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images. I believe that the evidences will contribute the current literature.
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MANIPULATION OF VISUALLY RECOGNIZED
OBJECTS USING DEEP LEARNING

SUMMARY

People collect the greatest and most qualified data from their environment through
vision systems. However, for a more complete and reliable perception, it is necessary
to use corresponding data from other senses. Analogous to humans, robots collect
data from the medium they are in via sensors. Object detection, recognition, and
semantic value attribution are among the most recent research areas in robotics.
The development of software and hardware technologies ensures the intelligence of
everyday life. High-resolution, depth-sensing cameras, such as the Internet devices of
objects, have made it possible to obtain multi-dimensional and large volume data. In
parallel, robots have begun to be regarded as part of social life as well as the industrial
field use. Human-robot interaction systems require high accuracy and speed in terms
of real-time operation as content.

In the context of human-robot interaction, safe, fast, and capabilities with high
performance/low error rates have become possible with the help of the advanced
machine learning algorithms and the relevant hardware technologies for these
algorithms. In intelligent manufacturing facilities, the robots are directly dependent on
their hardware and software systems for their movements during their displacement,
their ability to perform their assigned tasks at expected performance levels.
Convolutional neural networks (CNNs) are trained for purposes such as object
recognition, object boundary detection, object segmentation, semantic linkage.

CNNs are a generic name given to specialized artificial neural network models that
contain a certain number of hidden layers, with some extraordinary architecture,
parameter update methods, and activation functions. Deep CNNs trained using
large amount of data that give results with minimal error values that are better
than human performance regarding recognizing objects in the data set they are
trained in, determining bounding-box coordinates surrounding the objects, and
segmenting. Object localization and recognition operations for applications in the
field of robotics are inadequate concerning semantic information extraction and
object-based relationships. For this reason, the class to which the object belongs is
assigned attributes beyond the class labels, so that the algorithms can infer from the
semantic content.

In this thesis, the performances of the conventional visual feature detector and
descriptor methods are analyzed in detail. In addition to the ordinary criteria such
as speed, performance, and matching feature per image as performance criteria, we
also took the distance between matching attributes, the number of correct matching
attributes and the angular orientation difference between matching points into account
during performance comparisons. In the experiments, a query dataset consisting
of 127 template images was conducted matches with a dataset consisting of 3090
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images. As a result of this study, it has been shown that some conventional feature
extraction methods yield acceptable levels when accuracy is considered. However, no
high-accuracy combination suitable for real-time operation has been achieved. From
this aspect, manipulating visually recognized objects within this thesis with a robotic
mechanism has been executed using deep learning methods. As a robotic mechanism,
a structure consisting of a variable radius pulley-variable stiffness joint system is
integrated into the experimental environment we call it the Deep Table.

In this thesis, an image data set named ADORESet was built to bridge the gap between
the real world conditions and the simulation environments for use in robot vision
studies. ADORESet consists of 30 categories consisting 2500 real, 750 synthetic
images in each class, which are manually labeled and bounding-boxes are also
specified by hand. We use VGGNet to perform the object recognition process and
RetinaNet to determine the object locations when moving objects.

In this thesis, an alternative pooling layer is suggested to extend the literature. This
method, called Smart-pooling, processes the relevant filter by taking the values of large
or small pixels roughly. The superiority of the Smart-pooling against average and
max-pooling methods are shown, which are frequently used in CNNs.

The physical properties of the objects, such as weight, density, volume, and size,
caused different behaviors when moving objects using a 2 degrees of freedom (DoF)
robotic arm and three depth cameras in the simulation environment. For example,
when the same force is applied from the same or different points to the same volume,
objects that are different from one another can perform the desired movement other
than tilting a light object. As a result, the physical strength of the object, as well as the
strength of the force application point, emerged.

In this thesis, a test platform called Deep Table was created to move visually
recognized objects using deep learning methods. In the Deep Table, there
is a depth camera fixed at the top to center the robotic arm workspace, a
camera in front of the workspace, a robotic mechanism that moves the variable
radius pulley-variable stiffness joint system in Cartesian coordinates vertically and
horizontally, micro-controllers that generate signals that drive motors with a power
supply, and a computer that is used to observe sensory data collected during the
experiments and to develop algorithms. We present 5 of the possible cases for the
empirical test results. The results prove that our algorithm can move different types of
objects successfully ranging from several grams (empty bottle) to around 250 grams
(ceramic cup). The experiments also explain the role of contact point where the f/t
is applied onto the object. If the contact point is adjusted conveniently, then the
manipulation is terminated with a tilt over of the object. These results undoubtedly
confirm that the control approach proposed in the thesis can improve the object
mobility of robotic mechanisms by semantic bond extraction from visual data of
objects.
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GORSEL TANINAN NESNELERIN DERIN OGRENME
KULLANILARAK HAREKET ETTIRILMESI

OZET

Insanlar, cevrelerinden en biiyiik ve nitelikli veriyi, gorme sistemleri araciligiyla
edinirler. Bununla birlikte, daha eksiksiz ve giivenilir bir algilama i¢in diger duyu
organlarindan elde edilen verileri de tamamlayic1 bir sekilde kullanmak gerekir.
Insanlara benzer sekilde robotlar da algilayicilari araciligiyla i¢inde bulunduklart
ortamdan veri toplarlar. Nesne algilama, tanima ve anlamsal de8er atfetme, robotik
alanindaki en giincel aragtirma alanlarinin baginda gelmektedir. Yazilim ve donanim
teknolojilerinin gelisimi akilli sistemlerin giinliik yasama niifuzunu saglamaktadir.
Yiiksek c¢oziiniirliiklii, derinlik algilayan kameralar, nesnelerin interneti aygitlari
gibi donamimlar ¢ok boyutlu ve biiyiik hacimli veri elde etmeyi miimkiin kilmistir.
Buna paralel olarak robotlar, endiistriyel alanda kullanimlarinin yanisira sosyal
hayatin da bir parcasi olarak degerlendirilmeye baglanmistir. Insan-robot etkilesimli
sistemler icerik olarak gercek zamanda calisma acisindan yiiksek dogruluk ve hiz
gerektirmektedir.

Kontrolsiiz artan diinya niifusu ve dengesiz tiiketimin bir sonucu olarak geleneksel
tiretim yontemlerinin ihtiya¢ ve talepleri karsilayamamasi, zorlu rekabet sartlarinin
hiikiim siirdiigii tiretim sektoriinde yeni yaklagimlar1 zorunlu kilmaktadir. Uretimdeki
bu ihtiya¢ ve zorunluluklara cevap vermek iizere Endiistri 4.0 adl1 yenilik¢i bir vizyon
ile akilli iiretim yontemleri ve tesisleri 6ne siiriilmiistir. Bu vizyon kapsaminda
makinalar, cihazlar, sensorler ve insanlar arasinda iletisimin saglanabildigi, gercek
sistemlerin sanal fiziksel bir kopyasimin dijital ortamda olusturularak bilginin
anlamsallastirlldigr ve bilgi seffaflifinin saglanabildigi ortamlar olusturulmasi
planlanmaktadir. Ayrica insanlara zorlu sartlarda makinalar tarafindan teknik destek
saglanmasi, siber-fiziksel sistemlerin karsilastiklart bazi problemlerle ilgili kendi
kararlarin1 insanlara ihtiya¢ kalmadan verilebilmesi de, bu cercevede, geleneksel
tiretim yontemlerine bilisim teknolojilerinin entegrasyonu i¢in amaclanmaktadir.

Insan-robot etkilesimi cercevesinde, robotlarin; giivenli, hizl1 ve verilen gorevleri
yiiksek bagarim/diistik hata oranlariyla gerceklestirebilmesi, gelisen makine 6grenmesi
algoritmalart ve bu algoritmalara uygun donanmim teknolojileriyle miimkiin hale
gelmistir. Akill tiretim tesislerinde robotlarin yer degistirmeleri esnasindaki hareket-
leri, verilen gorevleri beklenen performans diizeylerinde yapabilme kabiliyetleri, sahip
olduklar1 donanim ve yazilim sistemlerine direkt olarak baghdir. Konvoliisyonel
(evrisimsel/evrisimli) derin yapay sinir aglar1 daha ¢cok nesne tanima gibi gorsel ve
ses tanima gibi ses tabanli verilerle nesne tanima, nesne sinirlar1 belirleme, nesne
boliitleme, anlamsal bag olusturma gibi amaglarla egitilir.

Nesnelerin interneti aygitlar1 ve ¢esitli sensorlerden aldiklari verileri isleyerek, 6grenen
sistemlerin olusturulmas1 modern robotik ihtiyaglarina cevap vermektedir. Boylelikle
ogrenebilen robotik mekanizmalar, igleyisleri esnasinda ¢esitli duyargalardan aldiklari
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verileri isleyerek Ogrendikleri modeller iizerinden kargilagtirma yaparak anlamsal
bilgi edinimine haiz olurlar. Yenilik¢i robotik yaklagimlarda, kritik oneme sahip
olan bu durum vasitasiyla, robotlar karmagik yapilardan anlamli baglar kurarak
insanlara benzer davranig gelistirme Ozelli§i kazanabilirler. Hafiza kapasiteleri,
birim enerji basina performanslari ve paralel hesaplamaya uygun cok cekirdekli
yapilariyla giincel grafik ekran kartlar1 derin yapay sinir ag1 yapilarinin egitilmesine
ve boylece daha fazla parametre 6grenilebilen biiyiik boyutlu verilerin islenmesine
imkan tanimaktadir. Ayrica gomiilii sistem olarak ¢alismaya uygun benzer sekilde ¢cok
cekirdekli donanimlar da gercek zamanl bilgisayarla gorii iceren, karmasik robotik
uygulamalara imkan tanimaktadir.

Konvoliisyonel derin yapay sinir aglari, bazi 6zel mimari, parametre giincelleme
yontemleri ve aktivasyon fonksiyonlart ile ikiden daha fazla sayida gizli katman iceren
Ozellesmis yapay sinir ag1 modellerine verilen genel addir. Biiyiik veri kullanilarak
egitilen derin konvoliisyonel sinir ag1 modelleri, egitildikleri veri kiimesinde bulunan
nesneleri tanima, nesneleri ¢cevreleyen sinirlart belirleme ve boliitleme gibi konularda
insan performansindan daha yiiksek basarimli, ¢ok kiiciik hata de8erlerine sahip
sonuglar vermektedir. Robotik alanindaki uygulamalar i¢in nesne tanima ve nesne
sinirlart belirleme iglemleri anlamsal bilgi ¢ikarimi ve nesnelere dayal: iligki kurma
baglaminda tek bagsina yetersiz kalmaktadir. Bu sebeple, nesnenin ait oldugu
sinifa, sinif etiketlerinin otesinde Oznitelikler atanarak algoritmalarin anlamsal icerik
konusundan ¢ikarim yapabilmeleri saglanir.

Bu tez kapsaminda, geleneksel 6znitelik ¢ikarimi yontemlerinin algilayici ve aciklayici
kisimlarinin birlesimleriyle elde edilen yontemlerin performanslar: detayl bir sekilde
analiz edilmistir. Performans ol¢iitii olarak hiz, basarim ve goriintii bagina dogru
eslesen Oznitelik gibi siradan ol¢iitlerin yanisira eslesen 6zniteliklerin birbirlerine olan
uzaklig1, dogru eslesen 6znitelik sayisi ve eslesen noktalar arasi acisal yonelim farki
gibi Olciitler de kullanilmigtir. Deneylerde, 127 adet sablon goriintiiden olusan bir
sorgu veri kiimesi, 3090 adet goriintiiden olusan bir veri kiimesiyle eslestirilmistir. Bu
calisma sonucunda, baz1 geleneksel 6znitelik ¢ikarict yontemlerin basarim gdzoniine
alindiginda kabul edilebilir seviyelerde sonuglar verdigi goriilmiistiir. Bununla beraber,
gercek zamanl ¢alismaya uygun herhangi bir yiiksek basarimli kombinasyon elde
edilememistir. Ayrica geleneksel yontemlerin getirdigi hesap yiikii nedeniyle goriintii
varyasyonlart kisitli tutulmak zorundadir. Bu sonuglar, geleneksel yoOntemlerin
karmagik robotik gorevlerde istenen sonuglart vermesinin miimkiin olmadigini ortaya
koymaktadir. Bu noktadan hareketle, tez kapsaminda gorsel olarak taninan nesnelerin,
robotik bir mekanizmayla hareket ettirilmesi derin 6grenme yontemleri kullanilarak
gerceklestirilmigtir. Robotik mekanizma olarak degisken yaricapli makara-degisken
sertlikli eklem sisteminden olusan bir yapi, derin masa adi verdigimiz deney ortamina
entegre edilmistir.

Robotik mekanizmalara ait caligmalar uzun ve maliyetli deneyler gerektirmektedir.
Bu ksutlarin etkilerini en aza indirmek adina benzetim ortamlarindan faydalanilir.
Boylece zaman ve maliyetten tasarruf edilirken, bircok varyasyon denemesi yapilarak
gercek diinya deneylerine olabildigince hazir prototiplerle baslanir. Kisith kabiliyete
sahip geleneksel Oznitelik algilama ve tanima yontemlerinden ziyade konvoliisyonel
sinir aglari, bagarim oran1 daha yiiksek ve daha hizli anlamsal bilgi elde edebilmekte,
boylelikle gercek-zamanli robotik uygulamalara imkan tanimaktadir. Bu modellerin
istenen sonuglari iiretebilmeleri parametrelerinin uygun sekilde optimize edilmesine
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baglidir. Bu da ancak yeterli sayida veri ile miimkiindiir. Bu tez kapsaminda
robot goriisii caligmalarinda kullanilmak {iizere, benzetim ortamlariyla gercek diinya
kosullar1 arasindaki farki azaltmaya yonelik, ADORESet adinda bir goriintii veri
kiimesi olusturulmustur.

ADORESet, 30 kategoride, her bir kategoride 2500’ er gercek, 750’ser tane de benzetim
ortamindan alman toplamda 97500 adet etiketli ve nesne sinirlar elle isaretlenmis
goriintiiden olugsmaktadir.  Bu veri kiimesi kullanilarak en iyi sonuglar veren
konvoliisyonel sinir agr mimarilerinden dort tanesi ince-ayar yapilarak egitilmistir.
Sonug¢ olarak ise VGGNet adli algoritma nesnelerin hareket ettirilmesi esnasinda
tanima islemini yapacak yontem olarak belirlenmigtir.  Ayrica nesne sinirlarini
belirlemek icin de RetinaNet ad1 verilen mimari ince-ayar yapilarak egitilmistir. Ince
ayar yaparak e8itme islemi, genel olarak genis kapsamli bagarim yiiksek modelleri,
ilgilenilen alanda parametreleri giincelleyerek daha bagarimli hale getirmektedir.

Konvoliisyonel sinir agr modeli girdisi olarak sayisal piksel degerlerinden olusan
gorilintii matrisi bir vektor haline doniistiiriiliir ve modele beslenir. Konvoliisyonel
yapay sinir aglar1 genelde, konvoliisyon, en biiyiikk deger havuzu, diizlestirme,
normalizasyon, tamamen-bagli gibi bircok katman iceren yapiya sahiptirler. Bu
tezde, literatiirdekilere alternatif bir havuzlama katmani onerilmektedir. Smart-pooling
ad1 verilen bu yontem, ilgili filtre icerisinde ortalamadan biiyiik veya kiiciik piksel
degerlerini ele alarak iglem yapmaktadir. Smart-poolingin, konvoliisyonel yapay sinir
aglarinda en sik kullanilan, en biiyiik deger ve ortalama havuzlama yontemlerine olan
stlinliikleri gosterilmistir. Goriintii girdileri bu katmanlardan, model parametreleri
uygulanarak gecer ve ¢ikti katmaninda siniflandirilmak istenen nesneler sayisinca iinite
bulunur. Bu {initelerin her biri, farkli bir nesne sinifin1 temsil etmektedir. Boylece
en yiiksek sayisal iinite degeri, konvoliisyonel sinir ag1 girdisi olan goriintiiniin ait
oldugu nesne sinifin1 belirtmektedir. Konvoliisyonel sinir aglar1 geleneksel 6zelik
algilama/tanéima yoOntemlerine gore cok daha yiiksek basarimli ve gercek zamanh
calismaya uygundur. Benzetim ortaminda, 2 serbestlik dereceli robotik kol ve ii¢ adet
derinlik kameras1 kullanilarak yapilan nesne hareket ettirme eylemlerinde, nesnelerin
agirlik, yogunluk, hacim ve boyut gibi fiziksel 6zellikleri hareket etme esnasinda farkl
davraniglar ortaya cikmasina neden olmustur. Ornegin ayn1 agirlik, farkli hacimdeki
nesnelere ayni siddette kuvvet, ayni veya farkli noktalardan uygulandiginda hafif olan
nesne devrilirken digeri istenen hareketi gerceklestirebilmektedir. Sonug olarak nesne
fiziksel ozellikleriyle beraber kuvvet uygulama noktasinin dnemi ortaya ¢ikmustir.

Bu tezde, gorsel olarak taninan nesnelerin derin 0grenme yontemleri kullanilarak
hareket ettirilmesi i¢in Deep Table adi verilen bir deney platformu olusturulmustur.
Deep Table’da, robotik kolun calisma alanini ortalayacak sekilde tepeye sabitlenmis
bir adet derinlik kamerasi, ¢alisma alanini karsidan gorecek sekilde bir adet kamera,
kartezyen koordinatlarda degisken yarigapli makara-degisken sertlikli eklem sistemini
dikey ve yatay eksende hareket ettiren bir robotik mekanizma, bir giic kaynagi
ile motorlar1 hareket ettiren sinyalleri iireten mikrodenetleyiciler ve deneylerde
toplanan duyarga verilerini goézlemleme ve algoritma gelistirmede kullanilan bir
bilgisayar bulunmaktadir. Karsidan ¢aligma alanin1 goren kamera, nesnelere kuvvetin
uygulanacagi yiiksekligi hesaplamak i¢in nesne sinirlarini ve nesne sinifin1 belirlemede
kullanilir. Derinlik kamerasi ise nesne hareketini takip eder ve nesne hacmi hesabinda
kullanilacak veriyi sisteme saglar. Bu kameralardan alinan verilerle nesne siniflarina
atanan Ozniteliklere gore hesaplamalar yapilir ve robotik kolun nesneye uygulayacagi
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kuvvet noktas1 ve kuvvetin siddeti belirlenir. Tez kapsaminda olasi bir¢ok ihtimalden 5
tanesi icin deney sonuglarina yer verilmistir. Deneylerde seramik bardagi, plastik sise
bos ve dolu durumlari i¢in hareket ettirilecek nesneler olarak kullanilmistir. Herhangi
bir akilli kontrol yontemi uygulanmadiginda rastgele durumlar haric¢ nesnelerin istenen
hareketi elde edilememistir. Onerdigimiz kontrol yaklagimiyla, bos plastik sise
veseramik bardak gibi agirlik, boyut ve yogunluk gibi fiziksel 6zellikleri birbirinden
cok farkli nesneler bile basariyla hareket ettirilirken, ayni siseye belli bir miktar su
doldurulduktan sonra de8isken yaricapli makara-degisken sertlikli eklem sistemi i¢
sertligini en iist seviyeye cikarsa da gerekli kuvveti saglayamadid1 icin hareket belli
bir noktada sonlanmistir. Bu sonuglar, tezde onerilen kontrol yaklagiminin nesnelere
ait gorsel verilerden anlamsal bag ¢ikarimi ile robotik mekanizmalarin nesne hareket
kabiliyetlerini gelistirilebilecegini agikc¢a gostermektedir.
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1. INTRODUCTION

Throughout the history, people have continuously searched for more advanced life
conditions with explorations, inventions, findings, and optimizations they have made
over what they currently have. Mental and physical evolutions have always appeared
to serve this purpose as being the historical milestones. Last decades witnessed the
intelligent systems to become ubiquitous in every aspect of daily life as the so-called
era of information technology and the digital revolution. Even though the earlier
views pointed out the weaknesses, deficiencies, imperfections, and shortcomings of
machine usage within human-existing environments, recent discussions are pursued
by researchers as well as wider technology communities on the replacement of human
labor with robots. Due to the exponential growth of innovation in technology,
machines went under a tremendous progress. Nowadays, computationally-intensive
(and complex/complicated) tasks are performed by machines accurately, sometimes
even better than human-levels. In other words, the success of machines in real-world
applications has ceased the controversies about the human labor power substitution,
but the content, size, safety, robustness, and speed of the replacement process are
being debated publicly around the world. This debate is focused on big-data and
information-use related areas. The latest advancements in hardware, algorithms, and
software make it possible for robots to acquire semantic relations and make inferences

by learning from data with deep neural networks.

The deep-seated pervasive attitude suggests that the eyes are the largest data source
for humans. Once the success of deep neural networks surpassed the conventional
methods in computer vision applications, prospective usage areas caused a snowball
effect that made it one of the most attractive research topic. The rise of deep neural
networks can be explained in the manner of an interdisciplinary progress involving
computer science, robotics, manufacturing and automotive industries beyond hardware
and software developments. In the context of technological progress, the famous "data

is the new oil" statement allows an analogy-based definition of the current situation.



In addition, it indicates the necessity of raw data to be processed in detail to obtain
valuable entities at every step similar to oil refinery which yields different products
such as gas, plastic, chemicals, etc. Deep learning algorithms that make machines

intelligent provide useful data from all layers as well.

1.1 Semantic Information Retrieval

In cognitive psychology, there exist various types of definitions about how humans
give hereditary meaning to visually recognized objects. The study in [1] suggests
that mental images, which are developed in mind without any physical support,
are composed of information about the object surface and its deeper information.
Upon this definition, they propose mental images can replace the actual perceptions
and surface representations as being quasi-pictures that are derived from deeper
information built in mind. On the contrary, [2] argues against [1], which is assumed
to have deficiencies and misleads theoretical details. [2] assesses the mental imagery
by introspection and it proposes that the objects in the scenes are also the properties
thought of but not the memories or mind segments. In addition, the same study states
that the properties of visual scenes are not coherently described in detail by anybody.
It can be said that they eyes are just the sensing tools, brain infers the actions for data
acquired from the eyes. Considering the earlier views, one can say that the actions
taken by people about the visually perceived objects are shaped in the mind. For
instance, as displayed in the Figure 1.1, the appearance in the mind for the same
object or situation can be very different because of the perspective or different point
of view. This difference can also occur between a healthy person and another with
cognitive impairment. Therefore, beyond the exact information on the category and
the location of the object is not sufficient. The crucial aim is to achieve semantic
intelligence which enables the machine to answer the content, function and location
of the object. Likewise, [3] devotes richer meaning to object perception than seeing it
with eyes, which implies dynamic brain operations, memory queries, and inferences.
Moreover, perception is defined as of predictive fact in the same study. In essence,
visual perception is considered regarding its relations with brain, memory, eyes and

inherited knowledge, which are analogous to decision-making systems likely to be



Figure 1.1 : Representative illustration to emphasize the effect of perspective for
appearance of objects in the mind. [4]

algorithms, datasets and extracted features, visual perception devices and semantic

representatives for objects.

