




ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

MANIPULATION OF VISUALLY RECOGNIZED
OBJECTS USING DEEP LEARNING

Ph.D. THESIS
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DOKTORA TEZİ
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Tez Danışmanı: Assoc. Prof. Dr. Pınar BOYRAZ
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FOREWORD

This thesis was written for my Doctor of Philosophy degree in Mechatronics
Engineering at Istanbul Technical University. I have integrated visual understanding
into robotic manipulation semantically using deep neural networks within the scope of
this thesis. To bridge the gap between real-world and simulation in robotic applications
I have constructed a hybrid visual object dataset that is composed of real and synthetic
images. I believe that the evidences will contribute the current literature.
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MANIPULATION OF VISUALLY RECOGNIZED
OBJECTS USING DEEP LEARNING

SUMMARY

People collect the greatest and most qualified data from their environment through
vision systems. However, for a more complete and reliable perception, it is necessary
to use corresponding data from other senses. Analogous to humans, robots collect
data from the medium they are in via sensors. Object detection, recognition, and
semantic value attribution are among the most recent research areas in robotics.
The development of software and hardware technologies ensures the intelligence of
everyday life. High-resolution, depth-sensing cameras, such as the Internet devices of
objects, have made it possible to obtain multi-dimensional and large volume data. In
parallel, robots have begun to be regarded as part of social life as well as the industrial
field use. Human-robot interaction systems require high accuracy and speed in terms
of real-time operation as content.

In the context of human-robot interaction, safe, fast, and capabilities with high
performance/low error rates have become possible with the help of the advanced
machine learning algorithms and the relevant hardware technologies for these
algorithms. In intelligent manufacturing facilities, the robots are directly dependent on
their hardware and software systems for their movements during their displacement,
their ability to perform their assigned tasks at expected performance levels.
Convolutional neural networks (CNNs) are trained for purposes such as object
recognition, object boundary detection, object segmentation, semantic linkage.

CNNs are a generic name given to specialized artificial neural network models that
contain a certain number of hidden layers, with some extraordinary architecture,
parameter update methods, and activation functions. Deep CNNs trained using
large amount of data that give results with minimal error values that are better
than human performance regarding recognizing objects in the data set they are
trained in, determining bounding-box coordinates surrounding the objects, and
segmenting. Object localization and recognition operations for applications in the
field of robotics are inadequate concerning semantic information extraction and
object-based relationships. For this reason, the class to which the object belongs is
assigned attributes beyond the class labels, so that the algorithms can infer from the
semantic content.

In this thesis, the performances of the conventional visual feature detector and
descriptor methods are analyzed in detail. In addition to the ordinary criteria such
as speed, performance, and matching feature per image as performance criteria, we
also took the distance between matching attributes, the number of correct matching
attributes and the angular orientation difference between matching points into account
during performance comparisons. In the experiments, a query dataset consisting
of 127 template images was conducted matches with a dataset consisting of 3090
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images. As a result of this study, it has been shown that some conventional feature
extraction methods yield acceptable levels when accuracy is considered. However, no
high-accuracy combination suitable for real-time operation has been achieved. From
this aspect, manipulating visually recognized objects within this thesis with a robotic
mechanism has been executed using deep learning methods. As a robotic mechanism,
a structure consisting of a variable radius pulley-variable stiffness joint system is
integrated into the experimental environment we call it the Deep Table.

In this thesis, an image data set named ADORESet was built to bridge the gap between
the real world conditions and the simulation environments for use in robot vision
studies. ADORESet consists of 30 categories consisting 2500 real, 750 synthetic
images in each class, which are manually labeled and bounding-boxes are also
specified by hand. We use VGGNet to perform the object recognition process and
RetinaNet to determine the object locations when moving objects.

In this thesis, an alternative pooling layer is suggested to extend the literature. This
method, called Smart-pooling, processes the relevant filter by taking the values of large
or small pixels roughly. The superiority of the Smart-pooling against average and
max-pooling methods are shown, which are frequently used in CNNs.

The physical properties of the objects, such as weight, density, volume, and size,
caused different behaviors when moving objects using a 2 degrees of freedom (DoF)
robotic arm and three depth cameras in the simulation environment. For example,
when the same force is applied from the same or different points to the same volume,
objects that are different from one another can perform the desired movement other
than tilting a light object. As a result, the physical strength of the object, as well as the
strength of the force application point, emerged.

In this thesis, a test platform called Deep Table was created to move visually
recognized objects using deep learning methods. In the Deep Table, there
is a depth camera fixed at the top to center the robotic arm workspace, a
camera in front of the workspace, a robotic mechanism that moves the variable
radius pulley-variable stiffness joint system in Cartesian coordinates vertically and
horizontally, micro-controllers that generate signals that drive motors with a power
supply, and a computer that is used to observe sensory data collected during the
experiments and to develop algorithms. We present 5 of the possible cases for the
empirical test results. The results prove that our algorithm can move different types of
objects successfully ranging from several grams (empty bottle) to around 250 grams
(ceramic cup). The experiments also explain the role of contact point where the f/t
is applied onto the object. If the contact point is adjusted conveniently, then the
manipulation is terminated with a tilt over of the object. These results undoubtedly
confirm that the control approach proposed in the thesis can improve the object
mobility of robotic mechanisms by semantic bond extraction from visual data of
objects.
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GÖRSEL TANINAN NESNELERİN DERİN ÖĞRENME
KULLANILARAK HAREKET ETTİRİLMESİ

ÖZET

İnsanlar, çevrelerinden en büyük ve nitelikli veriyi, görme sistemleri aracılığıyla
edinirler. Bununla birlikte, daha eksiksiz ve güvenilir bir algılama için diğer duyu
organlarından elde edilen verileri de tamamlayıcı bir şekilde kullanmak gerekir.
İnsanlara benzer şekilde robotlar da algılayıcıları aracılığıyla içinde bulundukları
ortamdan veri toplarlar. Nesne algılama, tanıma ve anlamsal değer atfetme, robotik
alanındaki en güncel araştırma alanlarının başında gelmektedir. Yazılım ve donanım
teknolojilerinin gelişimi akıllı sistemlerin günlük yaşama nüfuzunu sağlamaktadır.
Yüksek çözünürlüklü, derinlik algılayan kameralar, nesnelerin interneti aygıtları
gibi donanımlar çok boyutlu ve büyük hacimli veri elde etmeyi mümkün kılmıştır.
Buna paralel olarak robotlar, endüstriyel alanda kullanımlarının yanısıra sosyal
hayatın da bir parçası olarak değerlendirilmeye başlanmıştır. İnsan-robot etkileşimli
sistemler içerik olarak gerçek zamanda çalışma açısından yüksek doğruluk ve hız
gerektirmektedir.

Kontrolsüz artan dünya nüfusu ve dengesiz tüketimin bir sonucu olarak geleneksel
üretim yöntemlerinin ihtiyaç ve talepleri karşılayamaması, zorlu rekabet şartlarının
hüküm sürdüğü üretim sektöründe yeni yaklaşımları zorunlu kılmaktadır. Üretimdeki
bu ihtiyaç ve zorunluluklara cevap vermek üzere Endüstri 4.0 adlı yenilikçi bir vizyon
ile akıllı üretim yöntemleri ve tesisleri öne sürülmüştür. Bu vizyon kapsamında
makinalar, cihazlar, sensörler ve insanlar arasında iletişimin sağlanabildiği, gerçek
sistemlerin sanal fiziksel bir kopyasının dijital ortamda oluşturularak bilginin
anlamsallaştırıldığı ve bilgi şeffaflığının sağlanabildiği ortamlar oluşturulması
planlanmaktadır. Ayrıca insanlara zorlu şartlarda makinalar tarafından teknik destek
sağlanması, siber-fiziksel sistemlerin karşılaştıkları bazı problemlerle ilgili kendi
kararlarını insanlara ihtiyaç kalmadan verilebilmesi de, bu çerçevede, geleneksel
üretim yöntemlerine bilişim teknolojilerinin entegrasyonu için amaçlanmaktadır.

İnsan-robot etkileşimi çerçevesinde, robotların; güvenli, hızlı ve verilen görevleri
yüksek başarım/düşük hata oranlarıyla gerçekleştirebilmesi, gelişen makine öğrenmesi
algoritmaları ve bu algoritmalara uygun donanım teknolojileriyle mümkün hale
gelmiştir. Akıllı üretim tesislerinde robotların yer değiştirmeleri esnasındaki hareket-
leri, verilen görevleri beklenen performans düzeylerinde yapabilme kabiliyetleri, sahip
oldukları donanım ve yazılım sistemlerine direkt olarak bağlıdır. Konvolüsyonel
(evrişimsel/evrişimli) derin yapay sinir ağları daha çok nesne tanıma gibi görsel ve
ses tanıma gibi ses tabanlı verilerle nesne tanıma, nesne sınırları belirleme, nesne
bölütleme, anlamsal bağ oluşturma gibi amaçlarla eğitilir.

Nesnelerin interneti aygıtları ve çeşitli sensörlerden aldıkları verileri işleyerek, öğrenen
sistemlerin oluşturulması modern robotik ihtiyaçlarına cevap vermektedir. Böylelikle
öğrenebilen robotik mekanizmalar, işleyişleri esnasında çeşitli duyargalardan aldıkları
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verileri işleyerek öğrendikleri modeller üzerinden karşılaştırma yaparak anlamsal
bilgi edinimine haiz olurlar. Yenilikçi robotik yaklaşımlarda, kritik öneme sahip
olan bu durum vasıtasıyla, robotlar karmaşık yapılardan anlamlı bağlar kurarak
insanlara benzer davranış geliştirme özelliği kazanabilirler. Hafıza kapasiteleri,
birim enerji başına performansları ve paralel hesaplamaya uygun çok çekirdekli
yapılarıyla güncel grafik ekran kartları derin yapay sinir ağı yapılarının eğitilmesine
ve böylece daha fazla parametre öğrenilebilen büyük boyutlu verilerin işlenmesine
imkan tanımaktadır. Ayrıca gömülü sistem olarak çalışmaya uygun benzer şekilde çok
çekirdekli donanımlar da gerçek zamanlı bilgisayarla görü içeren, karmaşık robotik
uygulamalara imkan tanımaktadır.

Konvolüsyonel derin yapay sinir ağları, bazı özel mimari, parametre güncelleme
yöntemleri ve aktivasyon fonksiyonları ile ikiden daha fazla sayıda gizli katman içeren
özelleşmiş yapay sinir ağı modellerine verilen genel addır. Büyük veri kullanılarak
eğitilen derin konvolüsyonel sinir ağı modelleri, eğitildikleri veri kümesinde bulunan
nesneleri tanıma, nesneleri çevreleyen sınırları belirleme ve bölütleme gibi konularda
insan performansından daha yüksek başarımlı, çok küçük hata değerlerine sahip
sonuçlar vermektedir. Robotik alanındaki uygulamalar için nesne tanıma ve nesne
sınırları belirleme işlemleri anlamsal bilgi çıkarımı ve nesnelere dayalı ilişki kurma
bağlamında tek başına yetersiz kalmaktadır. Bu sebeple, nesnenin ait olduğu
sınıfa, sınıf etiketlerinin ötesinde öznitelikler atanarak algoritmaların anlamsal içerik
konusundan çıkarım yapabilmeleri sağlanır.

Bu tez kapsamında, geleneksel öznitelik çıkarımı yöntemlerinin algılayıcı ve açıklayıcı
kısımlarının birleşimleriyle elde edilen yöntemlerin performansları detaylı bir şekilde
analiz edilmiştir. Performans ölçütü olarak hız, başarım ve görüntü başına doğru
eşleşen öznitelik gibi sıradan ölçütlerin yanısıra eşleşen özniteliklerin birbirlerine olan
uzaklığı, doğru eşleşen öznitelik sayısı ve eşleşen noktalar arası açısal yönelim farkı
gibi ölçütler de kullanılmıştır. Deneylerde, 127 adet şablon görüntüden oluşan bir
sorgu veri kümesi, 3090 adet görüntüden oluşan bir veri kümesiyle eşleştirilmiştir. Bu
çalışma sonucunda, bazı geleneksel öznitelik çıkarıcı yöntemlerin başarım gözönüne
alındığında kabul edilebilir seviyelerde sonuçlar verdiği görülmüştür. Bununla beraber,
gerçek zamanlı çalışmaya uygun herhangi bir yüksek başarımlı kombinasyon elde
edilememiştir. Ayrıca geleneksel yöntemlerin getirdiği hesap yükü nedeniyle görüntü
varyasyonları kısıtlı tutulmak zorundadır. Bu sonuçlar, geleneksel yöntemlerin
karmaşık robotik görevlerde istenen sonuçları vermesinin mümkün olmadığını ortaya
koymaktadır. Bu noktadan hareketle, tez kapsamında görsel olarak tanınan nesnelerin,
robotik bir mekanizmayla hareket ettirilmesi derin öğrenme yöntemleri kullanılarak
gerçekleştirilmiştir. Robotik mekanizma olarak değişken yarıçaplı makara-değişken
sertlikli eklem sisteminden oluşan bir yapı, derin masa adı verdiğimiz deney ortamına
entegre edilmiştir.

Robotik mekanizmalara ait çalışmalar uzun ve maliyetli deneyler gerektirmektedir.
Bu ksııtların etkilerini en aza indirmek adına benzetim ortamlarından faydalanılır.
Böylece zaman ve maliyetten tasarruf edilirken, birçok varyasyon denemesi yapılarak
gerçek dünya deneylerine olabildiğince hazır prototiplerle başlanır. Kısıtlı kabiliyete
sahip geleneksel öznitelik algılama ve tanıma yöntemlerinden ziyade konvolüsyonel
sinir ağları, başarım oranı daha yüksek ve daha hızlı anlamsal bilgi elde edebilmekte,
böylelikle gerçek-zamanlı robotik uygulamalara imkan tanımaktadır. Bu modellerin
istenen sonuçları üretebilmeleri parametrelerinin uygun şekilde optimize edilmesine
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bağlıdır. Bu da ancak yeterli sayıda veri ile mümkündür. Bu tez kapsamında
robot görüsü çalışmalarında kullanılmak üzere, benzetim ortamlarıyla gerçek dünya
koşulları arasındaki farkı azaltmaya yönelik, ADORESet adında bir görüntü veri
kümesi oluşturulmuştur.

ADORESet, 30 kategoride, her bir kategoride 2500’er gerçek, 750’şer tane de benzetim
ortamından alınan toplamda 97500 adet etiketli ve nesne sınırları elle işaretlenmiş
görüntüden oluşmaktadır. Bu veri kümesi kullanılarak en iyi sonuçlar veren
konvolüsyonel sinir ağı mimarilerinden dört tanesi ince-ayar yapılarak eğitilmiştir.
Sonuç olarak ise VGGNet adlı algoritma nesnelerin hareket ettirilmesi esnasında
tanıma işlemini yapacak yöntem olarak belirlenmiştir. Ayrıca nesne sınırlarını
belirlemek için de RetinaNet adı verilen mimari ince-ayar yapılarak eğitilmiştir. İnce
ayar yaparak eğitme işlemi, genel olarak geniş kapsamlı başarımı yüksek modelleri,
ilgilenilen alanda parametreleri güncelleyerek daha başarımlı hale getirmektedir.

Konvolüsyonel sinir ağı modeli girdisi olarak sayısal piksel değerlerinden oluşan
görüntü matrisi bir vektör haline dönüştürülür ve modele beslenir. Konvolüsyonel
yapay sinir ağları genelde, konvolüsyon, en büyük değer havuzu, düzleştirme,
normalizasyon, tamamen-bağlı gibi birçok katman içeren yapıya sahiptirler. Bu
tezde, literatürdekilere alternatif bir havuzlama katmanı önerilmektedir. Smart-pooling
adı verilen bu yöntem, ilgili filtre içerisinde ortalamadan büyük veya küçük piksel
değerlerini ele alarak işlem yapmaktadır. Smart-poolingin, konvolüsyonel yapay sinir
ağlarında en sık kullanılan, en büyük değer ve ortalama havuzlama yöntemlerine olan
üstünlükleri gösterilmiştir. Görüntü girdileri bu katmanlardan, model parametreleri
uygulanarak geçer ve çıktı katmanında sınıflandırılmak istenen nesneler sayısınca ünite
bulunur. Bu ünitelerin her biri, farklı bir nesne sınıfını temsil etmektedir. Böylece
en yüksek sayısal ünite değeri, konvolüsyonel sinir ağı girdisi olan görüntünün ait
olduğu nesne sınıfını belirtmektedir. Konvolüsyonel sinir ağları geleneksel özelik
algılama/tanıma yöntemlerine göre çok daha yüksek başarımlı ve gerçek zamanlı
çalışmaya uygundur. Benzetim ortamında, 2 serbestlik dereceli robotik kol ve üç adet
derinlik kamerası kullanılarak yapılan nesne hareket ettirme eylemlerinde, nesnelerin
ağırlık, yoğunluk, hacim ve boyut gibi fiziksel özellikleri hareket etme esnasında farklı
davranışlar ortaya çıkmasına neden olmuştur. Örneğin aynı ağırlık, farklı hacimdeki
nesnelere aynı şiddette kuvvet, aynı veya farklı noktalardan uygulandığında hafif olan
nesne devrilirken diğeri istenen hareketi gerçekleştirebilmektedir. Sonuç olarak nesne
fiziksel özellikleriyle beraber kuvvet uygulama noktasının önemi ortaya çıkmıştır.

Bu tezde, görsel olarak tanınan nesnelerin derin öğrenme yöntemleri kullanılarak
hareket ettirilmesi için Deep Table adı verilen bir deney platformu oluşturulmuştur.
Deep Table’da, robotik kolun çalışma alanını ortalayacak şekilde tepeye sabitlenmiş
bir adet derinlik kamerası, çalışma alanını karşıdan görecek şekilde bir adet kamera,
kartezyen koordinatlarda değişken yarıçaplı makara-değişken sertlikli eklem sistemini
dikey ve yatay eksende hareket ettiren bir robotik mekanizma, bir güç kaynağı
ile motorları hareket ettiren sinyalleri üreten mikrodenetleyiciler ve deneylerde
toplanan duyarga verilerini gözlemleme ve algoritma geliştirmede kullanılan bir
bilgisayar bulunmaktadır. Karşıdan çalışma alanını gören kamera, nesnelere kuvvetin
uygulanacağı yüksekliği hesaplamak için nesne sınırlarını ve nesne sınıfını belirlemede
kullanılır. Derinlik kamerası ise nesne hareketini takip eder ve nesne hacmi hesabında
kullanılacak veriyi sisteme sağlar. Bu kameralardan alınan verilerle nesne sınıflarına
atanan özniteliklere göre hesaplamalar yapılır ve robotik kolun nesneye uygulayacağı
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kuvvet noktası ve kuvvetin şiddeti belirlenir. Tez kapsamında olası birçok ihtimalden 5
tanesi için deney sonuçlarına yer verilmiştir. Deneylerde seramik bardağı, plastik şişe
boş ve dolu durumları için hareket ettirilecek nesneler olarak kullanılmıştır. Herhangi
bir akıllı kontrol yöntemi uygulanmadığında rastgele durumlar hariç nesnelerin istenen
hareketi elde edilememiştir. Önerdiğimiz kontrol yaklaşımıyla, boş plastik şişe
veseramik bardak gibi ağırlık, boyut ve yoğunluk gibi fiziksel özellikleri birbirinden
çok farklı nesneler bile başarıyla hareket ettirilirken, aynı şişeye belli bir miktar su
doldurulduktan sonra değişken yarıçaplı makara-değişken sertlikli eklem sistemi iç
sertliğini en üst seviyeye çıkarsa da gerekli kuvveti sağlayamadığı için hareket belli
bir noktada sonlanmıştır. Bu sonuçlar, tezde önerilen kontrol yaklaşımının nesnelere
ait görsel verilerden anlamsal bağ çıkarımı ile robotik mekanizmaların nesne hareket
kabiliyetlerini geliştirilebileceğini açıkça göstermektedir.
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1. INTRODUCTION

Throughout the history, people have continuously searched for more advanced life

conditions with explorations, inventions, findings, and optimizations they have made

over what they currently have. Mental and physical evolutions have always appeared

to serve this purpose as being the historical milestones. Last decades witnessed the

intelligent systems to become ubiquitous in every aspect of daily life as the so-called

era of information technology and the digital revolution. Even though the earlier

views pointed out the weaknesses, deficiencies, imperfections, and shortcomings of

machine usage within human-existing environments, recent discussions are pursued

by researchers as well as wider technology communities on the replacement of human

labor with robots. Due to the exponential growth of innovation in technology,

machines went under a tremendous progress. Nowadays, computationally-intensive

(and complex/complicated) tasks are performed by machines accurately, sometimes

even better than human-levels. In other words, the success of machines in real-world

applications has ceased the controversies about the human labor power substitution,

but the content, size, safety, robustness, and speed of the replacement process are

being debated publicly around the world. This debate is focused on big-data and

information-use related areas. The latest advancements in hardware, algorithms, and

software make it possible for robots to acquire semantic relations and make inferences

by learning from data with deep neural networks.

The deep-seated pervasive attitude suggests that the eyes are the largest data source

for humans. Once the success of deep neural networks surpassed the conventional

methods in computer vision applications, prospective usage areas caused a snowball

effect that made it one of the most attractive research topic. The rise of deep neural

networks can be explained in the manner of an interdisciplinary progress involving

computer science, robotics, manufacturing and automotive industries beyond hardware

and software developments. In the context of technological progress, the famous "data

is the new oil" statement allows an analogy-based definition of the current situation.
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In addition, it indicates the necessity of raw data to be processed in detail to obtain

valuable entities at every step similar to oil refinery which yields different products

such as gas, plastic, chemicals, etc. Deep learning algorithms that make machines

intelligent provide useful data from all layers as well.

1.1 Semantic Information Retrieval

In cognitive psychology, there exist various types of definitions about how humans

give hereditary meaning to visually recognized objects. The study in [1] suggests

that mental images, which are developed in mind without any physical support,

are composed of information about the object surface and its deeper information.

Upon this definition, they propose mental images can replace the actual perceptions

and surface representations as being quasi-pictures that are derived from deeper

information built in mind. On the contrary, [2] argues against [1], which is assumed

to have deficiencies and misleads theoretical details. [2] assesses the mental imagery

by introspection and it proposes that the objects in the scenes are also the properties

thought of but not the memories or mind segments. In addition, the same study states

that the properties of visual scenes are not coherently described in detail by anybody.

It can be said that they eyes are just the sensing tools, brain infers the actions for data

acquired from the eyes. Considering the earlier views, one can say that the actions

taken by people about the visually perceived objects are shaped in the mind. For

instance, as displayed in the Figure 1.1, the appearance in the mind for the same

object or situation can be very different because of the perspective or different point

of view. This difference can also occur between a healthy person and another with

cognitive impairment. Therefore, beyond the exact information on the category and

the location of the object is not sufficient. The crucial aim is to achieve semantic

intelligence which enables the machine to answer the content, function and location

of the object. Likewise, [3] devotes richer meaning to object perception than seeing it

with eyes, which implies dynamic brain operations, memory queries, and inferences.

