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ÖZET

DOĞAL ve YAPAY ZAMAN SERİLERİNDE KARMAŞIKLIK
VE ZAMAN SERİSİ ANALİZİ

ÖZKEN, İbrahim

Doktora Tezi, Fizik Anabilim Dalı
Tez Danışmanı : Prof. Dr. Uğur TIRNAKLI

Ocak 2018 , 55 sayfa

Bu tezde, eşit zaman aralığında örneklemeye sahip olmayan karmaşık
yapıdaki doğal sistemlerin analizlerini gerçekleştirebilmek adına iki yöntem li-
teratüre kazandırılmıştır. Bu yöntemler kullanılarak yapılan yineleme grafiği
analizleri ile paleoiklim verilerinin analizleri gerçekleştirilerek geçmişte mey-
dana gelen sıra dışı iklim olayları tespit edilmeye çalışılmıştır.

Tezin ilk kısmında ortaya atılan metrik uzaklık yaklaşımı ile Çin’de yer
alan Dayu Mağarası’ndan elde edilen oksijen izotop oranlarının yineleme grafiği
analizleri gerçekleştirilmiştir. Yapılan analizler sonucunda literatürde var olan
sıra dışı iklim olayları istatistiksel olarak doğrulanmış ve yeni sıra dışı olayların
varlığı ortaya atılmıştır.

Tezin ikinci kısmında yer alan Dönüşüm Maliyet Zaman Serisi yöntemi,
eşit zaman aralığına sahip olmayan zaman serilerini, eşit zaman aralıklı hale
getirmektedir. Bu yöntem kullanılarak Endonezya’da bulunan Secret Mağa-
rası’ndan elde edilen oksijen izotop oranlarının yineleme grafiği analizleri ger-
çekleştirilmiştir. Analiz sonucunda literatürde bulunan olaylar istatistiksel ola-
rak tespit edilmiş ve yeni olaylar öngörülmüştür. Diğer bir çalışmada ise aynı
analizler Avustralya’da yer alan KNI-51 ve Çin’de yer alan Dongge mağaraları
için tekrarlanmıştır. Bu iki bölge için literatürde yer alan olaylar %90 oranında
tespit edilmiştir. Ayrıca Kuzey yarım küreden elde edilen ve solar aktivite ile
ilgili olan karbon izotop oranları ile söz konusu iki bölgenin determinizm ni-
celiği sonuçlarının arasında yapılan çapraz korelasyon hesabı sonucunda, iki
bölgenin muson rejimlerinin anti faza sahip olduğu ve güneşin pozisyonunun
buna sebep olduğu ortaya konmuştur.

Anahtar Kelimeler : Doğal zaman serisi analizi, yineleme grafiği analiz yön-
temi, rejim geçişleri ve sıra dışı olaylar.
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ABSTRACT

COMPLEXITY AND TIME SERIES ANALYSES OF NATURAL
AND SYNTHETIC TIME SERIES

ÖZKEN, İbrahim

PhD in Physics
Supervisor : Prof. Dr. Uğur TIRNAKLI

January 2018, 55 pages

In this thesis, two methods have been proposed to literature for analy-
sing natural complex systems which have non equally sampled time series and
recurrence plot analyses of paleoclimate records have been done to detect ext-
reme climate events at past by using these methods.

By using metric distance aproach which is explained in the first part of
the thesis, recurrence plot analyses of oxygen isotope rate time series which are
obtained from Secret Cave at China have been done. Results of the analyses
show that the known events in the literature are statistically detected and
some new events are suggested.

Transformation Cost Time Series method which is explained at the se-
cond part of the thesis, transform a non-equally sampled time series to equ-
ally sampled time series by using the interval dynamics of system. By using
this method, recurrence plot analyses of the oxygen isotope rate time series
obtained from Secret Cave in Indonesia have been done. The recurrence plot
analyses resulted in the statistically detection of events existed in the literature
and new events were predicted statistically. At another study, same analyses
has been applied to two time series for same case obtained from KNI-51 Cave
in Australia and Dongge Cave in China. The %90 of events in the literature
have been reproduced by using this method. Therefore, we analysed thecar-
bon isotope rate data related with solar activity in the Northern Hemisphere
using determinism in time series, then we compared this result with the re-
sults obtained from KNI- 51 and Dongge caves. The correlation of these events
revealed that there is an anti-phase monsoon regime between two regions and
this situation is related with position of Sun

Keywords : Natural time Series Analyses, Recurrence Plot, Regime Transiti-
ons, Extreme Events.
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1. GİRİŞ

İnsanoğlu varoluşundan itibaren çevresinde gerçekleşen olayları anlamaya
çalışmıştır. Bu amaç uğruna, yüzlerce belki de binlerce yıl boyunca ilgili sis-
tem hakkında gözlemler yapmışlar ve sonuçlarla ilişkilendirmeye çalışmıştır.
Örneğin yerleşik hayata geçmeden önce, avlanma ihtiyaçlarını karşılayabilmek
için hayvanların göç ettikleri bölgeleri gözlemleyerek tespit etmişlerdir. Göç
yollarını gözlemlerle tespit eden insanoğlu, bu sefer ne zaman sorusuna yanıt
bulabilmek için göç zamanlarını hava olayları veya bitki örtülerinin değişimleri
ile ilişkilendirerek gözlemlerine devam etmişlerdir. Bu tarz sayısız örnekle, in-
sanoğlunun gerek hayati ihtiyaçlardan gerek ilgisinden dolayı çevreyi tanımaya
ve anlamaya yöneldiğini söyleyebiliriz. Yıllar boyunca süre gelen bu anlama ve
tanıma isteği insanoğlu için bir alışkanlık haline gelmiştir. Bu istek yıllar geç-
tikçe farklı sistemleri anlamak için insanoğlunu teşvik etmiştir. Fizik biliminin
doğuşu da bu doğrultuda olmuştur.

Bir fizikçinin nihai hedefi çevresindeki sistemlerin yapısını anlayarak ge-
lecekte nasıl bir davranış sergileyeceğini öngörmektir. Bunun için de yuka-
rıda bahsedildiği gibi gözlem yapmak en önemli unsurdur. Newton’nun hareket
denklemlerini yazarken hiç gözlem yapmamış olması mümkün müdür? Ya da
Archimedes suyun kaldırma kuvvetini bulurken bir anda mı aklına geldi? Bu
soruların cevabı açık bir şekilde hayırdır. Tabi ki tüm bilim insanları gibi onlar
da belirli gözlemler yaparak hedeflerine ulaşmışlardır. İnsanoğlunun yapısını
anlamak istediği sistemler yıllar geçtikçe farklılık gösterse de değişmeyen tek
gerçek gözlem yapması gerektiğidir.

Özellikle kaos teorisinin ortaya çıkışı ile birlikte hava olayları, sismik ha-
reketler, beyin hareketleri gibi karmaşık yapıya sahip birçok doğal sistem, in-
sanoğlunun yeni ilgi alanı olmuştur. Bu tarz sistemlerin hareketlerini henüz
Newton hareket denklemleri gibi denklemlerle ifade edememekteyiz. Bu alanda
yapılan tüm çalışmaların nihai amacı bu doğrultudadır. Bunun için izlenen yol
ise sistemin geçmişte yapmış olduğu hareketleri incelemekten yani gözlem yap-
maktan geçmektedir. Karmaşık yapıya sahip olan sistemler hakkında yapılan
gözlemler, ilgili sistemin zaman serisidir. Zaman serisi, sistem hakkındaki tüm
bilgiyi içinde barındırmasına rağmen bu saklı olan bilgiyi ortaya çıkartmak
kolay değildir. Bunun için zaman serisi analizleri yapılarak sistemin dinamiği
anlaşılmaya çalışılır. Bu amaç uğruna özellikle bilgisayar teknolojisinin geliş-
mesiyle birlikte birçok doğrusal olmayan analiz yöntemi ortaya atılmıştır. Bu
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analiz yöntemlerinin çoğu, sistemin yörüngelerinin faz uzayında yapmış olduk-
ları hareketleri incelemek üzerine kuruludur(Packard et al., 1980).

Lyapunov üsteli sistemin yörüngelerinin birbirlerinden ayrılma hızını ve-
ren bir niceliktir ve sistemin dinamik yapısı hakkında en doğru bilgiyi vermek-
tedir. Yörüngelerin birbirlerinden ani bir şekilde uzaklaşması, sistemin kaotik
bir yapıya, aksi durumda ise sistemin periyodik yapıya sahip olduğu söylenmek-
tedir. Ayrıca Lyapunov üstelinin sıfıra vurduğu değerler zaman serisi analizleri
ile uğraşanlar için kritik bir öneme sahiptir. Bu değerler sistemde rejim ge-
çişlerinin olduğunu göstermektedir (Hilborn C. R., 2000). Doğal zaman serisi
analizlerinde sistemin rejim geçişlerinin tespiti, sistemde meydana gelen sıra
dışı olaylara karşılık geldiğinden dolayı çok önemlidir. Fakat doğal sistemle-
rin Lyapunov üstelini hesaplamak mümkün değildir. Çünkü Lyapunov üstelini
hesaplamak için sistemi ifade eden bir denkleme ihtiyaç duyulmaktadır.

Yineleme grafiği analiz yöntemi son on yılda oldukça fazla ilgi çeken za-
man serisi analiz yöntemidir. Eckmann tarafından dinamik bir sistemin faz uza-
yındaki yinelemelerini görselleştirmek için ortaya atılmıştır (Eckmann et al.,
1987). Bu yöntem yeteri kadar uzun olmayan zaman serilerinin analizi için çok
elverişlidir (Marwan et al., 2007). Ayrıca yineleme grafiğinde meydana gelen kö-
şegen yapıları dikkate alarak hesaplanan yineleme grafiği sayısal niceliklerinden
determinizm niceliği, rejim geçişlerini tespit edebilmemiz için Lyapunov üsteli
kadar elverişlidir (Trulla et al., 1996); (Marwan et al., 2007). Yineleme grafiği
analiz yönteminde de sistemin yörüngelerinin faz uzayında yaptıkları hareketler
incelenir. Bunun için yörüngeler arasındaki uzaklığın hesaplanması gerekmek-
tedir. Literatürde uzaklık hesabı için kullanılan en yaygın yöntem Öklidyen
uzaklıktır. Öklidyen uzaklığın hesaplanabilmesi için yörüngeleri oluşturan ve-
rilerin eşit zaman aralıklı olması gerekmektedir. Fakat karmaşık yapıya sahip;
sismik hareketler, iklim olayları, beyin aktiviteleri gibi doğal sistemler yapı-
larından dolayı eşit zaman aralıklı değildirler. Bu tarz sistemlerin analizlerini
gerçekleştirebilmek için literatürde yaygın olarak kullanılan yöntem interpo-
lasyon yöntemidir. Bu yöntemle zaman serisindeki boşluklar, zaman serisinin
dağılımından faydalanılarak doldurulur ve analizler gerçekleştirilir. Her ne ka-
dar sistemin dağılımından faydalanılsa da, sisteme dışarıdan müdahale olduğu
için zaman serisini bozmakta ve bilgi kaybına sebep olmaktadır (Rehfeld et al.,
2011).

Bu tezde ilk olarak, zaman serisi analizlerinde karşılaşılan uzaklık prob-
lemi ele alınmıştır. Eşit zaman aralığına sahip olmayan zaman serilerinin yi-
neleme grafiği analizlerini gerçekleştirebilmek adına, Victor ve Purpura tara-
fından ortaya atılan ve Suzuki vd. tarafından geliştirilen metrik uzaklık in-
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celenmiştir. Metrik uzaklık hesabı için gerekli olan parametrelerin seçimi için
motivasyon sağlanmış ve dinamiği iyi bilinen yapay sistemlerin (Logistik map
ve Rössler salınıcısı) yineleme grafiği analizleri metrik uzaklık kullanılarak ger-
çekleştirilmiştir. Yapay sistemlerin Lyapunov üsteli ile tespit edilen rejim ge-
çişleri, determinizm niceliği sonuçları ile karşılaştırılmış ve metrik uzaklığın
çalışırlığı test edilmiştir. Doğal zaman serisi uygulaması için Çin’de yer alan
Dayu Mağarası’ndan elde edilen paleoiklim verileri seçilmiş ve yineleme grafiği
analizleri metrik uzaklık kullanılarak gerçekleştirilmiştir. Yapılan analizlerin
sonucu, literatürde var olan sıra dışı iklim olayları ile karşılaştırılmıştır.

Tezin diğer kısmında ise; Dönüşüm Maliyet Zaman Serisi yöntemi ortaya
atılmıştır. Bu yöntem, eşit zaman aralığına sahip olmayan zaman serilerini
tamamen sistemin iç dinamiğinden faydalanılarak eşit zaman aralıklı hale ge-
tirmektedir (Ozken et al., 2015). Yöntemin çalışırlığı yapay sistemlerde test
edildikten sonra eşit zaman aralığına sahip olmayan paleoiklim verileri üze-
rinde uygulanmıştır. Secret, KNI-51 ve Dongge mağaralarından elde edilen
δ18O oksijen izotop oranları yineleme grafiği analizleri sonucunda, literatürde
yer alan sıra dışı iklim olayları tespit edilmiştir.
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2. DOĞRUSAL OLMAYANHAREKET VE Yİ-

NELEME GRAFİĞİ ANALİZ YÖNTEMİ

2.1 Doğrusal Olmayan Hareket

Zamanla birlikte değişime sahip olan sistemler dinamik sistemler olarak
bilinirler ve bu tarz sistemler matematikte, geometrik bir uzaydaki bir nokta-
nın zamana bağlılığını tanımlayan bir fonksiyon olarak gösterilirler. Dinamik
sistemlerin, diferansiyel denklemler ve tekrarlama haritaları (iterated map) ol-
mak üzere iki temel yapısı vardır. Diferansiyel denklemler sistemin zaman ile
evrimini sürekli zamanda açıklarken, tekrarlama haritalarının zamanı kesikli
yapıdadır. Özellikle klasik fizikte, sistemlerin zamanla değişimini göstermek
için diferansiyel denklemler kullanılır. Bu sistemlerde başlangıç koşulları bi-
lindiği takdirde, sistemin zamanla evrimini hesaplayabiliriz. Sistemin evrimini
gösteren bu diferansiyel denklemler sayesinde sistemin doğrusal veya doğrusal
olmadığını söyleyebiliriz. Bu olgu kaos çalışanlar için oldukça önemlidir. Çünkü
herhangi bir sistemin kaotik bir yapıya sahip olması için doğrusal olmayan bir
harekete sahip olması gerekmektedir (Hilborn C. R., 2000).

Doğrusal olmayan sistemleri daha iyi anlayabilmemiz için hem doğrusal
olan hem de doğrusal olmayan farklı iki sistemi inceleyelim. Doğrusal bir sistem
olan Newton’un ikinci yasasını ele alalım. Bu yasa bizlere m kütleli bir parça-
cığın, x ekseni yönünde etki eden bir Fx kuvvetinin etkisiyle birlikte hareketini
tanımlar.

