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çözümü sonlu fark şeması metodu ile incelendi. Bu eliptik kısmi diferansiyel denklemin yaklaşık 
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1.GİRİŞ 

 

 

Kısmi diferansiyel denklemler termodinamik, elastik, mekanik, biyoloji 

modelleri ve fiziğin farklı alt dallarında önemli bir uygulama alanlarına sahiptir. 

Hilbert uzayında öz-eşlenik pozitif tanımlı operatörlü üçüncü mertebeden 

diferansiyel denklem için yerel olmayan sınır değer problemi incelendi (Nayfeh, 

1970). 

 

Kısmi diferansiyel denklemler birçok bilim dalında uygulama alanı bulmaktadır. Bu 

alanlardan bazıları şunlardır: Elastik teori, sismoloji, sıvı akışkanları, fizik, termodinamik ve 

hidrodinamik. Kısmi diferansiyel denklemleri (KDD) yaklaşık çözmek için faydalı 

yöntemlerin geliştirilmesi uygulamalı matematiğin temel amacıdır. Bu metotlardan 

bazıları sonlu eleman metodu, sınır elemanları, sonlu hacim, ve spectral 

yöntemlerdir. Bu yöntemler KDD’leri test etmek için zayıf ve güçlü formülasyonlar 

şeklinde sınıflandırılabilir. Bu yöntemlerin tümünde asıl sorun bir dizi alan düğümü 

ile etki alanı ve sınırlar çözümünün tahmini için herhangi bir ağ gerektirmeyen 

ayrıklaştırma işlemini gerçekleştirirler. Güçlü formların basit bir algoritması vardır. 

Gerçekten ağsız bir yöntem olan hesaplama verimliliği, ancak kötü koşullu sistem 

denklemleri nedeniyle kararsızdırlar. Zayıf form yöntemleri problem alanında 

küresel veya yerel olarak oluşturulmuş bir sayısal entegrasyon süreci aracılığıyla 

denklemlerin cebirsel bir sistemini kurar. Zayıf formülasyonlar yaklaşıklık 

fonksiyonlar üzerinde süreklilik gereksinimlerini azaltarak polinomların kullanımının 

kolay bir şekilde oluşturulması ve uygulanmasını sağlar. Genel olarak, fiziksel 

süreçlerin matematiksel tanımı kısmi diferansiyel denklemlerin oluşturulmasını 

sağlar. Bazı durumlarda, KDD’lerin tam çözüm yöntemleri yansıma yöntemleri 

süperpozisyon, değişkenlerin ayrılması ve integral dönüşümler gibi analitik araçlar 

kullanılarak elde edilebilir. Bu KDD'lerin yaklaşık analitik çözümü, pertürbasyon 

yöntemi (Van Dyke, 1975; Kevorkian ve Cole, 1981; Parlange, 1971), ardışık 

yaklaşım yöntemi (Tsang, 1960)  ve ortogonal fonksiyonlar (Assarı ve Dehghan, 

2017)  yöntemleri kullanılarak bulunabilir. Yerel ağsız yöntemlerin geliştirilmesi için 

basit teknikler vardır. Logaritmik çekirdeklere dayalı sayısal yöntemi normal etki 



1. GİRİŞ                                                                                                                Ecrin POLAT 

 

2 

 

alanlarında ikinci tür iki boyutlu Fredholm integral denklemlerinin yaklaşımına 

uyguladılar (Bayona ve ark., 2017). 

Eliptik kısmi diferansiyel denklemlerin yaklaşık çözümleri için pek çok metot 

geliştirilmiştir. RBF tarafından oluşturulan sonlu farklar (RBF-FD), son on yılda çok 

çeşitli KDD'leri çözmek için çok güçlü ve esnek bir sayısal yaklaşım olarak ortaya 

çıkmıştır. (Khoromskij ve ark., 2017)  de, düzensiz (veya düzenli) bölgelerdeki 

eliptik denklemleri çözerken poliharmonik eğrileri (PHS) çok değişkenli 

polinomlarla birleştirmenin olağanüstü bir basitlik, doğruluk ve geometrik esneklik 

kombinasyonu sunduğunu buldular. Multi parametrik eliptik KDD'lerin çözümlerinin 

rank-1 tensörlerinin sonlu toplamları ile yaklaşımların yakınsama oranını araştıdılar 

(Babuska ve ark., 2017). Stokastik katsayılar ve homojen Dirichlet sınır koşulları ile 

doğrusal bir eliptik problem için iki sayısal yöntemi tanımladı ve analiz etti (Gorial, 

2011). 

 

Bir denklemin diferansiyel denklem sayılabilmesi için bilinmeyen fonksiyonu 

ve bu fonksiyonun türevlerini içermesi gerekir. Tek bir bağımsız değişken içeriyorsa 

adi diferansiyel denklem, iki veya daha fazla bağımsız değişken içeriyorsa kısmi 

diferansiyel denklem olarak adlandırılır. Diferansiyel denklemlerin genel ve özel 

olmak üzere iki tür çözümü vardır. Bir diferansiyel denklemin tüm çözümlerini 

kapsayan çözüm genel çözüm olarak isimlendirilirken, herhangi bir çözüm özel 

çözüm olarak adlandırılır. t ve x bağımsız değişkenlerinin bir fonksiyonu olan u 

değişkeni için, ikinci mertebeden lineer bir kısmi diferansiyel denklem genel olarak 

şu şekilde tanımlanır. 

Şimdi bu tezde kullanılan temel tanım ve teoremleri verelim. 

 

1.1. Temel Kavramlar 

 

Tanım 1.1: “ 𝑓(𝑡), [0,∞)  aralığında tanımlı bir fonksiyon olsun. 𝑓 

fonksiyonunun Laplace dönüşümü 

 

𝐹(𝑠) = ∫ 𝑒−𝑠𝑡
∞

0
𝑓(𝑡)𝑑𝑡                                                                                           (1.1) 
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integrali ile tanımlanan 𝐹 fonksiyonu olup;  

 

ℒ{𝑓(𝑡)} = 𝐹(𝑠) 

 

ile gösterilir. İntegralin mevcut olduğu bütün 𝑠  değerleri 𝐹 fonksiyonunun tanım 

kümesini oluşturur”  (Podlubny, 1999). 

 

Tanım 1.2: (Türevin Laplace Dönüşümü): “ Bir fonksiyonun 𝑛. mertebeden 

türevinin Laplace dönüşümü:  

 

 𝑓(𝑡),  𝑓′(𝑡), … 𝑓(𝑛−1)(𝑡) fonksiyonları [0, ∞)  aralığında sürekli, 𝑓𝑛(𝑡),   [0,∞) 

aralığında parçalı sürekli ve bu fonksiyonların tümü 𝛼 üstel mertebeden olsunlar. ”  

Bu durumda 𝑠 > 𝛼 için 

 

ℒ{𝑓𝑛(𝑡)} = 𝑠𝑛 ℒ {𝑓(𝑡)} − 𝑠𝑛−1 𝑓(0) − 𝑠𝑛−2 𝑓′(0) − ⋯− 𝑓(𝑛−1)(0)                 (1.2) 

 

olur.  Özel olarak 𝑛 = 2 olması durumunda  

 

ℒ{𝑓′′(𝑡)} = 𝑠2 ℒ {𝑓(𝑡)} − 𝑠 𝑓(0)   − 𝑓′(0)                                                            (1.3) 

 

ve 𝑛 = 3  için ise 

 

ℒ{𝑓′′′(𝑡)} = 𝑠3 ℒ {𝑓(𝑡)} − 𝑠2 ℒ {𝑓(0)} − 𝑠 𝑓′(0)   − 𝑓′′(0)                                  (1.4) 

 

bağıntınları kolayca elde edilebilir” (Podlubny, 1999). 

 

Tanım 1.3: “𝑓(𝑡), [0,∞) aralığında sürekli ve  ℒ {𝑓(𝑡)} = 𝐹(𝑠) olsun. 𝑓(𝑡) 

fonksiyonuna 𝐹(𝑠) nin ters Laplace dönüşümü denir. Ters Laplace dönüşümü 

 

 ℒ−1{𝐹(𝑠)} = 𝑓(𝑡)                                                                                                  (1.5) 

 

 ile gösterilir”. 



1. GİRİŞ                                                                                                                Ecrin POLAT 

 

4 

 

 

olarak tanımlanır” (Podlubny, 1999).  

 

Tanım 1.4: “ 𝑥𝑦  düzleminin pozitif çeyreğinde, iki değişkenli bir 𝑢(𝑥, 𝑡) 

fonksiyonu tanımlansın. 𝑢(𝑥, 𝑡) fonksiyonu için çift  Laplace dönüşümü  

 

ℒ 𝑥ℒ 𝑡{𝑢(𝑥, 𝑡)} = 𝑢̅(𝑠, 𝑝) = ∫ ∫ 𝑒−𝑝𝑥−𝑠𝑡𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡
∞

0

∞

0
                                        (1.6) 

 

olarak tanımlanır (Dhunde ve Waghmare,2016).  Burada  𝑝  ve 𝑠  kompleks 

sayılardır. Bu tanım  

 

ℒ 𝑥ℒ 𝑡{𝑈(𝑥)𝑔(𝑡)} = 𝑢̅(𝑝)𝑔̅(𝑠) = ℒ 𝑥{(𝑢(𝑥)}ℒ 𝑡{𝑔(𝑡)                                            (1.7) 

 

formunda da yazılabilir”. 

 

Tanım 1.5: “Kompleks çift integral formülü ters çift Laplace dönüşümünü 

tanımlamak için  

 

ℒ 𝑥
−1ℒ 𝑡

−1{𝑢̅(𝑠, 𝑝)} = 𝑢(𝑥, 𝑡) 

 

formülü kullanılır (Debnath,2016).  Bu formül de 

 

ℒ 𝑥
−1ℒ 𝑡

−1{𝑢(𝑠, 𝑝)} = 𝑢(𝑥, 𝑡) =
1

2𝑖𝜋
[∫ 𝑒𝑝𝑥𝑑𝑝
𝑐+𝑖∞

𝑐−𝑖∞
∫ 𝑒𝑠𝑡𝑢(𝑠,𝑝) 𝑑𝑠
𝑑+𝑖∞

𝑑−𝑖∞
]                  (1.8) 

 

şeklinde tanımlanır. Burada 𝑐  ve 𝑑  bilinen reel sabitler ve 𝑢̅(𝑠, 𝑝) , 𝑅𝑒(𝑝) ≥ 𝑐  ile 

𝑅𝑒(𝑠) ≥ 𝑑  eşitsizlikleri ile gösterilen bölgede  her bir 𝑝  ve 𝑠  için analitik 

fonksiyonlar olmalıdır. 

(Modanli ve Bajjah, 2021) de tanımlanan çift Laplace dönüşüm formülü herhangi 

tamsayı mertebeden kısmi türevlerin dönüşümü için  

 

ℒ 𝑥ℒ 𝑡 {
𝜕𝑛𝑢(𝑥, 𝑡)

𝜕𝑥𝑛
} = 𝑝𝑛𝑢̅(𝑠, 𝑝) −∑ 𝑝𝑛−1−𝑖ℒ 𝑡 {

𝜕𝑖

𝜕𝑥𝑖
}

𝑛−1

𝑖=0
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ℒ 𝑥ℒ 𝑡 {
𝜕𝑘𝑢(𝑥, 𝑡)

𝜕𝑡𝑘
} = 𝑠𝑘𝑢̅(𝑠, 𝑝) −∑ 𝑠𝑛−1−𝑖ℒ 𝑥 {

𝜕𝑗

𝜕𝑥𝑗
}

𝑘−1

𝑗=0
 

ℒ 𝑥ℒ 𝑡 {
𝜕𝑘+𝑛𝑢(𝑥, 𝑡)

𝜕𝑥𝑛𝜕𝑡𝑘
} = 

𝑝𝑛𝑠𝑘 [𝑢̅(𝑠, 𝑝) −∑ 𝑝𝑛−1−𝑖ℒ 𝑥 {
𝜕𝑖𝑢(0, 𝑡)

𝜕𝑥𝑖
} − 𝑢̅(𝑠, 𝑝)

𝑛−1

𝑖=0

−∑ 𝑠𝑛−1−𝑗ℒ 𝑥 {
𝜕𝑗𝑢(𝑥, 0)

𝜕𝑥𝑗
}

𝑘−1

𝑗=0

+∑ ∑ 𝑝−1−𝑖𝑠−1−𝑗ℒ 𝑥 {
𝜕𝑖+𝑗𝑢(0,0)

𝜕𝑥𝑖+𝑗
}

𝑘−1

𝑗=0

𝑛−1

𝑖=0
] 

 

formülleri ile kullanılır”. 

