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ABSTRACT

SKELETAL MUSCLE DEFORMATION ANALYSIS USING

DIFFUSION TENSOR MAGNETIC RESONANCE IMAGING

Skeletal muscles are highly organized tissues formed of fiber bundles packed together.

Muscle fibers have distinct orientations which makes them a favorable subject for diffusion

tensor imaging (DTI) based analyses. DTI provides in vivo measures revealing the structural

characteristics of tissues based on diffusion anisotropies of water molecules within structures.

Local fiber orientations can be extracted for deformation analysis of the spatial distribution of

diffusion and strain characteristics along fiber directions. This work aims to present a framework

for the assessment of local strain and diffusion anisotropy changes as skeletal muscles of human

subjects (n=3) become deformed by moving from a flexed configuration (150◦ knee angle)

to an extended configuration (180◦ knee angle). Changes between the diffusion anisotropy

indices and strain coefficients along fiber tracts between the tibialis anterior muscle ends are

computed, visualized and modeled to account for heterogeneous changes in the microstructure

resulting from deformation. Results are indicators of effects of myofascial force transmission on

human muscles in vivo, including local differences between sarcomere length changes (maximal

lengthening and shortening equals 34.62% and -33.78%, respectively) and diffusivity changes in

the proximo-distal direction as well as in the transverse plane. The demonstrated methodology

also provides an image processing toolbox for the thorough analysis of skeletal muscles. Final

results presented here can have clinical implications by contributing to explaining and improving

the treatment options of movement limitations.
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ÖZET

İSKELET KASLARINDA DİFÜZYON TENSÖR MANYETİK

REZONANS GÖRÜNTÜLERİ İLE DEFORMASYON ANALİZİ

İskelet kasları lif demetlerinin bir araya gelmesiyle oluşmuş, yüksek derecede düzenli

yapıya sahip dokulardır. Kas liflerinin belli doğrultuda dizilmiş olmaları, difüzyon tensör

görüntülemesi (DTG) üzerinden yapılabilecek analizlere uygun fizyolojinin varlığına işaret eder.

DTG, yaşayan organizmada dokuların yapısal özelliklerini su moleküllerinin doku içindeki

difüzyon eşyönsüzlüğüne ilişkin ölçümlerle ortaya çıkarır. Yerel lif yönelimleri kullanılarak

difüzyon ve gerilim özelliklerinin uzamsal dağılımının fiber yönünde deformasyon analizi sağlanır.

Bu tez, insan iskelet kaslarının kısa ve gergin (diz açısı sırayla 150◦ ve 180◦) pozisyonları

arasındaki deformasyon sonucu oluşan yerel difüzyon eşyönsüzlüğü ve gerilim değişimlerine

ilişkin bir model oluşturmayı amaçlar. Analiz için alt bacakta kaval kemiği kası lifleri seçilerek,

kas uzunluğu boyunca difüzyon eşyönsüzlüğü indisleri ve gerilim katsayıları hesaplanır, görselleş-

tirilir ve iç yapıdaki heterojenlikleri ortaya çıkarmak amacıyla modellenir. Sonuçlar, miyofasiyal

kuvvet iletiminin varlığını alt bacaktan yukarıya ve transvers düzlem üzerinde sarkomer uzun-

lukları (3 denek için maksimum %33.78 kısalma ve %34.62 uzama) ve difüzyon dağılımındaki

yerel değişimler ile kanıtlar. Uygulanan yöntemler ile iskelet kaslarının özelliklerini analiz

edebilmeye yarayan bir imge işleme yazılımı oluşturulmuştur. Sunulan sonuçların hareket

kabiliyetinde azalmanın nedenlerine ve tedavi yöntemlerine ilişkin önemli klinik çıkarımlara

katkıda bulunması beklenmektedir.
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1. INTRODUCTION

Diffusion tensor magnetic resonance imaging (DT-MRI or DTI) provides statistical and

physiological measures related to bodily structures, based on the random Brownian motion,

or diffusion, of water molecules. It is an in-vivo technique which maps the diffusion of water

molecules to reveal the microstructural architecture. Within organized fibrous tissue such

as brain white matter, cardiac and skeletal muscles, water diffuses anisotropically where the

diffusion rate is faster along the microstructural orientation. Principal diffusion direction (PDD)

based tractography algorithms reconstruct the tissue fibers and provide a frame of reference for

further analysis along the tracts.

Movement of the limbs between different positions occur because of the contractions and

lengthening of skeletal muscles. When a muscle undergoes any of the two states, the over-

all cross sectional area and length of the muscle are altered whereas muscle volume remains

constant. The alterations occur in all levels within the muscle complex; fiber bundles and indi-

vidual fibers, i.e. muscle cells comprised of sarcomeres arranged in series. Muscle contraction

or relaxation simultaneously occurs with force transmission and results in a deformation of the

microstructure. The nature of force transmission affects the deformation characteristics. From

the classical perspective, myotendinous junctions are widely accepted as the exclusive sites for

force transmission. This point of view has intramuscular and epimuscular implications on the

understanding of muscular mechanics. From the intramuscular aspect, muscle fibers are re-

garded as independently functioning units because mechanical connections between the muscle

fibers and the extracellular matrix are considered to exist only at fiber ends [1]. Therefore

in classical muscle mechanics, muscle force was measured by fully dissecting the target muscle

except for its innervention and blood supply, and only at one tendon exclusively. This approach

predicates that the muscle studied in situ is fully isolated from its surroundings and the muscle

force exerted at the tendon from which the measurements are taken is equal to the force exerted

at the other tendon [1]. Ex-vivo measurements performed on isolated muscles suggested that

muscles are independent units from their surroundings and that the length-force characteristics

of a muscle is unique to that muscle. However, intramuscular connective tissue stroma and

muscle fibers are connected to each other along fibers and it was shown that muscular force is
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transmitted within endomysial tunnels [2–4]. In addition to this intramuscular myofascial force

transmission, epimuscular myofascial force transmission occurs within direct and indirect inter-

muscular connections such as collagenous linkages between adjacent fibers and neurovascular

tracts, respectively, as well as extramuscular connections binding muscular and non-muscular

tissues [1,5]. Research concentrated on in vivo experiments show that, contrary to the classical

idealizations, myofascial force transmission affects the length-force characteristics of the muscle

by introducing proximo-distal force differences and heterogeneities in the distribution of strain,

i.e. relative lengthening or shortening, along sarcomeres in series and in parallel. Therefore

muscle relative position is said to play a major role in depicting the length-force characteristics,

which in turn means that these characteristics are not fixed properties of muscles [6, 7].

Recent findings have shown that local strains within muscles are much higher than global

strains imposed on them [8], which indicates the presence of epimuscular myofascial force

transmission contrary to the classical point of view. Modeling skeletal muscles in two distinct

domains (intracellular domain and extracellular matrix domain) using finite element method

(FEM) by elastically linking the respective meshes to account for the trans-sarcolemmal attach-

ments of the muscle fibers cytoskeleton and extracellular matrix (i.e. linked fiber-matrix mesh

model), the interaction between these domains and the significance of myofascial force trans-

mission can be investigated. It was shown that any missing link within the trans-sarcolemmal

connections or inadequate linking to the extracellular matrix result in deformed myofibers due

to the lacking of mechanical support and impairment of a pathway of force transmission by the

extracellular matrix, which in turn leads to a drop in muscle force. Furthermore, the force drop

becomes more dramatic if the impairment is located more towards the center of the muscle

model. Manipulating the linking stiffness at selected locations within the modeled muscle re-

sulted in varying local strains along muscle fibers as a consequence of the interactions between

fibers and the extracellular matrix [4]. In addition, mean sarcomere lengths were distributed

heterogeneously within individual fibers. Therefore both serial and parallel sarcomere length

heterogeneities are present within skeletal muscles. These discoveries have major clinical impli-

cations in the sense that conventional surgical techniques may have to be revised and improved

considering the findings. Because of the epimuscular connections, clinical dissection of target

muscles interfere with myofascial force transmission and the remaining connections can still

transmit muscle force to a high extent [6]. Surgeries to restore muscle function have to be per-
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formed while taking into account these newly introduced pathways, and that muscles are not

independent neither from their synergists nor muscular or non-muscular surroundings. Both the

mechanical mechanism of clinical interventions and the adaptation mechanisms after surgery

are affected by epimuscular myofascial force transmission [9]. Aponeurotomy, for instance,

which is the dissection of flat intramuscular tendon layers, was considered as an intramuscular

intervention to lengthen the muscle and/or reduce the muscle force, but now extramuscular

connections have to be taken into consideration as well if limited joint range of motion is to be

corrected [6, 10–12]. Moreover, it is possible to relate the causes of movement limitations due

to changes in extramuscular tissue microstructure, such as spastic paresis, with the epimus-

cular myofascial force transmission. Experiments performed on human spastic Gracilis muscle

prove that if activated alone, spastic muscle shows no abnormal mechanics representative of

joint movement disorder. On the other hand, simultaneous stimulation of other muscles as in

daily activities may change this situation [13]. Consideration of these indications and impacts

of epimuscular myofascial force transmission can improve the understanding and treatment

options of such conditions.

Studies on skeletal muscles using fiber tractography have revealed the diffusion charac-

teristics of fibers on specific local positions and the results have been presented using global

averages [14–16]. Studies involving DTI and strain measurements together have compared the

diffusion and strain distributions of skeletal muscles by means of analyzing the respective tensor

characteristics within local boundaries [7]. However, the assessment of global and local strains

using MRI techniques has not been performed along the direction of muscle fibers, which is the

physiologically important variable.

The aim of this study, from the biomechanical regard, is to assess the deformation in

skeletal muscles by measuring the spatial distribution of local and global strains along the

direction of muscle fibers. DT-MRI data is used not only to construct the fiber tracts for

strain analysis but also to provide diffusion related measures revealing the changes in the

spatial distribution of diffusion characteristics along skeletal muscle fibers as a result of any

deformation. The goal of this work from the engineering regard includes building an image

processing toolbox for the analysis of skeletal muscle architecture. The combined diffusion

and strain analyses can lead to a better understanding of biomechanical properties of skeletal
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muscles and thus improve clinical applications and treatment of movement limitations.

