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koordinat sistemlerinde, hiç hesapta olmayan Coriolis ve merkezkaç kuvvetlerinin 

ortaya çıkması, kararsız olan asal ekseninden döndürülmeye çalışan bir cismin sürpriz 

bir şekilde kendini ters-düz etmesi verilebilecek basit örnekleridir. Sürpriz bir sonuç da 

dönen kütlelerin Genel Görelilik Teorisinde ortaya çıkardığı Lense-Thirring etkisidir. 

Kütlelerin uzay-zamanı eğdikleri bilinmektedir. Lense-Thirring etkisi, kütlenin dönüyor 

olmasının uzay-zamana ekstra bir eğrilik kazandıracağını öngörür. Günümüzde, laserler, 

çift pulsarlar ve Lageos uyduları aracılığı ile dolaylı ve doğrudan bu etki gözlenebilir 

hale gelmiştir.  
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1. GİRİŞ 

Albert Einstein, özel görelilik kuramının temellerini 1905’te yayınladığı bir makaleyle 

atmıştır. Kuram iki yüzyılı aşkın bir süredir kullanılan Newton’un hareket yasalarını 

değiştirmekle kalmamış, bunun yanında birçok kavramsal yenilik getirmiştir. Bunlardan 

biri zamanın mutlak olmadığı, gözlemciden gözlemciye değiştiğidir. Buna ek olarak 

zaman, ayrıca olayların oldukları yerlere bağımlıdır, böylece uzay ve zamanı bir bütün 

olarak değerlendirme ihtiyacı ortaya çıkmıştır. Çıkan bir başka önemli sonuçta yüzyılın 

en ünlü formülü olan E=mc
2
, yani enerjinin aynı zamanda bir kütlesi olması 

gerekliliğidir. 

Einstein tüm kuramı iki temel üzerine oturtmuştur. Bunlardan birincisi, herhangi bir 

ivmesiz gözlemciye göre ışığın hızı, ışık kaynağının gözlemciye göre hareketine bağlı 

olmaksızın, c=3x10
8
 ms

-1
 dir. Diğer temel ise “görelilik ilkesi” dediğimiz, sabit hızla 

hareket eden araçlar içindeki gözlemcilerin, çevrelerindeki olayları sanki araç 

duruyormuş gibi inceleyebilecekleri, bu durumda bile bütün doğa yasalarının aynı 

şekilde geçerli olduğudur. Sadece bu iki varsayım, özel görelilikte elde edilen tüm 

sonuçları üretebilecek güce sahip olmuştur. Fakat, dayandığı temeller nedeniyle, kuram 

sadece sabit hızlarla hareket eden gözlemcilerin olayları nasıl gördüğünü 

belirleyebilmiştir. Ama bu sınırlama kısa bir süre sonra ortadan kalkmıştır. 

Einstein, 1907 yılında özel görelilik kuramı hakkında bir bilimsel dergiye yazdığı 

makalede, yeni bir düşüncesi olduğunu, dayandığı “görelilik ilkesinin” çok daha genel 

bir başka ilkenin sadece özel bir hali olduğunu bildirmiştir. “Denklik ilkesi” olarak 

adlandırdığımız bu yeni ilkede çok sayıda yeni sonucu üretebilecek potansiyele sahip 

olmuştur. 1905 yılında temelleri atılan kurama “özel görelilik”, denklik ilkesinden yola 

çıkarak oluşturulan ve tüm matematiksel detaylarla ancak 1915-16 yıllarında 

tamamlanan yeni kuramada “genel görelilik” adı verilmiştir. Genel görelilik bu defa 

Newton’un bir diğer yasası, evrensel kütle çekim yasasını değiştirmiştir. Hatta, sadece 

değiştirmekle kalmamış, tüm kütle çekim olgusunu çok daha sağlam geometrik 

temellere oturtmuştur. 
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Einstein’ın bahsettiği denklik ilkesi aslında çok da yeni değildi, düşüncenin temelleri 

hareket yasalarının doğduğu zamanlara, Galileo ve Newton’a kadar uzanmaktaydı. Tüm 

konu, cisimlerin “kütle” olarak adlandırdığımız özelliğinin iki farklı doğa yasasında işin 

içine girmesinden kaynaklanmaktadır.  

Kütlenin belirdiği yasalardan birincisi Newton’un evrensel kütle çekim yasasıdır. Bu 

yasaya göre iki cisim birbirlerini kütleleriyle orantılı, aralarındaki uzaklığında karesiyle 

ters orantılı bir kuvvetle çekmektedir. Söz konusu cisimlerden biri Dünya gibi çok 

büyük bir gök cismiyse, bu kuvvet ağırlık olarak adlandırılmaktadır. Yani yeryüzündeki 

bir cismin ağırlığı, Dünya’nın o cisme uyguladığı çekme kuvvetiyle aynı olmaktadır. Bu 

aynı zamanda o cismi kaldırmak için uygulamamız gereken kuvvete eşittir. Ağırlık, 

cismin bulunduğu yere bağlı olarak değişebilir; ama kütle, cisimlerin değişmez bir 

özelliğidir.  

Kütle burada karşımıza cisimlerin ne kadar büyük bir kütle çekim kuvveti 

uygulayabileceğini belirten bir nicelik olarak karşımıza çıkmaktadır. Bu nedenle bu 

kütleye “çekim kütlesi” denmektedir. Dolayısıyla kütle çekim yasası cisimlerin 

ağırlığının kütleleriyle orantılı olduğunu söylemektedir.  

Kütlenin belirdiği diğer yasaysa Newton’un hareket yasalarından ikincisidir. Bir cisme 

kuvvet uygulayarak cismi hızlandırır, yavaşlatır veya hız yönünü değiştirebiliriz. Birim 

zamanda meydana gelen hızdaki değişime ivme denmektedir. İkinci yasa ivmenin, 

kuvvetin kütleye bölünmesiyle elde edileceğini belirtmektedir. Burada da kütle, 

karşımıza bir cismin hızını değiştirmeye direnci (eylemsizlik) olarak çıkmaktadır. Kütle 

ne kadar büyükse, cismi harekete geçirmek için o kadar zorlanmaktadır. Bu nedenle, bu 

yasada geçen kütleye de “eylemsizlik kütlesi” denmektedir.  

Galileo ve Newton, hem çekim hem de eylemsizlik kütlelerinin aynı olduğunu fark 

etmişlerdir, fakat bunu doğadaki ilginç tesadüflerden biri olarak yorumlamışlardır. Çok 

daha derinlerde yatan bu anlamı ise, ilk olarak Einstein fark etmiştir.  
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Eğer bütün cisimlerin eylemsizlik ve çekim kuvvetleri eşitse, o zaman bütün cisimler, 

şekilleri ve kimyasal yapıları ne olursa olsun yeryüzünde aynı şekilde düşerler. Örneğin, 

bir çekiç ve tüyü bırakarak düşüşlerini izlediğimizi varsayalım. Dünya, bu iki cisme 

kütleleriyle orantılı bir kuvvet uygular, yani tüye daha az, çekice de daha fazla kuvvet 

uygulanacaktır (çekiç tüyden daha ağırdır). Buna karşılık bunların ivmesi, ağırlık 

kuvvetlerinin kütlelerine bölünmesiyle elde edilmektedir. Dolayısıyla bunları aynı anda 

bırakırsak, her ikisi de aynı anda yere ulaşacaktır.  

Böyle bir şeyin yeryüzünde gözlenememesinin nedeni, havanın düşen cisimlere 

uyguladığı sürtünme kuvvetidir. Sürtünme, tüyü çekiçten daha fazla etkilediği için, 

tüyün yere daha geç ulaştığı görülmektedir. Ama Galileo, yaptığı analizlerle 

sürtünmenin farkına varmış ve eğer bu olmasaydı bütün cisimlerin aynı ivmeyle 

düşeceğini söylemiştir. Yeryüzünde yüksek vakumlu ortamlarda bu olay rahatlıkla 

görülebilir. 

Çekiç ve tüy deneyinde dikkat edilmesi gereken önemli bir nokta, düşüş boyunca bu iki 

cisim arasındaki uzaklığın sabit kalmasıdır. Olayın anlamını daha iyi kavramak için, bir 

asansörün ipinin koparak içindekilerle beraber düşmeye başladığını düşünelim. Asansör 

dahil her şey aynı ivmeyle düştüğü için, gözlemci içerideki bütün cisimlerin asansöre 

göre bulundukları yerde sabit durduklarını görecektir. Buna ek olarak, eğer cisimlerden 

birine bir ilk hız verilmişse, bu defa cisim aynı hızını koruyarak hareketine devam 

edecektir. Kısacası, gözlemcinin sadece asansörü referans alarak ve dışarıdaki Dünya’yı 

düşünmeden yaptığı gözlemler, sanki asansör dış uzaydaymış izlenimini uyandıracaktır. 

(Dünya gibi bütün büyük gökcisimlerinden uzaktaki yerlere dış uzay denecektir)    

(Şekil 1.1 – 1.2).    
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Şekil 1.1 Boş uzay içinde sabit  ivme ile hareket eden bir kapalı kutu içerisindeki 

gözlemci (Kangal 2008)                                              

 

 

Şekil 1.2  Düzgün kütlesel çekim alanındaki kapalı kutu içerisindeki gözlemci    

(Kangal 2008) 

 

Yukarıdaki şekillerde yer alan gözlemci, Dünya’da mı yoksa dış uzayda yol alan sabit 

ivmeli bir rokette mi olduğunu anlayamayacaktır. 
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Eğer bütün cisimlerin eylemsizlik ve çekim kütleleri eşit ise, o zaman asansördeki 

gözlemci sadece cisimlerin hareketine bakarak düşen bir asansörde mi, yoksa dış uzayda 

mı olduğunu anlayacaktır. 

Yeryüzünde serbest bırakılan her cisim düşmektedir. Peki ya ışıkta benzer bir olay 

gözlenir mi? Işığın hızı sabit olduğu için, hızında bir değişme beklenmemektedir. 

Ancak, yolundan sapmasını, bir doğru boyunca ilerleme yerine bir eğri çizmesini 

bekleyebiliriz. Örnek olarak, yatay doğrultuda bir ışık ışınının üretildiği varsayılabilir. 

Bundan sonra ne olacağını belirlemek için hemen ivmeli rokette ne olacağına 

bakılabilir. 

Roketin ilk anda duruyor olduğu ve bu anda odanın duvarlarının birinden yatay yönde 

bir ışık ışınının girdiği düşünülebilir. Işık karşı duvara ulaştığında, ivmeli roket yukarıya 

doğru bir miktar yol almış olacaktır. Bu nedenle ışık daha alt düzeyde bir noktaya 

çarpacaktır. O halde bu soruya cevap evet, ışık, kütle çekim etkisi altında yolundan 

sapacaktır. 

 

Şekil 1.3 Uzayda sabit duran bir asansör (Turgut 2005) 
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Şekil 1.4 Uzayda ivmelenen bir asansör (Turgut 2005) 

 

 

Şekil 1.5 Dünya’da sabit duran bir asansör (Turgut 2005) 

 

Yukarıdaki şekillerden, şekil 1.3’de uzayda sabit duran bir asansöre giren ışığın doğru 

bir yol izleyeceği gösterilmiştir. Eğer asansör Dünya’da düşseydi gözlemlenecek olan 

şekil yine şekil 1.3 olacaktır. Şekil 1.4’de uzayda ivmelenen bir asansördeki 

gözlemcinin içeriye giren ışığın karşı duvara aşağıdaki bir seviyede çarptığını göreceği 

gösterilmiştir. Şekil 1.5’de ise Dünya’da sabit duran bir asansörde içeri giren ışığın, 

ivmeli asansördekine benzer davranacağı gösterilmiştir. Einstein buradan yerçekiminin 

ışığı yolundan saptıracağı sonucunu çıkarmıştır. 

Işık o kadar hızlı yol alır ki, Dünya’nın çekim etkisi altında yolundan sapması fark 

edilmeyecek kadar küçük olur. Sapma ancak Güneş gibi büyük kütleli gök cisimleri için 

ölçülebilir değerlere ulaşır. Güneş için bile, sapma açısı bir derecenin 2000’de biri 

kadardır, fakat yine de ölçülebilir.  
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Bir grup bilim adamı, Einstein’ın bu öngörüsünü sınamak ve diğer yıldızlardan gelen 

ışığın Güneş’in yakınından geçerken ne kadar saptığını ölçmek için 1919 yılındaki 

güneş tutulmasını bir fırsat olarak kullanmışlardır. Yapılan ölçümler, kabaca da olsa, 

Einstein’ın öngörüsünü desteklemiştir. Bugün yapılan modern ölçümlerde sapmayı 

belirlemek için Güneş tutulmasını beklemeye gerek yoktur. Yüksek çözünürlüklü radyo 

antenleri, kuasarlardan gelen radyo dalgalarının görelilik kuramına uygun şekilde 

Güneş’in yakınından geçerken saptığını tespit edebilmektedir (Turgut 2005). 
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2. MATEMATİKSEL HAZIRLIK 

2.1 Vektör uzayı 

n ’in herhangi bir öğesi gerçel sayıların 
1 2( , ,..., )nx x x x  şeklinde sıralı n-lilerden 

oluşmaktadır. Bunlara vektörler olarak bakılabilir. 

Tanım:  ( n  de toplama ve çıkarma) 

1 2( , ,..., )nx x x x  ; 1 2( , ,..., )ny y y y n  noktaları ve   verilmiş olsun. x ile y’nin 

toplamı; 

i)  1 1 2 2( , ,..., )n nx y x y x y x y      şeklinde ve bir skaler ile bir vektörün çarpımı da, 

ii) 1 2( , ,..., )nx x x x     şeklinde tanımlanır. Bu işleme göre n  bir vektör uzayıdır. 

Bu sonuç ispatsız olarak aşağıdaki teoremle verilebilir.   

Teorem: ( n  vektör uzayı) 

n  üzerinde toplama ve skalerle çarpma işlemi yukarıdaki tanım ile tanımlansın, her 

, , nx y z  için aşağıdakiler doğrudur: 

i) ( , )n   bir değişmeli gruptur. Yani; 

(a)   nx y   

(b) ( ) ( )x y z x y z      

(c) x y y x    

(d) 0 0x x   ; burada 0 (0,0,...,0)  dır. 

ii) Her ,    skaleri için; 

(a) nx   

(b) ( )x y x y      
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(c) ( )x x x       

(d) ( ) ( )x x    

(e) 1x x  

şartları sağlanmalıdır. 

