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SUMMARY 

 

 
This thesis presents the theoretical explanation and application of the Analytical 

Regularization Method (ARM) to a few different 2-dimensional boundary value 

problems (BVP) of eccentrically layered circular boundaries. Since the circular 

boundaries are under consideration, the linear algebraic equation system of the 

unknowns can be constructed either by infinite series representation of the fields that 

is obtained from Helmholtz equation through separation of variables (SoV) or by 

discretizing the integral equation that is arrived by the Green’s identities from 

Helmholtz equation. However, both methods, in general, result in an algebraic 

equation of the first kind, which is ill-conditioned in numerical sense. The direct 

solution of such a system may have nothing common to the exact solution. The user 

of such a system must do some extra checks to make sure of the numerical results. In 

this thesis, such a bad system is transformed into a linear algebraic equation system of 

the second kind, which is a well-conditioned one, by means of the Analytical 

Regularization Method. This powerful semi-analytical semi-numerical method has 

been applied to a wide range of the diffraction problems with an approximate three 

decades of history. Within the scope of this study, the method is applied to both 

corresponding algebraic systems of the fields of the eccentrically layered circular 

impedance and dielectric boundaries, which are obtained from the separation of 

variables method and the discretization of the boundary integral equations through the 

entire domain Galerkin method. It is shown by means of various numerical results the 

necessity and the advantage of using such a method and to avoid using an un-

regularized system. In addition, it is shown that by using the entire domain Galerkin 

method for the “algebraization” of the integral equation and then using the convolution 

theorem, a super-algebraically convergent algorithm can be constructed for 2-

dimensional boundary value diffraction problems. 

 

 

Key Words: 2-dimensional boundary value problems, eccentrically layered 

circular cylinders, separation of variables, boundary integral equations, 

Analytical Regularization Method (ARM), super-algebraically convergence. 
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ÖZET 

 

 
Bu tezde, Analitik Regülarizasyon Metodunun teorik açıklaması yapılmış ve çok 

tabakalı eş merkezli olmayan dairesel sınırlara sahip birkaç farklı empedans ve 

dielektrik sınır değer problemlerine uygulanması açıklanmıştır. Dairesel sınırlar söz 

konusu olduğunda, bilinmeyenlere ilişkin cebrik denklem sistemi hem Helmholtz 

denkleminden değişkenlerine ayrıştırma yöntemi ile elde edilen sonsuz seriler 

biçiminde ifade edilen alanlardan hem de Green özdeşlikleri aracılığı ile Helmholtz 

denkleminden elde edilen sınır integral denklemlerinin ayrıklaştırılmasından elde 

edilebilir. Fakat iki yöntem sonucunda elde edilen cebrik denklem sistemleri sayısal 

uygulamalar açısından kötü koşullu olan birinci tip denklem sistemleridir. Böyle bir 

sistemin doğrudan çözülmesi ile elde edilen sonucun gerçek çözüm ile hiçbir ilgisi 

olmayabilir. Bu türden bir sistemin kullanıcısı elde edilen sayısal sonuçların 

doğruluğunu ekstra kontroller ile test etmelidir. Bu tezde, bu türden kötü bir sistem 

Analitik Regülarizasyon yöntemi ile iyi koşullu olan ikinci tip bir sisteme 

dönüştürülmektedir. Bu yöntem yaklaşık olarak 30 yıllık geçmişi olan ve geniş bir 

sınıftaki kırınım problemlerine uygulanan güçlü, yarı analitik yarı nümerik bir 

yöntemdir. Bu çalışma kapsamında bu yöntem, eş merkezli olmayan, dairesel sınırlı 

empedans ve dielektrik sınırlara ilişkin, değişkenlere ayrıştırma yöntemi elde edilen 

seri gösterimlerden oluşan sistemlere ve Green özdeşlikleri ile elde edilen integral 

denklemlerin tüm bölge Galerkin metodu ile ayrıklaştırılması ile elde edilen sistemlere 

uygulanmıştır. Çok çeşitli sayısal sonuçlar ile böyle bir yöntemin kullanılmasının 

gerekliliği ve avantajları ve regülarize edilmemiş bir sistemden uzak durulmasının 

gerekliliği gösterilmiştir. Ayrıca integral denklemlerin tüm bölge Galerkin yöntemi ile 

cebrik denklemlere dönüştürülmesi ve konvolüsyon teoreminin kullanılması ile 2-

boyutlu sınır değer kırınım problemleri için üstel yakınsak bir algoritmanın 

kurulabildiği gösterilmiştir. 

 

 

Anahtar Kelimeler: 2-boyutlu sınır değer problemleri, eş merkezli olmayan 

dairesel katmanlı silindirler, değişkenlere ayrıştırma yöntemi, sınır integral 

denklemleri, Analitik Regülarizasyon Metodu (ARM), üstel yakınsaklık. 
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1. INTRODUCTION 

 

Analytical solution of the scattering fields of monochromatic waves by circular 

cylinders is well known in electromagnetics and new designs are done in 

nanotechnology, metamaterial science, bio-electromagnetics, acoustics, and power 

transmission lines based on this analytical solution [1]-[3]. That is why the researchers 

in these areas must rely on the solutions based on this analytical model. Also, it is 

known from the literature that the expression of the scattered field of such a system is 

obtained by means of the Green’s identities in an integral form and, the discretization 

of this integral yields an infinite, ill-conditioned linear algebraic equation system of 

the first kind (LAES1) in the form of Ax=b. The numerical calculation of this system 

as x=A-1b involves extra efforts [4], since the inversion of matrix A is very sensitive to 

the truncation number and suffers from round-off errors. Therefore, this system is error 

prone and unstable even for concentrically layered circular cylinders when the size of 

the algebraic system is large. Because the entries of matrix consist of Bessel and 

Hankel functions that have extremely fast decaying and fast-growing behavior while 

their order increases. Therefore, large values of the algebraic system cause overflow 

and underflow in the computer during calculations. In non-concentric case, the 

situation is far worse than the concentric case. In this case, because of the overflow 

and underflow, the rank of the matrix becomes fixed and smaller than the size of the 

algebraic system and no longer depends on the size of the algebraic system and, as a 

result, the system becomes degenerated. Consequently, the solution of such a system 

results in numerical catastrophe and the solution obtained from such a numerical 

process may have nothing common to the exact solution.  

Since the inversion of a matrix of a first kind system is very sensitive to the 

truncation number, it is necessary to transform such first kind system to a second kind 

one by means of a regularization method for obtaining a new system immune to round-

off errors and obtain reliable results. In this thesis, because of its stability and reliability 

even at lower truncation numbers, some approaches based on the Analytical 

Regularization Method are preferred. In this method, one left side operator (L) and one 

right side operator (R) are chosen such that applying them to LAES1 yields a new 

linear algebraic equation system of the second kind (LAES2) in the form of (I+K)y=g 

where I+K = LAR and g=Lb. This new system is stable independently of the truncation 



 

2 

number even at lower truncation numbers. As a result, it is safe, stable and ensures the 

reliability of numerical calculations [5].  

In the context of this thesis, firstly, the ARM procedure has been applied to the 

system of scattered fields of eccentrically layered dielectric circular cylinders similar 

to presented in [6] for two parallel perfectly electric conductive (PEC) circular 

cylinders. Then the numerical results of the radar cross-section (RCS) were compared 

with the configurations in [7]-[9] and these results are presented in [10]. Therein, it is 

shown that the RCS results are consistent with [7]-[9] and, in addition, the stability of 

the system is shown by means of the condition number of the system, which is a crucial 

indicator of the sensitivity of the matrix inversion. Later, the suggested ARM 

algorithm is applied to the algebraic system of the scattered fields of eccentrically 

layered dielectric circular cylinders [11], two parallel circular impedance cylinders 

[12] and a metamaterial covered two perfectly electric conductive circular cylinders 

[13]. In the numerical results of these papers, it is shown that the second kind system 

is always stable and reliable even at lower truncation numbers. Contrary to this, the 

first kind system is not stable, and one must make some extra measures such as the 

satisfaction of the boundary conditions to ensure the stability of the system and 

reliability of the results. The results presented therein show clearly, why such a 

regularization procedure is necessary for eccentrically layered circular cylinders and 

even for concentrically layered circular systems. 

Secondly, the ARM procedure for the arbitrarily shaped boundaries with the 

entire domain Galerkin method is applied to the boundary integral equations of the 

type of Electric Field Integral Equation (EFIE) and Magnetic Field Integral Equation 

(MFIE) of the scattered field of single PEC boundary [14]-[16]. The considered EFIE 

and MFIE of one PEC boundary and one dielectric boundary are taken from [17] for 

TM (E-polarization) and TE (H-polarization). Then these equations are generalized for 

multiple dielectric and impedance boundaries by means of the equivalence principle. 

And then, by the information at hand, super-algebraically converging and numerically 

stable algorithms are constructed for two parallel impedance boundaries [18] and for 

two layered and two parallel dielectric boundaries [19].  

Solution of the EFIE or MFIE is an important issue because in the case of circular 

boundaries the result of the separation of variables method, where all the fields are 

expressed in infinite series, is used. However, even if the circular shapes can be used 

for modeling most of important problems, the structures used in practical applications, 
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in general, have arbitrarily shaped boundaries. That is why, from one side some 

important research is being done for the systems of the structures that consist of 

circular cylinders and their regularization, from another side an important effort is 

made for the application of ARM to the systems of the arbitrarily shaped boundaries. 

As discussed above, for an obstacle that has an arbitrary shape, one needs a more 

general solution of the boundary integral equation of the scattered field such as EFIE, 

MFIE or a combination of them as Combined Field Integral Equation (CFIE), 

Combined Source Integral Equation (CSIE), Extended Boundary Condition (EBC) 

[17], Muller formulation [20], PMCHW formulation [21] and so on. It is well-known 

that the EFIE and MFIE themselves suffer from non-uniqueness of their solutions at 

frequencies associated with internal cavity resonances [22], [23]. The other above-

mentioned formulations are constructed as eliminating the resonance solutions. 

Therefore, they are resonance-free and give a unique solution at all frequencies. 

However, in the scope of this work, the resonance frequencies are not considered, and 

the construction of the formulations is based on the EFIE and MFIE for all kinds of 

the boundaries and both polarizations. Such a formulation brings the possibility of 

comparable results in themselves since the EFIE and MFIE of a system have different 

kernels but the same unknowns.  

It is well-known that the EFIE of a PEC cylinder is the Fredholm integral 

equation of the first kind while its MFIE is the Fredholm integral equation of the 

second kind for both polarizations [17]. Therefore, their discretization brings first and 

second kind algebraic systems respectively. For one dielectric boundary, EFIE and 

MFIE are the first kind integral equation for each polarization [24]. That is why the 

algebraic systems resulted from these equations must be regularized for having stable 

systems and reliable solutions. The situation is same for multiple dielectric boundaries. 

However, for impedance cylinders it depends on the value of the surface impedance 

for both polarizations.  

The implementation procedure of the ARM in integral equations is technically 

different from series equations. Because in the case of series equations the fields are 

expressed in the infinite sum of cylindrical Bessel and Hankel functions with some 

unknowns correspond to transmission and reflection coefficients. The fields that are 

expressed in such a form are nothing but just the Fourier series expansion. Since the 

fundamental step of the ARM is to express the fields in the form of Fourier series and 

then use the equality of Fourier coefficients by applying the orthogonality property of 
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complex exponentials, this form is very convenient for the implementation of the 

ARM. However, for arbitrarily shaped boundaries, one must solve the EFIE or MFIE 

or a combination of them by applying the local singular expansion to the kernels and 

then remove the singularities of the Green’s function and its derivatives that arise when 

the source and observation points coincide. For this purpose, an analytical function, 

which has a similar singularity of Green’s function, is used. The Fourier coefficients 

of this function are known analytically, and the ARM is applied according to the 

behavior of these coefficients [5], [18], [19], [25].  

For a PEC cylinder, in E-polarization case, the kernel of EFIE is the Green’s 

function and MFIE has the kernel as first-order derivative of the Green’s function w.r.t. 

the normal direction at the observation point. On the other hand, in H-polarization 

case, MFIE has the first-order derivative of the Green’s function w.r.t. the normal 

direction at integration point and EFIE has a second-order derivative of the Green’s 

function w.r.t. integration and observation point as kernel, respectively. The Green’s 

function itself has logarithmic singularity while the distance between integration and 

observation points tends to zero. Therefore, it is not a smooth function on the boundary 

and it must be smoothened by extracting its singular part. Also, the first order 

derivative of the Green’s function is finite but not infinitely smooth since the logarithm 

appears in its derivatives. Thus, the logarithmic part must be removed from this kernel 

as well, for having infinitely smooth functions. The second order derivative of the 

Green’s function w.r.t. the normal derivative has the most singular part, and fortunately 

this singularity can be extracted by means of another form of the same above-

mentioned analytical function. These are the four problematical kernels that can be 

encountered in any boundary integral equations of the 2-D boundary value problems 

and their singularities are handled in detail from the point of view of ARM algorithm 

in Chapter 2.2.5. 

In the next chapter, Chapter 2, the mathematical background of the ARM is 

given, firstly, for the system that obtained from the series representation of the fields 

given in circular coordinates. It can be shown [4] that in the circular coordinates the 

series representation can be obtained from the integral equation by expanding zero-

order Hankel function by means of the Graf’s addition theorem [26]. By this means, 

the behavior of unknown coefficients of the fields represented in series whose 

asymptotic behavior is very crucial for specifying the regularization operators, are 
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expressed clearly. Secondly, the ARM procedure is given for 2-D BVP of Dirichlet, 

Neumann, third-kind and dielectric boundaries.  

In Chapter 3, the numerical implementations of the theoretical information given 

in Chapter 2 are achieved by applying them to several kind of BVP. At first, in Chapter 

3.1, the ARM algorithm that is explained in Chapter 2.1 is applied to the algebraic 

system of two parallel infinitely long circular impedance cylinders. Then, in Chapter 

3.2, in the same manner, it is applied to several eccentrically layered circular dielectric 

cylinders. And then, in Chapter 3.3 and 3.4, the ARM algorithm for the boundary 

integral equations of arbitrarily shaped boundaries that are discussed in Chapter 2.2 

and its subchapters is applied to two dielectric circular boundaries and two parallel 

circular impedance cylinders respectively. The numerical results that are obtained 

from the solution of the integral equations are validated in themselves by comparison 

of the EFIE and MFIE of the same unknowns, and also an extra check is done by 

comparison of the solution of the rigorous algorithm which is constructed by the ARM 

for the circular boundaries. 
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2. ANALYTICAL REGULARIZATION METHOD 

FOR 2-D BOUNDARY VALUE PROBLEMS 

 

Analytical Regularization Method is an analytical and analytical-numerical 

method that can be used in diffraction theory to reduce ill-conditioned integral, 

integral-differential and series equations of the first kind to such equations of the 

second kind which makes it possible to solve these equations efficiently on the 

computer [5]. The regularization techniques based on the ARM are successfully used 

in scattering by two and three-dimensional body of revolution closed and unclosed 

screens, compact and periodic, dielectric and perfectly conducting obstacles [5], [27]-

[33]. 

It is known that the monochromatic wave scattered by an obstacle in 2-

dimensional coordinates satisfies the homogeneous Helmholtz equation 

 

    2 20,s su q k u q q R S     (2.1) 

 

with the boundary condition 
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and the Sommerfeld radiation condition 
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where 𝑢𝑡(𝑞) = 𝑢𝑖(𝑞) + 𝑢𝑠(𝑞) is the total field, 𝑢𝑠(𝑞) is the scattered field and 𝑢𝑖(𝑞) 

is the incident field. 

Also, it is known that for the coordinate problems, where the boundary and 

coordinate surfaces (or contours) coincide, the separation of variables method makes 

it possible to reduce the boundary value problem of (2.1)-(2.3) to an infinite algebraic 

system of the first kind of the form 
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 Ax b   (2.4) 

 

For non-coordinate problems, the Helmholtz equation can be reduced to an 

integral representation by means of the Green’s formulae. After imposing the boundary 

condition (2.2) and the radiation condition (2.3) to the integral representation, the 

boundary integral equation is obtained. The discretization, in another sense 

“algebraization”, of the integral equation yields, again, an infinite algebraic equation 

of the first kind in the form of (2.4). The discretization can be made by means of 

various quadrature methods, Galerkin Method, Moment Method, and alike. 

The numerical treatment of the boundary value diffraction problem (2.1)-(2.3) 

requires the numerical solution of (2.4). Since such an infinite dimensional equation 

cannot be solved numerically, finite dimensional approximations must be used.  By 

the truncation of (2.4) the finite algebraic equation system of the form 

 

 N N NA x b   (2.5) 

 

is arrived at and it is hoped that the solution 𝑥𝑁 is the approximation of 𝑥, which 

becomes, conceptually, more accurate approach for increasing truncation number 𝑁. 

However, it is doubtful whether the 𝑥𝑁 converges to 𝑥 while 𝑁 → ∞. Even it may 

happen that the numerical solution of (2.5), say 𝑥̃𝑁, calculated on a computer which 

has a word length containing only a finite 𝑚𝑐 number of binary digits, has nothing 

common with the exact solutions of (2.4) and (2.5). The main reason of such possibility 

is the presence of the round-off errors, amplification and propagation of such errors 

during the calculation process for ill-conditioned matrices. The method of numerical 

solving can be Gauss elimination, LU-decomposition or various iterative methods, but 

there is not qualitative difference from point of view of accuracy and stability of the 

solution [34]. 

To decide whether the finite-dimensional system (2.5) is worth solving at all, it 

is necessary to answer the following questions. 

 

i) Does 𝑥𝑁 converge to 𝑥 when 𝑁 → ∞? If so, in what metric is this? 

ii) Will the “numerical catastrophe” ‖𝑥𝑁 − 𝑥̃𝑁‖ ‖𝑥𝑁‖⁄ > 1 come with growing 𝑁? 
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The second question is reasonable to consider only if the first question is 

answered positively in the relevant metric coordinated with the metric (specified by 

the physical nature of the boundary value problem) of the functional space where the 

initial boundary value problem solution is sought [5], [34], [35]. 