Moreover, perception is defined as of predictive fact in the same study. In essence,

visual perception is considered regarding its relations with brain, memory, eyes and

inherited knowledge, which are analogous to decision-making systems likely to be
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Figure 1.1 : Representative illustration to emphasize the effect of perspective for
appearance of objects in the mind. [4]

algorithms, datasets and extracted features, visual perception devices and semantic

representatives for objects.

Instant object recognition is an operation of calling knowledge about object identities

that are stored as prior information, which is previously mapped to consistent

memory segments. In computer vision, the efforts behind answering the questions

of where the object of interest is in the image or what exists in the whole frame

in terms of detecting and recognizing have become obsolete so that the current

situation implies further endeavor to extract meaningful information from data using

various approaches. Therefore, ongoing studies on machine vision systems attempt

to perceive the appearance-based changes and occlusion, inter-class relations and

subordinate types of same objects as stated in [5] similar to humans that it is easier

to recognize basic-level classes compared to atypical objects. Based on the common

behavior of of constructing the semantic relations in a hierarchical manner, (i.e. from

general to particular such as organism−→mammal−→person−→male or female),

a binary classifier is introduced in [6] to recognize objects using labels to obtain

information about relations between objects. In [7], a localization is performed

for an infotainment robot by pose estimation using visual features within an indoor
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environment. Recognized objects are utilized to distinguish the area and this semantic

information specifies how the robot will interact with humans.

In the light of visual feature extraction, [8] introduces recognition based object-place

relation estimator using spatial-semantic information over the assumption of a robot

that is capable of recognizing real-world objects. In [9], towards the tasks requiring

more comprehensive knowledge about the interaction object, a platform called

KnowRob-Map is proposed. This platform consists of object spatial knowledge along

with general information including category and purpose. KnowRob-Map relates the

obstacles and their public meanings, which enables the robot to perform a certain

task depending on the recognized objects compatible with its operating area. Another

study on indoor mobile robot navigation, [10] associates recognized door signs to their

semantic content encoded as text with the goal of mapping. Similarly, [11] introduces

a mobile indoor robot that works in unknown environments and acquires high-level

semantic features such as the room type, relationships between objects and materials

of walls and grounds using a depth camera. [12] constructs a semantic objects maps

including aspect and joint knowledge for kitchen furniture objects as task-relevant

information, which is collected by a depth camera autonomously. The experiments

of this study are conducted using a mobile robot within different kitchen environments

as everyday manipulation tasks after answering some questions about the objects that

are stored as lexical representations. In the same fashion, an indoor mobile robot

is equipped with a depth camera to segment out objects by fusing visual data from

multiple views in [13] for daily household tasks. Pixel-wise object categorization is

executed utilizing a scale-invariant classifier for depth images that are placed into a

3D map semantically. The power of semantic information assignment to visual data

is revealed in [14], which divides 60 semantic attributes into 5 groups as follows; i)

scene, ii) color, iii) part, iv) shape, and v) material. The performance of the proposed

exclusive classifiers towards semantic attributes together with bag-of-visual-words

method outperforms the results of distinct methods. In [15], images are composed

of objects in them and the spatial coordinates with appearance information are stored

to object bank. They show how their object bank achieves better accuracy rates with

ordinary classifiers in high-level image recognition challenges accompanied by success

in semantic information retrieval.
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In earlier investigations, it is remarkable that additional attributes are embedded to

relevant visual features to achieve better semantic representations for high-level tasks

such as content based image retrieval and search [16–20], improving robot navigation,

actions and understanding [21–26], etc. mostly in a top-down hierarchical approach.

Although aforementioned conventional feature extraction methods give significant

results for semantic information retrieval problems, deep neural networks accomplish

faster and more robust results applicable in real-time with higher performance metrics.

With this in mind, [27] establishes reasonable connections between different actions

by estimating sub-actions for unknown situations with the help of lexical, visual and

logical tips. By training a deep neural network on 27425 web-images for consistent

actions, they accomplish the problem of predicting action information from images.

To succeed in dexterous robotic grasping [28] develops a deep learning approach

by training its system with a multi-channel dataset, which contains 20 categories

of objects, 6-axis force-torque(F/T) and tactile data for particular objects. Their

experimental results reveal the importance of the amount and variety of training data

but the object recognition accuracy rate has reached barely 88% due to the small

number of training images.

In the past decade, a number of studies have sought to determine the importance

and potential of semantic information in robotic navigation applications. [29]

underlines the role of semantic information beyond geometry and appearances for

map-based mobile robotic applications by consigning this problem to convolutional

neural network (CNN) integrated simultaneous localization and mapping (SLAM)

framework. Object recognition for 13 classes of objects is performed over real-time

depth video data and the objects are localized into the 3D map. In a similar way, [30]

proposes a CNN based semantic scene classification algorithm for indoor mobile

robots that is intended to give meaning to scenes thereupon the recognized objects.

The researchers in [31] presents a mobile humanoid robot visual system for navigation,

which enables generating image dataset online during the autonomous motion to train

deep neural networks. Then, the robot performs the experiments within a dynamic

environment using a geometric map where the semantic map is also embedded in.

As SLAM is a well-known problem that has implementations on many platforms,

[32] enhances the available geometric data to achieve meaningful information by
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Figure 1.2 : Simplified semantic information retrieval from images.

labeling the objects inside a warehouse autonomously towards the goal of Industry

4.0 compatible system. They obtain online semantic map through the combination of

SLAM with object detection and recognition using a depth camera. Similarly, [33] uses

depth camera data to train a CNN model to predict semantic segmentation outputs. The

multi-view geometry for object recognition is included within the system by SLAM

trajectory, thus the performance of the system, which is evaluated on datasets having

13 and 40 categories, is increased. In Figure 1.2, fundamental steps are displayed for

the operation of semantic information retrieval from images.

1.2 Purpose of the Thesis

In recent years, there is a big trend towards intelligent systems which evaluate the

data by its size and use the so-called “deep learning (DL)” methods to process it.

Moreover, this trend does not include just the algorithms, software or specific software

libraries but also the hardware, especially including the graphical processing units

(GPUs). Because GPUs have been improved significantly in terms of mixed precision

performance, performance per watt, memory capacity, speed in terms of floating

point operations per second (FLOPS), and allowing parallel computing, it has become

feasible to process large-sized data. In addition to this improvement, it has been

possible for DL systems to learn much more parameters than before which enables

the systems to be more intelligent because larger quantity of data and better hardware

are available to make dense computations. DL methods are specialized artificial
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neural networks (ANNs) with more hidden layers and some specific architectures and

activation functions.

This thesis aims to open up a new path in the practical application of artificial

intelligence (AI) in robotics field particularly focusing on deep learning methods in

the manipulation tasks of robots using visual recognition. In the general sense, the

work performed here is suggesting to use the visual perception in order to achieve

more intelligent manipulation actions by applying the state-of-the-art deep-learning

method for decision making. While the study offers a sound methodology for solving

one of the most visited problems in robotics, it also expands on the improvement of the

visual recognition algorithms and deep neural networks. Moreover, a densely-labeled,

high-quality image dataset, which contains real and synthetic images, towards

semantic mapping, object detection, and recognition, especially for indoor robotic

tasks besides simulation applications compatibility, is also introduced in this thesis.

1.3 Contribution of the Thesis

The largest amount and the richest source of data, which people gather from their

environment, is obtained through the visual system. As well as people get the visual

data by their eyes, their brains always work to assign meaningful information to

determine the place they exist, the objects they interact or surrounded, the actions they

will take, etc. using visual data. Since previously explained studies mostly depend

on the encoded and ascertained information for semantic meanings to recognized

objects, our study adds inferences according to the size and dimensions, and inter-class

relations for recognized objects before execution of the manipulation task.

The contributions of this thesis can be summarized as follows:

(1) A comprehensive comparison of visual recognition methods is performed

considering the detection/description algorithm couples of conventional feature

extraction methods. This comparison has shown us and other researchers in the

similar field that scale-invariant feature transform (SIFT) [34] and speeded-up robust

features (SURF) [35] algorithms, when applied together gives the best recognition rate

when the recognition task has to be achieved in challenging visual settings including

occlusion, illumination changes, and similar challenges.
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(2) A well-documented image database containing 97500 images having

manually-tagged labels is formed. This dataset allows evaluating the performance of

all computer vision algorithms and deep neural network algorithms. The preparation,

annotations, and sorting of the dataset contribute to both computer vision and robotics

field in expanding the list of available datasets.

(3) A new algorithm for deep neural network models has been proposed. The method

is proven to be better in terms of accuracy rates and spatial information adaptation

between layers compared to the previous algorithms.

In addition to these three tangible contributions, the methodology developed herein

is applied to a real robotic-arm providing real-world performance analysis. The

preparation of the test equipment and the application also provides guidelines for

similar studies in adopting the newly developed AI algorithms to the practical robotics

problems.

1.4 Thesis Outline

The thesis starts with the comparison of the conventional feature detector and

descriptor algorithms in Chapter 2 to set the motivation in resolving the perception

challenge finding the best available combination. Then, in Chapter 3, an advanced

AI method named deep-learning is explored, improved and applied to the visual

recognition problem. The necessity to form an original image-dataset and the content

of this dataset is also reported in Chapter 3 since the data structure and the learning

methods are closely tied. Next, the outputs of the visual recognition algorithm are put

into use in a robotic case study having the manipulation of basic indoor objects in a

push-pull task that is executed using a variable stiffness joint mechanism.

In this thesis, each chapter has a separate literature survey since the range of the topics

are quite wide and the recent developments have to be reported in the right order. A

single literature survey chapter would make the following of the ideas more difficult.

Therefore, for the sake of clarity and order, the literature overviews are given their own

space in the relevant chapter.

8



2. COMPARISON OF CONVENTIONAL FEATURE DETECTOR AND
DESCRIPTOR ALGORITHMS

In computer vision, obtaining beneficial information from visual data has always been

substantial in order to make machines automatically interpret visual data into semantic

meanings. In this section, a review of feature detector and descriptor algorithms is

given in conjunction with a comprehensive analysis that compares the performance

of all possible combinations of these methods in terms of accuracy, speed, number

of correct matches per second. Afterwards, the highlights and conclusive findings

of this analysis will be given before discussing the advantages and disadvantages of

conventional techniques.

2.1 Introduction

Features are the specific image parts such as corners, edges, colors, textures, etc.

Computer vision algorithms search for these unique patterns, which also can be tracked

and compared with each other. By systematically extracting useful material such

as location and identity about 3-dimensional (3D) world from 2D images, computer

vision methods help forming the machines that can see. The primary purpose of

computer vision algorithms is to detect and recognize objects, no matter how complex

an image frame is. As long as the appearance of objects depends on light conditions,

surface reflection and vision receptor capacity, the partnerships of these properties

generate textures, colors, bounds in terms of corners, edges, blobs and contours

of objects or backgrounds in images as being the main elements considered by the

classical feature extraction methods. Concisely, a low-level computer vision algorithm

involves two parts: a distinct 2D edifice incorporating a detector and a descriptor.

Intuitively, people perform visual activities by excerpting meaningful features that are

localized in the region where the highest variation occur and this operation is called

"feature detection". Once a feature is detected, then it can be found in other images

repeatedly. Furthermore, "feature descriptions" are information sets that particularly

belong to detected features. Thus, having detected features and descriptions belonging
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Figure 2.1 : Pipeline of a feature detector/descriptor operation for detection and
classification.

to them enables to implement computer vision applications such as aligning, stitching,

etc. In recognition tasks, the algorithm takes images as inputs and the outputs are

usually the category labels of objects within the input images. On the other hand,

the algorithm outputs pixel coordinates for the objects in detection tasks. Image

datasets are required for object detection and recognition algorithms where the features

are utilized to train the classifiers and regressors, respectively. Conventional feature

extraction is not sufficient solely for recognition or detection so that a trainable

classifier or detector has to be attached subsequently to determine the category or pixel

locations as given in Figure 2.1 for computer vision applications.

A particular and influential approach for image classification is explained in [36] as a

novel generic procedure. It has similar content as given pipeline with extra operations

such as clustering feature descriptors by nearest neighbors, in other words, visual

vocabulary construction by quantization, and binning them to histograms before Naïve

Bayes or support vector machine (SVM) based classification. 1776 in-house images in

7 classes are used during the experiments.
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2.2 Literature

Feature detector and descriptor algorithms imply structural or inferred information

extraction about the objects in the streamed images in order to accomplish computer

vision tasks. In this context, relevant semantic information retrieval from data is

essential for perceiving the content of an image. Image matching, fundamentally

finding the corresponding features in each compared images, is the principal operation

and commencement of semantic information retrieval from numerical visual data. The

outline of a conventional image matching algorithm training procedure can be summed

up as follows in 5 steps:

1) Preprocessing images after customizing a relevant dataset. Cropping, shifting,

resizing, color enhancing, histogram equalization, color quantization, color space

transformation and spatial transformations are the most common image preprocessing

techniques.

2) Extracting features from the loaded/streamed images to the system using the

appropriate method those will be explained hereinafter in this section.

3) Constructing a plausible dataset composed of extracted features. The feature

specifications need to be adjusted accordingly for comparison and matching purposes.

4) Training a pertinent classifier using available features and then validating the

performance of the classifier until reaching a satisfactory level.

5) Comparing the features of queried images based on Euclidean distance with the ones

that already exist in the dataset and decision-making about the robustness of matches,

thus the class of query image is determined as a result of the comparison.

In general, the localized features are called keypoints or interest points, which indicate

corners while edges are based on orientation and local appearances. Intuitively, corners

are the contour junctions and are accepted as stable features over viewpoint changes.

A corner detector in phases is shown in Figure 2.2. Hereby, Harris corner detection

algorithm [37] can be summarized in 6 steps as follows:

1) Compute x and y derivatives of image I;

Ix = Gx
σ ∗ I, Iy = Gy

σ ∗ I (2.1)
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Figure 2.2 : Harris detector searching phases to detect corners.

2) Compute products of derivatives at every pixel;

Ix2 = Ix.Ix, Iy2 = Iy.Iy, Ixy = Ix.Iy (2.2)

3) Compute sums of products of derivatives at each pixel;

Sx2 = Gσ ′ ∗ Ix2, Sy2 = Gσ ′ ∗ Iy2, Sxy = Gσ ′ ∗ Ixy (2.3)

4) Define at each pixel (x,y) the matrix;

H(x,y) =
(Sx2(x,y) Sxy(x,y)

Sxy(x,y) Sy2(x,y)

)
(2.4)

5) Compute the response of the detector at each pixel;

R = Det(h)− k(Trace(H))2 (2.5)

6) Threshold on value of R. Compute non-max suppression.

Qualitatively, edges appear as a result of regional differences such as changes in color,

intensity, and texture. Edges are described by edge normal that is the unit vector in

the direction of maximum intensity change, edge direction θ = atan2(
∂ I
∂y

,
∂ I
∂x

) that is

the unit vector along edge, edge location that is the pixel coordinates where edge is

located within the image, edge magnitude | ∇I |=

√
∂ I
∂x

2

+
∂ I
∂y

2

that is the local image

contrast along the normal. The occurrence of an edge within an image can be computed

from the gradient vector field ∇I = [
∂ I
∂x

,
∂ I
∂y

]T as given in Figure 2.3. A complete edge

detection algorithm [38] can be given as follows:

1) Compute x and y derivatives of image I;

Ix = Gx
σ ∗ I, Iy = Gy

σ ∗ I (2.6)

2) Compute magnitude of gradient at every pixel;

M(x,y) =| 5I |=
√

I2
x + I2

y (2.7)
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Figure 2.3 : Components of edge detection operation.

3) Eliminate those pixels that are not local maxima of the magnitude in the direction

of the gradient.

4) Hysteresis thresholding;

• Select the pixels such that M > Th (high threshold)

• Collect the pixels such that M > TL (low threshold) that are neighbors of already

collected edge points.

Nowadays, computations towards obtaining image features are assumed to be low-level

operations but finding specific locations of the edges in images is still critical and

challenging for computer vision algorithms. Since feature extraction plays a critical

role in conventional image matching, SIFT [34] is assumed to be the seminal study

in this territory that distil the meaningful image parts scale- and rotation-invariant

manner. It is claimed in the study that distinctiveness of SIFT descriptors allow to

match individual features during large database search. The scale-space representation

is given by a function L(x,y,σ) = G(x,y,σ) ∗ I(x,y) that is obtained as a result of

convolution(∗) of a variable-scale Gaussian G(x,y,σ) =
1

2πσ2 exp− x2+y2

σ2 with an

input image, I(x,y). SIFT applies a series of difference-of-Gaussian (DoG) filters in

multiple scales, G(x,y,sσ)−G(x,y,σ) ≈ (s− 1)σ2∇2G) where s shows the scales,

x and y are the spatial pixel coordinates of images. In addition, keypoint descriptor

in SIFT includes a 4x4 array containing gradient orientation histograms reciprocating

the sum of gradient magnitudes. Another study, called SURF [35], goes on further

direction that claims to provide as reliable and robust outputs as SIFT with faster

computation and comparison times. In the detector part of SURF algorithm, interest

point determinants are approximated using a Hessian matrix, which will give a
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local maximum resulting in integral images. Rather than applying box filters in the

decreasing direction through the image pyramid, box filters are applied directly on the

original image in SURF and then the images are enlarged in the following layers with

gradually bigger masks by applying filters. Non-maximum suppression in a 3×3×3

region is applied to localize the keypoints. Likewise, the SIFT and SURF descriptors

are 64-dimensional vectors obtained by summing Haar wavelet coefficients over 4×4

pixels around the keypoints. In the same manner, binary robust invariant scalable

keypoints (BRISK) [39] method also includes feature detector and descriptor parts

in itself and asserts to improve SURF by decreasing the computation time on a par

with matching quality. The detector of BRISK computes a score of features from

accelerated segment test (FAST) algorithm [40, 41] which is used to detect corners

by evaluating the intensity of candidate pixel placed in the middle, according to the

9 consecutive pixel values of 16 pixel circle whether it is brighter or darker. BRISK

descriptor, which is based on the calculations of circular sampling pattern obtained

rotating by α = arctan2(gx,gy) around interest point with N = 60 points, comprises

brightness comparison outputs as a sequence of a two-class string containing 512 bits.

Another method oriented FAST and rotated BRIEF (ORB) [42] commonly utilized in

favor of feature detection and description tasks, which is proposed to be an alternative

to SIFT and SURF. It uses FAST as the detector and its descriptor is strengthened

version of the BRIEF descriptor, which is rotation invariant. In addition, ORB goes on

further arguement that it is also a faster alternative to SIFT having similar matching

accuracy rates besides being robust to image noise. What is more that ORB has better

descriptor performance than SURF. In ORB, the FAST detector is improved by adding

cornerness values that are calculated by filtering Harris corner measure at each scale

pyramid of images and it is also supported by an orientation component. As providing

only a feature descriptor, binary robust independent elementary features (BRIEF) [43]

method uses binary strings to represent keypoints. These descriptors are constructed

upon pairwise intensity comparison results, which stands for image patches. It is also

argued that BRIEF descriptors are not only faster than SURF or its derivatives, but

also has capability to give better accuracy rates in recognition challenges if rotation

invariance is absent. In either case, methods including both feature detector and

descriptor parts(SIFT, SURF, BRISK, and ORB) are composed of similar operations

as given in 4 steps:
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1) Scale-Space Representation; constructing a scale-space, which is to upsize or

downsize images, makes algorithms to achieve different image features at different

octaves.

2) Keypoint Localization; LoG filter extrema give information about detected blobs

such as location, size, and radius. Comparing the DoG function extrema, which are

the subtraction results of images at different scales, give keypoint location candidates.

Afterwards, points with low contrast are rejected and keypoints locations are already

determined by refining the candidates using Taylor approximation.

3) Orientation Assignment; at every selected scale, a histogram is represented by the

relevant number of bins those contain the orientation of keypoints. Orientation angles

are the sum of weighted gradient magnitudes where the histogram correspondent

peaks.

4) Keypoint Descriptor Operation; keypoints are described by location, orienta-

tion(rotation) and radius(scale). In fact, a feature vector containing these properties

is called descriptor.

A substantial example of its kind, [44] uses the histogram of oriented gradients

(HOG) as features to detect and recognize objects. Evocative to SIFT descriptors,

gradient-based computations are performed and selected local extrema are transferred

to histogram to determine orientation. Using overlapped local contrast normalizations

their descriptor performance is increased, which is calculated on regions from dense

grids. The sliding window approach is used to detect HOG descriptors. To this end,

the commonly used methods are explained; however, one can also pursue to give

insights about feature detector and descriptor algorithms. For further information

please see [45–47].

2.3 Analysis of Feature Detector and Descriptor Methods

In computer vision applications, the differences between simulation and real-world

conditions cause considerable variations in performance outputs, which directly affect

the algorithms. Therefore, experiments, which are conducted by suggested techniques,

have great importance. To underline the potential usage areas of conventional feature

detector descriptor algorithms about semantic information retrieval in particular, a
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comprehensive literature analysis is given henceforth. Even though there are blurred

boundaries between studies on this subject, one can split literature into two parts; i)

performance comparisons of detector/descriptor pairs or combinations and ii) analysis

of detector/descriptor pairs or combinations performance outputs from a scenario

based application (i.e. SLAM).

To evaluate the feature detector/descriptor combination performance results on

photogrammetric applications, [48] combines 5 keypoint detectors with 2 region

detectors/descriptors. The test results are assessed according to the number of

correctly matched keypoints and their locations with stereo pairs for the combinations

and time performance is not evaluated. With the aim of determining the best

feature detector/descriptor pair, the researchers in [49] examined detector/descriptor

combinations consisting of 7 detectors and 2 descriptors. The image dataset in this

study contains 60 scenes from 119 position with 19 different light conditions and

the area under receiver operating characteristic (ROC) curve is used to measure the

performance results. In [50], which assumes SIFT descriptors as ground-truth for

benchmarking, only binary descriptors and their combinations are evaluated according

to the number of matched images and pixelwise distances between interest points

without giving further information about total performance of different combinations

and their working synergy. Beyond comparing different descriptors and keypoints for

various matching techniques, [46] introduces a new descriptor as a modified version

of SIFT descriptor, which is gradient location and orientation histogram (GLOH).

The comparison is performed with respect to the complexity of individual parameters

and usage areas with detection rate, which also includes a ROC-based evaluation

criterion using recall-precision calculation for image pairs. In addition to examining

the algorithm performances with regards to robustness and distinctiveness using a

unified framework, [51] compares local detectors and descriptors. The proposed

framework consists of 2 steps, which are calculating a detector evaluation criterion

and repeatability score for 6 detectors and descriptor test for assessing distinctiveness.

