𝑗𝜛𝑡  
𝑑𝑡

∞

−∞

 
(6.10) 

KZFD, bir sinyalin zaman ve frekans bazlı görünümleri arasında bir tür uzlaşmayı temsil 

eder. Bir sinyal olayının ne zaman ve ne zaman gerçekleşeceği hakkında bazı bilgiler 

sağlar. Bununla birlikte, yalnızca bu bilgi sınırlı hassasiyetle elde edilebilinir ve bu 

hassaslık, pencerenin boyutuna göre belirlenmektedir. 
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Şekil 6.8: Kısa Zamanlı Fourier Transformu [33] 

Zaman ve frekans bilgileri arasında KZFD uzlaşmanın yararlı olabilir fakat bunun 

dezavantajı zaman penceresi için belirli bir boyut seçtikten sonra, bu pencerenin tüm 

frekanslar için aynı olmasıdır. 

6.2. YAPAY SİNİR AĞLARI İLE APNE SEZİMİ 

Ağır apne teşhisi koyulan bir hastanın tüm gece boyunca alınan veri kaydı yapay sinir 

ağlarını eğitmek için kullanılmıştır. Sinyallerin kesildiği veya bozulduğu yerler gözle tespit 

edilip, eğitim setinden çıkartılmıştır. Toplamda 459 apne olayı sinir ağları eğitiminde 

kullanılmıştır. Bunlardan yüzde 15’i test, yüzde 15’i doğrulama için ayrılmıştır. Verinin 

yüzde 70’i ile eğitim tamamlanmıştır.  

Yapay sinir ağlarını (YSA) MATLAB yazılımında, bilgisayar ortamında oluşturulmuştur.  

6.2.1. Hava Akışı Sinyali için Apne Sezimi 

6.2.1.1. Hava Akışı Alanı Özniteliği ile Apne Sezimi 

Hava akışı sinyallerinden çıkartılan hava akışı alanı özniteliği yapay sinir ağlarına giriş 

olarak verilmiştir. İkili ara katmanda 10’ar tane sinir hücresi kullanıldı ve 2 saniye gecikme 

verilmiştir. Çıkış katmanında ise iki elemanlı hedef vektörü oluşturulmuştur. Bu yapı Şekil 

6.9’de gösterilmektedir. 



46 
 

 

Şekil 6.9: Yapay Sinir Ağları Yapısı 

 

Hava akışı özniteliği, hava akışı sinyalinden elde edilen ardışık bölütlerin, bölüt içindeki 

değerlerinin toplanarak, o bölütün toplam değerinin belirlenmesi sonucu oluşmaktadır. Bu 

bölütlerin pencere uzunlukları yapay sinir ağlarının performansını etkilemektedir. Bunu 

belirlemek için farklı pencere uzunlukları için yapay sinir ağlarının apne tespit performansı 

test edilmiş ve aşağıdaki tabloya kayıt edilmiştir. 

Pencere Uzunluğu (Örnek) /Hata Tespit Performansı 

10 81.4 

20 84.9 

25 85.2 

50 85.9 

100 87.3 

200 67.6 

Tablo 6.3: Yapay Sinir Ağı Hava Akışı Alanı Apne Tespit Performansı  
 

Tablo 6.1’deki tablodan çıkardığımız sonuçlara göre 100 Hz olan hava akışı sinyalimiz için 

en uygun pencere aralığının 100 örnek olduğu tespit edilmiştir.  

Hava akışı özniteliğinin yapay sinir ağlarına verilmesi sonucu, Şekil 6.10’daki karmaşıklık 

matrisleri elde edilmiştir. 

Sadece hava akışı alanı özniteliği kullanılarak eğitilen YSA ile toplamda %87.3 (Şekil 6.10 

) doğruluk elde edilmiştir. Burada daha önce görmediği hedefler için test matrisleri 

oluşturulmuş ve bu hedefler için de yüzde 87,2 doğruluk elde edilmiştir. 

Sonuçları görselleştirmek için MATLAB yazılımında oluşturulan Yapay Sinir Ağları Tespit 

ve Analiz Aracı kullanıcı arayüzü kullanılmıştır. Şekil 6.11’deki üsteki figürde hava akışı 
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sinyalinden elde edilen hava akışı alanı özniteliği gözlemlenmektedir. Burada genliğin 

sıfıra yaklaştığı yerler, hastanın solunumunun 10 saniye boyunca durduğu apne bölgelerini 

göstermektedir. Şekil 6.11’de ise tespit edilen apneler kırmızı renk ile gösterilirken, hedef 

vektörleri mavi renk ile gösterilmiştir. Bu örnek için apne olan tüm bölgelerde hedef vektörü 

ile benzer zamanlı olarak yapay sinir ağı tarafından apne tespitinin başarılı bir şekilde 

yapıldığı görülmektedir. 