Fx(x, t) = ma = m
d2x

dt2
(2.1)

Şimdi ideal bir yaya uygulanan bir kuvvet ile elde edilen denkleme bakalım.
İdeal yaya uygulanan kuvvet için verilen denklem;

Fx(x) = −kx (2.2)

olarak verilmektedir. Burada k yay sabitidir. Denklem 2.1 ve 2.2’den faydala-
narak, parçacığın konumunun zamanla değişimini;

d2x

dt2
= − k

m
x (2.3)
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denklemiyle ifade edebiliriz. Bu denklem x ve x’in ikinci türevi (ivme) için
doğrusaldır. Diğer bir değişle x teki herhangi bir değişiklik sistemin ivmesinde
doğrusal bir etki yapmaktadır.

Doğrusal olmayan bir sisteme örnek vermek için x’e olan bağlılığı daha
karmaşık olan bir Fx kuvveti tanımlayalım. Fx = bx2 olarak alalım ve Denklem
2.1’de yerine koyalım. Bu durumda;

d2x

dt2
= − b

m
x2 (2.4)

olur. Bu denklemde ivme x’in karesiyle değiştiği için doğrusal olmayan bir sis-
temi ifade etmektedir. Yani x konumundaki değişiklik sistemin ivmesine aynı
oranda etki göstermemektedir. Sonuç olarak doğrusal olmayan sistemler, za-
manla gelişim denklemleri doğrusal olmayan sistemlerdir.

Bu tarz doğrusal olmayan denklemlerde gerçekleşen ani ve çarpıcı değişik-
likler, sistemin davranışını karmaşık hale getirebilirler. Bu karmaşık davranış
kaos olarak adlandırılır ve sistemin periyodik davranış göstermediği ve rastgele
davranışa benzemediği takdirde, sistemin kaotik olduğu söylenir. Kaos, aslında
karmaşık yapıya sahip hareketleri tanımlamak için kullanılan bir kelimedir.
Karmaşık yapıya sahip olan sistemlerde, başlangıç koşullarında yapılan çok
küçük bir değişiklik bile hem sistemin yapısında hem de niceliğinin değerinde
ani ve çarpıcı değişikliğe sebep olmaktadır. Bu tarz bir etkinin gerçekleşmesi
için sistemin doğrusal olmaması gerekmektedir (Hilborn C. R., 2000).

Kaos teorisinin gelişimi, 1950’lerde yüksek hıza sahip bilgisayarların ge-
liştirilmesiyle birlikte hız kazanmıştır. Bu gelişim daha önceden mümkün olma-
yan deneylerin yapılmasına ve bunun sonucu olarak doğrusal olmayan sistemler
hakkında tahminlerde bulunmamıza olanak sağlamıştır. 1960’ların başlarında
meteoroloji uzmanı olan Edward Lorentz’in yapmış olduğu matematiksel bir
modelde kaos bilinçli bir şekilde gözlemlenmiştir. Bu çalışmada Lorentz, deter-
ministik periyodik olmayan dalgalanmaları gözlemlemesinin yanı sıra başlangıç
koşullarına hassas bağlılığını keşfetmiştir. 1970’lerin ortalarında ise zoolog Ro-
bert May tarafından karmaşık bir yapıya sahip olan fakat basit bir ekolojik
model olan Logistik map ortaya atılmıştır ve bu model kaos teorisi için önemli
bir kilometre taşıdır. Bu basit modelde nüfus yoğunlunun artış hızı belirli bir
parametreye bağlı olarak nasıl değişeceğini görebilmekteyiz.

Karmaşık yapıya sahip olan bir sistemin yapısını anlayabilmemiz için en
doğru nicelik Lyapunov üstelidir. Lyapunov üsteli sistemin yörüngelerinin faz
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uzayında birbirlerinden ayrılma hızını veren bir niceliktir ve

δ(t = 0) = δ0 = ||f(xo + ε)||, (2.5)

denklemi aracılığı ile hesaplanır. Burada δ0, (t = 0) başlangıç durumunda yö-
rüngeler arasındaki uzaklık, ε ise çok küçük mesafedir. Eğer t → ∞ limitinde
yörüngeler birbirlerinden ani bir şekilde uzaklaşırsa sistemin kaotik yapıya sa-
hip olduğu söylenir ve denklem üstel

||δt|| ∼ eλt||δ0||, (2.6)

halini alır. Burada λ Lyapunov üstelidir. Lyapunov üsteli λ < 0 ise sistemin
periyodik yapıda, λ > 0 ise kaotik yapıda olduğu bilinmektedir. Lyapunov üs-
telinin sıfıra vurduğu noktalar ise zaman serisi analizlerinde çok fazla önem
teşkil etmektedir. Bu noktalar sistemdeki rejim geçişlerine ve doğal sistem-
lerde sıra dışı olaylara karşılık gelmektedir. Lyapunov üsteli sistem hakkında
en doğru bilgiyi vermesine rağmen çok fazla veriye ihtiyaç duymaktadır. Bu
doğal zaman serisi analizlerinde karşılaşılan en önemli zorluklardan bir tanesi-
dir. Bu sorun bilim insanlarını yeni analiz yöntemleri bulmaya itmiştir. Yine-
leme grafiği analiz yöntemi bu yöntemlerden bir tanesidir ve fazla veriye gerek
duymadan sistemdeki yinelemeleri göstermektedir. Bu yinelemelerden fayda-
lanarak hesaplanan determinizm sayısal niceliği ise Lyapunov üsteli ile ilgili
olup sistemdeki rejim geçişlerini tespit edebilmek için çok uygundur(Marwan
et al., 2007).

2.2 Yineleme Grafiği Analiz Yöntemi

Yineleme grafiği (Recurrence Plot) ilk olarak 1987 yılında Eckmann tara-
fından dinamik bir sistemin faz uzayındaki yörüngelerinin yinelemelerini gör-
selleştirmek için ortaya atılmış ve yirmi birinci yüzyılda bilim insanları ta-
rafından yaygın bir şekilde çalışılmıştır. Bu çalışmalar sonucunda geliştirilen
yineleme grafiği sayısal nicelikleri sayesinde doğrusal olmayan sistemlerin bir
çok karakteristik özelliği anlaşılmıştır (Eckmann et al., 1987);(Marwan et al.,
2007).
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2.2.1 Faz uzayındaki yörüngeler ve yineleme

Yineleme grafiğinin temelinde yineleme matrisini oluşturmak vardır. Bu
matrisi oluşturmak için ilgili sistemin yörüngelerinin faz uzayındaki hareketi in-
celenir. Herhangi bir sistemin faz uzayındaki yörüngelerini {~xi}Ni=1 olarak ifade
edelim. Böylece sistemin zamanla gelişimi bu vektörlerin serisiyle tanımlanabi-
linir. Yineleme matrisinin temelinde, sistemin faz uzayındaki yörüngelerinin i.
ve j. durumlarının karşılaştırılması yatmaktadır. Yineleme grafiği, dinamik bir
sistemin faz uzayındaki yinelemelerini göstermek için çok elverişlidir ve temeli
aşağıdaki matrise dayanır(Eckmann et al., 1987).

Ri,j(ε) = Θ(ε− ||~xi − ~xj||) i, j = 1, . . . , N. (2.7)

Burada N yörüngenin sayısını, Θ(.) Heaviside fonksiyonu, ||.|| normu, ε ise
belirli bir eşik değerini temsil etmektedir. Yörüngelerin i. ve j. durumları ε ka-
dar küçük bir farkla faz uzayında aynı bölgeye düşerse, Heaviside fonksiyonun
özelliği (eğer x < 0, Θ(x) = 0 , x ≥ 0, Θ(x) = 1) gereğince Ri,j ≡ 1, düşmezse
Ri,j ≡ 0 olarak hesaplanır. Elde edilen yineleme matrisini grafiğe dökebilmek
için Ri,j = 1 olduğu durumlarda siyah nokta, Ri,j = 0 olduğu durumlarda
ise beyaz nokta konulmaktadır. Oluşturulan yineleme grafiğinde tanımdan do-
layı Ri,i ≡ 1|Ni=1 olduğundan dolayı yineleme grafiğinde her zaman siyah ana
köşegen meydana gelmektedir.

Farklı üç sistem için yineleme grafikleri Şekil 2.1’de verilmiştir. Periyodik
hareket uzun ve kesilmeyen köşegen yapılara sahiptir ve bu köşegenler arasın-
daki dikey uzaklık salınımların periyotları ile ilgilidir. Bazı parametre değerleri
için kaotik bir yapı gösteren Rössler sisteminde yine köşegen yapılar ortaya
çıkmaktadır, fakat bu köşegen yapılar periyodik yapıdakine kıyasla daha kısa
ve düzensizdir. Üçüncü olarak verilen yineleme grafiği ise stokastik bir sisteme
aittir. Bu grafikte ise siyah noktaların tüm grafiği kapladığı ve rastgelelikten
kaynaklı olarak herhangi bir köşegen yapı meydana getirmediği görülmektedir.

Yineleme matrisini oluştururken dikkat edilmesi gereken unsurlardan bir
tanesi eşik uzaklık değerinin seçilmesidir. Genellikle literatürde ε yeteri kadar
küçük uzaklığı simgelemektedir fakat yineleme grafiğini oluştururken eşik de-
ğerini çok küçük seçmek, yineleme grafiğinde herhangi bir yineleme noktası
oluşmamasına sebep olabilir. Aksi durumda yani ε değeri gereğinden büyük
seçilirse bu durumda yineleme grafiğinin hepsi siyah noktalardan oluşacaktır.
Bahsedilen iki durumda da ilgilenilen sistemin dinamiği hakkında herhangi bir
bilgi alamayız(Marwan et al., 2007).
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Şekil 2.1: Farklı yapıya sahip sistemler için yineleme grafikleri; (a) Periyodik,
(b) Kaotik ve (c) Stokastik yapıya sahip sistemler için yineleme grafikleri

Eşik değrinin ε seçilmesi için literatürde önerilen bir kaç yöntem mevcut-
tur. Bunlardan bir tanesi faz uzayındaki yörüngelerin en büyük çapının belirli
bir yüzdesi alınarak seçilmesidir. Bu seçim için verilen sınır koşulu ise orta-
lama veya en büyük çap değerinin %10’undan fazla olmamasıdır (Koebbe and
Mayer-Kress, 1992); (Zbilut et al., 1992); (Mindlin and Gilmore, 1992). İkinci
bir seçim kuralında ise; içinde gürültü bulunduran gerçek sistem verileri için,
sistemin σ standart sapması kullanılmaktadır. Bu tarz sistemlerde eşik değe-
rini standart hale getirmek için standart sapma kullanılır (Thiel et al., 2002)
. Üçüncü seçim kuralı ise oluşturulan yineleme grafiğindeki yineleme noktala-
rının yoğunluğun kullanılmasıdır. Bu seçim kuralında, yineleme noktalarının
belirli bir yüzdede olması için farklı ε değerleri kullanılarak yineleme grafiği
elde edilir (Schinkel et al., 2008).

2.2.2 Yineleme grafiği sayısal nicelikleri

Bu bölümde oluşturulan yineleme grafiğindeki köşegen ve dikey (veya ya-
tay) yapılarından faydalanılarak yineleme grafiği sayısal niceliklerinin hesap-
lanması anlatılacaktır. Yineleme grafiğinde oluşan bu yapılar sistemin dinamiği
hakkında bilgi vermektedir. Yineleme grafiği sayısal nicelikleri üzerine yapılan
çalışmalarda, dallanma noktalarını ve kaotik-periyodik (periyodik-koatik) ge-
çişlerinin tespit edilebildiği gösterilmektedir (Trulla et al., 1996); (Webber and
Zbilut, 1994); (Zbilut et al., 1992); (Marwan et al., 2002) .

2.2.2.1 Yineleme yoğunluğu

Yineleme yoğunluğu, yineleme grafiğinde meydana gelen tüm noktala-
rın yoğunluğunun bir ölçüsüdür. Bu niceliği hesaplayabilmek için oluşturulan
yineleme grafiğindeki noktaların, mümkün olan tüm yinelemelerin toplamına
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bölünmesiyle elde edilir. Bir önceki bölümde bahsedildiği gibi yineleme grafiği
simetrik bir yapıya sahip olan kare matristir. İncelenen sistemin yörüngeleri-
nin sayısı N ise bu durumda, matristeki toplam eleman sayısı NxN olur ve
yineleme yoğunluğu

RR(ε) =
1

N2

N∑
i,j=1

Ri,j(ε), (2.8)

şeklinde verilir

2.2.2.2 Determinizm niceliği

Yineleme grafiğinde farklı yapıdaki sistemler için köşegen yapılarının na-
sıl değiştiğini Şekil 2.1’de görmekteyiz. Yineleme grafiğinde oluşan bu köşegen
yapılardan faydalanarak sistemlerin karmaşıklık ölçümleri yapılabilmektedir.
Bu köşegen yapıların uzunluklarının P (ε, l) dağılımı, dinamik bir sistemin yö-
rüngelerinin birbirlerinden ayrılmasının bir ölçütüdür ve dolayısıyla Lyapunov
üsteli ile ilgilidir (Trulla et al., 1996); (Marwan et al., 2007).

Köşegen yapılardan faydalanarak yineleme grafiği sayısal niceliklerini he-
saplayabilmek için ilk olarak yineleme grafiğinde oluşan köşegen yapıların uzun-
luklarına göre dağılımı bulunmalıdır. Bu dağılım;

P (ε, l) =
N−l∑
i,j

(1−Ri−1,j−1(ε))(1−Ri+l,j+l(ε))
l−1∏
k=0

Ri+k,j+k(ε), (2.9)

denklemi kullanılarak bulunur.

Köşegen yapılar kullanılarak hesaplanan ve yaygın kullanıma sahip yi-
neleme grafiği sayısal niceliklerinden bir tanesi determinizm niceliğidir. Deter-
minizm niceliği, çeşitli uzunluklarda oluşan köşegen yapıları meydana getiren
yineleme noktalarının tüm yineleme noktalarına oranıdır. Bu niceliği hesap-
larken belirli bir lmin uzunluğu eşik değeri olarak seçilir ve bu eşik değerinden
daha uzun köşegen yapılar dikkate alınır. Literatürde bu eşik değerinin birden
fazla olması gerektiği verilmektedir ve genellikle iki olarak alınır.