By the same approach, [52] modifies Harris, Hessian, and DoG detectors, thus gives

accuracy and time based performance evaluations for image search and fine-grained

classification tests. In like manner, [47] presents performance evaluations for affine

covariant region detectors of structured and textured images by changing viewpoint
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and scale with illumination and blurring variations. The outputs of the algorithm

are examined with respect to repeatability for computing relevant interest points and

accuracy rates for shape, scale and localization matching.

Beyond previously mentioned studies, [53] demonstrates the outcomes of feature

detector/descriptor combinations tested on depth SLAM. Accuracy and running time

per frame metrics are used to evaluate the results. Similarly, the experiments of [54]

are performed as two different motion scenarios en route investigating visual SLAM

performances of detector/descriptor pairs. Localization accuracy and motion speed of

the camera for real-time performance are measured to display the effects of these pairs.

In [55], depth image data is utilized to execute an autonomous quadrotor micro air

vehicle motion (MAV) in an indoor environment. 3D motion of the MAV is estimated

as relative motion sequence obtained in each time step by fusing the depth camera

frames with inertial measurement unit (IMU) data. As an intermediate operation

of visual odometry, feature extraction, where FAST is used, and matching are for

determining how motion changes. Correspondingly, [56] presents a system on an air

vehicle that collaborates with a ground vehicle and tracks its position by matching

descriptor-free features as an alternative to global positioning system (GPS) for indoor

or poor GPS coverage territories. 1D BRIEF descriptors are used to keep vertical

edge properties that are extracted by applying a gradient-like filter on images captured

from stereo cameras of air vehicle during tracking ground vehicle. Furthermore,

[57] demonstrates the performance of feature extractors within a long-term outdoor

navigation test using a mobile robot. The robustness of feature extractor combination

is investigated against extrinsic variations. As a result, a trainable descriptor called

generated BRIEF is proposed to tackle with seasonal weather changes and light

conditions, which is comprised of a modified BRIEF descriptor using evolutionary

methods. Comparatively, [58] evaluates the effects of feature detector/descriptor pair

selection on visual SLAM test performance using faultless ground-truth data with

respect to accuracy rates and average algorithm running times. The experiments of

this study include combination results that consist of 8 detector and 7 descriptor pairs.

Unlike previous studies, [59] gives real-time color feature tracking performance results

of a humanoid neck system, which is given in Figure 2.4 called UMAY [60]. The

neck system incorporates a set of tendon actuators in order to have the capability
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Figure 2.4 : UMAY head-neck system.

of mimicking human neck. In order to develop color tracking motion, a stereo

camera system, which constitutes 2 webcams, is mounted on the head. Therefore,

the algorithm is able to track color features and predefined motion profile smoothly

according to cubic spline interpolation [61] after applying a hysteresis threshold to

detect the specified color range. As long as the main purpose of mean shift algorithm

is to find local extrema within a dataset that is used to increase the desired tracking

performance in terms smoothness, and it can be expressed as follows;

• A kernel function K(xi+1−xi is defined to adjust weights of the surrounding pixels

of a selected pixel. In general, a Gaussian filter is applied to assign higher intensities

to the pixels that are near the chosen central pixel and lower intensities to those close

to the edges of the filter.

• The next weighted mean for pixels within the filter is calculated as given in Equation

2.8;

m(x) =
∑xi ∈ N(x)K(xi− x)xi

∑xi ∈ N(x)K(xi− x)
, (2.8)
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where N(x) denotes the dataset that contains the surrounding pixels around center

x for which K(x) 6= 0

• The mean shift vector is the distance, which the filter has to move by to reach the

pixel with maximum intensity. Mean shift vector can be obtained by M = m(x)− x

• These steps are repeated until the distance becomes zero or a predefined error rate

near zero M∼= 0, as the condition that the filter center converges to the local extrema.

In the context of broadening valuable information about feature detector and descriptor

method performance results obtained from convenient experiments, [45] is one of the

most inclusive studies that investigates the feature detector and descriptor combination

performances in terms of accuracy, speed, and robustness. The experiments within a

blimp localization scenario conducted during this study use 555×480-pixel images for

23 feature detector/descriptor performance evaluation results regarding accuracy and

speed. Indoor images (The dataset can be publicly available at: https://web.

itu.edu.tr/bayraktare/Visual_Indoor_Dataset.rar) are gathered

within an indoor office environment. The dataset consists of 3090 images which

we collected from 45 points at 3 height levels and after grabbing each image the

mechanism is rotated by 15◦ counter-clockwise as illustrated in the left side of

the Figure 2.5 a). Thus, the proposed algorithm is able to locate the blimp in a

volumetric cube as a result of image matching. 127 different images inside the office

without occlusions are specified as to be template image, which will be queried to the

algorithm. Some of these template images are given at the right side of the Figure 2.5

a), where the location information is also assigned to. Images belong to 2 points at

3 height levels are shown in Figure 2.5 b). Moreover, 19 feature detector/descriptor

combinations are examined to measure robustness by evaluating the number of correct

matches, mean angle difference between keypoints, and minimum distance metrics.

The localization experiments are performed for a limited trajectory composed of a

path with 560 images.

In brief, there are various approaches towards investigating the performance of

conventional feature detector and descriptor pairs. These studies are performed in the

direction of assessing various parameters affecting onto the feature detector/descriptor

combinations performance outputs when they are used within SLAM, localization
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(a) Schematic representation of image acquisition from office with
volumetric location cube (red dots show the position of the places where
images are grabbed) and examples from template images

(b) Example images from two points (red dots above) with 3 height levels

Figure 2.5 : Image-grabbing process and the hypothetical location cube, template
images and a collage of query images grabbed from two points given

in [45]

or tracking scenarios. To analyze the overall outcomes acquired experimentally;

accuracy, distance, energy consumption, robustness, computational cost, time.

Moreover, these results are tested onto maintain equivalent performances regarding

repeatability under different software based or physical differences that affect the

feature detector/descriptor combinations outcomes.

2.4 Results

Feature detector/descriptor based computer vision applications have a decreasing trend

in recent years. Nevertheless, there are many studies in literature in the direction of
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feature detector/descriptor combinations based applications such as object detection

and recognition, semantic mapping, visual SLAM, etc. On the other hand, it is

still unclear that which combination is the best choice for a specific task or what

fundamental parameters are affecting onto which performance outcomes. The main

idea behind feature based applications is to correctly match the features as fast as

possible to be appropriately implemented in real-time. In addition, robustness and

repeatability are essential properties that have to be taken into account for reliable and

reproducible algorithm results. Therefore, this section demonstrates the remarkable

performance results from aforementioned feature detector/descriptor based studies.

As a result of the tests, which are rotating images for 45◦, scaling with a factor of 2.5

and rotating 45◦ together, applying affine transformation by changing the viewpoint of

the camera for 60◦, and changing the light conditions, [46] states that SIFT descriptor

yield better results except for illumination changes. Steerable filters that are computed

on image patches normalized to affine photometric and geometric transformations are

the runner-up method, which is the best for handling different light conditions. [47]

observes the decline in performance of 6 detectors depending on the increase of

viewpoint change. Overlap error and repeatability are defined as theoretical metrics

for accuracy. Thus, the region distinctiveness metric in terms of matching performance

by looking the number of correctly matched keypoints are defined with respect to

disturbances such as viewpoint, light and scale changes, blurring and compression

artifacts. With the assumption of SIFT providing the ground-truth, it is argued

that maximally stable extremal regions (MSER) [62] obtains better results if images

include homogeneous regions with distinctive boundaries; however Hessian-Affine

and Harris-Affine detectors give more regions, which is noted as a desired property

that allow matching objects in the case of occlusion or clutter. In [49], the performance

evaluation is composed of the results acquired from the combinations of 4 feature

descriptors and 7 feature detectors. Dataset consists of images belong to 60 scenes

those are grabbed from 119 different viewpoints on arc shaped paths at 3 height levels.

Table 2.1 displays the area under the ROC curve (AUC) for 28 combinations. AUC

is a metric, which shows the detector/descriptor combination performance as a result

of matching an image pair. It is stated that DoG or MSER show the best performance

regarding the detector types albeit SIFT or DAISY [63–66] is the descriptor. These
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Table 2.1 : Mean area under ROC curve for 28 combinations. [49]

Detectors Cross-Corr. SIFT DAISY I DAISY II Avg.
Harris 0.615 0.767 0.729 0.741 0.713
Harris-Affine 0.629 0.818 0.791 0.798 0.759
Harris-Laplace 0.635 0.814 0.784 0.790 0.756
Hessian-Affine 0.636 0.795 0.773 0.779 0.746
Hessian-Laplace 0.630 0.757 0.740 0.742 0.717
MSER 0.648 0.846 0.826 0.832 0.788
DoG 0.646 0.849 0.837 0.843 0.794
Avg. 0.634 0.807 0.783 0.789 0.753

4 combinations result in very close AUC scores. It is also added that in the case of

small changes in scale, Harris corner detector can be preferable in terms of speed and

easiness of implementing.

[50] performs on a dataset composed of 8 categories 6 images per category and

6 distortions are applied to the images that are blurring, rotating, scale changing,

compression with JPEG, illumination changing. Five of the images in each category

are distorted strongly while one of them remains as original. All distorted images are

compared with the original ones provided that being in the same category. Having

the aim of performance measurement for different methods, SIFT is assumed to

be the baseline method. The outputs show that ORB detector with FREAK [67]

descriptor is better in terms of accuracy. On the other hand, FAST detector with

BRIEF descriptor is the fastest combination given in this study. In [51], performance

evaluations are investigated for 6 detectors and 6 descriptors. Detector performances

are measured according to repeatability as a identical to localization accuracy and

interest point estimation under disturbances. Meanwhile, descriptor performances are

evaluated by comparing ROC detection rate, which is the correct matches number

over corresponding regions, with false positive rate. A match count is correct if

the distance between descriptors is smaller than a threshold value and it is also

verified with a ground-truth homography. There are 1000 images in the dataset,

which gradual viewpoint and scale changes, blurring, JPEG compression and light

variation are applied to. Conducted experiment results reveal that MSER achieves

best repeatability and accuracy scores when the regions are extracted by Harris-Affine
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and Hessian-Affine detectors as long as SIFT is observed as the superior method as a

consequence of descriptor evaluations.

Feature detector/descriptor performances in terms of accuracy and time on visual

SLAM applications are crucial due to the necessity of detected interest points locations

within the environment by SLAM algorithm and assigning meaningful informations to

detected keypoints. With this intention, [53] uses a dataset that is composed of colored

depth images to analyse the visual SLAM performances of SIFT, SURF, BRIEF, ORB,

BRISK and FREAK by measuring the difference between the ground-truth and the

estimated trajectory with absolute trajectory error (ATE) metric. In consideration of

accuracy and time together, STAR [68]/FREAK combination obtains the best scores

with 3.79 cm root mean square of ATE and 0.1657 s to process each frame in

average. However, the fastest combination is ORB/FREAK with 0.0866 s for each

frame on average and SIFT with SURF based combinations give the most accurate

results. For the purpose of comparing descriptor performances on visual SLAM

applications, [54] uses two datasets to evaluate SIFT, SURF, BRIEF, ORB, BRISK

and FREAK combinations. It is stated that SIFT gives the best results even in

real-time for the both datasets. It is claimed that the descriptor performance does not

affect on the visual SLAM accuracy, but it is important for real-time performance.

The study suggests that SIFT extract features than SURF and a combination of

SIFT with BRIEF can yield in more desirable results. In view of assessing

feature detector/desciptor pairs performance on visual SLAM [58] examines results

with regard to root-mean-squared-error (RMSE) for detector-descriptor combinations,

maximum ATE for each reconstructed trajectory, and the average processing time.

FAST detector and SIFT descriptor combination is claimed to be the best method

w.r.t. RMSE score as well as FAST gives the fastest results with either BRIEF or

ORB descriptors. Although it is argued that template matching is slower, FAST/SIFT

combination is 4 times slower than it. In addition, FAST detector and BRIEF descriptor

pair is the fastest and second in accuracy score.

Beyond preceding studies, in [45], we compare the feature detector/descriptor

combination performances w.r.t. time for total computation, accuracy, and number

of correct matches per second, which are given in Table 2.2 and mean keypoint angle

differences, number of correct matches and distance metrics of matches, which are
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Table 2.2 : Metrics for performance analysis for feature detector and descriptor pairs.

Detector Descriptor Time Acc[%] Ground-Truth Correct Match/[s]
BRIEF 21303.30 62.83 127×3×5 1457.01

ORB

BRISK 23461.68 74.28 127×3×5 956.16
SIFT 97603.70 72.28 127×3×5 318.01
SURF 79391.06 97.90 127×3×5 390.97
ORB 21330.02 63.62 127×3×5 1455.19
BRIEF 32277.70 62.36 127×3×5 1568.79

SURF

BRISK 35133.18 63.52 127×3×5 1275.43
SIFT 196487.67 68.82 127×3×5 280.43
SURF 79135.06 89.54 127×3×5 696.30
ORB 35074.99 63.78 127×3×5 1414.50
BRIEF 30938.27 62.73 127×3×5 879.92

SIFT

BRISK 32422.06 64.67 127×3×5 920.44
SIFT 45919.05 62.31 127×3×5 698.46
SURF 35319.08 98.41 127×3×5 908.02
BRIEF 23355.70 62.52 127×3×5 2736.88

FAST

BRISK 33752.85 63.20 127×3×5 454.34
SIFT 56152.36 72.44 127×3×5 1373.78
SURF 37357.53 88.30 127×3×5 2065.00
ORB 22734.26 62.62 127×3×5 275.13
BRIEF 20517.53 64.62 127×3×5 320.69

BRISK

SIFT 34284.95 86.61 127×3×5 202.39
SURF 26043.99 80.32 127×3×5 266.44
ORB 23335.77 69.76 127×3×5 289.84

shown in Figure 2.6. The ’Time’ column shows the total algorithm running time

from start to end for the relevant feature detector/descriptor pair executed the same

path to compare 560 query images with 127 template images for a total of 71120

images. As one can infer that all of the combinations are able to correctly match

template images, which are selected from the dataset, it is trivial to calculate accuracy

by Accuracy[%] = ∑(TruePositives+TrueNegatives)
∑TotalCases × 100. Hence, we formulated a more

reasonable formula to calculate a more reliable accuracy rate that takes the images

into account from 3 height levels and 5 of the side images of the current position that

are equally separated orientations from [−30◦,30◦]. Hence, we have the ground-truth

images by multiplying 127 template images with 3 heights for 5 side positions. We

specified a histogram threshold value as 0.9 to eliminate the template images from the

comparison operation from the accuracy calculations (i.e. if histogram similarity is

over this threshold as a result of the comparison, then the comparison is assumed to

be performed for the same images). It is clear from Table 2.2 that ORB is the fastest
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method for both detector and descriptor. At the same time, the minimum number of

correct matches per second is obtained by BRISK/SIFT pair. In contrast, the maximum

number of correct matches per second belongs FAST/BRIEF. Moreover, SURF/SIFT

pair gets the longest running time.

In Figure 2.6, the performance results for different orientations by matching the query

and template images within a rotational pose range of [−30◦,30◦] for 5 cases are

shown. These performance results are evaluated w.r.t. the number of correct matches,

minimum distance metrics, and the average of angle difference values between

keypoints. The lower the average of angle difference values between keypoints and

minimum distance metrics are, the higher the number of correct matches for the

best result. In summary, for all sub-figures displayed, the lines emphasizing the

distances from the central point, which represents the best method, indicate the relative

performance of each method. Thus, as the distance grows greater, the performance

becomes worse. FAST/SURF pair obtains the best results for all rotations for the

negative rotation cases. If the minimum distance and the number of correct matches

are aimed to be optimized for a particular application, then for 15◦ and 30◦ one

can use 4 of the following combinations appropriately: SURF/SURF, SURF/BRIEF,

FAST/ORB, and SURF/BRISK. It is possible to make such an informed decision for

any kind of priorities from the given performance evaluation parameters. For the

same location case shown in the last row, SURF/SURF and SURF/SIFT pairs give the

maximum number of correct matches, and SIFT/BRIEF, ORB/BRISK, SIFT/SURF,

SIFT/BRISK, and SIFT/SIFT are very close to each other to give the minimum number

of correct matches.

2.5 Discussion and Conclusion

An extensive analysis of visual feature detectors and descriptors is given for

existing detectors and descriptors separately with their performance outputs. It is

still a prominent necessity to develop successful feature detectors and descriptors

one-by-one to make visual systems capable of extracting semantic information solely

from visual data. Regardless from the progress on hardware, robotic applications,

especially the ones that should run onboard and/or embedded hardware as well as

including autonomous systems such as localization of mobile and aerial vehicles,
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SLAM, manipulation by robotic arms, etc. require improvement of existing

feature detector/descriptor performance metrics in the context of computation time,

robustness, reliability, repeatability, energy efficiency, accuracy, and temporal costs.

The trade-offs between conditional parameters and performance results are significant,

for instance, one has to compromise from robustness, accuracy, and reliability if the

speed and computational costs are priorities. Our study constructs a generic structure

that allows choosing the best option from the given combination judiciously for

the specific priorities, besides providing a conceptual framework to extract semantic

information. The application studies discussed in this study excluding the ones of

proposing new feature detector or descriptor methods come up with suggestions to

provide the best experimental platform or metrics to measure the performance of

feature detector/descriptor pairs; however, there is not a consensus on a combination

that is superior to others by surpassing in all or even many of the performance

measurements.

As long as processing visual data and extracting semantic information is imperative

for computer vision and robotic applications in terms of object detection and

recognition along with performing the given tasks by interpreting the provided data,

the conventional feature detector and descriptor methods remain giving unsatisfactory

results. Therefore, deep neural network architectures, which will be detailed in the

next chapter, exceed the performance of conventional feature detector and descriptor

methods w.r.t. the analyzed performance metrics. They are proposed to overcome the

deficiencies of these methods.
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3. DEEP NEURAL NETWORKS

Technological progress paved the path of intelligent systems to penetrate the most

of daily routines and this enforced researchers to evaluate the opportunities including

visual systems and robots for plunging into everyday life more efficiently and naturally.

In this chapter, beyond introducing a novel image dataset, deep learning architectures

towards computer vision applications are explained in detail. In addition, a new

pooling layer is proposed with the aim of improving deep neural network outputs.

Since giving detailed explanations and processes of neural network components and

operations are not the primary scope of this thesis, we will just provide an ample

amount of information consistent with the context of the thesis. We will conclude

this chapter by the performance results for the proposed pooling layer, fine-tuning

procedures for existing CNN models suitable for our new dataset with the goal of

detecting and recognizing objects inside the images.

3.1 Introduction

The contemporary approach focuses on machine learning methods to build intelligent

systems. Together with the smart products as their results, these methods are

generating considerable interest having great potential to cope with unsolvable

problems by conventional techniques. Generally agreed definition upon machine

learning concept is made by [69] as follows; “A computer program is said to learn

from experience E with respect to some class of tasks T and performance measure

P, if its performance at tasks in T , as measured by P, improves with experience

E”. Namely, as [70] explains the components of machine learning algorithms, which

are the tasks that are the ways to process examples, the performance measurements

that are the quantitative metrics for evaluating the abilities of the machine learning

algorithm, and the experience that is the data in a manner of supervised or unsupervised

fashion according to the learning style. Reinforcement learning is a kind of mixture

method of supervised and unsupervised learning, which targets to infer optimal actions
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Figure 3.1 : The regular machine learning system workflow.

according to the reward scores received as a result of previous efforts. In like manner,

evolutionary learning that includes methods those inspire from biological evolution

can be shown as another type of machine learning. Machine learning workflow can be

displayed as given in Figure 3.1. Regularly, collecting useful data for the application is

the initial step for a machine learning system. Then, the received data is prepared for

the determined machine learning algorithm by preprocessing with cleaning, scaling,

annotating, etc. Afterwards, the data is fed to the machine learning model, and the

outputs are evaluated with the validation data, which is already split from the training

data. In the final step when desired performance rates are achieved, the outputs are

transformed into the plausible formats for data visualization and model deployment.

In spite of there are many machine learning tasks, classification, regression, machine

translation, anomaly detection, clustering, synthesis and sampling, denoising, and

probability distribution estimation can be given as the most common tasks. The

performance measure is a kind of quantitative metric that is specific to the task being

performed by the algorithm. Accuracy is one of the most used metric evaluating the

classification performance, and the regression performance is measured with the error

rate, whilst the average log-probability the algorithm assigns to samples for measuring

the continuous-valued score for each sample evaluating the task performance. One can

concisely explain the supervised learning as experiencing a dataset of examples each

of which are labeled or associated with a target while labels or target do not exist in

unsupervised learning. In supervised learning, the learning process is performed over

training the algorithm for learning to predict labels or target values y from random

exemplars x, mostly the estimation is done by p(y|x). On the contrary, unsupervised

learning aims to learn a probability distribution p(y) over given random exemplar x.
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Figure 3.2 : Mathematical representation of a perceptron analogous to the biological
neuron cell.

In this thesis, we focus on object detection in terms of a regression problem estimating

the bounding-box pixel coordinates of the objects and object recognition regarding

a classification problem estimating the labels of objects as unsupervised learning.

In accordance with these aims deep neural networks (DNNs) are used, which are

privatized artificial neural networks (ANNs) with more hidden layers and some specific

architectures.

Theoretically, ANNs are assumed to be global function approximators, whereas

perceptron is the building-block of these networks. The analogy between a biological

neuron model and its mathematical interpretation perceptron are given in Figure 3.2. It

is apparent that perceptron is a model that is developed by inspiration from a biological

model. At the first phase of the perceptron, the input signals x comes as a vector

containing inputs from the dataset x = [x0 x1 x2 ... xn] and these inputs are

multiplied by appropriate weight values ω = [ω0 ω1 ω2 ... ωn] , the bias b is

added up to the weighed inputs at the second phase, and at the third phase activation

the function is applied to the bias added weighed inputs, which yield the output of the

perceptron as a function of y = f (x,ω) = f (∑i(ωixi +b). Using perceptrons, one can

design different types of function approximators, and these models are typically called

multi-layer perceptrons (MLPs), which are the same as ANNs.

It is universal philosophy that the objective of training ANNs is to learn the optimum

weights or parameters. The learning process can be divided into two parts; i)

computing the outputs using the given inputs and current weights, and ii) updating
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the weights according to the error. The first step is called forward-propagation and

the second step is called backpropagation. We explained the operation of output

calculation of a perceptron. A relevant dataset, a cost function that is also known as loss

or objective function, an optimization strategy and a model constitutes the fundamental

characteristics of deep learning methods. The optimization procedure, namely

backpropagation, of deep neural networks is performed by sending the difference

between the outputs and the targets backward through the network. Therefore,

information flow is preserved in both directions. As it is alleged in [70] that training

the ANNs is predominantly performed based on descending the cost function value in

either way using the gradient.