 

 1.2. İkinci Mertebeden Kısmi Diferansiyel Denklemlerin Genel Formları 

 

𝐴(𝑥, 𝑦)
∂2𝑢

∂𝑥2
+ 2𝐵(𝑥, 𝑦)

∂2𝑢

∂𝑥 ∂𝑦
+ 𝐶(𝑥, 𝑦)

∂2𝑢

∂𝑦2
+ 𝐷(𝑥, 𝑦)

∂𝑢

∂𝑥
 

+𝐸(𝑥, 𝑦) + 𝐹(𝑥, 𝑦)𝑢 = 0                                                                                        (1.9) 

 

ikinci mertebe kısmi diferansiyel denkleminde 𝑥  ve 𝑦  bağımsız değişken 𝑢(𝑥, 𝑦) 

bilinmeyen fonksiyondur. 𝐴(𝑥, 𝑦) ,  𝐵(𝑥, 𝑦) , 𝐶(𝑥, 𝑦) , 𝐷(𝑥, 𝑦) , 𝐸(𝑥, 𝑦)  ve 

𝐹(𝑥, 𝑦) bilinen fonksiyondur. (1.9) denklemini aşağıdaki gibi kanonik forma 

dönüştürelim.  

 

𝐴1(𝑡, 𝑟)
∂2𝑢

∂𝑡2
+ 2𝐵1(𝑡, 𝑟)

∂2𝑦

∂𝑡 ∂𝑟
+ 𝐶1(𝑡, 𝑟)

∂2𝑢

∂𝑟2
+ 𝐷1(𝑡, 𝑟)

∂𝑢

∂𝑡
+ 𝐸1(𝑡, 𝑟)

∂𝑢

∂𝑟

+ 𝐹1(𝑡, 𝑟)𝑢 = 0 

 

şeklinde yazılabilir. 

 

1) Hiperbolik durum: 𝐵1(𝑡, 𝑟) ≠ 0, 𝐴1(𝑡, 𝑟) = 𝐶1(𝑡, 𝑟) = 0 

2) Parabolik durum: 𝐴1(𝑡, 𝑟) = 𝐵1(𝑡, 𝑟) = 0, 𝐶1(𝑡, 𝑟) ≠ 0 

3) Eliptik durum: 𝐵1(𝑡, 𝑟)0, 𝐴1(𝑡, 𝑟) = 𝐶1(𝑡, 𝑟) ≠ 0 
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Şimdi (1), (2), (3) için kanonik formları verelim. 

 

1) Hiperbolik Denklem: 

 

∂2𝑢

∂𝑡 ∂𝑟
= 𝐷1̃(𝑡, 𝑟)

∂𝑢

∂𝑡
+ 𝐸̃1(𝑡, 𝑟)

∂𝑢

∂𝑟
+ 𝐹1̃(𝑡, 𝑟)𝑢 

 

2) Parabolik Denklem:  

 

  
∂2𝑢

∂𝑟2
= 𝐷1̃(𝑡, 𝑟)

∂𝑢

∂𝑡
+ 𝐹1̃(𝑡, 𝑟)

∂𝑢

∂𝑟
+ 𝐹1̃(𝑡, 𝑟)𝑢 

 

3) Eliptik denklem: 

 

∂2𝑢

∂𝑡2
+
∂2𝑢

∂𝑟2
= 𝐷1(𝑡, 𝑟)

∂𝑢

∂𝑡
+ 𝐸1(𝑡, 𝑟)

∂𝑢

∂𝑟
+ 𝐹1(𝑡, 𝑟)𝑢 

 

formundadır. Bir kısmi diferansiyel denklemin iyi tanımlı olması için 

i) Bir çözüme sahip olması 

ii) Çözümün kararlı (stability) olması gerekir. 

Bir kısmi diferansiyel denklemini çözmek için 

 

𝑡 = 𝑡(𝑥, 𝑦) , 

𝑥 = 𝑥(𝑡, 𝑟) , 

𝑟 = 𝑟(𝑥, 𝑦), 

𝑦 = 𝑦(𝑡, 𝑟) 

 

dönüşümlerini ele alalım. 

 

𝑈(𝑥, 𝑦) → 𝑢(𝑡, 𝑟) 

 

dönüşümünde bağımsız değişkene bir zincir kuralı uygulanırsa 
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∂𝑢

∂𝑥
=
∂𝑢

∂𝑡

∂𝑡

∂𝑥
+
∂𝑢

∂𝑟

∂𝑟

∂𝑥
,

∂𝑢

∂𝑦
=
∂𝑢

∂𝑡

∂𝑡

∂𝑦
+
∂𝑢

∂𝑟

∂𝑟

∂𝑦
 

∂2𝑢

∂𝑥2
=
∂

∂𝑥
(
∂𝑢

∂𝑥
) =

∂

∂𝑥
{
∂𝑢

∂𝑡

∂𝑡

∂𝑥
+
∂𝑢

∂𝑟

∂𝑟

∂𝑥
}                

=
∂

∂𝑥
(
∂𝑢

∂𝑡
)
∂𝑡

∂𝑥
+
∂

∂𝑥
(
∂𝑢

∂𝑟
)
∂𝑟

∂𝑥
+
∂𝑢

∂𝑡

∂2𝑡

∂𝑥2
+
∂𝑢

∂𝑟

∂2𝑟

∂𝑥2
 

(
∂2𝑢

∂𝑡2
∂𝑡

∂𝑥
+
∂2u

∂𝑡 ∂𝑟

∂𝑟

∂𝑥
)
∂𝑡

∂𝑥
+ (

∂2u

∂𝑡 ∂𝑟

∂𝑡

∂𝑥
+
∂2𝑢

∂𝑟2
∂𝑟

∂𝑥
)
∂𝑟

∂𝑥
+
∂𝑢

∂𝑡

∂2𝑡

∂𝑥2
+
∂𝑢

∂𝑟

∂2𝑟

∂𝑥2
 

 

∂2𝑢

∂𝑥2
=
∂2𝑢

∂𝑡2
(
∂𝑡

∂𝑥
)

2

+ 2
∂2u

∂𝑡 ∂𝑟
 
∂𝑡

∂𝑥

∂𝑟

∂𝑥
+
∂2𝑢

∂𝑟2
(
∂𝑟

∂𝑥
)
2

+
∂𝑢

∂𝑡

∂2𝑡

∂𝑥2
+
∂𝑢

∂𝑟

∂2𝑟

∂𝑥2
 

 

benzer şekilde; 

 

∂2𝑢

∂𝑦2
=
∂2𝑢

∂𝑡2
(
∂t

∂𝑦
)
2

+ 2
∂2𝑢

∂𝑡 ∂𝑟

∂𝑡

∂𝑦

∂𝑟

∂𝑦
+
∂2𝑢

∂𝑟2
(
∂𝑟

∂𝑦
)
2

+
∂𝑢

∂𝑡

∂2𝑡

∂𝑦2
+
∂𝑢

∂𝑟

∂2𝑟

∂𝑦2
, 

 

∂2𝑢

∂𝑥 ∂𝑦
=

∂

∂𝑥
(
∂u

∂𝑦
)=

∂

∂𝑥
(
∂u

∂𝑡

∂t

∂𝑦
+
∂u

∂𝑟

∂r

∂𝑦
)=

∂

∂𝑥
(
∂𝑢

∂𝑡
)
∂𝑡

∂𝑦
+

∂

∂𝑥
(
∂𝑢

∂𝑟
)
∂𝑟

∂𝑦
+
∂𝑢

∂𝑡

∂2𝑡

∂𝑥 ∂𝑦
+
∂𝑢

∂𝑟

∂2𝑟

∂𝑥 ∂𝑦
 

=(
∂2𝑢

∂𝑡2
∂𝑡

∂𝑥
+

∂2𝑢

∂𝑡 ∂𝑟

∂𝑟

∂𝑥
) 
∂𝑡

∂𝑦
+(

∂2u

∂𝑡 ∂𝑟
 
∂𝑡

∂𝑥
+
∂2𝑢

∂𝑟2
∂𝑟

∂𝑥
) 
∂𝑟

∂𝑦
+ 
∂𝑢

∂𝑡

∂2𝑡

∂𝑥 ∂𝑦
+
∂𝑢

∂𝑟

∂2𝑟

∂𝑥 ∂𝑦
 

 

∂2𝑢

∂𝑥 ∂𝑦
=
∂2𝑢

∂𝑡2
∂𝑡

∂𝑥

∂𝑡

∂𝑦
+
∂2𝑢

∂𝑡 ∂𝑟
(
∂𝑟

∂𝑥

∂𝑡

∂𝑦
+
∂𝑡

∂𝑥

∂𝑟

∂𝑦
) +

∂2𝑢

∂𝑟2
∂𝑟

∂𝑥

∂𝑟

∂y
+
 ∂𝑢

∂𝑡

∂2𝑡

∂𝑥 ∂𝑦
+
∂𝑢

∂𝑟

∂2𝑟

∂𝑥 ∂𝑦
 

 

formülleri elde edilir. Buradan  

 

𝑈𝑡𝑡: 𝐴1(𝑡, 𝑟) = 𝐴(𝑥, 𝑦) (
∂𝑡

∂𝑥
)
2

+ 2𝐵(𝑥, 𝑦)
∂𝑡

∂𝑥

∂𝑡

∂𝑦
+ 𝐶(𝑥, 𝑦) (

∂𝑡

∂𝑦
)
2

                          (1.10) 

𝑈𝑡𝑡: 𝐵1(𝑡, 𝑟) = 𝐴(𝑥, 𝑦)
∂𝑡

∂𝑥

∂𝑟

∂𝑥
+ 𝐵(𝑥, 𝑦) (

∂𝑟

∂𝑥

∂𝑡

∂𝑦
+

∂𝑡

∂𝑥

∂𝑟

∂𝑦
) + 𝐶(𝑥, 𝑦)

∂𝑡

∂𝑦

∂𝑟

∂𝑦
               (1.11) 

𝑈𝑟𝑟: C1(𝑡, 𝑟) = 𝐴(𝑥, 𝑦) (
∂𝑟

∂𝑥
)
2

+ 2𝐵(𝑥, 𝑦)
∂𝑟

∂𝑥
⋅
∂r

∂𝑦
+ 𝐶(𝑥, 𝑦) (

∂𝑟

∂𝑦
)
2

,                       (1.12) 

𝑈𝑡: 𝐷1(𝑡, 𝑟) = 𝐴(𝑥, 𝑦)
∂2𝑡

∂𝑥2
+ 2𝐵(𝑥, 𝑦)

∂2𝑡

∂𝑥 ∂𝑦
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+𝐶(𝑥, 𝑦)
∂2𝑡

∂𝑦2
+ 𝐷(𝑥, 𝑦)

∂f

∂𝑥
+ 𝐸(𝑥, 𝑦)

∂f

∂𝑦
,                                                               (1.13) 

𝑈𝑟: 𝐸1(𝑡, 𝑟) = 𝐴(𝑥, 𝑦)
∂2𝑟

∂𝑥2
+ 2𝐵(𝑥, 𝑦)

∂2𝑟

∂𝑥 ∂𝑦
 

+𝐶(𝑥, 𝑦)
∂2𝑟

∂𝑦2
+ 𝐷(𝑥, 𝑦)

∂𝑟

∂𝑥
+ 𝐸(𝑥, 𝑦)

∂𝑟

∂𝑦
 ,                                                              (1.14) 

𝑈: 𝐹1(𝑡, 𝑟) = 𝐸(𝑥, 𝑦)                                                                                   (1.15) 

 

formüller yazılabilir. Eğer  

 

𝑡 = 𝑡(𝑥, 𝑦) = 𝑐1, 𝑟 = 𝑟(𝑥, 𝑦) = 𝑐2 

 

alınırsa 𝑐1 ve 𝑐2 katsayılarında   

 

∂𝑡

∂𝑥
𝑑𝑥 +

∂𝑡

∂𝑦
𝑑𝑦 = 0 ⇒

∂𝑡

∂𝑥
∂𝑡

∂𝑦

= −
𝑑𝑦

𝑑𝑥
 

 

 karakteristik denklemi elde edilir. 

