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SUMMARY

This thesis presents the theoretical explanation and application of the Analytical
Regularization Method (ARM) to a few different 2-dimensional boundary value
problems (BVP) of eccentrically layered circular boundaries. Since the circular
boundaries are under consideration, the linear algebraic equation system of the
unknowns can be constructed either by infinite series representation of the fields that
is obtained from Helmholtz equation through separation of variables (SoV) or by
discretizing the integral equation that is arrived by the Green’s identities from
Helmholtz equation. However, both methods, in general, result in an algebraic
equation of the first kind, which is ill-conditioned in numerical sense. The direct
solution of such a system may have nothing common to the exact solution. The user
of such a system must do some extra checks to make sure of the numerical results. In
this thesis, such a bad system is transformed into a linear algebraic equation system of
the second kind, which is a well-conditioned one, by means of the Analytical
Regularization Method. This powerful semi-analytical semi-numerical method has
been applied to a wide range of the diffraction problems with an approximate three
decades of history. Within the scope of this study, the method is applied to both
corresponding algebraic systems of the fields of the eccentrically layered circular
impedance and dielectric boundaries, which are obtained from the separation of
variables method and the discretization of the boundary integral equations through the
entire domain Galerkin method. It is shown by means of various numerical results the
necessity and the advantage of using such a method and to avoid using an un-
regularized system. In addition, it is shown that by using the entire domain Galerkin
method for the “algebraization” of the integral equation and then using the convolution
theorem, a super-algebraically convergent algorithm can be constructed for 2-

dimensional boundary value diffraction problems.

Key Words: 2-dimensional boundary value problems, eccentrically layered
circular cylinders, separation of variables, boundary integral equations,

Analytical Regularization Method (ARM), super-algebraically convergence.



OZET

Bu tezde, Analitik Regiilarizasyon Metodunun teorik agiklamasi yapilmis ve ¢ok
tabakali es merkezli olmayan dairesel smirlara sahip birkag farkli empedans ve
dielektrik sinir deger problemlerine uygulanmasi agiklanmistir. Dairesel sinirlar s6z
konusu oldugunda, bilinmeyenlere iliskin cebrik denklem sistemi hem Helmholtz
denkleminden degiskenlerine ayristirma yontemi ile elde edilen sonsuz seriler
biciminde ifade edilen alanlardan hem de Green 6zdeslikleri araciligi ile Helmholtz
denkleminden elde edilen smir integral denklemlerinin ayriklastirilmasindan elde
edilebilir. Fakat iki yontem sonucunda elde edilen cebrik denklem sistemleri sayisal
uygulamalar agisindan kotii kosullu olan birinci tip denklem sistemleridir. Boyle bir
sistemin dogrudan ¢oziilmesi ile elde edilen sonucun gercek ¢oziim ile higbir ilgisi
olmayabilir. Bu tiirden bir sistemin kullanicisi elde edilen sayisal sonuglarin
dogrulugunu ekstra kontroller ile test etmelidir. Bu tezde, bu tiirden kotii bir sistem
Analitik Regiilarizasyon yontemi ile iyi kosullu olan ikinci tip bir sisteme
donistiirilmektedir. Bu yontem yaklasik olarak 30 yillik ge¢misi olan ve genis bir
smiftaki kirmim problemlerine uygulanan giiglii, yari analitik yar1 nlimerik bir
yontemdir. Bu ¢alisma kapsaminda bu yontem, es merkezli olmayan, dairesel sinirl
empedans ve dielektrik sinirlara iligkin, degiskenlere ayristirma yontemi elde edilen
seri gosterimlerden olusan sistemlere ve Green 6zdeslikleri ile elde edilen integral
denklemlerin tiim bolge Galerkin metodu ile ayriklastirilmasi ile elde edilen sistemlere
uygulanmistir. Cok cesitli sayisal sonuglar ile boyle bir yontemin kullanilmasinin
gerekliligi ve avantajlar1 ve regiilarize edilmemis bir sistemden uzak durulmasinin
gerekliligi gosterilmistir. Ayrica integral denklemlerin tiim bolge Galerkin yontemi ile
cebrik denklemlere doniistiiriilmesi ve konvoliisyon teoreminin kullanilmasi ile 2-
boyutlu sinir deger kirinim problemleri ic¢in iistel yakinsak bir algoritmanin

kurulabildigi gosterilmistir.

Anahtar Kelimeler: 2-boyutlu simir deger problemleri, es merkezli olmayan
dairesel katmanh silindirler, degiskenlere ayristirma yontemi, sinir integral

denklemleri, Analitik Regiilarizasyon Metodu (ARM)), iistel yakinsaklik.

Vi
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1. INTRODUCTION

Analytical solution of the scattering fields of monochromatic waves by circular
cylinders is well known in electromagnetics and new designs are done in
nanotechnology, metamaterial science, bio-electromagnetics, acoustics, and power
transmission lines based on this analytical solution [1]-[3]. That is why the researchers
in these areas must rely on the solutions based on this analytical model. Also, it is
known from the literature that the expression of the scattered field of such a system is
obtained by means of the Green’s identities in an integral form and, the discretization
of this integral yields an infinite, ill-conditioned linear algebraic equation system of
the first kind (LAES1) in the form of Ax=b. The numerical calculation of this system
as x=A"1b involves extra efforts [4], since the inversion of matrix A is very sensitive to
the truncation number and suffers from round-off errors. Therefore, this system is error
prone and unstable even for concentrically layered circular cylinders when the size of
the algebraic system is large. Because the entries of matrix consist of Bessel and
Hankel functions that have extremely fast decaying and fast-growing behavior while
their order increases. Therefore, large values of the algebraic system cause overflow
and underflow in the computer during calculations. In non-concentric case, the
situation is far worse than the concentric case. In this case, because of the overflow
and underflow, the rank of the matrix becomes fixed and smaller than the size of the
algebraic system and no longer depends on the size of the algebraic system and, as a
result, the system becomes degenerated. Consequently, the solution of such a system
results in numerical catastrophe and the solution obtained from such a numerical
process may have nothing common to the exact solution.

Since the inversion of a matrix of a first kind system is very sensitive to the
truncation number, it is necessary to transform such first kind system to a second kind
one by means of a regularization method for obtaining a new system immune to round-
off errors and obtain reliable results. In this thesis, because of its stability and reliability
even at lower truncation numbers, some approaches based on the Analytical
Regularization Method are preferred. In this method, one left side operator (L) and one
right side operator (R) are chosen such that applying them to LAES1 yields a new
linear algebraic equation system of the second kind (LAES2) in the form of (1+K)y=g
where I+K = LAR and g=Lb. This new system is stable independently of the truncation



number even at lower truncation numbers. As a result, it is safe, stable and ensures the
reliability of numerical calculations [5].

In the context of this thesis, firstly, the ARM procedure has been applied to the
system of scattered fields of eccentrically layered dielectric circular cylinders similar
to presented in [6] for two parallel perfectly electric conductive (PEC) circular
cylinders. Then the numerical results of the radar cross-section (RCS) were compared
with the configurations in [7]-[9] and these results are presented in [10]. Therein, it is
shown that the RCS results are consistent with [7]-[9] and, in addition, the stability of
the system is shown by means of the condition number of the system, which is a crucial
indicator of the sensitivity of the matrix inversion. Later, the suggested ARM
algorithm is applied to the algebraic system of the scattered fields of eccentrically
layered dielectric circular cylinders [11], two parallel circular impedance cylinders
[12] and a metamaterial covered two perfectly electric conductive circular cylinders
[13]. In the numerical results of these papers, it is shown that the second kind system
is always stable and reliable even at lower truncation numbers. Contrary to this, the
first kind system is not stable, and one must make some extra measures such as the
satisfaction of the boundary conditions to ensure the stability of the system and
reliability of the results. The results presented therein show clearly, why such a
regularization procedure is necessary for eccentrically layered circular cylinders and
even for concentrically layered circular systems.

Secondly, the ARM procedure for the arbitrarily shaped boundaries with the
entire domain Galerkin method is applied to the boundary integral equations of the
type of Electric Field Integral Equation (EFIE) and Magnetic Field Integral Equation
(MFIE) of the scattered field of single PEC boundary [14]-[16]. The considered EFIE
and MFIE of one PEC boundary and one dielectric boundary are taken from [17] for
TM (E-polarization) and TE (H-polarization). Then these equations are generalized for
multiple dielectric and impedance boundaries by means of the equivalence principle.
And then, by the information at hand, super-algebraically converging and numerically
stable algorithms are constructed for two parallel impedance boundaries [18] and for
two layered and two parallel dielectric boundaries [19].

Solution of the EFIE or MFIE is an important issue because in the case of circular
boundaries the result of the separation of variables method, where all the fields are
expressed in infinite series, is used. However, even if the circular shapes can be used

for modeling most of important problems, the structures used in practical applications,



in general, have arbitrarily shaped boundaries. That is why, from one side some
important research is being done for the systems of the structures that consist of
circular cylinders and their regularization, from another side an important effort is
made for the application of ARM to the systems of the arbitrarily shaped boundaries.
As discussed above, for an obstacle that has an arbitrary shape, one needs a more
general solution of the boundary integral equation of the scattered field such as EFIE,
MFIE or a combination of them as Combined Field Integral Equation (CFIE),
Combined Source Integral Equation (CSIE), Extended Boundary Condition (EBC)
[17], Muller formulation [20], PMCHW formulation [21] and so on. It is well-known
that the EFIE and MFIE themselves suffer from non-uniqueness of their solutions at
frequencies associated with internal cavity resonances [22], [23]. The other above-
mentioned formulations are constructed as eliminating the resonance solutions.
Therefore, they are resonance-free and give a unique solution at all frequencies.
However, in the scope of this work, the resonance frequencies are not considered, and
the construction of the formulations is based on the EFIE and MFIE for all kinds of
the boundaries and both polarizations. Such a formulation brings the possibility of
comparable results in themselves since the EFIE and MFIE of a system have different
kernels but the same unknowns.

It is well-known that the EFIE of a PEC cylinder is the Fredholm integral
equation of the first kind while its MFIE is the Fredholm integral equation of the
second kind for both polarizations [17]. Therefore, their discretization brings first and
second kind algebraic systems respectively. For one dielectric boundary, EFIE and
MFIE are the first kind integral equation for each polarization [24]. That is why the
algebraic systems resulted from these equations must be regularized for having stable
systems and reliable solutions. The situation is same for multiple dielectric boundaries.
However, for impedance cylinders it depends on the value of the surface impedance
for both polarizations.

The implementation procedure of the ARM in integral equations is technically
different from series equations. Because in the case of series equations the fields are
expressed in the infinite sum of cylindrical Bessel and Hankel functions with some
unknowns correspond to transmission and reflection coefficients. The fields that are
expressed in such a form are nothing but just the Fourier series expansion. Since the
fundamental step of the ARM is to express the fields in the form of Fourier series and

then use the equality of Fourier coefficients by applying the orthogonality property of



complex exponentials, this form is very convenient for the implementation of the
ARM. However, for arbitrarily shaped boundaries, one must solve the EFIE or MFIE
or a combination of them by applying the local singular expansion to the kernels and
then remove the singularities of the Green’s function and its derivatives that arise when
the source and observation points coincide. For this purpose, an analytical function,
which has a similar singularity of Green’s function, is used. The Fourier coefficients
of this function are known analytically, and the ARM is applied according to the
behavior of these coefficients [5], [18], [19], [25].

For a PEC cylinder, in E-polarization case, the kernel of EFIE is the Green’s
function and MFIE has the kernel as first-order derivative of the Green’s function w.r.t.
the normal direction at the observation point. On the other hand, in H-polarization
case, MFIE has the first-order derivative of the Green’s function w.r.t. the normal
direction at integration point and EFIE has a second-order derivative of the Green’s
function w.r.t. integration and observation point as kernel, respectively. The Green’s
function itself has logarithmic singularity while the distance between integration and
observation points tends to zero. Therefore, it is not a smooth function on the boundary
and it must be smoothened by extracting its singular part. Also, the first order
derivative of the Green’s function is finite but not infinitely smooth since the logarithm
appears in its derivatives. Thus, the logarithmic part must be removed from this kernel
as well, for having infinitely smooth functions. The second order derivative of the
Green’s function w.r.t. the normal derivative has the most singular part, and fortunately
this singularity can be extracted by means of another form of the same above-
mentioned analytical function. These are the four problematical kernels that can be
encountered in any boundary integral equations of the 2-D boundary value problems
and their singularities are handled in detail from the point of view of ARM algorithm
in Chapter 2.2.5.

In the next chapter, Chapter 2, the mathematical background of the ARM is
given, firstly, for the system that obtained from the series representation of the fields
given in circular coordinates. It can be shown [4] that in the circular coordinates the
series representation can be obtained from the integral equation by expanding zero-
order Hankel function by means of the Graf’s addition theorem [26]. By this means,
the behavior of unknown coefficients of the fields represented in series whose

asymptotic behavior is very crucial for specifying the regularization operators, are



expressed clearly. Secondly, the ARM procedure is given for 2-D BVP of Dirichlet,
Neumann, third-kind and dielectric boundaries.

In Chapter 3, the numerical implementations of the theoretical information given
in Chapter 2 are achieved by applying them to several kind of BVP. At first, in Chapter
3.1, the ARM algorithm that is explained in Chapter 2.1 is applied to the algebraic
system of two parallel infinitely long circular impedance cylinders. Then, in Chapter
3.2, in the same manner, it is applied to several eccentrically layered circular dielectric
cylinders. And then, in Chapter 3.3 and 3.4, the ARM algorithm for the boundary
integral equations of arbitrarily shaped boundaries that are discussed in Chapter 2.2
and its subchapters is applied to two dielectric circular boundaries and two parallel
circular impedance cylinders respectively. The numerical results that are obtained
from the solution of the integral equations are validated in themselves by comparison
of the EFIE and MFIE of the same unknowns, and also an extra check is done by
comparison of the solution of the rigorous algorithm which is constructed by the ARM

for the circular boundaries.



2. ANALYTICAL REGULARIZATION METHOD
FOR 2-D BOUNDARY VALUE PROBLEMS

Analytical Regularization Method is an analytical and analytical-numerical
method that can be used in diffraction theory to reduce ill-conditioned integral,
integral-differential and series equations of the first kind to such equations of the
second kind which makes it possible to solve these equations efficiently on the
computer [5]. The regularization techniques based on the ARM are successfully used
in scattering by two and three-dimensional body of revolution closed and unclosed
screens, compact and periodic, dielectric and perfectly conducting obstacles [5], [27]-
[33].

It is known that the monochromatic wave scattered by an obstacle in 2-

dimensional coordinates satisfies the homogeneous Helmholtz equation
AU (q)+k%u(q)=0, geR?\ S (2.1)

with the boundary condition

aut
a(a)u (0)+ (@) Y = (), ges @2
and the Sommerfeld radiation condition
S
tim |qfY2 au—(q)—ikus(q) =0 (2.3)
g o0 ol

where ut(q) = u'(q) + u®(q) is the total field, u*(q) is the scattered field and u'(q)
is the incident field.

Also, it is known that for the coordinate problems, where the boundary and
coordinate surfaces (or contours) coincide, the separation of variables method makes
it possible to reduce the boundary value problem of (2.1)-(2.3) to an infinite algebraic

system of the first kind of the form



Ax=Db (2.9)

For non-coordinate problems, the Helmholtz equation can be reduced to an
integral representation by means of the Green’s formulae. After imposing the boundary
condition (2.2) and the radiation condition (2.3) to the integral representation, the
boundary integral equation is obtained. The discretization, in another sense
“algebraization”, of the integral equation yields, again, an infinite algebraic equation
of the first kind in the form of (2.4). The discretization can be made by means of
various quadrature methods, Galerkin Method, Moment Method, and alike.

The numerical treatment of the boundary value diffraction problem (2.1)-(2.3)
requires the numerical solution of (2.4). Since such an infinite dimensional equation
cannot be solved numerically, finite dimensional approximations must be used. By

the truncation of (2.4) the finite algebraic equation system of the form

Ay =by (2.5)

is arrived at and it is hoped that the solution x, is the approximation of x, which
becomes, conceptually, more accurate approach for increasing truncation number N.
However, it is doubtful whether the x, converges to x while N — co. Even it may
happen that the numerical solution of (2.5), say X, calculated on a computer which
has a word length containing only a finite m, number of binary digits, has nothing
common with the exact solutions of (2.4) and (2.5). The main reason of such possibility
is the presence of the round-off errors, amplification and propagation of such errors
during the calculation process for ill-conditioned matrices. The method of numerical
solving can be Gauss elimination, LU-decomposition or various iterative methods, but
there is not qualitative difference from point of view of accuracy and stability of the
solution [34].

To decide whether the finite-dimensional system (2.5) is worth solving at all, it

IS necessary to answer the following questions.

i) Does xy converge to x when N — o? If so, in what metric is this?

i) Will the “numerical catastrophe” ||xy — Zy|l/llxy || > 1 come with growing N?



The second question is reasonable to consider only if the first question is
answered positively in the relevant metric coordinated with the metric (specified by
the physical nature of the boundary value problem) of the functional space where the
initial boundary value problem solution is sought [5], [34], [35].

It is known that in the general case the first question is answered negatively, i.e.
as N increases the solution of the system of the first kind, x,, broadly speaking, does
not converge to x in any metric. This is typical behavior of most parts of boundary
value diffraction problems [36]. Nevertheless, let us assume that owing to the special
properties of the operator A, this convergence takes place in the wanted metric. The

standard definition of the condition number [37], [38] of the operator Ay is
-1
() =l | A, @9)

where the operator norm ||-||, is created by the Euclidean metric of real or complex-
valued N-dimensional space. System of the first kind is characterized by ||Ay|l, =
or ||JAxt|l, = o when N — oo, i.e. the operators A or A~1 is unbounded in the operator
norm constructed from the vector norm of [, space. Consequently, v(Ay) — o for
N — oo [5], [35].