2.2 Uzay – Zaman 

Herhangi bir olay düşünelim. Bu olayın oluş zamanı, Newton Mekaniğini destekleyen, 

özdeş ve ayarlanmış saatler kullanan tüm gözlemciler için aynıdır. Bu zamana t diyelim. 

Gözlemciler arasında fark eden, yalnızca olayın olduğu konumun farklı gözlemcilere 

göre olan koordinatlarıdır. Gözlemciler, buldukları koordinat değerlerini birbirine; 

                                                       'r r vt                                                                (2.1) 

Galileo dönüşümlerini kullanarak çevirebileceklerini biliyorlar. Bunu söylerken tüm 

gözlemcilerin kullandıkları koordinat sistemlerinin aynı eksen doğrultularının birbirine 

paralel olduğu düşünülebilir. Söz konusu tüm gözlemciler için oluş zamanının aynı 

kalması nedeniyle, her t anında tüm gözlemciler için olası tüm (x, y, z) takımlarının 

kümesi olayı karakterize etmeye yeterlidir. Olası tüm (x, y, z) takımlarının kümesi ise  

3-boyutlu fiziksel uzayı oluşturmaktadır. Yani Newton Mekaniğini destekleyen 

gözlemcilerin tümünün her andaki anlık 3-boyutlu uzayları fiziksel uzay ile 

çakışmaktadır. Bu nedenle, Newton Mekaniği söz konusu olunca,  mekanik yasalarına 

öncülük eden (bu yasaların içinde yazıldığı) matematiksel uzay olarak 3-boyutlu konum 

uzayının, yani fiziksel uzayın kullanılması yeterli olacaktır. 

Şimdi duruma, Özel Görelilik Teorisini destekleyen gözlemciler açısından bakalım. Söz 

konusu olayın her gözlemciye göre, hem oluş zamanı hem de olayın olduğu konumun 

koordinatları farklıdır. Bu nedenle, her gözlemci bir olayı (ct; x, y, z) takımı ile 

belirlemek zorundadır. Aynı olay için tüm gözlemcilerin tanımladıkları (ct; x, y, z) 

takımları birbirinden farklıdır. Üstelik bu takımlar birbirine Lorentz dönüşümleri ile 

bağlıdır. Yani bir gözlemciye göre olan konum koordinatlarının içinde bir başka 

gözlemcinin zaman koordinatı olduğu gibi, ilk gözlemciye göre olan zaman 
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koordinatının içinde de öteki gözlemciye göre olan konum koordinatları yer almaktadır. 

Buradan şu sonuç çıkarılabilir: 3-boyutlu konum uzayı, Özel Görelilik Teorisini 

destekleyen gözlemcilerin yasalarına öncülük eden matematiksel uzay olma özelliğini 

taşıyamamaktadır. Bu gözlemcilerin yasalarına öncülük eden matematiksel uzay, olası 

tüm (ct; x, y, z) takımını belirlediğine göre, söz konusu uzay, olası tüm olayların 

topluluğu üzerine kurulmalıdır. Sonuçta, Özel Görelilik Teorisinin yasalarının 

matematiksel ifadelerinin içinde yazılacağı matematiksel uzay 4-boyutlu olmak 

durumundadır. 

Özel Görelilik Teorisinin matematiksel uzayı olarak, olası tüm olayların topluluğu 

üzerine oturan uzayın kullanılması gerektiği fikri, ilk defa 1908 yılında Minkowski 

tarafından ortaya atılmıştır. 

Farklı iki ( )S  ve ( )S  gözlemcisine göre herhangi iki olayı karakterize eden takımlar 

sırasıyla; 1 1 1 1( ; , , )ct x y z , 2 2 2 2( ; , , )ct x y z  ve  
1 1 1 1( ; , , )ct x y z    , 

2 2 2 2( ; , , )ct x y z     olarak 

alınsın. İki takımın toplamını takımların karşılıklı elemanlarının oluşturduğu takım; bir 

takımın bir sayı ile çarpımını da takımın elemanlarının sayı ile çarpımı alınarak 

oluşturulan takım şeklinde tanımladığımızda, söz konusu kümenin reel bir lineer uzay 

olduğu kolaylıkla söylenebilir. Bir (S) gözlemcisi bu lineer uzay içinde 1 1 1 1( ; , , )ct x y z  ve 

2 2 2 2( ; , , )ct x y z  elemanları arasında; 

                        1 1 1 1( ; , , )ct x y z . 2 2 2 2( ; , , )ct x y z  2

1 2 1 2 1 2 1 2c t t x x y y z z                        (2.2) 

şeklinde bir ikili işlem tanımlanabilir. Bu ikili işlem bir iç çarpım tanımlamaktadır. 

Ayrıca bu iç çarpım; 

                    1 1 1 1( ; , , )ct x y z . 2 2 2 2( ; , , )ct x y z = 1 1 1 1( ; , , )ct x y z    . 2 2 2 2( ; , , )ct x y z                (2.3) 

özelliğine sahiptir. Yani; tüm gözlemciler kendi takımları arasında aynı tanımı 

yapabilirler ve üstelik elde edilen sayısal sonuçlarda aynı olur. Bir gözlemci, iç çarpımı 

kullanarak kendisine göre olan; 1 1 1 1( ; , , )ct x y z  ve 2 2 2 2( ; , , )ct x y z  olayları arasındaki 

uzaklığı tanımlayabilir. Bu, 
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                                2 2 2 2 2

2 1 2 1 2 1 2 1( ) ( ) ( ) ( )c t t x x y y z z                                     (2.4) 

büyüklüğünün kare köküdür. Bu ifade, 

2 2 2 2 2 2 2 2 2 2

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )c t t x x y y z z c t t x x y y z z                     

 

şeklinde yazılabilir. Yani; hesaplanan bu büyüklük gözlemciden bağımsızdır, yani 

değeri tüm gözlemciler için aynıdır. Bu büyüklük, bu anlamda, salt bir büyüklük veya 

invaryant (değişmez) bir büyüklüktür. Bu büyüklüğün karekökü iki olay arasındaki salt 

uzay-zaman uzaklığı olarak isimlendirilir, yani iki olay arasındaki salt uzay zaman 

aralığı; 

                                
2 2 2 2 2

2 1 2 1 2 1 2 1( ) ( ) ( ) ( )c t t x x y y z z                                 (2.5) 

şeklindedir ve değeri gözlemciden bağımsızdır.  

Olayların birbirine sonsuz yakın olması durumunda salt uzay-zaman uzaklığının karesi; 

                                                        2 2 2 2 2c dt dx dy dz                                            (2.6) 

şeklini alır. Bundan böyle bu büyüklük kısaca 2ds  ile gösterilecektir ve ds büyüklüğüne 

uzay-zaman yay elemanı denilecektir: 

                                                   2 2 2 2 2 2ds c dt dx dy dz                                         (2.7) 

Özel Görelilik yasalarına öncülük eden matematiksel yapı 4L  Lorentz manifoldudur. Bu 

manifold uzay-zaman olarak bilinir (Rızaoğlu 2011). 

2.3 Vektör Analizi  

2.3.1 Bir vektörün tanımı 

Öklid geometrisinden bilinen vektör kavramlarından yararlanarak, bir vektör, bir 

koordinat dönüşümü altında bileşenleri koordinatlar gibi dönüşen nicelikler biçiminde 

tanımlanabilir.  
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Tipik bir vektör, bileşenleri koordinatlar farklarına eşit olan, bir olaydan bir başka olayı 

işaret eden bir yerdeğiştirme vektörüdür: 

                                                    ( , , , )
O

x t x y z                                                (2.8) 

Burada, x’in üzerindeki ‘ok işareti’ x’in bir vektör olduğunu göstermektedir. x ’den 

sonraki ‘ok işareti’ vektörün bileşenlerini ve bu okun altındaki O, bu bileşenlerin ‘O’ 

çerçevesindeki bileşenler olduğu anlamına gelmektedir. Bileşenler daima (t, x, y, z) 

veya 0 1 2 3( , , , )x x x x  biçiminde önce zaman bileşeni sonra uzay bileşenleri biçiminde 

sıralanırlar.  

Yerdeğiştirme vektörünün birçok durumda daha kullanışlı bir gösterimi şöyledir; 

                                                            O
x x                                                    (2.9) 

Burada  x  ile  0 1 2 3, , ,x x x x     koordinatlarının kümesi anlaşılmaktadır. Benzer 

olarak, O  çerçevesi için şu gösterim yazılabilir; 

                                                           O
x x                                                   (2.10) 

Burada, yeni koordinatları göstermek için, koordinat indisi üzerine bir çizgi 

koyulmuştur. Buna göre, x  vektörü aynıdır ancak bu vektörün üslü ve üssüz 

çerçevelerdeki koordinat bileşenleri birbirinden farklıdır, yani koordinat çerçevesini 

değiştirince sadece bileşenler değişir. 

Her bir   değeri için Lorentz dönüşümüne göre koordinat dönüşümleri aşağıdaki 

biçimde ifade edilebilir, 

                                        
3

0

x x  


 

      ;   0,1,2,3                                       (2.11) 

Burada 


  Lorentz dönüşüm matrisini göstermektedir. Lorentz dönüşüm matrisi; 
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0 0

0 0

0 0 1 0

0 0 0 1

v

v




 

 

 
 
  
 
 
 

    ;   
2

1

1 v
 


                               (2.12) 

şeklinde tanımlanır. 

Bundan sonraki işlemlerde kolaylık sağlamak üzere Einstein toplama kuralı tanıtılabilir: 

bir ifade de bir indis bir üst etiket olarak kullanılıyorken aynı ifade de aynı indis bir alt 

etiket olarak da kullanılıyorsa, indisin alabileceği tüm değerler üzerinden toplam vardır. 

Örnek: A B

  ve T E

  ifadeleri şu ifadelerin Einstein toplam kuralı ile kısa 

yazılışıdır:  

3

0

A B




  ; 
3

0

T E




  

(2.11) denklemi ile verilen Lorentz dönüşümü ifadesi Einstein toplam-kuralı 

kullanılarak aşağıdaki biçimde yazılabilir; 

                                                         x x  

                                                        (2.13) 

Bu eşitlik aşağıdaki ifadeye özdeş olarak eşittir, 

                                                        x x  

                                                         (2.14) 

Bu indisli gösterimlerde, tanım olarak üzerinden toplam alınan tekrarlı indislere sağır 

(dummy) indis, üzerinden toplam alınmayan indislere ise serbest (free) indis adı verilir. 

Örneğin;  (2.13) denkleminde   serbest indistir ve   ise sağır indistir. 

Burada dikkat edilmesi gereken, bir   sağır indisi  ,   gibi Yunan harfleri ile yeniden 

etiketlenebilir ancak i, j gibi bir Latin harfi ile yeniden etiketlenemez: 

 , 0,1,2,3    ve  , 1,2,3i j   şeklindedir. 

Buna göre aşağıdaki ifadeler birbirinden farklıdır, 
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i

ix x  

                                                       (2.15) 

Aşağıdaki ifade yukarıda dikkat çekilen noktayı açıklamaktadır; 

                                              
0

0

i

ix x x   

                                                   (2.16) 

Yerdeğiştirme vektörünün dışında genel bir dörtlü-vektör çerçeveye bağlı olarak 

yazılabilir. Örneğin; O çerçevesindeki bir A  ifadesi şöyle ifade edilebilir; 

                                          0 1 2 3( , , , )
O

A A A A A A                                          (2.17) 

Bu ifadenin bir dörtlü vektör olması için bileşenlerinin Lorentz dönüşümüne göre 

koordinatlarla aynı biçimde dönüşmesi ve aşağıdaki koşulu sağlaması gerekir, 

                                                            A A  

                                                      (2.18) 

Bir dörtlü-vektörün sağlaması gereken vektörlerin toplanması ve skalerle çarpma için 

kurallar, Öklid uzayındaki vektörlerin sağlaması gereken koşullarla aynıdır, 

                               0 0 1 1 2 2 3 3( , , , )
O

A B A B A B A B A B                               (2.19)    

                                          0 1 2 3( , , , )
O

A A A A A                                           (2.20) 

2.4 Vektör Cebri 

2.4.1 Baz vektörleri 

Herhangi bir O çerçevesinde vektörlerle ilgili hesap yapmak için o çerçeveye ilişkin 

dört özel vektör olarak baz vektörlerini tanımlamak gerekir: 

                                                      

0

1

2

3

(1,0,0,0)

(0,1,0,0)

(0,0,1,0)

(0,0,0,1)

O

O

O

O

e

e

e

e









                                                 (2.21) 
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Bu ifadeler O çerçevesinin baz vektörlerini tanımlamaktadır. Benzer olarak, O  

çerçevesinin baz vektörleri de şöyle tanımlanır, 

                                                     

0

1

2

3

(1,0,0,0)

(0,1,0,0)

(0,0,1,0)

(0,0,0,1)

O

O

O

O

e

e

e

e









                                                  (2.22) 

Burada dikkat etmemiz gereken, genellikle 0 0
e e  şeklinde olduğudur, çünkü bu baz 

vektörleri farklı çerçevelerde baz vektörleridir. (2.21) denklemindeki tanıma eşdeğer 

olarak baz vektörleri aşağıdaki biçimde de tanımlanabilirler, 

                                                           ( )e  

                                                         (2.23) 

Buna göre, herhangi bir A  aşağıdaki biçimde baz vektörleri cinsinden ifade edilebilir, 

                                                 0 1 2 3( , , , )
O

A A A A A                                             (2.24) 

                                             
0 1 2 3

0 1 2 3A A e A e A e A e                                            (2.25) 

                                                              A A e                                                       (2.26) 

2.4.2 Baz vektörlerin dönüşümü 

(2.26) denklemine benzer bir biçimde yol izlenerek herhangi bir A  dörtlü-vektörü, O 

çerçevesinden farklı herhangi bir O  çerçevesinin baz vektörleri cinsinden de ifade 

edilebilir: 

                                                             A A e

                                                        (2.27) 

Bu ifadedeki dört vektör 
0

0
A e , 

1

1
A e , 

2

2
A e , 

3

3
A e  (2.26) deki dört vektörden farklıdır. 

Çünkü bu vektörler artık O  çerçevesinin baz vektörleri ile paralel değildirler. 
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 A e   ve A e

  vektörleri birbirine sadece sağır indisler yeniden etiketlenerek 

dönüşemezler, çünkü etiketler farklı çerçevelerin etiketleridir. Buna karşılık, vektörün 

tanımı gereği aşağıdaki ifade sağlanmalıdır: 

                                                        A e  = A e

                                                        (2.28) 

(2.28) denklemi baz vektörlerinin dönüşüm kuralını belirlediğinden oldukça önemlidir. 