 

𝐴(𝑥, 𝑦)(

d𝑡

d𝑥
d𝑡

d𝑦

)

2

+ 2𝐵(𝑥, 𝑦)(

d𝑡

d𝑥
d𝑡

d𝑦

) + 𝐶(𝑥, 𝑦) = 0 

Son formülden de 

𝐴(𝑥, 𝑦) (−
𝑑𝑦

𝑑𝑥
)
2

− 2𝐵(𝑥, 𝑦)
𝑑𝑦

𝑑𝑥
+ 𝐶(𝑥, 𝑦) = 0                                                           (1.16) 

 

elde edilir. (1.16) denklemine (1.9) denkleminin “karakteristik denklemi” denir. 

(1.16) denkleminde 

 

𝐴𝑚
2 − 2𝐵𝑚 + 𝐶 = 0,     (

𝑑𝑦

𝑑𝑥
= 𝑚) 

 

 yazılabilir. Bu son denklem eğer; 
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• 𝐵2 − 𝐴𝐶 > 0 ise  hiperbolik, 

• 𝐵2 − 𝐴𝐶 = 0 ise  parabolik, 

• 𝐵2 − 𝐴𝐶 < 0 ise  eliptik 

 

denklem olur. 

 

Örnek 1.1. 

∂2𝑢

∂𝑥2
+ 4

∂2𝑢

∂𝑥 ∂𝑦
− 5

∂2𝑢

∂𝑦2
+ 6

∂𝑢

∂𝑥
+ 3

∂𝑢

∂𝑦
− 9𝑢 = 0,                                                     (1.17) 

 

kısmi diferansiyel denkleminin kanonik formunu elde ediniz. 

Çözüm:    (1.17)  denklemdeki    

          

𝐴 = 1, 𝐵 = 2, 𝐶 = −5, 𝐷 = 6, 𝐸 = 3, 𝐹 = −9 

 

katsayılar 𝐵2 − 𝐴𝐶 formülünde yerine yazılırsa 

 

𝐵2 − 𝐴𝐶 = 4 − 1(−5) = 9 > 0 

 

elde edilir ki bu da denklemin hiperbolik olduğunu gösterir. Bu durumda 

karakteristik denklem  

 

(
𝑑𝑦

𝑑𝑥
)
2

− 4
𝑑𝑦

𝑑𝑥
− 5 =0 

 

olup buradan 

 

𝑚2 − 4𝑚 − 5 = 0 

 

ikinci dereceden denklemi elde edilir. Bu denklemin kökleri  

 

𝑚1 = −1,𝑚2 = 5 
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olarak bulunur. Buradan ; 

 

𝑑𝑦

𝑑𝑥
= −1 ⇒ 𝑦 + 𝑥 = 𝑐1,       

 
𝑑𝑦

𝑑𝑥
= 5 ⇒ 𝑦 − 5𝑥 = 𝑐2 

𝑡 = 𝑦 + 𝑥
𝑟 = 𝑦 − 5𝑥

 

 

olarak alınır ve (1.10)-(1.15)  formüllerinde yerine yazılırsa 

 

𝐴1(𝑡, 𝑟) = 1
2 + 4 ⋅ 1 ⋅ 1 − 5.1 = 0 

𝐵1(𝑡, 𝑟) = 1.1(−5) + 2(−5 ⋅ 1 + 1 ⋅ 1) + (−5) ⋅ 1 ⋅ 1 = −5 − 8 − 5 = −18 ≠ 0 

C1 = 1 ⋅ (−5)2 + 4.1(−5) − 5.12 = 0 

𝐷1 = 6 ⋅ 1 + 3 ⋅ 1 = 9 

𝐸1 = 6(−5) + 3 ⋅ 1 = −27 

𝐹1 = −9 

 

yazılabilir. Böylece  

 

−2 ⋅ 18𝑢𝑡𝑟 + 9𝑢𝑡 − 27𝑢𝑟 − 9 = 0 

 

olup buradan da 

𝑢𝑡𝑟 =
1

4
𝑢𝑡 −

3

4
𝑢𝑟 −

1

4
𝑢 

 

hiperbolik denklemi elde edilir. Bu denklem istenen çözümün kanonik formu olur. 

 

u𝑡𝑟 = 𝑓(𝑡, 𝑟, 𝑢, 𝑢𝑡 , 𝑢𝑟)                                                                                                                  (1.18) 

 

(1.18) denkleminde  𝑡 + 𝑟 = ρ  ve  𝑡 − r = λ alınırsa  

 

𝑢ρ ρ − 𝑢λλ = 𝑓1(ρ, λ, 𝑢, 𝑢ρ , 𝑢λ)                                                                                                  (1.19) 
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elde edilir. Bu denkleme hiperbolik denklemin karakteristik formu denir. 

 

 

Örnek 1.2. 

 
∂2𝑢

∂𝑥2
− 6

∂2𝑢

∂ 𝑥 ∂𝑦
+ 9

∂2𝑢

∂𝑦2
+ 2

∂𝑢

∂ 𝑥
+ 5

∂𝑢

∂𝑦
− 𝑢 = 0                                                       (1.20) 

 

kısmi diferansiyel denkleminin karakteristik formunu bulunuz. İyi tanımlı ve iyi 

tanımlı olmayan problem için gerekli bölgeleri belirtiniz. 

 

Çözüm: 

𝐴(𝑥, 𝑦) = 1, 𝐵(𝑥, 𝑦) = −6, 𝐶(𝑥, 𝑦) = 9, 𝐷(𝑥, 𝑦) = 2, 𝐸(𝑥, 𝑦) = 5, 𝐹(𝑥, 𝑦) = −1 

 

katsayılarından 

𝐵2 − 𝐴𝐶 = 9 − 1 ⋅ 9 = 0 

 

olduğundan bu denklem paraboliktir. Bu denklemin karakteristik denklemi; 

 

(
𝑑𝑦

𝑑𝑥
)
2

+ 6
𝑑𝑦

𝑑𝑥
+ 9 = 0 ,  𝑚2 + 6𝑚 + 9 = 0 

𝑚1 = 𝑚2 = −3 

𝑑𝑦

𝑑𝑥
= −3, 𝑦 + 3𝑥 = 𝑐 

 

 olup buradan  

 

𝑡 = 𝑦 + 3𝑥 

 

elde edilir.  

 

𝑟 = 𝑟(𝑥, 𝑦) 

 

 alınır 
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𝐽 ̇ = |
𝑡𝑥 𝑡𝑦
𝑟𝑥 𝑟𝑦

| ≠ 0 

 

𝑟 = 𝑦 alınırsa 

 

𝐽 = |
3 1
0 1

| = 3 ≠ 0 

 

NOT: 𝑟 = 𝑦 seçimi tek değildir. Bunun yerine 

 

𝑟 = 𝑥, 𝑟 = 𝑥 + 𝑦, 

 

formülü alınabilir. Bu denklem ve türevleri (1.10-1.15) formüllerinde yerine yazılırsa 

 

𝐴1(𝑡, 𝑟) = 1 ⋅ 3
2 + 2(−3) ⋅ 3 ⋅ 1 + 9 ⋅ 1 = 0 

𝐵1(𝑡, 𝑟) = 1 ⋅ 3 ⋅ 0 − 3(3 ⋅ 1 + 1 ⋅ 0) + 9 ⋅ 1 ⋅ 1 = 0 

𝐶1(𝑡, 𝑟) = 1.02 − 6 ⋅ 0 ⋅ 1 + 9 ⋅ 12 = 9 ≠ 0 

𝐷1(𝑡, 𝑟) = 2.3 + 3 ⋅ 1 = 9 ≠ 0 

𝐸1(𝑡, 𝑟) = 3 ⋅ 1 = 3 ≠ 0 

𝐹1(𝑡, 𝑟) = −1 

 

bulunur. Elde edilen değerler kanonik form formülünde yerine yazılırsa; 

 

9
∂2𝑢

∂𝑟2
+ 9

∂𝑢

∂𝑡
+ 3

∂𝑢

∂𝑟
− 𝑢 = 0 

 

veya 

 

∂𝑢

∂𝑡
=
∂2𝑢

∂𝑟2
−
1

3

∂𝑢

∂𝑟
+
1

9
𝑢 

 

bu son denklemde 𝑡1 = −𝑡 alınırsa 
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∂𝑢

∂𝑡
=

∂2𝑢

∂𝑟2
+
1

3

∂𝑢

∂𝑟
+
1

9
𝑢                                                                                   (1.21) 

 

 parabolik denklemi elde edilir. 

 

Örnek 1.3. 

 

∂2u

∂y2
+ 2

∂2u

∂x ∂y
+ 5

∂2u

∂y2
+
∂u

∂x
− 2

∂u

∂y
− 3u = 0                                                          (1.22)  

 

denkleminin kanonik formunu elde ediniz. 

Çözüm: 

𝐴(𝑥, 𝑦) = 1, 𝐵(𝑥, 𝑦) = 1, 𝐶(𝑥, 𝑦) = 5, 𝐷(𝑥, 𝑦) = 1, 𝐸(𝑥, 𝑦) = −2, 

𝐹(𝑥, 𝑦) = −3 

 

değerleri için 

  

𝐵2(𝑥, 𝑦) − 𝐴(𝑥, 𝑦)𝐶(𝑥, 𝑦) = 12 − 1.5 = −4 < 0 

 

olduğundan (1.21) denklemi eliptiktir. (1.21) denkleminin karakteristik denklemini 

bulmak için 

 

(
𝑑𝑦

𝑑𝑥
)
2

− 2
𝑑𝑦

𝑑𝑥
+ 5 = 0 

formülü kullanılırsa 

 

𝑚2 − 2𝑚 + 5 = 0  

 

ikinci dereceden denklemin kökleri 

 

𝑚1,2 = 1 ∓ 2ⅈ 
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olarak bulunur. Buradan da 

 

𝑑𝑦

𝑑𝑥
 = 1 ∓ 2ⅈ  

 

olup      

 

𝑦 = 𝑥 ± 2𝑥ⅈ + 𝑐 

𝑦 − 𝑥 = ∓2𝑥ⅈ + 𝑐 

𝑦 − 𝑥 ∓ 2𝑥ⅈ = 𝑐 

 

denklemlerinden  

𝑡 = 𝑦 − 𝑥, 𝑟 = 2𝑥 

 

olarak alınır ve (1.10)-(1.15)  formüllerinde yerine yazılırsa 

 

𝐴1 (𝑡, 𝑟) = 1(−1)
2 + 2 ⋅ 1(−1)+5 ⋅ 12 = 4 > 0, 

𝐵1(t, r) = 1 ⋅ ((−1) ⋅ 2 + (−1) ⋅ 0 + 1 ⋅ 2) = 0, 

𝐶1(t, r) = 1 ⋅ 2
2 + 2 ⋅ 0 + 5.02 = 4 > 0, 

𝐷1(t, r) = −3, 

𝐸1(t, r) = 2, 

𝐹1(t, r) = −3 

 

şeklinde bulunur. Bu değerler yerine yazılırsa, (1.22) denkleminin kanonik formu 

 

4
∂2𝑢

∂t2
+ 4

∂2u

∂r2
− 3

∂u

∂t
+ 2

∂u

∂r
− 3u = 0 

 

olup buradan 

 

∂2u

∂t2
+
∂2u

∂r2
=
3

4

∂u

∂t
−
1

2

∂u

∂r
+
3

4
u = f(u, ut, ur) 
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bulunur. 