 

Şekil 6.10: Hava Akışı Sinyali Karmaşıklık Matrisleri 
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Şekil 6.11: Hava Akışı Alanı Özniteliği ile Apne Tespiti 
 

Bu arayüzün detayları Bölüm 6.4 de anlatılmaktadır.  

6.2.1.2. Ampirik Kip Ayrıştırma ve Kısa Zamanlı Fourier Dönüşümü ile Apne Sezimi 

Bu bölümde hava akışı sinyali Ampirik Kip Ayrıştırma ile temizlenerek, kısa zamanlı fourier 

dönüşümün ile öznitelik çıkarımı yapılmaktadır. Daha sonra bu öznitelikler yapay sinir 

ağlarına girdi olarak verilerek apne sezimi yapılmaktadır. Frekans elemesi yapmadan kısa 

zamanlı fourier dönüşümü ile özellik çıkarımı yapıldığında apne sezimi yüzdesi %80 

etrafında çıkmaktadır. Apne sezim performansını artırmak için dinamik bir frekans 

ayrıştırma yöntemi olan Ampirik Kip Ayrıştırma methodu kullanılmıştır.  

Ham hava akış sinyalinin frekans spektrumu Şekil 6.12 de görülmektedir. Burada en güçlü 

hava akışı sinyal frekans komponentlerinin 0-0.5 HZ civarında toplandığı görülmektedir. 

Yetişkin bir insan dakikada 10 ila 30 kez nefes alıp vermektedir. Bu sinyalin ana 

komponentlerinin 0.1 Hz ile 0.5 Hz arasında olduğunu göstermektedir.  
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Şekil 6.12: Ham Hava Akışı Sinyali Frekans Spektrumu 
 

Aşağıda Şekil 6.13 de yer alan figürlerde ise her IMF seviyesi için frekans incelemesi 

yapılmıştır. Burada her seviyede yüksek frekans komponentinin belli bir kurala göre 

azaldığı görülmektedir. 
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Şekil 6.13: EMD ile Oluşturulan IMF Fonksiyonlarının Frekans Spektrumları 
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Şekil 6.13’te Hava akışı farklı frekans seviyelerine IMF fonksiyonları ile ayrıştırıldıktan 

sonra, her fonksiyonun ayrı ayrı kısa zamanlı frekans dönüşümü alınır. KZFD üst üste 

binme olmadan gerçeklenmiştir. Şekil 6.14 de KZFT periyodogramı görülmektedir. Burada 

sarı olan alanlar güç yoğunluğu fazla olan, yeşil olan alanlar ise güç yoğunluğu az olan 

alanlardır. Burada apne anlarında güç yoğunluğunun azaldığı görülmektedir.     

 

Şekil 6.14: Kısa Zamanlı Fourier Transformu Periyodogramı 
 

Kısa zamanlı frekans dönüşümünden elde edilen güç spektral yoğunluk örüntüsü yapay 

sinir ağları için girdi oluşturur. Farklı IMF değerleri için Tablo 6.2’deki yapay sinir ağları 

sınıflandırma performans değerleri oluşmuştur. Şekil 6.12 den hava akışı sinyalinin frekans 

bileşenlerinin IMF-1 ile 6 arasında arasında yoğunlaştığı görülmektedir. Tablo 6.2 de 

görüldüğü gibi IMF-4 ve 5 de en iyi sonucun alınması hava akışının doğal frekansının diğer 

yüksek frekans bileşenlerinden ayrıştırılmasındandır. 

IMF Tespit Performansı 

1 87.1 

2 87.8 

3 88.4 

4 88.1 

5 88.1 

6 88.0 

7 85.7 

8 82.5 

Tablo 6.4: Yapay Sinir Ağı IMF Apne Tespit Performansı 



52 
 

Ampirik kip ayrıştırma ile sinyal temizleme yöntemi hava akışı sinyaline, hava akışı alanı 

özniteliği öncesinde de uygulandığında, KZFD ile aynı IMF seviyelerinde benzer sonuçlar 

elde edilmiştir. Hava akışı alanı sonucu en yüksek %88,3 yapay sinir ağı performansı 

sağlanmıştır. 

6.2.2. Spo2 Sinyali için Apne Sezimi 

Oksijen saturasyonu sinyallerinden çıkartılan desaturasyon özniteliği yapay sinir ağlarına 

giriş olarak verilmiştir. İkili ara katmanda 10’ar tane sinir hücresi kullanılmıştır ve 2 saniye 

gecikme verilmiştir. Çıkış katmanında ise iki elemanlı hedef vektörü oluşturulmuştur. Bu 

yapı Şekil 6.15’de gösterilmektedir. 