Instant object recognition is an operation of calling knowledge about object identities
that are stored as prior information, which is previously mapped to consistent
memory segments. In computer vision, the efforts behind answering the questions
of where the object of interest is in the image or what exists in the whole frame
in terms of detecting and recognizing have become obsolete so that the current
situation implies further endeavor to extract meaningful information from data using
various approaches. Therefore, ongoing studies on machine vision systems attempt
to perceive the appearance-based changes and occlusion, inter-class relations and
subordinate types of same objects as stated in [5] similar to humans that it is easier
to recognize basic-level classes compared to atypical objects. Based on the common
behavior of of constructing the semantic relations in a hierarchical manner, (i.e. from
general to particular such as organism—:>mammal— person—>male or female),
a binary classifier is introduced in [6] to recognize objects using labels to obtain
information about relations between objects. In [7], a localization is performed

for an infotainment robot by pose estimation using visual features within an indoor



environment. Recognized objects are utilized to distinguish the area and this semantic

information specifies how the robot will interact with humans.

In the light of visual feature extraction, [8] introduces recognition based object-place
relation estimator using spatial-semantic information over the assumption of a robot
that is capable of recognizing real-world objects. In [9], towards the tasks requiring
more comprehensive knowledge about the interaction object, a platform called
KnowRob-Map is proposed. This platform consists of object spatial knowledge along
with general information including category and purpose. KnowRob-Map relates the
obstacles and their public meanings, which enables the robot to perform a certain
task depending on the recognized objects compatible with its operating area. Another
study on indoor mobile robot navigation, [10] associates recognized door signs to their
semantic content encoded as text with the goal of mapping. Similarly, [11] introduces
a mobile indoor robot that works in unknown environments and acquires high-level
semantic features such as the room type, relationships between objects and materials
of walls and grounds using a depth camera. [12] constructs a semantic objects maps
including aspect and joint knowledge for kitchen furniture objects as task-relevant
information, which is collected by a depth camera autonomously. The experiments
of this study are conducted using a mobile robot within different kitchen environments
as everyday manipulation tasks after answering some questions about the objects that
are stored as lexical representations. In the same fashion, an indoor mobile robot
is equipped with a depth camera to segment out objects by fusing visual data from
multiple views in [13] for daily household tasks. Pixel-wise object categorization is
executed utilizing a scale-invariant classifier for depth images that are placed into a
3D map semantically. The power of semantic information assignment to visual data
is revealed in [14], which divides 60 semantic attributes into 5 groups as follows; i)
scene, ii) color, iii) part, iv) shape, and v) material. The performance of the proposed
exclusive classifiers towards semantic attributes together with bag-of-visual-words
method outperforms the results of distinct methods. In [15], images are composed
of objects in them and the spatial coordinates with appearance information are stored
to object bank. They show how their object bank achieves better accuracy rates with
ordinary classifiers in high-level image recognition challenges accompanied by success

in semantic information retrieval.



In earlier investigations, it is remarkable that additional attributes are embedded to
relevant visual features to achieve better semantic representations for high-level tasks
such as content based image retrieval and search [16-20], improving robot navigation,
actions and understanding [21-26], etc. mostly in a top-down hierarchical approach.
Although aforementioned conventional feature extraction methods give significant
results for semantic information retrieval problems, deep neural networks accomplish
faster and more robust results applicable in real-time with higher performance metrics.
With this in mind, [27] establishes reasonable connections between different actions
by estimating sub-actions for unknown situations with the help of lexical, visual and
logical tips. By training a deep neural network on 27425 web-images for consistent
actions, they accomplish the problem of predicting action information from images.
To succeed in dexterous robotic grasping [28] develops a deep learning approach
by training its system with a multi-channel dataset, which contains 20 categories
of objects, 6-axis force-torque(F/T) and tactile data for particular objects. Their
experimental results reveal the importance of the amount and variety of training data
but the object recognition accuracy rate has reached barely 88% due to the small

number of training images.

In the past decade, a number of studies have sought to determine the importance
and potential of semantic information in robotic navigation applications. [29]
underlines the role of semantic information beyond geometry and appearances for
map-based mobile robotic applications by consigning this problem to convolutional
neural network (CNN) integrated simultaneous localization and mapping (SLAM)
framework. Object recognition for 13 classes of objects is performed over real-time
depth video data and the objects are localized into the 3D map. In a similar way, [30]
proposes a CNN based semantic scene classification algorithm for indoor mobile
robots that is intended to give meaning to scenes thereupon the recognized objects.
The researchers in [31] presents a mobile humanoid robot visual system for navigation,
which enables generating image dataset online during the autonomous motion to train
deep neural networks. Then, the robot performs the experiments within a dynamic
environment using a geometric map where the semantic map is also embedded in.
As SLAM is a well-known problem that has implementations on many platforms,

[32] enhances the available geometric data to achieve meaningful information by
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Figure 1.2 : Simplified semantic information retrieval from images.

labeling the objects inside a warehouse autonomously towards the goal of Industry
4.0 compatible system. They obtain online semantic map through the combination of
SLAM with object detection and recognition using a depth camera. Similarly, [33] uses
depth camera data to train a CNN model to predict semantic segmentation outputs. The
multi-view geometry for object recognition is included within the system by SLAM
trajectory, thus the performance of the system, which is evaluated on datasets having
13 and 40 categories, is increased. In Figure 1.2, fundamental steps are displayed for

the operation of semantic information retrieval from images.

1.2 Purpose of the Thesis

In recent years, there is a big trend towards intelligent systems which evaluate the
data by its size and use the so-called “deep learning (DL)” methods to process it.
Moreover, this trend does not include just the algorithms, software or specific software
libraries but also the hardware, especially including the graphical processing units
(GPUs). Because GPUs have been improved significantly in terms of mixed precision
performance, performance per watt, memory capacity, speed in terms of floating
point operations per second (FLOPS), and allowing parallel computing, it has become
feasible to process large-sized data. In addition to this improvement, it has been
possible for DL systems to learn much more parameters than before which enables
the systems to be more intelligent because larger quantity of data and better hardware

are available to make dense computations. DL methods are specialized artificial



neural networks (ANNs) with more hidden layers and some specific architectures and

activation functions.

This thesis aims to open up a new path in the practical application of artificial
intelligence (AI) in robotics field particularly focusing on deep learning methods in
the manipulation tasks of robots using visual recognition. In the general sense, the
work performed here is suggesting to use the visual perception in order to achieve
more intelligent manipulation actions by applying the state-of-the-art deep-learning
method for decision making. While the study offers a sound methodology for solving
one of the most visited problems in robotics, it also expands on the improvement of the
visual recognition algorithms and deep neural networks. Moreover, a densely-labeled,
high-quality image dataset, which contains real and synthetic images, towards
semantic mapping, object detection, and recognition, especially for indoor robotic

tasks besides simulation applications compatibility, is also introduced in this thesis.

1.3 Contribution of the Thesis

The largest amount and the richest source of data, which people gather from their
environment, is obtained through the visual system. As well as people get the visual
data by their eyes, their brains always work to assign meaningful information to
determine the place they exist, the objects they interact or surrounded, the actions they
will take, etc. using visual data. Since previously explained studies mostly depend
on the encoded and ascertained information for semantic meanings to recognized
objects, our study adds inferences according to the size and dimensions, and inter-class

relations for recognized objects before execution of the manipulation task.
The contributions of this thesis can be summarized as follows:

(1) A comprehensive comparison of visual recognition methods is performed
considering the detection/description algorithm couples of conventional feature
extraction methods. This comparison has shown us and other researchers in the
similar field that scale-invariant feature transform (SIFT) [34] and speeded-up robust
features (SURF) [35] algorithms, when applied together gives the best recognition rate
when the recognition task has to be achieved in challenging visual settings including

occlusion, illumination changes, and similar challenges.



(2) A well-documented image database containing 97500 images having
manually-tagged labels is formed. This dataset allows evaluating the performance of
all computer vision algorithms and deep neural network algorithms. The preparation,
annotations, and sorting of the dataset contribute to both computer vision and robotics

field in expanding the list of available datasets.

(3) A new algorithm for deep neural network models has been proposed. The method
is proven to be better in terms of accuracy rates and spatial information adaptation

between layers compared to the previous algorithms.

In addition to these three tangible contributions, the methodology developed herein
is applied to a real robotic-arm providing real-world performance analysis. The
preparation of the test equipment and the application also provides guidelines for
similar studies in adopting the newly developed Al algorithms to the practical robotics

problems.

1.4 Thesis Outline

The thesis starts with the comparison of the conventional feature detector and
descriptor algorithms in Chapter 2 to set the motivation in resolving the perception
challenge finding the best available combination. Then, in Chapter 3, an advanced
Al method named deep-learning is explored, improved and applied to the visual
recognition problem. The necessity to form an original image-dataset and the content
of this dataset is also reported in Chapter 3 since the data structure and the learning
methods are closely tied. Next, the outputs of the visual recognition algorithm are put
into use in a robotic case study having the manipulation of basic indoor objects in a

push-pull task that is executed using a variable stiffness joint mechanism.

In this thesis, each chapter has a separate literature survey since the range of the topics
are quite wide and the recent developments have to be reported in the right order. A
single literature survey chapter would make the following of the ideas more difficult.
Therefore, for the sake of clarity and order, the literature overviews are given their own

space in the relevant chapter.



2. COMPARISON OF CONVENTIONAL FEATURE DETECTOR AND
DESCRIPTOR ALGORITHMS

In computer vision, obtaining beneficial information from visual data has always been
substantial in order to make machines automatically interpret visual data into semantic
meanings. In this section, a review of feature detector and descriptor algorithms is
given in conjunction with a comprehensive analysis that compares the performance
of all possible combinations of these methods in terms of accuracy, speed, number
of correct matches per second. Afterwards, the highlights and conclusive findings
of this analysis will be given before discussing the advantages and disadvantages of

conventional techniques.

2.1 Introduction

Features are the specific image parts such as corners, edges, colors, textures, etc.
Computer vision algorithms search for these unique patterns, which also can be tracked
and compared with each other. By systematically extracting useful material such
as location and identity about 3-dimensional (3D) world from 2D images, computer
vision methods help forming the machines that can see. The primary purpose of
computer vision algorithms is to detect and recognize objects, no matter how complex
an image frame is. As long as the appearance of objects depends on light conditions,
surface reflection and vision receptor capacity, the partnerships of these properties
generate textures, colors, bounds in terms of corners, edges, blobs and contours
of objects or backgrounds in images as being the main elements considered by the
classical feature extraction methods. Concisely, a low-level computer vision algorithm
involves two parts: a distinct 2D edifice incorporating a detector and a descriptor.
Intuitively, people perform visual activities by excerpting meaningful features that are
localized in the region where the highest variation occur and this operation is called
"feature detection". Once a feature is detected, then it can be found in other images
repeatedly. Furthermore, "feature descriptions"” are information sets that particularly

belong to detected features. Thus, having detected features and descriptions belonging
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Figure 2.1 : Pipeline of a feature detector/descriptor operation for detection and
classification.

to them enables to implement computer vision applications such as aligning, stitching,
etc. In recognition tasks, the algorithm takes images as inputs and the outputs are
usually the category labels of objects within the input images. On the other hand,
the algorithm outputs pixel coordinates for the objects in detection tasks. Image
datasets are required for object detection and recognition algorithms where the features
are utilized to train the classifiers and regressors, respectively. Conventional feature
extraction is not sufficient solely for recognition or detection so that a trainable
classifier or detector has to be attached subsequently to determine the category or pixel

locations as given in Figure 2.1 for computer vision applications.

A particular and influential approach for image classification is explained in [36] as a
novel generic procedure. It has similar content as given pipeline with extra operations
such as clustering feature descriptors by nearest neighbors, in other words, visual
vocabulary construction by quantization, and binning them to histograms before Naive
Bayes or support vector machine (SVM) based classification. 1776 in-house images in

7 classes are used during the experiments.
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2.2 Literature

Feature detector and descriptor algorithms imply structural or inferred information
extraction about the objects in the streamed images in order to accomplish computer
vision tasks. In this context, relevant semantic information retrieval from data is
essential for perceiving the content of an image. Image matching, fundamentally
finding the corresponding features in each compared images, is the principal operation
and commencement of semantic information retrieval from numerical visual data. The
outline of a conventional image matching algorithm training procedure can be summed

up as follows in 5 steps:

1) Preprocessing images after customizing a relevant dataset. Cropping, shifting,
resizing, color enhancing, histogram equalization, color quantization, color space
transformation and spatial transformations are the most common image preprocessing

techniques.

2) Extracting features from the loaded/streamed images to the system using the

appropriate method those will be explained hereinafter in this section.

3) Constructing a plausible dataset composed of extracted features. The feature

specifications need to be adjusted accordingly for comparison and matching purposes.

4) Training a pertinent classifier using available features and then validating the

performance of the classifier until reaching a satisfactory level.

5) Comparing the features of queried images based on Euclidean distance with the ones
that already exist in the dataset and decision-making about the robustness of matches,

thus the class of query image is determined as a result of the comparison.

In general, the localized features are called keypoints or interest points, which indicate
corners while edges are based on orientation and local appearances. Intuitively, corners
are the contour junctions and are accepted as stable features over viewpoint changes.
A corner detector in phases is shown in Figure 2.2. Hereby, Harris corner detection

algorithm [37] can be summarized in 6 steps as follows:

1) Compute x and y derivatives of image I;

I, =G4 1, Iy = Gg*I (2.1
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Figure 2.2 : Harris detector searching phases to detect corners.

2) Compute products of derivatives at every pixel;
Lo =11, L =1,.1, Ly =I.1I, (2.2)
3) Compute sums of products of derivatives at each pixel;
S =Gy *x1l, Sy2 = Ggr * 1y, Sxy = Ggr x Ly 2.3)
4) Define at each pixel (x,y) the matrix;

Sx2(x,y) Say(x,y)
H(xv)’) = (Sxi(x;) SyZ(X;)) 2.4)

5) Compute the response of the detector at each pixel;
R = Det(h) — k(Trace(H))? (2.5)
6) Threshold on value of R. Compute non-max suppression.

Qualitatively, edges appear as a result of regional differences such as changes in color,
intensity, and texture. Edges are described by edge normal that is the unit vector in

o . . . o I 0d .
the direction of maximum intensity change, edge direction 6 = atan2(——, ) that is

dy’ dx
the unit vector along edge, edge location that is the pixel coordinates where edge is
L . or* o’ . .
located within the image, edge magnitude | VI |= I + > that is the local image
X Yy

contrast along the normal. The occurrence of an edge within an image can be computed
al dl

from the gradient vector field VI = [B_’ 8_]T as given in Figure 2.3. A complete edge
X 0y

detection algorithm [38] can be given as follows:

1) Compute x and y derivatives of image I;

I, =Gg =1, Iy =G+l (2.6)

2) Compute magnitude of gradient at every pixel;

M(x,y) =| VI =/ +1 2.7)
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Figure 2.3 : Components of edge detection operation.

3) Eliminate those pixels that are not local maxima of the magnitude in the direction

of the gradient.

4) Hysteresis thresholding;

e Select the pixels such that M > T, (high threshold)

e Collect the pixels such that M > Ty (low threshold) that are neighbors of already

collected edge points.

Nowadays, computations towards obtaining image features are assumed to be low-level
operations but finding specific locations of the edges in images is still critical and
challenging for computer vision algorithms. Since feature extraction plays a critical
role in conventional image matching, SIFT [34] is assumed to be the seminal study
in this territory that distil the meaningful image parts scale- and rotation-invariant
manner. It is claimed in the study that distinctiveness of SIFT descriptors allow to
match individual features during large database search. The scale-space representation
is given by a function L(x,y,0) = G(x,y,0) = I(x,y) that is obtained as a result of
= 271:162 exp” xzt;éyz with an

input image, I(x,y). SIFT applies a series of difference-of-Gaussian (DoG) filters in

convolution(x) of a variable-scale Gaussian G(x,y, o)

multiple scales, G(x,y,s6) — G(x,y,0) ~ (s — 1)6?>V>G) where s shows the scales,
x and y are the spatial pixel coordinates of images. In addition, keypoint descriptor
in SIFT includes a 4x4 array containing gradient orientation histograms reciprocating
the sum of gradient magnitudes. Another study, called SURF [35], goes on further
direction that claims to provide as reliable and robust outputs as SIFT with faster
computation and comparison times. In the detector part of SURF algorithm, interest

point determinants are approximated using a Hessian matrix, which will give a
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local maximum resulting in integral images. Rather than applying box filters in the
decreasing direction through the image pyramid, box filters are applied directly on the
original image in SURF and then the images are enlarged in the following layers with
gradually bigger masks by applying filters. Non-maximum suppression in a 3 X 3 x 3
region is applied to localize the keypoints. Likewise, the SIFT and SURF descriptors
are 64-dimensional vectors obtained by summing Haar wavelet coefficients over 4 x 4
pixels around the keypoints. In the same manner, binary robust invariant scalable
keypoints (BRISK) [39] method also includes feature detector and descriptor parts
in itself and asserts to improve SURF by decreasing the computation time on a par
with matching quality. The detector of BRISK computes a score of features from
accelerated segment test (FAST) algorithm [40,41] which is used to detect corners
by evaluating the intensity of candidate pixel placed in the middle, according to the
9 consecutive pixel values of 16 pixel circle whether it is brighter or darker. BRISK
descriptor, which is based on the calculations of circular sampling pattern obtained
rotating by o = arctan2(gy, gy) around interest point with N = 60 points, comprises
brightness comparison outputs as a sequence of a two-class string containing 512 bits.
Another method oriented FAST and rotated BRIEF (ORB) [42] commonly utilized in
favor of feature detection and description tasks, which is proposed to be an alternative
to SIFT and SURF. It uses FAST as the detector and its descriptor is strengthened
version of the BRIEF descriptor, which is rotation invariant. In addition, ORB goes on
further arguement that it is also a faster alternative to SIFT having similar matching
accuracy rates besides being robust to image noise. What is more that ORB has better
descriptor performance than SURF. In ORB, the FAST detector is improved by adding
cornerness values that are calculated by filtering Harris corner measure at each scale
pyramid of images and it is also supported by an orientation component. As providing
only a feature descriptor, binary robust independent elementary features (BRIEF) [43]
method uses binary strings to represent keypoints. These descriptors are constructed
upon pairwise intensity comparison results, which stands for image patches. It is also
argued that BRIEF descriptors are not only faster than SURF or its derivatives, but
also has capability to give better accuracy rates in recognition challenges if rotation
invariance is absent. In either case, methods including both feature detector and
descriptor parts(SIFT, SURF, BRISK, and ORB) are composed of similar operations

as given in 4 steps:
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1) Scale-Space Representation; constructing a scale-space, which is to upsize or
downsize images, makes algorithms to achieve different image features at different

octaves.

2) Keypoint Localization; LoG filter extrema give information about detected blobs
such as location, size, and radius. Comparing the DoG function extrema, which are
the subtraction results of images at different scales, give keypoint location candidates.
Afterwards, points with low contrast are rejected and keypoints locations are already

determined by refining the candidates using Taylor approximation.

3) Orientation Assignment; at every selected scale, a histogram is represented by the
relevant number of bins those contain the orientation of keypoints. Orientation angles
are the sum of weighted gradient magnitudes where the histogram correspondent

peaks.

4) Keypoint Descriptor Operation; keypoints are described by location, orienta-
tion(rotation) and radius(scale). In fact, a feature vector containing these properties

is called descriptor.

A substantial example of its kind, [44] uses the histogram of oriented gradients
(HOG) as features to detect and recognize objects. Evocative to SIFT descriptors,
gradient-based computations are performed and selected local extrema are transferred
to histogram to determine orientation. Using overlapped local contrast normalizations
their descriptor performance is increased, which is calculated on regions from dense
grids. The sliding window approach is used to detect HOG descriptors. To this end,
the commonly used methods are explained; however, one can also pursue to give
insights about feature detector and descriptor algorithms. For further information

please see [45—47].

2.3 Analysis of Feature Detector and Descriptor Methods

In computer vision applications, the differences between simulation and real-world
conditions cause considerable variations in performance outputs, which directly affect
the algorithms. Therefore, experiments, which are conducted by suggested techniques,
have great importance. To underline the potential usage areas of conventional feature

detector descriptor algorithms about semantic information retrieval in particular, a
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comprehensive literature analysis is given henceforth. Even though there are blurred
boundaries between studies on this subject, one can split literature into two parts; i)
performance comparisons of detector/descriptor pairs or combinations and ii) analysis
of detector/descriptor pairs or combinations performance outputs from a scenario

based application (i.e. SLAM).

To evaluate the feature detector/descriptor combination performance results on
photogrammetric applications, [48] combines 5 keypoint detectors with 2 region
detectors/descriptors. The test results are assessed according to the number of
correctly matched keypoints and their locations with stereo pairs for the combinations
and time performance is not evaluated. With the aim of determining the best
feature detector/descriptor pair, the researchers in [49] examined detector/descriptor
combinations consisting of 7 detectors and 2 descriptors. The image dataset in this
study contains 60 scenes from 119 position with 19 different light conditions and
the area under receiver operating characteristic (ROC) curve is used to measure the
performance results. In [50], which assumes SIFT descriptors as ground-truth for
benchmarking, only binary descriptors and their combinations are evaluated according
to the number of matched images and pixelwise distances between interest points
without giving further information about total performance of different combinations
and their working synergy. Beyond comparing different descriptors and keypoints for
various matching techniques, [46] introduces a new descriptor as a modified version
of SIFT descriptor, which is gradient location and orientation histogram (GLOH).
The comparison is performed with respect to the complexity of individual parameters
and usage areas with detection rate, which also includes a ROC-based evaluation
criterion using recall-precision calculation for image pairs. In addition to examining
the algorithm performances with regards to robustness and distinctiveness using a
unified framework, [51] compares local detectors and descriptors. The proposed
framework consists of 2 steps, which are calculating a detector evaluation criterion
and repeatability score for 6 detectors and descriptor test for assessing distinctiveness.
By the same approach, [52] modifies Harris, Hessian, and DoG detectors, thus gives
accuracy and time based performance evaluations for image search and fine-grained
classification tests. In like manner, [47] presents performance evaluations for affine

covariant region detectors of structured and textured images by changing viewpoint
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and scale with illumination and blurring variations. The outputs of the algorithm
are examined with respect to repeatability for computing relevant interest points and

accuracy rates for shape, scale and localization matching.

