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1.GIRIS

Kismi diferansiyel denklemler termodinamik, elastik, mekanik, biyoloji
modelleri ve fizigin farkli alt dallarinda 6nemli bir uygulama alanlarina sahiptir.
Hilbert uzayinda 0z-eslenik pozitif tanimli operatorlii {igiincli mertebeden

diferansiyel denklem i¢in yerel olmayan simir deger problemi incelendi (Nayfeh,
1970).

Kismi diferansiyel denklemler birgok bilim dalinda uygulama alani bulmaktadir. Bu
alanlardan bazilar1 sunlardir: Elastik teori, sismoloji, sivi akiskanlari, fizik, termodinamik ve
hidrodinamik. Kismi diferansiyel denklemleri (KDD) yaklasik ¢6zmek icin faydali
yontemlerin gelistirilmesi uygulamali matematigin temel amacidir. Bu metotlardan
bazilar1 sonlu eleman metodu, sinir elemanlari, sonlu hacim, ve spectral
yontemlerdir. Bu yontemler KDD’leri test etmek icin zayif ve giiclii formiilasyonlar
seklinde siniflandirilabilir. Bu yontemlerin tiimiinde asil sorun bir dizi alan digiimi
ile etki alam1 ve smirlar ¢oziimiiniin tahmini i¢in herhangi bir ag gerektirmeyen
ayriklastirma islemini gergeklestirirler. Giiclii formlarin basit bir algoritmasi vardir.
Gergekten agsiz bir yontem olan hesaplama verimliligi, ancak kotli kosullu sistem
denklemleri nedeniyle kararsizdirlar. Zayif form yontemleri problem alaninda
kiiresel veya yerel olarak olusturulmus bir sayisal entegrasyon siireci araciligiyla
denklemlerin cebirsel bir sistemini kurar. Zayif formiilasyonlar yaklagiklik
fonksiyonlar lizerinde siireklilik gereksinimlerini azaltarak polinomlarin kullaniminin
kolay bir sekilde olusturulmasi ve uygulanmasini saglar. Genel olarak, fiziksel
stireclerin matematiksel tanimi kismi diferansiyel denklemlerin olusturulmasini
saglar. Bazi durumlarda, KDD’lerin tam ¢6ziim yontemleri yansima ydntemleri
siiperpozisyon, degiskenlerin ayrilmasi ve integral doniisiimler gibi analitik araglar
kullanilarak elde edilebilir. Bu KDD'lerin yaklasik analitik ¢6ziimii, pertiirbasyon
yontemi (Van Dyke, 1975; Kevorkian ve Cole, 1981; Parlange, 1971), ardisik
yaklasim yontemi (Tsang, 1960) ve ortogonal fonksiyonlar (Assari ve Dehghan,
2017) yontemleri kullanilarak bulunabilir. Yerel agsiz yontemlerin gelistirilmesi igin

basit teknikler vardir. Logaritmik ¢ekirdeklere dayali sayisal yontemi normal etki
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alanlarinda ikinci tiir iki boyutlu Fredholm integral denklemlerinin yaklagimina
uyguladilar (Bayona ve ark., 2017).

Eliptik kismi diferansiyel denklemlerin yaklasik ¢6ziimleri i¢in pek ¢ok metot
gelistirilmistir. RBF tarafindan olusturulan sonlu farklar (RBF-FD), son on yilda ¢ok
cesitli KDD'leri ¢6zmek icin ¢ok giiglii ve esnek bir sayisal yaklagim olarak ortaya
cikmistir. (Khoromskij ve ark., 2017) de, diizensiz (veya diizenli) bolgelerdeki
eliptik denklemleri ¢o6zerken poliharmonik egrileri (PHS) ¢ok degiskenli
polinomlarla birlestirmenin olaganiistii bir basitlik, dogruluk ve geometrik esneklik
kombinasyonu sundugunu buldular. Multi parametrik eliptik KDD'lerin ¢dziimlerinin
rank-1 tensorlerinin sonlu toplamlari ile yaklasimlarin yakinsama oranini arastidilar
(Babuska ve ark., 2017). Stokastik katsayilar ve homojen Dirichlet sinir kosullar ile
dogrusal bir eliptik problem igin iki sayisal yontemi tanimladi ve analiz etti (Gorial,

2011).

Bir denklemin diferansiyel denklem sayilabilmesi i¢in bilinmeyen fonksiyonu
ve bu fonksiyonun tiirevlerini icermesi gerekir. Tek bir bagimsiz degisken iceriyorsa
adi diferansiyel denklem, iki veya daha fazla bagimsiz degisken igeriyorsa kismi
diferansiyel denklem olarak adlandirilir. Diferansiyel denklemlerin genel ve 6zel
olmak iizere iki tiir ¢6ziimi vardir. Bir diferansiyel denklemin tiim c¢oziimlerini
kapsayan ¢0ziim genel ¢Oziim olarak isimlendirilirken, herhangi bir ¢oziim ozel
¢ozlim olarak adlandirilir. t ve x bagimsiz degiskenlerinin bir fonksiyonu olan u
degiskeni i¢in, ikinci mertebeden lineer bir kismi diferansiyel denklem genel olarak
su sekilde tanimlanir.

Simdi bu tezde kullanilan temel tanim ve teoremleri verelim.

1.1. Temel Kavramlar

Tanmm 1.1: “ f(t), [0,0) araliginda tamimh bir fonksiyon olsun. f

fonksiyonunun Laplace doniigiimii

F(s) = [ e st f(D)dt (1.1)
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integrali ile tanimlanan F fonksiyonu olup;

L)} = F(s)

ile gosterilir. Integralin mevcut oldugu biitiin s degerleri F fonksiyonunun tanim

kiimesini olusturur” (Podlubny, 1999).