One of the major issues machine learning methods encounter with is overfitting. To

overcome this issue, the cost functions are penalized by adding a regularization term.

In many cases, L1−norm, which is also known as absolute errors, L2−norm, which

is also known as least squares error, and dropout [71] are used as regularization terms.

L1-norm simply minimizes the absolute differences between the outputs and targets

L1 = ∑
n
i=1 | yi− f (xi) | and L2− norm basically minimizes the sum of the square of

the differences the outputs and targets L2 = ∑
n
i=1(yi− f (xi))

2. On the other hand,

dropout is a technique that trains sub-models for each training sample after computing

the probabilistic gradient of sub-model inputs and outputs, then simply the full model is

performed by dividing the weights by 2. The form of the cost function varies according

to the network model and relies upon the probability distribution. Recently, ANNs

principally trained using maximum likelihood, which are seeking to classify inputs.

For these type of training cross-entropy based cost function is used as follows;

J(ω) =
1
2

Ex,y∼p̂ || (y− f (x;ω) ||2 +Constant (3.1)

where E denotes the expectation w.r.t. the empirical probability distribution p̂, ω

shows the parameters and x and y are the inputs and labels, respectively. Equivalently

the following cost function can be written;

J(ω) =
−1
m

[
m

∑
i=1

y(i)loghω(x)(i)+(1− y(i))log(1−hω(x)(i))] (3.2)

where m is the number of samples and hω stands for the predicted outputs.

Additionally, ANNs that are trying to solve regression problems use the following
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form as cost function;

J(ω) =
1

2m
[

m

∑
i=1

(hω(x)(i)− y(i))2 +λ

m

∑
j=1

ω
2
j ] (3.3)

where λ is the regularization coefficient.

Suppose that a cost function for a neural network with a regularization term is given

as in Equation 3.4, then one can follow the steps given in Algorithm 1 to train the

ANN model by backpropagating the error until a stopping criterion is satisfied such

as reaching the predetermined number of back and forth passes through neurons for

updating weights or achieving a desired ε value as a result of gradient checking.

J(ω)=− 1
m

m

∑
i=1

K

∑
k=1

(y(i)k log
(
hω(xi)

)
k+(1−y(i)k ) log

(
1−hω(xi)

)
)+

λ

2m

L

∑
l=1

sl

∑
i=1

sl+1

∑
j=1

(ω
(l)
ji )

2

(3.4)

Algorithm 1 How backpropagation works to minimize the cost function.
Require: Training dataset with m samples; Dataset: {(x1,y1),(x2,y2), ...,(xm,ym)}

Ensure: ε <
δ

δω
(l)
ji

J(ω)

i) Initialization with randomly selected weights that are close to zero
ii) Implement forward propagation to get hω(xi) for any (xi)
iii) Implement code to compute J(ω)

iv) Implement backpropagation to compute partial derivatives
δ

δω
(
jil)

J(ω)

for i = 1 : m do
a) Perform forward and backpropagation using sample x(i),y(i) (get activation
outputs, a(l), and delta terms, δ (l) for l = 2,3, ...,L)

b) Compute
δ

δω
(l)
ji

J(ω)

end for
v) Use gradient checking to compare

δ

δω
(l)
ji

J(ω) computed using backpropagation

vs. using numerical estimate of gradient of J(ω). Then disable gradient checking.
vi) Try to minimize J(ω) w.r.t. ω

It is previously said that backpropagation is implemented via mostly a gradient-based

optimization method. There also exists evolutionary concepts alternative to

backpropagation; however, these methods are not in the scope of this thesis. The

fundamental gradient descent pseudo-code is given as follows in Algorithm 2:
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Algorithm 2 Principal steps of gradient-descent method.
Require: Initial weights vector; ω = [ω0, ω1, ω2, ..., ωm]
Ensure: Determine a small enough learning rate; η

Repeat until reaching a satisfactory ε rate;

ω ← ω−η
δ

δω
J(ω)

Using provided knowledge about even deep neural networks can be trained rather than

shallow networks. The necessary information about CNNs with the purpose of object

detection and recognition tasks will be expressed in the next sections of this chapter.

3.2 Literature

For the reason, a complete section commits an extensive material about image datasets

in this thesis; this section considers the literature concerning the prominent deep

convolutional neural networks with a concentration on object recognition and object

detection. With the advancement of datasets and the progress of computational skills of

hardware, GPUs, in particular, eased to process numerous images within performance

objectives. Concisely, it is theoretical path for deep learning research to concentrate on

a condensed problem, gather unprocessed data and clean it, then ameliorate existing

methods by fine-tuning or deriving depending on data to attain reasonable results.

Early studies about deep learning techniques and their applications are reviewed in [72]

which presents a broader insight predominantly on the theme of CNNs considering

object detection and recognition. Besides, it gives some details about recurrent neural

networks (RNNs) and its usage areas are mainly in text processing. It suggests that

CNNs are more proper for the image, video, speech, audio processing applications,

and RNNs are for text and speech processing. The basic convolution operation in one

dimension between two functions is shown in Equation 3.5. Although it is useful for

signal processing and time series prediction, 2D and 3D convolutional operators are

required to process higher dimensional data, for example, images and videos.

[ f ∗g](t) =
∫

∞

−∞

f (τ)g(t− τ)dτ =
∫

∞

−∞

g(τ) f (t− τ)dτ (3.5)

where ∗ stands for the convolution operation.

Despite the fact that the CNN architecture called LeNet [73] can be claimed to be the

very first and successful CNN model applied to optical character recognition (OCR)
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Figure 3.3 : The AlexNet CNN architecture.

tasks widely in 1998, researches on CNNs did not follow the path after it because

of hardware, software, and data issues. LeNet is trained on handwriting images

dataset [74], which is composed of 70000 handwritten digits, 60000 for training

and 10000 for validation with the dimension of 28× 28 in pixels. The CNN model

achieves an accuracy rate of 99.2% on test session with its 5 hidden layers, which

are 2 convolutional layers each accompanied by a pooling layer and a fully connected

(FC) layer before classification layer. Deep Learning methods had been around for

a long-term, but they turned into the mainstream in computer vision with its echoing

advance at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [75]

of 2012. In that competition, an algorithm based on CNNs [76] called AlexNet

shook the computer vision field with a stunning accuracy that is better than the

method that picked up the second rank as being the solely CNN based registration.

As can be assumed to a modified version of the LeNet model with max-pooling

and rectified linear unit (ReLU) activation function besides dropout regularization.

The AlexNet architecture has 7 hidden layers, 5 of them are convolutional layers,

where the first, second, and fifth are followed by max-pooling, and the rest are fully

connected (FC) layers before softmax classification layer, which keep 60 million

parameters between 650000 neurons. It is clear from Figure 3.3 showing the AlexNet

architecture that the CNN model is sliced into two symmetric parts, the reason beneath

is the usage of two GPUs in parallel to train the network with the goal of reducing

training time. The training images, which are 1.2 million images in 1000 classes,

are rescaled for AlexNet to the dimension of 224× 224× 3 and the nonlinearity is

maintained by ReLU. The dropout method is against reducing overfitting issues in
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Figure 3.4 : The VGGNet model.

CNNs by randomly eliminating the units and their weights during training is also

introduced in AlexNet. So long as [77] proposed a fascinating process called ZFNet

in quest of visualizing what hidden layers see in a CNN, the prevailing techniques

for understanding the behaviors of layer activations were poor. ZFNet is claimed

to be an improved form of AlexNet and shows the performance results on different

datasets. ZFNet architecture encompasses a deconvolutional layer that inversely maps

the activities back to the input pixel space, thus feature activations can be traced with

reciprocal inputs that help to have a better intuition to observe how features acts

during training. A growing avalanche-like interest is still sustained in the vicinity

of enhancing performance outputs of CNNs at the ILSVRC events. From this point

of view, two object recognition winners of 2014 along with the numerous applicants

supports this idea. One those claimers presents their study in [78] with the model

called VGGNet. To reveal the power of depth for deep neural networks, 6 sequential

models with an escalating quantity of hidden layers from 11 to 19 are compared, which

use the same structure consisting of 3× 3 convolutional filters followed by pooling

operations of stacked layers as shown in Figure 3.4 for 16-layered model. conv3-64

represents 64, 3× 3 convolutional filters slide over the current layer and extract the

new features. FC-4096 stands for the fully-connected layer containing 4096 units.

Resembling to AlexNet, this model also utilizes 224×224×3-pixel images as inputs.

This study is the first to the example of employing 3× 3 convolutional filters, and

thus the network achieved the capability to copy the actions of larger receptive fields

effect. 16-layered VGGNet contains ∼ 138 million connections between layers as
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Figure 3.5 : The Inception module of GoogleNet with dimensionality reduction.

weights. In addition, the results of this study claim the impression that ensembles

through networks involving more and more hidden layers yielding deeper networks

improve the performance. The other one of the CNN architectures asserted as the

winner of ILSVRC 2014 is explained in [79] and it is called GoogleNet with its peculiar

building block structure called Inception. The Inception module with dimensionality

reduction is shown in Figure 3.5 with its illustration for stronger mental grasp. If

1×1 convolutions in this illustration, which exist before 3×3 and 5×5 convolutions,

are disposed of, then unsophisticated Inception module version is attained. This layer

is also called bottleneck layer that reduces the number of features. GoogleNet has

only 5 million parameters within its 22-layered architecture had by stacking Inception

modules and it does not accomodate any FC layer in contrast to AlexNet-based

architectures. This CNN model is trained by 299× 299× 3 images. The objective

of the Inception architecture is to achieve sparse structures from dense pieces of CNN

features. This is accomplished by concatenating the independent convolutional and/or

pooling schemes. The specific design of the Inception module enables GoogleNet

to capture sparse patterns from feature maps through applying parallel filters with

different receptive field sizes. However, this also raises the computational cost;

bottleneck layer balances the cost by reducing spatial dimensions. The confusion about

ILSVRC2014 winner occurred due to the crop sampling type for enriching the training

images diversification. If models are trained by central-crop sampling, then the error

scores of VGGNet and Inception are 8.70% and 10.07% respectively. On the contrary,

training models with 10-crop sampling yields 9.33% and 9.15% errors respectively.

Furthermore, [80] introduces the improved versions of Inception. Inception-v2 is
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modified by factorizing the classic larger convolutions into three 3× 3 convolutions

yielding expansion at each layer to increase feature diversity before next layer while

diminishing the spatial resolution and Inception-v3 adds regularization to training with

batch-normalization (i.e., data-whitening) Inception-v2, which reduces the importance

of auxiliary classifiers. In ILSVRC2014, a subtle and spectacular CNN architecture

[81] called ResNet has beaten human-level performance on object recognition. With

the goal of discovering an efficient way of training deeper neural networks with smaller

error rates than the shallower ones, the ResNet block proposes to copy layers from

the learned shallower model and to map the identity of these layers by skipping the

intermediate connections via short-cuts likewise gated recurrent units. On account of

this, the vanishing gradient and accuracy saturation (degradation) problems stemming

from stacking layers on a plain neural network found answers, and it is alleged that

using bottleneck convolutions same as Inception module is sufficient to access deeper

efficient neural network architectures. The batch normalization operations are applied

after each convolution and before activation. The experiments on ImageNet dataset

are conducted with 5 models having various depth sizes starting from 18 layers to 152

layers, and the training image size is retained as the same with Inception. Excluding

the classification layer ResNet does not have any FC layer and there are 60.2 million

total parameters included in the 152-layered model.

There are also some types of distinct CNN architectures, which are derived from

the given structures so far. For instance, Xception [82] is a modified Inception-v3

architecture with 48-layered CNN consisting of convolutional and pooling layers with

optional FC-layers. In conjunction with having 6 more layers than Inception-v3, it also

converts its convolutions to the depth-wise separable convolutions by having the same

number of parameters. In the study, it is shown that Xception takes over Inception-v3

slightly in ImageNet dataset, but it is contended that in datasets with larger amount of

images the difference becomes significant. The given CNN architectures so far are the

current state-of-the-art and distinctive structures. In this thesis, we give performance

results of VGGNet, Inception-v3, ResNet, and Xception models by fine-tuning them

by adjusting some layers according to our dataset consistently. Another modified

architecture called Inception-v4or Inception-ResNet [83] is obtained by combining

the Inception module with ResNet simply by adding residual connections to the
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Figure 3.6 : The ResNet and its successor ResNext modules.

Inception-v3 modules, which yields better recognition performance with its more

complex structure. In addition, an advanced version of ResNet module is introduced

in [84] named as ResNeXt. A cardinality hyper-parameter is presented in the study as a

set of individual, independent paths, which expands the block architecture that pursue

the split-transform-merge procedure as Inception versions do. The study claims that

the increase in cardinality gives better results rather than deeper or wider architectures.

In Figure 3.6, ResNeXt block is given together with its primitive version ResNet. In

spite of the fact that, there are definitions of the object detection as it is a composition

of object recognition and localization, we just consider the object localization part of

the object detection term that is to predict the location of the bounding-boxes in pixels

surrounding the object within images, because we consider estimating the labels of

images (object classification or categorization) and predicting the pixel coordinates

spatially of the objects inside images as two separate problems. Similarly, [85]

assigns discovering the spatial coordinates of the object within an imaginary rectangle

surrounding called the bounding-box to the deep neural network based regression

problem. The last layer of AlexNet is replaced with a regression layer and the network

is trained to anticipate a ground-truth mask m ∈ [0,1]N for an image x as formulated in

Equation (3.6):

minimize
ω

∑
(x,m)∈D

‖ (Diag(m)+λ I)
1
2 (DNN(x;ω)−m) ‖2

2 (3.6)
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Figure 3.7 : Fast R-CNN operation scheme.

where DNN(x;ω) denotes the deep neural network output while x is given as

the input image, and D represents the training set of images including the object

bounding-boxes. From here, multiple masks are generated, then those are evaluated by

non-maximum suppression to find out which one of these masks fit correspondingly

to the ground-truth bounding-box. In [86], feature extraction is accomplished via an

AlexNet-based CNN model called R-CNN, leading higher accuracy rates. To handle

a small amount of annotated data issue, they use supervised pre-training on auxiliary

datasets. The declared method has 3 steps; i) generating region proposals, ii) feature

extraction for each region via CNN, iii) classification. The region proposals, 2000 of

which are generated for each image by default, indicate a bounding box candidate with

a possible object. After warping these region proposals into a fixed-length vector, then

the AlexNet-based model with pre-trained parameters on ImageNet extracts features to

be classified by support vector machines (SVM) per available class. As a consequence

of this pipeline of initially training the CNN and then multiple SVMs for a huge

amount of required disk space due to the 2000 region proposals per image makes

R-CNN impractical. Our consideration about the separation of object detection by

means of localization and object recognition subjects can be seen from Figure 3.7,

which the workflow explained in [87] as being the improved version of R-CNN that

is called Fast R-CNN. Same as the primitive version, this approach uses selective

search [88] to produce tentative object locations, but instead of SVMs it only uses

a single-stage CNNs whereas the most of the architecture is transferred, but mostly

VGGNet is used this time. One single feature operation makes this model 9× faster

at training and 213× faster at the test. The region of interest (ROI) pooling layer

downsizes the proposed regions to a fixed size of 7×7, and then the network reshapes

it to F ∗7∗7 vectors where F denotes the number of convolution filters. The network
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outputs top-left x− and y−coordinates, log height and width of the bounding box

together with the class of the region. Faster R-CNN given in [89] goes one step further

from [87] by substituting the selective search with a region proposal network (RPN).

One can split Faster R-CNN into 3 consecutive steps as; i) feature extraction network

usually comprised of convolutional layers that are initialized with pre-trained network

parameters, ii) region proposal network (RPN) what uses the features and generated

region proposal in the previous step, and iii) classification network usually composed

of FC-layers that classify object proposals of each region and readjust the bounding

box coordinates. The inserted RPN measures the "objectness" score by running a

sliding window spatially with 9 anchors having 3 different aspect ratios and scales

for each image over the feature maps extracted at the first step. Then, the values

higher than a threshold are assumed to be probable bounding-boxes and these are

evaluated by the classification network in the third step. If anchor box overlapping

rates with ground-truth bounding-boxes have higher intersection over union (IoU)

rate (simply IoU =
Areao f Overlap
Areao fUnion

) than 0.7, then that anchor box is accepted

to contain an object; otherwise, the with the highest IoU is used. Non-maximum

suppression removes the unnecessary region proposals so that the final bounding-box

is determined. In the complementary aspect, the study in [90] named as YOLO, alleges

to use an AlexNet-based CNN model for both classification, and localization of object

bounding-boxes. As can be seen from Figure 3.8 that input images with a resolution

of 448×448 pixels are divided into 7×7 grids where each grid represents a prior box,

and there are 2 bounding-boxes tested per image by default. The prior boxes only hold

the information of the center location and regression head (linear layer) predicts the

box size. The YOLO architecture output size is S×S× (B×5+C), where s shows the

grip size, B denotes the number of tested bounding boxes, 5 is the additionally tested

bounding-boxes for regression, and C represents the number of classes (by default

number of image classes is 20). From here, one can calculate the number of different

bounding-boxes evaluated for all grids as 7×7×2 = 98. Together with the confidence

ratio and non-maximum suppression operation, the irrelevant boxes are eliminated,

and the softmax layers predict the classes. In addition to an improved version called

YOLOv2 based on this architecture, which mostly attempts to overcome the issues of

detecting small objects and unusual aspect ratios. Furthermore, Single shot multibox

detector (SSD) [91] declares a novel bounding-box detector, which does not require an
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Figure 3.8 : YOLO object detection procedure.

RPN and ROI-pooling makes it very fast almost 60fps. VGGNet is modified by adding

6 extra convolutional layers to be used as the base architecture. The input images are

rescaled to a dimension of 300× 300. The output of the base layer and extra feature

layers are concatenated at the FC-layer at the end of the network. This allows detecting

the objects at different scales. The loss function is composed of a confidence loss for

classification and location loss for regression that is given in Equation (3.7) as follows:

L(x,c, l,g) =
1
N
(Lcon f (x,c)+αLloc(x, l,g)) (3.7)

where x is the matching score, N denotes the number of matched default boxes, c

is the class confidence scores, α shows the weight term, g represents the ground-truth

parameters, and l is the predicted box. The architecture given in this study is illustrated

in Figure 3.9. In short, SSD process can be summarized in 4 steps as; i) feed the

image forward through the convolutional layers producing several feature maps at

different scale in an ascending order, ii) by employing a 3× 3 convolutional kernel a

number of default bounding-boxes (same as the Faster R-CNN anchors) are evaluated

in each feature map per location, iii) the bounding-boc offset values together with the
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Figure 3.9 : SSD object detection procedure.

object classes are predicted for each boxes, and iv) compare the predicted boxes with

ground-truth using IoU while training and the highest score is specified as including

object piece inside. To remove overlapping and redundant boxes non-maximum

suppression is applied. In advance of detecting objects, feature pyramid networks

(FPNs) [92] highlight the employment of CNNs like feature pyramids including

low-level feature maps that collaborate to detect small objects. The network uses

the top-down pathway; thus semantically powerful feature maps are accumulated in

two branches, and this ensures the scale invariance. The first branch is composed

of convolutional and pooling layers as usual. And the second branch, which takes

the outputs of the first branch as inputs, applies nearest-neighbor upsampling by its

256− channels to increase the resolution again to the original image. The connection

between two branches is established via 1× 1 convolutions before an addition like

a residual connection. The study declared in [93] called RetinaNet is a single stage

method including two task-dependent sub-networks towards object detection and

classification. The RetinaNet architecture consists of a feedforward ResNet model

followed by an FPN. At the end of this model, the sub-networks are attached; one

for anchor box classification and the other one for regressing from anchor boxes to

ground-truth as demonstrated in Figure 3.10. The imbalance between background and

foreground classes is argued to be the reason for the poor performance of single stage

methods for object detection. In consequence, they contend a Focal Loss term, which
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Figure 3.10 : The RetinaNet architecture flow-chart.

includes a factor (1− pt)
γ to the regular cross entropy loss (CE(pt) = −log(pt)) as

given in Equation (3.8):

FL(pt) =−αt(1− pt)
γ log(pt) (3.8)

where p ∈ [0,1] is the estimated probability of the model, α ∈ [0,1] is a weighting

factor, (1− pt)
γ demonstrates the proposed modulating factor with tunable focusing

parameter γ > 0. The benefits of this focal loss are further displayed. In this thesis, we

chose RetinaNet to detect objects and the details about implementation are provided

under the "Results" section of this chapter.

There also exist remarkable models and CNN structures in literature, so that for

further studies we refer the reader to [94], [95] (this study can be assumed to be the

ancestor of Inception modules), [96] (a rare kind of model working to serve for 3 tasks;

detection, localization, and recognition of objects), [97], [98], [99], [100], [101], [102],

[103](predicts masks for detected objects, mostly used for segmentation), and [104].

However, we confined this section with the explained studies as long as this thesis

includes the object detection and recognition subjects. As per what we have seen

so far, those unique building blocks and architectures enlighten the path during the

journey of the deep learning researchers towards achieving robust, reliable, safe, and

even higher performance than human-level from machines and robotic systems.

3.3 Datasets

Comparable to humans, vision datasets imply the most prominent processing

capabilities like data retrieved by eyes in order to extract valuable information.

Because the primary focus of this thesis is to manipulate visually recognized objects to
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accomplish a sensible motion, we will give insight about image datasets (and/or word

datasets that are linked to the image datasets) in this section, which is conceded as

benchmarking datasets.

Image datasets can be considered in two groups; labeled and unlabeled/raw,

which are relevant for supervised learning (classification) and unsupervised learning

(clustering) tasks, respectively. Furthermore, semi-supervised and reinforcement

learning algorithms can be applied to both types of datasets. Additionally, much more

effort is required to attain labeled image datasets than unlabeled ones. Moreover,

the quantity and quality of data affect the performance of machine learning systems

directly. It is worth to note that the importance of datasets for learning algorithms are

commensurate with human sensory organs.

As mentioned earlier in this study, ImageNet is a huge dataset consisting of 15 million

annotated images in 22000 categories, and ILSVRC is an annual competition held

under the subjects of object localization, object detection, object detection from the

video, scene classification, and scene segmentation. In the challenge, 1.2 million

images in 1000 categories are employed to measure the performance of the submitted

algorithms. In the ImageNet dataset, images are labeled according to the WordNet

hierarchy [105]. Likewise, a competition is run using Microsoft Common Objects in

Context (in short COCO) dataset [106] every year. COCO provides a total of 330000

images (more than 200000 images are labeled) in 80 object and 91 stuff categories in

addition to 250000 people with keypoints. There are 1.5 million object instances and

5 captions for each image. In COCO, the competitions are executed in the subjects

of object detection, instance segmentation, image captioning, and person keypoints

localization. An older example of image dataset challenges, the PASCAL Visual

Object Classes (VOC) [107] was held from 2005 to 2012 as a yearly competition.