This thesis is organized as follows: Chapter 2 provides the background information on DT-

MRI and the anatomy of skeletal muscles, followed by a review of previous studies involving

DT-MRI of skeletal muscles and the assessment of muscular force transmission. Chapter 3

describes the methodology and tools used for the experiments. Results are delivered in Chapter

4. Discussion of the results are presented in Chapter 5, with the concluding remarks stated in

Chapter 6.
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2. BACKGROUND

DTI involves noncollinearly directed diffusion weighted image (DWI) measurements in at

least six directions, where the pulse sequence is designed to be sensitive to the directionality of

diffusion [15,17]. DTI studies have been used to reveal microstructural characteristics of various

parts of the body, including the brain, cardiac muscles, kidney and skeletal muscles, where

diffusion tensors have been shown to represent cell geometry [18]. Especially in fibrous tissues

for which cellular fibers elongate in a dominant direction, the diffusion of water molecules is

highly anisotropic and this directionality can be detected from the eigen-analysis of the diffusion

tensor. Water molecules tend to diffuse readily along the principal fiber axis which conforms

with the principal eigenvector [18–20].

2.1. Diffusion Tensor Magnetic Resonance Imaging

Diffusion tensor magnetic resonance imaging emerged as a new nuclear magnetic resonance

(NMR) imaging technique, in which each voxel comprises an effective diffusion tensor [21]. Plain

diffusion MRI uses a single scalar apparent diffusion coefficient at each voxel from a series of

diffusion weighted images (DWIs) [22]. However, in case of molecular displacements in multiple

directions, or in other words, anisotropy, diffusion MRI measurements become inadequate as

diffusion can no longer be characterized in a scalar setting. Instead, a three dimensional tensor

D is required to describe the molecular mobility along each direction and correlation between

these directions [23]:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.1)

The diffusion tensor is symmetric and positive semi-definite. To construct a full diffu-

sion tensor, diffusion weighted images along at least six non collinear directions are therefore

required. These images can be collected using diffusion sensitized MRI pulse sequences such
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as echoplanar imaging (EPI) [23]. Also a non diffusion weighted image is needed for which the

b-factor, or b = 0.

The effect of diffusion on the MRI signal is an attenuation A, which depends on D and

on the b-factor, and can be expressed as follows in an isotropic medium:

A = exp(−bD) (2.2)

The presence of anisotropy introduces the second-order tensor along with the symmetric

second-order b-matrix instead of the scalar b-value and equation 2 along a single gradient

direction becomes:

A = exp(−bxxDxx − byyDyy − bzzDzz − 2bxyDxy − 2bxzDxz − 2byzDyz) (2.3)

Given the at least six attenuations obtained from DWI and b = 0 intensities along with the

b-matrix at each voxel, the distinct elements of the diffusion tensor can be computed.

The diffusion tensor can be visualized as an ellipsoid where the three principal axes repre-

sent the eigenvectors of the tensor and the associated eigenvalues depict the relative diffusivity

along each direction. In this setting, the key to DTI is that water readily diffuses along the

direction associated with the greatest eigenvalue and this direction concurs with the orientation

of highly organized tissue microstructure. Examples to such organizations are present within

the brain white matter [19], cardiac muscles [24] and skeletal muscles [15, 25]. All of these

structures are composed of fibrous tissue extending along a principal direction, within which a

typical diffusion tensor would appear prolate rather than oblate, suggesting a microstructural

orientation.
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Figure 2.1. The diffusion ellipsoid characterized by the tensor eigenvectors and the associated

eigenvalues [26].

The mathematical representation of the eigenanalysis of the diffusion tensor is:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 =


...

...
...

~v1 ~v2 ~v3

...
...

...



λ1 0 0

0 λ2 0

0 0 λ3



· · · ~v1 · · ·

· · · ~v2 · · ·

· · · ~v3 · · ·

 (2.4)

where λ1 > λ2 > λ3 are the eigenvalues of the tensor and ~v1, ~v2 and ~v3 are the associated

eigenvectors. ~v1 is also referred as the principal diffusion direction.

DTI is an advantageous modality as it requires short acquisition time, provides infor-

mation about diffusion orientation and anisotropy and examination is well tolerated by pa-

tients [27]. The information about the degree of anisotropy within the diffusion ellipsoid can

be reduced into a single scalar for easier interpretation, referred as a diffusion anisotropy index

(DAI). There are several proposed DAIs to measure and compare diffusion statistics. A basic

DAI is the apparent diffusion coefficient (ADC) or mean diffusivity (MD), which accounts for

the average diffusivity of a certain voxel, with the effects of anisotropy averaged out. Another

common DAI called the fractional anisotropy (FA) is a relative measure specifying what frac-

tion of the total diffusion described by D is anisotropic. FA index varies between 0 (isotropic
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diffusion, i.e. λ1 = λ2 = λ3) and 1 (completely anisotropic diffusion, i.e. λ1 � λ2 = λ3 = 0).

FA =

√
3

2

√
(λ1 − λav)2 + (λ2 − λav)2 + (λ3 − λav)2√

λ2
1 + λ2

2 + λ2
3

(2.5)

ADC =
λ1 + λ2 + λ3

3
(2.6)

where λav refers to ADC itself. It must be noted that these DAI are rotationally invariant,

i.e. they do not change when the tensor is rotated. Hence they can be calculated for any

tensor orientation, without tensor diagonalization. As the invariants are independent of tissue

orientation with respect to the static magnetic field, comparisons between different subjects

are allowed [28].

The microstructural characteristics of organized soft fibrous tissue can be revealed by

tracing the PDD along voxels. Fiber tract trajectories are formed from consecutive principal

diffusion directions as PDD confirms with tissue orientation. Aside from the advantages, DTI

has several drawbacks where complex fiber architecture is present, such as the crossing, branch-

ing and merging fibers within the brain white matter. Tractography results are vulnerable to

severe artifacts such as noise, motion and eddy currents. In addition, DTI resolution cannot

be reduced below the physical cross section of the fiber since lower voxel sizes cannot account

for the confined diffusion characteristics within the organized tissue [19,29]. The low signal-to-

noise ratio (SNR) and resolution problems have been addressed with faster and more powerful

gradients. Although DTI is a hypothesis based method and there are no gold standards for

tractography results, proper acquisition schemes and enhanced tractography algorithms yield

reliable fiber reconstruction from the images [30,31].

2.2. Anatomy of Skeletal Muscles, Human Leg and Calf Muscle

Skeletal muscles possess a high degree of structural and functional organization, which

helps them build up force, produce mechanical actions and shorten. This organization is also

highly structurally anisotropic as the generation of mechanical events which have a direction
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and magnitude requires such anisotropy.

Skeletal muscles are organized in muscle fiber units that are bundled together in packs of

hundreds to thousands. These fibers are mostly cylindrical in shape with diameters between 20

and 70µm and have multiple nuclei. The fibers stacked on top of each other generally originate

from stiffer structures, usually at proximal ends, and insert into more compliant and usually

at distal ends. Each fiber consists of myofibrils, which are the contractile units containing

regulatory, contractile and structural protein filaments. Interconnecting tubules surrounding

the myofibrils make up the sarcoplasmic reticulum. All of these structures lay parallel to the

longitudinal axis of the muscle fiber. The directional histology and morphology of skeletal

muscles allow DTI measurements to reveal the characteristics of their architecture [32].

Human calf muscle is located at the back of the lower leg and contains the anterior crural

department where the foot dorsiflexors are located. An axial cross section of the calf muscle

contains tibialis anterior muscle (TA), soleus muscle (SOL) and the medial and lateral heads

of the gastrocnemius muscle (GM and GL, respectively).

Figure 2.2. Axial cross section of the human calf muscle from a 31-year-old female subject [16].

Human TA muscle has a bipennate structure optimally designed for force production, where

the fibers of TA insert into a central aponeurosis with an angle referred as the pennation angle,

formed between the local tangent to the muscle fibers and the local tangent to the aponeurosis.

TA fibers elongate along the sides of the aponeurosis on the vertical axis [15,16].
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2.3. Literature Review

2.3.1. DT-MRI of Skeletal Muscles

Studies about the biological, histological and morphological characteristics of skeletal

muscles based on DTI are concentrated on fiber tractography and DAI measures along the

computed tracts. It has been shown that in vitro and in vivo tracking of muscle fibers are

feasible, and can be used to investigate muscle structure and function relationships. Unipennate

and bipennate architecture of the calf muscle groups could be identified and fibers could be

tracked from aponeurosis to aponeurosis. Fiber tracts of the TA muscle, for instance, show

the bipennate insertion of the muscle fascicles on the distal aponeurosis and the unipennate

arrangement at the more proximal location, which conforms to the known fiber organization of

the muscle [15, 33].

Significant changes in diffusional characteristics in terms of FA and ADC were reported

within the human calf muscle by passive shortening and stretching. An increased mean diffu-

sivity in the shortened muscle groups is revealed, physiologically coinciding with an increased

cross-sectional area of the muscle fiber. From plantarflexion to dorsiflexion, the changes in FA

and ADC were ascribed mainly to λ2 and λ3 whereas λ1 showed no significant change, since λ1

is independent of the muscle diameter. λ2 and λ3, on the other hand, represent the diffusivities

along the directions perpendicular to the fiber orientation, and any increase or decrease in the

fiber cross section would alter the diffusivity along the cross sectional direction proportional to

the change. Shortening of the muscle fiber yields an increased cross section and a decreased

length since during any activity muscle volume remains constant, and an increased cross section

results in facilitated diffusion of water in radial directions. Stretching of the muscles caused

elevated FA and decreased MD, on the contrary, passive shortening decreased FA and increased

MD [16].

Many other measurements can help inferring tissue microstructure characteristics, such

as comparing the eigenvalues with each other during passive flexion and extension of the ankle.

Previous studies on cardiac muscles revealed that λ1 corresponds to the fiber direction, λ2

corresponds to the direction parallel to myocardial sheets, and λ3 corresponds to the direction
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that is normal to the sheets [34]. Experiments on the human calf muscle have analogously

attributed λ2 to the direction along sheets of muscle fibers within the endomysium (the region

between fibers) and strong correlations between the physical cross-sectional area (PCSA) of the

muscle and λ3 were observed [35]. PCSA is an important measure regarding muscle architecture

and is directly proportional to the maximum tetanic tension generated by the muscle. It

theoretically corresponds to the sum of the cross sections of all fibers in a muscle, and can be

expressed as:

PCSA =
musclemass · cosα

ρ · fiber length
(2.7)

where PCSA is given in mm2, muscle mass is in grams and fiber length is in millimeters. ρ is the

muscle density in g/mm3 and α is the surface pennation angle [36]. PCSA and fiber length, with

their proportionalities to muscle force and velocity, respectively, are the main two characteristics

that govern the functional attributes of a muscle. The combination of a correlation between λ3

and PCSA, along with FA and other statistics from the remaining eigenvalues help characterize

diffusion properties of different muscle groups. In addition, measurements on the orientation

angle between the main fiber axis and the vertical axis, and the angle in the axial plane

between the main fiber axis and the horizontal axis reveal clear differences between muscle

groups, depending on the anatomical shape of the musculature. DTI is therefore capable of

distinguishing anatomically and functionally different muscles at the same region from each

other.