It has been verified [37] that the number of correct binary digits in the solution

Xy does not exceed the value

My =mg —logz v( Ay ) (2.7)

where m,. is the binary length of the computer mantissa and m,. describes the number
of significant digits in the element of X, vector that has the largest modulus.
Correspondingly, a relative error of components smaller in module is far larger.
Moreover, if these components decrease fast, only first few of them can carry right
significant digits, the rest cannot be computed at all. In this case, the algorithm has the
problem of renormalization of the unknown x vector and balancing of the initial
system matrix [5], [35] (and the references cited therein).

Thus, if m, <0, i.e. m, < log, v(Ay) the solution X contains no significant
digits to be true and the above-mentioned numerical catastrophe arises. In this case,

the discrepancy 6V & Ay%y — by Will be in the order of |[6V]|, = N27™¢||%y]l,
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value, which is evidently quite small. The accurate solution x, rounded to m, binary
digits shows the same order discrepancy.

It is indicated in [5], [35] that the only practical way to recognize a numerical
catastrophe is the direct calculation of v(4y) and m,. Various indirect criteria, such
as energy balance, stabilization of solution X, with increasing N, etc., may, as a rule,
only give an illusion of solution correctness of the initial boundary value problem.
Because in the former case, the energy conservation law may be satisfied with a very
high accuracy even when m,. < 0 and X, having no significant digits to be true. In the
latter case, after the inequality m,. < 0 is reached, the solution X, may be indifferent
to N or vary very slowly, being prescribed by the rule of the arithmetical result
rounding in the computer.

Let us now consider an alternative situation. Suppose that the original boundary
value problem is equivalently reduced, in the [,, to the infinite system of the algebraic

equation of the form Ax = b; x, b € l,, but now the operator A has the form
A=1+H (2.8)

where operator H is compact in the [, and I is the identity operator. Now, matrix A

obeys the Fredholm alternative, and if A is not degenerated, then equation
(1+H)x=b (2.9)

as a rule, has a unique solution. Thus, owing to the mentioned equivalence, there exist

the bounded A~1 = ||I + H||~! operator in I, space and the value

Voo = |1+ HI, H(I +H )‘1H2 <o (2.10)

is correctly determined. Likewise, the procedure above, consider the truncated system

(1+Hy)xy =by (2.12)



Since H is compact, the sequence of finite-dimension matrix operators Hy can be

chosen as

|H-Hy[, =0, whenN — o (2.12)

If (2.12) takes place then ||x — xy|| = 0. It means that answer of first question above

IS now positive. In space [, the limit

v = lim v(1+Hy )= lim 1+ Hyl, 1+ H )‘1H2 Sy, (213)

Hence, all vy are uniformly bounded for any sufficiently large N. For most practical
problems in diffraction theory vy, <« 2™ for many modern computers in non-resonant
cases.

The equation (2.9) is known as one of the second kind. The more general
equation (2.4) which cannot be represented in the form of (2.9) is known as one of the
first kind. The typical behavior of first kind and second kind systems are shown in

Figure 2.1 (this picture is taken from [34]).

VN

d)

=
=

Figure 2.1: Correlation of condition number and error of numerical solution of
truncated systems as functions of the truncated matrix dimension N. a) and b) are for
equations of the first kind; ¢) and d) are for the second kind.

It is crucial to emphasize the importance of consideration of (2.9) just in space
[,. Because in this space the computer arithmetic provides numerical stability and

convergence of X, to x within small deviations. For any other space, the qualitative

10



characteristics of the condition number and exact solution x, are the same. But the
computer treats such equations as one in [, and if the system might not be one of the
second kind just in space [,, then the numerical solution X, becomes unstable and
divergent.

For solving a system of the first kind, Tikhonov regularization [39] is the most
and known powerful tool. Firstly, well-skilled persons can use it and secondly, in
general, it does not give all the necessary qualitative features of the solutions. Another
way that is used in this thesis is based on the equivalent transform of the equation (2.4)
of the first kind to an equation of the second kind (2.9), i.e. reducing the initial
boundary value problem to the equation of the second kind. Because, as explained
above, compared to equations of the first kind, the second-kind equations do not have
the principal disadvantages preventing their effective solutions. Thus, in [, space it
provides a good basis for efficient algorithms of numerical solutions of the problems.
However, it is a mistake to think that such transformation is possible in the same space
if the equation (2.4) is not of the Fredholm type. If such transform from (2.4) to (2.9)
is constructed in the same functional space, there are only two possibilities; the
resulting equation is not equivalent to the initial one or the equation (2.9) is not the
second one, i.e. operator H is not compact in the same space [34].

The key point of the methods that transform the initial boundary value problem
to the equation of the second kind is the regularization of the operator of the problem.
From the point of view of the functional analysis, this idea is very simple and well-
known [40]. Nevertheless, for constructing such a transform one must understand its
mathematical background clearly. To this end, at first, the equation (2.4) must be
reformulated as one given on a pair of functional spaces H; and H,, i.e. b € H,, and
A:H; - H,. Secondly, operator A must provide some special additive and

multiplicative splittings as

A=A+ A (2.14)

where A; is the subordinate to the operator A,: H; = H, and spaces H, and H, should
form set of correctness of A, in Tikhonov sense (see [39]). Thirdly, the operator 4,

must have the representation
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Ay =L"R1:H; 5> H, (2.15)
with known in closed analytical form operators L~ and R~! where

R1:H;{ > Hg, RiHg > Hy 216
LY Hg > Hyp, LiH, > Hy

and H, is some intermediate space and the operator LA,R: Hy, — H,, is compact in H,,.

Here the best choice of functional space is H, = I, because of the above-explained

advantages of the equation (2.9) in the space [,.

If the explained construction is implemented mathematically, it gives a direct
and simple way of the transform of (2.4) to (2.9). Since the operator R~1 exist and
bounded, any element x € H; can be written as x = Ry for some y = R™1x € H,
defined as new unknown. Now applying the operator L to (2.4) from the left, and using

the properties (2.14) and (2.15) results into the following equation of the second kind
(I1+LAR)y=Lb, y,Lbel, (2.17)

with compact operator K = LA, R in [, space.

The above-described construction by the operators L and R is known as
Analytical Regularization Method. The equation (2.17) is the regularized equation of
(2.4) and the pair (L, R) are called as double-sided regulators of the operator A given
with the property (2.14). The graphical scheme of ARM for operator A is shown in
Figure 2.2.

Hi A » H»
R_l L—l
Ho I+K > Ho
I+K=LAR:Ho—>Hp

Figure 2.2: Graphical scheme of ARM.
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As seen from above-explanations, the purpose of the ARM is reducing the
equation of the first kind (2.4) to the equation of the second kind (2.17) by proper
reposing of (2.4). So, there is a one-to-one correspondence between the solutions due
to the operator R. Once the solution y is obtained from (2.17) then the solution x is
obtained as x = Ry.

If H, is a Hilbert space, then by choosing a proper basis and matching the Fourier
coefficients of the left- and right-hand side of the equations (2.17) one arrives, by
virtue of the well-known isomorphism of Hilbert spaces [41], [42], to the equation of
the second kind in the space [, where y,b € [, and K: [, — [, is a compact operator
with necessity.

The necessity of application of ARM to the boundary value diffraction problems
and the key steps of identifying the double-sided regulators for having a second kind
system, which gives stable and convergent algorithms in computer arithmetic, have
been explained in this part. But, note that the above-explained abstract construction
does not answer how to build the operators or in which functional spaces the operators
should be defined for the considered diffraction problems. There is no priori
knowledge for construction of the operators L and R in closed form. In the next
subchapters, the answers of these questions are given for some kind of boundary value

diffraction problems.

2.1. ARM Algorithm for the Algebraic System of the Series
Solution of Circular Boundaries

The geometrical structure of the circular boundaries, homogeneous along O,

axis, from the point of view of diffraction theory in 2-D, can be generalized as Figure
2.3.

13



Figure 2.3: The Geometrical structure of the problem; a) Nested boundaries
(inclusion) b) Parallel boundaries (neighbor). The dashed circles stand for the
fictitious boundary at the infinity for m=0.

Here, the configuration a) stands for the nested circular cylinders, and b) stands
for the parallel circular cylinders. The index m is used for denoting the boundaries but
j is used for indexing the regions between boundaries. Any structure of a boundary
value problem of circular boundaries, in 2-D, can be consist of only a), only b) or a
combination of them. In this sense the information of implementing the ARM that is
going to be given for the configurations in Figure 2.3 includes all possible situations
of a boundary value diffraction problems of circular boundaries in 2-D.

For posing of the problem, first of all, the expression of the fields that satisfy
homogeneous Helmholtz equation (2.1) related to the regions of Figure 2.3 must be
given. The field representations for the coordinate problems, where the boundary of
the scatterer and the coordinate coincides are well-known [7]-[9], [11]-[13], [43] for
monochromatic waves scattering by eccentrically layered circular cylinders as in
Figure 2.3. To this end, the equation (2.1) is solved by means of the separation of
variables method and this solution yields the representation of the fields into infinite
Fourier series expansions. For et time dependency the reflected field (outgoing
wave) and the transmitted field (incoming wave) from any m™ boundary can be

expressed in terms of its local polar coordinate system (p,,,, @) as follows.

W™ (pam) = = RIMHP (k;py, )& (2.18)

N=—o0
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ugtr,m) (Pm,§0m)=nEan(m)Jn(ijm)eimpm (2.19)

Here R,(lm) and T,Em) are unknown coefficients of the reflected and transmitted fields

respectively. H,(lz) (t) in (2.18) is the second kind Hankel function and J,,(t) in (2.19)

is the Bessel function and k; is the wave-number of j™ medium defined as
y2 .
kj:a){gj,uj} j=1223. (2.20)

with the dielectric permittivity &; and magnetic permeability y; of the medium.

If the representation of the field between two boundaries is under consideration
(i.,e. m = 1 and m = 2), then the question of which coordinate system arises. Namely,
which coordinate system should be chosen as reference for expressing the fields (here
the incident field is not considered for Figure 2.3.b) since it is assumed that it comes
from the boundary m = 0 at infinity and it can be expressed in any local coordinate
system without transformation). Same or different coordinates can be chosen for
boundaries. But as it is explained in [11] same or different coordinates systems
correspond to series expansion or integral formulation respectively. In addition, it is
explained therein that from the solid mathematical background based on integral
formulation [4] requires the choice of different local coordinates of boundaries for
expression of the fields into Fourier series. Thus, for the analytical model used for
circular boundaries through this thesis is based on this fact and all the fields, scattered
or transmitted, are expressed in terms of local coordinates of their own scatterer. By
virtue of this fact, the total fields between two regions of Figure 2.3.a) (region j = 1)

and of Figure 2.3.b) (region j = 0) can be shown as follows.

u(1) (q) _ LI(tr,l) n ugref,Z)

z z

£ - o ; 221
=2 Tn(l)‘]n(klp1)em¢1+ ) RrEZ)Hr(la(sz)em% &2

N=—00 n
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(@) =" (a)+0™ % (0) +0" (0)

= n_z_ Rl’(ll)Hng) (kopl)ein(pl + n_z_ RrEZ)HéZ) (koloz)e"w2 ;e

(2.22)

As seen from (2.21) and (2.22) the fields contain two parts that expressed in two
different local coordinates (py,¢1) and (p,, ¢,) that belong to the boundary of
scatterers. Namely, the reflected or transmitted field of a scatterer becomes incident

field of the other scatterer.
For having the solution of the boundary value problem, the unknowns R,(lm) and

T,fm) must be calculated at first. For this end, the boundary conditions are subjected to
each boundary and then arrived at an equation formed by the Fourier coefficients of
the series. But, before writing this equation, a transformation of coordinates is
necessary. Because, if the boundary condition is written on one boundary, say m = 1,
then the field (transmitted for Figure 2.3.a) and reflected for Figure 2.3.b) that comes
from boundary m = 2 and expressed in its local coordinate system must be
transformed to the local coordinate system of the boundary m = 1. This
transformation is done by means of the well-known Graf’s addition theorem for

cylindrical Bessel functions [6], [26], [44] that are summarized as

Z ei(nfs)apq‘]nis(kd pq)zs(kpq)eis%; d, <p,
Zn (kpp)eln(pp _ Js= (223)

Z ez (kd pq)Js(k,oq)ei%; d,,>p,

S=—0

where Z,,(t) stands for J,,(t) or H,(f) (t), 6,4 is the angle of the vector d,,, that directed
from the center point O, to the center point Oq w.r.t. the x-axis of the global coordinate
system, and d,,, = |dpe| = |0, — O, is the distance between these local origins. The
equations given in (2.23) are used for transformation of the fields that are expressed in
local coordinate system (p,, ¢,) to the fields expressed in local coordinate system
(Pg» 9q)- Itisclear that d,,; = dg, and 0, = T + Oy,

By the help of the equation (2.23) the boundary conditions, peculiar to the kind
of the boundary (PEC, dielectric or impedance), are imposed and then arrived at the

final infinite-dimensional equation of the first kind in form of (2.4).
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Now let us consider the configurations in Figure 2.3.a) and Figure 2.3.b) as two
different problems and construct their algebraic equation system by assuming that all
regions are filled by homogeneous dielectric materials. Even though the formulation
is explained by dielectric mediums, the main idea of constructing the system and its
regularization operators are very similar for all kind of boundaries. After constructing
the system, asymptotic behavior of the entries of the matrix is analyzed to reveal its
ill-conditioned behavior that shows it is a system of the first kind. Then, the next step
is identifying the double-sided regularization operators L and R for reducing this
system equivalently to an equation of the second kind in form of (2.17). For this end,
as explained in Chapter 2, at first, the new unknown of the equation (2.17) is
constructed as y = R™1x, and secondly, the operator L™1 is constructed as it results in
LAR = I + K. However, now the matter is the construction of the operator R~1. It will

be explained below in details but now, it is enough to say that it is determined

according to the asymptotic behavior of the unknowns R,(lm) and T,g"‘). In some sense,
it is a proper scaling of unknowns which is, at first, done in [6] for two perfectly
conductive circular cylinders.

Now let us consider the boundary value problem of the structure of infinitely
long circular cylinders along the z-axis that is given in Figure 2.3.a) illuminated by E-
polarized (TM-z) plane wave. It is well known that for the considered configuration,
the electric field of a TM-z wave has only z-component and the other components can
be represented by means of this component, with e!®t time dependency [45], as

follows

1 0. 1 10,

E,=E,=H,=0; H, = Hy=-——="2  (224)

? ou op
Therefore, the electric field of the incident plane wave also has only the z-component

as E"c(p, @) = etkrcos@=0) yith the incidence angle ¢, and it has the following

expression in terms of cylindrical harmonics with Bessel functions [45], [46].

0

E(p.9)= ), 1", (kp)e"" ™ (2.25)

n=-w

17



On a dielectric boundary, the tangential components of the electric field and magnetic
fields are continuous. Since E,, = H, = 0, then electric field has only E,, and magnetic
field has only H,, components as tangential. That is why, in TM-z case, the following

boundary conditions are valid on a dielectric boundary.

(2) ™ _n- (2) o _
E?-E?=0; H?-H®=0 (2.26)

4

where the superscripts (1) and (2) indicate the inner and outer regions of the boundary
respectively and, E;, and H,, are the total tangential electric and magnetic fields in these
regions.

By imposing the boundary conditions (2.26) on each boundary at p; = a and
p, = b and using the equations (2.21), (2.22) as the total fields and substituting (2.25)
as the incident field then arrived at the equations of electric fields on the boundary

m=1,

| 5 ROHD (p)e™ + § 13, (op)e™ )
N=—o0 N=—o0

4 | y ) (2.27)
{ > T3, (ko )e™ + RrﬁZ)Hrﬁz)(klpz)e'”‘”z} =0
pr=a

N=—o0 N=—o0

and on the boundary m = 2,

{ Y TO, (ko )e™ + 3 R§2>H§2)(klpz)ei"¢2}
P

n=—o0 N=—x ,=b

(2.28)
{ > Tn(z)Jn (kzpz)ein(pz =0

N=—c0 p2=b

As seen in (2.27) and (2.28) there are the terms written in local coordinates (p4, ¢1)
and (p,, @). That’s why it is necessary to transform the local coordinate (p,, ¢,) to
(p1, 1) In (2.27) and vice versa for (2.28). As explained above, this transformation is

achieved by means of the addition theorems given in (2.23) as follows.
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H F(IZ) (klpz )ein(p2 = i ei(n_s)gﬂ*]n—s (kdyy) Hs(z) (klpl)eisq)li dy <a (2.29)

S§=—0

JIn (klpl)ein(pl =3 e "%, (kidip)Is (kyp,)™; dyy <b (2.30)

S=—0

Note that both equations are obtained by means of the first line of (2.23) for
d,; < aandd;, < b. However, the same result in (2.30) is obtained if the inner circle
does not include the center of the host circle, i.e. when d;, > b. If these relations are
substituted into (2.27) and (2.28), respectively, and by making the change s = n and

n = s then the equations become as

{ > ROHO (ka)e™ + 3 i“Jn(koa)ei”(‘/’l‘%)}—
N=—o0

N=—00

(2.31)

{n _Z_OOT”(DJ” (ka)e™ + 2 REYH 2 (kla)e'”‘/’l} -0

{ OZO: Tn(lz)‘]n (klb)ein(pz 4 OZO: Rr(IZ)HrgZ) (klb)ein(ﬂz}_
B N=—c0 (2.32)

{n ;iinn@)Jn (k,b)e"? } 0
where
Rr(]21) _ § Rgz)ei(s—n)ﬂm I, (kd,y) (2.33)
S=—0

T = 5 TWeieM% 3 (kd,,) (2.34)

S=—0c0

In all above equations, the subscripts (12) and (21) are kept on the purpose of
expressing the transformation from coordinate O: to coordinate O, and from Oz to Oy,
respectively.