 Bu çalışmada, aşağıdaki başlangıç-sınır değer koşullarına bağlı eliptik kısmi 

diferansiyel denkleminin yaklaşık çözümünü 

 

{
  
 

  
 
𝛼𝑢𝑡𝑡(𝑡, 𝑥) + 𝛽𝑢𝑡𝑥(𝑡, 𝑥) + 𝜆𝑢𝑥𝑥(𝑡, 𝑥) + 𝑣𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥),

 
0 < 𝑥 < 𝑙, 0 < 𝑡 < 𝑇, 𝛼, 𝛽, 𝜆, 𝑠 > 0                                       

 
𝑢(0, 𝑥) = 𝑔1(𝑥),   𝑢𝑡(0, 𝑥) = 𝑔2(𝑥), 0 ≤ 𝑥 ≤ 𝑙,                  

 
𝑢(𝑡, 0) = 𝑢(𝑡, 𝑙) = 0,   0 ≤ 𝑡 ≤ 𝑇                                            

                    (1.23) 

 

inceleyeceğiz. Burada, 𝑔1(𝑥), 𝑔2(𝑥) ve 𝑓(𝑡, 𝑥) bilinen fonksiyonlar 𝑢(𝑡, 𝑥) çözümü 

bilinmeyen belirli bir fonksiyondur. (1.23) denkleminin eliptik bir kısmi diferansiyel 

denklem olması için 

 

𝛽2 − 4𝛼𝜆 < 0 

 

koşulu sağlanmalıdır. 
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2. ÖNCEKİ ÇALIŞMALAR 

 

 

Kısmi diferansiyel denklemler mekanik, termodinamik, elastistik, biyoloji 

modelleri ve fiziğin çeşitli alanlarında önemli bir uygulama alanlarına sahiptir. 

Hilbert uzayında öz-eşlenik pozitif tanımlı operatörlü üçüncü mertebeden kısmi 

diferansiyel denklem için yerel olmayan sınır değer problemi incelendi (Ashyralyev 

ve Şimşek, 2017). Üçüncü mertebeden kısmi diferansiyel denklemlerin yaklaşık 

çözümleri için sonlu fark metodu (Modanli, 2018). Sabit katsayılı ve karışık türevli 

iki boyutlu bir eliptik denklem için yerel olmayan integral koşuluna sahip bir sınır 

değer problemini ele aldılar (Berikelashvil ve ark.,2003). Bochner uzaylarındaki 

soyut eliptik denklemler için Bitsadze-Samarskii tipi yerel olmayan sınır değer 

probleminin iyi tanımlılığını belirlediler. Bu problemin yaklaşık çözümü için ikinci 

derece doğruluk farkı şemasını dikkate aldı. Bu fark şemasının çözümü için zorlayıcı 

eşitsizlikler oluşturdu. Uygulamalarda, eliptik denklem için yerel olmayan sınır değer 

probleminin yaklaşık çözümü için fark şemalarının çözümüne yönelik neredeyse 

zorlayıcı kararlılık ve zorlayıcı kararlılık tahminleri elde etti (Ashyralyev, 2010). 

Pozitif A operatörüne sahip keyfi bir Banach uzayı E'de yerel olmayan sınır değer 

problemi ele alındı. Bu sınır değer probleminin düzgün fonksiyon uzaylarında iyi 

konumlanmış olduğunu tespit etti. Eliptik denklemler için sınır değer problemlerinin 

çözümlerine ilişkin yeni kesin Schauder tahminleri elde etti (Ashyralyev,2003). 

Makalesinde (L p ([0, T ]; E ) uzaylarındaki soyut eliptik diferansiyel denklemlerin 

sayısal analizine ayırdı (Ashyralyev ve ark., 2008). Çok boyutlu eliptik kısmi 

diferansiyel denklemler için Bitsadze-Samarskii tipi yerel olmayan sınır değer 

probleminin çözümü için sayısal bir yöntem önerdiler (Ashyralyev ve Öztürk, 2009). 

Kararlılığı ifade eden sabitler için keskin bir eşitsizlik tahmin elde edemediler. Bu 

nedenle, sayısal deneylerin aşağıdaki sonuçlarını verdiler. Bitsadze-Samarskii-

Dirichlet problemini: 

−
∂2𝑢(𝑡, 𝑥)

∂t2
−
∂2𝑢(𝑡, 𝑥)

∂x2
+ 𝑢 = 𝑓(𝑡, 𝑥), 0 < 𝑡 < 1, 0 < 𝑥 < 1,  
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ele aldılar (Ashyralyev ve Ozesenli Tetikoglu, 2012). 

Bu çalışmada, başlangıç-sınır değer koşullarına bağlı eliptik kısmi diferansiyel 

denklemi  

 

{
  
 

  
 
𝛼𝑢𝑡𝑡(𝑡, 𝑥) + 𝛽𝑢𝑡𝑥(𝑡, 𝑥) + 𝜆𝑢𝑥𝑥(𝑡, 𝑥) + 𝑣𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥),

 
0 < 𝑥 < 𝑙, 0 < 𝑡 < 𝑇, 𝛼, 𝛽, 𝜆, 𝑠 > 0                                        

 
𝑢(0, 𝑥) = 𝑔1(𝑥),   𝑢𝑡(0, 𝑥) = 𝑔2(𝑥), 0 ≤ 𝑥 ≤ 𝑙,                  

 
𝑢(𝑡, 0) = 𝑢(𝑡, 𝑙) = 0,   0 ≤ 𝑡 ≤ 𝑇                                          

                      (2.1) 

                  

sonlu fark şeması metodu ile incelendi. Burada 𝑔1(𝑥),  𝑔2(𝑥) bilinen fonksiyonlar ve 

𝑢(𝑡, 𝑥) bilinmeyen fonksiyondur. Denkleminin eliptik bir kısmi diferansiyel denklem 

olması için 

 

𝛽2 − 4𝛼𝜆 < 0 

 

koşulu sağlanmalıdır. Bu şart altında bu problemin yaklaşık çözümünü bulmak için 

sonlu fark şeması ve analitik veya yarı-analitik çözümünü bulmak için de Çift 

Laplace dönüşüm metodu kullanıldı. Bu metotlar karşılaştırılarak hata analizi yapıldı.
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3. MATERYAL ve YÖNTEM 

  

3.1. Materyal 

 

        Bu tezimde daha ayrıntılı bir çalışma sunmak için konuyla ilgili daha önceden 

yayınlanmış makalelere, dergilere ve yapılan yüksek lisans tezlerine ulaşılıp gerekli 

literatür taramaları yapıldı. 

 

3.2. Yöntem 

 

       Eliptik kısmi diferansiyel denklemler ile ilgili geçmişte ve günümüzde yapılan 

çalışmalar incelendi. Sonlu fark şeması metodu kullanılarak eliptik kısmi diferansiyel 

denklemler için yaklaşık çözümler bulundu. Yaklaşık çözüm ve tam çözümler 

karşılaştırılarak ait hata analiz çizelgesi oluşturuldu. Matlab programı kullanılarak 

tam çözüm ve yaklaşık çözüme ait simülasyonlar çizildi. 

 

3.2.1. Sonlu fark şemasının oluşturulması ve kararlılık 

 

(2.1) probleminin yaklaşık çözümünü hesaplamak için grid (ızgara) aralığı  

 

[0, 𝑇]τ={ 𝑡k =kτ , 0 ≤ 𝑘 ≤ 𝑁,𝑁τ = T}, 

[0, 𝑙]ℎ={ 𝑥n =𝑛ℎ, 0 ≤ 𝑛 ≤ 𝑀, 𝑀ℎ = 𝐿 }, 

𝑊τ,h =[0, 𝑇]τ × [0, 𝑙]ℎ={(𝑡k , 𝑥n ) ,𝑡k ∈ [0, 𝑇]τ , 𝑥n ∈ [0, 𝑙]ℎ} 

 

şeklindedir. Bu aralıklar 

 

(𝑡𝑘, 𝑥𝑛), (𝑡k+−1 , 𝑥n ) , ( 𝑡k , 𝑥n+−1 ), ( 𝑡k+−1 , 𝑥n+−1 ) ∈ 𝑊τ,h  

 

dır. 

𝑡 = 𝑡𝑘 , 𝑥 = 𝑥𝑛 alınır (2.1) denkleminde yerine yazılırsa 

 

𝛼𝑢𝑡𝑡(𝑡k , 𝑥n ) + 𝛽𝑢𝑡𝑥(𝑡k , 𝑥n ) + 𝜆𝑢𝑥𝑥(𝑡k , 𝑥n ) + 𝑣𝑢(𝑡k , 𝑥n ) = 𝑓(𝑡k , 𝑥n ) 
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bulunur. Taylor açılımı kullanılırsa, 

 

𝑢𝑡𝑡(𝑡k , 𝑥n ) =
𝑢(𝑡k+1 ,𝑥n ) −2u(𝑡k ,𝑥n )+u(𝑡k−1,𝑥n )  

τ2
+ 𝑂(τ2),                                        (3.1) 

𝑢𝑡𝑥(𝑡, 𝑥) =
𝑢(𝑡k,𝑥n )−u(𝑡k−1,𝑥n )−u(𝑡k,𝑥n−1 )+u(𝑡k−1,𝑥n−1 )  

τh
+ 𝑂(τ2 + h2),                      (3.2) 

𝑢𝑥𝑥(𝑡k , 𝑥n ) =
𝑢(𝑡k,𝑥n+1 )−2u(𝑡k,𝑥n )+u(𝑡k,𝑥n−1 )

h2
+ 𝑂(h2)                                           (3.3) 

 

(3.1), (3.2) ve (3.3) formüllerinde küçük terimler ihmal edilirse, 

 

𝑢𝑡𝑡(𝑡k , 𝑥n ) ≅
𝑢𝑛
𝑘+1 −2𝑢𝑛

𝑘+𝑢𝑛
𝑘−1)  

τ2
,                                                                               (3.4) 

𝑢𝑡𝑥(𝑡, 𝑥) ≅
𝑢𝑛+1
𝑘+1  −𝑢𝑛+1

𝑘−1−𝑢𝑛−1
𝑘+1+𝑢𝑛−1

𝑘−1   

τh
,                                                                          (3.5) 

𝑢𝑥𝑥(𝑡k , 𝑥n ) ≅
𝑢𝑛+1
𝑘  −2𝑢𝑛

𝑘+𝑢𝑛−1
𝑘   

h2
,                                                                               (3.6) 

 

yazılabilir.  (3.4), (3.4) ve (3.5) formülleri kullanılır, küçük terimler ihmal edilir (2.1) 

denkleminde yerine yazılırsa 

 

{
 
 
 

 
 
 𝛼

𝑢𝑛
𝑘+1 −2𝑢𝑛

𝑘+𝑢𝑛
𝑘−1)  

τ2
+ 𝛽

𝑢𝑛+1
𝑘+1  −𝑢𝑛+1

𝑘−1−𝑢𝑛−1
𝑘+1+𝑢𝑛−1

𝑘−1   

τh
               

𝜆
𝑢𝑛+1
𝑘  −2𝑢𝑛

𝑘+𝑢𝑛−1
𝑘   

h2
+  𝑣

𝑢𝑛
𝑘+1+𝑢𝑛

𝑘−1

2
 =

𝑓𝑛
𝑘+1+𝑓𝑛

𝑘−1

2
,              

1 < 𝑘 < 𝑁 − 1, 1 < 𝑛 < 𝑀 − 1                                    ,

𝑢𝑛
0 = 𝑔1(𝑥n ),

𝑢𝑛
1  −𝑢𝑛

0

τ
= 𝑔2(𝑥n ), 0 ≤ 𝑛 ≤ 𝑀,            

𝑢0
𝑘 = 𝑢𝑀

𝑘 = 0,   0 ≤ 𝑘 ≤ 𝑁                                                

                                        (3.7) 

 

elde edilir. Bu fark şeması 

 

+(
−𝛽

ℎ2
) 𝑢𝑛−1

𝑘+1 + (
𝛼

𝜏2
+ 
𝑣

2
) 𝑢𝑛

𝑘+1 + (
𝛽

𝜏ℎ
) 𝑢𝑛+1

𝑘+1 + (
𝜆

ℎ2
) 𝑢𝑛−1

𝑘 + (
−2

𝜏2
−
2𝜆

ℎ2
) 𝑢𝑛

𝑘

+ (
𝜆

ℎ2
) 𝑢𝑛+1

𝑘 + (
𝛽

𝜏ℎ
) 𝑢𝑛−1

𝑘−1 + (
𝛼

𝜏2
+
𝑣

2
) 𝑢𝑛

𝑘−1 + (−
𝛽

𝜏ℎ
) 𝑢𝑛+1

𝑘−1

=
𝑓𝑛
𝑘+1 + 𝑓𝑛

𝑘−1

2
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olarak da yazılabilir. Bu da  

 

𝑎𝑢𝑛+1
𝑘+1 + 𝑏𝑢𝑛

𝑘−1 + 𝑐𝑢𝑛
𝑘 + 𝑑𝑢𝑛

𝑘+1 + 𝑒𝑢𝑛−1
𝑘+1 = 𝑓𝑛

𝑘+1 

 

biçiminde yazılır. Burada, 

𝜑𝑛
𝑘 =

𝑓𝑛
𝑘+1 + 𝑓𝑛

𝑘−1

2
, 

𝐴 =

[
 
 
 
 
 
 
0 0 0    …    0     0   0
𝑝 𝑎 0    …    0     0   0
0 𝑝 𝑎    …    0     0   0
⋮      ⋮      ⋮     ⋱     ⋮     ⋮      ⋮
0 0 0    …    𝑎    0    0
0 0 0    …    𝑝     𝑎   0
0 0 0    …    0     0   0]

 
 
 
 
 
 

, 

burada, 𝑝 =
𝜆

ℎ2
, 𝑎 =

𝛽

𝜏ℎ
 dır, 

 

𝐵 =

[
 
 
 
 
 
 
 
 
1 0 0    …    0     0   0
𝑏 𝑐 𝑑    …    0     0   0
0 𝑏 𝑐    …    0     0   0
⋮      ⋮      ⋮     ⋱     ⋮     ⋮      ⋮
0      0    0   …     𝑏     𝑐    𝑑
0 0 0    …    0     𝑏   𝑐
0 0 0    …    0    0   𝑏
−1

𝜏

1

𝜏
0    …    0     0   0]

 
 
 
 
 
 
 
 

 

 

burada 𝑏 =
𝛼

𝜏2
+
𝑣

2
, 𝑐 =

−2

𝜏2
−
2𝜆

ℎ2
, 𝑑 =

𝛼

𝜏2
+ 

𝑣

2
,  ve 

 

𝐶 =

[
 
 
 
 
 
 
0 0 0    …    0     0   0
𝑘 𝑒 𝑓     …    0    0   0
0 0 0    …    0     0   0
⋮      ⋮      ⋮       ⋱     ⋮     ⋮      ⋮
0 0 0    …    0     𝑒    0
0 0 0    …    0     0   𝑒
0 0 0    …    0     0   0 ]

 
 
 
 
 
 

 

 

burada, 𝑘 =
𝛽

𝜏ℎ
, 𝑒 =

𝜆

ℎ2
, 𝑓 = −

𝛽

𝜏ℎ
,dır. Buradan da 
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𝐴𝑈𝑛+1 + 𝐵𝑈𝑛 + 𝐶𝑈𝑛−1 = 𝜑𝑛
𝑘, 

matris formu elde edilir. Burada 𝐴, 𝐵 ve 𝐶 matrisleri (𝑁 + 1) × (𝑁 + 1) bpyutludur. 

 

 

Teorem 3.1.   

 

16
𝛼 𝜆 

τ2ℎ2
+ 16

𝜆2 

ℎ4
≤ +4

𝛼𝑣

τ2
+ 𝑣2 + 16

𝛽2

τ2ℎ2
  

 

koşulu altında  (3.4) sonlu fark şeması kararlıdır. 

 

İspat: Teoremin ispatı için Von-Neumann analiz formülünü kullanalım. Bu formül  

 

𝑢𝑛
𝑘 = 𝑟𝑘𝑒𝑖𝑛𝜃                                                                                                            (3.8) 

 

olarak verilir. (3.8) formülü, (3.7) formülünde yerine yazılırsa,  

 

{
 
 
 

 
 
 𝛼

𝑟𝑘+1𝑒𝑖𝑛𝜃 −2𝑟𝑘𝑒𝑖𝑛𝜃+𝑟𝑘−1𝑒𝑖𝑛𝜃  

τ2
                                                                  

+𝛽
𝑟𝑘+1𝑒𝑖(𝑛+1)𝜃 −𝑟𝑘−1𝑒𝑖(𝑛−1)𝜃−𝑟𝑘+1𝑒𝑖(𝑛−1)𝜃+𝑟𝑘−1𝑒𝑖(𝑛−1)𝜃  

𝜏ℎ
                        

𝜆
𝑟𝑘𝑒𝑖(𝑛+1)𝜃 −2𝑟𝑘𝑒𝑖𝑛𝜃+𝑟𝑘𝑒𝑖(𝑛−1)𝜃  

h2
+  𝑣

𝑟𝑘+1+𝑟𝑘−1

2
𝑒𝑖𝑛𝜃  =

𝑓𝑛
𝑘+1+𝑓𝑛

𝑘−1

2
,   

𝑢𝑛
0 = 𝑔1(𝑥n )  ,   

𝑢𝑛
1  −𝑢𝑛

0

τ
= 𝑔2(𝑥n ), 0 ≤ 𝑛 ≤ 𝑀                                  

𝑢0
𝑘 = 𝑢𝑀

𝑘 = 0,   0 ≤ 𝑘 ≤ 𝑁                                                                       

                    (3.9) 

 

bulunur. (3.9) formülünde 𝑛 = 0, 𝑘 = 1 ve  𝑓0
0, 𝑓0

2  
 
→ 0 alınırsa  

 

{
 
 
 

 
 
 𝛼

𝑟2  − 2𝑟 + 1  

τ2
+ 𝛽

𝑟2𝑒𝑖𝜃  − 𝑒𝑖𝑛𝜃 − 𝑟2
 
𝑒−𝑖𝜃   + 𝑒−𝑖𝜃

τh
 
 

+𝜆𝑟
𝑒𝑖𝜃  − 2 + 𝑒−𝑖𝜃 

h2
+  𝑣

𝑟2 + 1

2
 = 0,                   

 
 

                                                                            

                                          (3.10) 
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(3.10) denklemi düzenlenirse, 

 

[
 𝛼  

τ2
+
 𝛽  

τh 
(𝑒𝑖𝜃 − 𝑒−𝑖𝜃 ) +

𝑣

2
]𝑟2 +[-

2 𝛼  

τ2
+
 𝜆  

h2
(𝑒𝑖𝜃 − 2 + 𝑒−𝑖𝜃] + 𝑟 + [(

 𝛼  

τ2
+
 𝛽  

τh 
(𝑒𝑖𝜃 −

𝑒−𝑖𝜃) +
𝑣

2
] = 0                                                                                                       (3.11)    

 

olup 

 

𝑒𝑖𝜃 − 2  + 𝑒−𝑖𝜃  = 2𝑐𝑜𝑠 𝜃 − 2  =
1

2
𝑠ⅈ𝑛2(

 𝜃  

2 
) 

 

ifadesi göz önüne alınır ve  (3.11)   denkleminde yerine yazılırsa  

 

[
 𝛼  

τ2
+
 2𝛽𝑖  

τh 
𝑠ⅈ𝑛𝜃 +

𝑣

2
]𝑟2 + [−

2 𝛼  

τ2
− 4

 𝜆  

h2
𝑠ⅈ𝑛2

 𝜃  

2 
] 𝑟 +[

 𝛼  

τ2
−
2𝑖 𝛽  

τh 
𝑠ⅈ𝑛𝜃) +

𝑣

2
] = 0 

 

bulunur.  

𝑟1 + 𝑟2= 
 
2 𝛼  

τ2
+4

 𝜆  

h2
𝑠𝑖𝑛2

 𝜃  

2 

 𝛼  

τ2
+
𝑣

2
+
 2𝛽𝑖  

τh 
𝑠𝑖𝑛𝜃

< 2 

 

şartının sağlanıp sağlanmadığını gösterelim. Kökler karmaşık sayı olduğundan bu 

kökler için herhangi bir sıralama yapılamayacaktır. Bu problemi aşmak için Hilbert 

uzayındaki norm kullanılırsa 

‖𝑟1 + 𝑟2‖ = |

2 𝛼  

τ2
+ 4

 𝜆  

h2
𝑠ⅈ𝑛2

 𝜃  

2 

 𝛼  

τ2
+
𝑣

2
+
 2𝛽𝑖  

τh 
𝑠ⅈ𝑛𝜃

| =
|
2 𝛼  

τ2
+ 4

 𝜆  

h2
𝑠ⅈ𝑛2

 𝜃  

2 
|

|
 𝛼  

τ2
+
𝑣

2
+
 2𝛽𝑖  

τh 
𝑠ⅈ𝑛𝜃|

≤ 4 

 

yazılabilir.  Buradan da  

 

(
2 𝛼  

τ2
+ 4

 𝜆  

h2
𝑠ⅈ𝑛2

 𝜃  

2 
)2 ≤ 4 [(

 𝛼  

τ2
+
𝑣

2
)2 + (

 2𝛽  

τh 
𝑠ⅈ𝑛𝜃)2]                                          (3.12) 

 

elde edilir.  
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2 𝛼  

τ2
+ 4

 𝜆  

h2
𝑠ⅈ𝑛2

 𝜃  

2 
≤

2 𝛼  

τ2
+ 4

 𝜆  

h2
,                                                                           (3.13) 

(
 𝛼  

τ2
+
𝑣

2
)2 + (

 2𝛽  

τh 
𝑠ⅈ𝑛𝜃)2 ≤ (

 𝛼  

τ2
+
𝑣

2
)2 + (

 2𝛽  

τh 
)2                                                   (3.14) 

 

(3.13) ve (3.14) formülleri (3.12) formülünde yazılırsa, 

 

(
2 𝛼  

τ2
+ 4

 𝜆  

ℎ2
)2 ≤ 4 [(

 𝛼  

τ2
+
𝑣

2
)2 + (

 2𝛽  

τh 
)2]                                                              (3.15) 

 

elde edilir. (3.15) formülünden  

 

4 𝛼2  

τ4
+ 16

𝛼 𝜆 

τ2ℎ2
+ 16

𝜆2 

ℎ4
≤
4 𝛼2  

τ4
+ 4

𝛼𝑣

τ2
+ 𝑣2 + 16

𝛽2

τ2ℎ2
  

 

elde edilir. Buradan da 

16
𝛼 𝜆 

τ2ℎ2
+ 16

𝜆2 

ℎ4
≤ 4

𝛼𝑣

τ2
+ 𝑣2 + 16

𝛽2

τ2ℎ2
  

 

Bu koşul altından da  𝑟1 + 𝑟2 ≤ 2 şartının sağlandığı söylenebilir. 

 Şimdi de  

 𝑟1𝑟2 =
  
 𝛼  

τ2
+
𝑣

2
−
2𝑖 𝛽  

τh 
𝑠ⅈ𝑛𝜃

 𝛼  

τ2
+
𝑣

2
+
 2𝛽𝑖  

τh 
𝑠ⅈ𝑛𝜃

 

 

  

hesaplayalım. Çünkü,  

𝑥 =
 𝛼  

τ2
+
𝑣

2
, 𝑦 =

2ⅈ 𝛽  

τh 
𝑠ⅈ𝑛𝜃 

olarak alınırsa, 

𝑟1𝑟2 =
𝑥−𝑖𝑦

𝑥+𝑖𝑦
  

 

kompleks değerli kökler elde edilir. Kompeks sayılarda sıralama 

yapılamayacağından Hilber uzayındaki norm kullanılırsa, 
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‖𝑟1𝑟2‖ = |
𝑥 − ⅈ𝑦

𝑥 + ⅈ𝑦
| =

|𝑥 − ⅈ𝑦|

|𝑥 + ⅈ𝑦|
=
√𝑥2 + 𝑦2

√𝑥2 + 𝑦2
= 1 

 

elde edilir ki bu da ‖𝑟1𝑟2‖ ≤ 1  oluğunu gösterir. Böylece  𝑟1 < 1 ve 𝑟2 < 1  olur. 

Dolayısıyla 

 

|𝑢𝑛
𝑘  |   = |𝑟𝑘𝑒𝑖𝑛𝜃|   ≤ |𝑟𝑘 | ≤ 1 

 

olup   (3.4)  sonlu fark şeması karalıdır. 

 

3.2.2. Çift Laplace Metodu 

 

{
  
 

  
 
𝛼𝑢𝑡𝑡(𝑡, 𝑥) + 𝛽𝑢𝑡𝑥(𝑡, 𝑥) + 𝜆𝑢𝑥𝑥(𝑡, 𝑥) + 𝑣𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥),

 
0 < 𝑥 < 𝑙, 0 < 𝑡 < 𝑇, 𝛼, 𝛽, 𝜆, 𝑣 > 0                                      

 
𝑢(0, 𝑥) = 𝑔1(𝑥),   𝑢𝑡(0, 𝑥) = 𝑔2(𝑥), 0 ≤ 𝑥 ≤ 𝑙,                 

 
𝑢(𝑡, 0) = 𝑢(𝑡, 𝑙) = 0,   0 ≤ 𝑡 ≤ 𝑇                                             

                              (3.16) 

 

(3.16) probleminin çözümü için çift Laplace metodunu oluşturalım. 

 

ℒ 𝑥ℒ 𝑡{𝑢(𝑡, 𝑥)} = 𝑈(𝑠, 𝑝) 

 

 olsun. (3.16) denkleminin her tarafının ℒ 𝑥ℒ 𝑡 Laplace dönüşümü alınırsa, 

 

𝛼𝑠2𝑈(𝑠, 𝑝) − 𝛼𝑠𝑈(0, 𝑝) − 𝛼𝑈𝑡(0, 𝑝) = ℒ 𝑥ℒ 𝑡{−𝛽𝑢𝑡𝑥(𝑡, 𝑥) − 𝜆𝑢𝑥𝑥(𝑡, 𝑥) −

𝑣𝑢(𝑡, 𝑥) + 𝑓(𝑡, 𝑥)}                                                                                               (3.17) 

 

formülü elde edilir. (3.17) formülü düzenlenip yeniden yazılırsa 

 

𝑈(𝑠, 𝑝) =
1

𝑠
𝑈(0, 𝑝) +

1

𝑠2
𝑈𝑡(0, 𝑝) +

𝐹(𝑠,𝑝)

𝑠2
+ ℒ 𝑥ℒ 𝑡

1

𝛼𝑠2
{−𝛽𝑢𝑡𝑥(𝑡, 𝑥) − 𝜆𝑢𝑥𝑥(𝑡, 𝑥) −

𝑣𝑢(𝑡, 𝑥)}                                                                                                                (3.18) 
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bulunur buradan da 

  

ℒ 𝑥ℒ 𝑡{𝑓(𝑡, 𝑥)} = 𝐹(𝑠, 𝑝) 

 

dır. (3.18) denkleminin her tarafının ℒ𝑥
−1ℒ𝑡

−1 alınır, (3.16) problemindeki başlangıç 

değerleri de kullanılırsa 

  

𝑢(𝑡, 𝑥) = ℒ𝑥
−1ℒ𝑡

−1{𝑈(𝑠, 𝑝)}= 𝛼𝑔1(𝑥) + 𝛼𝑡𝑔2(𝑥) + ℒ𝑥
−1ℒ𝑡

−1 {
𝐹(𝑠,𝑝)

𝑠2
}  

+ℒ𝑥
−1ℒ𝑡

−1 {
1

𝛼𝑠2
ℒ 𝑥ℒ 𝑡{−𝛽𝑢𝑡𝑥 (𝑡, 𝑥) − 𝜆𝑢𝑥𝑥(𝑡, 𝑥) − 𝑣𝑢(𝑡, 𝑥)                               (3.19) 

 

yazılır. (3.19) denkleminin çözümü için  

 

𝑢(𝑡, 𝑥) = ∑ 𝑢𝑛(𝑡, 𝑥)
𝑎
𝑝=0                                                                                         (3.20) 

 

sonsuz serisi kullanılırsa, (3.20) denklemi 

 

∑ 𝑢𝑛(𝑡, 𝑥)
∞
𝑛=0 = ℒ𝑥

−1ℒ𝑡
−1 {

1

𝛼𝑠2
ℒ 𝑥ℒ 𝑡(−𝛽

𝜕2

𝜕𝑡𝜕𝑥
∑ 𝑢𝑛(𝑡, 𝑥)
∞
𝑛=0 − 𝜆

𝜕2

𝜕𝑥2
∑ 𝑢𝑛(𝑡, 𝑥)
∞
𝑛=0 −

𝑣∑ 𝑈𝑛(𝑡, 𝑥)
∞
𝑛=0 𝑢𝑛(𝑡, 𝑥))} + 𝛼𝑔1𝑥 + 𝛼𝑡𝑔2𝑥 + ℒ𝑥

−1ℒ𝑡
−1 {

𝐹(𝑠,𝑝)

𝑠2
}                          (3.21) 

 

olarak yazılabilir. Bu durumda (3.16) denkleminin çözümü  

 

𝑢0(𝑡, 𝑥) = 𝛼𝑔1𝑥 + 𝛼𝑔2(𝑥)𝑡 + ℒ𝑥
−1ℒ𝑡

−1 {
𝐹(𝑠, 𝑝)

𝑠2
} 

ve benzer şekilde 

𝑢𝑛+1(𝑡, 𝑥) = ℒ𝑥
−1ℒ𝑡

−1 {
1

𝛼𝑠2
(ℒ 𝑥ℒ 𝑡(−𝛽

𝜕2

𝜕𝑡𝜕𝑥
∑𝑢𝑛(𝑡, 𝑥)

∞

𝑛=0

− 𝜆
𝜕2

𝜕𝑥2
∑𝑢𝑛(𝑡, 𝑥)

∞

𝑛=0

 

−𝑣∑ 𝑢𝑛(𝑡, 𝑥)
∞
𝑛=0 )}                                                                                                (3.22)        

genel formülü bulunur.
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4.ARAŞTIMA BULGULARI ve TARTIŞMA 

 

 

4.1. Nümerik Sonuçlar 

 

Bu Bu bölümde ikinci mertebeden eliptik kısmi diferansiyel denklemin 

çözümünü sonlu fark ve Çift Laplace dönüşüm metodunu kullanarak bir örnek 

problem üzerinde test edeceğiz.  

 

4.1.1. Çift Laplace Metodu  

 

Örnek 4.1. (3.9) denkleminde 𝛼 = −1, 𝛽 = 1, 𝜆 = −1, 𝑣 = 1  alınırsa 

denklem  

 

{

−𝑢𝑡𝑡(𝑡, 𝑥) + 𝑢𝑡𝑥(𝑡, 𝑥) − 𝑢𝑥𝑥(𝑡, 𝑥) + 𝑢(𝑡, 𝑥) = 𝑒−𝑡𝜋(sⅈn(𝜋𝑥) − 𝜋2𝑐𝑜𝑠(𝜋𝑥))            

𝑢(0, 𝑥) = sⅈn(𝜋𝑥),   𝑢𝑡(0, 𝑥) = −𝜋sⅈn(𝜋𝑥),   0 ≤ 𝑥 ≤ 1,                                     (4.1)

𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0,    0 ≤ 𝑡 ≤ 1                                                                                       

 

 

eliptik denklem olur. Bu denkleminin çözümünü çift Laplace yöntemiyle 

hesaplayalım. 

 

𝑈(𝑠, 𝑝) = ℒ 𝑥ℒ 𝑡{𝑢(𝑡, 𝑥)}                                                                              (4.2) 

 

olsun. (4.1) denkleminin her tarafının ℒ 𝑥ℒ 𝑡 Laplace dönüşümü alınırsa 

 

𝑠2𝑈(𝑠, 𝑝) − 𝑠𝑈(0, 𝑝) − 𝑈𝑡(0, 𝑝) = ℒ 𝑥ℒ 𝑡{−𝑢𝑡𝑥(𝑡, 𝑥) + 𝑢𝑥𝑥(𝑡, 𝑥) 

−𝑢(𝑡, 𝑥) + 𝑒−𝑡𝜋(sⅈn(𝜋𝑥) − 𝜋2𝑐𝑜𝑠(𝜋𝑥))}                                                    (4.3) 

 

elde edilir. (4.3) formülü düzenlenirse, 

 

−𝑠2𝑈(𝑠, 𝑝) = −
𝜋𝑠

𝑝2+𝜋2
+

𝜋2

𝑝2+𝜋2
+

1

𝑠+𝜋
(

𝜋

𝑝2+𝜋2
−

𝜋2𝑝

𝑝2+𝜋2
) 

+ℒ 𝑥ℒ 𝑡{𝑢𝑡𝑥(𝑡, 𝑥) − 𝑢𝑥𝑥(𝑡, 𝑥) + 𝑢(𝑡, 𝑥)}                                                      (4.4) 



4.ARAŞTIMA BULGULARI ve TARTIŞMA                                           Ecrin POLAT 

 

 

27 

 

olup burada 

 

𝑈(𝑠, 𝑝) =
𝜋

𝑠(𝑝2+𝜋2)
−

𝜋2

𝑠2(𝑝2+𝜋2)
−

1

𝑠2(𝑠+𝜋)
(

𝜋

𝑝2+𝜋2
−

𝜋2𝑝

𝑝2+𝜋2
) −

1

𝑠2
ℒ 𝑥ℒ 𝑡{𝑢𝑡𝑥(𝑡, 𝑥) − 𝑢𝑥𝑥(𝑡, 𝑥) + 𝑢(𝑡, 𝑥)}                                                                                                                     

(4.5) 

 

da olarak yazılır. (4.5) denkleminin her tarafının ℒ𝑥
−1ℒ𝑡

−1 alınırsa 

 

𝑢(𝑡, 𝑥) = ℒ𝑥
−1ℒ𝑡

−1{𝑈(𝑠, 𝑝)} 

= sⅈn 𝜋𝑥 − 𝑡 sⅈn 𝜋𝑥 +
1

𝜋2
(1 − 𝜋𝑡 − 𝑒−𝑡𝜋)(sⅈn 𝜋𝑥 − 𝜋2cos𝜋𝑥) 

+ℒ𝑥
−1ℒ𝑡

−1 {
1

𝑠2
ℒ 𝑥ℒ 𝑡 (−𝑢(𝑡, 𝑥) − 𝑢𝑡𝑥(𝑡, 𝑥) + 𝑢𝑥𝑥(𝑡, 𝑥))}                                       (4.6)    

                                 

elde edilir. (4.6) formülünden  

 

𝑢0(𝑡, 𝑥) = sⅈn 𝜋𝑥 − 𝑡 sⅈn 𝜋𝑥 +
1

𝜋2
(1 − 𝜋𝑡 − 𝑒−𝑡𝜋)(sⅈn 𝜋𝑥 − 𝜋2cos𝜋𝑥)             (4.7) 

 

olarak bulunur.  𝑢0(𝑡, 𝑥)  fonksiyonunun kısmi türevleri  

 

(𝑢0)𝑡(𝑡, 𝑥) = −𝜋sⅈn 𝜋𝑥 +
1

𝜋
(sⅈn 𝜋𝑥 − 𝜋2cos𝜋𝑥) −

1

𝜋
𝑒−𝑡𝜋(sⅈn 𝜋𝑥 − 𝜋2cos𝜋𝑥) 

 

(𝑢0)𝑡𝑡(𝑡, 𝑥) = 𝑡𝑒−𝑡𝜋(sⅈn 𝜋𝑥 − 𝜋2cos𝜋𝑥) −
1

𝜋
𝑒−𝑡𝜋(sⅈn𝜋𝑥 − 𝜋2cos𝜋𝑥)     (4.8) 

 

(𝑢0)𝑡𝑥(𝑡, 𝑥) = −𝜋
2cos𝜋𝑥 + 𝑐𝑜𝑠𝜋𝑥 + 𝜋2sⅈn𝜋𝑥 − 𝑒−𝑡𝜋𝑐𝑜𝑠𝜋𝑥 − 𝜋2𝑒−𝑡𝜋 sⅈn 𝜋𝑥    (4.9) 

 

(𝑢0)𝑥(𝑡, 𝑥) = 𝜋cos𝜋𝑥 − 𝜋2𝑡cos𝜋𝑥 +
1

𝜋
(−1 + 𝜋𝑡 + 𝑒−𝑡𝜋)(𝑐𝑜𝑠𝜋𝑥 + 𝜋2sⅈn𝜋𝑥) 

 

(𝑢0)𝑥𝑥(𝑡, 𝑥) = −𝜋
2𝑠ⅈ𝑛𝜋𝑥 + 𝜋3𝑡sⅈn𝜋𝑥 + (−1 + 𝜋𝑡 + 𝑒−𝑡𝜋)(− sⅈn 𝜋𝑥 +

𝜋2cos𝜋𝑥)                                                                                                               (4.10) 
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şeklinde bulunur. 

 

𝑢𝑛+1(𝑡, 𝑥) = ℒ𝑥
−1ℒ𝑡

−1 {
1

𝑠2
ℒ 𝑥ℒ 𝑡 (−(𝑢𝑛)𝑡𝑡(𝑡, 𝑥) + (𝑢𝑛)𝑡𝑥(𝑡, 𝑥) −

(𝑢𝑛)𝑥𝑥(𝑡, 𝑥)                        (4.11)                    

 

genel formülünde 𝑛 = 0  için  (4.8)-(4.10) kısmi türevleri (4.11) formülünde  

yazarsak 

 

𝑢1(𝑡, 𝑥) = (−2𝜋2𝑡 +
1

𝜋2
𝑡 +

1

6
𝑡3 (𝜋3 −

1

𝜋
) + (1 −

1

𝜋4
) (−1 + 𝑒−𝑡𝜋 + 𝑡𝜋))𝑠ⅈ𝑛𝜋𝑥

+ ((
1

6
𝑡3(𝜋3 + 𝜋) + (

2 + 𝜋 − 𝜋2

𝜋2
) (−1 + 𝑡𝜋 + 𝑒−𝑡𝜋) − 2𝑡)𝑐𝑜𝑠𝜋𝑥 

 

elde edilir. Benzer işlem diğer adımlar için de yapılabilir. 

 

Örnek 4.2. Eliptik  

{

−𝑢𝑡𝑡(𝑡, 𝑥) − 𝑢𝑥𝑥(𝑡, 𝑥) + 𝑢𝑡𝑥(𝑡, 𝑥) + 𝑢(𝑡, 𝑥) = 𝑒−𝑡(sⅈn𝑥 − 𝑐𝑜𝑠𝑥)                               

𝑢(0, 𝑥) = sⅈn𝑥,   𝑢𝑡(0, 𝑥) = −sⅈn𝑥,   0 ≤ 𝑥 ≤ 1,                                                  (4.12)

𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0,    0 ≤ 𝑡 ≤ 1                                                                                       

 

 

denkleminin çözümünü çift Laplace yöntemiyle hesaplayalım. 

 

𝑈(𝑠, 𝑝) = 𝐿𝑥𝐿𝑡{𝑢(𝑡, 𝑥)}                                                                               (4.13) 

 

olsun. (4.13) denkleminin her tarafının 𝐿𝑥𝐿𝑡 Laplace dönüşümü alınırsa 

 

−(𝑠2𝑈(𝑠, 𝑃) − 𝑠𝑈(0, 𝑝) − 𝑈𝑡(0, 𝑝)) = 𝐿𝑥𝐿𝑡{𝑢𝑥𝑥(𝑡, 𝑥) − 𝑢𝑡𝑥(𝑡, 𝑥) − 𝑢(𝑡, 𝑥) +

𝑒−𝑡(sⅈn𝑥 − 𝑐𝑜𝑠𝑥)}                                                                                                (4.14) 

 

elde edilir. (4.14) formülü düzenlenirse, 
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−𝑠2𝑈(𝑠, 𝑝) +
𝑠

𝑝2+1
−

1

𝑝2+1
=

1

𝑠+1
(

1

𝑝2+1
−

𝑝

𝑝2+1
) +𝐿𝑥𝐿𝑡{𝑢𝑥𝑥(𝑡, 𝑥) − 𝑢𝑡𝑥(𝑡, 𝑥) −

𝑢(𝑡, 𝑥)}   −𝑠2𝑈(𝑠, 𝑝) = −
𝑠

𝑝2+1
+

1

𝑝2+1
+

1

𝑠+1
(

1

𝑝2+1
−

𝑝

𝑝2+1
) +𝐿𝑥𝐿𝑡{𝑢𝑥𝑥(𝑡, 𝑥) −

𝑢𝑡𝑥(𝑡, 𝑥) − 𝑢(𝑡, 𝑥)}                                                                                               (4.15) 

                                                                                                                                                        

olup burada 

 

𝑈(𝑠, 𝑝) =
1

𝑠(𝑝2+1)
−

1

𝑠2(𝑝2+1)
−

1

𝑠2(𝑠+1)
(

1

𝑝2+1
−

𝑝

𝑝2+1
) −

1

𝑠2
𝐿𝑥𝐿𝑡{𝑢𝑥𝑥(𝑡, 𝑥) −

𝑢𝑡𝑥(𝑡, 𝑥) − 𝑢(𝑡, 𝑥)}                                                                                               (4.16) 

 

olarak yazılır. (4.16) denkleminin her tarafının 𝐿𝑥
−1𝐿𝑡

−1 alınırsa 

 

𝑢(𝑡, 𝑥) = 𝐿𝑥
−1𝐿𝑡

−1 {
1

𝑠(𝑝2+1)
−

1

𝑠2(𝑝2+1)
−

1

𝑠2(𝑠+1)
(

1

𝑝2+1
−

𝑝

𝑝2+1
)} +

𝐿𝑥
−1𝐿𝑡

−1 {−
1

𝑠2
𝐿𝑥𝐿𝑡( 𝑢𝑥𝑥(𝑡, 𝑥) − 𝑢𝑡𝑥(𝑡, 𝑥) − 𝑢(𝑡, 𝑥))}                                                                                               

(4.17)    

                                 

elde edilir. (4.17) formülünden  

𝑢0(𝑡, 𝑥) = sⅈn 𝑥 − 𝑡 sⅈn 𝑥 +
1

𝜋2
(1 − 𝑡 − 𝑒−𝑡)(sⅈn𝑥 − 𝑐𝑜𝑠𝑥)   

               =    𝑠ⅈ𝑛𝑥(1 − 𝑡 + 1 − 𝑡 − 𝑒−𝑡) − (1 − 𝑡−𝑒−𝑡)𝑐𝑜𝑠𝑥 

𝑢0(𝑡, 𝑥) = 𝑠ⅈ𝑛𝑥(2 − 2𝑡 − 𝑒
−𝑡) + (−1 + 𝑡+𝑒−𝑡)𝑐𝑜𝑠𝑥                               (4.18) 

 

olarak bulunur.   

𝑢𝑛+1(𝑡, 𝑥) = 𝐿𝑥
−1𝐿𝑡

−1 {−
1

𝑠2
𝐿𝑥𝐿𝑡 ((𝑢𝑛)𝑥𝑥(𝑡, 𝑥) − (𝑢𝑛)𝑡𝑥(𝑡, 𝑥) − 𝑢𝑛(𝑡, 𝑥))}  

 

genel formülünde 𝑛 = 0 alınırsa; 

 

𝑢1(𝑡, 𝑥) = 𝐿𝑥
−1𝐿𝑡

−1 {−
1

𝑠2
𝐿𝑥𝐿𝑡 ((𝑢0)𝑥𝑥(𝑡, 𝑥) − (𝑢0)𝑡𝑥(𝑡, 𝑥) − 𝑢0(𝑡, 𝑥))}(4.19) 

 

şeklinde olup,  𝑢0(𝑡, 𝑥)  fonksiyonunun kısmi türevleri  ise  
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(𝑢0)𝑥𝑥(𝑡, 𝑥) = 𝑠ⅈ𝑛𝑥(2𝑡 − 2 + 𝑒
−𝑡) + (1 − 𝑡−𝑒−𝑡)𝑐𝑜𝑠𝑥  

 

(𝑢0)𝑡(𝑡, 𝑥) = 𝑠ⅈ𝑛𝑥(−2 + 𝑒−𝑡) + (1−𝑒−𝑡)𝑐𝑜𝑠𝑥                 

 

(𝑢0)𝑡𝑥(𝑡, 𝑥) = 𝑐𝑜𝑠𝑥(−2 + 𝑒
−𝑡) + (𝑒−𝑡 − 1)𝑠ⅈ𝑛𝑥             

 

şeklindedir. 𝑢0(𝑡, 𝑥)  fonksiyonunun kısmi türevlerini (4.19)   denkleminde yazarsak;                                          

   

 

((𝑢0)𝑥𝑥(𝑡, 𝑥) − (𝑢0)𝑡𝑥(𝑡, 𝑥) − 𝑢0(𝑡, 𝑥)) = (−3 + 4𝑡 + 𝑒
−𝑡)𝑠ⅈ𝑛𝑥 +

(4 − 2𝑡 − 2𝑒−𝑡)𝑐𝑜𝑠𝑥  

𝐿𝑥𝐿𝑡{(𝑢0)𝑥𝑥(𝑡, 𝑥) − (𝑢0)𝑡𝑥(𝑡, 𝑥) − 𝑢0(𝑡, 𝑥)}=(−
3

𝑠
+

4

𝑠2
+

1

𝑠+1
) 

1

𝑝2+1
+(

4

𝑠
−

2

𝑠2
−

2

𝑠+1
) 

𝑝

𝑝2+1
 

𝑢1(𝑡, 𝑥) = 𝐿𝑥
−1𝐿𝑡

−1 {(−
3

𝑠
+

4

𝑠2
+

1

𝑠+1
) 

1

𝑝2+1
+ (

4

𝑠
−

2

𝑠2
−

2

𝑠+1
) 

𝑝

𝑝2+1
}  

𝑢1(𝑡, 𝑥) = (
3

2
𝑡2 −

2

3
𝑡3 + 1 − 𝑡 − 𝑒−𝑡)𝑠ⅈ𝑛𝑥 + (−2𝑡2 +

1

3
𝑡3 − 2 + 2𝑡

+ 2𝑒−𝑡)𝑐𝑜𝑠𝑥                   

𝑢1(𝑡, 𝑥) = (1 − 𝑡 +
3

2
𝑡2 −

2

3
𝑡3 − 𝑒−𝑡)𝑠ⅈ𝑛𝑥 + (−2 + 2𝑡−2𝑡2 +

1

3
𝑡3 +

2𝑒−𝑡)𝑐𝑜𝑠𝑥                                                                                                             (4.20) 

 

elde edilir. Benzer şekilde  𝑢2(𝑡, 𝑥) denlemini  bulalım. 

 

𝑢2(𝑡, 𝑥) = 𝐿𝑥
−1𝐿𝑡

−1 {−
1

𝑠2
𝐿𝑥𝐿𝑡 ((𝑢1)𝑥𝑥(𝑡, 𝑥) − (𝑢1)𝑡𝑥(𝑡, 𝑥) − 𝑢1(𝑡, 𝑥))}          (4.21) 

 

şeklinde olup,  𝑢1(𝑡, 𝑥)  fonksiyonunun kısmi türevleri ise  

 

(𝑢1)𝑥𝑥(𝑡, 𝑥) = (−1 + 𝑡 −
3

2
𝑡2 +

2

3
𝑡3 + 𝑒−𝑡) 𝑠ⅈ𝑛𝑥 + (2 − 2𝑡+2𝑡2 −

1

3
𝑡3 −

2𝑒−𝑡) 𝑐𝑜𝑠𝑥,  

 

(𝑢1)𝑡(𝑡, 𝑥) = (−1 + 3𝑡 − 2𝑡
2 + 𝑒−𝑡)𝑠ⅈ𝑛𝑥 + (2 − 4𝑡+𝑡2 − 2𝑒−𝑡)𝑐𝑜𝑠𝑥,                
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(𝑢1)𝑡𝑥(𝑡, 𝑥) = (−1 + 3𝑡 − 2𝑡
2 + 𝑒−𝑡)𝑐𝑜𝑠𝑥 + (−2 + 4𝑡−𝑡2 + 2𝑒−𝑡)𝑠ⅈ𝑛𝑥                            

 

şeklindedir. 𝑢1(𝑡, 𝑥)  fonksiyonunun kısmi türevlerini (4.21)   denkleminde yazarsak; 

 

𝑢2(𝑡, 𝑥) = 𝐿𝑥
−1𝐿𝑡

−1 {−
1

𝑠2
𝐿𝑥𝐿𝑡 ((−2𝑡 − 2𝑡

2 +
4

3
𝑡3)𝑠ⅈ𝑛𝑥 + (5 − 7𝑡+6𝑡2 −

2

3
𝑡3 − 5𝑒−𝑡)𝑐𝑜𝑠𝑥)}   

𝑢2(𝑡, 𝑥) = 𝐿𝑥
−1𝐿𝑡

−1 {−
1

𝑠2
((−

2

𝑠2
+

2

𝑠3
+
2

3

6

𝑠4
) 

1

𝑝2+1
+ (

5

𝑠
−

7

𝑠2
+
12

𝑠3
−
2

3

6

𝑠4
−

5

𝑠+1
) 

𝑝

𝑝2+1
)}   

𝑢2(𝑡, 𝑥) = 𝐿𝑥
−1𝐿𝑡

−1 {((
2

𝑠4
+

2

𝑠5
−

8

𝑠6
) 

1

𝑝2+1
+ (−

5

𝑠3
+

7

𝑠4
−
12

𝑠5
+

4

𝑠6
+

5

𝑠2(𝑠+2)
) 

𝑝

𝑝2+1
)}  𝑢2(𝑡, 𝑥) = (

1

3
𝑡3 +

1

12
𝑡4 −

1

15
𝑡5)𝑠ⅈ𝑛𝑥 + (−

5

2
𝑡2 +

7

6
𝑡3 −

1

2
𝑡4 +

1

30
𝑡5 − 5 + 5𝑡 + 5𝑒−𝑡)𝑐𝑜𝑠𝑥                                                                                 (4.22) 

 

şeklinde bulunur. (4.18), (4.20) ve  (4.22) formülleri toplanırsa; 

 

𝑢0(𝑡, 𝑥) + 𝑢1(𝑡, 𝑥) + 𝑢2(𝑡, 𝑥) = (3 − 3𝑡 +
3

2
𝑡2 −

1

3
𝑡3 +⋯− 2𝑒−𝑡) 𝑠ⅈ𝑛𝑥 +

(8 + 8𝑡 −
9

2
𝑡2 +

3

2
𝑡3 −⋯+ 8𝑒−𝑡)𝑐𝑜𝑠𝑥  

 

𝑢0(𝑡, 𝑥) + 𝑢1(𝑡, 𝑥) + 𝑢2(𝑡, 𝑥) = (3 (1 − 𝑡 +
𝑡2

2
−⋯) − 2𝑒−𝑡)) 𝑠ⅈ𝑛𝑥 +

(−8(1 − 𝑡 +
𝑡2

2
−⋯) + 8𝑒−𝑡)) 𝑐𝑜𝑠𝑥                                                                  (4.23) 

 

elde edilir. (4.12) denkleminde 𝑛 → ∞ için limit alınırsa  

 

lⅈm
𝑛→∞ 

∑𝑢𝑛(𝑡, 𝑥) = (3𝑒
−𝑡 − 2𝑒−𝑡)

∞

𝑛=0

𝑠ⅈ𝑛𝑥 = 𝑒−𝑡𝑠ⅈ𝑛𝑥 

 

tam çözümü elde edilir. 
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4.1.2. Sonlu Fark Metodu 

 

Bu bölümde kısmi diferansiyel denklemin çözümünü sonlu fark şeması 

metodunu kullanarak (4.1) örnek problem üzerinde test edeceğiz. Bunun için 

başlangıç sınır değer koşullarına bağlı aşağıdaki eliptik kısmi diferansiyel problemini 

ele alalım. (4.1) problemi için sonlu fark şeması 

 

 

{
 
 
 

 
 
 −

𝑢𝑛
𝑘+1 −2𝑢𝑛

𝑘+𝑢𝑛
𝑘−1)  

τ2
+
𝑢𝑛+1
𝑘+1  −𝑢𝑛+1

𝑘−1−𝑢𝑛−1
𝑘+1+𝑢𝑛−1

𝑘−1   

τh
                       

−
𝑢𝑛+1
𝑘  −2𝑢𝑛

𝑘+𝑢𝑛−1
𝑘   

h2
+ 

𝑢𝑛
𝑘+1+𝑢𝑛

𝑘−1

2
 =

𝑓𝑛
𝑘+1+𝑓𝑛

𝑘−1

2
,                    

     1 < 𝑘 < 𝑁 − 1, 1 < 𝑛 < 𝑀 − 1,

𝑢𝑛
0 = 𝑠ⅈ𝑛(𝜋𝑥n ),

𝑢𝑛
1  −𝑢𝑛

0

τ
= −𝜋sⅈ𝑛(𝜋𝑥n ), 0 ≤ 𝑛 ≤ 𝑀,     

𝑢0
𝑘 = 𝑢𝑀

𝑘 = 0,   0 ≤ 𝑘 ≤ 𝑁                                                

                        (4.24) 

 

 

şeklindedir.  Bu problem çözmek için Modifiye Gauss Eliminasyon metodu 

kullanıldı. Birinci mertebeden doğruluk fark şeması uygulanarak hata analizi  tablosu   

elde edildi. 𝑢(𝑡𝑘, 𝑥𝑛) tam çözümü ve 𝑢𝑛
𝑘 nümerik çözüm olmak üzere, 

 

𝐸𝑀
𝑁 = 𝑚𝑎𝑥⏟

1≤𝑘≤𝑁−1,1≤𝑛≤𝑀−1

|𝑢(𝑡𝑘, 𝑥𝑛) − 𝑢𝑛
𝑘| 

 

formüllü kullanılarak nümerik hesaplamalar bulundu.  Bulunan bu nümerik sonuçlar 

aşağıdaki tabloda verilmiştir. 

 

Çizelge 4.1. Hata Analizi 

ℎ =
1

𝑀
,    τ =

1

𝑁
   Hata Analizi(∈) 

𝑁 = 𝑀 = 10   0.309016994374947 

𝑁 = 𝑀 = 25   0.125333233564304 

𝑁 = 𝑀 = 50   0.062790519529313 

𝑁 = 𝑀 = 100,   0.042358660077758 
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Şekil 1. (4.1) probleminin 0 ≤ 𝑡 ≤ 1,  0 ≤ 𝑥 ≤ 1 aralığı için tam çözüm  grafiğidir. 

 

 

Şekil 2. (4.1) probleminin 0 ≤ 𝑡 ≤ 1 ,  0 ≤ 𝑥 ≤ 1  ile 𝑁 = 𝑀 = 50  aralığı için 

yaklaşık çözüm grafiğidir. 
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Şekil 3. (4.1) probleminin 0 ≤ 𝑡 ≤ 1 ,  0 ≤ 𝑥 ≤ 1  ile 𝑁 = 𝑀 = 100  aralığı için 

yaklaşık çözüm grafiğidir. 

 

Şekil 4. (4.1) probleminin 0 ≤ 𝑡 ≤ 1 ile 𝑁 = 𝑀 = 100 aralığı için tam ve yaklaşık 

çözüm grafiğidir. 
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5. SONUÇLAR ve ÖNERİLER  

 

5.1. Sonuçlar 

 

Bu çalışmada, eliptik kısmi diferansiyel denklemin çözümü sonlu fark şeması ve 

çift Laplace metodu kullanılarak elde edildi. Bu problem için uygulama alanları 

giriş kısmında verildi.  Bu problem için sonlu fark şemaları kuruldu. Bu fark 

şemaları ile oluşturulan metodunun karalılık kestirimleri gösterildi. Bu problemin 

yaklaşık çözümü için bu metodunun kullanışlı ve elverişli olduğu örnek problem 

üzerinde gösterildi. İşlem zorluklarından dolayı (4.1) örneği Çift Laplace metodu 

ancak iki adım için uygulandı. Ancak (4.2) örneğinde yakınsama sağladığından 

elde edilen çözüm tam çözüme karşılık gelen çözüm olarak bulundu. Matlab 

programı kullanılarak bu örnek problemlerin tam ve yaklaşık çözümler için 

grafikler çizildi.  

 

5.2. Öneriler 

 

Laplace Dönüşüm Kolokasyonu Metodu (LDKM) ile Residual Kuvvet serisi 

metotları eliptik kısmi diferansiyel denklemlerin yaklaşık çözümlerini elde etmek 

için uygulanabilir.  
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