Beyond previously mentioned studies, [53] demonstrates the outcomes of feature
detector/descriptor combinations tested on depth SLAM. Accuracy and running time
per frame metrics are used to evaluate the results. Similarly, the experiments of [54]
are performed as two different motion scenarios en route investigating visual SLAM
performances of detector/descriptor pairs. Localization accuracy and motion speed of
the camera for real-time performance are measured to display the effects of these pairs.
In [55], depth image data is utilized to execute an autonomous quadrotor micro air
vehicle motion (MAV) in an indoor environment. 3D motion of the MAYV is estimated
as relative motion sequence obtained in each time step by fusing the depth camera
frames with inertial measurement unit (IMU) data. As an intermediate operation
of visual odometry, feature extraction, where FAST is used, and matching are for
determining how motion changes. Correspondingly, [56] presents a system on an air
vehicle that collaborates with a ground vehicle and tracks its position by matching
descriptor-free features as an alternative to global positioning system (GPS) for indoor
or poor GPS coverage territories. 1D BRIEF descriptors are used to keep vertical
edge properties that are extracted by applying a gradient-like filter on images captured
from stereo cameras of air vehicle during tracking ground vehicle. Furthermore,
[57] demonstrates the performance of feature extractors within a long-term outdoor
navigation test using a mobile robot. The robustness of feature extractor combination
is investigated against extrinsic variations. As a result, a trainable descriptor called
generated BRIEF is proposed to tackle with seasonal weather changes and light
conditions, which is comprised of a modified BRIEF descriptor using evolutionary
methods. Comparatively, [58] evaluates the effects of feature detector/descriptor pair
selection on visual SLAM test performance using faultless ground-truth data with
respect to accuracy rates and average algorithm running times. The experiments of
this study include combination results that consist of 8 detector and 7 descriptor pairs.
Unlike previous studies, [59] gives real-time color feature tracking performance results
of a humanoid neck system, which is given in Figure 2.4 called UMAY [60]. The

neck system incorporates a set of tendon actuators in order to have the capability
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Figure 2.4 : UMAY head-neck system.

of mimicking human neck. In order to develop color tracking motion, a stereo
camera system, which constitutes 2 webcams, is mounted on the head. Therefore,
the algorithm is able to track color features and predefined motion profile smoothly
according to cubic spline interpolation [61] after applying a hysteresis threshold to
detect the specified color range. As long as the main purpose of mean shift algorithm
is to find local extrema within a dataset that is used to increase the desired tracking

performance in terms smoothness, and it can be expressed as follows;

e A kernel function K(x;;1 —x; is defined to adjust weights of the surrounding pixels
of a selected pixel. In general, a Gaussian filter is applied to assign higher intensities
to the pixels that are near the chosen central pixel and lower intensities to those close

to the edges of the filter.

e The next weighted mean for pixels within the filter is calculated as given in Equation

2.8;
_ Yxi € N(x)K(x; —x)x;

T Y eNWKx—x) (2.8)

m(x)

18



where N(x) denotes the dataset that contains the surrounding pixels around center

x for which K(x) #0

e The mean shift vector is the distance, which the filter has to move by to reach the

pixel with maximum intensity. Mean shift vector can be obtained by M = m(x) — x

e These steps are repeated until the distance becomes zero or a predefined error rate

near zero M = 0, as the condition that the filter center converges to the local extrema.

In the context of broadening valuable information about feature detector and descriptor
method performance results obtained from convenient experiments, [45] is one of the
most inclusive studies that investigates the feature detector and descriptor combination
performances in terms of accuracy, speed, and robustness. The experiments within a
blimp localization scenario conducted during this study use 555 x 480-pixel images for
23 feature detector/descriptor performance evaluation results regarding accuracy and
speed. Indoor images (The dataset can be publicly available at: https://web.
itu.edu.tr/bayraktare/Visual_Indoor_Dataset.rar) are gathered
within an indoor office environment. The dataset consists of 3090 images which
we collected from 45 points at 3 height levels and after grabbing each image the
mechanism is rotated by 15° counter-clockwise as illustrated in the left side of
the Figure 2.5 a). Thus, the proposed algorithm is able to locate the blimp in a
volumetric cube as a result of image matching. 127 different images inside the office
without occlusions are specified as to be template image, which will be queried to the
algorithm. Some of these template images are given at the right side of the Figure 2.5
a), where the location information is also assigned to. Images belong to 2 points at
3 height levels are shown in Figure 2.5 b). Moreover, 19 feature detector/descriptor
combinations are examined to measure robustness by evaluating the number of correct
matches, mean angle difference between keypoints, and minimum distance metrics.
The localization experiments are performed for a limited trajectory composed of a

path with 560 images.

In brief, there are various approaches towards investigating the performance of
conventional feature detector and descriptor pairs. These studies are performed in the
direction of assessing various parameters affecting onto the feature detector/descriptor

combinations performance outputs when they are used within SLAM, localization
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(a) Schematic representation of image acquisition from office with
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(b) Example images from two points (red dots above) with 3 height levels

Figure 2.5 : Image-grabbing process and the hypothetical location cube, template
images and a collage of query images grabbed from two points given
in [45]

or tracking scenarios. To analyze the overall outcomes acquired experimentally;
accuracy, distance, energy consumption, robustness, computational cost, time.
Moreover, these results are tested onto maintain equivalent performances regarding
repeatability under different software based or physical differences that affect the

feature detector/descriptor combinations outcomes.

2.4 Results

Feature detector/descriptor based computer vision applications have a decreasing trend

in recent years. Nevertheless, there are many studies in literature in the direction of
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feature detector/descriptor combinations based applications such as object detection
and recognition, semantic mapping, visual SLAM, etc. On the other hand, it is
still unclear that which combination is the best choice for a specific task or what
fundamental parameters are affecting onto which performance outcomes. The main
idea behind feature based applications is to correctly match the features as fast as
possible to be appropriately implemented in real-time. In addition, robustness and
repeatability are essential properties that have to be taken into account for reliable and
reproducible algorithm results. Therefore, this section demonstrates the remarkable

performance results from aforementioned feature detector/descriptor based studies.

As a result of the tests, which are rotating images for 45°, scaling with a factor of 2.5
and rotating 45° together, applying affine transformation by changing the viewpoint of
the camera for 60°, and changing the light conditions, [46] states that SIFT descriptor
yield better results except for illumination changes. Steerable filters that are computed
on image patches normalized to affine photometric and geometric transformations are
the runner-up method, which is the best for handling different light conditions. [47]
observes the decline in performance of 6 detectors depending on the increase of
viewpoint change. Overlap error and repeatability are defined as theoretical metrics
for accuracy. Thus, the region distinctiveness metric in terms of matching performance
by looking the number of correctly matched keypoints are defined with respect to
disturbances such as viewpoint, light and scale changes, blurring and compression
artifacts. With the assumption of SIFT providing the ground-truth, it is argued
that maximally stable extremal regions (MSER) [62] obtains better results if images
include homogeneous regions with distinctive boundaries; however Hessian-Affine
and Harris-Affine detectors give more regions, which is noted as a desired property
that allow matching objects in the case of occlusion or clutter. In [49], the performance
evaluation is composed of the results acquired from the combinations of 4 feature
descriptors and 7 feature detectors. Dataset consists of images belong to 60 scenes
those are grabbed from 119 different viewpoints on arc shaped paths at 3 height levels.
Table 2.1 displays the area under the ROC curve (AUC) for 28 combinations. AUC
is a metric, which shows the detector/descriptor combination performance as a result
of matching an image pair. It is stated that DoG or MSER show the best performance
regarding the detector types albeit SIFT or DAISY [63—66] is the descriptor. These
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Table 2.1 : Mean area under ROC curve for 28 combinations. [49]

Detectors \ Cross-Corr. SIFT DAISYI DAISY II Avg.
Harris 0.615 0.767 0.729 0.741 0.713
Harris-Affine 0.629 0.818 0.791 0.798 0.759
Harris-Laplace 0.635 0.814 0.784 0.790 0.756
Hessian-Affine 0.636 0.795 0.773 0.779 0.746
Hessian-Laplace 0.630 0.757 0.740 0.742 0.717
MSER 0.648 0.846 0.826 0.832 0.788
DoG 0.646 0.849 0.837 0.843 0.794
Avg. 0.634 0.807 0.783 0.789 0.753

4 combinations result in very close AUC scores. It is also added that in the case of
small changes in scale, Harris corner detector can be preferable in terms of speed and

easiness of implementing.

[50] performs on a dataset composed of 8 categories 6 images per category and
6 distortions are applied to the images that are blurring, rotating, scale changing,
compression with JPEG, illumination changing. Five of the images in each category
are distorted strongly while one of them remains as original. All distorted images are
compared with the original ones provided that being in the same category. Having
the aim of performance measurement for different methods, SIFT is assumed to
be the baseline method. The outputs show that ORB detector with FREAK [67]
descriptor is better in terms of accuracy. On the other hand, FAST detector with
BRIEF descriptor is the fastest combination given in this study. In [51], performance
evaluations are investigated for 6 detectors and 6 descriptors. Detector performances
are measured according to repeatability as a identical to localization accuracy and
interest point estimation under disturbances. Meanwhile, descriptor performances are
evaluated by comparing ROC detection rate, which is the correct matches number
over corresponding regions, with false positive rate. A match count is correct if
the distance between descriptors is smaller than a threshold value and it is also
verified with a ground-truth homography. There are 1000 images in the dataset,
which gradual viewpoint and scale changes, blurring, JPEG compression and light
variation are applied to. Conducted experiment results reveal that MSER achieves

best repeatability and accuracy scores when the regions are extracted by Harris-Affine

22



and Hessian-Affine detectors as long as SIFT is observed as the superior method as a

consequence of descriptor evaluations.

Feature detector/descriptor performances in terms of accuracy and time on visual
SLAM applications are crucial due to the necessity of detected interest points locations
within the environment by SLAM algorithm and assigning meaningful informations to
detected keypoints. With this intention, [53] uses a dataset that is composed of colored
depth images to analyse the visual SLAM performances of SIFT, SURF, BRIEF, ORB,
BRISK and FREAK by measuring the difference between the ground-truth and the
estimated trajectory with absolute trajectory error (ATE) metric. In consideration of
accuracy and time together, STAR [68]/FREAK combination obtains the best scores
with 3.79 cm root mean square of ATE and 0.1657 s to process each frame in
average. However, the fastest combination is ORB/FREAK with 0.0866 s for each
frame on average and SIFT with SURF based combinations give the most accurate
results. For the purpose of comparing descriptor performances on visual SLAM
applications, [54] uses two datasets to evaluate SIFT, SURF, BRIEF, ORB, BRISK
and FREAK combinations. It is stated that SIFT gives the best results even in
real-time for the both datasets. It is claimed that the descriptor performance does not
affect on the visual SLAM accuracy, but it is important for real-time performance.
The study suggests that SIFT extract features than SURF and a combination of
SIFT with BRIEF can yield in more desirable results. In view of assessing
feature detector/desciptor pairs performance on visual SLAM [58] examines results
with regard to root-mean-squared-error (RMSE) for detector-descriptor combinations,
maximum ATE for each reconstructed trajectory, and the average processing time.
FAST detector and SIFT descriptor combination is claimed to be the best method
w.r.t. RMSE score as well as FAST gives the fastest results with either BRIEF or
ORB descriptors. Although it is argued that template matching is slower, FAST/SIFT
combination is 4 times slower than it. In addition, FAST detector and BRIEF descriptor

pair is the fastest and second in accuracy score.

Beyond preceding studies, in [45], we compare the feature detector/descriptor
combination performances w.r.t. time for total computation, accuracy, and number
of correct matches per second, which are given in Table 2.2 and mean keypoint angle

differences, number of correct matches and distance metrics of matches, which are
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Table 2.2 : Metrics for performance analysis for feature detector and descriptor pairs.

Detector \ Descriptor Time Acc[%] Ground-Truth Correct Match/[s]

BRIEF 21303.30 62.83 127 x3 x5 1457.01
BRISK 23461.68 74.28 127 x3 x5 956.16
SIFT 97603.70 72.28 127 x3 x5 318.01
ORB SURF 79391.06 97.90 127 x3 x5 390.97
ORB 21330.02 63.62 127 x3 x5 1455.19
BRIEF 32277.70 62.36 127 x3 x5 1568.79
BRISK 35133.18 63.52 127 x3 x5 1275.43
SIFT 196487.67  68.82 127 x3 x5 280.43
SURF SURF 79135.06 89.54 127 x3 x5 696.30
ORB 35074.99 63.78 127 x3 x5 1414.50
BRIEF 30938.27 62.73 127 x3 x5 879.92
BRISK 32422.06 64.67 127 x3 x5 920.44
SIFT 45919.05 62.31 127 x3 x5 698.46
SIFT SURF 35319.08 98.41 127 x3 x5 908.02
BRIEF 23355.70 62.52 127 x3 x5 2736.88
BRISK 33752.85 63.20 127 x3 x5 454.34
SIFT 56152.36 72.44 127 x3 x5 1373.78
FAST SURF 37357.53 88.30 127 x3 x5 2065.00
ORB 22734.26 62.62 127 x3 x5 275.13
BRIEF 20517.53 64.62 127 x3 x5 320.69
SIFT 34284.95 86.61 127 x3 x5 202.39
BRISK SURF 26043.99 80.32 127 x3 x5 266.44
ORB 23335.77 69.76 127 x3 x5 289.84

shown in Figure 2.6. The ’Time’ column shows the total algorithm running time
from start to end for the relevant feature detector/descriptor pair executed the same
path to compare 560 query images with 127 template images for a total of 71120
images. As one can infer that all of the combinations are able to correctly match

template images, which are selected from the dataset, it is trivial to calculate accuracy

_ Y(TruePositives+TrueNegatives)

by Accuracy|%] = Y ToralCases x 100. Hence, we formulated a more

reasonable formula to calculate a more reliable accuracy rate that takes the images
into account from 3 height levels and 5 of the side images of the current position that
are equally separated orientations from [—30°,30°]. Hence, we have the ground-truth
images by multiplying 127 template images with 3 heights for 5 side positions. We
specified a histogram threshold value as 0.9 to eliminate the template images from the
comparison operation from the accuracy calculations (i.e. if histogram similarity is
over this threshold as a result of the comparison, then the comparison is assumed to

be performed for the same images). It is clear from Table 2.2 that ORB is the fastest
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method for both detector and descriptor. At the same time, the minimum number of
correct matches per second is obtained by BRISK/SIFT pair. In contrast, the maximum
number of correct matches per second belongs FAST/BRIEF. Moreover, SURF/SIFT

pair gets the longest running time.

In Figure 2.6, the performance results for different orientations by matching the query
and template images within a rotational pose range of [—30°,30°] for 5 cases are
shown. These performance results are evaluated w.r.t. the number of correct matches,
minimum distance metrics, and the average of angle difference values between
keypoints. The lower the average of angle difference values between keypoints and
minimum distance metrics are, the higher the number of correct matches for the
best result. In summary, for all sub-figures displayed, the lines emphasizing the
distances from the central point, which represents the best method, indicate the relative
performance of each method. Thus, as the distance grows greater, the performance
becomes worse. FAST/SURF pair obtains the best results for all rotations for the
negative rotation cases. If the minimum distance and the number of correct matches
are aimed to be optimized for a particular application, then for 15° and 30° one
can use 4 of the following combinations appropriately: SURF/SURF, SURF/BRIEEF,
FAST/ORB, and SURF/BRISK. It is possible to make such an informed decision for
any kind of priorities from the given performance evaluation parameters. For the
same location case shown in the last row, SURF/SURF and SURF/SIFT pairs give the
maximum number of correct matches, and SIFT/BRIEF, ORB/BRISK, SIFT/SURE,
SIFT/BRISK, and SIFT/SIFT are very close to each other to give the minimum number

of correct matches.

2.5 Discussion and Conclusion

An extensive analysis of visual feature detectors and descriptors is given for
existing detectors and descriptors separately with their performance outputs. It is
still a prominent necessity to develop successful feature detectors and descriptors
one-by-one to make visual systems capable of extracting semantic information solely
from visual data. Regardless from the progress on hardware, robotic applications,
especially the ones that should run onboard and/or embedded hardware as well as

including autonomous systems such as localization of mobile and aerial vehicles,
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SLAM, manipulation by robotic arms, etc. require improvement of existing
feature detector/descriptor performance metrics in the context of computation time,
robustness, reliability, repeatability, energy efficiency, accuracy, and temporal costs.
The trade-offs between conditional parameters and performance results are significant,
for instance, one has to compromise from robustness, accuracy, and reliability if the
speed and computational costs are priorities. Our study constructs a generic structure
that allows choosing the best option from the given combination judiciously for
the specific priorities, besides providing a conceptual framework to extract semantic
information. The application studies discussed in this study excluding the ones of
proposing new feature detector or descriptor methods come up with suggestions to
provide the best experimental platform or metrics to measure the performance of
feature detector/descriptor pairs; however, there is not a consensus on a combination
that is superior to others by surpassing in all or even many of the performance

measurements.

As long as processing visual data and extracting semantic information is imperative
for computer vision and robotic applications in terms of object detection and
recognition along with performing the given tasks by interpreting the provided data,
the conventional feature detector and descriptor methods remain giving unsatisfactory
results. Therefore, deep neural network architectures, which will be detailed in the
next chapter, exceed the performance of conventional feature detector and descriptor
methods w.r.t. the analyzed performance metrics. They are proposed to overcome the

deficiencies of these methods.
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3. DEEP NEURAL NETWORKS

Technological progress paved the path of intelligent systems to penetrate the most
of daily routines and this enforced researchers to evaluate the opportunities including
visual systems and robots for plunging into everyday life more efficiently and naturally.
In this chapter, beyond introducing a novel image dataset, deep learning architectures
towards computer vision applications are explained in detail. In addition, a new
pooling layer is proposed with the aim of improving deep neural network outputs.
Since giving detailed explanations and processes of neural network components and
operations are not the primary scope of this thesis, we will just provide an ample
amount of information consistent with the context of the thesis. We will conclude
this chapter by the performance results for the proposed pooling layer, fine-tuning
procedures for existing CNN models suitable for our new dataset with the goal of

detecting and recognizing objects inside the images.

3.1 Introduction

The contemporary approach focuses on machine learning methods to build intelligent
systems. Together with the smart products as their results, these methods are
generating considerable interest having great potential to cope with unsolvable
problems by conventional techniques. Generally agreed definition upon machine
learning concept is made by [69] as follows; “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P, improves with experience
E”. Namely, as [70] explains the components of machine learning algorithms, which
are the tasks that are the ways to process examples, the performance measurements
that are the quantitative metrics for evaluating the abilities of the machine learning
algorithm, and the experience that is the data in a manner of supervised or unsupervised
fashion according to the learning style. Reinforcement learning is a kind of mixture

method of supervised and unsupervised learning, which targets to infer optimal actions
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Figure 3.1 : The regular machine learning system workflow.

according to the reward scores received as a result of previous efforts. In like manner,
evolutionary learning that includes methods those inspire from biological evolution
can be shown as another type of machine learning. Machine learning workflow can be
displayed as given in Figure 3.1. Regularly, collecting useful data for the application is
the initial step for a machine learning system. Then, the received data is prepared for
the determined machine learning algorithm by preprocessing with cleaning, scaling,
annotating, etc. Afterwards, the data is fed to the machine learning model, and the
outputs are evaluated with the validation data, which is already split from the training
data. In the final step when desired performance rates are achieved, the outputs are

transformed into the plausible formats for data visualization and model deployment.

In spite of there are many machine learning tasks, classification, regression, machine
translation, anomaly detection, clustering, synthesis and sampling, denoising, and
probability distribution estimation can be given as the most common tasks. The
performance measure is a kind of quantitative metric that is specific to the task being
performed by the algorithm. Accuracy is one of the most used metric evaluating the
classification performance, and the regression performance is measured with the error
rate, whilst the average log-probability the algorithm assigns to samples for measuring
the continuous-valued score for each sample evaluating the task performance. One can
concisely explain the supervised learning as experiencing a dataset of examples each
of which are labeled or associated with a target while labels or target do not exist in
unsupervised learning. In supervised learning, the learning process is performed over
training the algorithm for learning to predict labels or target values y from random
exemplars x, mostly the estimation is done by p(y|x). On the contrary, unsupervised

learning aims to learn a probability distribution p(y) over given random exemplar x.
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Figure 3.2 : Mathematical representation of a perceptron analogous to the biological
neuron cell.

In this thesis, we focus on object detection in terms of a regression problem estimating
the bounding-box pixel coordinates of the objects and object recognition regarding
a classification problem estimating the labels of objects as unsupervised learning.
In accordance with these aims deep neural networks (DNNs) are used, which are
privatized artificial neural networks (ANNSs) with more hidden layers and some specific

architectures.

Theoretically, ANNs are assumed to be global function approximators, whereas
perceptron is the building-block of these networks. The analogy between a biological
neuron model and its mathematical interpretation perceptron are given in Figure 3.2. It
is apparent that perceptron is a model that is developed by inspiration from a biological
model. At the first phase of the perceptron, the input signals x comes as a vector
containing inputs from the dataset x = [xp x; x2 ... x,] and these inputs are
multiplied by appropriate weight values ® = [y @; @ ... @®,], the bias b is
added up to the weighed inputs at the second phase, and at the third phase activation
the function is applied to the bias added weighed inputs, which yield the output of the
perceptron as a function of y = f(x,®) = f(¥;(@x; + b). Using perceptrons, one can
design different types of function approximators, and these models are typically called

multi-layer perceptrons (MLPs), which are the same as ANNS.

It is universal philosophy that the objective of training ANNSs is to learn the optimum
weights or parameters. The learning process can be divided into two parts; i)

computing the outputs using the given inputs and current weights, and ii) updating
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the weights according to the error. The first step is called forward-propagation and
the second step is called backpropagation. We explained the operation of output
calculation of a perceptron. A relevant dataset, a cost function that is also known as loss
or objective function, an optimization strategy and a model constitutes the fundamental
characteristics of deep learning methods. The optimization procedure, namely
backpropagation, of deep neural networks is performed by sending the difference
between the outputs and the targets backward through the network. Therefore,
information flow is preserved in both directions. As it is alleged in [70] that training
the ANNSs is predominantly performed based on descending the cost function value in

either way using the gradient.