Tamm 1.2: (Tiirevin Laplace Doniisiimii): < Bir fonksiyonun n. mertebeden

tiirevinin Laplace doniisiimii:

£, '), ... f@V(t) fonksiyonlart [0, o) araliginda siirekli, f™(t), [0,)
araliginda pargall siirekli ve bu fonksiyonlarin tiimii « tistel mertebeden olsunlar. ”

Bu durumda s > a icin

L)} = s" £{f ()} = 5" £(0) =52 f'(0) — - = fF71(0) (1.2)
olur. Ozel olarakn = 2 olmast durumunda

L)} =s? L{f®)} —s f(0) —f'(0) (1.3)
ven =3 icin ise

LI (0)} = s° £{f ()} — s? £{f(0)} —s f'(0) —f"(0) (1.4)
bagintinlart kolayca elde edilebilir” (Podlubny, 1999).

Tanmm 1.3: “f(t), [0,00) araliginda siirekli ve L{f()} = F(s) olsun. f(t)

fonksiyonuna F (s) nin ters Laplace doniisiimii denir. Ters Laplace dontisiimii

L7HF ()} =f(® (1.5)

ile gosterilir”.
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olarak tanimlanwr” (Podlubny, 1999).

Tammm 1.4: “ xy diizleminin pozitif ¢eyreginde, iki degiskenli bir u(x,t)

fonksiyonu tammlansin. u(x, t) fonksiyonu i¢in ¢ift Laplace doniisiimii
LyLfulx, )} =u(s,p) = fooo fooo e P* Sty (x, t)dxdt (1.6)

olarak tamimlamir (Dhunde ve Waghmare,2016). Burada p ve s kompleks

sayilardwr. Bu tanim

Lyl UG} = u(P)g(s) = L {(u(x)}£ {g(®) 1.7

formunda da yazilabilir”.

Tanmm 1.5: “Kompleks cift integral formiilii ters ¢ift Laplace donitisiimiinii

tamimlamak icin

1L t_l{a(sﬂ p)} = u(x' t)

Sformiilii kullanilir (Debnath,2016). Bu formiil de

£ T uls, P} = u ) = 5 [0 erdp [ et d] (18)

seklinde tammlanmir. Burada c ve d bilinen reel sabitler ve u(s,p), Re(p) = c ile
Re(s) = d esitsizlikleri ile gosterilen bolgede  her bir p ve s icin analitik
fonksiyonlar olmalidr.

(Modanli ve Bajjah, 2021) de tamimlanan cift Laplace déniisiim formiilii herhangi

tamsayr mertebeden kismi tiirevlerin doniisiimii i¢in

on n—-1 ai
folt{ giﬁt)} p"u(s,p) — Z {ﬁ}
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% u(x, t) . k=1 a’
Lyl {T} = s*u(s,p) — Zj=0 s Ly {W}
% u(x, t) B
Lxb e\ Toxmaek [T
~ n=1 (3'u(0,t)) _
u(s,p) — Z P, {T} —u(s,p)
i=0 X

k-1 - (07u(x,0)
_ n-1-j -7
Zj=o s Lx { oxJ }
n—1 k-1 ) ) ai+ju((),())
—1—i—1—j
+Zi=0 z]‘=0p S Lx{ axi+j }l

formiilleri ile kullanilir”.

pnsk

1.2. ikinci Mertebeden Kismi Diferansiyel Denklemlerin Genel Formlar

0%u 0%u 0%u ou
A(X,J’)ﬁ'i' 2B(x,y) xdy iF C(X,y)a—yz + D(X,}’)ﬂ

+E(x,y) + F(x,y)u=0 (1.9

ikinci mertebe kismi diferansiyel denkleminde x ve y bagimsiz degisken u(x,y)
bilinmeyen fonksiyondur. A(x,y) , B(x,y), C(x,y), D(x,y), E(x,y) ve
F(x,y) bilinen fonksiyondur. (1.9) denklemini asagidaki gibi kanonik forma

doniistiirelim.

0%u 0%y 0%u ou ou
Ai(t,T) 3z + 2B, (¢, T)m + Cl(t,T')m + Dy(t, 1) En + E;(t,7) o
+F(t,r)u=20
seklinde yazilabilir.

1) Hiperbolik durum: By (t,r) # 0, A1(t,r) = C;(t,7) =0
2) Parabolik durum: A (t,r) = B1(t,r) =0, C;(t,7) # 0
3) Eliptik durum: B,(t,r)0, A1(t,r) = C;(t,7v) # 0
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Simdi (1), (2), (3) i¢in kanonik formlar1 verelim.

1) Hiperbolik Denklem:

0%u

ator

= D, (t, r) + Ei(t, r) + Fi(t,")u

2) Parabolik Denklem:

0%u

7z = D, (t, r) + F(t, r) + Fi(t,")u

3) Eliptik denklem:

*u  d%*u
Yo +— 572 = D, (t, r) +E1(t r) +F1(t r)u
formundadir. Bir kismi diferansiyel denklemin iyi tanimli olmas1 igin
I) Bir ¢oziime sahip olmasi
ii) Coztimiin kararl (stability) olmas1 gerekir.

Bir kismi diferansiyel denklemini ¢6zmek igin

t=t(xy),
x =x(t,r),
r=r(xy),
y=y(r)

donigimlerini ele alalim.

U(x,y) - u(t,r)

doniistimiinde bagimsiz degiskene bir zincir kurali uygulanirsa
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ou Oduodt OJuodr Ju Oduodt OJouodr
ox _dtox orox’ dy otdy oray
d°u 9 /0u d (duodt Ouodr
w=a(a)=a{aa+a—ra—x}

d (0u\ot 0 (ou\or Oud?*t Oud?*r
=a(a)a+a(§>a+aﬁ+aﬁ

d°udt 0%u or\ ot 0%u ot 0d%udr\or oOud*t OJud?*r
(a?ﬁ*am@)a—x*(atara+ﬁa>a—x+aﬁ+a—rw

2

0%u 3 0%u <6t)

d%u 9t or 0%u (6r>2 ou d*t  oud*r
0x2  0t2 \0x

ator axox arz\ax) Taraxz T oroxz

benzer sekilde;

0’u _ 9%u <6t)2 , % otor  9%u (6r>2 L 0ud’t duolr
dy? otz \dy dtdradydy 0dr?\dy ot dy% = or ay?