 

Şekil 6.15: Yapay Sinir Ağları Yapısı 
 

Normalize desaturasyon özniteliği kullanılarak eğitilen yapay sinir ağları ile toplamda 

%68,9 (Şekil 6.17) doğruluk elde edilmiştir. Yapay sinir ağının daha önce görmediği 

hedefler için test matrisleri oluşturulmuş ve bu hedefler için de yüzde 68,6 doğruluk elde 

edilmiştir.  

 

Şekil 6.16: Desaturasyon Özniteliği ile Apne Tespiti 
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Şekil 6.17: Saturasyon Sinyali Karmaşıklık Matrisleri 
 

6.2.3. EKG Sinyali için Apne Sezimi 

EKG saturasyonu sinyallerinden çıkartılan Kalp Atım Hızı Değişimi özniteliği yapay sinir 

ağlarına giriş olarak verilmiştir. İkili ara katmanda 10’ar tane sinir hücresi kullanılmıştır ve 

2 saniye gecikme verilmiştir. Çıkış katmanında ise iki elemanlı hedef vektörü 

oluşturulmuştur. Bu yapı Şekil 6.18’de gösterilmektedir.  

 

Şekil 6.18: Yapay Sinir Ağları Yapısı 
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HRV özniteliği incelendiğinde R-R noktalarındaki hesaplama hataları ya da bazı 

bozulmalar nedeniyle tepe noktasının tespit edilememesi nedeniyle, HRV sinyalinde anlık 

değişimler görülmektedir. Bu değişimlerin önüne geçmek ve yapay sinir ağlarına daha 

anlaşılır bir veri verebilmek için HRV sinyali hareketli ortalamalar filtresinden geçirilmiştir. 

Şekil 6.19’da üst tarafta filtre öncesi HRV sinyali, altta ise filtre sonrası HRV sinyali 

bulunmaktadır.  

Yapay sinir ağları ile HRV sinyalini kullanarak apne tespitini sadece buradaki patern için 

değil tüm başka hastalar için yapabilmek için, HRV paternini daha genel bir hale getirerek 

yapay sinir ağlarının ezberlenmesi engellenmek istenmiştir. 

 

 

Şekil 6.19: HRV ve Filtrelenmiş HRV Özniteliği 

 

Kalp Atım Hızı Değişimi (Hearth Rate Variability-HRV) özniteliği kullanılarak eğitilen yapay 

sinir ağları ile toplamda %83,9 (Şekil 6.20) doğruluk elde edilmiştir. Yapay sinir ağının daha 

önce görmediği hedefler için test matrisleri oluşturulmuş ve bu hedefler için de yüzde 82,5 

doğruluk elde edilmiştir. 



55 
 

 

Şekil 6.20: EKG Sinyali Karmaşıklık Matrisleri 
 

Sonuçları görselleştirmek için MATLAB yazılımında oluşturulan Yapay Sinir Ağları Tespit 

ve Analiz Aracı kullanıcı arayüzü kullanılmıştır. Şekil 6.21’deki üsteki figürde EKG 

sinyalinden elde edilen Kalp Atım Hızı Değişimi (Heart Rate Variability-HRV) özniteliği 

gözlemlenmektedir. Burada kalp atım hızının yüz üzerine çıktığı yerler, hastanın 

solunumunun 10 saniye boyunca durduğu apne bölgelerini göstermektedir. Fakat nefes 

durduktan birkaç saniye sonra kalp atımı hızlandığı için biz burada apnelerin daha 

gecikmeli olarak gösterildiğini görüyoruz. Alttaki figürde ise tespit edilen apneler kırmızı 

renk ile gösterilirken, hedef vektörleri mavi renk ile gösterilmiştir. Bu örnek için apne olan 

tüm bölgelerde hedef vektörü ile benzer zamanlı olarak yapay sinir ağı tarafından apne 

tespitinin başarılı bir şekilde yapıldığı görülmektedir. 
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Şekil 6.21: HRV Özniteliği ile Apne Tespiti 

6.2.4. Çok Girişli Yapay Sinir Ağları ile Apne Sezimi 

Hava akışı alanı, oksijen desaturasyon ve HRV sinyali yapay sinir ağlarına giriş katmanı 

olarak verilmiştir. İkili ara katman da yine 2 saniye gecikme ile 10’ar sinir hücresi 

kullanılmıştır ve çıkış katmanı içinde iki elemanlı bir hedef vektörü oluşturuldu.  

Yapay sinir ağları girişine, Şekil 6.22’deki yapıda hava akışı sinyalinden üretilen hava akışı 

alanı ve standart sapması öznitelikleri, oksijen saturasyonundan elde edilen desaturasyon 

ve EKG sinyalinden elde edilen HRV özniteliği verildi.  