It is known that in the general case the first question is answered negatively, i.e. 

as 𝑁 increases the solution of the system of the first kind, 𝑥𝑁, broadly speaking, does 

not converge to 𝑥 in any metric. This is typical behavior of most parts of boundary 

value diffraction problems [36]. Nevertheless, let us assume that owing to the special 

properties of the operator 𝐴, this convergence takes place in the wanted metric. The 

standard definition of the condition number [37], [38] of the operator 𝐴𝑁 is 

 

   1
2 2

N N NA A A    (2.6) 

 

where the operator norm ‖∙‖2 is created by the Euclidean metric of real or complex-

valued N-dimensional space. System of the first kind is characterized by ‖𝐴𝑁‖2 → ∞ 

or ‖𝐴𝑁
−1‖2 → ∞ when 𝑁 → ∞, i.e. the operators 𝐴 or 𝐴−1 is unbounded in the operator 

norm constructed from the vector norm of 𝑙2 space. Consequently, 𝜈(𝐴𝑁) → ∞ for 

𝑁 → ∞ [5], [35]. 

It has been verified [37] that the number of correct binary digits in the solution 

𝑥̃𝑁 does not exceed the value 

 

  2logr c Nm m A   (2.7) 

 

where 𝑚𝑐 is the binary length of the computer mantissa and  𝑚𝑟 describes the number 

of significant digits in the element of 𝑥̃𝑁 vector that has the largest modulus. 

Correspondingly, a relative error of components smaller in module is far larger. 

Moreover, if these components decrease fast, only first few of them can carry right 

significant digits, the rest cannot be computed at all. In this case, the algorithm has the 

problem of renormalization of the unknown 𝑥 vector and balancing of the initial 

system matrix [5], [35] (and the references cited therein). 

Thus, if 𝑚𝑟 ≤ 0, i.e. 𝑚𝑐 ≤ log2 𝜈(𝐴𝑁) the solution 𝑥̃𝑁 contains no significant 

digits to be true and the above-mentioned numerical catastrophe arises. In this case, 

the discrepancy 𝛿𝑁 ≝ 𝐴𝑁𝑥̃𝑁 − 𝑏𝑁 will be in the order of  ‖𝛿𝑁‖2 ≈ 𝑁2−𝑚𝑐‖𝑥̃𝑁‖2 
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value, which is evidently quite small. The accurate solution 𝑥𝑁 rounded to 𝑚𝑐 binary 

digits shows the same order discrepancy. 

It is indicated in [5], [35] that the only practical way to recognize a numerical 

catastrophe is the direct calculation of 𝜈(𝐴𝑁) and 𝑚𝑟. Various indirect criteria, such 

as energy balance, stabilization of solution 𝑥̃𝑁 with increasing 𝑁, etc., may, as a rule, 

only give an illusion of solution correctness of the initial boundary value problem. 

Because in the former case, the energy conservation law may be satisfied with a very 

high accuracy even when 𝑚𝑟 ≤ 0 and 𝑥̃𝑁 having no significant digits to be true. In the 

latter case, after the inequality 𝑚𝑟 ≤ 0 is reached, the solution 𝑥̃𝑁 may be indifferent 

to 𝑁 or vary very slowly, being prescribed by the rule of the arithmetical result 

rounding in the computer. 

Let us now consider an alternative situation. Suppose that the original boundary 

value problem is equivalently reduced, in the 𝑙2, to the infinite system of the algebraic 

equation of the form 𝐴𝑥 = 𝑏;  𝑥, 𝑏 ∈ 𝑙2, but now the operator 𝐴 has the form 

 

 A I H   (2.8) 

 

where operator 𝐻 is compact in the 𝑙2 and 𝐼 is the identity operator. Now, matrix 𝐴 

obeys the Fredholm alternative, and if 𝐴 is not degenerated, then equation 

 

  I H x b   (2.9) 

 

as a rule, has a unique solution. Thus, owing to the mentioned equivalence, there exist 

the bounded 𝐴−1 = ‖𝐼 + 𝐻‖−1 operator in 𝑙2 space and the value 

 

  
1

2
2

I H I H


        (2.10) 

 

is correctly determined. Likewise, the procedure above, consider the truncated system 

 

  N N NI H x b   (2.11) 
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Since 𝐻 is compact, the sequence of finite-dimension matrix operators 𝐻𝑁 can be 

chosen as  

 

 
2

0, whenNH H N    (2.12) 

 

If (2.12) takes place then ‖𝑥 − 𝑥𝑁‖ → 0. It means that answer of first question above 

is now positive. In space 𝑙2 the limit 

 

    
1

2
2

lim limN N N N
N N

I H I H I H  



 

       (2.13) 

 

Hence, all 𝜈𝑁 are uniformly bounded for any sufficiently large 𝑁. For most practical 

problems in diffraction theory 𝜈𝑁 ≪ 2𝑚𝑐 for many modern computers in non-resonant 

cases.  

The equation (2.9) is known as one of the second kind. The more general 

equation (2.4) which cannot be represented in the form of (2.9) is known as one of the 

first kind. The typical behavior of first kind and second kind systems are shown in 

Figure 2.1 (this picture is taken from [34]). 

 

 
 

Figure 2.1: Correlation of condition number and error of numerical solution of 

truncated systems as functions of the truncated matrix dimension N. a) and b) are for 

equations of the first kind; c) and d) are for the second kind. 

 

It is crucial to emphasize the importance of consideration of (2.9) just in space 

𝑙2. Because in this space the computer arithmetic provides numerical stability and 

convergence of 𝑥̃𝑁 to 𝑥 within small deviations. For any other space, the qualitative 
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characteristics of the condition number and exact solution 𝑥𝑁 are the same. But the 

computer treats such equations as one in 𝑙2 and if the system might not be one of the 

second kind just in space 𝑙2, then the numerical solution 𝑥̃𝑁 becomes unstable and 

divergent. 

For solving a system of the first kind, Tikhonov regularization [39] is the most 

and known powerful tool. Firstly, well-skilled persons can use it and secondly, in 

general, it does not give all the necessary qualitative features of the solutions. Another 

way that is used in this thesis is based on the equivalent transform of the equation (2.4) 

of the first kind to an equation of the second kind (2.9), i.e. reducing the initial 

boundary value problem to the equation of the second kind. Because, as explained 

above, compared to equations of the first kind, the second-kind equations do not have 

the principal disadvantages preventing their effective solutions. Thus, in 𝑙2 space it 

provides a good basis for efficient algorithms of numerical solutions of the problems. 

However, it is a mistake to think that such transformation is possible in the same space 

if the equation (2.4) is not of the Fredholm type. If such transform from (2.4) to (2.9) 

is constructed in the same functional space, there are only two possibilities; the 

resulting equation is not equivalent to the initial one or the equation (2.9) is not the 

second one, i.e. operator 𝐻 is not compact in the same space [34]. 

The key point of the methods that transform the initial boundary value problem 

to the equation of the second kind is the regularization of the operator of the problem. 

From the point of view of the functional analysis, this idea is very simple and well-

known [40]. Nevertheless, for constructing such a transform one must understand its 

mathematical background clearly. To this end, at first, the equation (2.4) must be 

reformulated as one given on a pair of functional spaces 𝐻1 and 𝐻2, i.e. 𝑏 ∈ 𝐻2, and 

𝐴:𝐻1 → 𝐻2. Secondly, operator 𝐴 must provide some special additive and 

multiplicative splittings as 

 

 0 1A A A   (2.14) 

 

where 𝐴1 is the subordinate to the operator 𝐴0: 𝐻1 → 𝐻2 and spaces 𝐻1 and 𝐻2 should 

form set of correctness of 𝐴0 in Tikhonov sense (see [39]). Thirdly, the operator 𝐴0 

must have the representation  
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 1 1
0 1 2:A L R H H    (2.15) 

 

with known in closed analytical form operators 𝐿−1 and 𝑅−1 where 

 

 

1
1 0 0 1

1
0 2 2 0

: , :

: , :

R H H R H H

L H H L H H





 

 
 (2.16) 

 

and 𝐻0 is some intermediate space and the operator 𝐿𝐴1𝑅:𝐻0 → 𝐻0 is compact in 𝐻0. 

Here the best choice of functional space is 𝐻0 = 𝑙2 because of the above-explained 

advantages of the equation (2.9) in the space 𝑙2. 

If the explained construction is implemented mathematically, it gives a direct 

and simple way of the transform of (2.4) to (2.9). Since the operator 𝑅−1 exist and 

bounded, any element 𝑥 ∈ 𝐻1 can be written as 𝑥 = 𝑅𝑦 for some 𝑦 = 𝑅−1𝑥 ∈ 𝐻0 

defined as new unknown. Now applying the operator 𝐿 to (2.4) from the left, and using 

the properties (2.14) and (2.15) results into the following equation of the second kind 

 

  1 2, ,I LA R y Lb y Lb l     (2.17) 

 

with compact operator 𝐾 = 𝐿𝐴1𝑅 in 𝑙2 space. 

The above-described construction by the operators 𝐿 and 𝑅 is known as 

Analytical Regularization Method. The equation (2.17) is the regularized equation of 

(2.4) and the pair (𝐿, 𝑅) are called as double-sided regulators of the operator 𝐴 given 

with the property (2.14). The graphical scheme of ARM for operator 𝐴 is shown in 

Figure 2.2. 

 

 
 

Figure 2.2: Graphical scheme of ARM. 
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As seen from above-explanations, the purpose of the ARM is reducing the 

equation of the first kind (2.4) to the equation of the second kind (2.17) by proper 

reposing of (2.4). So, there is a one-to-one correspondence between the solutions due 

to the operator 𝑅. Once the solution 𝑦 is obtained from (2.17) then the solution 𝑥 is 

obtained as 𝑥 = 𝑅𝑦. 

If 𝐻0 is a Hilbert space, then by choosing a proper basis and matching the Fourier 

coefficients of the left- and right-hand side of the equations (2.17) one arrives, by 

virtue of the well-known isomorphism of Hilbert spaces [41], [42], to the equation of 

the second kind in the space 𝑙2 where 𝑦, 𝑏 ∈ 𝑙2 and 𝐾: 𝑙2 → 𝑙2 is a compact operator 

with necessity. 

The necessity of application of ARM to the boundary value diffraction problems 

and the key steps of identifying the double-sided regulators for having a second kind 

system, which gives stable and convergent algorithms in computer arithmetic, have 

been explained in this part. But, note that the above-explained abstract construction 

does not answer how to build the operators or in which functional spaces the operators 

should be defined for the considered diffraction problems. There is no priori 

knowledge for construction of the operators 𝐿 and 𝑅 in closed form. In the next 

subchapters, the answers of these questions are given for some kind of boundary value 

diffraction problems. 

 

 . ARM Algorithm for the Algebraic System of the Series 

Solution of Circular Boundaries 

 

The geometrical structure of the circular boundaries, homogeneous along Oz 

axis, from the point of view of diffraction theory in 2-D, can be generalized as Figure 

2.3. 
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Figure 2.3: The Geometrical structure of the problem; a) Nested boundaries 

(inclusion) b) Parallel boundaries (neighbor). The dashed circles stand for the 

fictitious boundary at the infinity for m=0. 

 

Here, the configuration a) stands for the nested circular cylinders, and b) stands 

for the parallel circular cylinders. The index 𝑚 is used for denoting the boundaries but 

𝑗 is used for indexing the regions between boundaries. Any structure of a boundary 

value problem of circular boundaries, in 2-D, can be consist of only a), only b) or a 

combination of them. In this sense the information of implementing the ARM that is 

going to be given for the configurations in Figure 2.3 includes all possible situations 

of a boundary value diffraction problems of circular boundaries in 2-D. 

For posing of the problem, first of all, the expression of the fields that satisfy 

homogeneous Helmholtz equation (2.1) related to the regions of Figure 2.3 must be 

given. The field representations for the coordinate problems, where the boundary of 

the scatterer and the coordinate coincides are well-known [7]-[9], [11]-[13], [43] for 

monochromatic waves scattering by eccentrically layered circular cylinders as in 

Figure 2.3. To this end, the equation (2.1) is solved by means of the separation of 

variables method and this solution yields the representation of the fields into infinite 

Fourier series expansions. For 𝑒𝑖𝜔𝑡 time dependency the reflected field (outgoing 

wave) and the transmitted field (incoming wave) from any mth boundary can be 

expressed in terms of its local polar coordinate system (𝜌𝑚, 𝜑𝑚) as follows. 

 

    ( , ) ( ) (2), mref m m
z m m n j m

in
n

n
u R H k e   




   (2.18) 
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    ( , ) ( ), m
j

tr m m
z m m n m

in
n

n
u T J k e   




   (2.19) 

 

Here 𝑅𝑛
(𝑚)

 and 𝑇𝑛
(𝑚)

 are unknown coefficients of the reflected and transmitted fields 

respectively. 𝐻𝑛
(2)(𝑡) in (2.18) is the second kind Hankel function and 𝐽𝑛(𝑡) in (2.19) 

is the Bessel function and 𝑘𝑗 is the wave-number of jth medium defined as 

 

  
1 2

, 1, 2,3.j j jk j      (2.20) 

 

with the dielectric permittivity 𝜀𝑗 and magnetic permeability 𝜇𝑗 of the medium. 

If the representation of the field between two boundaries is under consideration 

(i.e. 𝑚 = 1 and 𝑚 = 2), then the question of which coordinate system arises. Namely, 

which coordinate system should be chosen as reference for expressing the fields (here 

the incident field is not considered for Figure 2.3.b) since it is assumed that it comes 

from the boundary 𝑚 = 0 at infinity and it can be expressed in any local coordinate 

system without transformation). Same or different coordinates can be chosen for 

boundaries. But as it is explained in [11] same or different coordinates systems 

correspond to series expansion or integral formulation respectively. In addition, it is 

explained therein that from the solid mathematical background based on integral 

formulation [4] requires the choice of different local coordinates of boundaries for 

expression of the fields into Fourier series. Thus, for the analytical model used for 

circular boundaries through this thesis is based on this fact and all the fields, scattered 

or transmitted, are expressed in terms of local coordinates of their own scatterer. By 

virtue of this fact, the total fields between two regions of Figure 2.3.a) (region 𝑗 = 1) 

and of Figure 2.3.b) (region 𝑗 = 0) can be shown as follows. 

 

 

 

   1 2

(1) ( ,1) ( ,2)

(1) (2)

1 1 1 2

(2)

tr ref

z z z

n n

in in
n n

n n

u q u u

T J k e R H k e  
 

 

 

  
  (2.21) 
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       

   1 2

(0) ( ,1) ( ,2)

(1) (2)

0 1 0 2

(2) (2)

ref ref inc

z z z z

inc

n n z

in in
n n

n n

u q u q u q u q

R uR H k e H k e  
 

 

  

   
  (2.22) 

 

As seen from (2.21) and (2.22) the fields contain two parts that expressed in two 

different local coordinates (𝜌1, 𝜑1) and (𝜌2, 𝜑2) that belong to the boundary of 

scatterers. Namely, the reflected or transmitted field of a scatterer becomes incident 

field of the other scatterer. 

For having the solution of the boundary value problem, the unknowns 𝑅𝑛
(𝑚)

 and 

𝑇𝑛
(𝑚)

 must be calculated at first. For this end, the boundary conditions are subjected to 

each boundary and then arrived at an equation formed by the Fourier coefficients of 

the series. But, before writing this equation, a transformation of coordinates is 

necessary. Because, if the boundary condition is written on one boundary, say 𝑚 = 1, 

then the field (transmitted for Figure 2.3.a) and reflected for Figure 2.3.b) that comes 

from boundary 𝑚 = 2 and expressed in its local coordinate system must be 

transformed to the local coordinate system of the boundary 𝑚 = 1. This 

transformation is done by means of the well-known Graf’s addition theorem for 

cylindrical Bessel functions [6], [26], [44] that are summarized as  
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














 






 (2.23) 

 

where 𝑍𝑛(𝑡) stands for 𝐽𝑛(𝑡) or 𝐻𝑛
(2)(𝑡), 𝜃𝑝𝑞 is the angle of the vector 𝒅𝒑𝒒 that directed 

from the center point Op to the center point Oq w.r.t. the x-axis of the global coordinate 

system, and 𝑑𝑝𝑞 = |𝒅𝒑𝒒|  = |𝚶𝑝 − 𝚶𝑞| is the distance between these local origins. The 

equations given in (2.23) are used for transformation of the fields that are expressed in 

local coordinate system (𝜌𝑝, 𝜑𝑝) to the fields expressed in local coordinate system 

(𝜌𝑞 , 𝜑𝑞). It is clear that 𝑑𝑝𝑞 = 𝑑𝑞𝑝 and 𝜃𝑝𝑞 = 𝜋 + 𝜃𝑞𝑝. 

By the help of the equation (2.23) the boundary conditions, peculiar to the kind 

of the boundary (PEC, dielectric or impedance), are imposed and then arrived at the 

final infinite-dimensional equation of the first kind in form of (2.4).  
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Now let us consider the configurations in Figure 2.3.a) and Figure 2.3.b) as two 

different problems and construct their algebraic equation system by assuming that all 

regions are filled by homogeneous dielectric materials. Even though the formulation 

is explained by dielectric mediums, the main idea of constructing the system and its 

regularization operators are very similar for all kind of boundaries. After constructing 

the system, asymptotic behavior of the entries of the matrix is analyzed to reveal its 

ill-conditioned behavior that shows it is a system of the first kind. Then, the next step 

is identifying the double-sided regularization operators 𝐿 and 𝑅 for reducing this 

system equivalently to an equation of the second kind in form of (2.17). For this end, 

as explained in Chapter 2, at first, the new unknown of the equation (2.17) is 

constructed as 𝑦 = 𝑅−1𝑥, and secondly, the operator 𝐿−1 is constructed as it results in 

𝐿𝐴𝑅 = 𝐼 + 𝐾. However, now the matter is the construction of the operator 𝑅−1. It will 

be explained below in details but now, it is enough to say that it is determined 

according to the asymptotic behavior of the unknowns 𝑅𝑛
(𝑚)

 and 𝑇𝑛
(𝑚)

. In some sense, 

it is a proper scaling of unknowns which is, at first, done in [6] for two perfectly 

conductive circular cylinders. 

Now let us consider the boundary value problem of the structure of infinitely 

long circular cylinders along the z-axis that is given in Figure 2.3.a) illuminated by E-

polarized (TM-z) plane wave. It is well known that for the considered configuration, 

the electric field of a TM-z wave has only z-component and the other components can 

be represented by means of this component, with 𝑒𝑖𝜔𝑡 time dependency [45], as 

follows 

 

 
1 1 1

0; ;z z
z

E E
E E H H H

i i
   

    

 
     

 
 (2.24) 

 

Therefore, the electric field of the incident plane wave also has only the z-component 

as 𝐸𝑧
𝑖𝑛𝑐(𝜌, 𝜑) = 𝑒𝑖𝑘𝜌𝑐𝑜𝑠(𝜑−𝜑0) with the incidence angle 𝜑0 and it has the following 

expression in terms of cylindrical harmonics with Bessel functions [45], [46]. 
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On a dielectric boundary, the tangential components of the electric field and magnetic 

fields are continuous. Since 𝐸𝜑 = 𝐻𝑧 = 0, then electric field has only 𝐸𝑧, and magnetic 

field has only 𝐻𝜑 components as tangential. That is why, in TM-z case, the following 

boundary conditions are valid on a dielectric boundary.  

 

 
(2) (1) (2) (1)0; 0z zE E H H      (2.26) 

 

where the superscripts (1) and (2) indicate the inner and outer regions of the boundary 

respectively and, 𝐸𝑧 and 𝐻𝜑 are the total tangential electric and magnetic fields in these 

regions. 

By imposing the boundary conditions (2.26) on each boundary at 𝜌1 = 𝑎 and 

𝜌2 = 𝑏 and using the equations (2.21), (2.22) as the total fields and substituting (2.25) 

as the incident field then arrived at the equations of electric fields on the boundary 

𝑚 = 1, 
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and on the boundary 𝑚 = 2, 
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As seen in (2.27) and (2.28) there are the terms written in local coordinates (𝜌1, 𝜑1) 

and (𝜌2, 𝜑2). That’s why it is necessary to transform the local coordinate (𝜌2, 𝜑2) to 

(𝜌1, 𝜑1) in (2.27) and vice versa for (2.28). As explained above, this transformation is 

achieved by means of the addition theorems given in (2.23) as follows. 
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Note that both equations are obtained by means of the first line of (2.23) for 

𝑑21 < 𝑎 and 𝑑12 < 𝑏. However, the same result in (2.30) is obtained if the inner circle 

does not include the center of the host circle, i.e. when 𝑑12 > 𝑏. If these relations are 

substituted into (2.27) and (2.28), respectively, and by making the change 𝑠 = 𝑛 and 

𝑛 = 𝑠 then the equations become as 
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where  

 

     2121 2 ( )
1 21( )i s n

n s s n
s

R R e J k d






  (2.33) 

 

   121 ( )(12)
1 12( )i s n

n s s n
s

T e J k dT 






   (2.34) 

 

In all above equations, the subscripts (12) and (21) are kept on the purpose of 

expressing the transformation from coordinate O1 to coordinate O2 and from O2 to O1, 

respectively.  

Now, by using the relation of tangential magnetic field and electric field given 

in (2.24) and the boundary condition of magnetic fields in (2.26) the following 
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equations of magnetic field, similar to electric field equations, are obtained on the 

boundary 𝑚 = 1, 

 

 

  
    

1 01

1 1

( )(1)
0 0

(1) (21)
1 1

1

(2)

(2)

( )

1
0

inn
n n

n

n n

r

in
n

n

in in
n n

n n

a i J k a e

a a

R H k e

T J k e R H k e

 

 












 

 

  

  



 

  (2.35) 

 

and on the boundary 𝑚 = 2, 
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where 𝜂𝑟𝑖 = √𝜇𝑟𝑖 𝜀𝑟𝑖⁄  is the relative intrinsic impedance of the ith medium with the 

relative parameters 𝜇𝑟𝑖 and 𝜀𝑟𝑖. Here 𝐹′(𝑧) = 𝑑𝐹 𝑑𝑧⁄  denotes the derivative w.r.t. the 

argument where 𝐹 stands for 𝐽𝑛(𝑧) and 𝐻𝑛
(2)(𝑧). 

Collecting equations (2.31), (2.32), (2.35), (2.36) and by using the orthogonality 

property of the complex exponentials, one arrives at a system of the equation of Fourier 

coefficients, with the definition 𝑇𝑛
(0)

= 𝑒𝑖𝑛(𝜋 2⁄ −𝜑0), as follows 
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Now there is the system of the equations (2.37), (2.38), (2.39) and (2.40) and the 

unknowns 𝑅𝑛
(1)

, 𝑇𝑛
(1)

, 𝑅𝑛
(2)

, 𝑇𝑛
(2)

. But, is clear that, for every fixed “n” it is possible to 

eliminate at first two unknowns by proper scaling and extraction operations. This 

elimination procedure is applied here, but, not with purpose the of eliminating some 

unknowns. Instead, it is aimed to have a system that consists of the functions that are 

familiar from analysis of circular coaxial cable problems [8], [44]. For this end, at first, 

𝑇𝑛
(1)

 is eliminated by multiplying the first and the second equations by 𝐽′𝑛(𝑘1𝑎) 𝜂1⁄  

and 𝐽𝑛(𝑘1𝑎), respectively, and then extracting the resultant equations. This procedure 

is correct due to the fact that functions 𝐽𝑛(𝑡) and 𝐽′𝑛(𝑡) have not common root, i.e. 

|𝐽𝑛(𝑡) + 𝐽′𝑛(𝑡)| > 0 for any 𝑡. Analogously, 𝑅𝑛
(1)

 is eliminated in a very similar way, 

with the fact that |𝐻𝑛
(2)(𝑡) + 𝐻′𝑛

(2)(𝑡)| > 0, and arrived at another equation. If the same 

procedure is followed for 𝑅𝑛
(2)

, 𝑇𝑛
(2)

 then the following equation system in form of 

𝐴𝑥 = 𝑏 is obtained [11] 
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where the terms denoted by the top script {𝑝𝑞} are the interaction blocks that are the 

results of the addition theorems and are in the form of the following expression  
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with the following definitions that are familiar from coaxial circle problems 
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If one follows all the steps of the formulation given for the configuration of 

Figure 2.3.a) analogously for Figure 2.3.b) then arrives the following linear algebraic 

equation system 
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which is again in the same form of (2.41), with the same definitions in (2.43). Note 

that since in this case, the distance between the local origins is greater than the radius 

of the circles, i.e. 𝑑 > 𝑎 and 𝑑 > 𝑏, then the term 𝐻𝑠−𝑛
(2)

(𝑘0𝑑𝑝𝑞) appears instead of 

𝐽𝑠−𝑛(𝑘1𝑑𝑝𝑞) in equation (2.42). 

The vertical and horizontal lines that are seen in the matrix of the system (2.41) 

and (2.44) are used to outline the self and interaction blocks corresponding to the 

configurations Figure 2.3.a) and Figure 2.3.b), respectively. Now, let us use each part 

of the matrix that are separated by these lines as one block and construct the following 

common block-form of these systems as 
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where each entry in 𝐴𝑚𝑚′
𝑗𝑗′

 is a 2 × 2 block-matrix that corresponds to one part in the 

matrix 𝐴 of the system (2.41) and (2.44). The subscripts 𝑚,𝑚′ and superscript 𝑗, 𝑗′ are 

the indices of circular boundaries and their host media, respectively. The diagonal 

elements of 𝐴𝑚𝑚′
𝑗𝑗′

 denoted by Π correspond to the self-blocks of each boundary 𝑚 and 

𝑚′, and the non-diagonal elements denoted by Υ are the interaction blocks of these 

boundaries. The entries in the column of unknowns, related to the boundaries, have 

the form as 𝜉𝑚 = [𝑅𝑛
(𝑚)

, 𝑇𝑛
(𝑚)

]
𝑇

 and the entries of the right-hand side are in the form 

as 𝜏𝑚
𝑗

= [−𝑇𝑛
(0)

𝑄𝑛
(𝑗,0)(𝜌𝑚), −𝑇𝑛

(0)
𝑊𝑛

(0)(𝜌𝑚)]
𝑇

 if the incident wave exist, otherwise 

they are zero.  

The aim of the block representation as in (2.45) is to give a compact scheme for 

constructing the systems of more complicated configurations. It helps to construct the 

algebraic system of more complicated configurations of circular boundaries easily by 

simply substituting the corresponding self or interaction blocks into the matrix, as it 

will be shown in the Chapters 3.1 and 3.2. The system of two parallel impedance 

cylinders, which will be considered in Chapter 3.1, has the same properties without 

having the functions in (2.43) since these functions are obtained from the relation of 

the dielectric boundary conditions. 

In the case of TE-z wave incidence, in contrast to the TM-z wave, the magnetic 

field has the only z-component 𝐻𝑧, and in this case the incidence field has only the 

component 𝐻𝑧
𝑖𝑛𝑐 = 𝑒𝑖𝑘𝜌𝑐𝑜𝑠(𝜑−𝜑0). Analogous to (2.24) all other components are 

expressed in terms of 𝐻𝑧 as follows. 
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If the relations between tangential components (𝐻𝜑, 𝐸𝑧) in (2.24) and (𝐸𝜑 , 𝐻𝑧) 

in (2.46) are compared then it is clear that the formulation for TE-z polarization is 

obtained for both systems simply by putting 𝜂𝑟𝑗 instead of 1 𝜂𝑟𝑗⁄ , i.e. 1 𝛽𝑗⁄  instead of 

𝛽𝑗, in equations (2.43). Therefore, for both polarizations the algebraic systems of the 

diffraction boundary value problem of the configurations of Figure 2.3(A) and Figure 

2.3(B) are in the form of 𝐴𝑥 = 𝑏 as (2.41) and (2.44) respectively. 
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Now it is possible to solve the systems (2.41) or (2.44) with unknown 

coefficients 𝑅𝑛
(1)

, 𝑇𝑛
(1)

, 𝑅𝑛
(2)

, 𝑇𝑛
(2)

. It is clear that, these systems should be one of the 

first kind, but, with the purpose to reveal this, let’s analyze the systems by considering 

the entries of the matrix 𝐴 while the Fourier index 𝑛 → ∞. Since all the functions that 

form the matrix consist of the Bessel and Hankel function and their derivatives, at first, 

it is necessary to show the asymptotic behavior of these functions while 𝑛 → ∞. The 

asymptotic expansion of these functions for large orders [26] are as follows 
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and by means of the asymptotic Stirling formula 𝑛!~(2𝜋𝑛)1/2(𝑛/𝑒)𝑛 [26] the upper 

bounds for Bessel and Hankel functions can be estimated as 
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By using the equations (2.47)-(2.50) the asymptotic behavior of the functions 𝑃𝑛
(𝑗,𝑙)(𝜌), 

𝑄𝑛
(𝑗,𝑙)(𝜌), 𝑅𝑛

(𝑗,𝑙)(𝜌), 𝑇𝑛
(𝑗,𝑙)(𝜌) in (2.43) can be written as 
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   , 1 1 1

;

n
jj l

n
l j l

ki
P n

k n




   
   

    
    

     

  (2.52) 
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 


  

       
                    

 (2.53) 

 

    , 1 1 1
1 ;

n
jj l

n
l j l

ki
R n

k n




   

     
         

      

  (2.54) 
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! 1 ! 1 1 1
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n n
j l j l

n
j l

kn n k
T n

n

 


  

         
                    

  (2.55) 

 

and analogous to (2.51) their upper limits can be estimated quite simply. 

As can be seen from the asymptotic forms (2.47)-(2.51) for large indexes, the 

function of Bessel and its derivative decay very fast (~Ο(1 𝑛!⁄ )), and on the other hand 

Hankel function and its derivative grow very fast (~Ο(𝑛!)), while the index 𝑛 → ∞. 

The asymptotic behavior of the matrix entries given by (2.52)-(2.55) shows that the 

function 𝑄𝑛(𝜌) decays approximately with the order of (1 𝑛!⁄ )2 and, 𝑇𝑛(𝜌) grows with 

the order of (𝑛!)2. On the other side, the functions 𝑃𝑛(𝜌) and 𝑅𝑛(𝜌) may decay or 

grow algebraically depends on the ratio 𝑘𝑗 𝑘𝑙⁄ . All explanation given here shows that 

the systems (2.41) and (2.44) are evidently the systems of the first kind with 

dramatically growing or decaying matrix elements. That is why such systems cannot 

be reduced to the system of the second kind by simple division operations.  

Such an infinite-size system can be solved numerically only by some truncation 

procedure. However, due to the above-explained facts, the inversion of the matrix 𝐴 is 

very sensitive to the truncation number of the algebraic system and produces very large 

condition numbers that are calculated by (2.6) which points to the absence of the 

correct solution. That is why, for having numerically stable system and reliable 

solutions, the systems such as (2.41) and (2.44) need to be transformed into a second 

kind one as in form of (2.17). This can be achieved by means of the ARM. But for this 

purpose, at first, the structure of unknown coefficients  𝑅𝑛
(𝑚)

, 𝑇𝑛
(𝑚)

 must be known for 
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defining new unknowns 𝑅̃𝑛
(𝑚)

, 𝑇̃𝑛
(𝑚)

 by a scaling operator 𝑅−1 as 𝑦 = 𝑅−1𝑥. It is 

explained in [11] based on the integral formulation of the scattered field in [4] that the 

nature of the coefficients 𝑅𝑛
(𝑚)

, 𝑇𝑛
(𝑚)

 have the form  
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 
 
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 

 

    
      
    

     

  (2.56) 

 

where 𝑐1
(𝑚)(𝑛) and 𝑐2

(𝑚)(𝑛) are some coefficients related to the Fourier coefficients of 

the scattered field and its normal derivative respectively. So, as seen from (2.56) the 

unknown coefficients 𝑅𝑛
(𝑚)

, 𝑇𝑛
(𝑚)

 have similar asymptotic behavior of 𝐽𝑛(t) (or 𝐽′𝑛(t)) 

and 𝐻𝑛
(2)

(𝑡) (or 𝐻′𝑛
(2)

(𝑡)) respectively, that are given in (2.47)-(2.50). Thus, based on 

this information, the first step of having a well-conditioned formulation can be 

achieved by specifying the new unknowns, with the diagonal right-hand side matrix 

operator 𝑅−1, as 

 

 

 

 

   

   

 

 

1

1
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0
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m m
n n

mm
n n

xRy

F n RR

F n TT


           
          

  (2.57) 

 

with proper choice of the functions 𝐹1(𝑛) and 𝐹2(𝑛) that are selected according to the 

asymptotic behaviors of (2.56). By considering the formulas in (2.47)-(2.50) it is clear 

that there are a few possible choices of 𝐹1(𝑛) and 𝐹2(𝑛) which are given in the Table 

2.1 that have similar asymptotic behavior for large arguments. In addition, a proper 

combination of possible choices can be used which will be met in the problem of 

scattering by impedance cylinders in Chapter 3.1. 

 

Table 2.1: The possible choices of the elements of right-hand side regulator. 
 

𝐹1(𝑛) 1 𝐽𝑛⁄ , 1 𝐽′𝑛⁄ , 𝐻𝑛
(1)

, 𝐻′𝑛
(1)

, 𝐻𝑛
(2)

, 𝐻′𝑛
(2)

 

𝐹2(𝑛) 𝐽𝑛, 𝐽′𝑛, 1 𝐻𝑛
(1)⁄ , 1 𝐻′𝑛

(1)⁄ , 1 𝐻𝑛
(2)⁄ , 1 𝐻′𝑛

(2)⁄  
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Note that the key point of the selection of the operator 𝑅−1 is creating new 

unknowns by eliminating the asymptotically bad behavior of the old coefficients by a 

scaling operation. It is clear that for all of the circular configurations, the construction 

of new unknowns is just as explained here. However, the left-side regularization 

operator is chosen, depending on the nature of the operator 𝐴, as it yields that 𝐿𝐴𝑅 =

𝐼 + 𝐾 where 𝐾 is a compact operator in space 𝑙2.  

In [6] 1/𝐻′𝑛
(2)

 (as 1/𝐹1(𝑛)) is chosen as the operator 𝑅−1 for the problem of 

scattering by two perfectly conductive circular cylinders without a left side operator 

𝐿. In the scope of this thesis, in addition to this, the left-hand side operator 𝐿 is also 

selected as it produces a second kind system and the problem is generalized to a few 

different circular geometries with different boundary conditions [11]-[13]. The chosen 

operators and the numerical results for these configurations will be given in the 

application of the ARM in Chapters 3.1 and 3.2. 

 

 . ARM Algorithm for the Algebraic System of Boundary 

Integral Equations 

 

Here, some definitions and explanations that are used in [34] common to each 

boundary integral equations are represented and the concept of the ARM for integral 

equations is given through therein defined operators. 

For the purpose, the Hilbert space 𝑙2(𝜆) of infinite sequences {𝑐𝑛} as 

 

      2 1/22
2 : ; max 1,n n n nn

n

l c c n  







 
    
 

  (2.58) 

 

is considered with evidently defined its scalar product and norm. As well, the notation 

𝐻𝜆 is used for well-known Sobolev spaces of functions, which Fourier coefficients 

belong to 𝑙2(𝜆). For any arbitrary, and smooth, simple contour S, that is shown as in 

Figure 2.4, it is understood the Sobolev spaces on contour S for the parametrization 

proportional to the arc-length of this contour.  
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Figure 2.4: Cross-sectional view of the cylindrical obstacle of arbitrary shape with 

related definitions. 

 

Let the non-self-crossing S is a class of 𝐶2,𝛼 [47] and it is situated strongly inside a 

two-dimensional domain Ω as presented in Figure 2.4. For the potentials of single and 

double layers of diffraction theory [47] in Ω, the following notations are used  

 

       2 , , S
def

p

S

P v q v p G q p dl q     (2.59) 

 

     
 2 ,

,
def

p

pS

G q p
Q u q u p dl q S

n


  

  (2.60) 

 

where 𝐺2(𝑞, 𝑝) is the Green’s function of the domain 𝑅2 that satisfies the same 

boundary conditions on the boundary ∂Ω. Here 𝑛̂𝑝 is the unit outward normal vector 

at the point 𝑝 ∈ ∂Ω and functions 𝑢 = 𝑢(𝑝) and 𝑣 = 𝑣(𝑝) have the properties as 𝑢 ∈

𝐶1,𝛼(𝑆) and 𝑣 ∈ 𝐶0,𝛼(𝑆) [47]. 

In small enough open vicinity 𝑉 = 𝑉ℎ of S such that 𝑉ℎ ∩ 𝑆 = ∅ any point 𝑞 ∈

𝑉ℎ has unique representation as 𝑞 = 𝑞0 ± ℎ𝑛̂𝑞, where 𝑞0 ∈ 𝑆, 𝑛̂𝑞 is the unit outward 

normal vector at the point 𝑞0 and ℎ > 0 is a unique scalar value. Thus, the normal 

derivatives of the potentials P and Q that is denoted with the prefix 𝜕𝑛 can be defined 

in V as 
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       n qPv q n Pv q     (2.61) 

 

       n qQu q n Qu q      (2.62) 

 

For any function 𝑓(𝑞), the notation 

 

      
0

lim ,q
h

f q f q hn q S



     (2.63) 

 

is used for limiting values, and the notation 

 

     ,f q f q q S     (2.64) 

 

is used for direct values, under the assumption that 𝑓(±) and 𝑓 ̅exist. 

The relations between limiting and direct values of the potentials (2.59)-(2.62) 

are the same as for classic potentials [48], [49] and for the functions 𝑣(𝑝) and 𝑢(𝑝) 

that have at least the properties 𝑣 ∈ 𝐶0,𝛼(𝑆) and 𝑢 ∈ 𝐶1,𝛼(𝑆), the following identities 

are valid. 

 

 
          ,P v q P v q Pv q q S
            

 (2.65) 

 

        
1

,
2

n nP v q Pv q v q q S
         

 (2.66) 

 

        
1

,
2

Q u q Qu q u q q S
      

 (2.67) 

 

 
        ,n nQ u q Q u q q S
       

   
 (2.68) 

 

Let’s now suppose that the contour 𝑆 is parametrized by a vector function 

𝜂(𝜃) = (𝑥(𝜃), 𝑦(𝜃)) that has the properties as 𝜂(𝜃)𝜖𝐶2,𝛼[−𝜋, 𝜋] and  
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         , 0,1,2...0 0
K K

K             (2.69) 

 

and provides a one-to-one correspondence between the points on the contour 𝑆 and the 

values 𝜃𝜖(−𝜋, 𝜋]. Owing to the one-to-one correspondence of the parametrization, the 

relation 

 

         
1/2

2 2
0

def

l x y       (2.70) 

 

is valid where (∙)𝐾 means the Kth and ′ the first order derivative w.r.t. the argument. 

Throughout the chapter, for any two functions 𝛼(𝜃) and 𝛽(𝜃) of arbitrary nature, 

their inner product and composition will be denoted as 

 

              (2.71) 

 

            (2.72) 

 

and, for the direct and inverse Fourier transforms on [−𝜋, 𝜋] the notations 𝐹 and 𝐹−1 

are used, respectively. Also, 𝐼 denotes the identity matrix and for the notation of 

diagonal matrix 𝑇𝑛 the expression 

 

   1/2
, max(1, )n nn

T diag n 



    (2.73) 

 

is used.  

Using these notations, the identities having a view of pseudo-differential 

operator of the corresponding integral and differentially integral operators can be 

derived as 

 

    1 1 11
2

2

PPv F T I M T F l v              (2.74) 

 

  1 1 QQu F T M TF u     
  

  (2.75) 
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  1 1 1nP
n Pv l F TM T F l v     

    
      (2.76) 

 

      1 11
2

2
nQ

nQ u l F T TF uI M 
      

  
     (2.77) 

 

In the equations (2.74)-(2.77) the argument 𝜃𝜖[−𝜋, 𝜋] is omitted for the sake of 

simplicity. 

For the matrix 𝑀 that denotes one of the matrices 𝑀𝑃, 𝑀𝑄, 𝑀𝜕𝑛𝑃, 𝑀𝜕𝑛𝑄 it can 

be shown that 

 

   
2

1 1 sn

s n

s n m
 

 

       (2.78) 

 

where 𝑚𝑠𝑛 are the matrix elements of 𝑀. It means that 𝑚𝑠𝑛 are decaying when 𝑠, 𝑛 →

∞ even faster than the elements of a Hilbert-Schmidt matrix. In particular, such matrix 

𝑀 defines a compact matrix operator in 𝑙2. 

In order to understand the way of the representations (2.74)-(2.77), the derivation 

and their correctness let’s consider the simplest case of potential 𝑃̅𝑣 in (2.74). Namely, 

it can be shown [50] that 

 

               2 ,, ,G l v dPv





        


     (2.79) 

 

and function 𝐺2(𝜂(𝜃), 𝜂(𝜏)) allows the representation  

 

         2 , ,G L p         (2.80) 

 

where 

 

  
1 1

ln 2sin
2 2 2

t
L t



 
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 
  (2.81) 
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int

2

1 1
ln ,2sin

2 22 n n

et
t  







        (2.82) 

 

and 𝑝(𝜃, 𝜏) has continuous first partial derivatives and (𝜕2/𝜕𝜃𝜕𝜏)𝑝(𝜃, 𝜏) ∈ 𝐿2 (𝐿2: 

space of square integrable functions). It means, in particular, that  

 

 
24 4

n s sn
s n

p 
 

 

     (2.83) 

 

where 𝑝𝑠𝑛 are Fourier coefficients of 𝑝(𝜃, 𝜏) and definition of 𝜏𝑛 is given in (2.73). 

The identity (2.74) and the inequality (2.78) for 𝑀 = 𝑀𝑃 follows immediately [50] 

from (2.79)-(2.83). 

The most complicated proof is required for the identity (2.77). First of all [50], 
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n
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  
 

    
1

,B u W d
l





   
 

    (2.86) 

 

where 𝑊(𝜃, 𝜏) has singularities proportional to ln|2𝑠𝑖𝑛(𝜃 − 𝜏)/2| only. Calculation 

of the limits 𝜕𝑛𝑄
(±)𝑢 in form of (2.84)-(2.86) is relatively simple in a point on local 

flat part of the contour when the contour is parametrized by its arc-length, but the proof 

becomes rather non-trivial in general case [28, 50]. 

In equation (2.85) the operation 𝑑2/𝑑𝜃2 cannot be moved inside the integral 

because it makes the result of the integral divergent. Nevertheless, under the 

supposition of 𝑢 ∈ 𝐶1,𝛼(𝑆), the expression for 𝐴(𝜃) is correct when the differential 

and integral operators are applied in the written order. 

Due to the above-explained properties of 𝑊(𝜃, 𝜏), its Fourier coefficients 𝑤𝑠𝑛 

satisfy the inequality 
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2

sn
s n

w
 

 

     (2.87) 

 

Taking together the equations (2.81), (2.82) and (2.84)-(2.86) one arrives into the 

equation (2.77). The other formulas like (2.75) and (2.76) can be proved in a very 

similar way as (2.74) and (2.77). 

In the next subchapters, the two-dimensional BVPs, whose posing is similar to 

that in [47] are considered by the ARM algorithm based on the above-given details. 

 

2.2.1. ARM for Dirichlet Boundary Value Problem  

 

This problem arises in the case of a TM wave incidence on a PEC cylinder. Let 

a closed non-self-crossing contour 𝑆 ⊂ Ω = 𝑅2 is given that has the property as 𝑆 ∈

𝐶2,𝛼. The contour is parametrized by the above described function 𝜂(𝜃) =

(𝑥(𝜃), 𝑦(𝜃)) for 𝜃𝜖(−𝜋, 𝜋]. In addition, let 𝑉(−) is an open bounded domain with 

boundary 𝜕𝑉(−) = 𝑆 and 𝑉(+) is the complementary to 𝑉(−)̅̅ ̅̅ ̅̅ = 𝑉(−) ∪ 𝑆 in the domain 

𝑅2. Namely, 

 

      2;V S V R V
  

      (2.88) 

 

It is necessary to find the unknown function 𝑢𝑠(𝑞) in 𝑞𝜖𝑅2 ∖ 𝑆, (i.e. scattering 

field in physical sense) which is one of the kind  

 

          2 2 1, 1,su q C R S C V C V  
     (2.89) 

 

The condition (2.89) means, in particular, that 𝑢𝑠(𝑞) and all its derivatives of the first 

order are continuous in 𝑉(+)̅̅ ̅̅ ̅̅  and 𝑉(−)̅̅ ̅̅ ̅̅ , but the limiting values 𝑢𝑠(+)(𝑞) and 𝑢𝑠(−)(𝑞) 

as well as 𝜕𝑛𝑢
𝑠(+)(𝑞) and 𝜕𝑛𝑢

𝑠(+)(𝑞) for 𝑞𝜖𝑆 are not necessarily equal where 

 

 
   

 

,
s

s

n

q

u
u q q S

n




 

      

  (2.90) 
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In addition, the function 𝑢𝑠(𝑞) must satisfy the homogeneous Helmholtz equation in 

𝑉(±) i.e. 

 

    2 20,sk u q q R S      (2.91) 

 

and the well-known Sommerfeld radiation condition 

 

 
 

 
1/2

lim 0

s

s

q

u q
q iku q

q

 
    

  (2.92) 

 

Also, 𝑢𝑠(±)(𝑞) should obey the Dirichlet boundary condition  

 

 
          ,s s iu q u q u q q S
 

      (2.93) 

 

where 𝑢𝑖(𝑞) is a known function (having a sense of an incident field values on 𝑆). 

Utilization of the Green’s formulae technique gives the identity [47]-[50] 

 

      ,
is

nP u q u q q S 
 

      (2.94) 

 

where 𝛿𝜕𝑛𝑢
𝑠(𝑞) = 𝜕𝑛𝑢

𝑠(+)(𝑞) − 𝜕𝑛𝑢
𝑠(−)(𝑞), 𝑞𝜖𝑆. 

Taking the identity (2.94) as a hint, one can consider the integral equation with 

unknown function 𝑣(𝑞) ∈ 𝐶0,𝛼(𝑆), 

 

     ,iPv q u q q S 
 

     (2.95) 

 

with a hope that function 

 

      2,U q Pv q q R S      (2.96) 

 

provides a solution of the Dirichlet BVP (this hope is not fulfilled always). 
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As it follows from (2.80), (2.81) the kernel of 𝑃̅ is square integrable and, 

consequently, equation (2.95) is one of the first kind in space 𝐿2(𝑆). As mentioned in 

Chapter 2, such equation posed in 𝐿2 has rather “pathological” features. In particular, 

it does not obey to the Fredholm alternative and may have many or any solutions. In 

order to guarantee the unique solution let’s apply the ARM to (2.95) as explained in 

Chapter 2. 

Making the composition of both sides of (2.95) with the parametrization 𝜂(𝜃) 

and taking into account the representation (2.74), the following equation is obtained 

 

      1 1 11
2

2

P iF T I M T F l v u        
   (2.97) 

 

Now it is evident that (2.97) is in form of (2.14) with the following double-sided 

operators 

 

 
1 1 11

2
L F T     (2.98) 

 

 1 1R T F   (2.99) 

 

that have the properties given in (2.16) where the linear (incomplete) spaces 

 

 
   

   

1/2 0,

1

1/2 1,

2

H H S C S

H H S C S





 

 
  (2.100) 

 

are chosen for a suitable numerical implementation of the ARM with Sobolev spaces 

𝐻−1 2⁄ (𝑆) and 𝐻1 2⁄ (𝑆) [34, 47]. This choice is applicable under the assumption 𝑆 ∈

𝐶2,𝛼 [34]. 

Applying to (2.97) from the left-side by the operator 𝐿 = −2𝑇𝐹 and introducing 

new unknown vector column 𝑧𝐷 and right hand side 𝑓𝐷 as 

 

  1
Dz T F l v    (2.101) 
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  2 i
Df TF u    (2.102) 

 

then arrived at the final equation 

 

   22 , ,P
D D D DI M z f z f l     (2.103) 

 

Thus, the equation (2.95) is equivalently reduced to the infinite algebraic system 

(2.103) in 𝑙2, with compact operator 𝐻 = −2𝑀𝑃 whose Fourier coefficients satisfy the 

inequality (2.78). 

 

2.2.2. ARM for Neumann Boundary Value Problem 

 

This boundary value problem is encountered in the case of a TE polarized plane 

wave incidence on a PEC cylinder. 

The posing of the Neumann BVP is very similar to the Dirichlet BVP. Herein 

the Neumann boundary condition  

 

 
          ,s s i

n n nu q u q u q q S
 

         (2.104) 

 

is used instead of (2.93) that of Dirichlet boundary condition. This small change results 

in the qualitative difference between the solution properties and the way of its 

construction on the basis of the ARM. It is shown in [28], [50] that every solution 

𝑢𝑠(𝑞) of the Neumann BVP can be represented, if exist, as 

 

      2
,

s su q q R SqQ u      (2.105) 

 

where 

 

           ,s s s
u u u q Sq q q        (2.106) 
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Consequently, from (2.77) and (2.89) as shown in [47], [50] the following identity is 

correct. 

 

      ,is
nn

q u q q SQ u
 

 
     (2.107) 

 

In the same manner, as done for identity (2.94), the new unknown 𝑢(𝑞) that satisfies 

the equation  

 

       ,i
nn

q u q q SQ u
 

 
     (2.108) 

 

can be introduced with the hope that the function 

 

      2
,U q q R Sq Qu      (2.109) 

 

gives a solution of the Neumann BVP. 

The qualitative properties of (2.108) are opposite of (2.95). Namely, if the 

equation (2.108) is posed in space 𝐿2, then the inverse operation to 𝜕𝑛𝑄
(±) becomes 

bounded and even compact, but the 𝜕𝑛𝑄
(±) itself is unbounded in 𝐿2. Formulas (2.6) 

and (2.7) dictate the same numerical instability that is discussed for equation (2.95). 

But now not because of ‖𝐴𝑁‖ in (2.6), but due to ‖𝐴𝑁
−1‖ which tends to infinity when 

𝑁 → ∞. Thus, again it is needed to choose a set of correctness, to provide additive and 

multiplicative splitting of 𝜕𝑛𝑄
(±) and so on. Now, opposite to (2.100),  

 

 
   

   

1/2 1,

1

1/2 0,

2

H H S C S

H H S C S





 

 
 (2.110) 

 

can be chosen [47], [50]. 

Formula (2.77) reduces the equation (2.108) to 

 

    1 22 nQF T TF l uuI M      (2.111) 

 

The regularization of the (2.111) can be done easily with the operators 
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 1 1L F T   (2.112) 

 

 1R TF   (2.113) 

 

Applying the operator 𝐿 = 𝑇−1𝐹 from the left to the equation (2.111) and introducing 

new vector of unknowns 𝑧𝑁 and 𝑔 as 

 

  Nz TF u   (2.114) 

 

  12g T F l u 
   (2.115) 

 

then arrived at the equation  

 

 2; ,2 nQ
N Nz g z g lI M        (2.116) 

 

which is one of the second kind with compact operator 𝐻 = 2𝑀𝜕𝑛𝑄 in 𝑙2. 

 

2.2.3. ARM for Boundary Integral Equation of Third Kind BVP 

 

The third kind boundary condition also called as impedance boundary condition 

or mixed boundary condition which defines a relation between the total tangential field 

and its normal derivative on the boundary is 

 

      
 

0;

t
t u q

q u q q q S
n

   


  (2.117) 

 

where 𝑢𝑡(𝑞) = 𝑢𝑖(𝑞) + 𝑢𝑠(𝑞) is the total field, and 𝛼(𝑞) and 𝛽(𝑞) are supposed to be 

infinitely smooth functions of point 𝑞 ∈ 𝑆 and they are normalized as |𝛼(𝑞)|2 +

|𝛽(𝑞)|2 = 1. It is clear that the choice as 𝛼(𝑞) = 1 and 𝛽(𝑞) = 0 corresponds to the 

Dirichlet boundary condition, and 𝛼(𝑞) = 0 and 𝛽(𝑞) = 1 corresponds to Neumann 

boundary condition. That is why the consideration of the boundary value problem in 

sense of ARM is very similar to those problems. It will be shown that, depending on 
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the value of these parameters, this problem can be reduced the Dirichlet or Neumann 

BVPs. 

Utilization of the theory of Green’s formulae technique [47], [50] gives the 

following integral equation of the scattered field that satisfies the homogeneous 

Helmholtz equation (2.91) 

 

            
;su q Q u q P v q q V

        
      

 (2.118) 

 

            
;s

n n nu q Q u q P v q q V
           

      
 (2.119) 

 

where, 𝑢(𝑞) = 𝑢𝑠(+)(𝑞) and 𝑣(𝑞) = 𝜕𝑛𝑢
𝑠(+)(𝑞). 

Even if the relations (2.118) and (2.119) are given for the scattered field, the 

same relations can be obtained simply for the total field as well. From the relation of 

the fields given above, the scattered field can be written as 

 

      s t iu q u q u q    (2.120) 

 

If the equation (2.120) is substituted into (2.118) and (2.119), and then by using the 

relations (2.65)-(2.68) the boundary integral equations 

 

        
1

;
2

iu q Qu q Pv q u q q S   
  

      (2.121) 

 

        
1

;
2

i
n n nv q Q u q Pv q u q S

            
 (2.122) 

 

are obtained for the total field, where now, 𝑢(𝑞) = 𝑢𝑡(+)(𝑞) and 𝑣(𝑞) = 𝜕𝑛𝑢
𝑡(+)(𝑞). 

The system of the equations (2.121) and (2.122) can be used for finding the unknowns 

𝑢(𝑞) and 𝑣(𝑞). However, the relation (2.117) gives a possibility to express one 

unknown in terms of the other one, for example, as 
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  
 

 

 t
t

q

q u q
u q

q n






 


 (2.123) 

 

and then eliminate it from one of the equations. In this case, one of the two equations 

can be used for finding the corresponding unknown and then the other is obtained 

simply by means of the relation (2.117). Before doing this, the system must be 

analyzed from the point of the ARM. It is clear, as it is explained in [51], that the 

regularization process depends on the value  

 

  
 

 

q
q

q





   (2.124) 

 

Also, it is explained in [51] that the case of  

 

   0 0;q q S      (2.125) 

 

corresponds to the, so called, regular case where 𝛽0 is some, not very small, constant 

and the alternative condition to (2.125) is  

 

   0 0;q q S      (2.126) 

 

when 𝜂(𝑞) can be very small and even equal to zero.  

In an analysis of E-polarized (TM-z) wave diffraction, 𝜂(𝑞) given by (2.124) 

corresponds to the impedance value. In this case, if the diffraction by a well-conductive 

cylinder is considered then 𝜂(𝑞) = 0 and the equation (2.121) reduces to the same 

kind of equation of the Dirichlet boundary value problem and it can be solved in the 

same manner as (2.95). This equation is also called as electric field integral equation 

of scattering by PEC cylinder of TM-z polarization. 

 If the equation (2.122) is used for the purpose, with the condition of 𝜂(𝑞) = 0, 

it reduces to  

 

    
1

;
2

i
n nv q Pv q u q S 

 
      (2.127) 
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which is the magnetic field integral equation of TM-z wave scattering by PEC cylinder. 

By means of the equation (2.76), it can be represented in the form of operators as 

 

  2 2nP i
nI M u


    (2.128) 

 

which is a second kind equation and obtained simply by multiplying by two without 

the need of using regularization operators. This happens because of the natural 

properties of the normal derivative of the single layer potential 𝜕𝑛𝑃 that are given by 

(2.66) and (2.76). 

If an H-polarized (TE-z) wave diffractions is considered, then the ratio 𝜂(𝑞) =

𝛼(𝑞)/𝛽(𝑞) defines an impedance on the surface. In this case, opposite to TM-z 

polarization, for very small or zero values of the impedance, the equation (2.122) 

reduced to the equation of the Neumann BVP and its regularization and solution can 

be obtained in the same way as explained for (2.108). This integral equation is called 

as the EFIE of the TE-z wave scattering by PEC cylinder. 

If the equation (2.121) is considered for the solution of BVP in TE-z polarized 

wave, for very small or zero value of impedance, the integral equation  

 

      
1

;
2

iu q Qu q u q q S    
 (2.129) 

 

is obtained. With the properties of double-layer potential given by (2.67) and (2.75) 

the view in form of operators 

 

  2 2Q iI M u   (2.130) 

 

is obtained as a second kind equation which is the result of the properties of double 

layer potential. 

All the cases theoretically discussed here will be analyzed numerically in 

Chapter 3.4 where the solution of the boundary integral equation of two parallel 

impedance cylinders is under consideration for TM-z and TE-z wave incidence.  
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2.2.4. ARM for Boundary Integral Equation of Dielectric BVP 

 

Consider the dielectric body given in Figure 2.5 with the same domains 𝑉(±) that 

is discussed previously. Unlike the above situations, domains 𝑉(+) and 𝑉(−) have 

different material parameters resulting into different but constant wavenumbers 𝑘(+) 

and 𝑘(−) respectively. 

 

 
 

Figure 2.5: The schematic view of the arbitrarily shaped dielectric obstacle. 

 

Analogous to the above BVPs, it is necessary to find the scattered field 𝑢(𝑠)(𝑞), 

𝑞 ∈ 𝑉(+) ∪ 𝑉(−) which belongs to the same class (2.89) but satisfies two Helmholtz 

equations with different wave numbers. 

 

        2 0,
s

u q V Vqk
       (2.131) 
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   

,

,

k q V
k q

k q V

 

 





 


 
  (2.132) 

 

In addition, it satisfies the dielectric boundary conditions  

 

 
          ,s s iu q u q u q q S       (2.133) 

 

 
          ,s s i

n n nu q u q u q q S          (2.134) 

 

and the Sommerfeld radiation condition (2.92) in the unbounded domain 𝑉(+). 

Analogous to (2.59) and (2.60) the potentials  
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           

2 ,, p

S

GP v q v dl q Vq p p 
 

 
 

   (2.135) 

 

 
       

   2 ,
,p

pS

G q p
Q u q u dl q Vp

n

 


 
 


 

  (2.136) 

 

can be defined. Here and below the subscript (±) is used for the values and functions 

associated with the domains 𝑉(±) respectively. By using the standard Green’s formulae 

technique, the integral equations for scattered fields are obtained as 

 

    
     

     ;
s ss

nQ u P uu q Vq q q  
 

   
   

    (2.137) 

 

    
     

     ;
s ss

nQ u P uu q Vq q q  
 

   
   

     (2.138) 

 

Note that the field expressed by (2.137) is the total field inside the region 𝑉(−) since it 

is supposed that the incident field source is posed in the domain 𝑉(+). On the other 

side, the field given by (2.138) is the only scattered field. For having an equation 

expressed in terms of the total field, the relation  

 

        ;s t iu q u q u q q V


    (2.139) 

 

is substituted into the equation and then the following relations are obtained in terms 

of the total field and its normal derivative. 

 

    
     

     0;
t tt

nQ u P uu q Vq q q  
 

   
   

     (2.140) 

 

    
     

     
0;

t tt
n n nn
Q u P uu q Vq q q  

 
              (2.141) 

 

    
     

       
;

t tt i
nQ u P uu u q q Vq q q  

 
           (2.142) 

 



 

44 

 
   

     
     

 

;
t tt i

n n nn n
Q u P uu u qq q q

q V

 
 



   
   
      



 (2.143) 

 

where the values 𝑢𝑡(𝑞) and 𝜕𝑛𝑢
𝑡(𝑞) are the values in the domain but 𝑢𝑡(±)(𝑞) and 

𝜕𝑛𝑢
𝑡(±)(𝑞) are the values on the boundary. The reason for expressing the integral 

representations in terms of the total field as (2.140)-(2.143) is to have similar integral 

equation forms that used in [17]. Therein the boundary integral equations are given in 

terms of the surface currents where the surface currents correspond to the total field 

on the surface. Also, in [17] the integral equations are classified as EFIE and MFIE for 

both polarizations and these equations are used in the following Chapters 3.3 and 3.4 

where the application of ARM is investigated. 

Now let’s obtain the boundary integral equations from the integral 

representations (2.140)-(2.143) by passing the limit values given in (2.65)-(2.68). 

These operations yields the integral equations 

 

          
1
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2

tt t
n

Q uu q Sq q qP u
   

  
      (2.144) 

 

            
1

;
2

tt it
n

Q uu u q q Sq q qP u
   

  
      (2.145) 

 

        ( )
( )

1
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2

ttt
n nnn
P uQ uu q Sq q q


  
   

        (2.146) 

 

          ( )
( )

1
;

2

tt it
nn nn n
Q uu u q q Sq q qP u




   
  

         (2.147) 

 

on the boundary 𝑆. In these equations the superscripts (±) of the fields are omitted 

since the total field on the outer side of the boundary is equal to the total field on the 

inner side in accordance with the dielectric boundary conditions (2.133) and (2.134).  

The equation set (2.144), (2.145) are called as EFIEs and  (2.146), (2.147) are 

called as MFIEs of TM-z wave scattering by the dielectric body. For the TE-z 

polarization, the opposite is said. This is the result of field formulation which leads 

four equations in two unknowns [22]. Thus, any of two equations or any proper 
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combination of them can be used for finding the unknowns. Here, the EFIE or MFIE 

formulations i.e. (2.144) and (2.145) or (2.146) and (2.147) are used for the solution 

of the system since this kind formulation is used in [18] and [19] which is followed 

from [17]. 

Now let’s, at first, consider the equation set (2.144) and (2.145) in a proper form 

for analysis as  

 

 

           
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u u qQ uq q qP u

u Q uq q qP u


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  

  

     

     

  (2.148) 

 

and in the matrix form as 

 

 
 

 

11 12 1

21 22 2

t

t
n

u qA A b

A A bu q

    
     
     

 (2.149) 

 

where the unknown vector and the known right-hand-side vector are as follows. 

 

 
 

 

 

 
1 1

2 2

;
0

t i

t
n

u qx b u q

x bu q

      
       
        

 (2.150) 

 

If the equations (2.148)-(2.150) examined then it is clear that the matrix element 𝐴11 

is a diagonal one but 𝐴22 is not. So, for having a full diagonal matrix, the block matrix 

𝐴22 must be diagonalized. As it is seen from (2.148) it has the same kind equation of 

the Dirichlet BVP and thus, its regularization can be done in the same manner. So, the 

double-sided regulators are constructed as 

 

 
 

 

 

 
1 1

1 1

0 0
;

0 0D D
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 

 
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   
   
      

  (2.151) 
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where 𝐼 is the identity matrix and the operators that subscripted by D are the operators 

of the Dirichlet BVP given by (2.98) and (2.99). 

The consideration of the equations (2.146) and (2.147) analogous to (2.148) 

yields to 
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  

     

     

  (2.152) 

 

with similar matrix form but with the inverse order of the unknowns. In this case, 

again, the matrix element 𝐴11 is a diagonal one and, the block matrix  𝐴22 must be 

diagonalized for having a full diagonal matrix. But now, 𝐴22 has an equation of the 

same kind as Neumann BVP and its regularization must be done similar to that. That’s 

why the regularization operators have the following matrix forms 

 

 
 

 

 

 
1 1

1 1

0 0
;

0 0N N

I I
L R

L R

 

 
 
   
   
      

  (2.153) 

 

where the operators denoted by the subscript of N are the operators of Neumann BVP 

given by (2.112) and (2.113) respectively. 

As can be seen from (2.148) and (2.152), the regularization procedure changes 

depend on the chosen equation set. However, even if the procedure that is explained 

here is only for the EFIE and MFIE system, there is not a big difference for any 

combination of the equations (2.144)-(2.147). A different but qualitatively same 

procedure of regularization that explained in all details can be found in [24, 34] for 

dielectric boundaries. 

Before finishing this part, it is crucial to underline that the solutions of the 

integral equation set (2.144)-(2.147) are not resonance-free and thus, may not be 

unique due to the facts that explained in [22] and in Chapter 3.4 of the [17]. For 

obtaining resonance-free solutions, there are several methods mentioned in the 

introduction part, which make a proper combination of the equations (2.144)-(2.147) 
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and guarantee a unique solution. However, the resonance solutions are beyond the 

scope of this work and the resonance frequencies are not considered here. 

 

2.2.5. Singularity Properties of the Kernels of Potentials 

 

The first and the basic step of the ARM is the local singular expansion of the 

kernels of the single and double layer potentials (2.59), (2.60) and their normal 

derivatives (2.61), (2.62) (if used in the formulation then the consideration of the 

tangential derivatives may be required which is out of the scope of this thesis). 

It is seen from (2.59) that the kernel of the single layer potential is the two-

dimensional free-space Green’s function which, for the 𝑒𝑖𝜔𝑡 time dependency, is 

 

    (2)
2 0 00

1 1
( , ) ( )

4 4
PK G q p H kR J kR iY kR

i i
       (2.154) 

 

where free space denotes not only vacuum but any homogeneous medium. Here 𝐻0
2(∙

), 𝐽0(∙) and 𝑌0(∙) are the zero order second kind Hankel, Bessel, and Neumann 

functions respectively and 𝑅 is the distance between the points 𝑞 and 𝑝 that has the 

definition 

 

     
1/2

2 2

q p q pR q p x x y y       (2.155) 

 

It is well-known that the 𝐽0(𝑘𝑅) is infinitely smooth function of 𝑅 that has the 

expression [26] 

 

 
   

2 4

0( ) 1
4 64

kR kR
J kR       (2.156) 

 

but 𝑌0(𝑘𝑅) has logarithmic singularity when 𝑅 = 0 and it has the following expansion 

[26] 
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 

2

0 0 0
2 2

( ) ln ( ) ( )
2 2

kRkR
Y kR J kR J kR



 

 
    

 
  (2.157) 

 

and in terms of the Chebyshev polynomials 𝑇2𝑛(∙) with known coefficients 𝑏𝑛 up to 

25 digits which is given in [52] 
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n

kR kR
Y kR J kR J kR b T



 





  
   
   
   

  (2.158) 

 

Here 𝛾 = 0.57721566490… is the Euler constant. 

By substituting (2.158) into (2.154) yields 
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1 1 1
( ) ln

2 2 4 2 4 8
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     
     
     

   (2.159) 

 

For the points 𝑞 = 𝜂(𝜃) = (𝑥(𝜃), 𝑦(𝜃)) and 𝑝 = 𝜂(𝜏) = (𝑥(𝜏), 𝑦(𝜏)) the 

relation (2.155) can be rewritten as 

 

               
1/2

2 2
( , )R x x y y                (2.160) 

 

Now, let us introduce the notations 

 

 1 2; ; ;           (2.161) 

 

and 
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 
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   
     
      

 (2.162) 

 

Now it is evident from (2.160) and (2.161) that 𝑅 → 0 when 𝛿 → 0 and 𝛿 → ±2𝜋 with 

the property of the parametrization function 𝜂(𝜃) that given in (2.69). Thus, the 
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considered function may have the singularities only in such points where sin (
𝛿

2
) = 0 

which are the same points of 𝛿 = 0,±2𝜋. That is why, to investigate the behavior of 

the considered functions, the case 𝛿 → 0 is considered. For this end, at first, it is 

necessary to consider the corresponding behavior of the function (2.160). For this 

purpose let’s define the Taylor series of 

 

    42 3 4 5
2 1 1 1 1 1

1 1 1

2 6 24
x x x x x x x               (2.163) 

 

    42 3 4 5
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1 1 1

2 6 24
y y y y y y y               (2.164) 

 

By means of these Taylor series, one can calculate that 

 

    2 2 2 2 2 3 4, 1R R l a b c            
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 (2.165) 

 

 where 𝑙 = 𝑙(𝜃) is the arc length defined by (2.70).  

Now, by using the relation (2.165), the term that has the logarithmic singularity 

can be written as 

 

 
     

 
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 

  (2.166) 

 

where 𝜑(𝜃, 𝜏) is some infinitely differentiable function in the domain |𝜃 − 𝜏| ≤ 2𝜋. 

Substituting the equations (2.156) and (2.157) into (2.154) and then using the relation 

(2.166) one can obtain the singular expansion 
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2

1
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  
  (2.167) 

 

where 𝐹𝑁(𝜃, 𝜏) is some function that has continuous derivatives of the order not bigger 

than 𝑁. This expression is valid for arbitrary integer 𝑁 ≥ 2. 
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It is clear that the function 𝐺2(𝑘𝑅(𝜃, 𝜏)) is the periodic function of 𝜃 and 𝜏 with 

the smooth parametrization function 𝜂(𝜃) that has the property (2.69). Also, it is 

evident that it is infinitely differentiable except at the points where 𝛿 = 0,±2𝜋. As 

stated above, these points are the same as where the periodic function sin (
𝛿

2
) = 0. 

Furthermore, this function can be expanded into Taylor series for 𝛿 → 0 as  
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By comparing the equations (2.166) and (2.168) one can easily see that  

 

  ln 2sin ln ,
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
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where 𝜓(𝜃, 𝜏) some infinitely differentiable function in the domain |𝜃 − 𝜏| ≤ 2𝜋. In 

addition, it can be found in [53] that, this function has the following Fourier series 

expansion  
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which can be written in another form [35], by the help of 𝜏𝑛 that has the definition in 

(2.73), as 
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Now it is evident that by means of this expression, the singularity of the kernel (2.167)

can be extracted and even the periodicity is preserved since they have the same 

singularity at same points. Because as shown in above chapters by the operators, the 
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integrals are discretized by expanding all the corresponding functions into their one or 

two-dimensional Fourier series and then reduced to the algebraic systems of their 

Fourier coefficients by the help of the orthogonality of the complex exponentials [5], 

[51], [54]. That is why the singular kernel is splitting into the smooth and singular 

parts and then the singularity is extracted with the help of the Fourier series expression 

given by (2.171). After all these statements, it is evident that one can express the kernel 

given by (2.167) as 
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which is, in some sense, the proof of the expressions (2.80)-(2.82). 

Now let’s analyze the kernel of the double layer potential given by (2.60) which 

is the normal derivative of the Green’s function as 
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where ∇𝑝 stands for the gradient subjected to coordinates of 𝑝(𝜏) = (𝑥(𝜏), 𝑦(𝜏)) =

(𝑥𝑝, 𝑦𝑝) and 𝑛̂𝑝 = (𝑛𝑥(𝜏), 𝑛𝑦(𝜏)) is the unit outward normal vector at point 𝑝 whose 

components are  
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If the gradient operator is subjected to the Green’s function in (2.173) it results in 
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  (2.175) 
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If 𝑅 is considered as a vector that directed from point 𝑝 to point 𝑞 then it can be written 

in vector form as 

 

     ˆ ˆq p x q p yR x x e y y e      (2.176) 

 

By taking into consideration this new form and the definition (2.155), then the equation 

(2.175) becomes 
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By substituting this equation and (2.154) into (2.173) one arrives at  
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with the well-known identity [26] 
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Here 𝐻1
(2)

(𝑧) is the first order second kind Hankel function and has the form 
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where its parts are the first order Bessel and Neumann functions that have the 

expansions 
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and in terms of the Chebyshev polynomials 𝑇2𝑛+1(∙) with known coefficients 𝑐𝑛 up to 

25 digits that are given in [52] 
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By substituting these equations into (2.178) and using the equations (2.174) and 

(2.176) 
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is obtained. Even it seems that (2.184) has the logarithmic and 1/𝑅2 singularities, 

because of the factor 𝑅⃗ ∙ 𝑛̂, it becomes finite but not infinitely smooth yet. This can be 

shown by investigating the limit cases 𝛿 → 0 for the terms 𝑅⃗ ∙ 𝑛̂𝑝 and 𝑅 by using their 

expressions given above and the Taylor series given in (2.163) and (2.164). Let’s start 

with 𝑅⃗ ∙ 𝑛̂𝑝. 
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If the Taylor series of the function 𝑅 that is given by (2.165) is used then 
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 (2.186) 

 

is obtained. Thus, this ratio has a limit and it is infinitely smooth. This brings a very 

important result from the point of the application of ARM. Because similar to done the 

kernel of (2.172), by adding and extracting the canonic function (2.170) properly then 

an infinitely smooth kernel for double layer potential can be constructed. 

It is evident that all the steps performed for the kernel of (2.60) are valid for the 

kernel of (2.61) 
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with very slight differences as 𝑛𝑝 → 𝑛𝑞 and ∇𝑝𝑅 = −∇𝑞𝑅.  

But the situation is quite different for the kernel of (2.62) that has the form 
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which also, can be written as  
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 (2.189) 

 

where 𝑅̂ = 𝑅⃗ /𝑅 is the normalized unit vector. For the Green’s function in (2.154)  

 



 

55 

 

 
    

    
 

2 (2) 2
0 (2)

02

(2)2
1

2

1 1
ˆ ˆ

4 4

2 ˆ ˆˆ ˆ ˆ ˆ
4

q p

q p

q p q p

H kR k
n R n R H kR

i n n R i

H kRk
n R n R n n

R i kR


  

 

 
    

 



 (2.190) 

 

is obtained with the help of the relation of the differential equation of Hankel function 
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The singularity properties of the functions 𝐻0
(2)

(𝑘𝑅) and 𝐻1
(2)

(𝑘𝑅)/𝑘𝑅 are given in 

(2.159) and (2.184) respectively where 𝐻0
(2)

(𝑘𝑅) has a logarithmic singularity and 

𝐻1
(2)

(𝑘𝑅)/𝑘𝑅 has a singularity proportional to 1/𝑅2 and a logarithmic singularity. 

However, in (2.190) these terms are multiplied by some factors as (𝑛̂𝑞 ∙ 𝑅̂)(𝑛̂𝑝 ∙ 𝑅̂) 

and (𝑛̂𝑞 ∙ 𝑛̂𝑝). That is why it is necessary to investigate the limit case of these factors 

for 𝛿 → 0 as well. By the help of the Taylor expansions (2.163)-(2.165) (similar to 

(2.185), (2.186)) one can obtain the limits easily as 
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with the following definitions 
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Now let’s instead of (2.190) consider the function 
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which results in a proper formula from the point of singularity extraction. By collecting 

the formulae (2.159), (2.183) and (2.190) yields 
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If the expansion of the functions that are given in (2.156)-(2.158), (2.181)-(2.183) and 

the limit values (2.192)-(2.195) are considered carefully then it is evident that the parts 

in the first two rows are infinitely smooth, the third row is finite, the fourth row has 

logarithmic singularity and the last one has a singularity proportional 1/𝛿2. It is known 

from above explanations that the logarithmic singularity can be extracted by means of 

the canonic function (2.170). Also, it is evident from the Taylor series of (2.168) that 
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has the same singularity as 1/𝛿2 when 𝛿 → 0. Moreover, the following relation is valid 

[50] 
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The Fourier coefficients of the function (2.200) can be obtained quite simply by 

differentiating the Fourier series in (2.170) w.r.t. 𝜃 which results in another Fourier 

series as 
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This formula explains the appearance of the part of the kernel that is shown in (2.85). 

All of the explanations till know express that the canonic function (2.170) and 

its another form (2.200) whose Fourier coefficients are known analytically are quite 

proper functions to remove the logarithmic and 1/𝛿2 singularities. Namely, extraction 

and addition of these functions results in infinitely smooth functions whose limits are 

finite for 𝛿 → 0. Some of these limits can be calculated quite simply from the above 

given formulae and explanations. But, some parts of the limit of the function 𝐷(𝜃, 𝜏) 

in (2.198) cannot be obtained from the information given here which is calculated in 

[50] and is going to be represented below.  

After smoothing of the kernels with the help of the functions (2.170) and (2.200) 

the following limits that are necessary for numerical calculations are valid for 𝛿 → 0. 
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From the expressions (2.202)-(2.205) it is evident that corresponding to the any part 

which is seen as 
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in the kernels, a new part in the form  
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is extracted (and of course, the same term is added which is not seen in the 

expressions). At this point, it is necessary to make some critics about the behavior of 

𝑓(𝜃, 𝜏) corresponding to (2.202)-(2.205). In (2.202) 𝑓(𝜃, 𝜏) = 𝐽0(𝑘𝑅) which equals 

one for zero argument. This means extracting only the term ln|2𝑠𝑖𝑛[(𝜃 − 𝜏)/2]| 

without the factor 𝑓(𝜃, 𝜏) constructs, again, infinitely smooth parts by removing the 

logarithmic singularity. Moreover, the situation is a bit different for the kernels 𝐾𝑄 and 

𝐾𝜕𝑛𝑃 which have not singularities because of the factors (𝑛̂𝑞 ∙ 𝑅̂) and (𝑛̂𝑝 ∙ 𝑅̂) that go 

to zero faster than the logarithm. However, as stated above, even these kernels are not 

singular, they are finite. Nevertheless, by subjecting the extraction operation as (2.203) 

and (2.204) constructs infinitely smooth parts.  

By doing so in the kernels, yields the product 
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which consists of infinitely smooth factors. Substitution of the limit values (2.165) and 

(2.168) into (2.208) and considering the case 𝛿 → 0 results in 
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and these limit values are seen in (2.202)-(2.205). In addition to this, making the 

extraction operations by keeping the factors 𝑓(𝜃, 𝜏) with logarithmic functions 

requires the use of the convolution operation that brings the possibility of constructing 

exponentially converging algorithms [55], [56].  

In this subchapter, at first, some BVPs are constructed by means of the integral 

equations that are in form of single and double layer potentials and their derivatives. 

Then the singularity properties of the kernels of integral equations are investigated and 

then the smoothing operation and constructing exponentially converging algorithms 

by means of a canonic function is explained and the limit values are examined. In 

Chapters 3.3 and 3.4, all these theoretical details are investigated by means of the 

numerical examples for impedance cylinders and dielectric cylinders. 
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3. APPLICATION OF ARM TO DIFFERENT 

SYSTEMS OF CIRCULAR CYLINDERS 

 

 . Application of ARM to the Algebraic System of Series 

Solution of Two Parallel Circular Impedance Cylinders 

 

The geometrical structure of the considered problem is given in Figure 3.1.  

 

 
 

Figure 3.1: Geometrical structure of two parallel circular impedance cylinders. 

 

The work of application of the ARM to two parallel circular impedance cylinders 

is published in [12] for 𝑒−𝑖𝜔𝑡 time dependency in comparison with the formulation 

that is given herein. In sense of formulation, it is just switching of 𝐻𝑛
(1)(𝑘𝜌) to 

𝐻𝑛
(2)(𝑘𝜌) (and derivatives) in all formulas that are given in [12] and in numerical sense 

there is not qualitative difference. Here, the selected two-sided operator pair (𝐿, 𝑅) that 

reduces the first kind system to a second kind one as 𝐼 + 𝐾, the compactness of the 

operator 𝐾 and the numerical results that are published in [12] which support the 

stability and reliability of new system are given once again. For more technical details 

the reader is referred to that publication. 

Since the boundaries are modeled as impedance, then the inner fields of circles 

are null and there are just scattered fields. For TM-z case the z-component of the 

electric fields that are reflected from the boundaries are in form of (2.18) with 

unknown coefficients 𝑅𝑛
(1)

 and 𝑅𝑛
(2)

 and the relation of the tangential total electric and 

magnetic fields on the boundary with a surface impedance 𝜂𝑠 is given as 

 

 tot tot
z sE H  (3.1) 
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where 𝐻𝜑 is as given in (2.24). If the boundary condition (3.1) is imposed on each 

boundary and the transformation of the local coordinates is achieved by the second 

row of the addition theorems in (2.23), then the following algebraic equation system 

is obtained.  
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 

  (3.2) 

 

Here, all the entries of matrix 𝐴 with top-line has the form 

 

 0 0
( ) ( ) ( ); 1, 2

n m n m n m
Z Z k i Z k m        (3.3) 

 

where 𝑍𝑛(𝑡) stands for 𝐽𝑛(𝑡) or 𝐻𝑛
(2)(𝑡), 𝜂0 = (𝜇0 𝜀0⁄ )1/2 is free space intrinsic 

impedance and 𝛽 = 𝜂𝑠 𝜂0⁄ . The off-diagonal elements with top-script {𝑝𝑞} are 

interaction matrices similar to (2.42) and have the following form 
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As explained in Chapter 2.1, due to the bad behavior of the Bessel and Hankel 

functions, the system (3.2) is one of the first kind and it must be reduced to a second 

kind one by means of ARM algorithm. For this purpose, as a first step, according to 

the details given in Chapter 2.1, the right-side operator 𝑅−1 can be chosen as 
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 (3.5) 

 

where the functions with top-line are in form of (3.3). This choice, which is a 

combination of functions 𝐽𝑛(𝑡) and 𝐽′𝑛(𝑡) has the same asymptotic behavior as 
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possible choices of function 𝐹1(𝑛) that are given in Table 2.1. In addition, it has 

another superiority to these choices because 𝐽𝑛(𝑡) and 𝐽′𝑛(𝑡) have not common root 

for arbitrary 𝑡 which prevents division by zero. 

Since the operator 𝑅−1 is identified as (3.5) now, the next step is to determine 

the left-side operator 𝐿 as it yields a second kind system operator 𝐼 + 𝐾. For the matrix 

operator 𝐴 that is given in (3.2) and the diagonal operator 𝑅−1 in (3.5), the operator 

𝐿−1 is obtained as 
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  (3.6) 

 

which yields a system in form of (2.17) with a compact, in space 𝑙2, operator 𝐾 as 

following. 
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  (3.7) 

 

The compactness of the operator 𝐾 can be shown easily by analyzing the entries 𝑘𝑛𝑠
(1)

 

and 𝑘𝑛𝑠
(2)

 which have the following upper bounds for some real-valued constants Λ1,2 

of asymptotic analysis. 
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  (3.8) 

 

The equation (3.8) proves the compactness of the operator 𝐾 for any 𝑑𝑝𝑞 > 𝑎 + 𝑏 

which is already satisfied for the configuration that is given in Figure 3.1. 
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If the operation 𝐿𝐴𝑅, with the above-given operators, is examined carefully it 

can be seen that the resultant identity operator has not exactly, but, asymptotically one 

on its diagonal. This is important if a spectral problem is under consideration and the 

roots of the determinant are searched. Because, when the diagonal becomes exactly 

one then the dependency to the frequency may be destroyed. Such an operator 𝑅 and 

correspondent operator 𝐿 is suggested in [12] and it is tested. In the sense of numerical 

results and the compactness of 𝐾 it has the same qualitative properties as (3.5). 

Let’s now see, through the numerical results, the superiority of the obtained 

second kind system by the two-sided operator pair (𝐿, 𝑅) that are given by (3.5) and 

(3.6) compared to the first kind system (3.2). 

The following numerical results are given for the values of both surface 

impedances are equal 𝜂𝑠 = 100 + 100𝑖, the radius of the circles are 𝑎 = 𝑏 = 1/𝑘0 

and the distance between two circles 𝑑 = 5/𝑘0 where the center of both circles are 

posed on the x-axis. The incidence field is supposed as a TM-z polarized plane wave 

impinging on the circles with 𝜋/2 incidence angle. 

 

 
 

Figure 3.2: a) Condition number, b) Rank, c) On the boundary m=1, d) On the 

boundary m=2, maximum deviation from the satisfaction the boundary condition. 
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In Figure 3.2.a) and b), the condition number that is defined by (2.6), and the 

rank of both systems, i.e. before regularization and after regularization, are plotted. It 

is well known that a well-conditioned system has uniformly bounded condition 

number and its rank grows linearly with increasing truncation number. On the other 

side, the condition number of an ill-conditioned system grows dramatically, and it is 

rank-deficient while the truncation number increases. These facts are seen clearly from 

the plots. Here, the truncation number means for a value 𝑁 the infinite series are 

truncated from −𝑁 to 𝑁 and thus the size of the algebraic system becomes 2(2𝑁 + 1). 

In Figure 3.2.a), for a better view, the condition number of the first kind system is 

given in logarithmic scale and even scaled by a small factor.  

In Figure 3.2.c) and d), the maximum deviation from the satisfaction of the 

boundary condition (3.1) on both boundaries is given. For a clear comparison, the 

values that are obtained from the solution of the second kind system are scaled by a 

very large value. These graphs show clearly that the solution of the first kind system 

is far from the satisfaction of the boundary condition which means the solution is not 

correct. On the other hand, the second kind system which is arrived at by the suggested 

regularization operation satisfy the boundary conditions perfectly with machine 

precision. 

Figure 3.3.a) and b) shows the surface currents on both boundaries, m=1 and 

m=2, and Figure 3.3.c) shows the bistatic RCS of the scattered field from two circles 

for regularized and un-regularized systems. As seen from the graphs, the results that 

are obtained from the first kind and second kind systems are quite different as 

expected. 

Notice that these results are not a validation but comparison of two systems. 

However, due to the facts that are shown in Figure 3.2 the regularized, i.e. second kind, 

system is reliable from the point of numerical results. Also, in [12] (in Figure 2) a 

verification of the bistatic RCS for several impedance values is made by a packaged 

program called as Ansoft HFSS. 
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Figure 3.3: The values calculated at N=40; a) Surface currents on the boundary m=1, 

b) Surface currents on the boundary m=2, c) The bistatic RCS. 

 

Now, it is clear that the LAES1, i.e. the algebraic system before regularization, 

is extremely ill-conditioned as shown Figure 3.2 by means of key indicators as the 

condition number and rank. In addition, in Figure 3.3 by means of physical quantities 

as surface current and RCS, the difference between two solutions is shown clearly. 

The calculations corresponding to these plots are performed in MATLAB environment 

by using the iterative solver “quasi-minimal residual” (qmr) method which is one of 

the many options of MATLAB. Because, even being extremely ill-conditioned and 

rank-deficient for N=40, the MATLAB’s LU solver keeps working perfectly well for 

the system (3.2) contrary to the expectations. When the LU solver method of 

MATLAB has invoked, a warning about bad-conditioning of the matrix as “matrix is 

close to singular or badly scaled” is thrown and the value of reciprocal condition 

number (rcond) is displayed which is very close to zero. This means MATLAB is 

aware of the situation and makes something inside (might be the scaling of the matrix 

elements or implementing some preconditioning techniques) which masks the bad 

behavior of the LAES1. For the purpose of revealing the ill-conditioned behavior of 
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the LAES1, the solution of the system (3.2) is performed by an LU decomposition 

solver which is implemented in C++ with double precision (16 significant digits) and 

the maximum deviation from the satisfaction of the boundary condition is calculated. 

The results that are obtained for several truncation numbers on both surfaces are 

tabulated in Table 3.1. As seen from the values in the table, with increasing truncation 

number the boundary condition is far from being satisfied. 

 

Table 3.1: Maximum deviation from the satisfaction of the boundary condition tested 

by an LU solver of mantissa length 1016 via the solution of the matrix A. 

 

Truncation number 

per block  

(N) 

Maximum deviation from satisfaction of the boundary 

condition 

Surface 1 Surface 2 

10 2.107708154721642e-08 2.110741476084647e-08 

20 4.199639234666350e-02 2.110740774266010e-08 

40 9.852222875038121e+11 2.110740707965443e-08 

80 5.767939322592583e+39 1.592155168152142e+40 

100 3.172408189417764e+64 5.632395455446972e+65 

 

In this chapter, the numerical implementation of the suggested ARM algorithm 

for circular boundaries that is explained in Chapter 2.1 is applied to two parallel 

circular impedance scatterers and its achievement is shown in many aspects by means 

of illustrative numerical results. 

 

 . Application of ARM to the Algebraic System of Series 

Solution of a Few Eccentrically Layered Circular Dielectric 

Cylinders 

 

The considered configuration of the eccentrically layered dielectric circles is 

given in Figure 3.4. 
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Figure 3.4: Geometrical structure of eccentrically layered dielectric circles. 

 

This model can be used as a draft of power transmitter cables. That is why the 

analytical model of such a configuration has sense in real world. The ARM algorithm 

and remarkable numerical results that support the necessity of reducing the algebraic 

system to a second kind one for this configuration is published in [11]. Here, the 

algebraic system and the regularization operators are given for TM-z case and the same 

numerical results are repeated here once more. 

Let us assume that a TM-z polarized incident plane wave that has the expression 

in form of (2.25) illuminates the system of the dielectric circles of Figure 3.4. If one 

applies the formulation steps, in a very similar manner, as in Chapter 2.1, then arrives 

at the following algebraic system 𝐴𝑥 = 𝑏 which is a combination of the systems (2.41) 

and (2.44) similar to the representation that is given in form of (2.45). 
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  (3.9) 

 

In Chapter 2.1 it is explained mathematically for the general case, and in addition 

in Chapter 3.1 it is shown by numerical results of two parallel impedance cylinders, 

that such a system is one of the first kind and naturally ill-conditioned one for 
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numerical calculation since it is very much sensitive to the matrix inversion operations. 

Thus, it is clear that this system must be reduced to a second kind one for having a 

stable system and, as a result, reliable numerical results. 

According to the given background in Chapter 2.1, the double-sided regulators 

for the system (3.9) are chosen as 

 

 

     

     

     

     

0

1

1

2

1

3

0

4

0 0 0

0 0 0

0 0 0

0 0 0

1R











  
 
 
  

   
  

  
 

   

  (3.10) 

 

where each block is in the form as Γ𝑚
𝑗

= 𝑑𝑖𝑎𝑔 [𝐻𝑛
(1)
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with the form Λ𝑚
𝑗

= 𝑑𝑖𝑎𝑔 [𝑃𝑛
(𝑚,𝑗)(𝜌𝑚) (𝐻𝑛

(1)
(𝑘𝑗𝜌𝑚))

−1

,   𝑃𝑛
(𝑚,𝑗)(𝜌𝑚) (𝐻𝑛

(1)(𝑘𝑚𝜌𝑚))]. 

After applying the regulators (3.10) and (3.11) to the system (3.9), then the 

second kind system (𝐼 + 𝐾)𝑦 = 𝐿𝑏 is obtained with the following compact operator  
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The compactness of this operator, by means of (2.47)-(2.55), can be shown by 

the upper limits of its entries 𝑊,𝑄, 𝑇 that are seen in (2.41) and (2.44) with the 
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interaction of the addition theorems as follows with some constants of asymptotic 

analysis 𝑐1, 𝑐2 …𝑐10. 

For the function 𝑊𝑛,𝑠
𝑚𝑚′ 
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For the function 𝑄𝑛,𝑠
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For the function 𝑇𝑛,𝑠
𝑚𝑚′ 
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Since the inequalities 𝑑12, 𝑑13 < 𝑎, 𝑑23 > 𝑏, 𝑑23 > 𝑐, 𝑑14 > 𝑎, 𝑑14 > 𝑑 are already 

satisfied, then all the entries in (3.13)-(3.15) are uniformly bounded. That is why, it is 
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proved that the initial boundary value problem of a few eccentrically layered dielectric 

circular cylinders is equivalently reduced to one of the second kind successfully. Let’s 

now see these facts by means of numerical results that are published in [11]. 

The numerical results are given for the values as 𝜀𝑟1 = 4 + 𝑖𝜀′𝑟1, 𝜀𝑟2 = 𝜀𝑟3 =

16 and 𝜀𝑟4 = 4 and 𝜇𝑟𝑗 = 1 for all regions and the imaginary part 𝜀′𝑟1 takes three 

different values as 0, 10, 100. The center of the circles are posed as 

𝑂𝑚(𝑘0𝑥𝑚, 𝑘0𝑦𝑚) = (0,0), (−1,0), (1.5,0), (6,0) and the radiuses are 𝑘0𝜌𝑚 =

2.5, 0.5, 0.5, and 2.5 for 𝑚 = 1, 2, 3, 4 respectively. 

For the configuration that is given in Figure 3.4 with above given parameters the 

comparison of LAES1 and LAES2 is shown in Figure 3.5. 

 

 
 

Figure 3.5: The condition numbers of the LAES1 and LAES2 and the absolute error 

of LAES2 for different values of imaginary part of the dielectric permittivity of the 

region j=1. 

 

In Figure 3.5, the condition numbers of the LAES1 are shown in linear scale 

through the curves that are denoted by the number 1. The condition numbers of LAES2 

are shown in logarithmic scale by the curves which are denoted by the number 2 and 

the absolute error of the solution of the LAES2 are shown, again in logarithmic scale, 

by the curves denoted by number 3 where in each curve group, the colors from lighter 

to darker are for the values of 𝜀′𝑟1 = 0, 10, 100 respectively. As seen from the figure, 
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the condition number, which is defined by (3.9), of the first kind system grows 

dramatically w.r.t. truncation number. On the other hand, the second kind system with 

compact operator (3.12), which is arrived by the operators (3.10) and (3.11), has 

extremely small and uniform condition numbers for increasing truncation number. In 

addition, the 3rd curve group shows the convergence of the LAES2 for increasing 

truncation number. In these curves, the solution of the LAES2 at 𝑁 = 80 is taken as 

the solution of infinite system, i.e. 𝑦80 = 𝑦∞, and the norms ‖𝑦𝑁 − 𝑦∞‖2 are calculated 

for increasing 𝑁 by padding 80 − 𝑁  zeros to the vector 𝑦𝑁. These numerical result is 

consistent perfectly with the theoretically expected behavior of the second kind system 

that is given in Figure 2.1. 

Another illustrative graphic that expresses the superiority of the LAES2 to 

LAES1 is shown in Figure 3.6. In this figure, the convergence of the systems and the 

maximum deviation from the satisfaction of the boundary condition on the boundary 

𝑚 = 1 is checked and the results are given in logarithmic scale. 

 

 
 

Figure 3.6: The change of the absolute errors with truncation number for (1) the 

solutions of LAES1 and LAES2, (2) the field at the two sides of the boundary, (3) 

the solutions of the LAES1 in itself, and (4) the solution of the LAES2 in itself. 

 

Here, the curve group that is denoted by the number 1 shows the norm ‖𝑥1𝑁 − 𝑥2𝑁‖2 

where 𝑥1𝑁 is the solution of the LAES1 directly, and 𝑥2𝑁 is obtained by the relation 

𝑥2𝑁 = 𝑅𝑁𝑦𝑁 with the converging solution 𝑦𝑁 which is displayed in Figure 3.5. The 
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values that are given in logarithmic scale shows the divergence of the solution of the 

LAES1 clearly.  

The curve group in number 2, for the solution of the LAES1, shows the 

maximum deviation from the satisfaction of the boundary condition. For this purpose, 

the maximum value of the absolute differences of the tangential electric fields that are 

calculated at 36 equidistant polar angles on the boundary 𝑚 = 1 is picked for each 𝑁. 

As seen clearly from the figure, the deviation gets bigger for increasing truncation 

number. These numerical results show the bad behavior of LAES1 from another 

aspect.  

The curves in group number 3 and number 4 shows the absolute error between 

the two solutions for the truncation numbers 𝑁 and ⌊1.5𝑁⌋ of the LAES1 and LAES2, 

respectively (here ⌊1.5𝑁⌋ means the nearest integer number to 1.5𝑁). Actually, to 

understand whether the solution of the truncated system LAES1 is convergent, it is a 

common practice to look at the absolute error of the solutions for 𝑁 and 𝑁 + 1, i.e. 

𝛿𝑁 = |𝑎𝑁+1 − 𝑎𝑁| to see whether 𝛿𝑁 → 0 with increasing 𝑁 (here 𝑎𝑁 is the Nth entry 

to the solution vector 𝑥1𝑁). But, in the case considered here, this common practice can 

be misleading because of the dramatically growing behavior of the coefficients 𝑎𝑁. To 

avoid from such a circumstance, calculating 𝛿𝑁 = |𝑎𝜅𝑁 − 𝑎𝑁|(𝜅 = 1.5~2) for the 

investigation of the convergence of the LAES1 gives the correct insight and is realized 

here. For the solution of the LAES2 similar to in Figure 3.5, the norm ‖𝑦𝑁 − 𝑦1.5𝑁‖2 

converges to zero for increasing N. On the other hand, and as expected, for the solution 

of the LAES1 the result of ‖𝑥𝑁 − 𝑥1.5𝑁‖2 is divergent. 

Figure 3.7.a)-d) displays the measure of the boundary conditions on each 

boundary m=1, 2, 3, and 4 respectively, for the solutions of LAES1 and LAES2. On 

each boundary, the boundary condition is tested at 60 equidistant polar angles for the 

tangential electric field 𝐸𝑧 and tangential magnetic field 𝐻𝜑 and the maximum 

deviation is picked for each truncation number. It is clear from the numerical results 

that the fields calculated by the reflection and transmission coefficients which are 

obtained from the solution of LAES1 do not satisfy the boundary condition while N 

increases. On the contrary, the fields that are calculated by the solution of the LAES2 

satisfy the boundary conditions at any truncation number. 

It is worth to note that none of the behaviors of the numerical results given in 

Figure 3.5-3.7 change due to the variation of the value of the imaginary part 𝜀′𝑟1. 
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Figure 3.7: The absolute error between the tangential field; a) On the boundary m=1, 

b) On the boundary m=2, c) On the boundary m=3, d) On the boundary m=4. 

 

 
 

Figure 3.8: On the circular boundary m=1 for 𝜀′𝑟1 = 4; The modulus of electric field 

obtained from a) LAES1, b) LAES2; The phase of electric field obtained from c) 

LAES1, d) LAES2. 
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The disadvantage of using the solutions of LAES1 from a different perspective 

is shown in Figure 3.8. This is another view of the information which is given in Figure 

3.6 by the curves in group number 2. Here, the 2-dimensional plots w.r.t. the truncation 

number (x-axis) and point index on the surface (y-axis) shows the modulus and the 

phase of the tangential electric field that is obtained from the LAES1 (𝐸𝑧1
1 ) and LAES2 

(𝐸𝑧2
1 ) on the boundary m=1. 

According to these figures, the check of the boundary condition is inevitable if 

the solution of LAES1 is used. In addition, this check is necessary for each different 

values of 𝜀′𝑟1. However, it is clearly seen from all those plots such a control is not 

required if the system that is reduced to a second kind one by the ARM is considered. 

 

 . Application of ARM to the Algebraic System of Integral 

Equation of Circular Dielectric Cylinders 

 

This chapter is devoted to the implementation of the theoretical information that 

is given in Chapter 2.2.4 of the ARM for the boundary integral equation of dielectric 

BVP. The kernels of the boundary integral equations are split into parts as infinitely 

smooth and singular. Then the singular parts are subjected to a smoothing operation 

by means of the canonic function (2.170) which has the same singularity behavior of 

the kernels as explained in Chapter 2.2.5. This smoothing operation results in a kernel 

that consists of infinitely smooth parts and the Fourier coefficients of these parts can 

be calculated quite efficiently by means of the Fast Fourier Transform (FFT), which is 

the exact implementation of the Discrete Fourier Transform (DFT) for complex 

exponentials.  

The considered geometrical structure of dielectric boundaries is given in Figure 

3.9 as nested in a) and parallel in b). Even if the circular boundaries are under 

consideration, the construction of the algorithm is for the general case of arbitrarily 

shaped obstacles whose boundary satisfy some certain conditions. 
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Figure 3.9: The considered circular dielectric boundaries: a) Inclusion, b) Neighbor. 

 

The algorithm and the numerical results that are going to be given here are a 

repetition of the publication [19]. Here, the integral equations and the formulation are 

given explicitly which are given in a compact form in that publication. However, most 

of the explanation is not repeated here for the sake of brevity. For this purpose, the 

reader is referred to the publication. 

The integral equations regarding to the multiple dielectric boundaries that are 

considered here are obtained by means of the equivalence principle by generalizing 

the boundary integral equations which are given for a single dielectric boundary in 

Chapter 3 of [17]. Therein, the field formulation [22] is used which results in, naturally, 

four equations for two unknown surface currents where two of them are the EFIE and 

the other two are the MFIE. The corresponding unknowns are the vector electric 

surface current 𝐾⃗⃗  and the vector magnetic surface current 𝐾𝑚
⃗⃗ ⃗⃗  ⃗ that, for infinitely long 

cylinders along the Oz axis, have the expressions 

 

 ˆ ˆˆ ˆ;z l m mz mlK K z K l K K z K l     (3.16) 

 

where 𝑧̂ and 𝑙 denotes the tangential unit vectors and 𝐾𝑧/𝐾𝑚𝑧 and 𝐾𝑙/𝐾𝑚𝑙 are the 

corresponding components. The relations of these surface currents with the total 

surface electric fields 𝐸⃗  and magnetic field 𝐻⃗⃗  are 

 

 ˆ ˆ;K n H K n Em      (3.17) 

 

where 𝑛̂ is the outward unit normal vector. 
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In the formulation that is given here, the unknown surface currents 𝐾⃗⃗ 𝑖 and 𝐾⃗⃗ 𝑚𝑖 

are put on each boundary where 𝑖 denotes the related boundary and the integral 

equations are obtained in terms of these unknowns for TM-z and TE-z polarization. 

For TM-z polarization, which is the case that all the fields can be represented in terms 

of the z-component of the electric field, the relation between tangential fields, for 

infinitely long cylinder along the z-axis, are 

 

 
1

0; z
l z l

E
E H H

i n


  


 (3.18) 

 

and the relation between the total tangential fields and the surface currents that are 

obtained by substituting the (3.16) into (3.17) and using the relations (3.18) are 

obtained as 

 

 0; ;mz l ml z z lK K K E K H     (3.19) 

 

On the other hand, for TE-z polarization, which is the case that all the fields can be 

represented in terms of the z-component of the magnetic field, the relation between 

tangential fields are 

 

 
1

0; z
zl l

H
H E E

i n


   


  (3.20) 

 

and similar to (3.19) the relations of the surface currents and the total tangential fields 

are obtained as 

 

 0; ;z ml l z mz lK K K H K E       (3.21) 

 

Now, it is evident from (3.19) and (3.21) that in the case of TM-z polarization the 

unknowns are 𝐾𝑚𝑙 and 𝐾𝑧 but for TE-z polarization 𝐾𝑙 and 𝐾𝑚𝑧 are the related 

unknowns that have to be found. 

After applying the equivalence principle, similar to done in [17] for a single 

boundary, and putting the unknowns 𝐾⃗⃗ 1 and 𝐾⃗⃗ 𝑚1 on the boundary 𝐶1 and 𝐾⃗⃗ 2 and 𝐾⃗⃗ 𝑚2 
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on the boundary 𝐶2 then the following integral equations regarding to the outer vicinity 

and the inner vicinity of each boundary (for 𝑒𝑖𝜔𝑡 time dependency) are obtained. 

EFIE system for the configuration Figure 3.9.a) for TM-z polarization are 

obtained on the related boundaries (where the superscript (±) means the outer and 

inner side of the boundary, respectively) as 
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As seen the from the EFIE set (3.22)-(3.25), there are four unknowns and four 

equations, so the unknowns can be calculated by solving this system of equations. 

These equations are in the same structure of (2.144) and (2.145) which are given for a 

single dielectric boundary in terms of the total fields on the boundary. But it is evident 
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that by means of the relations (3.18) and (3.19) one can be transformed to each other 

quite simply by considering the definitions (2.59) and (2.60). 

In the same manner, the MFIE system that has the same unknowns is obtained 

on the related boundaries as 
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Similar to the EFIE system, the MFIE system has four unknowns that are the 

same as the unknowns of EFIE and four equations (3.26)-(3.29) that are enough to 

solve the system. These equations are in the same form of (2.146) and (2.147), and by 
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means of the relations (3.18) and (3.19) one can be transformed to the other one by 

considering the definitions (2.61) and (2.62).  

Since both equation systems, i.e. EFIE and MFIE, have the same unknowns but 

completely different kernels, the solution of one can be compared to the other. In 

numerical results, this comparison is done in addition to the comparison by the 

rigorous solution of the SoV which is obtained by means of the stable algorithm that 

is suggested in the former chapters for circular boundaries. 

For TE-z polarization case the integral equations of the configuration Figure 

3.9.a) can be obtained simply by considering the relations (3.20), (3.21) instead of 

(3.18), (3.19) and (2.146), (2.147) instead of (2.144), (2.145) and thus the potentials 

(2.61) and (2.62) with the properties (2.66) and (2.68) respectively. 

Let’s now obtain the integral equations for the configuration b) but now for the 

case of the TE-z polarization. Again, similar to done in [17] for a single dielectric 

boundary, the following integral equations are obtained for two parallel boundaries 

that are given in Figure 3.9.b). 

EFIE system: 
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MFIE system: 
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Analogously, there are two systems, i.e. EFIE and MFIE, with same unknowns but 

with different kernels. Thus, the solutions can be compared to each other. This 

comparison is done in numerical results. The similarity of these equations with the 

equations (2.144)-(2.147) is clear similar to the others as explained above. 

Now let us consider these equations from the point of ARM algorithm. The first 

step of the algorithm is making the parametrization of the boundary by means of the 

smooth vector function 𝜂(𝜃) = (𝑥(𝜃), 𝑦(𝜃)) that has the property (2.69) that ensures 

the periodicity of all functions where 𝜃 is uniformly sampled in the interval (−𝜋, 𝜋]. 

After the parametrization of the contour, the integral expressions that are in form of 

the potentials (2.59)-(2.62) with the kernels (2.159), (2.184), (2.187), (2.198) for an 

unknown denoted as 𝜁(𝜏) seem as 
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where the notation of a function as 𝑓(𝜃) means the value at the observation point 

𝑞(𝜃) = {𝑥(𝜃), 𝑦(𝜃)} and in similar manner the notation 𝑓(𝜏) means the value of the 

function at the integration point 𝑝(𝜏) = {𝑥(𝜏), 𝑦(𝜏)} and 𝑙(𝜏)𝑑𝜏 is the differential arc-

length. 

All of the functions in (3.38)-(3.41) that are denoted by tilde are infinitely 

smooth functions. They are obtained by extracting the canonic singularities of the 

kernels 𝑃, 𝑄, 𝜕𝑛𝑃 and 𝜕𝑛𝑄 where the remainder parts are the additions corresponding 

to the extracted parts. These parts consist of infinitely smooth functions multiplied by 

singular functions whose Fourier coefficients are known analytically. Construction of 

the kernels as splitting them into additive and multiplicative smooth and singular parts 

gives a very important chance to overcome the singularity of the kernels. The 

discretization of the integrals is achieved via the Galerkin method where the base 

functions are complex exponentials and all the related functions are expanded into one- 

or two-dimensional Fourier series. The Fourier spectrum of infinitely smooth functions 

can be calculated efficiently by the DFT which is well-known as Gauss quadrature for 

trigonometric polynomials and its error tends to zero super-algebraically for infinitely 

smooth functions. That is why, the FFT routine can be employed to calculate the 

Fourier coefficients of infinitely smooth functions. But for singular parts, of course, it 

is not possible to obtain the Fourier spectrum and not efficiently. But, as explained 

before, the used canonic functions have analytically known Fourier spectrums as 

(2.171) and (2.201). Thus, one- or two-dimensional FFT is employed to calculate the 

Fourier spectrum of infinitely smooth functions and then the convolution theorem is 

applied between the Fourier coefficients of the singular functions and their factors. 

The application of the convolution theorem in such a manner brings a fast converging 

algorithm [55], [56].  

After expressing all the functions into Fourier series, and then through the 

orthogonality of the complex exponentials the integral equations are reduced to 

algebraic equation system [5], [24], [54] and the numerical implementation is done by 

a truncation procedure. For the truncation number denoted by 𝑁, each block has 

Fourier indices form −𝑁 + 1 to 𝑁 where (–𝑁)th term is excluded because of the 

periodicity of Fourier coefficients. After applying such truncation procedure, the 

Fourier spectrum of each potential that are given by (3.38)-(3.41)seems as 
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with the fact that 
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and the corresponding definition of truncated Fourier series expansions 
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The algebraic system that is obtained by reducing the integral equations by 

means of the Fourier coefficients of any system, i.e. of EFIE or MFIE that are given 

above, in matrix form seems as 
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where 𝑥 = [𝑘𝑛
(1𝑧)

, 𝑘𝑛
(𝑚1𝑙)

, 𝑘𝑛
(2𝑧)

, 𝑘𝑛
(𝑚2𝑙)

]
𝑇

 are the Fourier coefficients of the unknown 

surface currents 𝐾1𝑧, 𝐾𝑚1𝑙, 𝐾2𝑧 and 𝐾𝑚2𝑙 for TM-z polarization case and 𝑥 =

[𝑘𝑛
(1𝑙)

, 𝑘𝑛
(𝑚1𝑧)

, 𝑘𝑛
(2𝑙)

, 𝑘𝑛
(𝑚2𝑧)

]
𝑇

 are the Fourier coefficients of the unknown surface 

currents 𝐾1𝑙, 𝐾𝑚1𝑧, 𝐾2𝑙 and 𝐾𝑚2𝑧 for TE-z polarization case. It is clear that the system 

(3.56) is not a second kind one because, as seen, the matrix is not a diagonal one. That 
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is why, at first glance, a regularization operation with the block operators (2.151) and 

(2.153) seems as necessary. However, in numerical results it will be shown that for 

this configuration, thanks to the fast converging algorithm the condition number 

remains bounded. Also, it is checked that a regularization operation does not change 

the situation very much. Nevertheless, the super-algebraically converging algorithm 

does not mean a regularized system. In any case, it is better to have a second kind 

system by applying properly, i.e. according to the structure of the kernels, the double-

sided regulator blocks that are given by (2.151) and (2.153) for dielectric boundaries. 

Let us now see the implementation of the constructed algorithm. The numerical 

results that are going to be given here are already published in [19] and represented 

here once more for the purpose of discussion of the suggested algorithm. The 

parameters for numerical results regarding to the considered problems that are given 

in Figure 3.9.a) and Figure 3.9.b) are tabulated in the columns of the Table 3.2 column 

a) and column b) respectively. 

 

Table 3.2: The parameters of the dielectric cylinders and mediums for numerical 

results of the solution of the boundary integral equation of dielectrics. 

 

a) b) 

𝑂1(𝑥, 𝑦) = (0,0) 

𝑂2(𝑥, 𝑦) = (−
𝜆0

2
, 0) 

𝜌1 =
3𝜆0

2
, 𝜌2 =

𝜆0

2
 

𝑂1(𝑥, 𝑦) = (−
𝜆0

2
, 0) 

𝑂2(𝑥, 𝑦) = (−
𝜆0

2
, 0) 

𝜌1 = 𝜌2 =
𝜆0

2
 

𝜇1 = 𝜇1 = 𝜇0, 𝜀1 = 4𝜀0, 𝜀1 = 16𝜀0 

 

All the numerical results are given for a unit amplitude plane wave incidence 

along the negative x-axis. For the geometrical structure of Figure 3.9.a), the numerical 

results are given for TM-z polarized wave incidence, but for Figure 3.9.b) a TE-z wave 

incidence is assumed. 

The first numerical result is the validation of the algorithm by comparison of the 

solutions of the systems of the EFIE and MFIE and the SoV solution that is obtained 

by means of the rigorous well-conditioned algorithm constructed by means of the 

ARM algorithm for circular dielectric cylinders. For a TM-z polarized wave impinging 

on the dielectric scatterers in Figure 3.9.a) the results are given in Figure 3.10. 
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Figure 3.10: Validation of the solutions of the EFIE and MFIE systems for double 

layered dielectric circular cylinders; a) Fourier coefficients of the electric fields, b) 

Fourier coefficients of the magnetic fields, c) Electric fields, d) Magnetic fields. 

 

In Figure 3.10.a) and b) the Fourier coefficients of the total tangential fields, i.e. 

the solution of the systems that are obtained from EFIE, MFIE and SoV, are compared 

on the outer boundary 𝐶1 and inner boundary 𝐶2.  

The relation of the surface currents and the total longitudinal and transverse 

tangential fields (𝐸𝑧 and 𝐻𝑙 = 𝐻𝜑 for circular boundary) are given by (3.19). It is clear 

that the solution, i.e. the Fourier coefficients of the currents, are the same as of the 

tangential fields. However, for the solution of SoV where the reflection and 

transmission coefficients are obtained, a translation of these coefficients to the Fourier 

coefficients of the total fields as of the integral equations is necessary. For this purpose, 

the total fields on the boundaries are calculated and then the Fourier coefficients are 

equated as 
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  (3.60) 

 

Here the coefficients 𝑅𝑛
(𝑚)

 and 𝑇𝑛
(𝑚)

 are the coefficients of the reflection and 

transmission fields from the boundaries that are formulated in series solution as 

discussed in Chapter 2.1. 

In Figure 3.10.c) and d) the corresponding total tangential fields that are 

calculated via the Fourier coefficients of the systems are given. As seen from Figure 

3.10.a)-d), the solutions of three different systems are well consistent. The Fourier 

coefficients that are obtained from the solution of the integral equations can be 

calculated until the machine epsilon (~10−16) due to the numerical saturation.  
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The same quantities for a TE-z polarized wave incidence on two parallel 

dielectric scatterers that have the parameters of Table 3.2 in column b) are given in 

Figure 3.11.  

 

 
 

Figure 3.11: Validation of the solutions of the EFIE and MFIE systems for two 

parallel circular cylinders; a) Fourier coefficients of the magnetic fields, b) Fourier 

coefficients of electric fields, c) Magnetic fields, d) Electric fields. 

 

As seen from Figure 3.11.a)-d), similar to the results in that are shown in Figure 3.10, 

the solutions of three different systems are consistent which proves the reliability of 

the suggested algorithm. 

The plots in Figure 3.12 shows the key points of the suggested algorithm. 

Because the stability and super-algebraically convergence is the main aim of this work. 

For the purpose of disclosing the super-algebraically or even exponentially 

convergence, by doubling the size of the algebraic system and zero padding to the 

previous solutions and right-hand sides, the relative difference between two 

consecutive solutions  
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and the residuals of the algebraic system  
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are calculated via the norm that is defined as 
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that guarantees the convergence by means of the Sobolev’s embedding theorem in 

continuous metric.  

The numerical results corresponding to the formula (3.61) and (3.62) are shown 

in Figure 3.12.a) and b) respectively. In these plots, the notations [I] is used to indicate 

the double layered circles that is given in Figure 3.9.a) and [N] is used for the geometry 

of in Figure 3.9.b) with related parameters that are given in Table 3.2. In addition, the 

polarization type is specified by subscript as TM and TE. 

In Figure 3.12.c) the relative error of the solutions of integral equations w.r.t. the 

solutions obtained from SoV are given in 𝑙2 norm. The solutions that used in these 

plots are the Fourier coefficients that are given in Figure 3.10 and Figure 3.11. The 

plots of Figure 3.12.a)-c) clearly shows the super-algebraically convergent algorithm. 

In addition to these plots, in Figure 3.12.d) the condition numbers of the algebraic 

systems of the integral equations are shown. As seen from the nature of the matrix in 

(3.56) these systems are not one of the second kind. But thanks to the super-

algebraically convergence, the ill-conditioned behavior of such system is shifted to 

larger truncation numbers and not encountered at the considered levels. But, as 

discussed before, by a proper combination of the equations (3.22)-(3.25) and (3.26)-

(3.29) or the equations (3.30)-(3.33) and (3.34)-(3.37) a second kind system can be 

constructed. However, here they are used just as they are and such combinations are 

out of the scope of this thesis. 
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Figure 3.12: Qualitative data for performed calculations of double layered circles and 

two parallel circles; a) Relative norm w.r.t. doubled size, b) Residual norm w.r.t. 

doubled size, c) Relative error w.r.t. SoV, d) Condition numbers. 

 

In this chapter the theoretical information which is given in Chapter 2.2 and in 

its subchapters are applied to two different geometrical structure of dielectric circular 

cylinders and thanks to the singularity extraction and the convolution theorem, a super-

algebraically convergent algorithm is constructed and its proof is shown by means of 

various numerical results. 

 

 . Application of ARM to the Algebraic System of Integral 

Equation of Two Parallel Circular Impedance Cylinders 

 

In this subchapter, the results of the numerical implementation of the ARM that 

is explained in Chapter 2.2.3 for integral equations of the third kind BVP is going to 

be presented for two parallel circular impedance cylinders whose configuration and 



 

91 

corresponding values are given in Figure 3.13. The center of both cylinders are posing 

on the x-axis and the distance between two boundaries is equal to the free space 

wavelength that denoted by 𝜆0. The numerical results that are going to be presented 

here are already published in [18]. The formulation is given here in details but for more 

explanation of the motivation, the reader is referred to that publication. 

 

 
 

Figure 3.13: Two circular impedance cylinders. 

 

Here, the integral equations which is obtained in Chapter 3.3 for dielectric 

boundaries are re-arranged for two impedance cylinders by means of the impedance 

boundary conditions also called as third kind boundary condition or mixed boundary 

condition. The standard impedance boundary condition is expressed as [57] 

 

  ˆ ˆ ˆn E n n H     (3.64) 

 

where 𝐸⃗  is the electric and 𝐻⃗⃗  is the magnetic field in vector form, 𝜂 is the surface 

impedance and 𝑛̂ is the unit outward normal vector. By means of the relations (3.17) 

between the fields and surface currents, the condition (3.64) can be rewritten in terms 

of surface currents as 

 

 ˆmK n K    (3.65) 

 

For TM-z polarization case, substitution of (3.16) into (3.65) and using the related 

expressions from (3.19) results in 

 

 ml zK K  (3.66) 
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In a similar manner, by substituting zero values that are given in (3.21) into (3.65), for 

TE-z polarization case the relation 

 

 mz lK K   (3.67) 

 

is obtained. 

Now, it is clear that by means of the relations (3.66) and (3.67), the four integral 

equations for BVP of two dielectrics can be reduced to two integral equations when 

the surface is modeled by an impedance value 𝜂 and the determination of one is 

sufficient since the other can be obtained from (3.66) and (3.67). By doing so, the 

following integral equation systems are obtained. 

For TM-z polarization; 

EFIE system: 

 

 

         

 
 

 
 

1 2

1 2

1
1 1 0 1 2 0 2 2 0

2

2 0 2 0
( );1 1 2 2

1

K q i K p G k R dl K p G k R dlz z qp p z qp p

C C

G k R G k Rqp qp incK p dl K p dl E qz p z p zn np p
C C

q C

 

 

  
 
  

  
  
  
  



 

   (3.68) 

 

 

         

 
 

 
 

1 2

1 2

1
2 2 0 1 2 0 2 2 0

2

2 0 2 0
( );1 1 2 2

2

K q i K p G k R dl K p G k R dlz z qp p z qp p

C C

G k R G k Rqp qp incK p dl K p dl E qz p z p zn np p
C C

q C

 

 

  
 
  

  
  
  
  



 

    (3.69) 
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MFIE system: 

 

 

   
 

 
 

 
 

 
 
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2 0 2 01
1 21

2

2 2
2 0 2 01

1 1 2 2
0

;
1

G k R G k Rqp qp
K p dl K p dlK q z p z pz n nq q

C C

G k R G k Rqp qp
K p dl K p dlz p z p

i n n n nq p q p
C C

incH q q C
l

 


  
 
  
  

  
  
    
  

 

 

    (3.70) 
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G k R G k Rqp qp
K p dl K p dlK q z p z pz n nq q
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G k R G k Rqp qp
K p dl K p dlz p z p
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incH q q C
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 

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  
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    (3.71) 

 

For TE-z polarization; 

EFIE system: 
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    (3.72) 
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MFIE system: 

 

 

         

 
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 (3.74) 
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  
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   

  
  

 

 

 (3.75) 

 

It is evident from the equations (3.70)-(3.75) that the algebraic systems of the 

EFIE and MFIE of both polarization may be an equation of the first kind or equation 

of the second kind depends on the value of the surface impedance. Thus, a 

regularization operation may be necessary or unnecessary. As discussed in Chapter 

2.2.3 where ARM for third kind boundaries is considered, depends on the value of the 

impedance which is defined by (2.124), a regularization procedure with the operators 

(2.151) or (2.153) may be necessary. This is the case when 𝜂1 or 𝜂2 has very small or 

very large values and this cases are considered in numerical results for various values 

of the surface impedances. 

In Figure 3.14-3.15, the validation of the solutions of integral equations is done 

by means of the SoV solution that is achieved via a stable and reliable algorithm for 

circular impedance cylinders that is suggested in [12]. In these figures, the numbers 1 

and 2 denote the values regarding the boundaries 𝐶1 (the left-hand-side circle) and 𝐶2 

(the right-hand-side circle).  

Figure 3.14.a) and b) shows the exponentially converging Fourier coefficients of 

tangential fields and c) and d) shows the related tangential fields on the boundaries 

that are obtained for a TM-z polarized plane wave incidence from the solution of three 

different systems as EFIE, MFIE and SoV. The similar results are shown in Figure 

3.15.a)-d) for a TE-z plane wave incidence on the impedance cylinders. These plots, 

as well, shows the consistency between the solutions and the exponentially converging 

behavior of the solutions. 



 

95 

 
 

Figure 3.14: Validation of the solutions of the EFIE and MFIE systems for TM-z 

plane wave illumination; a) Fourier coefficients of the electric fields, b) Fourier 

coefficients of the magnetic fields, c) Electric fields, d) Magnetic fields. 

 

 
 

Figure 3.15: Validation of the solutions of the EFIE and MFIE systems for TE-z 

plane wave illumination; a) Fourier coefficients of the magnetic fields, b) Fourier 

coefficients of the electric fields, c) Magnetic fields, d) Electric fields. 
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Figure 3.16: Validation of the solutions of the EFIE and MFIE systems for TM-z line 

source illumination; a) Fourier coefficients of the electric fields, b) Fourier 

coefficients of the magnetic fields, c) Electric fields, d) Magnetic fields. 

 

 
 

Figure 3.17: Validation of the solutions of the EFIE and MFIE systems for TE-z line 

source illumination; a) Fourier coefficients of the magnetic fields, b) Fourier 

coefficients of the electric fields, c) Magnetic fields, d) Electric fields. 
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The same validation is achieved for the values calculated on the boundary 

impedance cylinders under the electric line source (TM-z polarization) and magnetic 

line source (TE-z polarization) illuminations. The results of these validations are 

plotted in Figure 3.16.a)-d) and Figure 3.17.a)-d) respectively. 

The following figures (Figure 3.18-Figure 3.22) shows the condition numbers of 

the considered systems. In Figure 3.18, the condition numbers of the systems regarding 

the configuration of impedance cylinder given in Figure 3.13 are plotted. It is clear 

from the plots that some systems have bounded condition numbers for the 

corresponding surface impedance values, but on the other side, some systems have 

condition numbers in growing trend and the only way to make them bounded is 

applying the suggested ARM as discussed in 0. This is indicated in figure by the curves 

with the same name but with the postfix LAES1 and LAES2 where LAES2 is the 

regularized version of LAES1. 

 

 
 

Figure 3.18: Condition numbers of linear algebraic systems. 
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Figure 3.19: Condition numbers for varying surface impedances for the algebraic 

system of EFIEs of TM-z wave incidence. 

 

Figure 3.19 shows the condition numbers of the EFIE for TM-z polarization for various 

surface impedance values where both surface impedances are taken equally. By 

considering the equations (3.68) and (3.69) of the EFIE for TM-z polarization it is 

evident that for very small values of the relative surface impedances 𝜂𝑟 = 𝜂𝑖/𝜂0 (𝑖 =

1, 2), the diagonalized structure of the system is corrupted and thus, it becomes one of 

the first kind. This situation is seen clearly from the curves that labelled by the values 

of 𝜂𝑟 = 10−4, 10−8, 10−12 and continuing by LAES1. The curves given for the same 

values and labelled by LAES2 are the condition numbers of the regularized versions 

of the corresponding systems of LAES1. It is clear that after regularization the system 

behaves as a second kind whose condition numbers are smooth for growing truncation 

numbers. Also, it is evident that for larger values of the relative surface impedance, 

the algebraic equations system (3.68) and (3.69) remain as a second kind and its 

condition numbers are uniformly bounded for increasing size of the algebraic system  
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Figure 3.20: Condition numbers for varying surface impedances for the algebraic 

system of MFIEs of TM-z wave incidence. 

 

Figure 3.20 shows the condition numbers of the algebraic system of the MFIEs 

of TM-z polarization given by the equations (3.70) and (3.71) for various values of the 

impedance. Unlike the plots that are given in Figure 3.19, in this case, the system 

becomes one of the first kind for large values and remains as a second kind for very 

small values of the surface impedance. It is clear from the figure, by the regularization 

procedure which is discussed in 0 the ill-conditioned trend of the system LAES1 can 

be fixed and a system with uniformly bounded condition numbers can be constructed.  

In Figure 3.21 and Figure 3.22, the numerical results of the same discussions are 

plotted for the systems of the EFIE and MFIE of TE-z polarization that are given by 

the equations (3.72), (3.73) and (3.74), (3.75) respectively. In this case, the results 

opposite to the TM-z case are observed because of the similarity of the structure of 

EFIE-TM and MFIE-TE equations and the MFIE-TM and EFIE-TE equations. 
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Figure 3.21: Condition numbers for varying surface impedances for the algebraic 

system of EFIEs of TE-z wave incidence. 

 

 
 

Figure 3.22: Condition numbers for varying surface impedances for the algebraic 

system of MFIEs of TE-z wave incidence. 
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In this chapter, the integral equations regarding two parallel impedance cylinders 

are reduced to the linear algebraic equations by means of the entire domain Galerkin 

method where all the quantities are expanded as Fourier series. Then the systems are 

analyzed for various values of the surface impedance and the ARM algorithm that is 

discussed in Chapter 2.2.3 is applied if necessary. Also, it is shown that by means of 

the suggested algorithm super-algebraically convergent solutions can be obtained. 
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4. CONCLUSION 

 

In two-dimensional boundary value problems, where the field variations along 

one axis are neglected, the scattered field that satisfies the homogeneous Helmholtz 

equation is sought. In circular coordinates, by means of the separation of variables 

method, the Helmholtz equation results in the expression of the fields into infinite 

series with unknown coefficients. The corresponding unknowns are calculated by 

imposing the boundary conditions of the related boundary. This operation yields to an 

infinite size algebraic equation system which is, in general, one of the first kind. For 

the obstacles that have arbitrary shape, by means of the Green’s identities, the 

Helmholtz equation yields to an integral equation and the algebraization of this 

integral, in general, yields to an infinite size algebraic equation of the first kind. The 

numerical solution of such a system can be achieved through a truncation procedure. 

However, it is well known that numerical solution of such system is error-prone due 

to its sensitivity to the matrix inversion depending on the truncation number, i.e. it is 

an ill-conditioned system. If the solution of such a system is considered then, as a rule, 

the condition number of the matrix and the satisfaction of the boundary condition must 

be checked to make sure of the numerical results. Otherwise, the solutions obtained 

may be completely wrong. In Chapter 2, from the theoretical point of view and in 

Chapter 3, by means of the various illustrative numerical results, this drawback of the 

first kind system is revealed. One of the ways to avoid such a hazard is to transform 

this ill-conditioned system to a well-conditioned algebraic equation of the second kind 

through a regularization operation. In this thesis, the Analytical Regularization Method 

is used for such a regularization. In this method a left-hand-side operator 𝐿 and a right 

hand-side operator 𝑅 is used to transform the first kind system in form of 𝐴𝑥 = 𝑏  to 

a second kind one as (𝐼 + 𝐾)𝑦 = 𝑔. It is shown, in Chapter 2 mathematically and in 

Chapter 3 numerically, that a system obtained by subjecting the ARM algorithm is 

numerically stable and reliable. Thus, if the solution of such a system is under 

consideration, then its numerical implementation can be achieved without any extra 

check. 

In this thesis, at first, the ARM algorithm is implemented to algebraic systems 

of the two neighbor circular impedance boundaries and eccentrically layered dielectric 

boundaries where the fields are expanded into infinite series. Secondly, the ARM 
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algorithm is implemented to the boundary integral equations of the two neighbor 

circular impedance boundaries, two eccentrically layered circular dielectric boundaries 

and two neighbor dielectric boundaries with the entire domain Galerkin method. It is 

shown that such a construction brings exponentially converging algorithm, which is 

very efficient from the point of numerical implementation. The necessity and the 

success of this algorithm are expressed clearly from many aspects. This algorithm can 

be used for a wide class of the 2-dimensional boundary value diffraction problems. 

The plans for future are to expand the scope of its application further by including the 

contour smoothing through spline interpolation and other smooth parametrically 

presented contours. 
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