PASCAL VOC is a benchmarking dataset for assessing the performance of object

category recognition. The initial dataset was composed of 1578 labeled images in

4 classes as long as there was 11530 region of interest (ROI) annotated images in 20

categories in 2012 in this dataset. Caltech-101 [108] and Caltech-256 [109] consist of

9146 and 30607 images in 101 and 256 classes, respectively and each class includes

various numbers of labeled images ranging from 40 to 800 with the dimension of

300×200 in pixels. CIFAR [110] is derived from 80 million tiny images dataset [111]
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by labeling 60000 for 10 classes called CIFAR-10, and another 60.000 for 100 classes,

which are composed of 5 classes under 20 superclasses called CIFAR-100. One of

the biggest publicly available image dataset [111] contains approximately 80 million

colored images with the dimension of 32× 32 pixels with weak labels which are

listed within WordNet hierarchy. Yale-CMU-Berkeley (YCB) [112] dataset presents

77 classes of objects relevant to robotic manipulation research. YCB contains 600

high-resolution colored images, 600 colored depth images and five sets of textured 3

dimensional geometric models with mass values of objects per category.

n addition to ADORESet containing both real and synthetic images, we also give

knowledge about significant synthetic image datasets to reveal the potential of our

dataset. [113] provides a synthetic image generator and proposes a pipeline to bring

about better results than real-world data when working only with synthetic images.

However, this study compares the effects solely for vehicle detection tasks. Similarly,

the synthetic collection of imagery and annotations (SYNTHIA) incorporates only

synthetic outdoor images, which are captured from a virtual world with pixel-level

labels. There are over 200000 high-definition images grabbed from videos and over

20000 high-definition separate images in the direction of semantic segmentation and

scene understanding from driving simulations. The results in SYNTHIA indicates

that hybrid dataset approach also contributes to semantic segmentation of objects.

Furthermore, SceneNet [114] dataset provides labeled synthetic 3D indoor scenes for 5

categories; bedroom, office, kitchen, living-room, and bathroom consisting of objects

from 50 to 150.

It is noteworthy that there exist image datasets in the literature except for the given

datasets above, which are concentrated on particular subjects such as annotated hand

images [?], street view house number images [115], brand logos [116], handwritten

characters [74], faces [117] and so on. Additionally, Places [118], Places2 [119],

and LabelMe [120] datasets are constructed using outdoor images which contain

labeled and/or weakly labeled images. Concisely, it is conceptual for deep learning

research to focus on a compact problem, collect raw data and clean it, then ameliorate

existing algorithms by fine-tuning or deriving depending on data to acquire plausible
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results. Reasonably, we propose ADORESet that provides opportunities of transition

and flexibility for real world and simulation environment applications.

3.3.1 A hybrid image dataset towards bridging the gap between real and

simulation environments for robotics: ADORESet

Robotics research problems involving machine vision are generally carried out using

real and simulation images, separately. These images routinely belong to the categories

of objects namely tableware, glassware and similar kinds of objects, which may remain

on desktops and tables, in the form of relatively small, graspable, pushable states. Due

to the fact that the essential objective of robotics research with regard to achieving

results at human-level or better for vision and control tasks, using application-specific

algorithms is convenient. Thus in this study, we propose annotated desktop objects

real and synthetic images dataset and name it as ADORESet, which contains data

from both real-world and simulation environment. From this perspective, the main

reasons behind proposing ADORESet, as a hybrid image data set including both real

and synthetic images, are suggested as follows; able to eliminate incompatibilities

between real and simulation environments by training once and running the model

weights everywhere, ready to minimize experimentation time wasted during adjusting

the simulation model to the real world, consisting of relevant object categories for

dexterous manipulation, grasping, detection and recognition. Precisely, the diversity

of the dataset samples is another crucial factor, which directly influences performance,

such that raising the amount and diversity of training data by data augmentation has

been a prerequisite for deep CNN models. Figure 3.11 illustrates the comparisons of

the explained image datasets including ADORESet relatively in the logarithmically

scaled 3D space, where the vertical axis shows the total number of images, the

horizontal axes indicate the average number of images per class and the total number

of categories, respectively. Even if the primary goal of machine learning algorithms

is to obtain knowledge from data using algorithms, the quality of data regarding

quantity, labels, missing samples, variations, noise, outliers, invalid instances, etc. has

a significant influence on resulting models. Therefore, densely annotated ADORESet

provides a competent number of images per class for machine vision based problems

in robotics such as object detection and recognition, object tracking and manipulation.
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Figure 3.11 : Datasets in logarithmic scale according to total number of images,
average number of images for each category and total number of

categories.

Such a dataset consisting of real and synthetic images maintains flexibility concerning

developing models both for real-world and simulations, then enables deployment of

these models for experimentation directly. ADORESet should be of interest to the

field of robotics researchers by means of its hybrid form, compactness in terms of

lightweight and relevancy to robotics applications such as detection and recognition,

grasping and dexterous manipulation of objects.

In order to construct ADORESet, we start by downloading instances via image search

engines. Afterwards, an adequate number of images of relevant classes are generated

within the simulation environment. The annotated and resized data received from both

sources are processed using ITUrk graphical user interface (GUI). Successor objects

are also labeled to build statistical information about the relationships of the objects

within the dataset. For example, the connection between monitor, keyboard, and

mouse can be directly achieved using this practical information. Figure 3.12 shows

the pipeline of these steps.
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Figure 3.12 : The operations during the construction of the ADORESet.

3.3.1.1 Collecting images from wild web and preprocessing

The object categories in ADORESet, which are provided in Table 3.1, are specified

considering the robotics applications. It is unquestionable that these objects have

been part of everyday life in the last 3 decades. With the ambition of building this

dataset using the wild web, we endeavored about 390 query terms or word pairs via 7

image search engines. Principally, the multi-language wild web search is performed

according to the brand, gender, model, type, color, age, season, material, state, and

relation. Subsequently, inappropriate raw images are eliminated manually with regard

to criteria such as the light effects and conditions, noise, distance and angle, visibility

which influence the quality of the dataset. Then the remaining images are entitled to

the following rule: The first three numbers show the category starting with 0, and the

last five digits indicate the index number of image in that category starting with 0,

e.g., "01700754 is the 754th image of the laptop class". Concurrently, all images are

resized to the same dimensions. Eventually, ADORESet is a new richly-labeled dataset

consisting of 75000 colored real images with the size of 300x300 pixels for 30 classes

including the bounding-box coordinates of all objects. The real images are stored in

JPEG compression format, which takes up approximately 1.3 gigabytes space in the

hard-drive.
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Table 3.1 : ADORESet Object Classes.

1 Ashtray 2 Bag 3 Book 4 Bottle 5 Bowl
6 Can 7 Candlestick 8 Clock 9 CookingPot 10 Cup
11 DeskLamp 12 Eyeglass 13 ForkSpoonKnife 14 FryingPan 15 HeadWear
16 Keyboard 17 Laptop 18 Monitor 19 Mouse 20 Pen(cil)
21 PhotoFrame 22 Shoe 23 SmartPhone 24 Speaker 25 Teapot
26 Telephone 27 Vase 28 Wallet 29 WebCam 30 WristWatch

3.3.1.2 Image generation from simulation world

Similar to gathering real images, the process of image generation from simulation

world starts with downloading computer-aided design (CAD) models of the objects

from the wild web. For each object class, five different CAD models are downloaded,

and their file formats are converted to STL which is appropriate for universal

robot description files (URDF). Since they are acquired from distinct sources, their

orientation, scale, and origins are not correctly defined. Initially, every model has

oriented in a way that normal vector of the meaningful side of the object is parallel

with the z-axis. Next, the objects are scaled to their real-world dimensions. Lastly, the

origins are relocated to bottom centers of the CAD model. Textures are not attached

to the models, and the colors are allowed to change with the glow of the simulation

world sun. Consequently, ADORESet includes 750 synthetically generated images per

category carrying the same properties as real images.

There are two critical variables in the simulation world which affects variations and

the quality of the images, light color and 6D pose of the camera. In GSE, the light

is adjusted with the sun model and 30 images are captured for any sub-object couple

in the same conditions. After completing image acquisition, old sun model is deleted,

and a new sun with random color values is spawned. 6D camera pose consists of 3

position and 3 orientation variables. It is assumed that two virtual half spheres are

created around the object with the radii of r and R, and the camera is located on their

surfaces. So the distance between the camera and the object is similar for each object

class depending on its average dimensions. For instance, the minimum distance (r)

between the camera and the object are set to 0.2 m for wristwatches while it is 0.4

m for bowls. The environment with the half sphere is drawn schematically in Figure

3.13. To calculate a random point on the half sphere surface, an arbitrary unit vector s
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Figure 3.13 : Schematic view of simulation environment with frames and variable
definitions.

is defined as given in Equation (3.9):

s = [rand(−1,1),rand(−1,1),rand(0,1)]T (3.9)

, where rand denotes the random function between given argument values. It is worth

to note that z vector is restricted to positive numbers which restrain the position of the

camera on the upper half of the sphere. The position vector of the camera p can now

be easily calculated by using known values of r and s as in Equation (3.10):

p = (c1rand(−1,1)+ r) · s (3.10)

The constant c1 stands for the maximum distance between the object and the camera

R. The opposite direction of the position vector defines the pointing direction of the

camera orientation xc. To use the vector in frame definition, normalization is applied

as in Equation (3.11):

xc =−
p
‖p‖

(3.11)

Because the calculated xc vector guarantees that the object is on the image plane,

other orientation vectors can be selected as arbitrary vectors meeting the orthonormal

condition. So yc is calculated ensuring the dot product with xc results in zero as in the

following equation.

yc = [c2xcy + c3xcz,−c2xcx,−c3xcx]
T (3.12)

Three components of the xc vector are denoted by xcx, xcy and xcz. The last vector to

form the orientation or rotation matrix is zc. It has to be a perpendicular vector to other

two and is calculated as given in Equation (3.13).

zc = xc×yc (3.13)
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Figure 3.14 : Example images for all object categories generated in GSE.

Random sun spawning and 6D pose generation are implemented in a ROS node. Every

image is grabbed from a specific 6D pose. The light source is changed for every 30

images because of the speed of deleting and spawning the light. 5 different CAD

models are utilized for each object which produces a total of 750 images for each

object class. Example images per class are shown in Figure 3.14.

3.3.1.3 ITUrk GUI

Although the wild web supplies an excessive amount of data, it may cause problems

when it is used with deep learning algorithms directly due to the lack of quality. In

fact, many images tagged with inconsistent keywords or indistinguishably tiny sized

objects remain within the images. To overcome these complications, in most cases,

crowdsourcing tools are employed to label the data. There are such tools that are

designed for a more general social experimental task which are also known for labeling

data called Amazon Mechanical Turk (AMT) [121]. Furthermore, the software as

reported earlier can be designed to collect a broader range of information than the

one obtained by only labeling. So that the gathered data can be extended to have a

knowledge of the labeled object location in the image plane. It also allows to label the
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Figure 3.15 : ITUrk GUI with the images from eyeglass category.

successor objects remaining in the scene. In this work, a simple GUI is designed and

implemented to annotate the data, the bounding box location and the successor object.

The GUI is designed to process 24 images on a single page to increase the speed

while keeping them visible enough for the user. Each object class is loaded to the

GUI first. Then the user is suggested to delete irrelevant images about the object class

by selecting them from the delete buttons over the images. At the same time, the

user clicks on the complementary object name if a successor object exists. Three

most expected successor names are readily given as click buttons. However, the user

can add more associated items by writing the name of it to the text-box under the

successor names. After completing elimination and labeling successor objects, the

continue button starts the bounding box selection. The user selects left-top uppermost

bounding point with mouse left click. Similarly, right-bottom lowermost bounding

points are chosen by the right mouse click, and it accomplishes the bounding box

selection for the current active image. The active images are marked with red delete

buttons. After the bounding box selection of it is completed, the next undeleted image

becomes active. Finally, completing bounding box selection starts a new page with

new 24 images. The GUI is implemented in MATLAB. The screenshot of the GUI

is given in Figure 3.15. A total of 75000 real images belonging to 30 object classes

are filtered through ITUrk as available images for deep learning algorithms. These

colored images are resized to a dimension of 300× 300× 3 pixels which is the same
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Figure 3.16 : Resized and labeled wild web images with instances from all
categories.

as the images from simulation world. The user can process 24 images in one single

page within 2 minutes approximately. The initial 40 seconds are spent in annotating

and successor labeling part and the remaining time is devoted to the bounding box

selection. Moreover, the perspectives and cylindrical objects may reduce the speed of

the process and cause the failure of the human bounding box specifiers. The example

images from each of the object classes are shown in Figure 3.15.

3.3.1.4 Distinctive properties of ADORESet

The underlying philosophy beneath the machine learning systems is to have a dataset

which has as many varieties as possible and then to develop intuition using supervised,

unsupervised or reinforcement learning algorithms from data. Notably, researches

on robotic arms for non-industrial daily use and humanoid robots are increasing in

the last years. Both real and simulation world applications give successful results in

areas such as perception, recognition, gripping, grasping, moving, and manipulating,

separately. To make systems intelligent, the training data has to be compatible with

the environments where the test sessions will be conducted. Accordingly, concerning

the compensation of these requirements, ADORESet is composed of hybrid images
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for 30 object classes, which may exist mostly on desktops. Following the labeling and

elimination operations, some images are exposed to distortions because of resizing,

that yielded variations for the dataset images, which is one of the most desired

properties for an image dataset. Since, there is adequate number of images per

category, each class of ADORESet is also convenient for sub-category classification.

Unlike datasets as mentioned earlier, which consist of single and centered objects

per image, ADORESet contains complex images including multiple objects, which

makes it a more challenging dataset, besides comprising different forms of objects that

transformed in decades. Our dataset also includes a satisfactory number of centered

and salient images that can be readily separable from the background. Another

property that discriminates ADORESet from the other datasets is to provide useful

information about the relationships between objects by extracting knowledge from the

statistics of the labels, which is obtained by annotating the successor objects in the

dataset.

3.3.1.5 Statistical analysis of ADORESet and semantic relation between objects

The object classes, which are included in the ADORESet, are chosen from commonly

used items in everyday life and mostly located around or on desktops. In addition to

this, the objects are related to each other depending on their usage area, appearance

similarity, and ideal locations. Some of them are used in similar or completely same

tasks. For instance, telephone-smart phone are used for communication purposes

and pot-pan are used for cooking. Additionally, some tasks have multiple objects

which completes each other, such as mouse-keyboard, cup-teapot, cup-bottle. Besides,

physical appearance is another important issue, and for some object class couples, it is

not occasionally distinguishable as in the case of bowl-vase and pan-pot. Furthermore,

specific items are usually placed close together. For example, it is strongly probable

that a fork may be encountered near to a bowl or a cup. It is worth to consider that

the object classes consist of not only one object but also multiple very similar objects.

The cutlery items object class, Fork/Spoon/Knife, aggregates 3 eating utensils as an

example. Successor objects are detected in randomly collected images from the wild

web to identify semantic relationships between them. It may bring proper information

to researchers from robotics area, particularly in manipulation planning. To provide the

information, existence frequencies of successors for each object classes are illustrated
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Figure 3.17 : Relations between object categories. (Darker color means more
relationship between objects.)

as a color matrix in Figure 3.17. The main object classes are indicated in row entities,

and their successor images are given in columns in Figure 3.17. Since the object is

not a successor for itself, the frequency is assumed to be zero. The columns and rows

are arranged in an order that strictly related objects are closely aligned. All values are

standardized along the rows to emphasize the relations. As a result of standardization,

relation scores of the objects are colored according to colorbar given on the left side

of Figure 3.17. Thus, for example, bowl is the most frequent object in cup images. On

the other hand, it is worth to consider that graph is not symmetrical. As a result of this,

cup is not the most existent object for bowl. So a robot can interpret that if a cup is in

the scene probably a bowl can be seen, however, if a bowl is seen it cannot be said that

a cup is in the area.

The statistical analysis shows the relation between the object classes numerically.

Robots empowered with vision make use of this meaningful information to increase

inherent capabilities of object search or the accuracy of object detection under the

influence of weak lighting or occlusion. Vision algorithms may estimate where to

look for a particular object in a massive operation space. An occluded object can

be identified more precisely with the assist of detected successor objects. The analysis

helps manipulation planning tasks through clustering similar objects as well. Statistical

results guide to the robot to place complementary items together in a meaningful way.

56



As a consequence of having richly annotated 3250 images per category and containing

an equal number of real (2500) and synthetic (750) images individually for each class

put ADORESet one step ahead amongst others.

3.4 Convolutional Neural Networks

The necessary amount of information about deep neural networks is given so far in the

context of object detection and recognition tasks. It is clear that the recent approach

employs convolutional neural networks by a majority and the building-block of ANNs,

backpropagation procedure, and optimization steps are clarified above. Hereafter, we

will explain the remaining components of the CNNs with a focus of processing the

image data, which are activation functions, convolutional and pooling layers together

with the hyper-parameters required to be optimized and the batch normalization will

also be expressed in this section.

3.4.1 Components of convolutional neural networks

Since the CNN models can simply be formed by stacking layers in a sequence, every

layer in these models transmits signals to another via a differentiable function called

activation function. Activation functions maintain the non-linear mappings between

the layers and so that it gives the ability to approximate non-linearities to the CNN

model. Therefore, primitive activation functions such as binary step function f (x) = 1,

if x > 0 and linear activation f (x) = constant ∗ x do not produce satisfactory results

because of their gradients will yield to f ′(x) = 0 and f ′(x) = constant, respectively. In

consequence, during backpropagation, the gradients of these functions do not improve

the error rates.

As can be defined the mission of activation functions, they adjust the magnitude of

the weighted inputs and provide nonlinearity to the deep neural networks while they

transmit signals. For this reason, an activation function has to be in a non-linear form

to be able to generate non-linear mappings between layers and must be differentiable

continuously. As long as neural networks are universal function approximators, deep

neural networks try to make sense from complicated problems in higher-dimensional

datasets. In Figure 3.18, the frequently used activation functions and their gradients

are displayed.
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Sigmoid or logistic function σ(x) =
1

1+ e−x is a smooth S shaped function within a

range between [0,1] whilst the gradient simply allows the range between [−4,4]. This

means that the values outside the [0,1] range do not influence the outputs as much

and the values inside this range give rise to large changes in the outputs. One can

see that from the gradient of the sigmoid function, during backpropagation, the values

inside the [−4,4] range become very small and the contribution to the learning of the

network is restricted as well. The sigmoid is able to maintain non-linearity, and it is

differentiable continuously; however, the convergence process is very slow besides

sigmoids to saturate and kill the gradients, namely, it causes vanishing gradients

problem. The tanh or hyperbolic tangent function tanh(x) =
ex− e−x

ex + e−x is a rescaled

version of sigmoid function. Unlike sigmoid function, the tanh function outputs

are zero-centered since it is symmetric over the origin, ranging between [−1,1].

However, the remaining issues are the same as sigmoid function; the saturation and

vanishing gradients. In deep learning applications, the rectified linear unit (ReLU)

[122] ReLU(x) = max(0,x), which is a non-linear function by means of having ability

to backpropagate the errors, is vastly used because it plainly avoids and solves the

vanishing gradient problem. But the mean of the ReLU function is not zero-centered.

The negative inputs are not triggered in this function, so only the positive-valued

neurons are activated that result in a sparser network than the original. However, this

effect also appears in the gradients of the ReLU function that gives all zero when

the received signal is negative so that this is a potential to dead neuron, which is

never activated. To overcome this problem an improved function LeakyReLU [123]

LeakyReLU = max(α ∗ x,x) (where α is the coefficient allowing small gradient when

it is negative) is declared, which presents a small sloped line in the negative side to

keep the updates alive. Exponential linear unit function (ELU) [124] given in Equation

(3.14) is another function that takes care of vanishing gradient problem and its mean

is very close to zero that facilitates the network and reduces the computational cost as

well, which result in the learning speed up.

ELU(x) =

{
x, if x >= 0
α ∗ x, otherwise

(3.14)

By the reason that ELU is an exponential function, it does not saturate. The negative

part of the ELU function behaves as bias term. Scaled exponential linear unit function

(SELU) [125] is an upgraded version of ELU with two fixed parameters as given in
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Equation (3.15).

SELU(x) = λ ∗

{
scale∗ x, if x > 0
α ∗ ex−α, otherwise

(3.15)

These parameters α = 1.6732 and scale = 1.0507 are constant so that they cannot

be backpropagated, which mean they are not the hyper-parameters to be optimized.

As can be seen, its functional drawing that this function diminishes the variance for

negative inputs and raises the variance for positive inputs. The decline and gain

effects are sharper for extremely negative and near-zero input values, respectively.

In addition, the projections of fluctuation are surrounded from above and below, so

the gradients cannot explode or vanish. As companion to dropout method, [126]

proposes a feed-forward technique called maxout, which contemplates to simplify

the optimization by dropout and the accuracy of its approximate model averaging

technique. As a new kind of activation function, for the input x ∈ Rd the maxout

runs the following function as given in Equation (3.16):

hi(x) = max
j∈[1,k]

zi j (3.16)

where zi j = xTW...i j +bi j, W ∈ Rd×m×k, and b ∈ Rm×k are learned parameters.

The major part of deep neural network assemblage is the convolutional layers that

also give its name as the convolutional neural networks mainly. The convolutional

layers extract the features by assigning the convolutional neurons to local regions those

calculate a dot product of the weights with the pixels values of the area. These layers

include the following hyper-parameters to be optimized; zero-padding P, stride S, and

the depth K and spatial extent F . The convolution layer performs the mathematical

operation as given in Equation (3.17) over an image I with kernels K:

conv(I,K)xy = σ(b+
h

∑
i=1

w

∑
j=1

d

∑
k=1

Ki jk ∗ Ix+i−1,y+ j−1,k) (3.17)

where σ shows the activation function, b is the bias, h,w,d represent the height, width,

and depth, respectively.