Now, by using the relation of tangential magnetic field and electric field given

in (2.24) and the boundary condition of magnetic fields in (2.26) the following
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equations of magnetic field, similar to electric field equations, are obtained on the

boundary m = 1,

{ > ROH (ka)e™ + 3 i”J;(koa)ei“W’l%)}—
N=—o0 N=—00

(2.35)
i{ D Tn(l)\]r'](kla)ein(/’l+ 3 Rrgzl)Hrr](Z)(kla)ein%}:O
My1 \n=—0 N——oo
and on the boundary m = 2,

ni{ %o: Tn(lz)Jr'](klb)ein%*' § R§2)H,§(2)(k1b)e‘”‘/’z _
ry \N=-o n=—o0

w , (2.36)
i{ > Tn(Z)J,Q(kZb)e'n(pz -0
Mro \n=—w0

where 1,; = +/it,1/€,; 1S the relative intrinsic impedance of the i medium with the

relative parameters u,.; and &,;. Here F'(z) = dF /dz denotes the derivative w.r.t. the

argument where F stands for J,,(z) and H? (2).
Collecting equations (2.31), (2.32), (2.35), (2.36) and by using the orthogonality

property of the complex exponentials, one arrives at a system of the equation of Fourier

coefficients, with the definition T'? = en(%/2=90) as follows
ROHP (Ia) —{REPHP (Iga)+ TP, (ka)} = T3, (koa)  (2:37)

1

ROH!® (k) - {Réan;w (ka)+T03; (kla)} =-T9J, (kea) (2.38)
rl
7123, (kb) +RPHP (k) -T2J, (kb)=0 (2.39)
ni{T,le)Jr; (b)+ ROH® (kb)) - ni{Tn@)J,; (kb)l=0  (240)
rl r2

20



Now there is the system of the equations (2.37), (2.38), (2.39) and (2.40) and the

unknowns R, T RP 73 But, is clear that, for every fixed “n” it is possible to
eliminate at first two unknowns by proper scaling and extraction operations. This
elimination procedure is applied here, but, not with purpose the of eliminating some
unknowns. Instead, it is aimed to have a system that consists of the functions that are

familiar from analysis of circular coaxial cable problems [8], [44]. For this end, at first,

T,El) is eliminated by multiplying the first and the second equations by J',,(k,a)/n,
and J,,(k,a), respectively, and then extracting the resultant equations. This procedure

is correct due to the fact that functions J,,(t) and J',,(t) have not common root, i.e.
|J.(t) + ], (t)| > 0 for any t. Analogously, R,(ll) is eliminated in a very similar way,

with the fact that H,gz)(t) + H’f,z)(t) > 0, and arrived at another equation. If the same

procedure is followed for R,(f), T,EZ) then the following equation system in form of

Ax = b is obtained [11]

(21
P9 0 W, 0 |roo7 - -
n (a) [ ] n{,zl}(a) [ ] Rr((]z _Tn(O)Qrglvo) (a)
(1,0) (1,0) 1 0 0
[0 P M(a) T @ [0] Tn(z) _[TWO@ | o
) _Tn(Z) 1L [0] ]
0]  wi(b) [0  R* M) b

A

where the terms denoted by the top script {pq} are the interaction blocks that are the

results of the addition theorems and are in the form of the following expression

{pq} - i(s—n
F.=F> ™% (kd » (2.42)

S=—00

with the following definitions that are familiar from coaxial circle problems
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PO (p)= B,HD (kip) . (k,p)- BHE (kip) T, (k;p),
() J! - ! ;
QY (p)= By (kip) Iy (kip)- BTy (kip) T, (ki) (2.43)
T (p) = ﬁH(l)( kp)HY (kip)- BiHY (kp)HY (Kip).
W (p) =B (p)= 2ip, / wkip, By =1/my,

If one follows all the steps of the formulation given for the configuration of

Figure 2.3.a) analogously for Figure 2.3.b) then arrives the following linear algebraic

equation system

9@ [ 0@ [ RO (10089 (a)]
{21 n n n
[01 RO WP [0 [T | -TWO(a)
(20)(b) 4 P(Z'O)(b) i Rf) 2 _Tn(o)QrEZ’O) (b) (2.44)
" O] [T ) |
w<°>(b) [0] [0 R*®)] ;

which is again in the same form of (2.41), with the same definitions in (2.43). Note

that since in this case, the distance between the local origins is greater than the radius

of the circles, i.e. d > a and d > b, then the term Hs(f)n(kodpq) appears instead of

Js—n(kyd,pq) in equation (2.42).

The vertical and horizontal lines that are seen in the matrix of the system (2.41)

and (2.44) are used to outline the self and interaction blocks corresponding to the

configurations Figure 2.3.a) and Figure 2.3.b), respectively. Now, let us use each part

of the matrix that are separated by these lines as one block and construct the following

common block-form of these systems as

] e )]

] [ ]| _[[fm]}
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where each entry in A{,{;n, is a 2 x 2 block-matrix that corresponds to one part in the

matrix A of the system (2.41) and (2.44). The subscripts m, m’ and superscript j, j' are

the indices of circular boundaries and their host media, respectively. The diagonal

elements of A{,ﬁn, denoted by IT correspond to the self-blocks of each boundary m and
m’, and the non-diagonal elements denoted by Y are the interaction blocks of these

boundaries. The entries in the column of unknowns, related to the boundaries, have

T
the form as &, = [Rflm),T,Em)] and the entries of the right-hand side are in the form

. . T
as 1) = [—T,EO)Q,({’O)(pm), —T,EO)Wn(O)(pm)] if the incident wave exist, otherwise

they are zero.

The aim of the block representation as in (2.45) is to give a compact scheme for
constructing the systems of more complicated configurations. It helps to construct the
algebraic system of more complicated configurations of circular boundaries easily by
simply substituting the corresponding self or interaction blocks into the matrix, as it
will be shown in the Chapters 3.1 and 3.2. The system of two parallel impedance
cylinders, which will be considered in Chapter 3.1, has the same properties without
having the functions in (2.43) since these functions are obtained from the relation of
the dielectric boundary conditions.

In the case of TE-z wave incidence, in contrast to the TM-z wave, the magnetic
field has the only z-component H,, and in this case the incidence field has only the
component Hi'¢ = eikpcos(e=¢o)  Analogous to (2.24) all other components are

expressed in terms of H, as follows.

1 oH 1 10H
H,=H,=E, =0, E,=———%; H,=—=—* (2.46)
lwe Op lwe p O

If the relations between tangential components (H,, E,) in (2.24) and (E,, H,)
in (2.46) are compared then it is clear that the formulation for TE-z polarization is
obtained for both systems simply by putting 7, ; instead of 1/7,;, i.e. 1/f; instead of
p;, in equations (2.43). Therefore, for both polarizations the algebraic systems of the
diffraction boundary value problem of the configurations of Figure 2.3(A) and Figure
2.3(B) are in the form of Ax = b as (2.41) and (2.44) respectively.
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Now it is possible to solve the systems (2.41) or (2.44) with unknown

coefficients R™Y, TV R@ 7@ It is clear that, these systems should be one of the
first kind, but, with the purpose to reveal this, let’s analyze the systems by considering
the entries of the matrix A while the Fourier index n — oo. Since all the functions that
form the matrix consist of the Bessel and Hankel function and their derivatives, at first,
it is necessary to show the asymptotic behavior of these functions while n — c. The

asymptotic expansion of these functions for large orders [26] are as follows

Jn(z):i(%jn {HO(%JII; n— oo (2.47)

P
Hr(lz)(Z)=i(n—1)!G)_n {1+@[§ﬂ; n— o (2.49)
H (n2)(z)__i !Gjnlluo(éﬂ; n— oo (2.50)

and by means of the asymptotic Stirling formula n! ~(2mn)*/?(n/e)™ [26] the upper
bounds for Bessel and Hankel functions can be estimated as

-] =5 (5]
H 2 (t)~\/%(i—:jn s(n—l)!e—\lmt\ (%jn‘

By using the equations (2.47)-(2.50) the asymptotic behavior of the functions P,fj ’l)(p),

(2.51)

09 (p), RYP (p), TYM (p) in (2.43) can be written as
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Pn(j,l)(p)zl(kj_pj [i+i:l+(9(lj; n— o (2.52)
mo\kp) | 1y m n

{1+ (’)(%ﬂ n—oow (2.53)

jo,l)(p):_L(ki_p]n {LJFL

Hj M4

{1+O(%ﬂ; n— o (2.54)

{1+ (’)(lﬂ n—»>o (2.55)

n

W= () 2 A

Hj M

and analogous to (2.51) their upper limits can be estimated quite simply.

As can be seen from the asymptotic forms (2.47)-(2.51) for large indexes, the
function of Bessel and its derivative decay very fast (~0(1/n!)), and on the other hand
Hankel function and its derivative grow very fast (~0(n!)), while the index n — oo.
The asymptotic behavior of the matrix entries given by (2.52)-(2.55) shows that the
function Q,,(p) decays approximately with the order of (1/n!)? and, T,,(p) grows with
the order of (n!)2. On the other side, the functions P,(p) and R, (p) may decay or
grow algebraically depends on the ratio k;/k,. All explanation given here shows that
the systems (2.41) and (2.44) are evidently the systems of the first kind with
dramatically growing or decaying matrix elements. That is why such systems cannot
be reduced to the system of the second kind by simple division operations.

Such an infinite-size system can be solved numerically only by some truncation
procedure. However, due to the above-explained facts, the inversion of the matrix A is
very sensitive to the truncation number of the algebraic system and produces very large
condition numbers that are calculated by (2.6) which points to the absence of the
correct solution. That is why, for having numerically stable system and reliable
solutions, the systems such as (2.41) and (2.44) need to be transformed into a second
kind one as in form of (2.17). This can be achieved by means of the ARM. But for this

purpose, at first, the structure of unknown coefficients R,(lm), T,Em) must be known for
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defining new unknowns I?,({”), Tn(m) by a scaling operator R™! as y = R™x. It is
explained in [11] based on the integral formulation of the scattered field in [4] that the

nature of the coefficients R%™, ™ have the form

[Rﬁm)lz (™ (n) In(kiem) | n) *nllan) (2.56)

T A (iem) | 5[ H (ki)

where cfm) (n) and cg"” (n) are some coefficients related to the Fourier coefficients of
the scattered field and its normal derivative respectively. So, as seen from (2.56) the
unknown coefficients R%™, 7™ have similar asymptotic behavior of J,(t) (or J', (1))
and H? () (or H'® (t)) respectively, that are given in (2.47)-(2.50). Thus, based on
this information, the first step of having a well-conditioned formulation can be

achieved by specifying the new unknowns, with the diagonal right-hand side matrix

operator R™1, as

R | TR  [o] RM (2.57)
L[] [Ra(m]f 7 {m)

with proper choice of the functions F; (n) and F,(n) that are selected according to the
asymptotic behaviors of (2.56). By considering the formulas in (2.47)-(2.50) it is clear
that there are a few possible choices of F;(n) and F,(n) which are given in the Table
2.1 that have similar asymptotic behavior for large arguments. In addition, a proper
combination of possible choices can be used which will be met in the problem of

scattering by impedance cylinders in Chapter 3.1.

Table 2.1: The possible choices of the elements of right-hand side regulator.

() | 1/),, 1)) B H'S 1D D

F,m) |1, )0 1/HP, 178D 1/5® 1/5'®
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Note that the key point of the selection of the operator R~! is creating new
unknowns by eliminating the asymptotically bad behavior of the old coefficients by a
scaling operation. It is clear that for all of the circular configurations, the construction
of new unknowns is just as explained here. However, the left-side regularization
operator is chosen, depending on the nature of the operator A, as it yields that LAR =

I + K where K is a compact operator in space [,.

In [6] 1/H’§lz) (as 1/F;(n)) is chosen as the operator R~ for the problem of
scattering by two perfectly conductive circular cylinders without a left side operator
L. In the scope of this thesis, in addition to this, the left-hand side operator L is also
selected as it produces a second kind system and the problem is generalized to a few
different circular geometries with different boundary conditions [11]-[13]. The chosen
operators and the numerical results for these configurations will be given in the
application of the ARM in Chapters 3.1 and 3.2.

2.2. ARM Algorithm for the Algebraic System of Boundary
Integral Equations

Here, some definitions and explanations that are used in [34] common to each
boundary integral equations are represented and the concept of the ARM for integral
equations is given through therein defined operators.

For the purpose, the Hilbert space [, (4) of infinite sequences {c,} as

(1) :{{cn | i lca|? 724 < oo}; 7, = max (1,|n|uz) (2.58)

N=—o0

is considered with evidently defined its scalar product and norm. As well, the notation
H* is used for well-known Sobolev spaces of functions, which Fourier coefficients
belong to ,(4). For any arbitrary, and smooth, simple contour S, that is shown as in
Figure 2.4, it is understood the Sobolev spaces on contour S for the parametrization

proportional to the arc-length of this contour.
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Figure 2.4: Cross-sectional view of the cylindrical obstacle of arbitrary shape with
related definitions.

Let the non-self-crossing S is a class of C%% [47] and it is situated strongly inside a
two-dimensional domain Q as presented in Figure 2.4. For the potentials of single and

double layers of diffraction theory [47] in Q, the following notations are used

P[v](a) = [v(p)G,(a, p)dl,, qeQ\S (2.59)

Q[u](q)diju(p)wdlp, qeQ\.S (2.60)

p

where G,(q,p) is the Green’s function of the domain R? that satisfies the same
boundary conditions on the boundary 0Q. Here #,, is the unit outward normal vector
at the point p € 9Q and functions u = u(p) and v = v(p) have the properties as u €
cte(S) and v € CO%(S) [47].

In small enough open vicinity V =V}, of S such that V,, N S = @ any point q €
Vi, has unique representation as g = q, * hfi,, where q, € S, 7, is the unit outward
normal vector at the point g, and h > 0 is a unique scalar value. Thus, the normal

derivatives of the potentials P and Q that is denoted with the prefix d,, can be defined

inV as
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[2,Pv](a)=(g/en, )[Pv](a)

[2.Qu](a) = (&/2n, )[Qu](a)

For any function f(q), the notation
®(q) = li
()= lim f (axhn,), qes
is used for limiting values, and the notation

f(q)="1(q), qesS

is used for direct values, under the assumption that £ and f exist.

(2.61)

(2.62)

(2.63)

(2.64)

The relations between limiting and direct values of the potentials (2.59)-(2.62)

are the same as for classic potentials [48], [49] and for the functions v(p) and u(p)

that have at least the properties v € C%%(S) and u € C1*(S), the following identities

are valid.

1
Y)
*
<
|
—_
o]
~
I

[p<->v](q):[ﬁv](q), qeS

[Q“u](a) =[Qu](q);%u(q), qes

[GHQG)U](q) = [@,Q(_)UJ(q), qes

(2.65)

(2.66)

(2.67)

(2.68)

Let’s now suppose that the contour S is parametrized by a vector function

n(8) = (x(8),y(8)) that has the properties as n(8)eC?*[—m, ] and
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(8/00)" (-7 +0)=(8/06)" n(x-0), K=0,12.. (2.69)

and provides a one-to-one correspondence between the points on the contour S and the
values 6e(—m, ]. Owing to the one-to-one correspondence of the parametrization, the

relation

def

= {x©F+ly@]f] >0 (270)

is valid where ()X means the K" and ' the first order derivative w.r.t. the argument.
Throughout the chapter, for any two functions a(6) and g (0) of arbitrary nature,
their inner product and composition will be denoted as

(a-B)(0)=a(6)B(0) 2.71)

(aop)(O)=a(B(6)) 2.72)

and, for the direct and inverse Fourier transforms on [—m, ] the notations F and F~!
are used, respectively. Also, I denotes the identity matrix and for the notation of

diagonal matrix T, the expression
T =diag{z,}” . 7,=max(|nf") (2.73)

is used.
Using these notations, the identities having a view of pseudo-differential
operator of the corresponding integral and differentially integral operators can be

derived as
[Ev]on:—%[F‘lT‘l(l —2MP) TR (I -(va))] (2.74)

[(Su]on:[F’lT’lM TF (uoq)] (2.75)
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[0,Pv]on = <|—1 .[F—lTM TR .(von)>}> (2.76)

[0,Q%u]en :%<|-1 [FT (1 42M%9)TF (u=n)]) @.77)

In the equations (2.74)-(2.77) the argument fe[—m, ] is omitted for the sake of
simplicity.
For the matrix M that denotes one of the matrices M?, M@, M%2P M@ it can

be shown that

>3 (@ [sf) (L ) m, [ <eo (278)

S=—00 N=—00
where my,, are the matrix elements of M. It means that m,,, are decaying when s,n —
oo even faster than the elements of a Hilbert-Schmidt matrix. In particular, such matrix
M defines a compact matrix operator in [,.