One of the major issues machine learning methods encounter with is overfitting. To
overcome this issue, the cost functions are penalized by adding a regularization term.
In many cases, L1 — norm, which is also known as absolute errors, L2 — norm, which
is also known as least squares error, and dropout [71] are used as regularization terms.
L1-norm simply minimizes the absolute differences between the outputs and targets
L1=Y",|yi— f(xi) | and L2 — norm basically minimizes the sum of the square of
the differences the outputs and targets L2 = ¥ | (y; — f(x;))>. On the other hand,
dropout is a technique that trains sub-models for each training sample after computing
the probabilistic gradient of sub-model inputs and outputs, then simply the full model is
performed by dividing the weights by 2. The form of the cost function varies according
to the network model and relies upon the probability distribution. Recently, ANNs
principally trained using maximum likelihood, which are seeking to classify inputs.
For these type of training cross-entropy based cost function is used as follows;

1
J(w) = EEx’yNﬁ | v—f(x; o) H2 +Constant (3.1

where E denotes the expectation w.r.t. the empirical probability distribution p, @
shows the parameters and x and y are the inputs and labels, respectively. Equivalently
the following cost function can be written;

1(0) = Y. ylogha ()7 + (1 —y)iog(1 ~ho() )] G2)

m
i=1

where m is the number of samples and hy stands for the predicted outputs.

Additionally, ANNs that are trying to solve regression problems use the following
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form as cost function;
1 (12 m 5
P 1
1 Z_ NON Miz_le] (3.3)

where A is the regularization coefficient.

Suppose that a cost function for a neural network with a regularization term is given
as in Equation 3.4, then one can follow the steps given in Algorithm 1 to train the
ANN model by backpropagating the error until a stopping criterion is satisfied such
as reaching the predetermined number of back and forth passes through neurons for

updating weights or achieving a desired € value as a result of gradient checking.

1 2 K 0 . L s si41 o
@)= L Ll i 0g (ha(@)) (1 -3} Jiog (1=ho())+5. 3. 3. X, (@)
= = =li=1j=

(3.4)

Algorithm 1 How backpropagation works to minimize the cost function.
Require: Training dataset with m samples; Dataset: {(x1,y1), (x2,¥2), -+, (Xm,Ym) }

Ensure: ¢ < ——J(®)

i) Initialization with randomly selected weights that are close to zero
ii) Implement forward propagation to get i, (x') for any (x')
iii) Implement code to compute J(@)

iv) Implement backpropagation to compute partial derivatives —(J ()
Jary
fori=1:mdo

a) Perform forward and backpropagation using sample x(i), y(i) (get activation

outputs, a), and delta terms, 8 for [ = 2,3,....,L)

0
b) Compute ——J(w)
(&)
Wj;
end for
v) Use gradient checking to compare —(Z)J (w) computed using backpropagation

ol

vs. using numerical estimate of gradient of J(®). Then disable gradient checking.
vi) Try to minimize J(®) w.r.t. ®

It is previously said that backpropagation is implemented via mostly a gradient-based
optimization method.  There also exists evolutionary concepts alternative to
backpropagation; however, these methods are not in the scope of this thesis. The

fundamental gradient descent pseudo-code is given as follows in Algorithm 2:

33



Algorithm 2 Principal steps of gradient-descent method.
Require: Initial weights vector; @ = [@y, @1, @, ..., O]
Ensure: Determine a small enough learning rate; 1

Repeat until reaching a satisfactory € rate;

0+~ o0w-—n1 o)

507

Using provided knowledge about even deep neural networks can be trained rather than
shallow networks. The necessary information about CNNs with the purpose of object

detection and recognition tasks will be expressed in the next sections of this chapter.

3.2 Literature

For the reason, a complete section commits an extensive material about image datasets
in this thesis; this section considers the literature concerning the prominent deep
convolutional neural networks with a concentration on object recognition and object
detection. With the advancement of datasets and the progress of computational skills of
hardware, GPUs, in particular, eased to process numerous images within performance
objectives. Concisely, it is theoretical path for deep learning research to concentrate on
a condensed problem, gather unprocessed data and clean it, then ameliorate existing

methods by fine-tuning or deriving depending on data to attain reasonable results.

Early studies about deep learning techniques and their applications are reviewed in [72]
which presents a broader insight predominantly on the theme of CNNs considering
object detection and recognition. Besides, it gives some details about recurrent neural
networks (RNNs) and its usage areas are mainly in text processing. It suggests that
CNNs are more proper for the image, video, speech, audio processing applications,
and RNNs are for text and speech processing. The basic convolution operation in one
dimension between two functions is shown in Equation 3.5. Although it is useful for
signal processing and time series prediction, 2D and 3D convolutional operators are
required to process higher dimensional data, for example, images and videos.

oo oo

gl = [ 1@st—mae= [ g0z (35

—o0 —o0

where * stands for the convolution operation.

Despite the fact that the CNN architecture called LeNet [73] can be claimed to be the

very first and successful CNN model applied to optical character recognition (OCR)
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Figure 3.3 : The AlexNet CNN architecture.

tasks widely in 1998, researches on CNNs did not follow the path after it because
of hardware, software, and data issues. LeNet is trained on handwriting images
dataset [74], which is composed of 70000 handwritten digits, 60000 for training
and 10000 for validation with the dimension of 28 x 28 in pixels. The CNN model
achieves an accuracy rate of 99.2% on test session with its 5 hidden layers, which
are 2 convolutional layers each accompanied by a pooling layer and a fully connected
(FC) layer before classification layer. Deep Learning methods had been around for
a long-term, but they turned into the mainstream in computer vision with its echoing
advance at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [75]
of 2012. In that competition, an algorithm based on CNNs [76] called AlexNet
shook the computer vision field with a stunning accuracy that is better than the
method that picked up the second rank as being the solely CNN based registration.
As can be assumed to a modified version of the LeNet model with max-pooling
and rectified linear unit (ReLU) activation function besides dropout regularization.
The AlexNet architecture has 7 hidden layers, 5 of them are convolutional layers,
where the first, second, and fifth are followed by max-pooling, and the rest are fully
connected (FC) layers before softmax classification layer, which keep 60 million
parameters between 650000 neurons. It is clear from Figure 3.3 showing the AlexNet
architecture that the CNN model is sliced into two symmetric parts, the reason beneath
is the usage of two GPUs in parallel to train the network with the goal of reducing
training time. The training images, which are 1.2 million images in 1000 classes,
are rescaled for AlexNet to the dimension of 224 x 224 x 3 and the nonlinearity is

maintained by ReLU. The dropout method is against reducing overfitting issues in
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Figure 3.4 : The VGGNet model.

CNNs by randomly eliminating the units and their weights during training is also
introduced in AlexNet. So long as [77] proposed a fascinating process called ZFNet
in quest of visualizing what hidden layers see in a CNN, the prevailing techniques
for understanding the behaviors of layer activations were poor. ZFNet is claimed
to be an improved form of AlexNet and shows the performance results on different
datasets. ZFNet architecture encompasses a deconvolutional layer that inversely maps
the activities back to the input pixel space, thus feature activations can be traced with
reciprocal inputs that help to have a better intuition to observe how features acts
during training. A growing avalanche-like interest is still sustained in the vicinity
of enhancing performance outputs of CNNs at the ILSVRC events. From this point
of view, two object recognition winners of 2014 along with the numerous applicants
supports this idea. One those claimers presents their study in [78] with the model
called VGGNet. To reveal the power of depth for deep neural networks, 6 sequential
models with an escalating quantity of hidden layers from 11 to 19 are compared, which
use the same structure consisting of 3 x 3 convolutional filters followed by pooling
operations of stacked layers as shown in Figure 3.4 for 16-layered model. conv3-64
represents 64, 3 x 3 convolutional filters slide over the current layer and extract the
new features. FC-4096 stands for the fully-connected layer containing 4096 units.
Resembling to AlexNet, this model also utilizes 224 x 224 x 3-pixel images as inputs.
This study is the first to the example of employing 3 x 3 convolutional filters, and
thus the network achieved the capability to copy the actions of larger receptive fields

effect. 16-layered VGGNet contains ~ 138 million connections between layers as
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Figure 3.5 : The Inception module of GoogleNet with dimensionality reduction.

weights. In addition, the results of this study claim the impression that ensembles
through networks involving more and more hidden layers yielding deeper networks
improve the performance. The other one of the CNN architectures asserted as the
winner of ILSVRC 2014 is explained in [79] and it is called GoogleNet with its peculiar
building block structure called Inception. The Inception module with dimensionality
reduction is shown in Figure 3.5 with its illustration for stronger mental grasp. If
1 x 1 convolutions in this illustration, which exist before 3 x 3 and 5 X 5 convolutions,
are disposed of, then unsophisticated Inception module version is attained. This layer
is also called bottleneck layer that reduces the number of features. GoogleNet has
only 5 million parameters within its 22-layered architecture had by stacking Inception
modules and it does not accomodate any FC layer in contrast to AlexNet-based
architectures. This CNN model is trained by 299 x 299 x 3 images. The objective
of the Inception architecture is to achieve sparse structures from dense pieces of CNN
features. This is accomplished by concatenating the independent convolutional and/or
pooling schemes. The specific design of the Inception module enables GoogleNet
to capture sparse patterns from feature maps through applying parallel filters with
different receptive field sizes. However, this also raises the computational cost;
bottleneck layer balances the cost by reducing spatial dimensions. The confusion about
ILSVRC2014 winner occurred due to the crop sampling type for enriching the training
images diversification. If models are trained by central-crop sampling, then the error
scores of VGGNet and Inception are 8.70% and 10.07% respectively. On the contrary,
training models with 10-crop sampling yields 9.33% and 9.15% errors respectively.

Furthermore, [80] introduces the improved versions of Inception. Inception-v2 is
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modified by factorizing the classic larger convolutions into three 3 X 3 convolutions
yielding expansion at each layer to increase feature diversity before next layer while
diminishing the spatial resolution and Inception-v3 adds regularization to training with
batch-normalization (i.e., data-whitening) Inception-v2, which reduces the importance
of auxiliary classifiers. In ILSVRC2014, a subtle and spectacular CNN architecture
[81] called ResNet has beaten human-level performance on object recognition. With
the goal of discovering an efficient way of training deeper neural networks with smaller
error rates than the shallower ones, the ResNet block proposes to copy layers from
the learned shallower model and to map the identity of these layers by skipping the
intermediate connections via short-cuts likewise gated recurrent units. On account of
this, the vanishing gradient and accuracy saturation (degradation) problems stemming
from stacking layers on a plain neural network found answers, and it is alleged that
using bottleneck convolutions same as Inception module is sufficient to access deeper
efficient neural network architectures. The batch normalization operations are applied
after each convolution and before activation. The experiments on ImageNet dataset
are conducted with 5 models having various depth sizes starting from 18 layers to 152
layers, and the training image size is retained as the same with Inception. Excluding
the classification layer ResNet does not have any FC layer and there are 60.2 million

total parameters included in the 152-layered model.

There are also some types of distinct CNN architectures, which are derived from
the given structures so far. For instance, Xception [82] is a modified Inception-v3
architecture with 48-layered CNN consisting of convolutional and pooling layers with
optional FC-layers. In conjunction with having 6 more layers than Inception-v3, it also
converts its convolutions to the depth-wise separable convolutions by having the same
number of parameters. In the study, it is shown that Xception takes over Inception-v3
slightly in ImageNet dataset, but it is contended that in datasets with larger amount of
images the difference becomes significant. The given CNN architectures so far are the
current state-of-the-art and distinctive structures. In this thesis, we give performance
results of VGGNet, Inception-v3, ResNet, and Xception models by fine-tuning them
by adjusting some layers according to our dataset consistently. Another modified
architecture called Inception-v4or Inception-ResNet [83] is obtained by combining

the Inception module with ResNet simply by adding residual connections to the

38



256-d In

ResNeXt
ResNet | 256-d1n

ESG, 1x1, 6§

' ‘
64, 3x3, 64 ’
[4,1xt,256] | [4 1x1,256]

256-d Out

Figure 3.6 : The ResNet and its successor ResNext modules.

Inception-v3 modules, which yields better recognition performance with its more
complex structure. In addition, an advanced version of ResNet module is introduced
in [84] named as ResNeXt. A cardinality hyper-parameter is presented in the study as a
set of individual, independent paths, which expands the block architecture that pursue
the split-transform-merge procedure as Inception versions do. The study claims that
the increase in cardinality gives better results rather than deeper or wider architectures.
In Figure 3.6, ResNeXt block is given together with its primitive version ResNet. In
spite of the fact that, there are definitions of the object detection as it is a composition
of object recognition and localization, we just consider the object localization part of
the object detection term that is to predict the location of the bounding-boxes in pixels
surrounding the object within images, because we consider estimating the labels of
images (object classification or categorization) and predicting the pixel coordinates
spatially of the objects inside images as two separate problems. Similarly, [85]
assigns discovering the spatial coordinates of the object within an imaginary rectangle
surrounding called the bounding-box to the deep neural network based regression
problem. The last layer of AlexNet is replaced with a regression layer and the network
is trained to anticipate a ground-truth mask m € [0, 1]V for an image x as formulated in

Equation (3.6):

minimize Y |l (Diag(m)+AI)2(DNN(x; @) —m) |3 (3.6)
(x,m)eD
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where DNN(x; ) denotes the deep neural network output while x is given as
the input image, and D represents the training set of images including the object
bounding-boxes. From here, multiple masks are generated, then those are evaluated by
non-maximum suppression to find out which one of these masks fit correspondingly
to the ground-truth bounding-box. In [86], feature extraction is accomplished via an
AlexNet-based CNN model called R-CNN, leading higher accuracy rates. To handle
a small amount of annotated data issue, they use supervised pre-training on auxiliary
datasets. The declared method has 3 steps; i) generating region proposals, ii) feature
extraction for each region via CNN, iii) classification. The region proposals, 2000 of
which are generated for each image by default, indicate a bounding box candidate with
a possible object. After warping these region proposals into a fixed-length vector, then
the AlexNet-based model with pre-trained parameters on ImageNet extracts features to
be classified by support vector machines (SVM) per available class. As a consequence
of this pipeline of initially training the CNN and then multiple SVMs for a huge
amount of required disk space due to the 2000 region proposals per image makes
R-CNN impractical. Our consideration about the separation of object detection by
means of localization and object recognition subjects can be seen from Figure 3.7,
which the workflow explained in [87] as being the improved version of R-CNN that
is called Fast R-CNN. Same as the primitive version, this approach uses selective
search [88] to produce tentative object locations, but instead of SVMs it only uses
a single-stage CNNs whereas the most of the architecture is transferred, but mostly
VGGNet 1s used this time. One single feature operation makes this model 9x faster
at training and 213x faster at the test. The region of interest (ROI) pooling layer
downsizes the proposed regions to a fixed size of 7 x 7, and then the network reshapes

it to F =7 %7 vectors where F denotes the number of convolution filters. The network
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outputs top-left x— and y—coordinates, log height and width of the bounding box
together with the class of the region. Faster R-CNN given in [89] goes one step further
from [87] by substituting the selective search with a region proposal network (RPN).
One can split Faster R-CNN into 3 consecutive steps as; i) feature extraction network
usually comprised of convolutional layers that are initialized with pre-trained network
parameters, ii) region proposal network (RPN) what uses the features and generated
region proposal in the previous step, and iii) classification network usually composed
of FC-layers that classify object proposals of each region and readjust the bounding
box coordinates. The inserted RPN measures the "objectness" score by running a
sliding window spatially with 9 anchors having 3 different aspect ratios and scales
for each image over the feature maps extracted at the first step. Then, the values
higher than a threshold are assumed to be probable bounding-boxes and these are
evaluated by the classification network in the third step. If anchor box overlapping

rates with ground-truth bounding-boxes have higher intersection over union (IoU)
Areao fOverlap

rate (simply IoU = ) than 0.7, then that anchor box is accepted

Areao fUnion
to contain an object; otherwise, the with the highest IoU is used. Non-maximum
suppression removes the unnecessary region proposals so that the final bounding-box
is determined. In the complementary aspect, the study in [90] named as YOLO, alleges
to use an AlexNet-based CNN model for both classification, and localization of object
bounding-boxes. As can be seen from Figure 3.8 that input images with a resolution
of 448 x 448 pixels are divided into 7 x 7 grids where each grid represents a prior box,
and there are 2 bounding-boxes tested per image by default. The prior boxes only hold
the information of the center location and regression head (linear layer) predicts the
box size. The YOLO architecture output size is S X S x (B x 5+ C), where s shows the
grip size, B denotes the number of tested bounding boxes, 5 is the additionally tested
bounding-boxes for regression, and C represents the number of classes (by default
number of image classes is 20). From here, one can calculate the number of different
bounding-boxes evaluated for all grids as 7 x 7 x 2 = 98. Together with the confidence
ratio and non-maximum suppression operation, the irrelevant boxes are eliminated,
and the softmax layers predict the classes. In addition to an improved version called
YOLOv2 based on this architecture, which mostly attempts to overcome the issues of
detecting small objects and unusual aspect ratios. Furthermore, Single shot multibox

detector (SSD) [91] declares a novel bounding-box detector, which does not require an
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RPN and ROI-pooling makes it very fast almost 60fps. VGGNet is modified by adding
6 extra convolutional layers to be used as the base architecture. The input images are
rescaled to a dimension of 300 x 300. The output of the base layer and extra feature
layers are concatenated at the FC-layer at the end of the network. This allows detecting
the objects at different scales. The loss function is composed of a confidence loss for

classification and location loss for regression that is given in Equation (3.7) as follows:

1
L(x,c,l,8) = N(Lwnf(x, ¢)+ oLje(x,1,8)) (3.7

where x is the matching score, N denotes the number of matched default boxes, ¢
is the class confidence scores, & shows the weight term, g represents the ground-truth
parameters, and / is the predicted box. The architecture given in this study is illustrated
in Figure 3.9. In short, SSD process can be summarized in 4 steps as; i) feed the
image forward through the convolutional layers producing several feature maps at
different scale in an ascending order, ii) by employing a 3 x 3 convolutional kernel a
number of default bounding-boxes (same as the Faster R-CNN anchors) are evaluated

in each feature map per location, iii) the bounding-boc offset values together with the
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Figure 3.9 : SSD object detection procedure.

object classes are predicted for each boxes, and iv) compare the predicted boxes with
ground-truth using IoU while training and the highest score is specified as including
object piece inside. To remove overlapping and redundant boxes non-maximum
suppression is applied. In advance of detecting objects, feature pyramid networks
(FPNs) [92] highlight the employment of CNNs like feature pyramids including
low-level feature maps that collaborate to detect small objects. The network uses
the top-down pathway; thus semantically powerful feature maps are accumulated in
two branches, and this ensures the scale invariance. The first branch is composed
of convolutional and pooling layers as usual. And the second branch, which takes
the outputs of the first branch as inputs, applies nearest-neighbor upsampling by its
256 — channels to increase the resolution again to the original image. The connection
between two branches is established via 1 x 1 convolutions before an addition like
a residual connection. The study declared in [93] called RetinaNet is a single stage
method including two task-dependent sub-networks towards object detection and
classification. The RetinaNet architecture consists of a feedforward ResNet model
followed by an FPN. At the end of this model, the sub-networks are attached; one
for anchor box classification and the other one for regressing from anchor boxes to
ground-truth as demonstrated in Figure 3.10. The imbalance between background and
foreground classes is argued to be the reason for the poor performance of single stage

methods for object detection. In consequence, they contend a Focal Loss term, which
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Figure 3.10 : The RetinaNet architecture flow-chart.

includes a factor (1 — p;)? to the regular cross entropy loss (CE(p;) = —log(p;)) as

given in Equation (3.8):

FL(p;) = =04 (1 — p:)"log(p:) (3.8)

where p € [0,1] is the estimated probability of the model, o« € [0, 1] is a weighting
factor, (1 — p;)” demonstrates the proposed modulating factor with tunable focusing
parameter ¥ > 0. The benefits of this focal loss are further displayed. In this thesis, we
chose RetinaNet to detect objects and the details about implementation are provided

under the "Results" section of this chapter.

There also exist remarkable models and CNN structures in literature, so that for
further studies we refer the reader to [94], [95] (this study can be assumed to be the
ancestor of Inception modules), [96] (a rare kind of model working to serve for 3 tasks;
detection, localization, and recognition of objects), [97], [98], [99], [100], [101], [102],
[103](predicts masks for detected objects, mostly used for segmentation), and [104].
However, we confined this section with the explained studies as long as this thesis
includes the object detection and recognition subjects. As per what we have seen
so far, those unique building blocks and architectures enlighten the path during the
journey of the deep learning researchers towards achieving robust, reliable, safe, and

even higher performance than human-level from machines and robotic systems.

3.3 Datasets

Comparable to humans, vision datasets imply the most prominent processing
capabilities like data retrieved by eyes in order to extract valuable information.

Because the primary focus of this thesis is to manipulate visually recognized objects to
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accomplish a sensible motion, we will give insight about image datasets (and/or word
datasets that are linked to the image datasets) in this section, which is conceded as

benchmarking datasets.

Image datasets can be considered in two groups; labeled and unlabeled/raw,
which are relevant for supervised learning (classification) and unsupervised learning
(clustering) tasks, respectively. Furthermore, semi-supervised and reinforcement
learning algorithms can be applied to both types of datasets. Additionally, much more
effort is required to attain labeled image datasets than unlabeled ones. Moreover,
the quantity and quality of data affect the performance of machine learning systems
directly. It is worth to note that the importance of datasets for learning algorithms are

commensurate with human sensory organs.