Buna göre, (2.18) ve (2.28) denklemlerinden şu ifade bulunur: 

                                                   A e A e  

                                                           (2.29) 

Bu ifadenin sol tarafındaki toplamların sırası değiştirilebilir ve 


  ile A  da sadece 

sayılar olduklarından sıraları değiştirilebilir, 

                                                    A e A e  

                                                          (2.30) 

Bu ifade, A  keyfi bir vektör olduğundan tüm A  bileşenleri kümesi için sağlanmalıdır. 

Buna göre, 

                                                 ( ) 0A e e 

 
                                                       (2.31) 

eşitliğinden, 

                                                      0e e

 
                                                          (2.32) 

eşitliği sağlanır ve baz vektörlerinin dönüşüm kuralı aşağıdaki biçimde elde edilir: 

                                                         e e  
                                                           (2.33) 

Bir sonuç olarak, vektörün bileşenlerinin dönüşümü (2.18) denklemi ile baz 

vektörlerinin dönüşümü (2.33) denklemi birbirinden farklıdır.  
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2.4.3 Skaler çarpım 

Bir vektörün büyüklüğü 

Uzay-zaman aralığının tanımı ile benzerlik kurularak herhangi bir vektörün büyüklüğü 

aşağıdaki biçimde tanımlanır; 

                                    2 0 2 1 2 2 2 3 2( ) ( ) ( ) ( )A A A A A                                            (2.34) 

Bir vektörün bileşenleri koordinatlar gibi dönüştüğünden tanımdan aşağıdaki özellik 

garanti edilmiş olur, 

              0 2 1 2 2 2 3 2 0 2 1 2 2 2 3 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A A A A A A A A                         (2.35) 

Bir vektörün büyüklüğü çerçeveden bağımsız bir sayıdır, yani Lorentz dönüşümü 

altında bir skalerdir.  

Vektörün büyüklüğü, Öklid geometrisinden farklı olarak, pozitif olmak zorunda 

değildir. Buna göre olayların sınıflandırılmasına benzer olarak vektörlerin bir 

sınıflandırılması yapılabilir. 

. 
2 0A   ise A  uzay türü bir vektör, 

. 
2 0A   ise A  zaman türü bir vektör, 

. 
2 0A   ise A  ışık türü bir vektördür. 

Burada dikkat edilmesi gereken, 
2 0A   ise A  vektörünün sıfır vektörü olması zorunlu 

değildir. Sadece 2A ’nin pozitif-tanımlı olduğu uzaylarda her bir bileşen tüm  ’lar için 

0A   olmalıdır. 

İki vektörün skaler çarpımı 

A  ve B  gibi iki vektörün skaler çarpımı bir O çerçevesinde aşağıdaki biçimde 

tanımlanır, 
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0 0 1 1 2 2 3 3.A B A B A B A B A B                                           (2.36) 

Bu sayı tüm çerçevelerde aynıdır. 

Bir vektörün boyu, vektörün kendisi ile skaler çarpımına eşittir, 
2.A A A  ve bu değer 

bir invaryanttır. Bununla beraber skaler çarpımda bir çerçeve invaryanttır.  

Bir vektörün başka bir vektörle skaler çarpımı sıfırsa bu vektörlere birbirine ortogonal 

vektörler denir: . 0A B   ise A  ile B  ortogonaldir.  

2.5 Tensör Analizi 

Bu kısımda, özel görelilik teorisinin matematik yapısında önemli bir role sahip olan 

tensör analizi incelenecektir.  

2.5.1 Metrik tensör 

A  ve B  gibi iki vektörün bir O çerçevesinin  e  bazındaki gösterimi; 

                                                       A A e                                                               (2.37) 

                                                       B B e                                                               (2.38) 

Bu iki vektörün skaler çarpımı aşağıdaki gibidir, 

                                             . ( ).( )A B A e B e 

                                                      (2.39) 

                                             . ( . )A B A B e e 

                                                         (2.40) 

                                                .A B A B 

                                                           (2.41) 

Burada,   sayılarına metrik tensörün bileşenleri adı verilir. 
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2.5.2 Tensörlerin tanımı 

0

N

 
 
 

 tipi bir tensör, N tane vektörü bir reel sayıya karşılık getiren, her bir argümanı için 

lineer olan (çoklu-lineer) bir fonksiyondur: 

                                         
 0,

: ...
N

N

T V V V                                                      (2.42) 

Bir örnek olarak, (2.41) denklemi ile ifade edilen skaler (nokta) çarpım, (.) :V V  , 

0

2

 
 
 

 tipi bir tensöre örnektir. Herhangi A  ve B  gibi iki vektör için skaler çarpımda 

birinci argümana göre (soldan) lineerlik: 

                                        . .A B A B    ;                                                    (2.43) 

                                           . . .A B C A B AC                                                        (2.44) 

İkinci argümana göre (sağdan) lineerlik de aşağıdaki biçimde sağlanır: 

                                      . .A B A B    ;                                                      (2.45) 

                                        .( ) . .A B C A B AC                                                          (2.46) 

Nokta çarpımın bu ifadesi özel bir tensör tanımlamaktadır. Nokta (skaler) çarpıma 

karşılık gelen :g V V   tensörüne metrik tensör adı verilir ve şu şekilde tanımlanır: 

                                               ( , ) .g A B A B                                                              (2.47) 

Buna göre, g iki argümanına göre de lineer olan (bilineer) bir fonksiyondur. Sağdaki 

argümana göre lineerlik   , ,A B C  vektörleri ve   ,    sayıları için sağlanır, 

                             , ( , ) ( , )g A B C g A C g B C                                              (2.48) 

Benzer olarak soldan argüman içinde lineerlik sağlanır, 
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                             ( , ) ( , ) ( , )g A B C g A B g A C                                              (2.49) 

2.5.3 Bir tensörün bileşenleri 

Bir tensörün bileşenleri çerçeveye bağlı olarak ifade edilebilir. 
0

N

 
 
 

 tipi bir tensörün bir 

O çerçevesindeki bileşenleri, argümanları O çerçevesinin baz vektörleri  e  

olduğunda, bu baz vektörleri tensörün değerleridir. Buna göre, bir tensörün bileşenleri 

çerçeve-bağımlı sayılardır. Örneğin, metrik tensörün bileşenleri aşağıdaki biçimde ifade 

edilir: 

                                           ( , ) .g e e e e                                                          (2.50) 

Buna göre,   matris elemanları, bu baz üzerinde g Minkowski metriğinin bileşenlerini 

ifade etmektedir.  

2.5.4 (0,N)-tipi tensörler : 1-formlar  

0

N

 
 
 

 tipi bir tensöre bir kovektör, kontravektör, dual vektör veya bir-form adı verilir.  

1-formların genel özellikleri 

Keyfi bir 1-form p  olsun; " "  işareti 1-formları ifade etmektedir. p  bir vektör 

üzerine etki ettiğinde bir reel sayı verir, yani p ’nın argümanı bir vektördür. q  başka bir 

1-form olsun. O zaman şu ifade tanımlanabilir: 

(a) s p q   

     r p  

1-formların A  üzerindeki değeri şöyledir, 

(b) ( ) ( ) ( )s A p A q A   



21 
 

     ( ) ( )r A p A  

Bu kurallarla birlikte, tüm 1-formların kümesi bir vektör uzayı için aksiyomları 

sağlarlar. 1-formların oluşturduğu vektör uzayına dual vektör uzayı adı verilir. 

Vektörler için önemli bir nokta, vektörlerin herhangi bir çerçevede bileşenlerinin ifade 

edilmesi ve bileşenlerin farklı çerçevelerdeki ifadeleri için dönüşümleridir. Dual vektör 

uzayının elemanları olan p  lerinde bileşenlerini ifade etmek gerekir. p ’nin bir 

çerçevedeki bileşenleri p  olsun (vektörün bileşenlerinden farklı olarak 1-formun 

bileşenleri alt indis olarak gösterilir.): 

                                                        ( )p p e                                                           (2.51) 

Anlaşma olarak bir tek alt indisli bileşen bir 1-formun bileşeni olarak kabul edilir; üst 

indis ise bir vektör bileşenidir. Bileşenler cinsinden aşağıdaki ifadeler yazılabilir, 

                                                   ( ) ( )p A p A e                                                        (2.52) 

                                                  ( ) ( )p A A p e

                                                        (2.53) 

                                                    ( )p A A p

                                                           (2.54) 

Böylece, 
0 1 2 3

0 1 2 3( )p A A p A p A p A p     bulunur. 

Başka bir O  çerçevesinin baz vektörleri  e


 olmak üzere p ’nın bu bazdaki 

bileşenleri şöyledir: 

                                             ( ) ( )p p e p e

  
          

                                                   ( )p e p 

  
                                                     (2.55) 

Son ifade e e

 
   ile karşılaştırıldığında, 1-formun bileşenlerinin Lorentz dönüşümü 

altında baz vektörleri ile tamamen aynı biçimde (kovaryant) dönüştüğü görülmektedir. 
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Buna karşın, 1-formun bileşenleri vektörlerin bileşenleri ile ‘zıt’ biçimde 

dönüşmektedir. (Zıt dönüşüm ile dönüşüm matrisinin tersi anlaşılmaktadır.) 

1-form ve vektör bileşenlerinin Lorentz dönüşümü altında birbirinin tersi biçimde 

dönüşüm özellikleri dikkate alındığında, ( )p A  değerinin çerçeveden bağımsız bir 

invaryant olduğu söylenebilir. 

İspat: ( )p A  değerinin çerçeveden bağımsız bir invaryant olduğu aşağıdaki gibi 

gösterilebilir: 

                                             ( )( )A p A p   

       

                                                       A p  

      

                                                       A p 

   

                                                       A p

                                                                 (2.56) 

1-formların bileşenlerinin vektörlerin bileşenlerine göre bu ters dönüşüm özelliği, ‘dual 

vektör uzayı’ ifadesindeki ‘dual’ kelimesini doğrulamaktadır. 

Baz 1-formlar : dual baz 

Tüm 1-formların kümesi bir vektör uzayı oluşturduğundan dört tane birbirinden lineer 

bağımsız 1-formların herhangi bir kümesi bu dual vektör uzayı için bir baz oluşturur. 

1-formlar için baz kümesi  , 0,1,2,3    ile gösterilsin, bu baza  e  vektör bazına 

dual baz adı verilir. Buna göre, bir p  1-formu, bu   dual bazı cinsinden şu şekilde 

ifade edilebilir, 

                                                           p p 

                                                         (2.57) 

  ifadesindeki üst indis toplam kuralını sağlayacak biçimdedir: 
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0 1 2 3

0 1 2 3p p p p p p

          

Buna göre, tıpkı e  baz vektörleri dört farklı vektör olduğu gibi   baz 1-formları da 

dört farklı 1-formdur. Herhangi bir A  için 1-formun baz 1-formlar cinsinden ifadesine 

göre şu ifade bulunur, 

                                                     ( ) ( )p A p A

  

                                                              ( )p A e 

   

                                                              ( )p A e 

                                               (2.58) 

( )p A p A

  olduğundan, aşağıdaki eşitlik sağlanmalıdır. 

                                                         ( )e 

                                                         (2.59) 

Bu eşitlik baz 1-formun  -bileşenini tanımlamaktadır. Buna göre, bir O çerçevesinde 

1-form bazının bileşenleri şu şekilde ifade edilir, 

0 (1,0,0,0)
O

   

1 (0,1,0,0)
O

   

2 (0,0,1,0)
O

   

                                                        
3 (0,0,0,1)

O
                                                (2.60) 

Burada vektörlerle 1-formlar arasındaki ilişki şu şekilde ifade edilebilir: 1-formlar 1 4  

lü satır matrisleri ile ifade edilirse vektörler 4 1  li sütun matrislerle ifade edilirler ve bu 

şekilde 1-formların vektörlere etkisi daima reel sayılar verir.  

  1-form bazının baz dönüşümü 

Her bir farklı çerçeve   baz kümesine sahiptir. İki farklı çerçevenin baz 1-formları 

arasındaki ilişki, vektör bazına benzer olarak, Lorentz dönüşümü yardımı ile elde edilir, 
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  

                                                       (2.61) 

Bu dönüşüm kuralı, vektör bileşenlerinin dönüşüm kuralı ile aynı 1-form bileşenlerinin 

dönüşüm kuralı ile zıttır. 

(0,2)-tipi tensörler 

(0,2)-tipi tensörler argümanında iki vektör olan tensörlerdir. Daha önce gösterilen 

metrik tensörü bu türden bir tensördür. Bir (0,2)-tipi tensörün en basit biçimi iki tane   

1-formun dış (tensör) çarpımı ile elde edilir. Buna göre, p  ve q  herhangi iki 1-form ise 

o zaman p q  bir (0,2)-tensördür ve bu tensörün A  ve B  gibi iki vektör üzerindeki 

değeri; 

                                                   ( . ) ( ). ( )p q A B p A q B                                           (2.62) 

Bu ifadeye göre (0,2)-tipi tensörün vektörler üzerindeki değeri bu tensörü oluşturan     

1-formların vektörlere etkisi ile ifade edilen sayıların çarpımıdır. 

  sembolüne bir dış çarpım veya tensör çarpımı adı verilir. Bu gösterim bir (0,2)-tipi 

tensörün 1-formların çarpımından nasıl üretildiğini ifade eden biçimsel bir gösterimdir. 

  dış çarpımı değişmeli (komütatif) bir çarpım değildir. Yani; p q  ile q p  

tensörleri farklı tensörlerdir.  

2.5.5 (M,N)-tipi tensörler 

Verilen bir V  dörtlü-vektörü için bir p  1-formu aşağıdaki şekilde bir reel sayıya 

gönderilebilir, 

                                     ( ) ( ) ,V p p V p V p V

                                                 (2.63) 

Böylece vektörler 1-formları reel sayılara gönderen lineer fonksiyonlar olarak kendi 

başlarına tensör adlandırılmasını alırlar. 
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0

M 
 
 

 tipi tensörler 

Vektörlerin 1-formlara etkisi genelleştirilerek; bir 
0

M 
 
 

 tipi tensör M tane 1-formu reel 

sayılara gönderen bir lineer fonsiyondur. Buna göre bir vektör, bir (1,0)-tensördür. 