DTI plays an important role in distinguishing healthy and injured tissues as well. It was

proposed that an injury such as a muscle tear or hematoma in human skeletal muscle disrupts

the microstructural integrity and therefore can be detected from the alterations in the measured

diffusion statistics. Indeed, injured tissue diffusion tensor eigenvalues were found elevated

compared to healthy controls. Similarly, ADC was increased whereas FA was decreased. The

results correlate well with the theoretical assumption that injuries would disrupt the muscle

cell membranes, increase water diffusion and hence reduce the anisotropic fraction of the total

diffusion [37]. Another detailed analysis based on skeletal muscle ischemia-reperfusion injury

shows DTI can be used to assess the induced damage. Ischemia-reperfusion damages cause

edema, infiltration of inflammatory cells and a disruption in the normal muscle architecture.
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For equivalents of 50 minutes and 4 hours of ischemic conditions and their following reperfusions

in TA, ADC was increased during the ischemic period and decreased during reperfusion. On the

contrary, FA was decreased during the ischemic period and increased during reperfusion. The

duration and severity of ischemic stress affected the changes in the eigenvalues; for mild ischemia

all eigenvalues decreased but the decrease in λ2 and λ3 were more dramatic compared to λ3. In

both cases all eigenvalues increased during reperfusion, with λ3 showing the largest increase.

Twenty four hours after the reperfusion damage, no correlation between λ1 and histological

damage in terms of interstitial fluid accumulation and infiltrates was detected, however, λ2 and

λ3 were correlated with interstitial fluid accumulation and the percentages of damaged and

round cells. λ3 also correlated with the general damage score and the amount of infiltrates.

This finding suggests that λ2 and λ3 have different structural significances [32, 37]. Another

research suggests that λ2 and λ3 have distinct biological bases, based on the fact that induced

muscle atrophy in rat sciatic nerve caused an increase in FA, decrease in λ2 after 4 weeks and

a decrease in λ3 after 8 weeks, although no correlation between fiber diameter change and λ2

and λ3 was detected [38].

It is qualitatively and quantitatively shown that in vivo DT-MRI fiber tracking and

direct anatomical inspection produce equivalent results in measuring the pennation angle (θ).

Mechanical models of muscle function require knowledge of muscle architecture. Noninvasive in

vivo imaging modalities rule out the limitations of ex vivo architecture measurements such as

artifacts of fixation or unknown health conditions. Ultrasound measurements, as an example,

allow real time assessment of fascicle length and pennation angle changes, however are restricted

to one region and cannot cover regional variations in pennation within a single measurement

[18]. In spite of the lower resolution, DTI rules out the mentioned disadvantages and allows

the detection of within-muscle heterogeneity, simultaneous capturing of multiple members of a

synergistic group of muscles, fiber length, pennation angle and PCSA measurements throughout

a large volume of data [18].

Positioning a region of interest (ROI) on a single DT image provides cross sectional

measurements of FA, ADC and other diffusion statistics. However, this method only covers a

small volume of the muscle at a fixed level. Tractography, on the other hand, allows for the

inspection of muscular microstructure within full fiber length by extracting the fibers through
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a single ROI [39].

The arrangement of skeletal muscle fibers makes them an ideal subject of DTI based

fiber tractography, because unlike the white matter tracts in the brain, skeletal muscle fibers

do not kiss, cross or merge. Rather, they originate from and insert into specific aponeuroses,

bones or fascia and are aligned parallel to each other within their unipennate, bipennate or

multipennate structures. For example, TA runs from either the tibia or the superficial fascia of

the anterior compartment to the central aponeurosis. Such knowledge of start and end points

make it possible to carry out a quantitative assessment of fiber tracking. The accuracy of the

tractography results are affected by intrinsic muscle properties, image acquisition and artifacts

such as movement and noise, and the tractography algorithm itself. Again for the TA muscle, it

is possible to design the algorithm to choose the tract seeds from a mesh definition of the central

aponeurosis and set the proper stopping criterion essentially depending on length, curvature and

FA threshold. The aponeurosis mesh can also be used as a mask defining the muscle boundaries.

Fibers to be excluded have either too few steps to form a feasible tract, tracked to the wrong

side of the aponeurosis or ended prematurely due to very high curvature or FA values outside

the TA range. Reasonable TA tracts are expected to extend fully from the aponeurosis to the

muscle border, with the exception of a few voxels due to partial volume artifacts. Anatomical

MR images with higher resolution than DTI provide more certain boundaries, therefore it is

possible for the tracts to end just before reaching the exact boundary. Tracts are typically

formed forward from a seed point, following the PDD along consecutive voxels until current

FA extends a pre determined range or successive points have higher curvature than a preset

threshold. Multiple experiments carried out plantarflexion, neutral position and dorsiflexion

of the leg have shown a suitable FA range to be (0.15, 0.75) and a maximum curvature of

45◦ for fiber termination [14–16]. The repeatability of DTI-based fiber tracking in skeletal

muscles is confirmed by DAI, pennation angle and fiber tract length measurements through

four acquisitions on two days that allowed for between acquisitions in identical positions, within

day acquisitions after repositioning and between days analyses [14,40].
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2.3.2. Muscular Force Transmission

Skeletal muscles are surrounded by a fascia, which is a flat sheet of connective tissue sepa-

rating different tissue layers, and also a further connective tissue known as the epimysium. The

muscle itself consists of smaller structural units called fascicles, in which muscle bundles are

formed from muscle fibers. Each fascicle is surrounded by perimysium, again a type of connec-

tive tissue. The individual muscle fibers exist within a cell membrane called the sarcolemma,

and each fiber is surrounded by the endomysium, a thin sheet of connective tissue. Muscle

fibers operate within this endomysial structure resembling tunnels. The smallest contractile

unit in a muscle is referred as the sarcomere, composed of myofilaments responsible from the

muscle function. Sarcomeres are arranged in series along a muscle fiber, and in parallel within

adjacent fibers of fascicles and bundles.

Muscle activity is based on the generation and transmission of force, resulting in length

changes of muscle units under constant muscle volume. Length-force and force-velocity char-

acteristics are determined to investigate the structure and function of distinct muscles. In clas-

sical muscle mechanics, myotendinous junctions located at the ends of muscle fibers and the

aponeuroses are considered to be the exclusive sites of force transmission. In such myotendi-

nous transmission, force is transmitted to bone without leaving the muscle-tendon complex

bounded by the epimysium (muscle fascia) and epitenon (tendon fascia). Within the classical

approach of muscle activity studies, muscle force was measured by fully dissecting the target

muscle, except for its innervation and blood supply, and the muscle force was measured at one

tendon. This approach isolates the muscle from its surroundings and implicitly assumes that

the force measured at one tendon is equal to the force exerted at the other end, and length force

characteristics of the studied muscle are unique to that muscle. On the contrary, recent in vivo

studies in which the muscle is and its surroundings are left intact, show that muscle relative

position is important and the length force characteristics are not unique [9]. Moreover, the

forces exerted at the origin and insertion of a muscle are not equal, and in the microscopic level

sarcomere lengths show remarkably heterogeneous distribution. These results are linked to a

different pathway of force transmission called the myofascial force transmission, which occurs

between all muscles within a limb segment.
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The notion of myofascial force transmission points out that muscles are not mechanically

independent units from each other or their surroundings, the force generated within sarcomeres

of an antagonistic muscle may be exerted at the tendon of target muscle or its synergists [6].

The role of direct and indirect intermuscular connections in muscular force transmission are

highlighted in recent studies indicating the force is not exclusively transmitted to the origin or

insertion of the muscle fibers but also onto the endomysium and further onto the intramuscular

connective tissue stroma, where endomysial, perimysial and epimysial tunnels within which

muscle fibers, fascicles and the whole muscle are active. Less than half but substantial amount

of the total force transmission occurs myofascially [6].

Intramuscular myofascial force transmission can be present in the form of shearing, where

the intramuscular stroma acts as a single deformable element that lengthens and shortens

during contractions, and the total diameter of the element increases or decreases because the

muscle volume remains constant. The force transmission between a muscle and its immediate

surrounding tissues is epimuscular myofascial force transmission. Epimuscular myofascial force

transmission is either intermuscular, between linked intramuscular stromata of two synergistic

muscles, or extramuscular, from a muscle onto extramuscular tissues. Any myofascial force

transmission between antagonistic muscles or muscle groups involves extramuscular myofascial

connections.

Leaving the epimuscular connections intact and measuring the forces exerted at both prox-

imal and distal tendons yield proximo-distal force differences in length force characteristics of

a muscle. In fully isolated conditions ruling out epimuscular force transmission, the proximally

and distally directed forces are expected to be equal. Epimuscular force transmission imposes

a net additional load onto the muscle in either direction. Experiments performed on the ex-

tensor digitorum longus (EDL) muscle of the rat in intact condition (TA and extensor hallucis

longus (EHL) present as synergistic muscles) and with extramuscular connections exclusively

(TA and EHL removed) prove that muscle optimal length is different for the two cases as well

as the amount difference between the proximo distal forces. The shift of muscle optimal length

suggests an increased heterogeneity in the length of sarcomeres. In determining the sarcomere

length, the interaction of sarcomeres in series has to be taken into consideration along with the

parallel arrangement and the forces exerted onto the sarcomere by the extracellular matrix. In
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Figure 2.3. Effects of different myofascial components of epimuscular force transmission on

EDL isometric muscle length-force characteristics. The length-force characteristics of EDL

with intact inter and extramuscular connections is compared to those of the isolated muscle,

with TA and EHL removed and only extramuscular connections present [9].

addition, epimuscular loads distributed non uniformly onto the muscle epimysium affect the

sarcomere lengths, again, in a non uniform fashion. Because any sarcomere shortens until it

equilibrates with the imposed load, sarcomeres exposed to myotendinous plus myofascial loads

are expected to be longer than sarcomeres exposed only to a similar myotendinous load, since

myofascial load is not exerted homogeneously. Fiber strain analyses performed on EDL esti-

mate different local sarcomere lengths within fibers. Further research on gastrocnemius shows

that although the global strain within a muscle is zero in isometric conditions, much higher

local strains may occur due to myofascial connections. Moreover, this local strain distribution

is not limited to GM itself but was carried onto the synergistic soleus (SOL) muscle. In fact,

myofascial force transmission is active for all muscle groups within the lower limb, regardless if

they are antagonistic or synergistic muscles [7].