As mentioned earlier in this study, ImageNet is a huge dataset consisting of 15 million
annotated images in 22000 categories, and ILSVRC is an annual competition held
under the subjects of object localization, object detection, object detection from the
video, scene classification, and scene segmentation. In the challenge, 1.2 million
images in 1000 categories are employed to measure the performance of the submitted
algorithms. In the ImageNet dataset, images are labeled according to the WordNet
hierarchy [105]. Likewise, a competition is run using Microsoft Common Objects in
Context (in short COCO) dataset [106] every year. COCO provides a total of 330000
images (more than 200000 images are labeled) in 80 object and 91 stuff categories in
addition to 250000 people with keypoints. There are 1.5 million object instances and
5 captions for each image. In COCO, the competitions are executed in the subjects
of object detection, instance segmentation, image captioning, and person keypoints
localization. An older example of image dataset challenges, the PASCAL Visual
Object Classes (VOC) [107] was held from 2005 to 2012 as a yearly competition.
PASCAL VOC is a benchmarking dataset for assessing the performance of object
category recognition. The initial dataset was composed of 1578 labeled images in
4 classes as long as there was 11530 region of interest (ROI) annotated images in 20
categories in 2012 in this dataset. Caltech-101 [108] and Caltech-256 [109] consist of
9146 and 30607 images in 101 and 256 classes, respectively and each class includes
various numbers of labeled images ranging from 40 to 800 with the dimension of

300 x 200 in pixels. CIFAR [110] is derived from 80 million tiny images dataset [111]
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by labeling 60000 for 10 classes called CIFAR-10, and another 60.000 for 100 classes,
which are composed of 5 classes under 20 superclasses called CIFAR-100. One of
the biggest publicly available image dataset [111] contains approximately 80 million
colored images with the dimension of 32 x 32 pixels with weak labels which are
listed within WordNet hierarchy. Yale-CMU-Berkeley (YCB) [112] dataset presents
77 classes of objects relevant to robotic manipulation research. YCB contains 600
high-resolution colored images, 600 colored depth images and five sets of textured 3

dimensional geometric models with mass values of objects per category.

n addition to ADORESet containing both real and synthetic images, we also give
knowledge about significant synthetic image datasets to reveal the potential of our
dataset. [113] provides a synthetic image generator and proposes a pipeline to bring
about better results than real-world data when working only with synthetic images.
However, this study compares the effects solely for vehicle detection tasks. Similarly,
the synthetic collection of imagery and annotations (SYNTHIA) incorporates only
synthetic outdoor images, which are captured from a virtual world with pixel-level
labels. There are over 200000 high-definition images grabbed from videos and over
20000 high-definition separate images in the direction of semantic segmentation and
scene understanding from driving simulations. The results in SYNTHIA indicates
that hybrid dataset approach also contributes to semantic segmentation of objects.
Furthermore, SceneNet [114] dataset provides labeled synthetic 3D indoor scenes for 5
categories; bedroom, office, kitchen, living-room, and bathroom consisting of objects

from 50 to 150.

It is noteworthy that there exist image datasets in the literature except for the given
datasets above, which are concentrated on particular subjects such as annotated hand
images [?], street view house number images [115], brand logos [116], handwritten
characters [74], faces [117] and so on. Additionally, Places [118], Places2 [119],
and LabelMe [120] datasets are constructed using outdoor images which contain
labeled and/or weakly labeled images. Concisely, it is conceptual for deep learning
research to focus on a compact problem, collect raw data and clean it, then ameliorate

existing algorithms by fine-tuning or deriving depending on data to acquire plausible
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results. Reasonably, we propose ADORESet that provides opportunities of transition

and flexibility for real world and simulation environment applications.

3.3.1 A hybrid image dataset towards bridging the gap between real and

simulation environments for robotics: ADORESet

Robotics research problems involving machine vision are generally carried out using
real and simulation images, separately. These images routinely belong to the categories
of objects namely tableware, glassware and similar kinds of objects, which may remain
on desktops and tables, in the form of relatively small, graspable, pushable states. Due
to the fact that the essential objective of robotics research with regard to achieving
results at human-level or better for vision and control tasks, using application-specific
algorithms is convenient. Thus in this study, we propose annotated desktop objects
real and synthetic images dataset and name it as ADORESet, which contains data
from both real-world and simulation environment. From this perspective, the main
reasons behind proposing ADORESet, as a hybrid image data set including both real
and synthetic images, are suggested as follows; able to eliminate incompatibilities
between real and simulation environments by training once and running the model
weights everywhere, ready to minimize experimentation time wasted during adjusting
the simulation model to the real world, consisting of relevant object categories for
dexterous manipulation, grasping, detection and recognition. Precisely, the diversity
of the dataset samples is another crucial factor, which directly influences performance,
such that raising the amount and diversity of training data by data augmentation has
been a prerequisite for deep CNN models. Figure 3.11 illustrates the comparisons of
the explained image datasets including ADORESet relatively in the logarithmically
scaled 3D space, where the vertical axis shows the total number of images, the
horizontal axes indicate the average number of images per class and the total number
of categories, respectively. Even if the primary goal of machine learning algorithms
is to obtain knowledge from data using algorithms, the quality of data regarding
quantity, labels, missing samples, variations, noise, outliers, invalid instances, etc. has
a significant influence on resulting models. Therefore, densely annotated ADORESet
provides a competent number of images per class for machine vision based problems

in robotics such as object detection and recognition, object tracking and manipulation.
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Figure 3.11 : Datasets in logarithmic scale according to total number of images,
average number of images for each category and total number of
categories.

Such a dataset consisting of real and synthetic images maintains flexibility concerning
developing models both for real-world and simulations, then enables deployment of
these models for experimentation directly. ADORESet should be of interest to the
field of robotics researchers by means of its hybrid form, compactness in terms of
lightweight and relevancy to robotics applications such as detection and recognition,

grasping and dexterous manipulation of objects.

In order to construct ADORESet, we start by downloading instances via image search
engines. Afterwards, an adequate number of images of relevant classes are generated
within the simulation environment. The annotated and resized data received from both
sources are processed using ITUrk graphical user interface (GUI). Successor objects
are also labeled to build statistical information about the relationships of the objects
within the dataset. For example, the connection between monitor, keyboard, and
mouse can be directly achieved using this practical information. Figure 3.12 shows

the pipeline of these steps.
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Figure 3.12 : The operations during the construction of the ADORESet.
3.3.1.1 Collecting images from wild web and preprocessing

The object categories in ADORESet, which are provided in Table 3.1, are specified
considering the robotics applications. It is unquestionable that these objects have
been part of everyday life in the last 3 decades. With the ambition of building this
dataset using the wild web, we endeavored about 390 query terms or word pairs via 7
image search engines. Principally, the multi-language wild web search is performed
according to the brand, gender, model, type, color, age, season, material, state, and
relation. Subsequently, inappropriate raw images are eliminated manually with regard
to criteria such as the light effects and conditions, noise, distance and angle, visibility
which influence the quality of the dataset. Then the remaining images are entitled to
the following rule: The first three numbers show the category starting with 0, and the
last five digits indicate the index number of image in that category starting with O,
e.g., "01700754 is the 754" image of the laptop class". Concurrently, all images are
resized to the same dimensions. Eventually, ADORESet is a new richly-labeled dataset
consisting of 75000 colored real images with the size of 300x300 pixels for 30 classes
including the bounding-box coordinates of all objects. The real images are stored in
JPEG compression format, which takes up approximately 1.3 gigabytes space in the

hard-drive.
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Table 3.1 : ADORESet Object Classes.

1 Ashtray 2 Bag 3 Book 4 Bottle 5 Bowl

6 Can 7 Candlestick 8 Clock 9 CookingPot 10 Cup

11 DeskLamp 12 Eyeglass 13 ForkSpoonKnife 14 FryingPan 15 HeadWear
16 Keyboard 17 Laptop 18 Monitor 19 Mouse 20 Pen(cil)

21 PhotoFrame 22 Shoe 23 SmartPhone 24 Speaker 25 Teapot

26 Telephone 27 Vase 28 Wallet 29 WebCam 30 WristWatch

3.3.1.2 Image generation from simulation world

Similar to gathering real images, the process of image generation from simulation
world starts with downloading computer-aided design (CAD) models of the objects
from the wild web. For each object class, five different CAD models are downloaded,
and their file formats are converted to STL which is appropriate for universal
robot description files (URDF). Since they are acquired from distinct sources, their
orientation, scale, and origins are not correctly defined. Initially, every model has
oriented in a way that normal vector of the meaningful side of the object is parallel
with the z-axis. Next, the objects are scaled to their real-world dimensions. Lastly, the
origins are relocated to bottom centers of the CAD model. Textures are not attached
to the models, and the colors are allowed to change with the glow of the simulation
world sun. Consequently, ADORESet includes 750 synthetically generated images per

category carrying the same properties as real images.

There are two critical variables in the simulation world which affects variations and
the quality of the images, light color and 6D pose of the camera. In GSE, the light
is adjusted with the sun model and 30 images are captured for any sub-object couple
in the same conditions. After completing image acquisition, old sun model is deleted,
and a new sun with random color values is spawned. 6D camera pose consists of 3
position and 3 orientation variables. It is assumed that two virtual half spheres are
created around the object with the radii of r and R, and the camera is located on their
surfaces. So the distance between the camera and the object is similar for each object
class depending on its average dimensions. For instance, the minimum distance (r)
between the camera and the object are set to 0.2 m for wristwatches while it is 0.4
m for bowls. The environment with the half sphere is drawn schematically in Figure

3.13. To calculate a random point on the half sphere surface, an arbitrary unit vector s
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Figure 3.13 : Schematic view of simulation environment with frames and variable
definitions.

is defined as given in Equation (3.9):
s = [rand(—1,1), rand(—1,1),rand(0,1)]" (3.9)

, Wwhere rand denotes the random function between given argument values. It is worth
to note that z vector is restricted to positive numbers which restrain the position of the
camera on the upper half of the sphere. The position vector of the camera p can now

be easily calculated by using known values of r and s as in Equation (3.10):
p=(cirand(—1,1)+r)-s (3.10)

The constant ¢ stands for the maximum distance between the object and the camera
R. The opposite direction of the position vector defines the pointing direction of the
camera orientation X.. To use the vector in frame definition, normalization is applied

as in Equation (3.11):

P
o]

Because the calculated x, vector guarantees that the object is on the image plane,

(3.11)

XC:

other orientation vectors can be selected as arbitrary vectors meeting the orthonormal
condition. So y. is calculated ensuring the dot product with X, results in zero as in the
following equation.

Ye = [€2Xey + C3Xeg, —CoXex, —CaXex) (3.12)

Three components of the X, vector are denoted by x., x.y and x¢;. The last vector to
form the orientation or rotation matrix is z.. It has to be a perpendicular vector to other

two and is calculated as given in Equation (3.13).

Ze = Xe X Ye (3.13)
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Figure 3.14 : Example images for all object categories generated in GSE.

Random sun spawning and 6D pose generation are implemented in a ROS node. Every
image is grabbed from a specific 6D pose. The light source is changed for every 30
images because of the speed of deleting and spawning the light. 5 different CAD
models are utilized for each object which produces a total of 750 images for each

object class. Example images per class are shown in Figure 3.14.

3.3.1.3 ITUrk GUI

Although the wild web supplies an excessive amount of data, it may cause problems
when it is used with deep learning algorithms directly due to the lack of quality. In
fact, many images tagged with inconsistent keywords or indistinguishably tiny sized
objects remain within the images. To overcome these complications, in most cases,
crowdsourcing tools are employed to label the data. There are such tools that are
designed for a more general social experimental task which are also known for labeling
data called Amazon Mechanical Turk (AMT) [121]. Furthermore, the software as
reported earlier can be designed to collect a broader range of information than the
one obtained by only labeling. So that the gathered data can be extended to have a

knowledge of the labeled object location in the image plane. It also allows to label the
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Figure 3.15 : ITUrk GUI with the images from eyeglass category.

successor objects remaining in the scene. In this work, a simple GUI is designed and

implemented to annotate the data, the bounding box location and the successor object.

The GUI is designed to process 24 images on a single page to increase the speed
while keeping them visible enough for the user. Each object class is loaded to the
GUI first. Then the user is suggested to delete irrelevant images about the object class
by selecting them from the delete buttons over the images. At the same time, the
user clicks on the complementary object name if a successor object exists. Three
most expected successor names are readily given as click buttons. However, the user
can add more associated items by writing the name of it to the text-box under the
successor names. After completing elimination and labeling successor objects, the
continue button starts the bounding box selection. The user selects left-top uppermost
bounding point with mouse left click. Similarly, right-bottom lowermost bounding
points are chosen by the right mouse click, and it accomplishes the bounding box
selection for the current active image. The active images are marked with red delete
buttons. After the bounding box selection of it is completed, the next undeleted image
becomes active. Finally, completing bounding box selection starts a new page with
new 24 images. The GUI is implemented in MATLAB. The screenshot of the GUI
is given in Figure 3.15. A total of 75000 real images belonging to 30 object classes
are filtered through ITUrk as available images for deep learning algorithms. These

colored images are resized to a dimension of 300 x 300 x 3 pixels which is the same
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Figure 3.16 : Resized and labeled wild web images with instances from all
categories.

as the images from simulation world. The user can process 24 images in one single
page within 2 minutes approximately. The initial 40 seconds are spent in annotating
and successor labeling part and the remaining time is devoted to the bounding box
selection. Moreover, the perspectives and cylindrical objects may reduce the speed of
the process and cause the failure of the human bounding box specifiers. The example

images from each of the object classes are shown in Figure 3.15.

3.3.1.4 Distinctive properties of ADORESet

The underlying philosophy beneath the machine learning systems is to have a dataset
which has as many varieties as possible and then to develop intuition using supervised,
unsupervised or reinforcement learning algorithms from data. Notably, researches
on robotic arms for non-industrial daily use and humanoid robots are increasing in
the last years. Both real and simulation world applications give successful results in
areas such as perception, recognition, gripping, grasping, moving, and manipulating,
separately. To make systems intelligent, the training data has to be compatible with
the environments where the test sessions will be conducted. Accordingly, concerning

the compensation of these requirements, ADORESet is composed of hybrid images
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for 30 object classes, which may exist mostly on desktops. Following the labeling and
elimination operations, some images are exposed to distortions because of resizing,
that yielded variations for the dataset images, which is one of the most desired
properties for an image dataset. Since, there is adequate number of images per
category, each class of ADORESet is also convenient for sub-category classification.
Unlike datasets as mentioned earlier, which consist of single and centered objects
per image, ADORESet contains complex images including multiple objects, which
makes it a more challenging dataset, besides comprising different forms of objects that
transformed in decades. Our dataset also includes a satisfactory number of centered
and salient images that can be readily separable from the background. Another
property that discriminates ADORESet from the other datasets is to provide useful
information about the relationships between objects by extracting knowledge from the
statistics of the labels, which is obtained by annotating the successor objects in the

dataset.

3.3.1.5 Statistical analysis of ADORESet and semantic relation between objects

The object classes, which are included in the ADORESet, are chosen from commonly
used items in everyday life and mostly located around or on desktops. In addition to
this, the objects are related to each other depending on their usage area, appearance
similarity, and ideal locations. Some of them are used in similar or completely same
tasks. For instance, telephone-smart phone are used for communication purposes
and pot-pan are used for cooking. Additionally, some tasks have multiple objects
which completes each other, such as mouse-keyboard, cup-teapot, cup-bottle. Besides,
physical appearance is another important issue, and for some object class couples, it is
not occasionally distinguishable as in the case of bowl-vase and pan-pot. Furthermore,
specific items are usually placed close together. For example, it is strongly probable
that a fork may be encountered near to a bow! or a cup. It is worth to consider that
the object classes consist of not only one object but also multiple very similar objects.
The cutlery items object class, Fork/Spoon/Knife, aggregates 3 eating utensils as an
example. Successor objects are detected in randomly collected images from the wild
web to identify semantic relationships between them. It may bring proper information
to researchers from robotics area, particularly in manipulation planning. To provide the

information, existence frequencies of successors for each object classes are illustrated
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Figure 3.17 : Relations between object categories. (Darker color means more
relationship between objects.)

as a color matrix in Figure 3.17. The main object classes are indicated in row entities,
and their successor images are given in columns in Figure 3.17. Since the object is
not a successor for itself, the frequency is assumed to be zero. The columns and rows
are arranged in an order that strictly related objects are closely aligned. All values are
standardized along the rows to emphasize the relations. As a result of standardization,
relation scores of the objects are colored according to colorbar given on the left side
of Figure 3.17. Thus, for example, bow! is the most frequent object in cup images. On
the other hand, it is worth to consider that graph is not symmetrical. As a result of this,
cup 1s not the most existent object for bowl. So a robot can interpret that if a cup is in
the scene probably a bowl can be seen, however, if a bowl is seen it cannot be said that

a cup is in the area.

The statistical analysis shows the relation between the object classes numerically.
Robots empowered with vision make use of this meaningful information to increase
inherent capabilities of object search or the accuracy of object detection under the
influence of weak lighting or occlusion. Vision algorithms may estimate where to
look for a particular object in a massive operation space. An occluded object can
be identified more precisely with the assist of detected successor objects. The analysis
helps manipulation planning tasks through clustering similar objects as well. Statistical

results guide to the robot to place complementary items together in a meaningful way.
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As a consequence of having richly annotated 3250 images per category and containing
an equal number of real (2500) and synthetic (750) images individually for each class

put ADORESet one step ahead amongst others.

3.4 Convolutional Neural Networks

The necessary amount of information about deep neural networks is given so far in the
context of object detection and recognition tasks. It is clear that the recent approach
employs convolutional neural networks by a majority and the building-block of ANN:Ss,
backpropagation procedure, and optimization steps are clarified above. Hereafter, we
will explain the remaining components of the CNNs with a focus of processing the
image data, which are activation functions, convolutional and pooling layers together
with the hyper-parameters required to be optimized and the batch normalization will

also be expressed in this section.

3.4.1 Components of convolutional neural networks

Since the CNN models can simply be formed by stacking layers in a sequence, every
layer in these models transmits signals to another via a differentiable function called
activation function. Activation functions maintain the non-linear mappings between
the layers and so that it gives the ability to approximate non-linearities to the CNN
model. Therefore, primitive activation functions such as binary step function f(x) =1,
if x > 0 and linear activation f(x) = constant x x do not produce satisfactory results
because of their gradients will yield to f'(x) = 0 and f'(x) = constant, respectively. In
consequence, during backpropagation, the gradients of these functions do not improve

the error rates.

As can be defined the mission of activation functions, they adjust the magnitude of
the weighted inputs and provide nonlinearity to the deep neural networks while they
transmit signals. For this reason, an activation function has to be in a non-linear form
to be able to generate non-linear mappings between layers and must be differentiable
continuously. As long as neural networks are universal function approximators, deep
neural networks try to make sense from complicated problems in higher-dimensional
datasets. In Figure 3.18, the frequently used activation functions and their gradients

are displayed.
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Sigmoid or logistic function o (x) = is a smooth § shaped function within a

—x
range between [0, 1] whilst the gradier}t—is_irilply allows the range between [—4,4]. This
means that the values outside the [0, 1] range do not influence the outputs as much
and the values inside this range give rise to large changes in the outputs. One can
see that from the gradient of the sigmoid function, during backpropagation, the values
inside the [—4,4] range become very small and the contribution to the learning of the
network is restricted as well. The sigmoid is able to maintain non-linearity, and it is

differentiable continuously; however, the convergence process is very slow besides

sigmoids to saturate and kill the gradients, namely, it causes vanishing gradients
—X

e -,
———1s a rescaled
eX+e X

problem. The tanh or hyperbolic tangent function tanh(x) =
version of sigmoid function. Unlike sigmoid function, the tanh function outputs
are zero-centered since it is symmetric over the origin, ranging between [—1,1].
However, the remaining issues are the same as sigmoid function; the saturation and
vanishing gradients. In deep learning applications, the rectified linear unit (ReLU)
[122] ReLU (x) = max(0,x), which is a non-linear function by means of having ability
to backpropagate the errors, is vastly used because it plainly avoids and solves the
vanishing gradient problem. But the mean of the ReLU function is not zero-centered.
The negative inputs are not triggered in this function, so only the positive-valued
neurons are activated that result in a sparser network than the original. However, this
effect also appears in the gradients of the ReLU function that gives all zero when
the received signal is negative so that this is a potential to dead neuron, which is
never activated. To overcome this problem an improved function LeakyReLU [123]
LeakyReLU = max (o *x,x) (Where ¢ is the coefficient allowing small gradient when
it is negative) is declared, which presents a small sloped line in the negative side to
keep the updates alive. Exponential linear unit function (ELU) [124] given in Equation
(3.14) is another function that takes care of vanishing gradient problem and its mean
is very close to zero that facilitates the network and reduces the computational cost as

well, which result in the learning speed up.

ELU(x) = {

By the reason that ELU is an exponential function, it does not saturate. The negative

ifx >=0
%o xes (3.14)
o xx, otherwise

part of the ELU function behaves as bias term. Scaled exponential linear unit function

(SELU) [125] is an upgraded version of ELU with two fixed parameters as given in
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Equation (3.15).
scale * x, ifx>0

SELU (x) :k*{ (3.15)

axe*— o, otherwise

These parameters & = 1.6732 and scale = 1.0507 are constant so that they cannot
be backpropagated, which mean they are not the hyper-parameters to be optimized.
As can be seen, its functional drawing that this function diminishes the variance for
negative inputs and raises the variance for positive inputs. The decline and gain
effects are sharper for extremely negative and near-zero input values, respectively.
In addition, the projections of fluctuation are surrounded from above and below, so
the gradients cannot explode or vanish. As companion to dropout method, [126]
proposes a feed-forward technique called maxout, which contemplates to simplify
the optimization by dropout and the accuracy of its approximate model averaging
technique. As a new kind of activation function, for the input x € R the maxout
runs the following function as given in Equation (3.16):

hi(x) = max z;; (3.16)

JE[LK

where z;; = xTW.,.,-j +bij, W € R&*mxk and b € R™*¥ are learned parameters.

The major part of deep neural network assemblage is the convolutional layers that
also give its name as the convolutional neural networks mainly. The convolutional
layers extract the features by assigning the convolutional neurons to local regions those
calculate a dot product of the weights with the pixels values of the area. These layers
include the following hyper-parameters to be optimized; zero-padding P, stride S, and
the depth K and spatial extent F'. The convolution layer performs the mathematical

operation as given in Equation (3.17) over an image I with kernels K:

h w d
conv(l,K)y=0(b+ Y Y Y Kijixleriotyvj—14) (3.17)

where ¢ shows the activation function, b is the bias, h,w, d represent the height, width,

and depth, respectively.