The output activation volume of the convolutional layer is the feature map, where

the hyper-parameters designate the patterns of it. The zero-padding is the operation

of adding zeros around the image border. At first sight, it can be taught to expand

the dimensions, but it enables to transmit the effects of the border elements by

preserving the spatial size. Thus, the height and width of the volumes stay the same
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without shrinking the height and width of the volumes, which allows constructing

deeper networks. The stride how many numbers of steps will the sliding kernel

window take for each application in the spatial coordinates. As a result of the

kernel window stride, the spatial size reduces; however, the zero-padding adjusts it

sufficiently. The stride as being the kernel shift in pixels also specifies the overlap

between respective output pixels. The depth and spatial size are the numbers of

kernels, each of which concentrates on different specific regions in the inputs and their

dimensions in the spatial coordinates, respectively. The depth affects on the neuron

count in the convolutional layer. To run a CNN model properly, the dimensions of

these hyper-parameters have to be compatible with each other. In brief, there are four

indispensable hyper-parameters for convolutional layers, for instance, suppose that the

input volume is W1×H1×D1 and the output volume is W2×H2×D2, then the relations

between the hyper-parameters become given as follows;

W2 =
(W1−F−2P)

(S+1)
(3.18)

H2 =
(H1−F−2P)

(S+1)
(3.19)

D2 = K2 (3.20)

where W , H, and D show the width, height, and depth of the volume. Hence, it can be

calculated that there occur F×F×D1 weights for each kernel with a total of (F×F×

D1)×K weights and K biases due to the weight sharing property. The major stages

of a convolutional layer is illustrated in Figure 3.19. The 3− channel input images

is convolved with 3× 3 kernels and then feature maps are obtained. Furthermore,

the batch normalization technique [127] is worth considering in deep neural network

research. However, normalization layers contribute minimally; they are useful if there

exist neurons with unlimited activations, which shows characteristics very much alike

to regularizers so that the regularization requirement declines. Since, the inputs of

each layer of the neural network during training change, this causes the slow down

in the network. For this reason, these inputs are scaled to be zero-centered with unit

variance as given in Algorithm 3. The batch normalization operation increases the

training speed by applying the normalization to the input mini-batches. In this way,

the use of larger learning rates become feasible. In addition, the batch normalization

also reduces the network sensitivity against weight initialization.
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RGB

Figure 3.19 : How a convolutional layer operates over a colored input image.

Algorithm 3 Algorithm of Batch Normalization layer. [127]
1: Input: Values of x over a mini-batch from training data: B = x1, ...,xm;
2: Parameters to be learned: γ,β
3: Output: yi = BNγ,β (xi) // Batch Normalizing Transform.

4: Mini-batch mean: µ ← 1
m

m
∑

i=1
xi

5: Mini-batch variance: σ2
B← 1

m

m
∑

i=1
(xi−µβ )2

6: Normalize: x̂i← xi−µβ√
σ2

B+ε
// ε is the numerical stability constant.

7: Scale and shift: yi← γ x̂i +β ≡ BNγ,β (xi)

For each sub-network,the parameters to be learned in batch normalization procedure

can be calculated by y(k) = γ(k)x̂(k)+β (k).

3.4.2 The smarter way of pooling techniques: the smart-pooling

The data size reduction (a.k.a. downsizing/downsampling or data compression) is

a typical signal processing technique applied with the intention of getting rid of

redundant and trivial parts of the data, but it may lead to potential wealthy information

loss stored in the data. In general, the data compression can be considered in
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two categories as lossy and lossless according to the reversibility situation of the

downsampling due to information preservation or loss of the original data. In lossless

compression, statistical models are employed to map the input signals into smaller

outputs by removing the unnecessary pieces of information. This type of compression

can be claimed to be reversible by remapping the output signals to the inputs with the

reverse model. On the other hand, once lossy compression diagnoses the redundant

parts, then eliminates it irreversibly, because there is no relation between the data

elimination method and mapping.

In computer vision, data size reduction has always been an important topic that helps

to diminish the quantity of data to be processed. Visual feature extraction, image

downsampling, multimedia file compression, pooling layers in CNN are all such

techniques works with the same ambition of easing the computations with lessening the

number of data samples by disposing of them from the original data. The most crucial

issue in image downsizing is to prevent valuable information loss. As anticipated,

image quality degradation is an entail to the image downsizing that causes a sharper

appearance utilizing lower resolution besides reducing the noise levels in the images.

The spatially closer pixels are expected to collaborate to form a visual feature, so the

removed pixels information has to be transferred via the pixels next to each other.

The pooling is that kind of operation, which selects the pertinent pixels to map the

following location in the image and it is mostly used in CNN models following the

convolutional layers principally.

The pooling layer in CNNs helps to avoid over-fitting by granting an abstracted

representation along with scaling down the spatial volumes and the number of

parameters to learn. Another remarkable achievement of the pooling layers is that they

provide geometric invariance to CNN architectures, which convolutional layers cannot

handle. This layer performs on every depth slice of the former layer one-by-one and

downsizes them spatially. 2×2 or 3×3 are the filter sizes utilized in the pooling layers

with a stride step of 2 by a majority, otherwise, the information stored in the data is

destroyed with larger receptive fields. It can be seen that the conventional settings

as 2× 2 kernel size and 2− pixel stride for the pooling operator reduces the amount

of data by %75. The following equations give the role of the hyper-parameters in

the pooling layers when W1×H1×D1 is the input volume, and W2×H2×D2 is the
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Figure 3.20 : The max-pooling and average pooling methods way of reducing the
data.

mapped/output volume:

W2 =
(W1−F)

(S+1)
(3.21)

H2 =
(H1−F)

(S+1)
(3.22)

D2 = D1 (3.23)

Although pooling layers are taught to be discarded from the CNN architectures and

can be replaced by additional convolutional layers resulting in network types such as

variational autoencoders (VAEs) and generative adversarial networks (GANs), they

still attract the attention of the researchers with their effective implementations and

acceptable performance results. Current typical usage of pooling layers relies on the

selecting the maximum or average calculation within a kernel as shown in Figure 3.20

for a 4×4 input and 2×2 pooling kernel that produces a 2×2 output, but the recent

focus on improving the pooling layers cannot be ignored. In [128], the performance

comparison between the maximum and average pooling methods is shown as a result of

various experiments conducted using conventional feature extraction methods. Once

the images are downsized via one of the pooling methods, then the recognition

performance of the SIFT method on downsized images is evaluated within a binary

image classification task. It is shown that the discriminative power of the max-pooling

is better than average pooling. Moreover, [129] states that the pooling provides

invariance in feature representation as well as it may consist of spatially far-located

dissimilar features. By relating the neighbor restricted pooling operation mapping

ability that works for adjacent elements both in image and descriptor spaces, they

claim to achieve to beat the state-of-the-art performance. Instead of identifying a

pre-defined pooling scheme, [130] asserts an adaptive pooling method that learns the
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receptive fields for classification tasks. Initially, several pooled features from the

receptive fields are located to a spatial pyramid and then the resulting global feature

vectors, which are obtained by applying Cartesian products, are classified. The tests on

regular image classification pipeline show that the learning adaptive receptive fields for

pooling raise the accuracy. The study in [131] suggests replacing deterministic pooling

methods with a stochastic strategy. The method in this study intends to contribute to

regularization of the CNN models together with being hyper-parameterless and has

potential to work with other regularization techniques. It simply picks the activation

from each pooling area randomly considering a multinomial dispersion. In the first

step, they calculate the normalized probabilities p per region by pi =
ai

∑k∈R j ak
, where

as are the activations within the region. Then, sampling is performed within the

multinomial distribution by s j = al , where l P(p1, ..., p|R j|), al shows the pooled

activation, l is the location from the region. Finally, the sampled activations are

probabilistically weighted in each region by s j = ∑k∈R j piai. They indicate their

results show state-of-the-art on various benchmarking datasets with a more expensive

computational cost. [132] declares a new type of pooling approach called generalized

max-pooling for images classification tasks that re-weights each patch extracted by

conventional methods. Alternative to bag-of-visual-words approach, generalized

max-pooling equalizes the descriptor effects between the extracted patches and pooled

representations besides keeping the characteristic information. Another stochastics

approach to pooling layers in CNNs is introduced in [133] that employs the ordinary

max-pooling and average pooling randomly during the training. It is stated that

this approach helps to overcome the over-fitting. The pooled output of this method

is given as yki j = λ max
(p,q)∈Ri j

xkpq + (1− λ )
1
|Ri j|∑(p,q)∈Ri j xkpq, where λ is a binary

random number 0 or 1 that chooses the max pooling or average pooling, |Ri j| shows

the pooling region size Ri j, yki j represents the pooling output of the kth feature

map, xki j stands for the element at (p,q) pixels of the pooling region. In [134], a

pooling method is explained that first extracts deep activations for feature patches

and then pools them into a global vector at 3 scales by re-sampling the inputs into

256×256, 128×128, and 64×64 pixels. [135] introduces Lp units, which calculates

a normalized Lp norm using the delivered signals from several unit subset projections.

The normalized Lp norm is defined for given inputs [a1, ...,aN ] as; u j([a1, ...,aN ]) =
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(
1
N

∑
N
i=1 |ai − ci|p j)

1
p j , where p j is the norm order identical to per neuron, ai are

the filter outputs or input signal from lower layer, ci shows the center or bias of

the ith input signal. Additionally, p j and ci are the learnable model parameters and

so that this method differs from pre-defined structures or deterministic methods. In

short, the activations of the layer below are conveyed, and then equal-sized subsets

of the activations are supplied to a single Lp unit as non-overlapping sets. The

geometrical meaning of the Lp unit is described by u(x) = (
1
N
)∑

N
i=1 |wT

i x− ci|p)
1
p ,

where wi is the ith column of the weight matrix W . Another study for the pooling

layers is proposed in [136] by extracting activations from multi-scale local regions of

a pre-trained CNN and then aggregating them with a scale-wise normalization to fit

into the CNN model. The scheme proposed in this study inserts multi-scale pyramid

pooling layer comprised of dimensionality reduction, dictionary building, activations

vectors, normalization and average pooling, respectively following the replacement

of FC layers by convolutional layers in the original CNN model. Afterwards, power

normalization is applied to the outputs of this layers before L1 normalization. The

study suggests SVM to classify images and claims to have better accuracy rates than

state-of-the-art results. A further study on stochasticity-based max-pooling operators

is proposed in [137] with a fractional coefficient α ∈ (1,2) for kernel size with a

degree of randomness that is related to the selection of the disjoint or overlapped

pooling regions. Even though the random selection is successful on its own, it

may under-fit when combined with other regularization methods such as dropout

and data augmentation. Pseudo-random pooling region selection, which is given

by ai = ceiling(α(i + u), α ∈ (1,2),u ∈ (0,1)) where ai and ui stand for some

numbers in given range, yields more stable pooling regions as well as overlapping

fractional max-pooling outperforms the disjoint one. Moreover, [138] explores to

learn a suitable combination of average and max-pooling along with a tree-structured

pooling operators, which is eager to learn kernels from the data, to be able to combine

differentiable leaf node pooling kernels, and then agglomerate these attributes into

a hierarchical tree. In addition, a method having ability to be responsive that is

maintained by a gate is also developed. These three approaches are employed within

existing CNN models together with other regularization techniques, and it is claimed
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that all of three pooling strategies (mixed, gated and tree-based) raise the accuracy rates

and tree+max-average pooling configuration results in state-of-the-art performance.

Biological roots of the spatial pooling are primitively associated to the visual cortex in

[139], which states that mid-level features are invariant to small deviations. Similarly,

[140] examines the structure of receptive fields in the visual cortex and reports that

non-linearity emerges from the spatial pooling. In [141], a new kind of spatial

pooling is highlighted that focuses on essential regions to transfer the extracted features

carrying discriminative representations. In this thesis, we declare a new kind of pooling

strategy called "smart-pooling" that performs the actions given as Algorithm 4.

Algorithm 4 Smart-Pooling scheme.
Require: Spatial kernel size N×N (2×2 by default, otherwise 3×3),

stride S (2 by default, otherwise overlapping or sparse coding.),
zero-padding P (fulfils to keep the input size suitable for pooling by default.).

i) Input: Image or previous layer pixels.

ii) Arithmetic mean of the kernel: M =
1

N×N
∑

N
i, j=1 ai j, where ai j shows the pixels

values and i, j are the pixel indices inside the kernel.
iii) The pixels higher than the mean: H = append(ai j) > M. N(H); count the
elements of H.
iv) The pixels smaller than the mean: L = append(ai j) < M. N(L); count the
elements of L.
v) Compute Smart-Pooling output PL as follows;
if N(H)> N(L) then

PL =
1

N(H)
∑

N(H)
i, j=1 Hi j

else if N(H)< N(L) then

PL =
1

N(L)
∑

N(L)
i, j=1 Li j

else
PL = M

end if

The toy example illustrating the difference between smart-pooling and average and

max-pooling given Figure 3.21 that it operates with the objective to reflect the

distinction between input elements ideally to the outputs by converting them more

salient. The smart-pooling is a competitive algorithm to the average and max-pooling

techniques concerning computational efficiency, preventing over-fitting, and carrying

semantic information within the kernels to the next layers in both back and forth

directions. Conjointly, smart-pooling provides robustness to noise and contributes to

regularization performance of the model as well. As one can see from the procedure
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Figure 3.21 : The smart-pooling example the besides max-pooling and average
pooling.

of the smart-pooling that it has the ability to behave both average pooling and

max-pooling likewise. But, it can generate different outputs than those as well. In

addition, smart-pooling guarantees that the performance will be at least as the average

pooling level. On the one hand, smart-pooling can eliminate the outliers or noisy pixel

inside the kernel and does not take into account. On the other hand, it only focuses on

the majority of the pixels that brings computational efficiency and better generalization

performance at the same time.

3.5 Results

Convolutional neural network architectures with a focus on object detection and

recognition are explained in detail, besides a new image dataset ADORESet is

introduced and a competitive pooling algorithm is asserted thus far. In this

section, after presenting the object recognition performance results of various CNN

architectures, we will give the object detection performance of RetinaNet, and the

effects of smart-pooling by comparing with the average and max-pooling methods is

also shown. The experiments of object recognition and detection tasks are conducted

on a computer that runs a Linux distribution of 64− bit Ubuntu 14.04 equipped with

an NVIDIA GTX 1080 GPU, an Intel i7 CPU 920@2.67GHz×8, 6GB RAM and 1T B

hard-drive spins at 7200RPM. The comparisons of pooling methods are performed on a

laptop computer, which operates a Linux distribution of 64−bit Ubuntu 14.04 rigged

with an NVIDIA GTX 930M GPU, an Intel i7− 6500U CPU @3.10GHz× 8, 8GB
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Table 3.2 : Data configurations for experiments using ADORESet including data
types and number of images.

Type of Training Data # Images Type of Validation Data # Images
Real Images 1775 Real Images 725
Real Images 2000 Real + Synthetic Images 500 + 500
Real Images 1500 Synthetic Images 750

Synthetic Images 750 Real Images 375
Synthetic Images 600 Real + Synthetic Images 150 + 150
Synthetic Images 500 Synthetic Images 250

Real + Synthetic Images 750 + 750 Real Images 750
Real + Synthetic Images 1775 + 500 Real + Synthetic Images 925 + 250
Real + Synthetic Images 375 + 375 Synthetic Images 375

RAM and 1T B hard-drive spins at 5400RPM. Equally important as the hardware, we

used Python language as the software and Keras [142] wrapper with a Tensorflow [143]

backend is chosen to develop the object recognition and localization algorithms.

3.5.1 Object recognition performance

The way for detecting and recognizing objects in deep neural networks is through

training for many times with sufficient amount of data until reaching predefined

performance criteria. To reveal the effects of the hybrid dataset on object recognition

task comprehensively, we give performance results of all possible combinations of real

and synthetic images as being training and validation data. These combinations with

regard to the types of data for training and validation with the number of images are

given in Table 3.2. Hence, 36 performance results are obtained for 9 data content

formats and 4 deep CNN methods in terms of time, accuracy and loss values. The

number of frozen layers, which are kept the same as weights of base models, of

deep CNNs ( [78], [81], [79], [82]) are varied depending on the number of data. The

training epoch number is fixed to 50, which ensures the convergence of performance

measures to stable values. ReLU is chosen as activation function, which is used for

all configurations. Stochastic gradient descent [144] is used as optimization method

while fine-tuning the [78] model and Adam [145] is used for the remaining models. To

calculate the probability of the output in the classification layer, the softmax function
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is applied at all models. The batch size is varied with respect to the memory capacity

of the system.

3.5.1.1 Wild web images as training data for object recognition

Solely real images as training data and combinations of real and synthetic images as

validation data are used in the first 3 of the experiments as details are given in Table

3.3. The progress of accuracy and loss values throughout 50 epochs of training and

validation are also displayed in Figure 3.22. As can be seen from both Table 3.3

and Figure 3.22 that the highest validation accuracy rates are achieved when the real

images are used for training and validation. Inception-v3 is slightly better regarding

the validation accuracy than the other models while VGGNet is trained in the shortest

period. The batch size of all configurations is set to 32 except the case that the real

and synthetic images are used for validation by Xception model because of memory

issue, which is handled by setting the batch size to 16 for this configuration. Training

accuracy values for all methods in all data pair cases give acceptable results at around

%95 but not the validation accuracy values. As can be seen from both Table 3.3 and

Figure 3.22 A) that similar training and validation data types result in high accuracy

rates for all models. Nevertheless, usage of incompatible data pair yields unsatisfactory

validation accuracy rates. Such that using a mixed type of data presented in Figure

3.22 B) when training data consists of only real images yields approximately %50

as validation accuracy rate. Moreover, validation accuracies of all models fluctuate

around %10 in the worst case, which is displayed in Figure 3.22 C), the real images

are used for training and synthetically generated images are used for validation.

3.5.1.2 Simulation environment images as training data for object recognition

If only the synthetic images are fed into the CNN models as training data while

validation data is varied, the performance parameters form as displayed in Table 3.4.

The progress during the training and validation sessions are given in Figure 3.23.

Similar to previous results, data types show discriminative characteristics concerning

the performance metrics. The batch size values for all cases are set to 32. The

validation accuracies for the example of having the same data types for both training

and validation are the highest in all cases. The decrease in validation accuracy rates

is distinct when the real images are supplied to the model as validation data. One can

70



Table 3.3 : Performance results if training data consists of only real images. (R stands
for real images and S stands for simulation images. The numbers near R

and S denote the number of images.)

Model
Data Type and Amount Train

Acc (%)
Val.

Acc (%)
Time per

Epoch (sec)
Batch
SizeTrain Validation

VGGNet
R 1775 R 725 84.82 80.44 435.40 32
R 2000 R 500 + S 500 98.32 50.86 660.66 32
R 1500 S 750 98.23 9.30 483.88 32

InceptionV3
R 1775 R 725 96.81 86.54 1634.7 32
R 2000 R 500 + S 500 97.17 50.97 2657.4 32
R 1500 S 750 98.23 10.77 872.16 32

ResNet
R 1750 R 750 97.00 86.01 472.9 32
R 2000 R 500 + S 500 97.72 49.54 1094.2 32
R 1500 S 750 97.85 7.87 415.02 32

Xception
R 1775 R 725 97.44 85.64 1706.50 32
R 2000 R 500 + S 500 97.67 49.46 2667.60 16
R 1500 S 750 97.61 7.04 1974.90 32

Figure 3.22 : Progress of performance parameters during training and validation
sessions. Training data is composed of only real images. A) Real

images for validation B) Real and simulation images for validation C)
Simulation images for validation.
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Table 3.4 : Performance results if training data consists of only simulation images. (R
stands for real images and S stands for simulation images. The numbers

near R and S denote the number of images.)

Model
Data Type and Amount Train

Acc (%)
Val.

Acc (%)
Time per

Epoch (sec)
Batch
SizeTrain Validation

VGGNet
S 750 R 375 98.87 5.01 185.92 32
S 600 R 150 + S 150 98.11 53.80 175.56 32
S 500 S 250 97.03 95.92 164.44 32

InceptionV3
S 750 R 375 89.93 5.71 492.53 32
S 600 R 150 + S 150 97.61 51.63 484.94 32
S 500 S 250 98.78 97.58 475.64 32

ResNet
S 750 R 375 93.49 7.85 299.37 32
S 600 R 150 + S 150 96.13 49.41 284.41 32
S 500 S 250 98.49 95.53 275.82 32

Xception
S 750 R 375 97.37 5.05 745.85 32
S 600 R 150 + S 150 96.91 47.00 687.17 32
S 500 S 250 97.67 95.27 666.00 32

easily say that the data type incompatibility is explicit as resulting in the lowest rates

when the data type configuration is set to utilize synthetic images as the training data

and real images as validation, as can be seen from both Table 3.4 and Figure 3.23

regarding all model outputs. In other words, the variations of synthetically generated

images are not able to cope with any case if the real images are used for validation.

3.5.1.3 Hybrid data images as training data for object recognition

In this study, only one single type of images are adopted as the training data so far.

From this point on, a various number of hybrid data depending on the validation

data type is fed into the models as the training data. Additionally, the total quantity

of training and validation images are the largest for the hybrid training data type

case. Subsequently, the time spent during the operations is the longest as can be

seen from Table 3.5 with other performance outputs such as accuracy scores. All

fine-tuned models succeed in surpassing the results of base models by exploiting the

real and synthetic images commonly as training data where the session performances

are showed up in Figure 3.24. The batch size for all models is adjusted to 32 other

than the cases of real and real-synthetic images as validation data combinations for

Xception model, which are fixed to 16. Thus, the memory requirement of Xception

is higher than other models that depend on the number of layers updated during the

fine-tuning and natural structure of the model itself. As a result of these performance
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Figure 3.23 : Progress of performance parameters during training and validation
sessions. Training data is composed of only real images. A) Real

images for validation B) Real and simulation images for validation C)
Simulation images for validation.

appraisals, the hybrid format of ADORESet is proved to be robust to the type validation

data.

3.5.2 Object detection performance

In this thesis, the object localization through detection is defined to specify the

bounding-box locations that surround the objects of interest within the whole images.

In this part, we present the outputs for the experiments conducted towards regressing

the bounding-box locations around the objects by adopting the RetinaNet with

ResNet-50-FPN architecture. It is worth to note that the RetinaNet is variant of

50− layered ResNet and FPN. To train this model according to the our object detection

consideration, we cancelled the object recognition branch that is one of the sub-models

remaining after the feature pyramid network of the original architecture. Thus, we

reduce the quantity of the parameters to be trained. We fixed the batch-size to 8 and

the number of steps for each epoch to 10000. The number of epochs is set to 30 that

is sufficient to converge the satisfied performance levels. The training is executed by

employing 13000 images in 5 object categories from ADORESet, which are bottle, can,
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Table 3.5 : Performance results if training data consists of both real and simulation
images. (R stands for real images and S stands for simulation images. The

numbers near R and S denote the number of images.)

Model
Data Type and Amount Train

Acc (%)
Val.

Acc (%)
Time per

Epoch (sec)
Batch
SizeTrain Validation

VGGNet
R 750 + S 750 R 750 95.49 85.37 427.96 32

R 1775 + S 500 R 925 + S 250 98.08 90.50 717.18 32
R 375 + S 375 S 375 96.48 93.06 194.2 32

InceptionV3
R 750 + S 750 R 750 96.54 86.03 495.85 32

R 1775 + S 500 R 925 + S 250 98.15 89.97 1685.51 32
R 375 + S 375 S 375 95.76 93.54 432.26 32

ResNet
R 750 + S 750 R 750 95.88 86.70 427.64 32

R 1775 + S 500 R 925 + S 250 97.02 87.54 609.44 32
R 375 + S 375 S 375 95.05 91.60 212.72 32

Xception
R 750 + S 750 R 750 99.54 90.41 497.44 16

R 1775 + S 500 R 925 + S 250 97.74 89.00 2408.61 16
R 375 + S 375 S 375 98.01 96.27 645.00 32

Figure 3.24 : Progress of performance parameters during training and validation
sessions. Training data is composed of both real and synthetic images.