Upon any length change, the position of the muscle with respect to the fixed bony struc-

tures will change, as well as amount of direct intermuscular connections of adjacent muscles.

These, in turn, lead to alterations in extramuscular connections and the epimuscular loads.

Therefore along with muscle length, relative position becomes a major determinant of force
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Figure 2.4. Distributions of fiber strain along EDL with extramuscular connections

exclusively. Positive and negative strains indicate lengthening and shortening of the

sarcomeres with respect to their original length, respectively. Sarcomeres arranged in serial

distribution are considered for analysis [9].

and hence it is crucial to enhance in vivo methodologies in skeletal muscle characterization.

2.3.3. DT-MRI and Strain Tensor Analyses on Skeletal Muscles

The discovery of heterogeneously distributed local fiber strains along proximal and distal

ends of human GM muscle is a major influence for the need to carry out advanced research

studying the strain in the direction of muscle fibers, representing length changes of sarcomeres.

Studies have indicated that the intramuscular patterns of strain development during contrac-

tions are not only spatially heterogeneous but also multidimensional, hence the local fiber

geometry must be taken into consideration [7]. The resulting strain in any muscle activity can

be characterized in the form of a symmetric second-order tensor just like the diffusion tensor,

where the diagonal elements represent the normal and off-diagonal elements represent the shear

strains at a given voxel. The eigenanalysis of the strain tensor reveals the principal strain di-

rections and the associated magnitudes, where the direction of the eigenvector associated with

the largest positive eigenvalue, εP , is the direction of maximum elongation and denoted as ~uP

and the direction of the eigenvector associated with the negative eigenvalue having the largest

absolute value, εN , represents the direction of maximum shortening and is denoted as ~uN .

In both superficial and deep compartments of human TA muscle, the direction of εN
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was closest to, but deviated from, the fiber direction. The elevation angle for ~uN differed

significantly from the elevation angle of ~v1 but their azimuth angles were almost the same. The

direction of εP was mostly closest to ~v2, with their elevation angles again significantly different

yet, their azimuth angles were matching [41].

The directional strain analysis is highly informative on the structural and functional

characteristics of the muscle. For instance the intercompartmental differences between εP and

εN are likely to emerge from the difference between the material properties of the fiber origins in

the superficial and deep compartments of TA, since the pennation angles and fascicle lengths are

similar and both sets share a common aponeurosis and tendon of insertion [7]. It is known that

the superficial compartments originate from a more compliant structure. Most importantly, the

reported differences in strain magnitudes point out to developed shear strains on the central

aponeurosis.

Another indication of shear stress within the muscle is highlighted from the fact that ~uN

and ~v1 are not colinear, where ~v1 parallels the fiber direction. The deviation of ~uN away from

~v1 was attributed to the heterogeneity in fiber length and pennation within the superior and

inferior portions of TA itself [41–44]. The close alignment of ~uP and ~v2 may suggest the existence

of some higher order aspect of muscle architecture in determining the principal elongation

direction, but the details of such proposed relationship is yet to be inspected. The comparison

of diffusion and strain tensor elements connect the effects of myofascial force transmission within

the structure-function relationship of skeletal muscles in vivo. This connection constitutes the

main biomechanical basis for this thesis.
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3. METHODOLOGY

Muscle deformation assessment is carried out using two types of analyses involving the

spatial distribution of diffusion and strain characteristics within the base and deformed con-

figurations of the lower leg. The main two components constructing the base of both analyses

are the tractography process, which constitutes the coordinate frame of spatial analysis, and

the displacement field which maps the deformed configuration voxels onto the base configura-

tion to explore the changes in the diffusion characteristics and the resulting strain from the

deformation.

3.1. Data Loading and Object Representation

In order to investigate both the diffusion and strain statistics along the skeletal muscles

within different positions and contraction schemes of the leg, two separate datasets are needed.

Both MRI acquisitions are performed on the same physical segment on the leg and the only

difference in the protocol is that in one the knee is bent and the leg is flexed with 150◦ angle

between femur and tibia, and in the other the leg is extended as the angle is brought to 180◦.

Each volume consists of the same number of axial slices of identical size stacked on top of each

other, with the resolutions of both of the volumes also identical. A typical diffusion weighted

image (DWI) set consists of G continuous stacks of N slices each, where G represents the

number of gradient directions in acquisition plus one (non-directional b = 0) and N is the

number of anatomical slices constituting the volume. In other words, each of the N slices have

G number of images, G − 1 of them are directional. In choosing the gradient directions, no

two directions should be parallel and no four should be coplanar. As stated before, at least

six directions are needed for the construction of the diffusion tensor. If any three vectors are

coplanar then the remaining vectors must be linearly independent. It is generally optimal to

choose the gradient directions so as to separate uniformly in space and there is no universally

accepted way to compare the effectiveness of different sampling schemes [17].

Once the data is loaded, the diffusion tensors are constructed using the attenuation Equa-

tion 1.2 and 1.3. Each volume is stored in a DTIData object which can hold the following
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Figure 3.1. Schematic representation of the experimental setup within the MRI machine.

Subject position is prone with the ankle angle fixed to 90◦. Undeformed and deformed states

represent the flexed and extended configurations, respectively. Undeformed knee joint angle

≈ 180◦, deformed knee joint angle ≈ 150◦ [6].

variables for:

(i) For each voxel:

• Diffusion tensor elements for each voxel: [DxxDyyDzzDxyDxzDyz]

• Diffusion tensor eigenvalues for each voxel: λ1, λ2, λ3

• Diffusion tensor eigenvectors for each voxel: ~v1, ~v2, ~v3

• Strain tensor elements for each voxel: [E11E22E33E12E13E23]

• Strain tensor eigenvalues for each voxel: ε1, ε2, ε3

• Strain tensor eigenvectors for each voxel: ~u1, ~u2, ~u3

• Displacement vector (for mapping of voxels)

• Scalar indices FA, ADC

(ii) For the whole data:

• Visualization volume (b0 or anatomical MRI)

• Fiber tracts

Data size, resolution and gradient encoding scheme with the b-values are read from the
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data and stored.

3.2. Displacement Field Computation

The displacement field u is the 3D vector field which maps the position of any base (flexed

position) voxel to the corresponding deformed (extended position) as in Figure 2.1. In order

to compute the displacement field, DT and MR images of volumes of both configurations are

used. Including MR images in the computations is beneficial because of their higher resolution,

which yields more accurate mappings of voxels.

Figure 3.2. The geometric representation of the mapping between the base (flexed) and

deformed (extended) configurations of the data. u is the displacement vector [45].

The first step of the mapping procedure is aligning the DTI and MRI datasets (shown

as transformations ψb and ψd in Figure 3.3 for the mapping of the base and deformed con-

figurations, respectively) using a landmark based affine transformation to compensate for any

possible motion effects between DTI and MRI acquisitions. Following this alignment stage,

the direction convention of MR images were matched with that of the DT images, MRI vol-

umes were cropped to contain the physical space of DT images with a ±30mm buffer zone. To

prevent data loss, spacing was left unchanged. All alterations performed on MR images were

applied simultaneously to minimize resampling artifacts.

After aligning the DTI and MRI datasets, the MRI dataset of the deformed configuration

was registered onto the MRI dataset of the base configuration by a deformable registration
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algorithm, denoted as T in Figure 3.3, which constitutes two steps: a rigid registration for

bulk motion and an elastic stage using the Demons algorithm [46]. The first step used sum of

differences algorithm with a 4 × 4 rigid transformation matrix. The rigidity assures that no

strain is imposed during registration. The output transform of step one was used to obtain the

vector field of displacements, which was used as an initial guess in the second step, elastically

deforming the images for further matching. The shape change between the two configurations

is addressed within this stage, hence all the strain is imposed in the second step. The final

result (depicted as transformation T ∗ in Figure 3.3) is the displacement field u mapping voxel-

to-voxel motion from the base to the deformed MRI configurations, which also maps the base

DTI configuration to the deformed DTI configuration, only at a higher resolution.

Figure 3.3. Flowchart of the transformations involved in the displacement field computations.

DTI and MRI alignment of the base and deformed data are denoted as ψ1 and ψ2,

respectively. MRI to MRI registration is shown as T ∗. The final mapping is denoted as T .

Since the DTI and MRI datasets were aligned previously, high resolution displacement

field obtained from MRI datasets can be used to compute the displacement of any voxel in DT

images.

3.3. Deformation Field and Strain Tensor Field Computation

In continuum mechanics, deformation refers to the change of metric properties of a body.

This change can be exemplified as the length change of any curve within the body from a

reference configuration to a deformed configuration. If there is no length change between the

two placements, i.e. there is no relative displacements between the body particles after the

displacement of the continuum, then only rigid body motion is present and no deformation
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occurs. For deformation analysis, the position vector of any particle in base (X) and deformed

configurations (x) are referred to as the material and spatial coordinates, respectively. De-

formation analysis can be carried out in terms of either the material or spatial coordinates,

where our calculations are based on the material coordinates, also referred as the Lagrangian

description.

In continuum mechanics, strain is a representation of deformation referring to the relative

displacement of particles with the rigid body motions excluded. This exclusion is ensured by

calculating strain as a quantity relative to a reference length, hence strain measures point out

how much a given deformation differs locally from a rigid body deformation [47]. Strains are

in general expressed as tensor quantities like the diffusion tensor, and can be decomposed into

its normal and shear components. A typical strain tensor is depicted as:

E =


e11 e12 e13

e21 e22 e23

e31 e32 e33

 (3.1)

with the elements of the diagonalized tensor representing the normal strain, i.e. strain in

the orthogonal directions constituting the reference frame of the tensor, and the off diagonal

elements represent the shear strains, which can be interpreted as the sliding of layers over one

another and are represented as the change in angles between any two of the originally orthogonal

segments intersecting at a point. Biological soft tissue deformations involve arbitrarily large

rotations and strains where the undeformed and deformed configurations of the continuum are

significantly different, unlike materials exhibiting elastic behavior such as concrete or steel.

This type of large deformations are classified as components of finite strain theory, on which

the following computations are based [45].

The transformation

x = X + u (3.2)

maps the position of the base voxel P (X, Y, Z) to P (x, y, z). The displacement vector in
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Lagrangian description is hence:

u =


u1

u2

u3

 =


x−X

y − Y

z − Z

 = x−X (3.3)

where (x, y, z) and (X, Y, Z) correspond to the same physical location within the two data. If

a computed point in the deformed configuration is off-grid in the low resolution DT images,

linear interpolation is performed to obtain the displacement vector.

The derivatives of (x, y, z) with respect to (X, Y, Z) arranged in Jacobian format consti-

tute the deformation gradient tensor:

F =
∂(x, y, z)

∂(X, Y, Z)
=


∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

 (3.4)

The material displacement gradient tensor with respect to the reference configuration is repre-

sented as:

∇u = F− I =


∂x
∂X
− 1 ∂x

∂Y
∂x
∂Z

∂y
∂X

∂y
∂Y
− 1 ∂y

∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z
− 1

 =


∂ux

∂X
∂ux

∂Y
∂ux

∂Z

∂uy

∂X

∂uy

∂Y

∂uy

∂Z

∂uz

∂X
∂uz

∂Y
∂uz

∂Z

 (3.5)

Green-Lagrange strain tensor is one of the multiple representations of material strain, conve-

nient in expressing large local deformations:

E =


e11 e12 e13

e21 e22 e23

e31 e32 e33

 =
1

2
(FTF− I) (3.6)

Rotation of the strain tensor can be used to calculate principal strains by the removal of

shear effects. The first and third principle strains represent local lengthening and shortening,
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respectively [6, 7].

3.4. Tractography

The term tractography refers to the technique used to construct the fibrous architecture

within bodily structures using DTI data. The elements of computer based image analysis for

this construction here are the fiber tracts which are three dimensional parametrized curves pro-

ceeding iteratively, where complete tracts are formed by the interpolation of consecutive tract

voxels. Fiber tracts throughout the TA muscle are constructed using the 4th order Runge-Kutta

integration based streamline algorithm described in [48]. The intermediate points following the

seed point of a tract are determined by interpolating the DTI data in three dimensions using a

linear Lagrange interpolating polynomial and the major diffusion vector is then calculated as

from a continuous, normalized vector field [48]. The step direction to each new tract point is

thus computed by recursively computing the principal diffusion direction of the voxels involved

in the interpolating polynomial and normalized step vectors connect the consecutive points of

a tract.

Figure 3.4. The output tract of a PDD based streamline tractography algorithm. Principal

diffusion directions are the long axes of the diffusion ellipsoids colored according to tensor

orientation (red for horizontal axis, blue for vertical axis, green for surface normal

direction) [49].

An individual tract starts from a seed voxel and proceeds forward and backward in two

distinct loops until a stopping condition is reached in any direction. The forward and backward
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tracts are merged at the end, forming a complete tract from a single seed point. The step size

at each iteration is chosen as half of the smallest voxel dimension. Seed points are determined

within a certain range of FA values, the whole data FA is sorted from largest to smallest and

the seed points with the highest FA values are picked one by one, until all have been traced

and no more seeds are left to process. The typical FA seed range is experimentally determined

as [0.1, 0.5] along the TA fibers. The algorithm stops and returns a complete tract if any of the

following conditions occur while proceeding:

• Current FA value exceeds the defined range,

• Current curvature exceeds a defined threshold,

• Current tract length exceeds a defined maximum tract length,

• Current voxel reaches the data boundaries.

where the curvature is the angle (in degrees) between the previous direction and the step

direction within the algorithm. Once a tract is completed, it can be stored in the DTIData

object.

In order to carry out an analysis of the spatial distribution of strain and diffusion char-

acteristics, the fiber tracts within a selected region of interest are chosen as a fiber frame of

reference. It was stated before that the DTI based fiber tractography outputs correlate with the

local fiber orientations, therefore the fiber tracts elongating through a given region of interest

represent individual skeletal muscle fibers. For analysis of the strain and diffusion characteris-

tics along the tracts, the direction of the tract at a voxel of interest has to be computed. This

direction highly correlates with the principal diffusion direction, since the principal diffusion

direction of a voxel influences the tractography step, however, the two directions are not nec-

essarily identical. The tract direction at a given tract voxel is determined as the normalized

tangent of the vector joining the backward and forward adjacent points to that voxel, and

denoted as ~t.



27

3.5. Diffusion Analysis

The parameters involved in the analysis of the spatial distribution of diffusion character-

istics in base configuration are the diffusion anisotropy indices FA, ADC (as in Equations 2.5

and 2.6, respectively) and the linear diffusion coefficient (LDC), which is the scalar diffusion

parameter along the tract direction and is computed as:

LDC = ~tTD~t (3.7)

FA measures the fraction of anisotropy at a given voxel and ranges between 0 (completely

isotropic diffusion) and 1 (completely anisotropic diffusion), ADC or the mean diffusivity rep-

resents the total diffusivity with the effects of anisotropy averaged out, LDC represents the

diffusivity along the tract direction.

While these three indices computed along the base configuration tracts represent the

diffusion characteristics of the flexed muscle fibers, a comparison based on the same indices of

the deformed configuration fiber tracts is carried out in terms of the ∆ parameters. Specifically,

for each voxel in the base configuration, the corresponding voxel in the deformed configuration

is located using the displacement field as in Equation 3.2. The difference of FA, ADC and LDC

values between extended and flexed configurations, respectively, are computed to determine the

amount of change in the spatial distribution of diffusion characteristics. LDC parameter of a

deformed voxel is calculated along the direction of the tract passing though the deformed voxel.

This small tract consisting of a minimum of three points is formed by choosing the deformed

voxel of concern as the seed point. The deformed tract tangent is the normalized adjoining

vector of the previous and following tract voxels.

∆FA = FAext − FAflx

∆ADC = ADCext − ADCflx

∆LDC = LDCext − LDCflx

= ~tTextDext
~text − ~tTflxDflx

~tflx

(3.8)
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where subscripts ext and flx denote the deformed and base configuration parameters,

respectively. Here, the deformed configuration voxel does not have to coincide with a grid point.

If the deformed point is indeed an off grid point, the diffusion tensor has to be interpolated via 8-

point neighbor interpolation. Since diffusion tensors are symmetric positive semi-definite, with

nonnegative eigenvalues, Log-Euclidean framework is preferred [50]. Once a diffusion tensor is

diagonalized, computing the matrix exponential or the matrix logarithm is equivalently carried

out by simply computing the exponential or the logarithm of the diagonal matrix elements.

The interpolated off-grid tensor is:

Dext = exp

(
8∑

i=1

wilog(Dexti)

)
(3.9)

where wi are the normalized weights ascribed to each neighboring tensor, inversely proportional

to the physical distance between the off-grid point and the ith neighbor voxel, and Dexti is the

diffusion tensor at the ith neighbor in the deformed configuration. FAext, ADCext and LDCext

are not interpolated individually but computed using Dext for the diffusion tensor and its

eigenvalues in Equations 2.5, 2.6 and 3.7.

The ∆ parameters in Equation 3.8 represent how the physical deformation from the

movement of the leg from flexed to extended position changes the diffusion characteristics,

thereby reflect the microstructural changes within the tissue. Any change in FA, ADC or LDC

identify the local alterations of the muscular architecture. Rather than the voxel-wise changes

of the ∆ parameters it is important to investigate how the ∆ parameters are distributed in

the longitudinal and axial directions so that the effects of deformation on microstructure can

be analyzed. Specifically, any heterogeneous pattern in the distribution of ∆ parameters along

the fibers and within the axial muscle boundaries would hint heterogeneous structural changes

at the microscopic level within the sarcomeres.
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3.6. Strain Analysis

Strain analysis is carried out by computing the strain tensor at each voxel of the base

configuration and extracting the strain coefficient (SC) at each voxel along the tract direction:

SC = ~tTE~t (3.10)

As the tractography step size is half the smallest dimension of a voxel, off-grid strain tensors

have to be interpolated. Having both positive and negative eigenvalues, strain tensor interpo-

lation cannot be carried out via logarithmic computations. Instead, linear interpolation based

on the weighted means of the grid neighbors of a given voxel is used:

E =
8∑

i=1

wiEi (3.11)

where wi are the normalized weights ascribed to each neighboring tensor, inversely proportional

to the physical distance between the off-grid point and the ith neighbor voxel, and Ei is the

diffusion tensor at the ith neighbor.

The strain tensor at a given voxel expresses the changes in length of the local muscle

tissue or fibers as a result of the motion from flexed to extended configuration. The deformation

changes the local sarcomere lengths and also the relative position of the muscle with respect to

its surroundings as well as te intermuscular connections. It is therefore important to investigate

the distribution pattern of strain along the fibers, both in terms of the longitudinal distribution

in between muscle ends and also within the axial planes. Heterogeneous strain coefficients would

suggest heterogeneous lengthening or shortening at the sarcomere level. This, in turn, would

hint that the loads resulting from the deformation are unequally distributed onto different

locations of the muscle, pointing at the effects of myofascial force transmission.
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3.7. Statistical Analysis

The main goal of the statistical analysis is to assess longitudinal and lateral heterogeneities

within the spatial distributions of strain and diffusion characteristics along the TA muscle fibers

as the movement of the lower leg imposes a structural deformation.

Figure 3.5. Typical proximo-distal range of the analyzed fibers for the three subjects,

depicted on the anatomical dataset of the third subject. Left side of the figure is anterior,

bottom is distal.

The fibers included in the detailed analysis were chosen to elongate through the distal and

proximal muscle ends; two polygonal regions of interest (ROI) were defined toward the distal

and proximal ends of the base (flexed) dataset and tracts elongating through both polygons

were selected for evaluation. The appropriate ROI concerning the TA muscle were determined

empirically, within confidence regions of the anterior crural department such that the EDL and

EHL muscles, tibia and fibula bones, nerves and the aponeurosis were excluded. From the

bipennate structure of the TA, only the posterior portion of the muscle is included due to the

aponeurosis exclusion and curvature limitations.

In order to achieve the heterogeneity assessment, each measured parameter (FA, ADC,

LDC, ∆ parameters and SC) along each voxel is plotted versus the horizontal axis representing

the tract steps. Horizontal ground level (zero) corresponds to the mid point between each

chosen ROI pair, with the left and right of the horizontal axis representing the more distal and

proximal ends of the muscle, respectively.

After each fiber parameter is computed, a longitudinal averaging is performed by averaging

the parameter value through all fibers at a given horizontal step. This averaging represents the
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entire collection of parameters onto a single plot denoted as m, characterizing the longitudinal

distribution of the parameter of concern. At each horizontal step, computation of the standard

deviation of the entire fiber collection from the parameter average m at the horizontal step of

concern yields another distribution denoted as s, which characterizes the lateral distribution of

each parameter. All calculations are carried out within a confidence region where 80% of all

fibers are present for robust modeling.

The average m and the standard deviation s of a given parameter along the fibers can

both be modeled as Gaussian distributions with distinct means and standard deviations as

model parameters. For a given set of fibers, the standard deviation σ(m) of the longitudinal

average curve modeled as a Gaussian Nm(µ(m))σ(m) represents to what extent the parameter

is distributed heterogeneously along fibers, i.e. proximo-distal axis. The mean µ(s) of the

standard deviation curve modeled as a Gaussian Ns(µ(s), σ(s))), on the other hand, expresses

the extent of heterogeneity of the parameter’s distribution on a given axial slice, within fibers

at consecutive steps. σ(m) and µ(s) are therefore the indicators of longitudinal and lateral

heterogeneity of the distribution of the measured parameters, respectively, within the entire

fiber collection. Relatively large values of σ(m) and µ(s) express higher degrees of longitudinal

and lateral spreads, which points out to local structural heterogeneities as a result of the

deformation. σ(m) and µ(s) are also used for inter subject analysis, in comparing the lateral

and longitudinal distribution of parameters between different subjects.

3.8. Visualization

Fibers were visualized via colormaps specifying the LDC and SC distributions, where

each voxel is assigned a color based on the parameter value. For longitudinal assessment,

color assignment is carried out within step size resolution along base configuration tracts. The

colormap ranges are identical with the range of the parameter to be visualized. For lateral

assessment, the parameter of concern is averaged within the confidence interval along each

fiber and the associated colormap is based on the range of the entire collection of fiber averages.

These average values are then mapped onto each individual fiber of the associated subject to

indicate the lateral spread of fiber averages.
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3.9. Datasets

Studies were performed on three female volunteers, all with healthy knee and ankle joints

and feet. None of the subjects were exposed to heavy training or muscle pain prior to the

experiments. Subjects ages were between 25 and 28 (with mean 26.67 ± 1.53 years), weights:

60.33± 4.51 kilograms and heights 160.67± 8.50 centimeters.

All subjects laid in prone position during both the undeformed and deformed state image

acquisitions, as depicted previously in Figure 3.1. The angle between the upper leg and the lower

leg is approximately 150◦ for the flexed configuration and 180◦ for the extended configuration,

where the subject position in flexed state was fixed using an apparatus that elevates and

supports the trunk. The ankle angle is fixed at 90◦. Subjects’ legs were strapped onto the

surface with velcro tape and additional straps were used to fix the upper body. The experiments

were conducted with %0 maximum voluntary contraction (MVC), i.e. under passive conditions.

The data were obtained with a Siemens 3T Magnetom Trio Scanner using two surface

coils. Anatomical reference images were acquired from a Turbo Flash scan with the following

parameters: echo time TE = 3.36ms, repetition time TR = 1750ms, matrix size 320×320×128,

voxel size 1×1×1mm3, interslice gap 1mm. The diffusion weighted images were obtained in 12

continuous stacks of 40 slices each, using a single shot echo-planar imaging (ss-EPI) sequence

with the following parameters: TE = 61ms, TR = 3700ms, matrix size 128 × 128 × 40, voxel

size 1.4 × 1.4 × 2.8mm3 and interslice gap 2.8mm. A 5/8 Fourier acquisition was used along

the phase-encode direction. The b-value for the ss-EPI sequence was 450s/mm2, number of

gradient directions is 12, number of excitations NEX is 5. Fat suppression was performed

using inversion recovery (Fat SAT). All experiments were performed in Acibadem Kozyatagi

Hastanesi, Istanbul.
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4. RESULTS

4.1. Spatial Distribution of Diffusion Anisotropy Indices and ∆ Parameters

Figures 4.1 through 4.3 depict the FA, ADC, LDC and ∆FA, ∆ADC and ∆LDC parame-

ters, averaged over all fibers within the confidence range, for subjects 1 through 3, respectively.

No significant trends similar for all subjects is observed, as intersubject variability is expected

due to many reasons including subject physiology and muscular development. Local fluctua-

tions in the spatial distribution of diffusion anisotropy indices and ∆ parameters are indicative

of structural differences at sarcomere level along fibers.

Figure 4.1. FA, ADC, LDC (right column, top to bottom) and ∆FA, ∆ADC, ∆LDC (left

column, top to bottom) along fiber tracts of Subject 1, averaged over all fibers (blue). Red

plots indicate the standard deviation of m, green curves represent m± s (blue ± red).

Horizontal axis represents tract steps from distal to proximal ends.
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Figure 4.2. FA, ADC, LDC (right column, top to bottom) and ∆FA, ∆ADC, ∆LDC (left

column, top to bottom) along fiber tracts of Subject 2, averaged over all fibers (blue). Red

plots indicate the standard deviation of m, green curves represent m± s (blue ± red).

Horizontal axis represents tract steps from distal to proximal ends.
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Figure 4.3. FA, ADC, LDC (right column, top to bottom) and ∆FA, ∆ADC, ∆LDC (left

column, top to bottom) along fiber tracts of Subject 3, averaged over all fibers (blue). Red

plots indicate the standard deviation of m, green curves represent m± s (blue ± red).

Horizontal axis represents tract steps from distal to proximal ends.
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In Figure 4.4, the distribution of LDC along fibers is visualized using colormaps within

the regions of interest of all subjects. The LDC visuals show both the global and local changes

of diffusivity along the fiber direction and it can be seen that proximo-distal differences as

well as local increases and decreases of diffusivity are present. While Figure 4.4 represents

the longitudinal assessment of structural heterogeneities in terms of the diffusion parameters,

Figure 4.5 is representative of the heterogeneities in diffusivity along fiber direction between

adjacent fibers within the regions of interest.

(a) Subject 1

(b) Subject 2

(c) Subject 3

Figure 4.4. LDC distirbutions along fibers for Subjects 1, 2 and 3, from top to bottom,

respectively. Colormap ranges are identical with the global LDC ranges for all subjects.
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(a) Subject 1

(b) Subject 2

(c) Subject 3

Figure 4.5. LDC averages of each fiber within the confidence range depicted with a single

color along fibers for Subjects 1, 2 and 3, from top to bottom, respectively. Colormap ranges

are identical with the global LDC average ranges for all subjects.
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4.2. Spatial Distribution of Strain

Figure 4.6 depicts the SC plots for all subjects, where both proximo-distal as well as

local differences in strain distributions can be traced. Figure 4.7 shows how variable the mean

strain of individual fibers differ from each other at each step of fiber tracts. Again, the former

figure shows how heterogeneously strains are distributed longitudinally within fibers, whereas

the latter highlights the lateral heterogeneities. A flat line would be observed in Figure 4.7 if

equal mean strains were present along adjacent muscle fibers.

(a) Subject 1 (b) Subject 2

(c) Subject 3

Figure 4.6. SC along fiber tracts of Subjects 3, 4 and 5 from top to bottom, respectively,

averaged over all fibers (blue plots). Red plots indicate the standard deviation of associated

average curves, green curves represent m± s for each subject. Horizontal axis represents tract

steps from distal to proximal ends.
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(a) Subject 1 (b) Subject 2

(c) Subject 3

Figure 4.7. Average strain of each fiber presented in descending order (blue) with their

standard deviations(red) for Subject 1(a), Subject 2(b) and Subject 3(c). Green plots

represent average values ± standard deviation for each fiber. Horizontal axis represent fiber

numbers included in the analysis.

The findings are also visualized for each fiber in Figure 4.8. The TA muscle has no

insertion at the knee joint but is connected to the ankle, however the ankle angle is fixed for

both positions of the leg. Changing the knee angle between the two configurations results in

global strains clustered around zero, yet sarcomeres are both lengthened and shortened locally

along fibers, indicated by positive and negative strains, respectively. Figure 4.9 show these

heterogeneities within the lateral distribution, where the mean fiber strains are different for

individual muscle fibers.
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(a) Subject 1

(b) Subject 2

(c) Subject 3

Figure 4.8. SC distirbutions along fibers for Subjects 1, 2 and 3, from top to bottom,

respectively. Colormap ranges are identical with the global SC ranges for all subjects.
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(a) Subject 1

(b) Subject 2

(c) Subject 3

Figure 4.9. SC averages of each fiber within the confidence range depicted with a single color

along fibers for Subjects 1, 2 and 3, from top to bottom, respectively. Colormap ranges are

identical with the global LDC average ranges for all subjects.
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4.3. Longitudinal Heterogeneity Assessment for Spatial Distribution of Diffusion

and Strain Characteristics

For each measured parameter, the longitudinal analysis is performed by modeling the

parameter average m (i.e. mFA, mADC , mLDC , m∆FA, m∆ADC , m∆LDC , mSC) over all fibers

elongating within the confidence region as a Gaussian distributionNm(µ(m), σ(m)). The spread

of the Gaussian probability density function σ(m) is an indicator of how much the selected index

varies along the fibers, i.e. the heterogeneity of the index values paralleling fiber direction.

As seen on Figure 4.10, for the diffusion anisotropy indices subjects 1 and 2 have similar

and larger spreads compared to subject 3. The ∆ parameters on the other hand, are similar

for subejcts 2 and 3 but subejct 1 has a larger degree of heterogeneity in terms of the spatial

distribution. For the strain coefficient, however, all subjects have comparable longitudinal het-

erogeneities. The statistical results are listed in Table 4.1. Though the numerical values are

not high, µ(m) and σ(m) are mostly of same order of magnitude for the ∆ parameters and

strain coefficient.

(a) FA (b) ∆FA
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(c) ADC (d) ∆ADC

(e) LDC (f) ∆LDC

Figure 4.10. Longitudinal analysis plots of (a)FA, (b)∆FA, (c)ADC, (d)∆ADC, (e)LDC and

(f)∆LDC for Subjects 1(red), 2(green) and 3(blue). Plots represent the Gaussian distribution

models of the fiber average curves m.

Figure 4.11. Longitudinal analysis plots SC for Subjects 1(red), 2(green) and 3(blue). Plots

represent the Gaussian distribution models Nm(µ(m), σ(m)) of the fiber average curves m.
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Table 4.1. Parameters of Nm(µ(m), σ(m)) for longitudinal heterogeneity assessment, for all

measurements over all subjects.

µ(m)± σ(m)

Subject 1 2 3

FA 0.2362 ± 0.0539 0.2479 ± 0.0464 0.2117 ± 0.0220

ADC (×10−3) 1.5728 ± 0.1350 1.6283 ± 0.1727 1.5342 ± 0.5218

LDC (×10−3) 1.9324 ± 0.2514 2.1020 ± 0.3133 1.9223 ± 0.6774

∆FA 0.2932 ± 0.2426 -0.0233 ± 0.0845 -0.0262 ± 0.0282

∆ADC (×10−3) 0.7375 ± 0.6809 -0.1202 ± 0.0680 0.0595 ± 0.0590

∆LDC (×10−3) -0.0995 ± 0.0846 -0.5105 ± 0.2846 -0.0645 ± 0.0080

SC -0.0047 ± 0.0239 0.0122 ± 0.0155 -0.0104 ± 0.0224

4.4. Lateral Heterogeneity Assessment for Spatial Distribution of Diffusion and

Strain Characteristics

For each measured parameter, the lateral analysis is performed by modeling the parameter

standard deviation s (i.e. sFA, sADC , sLDC , s∆FA, s∆ADC , s∆LDC , sSC) over all fibers elongating

within the confidence region as a Gaussian distribution Ns(µ(s), σ(s)). Lateral analysis mea-

sures the extent of heterogeneity of each parameter of concern within fibers at the same axial

proximity. The mean of the distribution, µ(s), represents how much each parameter deviates

along different fiber tract voxels sharing the same axial coordinates.

The extent of lateral heterogeneity for all subjects is more similar for the diffusion

anisotropy indices compared to the ∆ parameters, the effects of inter subject variability is

more dominant in the right column of Figure 4.12, as the muscle configuration is changed.

The longitudinal heterogeneity of subject 1 was highest in terms of DAI but from the lateral

perspective subject 1 has the most homogeneous spatial distribution. Again for the strain co-

efficient all subjects have almost identical lateral heterogeneities, which is seen in Figure 4.13

and depicted in Table 4.2. As in the case of longitudinal heterogeneity assessment, the values

presented in Table 4.2 are low but indicative of local fluctuations of the measured parameters

among adjacent fibers at consecutive tract steps.
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(a) FA (b) ∆FA

(c) ADC (d) ∆ADC

(e) LDC (f) ∆LDC

Figure 4.12. Lateral analysis plots of (a)FA, (b)∆FA, (c)ADC, (d)∆ADC, (e)LDC and

(f)∆LDC for Subjects 1(red), 2(green) and 3(blue). Plots represent the Gaussian distribution

models Ns(µ(s), σ(s)) of the fiber average curves s.
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Figure 4.13. Lateral analysis plots SC for Subjects 1(red), 2(green) and 3(blue). Plots

represent the Gaussian distribution models Ns(µ(s), σ(s)) of the fiber average curves s.

Table 4.2. Parameters of Ns(µ(s), σ(s)) for lateral heterogeneity assessment, for all

measurements over all subjects.

µ(s)± σ(s)

Subject 1 2 3

FA 0.0396 ± 0.0192 0.0694 ± 0.0246 0.0271 ± 0.0146

ADC (×10−4) 0.7841 ± 0.3133 0.9662 ± 0.3086 0.6447 ± 0.5475

LDC (×10−4) 1.1409 ± 0.4691 2.3263 ± 0.9603 7.0716 ± 0.5350

∆FA 0.2559 ± 0.0998 0.0960 ± 0.0469 0.0333 ± 0.0094

∆ADC (×10−4) 3.8685 ± 1.6111 1.7817 ± 1.4642 0.6679 ± 0.4275

∆LDC (×10−4) 4.6297 ± 1.9228 4.0847 ± 1.2263 1.6708± 0.2467

SC 0.0358 ± 0.0240 0.0327 ± 0.0125 0.0287 ± 0.0094
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5. DISCUSSION

5.1. Spatial Distribution of Diffusion and Strain Parameters through Fiber

Average Plots

Figures 4.1 through 4.3 depict the diffusion anisotropy indices at base configuration and

the difference of the same indices between the base and deformed configurations averaged over

all fibers within the confidence region of Subjects 1, 2 and 3, respectively. From the distal

end of the TA fibers to the proximal end, FA values along the fiber tracts of Subject 1 under

undeformed conditions show an increasing trend. Standard deviation of the FA values at

each step of tracts also increase slightly toward the proximal end, indicating a larger lateral

heterogeneity of FA values between fibers. ADC and LDC values tend to increase toward

both distal and proximal ends in a parallel fashion, with low variances. Subject 2 has a

higher FA variance along the tracts compared to Subject 1 and the FA values seem to be

decreasing slightly toward the proximal end except for an increasing pattern at the very end of

the confidence region. ADC and LDC values of Subject 2 decrease along the distal proximal

direction. Subject 3 has a more fluctuating FA pattern between the two ends, neither increasing

nor decreasing from one end to the other, and again a slightly decreasing pattern for both ADC

and LDC indices.

The ∆ plots in figures 4.1 through 4.3 represent the changes in the diffusion anisotropy

indices from the base configuration to the deformed configuration. Subject 1 has a mostly

increasing FA average over all fibers. At regions where FA increases the most, ADC and

LDC values decrease and vice versa. This result conforms the most with the expected results,

since the deformed position of the leg is considered to have elongated fibers compared to the

flexed position. Increased fractional anisotropy toward the fiber direction, and as a result lower

ADC, are therefore hypothesized. Subject 2 has a much smaller FA difference between the two

configurations, which is similar for ADC and LDC. In addition, on average subject 2 shows

increasing trends for all DAI measured between each configuration. For Subject 3, FA indices

have been reduced globally, but again with local fluctuations. ADC and LDC changes are not

dramatic, though LDC changes are slightly larger than ADC.
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It is important to highlight that the difference fiber plots are indicative of spatial het-

erogeneities within the index distributions. The fluctuations depict that contrary to a globally

constant trend, the diffusion parameters are changing with local differences. The deformation

induced by the movement of the leg seems to have caused heterogeneous alterations within the

muscular microstructure.

Strains along the fibers for Subject 1 tend to cluster with small fluctuations around zero

close to the distal end, yet the fluctuations become larger toward the proximal end of the muscle.

Fluctuations with much higher frequencies along the distal proximal range is observed for the

remaining subjects, with no significant global trend of increasing or decreasing strains. Instead,

both positive and negative strains are observed as consecutive steps are followed tracing the

fibers. Again, just like the change in the diffusion parameters, the fact that the imposed strains

possess a fluctuating character points out to the presence of a heterogeneous distribution of

loads as a result of the deformation in all three subjects.

5.2. Longitudinal Assessment

The longitudinal assessment plots of the diffusion parameters are shown in Figure 4.10.

The first two subjects have higher DAI spreads compared to the third in base configuration,

indicating that the diffusion parameter changes along each fiber on the longitudinal axis of the

former are higher than the latter. The ∆FA between the two configurations has the largest

spread for Subject 1, longitudinal heterogeneity for the same parameter decreases for Subjects 2

and 3. ∆ADC and ∆LDC longitudinal heterogeneity is again dominant for Subject 1, followed

by subjects 3 and 2.

All three subjects present a comparable longitudinal heterogeneity in terms of the strain

along the fibers, shown in Figure 4.11. Figure 4.7 can also be used to assess longitudinal het-

erogeneities in strain distribution on fibers, depicting the average longitudinal strains assigned

to each each fiber, sorted and plotted with respect to fiber indices. It can be seen that there is

a slight change of mean fiber strain between individual fibers for all three subjects. Although

the range is small, with a maximum of 0.0315 for Subject 1, it is plausible to suggest that

the strain distribution along the muscle fibers in microscopic scale possesses a heterogeneous
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character.

Table 4.1 depicts the distribution parameters of all diffusion anisotropy indices, ∆ param-

eters and SC averaged over all fibers for the three subjects. As stated previously, the indicative

parameter for the longitudinal analysis is the standard deviation of the indices. For all subjects,

LDC and ∆LDC standard deviations (σ(mLDC) and σ(m∆LDC)) are higher compared to ADC

and ∆ADC deviations (σ(mLDC) and σ(m∆LDC)), meaning that the diffusivity along the main

fiber axis is distributed non uniformly between voxels, as well as the change in the diffusivity

along the fiber direction from base to deformed configurations. Strain coefficient is the only

index having the same order of magnitude for the mean and variance of average distributions,

indicating that the longitudinal strain heterogeneity can be considered more significant. The

deviations of σ(m) of the diffusion anisotropy indices and diffusion ∆ parameters on the other

hand, are much smaller. This is because along the fibers the diffusion of water molecules is un-

constrained at the fiber resolution, independent of the configuration as long as a dominant fiber

orientation is present. Linear diffusion coefficients not along the fiber tract direction but along

the remaining orthogonal directions, however, could be more indicative in deformation analysis

since the second and third eigenvectors of the diffusion tensor have been associated with fiber

cross section. The constraint here is that the low resolution of DT-MR imaging is inadequate

in implying linear diffusion index changes originating from fiber cross section alterations.

5.3. Lateral Assessment

Among the three subjects, subject 2 has the highest axial FA spread,µFA(s) ,whereas

Subject 1 has the lowest. The lateral ADC heterogeneities of all subjects, µADC(s), are almost

coinciding, yet the LDC heterogeneities µLDC(s) differ again, with Subjects 2 and 1 having the

largest and smallest lateral spreads, respectively. Table 4.2 depicts the numerical values of the

Gaussian distribution parameters µ(s) and σ(s) of the modeled indices. The base configuration

diffusion anisotropy and SC plots indicate low inter subject variability in terms of the lateral

heterogeneity of indices, whereas the ∆ parameters show that the lateral heterogeneity of the

change in diffusion anisotropy indices is the highest for Subject 1 and lowest for Subject 3.

Figure 4.12 presents the inter subject variations of the ∆ parameters.
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All subjects have almost an identical lateral heterogeneity in terms of strain, which can

be traced both numerically and visually from Table 4.2 and Figure 4.13. For all subjects the

value of µSC(s) can be averaged from Table 4.2 as 0.0324±0.0036, which indicates the small

inter subject variability. Clearly, the strains imposed on the muscle fibers for all subjects are

distributed heterogeneously on the lateral axes and this suggests the existence of heterogeneity

in the lengthening or shortening of the sarcomeres arranged in parallel within the coinciding

axial boundaries.

5.4. Longitudinal and Lateral Heterogeneity Assessment of LDC and Strain

through Tractography Visuals

Figures 4.4 and 4.8 depict the spatial distribution of linear diffusion coefficients and strain

coefficients, respectively, along the fiber tracts for all subjects. Figures 4.5 and 4.9 consist of

the same population of fibers, with the colormaps indicating a single average parameter value

for each fiber. Aside from the plots where all fibers are averaged longitudinally, the former

couple of visuals depict the index distributions along individual fibers and therefore present a

thorough analysis concerning the longitudinal heterogeneity. The latter two figures visualize

the lateral spread of LDC and SC by assigning a distinct longitudinal average to each tract.

Figure 4.4a exemplifies that the diffusion of water molecules along the tract direction varies

from the distal end to the proximal, as the majority of the fibers around the proximal end of

the muscle have higher LDC, indicating a more facilitated diffusion at the specified locations.

Toward the distal end, the general trend of the LDC index is decreasing, but there are portions

with both higher and lower coefficients indicated with red green and red colors, respectively. It

must be noted that the transitions between these regions are smooth and fiber bundles clustered

around the same axial confounds seem to possess a more dramatic longitudinal heterogeneity

compared to lateral. Increasing LDC values from the distal end to the proximal end are depicted

in Figure 4.4b for Subject 2, similar to Subject 1. LDC distribution of Subject 3 follows the

same trend as depicted in Figure 4.4c, including both longitudinal and lateral variations.

On Figure 4.8a the strain coefficient of Subject 1 is presented along fibers, where the global

strain is around zero but small local variations exist, as is the case with Subject 3 on Figure
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4.8c. Such local variations are more dominant in Figure 4.8b depicting the strain coefficient

distribution of the second subject with a much higher number of fibers included (N = 1146).

An important remark here is that both negative and positive local strains are present as the

muscles move from flexed to extended configurations.

On figures 4.5 and 4.9, fiber averages are computed and used to generate colormaps for

LDC and SC measures, respectively. These two figures indicate that on average, the diffusivity

along tract direction as well as the distribution of strains are not locally similar for adjacent

muscle fibers. When the heterogeneities within the distributions of strain along each fiber

are averaged out, the remaining variations depicted in figures account for the heterogeneities in

length changes of sarcomeres in parallel. These figures concur with the presence of intramuscular

and epimuscular forces causing shear strains.

5.5. Remarks on the Deformation Analysis and Implications

Analysis through the tractography visuals (Figure 4.4, 4.5, 4.8 and 4.9) together with

the longitudinal fiber average plots (Figure 4.1, 4.2, 4.3, 4.6), Gaussian probability distribution

plots representing the longitudinal and lateral heterogeneity of the distribution of strain and

diffusion parameters (Figures 4.10 through 4.13) and the values presented in Tables 4.1 and

4.2 imply that even though numerical indicators are not dramatically high, variations within

the spatial distribution of strain and diffusion parameters along fibers and through axial slices

exist as a result of the motion induced deformation.

The presence of lateral and longitudinal heterogeneity of strain is an indicator of myofas-

cial force transmission. Although global strains can add up to zero, positive and negative local

strains are distributed along fibers and within neighboring fiber bundles. When the muscles

undergo passive extension from the flexed position, their relative positions with respect to sur-

rounding tissues, bones, adjacent muscles as well as synergists and antagonists change. These

alterations lead to the exertion of different loads from epimuscular and extramuscular connec-

tions. Because of such distinct loads applied at different locations of a target muscle, their

distributions along the longitudinal and lateral directions are not homogeneous. Sarcomeres

arranged in series along fibers and in parallel within fiber bundles therefore undergo heteroge-
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neous length changes. Strain heterogeneity along the fiber direction can point to the presence

of shear strains within the sarcomeres developed as a result of the change in muscle relative

position.

Such shear strains also affect the diffusion along the fiber direction, as indicated from

the changes of the fractional anisotropy, apparent diffusion coefficient and linear diffusion co-

efficient. Longitudinal and lateral analyses of the difference in diffusion parameter statistics

(∆ parameters) as well as the individual distributions of indices along fibers show that het-

erogeneously distributed sarcomere lengths in series and in parallel affect diffusion in the tract

direction, where the tract orientation is determined from the principal diffusion direction. The

fact that the tracts are formed considering the principal diffusion directions explain the parallel

trends of ADC and LDC indices.

The inter-subject analysis presented indicates a higher inter subject variability among

diffusion anisotropy indices, whereas the strain coefficients of all patients are more similar.

Figures 4.1 through 4.3 also depict that the parameter distributions within the fibers chosen

for analysis do not follow the same trends; Subject 2 has an overall decreased LDC between

the configurations, with the difference getting smaller from distal to the proximal end, whereas

Subject 3 shows an opposite trend with an overall decreased LDC but increasing differences

toward the proximal end. Inter-subject variability can be attributed to many factors, including

height, weight and physiology. An example study was performed to investigate the gender

effects [51], for instance, and it was found out that throughout seven calf muscles in 12 male

and 12 female subjects, females had higher ADC and lower FA with respect to males. Our

investigation here has only 3 female subjects so that the gender differences are opted out,

and the subjects’ ages, weights, heights and physical conditions were within a comparable

range. A larger number of subjects would certainly contribute to the analysis. Variations

between subjects could also be ascribed to the difference between the physical ranges of the

acquired images along the leg and the number of fibers taken into consideration. Although the

experimental protocols were the same in terms of the acquisition parameters, the datasets did

not span identical volumes, possibly due to the varying leg lengths or patient positions. To

minimize artifacts, regions of interests within which the fibers elongate were chosen to be as

corresponding as possible. The number of fibers included in the analyses were comparable for
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Subjects 2 and 3 whereas Subject 1 has a much lower fiber population. Though numerically

different, the longitudinal and lateral heterogeneity indicators are comparable within their

orders of magnitude.

Another constraint in the experiments are the dependence of the ∆ parameters and the

strain computations on the deformation field. The rigid and elastic registration steps to align

the high resolution MR images between the two configuration were followed by the mapping of

the high resolution field to the low resolution DT image. Any misalignment between the MR

images could have caused deviations within calculations involving the displacement field.

Some other limitations of the results can be related to the data itself and the tractogra-

phy algorithm. DT-MR images typically have low resolution and large artifacts, but for muscle

images the signal-to-noise is even lower because muscles have low T2 compared to brain acqui-

sitions [15]. Such noise in DT images can lead to early termination of fibers before reaching

the aponeurosis, as could be the cause of the small number of fibers detected for Subject 1.

It must be noted that four subjects were considered for the analysis, but one dataset failed to

provide reliable number of fiber tracts with empirically reasonable orientations. In EPI-based

techniques it is assumed that the spatial distortion arising from the magnetic inhomogeneities

are negligible, as well as the movement artifacts in between acquisitions. Moreover fat suppres-

sion can be incomplete, causing chemical shift artifacts. Such artifacts were already present in

the datasets, therefore non muscular regions were manually masked on the b0 images. More

robust masks from high resolution MR images could ascertain the muscle boundaries, yet again

an overall enhancement in DT-MRI acquisitions is more likely to ascertain accurate results.

For tractography, 4th order Runge-Kutta integration based streamline algorithm described

in [48] is preferred, where the seed inputs are chosen among the voxels with the maximum

FA indices throughout the entire volume. Tracts are shaped through forward and backward

iterations, merged after the stopping criterion is reached for each individual tract. Since muscle

insertion and origins at specific locations are known, it is plausible to choose seed points from

these locations and ensure tracts elongate from seed voxels to the muscle end. For the TA

muscle, tracking from tibia or the superficial fascia to the central aponeurosis using masks

obtained from anatomical images would also rule out the region of interest selection problem.
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6. CONCLUSION

This thesis has presented a deformation analysis of skeletal muscles by assessing the spatial

distributions of strain and diffusion characteristics along muscle fibers, using diffusion tensor

magnetic resonance imaging. Diffusion anisotropy indices at the base and deformed configura-

tions of the TA muscle of lower leg were analyzed as well as the local and global strain measures

along muscle fiber directions. Longitudinal and lateral heterogeneities within the distributions

of individual parameters were modeled and presented to account for the biomechanical changes

of the muscle microstructure as a result of the deformation caused by the position change of

the leg.

The methodology presented here has provided an image processing toolbox for the analysis

of skeletal muscle fiber architecture. Experimental results have revealed the spatial distribution

of diffusion anisotropy in terms of FA, ADC and LDC indices along the fibers in base configu-

ration. Proximo-distal diffusion anisotropy differences were detected as well as heterogeneities

on the transverse slices for the flexed position of the lower leg.

The change of the diffusion anisotropy indices along fibers as the leg is extended is found

to possess local heterogeneities along each fiber and on the transverse slices, which is also the

case for the spatial distribution of strain along fiber direction. For the three subjects considered,

local fluctuations of the imposed global strain were detected.

Longitudinal and lateral heterogeneities of the change in the linear diffusion coefficient

and local strains computed along the fiber direction point to the existence of shear strains and

epimuscular myofascial force transmission, because as the muscle relative position changes due

to movement, unequal loads are imposed from different sections of the muscle, thereby affecting

sarcomere length changes at distinct proximities in a heterogeneous fashion.
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This thesis provides a unique framework in the sense that it investigates the deformation

and thereby the microstructure of skeletal muscles in terms of the diffusion anisotropy changes

and strains along muscle fiber directions rather than outside coordinate systems. Because no

golden standards exist for the analysis of the results, empirical evaluations were presented

with colormap visuals of the measured parameters, parameter averages over all fibers were

longitudinally and laterally modeled as numerical indicators and for inter-subject comparisons.

Future work for the investigation involves the comparison of strain tensor and diffusion

tensor eigenanalyses along fibers, which would provide further insight into the correlations

between the local fiber orientation changes and length changes. Analyses of synergistic and an-

tagonistic muscles together would also strengthen the demonstration of epimuscular myofascial

force transmission. Diffusion based analyses can be improved by including the examination of

diffusion coefficients along the directions orthogonal to the tract orientation. Discovering the

physical correlates of the second and third eigenvalues of the diffusion tensor can improve the

assessment of microstructural changes occuring as a result of any deformation.
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APPENDIX A: PARAMETER PLOTS ALONG INDIVIDUAL

FIBERS

In this appendix, individual fiber statistics of all parameters are plotted confined to the

confidence range of each subject. Number of fibers included in the analyses are 167, 1146 and

1006 for subjects 1, 2 and 3, respectively.

Figure A.1. FA, ADC, LDC (right column, top to bottom) and ∆FA, ∆ADC, ∆LDC (left

column, top to bottom) along fiber tracts of Subject 1, within the subject’s confidence range.
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Figure A.2. FA, ADC, LDC (right column, top to bottom) and ∆FA, ∆ADC, ∆LDC (left

column, top to bottom) along fiber tracts of Subject 2, within the subject’s confidence range.
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Figure A.3. FA, ADC, LDC (right column, top to bottom) and ∆FA, ∆ADC, ∆LDC (left

column, top to bottom) along fiber tracts of Subject 3, within the subject’s confidence range.
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(a) Subject 1

(b) Subject 2

(c) Subject 3

Figure A.4. SC along all fiber tracts of Subjects 3, 4 and 5 from top to bottom, respectively,

within the confidence ranges of each subject.
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