The output activation volume of the convolutional layer is the feature map, where
the hyper-parameters designate the patterns of it. The zero-padding is the operation
of adding zeros around the image border. At first sight, it can be taught to expand
the dimensions, but it enables to transmit the effects of the border elements by

preserving the spatial size. Thus, the height and width of the volumes stay the same
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without shrinking the height and width of the volumes, which allows constructing
deeper networks. The stride how many numbers of steps will the sliding kernel
window take for each application in the spatial coordinates. As a result of the
kernel window stride, the spatial size reduces; however, the zero-padding adjusts it
sufficiently. The stride as being the kernel shift in pixels also specifies the overlap
between respective output pixels. The depth and spatial size are the numbers of
kernels, each of which concentrates on different specific regions in the inputs and their
dimensions in the spatial coordinates, respectively. The depth affects on the neuron
count in the convolutional layer. To run a CNN model properly, the dimensions of
these hyper-parameters have to be compatible with each other. In brief, there are four
indispensable hyper-parameters for convolutional layers, for instance, suppose that the
input volume is W; x Hy x D and the output volume is W, X H X D», then the relations

between the hyper-parameters become given as follows;

(W —F —2P)
W, = IS g (3.18)

_ (Hi—F—2P)
H, = 64D (3.19)
D, =K, (3.20)

where W, H, and D show the width, height, and depth of the volume. Hence, it can be
calculated that there occur F x F' x D weights for each kernel with a total of (F x F x
D)) x K weights and K biases due to the weight sharing property. The major stages
of a convolutional layer is illustrated in Figure 3.19. The 3 — channel input images
is convolved with 3 x 3 kernels and then feature maps are obtained. Furthermore,
the batch normalization technique [127] is worth considering in deep neural network
research. However, normalization layers contribute minimally; they are useful if there
exist neurons with unlimited activations, which shows characteristics very much alike
to regularizers so that the regularization requirement declines. Since, the inputs of
each layer of the neural network during training change, this causes the slow down
in the network. For this reason, these inputs are scaled to be zero-centered with unit
variance as given in Algorithm 3. The batch normalization operation increases the
training speed by applying the normalization to the input mini-batches. In this way,
the use of larger learning rates become feasible. In addition, the batch normalization

also reduces the network sensitivity against weight initialization.
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Figure 3.19 : How a convolutional layer operates over a colored input image.

Algorithm 3 Algorithm of Batch Normalization layer. [127]

1:
2:
3:

Input: Values of x over a mini-batch from training data: B = xy, ..., Xp,;
Parameters to be learned: 7, 8
Output: y; = BNy g(x;) // Batch Normalizing Transform.

m
Mini-batch mean: p < ”il .):1 Xi
1=

m
Mini-batch variance: 03 « + ¥ (x;— uf3)?

i=1

Normalize: X; < \x/’_—f—i /I € is the numerical stability constant.
Op

Scale and shift: y; <— y{; + B = BN, g(x;)

For each sub-network,the parameters to be learned in batch normalization procedure

can be calculated by yK) = y%)z*k)  g(k),

3.4.2 The smarter way of pooling techniques: the smart-pooling

The data size reduction (a.k.a. downsizing/downsampling or data compression) is
a typical signal processing technique applied with the intention of getting rid of
redundant and trivial parts of the data, but it may lead to potential wealthy information

loss stored in the data.
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two categories as lossy and lossless according to the reversibility situation of the
downsampling due to information preservation or loss of the original data. In lossless
compression, statistical models are employed to map the input signals into smaller
outputs by removing the unnecessary pieces of information. This type of compression
can be claimed to be reversible by remapping the output signals to the inputs with the
reverse model. On the other hand, once lossy compression diagnoses the redundant
parts, then eliminates it irreversibly, because there is no relation between the data

elimination method and mapping.

In computer vision, data size reduction has always been an important topic that helps
to diminish the quantity of data to be processed. Visual feature extraction, image
downsampling, multimedia file compression, pooling layers in CNN are all such
techniques works with the same ambition of easing the computations with lessening the
number of data samples by disposing of them from the original data. The most crucial
issue in image downsizing is to prevent valuable information loss. As anticipated,
image quality degradation is an entail to the image downsizing that causes a sharper
appearance utilizing lower resolution besides reducing the noise levels in the images.
The spatially closer pixels are expected to collaborate to form a visual feature, so the
removed pixels information has to be transferred via the pixels next to each other.
The pooling is that kind of operation, which selects the pertinent pixels to map the
following location in the image and it is mostly used in CNN models following the

convolutional layers principally.

The pooling layer in CNNs helps to avoid over-fitting by granting an abstracted
representation along with scaling down the spatial volumes and the number of
parameters to learn. Another remarkable achievement of the pooling layers is that they
provide geometric invariance to CNN architectures, which convolutional layers cannot
handle. This layer performs on every depth slice of the former layer one-by-one and
downsizes them spatially. 2 x 2 or 3 x 3 are the filter sizes utilized in the pooling layers
with a stride step of 2 by a majority, otherwise, the information stored in the data is
destroyed with larger receptive fields. It can be seen that the conventional settings
as 2 x 2 kernel size and 2 — pixel stride for the pooling operator reduces the amount
of data by %75. The following equations give the role of the hyper-parameters in

the pooling layers when W x H; x Dy is the input volume, and W> x H> X D; is the
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Figure 3.20 : The max-pooling and average pooling methods way of reducing the

data.
mapped/output volume:
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Although pooling layers are taught to be discarded from the CNN architectures and
can be replaced by additional convolutional layers resulting in network types such as
variational autoencoders (VAEs) and generative adversarial networks (GANSs), they
still attract the attention of the researchers with their effective implementations and
acceptable performance results. Current typical usage of pooling layers relies on the
selecting the maximum or average calculation within a kernel as shown in Figure 3.20
for a 4 x 4 input and 2 X 2 pooling kernel that produces a 2 x 2 output, but the recent
focus on improving the pooling layers cannot be ignored. In [128], the performance
comparison between the maximum and average pooling methods is shown as a result of
various experiments conducted using conventional feature extraction methods. Once
the images are downsized via one of the pooling methods, then the recognition
performance of the SIFT method on downsized images is evaluated within a binary
image classification task. It is shown that the discriminative power of the max-pooling
is better than average pooling. Moreover, [129] states that the pooling provides
invariance in feature representation as well as it may consist of spatially far-located
dissimilar features. By relating the neighbor restricted pooling operation mapping
ability that works for adjacent elements both in image and descriptor spaces, they
claim to achieve to beat the state-of-the-art performance. Instead of identifying a

pre-defined pooling scheme, [130] asserts an adaptive pooling method that learns the
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receptive fields for classification tasks. Initially, several pooled features from the
receptive fields are located to a spatial pyramid and then the resulting global feature
vectors, which are obtained by applying Cartesian products, are classified. The tests on
regular image classification pipeline show that the learning adaptive receptive fields for
pooling raise the accuracy. The study in [131] suggests replacing deterministic pooling
methods with a stochastic strategy. The method in this study intends to contribute to
regularization of the CNN models together with being hyper-parameterless and has
potential to work with other regularization techniques. It simply picks the activation
from each pooling area randomly considering a multinomial dispersion. In the first
step, they calculate the normalized probabilities p per region by p; = ZLa’ where
as are the activations within the region. Then, sampling is performI;Gdewfthin the
multinomial distribution by s; = a;, where | P(py,..., p|Rj|), a; shows the pooled
activation, / is the location from the region. Finally, the sampled activations are
probabilistically weighted in each region by s; = ZkeRj pia;. They indicate their
results show state-of-the-art on various benchmarking datasets with a more expensive
computational cost. [132] declares a new type of pooling approach called generalized
max-pooling for images classification tasks that re-weights each patch extracted by
conventional methods. Alternative to bag-of-visual-words approach, generalized
max-pooling equalizes the descriptor effects between the extracted patches and pooled
representations besides keeping the characteristic information. Another stochastics
approach to pooling layers in CNNs is introduced in [133] that employs the ordinary
max-pooling and average pooling randomly during the training. It is stated that
this approach helps to overcome the over-fitting. The pooled output of this method
is given as yy; = ;L(pr,gl)ae)ie,-jxkpq +(1— l)ﬁx(l,g)elgﬁka, where A is a binary
random number O or 1 that chooses the max pooling or average pooling, |Rij| shows
the pooling region size Rij, yy;; represents the pooling output of the k'™ feature
map, xi;; stands for the element at (p,q) pixels of the pooling region. In [134], a
pooling method is explained that first extracts deep activations for feature patches
and then pools them into a global vector at 3 scales by re-sampling the inputs into
256 x 256, 128 x 128, and 64 x 64 pixels. [135] introduces L, units, which calculates

a normalized L, norm using the delivered signals from several unit subset projections.

The normalized L, norm is defined for given inputs [ay,...,an] as; u;([ay,...,an]) =
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(]lvfévzl la; — c,-\P-i)”Lf, where p; is the norm order identical to per neuron, g; are
the filter outputs or input signal from lower layer, c¢; shows the center or bias of
the i input signal. Additionally, p j and ¢; are the learnable model parameters and
so that this method differs from pre-defined structures or deterministic methods. In
short, the activations of the layer below are conveyed, and then equal-sized subsets
of the activations are supplied to a single L, unit as non-overlapping sets. The
geometrical meaning of the L, unit is described by u(x) = (%) N wlx — c,-\p)%,
where w; is the i column of the weight matrix W. Another study for the pooling
layers is proposed in [136] by extracting activations from multi-scale local regions of
a pre-trained CNN and then aggregating them with a scale-wise normalization to fit
into the CNN model. The scheme proposed in this study inserts multi-scale pyramid
pooling layer comprised of dimensionality reduction, dictionary building, activations
vectors, normalization and average pooling, respectively following the replacement
of FC layers by convolutional layers in the original CNN model. Afterwards, power
normalization is applied to the outputs of this layers before L; normalization. The
study suggests SVM to classify images and claims to have better accuracy rates than
state-of-the-art results. A further study on stochasticity-based max-pooling operators
is proposed in [137] with a fractional coefficient @ € (1,2) for kernel size with a
degree of randomness that is related to the selection of the disjoint or overlapped
pooling regions. Even though the random selection is successful on its own, it
may under-fit when combined with other regularization methods such as dropout
and data augmentation. Pseudo-random pooling region selection, which is given
by a; = ceiling(ot(i +u), o € (1,2),u € (0,1)) where a; and u; stand for some
numbers in given range, yields more stable pooling regions as well as overlapping
fractional max-pooling outperforms the disjoint one. Moreover, [138] explores to
learn a suitable combination of average and max-pooling along with a tree-structured
pooling operators, which is eager to learn kernels from the data, to be able to combine
differentiable leaf node pooling kernels, and then agglomerate these attributes into
a hierarchical tree. In addition, a method having ability to be responsive that is

maintained by a gate is also developed. These three approaches are employed within

existing CNN models together with other regularization techniques, and it is claimed
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that all of three pooling strategies (mixed, gated and tree-based) raise the accuracy rates

and tree+max-average pooling configuration results in state-of-the-art performance.

Biological roots of the spatial pooling are primitively associated to the visual cortex in
[139], which states that mid-level features are invariant to small deviations. Similarly,
[140] examines the structure of receptive fields in the visual cortex and reports that
non-linearity emerges from the spatial pooling. In [141], a new kind of spatial
pooling is highlighted that focuses on essential regions to transfer the extracted features
carrying discriminative representations. In this thesis, we declare a new kind of pooling

strategy called "smart-pooling" that performs the actions given as Algorithm 4.

Algorithm 4 Smart-Pooling scheme.
Require: Spatial kernel size N x N (2 x 2 by default, otherwise 3 x 3),
stride S (2 by default, otherwise overlapping or sparse coding.),
zero-padding P (fulfils to keep the input size suitable for pooling by default.).
i) Input: Image or previous layer pixels.

i1) Arithmetic mean of the kernel: M = Zév j=14ijs where a;; shows the pixels

. . . . . N >< N
values and i, j are the pixel indices inside the kernel.

iii) The pixels higher than the mean: H = append(a;j) > M. N(H); count the
elements of H.
iv) The pixels smaller than the mean: L = append(a;j) < M. N(L); count the
elements of L.
v) Compute Smart-Pooling output PL as follows;
ifN(H) > ]l\f(L) then
N(H

PL— Wzi_‘}_mj

else if N(H) < N(L) then

1 N
PL=—r~ )i }:)1 Lij

N(L)
else
PL=M
end if

The toy example illustrating the difference between smart-pooling and average and
max-pooling given Figure 3.21 that it operates with the objective to reflect the
distinction between input elements ideally to the outputs by converting them more
salient. The smart-pooling is a competitive algorithm to the average and max-pooling
techniques concerning computational efficiency, preventing over-fitting, and carrying
semantic information within the kernels to the next layers in both back and forth
directions. Conjointly, smart-pooling provides robustness to noise and contributes to

regularization performance of the model as well. As one can see from the procedure
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Figure 3.21 : The smart-pooling example the besides max-pooling and average
pooling.
of the smart-pooling that it has the ability to behave both average pooling and
max-pooling likewise. But, it can generate different outputs than those as well. In
addition, smart-pooling guarantees that the performance will be at least as the average
pooling level. On the one hand, smart-pooling can eliminate the outliers or noisy pixel
inside the kernel and does not take into account. On the other hand, it only focuses on
the majority of the pixels that brings computational efficiency and better generalization

performance at the same time.

3.5 Results

Convolutional neural network architectures with a focus on object detection and
recognition are explained in detail, besides a new image dataset ADORESet is
introduced and a competitive pooling algorithm is asserted thus far. In this
section, after presenting the object recognition performance results of various CNN
architectures, we will give the object detection performance of RetinaNet, and the
effects of smart-pooling by comparing with the average and max-pooling methods is
also shown. The experiments of object recognition and detection tasks are conducted
on a computer that runs a Linux distribution of 64 — bit Ubuntu 14.04 equipped with
an NVIDIA GTX 1080 GPU, an Intel i7 CPU 920@2.67GHz x 8, 6GB RAM and 1T B
hard-drive spins at 7200RPM. The comparisons of pooling methods are performed on a
laptop computer, which operates a Linux distribution of 64 — bit Ubuntu 14.04 rigged
with an NVIDIA GTX 930M GPU, an Intel i7 — 6500U CPU @3.10GHz x 8, 8GB
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Table 3.2 : Data configurations for experiments using ADORESet including data
types and number of images.

Type of Training Data #Images  Type of Validation Data  # Images

Real Images 1775 Real Images 725
Real Images 2000 Real + Synthetic Images 500 + 500
Real Images 1500 Synthetic Images 750
Synthetic Images 750 Real Images 375
Synthetic Images 600 Real + Synthetic Images 150 + 150
Synthetic Images 500 Synthetic Images 250
Real + Synthetic Images 750 + 750 Real Images 750
Real + Synthetic Images 1775+ 500 Real + Synthetic Images 925 + 250
Real + Synthetic Images 375 + 375 Synthetic Images 375

RAM and 17 B hard-drive spins at 5400RPM. Equally important as the hardware, we
used Python language as the software and Keras [142] wrapper with a Tensorflow [143]

backend is chosen to develop the object recognition and localization algorithms.

3.5.1 Object recognition performance

The way for detecting and recognizing objects in deep neural networks is through
training for many times with sufficient amount of data until reaching predefined
performance criteria. To reveal the effects of the hybrid dataset on object recognition
task comprehensively, we give performance results of all possible combinations of real
and synthetic images as being training and validation data. These combinations with
regard to the types of data for training and validation with the number of images are
given in Table 3.2. Hence, 36 performance results are obtained for 9 data content
formats and 4 deep CNN methods in terms of time, accuracy and loss values. The
number of frozen layers, which are kept the same as weights of base models, of
deep CNNs ( [78], [81], [79], [82]) are varied depending on the number of data. The
training epoch number is fixed to 50, which ensures the convergence of performance
measures to stable values. ReLU is chosen as activation function, which is used for
all configurations. Stochastic gradient descent [144] is used as optimization method
while fine-tuning the [78] model and Adam [145] is used for the remaining models. To

calculate the probability of the output in the classification layer, the softmax function
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is applied at all models. The batch size is varied with respect to the memory capacity

of the system.

3.5.1.1 Wild web images as training data for object recognition

Solely real images as training data and combinations of real and synthetic images as
validation data are used in the first 3 of the experiments as details are given in Table
3.3. The progress of accuracy and loss values throughout 50 epochs of training and
validation are also displayed in Figure 3.22. As can be seen from both Table 3.3
and Figure 3.22 that the highest validation accuracy rates are achieved when the real
images are used for training and validation. Inception-v3 is slightly better regarding
the validation accuracy than the other models while VGGNet is trained in the shortest
period. The batch size of all configurations is set to 32 except the case that the real
and synthetic images are used for validation by Xception model because of memory
issue, which is handled by setting the batch size to 16 for this configuration. Training
accuracy values for all methods in all data pair cases give acceptable results at around
%95 but not the validation accuracy values. As can be seen from both Table 3.3 and
Figure 3.22 A) that similar training and validation data types result in high accuracy
rates for all models. Nevertheless, usage of incompatible data pair yields unsatisfactory
validation accuracy rates. Such that using a mixed type of data presented in Figure
3.22 B) when training data consists of only real images yields approximately %50
as validation accuracy rate. Moreover, validation accuracies of all models fluctuate
around %10 in the worst case, which is displayed in Figure 3.22 C), the real images

are used for training and synthetically generated images are used for validation.

3.5.1.2 Simulation environment images as training data for object recognition

If only the synthetic images are fed into the CNN models as training data while
validation data is varied, the performance parameters form as displayed in Table 3.4.
The progress during the training and validation sessions are given in Figure 3.23.
Similar to previous results, data types show discriminative characteristics concerning
the performance metrics. The batch size values for all cases are set to 32. The
validation accuracies for the example of having the same data types for both training
and validation are the highest in all cases. The decrease in validation accuracy rates

is distinct when the real images are supplied to the model as validation data. One can
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Table 3.3 : Performance results if training data consists of only real images. (R stands
for real images and S stands for simulation images. The numbers near R
and S denote the number of images.)

Model Data Type and Amount Train Val. Time per  Batch
Train Validation Acc (%) Acc (%) Epoch (sec) Size
R 1775 R 725 84.82 80.44 435.40 32
VGGNet R2000 RS500+S500 98.32 50.86 660.66 32
R 1500 S 750 98.23 9.30 483.88 32
R 1775 R 725 96.81 86.54 1634.7 32
InceptionV3 R 2000 R 500+ S500 97.17 50.97 2657.4 32
R 1500 S 750 98.23 10.77 872.16 32
R 1750 R 750 97.00 86.01 472.9 32
ResNet R 2000 R500+S500 97.72 49.54 1094.2 32
R 1500 S 750 97.85 7.87 415.02 32
R 1775 R 725 97.44 85.64 1706.50 32
Xception R 2000 R500+S500 97.67 49.46 2667.60 16
R 1500 S 750 97.61 7.04 1974.90 32
R = R e

Figure 3.22 : Progress of performance parameters during training and validation
sessions. Training data is composed of only real images. A) Real
images for validation B) Real and simulation images for validation C)
Simulation images for validation.
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Table 3.4 : Performance results if training data consists of only simulation images. (R
stands for real images and S stands for simulation images. The numbers
near R and S denote the number of images.)

Data Type and Amount  Train Val. Time per  Batch

Model Train Validation Acc (%) Acc (%) Epoch (sec) Size
S 750 R 375 98.87 5.01 185.92 32

VGGNet S600 R150+S 150 98.11 53.80 175.56 32
S 500 S 250 97.03 95.92 164.44 32

S 750 R 375 89.93 5.71 492.53 32
InceptionV3 S 600 R 150+ S 150 97.61 51.63 484.94 32
S 500 S 250 98.78 97.58 475.64 32

S 750 R 375 93.49 7.85 299.37 32

ResNet S600 R150+S 150 96.13 49.41 284.41 32
S 500 S 250 98.49 95.53 275.82 32

S 750 R 375 97.37 5.05 745.85 32

Xception S 600 R 150+S 150 9691 47.00 687.17 32
S 500 S 250 97.67 95.27 666.00 32

easily say that the data type incompatibility is explicit as resulting in the lowest rates
when the data type configuration is set to utilize synthetic images as the training data
and real images as validation, as can be seen from both Table 3.4 and Figure 3.23
regarding all model outputs. In other words, the variations of synthetically generated

images are not able to cope with any case if the real images are used for validation.

3.5.1.3 Hybrid data images as training data for object recognition

In this study, only one single type of images are adopted as the training data so far.
From this point on, a various number of hybrid data depending on the validation
data type is fed into the models as the training data. Additionally, the total quantity
of training and validation images are the largest for the hybrid training data type
case. Subsequently, the time spent during the operations is the longest as can be
seen from Table 3.5 with other performance outputs such as accuracy scores. All
fine-tuned models succeed in surpassing the results of base models by exploiting the
real and synthetic images commonly as training data where the session performances
are showed up in Figure 3.24. The batch size for all models is adjusted to 32 other
than the cases of real and real-synthetic images as validation data combinations for
Xception model, which are fixed to 16. Thus, the memory requirement of Xception
is higher than other models that depend on the number of layers updated during the

fine-tuning and natural structure of the model itself. As a result of these performance
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Figure 3.23 : Progress of performance parameters during training and validation
sessions. Training data is composed of only real images. A) Real
images for validation B) Real and simulation images for validation C)
Simulation images for validation.

appraisals, the hybrid format of ADORESet is proved to be robust to the type validation

data.

3.5.2 Object detection performance

In this thesis, the object localization through detection is defined to specify the
bounding-box locations that surround the objects of interest within the whole images.
In this part, we present the outputs for the experiments conducted towards regressing
the bounding-box locations around the objects by adopting the RetinaNet with
ResNet-50-FPN architecture. It is worth to note that the RetinaNet is variant of
50 —layered ResNet and FPN. To train this model according to the our object detection
consideration, we cancelled the object recognition branch that is one of the sub-models
remaining after the feature pyramid network of the original architecture. Thus, we
reduce the quantity of the parameters to be trained. We fixed the batch-size to 8 and
the number of steps for each epoch to 10000. The number of epochs is set to 30 that
is sufficient to converge the satisfied performance levels. The training is executed by

employing 13000 images in 5 object categories from ADORESet, which are bottle, can,
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Table 3.5 : Performance results if training data consists of both real and simulation
images. (R stands for real images and S stands for simulation images. The
numbers near R and S denote the number of images.)

Model Data Type and Amount Train Val. Time per Batch
Train Validation  Acc (%) Acc (%) Epoch (sec) Size
R 750 + S 750 R 750 95.49 85.37 427.96 32
VGGNet R 1775+ S 500 R925+S 250 98.08 90.50 717.18 32
R 375+ S 375 S 375 96.48 93.06 194.2 32
R 750+ S 750 R 750 96.54 86.03 495.85 32
InceptionV3 R 1775+ S 500 R 925 +S 250 98.15 89.97 1685.51 32
R 375+ S 375 S 375 95.76 93.54 432.26 32
R 750 + S 750 R 750 95.88 86.70 427.64 32
ResNet R 1775+ S 500 R925+S250 97.02 87.54 609.44 32
R 375+ S 375 S 375 95.05 91.60 212.72 32
R 750+ S 750 R 750 99.54 90.41 497.44 16
Xception R 1775+S500 R925+S250 97.74 89.00 2408.61 16
R 375+ S 375 S 375 98.01 96.27 645.00 32
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Figure 3.24 : Progress of performance parameters during training and validation
sessions. Training data is composed of both real and synthetic images.
A) Real images for validation B) Real and simulation images for
validation C) Simulation images for validation.
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Figure 3.26 : The model trained to compare the pooling methods.

cup, speaker, and vase. The main reason why we chose these objects is to decrease
the training time as well as we will manipulate these objects in the case study. The
average time spent during training per epoch is 7754s. We test the model on a dataset
composed of 500 images for each class and the response time for a query image of
this model is 254ms. During the tests, we adjusted the IoU to 0.5. In other words, if
the estimated bounding-box overlaps the ground-truth by %50, then we count it as a
successful output. The progress of the regression loss during the training is displayed in
Figure 3.25. After 30 epochs, the regression loss does not fluctuate and stays persistent

under 0.050 and the resulting output is 0.0454.