S _ 0 (D)0 (O, udr)_ 0 (du)dt 3 (Gu)or du O ou O
dx 0y T ox dy/ o0x \otdy 0drdy/ o0x\dt/ oy 0x \dr/ dy dt 0xdy Or dxady
_(62u ot " %u ar) 6t+( 9%u ot  9*u ar) 0r+ du 9%t ou 0*r

dt2 9x  dtor ax/) oy dy Ot 0xdy dr dx dy

atar ax = or?ox

arZoxdy | ot oxdy  or oxdy

0°u  d*udt ot 0*u (6r at dt 6r> N 0’udrdr Ou 0*t Ou 0*r

9xdy _ 02 9xdy | otor \axdy | oxdy

formiilleri elde edilir. Buradan

at\? at ot a2
Uee: A (67) = A, y) (52) + 2B(x, V) 5o+ C(x,Y) (5) (1.10)
ot 0 or ot ot 0 oJt 0
Upe: B1(t,7) = A(%,y) -5 + B(x,) (éa + aé) +CEN T (1.11)
ar\? ar @ ar\?2
UryiCi(6,7) = AG6Y) (5F) + 2B 5= 4 €0y (52) (112)
0%t 2
U :D t, = A ) ~ 5 + ZB )
¢:D1(t,7) (x,¥) 9x2 (x,¥) 9x dy
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FCY) L+ DY) 2+ E(o ) o, (1.13)
U E(t,r) =A(x,y) ﬁ + 2B(x,y) o
0x? dx 0y
+C(x,y)§i);+D(x,y)Z—;+E(x,y)g—;, (1.14)
U:Fi(t,7) = E(x,y) (1.15)

formiiller yazilabilir. Eger

t=t(x,y)=c, r=r(xy) =cy

aliirsa c; ve c, katsayilarinda

at
ot at P dy
dy
karakteristik denklemi elde edilir.
de\® de
A(x,y) % + 2B(x,y) % +C(x,y)=0
dy dy
Son formiulden de
A(x,y) <_ d_y)z — 2B(x, y)d—y +C(x,y)=0 (1.16)
dx dx

elde edilir. (1.16) denklemine (1.9) denkleminin ‘“karakteristik denklemi” denir.
(1.16) denkleminde

yazilabilir. Bu son denklem eger;
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e B?— AC > 0ise hiperbolik,
e B2—AC = 0ise parabolik,
e B?2—AC < O0ise eliptik

denklem olur.

Ornek 1.1.

0%u 0%u 0%u ou ou

ﬁ axay—Sa—yz+6a+3£—9u—0, (117)

kismi diferansiyel denkleminin kanonik formunu elde ediniz.
Coziim: (1.17) denklemdeki

A=1B=2C=-5D=6E=3F=-9

katsayilar B2 — AC formiiliinde yerine yazilirsa

B2—AC=4-1(-5)=9>0

elde edilir ki bu da denklemin hiperbolik oldugunu gosterir. Bu durumda

karakteristik denklem

dx dx
olup buradan
m2—4m—-5=0

ikinci dereceden denklemi elde edilir. Bu denklemin kokleri

my = _1,m2 = 5
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olarak bulunur. Buradan ;

dy
az—l >y+x=nc,
dy
a=5=>y—5x=c2
t=y+x
r=y—5x

olarak alinir ve (1.10)-(1.15) formiillerinde yerine yazilirsa

A(t,r)=1244-1-1-51=0
Bi(t,r) =11(-5)+2(-5-1+1-1)+(-5)-1-1=-5-8-5=-18+#0
C,=1-(-5?%+4.1(-5)-512=0
Di=6-1+3-1=9
E, =6(-5)+3-1=-27
F, =-9
yazilabilir. Boylece

—2-18uy + 9u; — 27u, —9 = 0

olup buradan da
1 3 1

=gue g% gy
hiperbolik denklemi elde edilir. Bu denklem istenen ¢dziimiin kanonik formu olur.

g = f(t,7,u,us,u,) (1.18)

(1.18) denkleminde t +r =p ve t —r = A alinirsa

Upp— U = filp A uup, uy) (1.19)

10
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elde edilir. Bu denkleme hiperbolik denklemin karakteristik formu denir.

Ornek 1.2.
0%u 0%u 0%u ou ou
Tz 6x6y+96_yz+za+sa_u_0 (1.20)

kismi diferansiyel denkleminin karakteristik formunu bulunuz. lyi taniml ve iyi

tanimli olmayan problem i¢in gerekli bolgeleri belirtiniz.

Coziim:

A(x,y) = 1,B(X,y) = —6,C(X,y) = 9,D(X,y) = 2,E(X,y) = 5,F(x,y) =-1

katsayilarindan

B?—AC=9-1-9=0

oldugundan bu denklem paraboliktir. Bu denklemin karakteristik denklemi;

2
(2) +62+9=0, m*+6m+9=0

dx x
m1 :mz = _3

dy
dx

-3, y+3x=c
olup buradan
t=y+3x
elde edilir.
r=r(x,y)

alinir

11
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r = y alinirsa
3 1=
J=]3 {|=3=%0
NOT: r = y se¢imi tek degildir. Bunun yerine
r =X, r=x+y,
formiilii alinabilir. Bu denklem ve tiirevleri (1.10-1.15) formiillerinde yerine yazilirsa
A(t,r)=1-3242(-3)-3-1+9-1=0
Bi(t,r)=1-3-0-3(3-1+1-0)4+9-1-1=0
Ci(t,7)=1.0°—-6-0-1+9-12=9#0
Di(t,r) =23+3-1=9+0
Ei(t,r)=3-1=3=%0

Fl(t, 7‘) = _1

bulunur. Elde edilen degerler kanonik form formiiliinde yerine yazilirsa;

veya

6u_62u 1u 1

at orz 3o0r 9u

bu son denklemde t; = —t alinirsa

12
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ou 0%u  1ou 1
E—ﬁi‘g;%‘gu (121)

parabolik denklemi elde edilir.

Ornek 1.3.

AP S L P (1.22)
dy? oxdy ~ dy? 0x dy 4= '

denkleminin kanonik formunu elde ediniz.
Coziim:
A(x,y) =1,B(x,y)=1,C(x,y) =5,D(x,y) = 1,E(x,y) = =2,
F(x,y) =-3
degerleri i¢in

B?(x,y) = A(x,y)C(x,y) =1 —=1.5=-4 <0

oldugundan (1.21) denklemi eliptiktir. (1.21) denkleminin karakteristik denklemini

bulmak igin

dy\> _dy
) 22520
(dx> dx

formila kullanilirsa
m?—-2m+5=0
ikinci dereceden denklemin kokleri

mllz == 1 'T‘Zl

13



1. GIRiS Ecrin POLAT

olarak bulunur. Buradan da

olup

denklemlerinden

t=y—x, r=2x
olarak alinir ve (1.10)-(1.15) formiillerinde yerine yazilirsa

A (1) =1(-1)%+2-1(-1D**-12=4>0,
Bi(tr)=1-((-1)-2+(-1)-0+1-2)=0,
Ci(tr)=1-2242-0+5.0%2=4>0,

D,(t,r) = -3,
Ei(tr) =2,
Fi(tr)=-3

seklinde bulunur. Bu degerler yerine yazilirsa, (1.22) denkleminin kanonik formu

462u+462u 36u+26u 34 =0
oz "oz P far M T

olup buradan

62u+62u_36u 16u+3 i )
oz "orz 49t 20r 40 Whelr

14
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bulunur.
Bu c¢alismada, asagidaki baslangi¢-sinir deger kosullarina bagl eliptik kismi

diferansiyel denkleminin yaklagik ¢6ziimiinii

(AU (t, %) + Bug,(t, x) + Ay, (t, x) + vu(t,x) = f(t,x),

0<x<[,0<t<T, a,p,4,5>0
X (1.23)
u(0,x) = g:(x), u:(0,x) =g,(x), 0<x<1|,

\u(t,0) =u(t,l) =0, 0<t<T
inceleyecegiz. Burada, g, (x), g,(x) ve f(t,x) bilinen fonksiyonlar u(t, x) ¢oziimii

bilinmeyen belirli bir fonksiyondur. (1.23) denkleminin eliptik bir kismi diferansiyel

denklem olmasi i¢in

f?—4al <0

kosulu saglanmalidir.

15
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2. ONCEKI CALISMALAR

Kismi diferansiyel denklemler mekanik, termodinamik, elastistik, biyoloji
modelleri ve fizigin cesitli alanlarinda 6nemli bir uygulama alanlarina sahiptir.
Hilbert uzayinda 0z-eslenik pozitif tanimli operatorlii tiglincii mertebeden kismi
diferansiyel denklem icin yerel olmayan siir deger problemi incelendi (Ashyralyev
ve Simgek, 2017). Ugiincii mertebeden kismi diferansiyel denklemlerin yaklasik
¢oziimleri i¢in sonlu fark metodu (Modanli, 2018). Sabit katsayili ve karisik tiirevli
iki boyutlu bir eliptik denklem i¢in yerel olmayan integral kosuluna sahip bir smir
deger problemini ele aldilar (Berikelashvil ve ark.,2003). Bochner uzaylarindaki
soyut eliptik denklemler i¢in Bitsadze-Samarskii tipi yerel olmayan smir deger
probleminin iyi tanimliligin1 belirlediler. Bu problemin yaklasik ¢6ziimii igin ikinci
derece dogruluk farki semasini dikkate aldi. Bu fark semasinin ¢6ziimii i¢in zorlayici
esitsizlikler olusturdu. Uygulamalarda, eliptik denklem i¢in yerel olmayan sinir deger
probleminin yaklagik ¢oziimii i¢in fark semalarinin ¢6ziimiine yonelik neredeyse
zorlayict kararlilik ve zorlayici kararlilik tahminleri elde etti (Ashyralyev, 2010).
Pozitif A operatoriine sahip keyfi bir Banach uzay1 E'de yerel olmayan sinir deger
problemi ele alindi. Bu sinir deger probleminin diizgiin fonksiyon uzaylarinda iyi
konumlanmig oldugunu tespit etti. Eliptik denklemler i¢in sinir deger problemlerinin
¢cozlimlerine iliskin yeni kesin Schauder tahminleri elde etti (Ashyralyev,2003).
Makalesinde (L P ([0, T]; E) uzaylarindaki soyut eliptik diferansiyel denklemlerin
sayisal analizine ayirdi (Ashyralyev ve ark., 2008). Cok boyutlu eliptik kismi
diferansiyel denklemler icin Bitsadze-Samarskii tipi yerel olmayan sinir deger
probleminin ¢dziimii icin sayisal bir yontem onerdiler (Ashyralyev ve Oztiirk, 2009).
Kararlilig1 ifade eden sabitler i¢in keskin bir esitsizlik tahmin elde edemediler. Bu
nedenle, sayisal deneylerin asagidaki sonuclarini verdiler. Bitsadze-Samarskii-

Dirichlet problemini:

o%u(t,x) 0%u(t, x) N
ot2 0x2

u=f(t x), 0<t<10<x<1,

16



2. ONCEKIi CALISMALAR Ecrin POLAT

ele aldilar (Ashyralyev ve Ozesenli Tetikoglu, 2012).

Bu caligsmada, baslangi¢c-sinir deger kosullarina bagli eliptik kismi diferansiyel

denklemi

(AU (t, %) + By (t, x) + Auy (8, x) + vu(t, x) = f(t,x),

0<x<[,0<t<T,apf,A4s>0
. (2.1)
U(O,X) = 91(36), ut(Oi X) = gZ(x); 0<x< l:

\u(t,0) =u(t,)) =0, 0<t<T

sonlu fark semasi metodu ile incelendi. Burada g, (x), g,(x) bilinen fonksiyonlar ve
u(t, x) bilinmeyen fonksiyondur. Denkleminin eliptik bir kismi diferansiyel denklem

olmasi i¢in
p? —4al <0
kosulu saglanmalidir. Bu sart altinda bu problemin yaklasik ¢oziimiinii bulmak igin

sonlu fark semasi ve analitik veya yari-analitik ¢6ziimiini bulmak i¢in de Cift

Laplace doniisiim metodu kullanildi. Bu metotlar karsilastirilarak hata analizi yapildi.

17
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3. MATERYAL ve YONTEM

3.1. Materyal

Bu tezimde daha ayrintili bir ¢alisma sunmak icin konuyla ilgili daha 6énceden
yayinlanmis makalelere, dergilere ve yapilan yiiksek lisans tezlerine ulasilip gerekli
literatiir taramalar1 yapildi.
3.2. Yontem

Eliptik kismi diferansiyel denklemler ile ilgili ge¢miste ve gilinlimiizde yapilan
calismalar incelendi. Sonlu fark semasi metodu kullanilarak eliptik kismi diferansiyel
denklemler i¢in yaklasik ¢Oziimler bulundu. Yaklasik ¢oziim ve tam c¢oziimler
karsilastirilarak ait hata analiz ¢izelgesi olusturuldu. Matlab programi kullanilarak
tam ¢6ziim ve yaklasik ¢oziime ait simiilasyonlar ¢izildi.
3.2.1. Sonlu fark semasinin olusturulmasi ve kararhhk
(2.1) probleminin yaklasik ¢oziimiinii hesaplamak i¢in grid (1zgara) aralig1
[0, T]={tx=kt,0<k < N,Nt=T}
[0, ]p={x,=nh,0 <n<M,Mh =11},
W‘E,h :[01 T]‘E X [O' l]h:{(tk ) xn) 1tk € [O, T]‘l.' » Xn € [0' l]h}
seklindedir. Bu araliklar

(tk'xn)! (tkll rxn) ) (tk'xn:.l)’ (tkll 'xn:.l) € W‘E,h

dir.

t = tx, x = xyalmir (2.1) denkleminde yerine yazilirsa

autt(tk:xn) + .Butx(tkfxn) + Auxx(tk'xn) + vu(tk'xn) = f(tk;xn)

18



3. MATERYAL ve YONTEM Ecrin POLAT
bulunur. Taylor agilimi1 kullanilirsa,

utt(tk Xy ) = U(tk+1%n) —Zu(Tzrxn )+u(tk—1,%n) + O(TZ), (3.1)
U (£, %) = u(tk,Xn)—u(tk—l,xn)—lf;k,xn_l)+u(tk_1,xn_1) +0(12 + h?), (3.2)
Upr (tk Xy ) = U(tgXn+1 )—Zu(’;llzxn )+u(tikXn-1) + O(hz) (3.3)
(3.1), (3.2) ve (3.3) formiillerinde kiigiik terimler ihmal edilirse,

_ uktt ok k-1
Uge (b, xn ) = =2 ) (3.4)
~ Unii —unri—upti Ty
Uy (8, x) = - , (3.5)
ko —2uktuk_
U (B, 2 ) & TR (3.6)

yazilabilir. (3.4), (3.4) ve (3.5) formiilleri kullanilir, kii¢lik terimler ihmal edilir (2.1)

denkleminde yerine yazilirsa

k+1 k k-1 k+1 k-1 k+1 k-1
(aun —2Uptuy ) + ﬁun+1 “Unt+1—Up-1tUp—1

T2 th
1 uf o1 —2uf+uf_y + ufttuf? — fEr LRt

h2 2 2 !
11<k<N-11<n<M-1 ,

0 uh —up
un=g1(xn)r T =gz(xn): Osnle

\uf =ul, =0, 0<k<N

elde edilir. Bu fark semasi

—p a v B A —
+(T) e+ (G4 ) w4+ (5wt + () uh+ (2

y) I a v B
ANk PN k-1, (% YN k-1, (_P
+ (hz) Untr F (Th) Un-1+ (T2 + 2) un -+ ( Th)

19
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olarak da yazilabilir. Bu da
auktl + buk=1 + cuk + dukt! + eukt] = £+

bi¢iminde yazilir. Burada,

. fnk+1 +fnk—1

(pn 2 )
0 0 O 0 00
p a 0 0 00O
0 p a 0 0O
A= P
0 0 O a 0 0
0 0 O p a0
0 0 O 0 00
_A __B
burada,p—hz,a—rh dir,
rl1 0 O 0 00O
b ¢ d 0 00
0 b ¢ 0 00O
B=|0 0 0 .. b ¢ d
0O 0 O .0 bc
0 0 O 0 0 b
-1 1
— -0 .. 0 00O
T T
a v -2 21
buradab—§+5,0—r—2—ﬁ,d—r—2+—, ve
r0 0 O . 0 0 07
k e f ..000
0 0 O .0 00
C=|[: & ~ :
0 0 O .0 e O
0 0 O .0 O0e
L0 0 O .0 0O
kA __F
burada, k = —,e =, f = ——.dir. Buradan da

20
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AUpyq + BU, + CU,_, = F,
matris formu elde edilir. Burada A, B ve C matrisleri (N + 1) x (N + 1) bpyutludur.

Teorem 3.1.

al A? av p?
+1677 <+ +v2 + 165

165+ 1657 <

kosulu altinda (3.4) sonlu fark semasi kararhdir.

Ispat: Teoremin ispati i¢in Von-Neumann analiz formiiliinii kullanalim. Bu formiil

uk = rkeind (3.8)

olarak verilir. (3.8) formiilii, (3.7) formiiliinde yerine yazilirsa,

( rk+1ein9 —2rkei"9+rk_1ein9

‘EZ
rk+1pi(+1)0 _k=1,i(n—-1)60 _ k+1,i(n—-1)6 4 .k—1,i(n-1)6
+
'B Th
) Arkei(n+1)9 —orkeind  koi(n-1)6 4 vrk+1+rk—1 o _ f711c+1+f74c—1 (3_9)
h2 2 2 !
0 _ up —up _
un_gl(xn) ) _gz(xn); OSTLSM

\uf =ul,=0 0<k<N

bulunur. (3.9) formiilinde n = 0,k = 1ve f, f& — 0 alinirsa

(r? —2r+1 r2elf _ oind _ y2 o= 4 o—if
a +
T2 th
\ el —2 710 r2+1 (3.10)
+Ar 02 + v > =0,
\
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(3.10) denklemi diizenlenirse,

a B i6_ ,-i6 V1,2 2a A 6 -i6 a B i
[Ftm @ —e™ )+ +- 4 (e —2+e™ |+ r 4 [(GH (e -

e™ ) +5]=0 (3.11)
olup

. 1 0
W_2 +e® =2cosH—2 =§sin2(7)

ifadesi goz oniine alinir ve (3.11) denkleminde yerine yazilirsa

a 2Bi . 2a 2 6 a B . v
—_— 4 — —_— — 4 — — +|— — — - =
[TZ + sinf + ] + [ 4 —sin? ]r [TZ - szn9)+2] 0
bulunur.
A [
29 14l sin?2 =
T'1+T'2— azvgzﬁz : <2
_[—2+2+ h sin6

sartinin saglanip saglanmadigini gosterelim. Kokler karmasik sayr oldugundan bu
kokler icin herhangi bir siralama yapilamayacaktir. Bu problemi asmak icin Hilbert

uzayindaki norm kullanilirsa

2—‘f+4—sm 2—Z+4%smzz—|
||T'1 + TZ” == B - ; v 2Bi <4
+ + ——sin6 ~+-+ sint9|
2 h
yazilabilir. Buradan da
(2] a v 2B .
G+ 4 sin? )2 < 4| (5 + D2 + (2-sing)?] (3.12)

elde edilir.
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2—a+4—sm i +4—

T2 h2’

S+ + (% sin9)2 < (S +92+ (L

(3.13) ve (3.14) formiilleri (3.12) formiiliinde yazilirsa,
Er+4? < 4|+ D%+ ()|

elde edilir. (3.15) formiiliinden

4 a? a A A2 4a? av p?
) +16T2h2+16FST_4+4T_2+v +16T2h2

elde edilir. Buradan da

al A? av B2
+16—< 4-—+U + 16

16T2h2 h4- - 2h2

Bu kosul altindan da r; + r, < 2 sartinin saglandig1 soylenebilir.
Simdi de
2i B

Z 42 sinf
T = T2 2 th
27 o v 2B .
— +-+——sinb
T2 2 th
hesaplayalim. Ciink,
a v 208 . p
X =— = sin
2 27T T
olarak almirsa,
x—1iy
nr, =
172 x+iy

kompleks degerli  kokler elde edilir. Kompeks sayilarda

yapilamayacagindan Hilber uzayindaki norm kullanilirsa,

23
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il |x —iy| |x—iy| x%+y?
7 = = = =
172 x+ iyl  |x+iy| /xz+yz

1

elde edilir ki bu da ||ry7,|| < 1 olugunu gésterir. Bdylece r; < 1 ver, <1 olur.

Dolayisiyla

[uk | =|rke™®| <|r¥|<1

olup (3.4) sonlu fark semasi karalidir.

3.2.2. Cift Laplace Metodu

(U (t, %) + Lue (8, x) + Auyy (t, x) + vu(t,x) = f(t,x),
0<x<l,0<t<T,apf,Av>0

S (3.16)
u(0,x) = g1(x), u(0,x) =g,(x), 0 <x <1,

\u(t,0) =u(t,) =0, 0<t<T
(3.16) probleminin ¢6ziimii igin ¢ift Laplace metodunu olusturalim.

L xL t{U(t, .X')} = U(S' p)
olsun. (3.16) denkleminin her tarafinin £ , £ ; Laplace doniisiimii alinirsa,

OKSZU(S, p) - OKSU(O, p) - aUt(O: p) =L,L t{_ﬁutx(tf x) - Auxx(t: x) -
vu(t,x) + f(t,x)} (3.17)

formiilii elde edilir. (3.17) formiilii diizenlenip yeniden yazilirsa

1 1 F(s,p)
U(s,p) =U(0,p) + 5 U (0,p) +—F

vu(t, x)} (3.18)

1
+ L xL t F{_ﬁutx(tf x) - Auxx(tr x) -
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bulunur buradan da

L L {f(t,x)}=F(s,p)

dir. (3.18) denkleminin her tarafimin £z1£;! almir, (3.16) problemindeki baslangic

degerleri de kullanilirsa

u(t,x) = L7 L7HU (s, p)= agy (x) + atg, () + £ o7 {£52

Lot {ﬁﬁ oL =By (%) — A (t, X) — vu(t, x) (3.19)

yazilir. (3.19) denkleminin ¢6ziimii i¢in

u(t,x) = Xp=o Un(t,x) (3.20)
/

sonsuz serisi kullanilirsa, (3.20) denklemi

1 2

(o] - - 02 o 2 (o]
2n=0 un(tr x) = Lx 1'Ct ! {asz L x*C t(_ﬁ @ano un(t: x) - AﬁZn:O un(t: x) -

v 50 Un(t, X) un(t, )} + @gux + atgox + L3747 {77 (3:21)

s2

olarak yazilabilir. Bu durumda (3.16) denkleminin ¢6ziimii

F(s,
uo(t, x) = ag1x+ag2(x)t+£l;1£t‘1{ ( p)}

s2

ve benzer sekilde

(0]

2

1 92 )
Up1(t,x) = LL7T {P (L L t(—ﬁmz u, (t,x) — Aﬁz u, (t, x)
n=0

n=0
=V Y=o Un (£, X))} (3.22)

genel formiilii bulunur.
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4.ARASTIMA BULGULARI ve TARTISMA

4.1. Niimerik Sonuclar

Bu Bu boliimde ikinci mertebeden eliptik kismi diferansiyel denklemin
¢Oziimiinii sonlu fark ve Cift Laplace doniisiim metodunu kullanarak bir 6rnek

problem {izerinde test edecegiz.
4.1.1. Cift Laplace Metodu

Ornek 4.1. (3.9) denkleminde a=-1, f=1,A=—-1,v=1 alinusa

denklem

—Ut (£, %) + U (£, X) — U (8, %) + u(t, x) = e~ (sin(mx) — w2cos(nx))
u(0,x) = sin(mx), u.(0,x) = —msin(mx), 0 <x <1, (4.1)
u(t,0) =u(t,1) =0, 0<t<1

eliptik denklem olur. Bu denkleminin ¢6ziimiinii ¢ift Laplace yOntemiyle

hesaplayalim.
U(S! p) =L xL t{U(t, x)} (42)
olsun. (4.1) denkleminin her tarafinin £ , £ ; Laplace doniisiimii alinirsa

SZU(S! p) - SU(O, p) - Ut(o' p) =L xL t{_utx(t' X) + uxx(t' X)
—u(t,x) + e " (sin(mx) — w2cos(mx))} (4.3)

elde edilir. (4.3) formiilii diizenlenirse,

_2 ___m ,om® 1. m _ mp
o U(S' p) T p24x2 + p2+m?2  s+m (p2+712 p2+n2)
+L, L e (t,x) — Uy (8, x) + u(t, x)} (4.4)
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olup burada

U(s,p) = o — e — i (5 = T 2) -

s(p?+m?)  s2(p?+m?)  s%(s+m) \p?+m?  p?+m?
1
L L e {utex (%) — Uy (8, %) + u(t, x)}

(4.5)
da olarak yazilir. (4.5) denkleminin her tarafinin £;1£;7? alinirsa

u(t,x) = L1 L7HU (s, p)}
1
= sinmx — tsinmx + = (1 -t — e~ ™) (sinx — m%cosmx)

FLALT S L oL e (Ut X) = U (6,2) + e (£,1))) (4.6)
elde edilir. (4.6) formiiliinden

uo(t,x) = sinmx — tsinmx + % (1 — it — e ™) (sinwx — w?cosmx) 4.7)
olarak bulunur. uy(t,x) fonksiyonunun kismi tiirevleri

1
(ug)¢(t, x) = —msinmx + — (sinx — m2cosmx) — — e~ ™ (sin mx — w2 cosmx)
i T

(ug) ¢ (t, x) = te '™ (sinmx — m?cosmx) — %e‘“’(sin mx — mw2cosmx)  (4.8)
(Ug) ex (t, x) = —m?cosmx + cosmx + m2sinmx — e "cosmx — m?e " sinmx  (4.9)
(ug),(t, x) = mcosmx — m2tcosmx + % (=1 + nit + e ™) (cosmx + m?sinmx)

(1) xx (t, x) = —m?sinmx + m3tsinmx + (—1 + it + e ™) (—sinmx +

T2 cosmx) (4.10)
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seklinde bulunur.

Unyq (6, x) = L1LFH {SLZL oLt (U ee (8, %) + (Up)ex (8, x) —

(Un) x (8, %) (4.11)

genel formiiliinde n =0 i¢in  (4.8)-(4.10) kismi tiirevleri (4.11) formiiliinde

yazarsak

) 1 1 s( 3 1 1 ¢ ]
u(t,x) = (—2n°t+—t+—t (n ——)+<1——) (=14 e " + tm))sinmx
2 6 is m*

1. . 2+ m—m? _
+((€t (3 +m) + —— (—1+tm + e™ ™) — 2t)cosmx

elde edilir. Benzer iglem diger adimlar igin de yapilabilir.

Ornek 4.2. Eliptik

U (8, X) — Uy (8, X) + up (£, x) + u(t, x) = e (sinx — cosx)
u(0,x) = sinx, u.(0,x) = —sinx, 0 <x <1, (4.12)
u(t,0) =u(t,1) =0, 0<t<1

denkleminin ¢dziimiinii ¢ift Laplace yontemiyle hesaplayalim.
U(s,p) = LyLe{u(t, x)} (4.13)
olsun. (4.13) denkleminin her tarafinin L, L, Laplace doniisiimii alinirsa

—(52U(s,P) = sU(0,p) — U(0,p)) = LyLe{ttr (£, X) — e (£, %) — ult, x) +
e~t(sinx — cosx)} (4.14)

elde edilir. (4.14) formiilii diizenlenirse,
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_SZU(S p) + 2+1 p2+1 = S+1 (p2+1 2+1 ) +L Lt{uxx(t x) utx(tr x) -
—g2 - __5 -
u(t D)) —sUsp) = - e Py ()
U (8, x) —u(t,x)} (4.15)
olup burada
_ 11 1 p ) 1 _
Uls,p) = s(p2+1)  s%2(p?+1)  s2(s+1) (p2+1 p2+1) s2 Lo Le{ux (8, )

utx(tJ X) - u(ti X)} (416)

olarak yazilir. (4.16) denkleminin her tarafinin L;1L;t alinirsa

u(t, ) = Lt e - oo e (s - o))+

s(p2+1)  sZ2(p?+1)  s%(s+1) \p%2+1 p2?+1
1y 1
Lletl {_S_Z Lth(uxx(ti X) - utx(ti X) . U(t, X))}

(4.17)

elde edilir. (4.17) formiiliinden
1
uo(t,x) = sinx — tsinx + — (1 —t—et)(sinx — cosx)

= sinx(1—-t+1—-t—e ") —(1—t—e Hcosx
ug(t,x) = sinx(2 — 2t —e ) + (—1 + t+e “)cosx (4.18)

olarak bulunur.

U (6, = Ly L™ {5 Lb () (6,5) = (n)ea(6,2) = 1y (8, %)))

genel formiiliinde n = 0 alinirsa;

ul(tJ x) = Lx_lLt_1 {_Siz Lth ((uo)xx(t: X) - (uo)tx(t' X) - uO(t' x))}(419)

seklinde olup, uy(t,x) fonksiyonunun kismi tiirevleri ise
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(uo)xx(t;x) =sinx(2t — 2+ e_t) +(1- t_e_t)COSX

(ug)¢(t, x) = sinx(—2 + e~ ") + (1—e Hcosx

(Ug) ex(t, x) = cosx (=2 + e ") + (et — 1)sinx

seklindedir. uy (¢, x) fonksiyonunun kismi tiirevlerini (4.19) denkleminde yazarsak;

(o) xx(t, %) = () ex (£, %) — uo(£,%)) = (=3 + 4t + e™F)sinx +
(4 — 2t — 2e YHcosx

3 4 1 1 4 2
Lo L (o) (£, %) — (o) (6, X) = uo (6, }=(= S+ 5+ 7)) oy TG~ —
L) P
s+1/ p2+1
L S1, -1 3, 4 1 1 4 2 2 p
ul(t,x) =Ly "Lt {(_;+5_2+5+_1) p2+1+ (;_S_Z_S‘l'_l) p2+1}

3 2 1
uy (t,x) = (Et2 —§t3 +1—t—e Ysinx + (—2t2 +§t3 —2+2t
+ 2e YHcosx
u(t,x) = (1 —t+ 262 =263 — e Y)sinx + (—2 + 2t—2t2 + 2% +

2e Ycosx (4.20)
elde edilir. Benzer sekilde u,(t, x) denlemini bulalim.

0 (6%) = L L S Lk () (6 — )60 —w (60)) (421)
seklinde olup, u4(t,x) fonksiyonunun kismi tiirevleri ise

(U xx(t, %) = (—1 +t—2e2 4260 4 e‘f) sinx + (2 —2t+42t% — 213 —

Ze_t) cosx,

(u)e(t,x) = (=1 + 3t — 2t2 + e Hsinx + (2 — 4t+t? — 2e Y)cosx,
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(UD)ex (6, %) = (=1 + 3t — 2t* + e H)cosx + (—2 + 4t—t* + 2e Y)sinx

seklindedir. u, (t,x) fonksiyonunun kismi tiirevlerini (4.21) denkleminde yazarsak;

u,(t,x) =L, 'L, ! {—Siz L,L; ((—Zt —2t% + §t3)sinx + (5 — 7t+6t% —

t3 — 5e‘t)cosx)}

1, -1 26 1 5 7 12 26
u,(t,x) =L, 'L { (——+— 2= 2Ly L_c0
2() ) X t ( 53 354 p2+1 S SZ 53 354_
s+1) 2+1)}
I ) 2 2 8 1 5 7 12 4
w0 =L L (G e it Catamwt et

5
s2(s+2)

q 5
St — t5)sinx + (—2t2 4213 — <t +
12 15 2 6 2

) ) wen =G+

p2+1

—t5—5+ 5t + 5e~")cosx (4.22)
seklinde bulunur. (4.18), (4.20) ve (4.22) formiilleri toplanirsa;

up(t,x) + uqy(t,x) + uy(t,x) = (3 —-3t+ %tz 23 4= 2e” t) sinx +

(8+8t —2t2 +>t3 — - + 8e *)cosx

up(t,x) + u (t,x) + uy(t,x) = (3 (1 —t +§— ) — Ze‘t)> sinx +

(—8(1 —t+ % — )+ 8e‘t)) cosx (4.23)

elde edilir. (4.12) denkleminde n — oo igin limit alinirsa

co
lim Z u,(t,x) = (3e™t — 2e7 Y sinx = e tsinx
n-—-oo

n=0

tam ¢oziimii elde edilir.
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4.1.2. Sonlu Fark Metodu

Bu bdliimde kismi diferansiyel denklemin ¢Oziimiini sonlu fark semasi
metodunu kullanarak (4.1) ornek problem iizerinde test edecegiz. Bunun igin
baslangi¢ sinir deger kosullarina bagl agagidaki eliptik kismi diferansiyel problemini

ele alalim. (4.1) problemi i¢in sonlu fark semasi

k+1 k k—1 k+1 k-1 k+1 k-1
( _Up ~ —2uptiup ) + Unt1 ~Up+1~Up—1+Un_1

T2 th
_ uf o1 —2uf+uf_y ufttuf? — D i
h2 2 2 ’
\ 1<k<N-11<n<M-—1, (4.24)

. ul —u? .
ud = sin(mx,), "T L= —msin(nx, ), 0<n<M,
L uk=uk =0 0<k<N

seklindedir. Bu problem c¢6zmek icin Modifiye Gauss Eliminasyon metodu

kullanildi. Birinci mertebeden dogruluk fark semasi uygulanarak hata analizi tablosu

elde edildi. u(ty, x,,) tam ