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1. GIRIS

Albert Einstein, 6zel gorelilik kuraminin temellerini 1905°te yayinladig1 bir makaleyle
atmistir. Kuram iki yiizyili askin bir siiredir kullanilan Newton’un hareket yasalarini
degistirmekle kalmamis, bunun yaninda birgok kavramsal yenilik getirmistir. Bunlardan
biri zamanin mutlak olmadigi, gézlemciden gozlemciye degistigidir. Buna ek olarak
zaman, ayrica olaylarin olduklar1 yerlere bagimlidir, boylece uzay ve zamani bir biitiin
olarak degerlendirme ihtiyaci ortaya ¢ikmistir. Cikan bir baska 6nemli sonugta yiizyilin
en inli formiili olan E=mc? yani enerjinin ayn1 zamanda bir kiitlesi olmasi

gerekliligidir.

Einstein tim kurami iki temel {izerine oturtmustur. Bunlardan birincisi, herhangi bir
ivmesiz gozlemciye gore 15181n hizi, 151k kaynaginin gozlemciye gore hareketine bagl
olmaksizin, ¢=3x10® ms™ dir. Diger temel ise “gorelilik ilkesi” dedigimiz, sabit hizla
hareket eden araglar icindeki gozlemcilerin, c¢evrelerindeki olaylar1 sanki arag
duruyormus gibi inceleyebilecekleri, bu durumda bile biitiin doga yasalarinin ayni
sekilde gecerli oldugudur. Sadece bu iki varsayim, 6zel gorelilikte elde edilen tim
sonuglari tiretebilecek gilice sahip olmustur. Fakat, dayandig1 temeller nedeniyle, kuram
sadece sabit hizlarla hareket eden gozlemcilerin olaylar1 nasil gordiigiini

belirleyebilmistir. Ama bu sinirlama kisa bir siire sonra ortadan kalkmustir.

Einstein, 1907 yilinda 6zel gorelilik kurami hakkinda bir bilimsel dergiye yazdigi
makalede, yeni bir diisiincesi oldugunu, dayandig1 “gorelilik ilkesinin” ¢ok daha genel
bir bagka ilkenin sadece 6zel bir hali oldugunu bildirmistir. “Denklik ilkesi” olarak
adlandirdigimiz bu yeni ilkede ¢ok sayida yeni sonucu iiretebilecek potansiyele sahip
olmustur. 1905 yilinda temelleri atilan kurama “6zel gorelilik”, denklik ilkesinden yola
cikarak olusturulan ve tliim matematiksel detaylarla ancak 1915-16 yillarinda
tamamlanan yeni kuramada “genel gorelilik” adi verilmistir. Genel gorelilik bu defa
Newton’un bir diger yasasi, evrensel kiitle cekim yasasini degistirmistir. Hatta, sadece
degistirmekle kalmamis, tiim kiitle ¢ekim olgusunu cok daha saglam geometrik

temellere oturtmustur.



Einstein’in bahsettigi denklik ilkesi aslinda ¢ok da yeni degildi, diisiincenin temelleri
hareket yasalarinin dogdugu zamanlara, Galileo ve Newton’a kadar uzanmaktaydi. Tiim
konu, cisimlerin “kiitle” olarak adlandirdigimiz 6zelliginin iki farkli doga yasasinda isin

icine girmesinden kaynaklanmaktadir.

Kiitlenin belirdigi yasalardan birincisi Newton’un evrensel kiitle ¢cekim yasasidir. Bu
yasaya gore iki cisim birbirlerini kiitleleriyle orantili, aralarindaki uzakliginda karesiyle
ters orantili bir kuvvetle ¢ekmektedir. S6z konusu cisimlerden biri Diinya gibi ¢ok
bliyiik bir gok cismiyse, bu kuvvet agirlik olarak adlandirilmaktadir. Yani yeryiiziindeki
bir cismin agirligi, Diinya’nin o cisme uyguladigi ¢ekme kuvvetiyle ayni olmaktadir. Bu
ayni zamanda o cismi kaldirmak i¢in uygulamamiz gereken kuvvete esittir. Agirlik,
cismin bulundugu yere bagl olarak degisebilir; ama kiitle, cisimlerin degismez bir

ozelligidir.

Kiitle burada karsimiza cisimlerin ne kadar biyiik bir kiitle c¢ekim kuvveti
uygulayabilecegini belirten bir nicelik olarak karsimiza ¢ikmaktadir. Bu nedenle bu
kiitleye “cekim kiitlesi” denmektedir. Dolayisiyla kiitle c¢ekim yasast cisimlerin

agirhiginin kiitleleriyle orantili oldugunu sdylemektedir.

Kiitlenin belirdigi diger yasaysa Newton’un hareket yasalarindan ikincisidir. Bir cisme
kuvvet uygulayarak cismi hizlandirir, yavaslatir veya hiz yoniinii degistirebiliriz. Birim
zamanda meydana gelen hizdaki degisime ivme denmektedir. ikinci yasa ivmenin,
kuvvetin kiitleye boliinmesiyle elde edilecegini belirtmektedir. Burada da Kkiitle,
karsimiza bir cismin hizin1 degistirmeye direnci (eylemsizlik) olarak ¢ikmaktadir. Kiitle
ne kadar biiytikse, cismi harekete gecirmek i¢in o kadar zorlanmaktadir. Bu nedenle, bu

yasada gecen kiitleye de “eylemsizlik kiitlesi” denmektedir.

Galileo ve Newton, hem ¢ekim hem de eylemsizlik kiitlelerinin ayni oldugunu fark
etmislerdir, fakat bunu dogadaki ilging tesadiiflerden biri olarak yorumlamislardir. Cok

daha derinlerde yatan bu anlamu ise, ilk olarak Einstein fark etmistir.



Eger biitiin cisimlerin eylemsizlik ve ¢ekim kuvvetleri esitse, o zaman biitlin cisimler,
sekilleri ve kimyasal yapilar1 ne olursa olsun yeryiiziinde ayn1 sekilde diiserler. Ornegin,
bir ¢eki¢ ve tiiyll birakarak diisiislerini izledigimizi varsayalim. Diinya, bu iki cisme
kiitleleriyle orantili bir kuvvet uygular, yani tiiye daha az, ¢ekice de daha fazla kuvvet
uygulanacaktir (¢ekic tiiyden daha agirdir). Buna karsilik bunlarin ivmesi, agirlik
kuvvetlerinin kiitlelerine boliinmesiyle elde edilmektedir. Dolayisiyla bunlar1 ayni anda

birakirsak, her ikisi de ayn1 anda yere ulasacaktir.

Boyle bir seyin yeryiiziinde gbézlenememesinin nedeni, havanin diisen cisimlere
uyguladigi siirtinme kuvvetidir. Siirtiinme, tiiyli ¢ekicten daha fazla etkiledigi igin,
tiyiin yere daha gec¢ ulastigi gorilmektedir. Ama Galileo, yaptigi analizlerle
sirtiinmenin farkina varmis ve eger bu olmasaydi biitiin cisimlerin ayni ivmeyle
diisecegini sOylemistir. Yeryliziinde yliksek vakumlu ortamlarda bu olay rahatlikla

goriilebilir.

Cekig ve tiily deneyinde dikkat edilmesi gereken dnemli bir nokta, diislis boyunca bu iki
cisim arasindaki uzakligin sabit kalmasidir. Olaymn anlamini daha iyi kavramak igin, bir
asansOriin ipinin koparak i¢indekilerle beraber diismeye basladigini diisiinelim. Asansor
dahil her sey aynmi ivmeyle diistiigii icin, gozlemci igerideki biitiin cisimlerin asansore
gore bulunduklar1 yerde sabit durduklarini1 gorecektir. Buna ek olarak, eger cisimlerden
birine bir ilk hiz verilmisse, bu defa cisim ayni hizin1 koruyarak hareketine devam
edecektir. Kisacasi, gdzlemcinin sadece asansorii referans alarak ve disaridaki Diinya’y1
diisiinmeden yaptig1 gozlemler, sanki asansor dis uzaydaymis izlenimini uyandiracaktir.
(Diinya gibi biitiin biiyiikk gokcisimlerinden uzaktaki yerlere dis uzay denecektir)
(Sekil 1.1 —1.2).
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Sekil 1.1 Bos uzay i¢inde sabit ivme ile hareket eden bir kapali kutu igerisindeki
gozlemci (Kangal 2008)
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Sekil 1.2 Diizgiin kiitlesel ¢ekim alanindaki kapali kutu igerisindeki goézlemci
(Kangal 2008)

Yukaridaki sekillerde yer alan goézlemci, Diinya’da m1 yoksa dis uzayda yol alan sabit

ivmeli bir rokette mi oldugunu anlayamayacaktir.



Eger biitliin cisimlerin eylemsizlik ve ¢ekim kiitleleri esit ise, o zaman asansordeki
gbzlemci sadece cisimlerin hareketine bakarak diisen bir asansdrde mi, yoksa dis uzayda

mi1 oldugunu anlayacaktir.

Yeryiiziinde serbest birakilan her cisim diigmektedir. Peki ya 1sikta benzer bir olay
gozlenir mi? Isigin hizi sabit oldugu icin, hizinda bir degisme beklenmemektedir.
Ancak, yolundan sapmasini, bir dogru boyunca ilerleme yerine bir egri ¢izmesini
bekleyebiliriz. Ornek olarak, yatay dogrultuda bir 151k 1sminin iiretildigi varsayilabilir.
Bundan sonra ne olacagimi belirlemek i¢cin hemen ivmeli rokette ne olacagina

bakilabilir.

Roketin ilk anda duruyor oldugu ve bu anda odanin duvarlarinin birinden yatay yonde
bir 151k 1511n1n girdigi diisiiniilebilir. Isik kars1 duvara ulagtiginda, ivmeli roket yukariya
dogru bir miktar yol almis olacaktir. Bu nedenle 151k daha alt diizeyde bir noktaya
carpacaktir. O halde bu soruya cevap evet, 151k, kiitle ¢gekim etkisi altinda yolundan

sapacaktir.

Sekil 1.3 Uzayda sabit duran bir asansor (Turgut 2005)



Sekil 1.4 Uzayda ivmelenen bir asansor (Turgut 2005)

Sekil 1.5 Diinya’da sabit duran bir asansér (Turgut 2005)

Yukaridaki sekillerden, sekil 1.3’de uzayda sabit duran bir asansore giren 15181n dogru
bir yol izleyecegi gosterilmistir. Eger asansor Diinya’da diisseydi gozlemlenecek olan
sekil yine sekil 1.3 olacaktir. Sekil 1.4’de uzayda ivmelenen bir asansordeki
gbzlemcinin igeriye giren 1518in kars1 duvara asagidaki bir seviyede carptigini gorecegi
gosterilmigtir. Sekil 1.5°de ise Diinya’da sabit duran bir asansorde igeri giren 15181n,
ivmeli asansordekine benzer davranacagi gosterilmistir. Einstein buradan yer¢ekiminin

15181 yolundan saptiracagi sonucunu gikarmigtir.

Isik o kadar hizli yol alir ki, Diinya’nin ¢ekim etkisi altinda yolundan sapmas1 fark
edilmeyecek kadar kii¢iik olur. Sapma ancak Giines gibi biiytik kiitleli gok cisimleri i¢in
Olciilebilir degerlere ulasir. Giines i¢in bile, sapma agis1 bir derecenin 2000’de biri

kadardir, fakat yine de 6l¢iilebilir.



Bir grup bilim adami, Einstein’in bu 6ngériistinii sinamak ve diger yildizlardan gelen
151810 Giines’in yakinindan gecerken ne kadar saptigini 6lgmek i¢in 1919 yilindaki
giines tutulmasini bir firsat olarak kullanmislardir. Yapilan olgtimler, kabaca da olsa,
Einstein’in 6ngoriisiinii desteklemistir. Bugiin yapilan modern Ol¢limlerde sapmayi
belirlemek i¢in Giines tutulmasini beklemeye gerek yoktur. Yiiksek ¢oziiniirliikli radyo
antenleri, kuasarlardan gelen radyo dalgalarmin gorelilik kuramma uygun sekilde

Giines’in yakinindan gegerken saptigini tespit edebilmektedir (Turgut 2005).



2. MATEMATIKSEL HAZIRLIK

2.1 Vektor uzayi

R"’in herhangi bir 6gesi gergel sayilarin X =(X,,X,,...,X,) seklinde sirali n-lilerden

olusmaktadir. Bunlara vektorler olarak bakilabilir.
Tanim: (R" de toplama ve ¢ikarma)

X=(X, %5 X,) 3 Y =(Y11 Yoy ¥,,) € R" noktalari ve @ € R verilmis olsun. x ile y’nin

toplami;

) X+y=(X+VY,%X+Y,,...X +Y,) seklinde ve bir skaler ile bir vektdriin ¢garpimi da,

i) ax=(ax,aX,,..,ax,) seklinde tanimlanir. Bu isleme gore R" bir vektor uzayidir.

Bu sonug ispatsiz olarak asagidaki teoremle verilebilir.
Teorem: (R" vektor uzay1)

R" tizerinde toplama ve skalerle ¢arpma islemi yukaridaki tanim ile tanimlansin, her

X, ¥,z € R" i¢in asagidakiler dogrudur:

i) (R",+) bir degismeli gruptur. Yani;

@ (x+y)eR"

(0) X+y)+z=x+(y+2)

(C) X+y=Yy+X

(d) x+0=0+x; burada 0=(0,0,...,0) dir.
i) Her «, f € R skaleri igin;

(@) axeR"

(b) a(x+y)=ax+ay



€) (a+p)x=ax+ px
(d) a(Bx) =(ap)x
(e) Ix=x

sartlar1 saglanmalidir.