3.5.3 Smart-pooling performance

This study attempts to extend the current literature with an innovative pooling approach
called smart-pooling. The smart-pooling provides a transitive structure composed
of average and max-pooling methods as well as it hosts the advantageous behaviors
from both of them. To evaluate the working principle and measure the performance
according to the average and max-pooling methods, we tested the smart-pooling on
MNIST [74] dataset, which is composed of 60000 training and 10000 test images of

handwritten digits in 10 categories, and the adopted model is displayed in Figure 3.26.
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Figure 3.27 : The model outputs as of accuracy and loss values according to the
change in the pooling method.

The configuration of the CNN model is as follows; activation function is ReLLU and the
prediction is executed by softmax, AdaDelta [146] is the optimization method and the
loss function is categorical cross entropy. The batch-size is set to 128 and the training
is performed for 10 epochs. The training and testing performance results can be seen

from Figure 3.27.

The accuracy rates and loss values prove that the smart-pooling strategy quantitatively
surpasses both average and max-pooling methods. The test accuracy of the model
with smart-pooling is %91.29 while the accuracy of the model with average and
max-pooling are %90.86 and %91.14, respectively. The test loss of the network with
smart-pooling 1s 0.1556 while the loss of the network with average and max-pooling
are 0.1623 and 0.1687, respectively. The reason of these values appear to seem worse
than the original models that we modified the model to reduce the computational time
with acceptable results. Moreover, the smart-pooling also outperforms the remaining
methods regarding training time by 21s per epoch while the average pooling training
per epoch takes 24s and the max-pooling training per epoch takes 22s. Even though
these measurements are useful, the complete qualification of such an algorithm has
to be measured qualitatively to give insight about the working strategy of the method.
Therefore, we applied these three pooling techniques to an image shown in Figure 3.28.
Initially, the image has the dimension of 300 x 300 x 3 and it is downsized to 150 x
150 x 3. In other words, the image is rescaled by a factor of }1 Although the outputs

only have the size of %25 of the original input image, it is clear that the smart-pooling
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Figure 3.28 : Pooling methods comparison on image sub-sampling.

output reflect pretty much all the details concerning the color transitions and primitive
image features such as edges and corners. Furthermore, the smart-pooling output
image contains more salient features that yield more comprehensible and reasonable
consequences. For instance, the flag-tower is almost to imperceptible in the output

images of other methods.

3.6 Discussion and Conclusion

Object detection and recognition for robotics research in the context of dexterous
manipulation, grasping, tracking are still challenging hot research topics. However
classical computer vision and control methods proposed successful solutions, deep
learning based methods outperformed them with the support of software and hardware
developments, which enabled to run such deep neural networks in feasible periods.
Therefore, the demand towards different types of datasets, as being the most decisive
part of learning systems, is increased. Whether labeled or unlabeled image datasets
with millions of images for thousands of categories exist, parameters such as a number
of images per category, image types and formats, object classes, dimensions, etc. play
an important role to select a dataset. From this point of view, ADORESet with its

versatile hybrid structure allows researchers to implement their algorithms both for
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real-world and simulation environment conditions. Additionally, /7Urk GUI makes
it viable to label, eliminate and resize massive amount of images. Furthermore,
relationships between object categories are presented using the annotations of the
successor objects. To the best of our knowledge, our study provides one of the most
comprehensively detailed experimental performance results for state-of-the-art CNNss,
besides a new densely labeled hybrid dataset. Despite the fact that the incompatible
data pairs yield useless deep CNN weights for all models, the performance results
reveal that usage of real and simulation images together as training data gives

satisfactory validation accuracy rates whatever the validation data is.

In this thesis, we refer to only category or label prediction by object recognition and
the bounding-box regression by the term object detection. As a result of our object
recognition experiments, we choose the VGGNet architecture for the remaining parts
of this thesis involving object recognition tasks. The VGGNet excels amongst other
regarding the accuracy, robustness and it is very easy to code due to its architectural
simplicity. On the other hand, RetinaNet is the only model experimented for object
detection as long as it exceeds the other methods with its one-stage procedure and
robustness. It is also remarkable that the smart-pooling is superior to the mostly used
average and max-pooling methods in terms of qualitative and quantitative performance

measurements.

It has to be underlined that our reproducible results prove the significant power of
training-validation data types. In essence, once a CNN model is obtained as a result
of training hybrid dataset such as ADORESet, then it can be applied to real and
simulation images together or separately. Additionally, ADORESet is suitable for
developing novel algorithms, which can be CNNs or classical methods, intended to
detect and/or recognize objects. These applications aspire to include ADORESet and
CNN based recognition to augment better grasping and manipulation performance in
service robotics. The smart-pooling technique has also potential to serve designing
innovative CNN architectures with its compact and competent structure incorporating

the favorable properties of the most common methods.
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4. CASE STUDY: THE OBJECT MANIPULATION EMPLOYING A
ROBOTIC MECHANISM

This study was conducted in the form of a series of experiments, with the data from
newly presented image dataset, in the manner of object recognition, object localization
adopting both conventional methods and deep learning techniques in conjunction with
introducing ADORESet and a pooling strategy called smart-pooling. The outcomes
are also analyzed both qualitatively and quantitatively. In fact, the methods utilized
in the manipulation scenario are determined together with the relevant objects. This
chapter takes the form of integrated simulation and empirical scenarios involving
similar robotic mechanisms that manipulate the visually recognized objects standing
on a table surface called "Deep Table", because it is equipped with the cameras,
robotic mechanism, and mechanic structure. The "Deep Table" has similar properties

in simulation and real-world cases.

4.1 Introduction

Vision is an essential component in humanoid robotics and plays a key role in
developing perceptual systems. When vision is the case for intelligent algorithms, then
the datasets are the primary issues concerning their compatibilities to the particular
applications. Moreover, the content of the data samples is as much important as
the adopted algorithms. Following the dataset arrangement, the routine machine
learning actions become the main considerations for a successful implementation. For
instance, a robotic application may only require extracting semantic information stored
in images and count the objects belonging to a specific category while another implies
to move to place the objects in relevant locations. These details define the framework
of the learning system. There ensure blurred boundaries surrounding the smart systems
nevertheless the limits are rigorously defined in the deterministic approach. In other
words, the smart mechanisms can favorably proceed and settle when an unexpected
or unforeseen disturbance or system input arises; however, the deterministic systems

fail in such situations. Artificial intelligence by means of deep neural networks is
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increasingly set to become a vital factor in robotic systems. A striking aspect of
DNNs is that the prevalence in complex systems together with the simplicity of
implementation. In most cases, DNNs are able to produce ready-to-use models in
different domains and platforms. As a result of proving its human-level performance
scores in different areas, DNNs conquered the territory, and most of the recent works
incorporate it. Thus, the DNN-free attitudes are assumed to be obsolete as long as the
system is not able to infer from or respond to inputs successfully. In contemporary
robotics approach, it is generally admitted that the DNN-based algorithms employ the
sensory data and generates meaningful semantic decisions and/or actions as well as the
robotics mechanisms have been converted to more skillful forms, which enable them

to succeed in complicated tasks, i.e., variable stiffness joints.

A striking property of DNN models is to have the capability of processing big
data and achieving human-level performance results. Since this thesis covers the
manipulation of visually recognized objects, we focus on the visual applications of
DNN models. For this reason, we retrained the most prominent CNN architectures
to recognize the objects adopting ADORESet along with to localize the objects within
scenes, namely we fine-tuned these pre-trained models with our custom dataset. In
consequence, we configured the visual system of our case scenarios composing of
object recognition and localization with the implemented VGGNet and RetinaNet
architectures, respectively. Moreover, the modern robotics needs further processes
for the outputs of these CNN models to extract semantic information, e.g., the relation
between the recognized objects, the behavior of these objects, their physical attributes.
In ADORESet, we provide the information that belongs to the object relation depending
on the appearances within the same image. Beyond that, we also assigned identical
physical properties to each object considered to be manipulated, and then we built
our control procedure on top of the semantic information both for simulation and

experiment sessions.

It is often stated that the primary objective of robotics researches is to mimic
human behavior and motions favorably; however, the existent view beneath this is
to beat the human-level performances because of up-to-date demands, necessities,
and requirements. The importance of robotic mechanisms is still poorly understood

in the context of their human imitating potentials. Even if the robots serve in the
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Figure 4.1 : Variable radius pulley types a) Translational VRP, b) Rotational VRP.

industry with satisfactory results for many years within strictly restricted workspaces
and missions, the advancement in humanoid robotics still is not near to reach that level.
Therefore, variable radius pulley (VRP) mechanisms are asserted to provide the recent
expectations regarding stiffness arrangement, zero backlash, gravity compensation,
simplicity, and compactness. The stiffness adjustment ability is maintained by the
springs and allows the robots to work appropriately under different conditions. The
springs can be inserted into a VRP system in two ways as shown in Figure 4.1
a) and b) as translational spring placed in the middle of the pulley and rotational
spring placed outside the pulley, respectively, where a cable wraps around the pulley
profile. The pulley radius shift induces non-linear moment-rotation affair. These
force/moment-deflection specifications are provided by the pulley profiles. Therefore,
we intend to direct one of the innovative approaches to close the gap between desired
and existing performance levels and adopt a variable radius pulley-variable stiffness
joint (VRP-VSJ) mechanism to execute the manipulation task properly. In this way,
our mechanism can adjust the stiffness and forces to be applied distinctively to the

recognized objects according to the properties.

This chapter is organized as follows; the literature review is given in Section 4.2, and
then the simulations are provided in Section 4.3. Afterwards, in Section 4.4, the tests
on the robotic mechanism are conducted. In the last part of this chapter, the results are

revealed before the conclusion and discussion in Section 4.5 and 4.6, respectively.
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4.2 Literature

A considerable volume of literature has been published on the robot-object interaction
strategies. What is more, the properties stored in objects and talented mechanisms
are neglected because of the lack of the computational power and reluctant attitude
to VRP-VSJ mechanisms. In traditional rigid robot designs, external force/torque
(f/t) is estimated using motor currents as explained in [147] or frictional model
identification as given in [148]. All of these methods demand initial off-line calibration
or identification processes. The rigid mechanisms cannot nevertheless afford the
requisite which dictates the variation in stiffness for modern robotic applications
working under different conditions. Reasonably, the VSJs are remarkably better
choice than conventional systems, especially considering the dominance in the energy

consumption and force interaction.

Flexible joint mechanisms have compliance that facilitates to compensate f/t passively.
The study in [149], declares an antagonistic cable-driven mechanism using two motors
for angle and stiffness adjustment separately to approximate human-like motion. A
major part of the robotic tasks, social robotics in particular, necessitate safe force
interaction. The change in the muscle stiffness is stated as linearly implying a quadratic
stiffness characteristic from the spring. Moreover, for more complex force-deflection
necessities of robots, [149] proposes a cam mechanism imitating the biological muscle
motion with quadratic properties. The tests are run in an antagonistic setup, and linear
stiffness characteristics are observed by co-contraction. Alternatively, variable radius
or non-circular profiles in pulley designs can be used both in translational [150] and
rotational [151] ways. In [151], to produce a non-linear force-torque deflection profile,
a torsional spring is utilized unlike the VRP mechanisms adopting translational springs
to generate spring elongation based torque profile. The readers seeking for more
information on this topic, should refer to read [152], to which partially contributed
as a part of this thesis, that declares the VRP-VSJ mechanism employed in this thesis

to perform the manipulation task in the way of approximating the human approach.

One of the most important engineering considerations is to minimize the cost. In
this study, we aim to estimate the external f/t affecting onto the objects to be
manipulated following the visual recognition and localization which is obtained

without additional sensors rather than encoders. The dynamic working conditions
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make it more difficult for conventional model-based estimation of external f/t effecting
on the joints because of the uncertainties and errors due to the lack of sufficient
mapping capabilities real-world conditions to the mathematical models. The study
in [153] reveals the success of ANNs to handle non-linearities in dynamical systems.
It is common for model-based estimation methods to linearize non-linear systems by
making assumptions and then perform the algorithm with a linear observer [154].
Although the performance of ANNs depends on data regarding many factors such as
size, diversity, reliability, etc., as shown in [155] they give successful tracking results
using a 2 DoF robotic arm when there is uncertainty, which makes them preferable
for real-world applications. Likewise, [156] trains a neural network with two hidden
layers to estimate the payload of a series manipulator using trajectory data for both
single joint and multi-joint cases. While learning to estimate external forces is still a
challenging problem in robotics, [157] uses convolution based deep neural network,
which is trained by sequences of depth images as point clouds, to estimate robotic arm
motion. For estimating contact force in haptic applications without expensive devices,
[158] introduces ANN-based force/torque observers using only position and torque
data. Beyond acceptable force/torque estimation, tracking and control instances of
ANNS using simulation and/or measured data from various sensors in robotic systems,
our study proposes to estimate external force/torque values of a VRP-VSJ mechanism

using solely measured encoder data with ANN models.

In unknown environments, when the robot interacts with the objects inside without
preconfiguration, then external sensor usage becomes compulsory to execute the tasks.
Even if the visual data is sent to the system as feedback, semantic knowledge may raise
the sensitivity and helps the robot to approximate human-level manipulation motion.
The particular areas of the way people interact with objects and how the things affect
on this still remain obscure; however, a noticeable quantity of studies are being carried
on. On behalf of clarifying the neurophysiological background of visual perception
and its relation with actions, [159] emphasizes that the visual perception generates
intention which belongs to the observed subject. The same study suggests that the
natural motion recognition is executed through the curing by the perception and human
motor functions. There also exists a connection between perception and motor control

domains that interacts and affects each other. Additionally, the extended analysis
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exposes the neuroimaging results of primate cerebral cortex that the intention of the
aim influences the visual pathway status, for instance, it is consistent with biological
motion if the aim is explicit; otherwise, it is implicated. The study in [160] investigates
the working principles of the brain concerning the sensory inputs effects on the actions
by evaluating an experiment conducted on astronauts who estimate time-to-contact
with oncoming objects. It is indicated that the brain trusts a second-order internal
physical model and the intuitions prevail, even though the objects are visually seen,
and the astronauts know the conditions. However, time-to-contact is not successfully
estimated in the zero-gravity situation, and an internal gravity model interferes the
actions despite the explicit vision. [161] highlights how people perform object grasping
and manipulation and what lies beneath the decision of the way executing these tasks
by observing the velocity and force transmission ellipsoid motions. The primitive
relations of object affordances with human understanding and consideration of them
as grasping and manipulation tools are explained in detail. Moreover, 7 people
participated in the tests to perform 9 grasping motion with 5 objects at their fingertips.
The people wear a glove equipped with sensors and orientation, velocity, position,
and stiffness data are gathered. The findings reveal that the grasp stiffness depends
on the situation of the hand and conducting more fingers during grasps raises the
stiffness. So that the anticipated grasp schedule is not only performed according to the
object geometry, but also the desired manipulation. In addition, the finger locations
on the objects change the velocity and force transmission ellipsoids. In [162], the
importance of actions in object recognition is examined empirically whether visual
object recognition and object-directed actions are separate processes happening in
primary visual cortex and dorsal visual system, respectively. It is indicated that there is
not an exact clue on the relationship between action representations and visual object
recognition; however, there are remarkable evidences on the interactions between
object recognition and object-directed actions that also influence each other. The
first experiment in this study is conducted employing the known objects, which are
shown under poor light conditions, and the action priming is observed concerning
the accordance with motor interactions. In the second experiment, the constitution of
action priming is monitored with the intention of revealing the relationships with action
representations depending on object information and the meaning of objects. The

existence of the priming effect on naming accuracy for precedence of different objects
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with similar motor interactions and the absence of the action priming effect for verbal
stimuli are proposed as outputs of the experiments, respectively. In other words, the
effect of visual information of objects is more important for human actions rather than
the verbal meaning of the objects. [163] investigates the function of motor actions in
visual perceptual evaluation by testing the recognition, association, and manipulation
motions for the same objects on 37 unilateral stroke patients. The findings assert that
there is interrelationship between the usage of objects and their recognition as well
as there is connection between the motion recognition and replication. However, they
claim the motor actions do not provide apparent meaningful information to conceptual

framework directly.

Unlike neuropsychology-based studies, [164] refers to analyze the human-objects
interactions over visual data with a Bayesian approach that incorporates the perceptual
knowledge with the object response to manipulation or similar actions. The study
explains two models to interpret human-object interactions in videos and static images
by fusing the action and object recognition in the same framework. Moreover, it
is proposed that the recognition performance is raised due to the combination of
functional and spatial context. [165] proposes an autonomous task dependent grasping
method for visually recognized objects by using conventional feature matching
methods. The geometry of objects is taken into account for the humanoid robot
as experimental platform and the grasps are performed with the visual servoing
approach. The object categorization process is comprised of segmenting out the
objects, recognition, and pose estimation while the grasping schema is composed of
the perception (segmentation, recognition, and orientation arrangement), prediction
(grasp hypothesis generation, task identification, and grasp method selection), and
action (visual servoing and tracking the object and marker) steps. The results of
this study claim to increase the efficiency and success rates of the grasp tasks for
the autonomous motions; however, the tasks and motion characteristics depending on
the object categories are predefined and given to the humanoid robot. In a simlar
manner, [166] examines the behavior transfer approaches regarding impedance from
people to robots by imitation learning. To generate the desired motion with variable
impedance actuators (VIAs), they investigate whether it is more propriety of the

direct transfer of human impedance symptoms to a correspondent robotic arm or
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scan the values minimizing the cost function applying an inverse optimal control.
The findings suggest that feature-based tracking is appropriate for supervised learning
from human teachers as long as the inverse optimal control is better if the behavior
will be transferred from a robotic system to another. The behaviors of 21 human
subjects for reaching or slicing motions are examined in [167] within an imposed
visual feedback delay sequence to verify if the brain can handle the variations in a
feedback loop delay and rearrange itself. The effects of visual feedback on human
motor control functions are argued similar to [160], and the overshoot of the motions
are indicated as the evidence of vision-based feedback control in humans. However,
after several trials, the human subjects readjusted themselves to the new situation
successfully. In the last part of this experiment, the delay is removed instantly, and
the subjects undershot the target this time. Furthermore, in the second test in this
study, the same findings are obtained for harmonic back-and-forth motions. The
relationship between the feedback and feedforward controllers are also examined, and
it is stated that these controllers collaborate with visual feedback while performing
movements and motor learning. [168] proposes a model involving an anticipatory
temporal conditional random field with the aim of predicting the next human motion
sequences. The object affordances are obtained from its role in the activity gathered
from the depth videos and tracked by SIFT features. The results of this study assert
that the anticipation, which is composed of the sub-activities and interactions with
objects, enhances the object detection performance for past activities and affordances,
nevertheless the performance declines drastically for future actions and affordances.
Another empirical study investigating the effects of visual feedback in arm movements
is performed in [169]. In the experiments, the human subjects move their arms between
two goal stimuli with pointing-like dot-placing task at even spaces. The findings
suggest that vision has effects on movement accuracy while former knowledge of
target positions has smaller effect as well as the movement length has no influence

on the performance.

The debate continues about the best strategies for the role of visual data in motor
functions and the parameters that affect the visuomotor actions. However, the major
part of the studies suggest that the vision and learned attributes have relation as well

as the people make inferences combining them for the known and unknown situations.
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Afterwards, the feedback is employed to adapt if there occurs any unforeseen failure.
Remarkably, the algorithms are also disturbed by unknown situations. Therefore, our
platform is supported by two visual feedbacks along with the encoders that the position
and stiffness can be calculated. Moreover, the predefined attributes of objects make
our system more stable and robust to disturbances. The assignment of the physical
attributes and recognizing object classes contributes to the calculation of force vector
to be applied to the objects identically. The force vector includes the position where
the force will be applied on the object surface, the magnitude, and the orientation

information.

4.3 The Robotic Mechanism and Simulations

Robots are employed for many decades in the industry; however, nowadays they
occupy a significant space in everyday life. Both use cases expect more sensitivity,
safety, robustness, and precision than the levels of these in the past. As a matter of
fact the current requirements and necessities anticipate further meaningful semantic
knowledge extraction from the data. The object class labels are deficient for robotics
applications regarding the meaningful knowledge as long as they are not supported by
different type of information such as the physical and semantic properties of objects.
In other words, inserting additional information to the object labels facilitate the robots
to approximate current expectations. Therefore, it is supposed from the robotics
systems to be equipped with advanced hardware and software to execute vision and
manipulation tasks. In this part of the thesis, the simulation results of a robotic arm,
which manipulates the recognized objects using deep neural networks considering
the physical features, are given for 10 different categories from the synthetic part of
ADORESet. The robotic arm calculates the force to be applied onto the objects as given

in Equation (4.1):

F(x,y,z) = c1 xdensity + c; * flexibility + c3 x de formability + c4 x friction x mass
4.1
where (x,y,z) is the position where the force will be applied, ¢; for i = 1,...,4 denote
the empirical coefficients that are adjusted according to the simulations identical to
each object and other physical properties belong to the object categories as well. The

miscalculation of this equation or using a fixed level of force value can cause three
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possibilities concerning the results of the object manipulation tasks as follows: i)
knocking over due to the excessive force, ii) remaining in the constant position and
does not move due to the insufficient force, and iii) the satisfactory motion ending at the
desired position because of the adequate force. The (x,y,z) coordinates are determined
according to the object classes and the measured dimensions of the object from the
cameras; thus, the center of mass position can be calculated approximately as the point
where the force is applied. To conduct the simulation with the proposed manipulation
approach, a 2 DoF robotic arm (one prismatic joint for linear vertical motion and one
revolute joint for rotational motion) is employed by adopting the Gazebo simulation
tool within robot operating system (ROS). The manipulation task is defined as to move
the visually recognized objects from one point to another and the torque control of the
manipulator is contemplated as on-off control. Generating the object specific behavior
is accomplished by considering the additional object properties. A fine-tuned VGGNet
model is used as the object recognition algorithm and a color-based object localization
method is preferred to determine the spatial coordinates of the objects, which uses the
depth data from three depth cameras located on top, front and one side of the Deep
Table for position tracking and recognition, respectively. In Figure 4.2 a), the initial
positions of these objects within the Deep Table is displayed and Figure 4.2 b) shows
the view of the front camera and predicted labels of the objects remaining in front
of them. After the manipulator performs the given tasks, the objects are displaced
to the desired positions as illustrated in Figure 4.2 c). The displacement during the
manipulation is given in Figure 4.2 d), which reveals how the algorithm generates
a force application procedure according to the predicted labels and other properties
belong to the objects. For instance, the movements of the smaller in volume and lighter
in weight objects end before than the bigger in volume and heavier in weight objects.
All the data is gathered in the computer which process and calculates four outputs; 1)
position, ii) stiffness of VRP-VSJ and position of the Cartesian platform in iii) x-axis
and iv) y-axis. The serial port communication is adopted to transmit commands and

receive sensory feedback concerning the simplicity.
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Figure 4.2 : The manipulation simulations within the Deep Table: a) initial
conditions, b) object recognition, c) side view and object labels predicted

by the algorithm, and d) the progress during the manipulation.
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Figure 4.3 : The Deep Table.