A) Real images for validation B) Real and simulation images for
validation C) Simulation images for validation.
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Figure 3.25 : Object detection performance as of regression loss.
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Figure 3.26 : The model trained to compare the pooling methods.

cup, speaker, and vase. The main reason why we chose these objects is to decrease

the training time as well as we will manipulate these objects in the case study. The

average time spent during training per epoch is 7754s. We test the model on a dataset

composed of 500 images for each class and the response time for a query image of

this model is 254ms. During the tests, we adjusted the IoU to 0.5. In other words, if

the estimated bounding-box overlaps the ground-truth by %50, then we count it as a

successful output. The progress of the regression loss during the training is displayed in

Figure 3.25. After 30 epochs, the regression loss does not fluctuate and stays persistent

under 0.050 and the resulting output is 0.0454.

3.5.3 Smart-pooling performance

This study attempts to extend the current literature with an innovative pooling approach

called smart-pooling. The smart-pooling provides a transitive structure composed

of average and max-pooling methods as well as it hosts the advantageous behaviors

from both of them. To evaluate the working principle and measure the performance

according to the average and max-pooling methods, we tested the smart-pooling on

MNIST [74] dataset, which is composed of 60000 training and 10000 test images of

handwritten digits in 10 categories, and the adopted model is displayed in Figure 3.26.
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Figure 3.27 : The model outputs as of accuracy and loss values according to the
change in the pooling method.

The configuration of the CNN model is as follows; activation function is ReLU and the

prediction is executed by softmax, AdaDelta [146] is the optimization method and the

loss function is categorical cross entropy. The batch-size is set to 128 and the training

is performed for 10 epochs. The training and testing performance results can be seen

from Figure 3.27.

The accuracy rates and loss values prove that the smart-pooling strategy quantitatively

surpasses both average and max-pooling methods. The test accuracy of the model

with smart-pooling is %91.29 while the accuracy of the model with average and

max-pooling are %90.86 and %91.14, respectively. The test loss of the network with

smart-pooling is 0.1556 while the loss of the network with average and max-pooling

are 0.1623 and 0.1687, respectively. The reason of these values appear to seem worse

than the original models that we modified the model to reduce the computational time

with acceptable results. Moreover, the smart-pooling also outperforms the remaining

methods regarding training time by 21s per epoch while the average pooling training

per epoch takes 24s and the max-pooling training per epoch takes 22s. Even though

these measurements are useful, the complete qualification of such an algorithm has

to be measured qualitatively to give insight about the working strategy of the method.

Therefore, we applied these three pooling techniques to an image shown in Figure 3.28.

Initially, the image has the dimension of 300× 300× 3 and it is downsized to 150×

150×3. In other words, the image is rescaled by a factor of
1
4

. Although the outputs

only have the size of %25 of the original input image, it is clear that the smart-pooling
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Figure 3.28 : Pooling methods comparison on image sub-sampling.

output reflect pretty much all the details concerning the color transitions and primitive

image features such as edges and corners. Furthermore, the smart-pooling output

image contains more salient features that yield more comprehensible and reasonable

consequences. For instance, the flag-tower is almost to imperceptible in the output

images of other methods.

3.6 Discussion and Conclusion

Object detection and recognition for robotics research in the context of dexterous

manipulation, grasping, tracking are still challenging hot research topics. However

classical computer vision and control methods proposed successful solutions, deep

learning based methods outperformed them with the support of software and hardware

developments, which enabled to run such deep neural networks in feasible periods.

Therefore, the demand towards different types of datasets, as being the most decisive

part of learning systems, is increased. Whether labeled or unlabeled image datasets

with millions of images for thousands of categories exist, parameters such as a number

of images per category, image types and formats, object classes, dimensions, etc. play

an important role to select a dataset. From this point of view, ADORESet with its

versatile hybrid structure allows researchers to implement their algorithms both for
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real-world and simulation environment conditions. Additionally, ITUrk GUI makes

it viable to label, eliminate and resize massive amount of images. Furthermore,

relationships between object categories are presented using the annotations of the

successor objects. To the best of our knowledge, our study provides one of the most

comprehensively detailed experimental performance results for state-of-the-art CNNs,

besides a new densely labeled hybrid dataset. Despite the fact that the incompatible

data pairs yield useless deep CNN weights for all models, the performance results

reveal that usage of real and simulation images together as training data gives

satisfactory validation accuracy rates whatever the validation data is.

In this thesis, we refer to only category or label prediction by object recognition and

the bounding-box regression by the term object detection. As a result of our object

recognition experiments, we choose the VGGNet architecture for the remaining parts

of this thesis involving object recognition tasks. The VGGNet excels amongst other

regarding the accuracy, robustness and it is very easy to code due to its architectural

simplicity. On the other hand, RetinaNet is the only model experimented for object

detection as long as it exceeds the other methods with its one-stage procedure and

robustness. It is also remarkable that the smart-pooling is superior to the mostly used

average and max-pooling methods in terms of qualitative and quantitative performance

measurements.

It has to be underlined that our reproducible results prove the significant power of

training-validation data types. In essence, once a CNN model is obtained as a result

of training hybrid dataset such as ADORESet, then it can be applied to real and

simulation images together or separately. Additionally, ADORESet is suitable for

developing novel algorithms, which can be CNNs or classical methods, intended to

detect and/or recognize objects. These applications aspire to include ADORESet and

CNN based recognition to augment better grasping and manipulation performance in

service robotics. The smart-pooling technique has also potential to serve designing

innovative CNN architectures with its compact and competent structure incorporating

the favorable properties of the most common methods.
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4. CASE STUDY: THE OBJECT MANIPULATION EMPLOYING A
ROBOTIC MECHANISM

This study was conducted in the form of a series of experiments, with the data from

newly presented image dataset, in the manner of object recognition, object localization

adopting both conventional methods and deep learning techniques in conjunction with

introducing ADORESet and a pooling strategy called smart-pooling. The outcomes

are also analyzed both qualitatively and quantitatively. In fact, the methods utilized

in the manipulation scenario are determined together with the relevant objects. This

chapter takes the form of integrated simulation and empirical scenarios involving

similar robotic mechanisms that manipulate the visually recognized objects standing

on a table surface called "Deep Table", because it is equipped with the cameras,

robotic mechanism, and mechanic structure. The "Deep Table" has similar properties

in simulation and real-world cases.

4.1 Introduction

Vision is an essential component in humanoid robotics and plays a key role in

developing perceptual systems. When vision is the case for intelligent algorithms, then

the datasets are the primary issues concerning their compatibilities to the particular

applications. Moreover, the content of the data samples is as much important as

the adopted algorithms. Following the dataset arrangement, the routine machine

learning actions become the main considerations for a successful implementation. For

instance, a robotic application may only require extracting semantic information stored

in images and count the objects belonging to a specific category while another implies

to move to place the objects in relevant locations. These details define the framework

of the learning system. There ensure blurred boundaries surrounding the smart systems

nevertheless the limits are rigorously defined in the deterministic approach. In other

words, the smart mechanisms can favorably proceed and settle when an unexpected

or unforeseen disturbance or system input arises; however, the deterministic systems

fail in such situations. Artificial intelligence by means of deep neural networks is
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increasingly set to become a vital factor in robotic systems. A striking aspect of

DNNs is that the prevalence in complex systems together with the simplicity of

implementation. In most cases, DNNs are able to produce ready-to-use models in

different domains and platforms. As a result of proving its human-level performance

scores in different areas, DNNs conquered the territory, and most of the recent works

incorporate it. Thus, the DNN-free attitudes are assumed to be obsolete as long as the

system is not able to infer from or respond to inputs successfully. In contemporary

robotics approach, it is generally admitted that the DNN-based algorithms employ the

sensory data and generates meaningful semantic decisions and/or actions as well as the

robotics mechanisms have been converted to more skillful forms, which enable them

to succeed in complicated tasks, i.e., variable stiffness joints.

A striking property of DNN models is to have the capability of processing big

data and achieving human-level performance results. Since this thesis covers the

manipulation of visually recognized objects, we focus on the visual applications of

DNN models. For this reason, we retrained the most prominent CNN architectures

to recognize the objects adopting ADORESet along with to localize the objects within

scenes, namely we fine-tuned these pre-trained models with our custom dataset. In

consequence, we configured the visual system of our case scenarios composing of

object recognition and localization with the implemented VGGNet and RetinaNet

architectures, respectively. Moreover, the modern robotics needs further processes

for the outputs of these CNN models to extract semantic information, e.g., the relation

between the recognized objects, the behavior of these objects, their physical attributes.

In ADORESet, we provide the information that belongs to the object relation depending

on the appearances within the same image. Beyond that, we also assigned identical

physical properties to each object considered to be manipulated, and then we built

our control procedure on top of the semantic information both for simulation and

experiment sessions.

It is often stated that the primary objective of robotics researches is to mimic

human behavior and motions favorably; however, the existent view beneath this is

to beat the human-level performances because of up-to-date demands, necessities,

and requirements. The importance of robotic mechanisms is still poorly understood

in the context of their human imitating potentials. Even if the robots serve in the
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Figure 4.1 : Variable radius pulley types a) Translational VRP, b) Rotational VRP.

industry with satisfactory results for many years within strictly restricted workspaces

and missions, the advancement in humanoid robotics still is not near to reach that level.

Therefore, variable radius pulley (VRP) mechanisms are asserted to provide the recent

expectations regarding stiffness arrangement, zero backlash, gravity compensation,

simplicity, and compactness. The stiffness adjustment ability is maintained by the

springs and allows the robots to work appropriately under different conditions. The

springs can be inserted into a VRP system in two ways as shown in Figure 4.1

a) and b) as translational spring placed in the middle of the pulley and rotational

spring placed outside the pulley, respectively, where a cable wraps around the pulley

profile. The pulley radius shift induces non-linear moment-rotation affair. These

force/moment-deflection specifications are provided by the pulley profiles. Therefore,

we intend to direct one of the innovative approaches to close the gap between desired

and existing performance levels and adopt a variable radius pulley-variable stiffness

joint (VRP-VSJ) mechanism to execute the manipulation task properly. In this way,

our mechanism can adjust the stiffness and forces to be applied distinctively to the

recognized objects according to the properties.

This chapter is organized as follows; the literature review is given in Section 4.2, and

then the simulations are provided in Section 4.3. Afterwards, in Section 4.4, the tests

on the robotic mechanism are conducted. In the last part of this chapter, the results are

revealed before the conclusion and discussion in Section 4.5 and 4.6, respectively.
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4.2 Literature

A considerable volume of literature has been published on the robot-object interaction

strategies. What is more, the properties stored in objects and talented mechanisms

are neglected because of the lack of the computational power and reluctant attitude

to VRP-VSJ mechanisms. In traditional rigid robot designs, external force/torque

(f/t) is estimated using motor currents as explained in [147] or frictional model

identification as given in [148]. All of these methods demand initial off-line calibration

or identification processes. The rigid mechanisms cannot nevertheless afford the

requisite which dictates the variation in stiffness for modern robotic applications

working under different conditions. Reasonably, the VSJs are remarkably better

choice than conventional systems, especially considering the dominance in the energy

consumption and force interaction.

Flexible joint mechanisms have compliance that facilitates to compensate f/t passively.

The study in [149], declares an antagonistic cable-driven mechanism using two motors

for angle and stiffness adjustment separately to approximate human-like motion. A

major part of the robotic tasks, social robotics in particular, necessitate safe force

interaction. The change in the muscle stiffness is stated as linearly implying a quadratic

stiffness characteristic from the spring. Moreover, for more complex force-deflection

necessities of robots, [149] proposes a cam mechanism imitating the biological muscle

motion with quadratic properties. The tests are run in an antagonistic setup, and linear

stiffness characteristics are observed by co-contraction. Alternatively, variable radius

or non-circular profiles in pulley designs can be used both in translational [150] and

rotational [151] ways. In [151], to produce a non-linear force-torque deflection profile,

a torsional spring is utilized unlike the VRP mechanisms adopting translational springs

to generate spring elongation based torque profile. The readers seeking for more

information on this topic, should refer to read [152], to which partially contributed

as a part of this thesis, that declares the VRP-VSJ mechanism employed in this thesis

to perform the manipulation task in the way of approximating the human approach.

One of the most important engineering considerations is to minimize the cost. In

this study, we aim to estimate the external f/t affecting onto the objects to be

manipulated following the visual recognition and localization which is obtained

without additional sensors rather than encoders. The dynamic working conditions
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make it more difficult for conventional model-based estimation of external f/t effecting

on the joints because of the uncertainties and errors due to the lack of sufficient

mapping capabilities real-world conditions to the mathematical models. The study

in [153] reveals the success of ANNs to handle non-linearities in dynamical systems.

It is common for model-based estimation methods to linearize non-linear systems by

making assumptions and then perform the algorithm with a linear observer [154].

Although the performance of ANNs depends on data regarding many factors such as

size, diversity, reliability, etc., as shown in [155] they give successful tracking results

using a 2 DoF robotic arm when there is uncertainty, which makes them preferable

for real-world applications. Likewise, [156] trains a neural network with two hidden

layers to estimate the payload of a series manipulator using trajectory data for both

single joint and multi-joint cases. While learning to estimate external forces is still a

challenging problem in robotics, [157] uses convolution based deep neural network,

which is trained by sequences of depth images as point clouds, to estimate robotic arm

motion. For estimating contact force in haptic applications without expensive devices,

[158] introduces ANN-based force/torque observers using only position and torque

data. Beyond acceptable force/torque estimation, tracking and control instances of

ANNs using simulation and/or measured data from various sensors in robotic systems,

our study proposes to estimate external force/torque values of a VRP-VSJ mechanism

using solely measured encoder data with ANN models.

In unknown environments, when the robot interacts with the objects inside without

preconfiguration, then external sensor usage becomes compulsory to execute the tasks.

Even if the visual data is sent to the system as feedback, semantic knowledge may raise

the sensitivity and helps the robot to approximate human-level manipulation motion.

The particular areas of the way people interact with objects and how the things affect

on this still remain obscure; however, a noticeable quantity of studies are being carried

on. On behalf of clarifying the neurophysiological background of visual perception

and its relation with actions, [159] emphasizes that the visual perception generates

intention which belongs to the observed subject. The same study suggests that the

natural motion recognition is executed through the curing by the perception and human

motor functions. There also exists a connection between perception and motor control

domains that interacts and affects each other. Additionally, the extended analysis
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exposes the neuroimaging results of primate cerebral cortex that the intention of the

aim influences the visual pathway status, for instance, it is consistent with biological

motion if the aim is explicit; otherwise, it is implicated. The study in [160] investigates

the working principles of the brain concerning the sensory inputs effects on the actions

by evaluating an experiment conducted on astronauts who estimate time-to-contact

with oncoming objects. It is indicated that the brain trusts a second-order internal

physical model and the intuitions prevail, even though the objects are visually seen,

and the astronauts know the conditions. However, time-to-contact is not successfully

estimated in the zero-gravity situation, and an internal gravity model interferes the

actions despite the explicit vision. [161] highlights how people perform object grasping

and manipulation and what lies beneath the decision of the way executing these tasks

by observing the velocity and force transmission ellipsoid motions. The primitive

relations of object affordances with human understanding and consideration of them

as grasping and manipulation tools are explained in detail. Moreover, 7 people

participated in the tests to perform 9 grasping motion with 5 objects at their fingertips.

The people wear a glove equipped with sensors and orientation, velocity, position,

and stiffness data are gathered. The findings reveal that the grasp stiffness depends

on the situation of the hand and conducting more fingers during grasps raises the

stiffness. So that the anticipated grasp schedule is not only performed according to the

object geometry, but also the desired manipulation. In addition, the finger locations

on the objects change the velocity and force transmission ellipsoids. In [162], the

importance of actions in object recognition is examined empirically whether visual

object recognition and object-directed actions are separate processes happening in

primary visual cortex and dorsal visual system, respectively. It is indicated that there is

not an exact clue on the relationship between action representations and visual object

recognition; however, there are remarkable evidences on the interactions between

object recognition and object-directed actions that also influence each other. The

first experiment in this study is conducted employing the known objects, which are

shown under poor light conditions, and the action priming is observed concerning

the accordance with motor interactions. In the second experiment, the constitution of

action priming is monitored with the intention of revealing the relationships with action

representations depending on object information and the meaning of objects. The

existence of the priming effect on naming accuracy for precedence of different objects
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with similar motor interactions and the absence of the action priming effect for verbal

stimuli are proposed as outputs of the experiments, respectively. In other words, the

effect of visual information of objects is more important for human actions rather than

the verbal meaning of the objects. [163] investigates the function of motor actions in

visual perceptual evaluation by testing the recognition, association, and manipulation

motions for the same objects on 37 unilateral stroke patients. The findings assert that

there is interrelationship between the usage of objects and their recognition as well

as there is connection between the motion recognition and replication. However, they

claim the motor actions do not provide apparent meaningful information to conceptual

framework directly.

Unlike neuropsychology-based studies, [164] refers to analyze the human-objects

interactions over visual data with a Bayesian approach that incorporates the perceptual

knowledge with the object response to manipulation or similar actions. The study

explains two models to interpret human-object interactions in videos and static images

by fusing the action and object recognition in the same framework. Moreover, it

is proposed that the recognition performance is raised due to the combination of

functional and spatial context. [165] proposes an autonomous task dependent grasping

method for visually recognized objects by using conventional feature matching

methods. The geometry of objects is taken into account for the humanoid robot

as experimental platform and the grasps are performed with the visual servoing

approach. The object categorization process is comprised of segmenting out the

objects, recognition, and pose estimation while the grasping schema is composed of

the perception (segmentation, recognition, and orientation arrangement), prediction

(grasp hypothesis generation, task identification, and grasp method selection), and

action (visual servoing and tracking the object and marker) steps. The results of

this study claim to increase the efficiency and success rates of the grasp tasks for

the autonomous motions; however, the tasks and motion characteristics depending on

the object categories are predefined and given to the humanoid robot. In a simlar

manner, [166] examines the behavior transfer approaches regarding impedance from

people to robots by imitation learning. To generate the desired motion with variable

impedance actuators (VIAs), they investigate whether it is more propriety of the

direct transfer of human impedance symptoms to a correspondent robotic arm or
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scan the values minimizing the cost function applying an inverse optimal control.

The findings suggest that feature-based tracking is appropriate for supervised learning

from human teachers as long as the inverse optimal control is better if the behavior

will be transferred from a robotic system to another. The behaviors of 21 human

subjects for reaching or slicing motions are examined in [167] within an imposed

visual feedback delay sequence to verify if the brain can handle the variations in a

feedback loop delay and rearrange itself. The effects of visual feedback on human

motor control functions are argued similar to [160], and the overshoot of the motions

are indicated as the evidence of vision-based feedback control in humans. However,

after several trials, the human subjects readjusted themselves to the new situation

successfully. In the last part of this experiment, the delay is removed instantly, and

the subjects undershot the target this time. Furthermore, in the second test in this

study, the same findings are obtained for harmonic back-and-forth motions. The

relationship between the feedback and feedforward controllers are also examined, and

it is stated that these controllers collaborate with visual feedback while performing

movements and motor learning. [168] proposes a model involving an anticipatory

temporal conditional random field with the aim of predicting the next human motion

sequences. The object affordances are obtained from its role in the activity gathered

from the depth videos and tracked by SIFT features. The results of this study assert

that the anticipation, which is composed of the sub-activities and interactions with

objects, enhances the object detection performance for past activities and affordances,

nevertheless the performance declines drastically for future actions and affordances.

Another empirical study investigating the effects of visual feedback in arm movements

is performed in [169]. In the experiments, the human subjects move their arms between

two goal stimuli with pointing-like dot-placing task at even spaces. The findings

suggest that vision has effects on movement accuracy while former knowledge of

target positions has smaller effect as well as the movement length has no influence

on the performance.

The debate continues about the best strategies for the role of visual data in motor

functions and the parameters that affect the visuomotor actions. However, the major

part of the studies suggest that the vision and learned attributes have relation as well

as the people make inferences combining them for the known and unknown situations.
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Afterwards, the feedback is employed to adapt if there occurs any unforeseen failure.

Remarkably, the algorithms are also disturbed by unknown situations. Therefore, our

platform is supported by two visual feedbacks along with the encoders that the position

and stiffness can be calculated. Moreover, the predefined attributes of objects make

our system more stable and robust to disturbances. The assignment of the physical

attributes and recognizing object classes contributes to the calculation of force vector

to be applied to the objects identically. The force vector includes the position where

the force will be applied on the object surface, the magnitude, and the orientation

information.

4.3 The Robotic Mechanism and Simulations

Robots are employed for many decades in the industry; however, nowadays they

occupy a significant space in everyday life. Both use cases expect more sensitivity,

safety, robustness, and precision than the levels of these in the past. As a matter of

fact the current requirements and necessities anticipate further meaningful semantic

knowledge extraction from the data. The object class labels are deficient for robotics

applications regarding the meaningful knowledge as long as they are not supported by

different type of information such as the physical and semantic properties of objects.

In other words, inserting additional information to the object labels facilitate the robots

to approximate current expectations. Therefore, it is supposed from the robotics

systems to be equipped with advanced hardware and software to execute vision and

manipulation tasks. In this part of the thesis, the simulation results of a robotic arm,

which manipulates the recognized objects using deep neural networks considering

the physical features, are given for 10 different categories from the synthetic part of

ADORESet. The robotic arm calculates the force to be applied onto the objects as given

in Equation (4.1):

F(x,y,z) = c1 ∗density+ c2 ∗ f lexibility+ c3 ∗de f ormability+ c4∗ f riction∗mass

(4.1)

where (x,y,z) is the position where the force will be applied, ci for i = 1, ...,4 denote

the empirical coefficients that are adjusted according to the simulations identical to

each object and other physical properties belong to the object categories as well. The

miscalculation of this equation or using a fixed level of force value can cause three
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possibilities concerning the results of the object manipulation tasks as follows: i)

knocking over due to the excessive force, ii) remaining in the constant position and

does not move due to the insufficient force, and iii) the satisfactory motion ending at the

desired position because of the adequate force. The (x,y,z) coordinates are determined

according to the object classes and the measured dimensions of the object from the

cameras; thus, the center of mass position can be calculated approximately as the point

where the force is applied. To conduct the simulation with the proposed manipulation

approach, a 2 DoF robotic arm (one prismatic joint for linear vertical motion and one

revolute joint for rotational motion) is employed by adopting the Gazebo simulation

tool within robot operating system (ROS). The manipulation task is defined as to move

the visually recognized objects from one point to another and the torque control of the

manipulator is contemplated as on-off control. Generating the object specific behavior

is accomplished by considering the additional object properties. A fine-tuned VGGNet

model is used as the object recognition algorithm and a color-based object localization

method is preferred to determine the spatial coordinates of the objects, which uses the

depth data from three depth cameras located on top, front and one side of the Deep

Table for position tracking and recognition, respectively. In Figure 4.2 a), the initial

positions of these objects within the Deep Table is displayed and Figure 4.2 b) shows

the view of the front camera and predicted labels of the objects remaining in front

of them. After the manipulator performs the given tasks, the objects are displaced

to the desired positions as illustrated in Figure 4.2 c). The displacement during the

manipulation is given in Figure 4.2 d), which reveals how the algorithm generates

a force application procedure according to the predicted labels and other properties

belong to the objects. For instance, the movements of the smaller in volume and lighter

in weight objects end before than the bigger in volume and heavier in weight objects.

All the data is gathered in the computer which process and calculates four outputs; i)

position, ii) stiffness of VRP-VSJ and position of the Cartesian platform in iii) x-axis

and iv) y-axis. The serial port communication is adopted to transmit commands and

receive sensory feedback concerning the simplicity.
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Figure 4.2 : The manipulation simulations within the Deep Table: a) initial
conditions, b) object recognition, c) side view and object labels predicted

by the algorithm, and d) the progress during the manipulation.
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Figure 4.3 : The Deep Table.

4.4 The Robotic Mechanism, the Deep Table and Experiments

Since the main objective of this thesis is to manipulate the visually recognized objects,

a 3 DoF robotic mechanism is constructed using 3D printed elements excluding

off-the-shelf products. Thus, the cost of the complete system is minimized. The

components of the Deep Table is presented in Figure 4.3.

There is a depth camera placed on top of the workspace at 100cm height focusing

the object motion and the visual depth data is also used to calculate the volume

and location of the objects. In addition, there is a webcam located in the horizontal

direction of the end effector at 60cm distance and its data is used to recognize objects

and localize the bounding box coordinates in the vertical plane, which is also used to

determine the contact height. The computer gathers the data from the whole system

and it is employed to monitor the progress during experiments. The base of the

mechanism is fixed to the table and the horizontal axis is moved over a linear bearing.

The vertical axis motion is maintained by driving a ball-screw. The motors, which

control the vertical and horizontal axes, are nema-17 stepper-motors, which adjust the

height and the horizontal depth of the mechanism. The VRP-VSJ is equipped with

3 encoders, the data of which is used to compute the applied f/t. There is an end
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Var able Rad us Pulley Mechan sm

Figure 4.4 : The VRP-VSJ mechanism and a VRP in exploited view.

effector mounted to the VRP-VSJ to improve the contact to the objects. There are two

DC-motors with worm-gears those control the stiffness and position of the VRP-VSJ

mechanism via cables. The stepper-motors and DC-motors are controlled by Arduino

boards. Given these points, the Deep Table provides an infrastructure for manipulation

scenarios and testing computer vision algorithms involving robotic mechanisms. The

VRP-VSJ contributes to the Deep Table by means of variable stiffness actuation ability,

compliance and safety, energy-efficiency, simplicity, compactness and light-weight

structure, minimum backlash, modularity, and human-like manipulation ability.

4.4.1 The VRP-VSJ mechanism and force estimation

VRP mechanisms maintain a broad spectrum of unique approaches to modern robotics

research, mainly to the soft-robotics field. One of the most influential properties

of VRP mechanisms is to have adjustable stiffness characteristics where springs are

principally utilized to control the rigidity by a cable. Therefore, compliance and

robustness can also be thought as the distinctive components of VRPs. Additionally,

involving a compact design and being ready to be produced at a low cost contribute

to design flexibility of VRPs. To benefit from the advantages of using a VRP-VSJ

mechanism to manipulate the objects, we designed and manufactured a mechanism

involving a VRP-VSJ tool as the manipulator part. The VRP-VSJ design used in this

thesis is shown in Figure 4.4 with the exploited view of the VRP box that facilitates

the adjust the stiffness.

The θ values show the angles of the joints, and VRPs. The stiffness adjustment is

maintained by both the VRP profile and the rotational spring. Since the end effector

of our mechanism does not equipped with a force measuring sensor, it cannot measure

the f/t during the contact to the object and we have to estimate the applied f/t from

the data of three encoders. Hence, we built a sparse ANN structure for estimation.
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There are many successful model-based applications; however, uncertainties in system

parameters and modeling assumptions cause model-based estimation methods to

be error-prone. ANNs are adequate to produce outstanding results in the case of

multi-channel and various kind of data in large quantities. Moreover, variance in the

training data is a desired feature in most cases. However, noise is one of the most

compelling issues for model-based architectures, ANNs have the competence to cope

with noise in input data. The ANN model adopted in this study does external force

estimation using only VRP-VSJ encoders data. Two ANN models according to the

input data types are considered estimating the external force (simply a regression

problem) effecting on the mechanism. One of the ANN models is fed with three

encoders data belong to the joint and VRPs whilst the other one uses encoder data of the

two motors additionally. Load cell measurements are assumed to be the ground-truth

values for both models. We split the data into training and test parts according to

k-fold cross validation convention where k is set to 5 as a typical usage. There are

17500 samples for each input feature within the whole dataset that is collected directly

from the VRP-VSJ mechanism. Furthermore, our ANN models are trained on a laptop

computer with a CPU of Intel i7 and a GPU Nvidia GTX-570m that runs Linux Ubuntu

16.04. We implemented the codes with Keras runing on top of Tensorflow. In Figure

4.5, the 5-input ANN model is symbolically represented. Correspondingly, the 3-input

ANN model can be obtained by removing the last two input features. The joint angle

is denoted by θ0 while the VRP angles are indicated by θ1 and θ2. Additionally, the

motor angles are represented by θM1 and θM2.

The 3-input and 5-input models are trained for various number of hidden layers and

neurons adopting different activation functions and backpropagation techniques. The

best model, which has 3 inputs at 2 hidden layers having 80 neurons at each achieved

a root-mean-square error (RMSE) of 0.0987 rate after 500 epochs of training. This

model uses stochastic gradient descent for parameter update with 0.0005 learning rate

and ReLU as activation function. The output of the network estimates the applied f/t

values within a [0,1000] range in grams.
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Figure 4.5 : The f/t estimation model training representation.

4.4.2 Proposed control methodology

The relationship between the appearance of objects and movement related anticipations

for humans are widely investigated in the literature. But there is still not an exact

consensus on how people use the visual data to perform actions towards objects and

what affects the brain and visuomotor control functions. On the other hand, the

robotics researchers study the similar subjects with the aim of bridging the gap between

robot and human motions considering the qualitative and quantitative performance

metrics such as smoothness, safety, efficiency, robustness, and accuracy. Hence, they

investigate the role of visual feedback in human perception and action domains as

well as a great amount of studies are carried on the human-inspired robotics field

involving the human musculoskeletal system studies. Semantic knowledge about the

target object for manipulation tasks provides a priori data before the contact or grasp;

therefore, the action can be determined including the object dynamics. Since we intend

to point out the benefits of this approach, a straightforward manipulation task is taken

into consideration for the simulations and the experiments. An object which is placed

on a table surface is requested to be moved by a precise value with the proposed

variable-stiffness joint mechanism without tilting over or damaging the object. To

complete the relocation successfully, approximate object weight and center of gravity

are utilized to determine the joint stiffness and contact height. The suggested control

block diagram is presented in Figure 4.6.
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Figure 4.6 : The control schema of the proposed manipulation system.

Regarding the figure, after the object to be put on the Deep Table, first, it is recognized

with our computer vision system containing object localization and recognition parts.

A look-up table which keeps the physical information about the thirty objects included

in ADORESet, is utilized to pick up the weight and the center of gravity of the object.

Then required stiffness is calculated according to object weight. The computer vision

algorithm does not only indicate the object type but also produces the bounding-box

coordinates. As a result of processing the data from the depth and web cameras,

the explicit location and the height of the object is detected, and the contact point

is calculated, especially in vertical axis. The controllers of rigid Cartesian manipulator

bring the end-effector to correct position while the VRP-VSJ carries out the moving

task with specified stiffness. Considering the control architecture proposed herein

and the human in manipulation task, it can be seen that there are similarities between

them. As humans approach an identified object by taking into account the experiences,

which can be accepted as the feedforward direction. Also, the shape of grasping or

moving is notable for an outstanding operation; the experiences of the Newtonian

dynamics determine it. On the other hand, after the contact, both the position and the

f/t information is acquired by visual and tactile sensing units, and they are fed back to

the main controller, brain, until the task is accomplished. Likewise, the recommended

approach uses prior knowledge produced by the look-up table before starting the task.

Then it provides back the visual and force data. If one of the feedforward or feedback

paths are blocked, then the performance of the controller either drops immediately

or fails. As it is expressed earlier, both motors in the VRP-VSJ mechanism adjusts
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the position and stiffness independently. However, when its path is intercepted, it is

impractical to manage the position and applied force in the same axis at the same

time. Therefore, the coefficients of P controllers in both controller are regarded as

the weighing factors. To accomplish the task, the influence of the stiffness control is

intensified when compared to the position controller.

4.5 Results

The simulation approach lead us to gain some time before implementing our

algorithms to manipulate visually recognized objects. A simplified version of our

Deep Table is replicated in Gazebo environment. The findings suggests that assigning

physical attributes to object identically improve the semantic information retrieval

along with moving capability of the system. The comparison results of the situations

are explained whether the robotic arm has the preliminary information about the

category and physical attributes. The results reveal that satisfactory motions cannot

be achieved except random situations if the preliminary information does not exist.

The empirical tests conducted in this section are presented for five of the many potential

scenarios incorporating combinations of incorrect positioning and stiffness selection

for high and low inertia objects. Firstly, the proposed control algorithm is disrupted

deliberately to bring about inaccurate stiffness or position outputs to demonstrate and

explore those probable situations. Then the algorithm is reset to defaults to indicate

the performance of the proposed control technique and VRP-VSJ mechanism. The

image sequences belong to the 5 experiments captured during the motion from both

front camera and depth camera are shown in Figure 3.18. The individual images for

each test starts with the initial representations of the components of the mechanism

and the progress during the operation until the end is given with the images from top

to the bottom, respectively. All of the test cases are expressed by 5 images. For each

cases, the images at leftmost are captured from the front webcam and the remaining

images are taken from the depth camera at the same time. While the middle images

are ordinary color images, the rightmost images are the depth images. Fusing the

information from these with the encoders, we perform the manipulation of visually

recognized objects within the Deep Table. A cup is used in the first case as shown in

Figure 4.7 a) and it is resulted in a failure in the end by tilting the cup over as can be
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seen from the last two image sequences. On the other hand, Figure 4.7 b) displays

a successful operation for cup moving task by adjusting the stiffness and the contact

point properly. In Figure 4.7 c) and Figure 4.7 d), the empty bottles are employed

to execute the manipulations. Due to the different f/t values applied onto the bottles

from different contact points the test in Figure 4.7 c) accomplishes the tasks while the

test in Figure 4.7 d) yields failure as tilting the bottle over. The last case expressed

in this thesis is illustrated in Figure 4.7 e) where a semi-filled bottle is picked as

the object. Unlike the other situations, the motion cannot be completed in behalf

of insufficient f/t applied onto the object even if the contact position is correct and

the object is not tilted over. If the bottle is removed from the path, then it completes

its motion as simultaneously. Moreover, the resulting VRP-VSJ positions are also

explained hereafter with the order of the cases given in Figure 4.7.
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Figure 4.8 : The failed cup motion because of tilting over.

Even though it is an unequivocal task, the contact point between the robot and the

object is crucial for the moving task. So, experience with Newton dynamics is

indispensable to accomplish such a straightforward motion. While touching point

under the center of gravity ensures the stability of the moving, higher points cause

tilt over. The data gathered from the encoders of the VRP-VSJ mechanism during the

experiment is presented in Figure 4.8 as a cup is knocked over. It is worth remarking

that, the time of this figure starts just before the contact moment. The contact between

the object and the arm is expressed in the difference of two VRP encoders. The

differences between the VRPs are linked to the applied force linearly. Thus, it can

be observed from the figure that the contact is lost before the end effector comes to the

desired position. In this case, although stiffness selection is convenient for the object,

herein a cup, the task fails because of the incorrect decision of the contact point.

Another experiment is engaged a cup as the object to be manipulated to illustrate the

performance of the controller when the object has high inertia. Figure 4.9 displays the

successful results of this test. Higher forces are applied to the object from the previous

case as can be discovered from the graph. At the end of the operation, the arm arrives

at the desired position, 30◦.

In the preceding experiment, the default controller configuration is uploaded to test the

successful moving task with the objects as discussed earlier. In this situation, when the

inertia is small, a satisfactory level of stiffness applies an appropriate force to move

the object carefully. Figure 4.10 demonstrates the successful experiment results of an
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Figure 4.9 : The successful cup motion.
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Figure 4.10 : The successful empty bottle motion.

empty bottle moving operation. It can be interpreted from the figure, during the contact

phase which is between fifth and tenth seconds, the difference between both VPRs is

small meaning that likewise the applied force is small. Since the inertia is expected

to be the priority, the motion is not finished at the desired position; however, without

occlusion of the object, it can not arrive at that position. Thus, it can move the object

as close as possible to the desired location without damaging or tilting over it, which

can be thought as a successful experiment.

This empirical test is to demonstrate how moving task is terminated when the stiffness

is set to a larger value than needed amount for objects with smaller inertias. To interpret

this, an empty bottle, which is weighing a few grams, is adopted as the object to be

manipulated. The results of the same operation are expressed in Figure 4.11. As can be
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Figure 4.11 : The failed empty bottle motion because of tilting over.

seen that the impact appears at a moment around fifth second, where all of the encoder

measurements intersect. At this situation, the applied force does not rise according to

the encoders of VRPs. In fact, at the impact time, the applied force is big adequate

to cause the contact to be unstable. Thereafter, the object tilts over, and VRP-VSJ

maintains its motion without any further interaction.

As well as the greater stiffness values, the small stiffness also eventuates incomplete

tasks. In this case of our empirical tests, the inertia of the bottle is increased by filling

with water half of it. The results of the experiment are displayed in Figure 4.12. After

the initial contact approximately at 25◦, VRP-VSJ consumes a considerable effort to

move the object to the desired position. However, it can be viewed that the motion of

the arm ends at around−7◦. In this test, the object is manually taken away to prove that

the arm can pursue its movement when the massive bottle does not impede the way.

Another aspect of this is the challenge of estimation of physical attributes of fillable

objects such as bottle and cup despite the recognition of it. Even humans can fail in

such a case, undoubtedly; they overcome this problem through feedback control.

4.6 Discussion and Conclusion

There is still not a solid unanimity on the link between the visual perception and

visuomotor functions in humans. This particular area of the unique role of the object

classes has been overlooked concerning the construction of a robot-object interaction

framework. For this reason, we assert an alternative approach to the existing literature.
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Figure 4.12 : The failed semi-filled bottle motion because of insufficient f/t.

To demonstrate the advantages of acquiring the semantic knowledge belonging to the

objects identically, we propose to perform the suggested procedure in two stages as

simulation and empirical tests, respectively.

The simulations are executed within a structured Gazebo environment equipped with

a 2 DoF manipulator and three depth cameras as a Deep Table replication. The

motion progresses for 10 object classes are presented comparatively. Once the objects

are recognized using VGG16 model, and then the manipulator acts according to the

assigned features. Thus, the desired motions are achieved for all objects within

different motion periods for the reason that the manipulator action characteristics differ

for the other kind of objects. Unsuccessful manipulations are also observed due to

the incorrect f/t applications and improper contact point determinations but not given

amongst the results. The motion behaviors show characteristic properties according to

the volume, weight, and contact points.

ADORESet provides a substantial amount of images per category and capability

regarding the object types those can remain on a table surface. Employing the

ADORESet, we trained two separate CNNs with the intention of object localization

in spatial coordinates and object recognition. The fine-tuned architecture outputs show

that the RetinaNet and VGGNet models are suitable for our experiments regarding

the object localization and recognition, respectively. Thus, our system becomes able

to process 4 frame-per-second and responds the bounding-box coordinates with the

object label. Moreover, our smart-pooling algorithm has contributed the performance
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as well. The 3 DoF robotic arm mechanism is capable of reaching every point within its

workspace together with the stiffness adjustment ability. We demonstrated 5 separate

experiments with the aim of clarification of our proposed approach. The generic

structure of our procedure reveals how such a low-cost and modular robotic arm can

manipulate different types of objects successfully adopting the visual feedback.

102



5. DISCUSSION AND CONCLUSION

Retrieving semantic information is necessary to implement complex robotic

applications successfully. Thus, it is commonly expected from the robotics systems

to be armed with advanced hardware and software. The modern humanoid robotics

research exploits the nature and tries to mimic or replicate biological creatures. At

this point, humans are the great observation sources according to this research field

through fundamental properties to understand the working procedure of the brain

and physical features to adapt different conditions. The interactions between these

two properties are also a hot topic that still has blurred boundaries. It is commonly

argued that the semantic information as a consequence of the physical interactions

forms the perceptions and it manages the anticipations and future actions; however,

the adaptation to new situations requiring different actions is argued as the opposite

view that also affects the visuomotor functions. The visual perception is located at the

heart of these discussions, which is accepted as one of the most influential data sources

for the brain together with being the highest amount of data supplier. Therefore, we

designed a system to implement object manipulation task adopting visual feedback

and a VRP-VSJ mechanism those will facilitate our mechanism to approximate human

manipulation approach.

As a starting point of examining the potential of the visual cues, first the conventional

feature detector and descriptor combinations on image matching. Our universal

structure for testing the performance outputs of feature detector and descriptors

analyzes the combinations of these methods regarding the extra metrics such as

minimum distance between proper matches, number of correct matches, orientation

difference between matches. Then, it is showed that the response time of those

algorithms are not convenient for real-time applications along with the deficient

accuracy rates. However, these out-of-fashion algorithms are able to obtain semantic

information and help the visual systems to be useful for robotic applications, whether

they require a lot of computational power. To overcome these issues due to the nature
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of conventional feature extraction techniques, we refer to employ deep neural networks

that are able process larger quantities of data intent to run in real-time applications with

high performance rates.

The prevalence of intelligent systems makes it feasible to acquire more voluminous

data with many more dimensions than before. One of the reasons behind the success

of deep neural networks is the capacity of processing a vast amount of data. In

fact, the increase in the data amount also raises its success. Moreover, time spent

during developments in robotics is a significant cost to be reduced, which restricts

maneuverability and diversity. To optimize this period, the referred method is to

take advantage of simulation environments, which reproduce real-world conditions as

much as possible. In most cases, machine vision based problems in robotics such as

object detection and recognition, object tracking and manipulation are implemented

employing real-world or simulation images, separately. The primary purpose of

computer vision and control in the robotics field is to obtain a perception and

cognition proficiency comparable to or better than humans. In this sense, incorporation

of additional object classes in image datasets, for example, wild animals, large

structures, big vehicles, etc. is futile which lead to worse performance results.

Although the robotic applications simulations give successful results, the outcomes

cannot be instantaneously applied in real-world tests or end-user products due to

the inconsistencies between real and simulation environments. For this reason, we

proposed ADORESet that is composed of colored images, which has 30 classes with

the dimension of 300× 300 pixels. Each class has 2500 real-world images acquired

from wild web and 750 synthetic images that are generated within Gazebo. This

hybrid dataset enables researchers to implement their algorithms both for real-world

and simulation environment conditions. Our hybrid dataset is fully-annotated, and

the limits of objects are manually specified, and bounding box coordinates are

provided. Successor objects are also labeled to give statistical information about the

relations of the objects within the dataset. For example, the relationship between

monitor, keyboard, and mouse can be directly obtained using this useful information.

ADORESet should be of interest to the field of robotics researchers by means of its

hybrid form, compactness in terms of lightweight and relevancy to further robotics and

computer vision applications.
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Even though CNN architectures have many advantages, training and test steps require

a lot of computational effort. Using pretrained parameters and/or ensembles of

different models are more preferred rather than the end-to-end training of CNNs

from scratch. Most of the improvements have benefited from previous architectures

and then fine-tuned or converted them to a more reasonable form for specific

purposes. Hence, we exploited the advantage of having ADORESet and test the

state-of-the-art CNNs for object recognition regarding the dataset constitution whether

it is composed of synthetic, real or hybrid images. We also declared a pooling method

called smart-pooling that extends the current literature with its transitive structure.

Furthermore, the pooling layer also contribute the regularization performance of larger

CNN architectures that also helps to prevent over-fitting. We re-trained 36 CNNs in

total and the VGGNet model is adopted for object recognition in our tests depending

on the performance. The results show that the data constitution is vital for the object

recognition accuracy together with the quantity of images per category. But the

ADORESet enabled us to train the CNN models once, and then, utilize the parameters

either for simulation or real-world applications without any restrictions depending

on the data type. Moreover, with the intention of predicting the bounding-box

spatial coordinates surrounding the objects, we fine-tuned the RetinaNet architecture

to localize the objects in the images for specifying the place of the objects in the

manipulation scenarios. In addition to the visual cues, we assigned extra features

to objects considering their physical characteristics. Our vision system hereby has

ability to connect the labels and locations of the recognized objects with the assigned

physical attributes. So that our robotic mechanism inside the Deep Table can move

different types of objects from one point to another by itself with one algorithm.

The Deep Table is a special test platform that is rigged with a depth camera on the

top, a webcam in the front, a 3 DoF robotic mechanism for manipulation involving

the VRP-VSJ system, motors and controller boards together with the computer. In

manipulation operation, the contact points to the objects play an important role

for successful motions in the context of satisfactory movement, time and energy

consumption. If the optimum point for the force application can be determined, then

the robot will consume less time and less energy to move the object from its path.

Exploiting the knowledge extracted from the sensors within the Deep Table our control
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algorithm executes the manipulation. We present 5 of the many possible cases for

the empirical tests that prove the plausibility and performance of our algorithm. The

results indicate that our algorithm can move different types of objects successfully

ranging from several grams (empty bottle) to around 250 grams (ceramic cup). The

experiments also show the role of contact point where the f/t is applied onto the object.

If the contact point is adjusted conveniently, then the manipulation is terminated with

a tilt over of the object.

In essence, in this thesis, a system is proposed for the manipulation of visually

recognized objects using deep neural networks. In addition to contributing to the

current literature by the comprehensive comparison of feature extraction method

combinations, the ADORESet, the smart-pooling, and the control approach, we open a

path to the potential studies such as developing further object detection and recognition

algorithms, making the detailed performance analysis of the smart-pooling, improving

the control techniques involving reinforcement learning for object manipulation within

the Deep Table, upgrading the VRP-VSJ mechanism to a higher DoF.
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