 

Şekil 6.22: Yapay Sinir Ağları Yapısı 

Her sinyalden ayrı ayrı elde edilen öznitelikler birlikte değerlendirilip, yapay sinir ağlarına 

giriş olarak birlikte verildiğinde sonuçların, her sinyalin bireysel sonuçlarından daha iyi 

olduğu görüldü.  
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Şekil 6.23: Çok Girişli YSA için Karmaşıklık Matrisleri 
 

Yapay sinir ağlarına uygulanan sinyalle için bir bölüm Şekil 6.24’de verilmiştir. Burada ilk 

figür hava akışı alanı özniteliğini, ortadaki figür desaturasyon özelliğini, son figür ise HRV 

değişimini göstermektedir. 
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Şekil 6.24: Eş zamanlı Hava Akışı, Desaturasyon ve HRV Öznitelikleri  
 

Apne ve hipopne olayında solunumun durması sonucu, ciğerlere temiz hava gitmez, 

kandaki oksijen seviyesi düşer, dolayısıyla desaturasyon seviyesi Şekil 6.24’de ikinci 

figürdeki gibi yükselir. Kandaki oksijen miktarının azalması sonucu kalp daha hızlı çalışır 

ve sonrasında kalp atım hızı yükselir. 

Yukarıdaki şekilde iki dakikalık bir sinyal boyunca üç sinyalin apne anındaki verdikleri 

tepkileri aynı yerde görebilmekteyiz. Hava akışı alanı genliğinde azalma başladıktan birkaç 

saniye sonra saturasyon ve kalp atım hızındaki değişimleri görebilmekteyiz.  
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6.3. LOMB TRANSFORM FONKSİYONU İLE APNE SEZİMİ 

Genel olarak düzgün örneklenmemiş verilerin analizi için yaygın kullanılan yöntemlerden 

biri olan Lomb Transformunu ile bu bölümde HRV sinyalinden apne sezimi yapılmaktadır. 

Toplamda 5 saatlik veri içinde 459 tane apne ve hipopne olayı barındıran bir sinyal ile 

çalışılmıştır. Önce EKG sinyalinden Kalp Atım Hızı Değişimi (Heart Rate Variability-HRV) 

çıkarımı yapılmaktadır. Daha sonra elde edilen HRV sinyali 30 saniyelik pencerelere 

bölünmüştür. Literatürde pencere aralığını 1 dakika veya birkaç dakika alındığı 

görülmüştür [34], [35]. Burada apne süreleri arası mesafe az olduğu için birçok deneme 

sonunda 30 saniyenin en iyi performans verdiği gözlemlenmiştir. 30 saniyelik pencerelerin 

her birinin 0-0.5 Hz ve 0-0.04 Hz (apne aralığı gücü) deki güçleri hesaplanmıştır (Şekil-

25). Apne aralığı gücü, hesaplanan toplam gücün yüzde ellisinden fazla olduğu pencereler 

apne olarak değerlendirilmiştir.  

 

Şekil 6.25: Normal ve Apneli Sinyal Lomb-Scargle Periyodogramları 
 

Apne zaman doğruluğunu artırmak için apne tespit edilen pencereler 15’er saniyelik iki 

alana daha bölünmüştür. Her pencerenin kendi içerisinde, yukarıda anlatılan işlemler 

tekrar edilerek apnenin ilk veya ikinci kısımda olduğu yine 0-0.4Hz arası güç yoğunluğunu 

karşılaştırarak tespit edilmeye çalışılmıştır. Bu aralıkta güç yoğunluğu fazla olan tarafta 

apne işaretlemesi yapılmıştır. Şekil 6.26’da Lomb fonksiyonu ile apne tespiti 

gösterilmektedir. İlk iki apne Lomb fonksiyonu tarafından yanlış değerlendirilmiş 
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gözüküyor. Burada 30 saniyelik pencerelerden kaynaklı çözünürlük kaybından dolayı 

apneler tam olarak hedef vektörü ile aynı noktalara oturmamakta fakat çok benzer 

aralıklarda apne tespiti yapılmaktadır. Şekil 6.22’de İlk figürde Lomb fonksiyonu ile tespit 

edilen alanlar, ortadaki figürde yapılan zaman iyileştirmesi, en alttaki figürde ise hedef 

vektörü görülmektedir.  

 

Şekil 6.26: Lomb Fonksiyonu ile Apne Tespiti 
 

Şekil 6.27’de, Şekil 6.26’nın yakınlaştırılmış hali görülmektedir. Burada içi içe Lomb 

fonksiyonunun uygulanması ile apne bölgelerinin hedef vektörüne göre nasıl düzeltildiği 

daha net gözükmektedir. 
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Şekil 6.27: İç içe Lomb Fonksiyonu ile Apne Zaman Çözünürlüğü İyileştirilemesi 
 

Şekil 6.28’de en üstteki figürde hedef vektörü, ortadaki figürde lomb fonksiyonu ile tespit 

edilen apneler, en alttaki figürde ise hedef vektörü ile lomb fonksiyonunun kesiştiği anda 

elde edilen apneler gösterilmektedir. Burada 5 tane apneden 1 tanesinin tespit edilemediği 

diğerlerinin doğru şekilde işaretlediği görülmektedir. 

 

Şekil 6.28: Hedef Vektörüne Göre Apne Tespit Noktaları- Eksik Tespit 
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Şekil 6.29’de ise 5 tane apne doğru şekilde tespit edilmiş fakat hedef vektöründe yer 

almayan 2 tane apne tespit edilmiştir. Bu apnelerin hedef vektörü ile kesişen apnelere 

(doğru pozitif oranına) dâhil edilmediği gösterilmektedir. 

 

Şekil 6.29: Hedef Vektörüne Göre Apne Tespit Noktaları-Yanlış Tespit 
 

Lomb transform fonksiyonu ile toplamda 5 saatlik veriden elde edilen 30 saniyelik 600 

pencere apne değerlendirilmesi yapılmıştır. Veri setinde yer alan 459 tane apneden 436 

tane apne tespit edilmiştir. Bu apnelerin doğruluğu hedef vektörü ile karşılaştırıldığında 

410 tanesinin doğru olarak tespit edilirken, 26 tanesinin yanlış tespit edilmiştir.  

Buradan Lomb fonksiyonunun apne bulma yüzdesi; 

𝐷𝑜ğ𝑟𝑢 𝑃𝑜𝑧𝑖𝑡𝑖𝑓 𝑂𝑟𝑎𝑛𝚤 =
𝐷𝑜ğ𝑟𝑢 𝑃𝑜𝑧𝑖𝑡𝑖𝑓

𝐺𝑒𝑟ç𝑒𝑘 𝑃𝑜𝑧𝑖𝑡𝑖𝑓
=

410

459
𝑥 100 = %89,3 (6.11) 

𝑌𝑎𝑛𝑙𝚤ş 𝑃𝑜𝑧𝑖𝑡𝑖𝑓 𝑂𝑟𝑎𝑛𝚤 =
𝑌𝑎𝑛𝑙𝚤ş 𝑃𝑜𝑧𝑖𝑡𝑖𝑓

𝐺𝑒𝑟ç𝑒𝑘 𝑁𝑒𝑔𝑎𝑡𝑖𝑓
=

26

141
𝑥 100 = %18,4 (6.12) 

𝐷𝑜ğ𝑟𝑢𝑙𝑢𝑘 𝑂𝑟𝑎𝑛𝚤 =
(𝐺𝑒𝑟ç𝑒𝑘 𝑃𝑜𝑧𝑖𝑡𝑖𝑓 + 𝐺𝑒𝑟ç𝑒𝑘 𝑁𝑒𝑔𝑎𝑡𝑖𝑓)

𝑇ü𝑚 𝑉𝑒𝑟𝑖
=

(115 + 410)

600
𝑥 100       

= %87,5 

(6.13) 

olarak hesaplanmıştır. Burada apne anları “pozitif” olarak değerlendirilmiştir. 
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6.4. APNE TESPİT ve ANALİZ ARAYÜZÜ 

Uyku hastanelerinde tüm gece veri toplandıktan sonra gün içerisinde uzman kişi tarafından 

skorlanır. Bu skorlama işlemi için PSG cihazının analiz aracı kullanılır. Apne ve hipopne 

tespiti aynı anda çok sayıda sinyalin birlikte incelenmesi ve değerlendirilmesi ile 

yapılmaktadır.  

Buradan esinlenerek, bu çalışmada da bir apne analiz aracı tasarlanmıştır. Bu arayüz 

MATLAB ortamında oluşturulmuştur. Apne analiz aracı arayüzü, uyku hastanesindeki 

analiz aracından farklı olarak, temel seviyede gürültü eleme, öznitelik çıkarma ve otomatik 

apne tespiti gibi özelliklere sahiptir.  

Ayrıca analiz aracı ileride yeni özellikler eklenebilecek şekilde geliştirilmiştir. Şekil 6.30’da 

analiz aracının genel özellikleri gösterilmektedir. Arayüze yüklenen üç sinyal alt alta 

sergilenmektedir.  