In order to understand the way of the representations (2.74)-(2.77), the derivation

and their correctness let’s consider the simplest case of potential Pv in (2.74). Namely,
it can be shown [50] that

[Pven](e)= Tez(ﬂ(é’),ﬂ(r))' (o)v(n(z7))dz, Oe[-n, 7] (2.79)

and function G,(n(8),7n(z)) allows the representation

G, (17(6),1())=L(6-7)+p(6,7) (2.80)

where

1(1
L(t)=-—{-=+In
(t) 271{ 5

} (2.81)

23inl
2
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; :_% Z ef ; te[-n, 7] (2.82)

and p(8,7) has continuous first partial derivatives and (02/9601)p(0,7) € L, (L,:

space of square integrable functions). It means, in particular, that

Z Z 747l | py| <0 (2.83)

S=—00 N=

where ps,, are Fourier coefficients of p(8, 1) and definition of t,, is given in (2.73).
The identity (2.74) and the inequality (2.78) for M = M? follows immediately [50]
from (2.79)-(2.83).

The most complicated proof is required for the identity (2.77). First of all [50],

(6,Q%u°n)(0)=A(0)+B(9) (2.84)

d2 T . . T
A(9)=%W__[Zu(77(r))ln‘25|n 927|d7+|(];9)__[[u(77(r))dr (2.85)
B(0) =155 | u(n ()W (6.7)de (286)

where W (8, t) has singularities proportional to In|2sin(6 — t)/2| only. Calculation
of the limits 9,,Q ®w in form of (2.84)-(2.86) is relatively simple in a point on local
flat part of the contour when the contour is parametrized by its arc-length, but the proof
becomes rather non-trivial in general case [28, 50].

In equation (2.85) the operation d?/d6? cannot be moved inside the integral
because it makes the result of the integral divergent. Nevertheless, under the
supposition of u € C1#(S), the expression for A(8) is correct when the differential
and integral operators are applied in the written order.

Due to the above-explained properties of W (6, 1), its Fourier coefficients wy,

satisfy the inequality

32



0 0

> W[ <o (2.87)

S=—00 N=—00

Taking together the equations (2.81), (2.82) and (2.84)-(2.86) one arrives into the
equation (2.77). The other formulas like (2.75) and (2.76) can be proved in a very
similar way as (2.74) and (2.77).

In the next subchapters, the two-dimensional BVPs, whose posing is similar to

that in [47] are considered by the ARM algorithm based on the above-given details.
2.2.1. ARM for Dirichlet Boundary Value Problem

This problem arises in the case of a TM wave incidence on a PEC cylinder. Let
a closed non-self-crossing contour S € Q = R? is given that has the property as S €
C%%. The contour is parametrized by the above described function 7n(8) =
(x(8),y(8)) for 6e(—m, m]. In addition, let V) is an open bounded domain with
boundary a9V = S and V) is the complementary to V=) = V() U S in the domain
R?%. Namely,

v =s; v —rz\ v (2.88)

It is necessary to find the unknown function u®(q) in qeR? \ S, (i.e. scattering

field in physical sense) which is one of the kind

u* (q)eC? (R*\.S)nC™ (V(+))mC1'“ (W) (2.89)

The condition (2.89) means, in particular, that u*(q) and all its derivatives of the first
order are continuous in V() and V), but the limiting values u*™(q) and us)(q)

as well as 8,us™*)(q) and 8,,u**)(q) for qeS are not necessarily equal where

)
anu“*)(q):( J , geS (2.90)
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In addition, the function u¥(q) must satisfy the homogeneous Helmholtz equation in
V@ e

(A+k2)us(q)=0, qeRAS (2.91)

and the well-known Sommerfeld radiation condition

o ol

Iim|q|1'2 {au—(q)—ikus(q)]:o (2.92)

Also, u*™® (q) should obey the Dirichlet boundary condition
u™ (q)=u""(q)=-u'(q), qeS (2.93)

where u'(q) is a known function (having a sense of an incident field values on ).

Utilization of the Green’s formulae technique gives the identity [47]-[50]

[P—aanus}(q):—u“)(q), qeS (2.94)

where §3,u*(q) = 9,u*(q) — 9,u*(q), qeS.
Taking the identity (2.94) as a hint, one can consider the integral equation with

unknown function v(q) € C%%(S),

[ﬁ](q)z—u‘(q), qeS (2.95)
with a hope that function

U(q)=[Pv](a), geR:\S (2.96)

provides a solution of the Dirichlet BVP (this hope is not fulfilled always).
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As it follows from (2.80), (2.81) the kernel of P is square integrable and,
consequently, equation (2.95) is one of the first kind in space L, (S). As mentioned in
Chapter 2, such equation posed in L, has rather “pathological” features. In particular,
it does not obey to the Fredholm alternative and may have many or any solutions. In
order to guarantee the unique solution let’s apply the ARM to (2.95) as explained in
Chapter 2.

Making the composition of both sides of (2.95) with the parametrization 1 (8)

and taking into account the representation (2.74), the following equation is obtained

—%{F*T4(|—2MP)T4FU-@on»]=—(won) (2.97)

Now it is evident that (2.97) is in form of (2.14) with the following double-sided

operators

L"lz—%F-lT-l (2.98)
R'=T'F (2.99)

that have the properties given in (2.16) where the linear (incomplete) spaces

H,=H™*(S)nC%(S)
H, = H¥($)ACH# () (2100
are chosen for a suitable numerical implementation of the ARM with Sobolev spaces
H~1/2(S) and H/2(S) [34, 47]. This choice is applicable under the assumption S €
C2% [34].

Applying to (2.97) from the left-side by the operator L = —2TF and introducing

new unknown vector column z; and right hand side f;, as

25 =T'F(I-(von)) (2.101)
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fo =—2TF (u'o7) (2.102)
then arrived at the final equation
(1-2M7)z, = fp, 2p, fp el (2.103)

Thus, the equation (2.95) is equivalently reduced to the infinite algebraic system
(2.103) in I,, with compact operator H = —2MP" whose Fourier coefficients satisfy the

inequality (2.78).
2.2.2. ARM for Neumann Boundary Value Problem

This boundary value problem is encountered in the case of a TE polarized plane
wave incidence on a PEC cylinder.

The posing of the Neumann BVP is very similar to the Dirichlet BVP. Herein
the Neumann boundary condition

0,0 (q)=0,u"” (q)=-0,u' (a), qeS (2.104)

is used instead of (2.93) that of Dirichlet boundary condition. This small change results
in the qualitative difference between the solution properties and the way of its
construction on the basis of the ARM. It is shown in [28], [50] that every solution

u®(q) of the Neumann BVP can be represented, if exist, as

u(q)=-[Qsu*](q), aeR*\'S (2.105)

where

ou’(q)=u""(q)-u""(q), qeS (2.106)
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Consequently, from (2.77) and (2.89) as shown in [47], [50] the following identity is

correct.
[6,Q"sus |(a)=8,u' (), qeS (2.107)

In the same manner, as done for identity (2.94), the new unknown u(q) that satisfies

the equation
[6,Q"u](a)=0,u'(a), qeS (2.108)
can be introduced with the hope that the function

U(q)=-[Qu](a), aeR\S (2.109)

gives a solution of the Neumann BVP.

The qualitative properties of (2.108) are opposite of (2.95). Namely, if the
equation (2.108) is posed in space L,, then the inverse operation to 9,,Q® becomes
bounded and even compact, but the 9,,Q® itself is unbounded in L,. Formulas (2.6)
and (2.7) dictate the same numerical instability that is discussed for equation (2.95).
But now not because of ||Ay]| in (2.6), but due to ||Ax*|| which tends to infinity when
N — oo. Thus, again it is needed to choose a set of correctness, to provide additive and

multiplicative splitting of 8,,Q® and so on. Now, opposite to (2.100),

H,=H"(S)nC"(S)
" . (2.110)
H,=H" (S)mC “(9)
can be chosen [47], [50].
Formula (2.77) reduces the equation (2.108) to
FT(1+2M%)TF (uon)=2(1-ucn) (2.111)

The regularization of the (2.111) can be done easily with the operators
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L*=FT (2.112)

RI=TF (2.113)

Applying the operator L = T~1F from the left to the equation (2.111) and introducing

new vector of unknowns zy and g as

zy =TF (uon) (2.114)
g=2T"F(I-(uon)) (2.115)

then arrived at the equation
[1+2MR]zy =0; zy,9¢€l, (2.116)

which is one of the second kind with compact operator H = 2M %2 in [,.
2.2.3. ARM for Boundary Integral Equation of Third Kind BVP

The third kind boundary condition also called as impedance boundary condition
or mixed boundary condition which defines a relation between the total tangential field

and its normal derivative on the boundary is

a(q)ut(q)w(q)”ta(nq):o; qes (2.117)

where ut(q) = u'(q) + u®(q) is the total field, and a(q) and 8(q) are supposed to be
infinitely smooth functions of point g € S and they are normalized as |a(q)|? +
|B(q)|? = 1. It is clear that the choice as a(q) = 1 and £(g) = 0 corresponds to the
Dirichlet boundary condition, and a(q) = 0 and 8(q) = 1 corresponds to Neumann
boundary condition. That is why the consideration of the boundary value problem in

sense of ARM is very similar to those problems. It will be shown that, depending on
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the value of these parameters, this problem can be reduced the Dirichlet or Neumann
BVPs.

Utilization of the theory of Green’s formulae technique [47], [50] gives the
following integral equation of the scattered field that satisfies the homogeneous

Helmholtz equation (2.91)

us(q)=—[Q(+)u}(q)+[P(+)v:|(q); qu(+) (2.118)

Onu®(q) = —[anQ(J")u}(q) + [6,1 P(+)VJ(q); qev(® (2.119)

where, u(q) = u**(q) and v(q) = 9,u**(q).
Even if the relations (2.118) and (2.119) are given for the scattered field, the
same relations can be obtained simply for the total field as well. From the relation of

the fields given above, the scattered field can be written as

us(q)=ut(q)-u'(q) (2.120)

If the equation (2.120) is substituted into (2.118) and (2.119), and then by using the
relations (2.65)-(2.68) the boundary integral equations

Zu(@)+[Qu](a)-[Pv](a)=u'(a); aes (2.121)

Pv](q)=dqu’; qes (2.122)

%v(q)+[anQ(+)uJ(q)—[an

are obtained for the total field, where now, u(q) = u*™(q) and v(q) = 9,ut™(q).
The system of the equations (2.121) and (2.122) can be used for finding the unknowns
u(q) and v(q). However, the relation (2.117) gives a possibility to express one

unknown in terms of the other one, for example, as
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ut(q)=-—2 (2.123)

and then eliminate it from one of the equations. In this case, one of the two equations
can be used for finding the corresponding unknown and then the other is obtained
simply by means of the relation (2.117). Before doing this, the system must be
analyzed from the point of the ARM. It is clear, as it is explained in [51], that the

regularization process depends on the value

n(q)=w (2.124)

Also, it is explained in [51] that the case of
18(0)=Bo>0; qes (2.125)

corresponds to the, so called, regular case where 3, is some, not very small, constant

and the alternative condition to (2.125) is
ler(a)|z g >0; qes (2.126)

when n(q) can be very small and even equal to zero.

In an analysis of E-polarized (TM-z) wave diffraction, n(q) given by (2.124)
corresponds to the impedance value. In this case, if the diffraction by a well-conductive
cylinder is considered then n(q) = 0 and the equation (2.121) reduces to the same
kind of equation of the Dirichlet boundary value problem and it can be solved in the
same manner as (2.95). This equation is also called as electric field integral equation
of scattering by PEC cylinder of TM-z polarization.

If the equation (2.122) is used for the purpose, with the condition of n(g) = 0,
it reduces to

Sv(a)=[enPv](a)=0onu'; qes (2.127)
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which is the magnetic field integral equation of TM-z wave scattering by PEC cylinder.
By means of the equation (2.76), it can be represented in the form of operators as

(l —2|v|anp)=2anu‘ (2.128)

which is a second kind equation and obtained simply by multiplying by two without
the need of using regularization operators. This happens because of the natural
properties of the normal derivative of the single layer potential d,,P that are given by
(2.66) and (2.76).

If an H-polarized (TE-z) wave diffractions is considered, then the ratio n(q) =
a(q)/B(q) defines an impedance on the surface. In this case, opposite to TM-z
polarization, for very small or zero values of the impedance, the equation (2.122)
reduced to the equation of the Neumann BVP and its regularization and solution can
be obtained in the same way as explained for (2.108). This integral equation is called
as the EFIE of the TE-z wave scattering by PEC cylinder.

If the equation (2.121) is considered for the solution of BVP in TE-z polarized

wave, for very small or zero value of impedance, the integral equation
1 o i (q)-
Su(a)+[Qu](a)=u'(a): ges (2.129)

is obtained. With the properties of double-layer potential given by (2.67) and (2.75)

the view in form of operators
(| +2MQ):2u‘ (2.130)

is obtained as a second kind equation which is the result of the properties of double
layer potential.

All the cases theoretically discussed here will be analyzed numerically in
Chapter 3.4 where the solution of the boundary integral equation of two parallel

impedance cylinders is under consideration for TM-z and TE-z wave incidence.
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2.2.4. ARM for Boundary Integral Equation of Dielectric BVP

Consider the dielectric body given in Figure 2.5 with the same domains V®) that
is discussed previously. Unlike the above situations, domains V) and V) have
different material parameters resulting into different but constant wavenumbers k"

and k() respectively.

Figure 2.5: The schematic view of the arbitrarily shaped dielectric obstacle.

Analogous to the above BVPs, it is necessary to find the scattered field u®(q),
g € V) u V&) which belongs to the same class (2.89) but satisfies two Helmholtz

equations with different wave numbers.

(A+k?)u'(a)=0, eV UV" (2.131)
k(+), qev(+)
k(q):{k()’ Sy (2.132)

In addition, it satisfies the dielectric boundary conditions
usu(q):usu)(q)Jrui(q)’ geS (2.133)
0,u™”(q)=0,u"" (q)+0,u'(q), qeS (2.134)

and the Sommerfeld radiation condition (2.92) in the unbounded domain V),
Analogous to (2.59) and (2.60) the potentials
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[P(r)VJ(q)ZIGz&)(q, p)v(p)dl,, geV® (2.135)

u(p)dl,, gev® (2.136)

can be defined. Here and below the subscript (1) is used for the values and functions
associated with the domains V™) respectively. By using the standard Green’s formulae

technique, the integral equations for scattered fields are obtained as
us (q) = [Q(f)us(f)](q)—[P(,)ﬁnUSH](CI); qev® (2.137)

u* (q) = —[QHUS(”J(q)+[P(+)5nus(+)}(q); gev® (2.138)

Note that the field expressed by (2.137) is the total field inside the region V) since it
is supposed that the incident field source is posed in the domain V(). On the other
side, the field given by (2.138) is the only scattered field. For having an equation

expressed in terms of the total field, the relation

us(q)zut(q)—ui(q); qev(+) (2.139)

IS substituted into the equation and then the following relations are obtained in terms

of the total field and its normal derivative.
u* (a)=[ QU™ |(a)+| P2 |(a)=0; eV (2.140)
o,u (a)-[2,Quu ] (a)+[ 2, P2V (@) =0; qeV?  (2.141)

ut (a)+[ Q' J(a)-[ R. 2 J(a) =u' (q); qeV (2.142)
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Onu* (@) +[ 20Qyu " | (@) —[ 0aP 20U [(a) = 3,0 (1);
q eV(+)

(2.143)

where the values u®(q) and d,,ut(q) are the values in the domain but u*™®)(q) and
9,ut@®(q) are the values on the boundary. The reason for expressing the integral
representations in terms of the total field as (2.140)-(2.143) is to have similar integral
equation forms that used in [17]. Therein the boundary integral equations are given in
terms of the surface currents where the surface currents correspond to the total field
on the surface. Also, in [17] the integral equations are classified as EFIE and MFIE for
both polarizations and these equations are used in the following Chapters 3.3 and 3.4
where the application of ARM is investigated.

Now let’s obtain the boundary integral equations from the integral
representations (2.140)-(2.143) by passing the limit values given in (2.65)-(2.68).
These operations yields the integral equations

%Ut (a)-[Quu' |(@)+[Pryo.ut](a)=0; aes (2.144)

%Ut (q)+[6(+)utJ(q)_[ﬁ(ﬂanut](Q) =u'(q); geS (2.145)

1 t )4t t .
500 (a)~[2,Q0u ](a) +[ 2R Pnu" |(a)=0: s (2146)

%anut(Q)+[GnQ((f))ut](q)—[6n5(+)anut](q)=8nui(q); qesS (2.147)

on the boundary S. In these equations the superscripts (+) of the fields are omitted
since the total field on the outer side of the boundary is equal to the total field on the
inner side in accordance with the dielectric boundary conditions (2.133) and (2.134).
The equation set (2.144), (2.145) are called as EFIEs and (2.146), (2.147) are
called as MFIEs of TM-z wave scattering by the dielectric body. For the TE-z
polarization, the opposite is said. This is the result of field formulation which leads

four equations in two unknowns [22]. Thus, any of two equations or any proper
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combination of them can be used for finding the unknowns. Here, the EFIE or MFIE
formulations i.e. (2.144) and (2.145) or (2.146) and (2.147) are used for the solution
of the system since this kind formulation is used in [18] and [19] which is followed
from [17].

Now let’s, at first, consider the equation set (2.144) and (2.145) in a proper form

for analysis as

u'(q)+ Z[Qu)ut}(q) - 2[5(+)5nut](q) =2u'(q)
(2.148)

u'(a)-2[ Q' [(a)+2[ Pyau J(q) =0

and in the matrix form as

w Lkl e

where the unknown vector and the known right-hand-side vector are as follows.

e BHW] e

If the equations (2.148)-(2.150) examined then it is clear that the matrix element A4,
is a diagonal one but A, is not. So, for having a full diagonal matrix, the block matrix
A,, must be diagonalized. As it is seen from (2.148) it has the same kind equation of
the Dirichlet BVP and thus, its regularization can be done in the same manner. So, the

double-sided regulators are constructed as

L‘l{l [O]}; R‘l{l [O]} (2.151)
[0] [0] Rp'
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where [ is the identity matrix and the operators that subscripted by D are the operators
of the Dirichlet BVP given by (2.98) and (2.99).