2.2 Uzay — Zaman

Herhangi bir olay diisiinelim. Bu olayin olus zamani, Newton Mekanigini destekleyen,
0zdes ve ayarlanmig saatler kullanan tiim gézlemciler i¢in aynidir. Bu zamana t diyelim.
Gozlemciler arasinda fark eden, yalnizca olayin oldugu konumun farkli gézlemcilere

gore olan koordinatlaridir. Gézlemciler, bulduklar1 koordinat degerlerini birbirine;
F=r-vt (2.1)

Galileo dontisiimlerini kullanarak cevirebileceklerini biliyorlar. Bunu sdylerken tiim
gozlemcilerin kullandiklar1 koordinat sistemlerinin ayni eksen dogrultularinin birbirine
paralel oldugu distiniilebilir. S6z konusu tiim gozlemciler i¢in olus zamaninin ayni
kalmasi nedeniyle, her t aninda tiim gozlemciler i¢in olas1 tiim (X, y, z) takimlarinin
kiimesi olay: karakterize etmeye yeterlidir. Olas1 tiim (X, y, z) takimlarinin kiimesi ise
3-boyutlu fiziksel uzayr olusturmaktadir. Yani Newton Mekanigini destekleyen
gozlemcilerin timiiniin her andaki anlik 3-boyutlu wuzaylari fiziksel uzay ile
cakismaktadir. Bu nedenle, Newton Mekanigi s6z konusu olunca, mekanik yasalarina
onciiliik eden (bu yasalarin i¢inde yazildigi) matematiksel uzay olarak 3-boyutlu konum

uzayinin, yani fiziksel uzayin kullanilmasi yeterli olacaktir.

Simdi duruma, Ozel Gérelilik Teorisini destekleyen gdzlemciler agisindan bakalim. S6z
konusu olaym her gozlemciye gore, hem olus zaman1 hem de olayin oldugu konumun
koordinatlar1 farklidir. Bu nedenle, her gozlemci bir olayt (ct; x, y, z) takimi ile
belirlemek zorundadir. Ayni olay i¢in tiim goézlemcilerin tanimladiklart (ct; x, y, z)
takimlar1 birbirinden farklidir. Ustelik bu takimlar birbirine Lorentz doniisiimleri ile
baghdir. Yani bir gézlemciye gore olan konum koordinatlarinin iginde bir baska

gozlemcinin zaman koordinatt oldugu gibi, ilk gozlemciye goére olan zaman



koordinatinin i¢inde de 6teki gézlemciye gore olan konum koordinatlar1 yer almaktadir.
Buradan su sonuc ¢ikarilabilir: 3-boyutlu konum uzayi, Ozel Gérelilik Teorisini
destekleyen gozlemcilerin yasalarina Onciiliikk eden matematiksel uzay olma 6zelligini
tastyamamaktadir. Bu goézlemcilerin yasalaria onciililk eden matematiksel uzay, olasi
tim (ct; x, y, z) takimini belirledigine gore, s6z konusu uzay, olast tiim olaylarin
toplulugu {iizerine kurulmalidir. Sonugta, Ozel Gorelilik Teorisinin yasalarmnin
matematiksel ifadelerinin iginde yazilacagi matematiksel uzay 4-boyutlu olmak

durumundadir.

Ozel Gérelilik Teorisinin matematiksel uzay1 olarak, olast tiim olaylarin toplulugu
tizerine oturan uzayin kullanilmasi gerektigi fikri, ilk defa 1908 yilinda Minkowski

tarafindan ortaya atilmistir.

Farkli iki (S) ve (S') goézlemcisine gore herhangi iki olayr karakterize eden takimlar

sirastyla; (Ct;;X,¥,,2), (C4,ix%,,Y,,2,) ve (ct';x’,y,,z), (ct,);x,,y,,z,) olarak
alinsin. iki takimin toplamini takimlarm karsilikli elemanlarinin olusturdugu takim; bir
takimin bir sayr ile ¢arpimini da takimin elemanlarinin say1 ile ¢arpimi alinarak
olusturulan takim seklinde tanimladigimizda, s6z konusu kiimenin reel bir lineer uzay

oldugu kolaylikla sdylenebilir. Bir (S) gdzlemcisi bu lineer uzay iginde (ct;x,Y,,z) ve
(ct,; x,,Y,,2,) elemanlar1 arasinda;
(Ct1; X Y1 21) . (Ctz; X2 Y2, Zz) = C2t1t2 — XX, WY, 474, (2-2)

seklinde bir ikili islem tanimlanabilir. Bu ikili islem bir i¢ ¢arpim tanimlamaktadir.

Ayrica bu i¢ carpim,;

(et X, ¥, 2) - (Gt %, ¥,,2,) = (5% Y0 7)) . (ety5 %, 0y, 0 2,) (2.3)

Ozelligine sahiptir. Yani; tim gozlemciler kendi takimlar1 arasinda ayni tanimi
yapabilirler ve tistelik elde edilen sayisal sonuglarda ayni olur. Bir gozlemci, i¢ ¢arpimi

kullanarak kendisine gore olan; (ct;x,V,,z,) ve (ct,;X,,Y,,2,) olaylari arasindaki

uzaklig1 tanimlayabilir. Bu,
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Cz(tz _t1)2 _(Xz - X1)2 _(yz - y1)2 _(Zz - 21)2 (2-4)

blytikligliniin kare kokiidiir. Bu ifade,

c’ (t2' _t1')2 _(Xz’ - X1,)2 _(Y2I - 3/1')2 - (Zzl - 21,)2 = C2(t2 _t1)2 _(Xz - X1)2 _(yz - y1)2 - (Zz - 21)2

seklinde yazilabilir. Yani; hesaplanan bu biiylikliik gozlemciden bagimsizdir, yani
degeri tiim gozlemciler i¢in aynidir. Bu biiyiikliik, bu anlamda, salt bir biiyiiklik veya
invaryant (degismez) bir biiyiikliiktiir. Bu biiyilikliigiin karekokii iki olay arasindaki salt
uzay-zaman uzakligi olarak isimlendirilir, yani iki olay arasindaki salt uzay zaman

araligy;

VOt 1) (%, = %) (¥, ~¥o)* (2, - )’ (2.5)

seklindedir ve degeri gézlemciden bagimsizdir.
Olaylarin birbirine sonsuz yakin olmasi durumunda salt uzay-zaman uzakliginin karesi;
cdt? —dx?® —dy* —dz? (2.6)

seklini alir. Bundan bdyle bu biiyiikliik kisaca ds’ ile gdsterilecektir ve ds biiyiikliigiine

uzay-zaman yay elemani denilecektir:
ds® = c?dt? —dx® —dy® —dz? (2.7)

Ozel Gorelilik yasalarma dnciililk eden matematiksel yapt L* Lorentz manifoldudur. Bu

manifold uzay-zaman olarak bilinir (Rizaoglu 2011).
2.3 Vektor Analizi
2.3.1 Bir vektoriin tanimi

Oklid geometrisinden bilinen vektdr kavramlarindan yararlanarak, bir vektor, bir
koordinat doniistimii altinda bilesenleri koordinatlar gibi doniisen nicelikler bi¢iminde

tanimlanabilir.
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Tipik bir vektor, bilesenleri koordinatlar farklarina esit olan, bir olaydan bir bagka olay1

isaret eden bir yerdegistirme vektoriidiir:

AX—5—>(At, AX, Ay, A7) (2.8)

Burada, x’in iizerindeki ‘ok isareti’ x’in bir vektdr oldugunu gostermektedir. AX ’den
sonraki ‘ok isareti’ vektoriin bilesenlerini ve bu okun altindaki O, bu bilesenlerin ‘O’

cercevesindeki bilesenler oldugu anlamina gelmektedir. Bilesenler daima (t, X, y, z)
veya (x%,x',x% %) biciminde dnce zaman bileseni sonra uzay bilesenleri bigiminde

siralanirlar.
Yerdegistirme vektoriiniin birgok durumda daha kullanish bir gosterimi soyledir;
AX—5—>{Ax"} (2.9)

Burada {AX“} ile {AXO,AXl,AXZ,AXS} koordinatlarinin kiimesi anlasilmaktadir. Benzer
olarak, O cergevesi icin su gdsterim yazilabilir;

AX—5—>{AX"} (2.10)

Burada, yeni koordinatlar1 gostermek i¢in, koordinat indisi Tlzerine bir ¢izgi
koyulmustur. Buna goére, AX vektorii aymidir ancak bu vektoriin dsli ve issiiz
cercevelerdeki koordinat bilesenleri birbirinden farklidir, yani koordinat cercevesini

degistirince sadece bilesenler degisir.

Her bir & degeri igin Lorentz doniisiimiine gore koordinat doniistimleri asagidaki

bigimde ifade edilebilir,
— 3 —
AXF =" AGAX  @={01,2,3} (2.11)
B=0

Burada Ai Lorentz doniisiim matrisini gostermektedir. Lorentz doniisiim matrisi;
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y vy 0 0
_ |~V 0 0
AG=| 77T SN (2.12)
0 0 10 _\
0 0O 01

seklinde tanimlanir.

Bundan sonraki islemlerde kolaylik saglamak {izere Einstein toplama kurali tanitilabilir:
bir ifade de bir indis bir iist etiket olarak kullaniliyorken ayni ifade de ayni indis bir alt

etiket olarak da kullaniliyorsa, indisin alabilecegi tiim degerler tizerinden toplam vardir.

Ornek: A B“ ve T“E,, ifadeleri su ifadelerin Einstein toplam kurali ile kisa

yazilisidir:

ZS:AaBa ; ZSZTD‘EW
a=0 a=0

(2.11) denklemi ile wverilen Lorentz doniisimii ifadesi Einstein toplam-kurali

kullanilarak asagidaki bigimde yazilabilir;

AX" = ASAXP (2.13)
Bu esitlik asagidaki ifadeye 6zdes olarak esittir,

AX* = AAX (2.14)

Bu indisli gosterimlerde, tanim olarak {izerinden toplam alinan tekrarli indislere sagir
(dummy) indis, lizerinden toplam alinmayan indislere ise serbest (free) indis ad1 verilir.

Ornegin; (2.13) denkleminde & serbest indistir ve f ise sagir indistir.

Burada dikkat edilmesi gereken, bir o sagir indisi £, y gibi Yunan harfleri ile yeniden

etiketlenebilir ancak i, j gibi bir Latin harfi ile yeniden etiketlenemez:

a,$={012,3} ve i, j={1,2,3} scklindedir.

Buna gore asagidaki ifadeler birbirinden farkhidir,
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AGAXP = ATAX (2.15)
Asagidaki ifade yukarida dikkat ¢ekilen noktayr agiklamaktadir;
AGAX” = AGAX + AT AX (2.16)

Yerdegistirme vektoriiniin disinda genel bir dortli-vektdr g¢ergeveye bagli olarak

yazilabilir. Ornegin; O ger¢evesindeki bir A ifadesi soyle ifade edilebilir;
A——(A°, AL A2 A = (A7) (2.17)

Bu ifadenin bir dortlii vektér olmasi icin bilesenlerinin Lorentz doniisiimiine gore

koordinatlarla ayn1 bicimde doniismesi ve asagidaki kosulu saglamasi gerekir,
A" = AZA/’ (2.18)

Bir dortlii-vektoriin saglamasi gereken vektorlerin toplanmasi ve skalerle ¢carpma igin

kurallar, Oklid uzayindaki vektorlerin saglamasi gereken kosullarla aynidir,
A+B—5—>(A°+B° A'+B', A’ + B?, A° + BY) (2.19)
HA—— (A, iy, i) (2.20)
2.4 Vektor Cebri
2.4.1 Baz vektorleri

Herhangi bir O c¢ergevesinde vektorlerle ilgili hesap yapmak i¢in o cergeveye iliskin

dort 6zel vektor olarak baz vektorlerini tantmlamak gerekir:

& —=—(1,0,0,0)
& ——(0,1,0,0)
§,——(0,0,1,0)
&,——(0,0,0,)

(2.21)
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Bu ifadeler O cergevesinin baz vektorlerini tanimlamaktadir. Benzer olarak, O

cergevesinin baz vektdrleri de soyle tanimlanir,

&, —=—>(1,0,0,0)
& ——(0,1,0,0)
§,——(0,0,1,0)

& —=—(0,0,0,1)

ol

Ll

(2.22)

Burada dikkat etmemiz gereken, genellikle €, #€; seklinde oldugudur, ¢iinkii bu baz

vektorleri farkli gercevelerde baz vektorleridir. (2.21) denklemindeki tanima esdeger

olarak baz vektorleri asagidaki bicimde de tanimlanabilirler,
6, =0 (2.23)

Buna gore, herhangi bir A asagidaki bicimde baz vektorleri cinsinden ifade edilebilir,

A—s—(A% AL, A%, A%) (2.24)
A= A%, + A'E + A%€, + A%, (2.25)
A= A€ (2.26)

2.4.2 Baz vektorlerin doniisiimii

(2.26) denklemine benzer bir bigimde yol izlenerek herhangi bir A dortlii-vektorii, O

cerevesinden farkli herhangi bir O gergevesinin baz vektorleri cinsinden de ifade
edilebilir:

A= A% (2.27)

Bu ifadedeki dort vektor A656 , AiéI , Aie} , A§§g (2.26) deki dort vektorden farklidir.

Ciinkii bu vektorler artik O gergevesinin baz vektorleri ile paralel degildirler.
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A€, ve A%€_ vektorleri birbirine sadece sagir indisler yeniden etiketlenerek

dontisemezler, ¢iinkii etiketler farkli ¢ergevelerin etiketleridir. Buna karsilik, vektoriin

tanimi1 geregi asagidaki ifade saglanmalidir:
A€ = A%E (2.28)

(2.28) denklemi baz vektdrlerinin doniisiim kuralimi belirlediginden olduk¢a 6nemlidir.