 

Şekil 6.30: Polisomnografi Sinyalleri Analiz Aracı Kullanıcı Arayüzü 
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Apne analiz arayüzünde 3 adet sinyal senkron/asenkron olarak istenilen örnekleme 

hızında oynatılabilinmektedir. Kullanıcı veriyi çizdirip, incelemek istediği aralığı girdikten 

sonra, “increase” ve “decrease” butonları ile sinyali sağa veya sola kaydırabilir. 

Sinyaller Şekil 6.31’deki gibi “Load Data” butonu ile “.mat” ya da “.txt” formatında 

yüklenebilmektedir. 

 

Şekil 6.31: Sinyal Yükleme 
 

Diğer oluşturulan tüm araçlar bu arayüzden çağrılmaktadır. 

Öznitelik çıkarımı apne tespiti için en kritik bölümdür. Eğer yapay sinir ağlarına verilen 

öznitelikler yeterli sayı ve özgünlüğe sahip ise sinir ağı, daha sonradan tanımadığı 

sinyallere de o kadar doğru yanıt verecektir.  

Sinir ağına verilecek öznitelikler bu analiz programı ile üretilebilmekte ve detaylı olarak 

incelenebilmektedir. Mevcut öznitelikler, bölüm 6.1 de anlatılan Hava akışı alanı, oksijen 

desaturasyon ve kalp atım hızı değişimi tespitidir.  
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Hava Akışı Öznitelik Çıkarımı Arayüzü:  

Şekil 6.32’deki arayüzde hava akışı sinyali için değişken özelliklere sahip öznitelik 

çıkarımları yapılabilinmektedir. Genel arayüzde olduğu gibi sinyal “Load Signal” butonu ile 

“.mat” ya da “.txt” formatında yüklenebilmektedir. 

Hava akışı alanı özniteliğini oluştururken pencere aralığı en önemli parametrelerden biridir. 

En uygun pencere aralığını bulmak için önce sinyalin örnekleme hızı girilmelidir. Daha 

sonra bu araç ile farklı pencere aralıklarında denemeler yapılmakta ve uygun olduğu 

düşünülen öznitelik “save” butonu ile kayıt edilerek apne analizi için hazır hale 

getirilmektedir. Şekil 6.24 ve Şeki.6.25’deki öznitelik çıkarım araçları da aynı yeteneklere 

sahiplerdir. 

 

Şekil 6.32: Hava Akışı Alanı Öznitelik Çıkarımı 
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Şekil 6.33’de üst tarafta yer alan figürde saturasyon sinyali görülmektedir. Bu sinyalden 

çıkarılan desaturasyon özniteliği alttaki figürde yer almaktadır. Desaturasyon sinyali 

oksijen saturasyon sinyalinin arttığı yerlerde artmaktadır. 

 

Şekil 6.33: Desaturasyon Öznitelik Çıkarımı 
 

Şekil 6.34’de ise üst tarafta EKG sinyali Pan Tomkins algoritması sonucu işaretlenmiş tepe 

noktaları, alt tarafta ise bu noktalar kullanılarak oluşturulmuş Kalp Atım Hızı Değişimi 

(Heart Rate Variability-HRV) görülmektedir.  

 

Şekil 6.34: Kalp Atım Hızı Öznitelik Çıkarımı 
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Şekil 6.35’de görülmekte olan Yapay Sinir Ağı Apne Tespit ve Analiz Aracı bu tez 

çalışmasında oldukça etkili bir şekilde kullanılmıştır. Öznitelik çıkarımı yapılan bir sinyalin 

hedef vektörü yüklenerek eğitimi istenilen aktivasyon fonksiyonuna göre yapılırken, daha 

sonra bu yapay sinir ağı kullanılarak yapay sinir ağının performansı incelenmesi bu analiz 

aracı ile mümkündür. İstenilen performans elde edilene kadar birçok deneme kod 

karmaşasından uzakta, daha kullanıcı dostu bir ekranda çalışılmaktadır. 

Burada önceki arayüzlere benzer şekilde “Load” butonları ile öznitelik, sinir ağı veya hedef 

vektörü yüklemesi yapılmaktadır. Daha sonra bu vektörler kullanılarak yapay sinir ağının 

daha detaylı analizi yapılabilinmektedir. Arayüze yüklenen yapay sinir ağı ile yüklenen 

öznitelik istenilen zaman aralığında oynatılarak sinir ağının performansı 

görselleştirilmektedir. Ekranda kaç apne bulunduğu, eğer hedef vektörü de yüklenmiş ise 

ve göster seçeneği seçilmiş ise hedef vektörü ile birlikte sergilenmektedir. 