DET =

∑N
l=lmin

P (ε, l)∑N
l=1 P (ε, l)

. (2.10)

Burada lmin = 1 olarak seçilirse, bu durumda köşegen yapıları oluşturan tüm
noktalar hesaba katılmış olur ve determinizm niceliğini değeri bir olur. So-
nuç olarak determinizm niceliği 0 ile 1 arasında değişir ve bire yaklaştıkça
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sistemin tahmin edilebilirliği artarken, sıfıra yaklaştığı durumda ise sistemin
tahmin edilebilirliğinin azaldığı söylenir. Determinizm niceliği sitemdeki rejim
geçişlerini tespit edebilmek için oldukça elverişlidir ve literatürde yaygın olarak
kullanılmaktadır (Trulla et al., 1996);(Marwan et al., 2007).
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3. METRİK UZAKLIK

Karmaşık yapıya sahip doğal sistemlerin zaman serisi analizlerinde kul-
lanılan yineleme grafiği (Marwan et al., 2007), maksimum Lyapunov üsteli
(Rosenstein et al., 1993), korelasyon boyutu (Grassberger and Procacia, 1983)
gibi analiz yöntemlerinin çoğunun temelinde, faz uzayındaki yörüngelerinin
birbirleriyle olan ilişkisini ortaya çıkartmak yatmaktadır. Bu ilişkiyi ortaya çı-
kartmanın en yaygın yöntemi yörüngelerin arasındaki uzaklığı hesaplamaktır.
Öklidyen uzaklık, uzaklık hesabı için en doğru tanım olmasına rağmen sadece
düzenli zaman serileri üzerinde uygulanabilinir. Yapısından veya örnekleme
tekniklerinden dolayı karmaşık yapıya sahip olan doğal sistemlerin zaman seri-
leri, hem eşit zaman aralıklı örneklemeye sahip değildir hem de örnek toplama
tekniklerinden kaynaklı belirli bir gürültü seviyesine sahiptirler. Öklidyen uzak-
lık kullanabilmek için bu tarz zaman serileri interpolasyon yöntemi kullanılarak
düzenli hale getirilir. Fakat bu yöntem zaten belirli bir gürültü seviyesine sahip
olan zaman serisine, dışarıdan müdehale edildiği için ek bir gürültüye sebebiyet
vermektedir (Rehfeld et al., 2011). Metrik uzaklık tanımı eşit örnekleme za-
man aralığına ihtiyaç duymaksızın, iki veri grubu arasındaki uzaklık hesabını
yapabilmek için ortaya atılmıştır. Sistemin tamamen iç dinamiğinden faydala-
nılarak yapılan bu uzaklık tanımının temelinde farklı iki veri grubundan birini
bir diğerine birim adımlarla dönüştürmek yatmaktadır.

Bu bölümde eşit zaman aralığına sahip olmayan zaman serilerinin yi-
neleme grafiği analizlerini gerçekleştirebilmek için gerekli olan uzaklık hesabı,
metrik uzaklık kullanılarak gerçekleştirilmiştir. Bunun için metrik uzaklık ta-
nımı incelenmiş ve metrik uzaklık hesabı için gerekli olan parametreler için
seçim kuralları ortaya atılmıştır. Yineleme grafiği analizleri için, literatürde
defalarca çalışılmış ve dinamiği iyi bir şekilde bilinen kesikli yapıya sahip olan
Logistik map ve sürekli yapıya sahip Rössler salınıcısı tercih edilmiştir. Ya-
pılan analizler sonucunda yineleme grafiği sayısal niceliklerinden determinizm
niceliği her iki sistem için hesaplanmış ve her iki sistemin Lyapunov üsteli so-
nuçları ile karşılaştırılmıştır. Sonuçların her iki sistem için de tutarlı olduğu
görüldükten sonra doğal zaman serisi analizi için kullanılmıştır.

Doğal zaman serisi analizi için, Çin’de yer alan Dayu Mağarası’ndan elde
edilen δ18O oksijen izotopu oranları seçilmiştir. Doğu Asya Yaz Muson rejimi-
nin etkisi altında kalan bölge için yapılan analizlerin sonuçları, mağarada yer
alan yazıtlardaki kuraklık dönemleri ile karşılaştırılmış ve determinizm niceli-
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ğinin düşük değerler almış olduğu dönemlere karşılık geldiği tespit edilmiştir.

3.1 Tanım

Her hangi bir sistemin zamanla nasıl evrileceğini anlayabilmek için hare-
ket denklemleri kullanılmaktadır. Fakat karmaşık yapıya sahip olan sistemler
için herhangi bir denklem ortaya koymak oldukça güçtür. Bu tarz sistemlerin
gelecekte nasıl davranacağını kestirebilmek için öncelikle geçmişte sergilemiş
olduğu davranışı iyi bir şekilde tespit edebilmek çok önemlidir. Bunun için sis-
temin yörüngelerinin faz uzayında yapmış oldukları hareketlerin birbirleri ile
olan ilişkisi incelenir. Bir çok analiz yönteminde, bu ilişkiyi anlayabilmek için
yörüngelerin birbirleriyle olan uzaklıklarının hesaplanmaktadır (Ozken et al.,
2015). Yörüngeler arasındaki uzaklığın değişiminin incelenmesi, sistemin genel
yapısı hakkında bilgi sahibi olmamızı sağlayan Lyapunov üsteli ve korelasyon
boyutu gibi nicelikleri hesaplayabilmek için gereklidir (Grassberger and Proca-
cia, 1983) (Rosenstein et al., 1993). Bu tarz hesapları yaparken genellikle kulla-
nılan uzaklık tanımı öklidyen uzaklıktır. Fakat öklidyen uzaklık kullanabilmek
için zaman serisini oluşturan verilerin eşit sayıda ve eşit zaman aralıkları ile ör-
neklenmiş olması gerekmektedir (Eroglu et al., 2016). Doğada yer alan bir çok
sistem, yapısından (deprem, yağış, beyin aktiviteleri vs.) veya örnek toplama
tekniklerinden (paleoiklim) dolayı eşit zaman aralıklı verilere sahip değildirler.
Eşit zaman aralığına sahip olmayan bu tarz sistemlerde, yörüngeler arasındaki
uzaklık ölçümünü yapmak öklidyen uzaklık ile mümkün değildir.

Zaman serisi analizlerinde baş gösteren bu sorun, aynı kaynaktan çıkan
farklı beyin aktivite verilerinin birbirleriyle olan ilişkisini incelemek isteyen Vic-
tor ve Purpura’yı yeni bir uzaklık tanımı yapmaya zorunlu kılmıştır. Metrik
uzaklık olarak adlandırdıkları bu yeni uzaklık için temel mantık, farklı iki veri
örneğinden birini bir diğerine birim işlemler kullanarak ve minimum maliyet
ile dönüştürmektir. Dönüşüm sırasında kullanılan birim işlemler; kaydırma, ek-
leme ve silme işlemleridir. Söz konusu işlemlerin her birinin ayrı ayrı maliyetleri
vardır ve dönüşüm sırasında kullanılan tüm işlemlerin maliyetlerinin toplamı,
iki veri grubu arasındaki metrik uzaklığı vermektedir. Victor ve Purpura, yap-
mış oldukları çalışmada ekleme pe ve silme ps işlemlerinin maliyetlerini 1 olarak
almışlardır. Kaydırma pk işleminin maliyeti için ise;

pk = λ0|ta − tb|, (3.1)

denklemini önermişlerdir. Burada yer alan λ0 parametresi zamanla ilgili para-
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Şekil 3.1: Sa veri grubunun Sb veri grubuna dönüştürülmesinin gösterimi. Sa
Sb ye S1, S2, . . . , S7(Sb) olmak üzere toplam yedi adımda dönüştürülmüştür. Mi-
nimum maliyet ile dönüşüm yapılabilmesi için spikelar kaydırılmış, silinmiş ve
eklenmiştir.

metre olup birimi s−1 dir. ta ve tb ise sırasıyla Sa ve Sb veri grubunda yer alan
ve kaydırma işlemine tabi olacak olan verilerin zamanlarını ifade etmektedir
(Victor and Purpura, 1997).

Metrik uzaklık hesabı için gerekli olan dönüşümün nasıl gerçekleştiğini
daha iyi anlayabilmek için Şekil 3.1’i inceleyelim. Şekilde görüldüğü gibi Sa
veri grubu Sb veri grubuna ekleme, silme ve kaydırma birim işlemleri kulla-
nılarak dönüştürülmüştür ve kullanılan tüm birim işlemlerin toplam maliyeti,
Sa ve Sb veri grupları arasındaki metrik uzaklığı vermektedir. Bu dönüşüm
için yedi adım kullanılmıştır ve her bir adım S alt indisi olarak gösterilmekte-
dir. 1., 2., 4., 5. ve 7. adımlarda Sa veri grubundaki spikelar, Sb veri grubunda
yer alan spikelara kaydırma işlemi ile dönüştürülürken, 3. adımda silme ve 6.

adımda ise ekleme işlemi kullanılarak spikelar birbirlerine dönüştürülmüştür
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(Ozken et al., 2015).

Şekil 3.1’de görüldüğü gibi dönüşüm için kaydırma, ekleme ve silme iş-
lemlerinin her biri kullanılmıştır. Burada kritik olgu, hangi işlemi ne zaman
kullanmamız gerektiğini doğru bir şeklide tespit edebilmektir. Bunun için met-
rik uzaklığın tanımını hatırlamamız gerekmektedir. Metrik uzaklık tanımında,
dönüşümün minimum maliyet ile gerçekleştirilmesi gerektiği söylenmektedir.
Bu kuralı daha iyi anlayabilmek için iki veri grubu düşünelim ve bu veri grup-
ları sadece birer elemana sahip olsunlar. Bu iki veriyi birbirine dönüştürebilmek
için iki seçeneğimiz mevcuttur. İlk seçenek olarak kaydırma işlemini uygulaya-
biliriz ve Denklem 3.1’i kullanarak kaydırma maliyetini hesaplayabiliriz. İkinci
seçenek ise dönüşümü, dönüşüme uğrayacak veri grubundaki veriyi silip diğer
veri grubundaki verinin yerine ekleyerek yapabiliriz. Her iki seçenek için dö-
nüşüm maliyetini yani metrik uzaklığı hesaplarsak, ikinci durumda silme ve
ekleme işleminin maliyetlerinin toplamı, silme ve ekleme işlemlerinin her biri-
nin maliyeti 1 olduğundan dolayı 2 olarak bulunmaktadır. Minimum maliyet
ile dönüşümün gerçekleşmesi için kaydırma işleminin maliyetine odaklanmamız
gerekmektedir. Yapılan kaydırma işleminin maliyeti silme ve eklemenin toplam
maliyeti olan 2’den fazla ise kaydırma işlemi yerine silme ve ekleme işlemleri
tercih edilir. Eğer kaydırma işleminin maliyeti, 2’den az ise silme ve ekleme
işlemleri yerine kaydırma işlemi tercih edilir. Sonuç olarak minimum maliyet
koşulunu sağlayabilmek için dönüşüm sırasında kullanılacak olan kaydırma iş-
lemlerinin maliyetlerini odaklanmamız gerekmektedir. Denklem 3.1’i tekrardan
incelersek denklemde yer alan λ0 parametresinin seçiminin dönüşüm için kri-
tik önem taşıdığı ortaya çıkmaktadır. λ0 parametresinin alacağı değerle doğru
orantılı bir sekilde kaydırma işleminin maliyeti değişmektedir. Bu durumda λ0
parametresinin seçimi için limit koşulları incelenirse;

• λ0 → 0 =⇒ λ0|ta − tb| → 0

• λ0 →∞ =⇒ λ0|ta − tb| → ∞

durumları meydana gelir. λ0 → 0 limitinde kaydırma işleminin maliyeti sı-
fıra yaklaşmakta ve bu durumda iki veri grubundan birini bir diğerine dönüş-
türürken kaydırma işlemi hiç bir zaman ekleme ve silme işlemlerinin toplam
maliyeti olan 2 den fazla olamayacağı için dönüşüm sadece kaydırma işlemle-
rinden meydana gelecektir. Tam tersi durumda ise λ0 →∞ kaydırma işleminin
maliyeti her zaman 2’den fazla olur. Bu durumda ise dönüşümde kaydırma iş-
lemi hiç kullanılmaz ve dönüşüm ekleme ve silme işlemlerinden meydana gelir.
Bu limit durumları incelendiğinde λ0 parametresinin seçiminin önemi ortaya
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çıkmaktadır. Victor ve Purpura, bu dönüşümün doğru olarak gerçekleştirile-
bilmesi ve metrik uzaklığın doğru bir şekilde hesaplanabilmesi için, dönüşüm
sırasında kullanılan tüm birim adımların çoğunluğunun (yaklaşık olarak %75’i)
kaydırma işlemlerinden oluşması gerektiğini ve parametre seçiminin de bu doğ-
rultuda yapılması gerektiğini ortaya koymuşlardır (Victor and Purpura, 1997).

Metrik uzaklığın hesaplanabilmesi için gerekli olan dönüşümün minimum
maliyet ile gerçekleştirilebilmesi için gereken koşulları incelendikten sonra, met-
rik uzaklığın genel bir uzaklık tanımı olabilmesi için gerekli olan koşulları in-
celeyelim. Genel uzunluk koşulları;

• D(Sa, Sb) ≥ (pozitif)

• D(Sa, Sb) = D(Sb, Sa)(simetrik)

• D(Sa, Sc) ≤ D(Sa, Sb) +D(Sb, Sc) (Üçgen Eşitzisliği)

olarak bilinmektedir. İlk koşulda uzaklığın pozitif olması gerektiği verilmekte-
dir. Metrik uzaklık için kullanılan birim işlemlerden ekleme ve silmenin mali-
yetleri 1 yani pozitiftir. Kaydırma işleminin maliyet tanımında yer alan mutlak
değer ile kaydırma işleminin maliyeti de pozitif olmaktadır. Sonuç olarak iki
veri grubu arasındaki metrik uzaklık her zaman pozitif olarak bulunmaktadır.
İkinci koşulda ise uzaklığın simetrik olması gerektiği verilmektedir. Ekleme ve
silme işlemlerinin maliyetinin aynı olması ve kaydırma işleminin maliyetinde
kullanılan mutlak değer ile metrik uzaklık simetri koşulunu da sağlamaktadır.
Üçüncü koşulda, uzaklığın üçgen eşitsizliğini sağlaması gerektiğini söylemekte-
dir. Metrik uzaklık tanımında yer alan minimum maliyet ile dönüşüm kuralı ise
bu koşulu sağlamak için verilmiştir. Sonuç olarak Victor ve Purpura’nın yap-
mış oldukları metrik uzaklık tanımı, genel uzaklık koşullarını sağlamaktadır
(Victor and Purpura, 1997)).