Örnek: Bir 
2

0

 
 
 

-tensör V W  biçimindedir, p  ve q  şeklinde iki herhangi 1-forma 

etki ettiğinde aşağıdaki sayıyı verir, 

                        ( , ) ( ) ( ) ( ) ( ) ( )( )V W p q V p W q p V q W V p W q 

                      (2.64) 

Buna göre,  V W  tensörünün bileşenleri V W   şeklindedir. 

M

N

 
 
 

 tipi tensörler 

Tensörlerle ilgili son genelleştirmeler yapılarak; bir 
M

N

 
 
 

 tipi tensör M tane 1-formu ve 

N tane vektörü reel sayılara gönderen bir lineer fonksiyondur. 

2.5.6 İndis ‘yükseltme’ ve ‘alçaltma’ 

Bir (0,2)-tensör olan metrik bir V  vektörünün bir V  1-formuna karşılık getirdiği gibi 

bir (M,N)-tensörde bir vektörü (M-1, N+1)-tensöre karşılık getirir. Benzer olarak bu 

gönderimin tersi de bir (N, M)-tensörü bir (N+1, M-1) tensöre karşılık getirir. 

Örnek: T


  bir (2,1)-tensör olsun. O zaman bu tensörden; 

                                                    T T 

                                                          (2.65) 

şeklinde bir (1,2)-tensörü elde edilirse ve benzer olarak, 
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                                                    T T 

                                                           (2.66) 

başka bir (1,2)-tensörü elde edilir. Buna karşın, 

                                                     T T  

                                                       (2.67) 

bir (3,0)-tensörün bileşenlerini ifade eder.  

Bu işlemlere bir tensörün indislerini yükseltme ve alçaltma işlemleri denir (Schutz 

2011, Ozansoy 2012). 

2.6 Kovaryant ve Kontravaryant Vektörler 

1 2( , ,..., )nx x x  koordinat sisteminde 1 2, ,..., nA A A  gibi n-eleman ve diğer koordinat 

sistemini de  1 2, ,..., nx x x  ve 1 2, ,..., nA A A  şeklinde gösterelim. 

                                    
1

n
i ji

j j

x
A A

x





    ;   1,2,...,i n                                              (2.68) 

veya kısaca, 

                                                    
i ji

j

x
A A

x





                                                            (2.69) 

dönüşüm denklemleri şeklinde ise buna bir kontravaryant vektör yada rankı (mertebesi) 

bir olan kontravaryant tensörün bileşenleri denir.  

1 2( , ,..., )nx x x  koordinat sisteminde 1 2, ,..., nA A A  gibi n-eleman ve  1 2, ,..., nx x x  

koordinat sisteminde 1 2, ,..., nA A A  olsun. 

                                     
1

n
j

i j

j i

x
A A

x





    ;   1,2,...,i n                                              (2.70) 

veya kısaca, 
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j

i j

i

x
A A

x





                                                         (2.71) 

şeklinde ise buna bir kovaryant vektör yada rankı bir olan kovaryant tensörün 

bileşenleri denir (Sağel 2003). 

Herhangi bir tensör alt, üst veya karma indisler yardımıyla gösterilir ve bir tensörde 

tekrarlanan indisler dışındaki indislerin toplam sayısı o tensörün mertebesini (rankını) 

verir. Örneğin; 
ijT , ijkT  ve 

ik

jklmT  tensörleri sırasıyla ikinci mertebeden kovaryant, 

üçüncü mertebeden kontravaryant ve dördüncü mertebeden karma tensörler (birinci 

mertebeden kontravaryant, üçüncü mertebeden kovaryant) olarak adlandırılır ve aynı 

gösterimler tensörlerin bileşenleri içinde kullanılır (Önem 2011). 

2.7 Metrik 

Genel görelilik çerçevesini oluşturan dört-boyutlu Riemannsal geometriyi incelemek ve 

belirgin özelliklerini tespit etmek üzere iki yöntem vardır. Bunlardan biri bu uzayı bir 

metrik ile donatmak, ötekisi ise vektörlerin paralel ötelenmesi kavramından hareket 

ederek, uzayın, noktaları arasındaki ilişkisel (afin) özellikleri ortaya koymaktır. Her iki 

yöntemde çoğu halde aynı formel sonuçları verirler (Özemre 1982). 

Uzayın geometrisini belirleyen matematiksel yapıya metrik adı verilir. Bu matematiksel 

yapı, birbirine çok yakın iki noktanın arasındaki mesafenin karesini bu noktaların 

koordinat değerlerinin farkları cinsinden veren bir ifadedir. Zaman boyutu söz konusu 

olduğunda, bazı farklılıklar ortaya çıkar. Uzay-zaman metriği birbirine çok yakın iki 

nokta için mesafenin karesini değil, uzay-zaman aralığının karesini verir (Semiz 2011). 

   sayıları metriğin bileşenleridir ve    sayıları ise metriğin tersinin 

bileşenleridir.  ’nın indislerinden bir tanesi, metriğin tersi kullanılarak şu şekilde 

yükseltilir, 

                                                          
 

                                                        (2.72) 



28 
 

Bu eşitliğin sağ tarafında birbirinin tersi olan iki matrisin bileşenlerinin çarpımı vardır, 

buna göre sağ taraf birim matrisin bileşenlerine eşittir. Bir indis yukarıda ve bir indis 

aşağıda olduğundan bu bir Kronecker deltadır: 

                                                           
 

                                                            (2.73) 

Buna göre   bir (2,0)-tensörün bileşenleri olarak dikkate alınır, öyle ki bu tensör g 

metrik tensörü tarafından 1g  ’e gönderilir. Buna metrik tensörün ‘kontravaryant’ 

bileşenleri, metrik tensörün ‘kovaryant’ bileşenlerinin tersi olan matrisin elemanlarına 

eşittir. Uzay-zamanda bu özelliği sağlayan tek tensör metrik tensördür. 

Örnek: 3 boyutlu Kartezyen koordinatlarda; 2 2 2 2ds dx dy dz    şeklinde yazılır. 

Bunu bir diğer haliyle; 
2 i j

ijds dx dx  şeklinde de yazabiliriz. Burada  , 1,2,3i j   ve 

1dx dx , 2dy dx , 3dz dx  olarak yazılabilir. Küresel koordinatlarda; 

sin cosx r    

sin siny r    

cosz r   

şeklinde verilir. 

sin cos cos cos sin sindx dr r d r d           

sin sin cos sin sin cosdy dr r d r d           

cos sindz dr r d     

Burada yukarıdaki ifadeleri kullanarak, uzunluk elemanı; 

2 2 2 2 2 2 2sinds dr r d r d      

olarak yazılır. Buradan metrik bileşenleri; 

1rrg   
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2g r   

2 2sing r   

0g   ;    için 

şeklinde yazılabilir ve matris formu; 

2

2 2

1 0 0

0 0

0 0 sin

g r

r





 
 

  
 
 

 

şeklindedir. 

Bir metriğin pozitif ve negatif işaretli değerlerin sayısına metriğin imzası denir. Eğer 

metrik bir tane eksi işareti içeriyorsa buna Minkowski metriği, çeşitli sayıda eksi ve artı 

işaretleri varsa metriğe belirsiz, tüm işaretler pozitifse Riemann (Öklid) metriği denir. 

2.8 Christoffel Sembolleri 

Manifold da farklı iki noktadaki vektörleri yada formları kıyaslama imkanı sunan 

parametrelere Christoffel sembolleri denir. Öklid uzayında bir vektör paralel 

kaydırılabilir fakat eğri uzayda bunu yapmak için bir bağlantı katsayısı kullanılır ve bu 

bağlantı katsayıları Christoffel sembolleridir. Bir genel vektörü aşağıdaki biçimde 

tanımlayabiliriz: 

                                                               V V e                                                       (2.74) 

Bu vektörün x  bileşenine göre kısmi türevini alalım: 

                                                   
eV V

e V
x x x


 

  

 
 

  
                                          (2.75) 

Burada esas olan; 
e

x








 ifadesinin neye eşit olduğudur. Bu ifadenin eşiti, 
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e

e
x


 


 


                                                     (2.76) 

olarak tanımlanır. Burada 


  ifadesine Christoffel sembolleri denir. Buradaki 

indislerden   türevi alınan baz vektörü,   hangi koordinata göre türev alındığını,   

sonuçta bulunan vektörün bileşenini niteleyen indislerdir.  

Örnek: Kutupsal koordinatlarda Christoffel sembollerini türetelim: 

                                            (cos sin ) 0r x ye e e
r r

 
 

  
 

                                   (2.77)            

                                               (cos sin )r x ye e e 
 

 
 

 
 

                                                         
1

sin cosx ye e e
r

                                     (2.78) 

                                              ( sin cos )x ye r e r e
r r

  
 

  
 

 

                                                       
1

sin cosx ye e e
r

                                       (2.79) 

                                            cos sinx y re r e r e re  



    


                              (2.80) 

(2.77) denkleminin sonucu olarak: 0r

rr rr

     

(2.78) denkleminin sonucu olarak: 0r

r  , 
1

r
r



   

(2.79) denkleminin sonucu olarak: 0r

r  , 
1

r
r



   

(2.80) denkleminin sonucu olarak: r r   , 0

   

Kutupsal koordinatlar için Christoffel sembolleri elde edilmiş olur. 
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Kovaryant türev 

Kovaryant türev bir manifold üzerinde bir koneksiyonla bir diferansiyel operatör 

yardımıyla çalışmanın ve tanımlamanın bir yöntemidir. Kovaryant türev vektör 

analizinde yöne göre türevin bir genellemesidir. Geometride koneksiyon kavramı ise bir 

doğru yada doğru kümesi boyunca veriyi paralel ve uygun bir şekilde taşıma fikrini 

tanımlar. Modern geometride taşınacak verinin türüne göre belirlenen çeşitli koneksiyon 

türleri vardır. Bir vektörün kovaryant türevi; 

                                                   ; ,V V V   

                                                   (2.81) 

olarak tanımlanır. Bu ifade de ,V 

  kısmi türevi göstermektedir. Bir 1-formun 

kovaryant türevi; 

                                                 ; ,p p p

                                                         (2.82) 

olarak tanımlanır.  

Kartezyen koordinatlarda Christoffel sembolleri sıfır olduğundan dolayı, Kartezyen 

koordinatlarda 1-formların ve vektörlerin kovaryant türevleri kısmi türevlerine eşit 

olacaktır. 

Metriğin kovaryant türevi tüm koordinat sistemlerinde sıfırdır. 

İspat: Metriğin kovaryant türevinin tüm koordinat sistemlerinde sıfıra eşit olacağını 

ispatlayalım: 

, , ,...      üslü indisleri keyfi bir koordinat sistemini göstermek üzere, bir formlarla 

vektörler arasında aşağıdaki ifadeyi dikkate alalım. 

                                                         V g V 

  



                                                         (2.83) 

(2.83) ifadesinin her iki tarafının    ne göre kovaryant türevi alınırsa; 

                                            ; ; ;V g V g V 

       

 

                                                   (2.84) 
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1-formun keyfi bir koordinat sisteminde kovaryant türevi ile vektörün keyfi bir 

koordinat sisteminde kovaryant türevi arasındaki ilişki; 

                                                     ; ;V g V 

    



                                                        (2.85) 

olarak verilir. (2.84) denkleminin sol tarafı, (2.85) denklemine göre düzenlenirse, 

                                       ; ; ;g V g V g V  

        

  

                                                  (2.86) 

eşitliğine ulaşılır. (2.86) eşitliğide, keyfi bir V   vektörü için ancak, 

                                                          ; 0g                                                                 (2.87) 

koşulu ile sağlanır. Buradan da metriğin kovaryant türevinin tüm koordinat 

sistemlerinde sıfır olduğu görülür. 

Christoffel sembollerinin g metrik bileşenlerinin kısmi türevleri cinsinden ifadesi 

Bu kısımda Christoffel sembollerinin türetimi için daha pratik bir yol olan, Christoffel 

sembollerinin metrik bileşenlerin kısmi türevleri cinsinden ifadesi anlatılacaktır. 

Metrik bileşeninin kovaryant türevi; metrik bileşenleri, metrik bileşenlerinin kısmi 

türevi ve Christoffel sembolleri cinsinden aşağıdaki şekilde ifade edilir: 

                                      ; ,g g g g 

                                                     (2.88) 

(2.87) ve (2.88) denklemlerini kullanarak aşağıdaki ifadeyi yazabiliriz: 

                                       , 0g g g 

                                                        (2.89) 

(2.89) denklemi kullanılarak her bir indis için metrik bileşenlerinin kısmi türevleri 

yazılabilir. 

                                          ,g g g 

                                                           (2.90) 

                                          ,g g g 

                                                           (2.91) 
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                                          ,g g g 

                                                          (2.92) 

Yukarıdaki denklem takımlarından (2.92) denkleminin her iki tarafını -1 ile çarparak, üç 

denklem takımını Christoffel sembollerinin tüm koordinat sistemlerinde geçerli olan 

simetri özelliği 
 

     eşitliği göz önüne alınarak taraf tarafa toplanırsa; 

                                    , , , 2g g g g

                                                         (2.93) 

denklemine ulaşılır. (2.93) denkleminin her iki tarafı 2 ye bölünüp, g  metrik bileşeni 

ile g g 

   özelliği göz önüne alınarak çarpılırsa, 

                                  
, , ,

1
( )

2
g g g g 

                                                      (2.94) 

sonucuna ulaşılır. Burada (2.94) ifadesi Christoffel sembollerinin metrik bileşenlerinin 

kısmi türevleri ile elde edilmesi için gerekli olan eşitliği vermektedir. 

Örnekler 

1) Kutupsal koordinatlarda Christoffel sembollerini (2.94) ifadesi ile elde edebiliriz: 

Kutupsal koordinatlarda birim vektörler, 

                                         cos sinr x ye e e                                                            (2.95) 

                                      sin cosx ye r e r e                                                          (2.96) 

şeklindedir. ( , ) .g g e e e e       ifadesi yardımı ile metriğin bileşenleri bulunabilir. 