 

Şekil 6.35: Yapay Sinir Ağı Apne Tespit ve Analiz Aracı 
 

Bu arayüzler dışında apne sinyallerini daha detaylı incelemek için daha önceki 

çalışmalarda yapılan gürültü eleme ve wavelet çalışmaları da Şekil 6.30’da görüldüğü 

üzere arayüze eklenmiştir.  
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7. SONUÇLAR 

Yapay sinir ağları doğrusal dağılmamış bir veri setinin sınıflandırmasında yaygın olarak 

kullanılmaktadır. Bu tezde hava akışı alanı, oksijen desaturasyonu ve kalp atım hızı 

değişimi özelliklerini yapay sinir ağlarının çerçevesinde uyku apne tespit edilmesi amacına 

uygun çözümleme çalışması yapılmıştır. 

Bu amaçla öncelikle polisomnografi cihazından yada taşınabilir Apne cihazlarından  gelen 

ham verinin üzerine çeşitli nedenler ile binmiş olan gürültülerin temizlenmesi 

gerekmektedir. EKG sinyalini temizlemek ve QRS sezimi gerçekleştirmek için Pam 

Tompkins algoritması kullanılmaktadır. Elektrot oynamaları nedeniyle sinyal üzerinde 

oluşan ve EKG verisinin kaybolmasına neden olan olaylar ise eşikleme algoritması ile 

temizlenmektedir.  

Hava akışı verisi üzerine binen düzenleyici gürültü ise Ampirik Kip Ayrıştırma ile 

temizlenmektedir.  EMD, hava akışı sinyali içinde yüksek ve düşük frekanslı bileşenler 

içeren bir sinyali IMF (Intrinsic Mode Function) denilen fonksiyonlara ayrıştırmaktadır. Bu 

ayrıştırmayı Wavelet Dönüşümünden farklı olarak dinamik olarak yapmaktadır [36]. Bu 

çalışmada hava akışı sinyali temizlemede bu nedenle Wavelet yerine EMD tercih edilmiştir. 

Sinyal temizleme işleminin ardından öznitelik çıkarılmaktadır. Hava akışı sinyali için hava 

akışı alanı ve kısa zamanlı fourier dönüşümü öznitelikleri çıkartılmıştır. Saturasyon için 

Desaturasyon miktarı özniteliği kullanılırken, EKG için Kalp Atım Hızı Değişimi (Heart Rate 

Variability-HRV) özniteliği çıkartılmıştır ve bunlar yapay sinir ağlarına girdi olarak 

verilmiştir. 

Bu çalışmada amaç apne hastasına polisomnografi gibi standart ancak daha karmaşık 

testlerin gerekliliğine karar verecek, ön tarama amaçlı taşınabilir kayıt cihazları ile fizyolojik 

sinyalleri inceleyerek en iyi veri setini sınıflandırmaktır. Bu nedenle yapay sinir ağlarına 

sinyaller önce ayrı ayrı daha sonra hepsi birlikte uygulanarak sınıflandırma performansları 

Tablo 7.1’e kayıt edilmiştir. 
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Eğitimde toplam 459 apne aralığı kullanılmıştır. Doğrulama, aynı eğitim veri setiyle yapılır 

ve test veri seti ham verilerin %15'ine ayarlanmıştır. Test setinde seçilen ağ yapılarının 

sınıflandırma performansı değerlendirilmiştir.  

     Sinyal Hava Akışı 

Sinyali 

Oksijen 

Saturasyonu 

EKG Sinyali Tüm Sinyaller 

Doğruluk Oranı %88,3 %68,9 %83,9 %89,6 

Doğru Pozitif 

Oranı  
%84,8 %54,8 %76,4 %84,9 

Yanlış Pozitif 

Oranı  
%11,7 %28,7 %12,6 %8,1 

 
Tablo 7.1: Farklı Sinyallerin Yapay Sinir Ağları Sınıflandırma Performansı  

 

Tablo 7.1’de ilgili sinyal için yapay sinir ağları ile elde edilen en iyi sonuçlar 

gösterilmektedir. Bu tabloda hesaplanan toplam doğruluk oranı, doğru negatif ve doğru 

poziflerin toplamının, tüm veriye oranlanmasıyla elde edilmektedir. Doğru pozitif oranı 

doğru pozitiflerin, gerçek apne olaylarına oranlanmasıyla, yanlış pozitif oranı ise yanlış 

pozitiflerin, apne olmayan olaylara oranlanmasıyla elde edilmektedir.  

Hava akışı sinyali taşınabilir polisomnografi cihazları için ana verileri içermektedir. Hava 

akışı sinyalinin hava akış özniteliği direk olarak yapay sinir ağlarına giriş olarak verildiğinde 

en yüksek %87.3 doğru sınıflandırma performansı elde edilmiştir. Bir başka denemede 

EMD sonrası farklı IMF seviyeleri için bakıldığında, %88,3 doğru sınıflandırma performansı 

elde edilmiştir. Zaman tabanlı bir öznitelik çıkarımı ile değil de zaman-frekans tabanlı kısa 

zamanlı fourier dönüşümü (KZFD) ile elde edilen öznitelikler ile yine EMD sonrası IMF 

seviyelerine göre bakıldığında %88.4 doğru sınıflandırma performansı elde edilmiştir. 
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Zaman Gecikmeli Yapay sinir ağları kendisine giriş ve hedef olarak verilen bilgilerden, gizli 

katmanlar ile sonuç vektörleri üretir. Burada giriş vektörünün doğru tanımlanması oldukça 

önemlidir. Bununla birlikte, FFT, analizde kullanılan tüm EKG örneklerinin (diğer bir 

deyişle, tüm RR aralıkları) zamanla eşit aralıklarla yerleştirildiği varsayımına dayanır. Bu, 

örnekleme aralığının, ortalama RR aralığına eşit olduğu varsayılmaktadır. Düzgün şekilde 

örneklenmemiş sinyallerde sinyal karakteristiğini incelemek, düzgün olanlara göre daha 

zordur. Bu sinyallerin periyodiklik karakteristiğini, yani hangi frekanslarda güç 

yoğunluğunun fazla olduğunu tespit etmek istediğimizde, sinyalin interpole edilmesi ya da 

tekrar örneklenmesi gerekmektedir. Fakat bu durum frekansta kaymalara ya da hatalı 

örneklemelere neden olabilir. Düzgün örneklenmemiş verilerin analizi için yaygın kullanılan 

yöntemlerden biri Lomb-Scargle Periyodogramdır. 

     Sinyal 
Hava Akışı 

Alanı 

EMD ve Hava 

Akışı Alanı 
KZFD EMD ve KZFD 

Doğruluk Oranı %87,3 %88,3 %80,2 %88,4 

Doğru Pozitif 

Oranı  
%83,2 %84,8 %71,1 %84,1 

Yanlış Pozitif 

Oranı  
%12,1 %11,7 %17,6 %10,7 

 
Tablo 7.2: Hava Akışı Sinyali Yapay Sinir Ağları Sınıflandırma Performansı  

 

Bu çalışma da yapay sinir ağlarına alternatif olarak Lomb fonksiyonu ile apne tespiti 

yapılmıştır. EKG sinyalinden elde edilen HRV, üst üste binme olmadan Lomb fonksiyonuna 

verilmiştir. 30 saniyelik pencerelerin her birinin 0-0.5 Hz ve 0-0.04 Hz (apne aralığı gücü) 

deki güçleri hesaplanmıştır ve apne işaretlemesi yapılmıştır. Buradan Lomb fonksiyonunun 

doğru pozitif apne bulma yüzdesi %89.3 olarak hesaplanırken, yanlış pozitif oranı %18.4 

ve toplam doğruluk oranı %87.5 olarak hesaplanmıştır. 
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Çalışmanın devamında ön tarama amaçlı taşınabilir kayıt cihazları ile elde edilen fizyolojik 

sinyalleri inceleyen ve apne işaretlemesi amaçlı veri eşleşmesi analizi yapan bir yazılım 

aracı geliştirilmiştir Apne analiz aracı arayüzü, uyku hastanesindeki analiz aracından farklı 

olarak, temel seviyede gürültü eleme, öznitelik çıkarma ve otomatik apne tespiti gibi 

özelliklere sahiptir.  

Saturasyon sinyali ile yapılan apne sezimi, hava akışı ve EKG sinyallerine göre daha kötü 

performans elde edilmiştir. Bu çalışmada apne-hipopne ayrımı yapılmamıştır. Bu ayrım 

yapılmak istendiğinde saturasyon sinyali daha önemli bir yer tutmaktadır. Burada yapay 

sinir ağlarının gösterdiği performans, eğer doğru veri setleri ile eğitim yapılırsa apne-

hipopne ayrımını da yapabileceğini göstermektedir.  

Sonuç olarak, karmaşık PSG test ölçümlerine bağımlılığın azaltılması için, bu ölçümleri 

kullanan yapay sinir ağırının hastaların uyku apnesi olup olmadığını anlamak için pratik ve 

yararlı bir tarama testi olduğu görülmektedir. Ayrıca Lomb-Scargle Periyodogram ile elde 

edilen sonuçlar da umut vaad etmektedir. Çalışmanın amacına uygun gerçekleştirilen uyku 

apne analiz arayüzü de önemli araç, yöntem, filtre ve ön işleme süreçlerini içeren ve 

sonuçların uzmanlarca rahat kullanılabileceği bir platform oluşturmaktadır.  
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