4.4 The Robotic Mechanism, the Deep Table and Experiments

Since the main objective of this thesis is to manipulate the visually recognized objects,
a 3 DoF robotic mechanism is constructed using 3D printed elements excluding
off-the-shelf products. Thus, the cost of the complete system is minimized. The

components of the Deep Table is presented in Figure 4.3.

There is a depth camera placed on top of the workspace at 100cm height focusing
the object motion and the visual depth data is also used to calculate the volume
and location of the objects. In addition, there is a webcam located in the horizontal
direction of the end effector at 60cm distance and its data is used to recognize objects
and localize the bounding box coordinates in the vertical plane, which is also used to
determine the contact height. The computer gathers the data from the whole system
and it is employed to monitor the progress during experiments. The base of the
mechanism is fixed to the table and the horizontal axis is moved over a linear bearing.
The vertical axis motion is maintained by driving a ball-screw. The motors, which
control the vertical and horizontal axes, are nema-17 stepper-motors, which adjust the
height and the horizontal depth of the mechanism. The VRP-VSIJ is equipped with

3 encoders, the data of which is used to compute the applied f/t. There is an end
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Figure 4.4 : The VRP-VSJ mechanism and a VRP in exploited view.

effector mounted to the VRP-VSJ to improve the contact to the objects. There are two
DC-motors with worm-gears those control the stiffness and position of the VRP-VSJ
mechanism via cables. The stepper-motors and DC-motors are controlled by Arduino
boards. Given these points, the Deep Table provides an infrastructure for manipulation
scenarios and testing computer vision algorithms involving robotic mechanisms. The
VRP-VSIJ contributes to the Deep Table by means of variable stiffness actuation ability,
compliance and safety, energy-efficiency, simplicity, compactness and light-weight

structure, minimum backlash, modularity, and human-like manipulation ability.

4.4.1 The VRP-VSJ mechanism and force estimation

VRP mechanisms maintain a broad spectrum of unique approaches to modern robotics
research, mainly to the soft-robotics field. One of the most influential properties
of VRP mechanisms is to have adjustable stiffness characteristics where springs are
principally utilized to control the rigidity by a cable. Therefore, compliance and
robustness can also be thought as the distinctive components of VRPs. Additionally,
involving a compact design and being ready to be produced at a low cost contribute
to design flexibility of VRPs. To benefit from the advantages of using a VRP-VSJ
mechanism to manipulate the objects, we designed and manufactured a mechanism
involving a VRP-VSJ tool as the manipulator part. The VRP-VSJ design used in this
thesis is shown in Figure 4.4 with the exploited view of the VRP box that facilitates

the adjust the stiffness.

The O values show the angles of the joints, and VRPs. The stiffness adjustment is
maintained by both the VRP profile and the rotational spring. Since the end effector
of our mechanism does not equipped with a force measuring sensor, it cannot measure
the f/t during the contact to the object and we have to estimate the applied f/t from

the data of three encoders. Hence, we built a sparse ANN structure for estimation.
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There are many successful model-based applications; however, uncertainties in system
parameters and modeling assumptions cause model-based estimation methods to
be error-prone. ANNs are adequate to produce outstanding results in the case of
multi-channel and various kind of data in large quantities. Moreover, variance in the
training data is a desired feature in most cases. However, noise is one of the most
compelling issues for model-based architectures, ANNs have the competence to cope
with noise in input data. The ANN model adopted in this study does external force
estimation using only VRP-VSJ encoders data. Two ANN models according to the
input data types are considered estimating the external force (simply a regression
problem) effecting on the mechanism. One of the ANN models is fed with three
encoders data belong to the joint and VRPs whilst the other one uses encoder data of the
two motors additionally. Load cell measurements are assumed to be the ground-truth
values for both models. We split the data into training and test parts according to
k-fold cross validation convention where k is set to 5 as a typical usage. There are
17500 samples for each input feature within the whole dataset that is collected directly
from the VRP-VSJ mechanism. Furthermore, our ANN models are trained on a laptop
computer with a CPU of Intel i7 and a GPU Nvidia GTX-570m that runs Linux Ubuntu
16.04. We implemented the codes with Keras runing on top of Tensorflow. In Figure
4.5, the 5-input ANN model is symbolically represented. Correspondingly, the 3-input
ANN model can be obtained by removing the last two input features. The joint angle
is denoted by 6y while the VRP angles are indicated by 0; and 6,. Additionally, the

motor angles are represented by 671 and 6y;.

The 3-input and 5-input models are trained for various number of hidden layers and
neurons adopting different activation functions and backpropagation techniques. The
best model, which has 3 inputs at 2 hidden layers having 80 neurons at each achieved
a root-mean-square error (RMSE) of 0.0987 rate after 500 epochs of training. This
model uses stochastic gradient descent for parameter update with 0.0005 learning rate
and ReL.U as activation function. The output of the network estimates the applied f/t

values within a [0, 1000] range in grams.
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Figure 4.5 : The f/t estimation model training representation.
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4.4.2 Proposed control methodology

The relationship between the appearance of objects and movement related anticipations
for humans are widely investigated in the literature. But there is still not an exact
consensus on how people use the visual data to perform actions towards objects and
what affects the brain and visuomotor control functions. On the other hand, the
robotics researchers study the similar subjects with the aim of bridging the gap between
robot and human motions considering the qualitative and quantitative performance
metrics such as smoothness, safety, efficiency, robustness, and accuracy. Hence, they
investigate the role of visual feedback in human perception and action domains as
well as a great amount of studies are carried on the human-inspired robotics field
involving the human musculoskeletal system studies. Semantic knowledge about the
target object for manipulation tasks provides a priori data before the contact or grasp;
therefore, the action can be determined including the object dynamics. Since we intend
to point out the benefits of this approach, a straightforward manipulation task is taken
into consideration for the simulations and the experiments. An object which is placed
on a table surface is requested to be moved by a precise value with the proposed
variable-stiffness joint mechanism without tilting over or damaging the object. To
complete the relocation successfully, approximate object weight and center of gravity
are utilized to determine the joint stiffness and contact height. The suggested control

block diagram is presented in Figure 4.6.
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Figure 4.6 : The control schema of the proposed manipulation system.

Regarding the figure, after the object to be put on the Deep Table, first, it is recognized
with our computer vision system containing object localization and recognition parts.
A look-up table which keeps the physical information about the thirty objects included
in ADORESet, is utilized to pick up the weight and the center of gravity of the object.
Then required stiffness is calculated according to object weight. The computer vision
algorithm does not only indicate the object type but also produces the bounding-box
coordinates. As a result of processing the data from the depth and web cameras,
the explicit location and the height of the object is detected, and the contact point
is calculated, especially in vertical axis. The controllers of rigid Cartesian manipulator
bring the end-effector to correct position while the VRP-VSJ carries out the moving
task with specified stiffness. Considering the control architecture proposed herein
and the human in manipulation task, it can be seen that there are similarities between
them. As humans approach an identified object by taking into account the experiences,
which can be accepted as the feedforward direction. Also, the shape of grasping or
moving is notable for an outstanding operation; the experiences of the Newtonian
dynamics determine it. On the other hand, after the contact, both the position and the
f/t information is acquired by visual and tactile sensing units, and they are fed back to
the main controller, brain, until the task is accomplished. Likewise, the recommended
approach uses prior knowledge produced by the look-up table before starting the task.
Then it provides back the visual and force data. If one of the feedforward or feedback
paths are blocked, then the performance of the controller either drops immediately

or fails. As it is expressed earlier, both motors in the VRP-VSJ mechanism adjusts
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the position and stiffness independently. However, when its path is intercepted, it is
impractical to manage the position and applied force in the same axis at the same
time. Therefore, the coefficients of P controllers in both controller are regarded as
the weighing factors. To accomplish the task, the influence of the stiffness control is

intensified when compared to the position controller.

4.5 Results

The simulation approach lead us to gain some time before implementing our
algorithms to manipulate visually recognized objects. A simplified version of our
Deep Table is replicated in Gazebo environment. The findings suggests that assigning
physical attributes to object identically improve the semantic information retrieval
along with moving capability of the system. The comparison results of the situations
are explained whether the robotic arm has the preliminary information about the
category and physical attributes. The results reveal that satisfactory motions cannot

be achieved except random situations if the preliminary information does not exist.

The empirical tests conducted in this section are presented for five of the many potential
scenarios incorporating combinations of incorrect positioning and stiffness selection
for high and low inertia objects. Firstly, the proposed control algorithm is disrupted
deliberately to bring about inaccurate stiffness or position outputs to demonstrate and
explore those probable situations. Then the algorithm is reset to defaults to indicate
the performance of the proposed control technique and VRP-VSJ mechanism. The
image sequences belong to the 5 experiments captured during the motion from both
front camera and depth camera are shown in Figure 3.18. The individual images for
each test starts with the initial representations of the components of the mechanism
and the progress during the operation until the end is given with the images from top
to the bottom, respectively. All of the test cases are expressed by 5 images. For each
cases, the images at leftmost are captured from the front webcam and the remaining
images are taken from the depth camera at the same time. While the middle images
are ordinary color images, the rightmost images are the depth images. Fusing the
information from these with the encoders, we perform the manipulation of visually
recognized objects within the Deep Table. A cup is used in the first case as shown in

Figure 4.7 a) and it is resulted in a failure in the end by tilting the cup over as can be
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seen from the last two image sequences. On the other hand, Figure 4.7 b) displays
a successful operation for cup moving task by adjusting the stiffness and the contact
point properly. In Figure 4.7 c¢) and Figure 4.7 d), the empty bottles are employed
to execute the manipulations. Due to the different f/t values applied onto the bottles
from different contact points the test in Figure 4.7 c¢) accomplishes the tasks while the
test in Figure 4.7 d) yields failure as tilting the bottle over. The last case expressed
in this thesis is illustrated in Figure 4.7 e) where a semi-filled bottle is picked as
the object. Unlike the other situations, the motion cannot be completed in behalf
of insufficient f/t applied onto the object even if the contact position is correct and
the object is not tilted over. If the bottle is removed from the path, then it completes
its motion as simultaneously. Moreover, the resulting VRP-VSJ positions are also

explained hereafter with the order of the cases given in Figure 4.7.
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Figure 4.8 : The failed cup motion because of tilting over.

Even though it is an unequivocal task, the contact point between the robot and the
object is crucial for the moving task. So, experience with Newton dynamics is
indispensable to accomplish such a straightforward motion. While touching point
under the center of gravity ensures the stability of the moving, higher points cause
tilt over. The data gathered from the encoders of the VRP-VSJ mechanism during the
experiment is presented in Figure 4.8 as a cup is knocked over. It is worth remarking
that, the time of this figure starts just before the contact moment. The contact between
the object and the arm is expressed in the difference of two VRP encoders. The
differences between the VRPs are linked to the applied force linearly. Thus, it can
be observed from the figure that the contact is lost before the end effector comes to the
desired position. In this case, although stiffness selection is convenient for the object,

herein a cup, the task fails because of the incorrect decision of the contact point.

Another experiment is engaged a cup as the object to be manipulated to illustrate the
performance of the controller when the object has high inertia. Figure 4.9 displays the
successful results of this test. Higher forces are applied to the object from the previous
case as can be discovered from the graph. At the end of the operation, the arm arrives

at the desired position, 30°.

In the preceding experiment, the default controller configuration is uploaded to test the
successful moving task with the objects as discussed earlier. In this situation, when the
inertia is small, a satisfactory level of stiffness applies an appropriate force to move

the object carefully. Figure 4.10 demonstrates the successful experiment results of an
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Figure 4.9 : The successful cup motion.
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Figure 4.10 : The successful empty bottle motion.

empty bottle moving operation. It can be interpreted from the figure, during the contact
phase which is between fifth and tenth seconds, the difference between both VPRs is
small meaning that likewise the applied force is small. Since the inertia is expected
to be the priority, the motion is not finished at the desired position; however, without
occlusion of the object, it can not arrive at that position. Thus, it can move the object
as close as possible to the desired location without damaging or tilting over it, which

can be thought as a successful experiment.

This empirical test is to demonstrate how moving task is terminated when the stiffness
is set to a larger value than needed amount for objects with smaller inertias. To interpret
this, an empty bottle, which is weighing a few grams, is adopted as the object to be

manipulated. The results of the same operation are expressed in Figure 4.11. As can be
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Figure 4.11 : The failed empty bottle motion because of tilting over.

seen that the impact appears at a moment around fifth second, where all of the encoder
measurements intersect. At this situation, the applied force does not rise according to
the encoders of VRPs. In fact, at the impact time, the applied force is big adequate
to cause the contact to be unstable. Thereafter, the object tilts over, and VRP-VSJ

maintains its motion without any further interaction.

As well as the greater stiffness values, the small stiffness also eventuates incomplete
tasks. In this case of our empirical tests, the inertia of the bottle is increased by filling
with water half of it. The results of the experiment are displayed in Figure 4.12. After
the initial contact approximately at 25°, VRP-VSJ consumes a considerable effort to
move the object to the desired position. However, it can be viewed that the motion of
the arm ends at around —7°. In this test, the object is manually taken away to prove that
the arm can pursue its movement when the massive bottle does not impede the way.
Another aspect of this is the challenge of estimation of physical attributes of fillable
objects such as bottle and cup despite the recognition of it. Even humans can fail in

such a case, undoubtedly; they overcome this problem through feedback control.

4.6 Discussion and Conclusion

There is still not a solid unanimity on the link between the visual perception and
visuomotor functions in humans. This particular area of the unique role of the object
classes has been overlooked concerning the construction of a robot-object interaction

framework. For this reason, we assert an alternative approach to the existing literature.
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Figure 4.12 : The failed semi-filled bottle motion because of insufficient f/t.

To demonstrate the advantages of acquiring the semantic knowledge belonging to the
objects identically, we propose to perform the suggested procedure in two stages as

simulation and empirical tests, respectively.

The simulations are executed within a structured Gazebo environment equipped with
a 2 DoF manipulator and three depth cameras as a Deep Table replication. The
motion progresses for 10 object classes are presented comparatively. Once the objects
are recognized using VGG16 model, and then the manipulator acts according to the
assigned features. Thus, the desired motions are achieved for all objects within
different motion periods for the reason that the manipulator action characteristics differ
for the other kind of objects. Unsuccessful manipulations are also observed due to
the incorrect f/t applications and improper contact point determinations but not given
amongst the results. The motion behaviors show characteristic properties according to

the volume, weight, and contact points.

ADORESet provides a substantial amount of images per category and capability
regarding the object types those can remain on a table surface. Employing the
ADORESet, we trained two separate CNNs with the intention of object localization
in spatial coordinates and object recognition. The fine-tuned architecture outputs show
that the RetinaNet and VGGNet models are suitable for our experiments regarding
the object localization and recognition, respectively. Thus, our system becomes able
to process 4 frame-per-second and responds the bounding-box coordinates with the

object label. Moreover, our smart-pooling algorithm has contributed the performance
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as well. The 3 DoF robotic arm mechanism is capable of reaching every point within its
workspace together with the stiffness adjustment ability. We demonstrated 5 separate
experiments with the aim of clarification of our proposed approach. The generic
structure of our procedure reveals how such a low-cost and modular robotic arm can

manipulate different types of objects successfully adopting the visual feedback.
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S. DISCUSSION AND CONCLUSION

Retrieving semantic information is necessary to implement complex robotic
applications successfully. Thus, it is commonly expected from the robotics systems
to be armed with advanced hardware and software. The modern humanoid robotics
research exploits the nature and tries to mimic or replicate biological creatures. At
this point, humans are the great observation sources according to this research field
through fundamental properties to understand the working procedure of the brain
and physical features to adapt different conditions. The interactions between these
two properties are also a hot topic that still has blurred boundaries. It is commonly
argued that the semantic information as a consequence of the physical interactions
forms the perceptions and it manages the anticipations and future actions; however,
the adaptation to new situations requiring different actions is argued as the opposite
view that also affects the visuomotor functions. The visual perception is located at the
heart of these discussions, which is accepted as one of the most influential data sources
for the brain together with being the highest amount of data supplier. Therefore, we
designed a system to implement object manipulation task adopting visual feedback
and a VRP-VSJ mechanism those will facilitate our mechanism to approximate human

manipulation approach.

As a starting point of examining the potential of the visual cues, first the conventional
feature detector and descriptor combinations on image matching. Our universal
structure for testing the performance outputs of feature detector and descriptors
analyzes the combinations of these methods regarding the extra metrics such as
minimum distance between proper matches, number of correct matches, orientation
difference between matches. Then, it is showed that the response time of those
algorithms are not convenient for real-time applications along with the deficient
accuracy rates. However, these out-of-fashion algorithms are able to obtain semantic
information and help the visual systems to be useful for robotic applications, whether

they require a lot of computational power. To overcome these issues due to the nature
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of conventional feature extraction techniques, we refer to employ deep neural networks
that are able process larger quantities of data intent to run in real-time applications with

high performance rates.

The prevalence of intelligent systems makes it feasible to acquire more voluminous
data with many more dimensions than before. One of the reasons behind the success
of deep neural networks is the capacity of processing a vast amount of data. In
fact, the increase in the data amount also raises its success. Moreover, time spent
during developments in robotics is a significant cost to be reduced, which restricts
maneuverability and diversity. To optimize this period, the referred method is to
take advantage of simulation environments, which reproduce real-world conditions as
much as possible. In most cases, machine vision based problems in robotics such as
object detection and recognition, object tracking and manipulation are implemented
employing real-world or simulation images, separately. The primary purpose of
computer vision and control in the robotics field is to obtain a perception and
cognition proficiency comparable to or better than humans. In this sense, incorporation
of additional object classes in image datasets, for example, wild animals, large
structures, big vehicles, etc. is futile which lead to worse performance results.
Although the robotic applications simulations give successful results, the outcomes
cannot be instantaneously applied in real-world tests or end-user products due to
the inconsistencies between real and simulation environments. For this reason, we
proposed ADORESet that 1s composed of colored images, which has 30 classes with
the dimension of 300 x 300 pixels. Each class has 2500 real-world images acquired
from wild web and 750 synthetic images that are generated within Gazebo. This
hybrid dataset enables researchers to implement their algorithms both for real-world
and simulation environment conditions. Our hybrid dataset is fully-annotated, and
the limits of objects are manually specified, and bounding box coordinates are
provided. Successor objects are also labeled to give statistical information about the
relations of the objects within the dataset. For example, the relationship between
monitor, keyboard, and mouse can be directly obtained using this useful information.
ADORESet should be of interest to the field of robotics researchers by means of its
hybrid form, compactness in terms of lightweight and relevancy to further robotics and

computer vision applications.
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Even though CNN architectures have many advantages, training and test steps require
a lot of computational effort. Using pretrained parameters and/or ensembles of
different models are more preferred rather than the end-to-end training of CNNs
from scratch. Most of the improvements have benefited from previous architectures
and then fine-tuned or converted them to a more reasonable form for specific
purposes. Hence, we exploited the advantage of having ADORESet and test the
state-of-the-art CNNs for object recognition regarding the dataset constitution whether
it is composed of synthetic, real or hybrid images. We also declared a pooling method
called smart-pooling that extends the current literature with its transitive structure.
Furthermore, the pooling layer also contribute the regularization performance of larger
CNN architectures that also helps to prevent over-fitting. We re-trained 36 CNNs in
total and the VGGNet model is adopted for object recognition in our tests depending
on the performance. The results show that the data constitution is vital for the object
recognition accuracy together with the quantity of images per category. But the
ADORESet enabled us to train the CNN models once, and then, utilize the parameters
either for simulation or real-world applications without any restrictions depending
on the data type. Moreover, with the intention of predicting the bounding-box
spatial coordinates surrounding the objects, we fine-tuned the RetinaNet architecture
to localize the objects in the images for specifying the place of the objects in the
manipulation scenarios. In addition to the visual cues, we assigned extra features
to objects considering their physical characteristics. Our vision system hereby has
ability to connect the labels and locations of the recognized objects with the assigned
physical attributes. So that our robotic mechanism inside the Deep Table can move

different types of objects from one point to another by itself with one algorithm.

The Deep Table is a special test platform that is rigged with a depth camera on the
top, a webcam in the front, a 3 DoF robotic mechanism for manipulation involving
the VRP-VSJ system, motors and controller boards together with the computer. In
manipulation operation, the contact points to the objects play an important role
for successful motions in the context of satisfactory movement, time and energy
consumption. If the optimum point for the force application can be determined, then
the robot will consume less time and less energy to move the object from its path.

Exploiting the knowledge extracted from the sensors within the Deep Table our control
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algorithm executes the manipulation. We present 5 of the many possible cases for
the empirical tests that prove the plausibility and performance of our algorithm. The
results indicate that our algorithm can move different types of objects successfully
ranging from several grams (empty bottle) to around 250 grams (ceramic cup). The
experiments also show the role of contact point where the f/t is applied onto the object.
If the contact point is adjusted conveniently, then the manipulation is terminated with

a tilt over of the object.

In essence, in this thesis, a system is proposed for the manipulation of visually
recognized objects using deep neural networks. In addition to contributing to the
current literature by the comprehensive comparison of feature extraction method
combinations, the ADORESet, the smart-pooling, and the control approach, we open a
path to the potential studies such as developing further object detection and recognition
algorithms, making the detailed performance analysis of the smart-pooling, improving
the control techniques involving reinforcement learning for object manipulation within

the Deep Table, upgrading the VRP-VSJ mechanism to a higher DoF.
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