3.2 Büyüklüğe Sahip Veriler için Metrik Uzaklık

Victor ve Purpura metrik uzaklık tanımını ortaya attıktan sonra bu ko-
nuyla ilgili bir çok çalışma yapılmıştır (Hirata and Aihara, 2012)(Hirata and
Aihara, 2009)(Diez et al., 2012). Bu çalışmalardan bir tanesi Suzuki vd. ta-
rafından gerçekleştirilmiştir. Söz konusu çalışmada spike trenleri için yapılmış
olan metrik uzaklık tanımı, Japon Yeni ve Dolar paritesi verilerine uygulan-
mıştır. Victor ve Purpura’nın çalışması spikelar yani sadece olayın var olup
olmaması üzerine kuruluyken Suzuki vd. büyüklüğe (boyut) sahip olan parite
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değerleri için toplam dönüşüm maliyetini yani metrik uzaklığı hesaplayabilmek
için aşağıdaki denklemi önermişlerdir(Suzuki et al., 2010).

p(c) =
∑

(α,β)∈C {λ0|ta(α)− tb(β)|+
1
m

∑m
k=1 λk|La,k(α)− Lb,k(β)|}+

|I|+ |J | − 2|C|. (3.2)

Burada I ve J sırasıyla Sa ve Sb veri gruplarındaki veriler dizini, C ise kaydırma
işleminin uygulanacağı veri sayısını temsil etmektedir. α, Sa veri grubundaki
α. olay β ise Sb veri grubundaki β. olaydır. λ0 parametreli ilk terim verilerin za-
man bakımından kaydırma maliyetini vermektedir. λk ile başlayan ikinci terim
ise aynı verilerin büyüklüğünün değiştirilmesiyle ilgilidir. Toplam işaretindeki
m ise verilerde birden fazla boyut (büyüklük) olduğu takdirde hesaba katılma-
sını sağlamaktadır. Denklemde yer alan La,k ve Lb,k ise sırasıyla Sa grubundaki
α. olayın ve Sb grubundaki β. olayın büyüklüğüdür. Denklemin son terimi ise
dönüşüm için kullanılan ekleme ve silme işlemlerinin toplam maliyetini hesaba
katmaktadır.

Suzuki vd. tarafından yapılan bu çalışmada, metrik uzaklık tanımında
büyüklüğe sahip veriler için kaydırma maliyetine verilerin büyüklüğü ile ilgili
olan λk parametresi ile başlayan bir ek terim eklenmiştir. Diğer iki birim işlem
olan silme ve ekleme işlemleri için ise maliyeti Victor ve Purpura’nın maliyeti
olan 1 almıştır(Suzuki et al., 2010).

Metrik uzaklığı doğru bir şekilde hesaplayabilmek için en önemli un-
sur parametre seçimlerinin doğru yapılmasıdır. Suzuki vd. de Victor ve Pur-
pura’nın yapmış olduğu yaklaşım ile parametre seçimini gerçekleştirmiştir. Bu
konu üzerine yapılan bir çok çalışma mevcuttur fakat parametre seçimi için
tam olarak bir motivasyon sağlanamamıştır (Hirata and Aihara, 2012)(Hirata
and Aihara, 2009)(Diez et al., 2012).

Parametre seçimlerine motivasyon sağlayabilmek adına Victor ve Pur-
pura’nın metrik uzaklık tanımını inceleyelim. Bu tanımında yer alan λ0 pa-
rametresi için biriminin s−1 yani frekans olduğu söylenmektedir. Kaydırma
işleminin boyutuna bakıldığı takdirde λ0|ta − tb| çarpımından dolayı birimsiz
olduğu görülmektedir. Bu durumda Suzuki vd. tarafından ortaya konulan kay-
dırma işleminin de boyutsuz olması gerekmektedir. Denklem 3.2’de yer alan
λ0 ve λk parametreleri ile başlayan kısımlar, dönüşüm sırasında kullanılacak
olan kaydırma işlemlerinin toplam maliyetini hesaplamaktadır. Kaydırma iş-
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leminin boyutsuz olabilmesi için λk parametresinin biriminin, ilgili verilerin
büyüklüğünün tersi olması gerekmektedir. Yani incelenen verilerin büyüklü-
ğünü L ile simgelersek, bu durumda λk parametresinin birimi L−1 olmalıdır.
Victor ve Purpura’nın ekleme ve silme işlemleri için maliyeti 1 olarak aldıkları
düşünülürse, toplam dönüşüm maliyetinin de boyutsuz olduğu görülmektedir.
Bu bilgiler ışığında, söz konusu iki parametrenin seçimi için;

λ0 =
M

toplam Zaman
(3.3a)

λk =
M − 1∑M−1

i |Li+1 − Li|
, (3.3b)

denklemleri önerilmiştir. Burada M , ilgili zaman serisindeki toplam veri sa-
yısını, L ise verilerin büyüklüğünü simgelemektedir. Böylece λ0 parametresini
verilerin gerçekleşme frekansı, λk parametresini ise verilerin büyüklüklerinin
farkının ortalamasının tersi olarak alınmıştır. Bu yaklaşım ile kaydırma işlemi-
nin maliyeti birimsiz hale getirilmiştir(Ozken et al., 2015).

Kaydırma işleminin maliyetini hesaplamak için gerekli olan parametrelere
motivasyon katıldıktan sonra, metrik uzaklık tanımındaki başka bir eksiklik ol-
duğu kanısına varılmıştır. Tekrardan Victor ve Purpura’nın tanımında, ekleme
ve silme işlemeleri için maliyetin 1 olduğunu söylenmektedir. Daha önceden de
belirtildiği gibi söz konusu çalışmada spikelar mevcuttur. Yani sadece olayın
var olup olmadığı olgusu mevcuttur. Bu durumda ilgili verinin herhangi bir
büyüklüğü yoktur. Bu koşul altında ekleme ve silme işlemlerinin maliyetinin
hep 1 olması kabul edilebilir. Fakat metrik uzaklığı, Suzuki vd. nin tanımındaki
gibi büyüklüğe sahip olan veriler için kullanırsak, ekleme ve silme maliyetinin
hep 1 olmasının iyi bir yaklaşım olmadığı kanısına varılmıştır. Bu doğrultuda
ekleme ve silme işlemlerinin maliyetlerinin ilgili sistemin dinamiğine göre değiş-
kenlik göstermesi gerektiği düşünülmüş ve toplam maliyette bu olguyu hesaba
katmak için Denklem 3.2’deki ekleme ve silme maliyetlerinin önüne λS para-
metresi eklenmiştir. Böylece toplam maliyet yani metrik uzaklık denklemi;

p(c) =
∑

(α,β)∈C {λ0|ta(α)− tb(β)|+
1
m

∑m
k=1 λk|La,k(α)− Lb,k(β)|}+

λS(|I| +|J | − 2|C|), (3.4)

şeklini almıştır. Bu eklenen parametre ile farklı sistemler için farklı ekleme ve
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silme maliyetleri, metrik uzaklık hesabına katılmıştır(Ozken et al., 2015).

λS parametresinin seçimi için Merkezi Limit Teoreminden faydalanılmış-
tır. Bu teoreme göre, doğada bulunan herhangi bir sistemde gerçekleşen olayla-
rın sayısı yeteri kadar fazla olursa n→∞, olayların dağılımı normal dağılıma
uyar. Bu bilgi ışığında, tüm pencereler arasındaki metrik uzaklıkların dağı-
lımının, normal dağılıma gitmesi gerekmektedir. En uygun ekleme ve silme
maliyetini yani λS parametre değerini bulmak için izlenen yol şu şekildedir; ilk
olarak zaman serisi eşit büyüklüğe sahip pencerelere bölünür ve tüm pencere-
lerin birbirleri arasındaki metrik uzaklıklar λS ∈ [0, 4] aralığında ∆λS = 0.01

duyarlılık ile hesaplanır. λS parametresinin tüm değerleri için hesaplanan pen-
cereler arasındaki metrik uzaklıkların dağılımı çizdirilir ve bu dağılımlardan
normal dağılıma en yakın dağılımı meydana getiren λS parametresi sistemin
ekleme ve silme maliyeti olarak alınır(Ozken et al., 2015).

3.2.1 Uygulama

Metrik uzaklık tanımındaki parametrelere motivasyon katıldıktan sonra
hem parametre seçim kurallarının hem de metrik uzaklığın çalışırlığını göre-
bilmek adına iyi bilinen yapay sistemler üzerinde test edilmiştir. Bunun için
dinamiği iyi bilinen iki sistem üzerinde yoğunlaşılmıştır. Bu sistemlerden biri
kesikli yapıya sahip olan Logistik map, diğeri ise sürekli bir yapıya sahip olan
Rössler salıcısıdır. Söz konusu sistemler için, metrik uzaklık kullanılarak yapı-
lan yineleme grafiği sayısal niceliklerinden determinizm niceliği hesaplanarak
her iki sistemin Lyapunov üstelleri ile karşılaştırılmıştır. Sonuç olarak, yapılan
analizler yineleme matrisi oluşturmak için kullanılan Denklem 2.7’de yer alan
uzaklık için metrik uzaklığın kullanılabileceğini gösterilmiştir.

Metrik uzaklığın çalışırlığı, iyi bilinen sistemlerde test edildikten sonra
gerçek zaman serisi analizlerinde kullanılmıştır. Bu analiz için paloeiklim ve-
rileri tercih edilmiştir. Çin’de bulunan Dayu Mağarası’ndaki sarkıklardan elde
edilen δ18O oksijen izotoplarının oranları için yapılan analizler sonucunda, lite-
ratürde bulunan fakat istatistiksel olarak ispatlanamayan kuraklık dönemleri
istatistiksel olarak tespit edilmiştir.

3.2.1.1 Logistik map

Logistik map, Robert May tarafından sinek popülasyondaki değişimi ta-
nımlamak için ortaya koyulan basit bir matematiksel denklemdir. Sinek popü-
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lasyonundaki değişim;

xi+1 = rxi(1− xi), (3.5)

denklemi ile ifade edilir. Burada r ∈ [0, 4] aralığında değişkenlik gösterebilen
kontrol parametresidir ve çevre koşullarındaki tüm bilgiyi içinde barındırmak-
tadır (Hilborn C. R., 2000). Logistik map analizi için r ∈ [3.5, 4] aralığı tercih
edilmiştir. Bunun sebebi bu aralıkta Logistik mapin zengin bir dinamiğe sa-
hip olmasıdır. Analiz için r ∈ [3.5, 4] aralığında ve (∆r = 0.01) duyarlılıkla
her bir r değeri için 3000 veri üretilmiş ve ilk 2000 veri, sistemdeki geçici ha-
reketliliği dikkate almamak için çıkartılmıştır. Sonuç olarak her bir r değeri
için 1000 veri üzerinden analizler gerçekleştirilmiştir. Denklem 3.5 kullanıla-
rak elde edilen Logistik map zaman serisi, eşit zaman aralıklı ve kesikli bir
yapıya sahiptir. Bu durumda metrik uzaklık kullanmaya gerek duyulmamak-
tadır. Metrik uzaklığın doğru bir uzaklık tanımı olup olmadığını anlayabilmek
adına zaman serimizin örnekleme zamanları farklılık göstermelidir. Bu tarz
bir zaman serisi elde edebilmek adına tüm r parametre değerleri için üretil-
miş 1000 veriden bazıları rastgele silinmiştir. Zaman serimizdeki düzensizliği
arttırabilmek adına zaman serisinden sırasıyla 50(γ = %5), 100(γ = %10),
150(γ = %15) ve 200(γ = %20) veri silinmiştir.

Yineleme grafiği analizlerini gerçekleştirebilmek için ilk olarak yineleme
matrisi oluşturulmalıdır. Denklem 2.7’ye bakıldığı takdirde, yineleme matrisi
oluşturmak için yörüngelerin arasındaki uzaklığın bulunması gerekmektedir.
Burada metrik uzaklık kullanılarak her bir zaman serisi için yineleme matrisi
oluşturulmuştur. Bunun için her bir zaman serisi 6 birim zamanlık pencerelere
bölünmüştür. 1000 verilik bir zaman serisini ele alırsak, bu durumda 166 adet
pencereye sahip olunmuştur. Hiç veri silinmemiş zaman serisi için her bir pen-
cerede 6 adet nokta varken, giderek artan silinme oranlarıyla birlikte her bir
pencereye düşen nokta sayıları farklılık göstermektedir.

Her bir pencerenin diğer pencerelerle arasındaki metrik uzaklığı hesap-
layabilmek için ilk olarak Denklem 3.3a ve 3.3b’den faydalanarak λ0 ve λk
parametreleri, her bir düzensiz ve orijinal zaman serisi ( hiç veri silinmemiş)
için ayrı ayrı hesaplanmıştır. λS parametresini seçimi için λS ∈ [0, 4] aralı-
ğında ∆λS = 0.01 duyarlılığında taranarak, her bir λS parametre değeri için
tüm pencereler arasındaki metrik uzaklıkların dağılımlarından normal dağılıma
en yakın olan λS parametre değeri 1 olarak bulunmuştur.

Metrik uzaklık tanımında yer alan üç parametre tespit edildikten sonra
her bir r değeri için yineleme matrisi oluşturulmuştur. Bu hesap dört düzensiz
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(a)

(b)

(c)

Referans

Referans

Şekil 3.2: Logistik map için yineleme grafiği sayısal niceliklerinden determinzm
niceliği sonuçları: (a) Logistik map için λ Lyapunov Üsteli, (b) Ham ve rastgele
veri silinmiş zaman serileri için determizm niceliği sonuçları, (c) Ham ve gürültü
eklenerek rastgele veri silinmiş zaman serileri için determinizm niceliği sonuçları.
Dikey gri kesikli çizgiler rejim geçişlerini göstermektedir.

ve bir de orijinal zaman serisi için ayrı ayrı yapılmıştır. Yineleme matrisini
oluşturmak için en önemli unsurlardan biri eşik değerinin ε seçilmesidir. Eşik
değeri seçiminde her bir r parametresi için hesaplanan tüm pencereler arasın-
daki metrik uzaklıkların dağılımının standart sapması σ kullanılmıştır. Metrik
uzaklığı D ile simgelersek, bu durumda eşik değeri ε = 2σD olarak alınmış-
tır. Her bir zaman serisi için oluşturulan yineleme matrisinden sonra yineleme
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grafiği sayısal niceliklerinden determinizm niceliği, Denklem 2.10’dan faydala-
nılarak hesaplanmıştır. Hesaplanmış olan determinizm niceliği sonuçları Şekil
3.2(b)’de verilmektedir.

Şekil 3.2(a)’da Logistik map için λ Lyapunov üsteli sonuçları verilmekte-
dir. Lyapunov üsteli sistemin faz uzayındaki yörüngelerinin birbirinden uzak-
laşma hızını veren bir niceliktir ve sistemin yapısı hakkında en doğru bilgiyi
vermektedir. λ > 0 olduğu durumda sistem kaotik bir yapıya, λ < 0 ol-
duğu durumda ise sistem periyodik bir yapıya sahip olmaktadır. Lyapunov
üstelinin sıfıra vurduğu r parametre değerleri kaotiklikten-periyodikliğe veya
periyodiklikten-kaotikliğe geçişlerin olduğu parametre değerleridir. Determi-
nizm niceliğinin de sistemdeki rejim değişikliklerini tespit edebilmemiz için
çok elverişli olduğu göz önüne alınırsa (Marwan et al., 2007), Lyapunov üste-
linin sıfıra vurmuş olduğu her r parametre değerini Şekil 3.2(b)’de de tespit
etmemiz gerekmektedir.

Şekil 3.2(b)’de 5 farklı sonuç bulunmaktadır ve Lyapunov üstelinin sıfıra
vurduğu her r parametre değeri dikey gri kesikli çizgi ile belirtilmiştir. Ori-
jinal logistik map zaman serisi (γ = %0) için determinizm niceliği sonuçları
siyah düz çizgiyle verilmektedir. Sonuçlar açık bir şekilde göstermektedir ki
rejim geçişlerinin hepsi tespit edilebilmiştir. γ = %5,%10,%15 ve %20 oranla
veri silinmiş zaman serileri için hesaplanan determinizm niceliklerinin sonuç-
ları sırasıyla yeşil, açık mavi, kırmızı ve mavi çizgilerle verilmiştir. Şekil 3.2(b)
incelendiğinde, determinizm niceliğinin artan silinme oranlarıyla birlikte azal-
dığı görülmektedir. Determinizm niceliğinin sistemin tahmin edilebilirliğinin
bir ölçütü olduğu bilindiğine göre bu sonuç oldukça olağandır. Zaman serisin-
den veri silindiği için sistemle ilgili daha az bilgi sahibi olunmakta ve bu da
sistemin tahmin edilebilirliğini ters bir şekilde etkilemektedir. Fakat %20 ora-
nında veri silinmiş olmasına rağmen sistemdeki rejim geçişlerini hepsi tespit
edilebilmiştir.

İlk analizlerden sonra öklidyen uzaklık yerine metrik uzaklık kullanılarak
doğru sonuçlara ulaşıldığı görülmektedir. Bir sonraki analizde ise özellikle ger-
çek zaman serisi analizlerinde karşılaşılan zorluklardan bir tanesi olan ve siste-
min dinamiği hakkında doğru bilgi sahibi olmamızı güçleştiren zaman serisinin
gürültüye sahip olması zorluğu ele alınmıştır. Bunun için hem γ = %5 hem
de γ = %10 veri silinmiş Logistik map zaman serilerine σ = 0.05 ve σ = 0.1

gürültü seviyesinde Gaussiyen beyaz gürültü eklenmiştir. Elde edilen eksik ve
gürültülü zaman serileri için determinizm niceliği hesaplanmıştır. Bu hesap için
ilk olarak metrik uzaklık tanımında yer alan λ0 ve λk değerleri Denklem 3.3a
ve 3.3b yardımıyla elde edilmiştir. λS parametresi ise 1 olarak tespit edilmiştir.
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Bir sonraki adımda yineleme matrisini oluşturmak için gerekli olan eşik değeri
ε = 2σD olarak alınarak oluşturulan yineleme matrisinden determinizm niceliği
hesaplanmıştır. Bu analizin sonuçları Şekil 3.2(c)’de verilmektedir. Siyah düz
çizgi ile verilen sonuçlar orijinal Logistik map serisi için elde edilen determi-
nizm niceliği sonuçlarıdır. Silinme oranı ve gürültü seviyesi γ = %10, σ = 0.05;
γ = %10, σ = 0.1; γ = %5, σ = 0.05 ve γ = %5, σ = 0.1 olan zaman serilerinin
determinizm niceliği sonuçları sırasıyla yeşil, çiyan, kırmızı ve mavi renklerle
verilmektedir. Sonuçlar göstermektedir ki zaman serisinde hem veri kaybı hem
de gürültü olmasına rağmen rejim geçişleri metrik uzaklık kullanılarak yapılan
analizler ile tespit edilebilmiştir.

3.2.1.2 Rössler salınıcısı

Metrik uzaklığın kesikli bir yapıya sahip Logistik map analizlerinde çalı-
şırlığı test edildikten sonra sürekli bir yapıya sahip Rössler salınıcısı üzerinde
test edilmiştir. Üç boyuta sahip olan bu sistem;

(
dx

dt
,
dy

dt
,
dz

dt

)
= (−y − z, x+ ay, b+ z(x− c)), (3.6)

diferansiyel denklemleriyle ifade edilmektedir. Denklem 3.6’da görüldüğü üzere
Rössler salınıcısı a, b ve c olmak üzere üç farklı parametreye sahiptir. Analizle-
rimiz için Logistik map analizlerinde olduğu gibi Rössler salınıcısının en zengin
dinamiğe sahip olduğu parametre değerleri seçilmiştir. Sabit a = 0.2 ve c = 5.7

parametre değerleri ile değişken b ∈ [0, 1.4] değerleri kullanılmıştır. ∆b = 0.01

duyarlılıkla b parametresi değiştirilmiş ve her bir b parametre değeri için 4.

dereceden Runge-Kutta kullanarak ∆t = 0.01 örnekleme zamanı ile Denklem
3.6 integre edilmiştir.

Sürekli bir yapıya sahip Rössler salınıcısından, eşit örnekleme zamanla-
rına sahip olmayan zaman serisi elde edebilmek adına sürekli zaman serisinin
y bileşeninden 5000 adet yerel maksimum (ỹ) noktası alınmıştır. Böylece doğal
bir biçimde eşit zaman aralığına sahip olmayan zaman serisi elde edilmiştir.
Bu işlemin nasıl yapıldığının daha anlaşılabilir olması için Şekil 3.3(a)’da bir
örnek verilmiştir.

Rössler salınıcısının yineleme grafiği analizine, bir sonraki bölümde yer
alan paleoiklim verilerinde karşılaşılan zorluklardan biri yansıtılmıştır. Paleoik-
lim verileri genellikle zaman bakımından gama dağılımına uymaktadır (Rehfeld
et al., 2011)(Rehfeld and Kurths, 2014). Analizlere bu olguyu yansıtabilmek
için elde edilen 5000 yerel maksimum nokta (ỹ) belirli çarpıklık oranları ile
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Referans

Çarpıklık = 0.3

Çarpıklık = 2.0

(a)

(b)

(c)

(d)

(e)

Zaman

Şekil 3.3: Rössler salınıcısından elde edilen veriler. (a) Sürekli zaman serisinden
y bileşeninden alınan maksimum noktalar (ỹ); (b) Maksimum noktalar ile elde
edilen zaman serisi; (c) Çarpıklık seviyesi s = 0.3; (d) s = 2.0 ile zaman bakı-
mından gama dağılımına uydurulan zaman serisi; (e) farklı çarpıklık seviyeleri
için zaman serilerinin karşılaştırılması
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(a)

(b)

(a)

(b)

Referans
Çarpıklık = 0.3

Çarpıklık = 0.5
Çarpıklık = 1.0

Çarpıklık = 2.0

Şekil 3.4: Rössler salınıcısı için yineleme grafiği analizi: (a) λ Lyapunov üsteli,
(b) ham zaman serisi ve s = 0.3, 0.5, 1.0 ve 2.0 çarpıklık değerleri ile zaman ba-
kımından gama dağılımına uydurulmuş zaman serileri için determinizm niceliği
sonuçları. Dikey gri kesikli çizgiler rejim geçişlerini göstermektedir.

interpole edilerek zaman bakımından gama dağılımına uydurulmuştur. Gama
dağılımı;

p(k, s) =
1

Γ(k)θk
xk− 1e−

x
s , (3.7)

olarak verilmektedir. Çarpıklık seviyesi s = 0.3, 0.5, 1.0 ve 2.0 değerleri kul-
lanılarak zaman bakımından gama dağılımına uydurulan yeni zaman serileri
üretilmiştir. Şekil 3.3(c) ve (d)’de s = 0.3 ve 2.0 çarpıklık değerleri için elde
edilmiş zaman serilerini küçük bir kısmı verilmektedir. Şekilden de anlaşıldığı
üzere artan çarpıklık değerleri ile birlikte zaman serisindeki bozukluk artmak-
tadır.

Orijinal ve belirli çarpıklık seviyesi kullanılarak zaman bakımından gama
dağılımına uydurulan 4 zaman serisi için determinizm niceliği sonuçları Şekil
3.4(b)’de verilmektedir. Bu analizi yapabilmek adına zaman serisi ilk olarak
Logistik mapte olduğu gibi eşit uzunluktaki pencerelere bölünmüştür. Pencere
boyutu, ortalama 6 verinin gerçekleşmesi için gerekli olan süre olarak alın-
mıştır. Bu işlemden sonra 833 pencereye sahip olunmuştur. Her bir pencere
arasındaki metrik uzaklık hesaplanarak 833x833 lik yineleme matrisi oluştu-
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rulmuştur. Bunun için ilk olarak λ0 ve λk parametre değerleri, her bir zaman
serisi için ayrı ayrı Denklem 3.3a ve 3.3b kullanılarak hesaplanmıştır. λS pa-
rametre değeri ise 1 olarak tespit edilmiştir.

Yineleme matrisini oluşturabilmek için gerekli olan eşik değeri ε = 2σD

olarak alınmıştır. Buradaki D pencereler arasındaki metrik uzaklığı simgele-
mektedir. Her bir zaman serisi için oluşturulan yineleme matrislerinden Denk-
lem 2.8 kullanılarak determinizm niceliği hesaplanmıştır. İlgili analizlerin so-
nuçları Şekil 3.4(b)’de verilmektedir. Şekil 3.4(a)’da Rössler salınıcısı için Lya-
punov üsteli sonuçları verilmektedir. Daha önceden de bahsedildiği üzere Lya-
punov üstelinin sıfıra vurduğu b parametre değerleri sistemdeki rejim geçişleri-
nin olduğu parametre değerleridir. Şekil 3.3(b)’de yer alan siyah, kırmızı, yeşil,
mavi ve pembe çizgi ile gösterilen determinizm niceliği sonuçları sırasıyla ori-
jinal ve s = 0.3, 0.5, 1.0 ve 2.0 çarpıklık değerleri ile zaman bakımından gama
dağılımına uydurulan zaman serileri içindir. Sonuçlara bakıldığı takdirde artan
çarpıklık değerleri ile birlikte determinizm niceliği değerlerinin düşüş gösterdiği
yani zaman serisindeki bozukluk arttıkça sitemin tahmin edilebilirliğinin azal-
dığı görülmektedir. Fakat artan çarpıklık oranlarına rağmen sistemdeki rejim
geçişleri tespit edilmiştir.

3.2.1.3 Paleoiklim uygulaması

Doğal zaman serisi analizlerinde, rejim geçişlerinin tespit edilebilmesi çok
önemli bir olgudur. Çünkü bu tarz sistemlerde gerçekleşen sıra dışı olaylar, sis-
temde ani rejim değişikliğine sebep olmaktadır. Önceki uygulamalarda, metrik
uzaklık kullanılarak gerçekleştirilen yineleme grafiği analizleri sonucunda ya-
pay sistemlerdeki rejim geçişleri tespit edilebilmişti. Doğal zaman serisi uygula-
ması için Çin’de yer alan Dayu Mağarası’ndan (Şekil 3.5) elde edilen paleoiklim
verileri seçilmiştir. Paleoiklim verileri, mağaralarda yıllar boyunca sızıntı ya-
parak biriken yağmur sularından meydana gelen sarkıklardan elde edilen δ18O
oksijen izotop oranlarıdır. δ18O zaman serisi bölgedeki güçlü ve zayıf muson re-
jimleriye ilgili olduğundan dolayı rejim geçişlerini yakalayabilmek için oldukça
elverişlidir(Tan et al., 2015); (Breitenbach et al., 2013); (Baker et al., 2015).

Dayu Mağarası’nın bulunmuş olduğu bölge, Doğu Asya Yaz Muson (DAYZ)
rejiminin etkisi altında kalmaktadır ve Qinling Dağları’nın güney yamacında
yer aldığından dolayı Haziran ve Kasım ayları arasında DAYZ dönemi bo-
yunca yoğun yağış almaktadır. Bu yüzden yaz muson rejim değişikliğini tespit
edebilmek için çok elverişli bir bölgedir. Bölgede gerçekleşmiş olan sıra dışı ik-
lim olaylarını tespit edebilmek toplum üzerindeki etkisini araştırmak için çok
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Şekil 3.5: Dayu Mağarası’nın Çoğrafik Konumu

önemli bir olgudur.

Söz konusu zaman serisinde yaklaşık olarak 550 veri bulunmaktadır ve bu
veriler 700 (1250-1950) yıllık bir zaman diliminde gerçekleşmiştir. Analiz için
bu bölgenin seçilmesinin sebebi geçmiş yıllarda bölgede gerçekleşen kuraklık
dönemleri için kanıtlar olmasıdır. Dayu Mağarası’nda yer alan yazıtlarda bölge
halkının kuraklık zamanlarında mağaraya gidip yağmur duası yaptıkları anla-
şılmaktadır (Tan et al., 2015). Söz konusu mağarada 1528, 1596, 1707, 1756,
1839, 1891 ve 1894 yıllarında bölgede kuraklığın hakim olduğuna dair kanıtlar
olmasından dolayı aynı mağaradan elde edilmiş δ18O oksijen izotop oranlarının
analizinde de bu yıllarda rejim geçişlerinin tespit edilmesi gerekmektedir.

Yapay zaman serisi analizlerinde sistemin rejim geçişleri kontrol para-
metrelerinin değerleriyle ilişkilendirilirken, doğal zaman serilerinde bu şekilde
bir kontrol parametresi olmadığından rejim geçişlerini tespit edebilmek için
izlenen yol pencere kaydırma yöntemidir(Marwan et al., 2013). Dinamik bir
sistemin farklı zamanlarda farklı yapıya sahip olmasından faydalanılarak yapı-
lan bu teknikte, ilk olarak zaman serisi büyük pencerelere bölünür. Eğer veri
sayısı yeteri kadar fazla ise her bir büyük pencere küçük pencerelere bölünerek,
her bir büyük pencere için determinizm niceliği hesaplanır. Hesaplanan deter-
minizm niceliği, pencerelerin zamanlarına göre grafiğe döküldüğünde sistemin
yıllara göre dinamiğinin nasıl değiştiği tespit edilmiş olur. Eğer zaman serisin-
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Şekil 3.6: (a) Dayu Mağarası’ndan kaydedilmiş δ18O izotop oranları; (b) δ18O
izotop oranlarından hesaplanan determinizm niceliği sonuçları. Gölgeli bölge gü-
ven aralığını, dikey kesikli çizgiler bilinen kuraklık rejimini göstermektedir.

deki veriler az ise, büyük pencereler kaydırılarak pencere sayısı arttırılmış olur.
Böylece sistemin dinamiği daha fazla veri sayısı ile incelenmiş olur.

Paleoiklim zaman serisindeki rejim geçişlerini tespit edebilmek adına, za-
man serisinin başından yaklaşık olarak 120 yıllık büyüklüğünde pencere alın-
mıştır. Yukarıda belirtildiği gibi 550 veriye sahip zaman serisindeki veri sayısı
pencere kaydırma yöntemiyle arttırılmıştır. Bunun için zaman serisinin başın-
dan alınan pencere 10 yıl kaydırılarak pencere sayısı arttırılmıştır. Her bir 120

yıllık pencere için yineleme matrisi oluşturabilmek adına her bir pencere 4

yıllık küçük pencerelere bölünmüştür. Bu küçük pencereler arasındaki metrik
uzaklık, Denklem 3.4 kullanılarak hesaplanmıştır. Metrik uzaklık hesabında
yer alan parametreler daha önceki analizlerde olduğu gibi Denklem 3.3a ve
3.3b kullanılarak hesaplanmıştır. Söz konusu zaman serisi için λS parametre
değeri 1.02 olarak bulunmuştur. Metrik uzaklık için gereken parametreler tes-
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pit edildikten sonra yineleme matrisi oluşturabilmek için eşik değeri ε = 2σD

olarak alınmıştır.

Doğal zaman serisi analizlerinde rejim geçişlerini tespit edebilmek, yapay
zaman serilerine göre daha zordur. Çünkü yapay zaman serilerinde sistemin
zamanla nasıl evrildiğini veren denklemler olduğu için sistemin rejim geçişle-
rinin hangi parametre değerleri için olduğu bilinmektedir. Fakat doğal zaman
serilerinde herhangi bir denklem olmadığından dolayı sistemdeki geçişleri tes-
pit edebilmek için güven aralığı vermek gerekmektedir. Bu güven aralığının
dışında kalan determinizm değerlerinin bulunduğu zamanlarda sistemde rejim
değişikliği olduğu söylenir. Bu rejim değişiklikleri sıra dışı olayları yansıtmak-
tadır. Analizlerimize güven aralığı verebilmek adına bootstrapping yöntemi
kullanılmıştır (Schinkel et al., 2008). Bu yöntemde yineleme grafiğini oluştu-
ran köşegen yapılar dikkate alınır. Yineleme grafiğindeki tüm köşegen yapılar
uzunluklarına göre olasılıkları alınır ve rastgele köşegen seçimi yapılarak 1000

defa analiz tekrarlanır. Elde edilen 1000 yineleme grafiğinden 1000 adet deter-
minizm niceliği hesaplanarak kümülatif dağılımı çizdirilir. Elde edilen dağılı-
mın başından ve sonundan %5 e tekabül eden determinizm niceliği değerleri
alınarak %90 güven aralığı tespit edilir.

Şekil 3.6’da Dayu Mağarası’ndan elde edilen veriler için determinizm ni-
celiği sonuçları verilmektedir. Şekil 3.6(a)’da δ18O oksijen izotop oranları ve-
rilmektedir. Dikey gri çizgiler Dayu Mağarası’nda yer alan yazıtlardaki kurak-
lık rejiminin baskın olduğu yıllardır. Şekil 3.6(b)’de ise determinizm niceliği
sonuçları verilmektedir. Şekildeki gölgeli bölge bootstrapping yöntemiyle elde
edilen güven aralığını vermektedir. Bölgenin dışında kalan determinizm niceliği
eğrisinin olduğu yıllarda bölgede sıra dışı olayların olduğu düşünülmektedir.

Sonuçlara bakıldığı takdirde 11 tane sıra dışı olay bulunmuştur. Güven
aralığının altında kalan determinizm niceliği değerleri, bölge halkının kanıt ola-
rak bıraktığı yazıtlarda yer alan kuraklık rejimlerine karşılık gelmektedir. Bu
kuraklık olaylarından bir tanesi (1756 yılı) hariç hepsi düşük determinizm ni-
celiği değerleri ile analiz sonuçlarına yansımıştır. Bunun dışında bölgede 1908

yılında gerçekleşmiş olan kuraklık rejiminin etkin olduğu tespit edilmiştir. Bu
olay hakkında, yazıtlarda her hangi bir bilgi olmamasına rağmen söz konusu
kuraklık dönemi bölgede gerçekleşen önemli kuraklık dönemine karşılık gel-
mektedir (Tan et al., 2008).

Determinizm niceliği sonuçlarına bakıldığı takdirde yaklaşık olarak 1500

yıllarında yüksek determinizm niceliği değerlerinin ani bir şekilde düşük değer-
lere indiği görülmektedir. Bu dönem, 1900 yıllarına kadar devam eden Küçük
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Buz Çağı ile ilgilidir ve aşırı soğuk kış dönemini işaret etmektedir. Küçük buz
çağı sırasında, Sibirya’nın yükseklerinden gelen soğuk ve kuru hava kuzeyden
Çin’e girerek etkilemiştir (Matthews and Briffa, 2005). 1500 yılından önce 4

sıra dışı olayın bölgede gerçekleştiği görülmektedir. Bu olaylar yüksek deter-
minizm niceliğine sahip olduğundan dolayı, bölgede gerçekleşen güçlü muson
etkisine karşılık geldiği düşünülmüştür. Fakat literatüre bakıldığı takdirde bu
olaylardan iki tanesi (1320 ve 1420) güçlü muson etkisi ile ilişkili iken, 1350

ve 1470 yıllarında gerçekleşen olaylar zayıf muson etkisini karşılık gelmektedir
(Zheng et al., 2006). Söz konusu iki olay, düşük ve yüksek determinizm niceliği
değerlerinin sırasıyla zayıf ve güçlü muson rejimine karşılık geldiğini söylemek
için belirsizlik yaratmıştır.
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4. DÖNÜŞÜMMALİYET ZAMAN SERİSİ YÖN-

TEMİ

Bu bölümde eşit zaman aralığına sahip olmayan zaman serilerini eşit za-
man aralıklı hale getirebilmek için Dönüşüm Maliyet Zaman Serisi (TACTS)
ortaya atılmıştır. Bu yöntem kullanılarak düzgün olmayan yapay ve doğal za-
man serileri düzenli hale getirilmiş ve yineleme grafiği analizleri gerçekleşti-
rilmiştir. Söz konusu yöntemin temelinde metrik uzaklık vardır. Yöntem ilk
olarak yapay sistemler üzerinde denendikten sonra doğal zaman serisi analiz-
lerinde kullanılmıştır.

4.1 Dönüşüm Maliyet Zaman Serisi Yöntemi

Kaos teorisinin ortaya çıkışı ile birlikte karmaşık yapıya sahip sistemle-
rin analizlerine oldukça fazla ilgi gösterilmiştir. Bu analizler için doğrusal ve
doğrusal olmayan bir çok analiz yöntemi, özellikle bilgisayar teknolojisinin ge-
lişimiyle birlikte literatürde yer almıştır. Dinamiği hakkında henüz tam olarak
bilgi sahibi olmadığımız karmaşık yapıya sahip sistemlerin, dinamiğini anlaya-
bilmek için bu analiz yöntemlerinden faydalanılır. Her ne kadar birçok analiz
yöntemi mevcut olsa da, bu analiz yöntemlerinin çoğu için gerekli koşullar-
dan biri, zaman serisinin örnekleme zamanlarının eşit olmasıdır (Eroglu et al.,
2016). Eğer ilgili sistemin zaman serisi eşit zaman aralıklı değil ise bu yön-
temlerden faydalanılamaz. Söz konusu sorunu aşabilmek için literatürde yay-
gın olarak kullanılan yöntem interpolasyon yöntemidir. Bu yöntemde zaman
serisinin dağılımından faydalanılarak, zaman serisindeki boşluklar dışarıdan
noktalar konularak zaman serisi eşit zaman aralıklı hale getirilir. Her ne ka-
dar zaman serisinin dağılımından faydalanılsa da sisteme dışarıdan müdahale
edildiği için interpolasyon yöntemi sistemin dinamiği hakkında bilgi kaybına
sebep olmaktadır (Rehfeld et al., 2011).

Dönüşüm maliyet zaman serisi yöntemi, sistemin tamamen iç dinamiğin-
den faydalanılarak eşit zaman aralığına sahip olmayan zaman serilerini, eşit
zaman aralıklı hale dönüştüren bir yöntemdir. Bu yönteminin temelinde Vic-
tor ve Purpura’nın ortaya koymuş olduğu metrik uzaklık yatmaktadır. Bir ön-
ceki bölümde metrik uzaklığın nasıl ortaya atıldığı ve büyüklüğe sahip veriler
için Suzuki vd. tarafından nasıl geliştirildiğinden detaylı bir şekilde bahsedil-
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miştir. Bu bölümde ise eşit zaman aralığına sahip olmayan zaman serilerinin,
interpolasyon kullanmadan nasıl eşit zaman aralıklı hale getirildiğinden bah-
sedilecektir.

Dönüşüm maliyet zaman serisi yönteminin ortaya atılmasının sebebi pa-
leoikim verilerinin analizi sırasında karşılaşılan iki zorluktur. Bunlardan biri
yukarıda belirtildiği gibi zaman serisinin örneklemeleri eşit zaman aralığına
sahip olmaması diğeri ise örneklerin belirli bir eğilime sahip olmasıdır. Paleo-
iklim verileri mağaralarda binlerce yıl boyunca oluşan sarkıklardan belirli bir
işlem sonucunda elde edilen δ18O oksijen izotopu oranlarıdır. Elde edilen bu
veriler binlerce yıl boyunca birbirlerini etkilemekte ve bir eğilime sahip olmak-
tadır. Dönüşüm maliyet zaman serisi yöntemi bu istenmeyen katkıyı da aza
indirmektedir(Ozken et al., 2015).

Dönüşüm maliyet zaman serisi yöntemini uygulamak için elimizdeN tane
veriye sahip bir zaman serisi düşünelim ve bu zaman serisiX = (x1, x2, x3, ....., xN)

ile temsil edilsin. Ayrıca zaman serisi zaman bakımından düzensiz olsun (ti+1−
ti 6= a). Burada a sabit bir sayıdır. Daha önceden bahsedildiği gibi, söz konusu
zaman serisinin analizini gerçekleştirebilmek için eşit zaman aralıklı hale ge-
tirmemiz gerekmektedir. Bunun için zaman serisi eşit uzunluktaki pencerelere
bölünür ve her bir ardışık pencere arasındaki metrik uzaklık Denklem 3.4’ten
faydalanılarak hesaplanır. Eğer her bir pencere Wi( i = 1, 2, 3....., n) ile temsil
edilirse, p(W1,W2), p(W2,W3), p(W3,W4), ..., p(Wn−1,Wn) ardışık pencere-
ler arasındaki metrik uzaklık hesaplanır. Ardışık pencereler arasındaki metrik
uzaklık yeni zaman serimizin büyüklükleri, her bir ardışık pencerenin zaman
bakımından ortalaması ise yeni zaman serimizin zamanları olmaktadır. Böylece
eşit zaman aralığına sahip dönüşüm maliyet zaman serisi elde edilir.

4.1.1 Uygulama

Dönüşüm maliyet zaman serisi yöntemiyle ilgili genel bilgiler verildikten
sonra, yöntemin çalışırlığını test edebilmek için bir önceki bölümde de olduğu
gibi Logistik map ve Rössler salınıcısı tercih edilmiştir. Söz konusu sistemler
için bilinen rejim geçişleri, dönüşüm maliyet zaman serisi yöntemi ile yeniden
yapılandırılan zaman serileri üzerinde yineleme grafiği analizi gerçekleştirilmiş-
tir. Analizler sonucunda rejim geçişleri tespit edilmiştir. Yöntemin çalışırlığı
anlaşıldıktan sonra doğal zaman serisi analizleri yapılmıştır.
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4.1.1.1 Logistik Map

Logistik map analizleri için daha önce metrik uzaklık kullanılarak yapılan
analizlerdeki r parametre aralığı olan r ∈ [3.5, 4] tercih edilmiştir. Denklem
3.5’ten faydalanarak her bir parametre değeri için 3000 iterasyon yapılmış ve
bu verilerden ilk 1000 tanesi sistemin dengeye gelmesi için silinmiştir. Sonuç
olarak her bir parametre değeri için 2000 veri üzerinden analizler yapılmıştır.

Eşit zaman aralığına sahip Logistik map zaman serilerinden rastgele 100

(γ = %5), 200 (γ = %10), 300 (γ = %15), 400 (γ = %20) nokta silinerek eşit
zaman aralığına sahip olmayan zaman serileri üretilmiştir. Eşit zaman aralı-
ğına sahip olmayan zaman serilerini elde edildikten sonra, dönüşüm maliyet
zaman serisi yöntemiyle eşit zaman aralıklı hale getirilmiştir. Bunun için her
bir zaman serisini 4 birim zaman büyüklüğe sahip pencerelere bölünmüş ve her
bir ardışık pencere arasındaki metrik uzaklık hesaplanmıştır. Metrik uzaklık
hesabı yapabilmek için gerekli olan λ0 ve λk parametreleri, Denklem 3.3a ve
3.3b kullanılarak hesaplanmıştır. λS parametresi için ise λS ∈ [0, 4] aralığında
0.01 duyarlıkla değiştirilerek uygun olan λS değeri hesaplar için alınmıştır.
Farklı γ silinme oranları için bulunan λS değerleri sırasıyla 1.07 (γ = %5),
1.04 (γ = %10), 0.95 (γ = %15), 0.93 (γ = %20) tür. Bu değerlerin ortalama-
sına bakılırsa λS ≈ 1 olmaktadır.

Zaman serileri, dönüşüm maliyet zaman serisi yöntemiyle eşit zaman ara-
lıklı hale getirildikten sonra, yineleme matrisini oluşturmak için eşik değeri,
ε = 0.08 olarak alınmış ve her bir parametre değeri için determinizm niceliği
hesaplanmıştır. Şekil 4.1(a)’da Logistik Map için Lyapunov üsteli sonuçları
verilmektedir. Logistik map analizlerinin sonuçları Şekil 4.1(b)’de verilmekte-
dir. Şekilde siyah çizgi ile verilen determinizm niceliği sonuçları orjinal logistik
map zaman serisi içindir. Kırmızı, yeşil, mavi ve cam göbeği renkleriyle veri-
len sonuçlar ise sırasıyla γ = %5,%10,%15 ve %20 oranlarında veri silinmiş
zaman serileri için determinizm niceliği sonuçlarıdır. Şekil 4.1(b) incelendiği
takdirde artan silinme oranlarına rağmen rejim geçişlerinin tespit edilebildiği
görülmektedir. Her ne kadar artan silinme oranlarıyla birlikte determinizm
niceliği değerleri düşüş gösterse de, rejim geçişlerinin olduğu parametre değer-
lerinde atmalar açık bir şekilde görülebilmektedir.

Logistik map için yapılmış olan ikinci analiz için daha önceki logistik map
analizinde de olduğu gibi belirli bir gürültü seviyesi ile Gaussiyen beyaz gürültü
eklenmiştir. Silinme oranları %5 ve %10 olan zaman serilerine σ = 0.05 ve σ =

0.1 oranlarında gürültü eklenmiştir. Bu dört ve orijinal zaman serisi için yapılan
analizlerin sonucu Şekil 4.1(c)’de verilmektedir. Siyah renkle verilen sonuçlar
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Referans

(a)

(b)

(c)

Referans

Şekil 4.1: Logistik map için determinizm niceliği sonuçları: (a) Logistik map için
Lyapuonov üsteli; (b) Çeşitli oranlarla veri silinmiş zaman serilerinden elde edilen
dönüşüm maliyet zaman serileri için determinizm niceliği sonuçları; (c) Hem çeşit
oranda veri silinmiş hem de belirli seviyelerde gürültü eklenmiş serilerden elde
edilen dönüşüm maliyet zaman serileri için determinizm niceliği sonuçları. Dikey
gri kesikli çizgiler rejim değişikliği olan parametre değerlerini göstermektedir.
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orijinal zaman serisi içindir. Çeşitli silinme oranları ve gürültü seviyesine sahip
zaman serileri için yapılan analizler sonucunda sistemdeki rejim geçişleri tespit
edilmiştir.

Şekil 4.2: r parametre değeri 3.5 (periyodik durum, siyah çizgi) ve 4.0 (ka-
otik durum, kırmızı çizgi) için gürültü seviyesi γ = %10 ile gürültü eklenmiş
durumların determinizm niceliği karşılaştırması.

Geliştirilmiş olan dönüşüm maliyet zaman serisinin, belirli bir gürültü
seviyesine sahip olan zaman serilerinde bile rejim geçişlerini tespit edebildiği
görüldükten sonra Logistic map için r = 3.5 (periyodik) ve r = 4.0 (kaotik)
durumlarında artan gürültü seviyelerine karşılık elde edilen determinizm nice-
liği sonuçları incelenmiştir. Gürültü seviyesi σ ∈ [0, 0.5] aralığında ∆σ = 0.01

duyarlılıkla değiştirilerek analiz gerçekleştirilmiştir. Bu analizde tüm gürültü
seviyeleri için 100 adet γ = %10 silinme oranına sahip olan zaman serisi üre-
tilmiş ve determinizm nicelikleri hesaplanarak ortalamaları alınmıştır. Şekil
4.2’de kırmızı ve siyah renklerle ile ifade edilen sonuçlar sırasıyla r = 4.0 ve
r = 3.5 parametre değerleri içindir. Noktalarda bulunan hata payları, analiz-
lerin 100 zaman serisi üzerinden yapılmasından dolayı determinizm niceliğinin
standart sapmalarını vermektedir. Artan gürültü seviyelerinde bile iki uç du-
rumun (periyodik ve kaotik) açık bir şekilde birbirlerinden ayırt edilebildiği
görülmektedir.
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4.1.1.2 Rössler salınıcısı

Rössler salınıcısının analizlerinde, bir önceki bölümdeki Rössler uygula-
ması için tercih edilen parametre değerleri kullanılarak veriler üretilmiştir. Eşit
zaman aralığına sahip olmayan zaman serisi elde edebilmek adına yine y bileşe-
ninden 5000 adet maksimum nokta (ỹ) alınmıştır. Elde edilen (ỹ) zaman serisi,
sırasıyla s = 0.3, 0.5, 1.0 ve 2.0 çarpıklık değerleri kullanılarak zaman bakımın-
dan gama dağılımına uydurulmuştur. Böylece paleoiklim verilerinin genellikle

(a)

(b) Referans Çarpıklık = 0.3 Çarpıklık = 0.5 Çarpıklık =  1.0 Çarpıklık = 2.0

Şekil 4.3: Rössler salınıcısı için determinizm niceliği sonuçları; (a) Rössler sa-
lınıcısı için Lyapunov üsteli, (b) Dönüşüm maliyet zaman serisi için hesaplanan
determinizm niceliği sonuçları

zaman bakımından gama dağılımına uyması olgusu analizlere yansıtılmıştır.
Elde edilen zaman serilerinden dönüşüm maliyet zaman serisi elde edebilmek
adına zaman serileri 3500 birim zamanlık eşit büyüklükteki pencerelere bö-
lünmüştür. Her bir ardışık pencere arasındaki metrik uzaklıklar Denklem 3.4
kullanılarak hesaplanmıştır. Metrik uzaklık hesabı için gerekli olan paramet-
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reler, Denklem 3.3a ve 3.3b kullanılarak elde edildikten sonra λS parametresi
λS ∈ [0, 4] aralığında ∆λS = 0.01 duyarlılıkla taranarak en uygun parametre
değeri tespit edilmiştir.

Farklı çarpıklık dereceleri ile bozulan zaman serilerinden elde edilen dönü-
şüm maliyet zaman serileri için yineleme matrisini oluşturabilmek adına eşik
değerini ε = 0.05 olarak alınmış ve farklı çarpıklık değerlerine sahip zaman
serileri için determinizm niceliği hesaplanmıştır. Bu analizlerle ilgili sonuçlar
Şekil 4.3’te verilmiştir. Şekil 4.3(a)’da Rössler salınıcısının rejim geçişlerini gö-
rebilmek için Lyapunov üsteli sonuçları verilmektedir. Şekil 4.3(b)’de ise farklı
çarpıklık değerlerine sahip Rössler salınıcısı zaman serilerinin dönüşüm ma-
liyet zaman serileri için hesaplanan determinizm nicelikleri yer almaktadır.
Siyah çizgi ile gösterilen sonuçlar orjinal zaman serisi için determinizm niceliği
sonuçlarını göstermektedir. Çarpıklık değerleri s = 0.3, 0.5, 1.0 ve 2.0 ile bozul-
muş zaman serilerinin determinizm niceliği sonuçları ise sırasıyla kırmızı, yeşil,
mavi ve pembe renkler ile verilmiştir. Yapılmış olan analizler sonucunda bek-
lenildiği gibi artan çarpıklık değerleri ile determinizm niceliği değerleri düşüş
eğilimine girmiştir. Bunun sebebi zaman serisindeki bozukluğun artmasıdır.
Her ne kadar zaman serisindeki bozukluk artmış olsa da Rössler salınıcısı için
rejim geçişleri tespit edilmiştir. Bu sonuç sürekli yapıya sahip sistemler için de
dönüşüm maliyet zaman serisi yöntemini kullanabileceğimiz anlamına gelmek-
tedir.

4.1.1.3 Paleoiklim uygulamaları

Dönüşüm maliyet zaman serisi yöntemini doğal zaman verilerinde uygu-
lamak için Endenozya’nın Borneo şehrinde Gunung Mulu’da yer alan Secret
Mağrasından (4oK, 115oD) alınan sarkıklardan kaydedilmiş δ18O izotop oran-
ları seçilmiştir (Carolin et al., 2013). Bu kayıtlar yaklaşık olarak 100000 yıllık
olmasına rağmen son 62000 yıllık veri kullanılmıştır. Bunun sebebi 62000 yıl-
dan önceki verilerin çok fazla eksik ve oldukça düzensiz olmasıdır. Bu veriler
Avusturalya-Endonezya muson yağmurlarını anlayabilmemiz için iyi bir araç-
tır. Söz konusu zaman serisi yaklaşık olarak 1200 veriden meydana gelmekte-
dir. Zaman serisinin zaman bakımından dağılımına bakıldığı takdirde, sistemin
gama dağılımına uyduğu ve çarpıklık derecesinin ise 4.9 olduğu tespit edilmiş-
tir. Zaman serisini yeniden yapılandırmak için pencere boyutu 210 yıl olarak
alınmış ve dönüşüm maliyet zaman serisi yöntemiyle yeni zaman serisi mey-
dana getirilmiştir. Bu dönüşüm sırasında sisteme ait ekleme ve silme maliyeti
λS = 1.07 olarak hesaplanmıştır.
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Yapay sistemlerde olduğu gibi doğal zaman serilerinde rejim geçişlerini
tespit edebilmek için her hangi bir kontrol parametresi olmadığından dolayı
rejim geçişlerini tespit edebilmek adına zaman serisi eşit uzunluktaki kayan
pencerelere bölünerek analizler gerçekleştirilmiştir. Bu yöntem hem rejim ge-
çişlerinin zamanını bulmakta hem de veri sayısı az olan zaman serilerindeki veri
sayısını arttırmak için çok elverişlidir. Analiz için pencere büyüklüğü, dönüşüm
maliyet zaman serisinde ortalama 30 veriyi kapsayacak şekilde ayarlanmış ve
veri sayısını arttırmak adına pencereler %10 oranında kaydırılarak veri sayısı
arttırılmıştır. Dönüşüm maliyet zaman serisinde 30 veri paleoiklim zaman se-
risinde yaklaşık olarak 100 ile 140 veriye, pencere boyutu ise yaklaşık olarak
6200 yıla tekabül etmektedir.

Her bir pencerenin yineleme matrisini oluşturmak için eşik değeri, dö-
nüşüm maliyet zaman serimizin standart sapmasının %20’i olarak alınmıştır.
Sistemdeki rejim geçişlerini görebilmek için bootstrapping yöntemi kullanılarak
%90 güven aralığı elde edilmiştir. Bu güven aralığının dışında kalan determi-
nizm niceliği eğrisinin bulunmuş olduğu yıllarda, sistem normal davranışının
dışına çıkmıştır. Bu geçişler doğal sistemlerde meydana gelen sıra dışı olaylara
karşılık gelmektedir.

Şekil 4.4(a)’da δ18O izotoplarının zaman serisi, Şekil 4.4(b)’de ise dönü-
şüm maliyet zaman serisinin determinizm niceliği sonuçları verilmektedir. Bu
grafikte görülen H1 den H6 ya kadar olan kesikli çizgiler Henrich olaylarını tem-
sil etmektedir. Henrich olayları sırasında buzulların erimesi sonucunda Atlantik
okyanusuna bol miktarda su katkı yapmıştır (Pausata et al., 2011). Bu olay ok-
yanusların soğuması sebep olmuştur ve bunun sonucunda okyanuslar üzerinden
gelen soğuk hava akımı Muson rejimi dinamiğinde etki yapmıştır. Bu olaylar,
analizlerimizde düşük determinizm niceliği değerleri ile tespit edilmiştir. Ku-
zey yarım küredeki soğuk hava periyodu olarak geçen Younger Dryas dönemi,
Kuzey Amerika buz tabakasının çökmesine sebep olmuş olabilir ve analizler
sonucunda bu olay da tespit edilmiştir. Ayrıca bu olayların dışında yapmış
olduğumuz analiz sonucunda H2-H3 ve H5-H6 arasında literatürde geçmeyen
olaylar bulunmuştur.

Dönüşüm maliyet zaman serisi yöntemi kullanılarak yapılan bir başka
analiz, Avustralya’nın kuzey batı sınırında yer alan KNI-51(15.30o G, 128.61o

D) ile Çin’in güneyinde yer alan Dongge (25.28o K, 108.08o D) mağaralarından
(4.5) elde edilen δ18O oksijen izotop oranları için yapılmıştır(Denniston et al.,
2013) (Hu et al., 2008) (Wang et a.l, 2013). Her iki zaman serisi de son 9000 yılı
kapsamaktadır ve örnekleme zamanları eşit değildir. KNI-51 zaman serisinde
1432, Dongge zaman serisinde 2125 adet veri bulunmaktadır (Şekil 4.6). Zaman



41

(a)

(b)

Yıl

Şekil 4.4: (a) Secret Mağarası’ndan elde edilen δ18O oksijen izotopları verileri,
(b) Determinizm niceliği sonuçları

serilerini eşit zaman aralıklı hale getirebilmek için dönüşüm maliyet zaman
serisi yöntemi kullanılmıştır. Şekil 4.6’nin alt kısmında yer alan zaman serileri
her iki sistem için elde edilen dönüşüm maliyet zaman serileridir.

Dönüşüm maliyet zaman serisi elde edebilmek için bir önceki analizdeki
yol izlenmiştir. Bunun için ilk olarak her iki zaman serisi de 20 yıllık pencere-
lere bölünmüş ve ardışık pencereler arasındaki metrik uzaklık hesaplanmıştır.
Ekleme ve silme maliyetini veren parametre λS, KNI-51 için 1.09, Dongge için
1.03 olarak bulunmuştur.

Dönüşüm maliyet zaman serileri elde edildikten sonra yineleme grafiği
analizlerine geçilmiştir. Bu analiz için her bir dönüşüm maliyet zaman serisi-
nin başından 400 yıllık pencere alınmış ve %10 oranında kaydırılarak pencere
sayısı arttırılmıştır. Her bir pencerenin yineleme matrisini oluşturmak için eşik
değeri, yineleme grafiğini oluşturan noktaların yoğunluğunun %15’i olarak alın-
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Şekil 4.5: KNI-51 ve Dongge Mağaralarının Çoğrafik Konumları

mıştır. Oluşturulan her bir yineleme matrisi için hesaplanan determinizm nice-
liği sonuçları Şekil 4.7’te verilmektedir. Şekil 4.7(a)’da KNI-51, Şekil 4.7(b)’de
Dongge mağaraları için determinizm niceliği sonuçları verilmektedir. Her iki şe-
kilde de verilen gölgeli bölge ilgili zaman serisi için bootstrapping yöntemiyle
elde edilen %90 güven aralığını simgelemektedir. Determinizm niceliği eğrisi-
nin bu bölgelerin dışarısına çıktığı yıllarda bölgelerde sıradışı olaylar meydana
gelmiştir.

Şekil 4.7’te her iki bölge için verilmiş olan sonuçların üzerinde bölgelerle
ilgili yapılmış çalışmaların ve analiz sonuçlarına göre bölgelere hakim olan ku-
raklık (kahverengi) ve yağış rejimleri (mavi) gösterilmiştir. KNI-51 için litera-
türde iki adet çalışma vardır. Bu çalışmalar McGowan vd. (McGowan et al.,
2012) ve Denniston vd. (Denniston et al., 2013) tarafından yapılmıştır. Dongge
için yapılan iki çalışmadan ilki Wang vd. (Wang et a.l, 2013) tarafından ger-
çekleştirilmiş ve Hu vd. (Hu et al., 2008) tarafından Wang vd.’nin yapmış
oldukları çalışmayı detaylandırmışlardır .

Analizlerimiz sonucunda KNI-51 için 8500−6400, 5000−4000 ve 1300−
900 yılları arasında yağış rejiminin baskın olduğu, 6300 − 5000, 3000 − 1400

ve 900 − 0 yılları arasında ise kuraklık rejiminin etkin olduğu söylenebilir.
Sonuçlarımız literatürdeki diğer çalışmalarla karşılaştırıldığında %90 oranında
uyum sağlamaktadır. 6600 − 6400 yılları arasındaki yağış ve 7000 − 6800 yıl-
ları arasında tespit edilen kuraklık rejimleri Denniston vd. tarafından yapılan
çalışmada mevcut değildir. Denniston vd.nin sonuçlarıyla ters düşen iki so-
nucumuz ise 3200 − 3100 yılları arasında yağış, 7600 − 7500 yılları arasında
kuraklık rejimleridir.
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Şekil 4.6: KNI-51 ve Dongge mağaralarından elde edilen δ18O oksijen ve Kuzey
yarım küreden elde edilen ∆14C karbon izotop oranlarının zaman serileri. KNI-51
ve Dongge mağaraları için dönüşüm maliyet zaman serileri

Dongge Mağarası içi yapılan analizler sonucunda, bölgede 8200 − 7600,
7100−6900, 6400−5800, 5000−4000, 2200−2000 ve 700−400 yılları arasında
kuraklık rejimi, 7600−7200, 5800−5000, 3000−2200, 1900−800 yılları arasında
ise yağış rejimi etkindir. Analizlerin sonucunda tespit edilen 7500 − 7600 ve
6100 − 6200 yılları arasındaki kuraklık rejimi, bölge için Hu vd. tarafından
yapılmış olan çalışmayla örtüşmemektedir. 3200−3400, 6300−6900 ve 8200−
8800 yılları arasında yağış rejiminin baskın olduğu bulunmuş olan sonuçlar Hu
vd.lerinin sonuçlarıyla örtüşmemektedir.

Her iki sistemin dinamiğini gösteren determinizm niceliği sonuçlarının
birbirleriyle olan çapraz korelasyonu −0.27 olarak bulunmuştur. Sonuçlara ba-
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r = 0.29

r = -0.32

McGowan et al. (2012)

Denniston et al. (2013)

Hu et al. (2008) 

Bulgular

Bulgular

Şekil 4.7: (a) (kırmızı) KNI-51 ve (b) (yeşil) Dongge Mağarası’nın dönüşüm
maliyet serisi için determinizm niceliği sonuçları. Grafiklerin üstlerinde yer alan
mavi ve sarı bantlar önceki çalışmalarda ve bu çalışmada yağışın çok ve az olduğu
durumları ifade etmektedir. (Siyah) ∆14C’ün determinizm niceliği sonuçlarını
vermektedir. ∆14C zaman serisinin determinizm niceliği sonuçları ile KNI-51
ve Dongge Mağarası zaman serilerinin determinizm niceliği sonuçları arasındaki
çapraz korelasyon sırasıyla r = -0.32 ve r = 0.29 dur.

kıldığı takdirde Kuzey yarım kürede yer alan Dongge ile Güney yarım kürede
yer alan KNI-51 mağaraları için az da olsa ters korelasyona sahip olduğunu gös-
termektedir. Bu sonuçlar literatürde yaygın bir kanıyla örtüşmektedir. Farklı
iki yarım kürenin muson yağmurlarının ters ilişkili olduğu söylenmektedir. Ya-
pılmış olan korelasyon hesabı sonrasında her iki sistemin dinamiğinin anti fazda
olduğu ve literatür ile uyuştuğu gözlemlenmiştir.

Bu sonucu güçlendirebilmek adına Kuzey yarım küreden elde edilen solar
aktivite zaman serisinin analizi gerçekleştirilmiştir. Literatürde yapılan çalış-
malarda güneşin pozisyonu ile muson rejiminin değiştiği ve güneşin muson re-
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jimini sürdürdüğü söylenmektedir(Wang et a.l, 2013). Bu kanıyı analizlerimize
yansıtabilmek için solar aktivite verisi olarak kullanılan ∆14C izotop oranları
ele alınmıştır (An et al., 2012). Söz konusu zaman serisi yaklaşık olarak 9700

yıllık ve eşit zaman aralıklıdır (Şekil 4.6). Bu sebepten dolayı dönüşüm maliye
zaman serisi yöntemini kullanmaya gerek duyulmamıştır. İlgili zaman serisi-
nin determinizm niceliği sonuçları Şekil 4.7’te siyah renk ile verilmiştir. Solar
aktivite sonuçları ile NKI-51 ve Dongge mağaralarından elde edilen sonuçlar
arasındaki korelasyon hesabı yapılarak her iki bölgede etkili olan muson rejimi-
nin güneşin pozisyonuyla ilişkilendirilmiştir. Bu korelasyon hesabı için gausyen
kernel çapraz korelasyonu kullanılmıştır. Bunun sebebi ∆14C zaman serisi ile
δ18O zaman serilerinin determinizm niceliği sonuçlarının aynı zaman aralığında
olmamasıdır.

Bu tekniğin temelinde farklı iki zaman serisini ağırlık fonksiyonu kullana-
rak eşleştirmek vardır. Klasik çapraz korelasyonda iki zaman serisinde bulunan
noktaların çarpımlarının toplamını alırken, bu teknikte bir zaman serisindeki
nokta diğer zaman serisindeki tüm noktalarla ağırlık fonksiyonu kullanılarak
çarpılır. Bu ağırlık fonksiyonu gözlemlerin oluştuğu zamanlar arasındaki uzak-
lık ile ilişkilidir. Kernel çapraz korelasyon;

ρ̂x,y =

∑Nx

i

∑Ny

j xiyjb(t
y
j − txi )∑Nx

i

∑Ny

j b(tyj − txi )
(4.1)

denklemi ile verilir. Burada b(tyj − txi ) kernel’dir ve xi ile yj gözlemlerinin ne
kadar ağırlık ile çarpılacağını iki gözlem arasındaki zaman farkıyla ilişkilendir-
mektedir. Kernel;

b =
1√
2πσ

e−|d|
2/2σ2

(4.2)

olarak verilmektedir. Burada d, iki gözlem ∆txyij arasındaki uzaklık ve σ ker-
nel dağılımının standart sapmasıdır. Kernel ölçeklendirme parametresi olarak
geçen σ’nın seçimin için her hangi bir yaklaşım yoktur. Bu çalışmada Reh-
feld vd.’nin yapmış olduğu çalışmada kullanmış oldukları σ = ∆txy/4 değeri
alınmıştır (Rehfeld et al., 2011).

Yapılan hesaplar sonucunda ∆14C solar aktivite sonuçları ile kuzey ya-
rım küreden elde edilen δ18O oksijen izotoplarının sonuçları arasındaki çapraz
korelasyon 0.29, güney yarım küreden elde edilen δ18O oksijen izotoplarının so-
nuçları arasında −0.32dir. Bunun sonucunda kuzey yarım küreden elde edilen
sonuçların birbirleriyle az da olsa korele, Güney yarım kürede yer alan KNI-51
sonuçlarıyla az da olsa ters korele olduğu görülmektedir. Sonuçlar bu iki böl-
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genin birbirleriyle antifaza sahip olduğu kanısını hakim kılmıştır. Yani kuzey
yarım kürede güçlü muson etkili ise Güney yarım kürede zayıf muson etkisi
olmaktadır. Bunun sebebi Güneşin pozisyonudur.
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5. SONUÇ VE TARTIŞMA

Zaman serisi analizleri henüz yapısını tam olarak bilmediğimiz karmaşık
yapıya sahip olan sistemlerin yapısını anlayabilmek için çok önemlidir. Bu-
nun için birçok analiz yöntemi olmasına rağmen çoğunun uygulanabilmesi için
gerekli koşullardan biri zaman serisinin eşit zaman aralıklı olmasıdır. Çünkü
analiz yöntemlerinin çoğunun temeli, sistemin yörüngelerinin faz uzayındaki
birbirleriyle olan ilişkisini incelemektir ve bu ilişki, birbirleriyle olan uzaklığı
hesaplamaktan geçer. Bu uzaklık hesabı, eşit zaman aralığına sahip olmayan
zaman serileri için bir problem teşkil eder. Literatürde bu zorluğun üstesin-
den gelebilmek için yaygın olarak kullanılan yöntem interpolasyon yöntemidir.
Bu yöntemle zaman serisinin dağılımından faydalanılarak zaman serisindeki
boşluklar doldurulur ve zaman serisi analiz için uygun hale getirilir. Her ne
kadar zaman serisinin dağılımdan faydalanılsa da, sisteme dışarıdan müdahale
edildiği için sistem hakkında bilgi kaybına sebep olmaktadır.

Tezin ilk kısmında bu sorunu aşabilmek için metrik uzaklık tanımından
faydalanılmıştır. Metrik uzaklık veri gruplarının eşit zaman aralıklı olmasına
bakmaksızın, iki veri grubu arasındaki uzaklığı ölçebilmektedir. Metrik uzaklık
tanımında yer parametreler için seçim kuralları önerildikten sonra, yineleme
grafiği analiz yönteminde var olan uzaklık problemi için kullanılmıştır. Metrik
uzaklık kullanılarak yapılan, kesikli yapıya sahip olan Logistik map ve sürekli
yapıya sahip olan Rössler salınıcısı yineleme grafiği analizlerinin sonuçları, her
iki sistem için rejim geçişlerini veren Lyapunov üsteli sonuçları ile karşılaştırıl-
mıştır. Her iki sistem için de rejim geçişlerinin hepsinin tespit edilebilmesi, eşit
zaman aralığına sahip olmayan zaman serilerinin analizlerinde metrik uzaklık
tanımının kullanılabileceği kanısını hakim kılmıştır. Metrik uzaklığın çalışır-
lığı, dinamiği iyi bir şekilde bilinen sistemlerde test edildikten sonra karmaşık
yapıya sahip olan doğal sistemlerin yineleme grafiği analizlerinde kullanılmış-
tır. Bunun için Çin’de yer alan Dayu Mağarası’ndan elde edilen ve bölgesel
muson rejiminin etkisiyle yakın ilişkili olan δ18O oksijen izotop oranlarının ka-
yıtları yineleme grafiği analiz yöntemi kullanılarak gerçekleştirilmiştir. Dayu
Mağarası’nda yer alan yazıtlar, bölge halkının belirli yıllarda mağaraya gelip
yağmur duası yaptıklarını ortaya koymaktadır. Bu yazıtlarda yer alan yedi ku-
raklık rejiminin altı tanesi analizlerimizde düşük determinizm niceliği değeri
ile tespit edilmiştir. Bunun dışında mağarada her hangi bir kanıt olmamasına
rağmen 1908 yılında Çin’de gerçekleşmiş olan büyük kuraklık dönemi analiz-
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lerimize yansımıştır. Ayrıca 1500 yılından önceki dönemlerde analizlerimizde
yüksek determinizm niceliği değeri ile dört farklı olay tespit edilmiştir. Söz ko-
nusu dört olaydan iki tanesi kuraklık, iki tanesi yağış bolluğu olarak literatürde
karşımıza çıkmaktadır. Yüksek determinizm niceliği değeri ile kuraklık döne-
minin tespit edilmesi, kuraklık rejiminin düşük determinizm niceliği değeri ile
ilişkili olduğunu söyleyebilmek için belirsizlik yaratmıştır. Ayrıca analizler so-
nucunda determinizm niceliği değerinin yaklaşık olarak 1500 yılları civarında
ani bir şekilde düşüş gösterdiği açık bir şekilde görülmektedir. Bu ani düşüşün
sebebi yaklaşık olarak 1500 ile 1900 yılları arasında gerçekleşen Küçük Buzul
Çağı ile ilişkilidir.

Tezin ikinci kısmında yer alan ve literatüre kazandırılan Dönüşüm Ma-
liyet Zaman Serisi (TACTS) yöntemi ile eşit zaman aralığına sahip olmayan
zaman serileri, tamamen sistemin iç dinamiğinden faydalanarak eşit zaman
aralıklı hale getirmesinin yanı sıra belirli bir eğilime sahip olan zaman serile-
rindeki istenmeyen bu katkıyı aza indirmektedir. Yöntem, yapay sistemlerin
yineleme grafiği analizlerini gerçekleştirebilmek için uygulanmış ve iyi sonuç-
lar vermiştir. TACTS yöntemi paleoiklim verilerinin analizlerinde uygun ol-
duğunu gösterebilmek için Endonezya’da yer alan Secret Mağarası’ndan elde
edilen δ18O oksijen izotopu oranlarının zaman serisi üzerinde test edilmiştir.
TACTS yöntemi kullanılarak eşit zaman aralıklı dönüşüm maliyet zaman se-
risi üzerinde uygulanan yineleme grafiği analiz yöntemi ile 62000 yıllık veriden,
muson aktivitelerindeki değişim tanımlanabilmiştir. Analiz sonucunda Henrich
olayları olarak bilinen altı olayın her biri tespit edilebilmiştir. Bu olaylar sı-
rasında Atlantik Okyanusu’na buzulların erimesi ile birlikte bol miktarda su
katkı yapmış ve okyanuslar üzerinden karaya soğuk hava etkisi olmuştur. Bu
olay ise muson rejimi üzerinden etki yapmıştır. Ayrıca Youngers Drys dönemi
olarak bilinen kuzey yarım küredeki soğuk hava periyodu da analizlerimizde
tespit edilmiştir.

TACTS yöntemi kullanılarak yapılan diğer bir çalışmada ise Çin’de bu-
lunan Dongge ve Avustralya’da bulunan KNI-51 mağaralarından elde edilen
δ18O oksijen izotopu oranlarının zaman serileri analiz edilmiştir. Söz konusu
iki mağaradan biri kuzey, bir diğeri ise güney yarım kürede konumlanmış ol-
masından dolayı Doğu Asya yaz muson ve Endonezya Avustralya yaz muson
rejimi arasındaki ilişkiyi anlayabilmek için çok elverişlidir. Son 9000 yıllık peri-
yodu kapsıyan veriler üzerinde uygulanan TACTS yöntemi yardımıyla yapılan
yineleme grafiği analiz sonuçlarında her iki bölge için literatürde var olan sıra
dışı iklim olaylarının %90’ı tespit edilmiştir. Bu iki bölgenin dinamiğinin çapraz
korelasyonu hesaplandığında, her iki bölge arasındaki korelasyon −0.27 olarak
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bulunmuştur. Bu sonuç iki bölgenin muson rejimleri arasındaki az da olsa ters
faza sahip olduğu kanısını hakim kılmıştır. Literatürde de hakim olan bu ka-
nıya, güneşin konumunun sebep olduğu söylenmektedir. Bu olguyu analizleri-
mizde görebilmek adına Kuzey yarım küreden toplanan ve güneş aktiviteleri ile
doğruda ilişkili olan ∆14C karbon izotop oranlarının zaman serisinin yineleme
grafiği analizleri gerçekleştirmiştir. Analizler sonucunda Güney ve Kuzey ya-
rım küreden elde edilen δ18O ve Kuzey yarım küreden elde edilen ∆14C zaman
serilerinin determinizm niceliklerinin çapraz korelasyonları sırasıyla −0.32 ve
0.29 olarak hesaplanmıştır. Bu sonuç literatürdeki yaygın kanıyı doğrulamak-
tadır. Her iki bölgenin muson rejimleri arasında bir ters faz vardır ve bunun
sebebi güneşin pozisyonudur.

Bu tezde kullanılan iki farklı yöntem ile eşit zaman aralığına sahip olma-
yan zaman serilerinin analizi gerçekleştirilmiştir. Bu tarz zaman serilerini iyi
bir örnek teşkil eden paleoiklim verilerinde muson rejiminin geçmiş yıllardaki
etkisi analizlerle ortaya konmuştur. Söz konusu iki yöntem ile karmaşık yapıya
sahip sistemlerin analizlerinin gerçekleştirilebileceği anlaşılmıştır. Bu yöntem,
sismik aktiviteler, beyin aktiviteleri vb. sistemlerin analizleri için elverişlidir.
Fakat zaman serileri eşit zaman aralıklı olan sistemler için bu yöntemlere gerek
duyulmamaktadır.

İleride yapılacak olan çalışmalarda, sismik aktivitelerin analizleri TACTS
yöntemi yardımıyla gerçekleştirmeye çalışılacak ve anaşokun öncesinde ve son-
rasında farklı eğilim olup olmadığı araştırılacaktır. Aynı zamanda gerçek sis-
mik verilerinde anaşokun meydana gelmediği dönemler incelenerek, anaşokun
öncesi ve sonrasında ver olan eğilim ile ilişkilendirilmeye çalışılacaktır. Bu ça-
lışma ile deprem dinamiğinin anaşok öncesinde her hangi bir farklılık sergileyip
sergilemediği ve anaşoku ne düzeyde etkilediği incelenecektir.
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