Buna gore, (2.18) ve (2.28) denklemlerinden su ifade bulunur:
A;Aﬁ €. =A"¢, (2.29)

Bu ifadenin sol tarafindaki toplamlarin siras1 degistirilebilir ve Ai ile A” da sadece

sayilar olduklarindan siralar1 degistirilebilir,
iéf =A"€ (2.30)

Bu ifade, A keyfi bir vektdr oldugundan tim A® bilesenleri kiimesi i¢in saglanmalidir.
Buna gore,

A" (A8 —-€.)=0 (2.31)
esitliginden,
-8 =0 (2.32)

esitligi saglanir ve baz vektorlerinin doniisiim kurali agagidaki bi¢imde elde edilir:

6 =A’

g, (2.33)

Bir sonug¢ olarak, vektoriin bilesenlerinin doniisiimii (2.18) denklemi ile baz

vektorlerinin dontisiimii (2.33) denklemi birbirinden farklidir.
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2.4.3 Skaler carpim
Bir vektoriin biiyiikliigii

Uzay-zaman araligmin tanimi ile benzerlik kurularak herhangi bir vektoriin bliytikligt

asagidaki bi¢imde tanimlanir;

A? = —(A%)? + (AY)? + (A?)? + (A%)? (2.34)

Bir vektoriin bilesenleri koordinatlar gibi doniistiigiinden tanimdan asagidaki 6zellik

garanti edilmis olur,
—(A%)? + (A + (A7) +(AP)? =—(A%)? +(AT) +(A%) +(A%) (2.35)

Bir vektoriin buytkligi ¢erceveden bagimsiz bir sayidir, yani Lorentz doniistimii

altinda bir skalerdir.

Vektoriin biiyiikliigii, Oklid geometrisinden farkli olarak, pozitif olmak zorunda
degildir. Buna gore olaylarin siniflandirilmasina benzer olarak vektorlerin  bir

siniflandirilmasi yapilabilir.

. A*>0 ise A uzay tiirii bir vektor,
. A2 <0 ise A zaman tiirii bir vektor,
. A% =0 ise A 151k tiirii bir vektordiir.

Burada dikkat edilmesi gereken, A% =0 ise A vektoriiniin sifir vektdrii olmasi zorunlu

degildir. Sadece A?’nin pozitif-tanimli oldugu uzaylarda her bir bilesen tim « ’lar i¢in

A% =0 olmalidir.

iki vektoriin skaler ¢carpimi

A ve B gibi iki vektoriin skaler ¢arpimi bir O cergevesinde asagidaki big¢imde

tanimlanir,
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AB=-A°B’ + A'B! + A2B? + A°B® (2.36)
Bu say1 tiim ¢ergevelerde aynidir.
Bir vektoriin boyu, vektoriin kendisi ile skaler carpimina esittir, AA=A? ve bu deger
bir invaryanttir. Bununla beraber skaler ¢arpimda bir ¢ergeve invaryanttir.

Bir vektoriin bagka bir vektorle skaler ¢arpimi sifirsa bu vektorlere birbirine ortogonal

vektorler denir: AB=0 ise A ile B ortogonaldir.
2.5 Tensor Analizi

Bu kisimda, 6zel gorelilik teorisinin matematik yapisinda énemli bir role sahip olan

tensOr analizi incelenecektir.

2.5.1 Metrik tensor

A ve B gibi iki vektdriin bir O ¢ergevesinin { éa} bazindaki gosterimi;

A= A6 (2.37)

a

(2.38)

AB =(A",).(B"€,) (2.39)
AB=A"B’ (g, &) (2.40)
AB=A"B",, (2.41)

Burada, 7,, sayilarina metrik tensoriin bilesenleri ad1 verilir.
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2.5.2 Tensorlerin tanimi

0
[N j tipi bir tensor, N tane vektorii bir reel sayiya karsilik getiren, her bir argiimani i¢in
lineer olan (¢oklu-lineer) bir fonksiyondur:

TON V%V x..xV >R (2.42)

N

Bir 6rnek olarak, (2.41) denklemi ile ifade edilen skaler (nokta) carpim, (.):V xV - R,
o). ... N : oz S
5 tipi bir tensore Ornektir. Herhangi A ve B gibi iki vektor icin skaler carpimda
birinci argiimana gore (soldan) lineerlik:

(aA)B:a(AB) ; aeR (2.43)

oo ]]

(A+ ).C=A|§+Aé (2.44)

Ikinci argiimana gére (sagdan) lineerlik de asagidaki bigimde saglanir:
A(BB)=p(AB) ; BeR (2.45)
A(B+C)=AB+AC (2.46)

Nokta carpimin bu ifadesi 6zel bir tensoér tanimlamaktadir. Nokta (skaler) ¢arpima

karsilik gelen g:V xV — R tensdriine metrik tensor ad1 verilir ve su sekilde tanimlanar:
g(A B)=AB (2.47)

Buna gore, g iki arglimanina gore de lineer olan (bilineer) bir fonksiyondur. Sagdaki

argiimana gore lineerlik vV A, B,C vektorleri ve V «, B €R sayilari igin saglanir,
g(A+B,C)=ag(AC)+Bg(B,C) (2.48)

Benzer olarak soldan argliman icinde lineerlik saglanir,
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g(A aB+ SC) =ag(A B)+ Bg(AC) (2.49)

2.5.3 Bir tensoriin bilesenleri

0
Bir tensoriin bilesenleri ¢erceveye bagli olarak ifade edilebilir. (N j tipi bir tensoriin bir

O gergevesindeki bilesenleri, argiimanlart O gergevesinin baz vektorleri {€, }

oldugunda, bu baz vektorleri tensoriin degerleridir. Buna gore, bir tensoriin bilesenleri
cerceve-bagimli sayilardir. Ornegin, metrik tensoriin bilesenleri asagidaki bicimde ifade

edilir:

Buna gére, 77,, matris elemanlari, bu baz tizerinde g Minkowski metriginin bilesenlerini

ifade etmektedir.

2.5.4 (0,N)-tipi tensorler : 1-formlar

0
[N ] tip1 bir tensore bir kovektor, kontravektor, dual vektor veya bir-form adi verilir.

1-formlarin genel ozellikleri

Keyfi bir 1-form p olsun; "~" isareti 1-formlar1 ifade etmektedir. p bir vektor
tizerine etki ettiginde bir reel say1 verir, yani P 'nin argiimani bir vektordiir. § bagka bir

1-form olsun. O zaman su ifade tanimlanabilir:

(2) §=p+G

-
Il
Q

=

1-formlarin A iizerindeki degeri soyledir,
(b) $(A)= P(A)+G(A)
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F(A) =ap(A)

Bu kurallarla birlikte, tiim 1-formlarim kiimesi bir vektér uzayi i¢in aksiyomlari

saglarlar. 1-formlarin olusturdugu vektor uzayina dual vektor uzayr adi verilir.

Vektorler i¢in 6nemli bir nokta, vektorlerin herhangi bir ¢cercevede bilesenlerinin ifade
edilmesi ve bilesenlerin farkli ¢ergevelerdeki ifadeleri i¢in doniistimleridir. Dual vektor

uzaymin elemanlar1 olan P lerinde bilesenlerini ifade etmek gerekir. P ’nin bir
cergevedeki bilesenleri p, olsun (vektoriin bilesenlerinden farkli olarak 1-formun

bilesenleri alt indis olarak gosterilir.):
p, = P(E,) (2.51)

Anlasma olarak bir tek alt indisli bilesen bir 1-formun bileseni olarak kabul edilir; {ist

indis ise bir vektor bilesenidir. Bilesenler cinsinden agagidaki ifadeler yazilabilir,

P(A) = p(A“E,) (2.52)
p(A) = A"B(E,) (2.53)
B(A) =A"p, (2.54)

Boylece, p(A) = A’p, + A'p, + A?p, + A%p, bulunur.

Baska bir O ¢ergevesinin baz vektorleri {é,} olmak {izere P ’nin bu bazdaki

bilesenleri soyledir:

= A%P(E,) = A%p, (2.55)

Son ifade €. = A”ﬂiéa ile karsilastirildiginda, 1-formun bilesenlerinin Lorentz doniigiimii

altinda baz vektorleri ile tamamen ayni bigimde (kovaryant) doniistiigii goriilmektedir.
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Buna karsin, 1-formun bilesenleri vektorlerin bilesenleri ile ‘zit” bicimde

dontismektedir. (Zit doniisiim ile doniisiim matrisinin tersi anlagilmaktadir.)

1-form ve vektor bilesenlerinin Lorentz doniisiimii altinda birbirinin tersi bigimde
doniisiim  ozellikleri dikkate alindiginda, P(A) degerinin gerceveden bagimsiz bir

invaryant oldugu sdylenebilir.
ispat: p(A) degerinin cerceveden bagimsiz bir invaryant oldugu asagidaki gibi
gosterilebilir:
A" p, =(ALA“)(ALD,)
= AGALAYD,

:5:A” P,

= A“p (2.56)

u

1-formlarin bilesenlerinin vektorlerin bilesenlerine gore bu ters doniisiim 6zelligi, ‘dual

vektor uzayr’ ifadesindeki ‘dual’ kelimesini dogrulamaktadir.
Baz 1-formlar : dual baz

Tiim 1-formlarin kiimesi bir vektdr uzay1 olusturdugundan dort tane birbirinden lineer

bagimsiz 1-formlarin herhangi bir kiimesi bu dual vektor uzayi icin bir baz olusturur.

1-formlar i¢in baz kiimesi {cT)“,a =0,1, 2,3} ile gosterilsin, bu baza {éa} vektor bazina

dual baz adi verilir. Buna gore, bir p 1-formu, bu ®” dual baz1 cinsinden su sekilde

ifade edilebilir,

p=p,0” (2.57)

@ ifadesindeki iist indis toplam kuralin1 saglayacak bi¢imdedir:
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= ~ ~0 ~1 ~2 ~3
p=p,0" =p,@0 +pP@ + P,0°" + Py

Buna gore, tipki €, baz vektorleri dort farkli vektor oldugu gibi @“ baz 1-formlar1 da

dort farkli 1-formdur. Herhangi bir A igin 1-formun baz 1-formlar cinsinden ifadesine

gore su ifade bulunur,
P(A) = p,@" (A)
= p, " (A'E))
= p, A" (€)) (2.58)
f)(,&) = p,A” oldugundan, asagidaki esitlik saglanmalidur.
" (€;) =0, (2.59)

Bu esitlik baz 1-formun « -bilesenini tanimlamaktadir. Buna gore, bir O gergevesinde

1-form bazinin bilesenleri su sekilde ifade edilir,

@° —5—>(1,0,0,0)
@ —5—(0,1,0,0)
@ —5—(0,0,1,0)
@°——(0,0,0,1) (2.60)

Burada vektorlerle 1-formlar arasindaki iliski su sekilde ifade edilebilir: 1-formlar 1x4
lii satir matrisleri ile ifade edilirse vektorler 4x1 i siitun matrislerle ifade edilirler ve bu
sekilde 1-formlarin vektorlere etkisi daima reel sayilar verir.

@” 1-form bazinin baz doniisiimii

Her bir farkli cerceve @“ baz kiimesine sahiptir. Iki farkli cergevenin baz 1-formlar

arasindaki iliski, vektor bazina benzer olarak, Lorentz doniisiimii yardim ile elde edilir,
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" =A@ (2.61)

Bu doniisiim kurali, vektor bilesenlerinin doniistim kurali ile ayn1 1-form bilesenlerinin

doniisiim kurali ile zittir.
(0,2)-tipi tensorler

(0,2)-tipi tensorler argiimaninda iki vektér olan tensorlerdir. Daha 6nce gosterilen
metrik tensorii bu tiirden bir tensordiir. Bir (0,2)-tipi tensoriin en basit bigimi iki tane
1-formun dis (tensor) gcarpimi ile elde edilir. Buna gore, p ve § herhangi iki 1-form ise
0 zaman Pp®¢q bir (0,2)-tensordiir ve bu tensériin A ve B gibi iki vektdr iizerindeki
degeri;

P®G(AB) = p(A).G(B) (2.62)

Bu ifadeye gore (0,2)-tipi tensoriin vektorler iizerindeki degeri bu tensorii olusturan

1-formlarin vektorlere etkisi ile ifade edilen sayilarin ¢arpimudir.

® semboliine bir dis ¢arpim veya tensor ¢arpimi adi verilir. Bu gosterim bir (0,2)-tipi
tensOriin 1-formlarin ¢arpimindan nasil tretildigini ifade eden bigimsel bir gosterimdir.
® dig carpimi degismeli (komiitatif) bir ¢arpim degildir. Yani; p®q ile §®p

tensorleri farkl tensorlerdir.
2.5.5 (M,N)-tipi tensorler

Verilen bir V dortlii-vektorii igin bir p 1-formu asagidaki sekilde bir reel sayiya

gonderilebilir,
V(p)=pV)=pV=(pV) (2.63)

Boylece vektorler 1-formlart reel sayilara gonderen lineer fonksiyonlar olarak kendi

baslarina tensor adlandirilmasini alirlar.

24



MYy
[ 0 j tipi tensorler

M
Vektorlerin 1-formlara etkisi genellestirilerek; bir [ 0 j tipi tensor M tane 1-formu reel

sayilara gonderen bir lineer fonsiyondur. Buna gore bir vektor, bir (1,0)-tensordiir.

. 2 L
Ornek: Bir Loj-tensér V ®W bi¢imindedir, p ve § seklinde iki herhangi 1-forma
etki ettiginde asagidaki say1y1 verir,

V ®W (p,q) =V (PW (@) = pV)GW) = (V“p, )W q,) (2.64)

Buna gore, V ®W tensdriiniin bilesenleri V“W” seklindedir.

My oo
[N j tipi tensorler

M
Tensorlerle ilgili son genellestirmeler yapilarak; bir ( N J tipi tensor M tane 1-formu ve

N tane vektorii reel sayilara gonderen bir lineer fonksiyondur.

2.5.6 indis ‘yiikseltme’ ve ‘al¢altma’

Bir (0,2)-tensor olan metrik bir V' vektoriiniin bir V 1-formuna karsilik getirdigi gibi
bir (M,N)-tensorde bir vektorii (M-1, N+1)-tensore karsilik getirir. Benzer olarak bu

gonderimin tersi de bir (N, M)-tensorii bir (N+1, M-1) tensore karsilik getirir.

Ornek: T , bir (2,1)-tensor olsun. O zaman bu tensdrden;

T, =1, T" (2.65)

e

seklinde bir (1,2)-tensorii elde edilirse ve benzer olarak,
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:p— 7
T, =n,T"7, (2.66)
baska bir (1,2)-tensorii elde edilir. Buna karsin,
afy _ af
T =n"T% (2.67)

bir (3,0)-tensoriin bilesenlerini ifade eder.

Bu islemlere bir tensoriin indislerini yiikseltme ve algaltma islemleri denir (Schutz

2011, Ozansoy 2012).
2.6 Kovaryant ve Kontravaryant Vektorler

(X, %,,..., X,) koordinat sisteminde A', A?,..., A" gibi n-eleman ve diger koordinat

sistemini de (Xl,XZ,...,Yn) ve A, A? ..., A" seklinde gosterelim.

A :Z% Al ; i=12,..,n (2.68)
i OX;
veya kisaca,
A= p (2.69)
OX;

]

dontisiim denklemleri seklinde ise buna bir kontravaryant vektor yada ranki (mertebesi)

bir olan kontravaryant tensoriin bilesenleri denir.

(%, X, X,) koordinat sisteminde A, A,,..,A, gibi n-eleman ve (X,X,,...X,)

n

koordinat sisteminde A, A,,..., A olsun.
A= —LA ; i=12..,n (2.70)

veya kisaca,
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A=—LA (2.71)

seklinde ise buna bir kovaryant vektor yada ranki bir olan kovaryant tensoriin

bilesenleri denir (Sagel 2003).

Herhangi bir tensor alt, iist veya karma indisler yardimiyla gosterilir ve bir tensorde
tekrarlanan indisler disindaki indislerin toplam sayist o tensoriin mertebesini (rankini)

verir. Omegin; T, T™ ve T%,

tensorleri sirasiyla ikinci mertebeden kovaryant,
liclincli mertebeden kontravaryant ve dordiinci mertebeden karma tensorler (birinci
mertebeden kontravaryant, {li¢iincii mertebeden kovaryant) olarak adlandirilir ve aym

gosterimler tensorlerin bilesenleri i¢inde kullanilir (Onem 2011).
2.7 Metrik

Genel gorelilik gergevesini olusturan dort-boyutlu Riemannsal geometriyi incelemek ve
belirgin 6zelliklerini tespit etmek {izere iki yontem vardir. Bunlardan biri bu uzay1 bir
metrik ile donatmak, otekisi ise vektorlerin paralel Gtelenmesi kavramindan hareket
ederek, uzayin, noktalar1 arasindaki iliskisel (afin) 6zellikleri ortaya koymaktir. Her iki

yontemde cogu halde aymi formel sonuglari verirler (Ozemre 1982).

Uzayin geometrisini belirleyen matematiksel yapiya metrik ad1 verilir. Bu matematiksel
yap1, birbirine ¢ok yakin iki noktanin arasindaki mesafenin karesini bu noktalarin
koordinat degerlerinin farklar1 cinsinden veren bir ifadedir. Zaman boyutu s6z konusu
oldugunda, bazi farkliliklar ortaya cikar. Uzay-zaman metrigi birbirine ¢ok yakin iki

nokta i¢in mesafenin karesini degil, uzay-zaman araliginin karesini verir (Semiz 2011).

{%ﬁ} sayilar1 metrigin bilesenleridir ve {n“ﬁ } sayilar1 ise metrigin tersinin
bilesenleridir. Nop O indislerinden bir tanesi, metrigin tersi kullanilarak su sekilde

yiikseltilir,

n,=n"n,, (2.72)
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Bu esitligin sag tarafinda birbirinin tersi olan iki matrisin bilesenlerinin ¢arpimi vardit,
buna gore sag taraf birim matrisin bilesenlerine esittir. Bir indis yukarida ve bir indis

asagida oldugundan bu bir Kronecker deltadir:

N, =85 (2.73)

Buna gore 7 bir (2,0)-tensoriin bilesenleri olarak dikkate alinir, dyle ki bu tensér g

metrik tensorii tarafindan ¢ '’e gonderilir. Buna metrik tensoriin ‘kontravaryant’

bilesenleri, metrik tensoriin ‘kovaryant’ bilesenlerinin tersi olan matrisin elemanlarina

esittir. Uzay-zamanda bu 6zelligi saglayan tek tensor metrik tensordiir.

Ornek: 3 boyutlu Kartezyen koordinatlarda; ds® =dx*+dy®+dz® seklinde yazilir.
Bunu bir diger haliyle; ds® = 0¥ dx'dx’ seklinde de yazabiliriz. Burada i, j = {1, 2,3} ve

dx=dx', dy = dx?, dz =dx® olarak yazilabilir. Kiiresel koordinatlarda;
X=rsin@cos ¢
y=rsindsing
z=rcosd

seklinde verilir.

dx =sin@cos¢dr +rcosdcosgdd —rsin sin pd g
dy =sin@sin gdr +r cos #sin ¢gd & +r sin 8.cos ¢d ¢

dz =cos@dr —rsin@d o

Burada yukaridaki ifadeleri kullanarak, uzunluk elemant;
ds® =dr? +r*d@’ +r’sin’ 6d ¢*
olarak yazilir. Buradan metrik bilesenleri;

gl’l‘ :1
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2
Qoo =¥

g, =rsin*e
gaﬁ:O ; a# [ icin

seklinde yazilabilir ve matris formu;

1 0 0
9,=0 r? 0
0 0 r*sin®g

seklindedir.

Bir metrigin pozitif ve negatif isaretli degerlerin sayisina metrigin imzas1 denir. Eger

metrik bir tane eksi isareti i¢eriyorsa buna Minkowski metrigi, ¢esitli sayida eksi ve art1

isaretleri varsa metrige belirsiz, tiim isaretler pozitifse Riemann (Oklid) metrigi denir.

2.8 Christoffel Sembolleri

Manifold da farkli iki noktadaki vektorleri yada formlari kiyaslama imkani sunan

parametrelere Christoffel sembolleri denir. Oklid uzaymda bir vektor paralel

kaydirilabilir fakat egri uzayda bunu yapmak i¢in bir baglant1 katsayis1 kullanilir ve bu

baglant1 katsayilar1 Christoffel sembolleridir. Bir genel vektorii asagidaki bicimde

tanimlayabiliriz:

V =V

o
Bu vektériin x” bilesenine gore kismi tiirevini alalim:

oV _oV® Ve o€

a

oxP oxf ox”

OE, . . . . o
Burada esas olan; 5 < ifadesinin neye esit oldugudur. Bu ifadenin esiti,

Xﬂ
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66, . .

PV =I",€, (2.76)

olarak tanimlanir. Burada I',, ifadesine Christoffel sembolleri denir. Buradaki

indislerden « tiirevi alinan baz vektorii, f hangi koordinata gore tiirev alindigini, u

sonugta bulunan vektoriin bilesenini niteleyen indislerdir.

Ornek: Kutupsal koordinatlarda Christoffel sembollerini tiiretelim:

0 0 .
—€, =—(cose, +singE )=0 2.77
~ & =—(cos 08, +sin 08, 217)
iér :i(cosé’éX +sin €,
00 00
in e s -1g 2.78
=—S|n¢9ex+cos¢9ey=Fe6 (2.78)

0 0 )
28 =2 (~rsin@8, +rcosdE
or ? 8r( X )

= —sin g€, +Cos v€, =

=3 (2.79)
r

9

5 (2.80)

€, =—TCOSOE, —rsine, =-r¢

r

r

(2.77) denkleminin sonucu olarak: T, =T =0

(2.78) denkleminin sonucu olarak: I'f, =0, I'Y, = 1
.

(2.79) denkleminin sonucu olarak: T, =0, TY, = 1
r

(2.80) denkleminin sonucu olarak: I}, =-r, T'%, =0

Kutupsal koordinatlar i¢in Christoffel sembolleri elde edilmis olur.
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Kovaryant tiirev

Kovaryant tiirev bir manifold iizerinde bir koneksiyonla bir diferansiyel operator
yardimiyla ¢alismanin ve tanimlamanin bir yontemidir. Kovaryant tiirev vektor
analizinde yone gore tlirevin bir genellemesidir. Geometride koneksiyon kavramai ise bir
dogru yada dogru kiimesi boyunca veriyi paralel ve uygun bir sekilde tasima fikrini
tanimlar. Modern geometride tasinacak verinin tiiriine gore belirlenen ¢esitli koneksiyon

tiirleri vardir. Bir vektoriin kovaryant tlirevi;
Ve, =V +T vV (2.81)

olarak tanimlamir. Bu ifade de V©; kismi tiirevi gostermektedir. Bir 1-formun

kovaryant tiirevi;
Pap = Pop —Ffjﬁ P, (2.82)

olarak tanimlanir.

Kartezyen koordinatlarda Christoffel sembolleri sifir oldugundan dolayi, Kartezyen
koordinatlarda 1-formlarin ve vektorlerin kovaryant tirevleri kismi tiirevlerine esit

olacaktir.
Metrigin kovaryant tiirevi tim koordinat sistemlerinde sifirdir.

Ispat: Metrigin kovaryant tiirevinin tiim koordinat sistemlerinde sifira esit olacagimi

ispatlayalim:

o'\ f',y,... usli indisleri keyfi bir koordinat sistemini gostermek iizere, bir formlarla

vektorler arasinda agagidaki ifadeyi dikkate alalim.
V,=9,\V"* (2.83)
(2.83) ifadesinin her iki tarafinin 3’ ne gore kovaryant tiirevi alinirsa;

Vo =Gu sV +9, N (2.84)

31



1-formun keyfi bir koordinat sisteminde kovaryant tiirevi ile vektoriin keyfi bir

koordinat sisteminde kovaryant tiirevi arasindaki iligki;

V., =g

s Ve (2.85)

ay'
olarak verilir. (2.84) denkleminin sol tarafi, (2.85) denklemine gore diizenlenirse,
9oV 5 =V + 9,V (2.86)
esitligine ulasilir. (2.86) esitligide, keyfi bir V* vektorii i¢in ancak,
9uuip-0 (2.87)

kosulu ile saglanir. Buradan da metrigin kovaryant tiirevinin tiim koordinat

sistemlerinde sifir oldugu goriiliir.
Christoffel sembollerinin g metrik bilesenlerinin kismi tiirevleri cinsinden ifadesi

Bu kisimda Christoffel sembollerinin tiiretimi i¢in daha pratik bir yol olan, Christoffel

sembollerinin metrik bilesenlerin kismi tiirevleri cinsinden ifadesi anlatilacaktir.

Metrik bileseninin kovaryant tiirevi; metrik bilesenleri, metrik bilesenlerinin kismi

tiirevi ve Christoffel sembolleri cinsinden asagidaki sekilde ifade edilir:

Oupiu = Yapu ~LawBop ~ T390 (2.88)
(2.87) ve (2.88) denklemlerini kullanarak asagidaki ifadeyi yazabiliriz:

s ~Tu90p L5900 =0 (2.89)

(2.89) denklemi kullanilarak her bir indis i¢in metrik bilesenlerinin kismi tiirevleri

yazilabilir.
gay,ﬁ :Fz,uguﬁ +F;ygau (290)

gaﬂ,y :F,;ﬂgu,u +F2ﬂgau (291)
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gﬁy,a = FZa guy +an gﬂu (292)

Yukaridaki denklem takimlarindan (2.92) denkleminin her iki tarafini -1 ile ¢arparak, ii¢

denklem takimini Christoffel sembollerinin tiim koordinat sistemlerinde gecerli olan

simetri 6zelligi I, =17, esitligi gdz Oniine alinarak taraf tarafa toplanirsa;

Oupe t 9aup = D = 20059 (2.93)
denklemine ulasilir. (2.93) denkleminin her iki tarafi 2 ye boliiniip, g*° metrik bileseni

ile g,,9% =0/ ozelligi g6z oniine alinarak garpilirsa,

1 .
F/}‘/‘ﬂ = E g y(gaﬂ,y + gay,ﬂ - gﬂy,a) (294)

sonucuna ulagilir. Burada (2.94) ifadesi Christoffel sembollerinin metrik bilesenlerinin

kismi tiirevleri ile elde edilmesi i¢in gerekli olan esitligi vermektedir.
Ornekler

1) Kutupsal koordinatlarda Christoffel sembollerini (2.94) ifadesi ile elde edebiliriz:
Kutupsal koordinatlarda birim vektorler,

€, =COS0€, +sin g, (2.95)
€, =—Tsinge, +rcosde, (2.96)

seklindedir. g,, =9(€,,€,) =€, €, ifadesi yardimi ile metrigin bilesenleri bulunabilir.
Bu bilesenler;

2

grr:]' ’ gae=r ’ grezgarzo

bulunur. Uzunluk eleman: da ds® =dr® +r*d@* olarak yazilacaktir. (2.94) denklemi

kullanilarak;

1 o
Ffe = E gg (gar,a + 0,0 — gra,a)
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ifadesi yazilir. Buldugumuz metrik bilesenleri yerine yazilir ve kismi tlirevleri alinirsa,

11 1
Ity = E[F] (@r)=—= o

Elde edilen bu sonug, metrik bilesenleri kullanilmadan hesaplanan Christoffel

sembolleri hesabi ile tutarli bir sonugtur. Benzer sekilde diger bilesenlerde; T'Y =0,

Iy,=-r,I,=I, =0T =0T =0 olarak elde edilecektir.

2) Silindirik koordinatlarda Christoffel sembollerini (2.94) denklemi yardimi ile elde
edelim. Silindirik koordinatlar; x=pcos¢ , y=psing, z=z ve konum vektorii
r=pcos¢gX+psingy+zz2 seklindedir. Bunlar yardimi ile birim vektorler

hesaplanabilir;

_or N A
g =—=C0S¢@gxX+sin
= op ¢ Py

_ or .. N
e, =—=—pSINn X+ pCOS
Y PSIN X+ pCos Py
_ o
€ =—=1
0z

d.; =9(€,.€,) =€, €, ifadesi yardimi ile metrik bilesenleri bulunacaktir.
g, =€,€, =cos’p+sin®g=1

Benzer yolla diger bilesenler hesaplandiginda;

gpp gp¢ gpz 1 0 0
(9.6)=| 9 9w 9s|=|0 p* O
gZp gz¢ gzz O 0 1

(2.94) ifadesi kullanilarak;

1,
Fﬁp - E 9 p(gapyp T~ gppya)
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Yukaridaki ifade de dikkat etmemiz gereken, « indisidir. Bu indis, katki gelen terim

p,¢,z den hangisi ise o etiketi alacaktir. Bu da ancak problemi ¢6zerken metrik
bilegenleri okunarak belirlenecektir. Parantez igerisindeki son terim olan g

bileseninin kismi tiirev ifadesi géz Oniine alindiginda, bu bilesen degeri 1 e esittir ve
neye gore tiirevi alinirsa alinsin sonug hep sifir ¢ikacaktir. Diger terimlere bakildiginda

da katki gelen tek bilesen o =p oldugu durum icin gegerlidir ve bu bilesen icin

degerler yazilip hesaplandiginda I =0 oldugu gorilir. Bu yol izlenerek diger

Christoffel sembolleri hesaplanirsa katki gelen terimler; Fi¢ =Ff;p =%, Lh=-p

seklindedir ve diger tiim terimlerden gelen katkilar sifir verecektir.
2.9 Jeodezikler

Bir egri uzayda, bir egriye teget vektoriin paralel-kaydirilmasi ile “miimkiin oldugunca

diiz” cizgiler ¢izilebilir. Bu ¢izgilere jeodezikler denir. Diiz uzayda serbest parcacigin

yorlingesi bir dogru olacaktir, bunun egri uzayda karsiligi jeodeziklerdir ve serbest

diisen parcacigin yoriingesini verirler. Jeodezik denklemi;
d*x” dx“ dx”

+I* =
di2 “da da

(2.97)

olarak verilir. Bir jeodezik egrisi, uzunlugu ekstramum olan bir egridir (Schutz 2011,

Ozansoy 2012).
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3. MUTLAK UZAY ve MACH iLKESI

Kiitle ¢ekim olgusunu anlama cabasi Isaac Newton’la baslayarak, Bishop Berkeley,
Ernest Mach ve Albert Einstein’a kadar uzanir. Bu siirecte kiitlesel ¢ekim olgusu
sorgulanmistir ve bu olguyu agiklayan ilkeler, yasalar ortaya konmustur. Bu ilkeler ve
yasalar ortaya konulurken bunlar1 destekleyen diisiince deneyleri ve gergek deneyler

tasarlanmustir.

Fiziksel biiylikliikler gézlem cgercevelerine bagli olarak degismektedir. Newton, bu
sorunu ortadan kaldirmak i¢in, evrende var olan tiim hareketlerden bagimsiz, mutlak bir
uzay oldugunu kabul ederek tiim hareketleri aciklamaya caligmistir. Newton bu
goriigiinii desteklemek amaciyla bir kova su deneyini diigiinsel olarak tasarlamistir. Bu
diisiince deneyinde bir kova su, kovanin donme ekseni dogrultusunda @ agisal hiz1 ile

dondiiriildiigiinde sekil 3.1 deki durum ortaya ¢ikmaktadir.

w

N
\ /

Su

Sekil 3.1 Dikey eksene gére @ agisal hiziyla donen su dolu kova (Kangal 2008)
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\=/

Sekil 3.2 Kova durduktan sonra suyun dénmesiyle olusan parabol (Kangal 2008)

Bu deneyde, tavana takili bir ipin ucunda asili bos bir kova goz 6niine alalim. Bu kova
kendi simetri ekseni etrafinda dondiiriiliir, asili bulundugu ip burulur ve kova sabit
tutulup suyla doldurulduktan sonra da serbest birakilir. Bunu izleyen olaylarin

aciklanmasi eylemsizligin kdkeninin ortaya konmasinda 1s1k tutucu olmustur.

Kova serbest birakilmadan 6nce kovadaki suyun yiizeyi diizlemseldir. Kova serbest
birakildiginda, burulmus olan ip, burulmanin ters yoniinde ve gitgide artan bir donme
hiziyla kovayr dondiiriir. Ip burulmus halinden kurtulduk¢a hiz artarak bir maksimuma
erigir ve sonra da, bir siire, gitgide sénen bir takim burulmali salinimlardan sonra kova
tekrar durgun haline geri doner. Biitiin bu hareket siiresince kovadaki suda kovanin
hareketiyle siiriiklenerek, yiizeyi bir paraboloide doniisiir ve maksimum bir derinlige

ulastiktan sonra, suyun durgun hale erismesiyle diizlemsel olacaktir.

Bu deneyde kova ve i¢indeki su ayni hizlarla dondiigiinden herhangi bir goreli hiz fark:
olugsmamaktadir. Bundan dolay1 kova iizerinde yer alan bir gézlemci, su yiizeyinde yer
alan bir gozlemciyi hareketsiz olarak gozlemleyecektir. Ikinci durumda, dénen kova
durdugunda icerisindeki su donme hareketine devam eder ve sekil 3.2’deki durum
ortaya ¢ikar. Bu anlamda goreli hiz farki merkezkag kuvvetine neden olacaktir. Newton
bu sonuglara gore evrendeki hareketleri tanimlayacak mutlak bir uzaym var olmasi
gerektigini sdylemistir ve bu uzayin tanimlamis oldugu gozlem cercevesine de eylemsiz

gbzlem cercevesi denmistir.
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Newton’un bu yorumu ilk defa Berkeley tarafindan elestirilmistir. Berkeley mutlak
uzaya gore bir hareketin fiziksel bakimdan anlamsiz oldugunu savunmus ve s6zii edilen
su dolu kova deneyinde esas goz Oniinde bulundurulmasi gereken durumun kovanin
evrene ve Ozellikle sabit yildizlar takimina gore donmesi oldugu fikrinde diretmistir.
Berkeley, su ile dolu kova deneyini yeniden tasarlayarak hem kovanin hem de suyun
yiizeyinde bir gozlemcinin bulunmasi durumunu yeniden g6z Oniine almistir. Bu

diisiince deneyi sekil 3.3 ve 3.4’de verilmektedir.

Sekil 3.3’teki durumda; kova iizerindeki gozlemci su iizerinde yer alan goézlemciyi
durgun gorecektir. Bu durumda her iki gézlemci de kovanin donmedigini sdyleyecektir.
Bu sebepten dolay1, Berkeley boyle bir hareketin bos uzayda tanimlanmasinin miimkiin

olmayacagini sdylemistir.

Sekil 3.4’teki durumda ise; kovanin iizerinde duran goézlemcinin kendisine gore
dondiigiinii soyleyecektir. Buna karsi olarak, su ylizeyinde yer alan gézlemcide kova
tizerinde duran gozlemcinin kendisine gore donme hareketi yaptigini sdyleyecektir. Bu

durumda her iki gézlemcide kendilerini mutlak uzay olarak goéreceklerdir.

@

i
fl

Sekil 3.3 Her iki gézlemcinin ayn1 agisal hizla dondiikleri durum (Kangal 2008)
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Sekil 3.4 Kovanin durmasi sonucu hizla gbézlemciler arasindaki goreli hareket
(Kangal 2008)

Bu sonuca gore kovanin bos uzayda dondiigiinii ne kova iizerinde duran gézlemci ne de
su iizerinde duran gozlemci sdyleyecektir. Berkeley ve Mach bu sorunun ¢éziimii igin
bu iki gozlemciden bagimsiz baska bir nesnenin var olmasi gerekliligini
savunmuglardir. Hem Berkeley hem de Mach yerel gozlem c¢ercevesi ile uzak
yildizlardaki gozlem g¢erceveleri arasinda bir iliskinin kurulmasi gerektigini kabul
etmiglerdir. Berkeley ve Mach’ a gore Foucault sarkaci deneyinde elde edilen sonucun
kaynag1 tamamen yildizlardir. Ciinkii bu deneyde sarkag yerkiire {izerinde ve sarkacin
salindig1 diizlem yerkiireye gore donmektedir. Sarkacin salinim diizleminde yer alan bir
gozlemci uzak sabit yildizdaki goézlemciye hareketli olarak goriinecektir. Olusan bu
goreli hareket, bir merkezka¢ kuvvet doguracaktir ve bunun sonucunda sarkagcta tek bir
dogrultuda degilde kapali bir yoriingede salinim hareketi yapacaktir. Mach, Foucault
deneyinde var olan bu merkezkag¢ kuvvetinin kaynagi olarak mutlak uzay: degil, cismin
cok uzaktaki yildizlara gére donme hareketinden kaynakli oldugunu belirtmistir. Bu
sonuca gore Mach, kiitlesel ¢ekim alaninin, mutlak uzaydan bagimsiz olup, gézlemcinin

hareket durumuna bagli olarak betimlenen bir nicelik oldugunu belirtmistir.

Ozetle, bir cismin eylemsizliginin evrendeki biitiin cisimlerin fonksiyonu olarak
belirlenmekte oldugunu ifade eden ilkeye Mach ilkesi denir. Bu ilkeye gore, su dolu
kova ornegindeki su yiizeyinin donel bir paraboloid seklini kazanmasi, kovanin mutlak
uzaya gore donmesi sonucu olarak degil de su ile, geri kalan biitiin evren arasindaki bir
cesit gravitasyon etkilesmesinin sonucudur. Bu olay, suyun c¢ok uzagindaki tiim

kiitlelerin bu etkilesmeye katkilarinin suyun civarindakilerin katkisindan ¢ok daha
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yogun bir bicimde ortaya ciktig1r bir etkilesme olarak diisiiniiliir. Boylelikle Mach
eylemsizlik sistemlerinin ayricalikli durumlarini, etkilerini yok edemedigimiz uzak gok
cisimlerinin ige karigmalarina baglamaktadir. Eger uzak gok cisimleri mevcut olmayip
da Diinya uzayda tek basina olsaydi biitiin referans sistemleri esdeger olacak ve hepsi de
eylemsizlik sistemleri olusturacaklardi. Bu ideal durumda Foucault sarkacinin salinim

diizleminin rotasyonu da olmayacakti.

Buna dayanarak Mach ilkesi g¢ercevesi iginde goriiniimsel eylemsizlik kuvvetleriyle
gercek gravitasyon kuvvetleri arasinda bir esdegerligin varligi miimkiin goériinmektedir

(Ozemre 1982, Kangal 2008).
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4. SCHWARZSCHILD GEOMETRISI

Schwarzschild geometrisi; statik, kiiresel simetrik bir yildizin vakum (bos uzay)
uzay-zamaninin geometrisidir. M kiitleli bir yildizin disindaki bos uzay-zamanda bir

uzunluk eleman:

-1
ds? =_(1—det2+£1—ﬂ] dr? + r2dQ? (4.1)
r r

olarak verilir. Bu ifadeye Schwarzschild metrigi denir. Bu metrik, bir yildizin ve bir

karadeligin gravitasyonel (kiitle gekimsel) alanini belirler. Bu esitlikte dQ* ifadesi;
dQ* =d&* +sin” 0d ¢’ (4.2)

ifadesine karsilik gelir. Schwarzschild geometrisi i¢in metrik bilesenleri;

2M
9 = _(1_TJ

Gop =T
g, =r’sin®o (4.3)

metrigin ters bilesenleri;

g” =r?sin?@ (4.4)
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Metrik ve tersinin matris formlari;

—(1—2—'\/'} 0 0 0
r
-1
[9.,]=| O [1—Mj 0 0 (4.5)
r
0 0 20
0 0 0 r’sin0
1
—(1—2—'\/'} 0 0 0
r
[0”]=| o (ij 0 0 (4.6)
r
0 0 r? 0
0 0 0 r?sin?o

4.1 Christoffel Sembolleri

Bu kisimda Schwarzschild geometrisi i¢in Christoffel sembolleri hesaplanacaktir.
Metrik bilesenleri bilindigine gore Christoffel sembollerinin metrik bilesenlerinin kismi

tiirevi cinsinden elde edilmesi denklem (2.94) yardimu ile yapilacaktir.

1 w
1—‘trt = E g' (gru,t TG — grt,u) (4.7)

Burada v indisi katk: gelen bilesene gore belirlenecektir. Bu bilesen g“’dir ve v =t

olarak etiketlenecektir.

M t

(r—2M) =T (4.8)

1
1—‘trt = E gtt (gn,r) =

olarak elde edilir.

Benzer hesap yontemiyle diger katki saglayan terimler;
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F_M@r-2m) M o _po 1 o o L
Ftt:—’rrr:_m’Fm:rer:F’reez_(r_zM)'rmﬁ:rw:F

I, =—(r-2M)sin®@, T, =—sindcosd, T, =T, =%

Diger tiim Christoffel sembolleri sifira esit olacaktir.
4.2 Jeodezik Denklemleri

Jeodezik denkleminin ifadesi denklem (2.97) ile tanmimlanmaktadir. Schwarzschild
geometrisi kiiresel simetrik, statik bir yildizin disindaki vakum uzay-zamaninin
geometrisi oldugundan, boyle bir yildizin etrafinda hareket eden parcaciklar veya
fotonlarin yoriingeleri bu geometri yardimi ile hesaplanan jeodezik denklemleriyle

tespit edilir.

Schwarzschild geometrisinde jeodezik denklemleri;

i) o=t igin;
d’t . dx* dx’
+ = 4.9
di> " da da (4.9
4 Ve v icin katki gelen terimler g6z oniine alinarak;
2
d - dr dt (4.10)
di didAa
olarak yazilir.
i) a=r igin;
2
d I;+ :r££+l“;9££+l“;¢d—¢d—¢+ {tﬂﬂzo (4.11)
di didAa didAa didAa didAa
i) a =80 igin;
2
90 (o 90dr 10 4900 _ (4.12)

da2  “didi *dida
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IV) a =¢ igin;

2
d ¢3+F§€%d—9+rﬁrd—¢£:0
da didAa didAa

(4.13)
olarak bulunacaktir.
4.3 Dortlii Hiz ve Momentum

Dortlii-hiz vektorii, Galileo — Newton mekanigindeki tiglii geometride tanimlanan tiglii-
hiz kavramina benzer bicimde tanimlanabilir. Buna gore bir parcacigin dortlii-hizi, U,
pargacigin diinya ¢izgisine teget olan ve parcacigin durgun ¢ergevesinde boyu bir zaman

birimi olan bir vektor olarak tanimlanir.
Diinya ¢izgisi; uzay-zamandaki bir x(t) dogrusuna parcacigin diinya ¢izgisi ad1 verilir.

Tekdiize (uniform) bir hareket yapan bir pargacigin durgun oldugu eylemsiz gercevede,

dortlii-hiz zaman eksenine paraleldir ve boyu bir zaman birimidir, yani, bu gergevede

U =€, olur.

Dortlii-hiz ile ilgili dnemli bir 6zellik ise kendisi ile skaler ¢arpiminin -1 oldugudur.

Yani;

uu=-1 (4.14)
olacaktir.
Bir par¢acigin dortlii momentumu;

P=muU (4.15)

seklinde tanimlanir. Burada, m parcacigin durgun oldugu c¢ercevede oOlgiilen ‘durgun’

kiitlesidir. Bir O ger¢evesinde dortlii-momentum genel anlasma olarak;

p—s—(E, p', p*, p°) (4.16)
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bigiminde ifade edilir.

Burada p°’a parcacigin O cercevesindeki E enerjisi adi verilir. Diger p' bilesenleri,

dortli-momentumun uzay bilesenleridir.

Kiiresel simetriden dolayi, bir parcacigin hareketi bir diizleme kisitlanir; bu diizlem

islem kolaylig1 acisindan & =% ile verilen ekvator diizlemi olarak segilebilir. & :%

sabit oldugundan, :—i =0 (A; yoriinge parametresi) olur ve p’ =0 olacaktir.

Kiitleli bir parcacik icin birim kiitle basina enerji E ve foton icin enerji E olarak

aliirsa;

Parcacik igin; E = _Po

m

Foton i¢in; E =—p,

olacaktir. Kiitleli pargaciklar i¢in agisal momentum L, foton i¢in acisal momentum L

olarak alinirsa;
N
Parcacik i¢in; L =—
m

Foton i¢in; L= p,

olacaktir. Bu durumda momentumun bilesenleri;

Pargacik igin;
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r
Foton igin;
-1
o_ (1_ﬂj e
r
r_dr
dA
p’=0
0 = dg _L
di r?
olacaktir.

Parcacik icin P.p=-m? esitligi kullanilarak;

-1 -1 2 2™
_ngztl_z_'\"j +m2[1_2_'\"j (j_rj ML L 4.17)
r r T r

ifadesi bulunur. Foton i¢in p.p =0 esitligi kullanilarak;

-1 -1 2 2
—Ezil—ﬁj {1_@] [£] +£2=o (4.18)
r r di r

ifadesi bulunur. Boylece, (4.17) ve (4.18) denklemleri kullanilarak pargacik ve foton

icin temel yoriinge denklemleri asagidaki gibi bulunur:

Parcacik i¢in;

[ﬂjz =E’ —(1—mj[1+ LEJ (4.19)
dr r r
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Foton igin;

2 2
[ﬂj 252_(1_2_“") L (4.20)
dA r r
(4.19) ve (4.20) denklemlerinin sag taraflarindaki ikinci terimler etkin potansiyelleri

verir. Yani;

Pargacik i¢in;

"2
V2(r)= (1—2—'\"][“ LZJ (4.21)
r r
Foton i¢in;
2
V3(r)= [l—ﬁj(%j (4.22)
r r
ifadelerine ulasilir. Simdi yo6riinge denklemlerinin analizi yapilabilir. Etkin
. 3 _dV? dv? . .
potansiyellerin ekstremum oldugu r degerleri; =0= ;r olarak ifade edilir.
r r

Buradan;

Pargacik i¢in;

i{[l_ﬂj(uijﬂ o0 (4.23)
dr r r

Foton i¢in;

PN -
dr rjr

ifadelerine ulagilir. (4.23) ve (4.24) denklemlerinden ise yoriinge yaricaplari igin bir

deger elde edilebilir.
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Parcacik i¢in;

wi 2
r:g[ﬁ uﬂJ @.25)

Foton igin;
r=3M (4.26)

olarak bulunacaktir. (4.25) denkleminden 2 =12M? olur ve r_ . =6M , foton icin

r=3M olarak elde edilecektir. Bu degerler foton ve pargacik i¢in yoriinge yarigap

degerleridir (Schutz 2011).
4.4 Deneysel Testler

Onceki kisimlarda da belirtildigi gibi, Schwarzschild geometrisi kiiresel simetrik, statik
bir yildizin disindaki vakum uzay-zamaninin geometrisidir ve boyle bir yildizin
etrafinda hareket eden pargaciklar veya fotonlarin yoriingeleri Schwarzschild geometrisi
yardimiyla tiiretilen jeodezik denklemleri ile tespit edilir. Einstein bunun igin ii¢ test
onermistir. Bu testler; perihelyon kaymasi, 15181n kiitle cekimsel alanda sapmasi ve kiitle

cekimsel kizila kayma olaylaridir. Bu kesimde bu ii¢ testten bahsedilecektir.
4.4.1 Isigin kiitle cekimsel alanda sapmasi

Kiitleli bir cismin etrafindaki uzay pargasinin, homojen ve izotropik olmaktan
uzaklasarak sekil 4.1°deki gibi bozunmaya ugradigi Ongoriilmektedir. Bozunmanin
siddeti, cismin kiitlesi ile orantili olarak artmaktadir. Bu durumda, 6rnegin kiitlesi
yeterince bliyiik bir cisim, yakinindan gegen 1sik 1sinlarinin biikiilmesine, dolayisiyla

15181n egrisel bir yol izlemesine neden olacaktir.
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Sekil 4.1 Kiitleli bir cisim etrafindaki uzay

Sozii edilen goriis, Ornegin giines tutulmasi olay1 gibi ¢esitli astronomik gozlemlerle
dogrulanmistir. Giines tutulmasi sirasinda, giinesi teget olarak gecip yeryiiziine ulasan
bir yildizin, giinesin uzayda yer degistirmesine bagli olarak gdosterdigi hareket,
yeryiiziindeki gozlemci tarafindan bir fotograf plag: iizerine kaydedilebilir. Boyle bir
gozlemde, yildizin uzaydaki yeri dnceden A ve B olarak belirlenmis ise, yildizin
gozlenen hareketi AB degil A'B" olmaktadir. Bunun nedeni, gergek yerleri A ve B olan
yildizdan ¢ikan 1smlarin, Diinyadaki goézlemciye gore A’ ve B’ noktalarindan

geliyormus gibi goriinmeleridir (Giindiiz 2008).

Koo
A*_.._-._C‘_‘_:

B'-e*":_(:: —
B~

Sekil 4.2 Giines tutulmasi esnasinda yapilan bir gézlem (Giindiiz 2008)

Sekil 4.2 Gilines tutulmasi esnasinda yapilan bir gozlemi gostermektedir. Giinesin
hemen arkasindaki bir yildizin yerdeki gézlemci tarafindan saptanan hareketinin, gergek

hareketinden bir miktar farkli oldugu sonucu ¢ikarilabilir.

Schwarzschild metrigi ile belirlenen bir uzay-zamanda bir fotonun yoriingesi

incelenerek net sapma miktart:
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Ap=——o (4.27)
olarak bulunur. (b; etki parametresi)

Ornegin; giinesin kiitle cekim alanindan gegen fotonun sapmasi hesaplanabilir. Giinesin
etki parametresi; b=R, =7x10° km ve M_ =147 km dir. (Burada geometrik birim

sistemi kullanilmistir. G=1 ve c¢=1 dir.)

(A¢)®,max.sapma = 8’ 45 Xlo_e rad = 1", 74

Jupiter i¢in; M =1,12x10°° km, R =7x10* km dir.

(A¢)max.sapma - 6’ 42X10_8 rad= 0"1 013

4.4.2 Perihelyon Kaymasi

Genel gorelilik teorisini dogrulayan diger bir kanit da, Merkiir’ in Giines etrafindaki
kendine 6zgii donme hareketidir. Glinese en yakin gezegen olan Merkiir, yoriinge
hareketi esnasinda oldukg¢a basik bir elips yoriinge izlemektedir. Yapilan gozlemler,
gezegenin yoriinge hareketi esnasinda Giinese en yakin oldugu noktanin (periheli
noktasi) sabit olmayip siirekli degistigini gostermistir. Bilinen Newton ve Kepler
yasalarina uymayan bu davranis, ancak genel goreliligin gravitasyon alan kavram ile
aciklanabilir: Glinesin gravitasyon alani i¢inde, ona en yakin olmasi nedeniyle diger
gezegenler ¢cok daha biiyiik bir acisal hizla hareket etmekte olan Merkiir gezegeni, giiclii
bir gravitasyon alani i¢inde ve ¢esitli goreli etkiler altindadir (Giindiiz 2008).

Bir pargacik (gezegen) bir yildizin (Gilinesin) etrafinda bir ¢embersel yoriingede

hareketli olsun. Schwarzschild geometrisinde bir pargacigin yoriinge analizi sonucu;

2 2
| (029

bulunmustur. Bu denklemden de;
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(4.29)

ifadesi elde edilir.

Relativistik olmayan bir yildiz (6rnegin Giines) etrafindaki yoriingelerde periheliyon

presesyonu; (4.29) denklemindeki M<<1 oldugu gbz Oniine alimrsa; [ ~Mr
r

gelecektir. Perihelyon presesyonu ifadesi;

67M?
olarak verilir. L yerine yazilirsa;
A~ m% (4.31)

bulunur.

Ornek: Merkiir icin, r =5,55x10" km, M =1,47 km alinirsa;
(A@) =4,99x107" rad/ydriinge
1 yoriinge i¢in 0,24 yil gectiginden;
(Ag)=0,43/ yil =43 yiizyil
kadarlik bir perihelyon kaymasi bulunacaktir (Schutz 2011).

4.4.3 Gravitasyonel kizila kayma

Giliglii bir gravitasyon alaninin, yakinindan gecen 1518in frekans: lizerinde de etkili
oldugu deneylerle saptanmustir. Ornegin uzayin herhangi bir noktasindan gelen bir

gorliniir 151k veya gamma fotonunun f; olan frekansi, foton bir gravitasyon alanindan
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gecerken f gibi bir degere diiser. Einstein, bdyle bir olayda gozlenen frekans

kaymasinin,

f=f, 1—i—f (4.32)

veya,

Af_f: fof‘f 1 / _i_g”: 29 (4.33)
° ° c2(1+ /1—?}

f 2
ve 2—? <1, 1+ 1_0_20 ~ 2 oldugu diisiiniilerek elde edilen;
C

= (4.34)

bagintisi ile hesaplanabilecegini 6ngérmektedir. (Burada ¢ gravitasyon potansiyelidir.)

leri siiriilen bu goriis, Pound ve Rebka (1960) tarafindan Mdssbauer olay1 denilen bir

olaydan yararlanarak denel olarak dogrulanmis bulunmaktadir. Adi gegen
arastirmacilar, kiitlesi 57 olan demir izotopunun (Fe*’) cekirdeginden yayinlanan

gamma 1511 fotonlarinin yeryiiziinde ve yerden 22,5 m. yiiksekteki frekanslarim

Olecmiis, yerin gravitasyon alaninda gozledikleri frekans kaymasinin (4.34) denklemi ile

ongoriilen teorik degere esit ve £:2,56.10715 oldugunu  gdstermislerdir
0

(Giindiiz 2008).
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5. GENEL GORELILIK TEORISININ BAZI TESTLERI

5.1 Jeodezikten Sapma ve Jiroskop Testi

Genel gorelilik teorisi gercevesi iginde Onemli bir arastirma alanmi bir gravitasyon
alanindaki bir jiroskopun donme ekseninin dogrultusunun maruz kalacagi degisimdir.
Diger bir arastirma alan1 olarak ise gravitasyon dalgalarmin somut bir sekilde

belirlenmesidir.

Bu kisimda incelenmek istenen, gravitasyon alaninin bir jiroskopun donme ekseni
tizerindeki etkisidir. Bu etki 1919°da J. A. Schouten tarafindan 6ngoriilmiis ve ilk defa
Diinya’nin kendisi i¢in 1921°de A. D. Fokker tarafindan hesaplanmistir. Fokker, bir

jiroskop gibi kabul edilebilecek olan Diinyanin déonme ekseninin Gilinesin gravitasyon

alaninda yillik 0°,019 lik fazladan bir presesyona maruz kaldigmi belirtmistir.

Diinyanin kendi ekseni etrafindaki hareketiyle siiriiklenen bir jiroskopun davraniginin
teorisi ise ilk defa 1960’da L. I. Schiff tarafindan yapilmistir. Klasik Newton
mekanigine gore boyle bir jiroskopun kendi donme ekseninin yoniiniin, siirtiinme ve
yapisal simetrisizlikler hesaba katilmazsa, sabit yildizlarin belirledikleri eylemsizlik
sisteminde degismez kalmasi gerekmektedir. Ama Genel ve Ozel Gérelilik Teorilerine
gore jiroskopun donme ekseni {i¢ etkiden Otiirli bir presesyon olusturacaktir. Bu etkiler

kisaca su sekilde 6zetlenebilir:

a) Jiroskopun Diinyanin kendi ekseni etrafindaki rotasyonuyla siiriiklenmesi esnasinda
eksenin yoOniiniin, bir vektoriin bir gravitasyon alanindaki paralel otelemesi kuralina
uygun olarak bir davranist bulunacaktir. Boyle bir gravitasyon alaninda Diinya kendi
ekseni etrafinda tam bir devir yaptig1 zaman jiroskopun dénme ekseninin yonii bir devir
onceki yoniiyle cakistk olmayacaktir. Bu etkiye jeodezikten sapma etkisi yada

jeodeziksel presesyon olay1 denir.

b) Donme hareketi yapan bir kiitlenin yakininda her eylemsizlik sistemi, kiitlenin maruz
kaldig1 agisal hizin kiigiik bir kesri kadar bir hizla siiriiklenir. Buna Lense-Thirring

etkisi yada presesyonu denir.
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¢) Gravitasyon alani goz ardi edilse bile bu seferde Ozel Gorelilik Teorisi’nin
sonuclarina gore Diinya {izerindeki bir jiroskopun donme ekseni Thomas presesyonuna

maruz kalacaktir.

Diinya iizerine ekvatorda bulunan ve donme eksenide Diinyaninkine dik olan bir
jiroskop igin ii¢c olayin her birinin yillik etkilerinin yaklasik olarak 0,4 lik bir degere
esit oldugu hesaplanmistir. Diinya etrafinda yapay bir uyduya yiiklenmis bir jiroskop
g6z Oniine alindiginda ilk iki olaym etkileri ¢ok daha kiigiik olmakta, bdyle bir

jiroskopun donme ekseni de Thomas presesyonuna maruz kalmaktadir.

Jeodeziksel presesyon olaymi incelemek igin Diinyanin etrafinda dairesel yoriinge
tizerinde dolanan bir jiroskop gz Oniine alinir. Bu takdirde M ile Diinyanin kiitlesini
gostererek ve Diinyanin civarindaki gravitasyon alaninin da Schwarzschild metrigi ile
temsil edildigini géz oniinde tutarak jeodezik presesyon ifadesi tiiretilebilir. Bu ifade;

_37GM

A¢jeodezik = W (51)

olarak ifade edilir. Bu olaganiistii kii¢iik bir degerdir. Bunun gerek Diinyada gerekse bir
yapay uydu tarafindan tasinan bir jiroskop hali i¢in Olgiilebilmesi yogun bir ¢aba

gerektirir (Ozemre 1982).
5.2 Gravitasyon Dalgalarimin Belirlenmesi

Gezegenlerin Giinesin etrafinda donmesinin sebebi, Glinesin sahip oldugu gravitasyon
(kiitle c¢cekim) dalgalar1 sayesindedir. Kendi ekseni etrafinda donen cisimlerin
cevrelerinde olusturduklar1 dalgaya gravitasyon dalgast denir. Bu kisimda genel
gorelilik cercevesi icinde 6nemli bir arastirma alani olan gravitasyon dalgalarinin somut

bir sekilde belirlenmesi iizerinde durulacaktir.

Teorik olarak ongdriilen gravitasyon dalgalarinin varliginin gézlenmesi yogun caba sarf
edilen bir konudur. Elektromagnetik dalgalarin belirlenmesi nasil bir anten araciligi ile
oluyorsa gravitasyon dalgalarinin belirlenmesi de 6zel bir anten aracilifiyla olmasi

gerektigi, isin baglangicinda, bu konuda en yogun ve siirekli caligmalari yapan J.

54



Weber’ in ilk dislindiigii ve gergeklestirmeye calistigt sey olmustur. Weber’in
gelistirdigi gravitayon dalgalar1 detektorii anten olarak yaklasik 60 cm capinda, 150 cm
uzunlugunda ve 1,5 ton kiitleli aliiminyumdan bir silindirden olusmaktadir. Bu silindir
kablolarla asili olarak bulunmaktadir. Silindirin {stiine, ortasina dogru yapistirilmis
piezoelektrik® kristallerin bagli bulunduklar1 elektronik devreler kendilerine gelen
sinyalleri yiikselterek detekte ederler. Bu mekanik-elektronik deteksiyon diizeni
silindirin temel titresim modu olan ve genligi de silindirin ortasinda maksimuma erisen

v, =1660 Hz’lik frekansa kars1 ¢ok duyarli olacak sekilde gerceklestirilmistir. Silindire

etkiyen miimkiin kuvvetler: Diinyanin donmesi dolayisiyla sistemin maruz kaldig:
Coriolis ve merkezkag kuvvetleri, sistemin tasiyicilarinin = silindirin  ortasina
uyguladiklart statik reaksiyon kuvvetleri, silindirin {izerindeki piezoelektrik kristal
diizeninin uyguladiklari kuvvetler ve silindir igindeki atomlarin termik hareketlerinin
dogurdugu rastgele gerilim kuvvetlerinden ibarettir. Ayrica bu gravitasyon antenini
yerel alanlarin etkisinden de korumak gereklidir. Nitekim anten, geregi kadar biiytlik
siddetteki elektromagnetik, sismik ve kozmik 1sin kokenli uyarilara da tepki
gosterebilmektedir. Bu takdirde de birbirlerinden ¢ok uzak mesafede ve ayni yapisal
karakteristikleri tasiyan iki anten araciligiyla kaydedilecek olan pulslar arasindaki
rastlantilar1 g6z Oniinde tutarak civardaki yerel alanlarin korelasyonlarini olaganiistii
kiigiik bir mertebeye indirmek miimkiin olmaktadir. Weber, deneyleri i¢in biri Chicago
yakinindaki Argonne Ulusal Laboratuarinda, digeri ise 1000 km kadar uzakta Maryland
Universitesine yerlestirilmis iki es detektdr kullanilmistir. Bir rastlanti, her iki
detektoriin ¢ikisinda da aym1 zamanda sayilabilecek kadar dar bir zaman arali1 igin,
ornegin 70 milisaniyelik bir aralikta, kendini gosteren ani bir gili¢ artist olarak
tanimlanmaktadir. Bdyle bir rastlanti ya her iki detektoriin de ortak bir kaynak
tarafindan ayni1 anda uyarilmasindan ileri gelmektedir, yada iki detektoriinde ortak bir
kaynak tarafindan ayni anda uyarilmasindan ileri gelebilir, yada farkli kokenli
(genellikle yerel alanlarin etkilerine bagli) diipediiz distan gelen bir rastlanti olabilir.
Weber 1969 dan itibaren her iki detektoriinde de yiliksek genlikli pulslar arasinda o
kadar ¢ok rastlantisal olay gézlemlemistir ki bunlarin distan gelen rastlantilar olmalar1

thtimali olduk¢a diigiiktiir. Bunlarin gravitasyon dalgalarindan bagka etkenlerin eseri

! Kristal yapidaki cisimlerin kendilerine disaridan uygulanan basing miktar1 ile orantili olarak elektrik
iiretme ozelligine denir.
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olabilecekleri ihtimalini sinamak iizere dahil edildikleri sayisiz testlerin sonucu, bu
rastlantilarin kokeninde o zamana kadar bilinen etkenlerin hi¢ birinin bulunmadigina
hiikmedilmesine yol actigindan Weber, boylelikle gravitasyon dalgalarinin etkilerinin
ilk defa gézlenmis olduguna hiikmetmistir. Ancak, bu etkiye sebep oldugu diisiiniilen
gravitasyon dalgalarin1 iireten kokenin eksiksiz tanimlanmast ayr1 bir sorun
icermektedir. Gravitasyon dalgalar1 detektorii teorisi, bdyle bir detektoriin farkli
dogrultulardan gelen ve farkli polarizasyonu tagiyan gravitasyon dalgalar i¢in farkli
duyarhiligi bulunacaginm1i ve bu duyarlilifin antene dik olarak gelen dalgalar icin
maksimuma erisecegini ongdérmektedir. Eger 0 dalganin gelis dogrultusu ile antenin
normali arasindaki agiyr gosterirse duyarliigm 0 ya baghliginin cos®@ ile orantili
olacag1 gosterilmistir. Buna gore antenin duyarliligt her ne kadar gelen dalganin
dogrultusuna cok keskin bir baglilik icermese de, yeteri kadar uzun bir siire siirekli
gozlem yapmak sartiyla bu 6zellikten yararlanarak gravitasyon dalgalarinin kaynaginin

yeri hakkinda bir bilgi elde etmek miimkiin olabilecektir.

Bu pulslar eger gergektende gravitasyon dalgalarinin sebep oldugu pulslar ise bu

takdirde Af =0,1 Hz lik bir frekans bandi iginde, gelen gravitasyon radyasyonunun
ortalama akismin 0,1 erg/cm®.sn mertebesinde olmasi gerekecegi de tesbit edilmistir.

Ote yandan galaksimizin merkezinin Diinyadan yaklasik olarak 2,5.10% cm uzakta
oldugu gbéz oOniinde tutulacak olursa soz konusu frekans aralifinda gozlenen bu

0,1erg / cm®.sn lik radyasyon akisi, galaksimizin yaklasik olarak,

2

M,c
—(d—Ej =8.10" erg/sn=0,013—2 (5.2)
dt s os yil
kadar bir enerji kaybina ugradigin1 gostermektedir. Bu ise yaklasik olarak;
1000M _c®
_(d_E) - 1000Mgc 5.3)
dt J, yil

kadar bir toplam enerji kaybina ugrar. Buradan ve galaksimizin kiitlesinin 10"'M_

mertebesinde oldugu goéz oniinde tutularak biitiin galaksinin 10° yilda tiikkenmesi

gerektigi sonucu ortaya c¢ikmaktadir. Bu durumda ve eger goézlenenler yalnizca
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gravitasyon dalgalarinin etkisi ise, Weber ya galaksinin gravitasyon radyasyonunun en
biiyiik kisminin yayildigi frekansin {izerine tesadiifen diismiis veya akil almaz derecede

giiclii bir yeni enerji kaynagi kesfetmis bulunmaktadir.

Boyle bir enerji kaynaginin tiimiiyle termoniikleer kokenli olmayacagi agiktir, nitekim
termontikleer enerji durgun kiitlenin ancak % 0,1 lik bir etkiyle enerjiye donligmesini
icermektedir. Ote yandan Rees, Ruffini ve Wheeler gravitasyon dalgalarinin olusmasina
koken olabilecek: birbiri etrafinda donen ¢ift yildiz sistemleri, kendi ekseni etrafinda
donen noétron yildizlari, pulsarlar (atar yildizlar), bir karadeligin etrafinda dolanan bir
g6k cismi, Schwarzschild tipi bir karadelige radyal dogrultuda diisen bir gok cismi gibi
kozmik baz1 olaylar1 goz Oniine alarak bunlardan dolayr olusan gravitasyon
radyasyonunun 1000 pc ve 10000 pc uzakliktaki akisini ¢esitli parametre degerleri i¢in
hesaplamiglardir. Bu hesaplar Weber’in belirlemis oldugu sinyallerin, bazi hallerde,
yukarida siralanmis olan kozmik olaylardan bazilarinda yayinlanabilecek gravitasyon

radyasyonuyla tutarlt olduklarini gostermistir.

Bu kisimda belirtilenlerin digsinda gravitasyon dalgalar1 hakkinda pek cok arastirma
yapilmistir ve yapilmayada devam etmektedir. Fakat burada sadece ilk ve Oncii bir

calisma olan Weber’in ¢alismalarindan bahsedilmistir (Ozemre 1982).
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6. LENSE — THIRRING ETKISi

Eylemsizligin ilk modern analizi Isaac Newton tarafindan 1687 yilinda yapilmistir.
Newton bu analizlerinde 3. kisimda anlatilan dénen kova diisiince deneyini yapmaistir.
Bu deneydeki gozlemler neticesinde Newton mutlak bir uzayin var olmasi gerektigi

fikrini savunmustur.

1883 yilinda Ernst Mach, Newton’un bu yorumunu elestirmistir. Mach’in 6ncesinde de
Berkeley mutlak uzay kavramimi elestiren diger bir isim olmustur ve Berkeley’in
tekrarladig1 diisiinsel deneyin sonuglar1 ile Mach ilkesi olarak bilinen ilkeyi ortaya
atmistir. Mach ilkesi; bir cismin eylemsizliginin evrendeki biitlin cisimlerin fonksiyonu
olarak belirlenmekte oldugunu ifade etmistir. Mach 3.kisimda anlatilan diisiince
deneyleri sonucunda; su ylizeyinin paraboloid seklini almasini, kovanin mutlak uzaya
gbore donmesi sonucu olarak degil de su ile, geri kalan biitiin evren arasindaki kiitle

¢ekim etkilesmesinin sonucu oldugunu belirtmistir.

1915 yilinda ise Albert Einstein genel gorelilik teorisini ortaya atmistir. Albert
Einstein’in bu teorisi, Newton un evrensel kiitle ¢ekim yasasini degistirerek, tiim kiitle
cekim teorisini daha saglam geometrik temellere oturtmustur. Albert Einstein’in yeni

teorisi kisaca asagidaki maddeler dayanmaktadir:

. Kiitle ¢ekim teorisi uzay-zamanin geometrisi ile tanimlanir. Matematiksel olarak,

uzay-zaman metriginin tanimlanmast;
2 _ KA
ds® =g, dx“dx (6.1)

seklindedir.

. Madde uzay-zamanda egrilige sebep olmaktadir. Matematiksel olarak, bu Einstein’in

alan denklemleri ile ifade edilir;

G™ =872GT"™ (6.2)
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Burada; G*Y Einstein tensorii, G Newton ¢ekim sabiti, T’ enerji momentum tensorii

olarak adlandirilir. Enerji momentum tensorii enerji yogunlugu icermektedir.

Bir teorinin, kiitle ¢ekim teorisi olarak ele alinmasi i¢in asagidaki sartlar1 saglamasi

gerekmektedir:
i) Tiim deneysel testleri (Giines sistemi, kirmiziya kayma, ...) gegmesi gerekir.

1) Zayif alanlar ve yavas hareketler i¢in Newton kiitle ¢ekim yasasina indirgenmesi

gerekir.
iii) Yerel olarak 6zel gorelilik teorisini saglamalidir.

iv) Enerji-momentum korunumu ile uyumlu olmalidir.

Einstein alan denklemleri disinda bu kosullar1 saglayan f(R)-teorileri, Brans-Diche

teorileri, ekstra boyutlu teoriler,... gibi bagka denklemlerde mevcuttur.

. Diliz uzayda serbest parcacigin yoriingesi bir dogru olacaktir, bunun egri uzayda
karsilig1 jeodeziklerdir ve serbest diisen pargacigin yoriingesini verirler. Jeodezik

denklemi;

d’x* ., dx“ dx’

ax* dx’ 6.3
a2 M 4a da (63)

olarak verilir (Embacher, 2005).

Einstein’in genel gorelilik teorisinin yaymindan kisa bir siire sonra 1918 yilinda Hans
Thirring ve Joseph Lense, Lense-Thirring etkisini ortaya atmislardir. Donme hareketi
yapan bir kiitlenin yakininda her eylemsizlik sistemi, kiitlenin maruz kaldig1 agisal hizin
kiictik bir kesri kadar bir hizla siiriiklenir. Buna Lense —Thirring etkisi denir. Yaklasik 6
yil dnce yapilan bir arastirmada Lense-Thirring etkisinin giines sisteminin igerisindeki
cisimlerde olmadig1 6ne siiriilmiistiir. Italya’da yapilan bir ¢calismada ise Lense-Thirring
etkisinin her cisimde az da olsa etkili oldugu bildirilmistir. Genel gorelilik teorisi de bu

goriisii desteklemektedir.
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Sekil 6.1 Donen bir kiitlenin iginde bir jiroskopun presesyonu (Embacher 2005)

M, R ve Q sirastyla donen cismin kiitlesi, yarigapt ve agisal hiz1 olarak tanimlanirsa, i¢

uzayin acisal hizi, Lense-Thirring frekans1 @ olarak alinirsa,

2220 2 (6.4)

ifadesi yazilir. Burada c; 151k hizi ve R, ; donen kiitlenin Schwarzschild yarigap: olarak
tanimlanir. Diinya’nin Schwarzschild yaricapinin 0,886 cm oldugu diisiiniiliirse, aradaki

oran 9x107* olarak bulunur.

L

A

Sekil 6.2 Dis bolgede, Lense-Thirring etkisinin jiroskopunun konumuna baglili1
(Embacher 2005)

Jiroskopun konumuna bagliligin1 veren ifade i¢in, ekvatoral diizlemde bu etkinin

bliytlikliiglinii veren asagidaki ifadeye ele alinir;

__ZGM(R

3 ¢?R Tj (6.5)

O RS
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Burada r donen kiitlenin merkezi ile jiroskop arasindaki mesafeyi belirtmektedir.

Burada % ifadesi Mach etkisinin biiyiikligiiniin davranigini belirtir. Mesafe arttik¢a
r

etkinin biiyiikliigii azalacaktir.

Jeodezik denklemi ¢oziimii yapilarak, gelisi giizel bir uydu ig¢in Lense — Thirring
etkisinin ongoriileri ¢oziilebilir. r yarigapl kiiresel bir yoriingenin 6zel bir durumda, yer

degistirmesi,

_47 Q¢ RR

d
5Q, I

(6.6)

olarak verilir. Burada R ve R_; sirastyla yarigap ve kiitlenin Schwarzschild yaricapidir.

Q. kiitlenin acisal hiz1 ve Q, uydu yoriingesinin agisal hizidir.

sat

Diinya i¢in verilen datalar ve kapali bir yoriinge de (r~R), d=0,13 cm olarak

bulunur. Bunun sonucu olarak, yoriinge diizleminde 0,26 arksaniye/yil kadarlik bir

stirtiklenme gozlenir.

Sekil 6.3 Donen kiiresel bir cismin civarinda uydunun ydriingesi kapali degildir
(Embacher 2005)

Lense-Thirring etkisinin Diinya’y1 ne derecede etkiledigi ise bir diger merak konusudur.
Diinya’nin kendi ekseni etrafinda dénmesi ¢evresindeki uydulari zaman agisindan bile

etkilemektedir. Ancak uydular etkileme yoniinde Lense-Thirring etkisi olduk¢a zayif
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kalmaktadir. Cilinkii Diinya’nin kiitlesinin yerkiire lizerinde esitsiz dagilimi1 uydularin

yorilingelerindeki zamansal agidan degisimini zayif kilmaktadir.

Lense-Thirring etkisinin en kuvvetli oldugu yer ise bizden oldukca uzak olan kozmik
karadeliklerdir. Kendi ¢evresinde donen karadelikler uzay ve zamani oldukca etkili bir
sekilde biikkmektedir. Bir karadeligin kendi ¢evresinde donme hizi, 1s1k hizindan ¢ok
daha fazladir. Bu ylizden karadelikler zamani ¢ok etkili bir sekilde bilikebilme 6zelligine
sahiptir (Embacher 2005).

6.1 Lense-Thirring Etkisinin G6zlenmesi

Donen bir kiitlenin, uzay-zamanimin dokusunu pesinden siiriikleyecegi sdylenmektedir.
Ancak bu etkiyi gostermek, kiitlenin 15181 biiktiigiinii gostermekten ¢ok daha zordur.
Bunun i¢in, ekseni etrafinda dénen bir cismin yakinindaki jiroskoplarin yonelimini nasil

degistirdigini gozlemlemek gerekir.

Lecce Universitesi’nden Ignazio Ciufolini ve Nasa’nmin Goddard Uzay Ucus
Merkezinden Erricos Pavlis, Lense-Thirring etkisi yada “gerceve siiriiklenmesi” diye
adlandirilan olguyu kanitlamak i¢in bir yontem kullanilmistir. Aragtirmacilar 1976 ve
1992 yillarinda lazerli uzaklik olgerlerin gelistirilmesi i¢in yansitict hedef olarak uzaya
gonderilen Lageos ve Lageos II adli pasif uydulardan yararlanmislardir. Bunlar, yarim
metre c¢apinda, igleri jiroskoplarla donatilmis, iizerleri yansitict aynalarla kaplh
kiirelerdir. Lazerler bunlarin iizerine lazer isiklari gonderirler ve 151gin hizi sabit
oldugundan, 15181n gonderilis ve ¢esitli yer istasyonlarina yansimasinin doniis siireleri
hesaplanarak, uzakliklar1 birka¢ cm yanilma payiyla belirlenebilmektedir. Ciufolini ve
Pavlis ilk kez 1998 yilinda iki uydunun verilerinden yararlanarak Lense-Thirring
etkisinin, bunlarin yoriinge diizlemlerinde kiiclik degisimlere yol agmasi gerektigini 6ne
sirmislerdir. Ancak ilk oOl¢iimler ¢ok kaba sonuglar vermektedir. Bunun nedeni,
Diinya’nin kiitlesinin  yerkiire {izerindeki esitsiz dagiliminin, uydu yoriinge
diizlemlerinde bu etkiye kiyasla 1000 kez daha biiyiik degismeler yapmasidir
(Anonim 2004a).

62



Uzmanlara gore uzay-zamanin siiriklenme etkisi, bir uydunun yoriingesinde yilda 2
metrelik bir yalpalanmaya yol acarken, kiitle dagiliminin esitsizligi nedeniyle meydana
gelen yalpalanma, yilda birkag bin km’yi bulmaktadir. 1998 yilinda Diinya tizerindeki
kiitle dagilimi1 fazlaca bilinmediginden, Ciufolini ve ekip arkadaslari bazi tartismali
tahminlerde bulunmustur ve sonuglar, % 20 gibi kabulii zor bir hata payiyla

aciklanmistir.

Bu etkiyi sinamak i¢in tasarlanan bir diger goézlem araci ise, Gravity Probe B uzay
aracidir. 20 Nisan 2004’te uzaya gonderilmistir. Uzay araci, yeryiiziinden yaklasik
650 km yukarida, neredeyse tam bir daire bigimindeki kutup yoriingesinde donmektedir.
Bugiine kadar gelistirilen en duyarl 6l¢iim aletlerinden birini tagiyan uzay araci, evrenin
yapistyla ilgili en 6nemli sorulardan bazilarina yanit aramaktadir. Aragta bulunan “ultra
duyarli” dort jiroskop, ¢ok biiylik kiitleli ve donen cisimlerin (bir gezegen, bir yildiz
yada bir karadelik), donerken uzay ve zamami da beraberinde siriikleyip

stiriiklemedigini sinayacaktir.

Bu etkiyi aciklayabilmek i¢in bilim adamlart uzay1 kauguktan bir Ortiiye benzetirler.
Diinya’ysa bu ortiinlin lizerinde ¢okiintii yaratan bir bilye olarak diisiiniilebilir. Bu
cokiintli, yanindan gecen cisimlerin yolunun biikiilmesine neden olur. Eger kuram
dogruysa, bir gezegenin yada yildizin doniisiiniin de bu Ortliyli biikerek zamani
saptirmast gerekir. Gravity Probe B’nin dort jiroskopun eksenindeki kii¢iik sapmalar,

Diinya’nin uzaydaki varliginin neden oldugu siiriiklenme etkisini 6l¢mektedir.

Jiroskoplardan her biri, yaklasik bir pinpon topu biiyiikliigiinde; 6zel bir kabin iginde
boslukta asili durmakta ve dakikada on bin kez donmektedir. Eger kuram dogruysa ve
cerceve siiriiklenme etkisi gergekse, Diinya’nin yoriingesinde dondiik¢e, jiroskoplarin
titresmesi gerekmektedir. Donlis eksenleri azar azar kayacak ve bir yilin sonunda,
basladiklar1 yerden 42 miliarksaniye uzagi gosterecektir. Gravity Probe B, bu aciy1
0,5 miliarksaniyelik bir kesinlikle dl¢ebilmektedir. (Miliarksaniye, ¢cok ¢ok kiiciik bir
acidir. Bir arksaniye, bir derecenin 1/3600 ’line esittir. Bir miliarksaniye ise, bunun

binde biri kadardir.) (Anonim 2004b).
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2011 yilinda yayinlanan makalede, yazarlar dort jiroskopun verilerini analiz etmislerdir.

Bu analiz sonucunda jeodezik siirliklenme —6601,8+18,3 miliarksaniye/yil (mas/yr) ve
cergeve siirliklenme oram1 —37,2+7,2 mas/yr’ dir. Bu veriler genel goreliligin
tahminleri ile kiyaslanirsa sirasiyla —6601,1 mas/yr ve —-39,2 mas/yr degerleri

verilebilir. Teorik degerler ile alinan Ol¢iimlerin uyumlu ¢iktigi sdylenebilir (Everitt

2011).
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7. SONUC

Bu tez kapsaminda genel gorelilik teorisinin ortaya attig1 ve dogruladigi bazi olaylar
tizerinde durulmustur. Bunlarin baslicalar1 gravitasyonel kizila kayma, 1518in kiitle

¢ekimsel alanda sapmasi, perihelyon kaymasi, Lense-Thirring etkisidir.

Tezin baglangic kisminda 6zel gorelilik ve genel gorelilik teorilerinin ortaya g¢ikist
tizerine bir yorum yapilmistir. Sonraki kisimda 6zel gorelilik ve genel gorelilik teorileri

i¢cin gerekli olan matematiksel alt yapilardan bahsedilmistir.

Daha sonra Newton’un ortaya attigi mutlak uzay kavrami iizerinde durulmus ve bu
kavramin ortaya ¢ikisinda Newton’un yapmis oldugu diisiince deneyi detayli olarak
anlatilmistir. Buna ilk itiraz Berkeley tarafindan yapilmistir ve bu diisiince deneyi
Berkeley tarafindan tekrarlandiginda bu deneyin sonuglar tekrar yorumlanmistir. Mach
ve Berkeley’in ortak goriisli; diisiince deneyindeki su ylizeyinde olusan paraboliin
mutlak uzayla degil evrendeki biitiin cisimlerin arasindaki gravitasyon etkilesmesinin

sonucu oldugudur.

Bir diger tartisma konumuz Schwarzschild geometrisi lizerine olmustur. Bu geometrinin
statik, kiiresel simetrik bir yilldizin disgindaki uzayin geometrisini tarif ettigi
vurgulanmistir. Dolayisiyla bir yildizin disindaki pargacigr veya fotonu incelemek i¢in

bu geometriye basvuracak olmamiz, bu geometrinin 6nemini daha iyi vurgulamaktadir.

Genel gorelilik teorisinin diger testleri ise; jeodezikten sapma ve gravitasyon
dalgalarinin belirlenimi olarak vurgulanmistir. Bu kisimda ii¢ cesit presesyondan

bahsedilmis ve bunlarin her birinin katkilar1 iizerine yorumlar yapilmstir.

Son olarak ise Lense-Thirring etkisi tizerinde durulmustur. Bu olay bazi kaynaklarda
karsimiza FEinstein-Lense-Thirring etkisi olarak da c¢ikabilmektedir. Bu etki donen
koordinat sistemlerinin ve donen cisimlerin sasirtict bir sonucudur. Bu etkiye gore,
donen cisimler uzay-zamani siiriikler, diger bir deyisle ekstra bir egrilik olusturacaktir.
Bu tipk1 uyuyan bir insanin, yatakta donerken carsafi iizerine sarmasi gibi diisiiniilebilir.

Bu kisimda Lense-Thirring etkisinin tanimi verildikten sonra, deneysel gozlemler
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tizerinde durulmustur. Daha onceki yillarda Lageos uydulari her ne kadar bu etkinin
varligimmi kanitlasa da, elde edilen veriler tatmin edici degildir. Fakat 2004 yilinda
yollanan bir diger uydu Gravity Probe B’nin sonuglari, genel gorelilik teorisinin

tahminleri ile daha tutarli sonuglar vermektedir.
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