Bu bileşenler; 

1rrg    ;  2g r    ;  0r rg g    

bulunur. Uzunluk elemanı da 2 2 2 2ds dr r d   olarak yazılacaktır. (2.94) denklemi 

kullanılarak; 

, , ,

1
( )

2
r r r rg g g g 

          
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ifadesi yazılır. Bulduğumuz metrik bileşenleri yerine yazılır ve kısmi türevleri alınırsa,  

2

1 1 1
(2 )

2
r rr

r r

 

 

 
     

 
 

Elde edilen bu sonuç, metrik bileşenleri kullanılmadan hesaplanan Christoffel 

sembolleri hesabı ile tutarlı bir sonuçtur. Benzer şekilde diğer bileşenlerde; 0rr

  , 

r r   , 0r r

r r     , 0r

rr  , 0

   olarak elde edilecektir. 

2) Silindirik koordinatlarda Christoffel sembollerini (2.94) denklemi yardımı ile elde 

edelim. Silindirik koordinatlar; cosx    , siny   , z z  ve konum vektörü 

ˆ ˆ ˆcos sinr x y zz       şeklindedir. Bunlar yardımı ile birim vektörler 

hesaplanabilir; 

ˆ ˆcos sin
r

e x y  



  


 

ˆ ˆsin cos
r

e x y    



   


 

ˆ
z

r
e z

z


 


 

( , ) .g g e e e e       ifadesi yardımı ile metrik bileşenleri bulunacaktır. 

2 2. cos sin 1g e e         

Benzer yolla diğer bileşenler hesaplandığında; 

  2

1 0 0

0 0

0 0 1

z

z

z z zz

g g g

g g g g

g g g

  

   

 



   
   

    
  
  

 

(2.94) ifadesi kullanılarak; 

, , ,

1
( )

2
g g g g 

           
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Yukarıdaki ifade de dikkat etmemiz gereken,   indisidir. Bu indis, katkı gelen terim 

, , z   den hangisi ise o etiketi alacaktır. Bu da ancak problemi çözerken metrik 

bileşenleri okunarak belirlenecektir. Parantez içerisindeki son terim olan g  

bileşeninin kısmi türev ifadesi göz önüne alındığında, bu bileşen değeri 1 e eşittir ve 

neye göre türevi alınırsa alınsın sonuç hep sıfır çıkacaktır. Diğer terimlere bakıldığında 

da katkı gelen tek bileşen    olduğu durum için geçerlidir ve bu bileşen için 

değerler yazılıp hesaplandığında 0

   olduğu görülür. Bu yol izlenerek diğer 

Christoffel sembolleri hesaplanırsa katkı gelen terimler; 
1 

 


    , 


     

şeklindedir ve diğer tüm terimlerden gelen katkılar sıfır verecektir. 

2.9 Jeodezikler 

Bir eğri uzayda, bir eğriye teğet vektörün paralel-kaydırılması ile “mümkün olduğunca 

düz” çizgiler çizilebilir. Bu çizgilere jeodezikler denir. Düz uzayda serbest parçacığın 

yörüngesi bir doğru olacaktır, bunun eğri uzayda karşılığı jeodeziklerdir ve serbest 

düşen parçacığın yörüngesini verirler. Jeodezik denklemi; 

                                            
2

2
0

d x dx dx

d d d

  



  

                                                  (2.97) 

olarak verilir. Bir jeodezik eğrisi, uzunluğu ekstramum olan bir eğridir (Schutz 2011, 

Ozansoy 2012). 
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3. MUTLAK UZAY ve MACH İLKESİ 

Kütle çekim olgusunu anlama çabası Isaac Newton’la başlayarak, Bishop Berkeley, 

Ernest Mach ve Albert Einstein’a kadar uzanır. Bu süreçte kütlesel çekim olgusu 

sorgulanmıştır ve bu olguyu açıklayan ilkeler, yasalar ortaya konmuştur. Bu ilkeler ve 

yasalar ortaya konulurken bunları destekleyen düşünce deneyleri ve gerçek deneyler 

tasarlanmıştır.  

Fiziksel büyüklükler gözlem çerçevelerine bağlı olarak değişmektedir. Newton, bu 

sorunu ortadan kaldırmak için, evrende var olan tüm hareketlerden bağımsız, mutlak bir 

uzay olduğunu kabul ederek tüm hareketleri açıklamaya çalışmıştır. Newton bu 

görüşünü desteklemek amacıyla bir kova su deneyini düşünsel olarak tasarlamıştır. Bu 

düşünce deneyinde bir kova su, kovanın dönme ekseni doğrultusunda   açısal hızı ile 

döndürüldüğünde şekil 3.1 deki durum ortaya çıkmaktadır. 

 

Şekil 3.1 Dikey eksene göre   açısal   hızıyla dönen su dolu kova (Kangal 2008) 
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Şekil 3.2 Kova durduktan sonra suyun dönmesiyle oluşan parabol (Kangal 2008)               

Bu deneyde, tavana takılı bir ipin ucunda asılı boş bir kova göz önüne alalım. Bu kova 

kendi simetri ekseni etrafında döndürülür, asılı bulunduğu ip burulur ve kova sabit 

tutulup suyla doldurulduktan sonra da serbest bırakılır. Bunu izleyen olayların 

açıklanması eylemsizliğin kökeninin ortaya konmasında ışık tutucu olmuştur.  

Kova serbest bırakılmadan önce kovadaki suyun yüzeyi düzlemseldir. Kova serbest 

bırakıldığında, burulmuş olan ip, burulmanın ters yönünde ve gitgide artan bir dönme 

hızıyla kovayı döndürür. İp burulmuş halinden kurtuldukça hız artarak bir maksimuma 

erişir ve sonra da, bir süre, gitgide sönen bir takım burulmalı salınımlardan sonra kova 

tekrar durgun haline geri döner. Bütün bu hareket süresince kovadaki suda kovanın 

hareketiyle sürüklenerek, yüzeyi bir paraboloide dönüşür ve maksimum bir derinliğe 

ulaştıktan sonra, suyun durgun hale erişmesiyle düzlemsel olacaktır. 

Bu deneyde kova ve içindeki su aynı hızlarla döndüğünden herhangi bir göreli hız farkı 

oluşmamaktadır. Bundan dolayı kova üzerinde yer alan bir gözlemci, su yüzeyinde yer 

alan bir gözlemciyi hareketsiz olarak gözlemleyecektir. İkinci durumda, dönen kova 

durduğunda içerisindeki su dönme hareketine devam eder ve şekil 3.2’deki durum 

ortaya çıkar. Bu anlamda göreli hız farkı merkezkaç kuvvetine neden olacaktır. Newton 

bu sonuçlara göre evrendeki hareketleri tanımlayacak mutlak bir uzayın var olması 

gerektiğini söylemiştir ve bu uzayın tanımlamış olduğu gözlem çerçevesine de eylemsiz 

gözlem çerçevesi denmiştir. 
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Newton’un bu yorumu ilk defa Berkeley tarafından eleştirilmiştir. Berkeley mutlak 

uzaya göre bir hareketin fiziksel bakımdan anlamsız olduğunu savunmuş ve sözü edilen 

su dolu kova deneyinde esas göz önünde bulundurulması gereken durumun kovanın 

evrene ve özellikle sabit yıldızlar takımına göre dönmesi olduğu fikrinde diretmiştir. 

Berkeley, su ile dolu kova deneyini yeniden tasarlayarak hem kovanın hem de suyun 

yüzeyinde bir gözlemcinin bulunması durumunu yeniden göz önüne almıştır. Bu 

düşünce deneyi şekil 3.3 ve 3.4’de verilmektedir. 

Şekil 3.3’teki durumda; kova üzerindeki gözlemci su üzerinde yer alan gözlemciyi 

durgun görecektir. Bu durumda her iki gözlemci de kovanın dönmediğini söyleyecektir. 

Bu sebepten dolayı, Berkeley böyle bir hareketin boş uzayda tanımlanmasının mümkün 

olmayacağını söylemiştir.  

Şekil 3.4’teki durumda ise; kovanın üzerinde duran gözlemcinin kendisine göre 

döndüğünü söyleyecektir. Buna karşı olarak, su yüzeyinde yer alan gözlemcide kova 

üzerinde duran gözlemcinin kendisine göre dönme hareketi yaptığını söyleyecektir. Bu 

durumda her iki gözlemcide kendilerini mutlak uzay olarak göreceklerdir.  

 

Şekil 3.3 Her iki gözlemcinin aynı açısal hızla döndükleri durum (Kangal 2008)        
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Şekil 3.4 Kovanın durması sonucu  hızla gözlemciler  arasındaki  göreli hareket  

(Kangal 2008)                                                         

Bu sonuca göre kovanın boş uzayda döndüğünü ne kova üzerinde duran gözlemci ne de 

su üzerinde duran gözlemci söyleyecektir. Berkeley ve Mach bu sorunun çözümü için 

bu iki gözlemciden bağımsız başka bir nesnenin var olması gerekliliğini 

savunmuşlardır. Hem Berkeley hem de Mach yerel gözlem çerçevesi ile uzak 

yıldızlardaki gözlem çerçeveleri arasında bir ilişkinin kurulması gerektiğini kabul 

etmişlerdir. Berkeley ve Mach’ a göre Foucault sarkacı deneyinde elde edilen sonucun 

kaynağı tamamen yıldızlardır. Çünkü bu deneyde sarkaç yerküre üzerinde ve sarkacın 

salındığı düzlem yerküreye göre dönmektedir. Sarkacın salınım düzleminde yer alan bir 

gözlemci uzak sabit yıldızdaki gözlemciye hareketli olarak görünecektir. Oluşan bu 

göreli hareket, bir merkezkaç kuvvet doğuracaktır ve bunun sonucunda sarkaçta tek bir 

doğrultuda değilde kapalı bir yörüngede salınım hareketi yapacaktır. Mach, Foucault 

deneyinde var olan bu merkezkaç kuvvetinin kaynağı olarak mutlak uzayı değil, cismin 

çok uzaktaki yıldızlara göre dönme hareketinden kaynaklı olduğunu belirtmiştir. Bu 

sonuca göre Mach, kütlesel çekim alanının, mutlak uzaydan bağımsız olup, gözlemcinin 

hareket durumuna bağlı olarak betimlenen bir nicelik olduğunu belirtmiştir.  

Özetle, bir cismin eylemsizliğinin evrendeki bütün cisimlerin fonksiyonu olarak 

belirlenmekte olduğunu ifade eden ilkeye Mach ilkesi denir. Bu ilkeye göre, su dolu 

kova örneğindeki su yüzeyinin dönel bir paraboloid şeklini kazanması, kovanın mutlak 

uzaya göre dönmesi sonucu olarak değil de su ile, geri kalan bütün evren arasındaki bir 

çeşit gravitasyon etkileşmesinin sonucudur. Bu olay, suyun çok uzağındaki tüm 

kütlelerin bu etkileşmeye katkılarının suyun civarındakilerin katkısından çok daha 



40 
 

yoğun bir biçimde ortaya çıktığı bir etkileşme olarak düşünülür. Böylelikle Mach 

eylemsizlik sistemlerinin ayrıcalıklı durumlarını, etkilerini yok edemediğimiz uzak gök 

cisimlerinin işe karışmalarına bağlamaktadır. Eğer uzak gök cisimleri mevcut olmayıp 

da Dünya uzayda tek başına olsaydı bütün referans sistemleri eşdeğer olacak ve hepsi de 

eylemsizlik sistemleri oluşturacaklardı. Bu ideal durumda Foucault sarkacının salınım 

düzleminin rotasyonu da olmayacaktı. 

Buna dayanarak Mach ilkesi çerçevesi içinde görünümsel eylemsizlik kuvvetleriyle 

gerçek gravitasyon kuvvetleri arasında bir eşdeğerliğin varlığı mümkün görünmektedir 

(Özemre 1982, Kangal 2008). 
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4. SCHWARZSCHILD GEOMETRİSİ 

Schwarzschild geometrisi; statik, küresel simetrik bir yıldızın vakum (boş uzay)     

uzay-zamanının geometrisidir. M kütleli bir yıldızın dışındaki boş uzay-zamanda bir 

uzunluk elemanı: 

                             

1

2 2 2 2 22 2
1 1

M M
ds dt dr r d

r r



   
         

   
                             (4.1) 

olarak verilir. Bu ifadeye Schwarzschild metriği denir. Bu metrik, bir yıldızın ve bir 

karadeliğin gravitasyonel (kütle çekimsel) alanını belirler. Bu eşitlikte 2d  ifadesi; 

                                                  2 2 2 2sind d d                                                   (4.2) 

ifadesine karşılık gelir. Schwarzschild geometrisi için metrik bileşenleri; 

                                                      
2

1tt

M
g

r

 
   

 
                        

                                                       

1
2

1rr

M
g

r



 
  
 

 

                                                              2g r   

                                                         
2 2sing r                                                       (4.3) 

metriğin ters bileşenleri; 

                                                      

1
2

1tt M
g

r



 
   

 
 

                                                      
2

1rr M
g

r

 
  
 

 

                                                            2g r   

                                                     2 2sing r                                                         (4.4) 
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Metrik ve tersinin matris formları; 

                        

1

2

2 2

2
1 0 0 0

2
0 1 0 0

0 0 0

0 0 0 sin

M

r

M
g

r

r

r







 
  
 

      
 

                             (4.5) 

 

                      

1

2

2 2

2
1 0 0 0

2
0 1 0 0

0 0 0

0 0 0 sin

M

r

M
g

r

r

r









 

 
  
 

      
 

                           (4.6) 

4.1 Christoffel Sembolleri 

Bu kısımda Schwarzschild geometrisi için Christoffel sembolleri hesaplanacaktır. 

Metrik bileşenleri bilindiğine göre Christoffel sembollerinin metrik bileşenlerinin kısmi 

türevi cinsinden elde edilmesi denklem (2.94) yardımı ile yapılacaktır. 

                                             , , ,

1

2

t t

rt r t t r rtg g g g

                                               (4.7) 

Burada   indisi katkı gelen bileşene göre belirlenecektir. Bu bileşen ttg ’dir ve t   

olarak etiketlenecektir. 

                                         ,

1
( )

2 ( 2 )

t tt t

rt tt r tr

M
g g

r r M
    


                                     (4.8) 

olarak elde edilir.  

Benzer hesap yöntemiyle diğer katkı sağlayan terimler; 
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3

( 2 )r

tt

M r M

r


  , 

( 2 )

r

rr

M

r r M
  


, 

1
r r

r

 

     , ( 2 )r r M    , 
1

r r
r

 

      

2( 2 )sinr r M     , sin cos

     , 
cos

sin

 

 




     

Diğer tüm Christoffel sembolleri sıfıra eşit olacaktır. 

4.2 Jeodezik Denklemleri 

Jeodezik denkleminin ifadesi denklem (2.97) ile tanımlanmaktadır. Schwarzschild 

geometrisi küresel simetrik, statik bir yıldızın dışındaki vakum uzay-zamanının 

geometrisi olduğundan, böyle bir yıldızın etrafında hareket eden parçacıklar veya 

fotonların yörüngeleri bu geometri yardımı ile hesaplanan jeodezik denklemleriyle 

tespit edilir. 

Schwarzschild geometrisinde jeodezik denklemleri; 

i) t   için; 

                                              
2

2
0td t dx dx

d d d

 


  

                                                    (4.9) 

  ve   için katkı gelen terimler göz önüne alınarak; 

                                               
2

2
0t

rt

d t dr dt

d d d  
                                                    (4.10) 

olarak yazılır. 

ii) r   için; 

                    
2

2
0r r r r

rr tt

d r dr dr dr dr d d dt dt

d d d d d d d d d
 

 

        
                    (4.11) 

iii)    için; 

                                         
2

2
0r

d d dr d d

d d d d d

 

 

   

    
                                      (4.12) 
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iv)    için; 

                                    
2

2
0r

d d d d dr

d d d d d

 

 

   

    
                                           (4.13) 

olarak bulunacaktır. 

4.3 Dörtlü Hız ve Momentum 

Dörtlü-hız vektörü, Galileo – Newton mekaniğindeki üçlü geometride tanımlanan üçlü-

hız kavramına benzer biçimde tanımlanabilir. Buna göre bir parçacığın dörtlü-hızı, U , 

parçacığın dünya çizgisine teğet olan ve parçacığın durgun çerçevesinde boyu bir zaman 

birimi olan bir vektör olarak tanımlanır. 

Dünya çizgisi; uzay-zamandaki bir x(t) doğrusuna parçacığın dünya çizgisi adı verilir. 

Tekdüze (uniform) bir hareket yapan bir parçacığın durgun olduğu eylemsiz çerçevede, 

dörtlü-hız zaman eksenine paraleldir ve boyu bir zaman birimidir, yani, bu çerçevede 

0U e  olur. 

Dörtlü-hız ile ilgili önemli bir özellik ise kendisi ile skaler çarpımının -1 olduğudur.  

Yani; 

                                                            . 1U U                                                           (4.14) 

olacaktır. 

Bir parçacığın dörtlü momentumu; 

                                                            P mU                                                          (4.15) 

şeklinde tanımlanır. Burada, m parçacığın durgun olduğu çerçevede ölçülen ‘durgun’ 

kütlesidir. Bir O çerçevesinde dörtlü-momentum genel anlaşma olarak; 

                                                
1 2 3( , , , )

O
p E p p p                                                (4.16) 
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biçiminde ifade edilir. 

Burada 0p ’a parçacığın O çerçevesindeki E enerjisi adı verilir. Diğer ip  bileşenleri, 

dörtlü-momentumun uzay bileşenleridir. 

Küresel simetriden dolayı, bir parçacığın hareketi bir düzleme kısıtlanır; bu düzlem 

işlem kolaylığı açısından 
2


   ile verilen ekvator düzlemi olarak seçilebilir. 

2


   

sabit olduğundan, 0
d

d




  ( ;  yörünge parametresi) olur ve 0p   olacaktır. 

Kütleli bir parçacık için birim kütle başına enerji E  ve foton için enerji E olarak 

alınırsa; 

Parçacık için; 0p
E

m
   

Foton için; 0E p   

olacaktır. Kütleli parçacıklar için açısal momentum L , foton için açısal momentum L 

olarak alınırsa; 

Parçacık için; 
p

L
m


  

Foton için; L p  

olacaktır. Bu durumda momentumun bileşenleri; 

Parçacık için;   

1

0 00

0

2
1

M
p g p m E

r



 
   

 
 

r dr
p m

d
  

0p   
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2

1
p g p m L

r

 

   

Foton için; 

1

0 2
1

M
p E

r



 
  
 

 

r dr
p

d
  

0p   

2

d L
p

d r

 


   

olacaktır.  

Parçacık için 2.p p m   eşitliği kullanılarak; 

                          

1 1 2 2 2
2 2 2 2

2

2 2
1 1

M M dr m L
m E m m

r r d r

 

     
           

     
              (4.17) 

ifadesi bulunur. Foton için . 0p p   eşitliği kullanılarak; 

                                 

1 1 2 2
2

2

2 2
1 1 0

M M dr L
E

r r d r

 

     
          

     
                         (4.18) 

ifadesi bulunur. Böylece, (4.17) ve (4.18) denklemleri kullanılarak parçacık ve foton 

için temel yörünge denklemleri aşağıdaki gibi bulunur: 

Parçacık için; 

                                            

2 2
2

2

2
1 1

dr M L
E

d r r

    
       

    
                                   (4.19) 
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Foton için; 

                                              

2 2
2

2

2
1

dr M L
E

d r r

    
       

    
                                     (4.20) 

(4.19) ve (4.20) denklemlerinin sağ taraflarındaki ikinci terimler etkin potansiyelleri 

verir. Yani; 

Parçacık için; 

                                              
2

2

2

2
( ) 1 1

M L
V r

r r

  
    
  

                                           (4.21) 

Foton için; 

                                                
2

2

2

2
( ) 1

M L
V r

r r

  
    
  

                                             (4.22) 

ifadelerine ulaşılır. Şimdi yörünge denklemlerinin analizi yapılabilir. Etkin 

potansiyellerin ekstremum olduğu r değerleri; 
2 2

0
dV dV

dr dr
   olarak ifade edilir. 

Buradan; 

Parçacık için; 

                                          
2

2

2
1 1 0

d M L

dr r r

   
     

   
                                             (4.23) 

Foton için; 

                                              
2

2

2
1 0

d M L

dr r r

  
   

  
                                                  (4.24) 

ifadelerine ulaşılır. (4.23) ve (4.24) denklemlerinden ise yörünge yarıçapları için bir 

değer elde edilebilir. 
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Parçacık için; 

                                           
2 2

2 2

12
1 1

L M
r

r L

 
   

 
 

                                                  (4.25) 

 

Foton için; 

                                                          3r M                                                              (4.26) 

olarak bulunacaktır. (4.25)  denkleminden 2 212L M  olur ve min 6r M , foton için 

3r M  olarak elde edilecektir. Bu değerler foton ve parçacık için yörünge yarıçap 

değerleridir (Schutz 2011). 

4.4 Deneysel Testler 

Önceki kısımlarda da belirtildiği gibi, Schwarzschild geometrisi küresel simetrik, statik 

bir yıldızın dışındaki vakum uzay-zamanının geometrisidir ve böyle bir yıldızın 

etrafında hareket eden parçacıklar veya fotonların yörüngeleri Schwarzschild geometrisi 

yardımıyla türetilen jeodezik denklemleri ile tespit edilir. Einstein bunun için üç test 

önermiştir. Bu testler; perihelyon kayması, ışığın kütle çekimsel alanda sapması ve kütle 

çekimsel kızıla kayma olaylarıdır. Bu kesimde bu üç testten bahsedilecektir. 

4.4.1 Işığın kütle çekimsel alanda sapması 

Kütleli bir cismin etrafındaki uzay parçasının, homojen ve izotropik olmaktan 

uzaklaşarak şekil 4.1’deki gibi bozunmaya uğradığı öngörülmektedir. Bozunmanın 

şiddeti, cismin kütlesi ile orantılı olarak artmaktadır. Bu durumda, örneğin kütlesi 

yeterince büyük bir cisim, yakınından geçen ışık ışınlarının bükülmesine, dolayısıyla 

ışığın eğrisel bir yol izlemesine neden olacaktır. 
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Şekil 4.1 Kütleli bir cisim etrafındaki uzay 

Sözü edilen görüş, örneğin güneş tutulması olayı gibi çeşitli astronomik gözlemlerle 

doğrulanmıştır. Güneş tutulması sırasında, güneşi teğet olarak geçip yeryüzüne ulaşan 

bir yıldızın, güneşin uzayda yer değiştirmesine bağlı olarak gösterdiği hareket, 

yeryüzündeki gözlemci tarafından bir fotoğraf plağı üzerine kaydedilebilir. Böyle bir 

gözlemde, yıldızın uzaydaki yeri önceden A ve B olarak belirlenmiş ise, yıldızın 

gözlenen hareketi AB  değil A B   olmaktadır. Bunun nedeni, gerçek yerleri A ve B olan 

yıldızdan çıkan ışınların, Dünyadaki gözlemciye göre A  ve B  noktalarından 

geliyormuş gibi görünmeleridir (Gündüz 2008). 

 

Şekil 4.2 Güneş tutulması esnasında yapılan bir gözlem (Gündüz 2008) 

Şekil 4.2 Güneş tutulması esnasında yapılan bir gözlemi göstermektedir. Güneşin 

hemen arkasındaki bir yıldızın yerdeki gözlemci tarafından saptanan hareketinin, gerçek 

hareketinden bir miktar farklı olduğu sonucu çıkarılabilir. 

Schwarzschild metriği ile belirlenen bir uzay-zamanda bir fotonun yörüngesi 

incelenerek net sapma miktarı: 
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4M

b
                                                          (4.27) 

olarak bulunur. (b; etki parametresi) 

Örneğin; güneşin kütle çekim alanından geçen fotonun sapması hesaplanabilir. Güneşin 

etki parametresi; 57 10b R    km ve 1,47M   km dir. (Burada geometrik birim 

sistemi kullanılmıştır. G=1 ve c=1 dir.) 

  6

,max.
8,45 10

sapma
     rad "1 ,74  

Jupiter için; 31,12 10M    km, 47 10R    km dir. 

  8

max.
6,42 10

sapma
     rad "0 ,013  

4.4.2 Perihelyon Kayması 

Genel görelilik teorisini doğrulayan diğer bir kanıt da, Merkür’ ün Güneş etrafındaki 

kendine özgü dönme hareketidir. Güneşe en yakın gezegen olan Merkür, yörünge 

hareketi esnasında oldukça basık bir elips yörünge izlemektedir. Yapılan gözlemler, 

gezegenin yörünge hareketi esnasında Güneşe en yakın olduğu noktanın (periheli 

noktası) sabit olmayıp sürekli değiştiğini göstermiştir. Bilinen Newton ve Kepler 

yasalarına uymayan bu davranış, ancak genel göreliliğin gravitasyon alan kavramı ile 

açıklanabilir: Güneşin gravitasyon alanı içinde, ona en yakın olması nedeniyle diğer 

gezegenler çok daha büyük bir açısal hızla hareket etmekte olan Merkür gezegeni, güçlü 

bir gravitasyon alanı içinde ve çeşitli göreli etkiler altındadır (Gündüz 2008). 

Bir parçacık (gezegen) bir yıldızın (Güneşin) etrafında bir çembersel yörüngede 

hareketli olsun. Schwarzschild geometrisinde bir parçacığın yörünge analizi sonucu; 

                                                 
2 2

2

12
1 1

2

L M
r

M L

 
   

 
 

                                          (4.28) 

bulunmuştur. Bu denklemden de; 
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                                                       2

3
1

rM
L

M

r





                                                        (4.29) 

ifadesi elde edilir. 

Relativistik olmayan bir yıldız (örneğin Güneş) etrafındaki yörüngelerde periheliyon 

presesyonu; (4.29) denklemindeki 1
M

r
 olduğu göz önüne alınırsa; 2L Mr  

gelecektir. Perihelyon presesyonu ifadesi; 

                                                      
2

2

6 M

L


                                                           (4.30) 

olarak verilir. L  yerine yazılırsa; 

                                                      6
M

r
                                                             (4.31) 

bulunur.  

Örnek: Merkür için, 75,55 10r    km, 1,47M   km alınırsa; 

7( ) 4,99 10     rad/yörünge 

1 yörünge için 0,24 yıl geçtiğinden; 

  " "0 ,43 / 43 /yıl yüzyıl    

kadarlık bir perihelyon kayması bulunacaktır (Schutz 2011). 

4.4.3 Gravitasyonel kızıla kayma 

Güçlü bir gravitasyon alanının, yakınından geçen ışığın frekansı üzerinde de etkili 

olduğu deneylerle saptanmıştır. Örneğin uzayın herhangi bir noktasından gelen bir 

görünür ışık veya gamma fotonunun 0f  olan frekansı, foton bir gravitasyon alanından 
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geçerken f gibi bir değere düşer. Einstein, böyle bir olayda gözlenen frekans 

kaymasının, 

                                                       0 2

2
1f f

c


                                                      (4.32) 

veya, 

                                  0
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1 1
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c

c

 




    

 
  

 

                         (4.33) 

ve 
2

2
1

c


, 

2

2
1 1 2

c


    olduğu düşünülerek elde edilen; 

                                                           
2

0

f

f c


                                                           (4.34) 

bağıntısı ile hesaplanabileceğini öngörmektedir. (Burada φ gravitasyon potansiyelidir.) 

İleri sürülen bu görüş, Pound ve Rebka (1960) tarafından Mössbauer olayı denilen bir 

olaydan yararlanarak denel olarak doğrulanmış bulunmaktadır. Adı geçen 

araştırmacılar, kütlesi 57 olan demir izotopunun 57( )Fe  çekirdeğinden yayınlanan 

gamma ışını fotonlarının yeryüzünde ve yerden 22,5 m. yüksekteki frekanslarını 

ölçmüş, yerin gravitasyon alanında gözledikleri frekans kaymasının (4.34) denklemi ile 

öngörülen teorik değere eşit ve 15

0

2,56.10
f

f


  olduğunu göstermişlerdir           

(Gündüz 2008).  
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5. GENEL GÖRELİLİK TEORİSİNİN BAZI TESTLERİ 

5.1 Jeodezikten Sapma ve Jiroskop Testi 

Genel görelilik teorisi çerçevesi içinde önemli bir araştırma alanı bir gravitasyon 

alanındaki bir jiroskopun dönme ekseninin doğrultusunun maruz kalacağı değişimdir. 

Diğer bir araştırma alanı olarak ise gravitasyon dalgalarının somut bir şekilde 

belirlenmesidir.  

Bu kısımda incelenmek istenen, gravitasyon alanının bir jiroskopun dönme ekseni 

üzerindeki etkisidir. Bu etki 1919’da J. A. Schouten tarafından öngörülmüş ve ilk defa 

Dünya’nın kendisi için 1921’de A. D. Fokker tarafından hesaplanmıştır. Fokker, bir 

jiroskop gibi kabul edilebilecek olan Dünyanın dönme ekseninin Güneşin gravitasyon 

alanında yıllık "0 ,019  lik fazladan bir presesyona maruz kaldığını belirtmiştir.  

Dünyanın kendi ekseni etrafındaki hareketiyle sürüklenen bir jiroskopun davranışının 

teorisi ise ilk defa 1960’da L. İ. Schiff tarafından yapılmıştır. Klasik Newton 

mekaniğine göre böyle bir jiroskopun kendi dönme ekseninin yönünün, sürtünme ve 

yapısal simetrisizlikler hesaba katılmazsa, sabit yıldızların belirledikleri eylemsizlik 

sisteminde değişmez kalması gerekmektedir. Ama Genel ve Özel Görelilik Teorilerine 

göre jiroskopun dönme ekseni üç etkiden ötürü bir presesyon oluşturacaktır. Bu etkiler 

kısaca şu şekilde özetlenebilir: 

a) Jiroskopun Dünyanın kendi ekseni etrafındaki rotasyonuyla sürüklenmesi esnasında 

eksenin yönünün, bir vektörün bir gravitasyon alanındaki paralel ötelemesi kuralına 

uygun olarak bir davranışı bulunacaktır. Böyle bir gravitasyon alanında Dünya kendi 

ekseni etrafında tam bir devir yaptığı zaman jiroskopun dönme ekseninin yönü bir devir 

önceki yönüyle çakışık olmayacaktır. Bu etkiye jeodezikten sapma etkisi yada 

jeodeziksel presesyon olayı denir. 

b) Dönme hareketi yapan bir kütlenin yakınında her eylemsizlik sistemi, kütlenin maruz 

kaldığı açısal hızın küçük bir kesri kadar bir hızla sürüklenir. Buna Lense-Thirring 

etkisi yada presesyonu denir. 
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c) Gravitasyon alanı göz ardı edilse bile bu seferde Özel Görelilik Teorisi’nin 

sonuçlarına göre Dünya üzerindeki bir jiroskopun dönme ekseni Thomas presesyonuna 

maruz kalacaktır. 

Dünya üzerine ekvatorda bulunan ve dönme eksenide Dünyanınkine dik olan bir 

jiroskop için üç olayın her birinin yıllık etkilerinin yaklaşık olarak "0 ,4 lik bir değere 

eşit olduğu hesaplanmıştır. Dünya etrafında yapay bir uyduya yüklenmiş bir jiroskop 

göz önüne alındığında ilk iki olayın etkileri çok daha küçük olmakta, böyle bir 

jiroskopun dönme ekseni de Thomas presesyonuna maruz kalmaktadır. 

Jeodeziksel presesyon olayını incelemek için Dünyanın etrafında dairesel yörünge 

üzerinde dolanan bir jiroskop göz önüne alınır. Bu takdirde M ile Dünyanın kütlesini 

göstererek ve Dünyanın civarındaki gravitasyon alanının da Schwarzschild metriği ile 

temsil edildiğini göz önünde tutarak jeodezik presesyon ifadesi türetilebilir. Bu ifade; 

                                                       
2

3
jeodezik

GM

c R


                                                   (5.1) 

olarak ifade edilir. Bu olağanüstü küçük bir değerdir. Bunun gerek Dünyada gerekse bir 

yapay uydu tarafından taşınan bir jiroskop hali için ölçülebilmesi yoğun bir çaba 

gerektirir (Özemre 1982). 

5.2 Gravitasyon Dalgalarının Belirlenmesi  

Gezegenlerin Güneşin etrafında dönmesinin sebebi, Güneşin sahip olduğu gravitasyon 

(kütle çekim) dalgaları sayesindedir. Kendi ekseni etrafında dönen cisimlerin 

çevrelerinde oluşturdukları dalgaya gravitasyon dalgası denir. Bu kısımda genel 

görelilik çerçevesi içinde önemli bir araştırma alanı olan gravitasyon dalgalarının somut 

bir şekilde belirlenmesi üzerinde durulacaktır.  

Teorik olarak öngörülen gravitasyon dalgalarının varlığının gözlenmesi yoğun çaba sarf 

edilen bir konudur. Elektromagnetik dalgaların belirlenmesi nasıl bir anten aracılığı ile 

oluyorsa gravitasyon dalgalarının belirlenmesi de özel bir anten aracılığıyla olması 

gerektiği, işin başlangıcında, bu konuda en yoğun ve sürekli çalışmaları yapan J. 
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Weber’ in ilk düşündüğü ve gerçekleştirmeye çalıştığı şey olmuştur. Weber’in 

geliştirdiği gravitayon dalgaları detektörü anten olarak yaklaşık 60 cm çapında, 150 cm 

uzunluğunda ve 1,5 ton kütleli alüminyumdan bir silindirden oluşmaktadır. Bu silindir 

kablolarla asılı olarak bulunmaktadır. Silindirin üstüne, ortasına doğru yapıştırılmış 

piezoelektrik
1
 kristallerin bağlı bulundukları elektronik devreler kendilerine gelen 

sinyalleri yükselterek detekte ederler. Bu mekanik-elektronik deteksiyon düzeni 

silindirin temel titreşim modu olan ve genliği de silindirin ortasında maksimuma erişen 

0 1660   Hz’lik frekansa karşı çok duyarlı olacak şekilde gerçekleştirilmiştir. Silindire 

etkiyen mümkün kuvvetler: Dünyanın dönmesi dolayısıyla sistemin maruz kaldığı 

Coriolis ve merkezkaç kuvvetleri, sistemin taşıyıcılarının silindirin ortasına 

uyguladıkları statik reaksiyon kuvvetleri, silindirin üzerindeki piezoelektrik kristal 

düzeninin uyguladıkları kuvvetler ve silindir içindeki atomların termik hareketlerinin 

doğurduğu rastgele gerilim kuvvetlerinden ibarettir. Ayrıca bu gravitasyon antenini 

yerel alanların etkisinden de korumak gereklidir. Nitekim anten, gereği kadar büyük 

şiddetteki elektromagnetik, sismik ve kozmik ışın kökenli uyarılara da tepki 

gösterebilmektedir. Bu takdirde de birbirlerinden çok uzak mesafede ve aynı yapısal 

karakteristikleri taşıyan iki anten aracılığıyla kaydedilecek olan pulslar arasındaki 

rastlantıları göz önünde tutarak cıvardaki yerel alanların korelasyonlarını olağanüstü 

küçük bir mertebeye indirmek mümkün olmaktadır. Weber, deneyleri için biri Chicago 

yakınındaki Argonne Ulusal Laboratuarında, diğeri ise 1000 km kadar uzakta Maryland 

Üniversitesine yerleştirilmiş iki eş detektör kullanılmıştır. Bir rastlantı, her iki 

detektörün çıkışında da aynı zamanda sayılabilecek kadar dar bir zaman aralığı için, 

örneğin 70 milisaniyelik bir aralıkta, kendini gösteren ani bir güç artışı olarak 

tanımlanmaktadır. Böyle bir rastlantı ya her iki detektörün de ortak bir kaynak 

tarafından aynı anda uyarılmasından ileri gelmektedir, yada iki detektöründe ortak bir 

kaynak tarafından aynı anda uyarılmasından ileri gelebilir, yada farklı kökenli 

(genellikle yerel alanların etkilerine bağlı) düpedüz dıştan gelen bir rastlantı olabilir. 

Weber 1969 dan itibaren her iki detektöründe de yüksek genlikli pulslar arasında o 

kadar çok rastlantısal olay gözlemlemiştir ki bunların dıştan gelen rastlantılar olmaları        

ihtimali oldukça düşüktür. Bunların gravitasyon dalgalarından başka etkenlerin eseri 

                                                           
1 Kristal yapıdaki cisimlerin kendilerine dışarıdan uygulanan basınç miktarı ile orantılı olarak elektrik 

üretme özelliğine denir. 
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olabilecekleri ihtimalini sınamak üzere dahil edildikleri sayısız testlerin sonucu, bu 

rastlantıların  kökeninde o zamana  kadar  bilinen  etkenlerin  hiç  birinin bulunmadığına 

hükmedilmesine yol açtığından Weber, böylelikle gravitasyon dalgalarının etkilerinin 

ilk defa gözlenmiş olduğuna hükmetmiştir. Ancak, bu etkiye sebep olduğu düşünülen 

gravitasyon dalgalarını üreten kökenin eksiksiz tanımlanması ayrı bir sorun 

içermektedir. Gravitasyon dalgaları detektörü teorisi, böyle bir detektörün farklı 

doğrultulardan gelen ve farklı polarizasyonu taşıyan gravitasyon dalgaları için farklı 

duyarlılığı bulunacağını ve bu duyarlılığın antene dik olarak gelen dalgalar için 

maksimuma erişeceğini öngörmektedir. Eğer θ dalganın geliş doğrultusu ile antenin 

normali arasındaki açıyı gösterirse duyarlılığın θ ya bağlılığının 2cos   ile orantılı 

olacağı gösterilmiştir. Buna göre antenin duyarlılığı her ne kadar gelen dalganın 

doğrultusuna çok keskin bir bağlılık içermese de, yeteri kadar uzun bir süre sürekli 

gözlem yapmak şartıyla bu özellikten yararlanarak gravitasyon dalgalarının kaynağının 

yeri hakkında bir bilgi elde etmek mümkün olabilecektir. 

Bu pulslar eğer gerçektende gravitasyon dalgalarının sebep olduğu pulslar ise bu 

takdirde 0,1f   Hz lik bir frekans bandı içinde, gelen gravitasyon radyasyonunun 

ortalama akısının 0,1  2/ .erg cm sn  mertebesinde olması gerekeceği de tesbit edilmiştir. 

Öte yandan galaksimizin merkezinin Dünyadan yaklaşık olarak 222,5.10  cm uzakta 

olduğu göz önünde tutulacak olursa söz konusu frekans aralığında gözlenen bu 

20,1 / .erg cm sn  lik radyasyon akısı, galaksimizin yaklaşık olarak, 

                                 44

0,1

8.10
f

dE

dt  

 
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 
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2

0,013
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                            (5.2) 

kadar bir enerji kaybına uğradığını göstermektedir. Bu ise yaklaşık olarak; 

                                                  
21000
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M cdE

dt yıl

 
  
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                                           (5.3) 

kadar bir toplam enerji kaybına uğrar. Buradan ve galaksimizin kütlesinin 1110 M  

mertebesinde olduğu göz önünde tutularak bütün galaksinin 810  yılda tükenmesi 

gerektiği sonucu ortaya çıkmaktadır. Bu durumda ve eğer gözlenenler yalnızca 
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gravitasyon dalgalarının etkisi ise, Weber ya galaksinin gravitasyon radyasyonunun en 

büyük kısmının yayıldığı frekansın üzerine tesadüfen düşmüş veya akıl almaz derecede 

güçlü bir yeni enerji kaynağı keşfetmiş bulunmaktadır. 

Böyle bir enerji kaynağının tümüyle termonükleer kökenli olmayacağı açıktır, nitekim 

termonükleer enerji durgun kütlenin ancak % 0,1 lik bir etkiyle enerjiye dönüşmesini 

içermektedir. Öte yandan Rees, Ruffini ve Wheeler gravitasyon dalgalarının oluşmasına 

köken olabilecek: birbiri etrafında dönen çift yıldız sistemleri, kendi ekseni etrafında 

dönen nötron yıldızları, pulsarlar (atar yıldızlar), bir karadeliğin etrafında dolanan bir 

gök cismi, Schwarzschild tipi bir karadeliğe radyal doğrultuda düşen bir gök cismi gibi 

kozmik bazı olayları göz önüne alarak bunlardan dolayı oluşan gravitasyon 

radyasyonunun 1000 pc ve 10000 pc uzaklıktaki akısını çeşitli parametre değerleri için 

hesaplamışlardır. Bu hesaplar Weber’in belirlemiş olduğu sinyallerin, bazı hallerde, 

yukarıda sıralanmış olan kozmik olaylardan bazılarında yayınlanabilecek gravitasyon 

radyasyonuyla tutarlı olduklarını göstermiştir. 

Bu kısımda belirtilenlerin dışında gravitasyon dalgaları hakkında pek çok araştırma 

yapılmıştır ve yapılmayada devam etmektedir. Fakat burada sadece ilk ve öncü bir 

çalışma olan Weber’in çalışmalarından bahsedilmiştir (Özemre 1982). 
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6. LENSE – THIRRING ETKİSİ   

Eylemsizliğin ilk modern analizi Isaac Newton tarafından 1687 yılında yapılmıştır. 

Newton bu analizlerinde 3. kısımda anlatılan dönen kova düşünce deneyini yapmıştır. 

Bu deneydeki gözlemler neticesinde Newton mutlak bir uzayın var olması gerektiği 

fikrini savunmuştur. 

1883 yılında Ernst Mach, Newton’un bu yorumunu eleştirmiştir. Mach’ın öncesinde de 

Berkeley mutlak uzay kavramını eleştiren diğer bir isim olmuştur ve Berkeley’in 

tekrarladığı düşünsel deneyin sonuçları ile Mach ilkesi olarak bilinen ilkeyi ortaya 

atmıştır. Mach ilkesi; bir cismin eylemsizliğinin evrendeki bütün cisimlerin fonksiyonu 

olarak belirlenmekte olduğunu ifade etmiştir. Mach 3.kısımda anlatılan düşünce 

deneyleri sonucunda; su yüzeyinin paraboloid şeklini almasını, kovanın mutlak uzaya 

göre dönmesi sonucu olarak değil de su ile, geri kalan bütün evren arasındaki kütle 

çekim etkileşmesinin sonucu olduğunu belirtmiştir. 

1915 yılında ise Albert Einstein genel görelilik teorisini ortaya atmıştır. Albert 

Einstein’ın bu teorisi, Newton’un evrensel kütle çekim yasasını değiştirerek, tüm kütle 

çekim teorisini daha sağlam geometrik temellere oturtmuştur. Albert Einstein’ın yeni 

teorisi kısaca aşağıdaki maddeler dayanmaktadır: 

. Kütle çekim teorisi uzay-zamanın geometrisi ile tanımlanır. Matematiksel olarak, 

uzay-zaman metriğinin tanımlanması; 

                                                     
2ds g dx dx 

                                                       (6.1) 

şeklindedir. 

. Madde uzay-zamanda eğriliğe sebep olmaktadır. Matematiksel olarak, bu Einstein’ın 

alan denklemleri ile ifade edilir; 

                                                     8G GT                                                          (6.2) 
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Burada; G  Einstein tensörü, G Newton çekim sabiti, T   enerji momentum tensörü 

olarak adlandırılır. Enerji momentum tensörü enerji yoğunluğu içermektedir. 

Bir teorinin, kütle çekim teorisi olarak ele alınması için aşağıdaki şartları sağlaması 

gerekmektedir: 

i) Tüm deneysel testleri (Güneş sistemi, kırmızıya kayma, …) geçmesi gerekir. 

ii) Zayıf alanlar ve yavaş hareketler için Newton kütle çekim yasasına indirgenmesi 

gerekir. 

iii) Yerel olarak özel görelilik teorisini sağlamalıdır. 

iv) Enerji-momentum korunumu ile uyumlu olmalıdır. 

Einstein alan denklemleri dışında bu koşulları sağlayan f(R)-teorileri, Brans-Diche 

teorileri, ekstra boyutlu teoriler,… gibi başka denklemlerde mevcuttur. 

. Düz uzayda serbest parçacığın yörüngesi bir doğru olacaktır, bunun eğri uzayda 

karşılığı jeodeziklerdir ve serbest düşen parçacığın yörüngesini verirler. Jeodezik 

denklemi; 

                                                  
2

2
0

d x dx dx

d d d

  



  

                                              (6.3) 

olarak verilir (Embacher, 2005). 

Einstein’ın genel görelilik teorisinin yayınından kısa bir süre sonra 1918 yılında Hans 

Thirring ve Joseph Lense, Lense-Thirring etkisini ortaya atmışlardır. Dönme hareketi 

yapan bir kütlenin yakınında her eylemsizlik sistemi, kütlenin maruz kaldığı açısal hızın 

küçük bir kesri kadar bir hızla sürüklenir. Buna Lense –Thirring etkisi denir. Yaklaşık 6 

yıl önce yapılan bir araştırmada Lense-Thirring etkisinin güneş sisteminin içerisindeki 

cisimlerde olmadığı öne sürülmüştür. İtalya’da yapılan bir çalışmada ise Lense-Thirring 

etkisinin her cisimde az da olsa etkili olduğu bildirilmiştir. Genel görelilik teorisi de bu 

görüşü desteklemektedir. 
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Şekil 6.1 Dönen bir kütlenin içinde bir jiroskopun presesyonu (Embacher 2005) 

M, R ve Ω sırasıyla dönen cismin kütlesi, yarıçapı ve açısal hızı olarak tanımlanırsa, iç 

uzayın açısal hızı, Lense-Thirring frekansı   olarak alınırsa, 

                                                    
2

4 2

3 3

sRGM

c R R


 


                                                   (6.4) 

ifadesi yazılır. Burada c; ışık hızı ve  sR ; dönen kütlenin Schwarzschild yarıçapı olarak 

tanımlanır. Dünya’nın Schwarzschild yarıçapının 0,886 cm olduğu düşünülürse, aradaki 

oran 109 10  olarak bulunur. 

 

Şekil 6.2 Dış bölgede, Lense-Thirring etkisinin jiroskopunun konumuna bağlılığı 

(Embacher 2005) 

Jiroskopun konumuna bağlılığını veren ifade için, ekvatoral düzlemde bu etkinin 

büyüklüğünü veren aşağıdaki ifadeye ele alınır; 

                                                      

3

2
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GM R

c R r

  
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  
                                                 (6.5) 
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Burada r dönen kütlenin merkezi ile jiroskop arasındaki mesafeyi belirtmektedir. 

Burada 
3

1

r
 ifadesi Mach etkisinin büyüklüğünün davranışını belirtir. Mesafe arttıkça 

etkinin büyüklüğü azalacaktır. 

Jeodezik denklemi çözümü yapılarak, gelişi güzel bir uydu için Lense – Thirring 

etkisinin öngörüleri çözülebilir. r yarıçaplı küresel bir yörüngenin özel bir durumda, yer 

değiştirmesi, 
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2
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sE

sat

R R
d

r

 



                                               (6.6) 

olarak verilir. Burada R  ve sR ; sırasıyla yarıçap ve kütlenin Schwarzschild yarıçapıdır. 

E  kütlenin açısal hızı ve sat  uydu yörüngesinin açısal hızıdır. 

Dünya için verilen datalar ve kapalı bir yörünge de ( )r R , 0,13d   cm olarak 

bulunur. Bunun sonucu olarak, yörünge düzleminde 0,26 arksaniye/yıl kadarlık bir 

sürüklenme gözlenir. 

 

Şekil 6.3 Dönen küresel bir cismin civarında uydunun yörüngesi kapalı değildir 

(Embacher 2005) 

Lense-Thirring etkisinin Dünya’yı ne derecede etkilediği ise bir diğer merak konusudur. 

Dünya’nın kendi ekseni etrafında dönmesi çevresindeki uyduları zaman açısından bile 

etkilemektedir. Ancak uyduları etkileme yönünde Lense-Thirring etkisi oldukça zayıf 
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kalmaktadır. Çünkü Dünya’nın kütlesinin yerküre üzerinde eşitsiz dağılımı uyduların 

yörüngelerindeki zamansal açıdan değişimini zayıf kılmaktadır. 

Lense-Thirring etkisinin en kuvvetli olduğu yer ise bizden oldukça uzak olan kozmik 

karadeliklerdir. Kendi çevresinde dönen karadelikler uzay ve zamanı oldukça etkili bir 

şekilde bükmektedir. Bir karadeliğin kendi çevresinde dönme hızı, ışık hızından çok 

daha fazladır. Bu yüzden karadelikler zamanı çok etkili bir şekilde bükebilme özelliğine 

sahiptir (Embacher 2005). 

6.1 Lense-Thirring Etkisinin Gözlenmesi 

Dönen bir kütlenin, uzay-zamanının dokusunu peşinden sürükleyeceği söylenmektedir. 

Ancak bu etkiyi göstermek, kütlenin ışığı büktüğünü göstermekten çok daha zordur. 

Bunun için, ekseni etrafında dönen bir cismin yakınındaki jiroskopların yönelimini nasıl 

değiştirdiğini gözlemlemek gerekir.  

Lecce Üniversitesi’nden Ignazio Ciufolini ve Nasa’nın Goddard Uzay Uçuş 

Merkezinden Erricos Pavlis, Lense-Thirring etkisi yada “çerçeve sürüklenmesi” diye 

adlandırılan olguyu kanıtlamak için bir yöntem kullanılmıştır. Araştırmacılar 1976 ve 

1992 yıllarında lazerli uzaklık ölçerlerin geliştirilmesi için yansıtıcı hedef olarak uzaya 

gönderilen Lageos ve Lageos II adlı pasif uydulardan yararlanmışlardır. Bunlar, yarım 

metre çapında, içleri jiroskoplarla donatılmış, üzerleri yansıtıcı aynalarla kaplı 

kürelerdir. Lazerler bunların üzerine lazer ışıkları gönderirler ve ışığın hızı sabit 

olduğundan, ışığın gönderiliş ve çeşitli yer istasyonlarına yansımasının dönüş süreleri 

hesaplanarak, uzaklıkları birkaç cm yanılma payıyla belirlenebilmektedir. Ciufolini ve 

Pavlis ilk kez 1998 yılında iki uydunun verilerinden yararlanarak Lense-Thirring 

etkisinin, bunların yörünge düzlemlerinde küçük değişimlere yol açması gerektiğini öne 

sürmüşlerdir. Ancak ilk ölçümler çok kaba sonuçlar vermektedir. Bunun nedeni, 

Dünya’nın kütlesinin yerküre üzerindeki eşitsiz dağılımının, uydu yörünge 

düzlemlerinde bu etkiye kıyasla 1000 kez daha büyük değişmeler yapmasıdır    

(Anonim 2004a). 
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Uzmanlara göre uzay-zamanın sürüklenme etkisi, bir uydunun yörüngesinde yılda 2 

metrelik bir yalpalanmaya yol açarken, kütle dağılımının eşitsizliği nedeniyle meydana 

gelen yalpalanma, yılda birkaç bin km’yi bulmaktadır. 1998 yılında Dünya üzerindeki 

kütle dağılımı fazlaca bilinmediğinden, Ciufolini ve ekip arkadaşları bazı tartışmalı 

tahminlerde bulunmuştur ve sonuçlar, % 20 gibi kabulü zor bir hata payıyla 

açıklanmıştır. 

Bu etkiyi sınamak için tasarlanan bir diğer gözlem aracı ise, Gravity Probe B uzay 

aracıdır. 20 Nisan 2004’te uzaya gönderilmiştir. Uzay aracı, yeryüzünden yaklaşık    

650 km yukarıda, neredeyse tam bir daire biçimindeki kutup yörüngesinde dönmektedir. 

Bugüne kadar geliştirilen en duyarlı ölçüm aletlerinden birini taşıyan uzay aracı, evrenin 

yapısıyla ilgili en önemli sorulardan bazılarına yanıt aramaktadır. Araçta bulunan “ultra 

duyarlı” dört jiroskop, çok büyük kütleli ve dönen cisimlerin (bir gezegen, bir yıldız 

yada bir karadelik), dönerken uzay ve zamanı da beraberinde sürükleyip 

sürüklemediğini sınayacaktır. 

Bu etkiyi açıklayabilmek için bilim adamları uzayı kauçuktan bir örtüye benzetirler. 

Dünya’ysa bu örtünün üzerinde çöküntü yaratan bir bilye olarak düşünülebilir. Bu 

çöküntü, yanından geçen cisimlerin yolunun bükülmesine neden olur. Eğer kuram 

doğruysa, bir gezegenin yada yıldızın dönüşünün de bu örtüyü bükerek zamanı 

saptırması gerekir. Gravity Probe B’nin dört jiroskopun eksenindeki küçük sapmalar, 

Dünya’nın uzaydaki varlığının neden olduğu sürüklenme etkisini ölçmektedir.  

Jiroskoplardan her biri, yaklaşık bir pinpon topu büyüklüğünde; özel bir kabın içinde 

boşlukta asılı durmakta ve dakikada on bin kez dönmektedir. Eğer kuram doğruysa ve 

çerçeve sürüklenme etkisi gerçekse, Dünya’nın yörüngesinde döndükçe, jiroskopların 

titreşmesi gerekmektedir. Dönüş eksenleri azar azar kayacak ve bir yılın sonunda, 

başladıkları yerden 42 miliarksaniye uzağı gösterecektir. Gravity Probe B, bu açıyı     

0,5 miliarksaniyelik bir kesinlikle ölçebilmektedir. (Miliarksaniye, çok çok küçük bir 

açıdır. Bir arksaniye, bir derecenin 1/3600 ’üne eşittir. Bir miliarksaniye ise, bunun 

binde biri kadardır.) (Anonim 2004b). 
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2011 yılında yayınlanan makalede, yazarlar dört jiroskopun verilerini analiz etmişlerdir. 

Bu analiz sonucunda jeodezik sürüklenme 6601,8 18,3   miliarksaniye/yıl (mas/yr) ve 

çerçeve sürüklenme oranı 37,2 7,2   mas/yr’ dır. Bu veriler genel göreliliğin 

tahminleri ile kıyaslanırsa sırasıyla 6601,1  mas/yr ve 39,2  mas/yr değerleri 

verilebilir. Teorik değerler ile alınan ölçümlerin uyumlu çıktığı söylenebilir (Everitt 

2011).  
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7. SONUÇ 

Bu tez kapsamında genel görelilik teorisinin ortaya attığı ve doğruladığı bazı olaylar 

üzerinde durulmuştur. Bunların başlıcaları gravitasyonel kızıla kayma, ışığın kütle 

çekimsel alanda sapması, perihelyon kayması, Lense-Thirring etkisidir.  

Tezin başlangıç kısmında özel görelilik ve genel görelilik teorilerinin ortaya çıkışı 

üzerine bir yorum yapılmıştır. Sonraki kısımda özel görelilik ve genel görelilik teorileri 

için gerekli olan matematiksel alt yapılardan bahsedilmiştir.  

Daha sonra Newton’un ortaya attığı mutlak uzay kavramı üzerinde durulmuş ve bu 

kavramın ortaya çıkışında Newton’un yapmış olduğu düşünce deneyi detaylı olarak 

anlatılmıştır. Buna ilk itiraz Berkeley tarafından yapılmıştır ve bu düşünce deneyi 

Berkeley tarafından tekrarlandığında bu deneyin sonuçları tekrar yorumlanmıştır. Mach 

ve Berkeley’in ortak görüşü; düşünce deneyindeki su yüzeyinde oluşan parabolün 

mutlak uzayla değil evrendeki bütün cisimlerin arasındaki gravitasyon etkileşmesinin 

sonucu olduğudur.  

Bir diğer tartışma konumuz Schwarzschild geometrisi üzerine olmuştur. Bu geometrinin 

statik, küresel simetrik bir yıldızın dışındaki uzayın geometrisini tarif ettiği 

vurgulanmıştır. Dolayısıyla bir yıldızın dışındaki parçacığı veya fotonu incelemek için 

bu geometriye başvuracak olmamız, bu geometrinin önemini daha iyi vurgulamaktadır. 

Genel görelilik teorisinin diğer testleri ise; jeodezikten sapma ve gravitasyon 

dalgalarının belirlenimi olarak vurgulanmıştır. Bu kısımda üç çeşit presesyondan 

bahsedilmiş ve bunların her birinin katkıları üzerine yorumlar yapılmıştır.  

Son olarak ise Lense-Thirring etkisi üzerinde durulmuştur. Bu olay bazı kaynaklarda 

karşımıza Einstein-Lense-Thirring etkisi olarak da çıkabilmektedir. Bu etki dönen 

koordinat sistemlerinin ve dönen cisimlerin şaşırtıcı bir sonucudur. Bu etkiye göre, 

dönen cisimler uzay-zamanı sürükler, diğer bir deyişle ekstra bir eğrilik oluşturacaktır. 

Bu tıpkı uyuyan bir insanın, yatakta dönerken çarşafı üzerine sarması gibi düşünülebilir. 

Bu kısımda Lense-Thirring etkisinin tanımı verildikten sonra, deneysel gözlemler 
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üzerinde durulmuştur.  Daha  önceki  yıllarda  Lageos  uyduları  her  ne kadar bu etkinin   

varlığını kanıtlasa da, elde edilen veriler tatmin edici değildir. Fakat 2004 yılında 

yollanan bir diğer uydu Gravity Probe B’nin sonuçları, genel görelilik teorisinin 

tahminleri ile daha tutarlı sonuçlar vermektedir.     
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