The consideration of the equations (2.146) and (2.147) analogous to (2.148)
yields to

O,u' (a)~2[ 0, Pa,ut () +2[ 2,000 |(a) =20,u' (q)
(2.152)

o,u' (q)+ Z[OHF’(_)anut}(q)— Z[GHQ((_‘))ut](q) =0

with similar matrix form but with the inverse order of the unknowns. In this case,
again, the matrix element A, is a diagonal one and, the block matrix A,, must be
diagonalized for having a full diagonal matrix. But now, A,, has an equation of the
same kind as Neumann BVP and its regularization must be done similar to that. That’s

why the regularization operators have the following matrix forms

L‘l{l [O]}; R‘l{l [0]} (2.153)
[0] Ly [0] Ry’

where the operators denoted by the subscript of N are the operators of Neumann BVP
given by (2.112) and (2.113) respectively.

As can be seen from (2.148) and (2.152), the regularization procedure changes
depend on the chosen equation set. However, even if the procedure that is explained
here is only for the EFIE and MFIE system, there is not a big difference for any
combination of the equations (2.144)-(2.147). A different but qualitatively same
procedure of regularization that explained in all details can be found in [24, 34] for
dielectric boundaries.

Before finishing this part, it is crucial to underline that the solutions of the
integral equation set (2.144)-(2.147) are not resonance-free and thus, may not be
unique due to the facts that explained in [22] and in Chapter 3.4 of the [17]. For
obtaining resonance-free solutions, there are several methods mentioned in the

introduction part, which make a proper combination of the equations (2.144)-(2.147)
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and guarantee a unique solution. However, the resonance solutions are beyond the

scope of this work and the resonance frequencies are not considered here.
2.2.5. Singularity Properties of the Kernels of Potentials

The first and the basic step of the ARM is the local singular expansion of the
kernels of the single and double layer potentials (2.59), (2.60) and their normal
derivatives (2.61), (2.62) (if used in the formulation then the consideration of the
tangential derivatives may be required which is out of the scope of this thesis).

It is seen from (2.59) that the kernel of the single layer potential is the two-

dimensional free-space Green’s function which, for the e!“t time dependency, is
. _ L H® Ryt i 2.154
Kp =G,(a, p) = - Hyg (kR)_E[JO(kR)—lYO(kR)] (2.154)

where free space denotes not only vacuum but any homogeneous medium. Here HZ (-
), Jo(*) and Y,(-) are the zero order second kind Hankel, Bessel, and Neumann
functions respectively and R is the distance between the points g and p that has the

definition

1/2
Rz‘a_ﬁ‘z{(xq_Xp)2+(yq_yp)2} (2155)

It is well-known that the J,(kR) is infinitely smooth function of R that has the

expression [26]

(R (kR)*

Ja(kR) =1—
o(kR) o4

o (2.156)

but Y, (kR) has logarithmic singularity when R = 0 and it has the following expansion
[26]
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2
Yo(kR) =§In [l%R)JO(kR)+277/JO(kR)+@_... (2.157)

and in terms of the Chebyshev polynomials T,,, () with known coefficients b,, up to

25 digits which is given in [52]

2 (kR 2 < kR
Yo (kR) =—In (—j Jo(kR) + i Jo(kR) + Z b, Top, (—) (2.158)
Vs 2 T 8
n=0
Here y = 0.57721566490 ... is the Euler constant.
By substituting (2.158) into (2.154) yields
1 (kR 1 g kR
Gy(kR)=——1In| — |Jg(kR)+| === [Jg(kKR)== > bTon| —
2(kR) - n( 2) ol )+(4i 2;;) o(kR) 4n§,) h Zn( 8) (2.159)

For the points g =n(@) = (x(@),y(@)) and p =n(1) = (x(r),y(r)) the
relation (2.155) can be rewritten as

1/2

RE.9) =] (0)-n()| ={(x(0)-x(5)* +(y(0) -y ()P}~ (2160)
Now, let us introduce the notations
6=6,6=r, 6=0-1, (2.161)

and

K K
XgK)[d( )x(e)} ;ng){d( ) y(e)] Cj=12  (2.162)
6=0

Now it is evident from (2.160) and (2.161) that R - O when § — 0 and § — +2m with
the property of the parametrization function n(8) that given in (2.69). Thus, the
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considered function may have the singularities only in such points where sin (g) =0
which are the same points of § = 0, £2r. That is why, to investigate the behavior of
the considered functions, the case § — 0 is considered. For this end, at first, it is
necessary to consider the corresponding behavior of the function (2.160). For this

purpose let’s define the Taylor series of

1

5X:x2—x1:xi5+§xi’52+1 f: L

xé‘3+—x1

1 4)
6 17 24

54 +0(55) (2.163)

! 1 " 1 " 1 4

By means of these Taylor series, one can calculate that
R% =R?(6,7) =522 [1+ a5 +bo? +c5° +(’)(54)} (2.165)

where [ = 1(8) is the arc length defined by (2.70).
Now, by using the relation (2.165), the term that has the logarithmic singularity

can be written as

In[kR(6,7)] =%In [kZR2 (6’,1’)} = % In&%+p(0,7) (2.166)

= |n|§|+go(6’,r)
where ¢ (8, ) is some infinitely differentiable function in the domain |6 — 7| < 2m.

Substituting the equations (2.156) and (2.157) into (2.154) and then using the relation

(2.166) one can obtain the singular expansion
1 N
Kp =G| kR(6,7) |==——In|s]41 0)s" ++Fy (6, 2.167
P =Ca[R(0,5)]-g 1 D A\ (0)2" (+Fy(0r6) (2167

where Fy (6, T) is some function that has continuous derivatives of the order not bigger

than N. This expression is valid for arbitrary integer N > 2.
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It is clear that the function G, (kR(8,7)) is the periodic function of 8 and t with
the smooth parametrization function n(6) that has the property (2.69). Also, it is

evident that it is infinitely differentiable except at the points where § = 0, +2m. As

stated above, these points are the same as where the periodic function sin (g) = 0.

Furthermore, this function can be expanded into Taylor series for § — 0 as

.(5) 5 (5)31 (5)51
sinf — |=——|—| — 4| —| ——---
2) 2 \2) 31 \2) s (2.168)

6 2 4 6 J
-2 [1+a5 ) +0(5 )
By comparing the equations (2.166) and (2.168) one can easily see that

In

2sin (%)‘ = In|6]+v (6,7) (2.169)

where (8, ) some infinitely differentiable function in the domain |8 — | < 2x. In
addition, it can be found in [53] that, this function has the following Fourier series

expansion

In

Zsin[Ej = —1
2 2

which can be written in another form [35], by the help of ,, that has the definition in
(2.73), as

> 2 o n=0, 0,7 [~ 7] (2.170)
N=—o0

2

. (O-1 1 - ein(e—r)'
25|n(7j‘=— Z T, 0,2’6[—7[,72'] (2171)

1
—=+In
2

N |

N=—o00
Now it is evident that by means of this expression, the singularity of the kernel (2.167)

can be extracted and even the periodicity is preserved since they have the same

singularity at same points. Because as shown in above chapters by the operators, the
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integrals are discretized by expanding all the corresponding functions into their one or
two-dimensional Fourier series and then reduced to the algebraic systems of their
Fourier coefficients by the help of the orthogonality of the complex exponentials [5],
[51], [54]. That is why the singular kernel is splitting into the smooth and singular
parts and then the singularity is extracted with the help of the Fourier series expression
given by (2.171). After all these statements, it is evident that one can express the kernel
given by (2.167) as

+ p(@,z')} (2.172)

23in(ﬂ)
2

which is, in some sense, the proof of the expressions (2.80)-(2.82).

Kp =G [kR(6,7)] =2i{—%+ In

T

Now let’s analyze the kernel of the double layer potential given by (2.60) which

is the normal derivative of the Green’s function as

_ 3G, (kR)

Q on,

K =V,[G,(kR)]-A, (2.173)
where V,, stands for the gradient subjected to coordinates of p(7) = (x(r),y(r)) =

(xp,yp) and A, = (nx(r),ny(r)) is the unit outward normal vector at point p whose

components are

iy =Ny ()8 + 1y (7) 8y Ny (7) = BI"((TT)); ny(r)z—X,((T) (2.174)

If the gradient operator is subjected to the Green’s function in (2.173) it results in

y

8G,(kR) . G, (kR) .
V,[G,(kR)]= 6>E )ex+ 83(/ )e

_ 0G, (LR) o(kR) . G, (kR)d(kR) .
TTo(kR) ox, * o(kR) oy, >

p

:kan(kR){aRé aRé}: oG, (KR) , -

(2.175)

D>

o(kR) |ox, oy, |7 a(kR) *
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If R is considered as a vector that directed from point p to point g then it can be written

in vector form as

—

R={(x %5 )& +(vg Y7 )8y (2.176)

By taking into consideration this new form and the definition (2.155), then the equation
(2.175) becomes

V,[G,(kR)]= kaSZT(s;)E (2.177)
By substituting this equation and (2.154) into (2.173) one arrives at
0G, (kR) ZLGHéZ)(kR) R-A, =KLH1<2>(kR)F§.ﬁ (2.178)
on, 4i o(kR) R 4 kR P
with the well-known identity [26]
M2 oy (2.179)
574
Here Hl(z)(z) is the first order second kind Hankel function and has the form
H?) (2) = 3,(2)-iv(2) (2.180)

where its parts are the first order Bessel and Neumann functions that have the

expansions

J(kR)= - il (2.181)
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3
Y; (kR) %{é{ln(%} y} 3 (kR) —kTR N S(Zg) +(9((kR)5)} (2.182)

and in terms of the Chebyshev polynomials T, () with known coefficients c,, up to
25 digits that are given in [52]

2 1 kR - kR
Y, (kR) = ;{_ﬁ + [In (?j + 7/} Jl(kR)} + gchznﬂ (?j (2.183)

By substituting these equations into (2.178) and using the equations (2.174) and
(2.176)

ik2 Hl(z)(kR) r
2w

2 2
oo AL S ot
1 (R)

KQ
(2.184)

is obtained. Even it seems that (2.184) has the logarithmic and 1/R? singularities,
because of the factor R - 7, it becomes finite but not infinitely smooth yet. This can be

shown by investigating the limit cases § — 0 for the terms R- fi, and R by using their
expressions given above and the Taylor series given in (2.163) and (2.164). Let’s start

with R - 7,

'(7) (2.185)
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If the Taylor series of the function R that is given by (2.165) is used then

ﬁ-ﬁ "' "' VU "'
. p_l(xy—ysz 1 1 x"Yy-y%
lim == o) == (2.186)
50 RZ 2 | 1252 2l 3

Is obtained. Thus, this ratio has a limit and it is infinitely smooth. This brings a very
important result from the point of the application of ARM. Because similar to done the
kernel of (2.172), by adding and extracting the canonic function (2.170) properly then
an infinitely smooth kernel for double layer potential can be constructed.

It is evident that all the steps performed for the kernel of (2.60) are valid for the
kernel of (2.61)

<G (R)

2.187
I (2.187)

with very slight differences as n, - n, and V,R = —V,R.

But the situation is quite different for the kernel of (2.62) that has the form

_ G, (kR) (2.188)
%% an,on,
which also, can be written as
8°G, (kR) .
nan =" Vallh ViG]
. oG, (kR
(v R )
(2.189)

Il
-
e}
<
o

Il
>
o)
<
o
——

Il
>
o
f_/\_\
<
o
>
o
|
20>
N —
L 1
o)}
jS)} "’O
D\
)
~
+
1
=
o
N
2>
SN—
| E—
<
o
1
jo)}
®
Q) N
—_
o =
pe
~—
| |
H_/

where R = R /R is the normalized unit vector. For the Green’s function in (2.154)
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1 0°HP (RR) 1(
4 onong R?

i, -R)(f -ﬁ)i—?Héz)(kR)—
(2.190)

[i(ﬁ .Ii)(ﬁ 'é)_(ﬁq'ﬁp)}k—zm

4 kR

is obtained with the help of the relation of the differential equation of Hankel function

214(2) @) (2
IH () _ 1Mo () pa,y. M@ @y (a0
dz? z dz dz

The singularity properties of the functions H?) (kR) and H\* (kR)/kR are given in
(2.159) and (2.184) respectively where Héz)(kR) has a logarithmic singularity and
Hl(z)(kR)/kR has a singularity proportional to 1/R? and a logarithmic singularity.
However, in (2.190) these terms are multiplied by some factors as (#, - R)(f, - R)

and (A, - fi,). That is why it is necessary to investigate the limit case of these factors

for & — 0 as well. By the help of the Taylor expansions (2.163)-(2.165) (similar to
(2.185), (2.186)) one can obtain the limits easily as

o 1 (1 , 1 |
|g|£f(])(nq-R):@{§52M12+€53M13+(9(54)} (2192)
lim(n ﬁ):-i l52|v|1’2+153|\/|1’3+(9(54) (2.193)
e I(z) 12 6
] 1 _ 1 2
%lég(?j_w{l—a5+0(5 )} (2.194)

lim(1, -A, )= L {I(é’)l(r)+5Pl’2+%52P1‘3+%53P1’4+@(54)} (2.195)

with the following definitions
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M= (@) () y(j) ) - y(i) (G)X(j) )

- . . . (2.196)
phi _ X(')(G)X(J)(H)— y(l)(g)y(l)(g)
Now let’s instead of (2.190) consider the function
D(6,7) = 221 (O)1(7)K, o 21 (6)1 ()| Lo (KR) (2.197)
)= O Ree =T 4 anon, |

which results in a proper formula from the point of singularity extraction. By collecting
the formulae (2.159), (2.183) and (2.190) yields

o(6.0)=-Zktton (o), R, 4)
[ 2 8o ) 5]
_i?ﬂ'kzl(e)l(z.)(ﬁq .ﬁp){Jll((:;R)(l—iﬁj—éicnnnu(%}}
on Al oo 2 5)

(2.198)

If the expansion of the functions that are given in (2.156)-(2.158), (2.181)-(2.183) and
the limit values (2.192)-(2.195) are considered carefully then it is evident that the parts
in the first two rows are infinitely smooth, the third row is finite, the fourth row has
logarithmic singularity and the last one has a singularity proportional 1/52. It is known
from above explanations that the logarithmic singularity can be extracted by means of
the canonic function (2.170). Also, it is evident from the Taylor series of (2.168) that

-2
{Zsin(%ﬂ (2.199)
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has the same singularity as 1/5% when § — 0. Moreover, the following relation is valid
[50]

Zsinie_fj =—a—ln
2 062

The Fourier coefficients of the function (2.200) can be obtained quite simply by

2sin (%)‘ (2.200)

differentiating the Fourier series in (2.170) w.r.t. & which results in another Fourier

series as

[ERN

2 o _in(f0-t ) .
This formula explains the appearance of the part of the kernel that is shown in (2.85).

All of the explanations till know express that the canonic function (2.170) and
its another form (2.200) whose Fourier coefficients are known analytically are quite
proper functions to remove the logarithmic and 1/82 singularities. Namely, extraction
and addition of these functions results in infinitely smooth functions whose limits are
finite for § — 0. Some of these limits can be calculated quite simply from the above
given formulae and explanations. But, some parts of the limit of the function D (6, 7)
in (2.198) cannot be obtained from the information given here which is calculated in
[50] and is going to be represented below.

After smoothing of the kernels with the help of the functions (2.170) and (2.200)

the following limits that are necessary for numerical calculations are valid for § — 0.

. _(6- K
;TO{KF) +iln(23m(71)j% (kR)} =%—£+ In(zj (2.202)

0>t

i ko +Linf 2sin[ =7 210 g o oL M
;TO{KQ+2ﬂIn(Zsm( » )j R R np}_Zﬂl(T)! 2|2] (2.203)

0>t
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g"éng kzl(e)l(r)(ﬁq -ﬁp)JllEF'ZR)|n[2sin(?n{25in(%ﬂ_2 (2.205)

— In| =+ —- o= |+ - += _=
2 2) 4 2z 4) | g2 42 2 |4 | 12

From the expressions (2.202)-(2.205) it is evident that corresponding to the any part

which is seen as

kR
In (7j f(6,7) (2.206)
in the kernels, a new part in the form
. (@—-1
In[ 2sin (TJD f(0,7) (2.207)

is extracted (and of course, the same term is added which is not seen in the
expressions). At this point, it is necessary to make some critics about the behavior of
f (6, t) corresponding to (2.202)-(2.205). In (2.202) f(0,1) = J,(kR) which equals
one for zero argument. This means extracting only the term In|2sin[(6 — 1)/2]|
without the factor f(6, ) constructs, again, infinitely smooth parts by removing the

logarithmic singularity. Moreover, the situation is a bit different for the kernels K, and
K5, p Which have not singularities because of the factors (7, - R) and (7, - R) that go

to zero faster than the logarithm. However, as stated above, even these kernels are not
singular, they are finite. Nevertheless, by subjecting the extraction operation as (2.203)
and (2.204) constructs infinitely smooth parts.

By doing so in the kernels, yields the product
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20 %5")

which consists of infinitely smooth factors. Substitution of the limit values (2.165) and
(2.168) into (2.208) and considering the case § — 0 results in

In f(6,7) (2.208)

In (ﬁj lim f(6,7) (2.209)

2 )50

and these limit values are seen in (2.202)-(2.205). In addition to this, making the
extraction operations by keeping the factors f(6,7) with logarithmic functions
requires the use of the convolution operation that brings the possibility of constructing
exponentially converging algorithms [55], [56].

In this subchapter, at first, some BVPs are constructed by means of the integral
equations that are in form of single and double layer potentials and their derivatives.
Then the singularity properties of the kernels of integral equations are investigated and
then the smoothing operation and constructing exponentially converging algorithms
by means of a canonic function is explained and the limit values are examined. In
Chapters 3.3 and 3.4, all these theoretical details are investigated by means of the

numerical examples for impedance cylinders and dielectric cylinders.
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3. APPLICATION OF ARM TO DIFFERENT
SYSTEMS OF CIRCULAR CYLINDERS

3.1. Application of ARM to the Algebraic System of Series
Solution of Two Parallel Circular Impedance Cylinders

The geometrical structure of the considered problem is given in Figure 3.1.

m=1_- m=2 e

: Z i Z 2

Figure 3.1: Geometrical structure of two parallel circular impedance cylinders.

The work of application of the ARM to two parallel circular impedance cylinders

is published in [12] for e~ time dependency in comparison with the formulation
that is given herein. In sense of formulation, it is just switching of H,gl)(kp) to

H,(f) (kp) (and derivatives) in all formulas that are given in [12] and in numerical sense
there is not qualitative difference. Here, the selected two-sided operator pair (L, R) that
reduces the first kind system to a second kind one as I + K, the compactness of the
operator K and the numerical results that are published in [12] which support the
stability and reliability of new system are given once again. For more technical details
the reader is referred to that publication.

Since the boundaries are modeled as impedance, then the inner fields of circles
are null and there are just scattered fields. For TM-z case the z-component of the

electric fields that are reflected from the boundaries are in form of (2.18) with

unknown coefficients R,(ll) and R,(f) and the relation of the tangential total electric and

magnetic fields on the boundary with a surface impedance 7, is given as
EPt =nHR! (3.1)
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where H, is as given in (2.24). If the boundary condition (3.1) is imposed on each
boundary and the transformation of the local coordinates is achieved by the second
row of the addition theorems in (2.23), then the following algebraic equation system

is obtained.

_ {2y _
H® () J,.@) {RP} {—Tﬁ“wn(a)}

_{12}‘ = r52) - T (O)J_(b) (32)
J..(@ H.7(b) LA
A
Here, all the entries of matrix A with top-line has the form
Z,(p,) =2, (k,p,) ~1BZ,(k;p,); M=12 (3.3)

where Z,(t) stands for J,(t) or HZ (), ne = (ue/e,)Y? is free space intrinsic
impedance and S =ns/n,. The off-diagonal elements with top-script {pq} are
interaction matrices similar to (2.42) and have the following form

{pa}

Z, (Pn) = Z,(0n) D € mHA (kd ) (3.4)

S=—00

As explained in Chapter 2.1, due to the bad behavior of the Bessel and Hankel
functions, the system (3.2) is one of the first kind and it must be reduced to a second
kind one by means of ARM algorithm. For this purpose, as a first step, according to

the details given in Chapter 2.1, the right-side operator R~ can be chosen as

(3.5)

1
] {z (b)}

where the functions with top-line are in form of (3.3). This choice, which is a

combination of functions J,(t) and J’, (t) has the same asymptotic behavior as
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possible choices of function F;(n) that are given in Table 2.1. In addition, it has
another superiority to these choices because J,(t) and J', (t) have not common root
for arbitrary t which prevents division by zero.

Since the operator R~ is identified as (3.5) now, the next step is to determine
the left-side operator L as it yields a second kind system operator I + K. For the matrix
operator A that is given in (3.2) and the diagonal operator R~ in (3.5), the operator

L1 is obtained as

L = (3.6)

which yields a system in form of (2.17) with a compact, in space [,, operator K as

following.

K {Ei [P;ﬂ; Klz{kr%)}:sz_oo; Ky ={k,§§>}:sz_w 3.7)

The compactness of the operator K can be shown easily by analyzing the entries k,(fs)

and k,(lzs) which have the following upper bounds for some real-valued constants A; ,

of asymptotic analysis.

o[t o fY 2 f!
okl |n| a s
e

The equation (3.8) proves the compactness of the operator K for any d,, >a +b

1
G

(3.8)
k)

which is already satisfied for the configuration that is given in Figure 3.1.
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If the operation LAR, with the above-given operators, is examined carefully it
can be seen that the resultant identity operator has not exactly, but, asymptotically one
on its diagonal. This is important if a spectral problem is under consideration and the
roots of the determinant are searched. Because, when the diagonal becomes exactly
one then the dependency to the frequency may be destroyed. Such an operator R and
correspondent operator L is suggested in [12] and it is tested. In the sense of numerical
results and the compactness of K it has the same qualitative properties as (3.5).

Let’s now see, through the numerical results, the superiority of the obtained
second kind system by the two-sided operator pair (L, R) that are given by (3.5) and
(3.6) compared to the first kind system (3.2).

The following numerical results are given for the values of both surface
impedances are equal ny, = 100 + 100i, the radius of the circles are a = b = 1/k,
and the distance between two circles d = 5/k, where the center of both circles are
posed on the x-axis. The incidence field is supposed as a TM-z polarized plane wave

impinging on the circles with r/2 incidence angle.
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Figure 3.2: a) Condition number, b) Rank, ¢) On the boundary m=1, d) On the

boundary m=2, maximum deviation from the satisfaction the boundary condition.
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In Figure 3.2.a) and b), the condition number that is defined by (2.6), and the
rank of both systems, i.e. before regularization and after regularization, are plotted. It
is well known that a well-conditioned system has uniformly bounded condition
number and its rank grows linearly with increasing truncation number. On the other
side, the condition number of an ill-conditioned system grows dramatically, and it is
rank-deficient while the truncation number increases. These facts are seen clearly from
the plots. Here, the truncation number means for a value N the infinite series are
truncated from —N to N and thus the size of the algebraic system becomes 2(2N + 1).
In Figure 3.2.a), for a better view, the condition number of the first kind system is
given in logarithmic scale and even scaled by a small factor.

In Figure 3.2.c) and d), the maximum deviation from the satisfaction of the
boundary condition (3.1) on both boundaries is given. For a clear comparison, the
values that are obtained from the solution of the second kind system are scaled by a
very large value. These graphs show clearly that the solution of the first kind system
is far from the satisfaction of the boundary condition which means the solution is not
correct. On the other hand, the second kind system which is arrived at by the suggested
regularization operation satisfy the boundary conditions perfectly with machine
precision.

Figure 3.3.a) and b) shows the surface currents on both boundaries, m=1 and
m=2, and Figure 3.3.c) shows the bistatic RCS of the scattered field from two circles
for regularized and un-regularized systems. As seen from the graphs, the results that
are obtained from the first kind and second kind systems are quite different as
expected.

Notice that these results are not a validation but comparison of two systems.
However, due to the facts that are shown in Figure 3.2 the regularized, i.e. second kind,
system is reliable from the point of numerical results. Also, in [12] (in Figure 2) a
verification of the bistatic RCS for several impedance values is made by a packaged

program called as Ansoft HFSS.
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Figure 3.3: The values calculated at N=40; a) Surface currents on the boundary m=1,
b) Surface currents on the boundary m=2, c) The bistatic RCS.

Now, it is clear that the LAESL, i.e. the algebraic system before regularization,
is extremely ill-conditioned as shown Figure 3.2 by means of key indicators as the
condition number and rank. In addition, in Figure 3.3 by means of physical quantities
as surface current and RCS, the difference between two solutions is shown clearly.
The calculations corresponding to these plots are performed in MATLAB environment
by using the iterative solver “quasi-minimal residual” (gmr) method which is one of
the many options of MATLAB. Because, even being extremely ill-conditioned and
rank-deficient for N=40, the MATLAB’s LU solver keeps working perfectly well for
the system (3.2) contrary to the expectations. When the LU solver method of
MATLAB has invoked, a warning about bad-conditioning of the matrix as “matrix is
close to singular or badly scaled” is thrown and the value of reciprocal condition
number (rcond) is displayed which is very close to zero. This means MATLAB is
aware of the situation and makes something inside (might be the scaling of the matrix
elements or implementing some preconditioning techniques) which masks the bad
behavior of the LAESL. For the purpose of revealing the ill-conditioned behavior of
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the LAES], the solution of the system (3.2) is performed by an LU decomposition
solver which is implemented in C++ with double precision (16 significant digits) and
the maximum deviation from the satisfaction of the boundary condition is calculated.
The results that are obtained for several truncation numbers on both surfaces are
tabulated in Table 3.1. As seen from the values in the table, with increasing truncation
number the boundary condition is far from being satisfied.

Table 3.1: Maximum deviation from the satisfaction of the boundary condition tested
by an LU solver of mantissa length 10 via the solution of the matrix A.

Truncation number Maximum deviation from satisfaction of the boundary
per block condition

(N) Surface 1 Surface 2

10 2.107708154721642e-08 2.110741476084647e-08
20 4.199639234666350e-02 2.110740774266010e-08
40 0.852222875038121e+11 2.110740707965443e-08
80 5.767939322592583e+39 1.592155168152142e+40
100 3.172408189417764e+64 5.632395455446972e+65

In this chapter, the numerical implementation of the suggested ARM algorithm
for circular boundaries that is explained in Chapter 2.1 is applied to two parallel
circular impedance scatterers and its achievement is shown in many aspects by means

of illustrative numerical results.

3.2. Application of ARM to the Algebraic System of Series
Solution of a Few Eccentrically Layered Circular Dielectric
Cylinders

The considered configuration of the eccentrically layered dielectric circles is

given in Figure 3.4.
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Figure 3.4: Geometrical structure of eccentrically layered dielectric circles.

This model can be used as a draft of power transmitter cables. That is why the

analytical model of such a configuration has sense in real world. The ARM algorithm

and remarkable numerical results that support the necessity of reducing the algebraic

system to a second kind one for this configuration is published in [11]. Here, the

algebraic system and the regularization operators are given for TM-z case and the same

numerical results are repeated here once more.

Let us assume that a TM-z polarized incident plane wave that has the expression

in form of (2.25) illuminates the system of the dielectric circles of Figure 3.4. If one

applies the formulation steps, in a very similar manner, as in Chapter 2.1, then arrives

at the following algebraic system Ax = b which is a combination of the systems (2.41)

and (2.44) similar to the representation that is given in form of (2.45).

[ —
—~
w o
i~

L1

[ —
—~
~Oo
i

|

[0]

2]}

]

I

1 (3.9)
]

In Chapter 2.1 it is explained mathematically for the general case, and in addition

in Chapter 3.1 it is shown by numerical results of two parallel impedance cylinders,

that such a system is one of the first kind and naturally ill-conditioned one for
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numerical calculation since it is very much sensitive to the matrix inversion operations.
Thus, it is clear that this system must be reduced to a second kind one for having a
stable system and, as a result, reliable numerical results.

According to the given background in Chapter 2.1, the double-sided regulators

for the system (3.9) are chosen as

RL. (3.10)

Lg = (3.11)

with the form A, = diag

P (om) (Hr(zl)(kjpm))_l, P (py) (Hﬁl)(kmpm))]-

After applying the regulators (3.10) and (3.11) to the system (3.9), then the

second kind system (I + K)y = Lb is obtained with the following compact operator

K=~ ' (3.12)

The compactness of this operator, by means of (2.47)-(2.55), can be shown by
the upper limits of its entries W,Q,T that are seen in (2.41) and (2.44) with the
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interaction of the addition theorems as follows with some constants of asymptotic
analysis ¢y, ¢, ... C10-

For the function W,5™

k(W)ls‘<C _(|n|!+|s|!) (Ejn(%js
ns 2L Injusfr | a a 313
(Inft+]s]1) ] NaY o
k(W)14‘<C 5[ a a
n,s 3 ]
) (&) ()
sl o [(ls] (o V(e )
S el I e R el
- - 23 23
For the function Q3™
k(Q)12‘<c (|n[H+]s-1]1) (E)n(%js'
v 2 |n|![s]! a a )’
k(Q)13‘<c (In|4+|s- 1)) Ejn(dﬁjs
ns 6 n|1]s|! a a 314
(e ls=) ] a V' @ ! o
k(Q)l4‘<C : A R
"L Infslt ] d14j (dm
r T In| Is|
K92 <c (Inft+[s=41) | b (L
s 8_ |n|![s]! 1\ dyg d,,
For the function T,)™
(| o [ (n+1[slY) (Ej(d—)
ns S ERE a a )’
(In+2m[s1) 1o\ dy, Ve 19
s 23]
ns 10 In|s|! a a

Since the inequalities d,,d13 < a, dy3 > b, dy3 > ¢, diy > a, di, > d are already

satisfied, then all the entries in (3.13)-(3.15) are uniformly bounded. That is why, it is
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proved that the initial boundary value problem of a few eccentrically layered dielectric
circular cylinders is equivalently reduced to one of the second kind successfully. Let’s
now see these facts by means of numerical results that are published in [11].

The numerical results are given for the values as €,; = 4 + i€'q, &5 = €3 =
16 and &, = 4 and u,; = 1 for all regions and the imaginary part &', takes three
different values as 0,10,100. The center of the circles are posed as
Om (koXm, koym) = (0,0),(—1,0),(1.5,0),(6,0) and the radiuses are kyp, =
2.5,0.5,0.5,and 2.5 for m = 1, 2, 3, 4 respectively.

For the configuration that is given in Figure 3.4 with above given parameters the
comparison of LAES1 and LAES2 is shown in Figure 3.5.
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Figure 3.5: The condition numbers of the LAES1 and LAES?2 and the absolute error
of LAES2 for different values of imaginary part of the dielectric permittivity of the
region j=1.

In Figure 3.5, the condition numbers of the LAES1 are shown in linear scale
through the curves that are denoted by the number 1. The condition numbers of LAES2
are shown in logarithmic scale by the curves which are denoted by the number 2 and
the absolute error of the solution of the LAES2 are shown, again in logarithmic scale,
by the curves denoted by number 3 where in each curve group, the colors from lighter

to darker are for the values of £',.; = 0,10, 100 respectively. As seen from the figure,
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the condition number, which is defined by (3.9), of the first kind system grows
dramatically w.r.t. truncation number. On the other hand, the second kind system with
compact operator (3.12), which is arrived by the operators (3.10) and (3.11), has
extremely small and uniform condition numbers for increasing truncation number. In
addition, the 3" curve group shows the convergence of the LAES?2 for increasing
truncation number. In these curves, the solution of the LAES2 at N = 80 is taken as
the solution of infinite system, i.e. ygo = Vs, and the norms ||yy — v ||, are calculated
for increasing N by padding 80 — N zeros to the vector yy. These numerical result is
consistent perfectly with the theoretically expected behavior of the second kind system
that is given in Figure 2.1.

Another illustrative graphic that expresses the superiority of the LAES2 to
LAESL1 is shown in Figure 3.6. In this figure, the convergence of the systems and the
maximum deviation from the satisfaction of the boundary condition on the boundary
m = 1 is checked and the results are given in logarithmic scale.
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Figure 3.6: The change of the absolute errors with truncation number for (1) the
solutions of LAES1 and LAES2, (2) the field at the two sides of the boundary, (3)
the solutions of the LAESL1 in itself, and (4) the solution of the LAES2 in itself.

Here, the curve group that is denoted by the number 1 shows the norm |[x;y — x,n 1l
where x; is the solution of the LAES1 directly, and x,, is obtained by the relation

x,ny = Ryyy With the converging solution y, which is displayed in Figure 3.5. The
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values that are given in logarithmic scale shows the divergence of the solution of the
LAES1 clearly.

The curve group in number 2, for the solution of the LAES1, shows the
maximum deviation from the satisfaction of the boundary condition. For this purpose,
the maximum value of the absolute differences of the tangential electric fields that are
calculated at 36 equidistant polar angles on the boundary m = 1 is picked for each N.
As seen clearly from the figure, the deviation gets bigger for increasing truncation
number. These numerical results show the bad behavior of LAES1 from another
aspect.

The curves in group number 3 and number 4 shows the absolute error between
the two solutions for the truncation numbers N and |1.5N| of the LAES1 and LAES2,
respectively (here [1.5N| means the nearest integer number to 1.5N). Actually, to
understand whether the solution of the truncated system LAES1 is convergent, it is a
common practice to look at the absolute error of the solutions for N and N + 1, i.e.
Sy = lay+1 — ay| to see whether 6, — 0 with increasing N (here ay is the N™ entry
to the solution vector x, ). But, in the case considered here, this common practice can
be misleading because of the dramatically growing behavior of the coefficients ay. To
avoid from such a circumstance, calculating 8y = |a,y — ay|(k = 1.5~2) for the
investigation of the convergence of the LAES1 gives the correct insight and is realized
here. For the solution of the LAES2 similar to in Figure 3.5, the norm ||yy — y1.snll2
converges to zero for increasing N. On the other hand, and as expected, for the solution
of the LAESL the result of ||xy — x; syll, is divergent.

Figure 3.7.a)-d) displays the measure of the boundary conditions on each
boundary m=1, 2, 3, and 4 respectively, for the solutions of LAES1 and LAES2. On
each boundary, the boundary condition is tested at 60 equidistant polar angles for the
tangential electric field E, and tangential magnetic field H, and the maximum
deviation is picked for each truncation number. It is clear from the numerical results
that the fields calculated by the reflection and transmission coefficients which are
obtained from the solution of LAES1 do not satisfy the boundary condition while N
increases. On the contrary, the fields that are calculated by the solution of the LAES2
satisfy the boundary conditions at any truncation number.

It is worth to note that none of the behaviors of the numerical results given in

Figure 3.5-3.7 change due to the variation of the value of the imaginary part €',.;.
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Figure 3.8: On the circular boundary m=1 for £',; = 4; The modulus of electric field
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The disadvantage of using the solutions of LAES1 from a different perspective
is shown in Figure 3.8. This is another view of the information which is given in Figure
3.6 by the curves in group number 2. Here, the 2-dimensional plots w.r.t. the truncation
number (x-axis) and point index on the surface (y-axis) shows the modulus and the
phase of the tangential electric field that is obtained from the LAES1 (E2,) and LAES2
(EL,) on the boundary m=1.

According to these figures, the check of the boundary condition is inevitable if
the solution of LAESL1 is used. In addition, this check is necessary for each different
values of &',;. However, it is clearly seen from all those plots such a control is not

required if the system that is reduced to a second kind one by the ARM is considered.

3.3. Application of ARM to the Algebraic System of Integral
Equation of Circular Dielectric Cylinders

This chapter is devoted to the implementation of the theoretical information that
is given in Chapter 2.2.4 of the ARM for the boundary integral equation of dielectric
BVP. The kernels of the boundary integral equations are split into parts as infinitely
smooth and singular. Then the singular parts are subjected to a smoothing operation
by means of the canonic function (2.170) which has the same singularity behavior of
the kernels as explained in Chapter 2.2.5. This smoothing operation results in a kernel
that consists of infinitely smooth parts and the Fourier coefficients of these parts can
be calculated quite efficiently by means of the Fast Fourier Transform (FFT), which is
the exact implementation of the Discrete Fourier Transform (DFT) for complex
exponentials.

The considered geometrical structure of dielectric boundaries is given in Figure
3.9 as nested in a) and parallel in b). Even if the circular boundaries are under
consideration, the construction of the algorithm is for the general case of arbitrarily

shaped obstacles whose boundary satisfy some certain conditions.
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Figure 3.9: The considered circular dielectric boundaries: a) Inclusion, b) Neighbor.

The algorithm and the numerical results that are going to be given here are a
repetition of the publication [19]. Here, the integral equations and the formulation are
given explicitly which are given in a compact form in that publication. However, most
of the explanation is not repeated here for the sake of brevity. For this purpose, the
reader is referred to the publication.

The integral equations regarding to the multiple dielectric boundaries that are
considered here are obtained by means of the equivalence principle by generalizing
the boundary integral equations which are given for a single dielectric boundary in
Chapter 3 of [17]. Therein, the field formulation [22] is used which results in, naturally,
four equations for two unknown surface currents where two of them are the EFIE and

the other two are the MFIE. The corresponding unknowns are the vector electric

surface current K and the vector magnetic surface current K, that, for infinitely long
cylinders along the O; axis, have the expressions

K=K;2+K|l; Ky =K Z+ Kyl (3.16)
where 2 and [ denotes the tangential unit vectors and K,/K,,, and K;/K,,; are the

corresponding components. The relations of these surface currents with the total

surface electric fields E and magnetic field H are

K=AxH; K., =—AxE (3.17)

where 71 is the outward unit normal vector.
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In the formulation that is given here, the unknown surface currents I?i and Emi
are put on each boundary where i denotes the related boundary and the integral
equations are obtained in terms of these unknowns for TM-z and TE-z polarization.
For TM-z polarization, which is the case that all the fields can be represented in terms
of the z-component of the electric field, the relation between tangential fields, for
infinitely long cylinder along the z-axis, are

E =H,=0; H =.iaai (3.18)
loy on

and the relation between the total tangential fields and the surface currents that are
obtained by substituting the (3.16) into (3.17) and using the relations (3.18) are

obtained as

Kmz =K1 =0, Ky =Bz Kz =H, (3.19)

On the other hand, for TE-z polarization, which is the case that all the fields can be
represented in terms of the z-component of the magnetic field, the relation between

tangential fields are

_1 oH,;

Mi=E=0§ " iwe on

(3.20)

and similar to (3.19) the relations of the surface currents and the total tangential fields
are obtained as

K, =K =0; Kj =—H,; Ky, =—F (3.21)

Now, it is evident from (3.19) and (3.21) that in the case of TM-z polarization the
unknowns are K,,; and K, but for TE-z polarization K; and K,,, are the related
unknowns that have to be found.

After applying the equivalence principle, similar to done in [17] for a single

boundary, and putting the unknowns 1?1 and I_(ml on the boundary C; and 1?2 and 1_(>m2
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on the boundary C, then the following integral equations regarding to the outer vicinity

and the inner vicinity of each boundary (for e*®¢ time dependency) are obtained.
EFIE system for the configuration Figure 3.9.a) for TM-z polarization are

obtained on the related boundaries (where the superscript (&) means the outer and

inner side of the boundary, respectively) as

1 .
3 Ky (a) +ioxo _[ Kiz ()G, (kOqu)dlp

Cl
(3.22)
0G, (koR _
~[ Knu (p)%dlp =5 (0): qeCf
(o P
1 .
5 Kmu () + oz _[ Klz(p)GZ(kqup)dlp F _[ KZz(p)GZ(kqup)dlp
Cl CZ
(3.23)
0G; (KRgp 562 klR o)
- meu(p —dl +IKm| ——— dlp |=0; qeCy
Cl
1 .
EKmZI (Q)Hw#ll:_[ Klz(p)GZ(kqup>d|p + J KZZ(p)GZ(kqup>d|p:|
G )
(3.24)
- J.|<mll(p)¥d|pJr J‘ KmZI(p)%C“p =0; quér
C P C P
1 2
1
5 Km2l (Q)Hwﬂzé'. KZZ(p)GZ(kZqu)dlp
-, (sz2 ) (3.25)
—j Kmai (P)—— WP ldl, =E (q); geC3
C, P

As seen the from the EFIE set (3.22)-(3.25), there are four unknowns and four
equations, so the unknowns can be calculated by solving this system of equations.
These equations are in the same structure of (2.144) and (2.145) which are given for a

single dielectric boundary in terms of the total fields on the boundary. But it is evident
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that by means of the relations (3.18) and (3.19) one can be transformed to each other
quite simply by considering the definitions (2.59) and (2.60).
In the same manner, the MFIE system that has the same unknowns is obtained

on the related boundaries as

1 0G, (kgR
Ky (a)+ [ o (p) 2y
2 e, anq

(3.26)
1 K ( ) o°G (ko QP)I inC( . cr
—— | Knu —d H™ (a); 9eCy
""“OC1 NNy
9G; (kRgp 8Gz(k1R )
Tt j K42 (p _d. ; j Koz (p) s

1 0 Gz(kqup) 0 Gz(kqup)

-—— | K — = K ———4dl, [=0; 3.27

™ {I mu (P) ongon, p +é|‘ m21 (P) ongon, p ( )
1 2

qeCy

on

0Gy | kiR 0Gy (KR
) ( qp)dlp-i- I KZz(p) ( qp)dlp
¢, Mg S, q

2 2
L{j Kmll(p)—d( ) p + I Km?'(p)%%}o; (3.28)
qoMp

+
qeC,

—EKZZ(Q)Jr j KZZ(p)%lp
Cy

2
-— | K ————dly =0; C
- J- m21 (P) angany p gel2

(3.29)

Similar to the EFIE system, the MFIE system has four unknowns that are the
same as the unknowns of EFIE and four equations (3.26)-(3.29) that are enough to

solve the system. These equations are in the same form of (2.146) and (2.147), and by
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means of the relations (3.18) and (3.19) one can be transformed to the other one by
considering the definitions (2.61) and (2.62).

Since both equation systems, i.e. EFIE and MFIE, have the same unknowns but
completely different kernels, the solution of one can be compared to the other. In
numerical results, this comparison is done in addition to the comparison by the
rigorous solution of the SoV which is obtained by means of the stable algorithm that
is suggested in the former chapters for circular boundaries.

For TE-z polarization case the integral equations of the configuration Figure
3.9.a) can be obtained simply by considering the relations (3.20), (3.21) instead of
(3.18), (3.19) and (2.146), (2.147) instead of (2.144), (2.145) and thus the potentials
(2.61) and (2.62) with the properties (2.66) and (2.68) respectively.

Let’s now obtain the integral equations for the configuration b) but now for the
case of the TE-z polarization. Again, similar to done in [17] for a single dielectric
boundary, the following integral equations are obtained for two parallel boundaries

that are given in Figure 3.9.b).

EFIE system:
oGy (koRgp ) oG (koRgp )
1 ap ap
—EKmlz(Q)‘ J. Kmlz(p)Td|p+ I KmZZ(D)le
C q C, d
2 2
1 2°G2 (koRgp) 0°Ga (koRgp) inc
- dl K ——— Tl |=E ; (3.30
Wo[j 1) o p+Cj 2A(P) oy P [ZE (@) (3:30)
1 2
+
qul
EKmlz(Q)JrIKmlz p n
q
G (3.31)
o | KU (P ’ G2(kqu'o)l =0, qeC
|a)6‘l anqanp
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0G2 (koRgp ) 26 (koRgp |
1 ap ap
_EKmZZ (CI)— I Kle(p)lep + I szz(p)lep
Cl Cz
2 2
1 0°Ga (koRqp ) 9°G2 (koRqp ) _—
ey J Ku(p) ongany 'D+IK2'('°)WO” =" (a); (3:32)
C C
2
qu;
EKmZZ(Q)+C.!;le22(D (8nq ) P
(3.33)
2
904Gy (koR
1 2(koRgp) _
ia)ng 21(p) ngans Ip=0; geC3

MFIE system:

—% Ky (Q)ina’golj Kmlz(p)GZ(kOqu)dlp + J- KmZZ(p)GZ(kOqu)d|p

C C,
(3.34)

k .
e e

% Kyt (a)+ iwqé[l Kmiz (P)G2 (kqup )dl p
3.35
0G2 (k1Rgp ) -

G

—%KZI (Q)+i0)50p‘ Kmlz(p)G2<k0qu)d|p + _[ KmZZ(p)GZ(kOqu)dlp}

G C,
0G kgR 0Gy [kgR .
{ [ K1.<p>gn—pqp)mp+ [ Km(p)%mp]wwq); (3.36)
C C2

+
qu2
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1 .
2

(3.37)
21 ( 40' p=09eCy

Analogously, there are two systems, i.e. EFIE and MFIE, with same unknowns but
with different kernels. Thus, the solutions can be compared to each other. This
comparison is done in numerical results. The similarity of these equations with the
equations (2.144)-(2.147) is clear similar to the others as explained above.

Now let us consider these equations from the point of ARM algorithm. The first
step of the algorithm is making the parametrization of the boundary by means of the
smooth vector function n(8) = (x(6),y(6)) that has the property (2.69) that ensures
the periodicity of all functions where 6 is uniformly sampled in the interval (—mx, 7].
After the parametrization of the contour, the integral expressions that are in form of
the potentials (2.59)-(2.62) with the kernels (2.159), (2.184), (2.187), (2.198) for an

unknown denoted as {(t) seem as

T C(f){ﬁp(exr)—ELJn Jo(kRXP(T)dr (3.38)

T

oft
2“"[92 j
N

ZSIn(H;T)
B 2ﬂ|(91)|(f){25i”(6_;ﬂ

J' c(z ){KQ(Q z')+—|n

Jl(kR) p}l(r)dz' (3.39)

kR

kR

jg(ﬁkapwfy“—m J“m)*q}uﬂm (3.40)

-7

2

k
K(’)nQ (0, T)—gln

(ﬁmﬁp)£i552+

kR

I(z)dz  (3.41)
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where the notation of a function as f(6) means the value at the observation point
q(0) = {x(8),y(6)} and in similar manner the notation f(t) means the value of the
function at the integration point p(t) = {x(7), y(t)} and [(t)d is the differential arc-
length.

All of the functions in (3.38)-(3.41) that are denoted by tilde are infinitely
smooth functions. They are obtained by extracting the canonic singularities of the
kernels P, Q, d,,P and d,,Q where the remainder parts are the additions corresponding
to the extracted parts. These parts consist of infinitely smooth functions multiplied by
singular functions whose Fourier coefficients are known analytically. Construction of
the kernels as splitting them into additive and multiplicative smooth and singular parts
gives a very important chance to overcome the singularity of the kernels. The
discretization of the integrals is achieved via the Galerkin method where the base
functions are complex exponentials and all the related functions are expanded into one-
or two-dimensional Fourier series. The Fourier spectrum of infinitely smooth functions
can be calculated efficiently by the DFT which is well-known as Gauss quadrature for
trigonometric polynomials and its error tends to zero super-algebraically for infinitely
smooth functions. That is why, the FFT routine can be employed to calculate the
Fourier coefficients of infinitely smooth functions. But for singular parts, of course, it
is not possible to obtain the Fourier spectrum and not efficiently. But, as explained
before, the used canonic functions have analytically known Fourier spectrums as
(2.171) and (2.201). Thus, one- or two-dimensional FFT is employed to calculate the
Fourier spectrum of infinitely smooth functions and then the convolution theorem is
applied between the Fourier coefficients of the singular functions and their factors.
The application of the convolution theorem in such a manner brings a fast converging
algorithm [55], [56].

After expressing all the functions into Fourier series, and then through the
orthogonality of the complex exponentials the integral equations are reduced to
algebraic equation system [5], [24], [54] and the numerical implementation is done by
a truncation procedure. For the truncation number denoted by N, each block has
Fourier indices form —N + 1 to N where (- N)™ term is excluded because of the
periodicity of Fourier coefficients. After applying such truncation procedure, the

Fourier spectrum of each potential that are given by (3.38)-(3.41)seems as
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(|5) . N -(0)
2ﬂ|:|:kn’_s ]2N><2N +([dlag {Tn}]n:*Nﬂ) *|: Jn,—s :|2N><2N :|[Zn ]ZNX1

g) 2(r4: N (1
2], 0ol 1T S

(OnP) 1 2(Tgi N « i
|:27Z'|:kn,_s LNsz k ([dlag{rn}]n:_NJrlj [Jn,—sLNXZN:l[Zn]Zle

N
k{® —k® [diag {rn}]:}Nﬂ *[]rf}ZS]ZNsz +{diag {iH

T
nJ dn=—N+1

with the fact that

Tei(n+s)r=2ﬁ5 s - 1, n=-s
=8 "5 710, n=-—s
—T

and the corresponding definition of truncated Fourier series expansions

N

()= z 26"

n=—N+1

N N -
Kp(@,r)l(r)z Z Z kr(]i)el(n9+3r)

n=—N+1s=—N+1

N N )
Jo(kR(0,7))1(7) = Z Z jrggs)eu(nmsf)

Nn=—N+1s=—N+1

N N o
Ro@o)(z)= > > k{Qel+s7)

n=—N+1s=—N+1

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)
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N N .
Jl(kR) ﬁ-ﬁpl (r) _ Z Z j .gl’)se|(n0+51) (3.51)
N=—N-+1s=—N+1

N N .
Roe (0.2)1(7)= D D7 k{pPlel(n0+s7) (3.52)
n=—N+1s=—N+1

W(kR) 5 o | § ) i(ngss) 353
w1 (r)= 2, 2 e (3.53)
n=—N+1s=—N+1

N

271 (O)1(1)R, o (0.5)= Y KOl (354)

n=—N+1s=—N+1

>

20 (@) ()20 (1, 5,) 33 joete (355)

kR n=—N+1s=—N+1

The algebraic system that is obtained by reducing the integral equations by
means of the Fourier coefficients of any system, i.e. of EFIE or MFIE that are given

above, in matrix form seems as

" )
§|+A&1 A2 A3 A4
LA A A A (b
> 01 A 03 24 | x, |, ‘oo
1 X3 b3 ( )
Pg1 A —l+Ag3 Agg
2 X4 b4
1
Al Aw §|+A43 Adq

T
where x = [k,(fz), k,(lm”), k,(fz), k,(lmm] are the Fourier coefficients of the unknown

surface currents K;,, Ky, K,, and K,,,; for TM-z polarization case and x =

T
[k,(l”),k,(lmlz),kfl),k,(lmzz)] are the Fourier coefficients of the unknown surface

currents Ky, K12, K2 and K,,,,, for TE-z polarization case. It is clear that the system

(3.56) is not a second kind one because, as seen, the matrix is not a diagonal one. That
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Is why, at first glance, a regularization operation with the block operators (2.151) and
(2.153) seems as necessary. However, in numerical results it will be shown that for
this configuration, thanks to the fast converging algorithm the condition number
remains bounded. Also, it is checked that a regularization operation does not change
the situation very much. Nevertheless, the super-algebraically converging algorithm
does not mean a regularized system. In any case, it is better to have a second kind
system by applying properly, i.e. according to the structure of the kernels, the double-
sided regulator blocks that are given by (2.151) and (2.153) for dielectric boundaries.

Let us now see the implementation of the constructed algorithm. The numerical
results that are going to be given here are already published in [19] and represented
here once more for the purpose of discussion of the suggested algorithm. The
parameters for numerical results regarding to the considered problems that are given
in Figure 3.9.a) and Figure 3.9.b) are tabulated in the columns of the Table 3.2 column

a) and column b) respectively.

Table 3.2: The parameters of the dielectric cylinders and mediums for numerical
results of the solution of the boundary integral equation of dielectrics.

a) b)

0:(x,y) = (0,0)
A
02(9‘:3’) = (_70;0>

32, A
PL="5 P2 = Ao

0:(x,y) = (_/12_01())

0,(x,y) = (—%,0)

M1 = M1 = Ho, &1 = 4&g, €1 = 16

All the numerical results are given for a unit amplitude plane wave incidence
along the negative x-axis. For the geometrical structure of Figure 3.9.a), the numerical
results are given for TM-z polarized wave incidence, but for Figure 3.9.b) a TE-z wave
incidence is assumed.

The first numerical result is the validation of the algorithm by comparison of the
solutions of the systems of the EFIE and MFIE and the SoV solution that is obtained
by means of the rigorous well-conditioned algorithm constructed by means of the
ARM algorithm for circular dielectric cylinders. For a TM-z polarized wave impinging

on the dielectric scatterers in Figure 3.9.a) the results are given in Figure 3.10.
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Figure 3.10: Validation of the solutions of the EFIE and MFIE systems for double
layered dielectric circular cylinders; a) Fourier coefficients of the electric fields, b)
Fourier coefficients of the magnetic fields, c¢) Electric fields, d) Magnetic fields.

In Figure 3.10.a) and b) the Fourier coefficients of the total tangential fields, i.e.
the solution of the systems that are obtained from EFIE, MFIE and SoV, are compared
on the outer boundary C; and inner boundary C,.

The relation of the surface currents and the total longitudinal and transverse

tangential fields (E, and H; = H,, for circular boundary) are given by (3.19). Itis clear

that the solution, i.e. the Fourier coefficients of the currents, are the same as of the

tangential fields. However, for the solution of SoV where the reflection and

transmission coefficients are obtained, a translation of these coefficients to the Fourier

coefficients of the total fields as of the integral equations is necessary. For this purpose,

the total fields on the boundaries are calculated and then the Fourier coefficients are

equated as
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= 2 [1030 (koe) + ROHE (ko) ™
n=-0 (3.57)
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_ z [kr(]mll)}}ine

N=—o0
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_ Z [krglz) Jeine

N=—00

8

E§°t‘c = > [Trglz)Jn(klp2)+Rr(12)Hr(12)(klp2)}in9
? n=— (3.59)
y z [kr(]mZI)}einH

Nn=—o0

1 Y

Htot‘ _
C, low Op

4

C

|:.L(Tr$12)‘]ly”l (k1p2)+ RI’(IZ) Hh(Z) (k1P2 )ﬂeinﬁ (360)

Im

M8

N=—o0
0

_ Z [kr(122) }eine

N=—o0

Here the coefficients R,(lm) and T,fm) are the coefficients of the reflection and
transmission fields from the boundaries that are formulated in series solution as
discussed in Chapter 2.1.

In Figure 3.10.c) and d) the corresponding total tangential fields that are
calculated via the Fourier coefficients of the systems are given. As seen from Figure
3.10.a)-d), the solutions of three different systems are well consistent. The Fourier
coefficients that are obtained from the solution of the integral equations can be

calculated until the machine epsilon (~1071¢) due to the numerical saturation.

87



The same quantities for a TE-z polarized wave incidence on two parallel
dielectric scatterers that have the parameters of Table 3.2 in column b) are given in
Figure 3.11.

a) Longitudinal (Hz) b) Transverse (E¢)
- 200 ‘ - - 400 - — :
-'%' -'g SoV C1
4 100 t - ——-SoV C2
& £ %8 + EFIECI
8 ol g - EFIEC2
© © o MFIE C1 &
g 100t ——-SoV C2 b g :. MFIE C2
L + EFIECT jgap
T2 -200 | - EFIEC2 o
B @ MFIE C1 2
S -300] ° MFIEC2N| 3
40 20 0 20 40 40 -20 0 20 40
n (Fourier Index) n (Fourier Index)
c) d)
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ol ---SovC2 ¢ | ---SovC2
- + EFIE C1 - + EFIEC1
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Figure 3.11: Validation of the solutions of the EFIE and MFIE systems for two
parallel circular cylinders; a) Fourier coefficients of the magnetic fields, b) Fourier
coefficients of electric fields, c) Magnetic fields, d) Electric fields.

As seen from Figure 3.11.a)-d), similar to the results in that are shown in Figure 3.10,
the solutions of three different systems are consistent which proves the reliability of
the suggested algorithm.

The plots in Figure 3.12 shows the key points of the suggested algorithm.
Because the stability and super-algebraically convergence is the main aim of this work.
For the purpose of disclosing the super-algebraically or even exponentially
convergence, by doubling the size of the algebraic system and zero padding to the
previous solutions and right-hand sides, the relative difference between two

consecutive solutions
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Ixon =%l /*on [l (3.61)

and the residuals of the algebraic system

”AZNXN —by ”C/”bZN ”c (3.62)

are calculated via the norm that is defined as

£l = 2 [l (2+1m?) (3.63)
m=—o0

that guarantees the convergence by means of the Sobolev’s embedding theorem in
continuous metric.

The numerical results corresponding to the formula (3.61) and (3.62) are shown
in Figure 3.12.a) and b) respectively. In these plots, the notations [1] is used to indicate
the double layered circles that is given in Figure 3.9.a) and [N] is used for the geometry
of in Figure 3.9.b) with related parameters that are given in Table 3.2. In addition, the
polarization type is specified by subscript as TM and TE.

In Figure 3.12.c) the relative error of the solutions of integral equations w.r.t. the
solutions obtained from SoV are given in [, norm. The solutions that used in these
plots are the Fourier coefficients that are given in Figure 3.10 and Figure 3.11. The
plots of Figure 3.12.a)-c) clearly shows the super-algebraically convergent algorithm.
In addition to these plots, in Figure 3.12.d) the condition numbers of the algebraic
systems of the integral equations are shown. As seen from the nature of the matrix in
(3.56) these systems are not one of the second kind. But thanks to the super-
algebraically convergence, the ill-conditioned behavior of such system is shifted to
larger truncation numbers and not encountered at the considered levels. But, as
discussed before, by a proper combination of the equations (3.22)-(3.25) and (3.26)-
(3.29) or the equations (3.30)-(3.33) and (3.34)-(3.37) a second kind system can be
constructed. However, here they are used just as they are and such combinations are

out of the scope of this thesis.
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Figure 3.12: Qualitative data for performed calculations of double layered circles and
two parallel circles; a) Relative norm w.r.t. doubled size, b) Residual norm w.r.t.
doubled size, c) Relative error w.r.t. SoV, d) Condition numbers.

In this chapter the theoretical information which is given in Chapter 2.2 and in
its subchapters are applied to two different geometrical structure of dielectric circular
cylinders and thanks to the singularity extraction and the convolution theorem, a super-
algebraically convergent algorithm is constructed and its proof is shown by means of

various numerical results.

3.4. Application of ARM to the Algebraic System of Integral
Equation of Two Parallel Circular Impedance Cylinders

In this subchapter, the results of the numerical implementation of the ARM that
is explained in Chapter 2.2.3 for integral equations of the third kind BVP is going to

be presented for two parallel circular impedance cylinders whose configuration and
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corresponding values are given in Figure 3.13. The center of both cylinders are posing
on the x-axis and the distance between two boundaries is equal to the free space
wavelength that denoted by A,. The numerical results that are going to be presented
here are already published in [18]. The formulation is given here in details but for more

explanation of the motivation, the reader is referred to that publication.

2100 Mo
A2 Ay
1

Figure 3.13: Two circular impedance cylinders.

Here, the integral equations which is obtained in Chapter 3.3 for dielectric
boundaries are re-arranged for two impedance cylinders by means of the impedance
boundary conditions also called as third kind boundary condition or mixed boundary
condition. The standard impedance boundary condition is expressed as [57]

ﬁxE:nAx(ﬁxl:l> (3.64)

where E is the electric and H is the magnetic field in vector form, n is the surface
impedance and 7 is the unit outward normal vector. By means of the relations (3.17)
between the fields and surface currents, the condition (3.64) can be rewritten in terms

of surface currents as

Km = —17ixK (3.65)

For TM-z polarization case, substitution of (3.16) into (3.65) and using the related

expressions from (3.19) results in

Kol =17K, (3.66)
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In a similar manner, by substituting zero values that are given in (3.21) into (3.65), for

TE-z polarization case the relation
Kmz =—7K| (3.67)

is obtained.

Now, it is clear that by means of the relations (3.66) and (3.67), the four integral
equations for BVP of two dielectrics can be reduced to two integral equations when
the surface is modeled by an impedance value n and the determination of one is
sufficient since the other can be obtained from (3.66) and (3.67). By doing so, the
following integral equation systems are obtained.

For TM-z polarization;

EFIE system:

%UlKlz(Q)”w#O[I K1z (p)G2 (koRgp dip + f KZZ(P)GZ("Oqu)d'p}

G C,
0Gs (kgR 0Go (kgR .
- J-’ﬂKlz(p)%lp + I m2K2z (p)%dlp} ES'°(a);  (3.68)
G C,

+
qul

E772*<2z(q)+ia)/10“ K1z (p)G2 (koRgp Jilp + | KZZ(P)GZ(koqu)d'p}

2
G C,
0Gs (kgR 0Go (kgR .
- J-’ﬂKlz(p)%lp + f m2K2z (p)%dlp} EF%();  (3.69)
G C,

+
qu2
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MFIE system:

For TE-z polarizati

EFIE system:

2 )

1
——| [ Ky (p)— =
weQ
C

1771K1| (q)+ j mKi (p)

on;

6nq

on 6np

_ EIInC (Q); ge C]_

0Go (ko qu )

G

I Kai (p

Ip - J 112K21 (P)

8nq

a G2 (koRgp ) |
ongonp P

0Gy (koqu) |

(3.70)

(3.71)

(3.72)

(3.73)
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MFIE system:

—%Ku (Q)—iwsow nK (p)G2 (koRgp Jdlp - I n2K21 (p)G2 (koRgp [l p
G C,

662 kOR ) oG2 (koRqp ) (3.74)
j 1 (p) ———Pldlp+ [ Kol (p)———"dlp | = Wi (q); qecf
C,
1 .
-5 K2l (Q)—'a)gop. mKy (p)G2 (kOqu)dlp - J. 112K21 (P)G2 (kOqu )d|p
C C;
aez (koRgp ) 0G2 (koRqp ) . (3.79)
IKll 4"”1“ I KZI(P)Td'p =H7"(q); qeC3
C,

It is evident from the equations (3.70)-(3.75) that the algebraic systems of the
EFIE and MFIE of both polarization may be an equation of the first kind or equation
of the second kind depends on the value of the surface impedance. Thus, a
regularization operation may be necessary or unnecessary. As discussed in Chapter
2.2.3 where ARM for third kind boundaries is considered, depends on the value of the
impedance which is defined by (2.124), a regularization procedure with the operators
(2.151) or (2.153) may be necessary. This is the case when n, or n, has very small or
very large values and this cases are considered in numerical results for various values
of the surface impedances.

In Figure 3.14-3.15, the validation of the solutions of integral equations is done
by means of the SoV solution that is achieved via a stable and reliable algorithm for
circular impedance cylinders that is suggested in [12]. In these figures, the numbers 1
and 2 denote the values regarding the boundaries C, (the left-hand-side circle) and C,
(the right-hand-side circle).

Figure 3.14.a) and b) shows the exponentially converging Fourier coefficients of
tangential fields and c) and d) shows the related tangential fields on the boundaries
that are obtained for a TM-z polarized plane wave incidence from the solution of three
different systems as EFIE, MFIE and SoV. The similar results are shown in Figure
3.15.a)-d) for a TE-z plane wave incidence on the impedance cylinders. These plots,
as well, shows the consistency between the solutions and the exponentially converging
behavior of the solutions.
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Figure 3.14: Validation of the solutions of the EFIE and MFIE systems for TM-z
plane wave illumination; a) Fourier coefficients of the electric fields, b) Fourier
coefficients of the magnetic fields, c) Electric fields, d) Magnetic fields.
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Figure 3.15: Validation of the solutions of the EFIE and MFIE systems for TE-z

plane wave illumination; a) Fourier coefficients of the magnetic fields, b) Fourier

coefficients of the electric fields, c) Magnetic fields, d) Electric fields.
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source illumination; a) Fourier coefficients of the electric fields, b) Fourier
coefficients of the magnetic fields, c) Electric fields, d) Magnetic fields.
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The same validation is achieved for the values calculated on the boundary
impedance cylinders under the electric line source (TM-z polarization) and magnetic
line source (TE-z polarization) illuminations. The results of these validations are
plotted in Figure 3.16.a)-d) and Figure 3.17.a)-d) respectively.

The following figures (Figure 3.18-Figure 3.22) shows the condition numbers of
the considered systems. In Figure 3.18, the condition numbers of the systems regarding
the configuration of impedance cylinder given in Figure 3.13 are plotted. It is clear
from the plots that some systems have bounded condition numbers for the
corresponding surface impedance values, but on the other side, some systems have
condition numbers in growing trend and the only way to make them bounded is
applying the suggested ARM as discussed in 0. This is indicated in figure by the curves
with the same name but with the postfix LAES1 and LAES2 where LAES2 is the

regularized version of LAES].
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Figure 3.18: Condition numbers of linear algebraic systems.
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Figure 3.19: Condition numbers for varying surface impedances for the algebraic
system of EFIEs of TM-z wave incidence.

Figure 3.19 shows the condition numbers of the EFIE for TM-z polarization for various
surface impedance values where both surface impedances are taken equally. By
considering the equations (3.68) and (3.69) of the EFIE for TM-z polarization it is
evident that for very small values of the relative surface impedances n,, = n;/n, (i =
1, 2), the diagonalized structure of the system is corrupted and thus, it becomes one of
the first kind. This situation is seen clearly from the curves that labelled by the values
of n, = 107%,1078,10712 and continuing by LAES1. The curves given for the same
values and labelled by LAES2 are the condition numbers of the regularized versions
of the corresponding systems of LAESL. It is clear that after regularization the system
behaves as a second kind whose condition numbers are smooth for growing truncation
numbers. Also, it is evident that for larger values of the relative surface impedance,
the algebraic equations system (3.68) and (3.69) remain as a second kind and its

condition numbers are uniformly bounded for increasing size of the algebraic system
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Figure 3.20: Condition numbers for varying surface impedances for the algebraic

system of MFIEs of TM-z wave incidence.

Figure 3.20 shows the condition numbers of the algebraic system of the MFIEs
of TM-z polarization given by the equations (3.70) and (3.71) for various values of the
impedance. Unlike the plots that are given in Figure 3.19, in this case, the system
becomes one of the first kind for large values and remains as a second kind for very

small values of the surface impedance. It is clear from the figure, by the regularization

procedure which is discussed in 0 the ill-conditioned trend of the system LAES1 can

be fixed and a system with uniformly bounded condition numbers can be constructed.

In Figure 3.21 and Figure 3.22, the numerical results of the same discussions are
plotted for the systems of the EFIE and MFIE of TE-z polarization that are given by
the equations (3.72), (3.73) and (3.74), (3.75) respectively. In this case, the results
opposite to the TM-z case are observed because of the similarity of the structure of

EFIE-TM and MFIE-TE equations and the MFIE-TM and EFIE-TE equations.
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Figure 3.21: Condition numbers for varying surface impedances for the algebraic

system of EFIEs of TE-z wave incidence.
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In this chapter, the integral equations regarding two parallel impedance cylinders
are reduced to the linear algebraic equations by means of the entire domain Galerkin
method where all the quantities are expanded as Fourier series. Then the systems are
analyzed for various values of the surface impedance and the ARM algorithm that is
discussed in Chapter 2.2.3 is applied if necessary. Also, it is shown that by means of
the suggested algorithm super-algebraically convergent solutions can be obtained.
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4. CONCLUSION

In two-dimensional boundary value problems, where the field variations along
one axis are neglected, the scattered field that satisfies the homogeneous Helmholtz
equation is sought. In circular coordinates, by means of the separation of variables
method, the Helmholtz equation results in the expression of the fields into infinite
series with unknown coefficients. The corresponding unknowns are calculated by
imposing the boundary conditions of the related boundary. This operation yields to an
infinite size algebraic equation system which is, in general, one of the first kind. For
the obstacles that have arbitrary shape, by means of the Green’s identities, the
Helmholtz equation yields to an integral equation and the algebraization of this
integral, in general, yields to an infinite size algebraic equation of the first kind. The
numerical solution of such a system can be achieved through a truncation procedure.
However, it is well known that numerical solution of such system is error-prone due
to its sensitivity to the matrix inversion depending on the truncation number, i.e. it is
an ill-conditioned system. If the solution of such a system is considered then, as a rule,
the condition number of the matrix and the satisfaction of the boundary condition must
be checked to make sure of the numerical results. Otherwise, the solutions obtained
may be completely wrong. In Chapter 2, from the theoretical point of view and in
Chapter 3, by means of the various illustrative numerical results, this drawback of the
first kind system is revealed. One of the ways to avoid such a hazard is to transform
this ill-conditioned system to a well-conditioned algebraic equation of the second kind
through a regularization operation. In this thesis, the Analytical Regularization Method
is used for such a regularization. In this method a left-hand-side operator L and a right
hand-side operator R is used to transform the first kind system in form of Ax = b to
a second kind one as (I + K)y = g. It is shown, in Chapter 2 mathematically and in
Chapter 3 numerically, that a system obtained by subjecting the ARM algorithm is
numerically stable and reliable. Thus, if the solution of such a system is under
consideration, then its numerical implementation can be achieved without any extra
check.

In this thesis, at first, the ARM algorithm is implemented to algebraic systems
of the two neighbor circular impedance boundaries and eccentrically layered dielectric

boundaries where the fields are expanded into infinite series. Secondly, the ARM
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algorithm is implemented to the boundary integral equations of the two neighbor
circular impedance boundaries, two eccentrically layered circular dielectric boundaries
and two neighbor dielectric boundaries with the entire domain Galerkin method. It is
shown that such a construction brings exponentially converging algorithm, which is
very efficient from the point of numerical implementation. The necessity and the
success of this algorithm are expressed clearly from many aspects. This algorithm can
be used for a wide class of the 2-dimensional boundary value diffraction problems.
The plans for future are to expand the scope of its application further by including the
contour smoothing through spline interpolation and other smooth parametrically
presented contours.
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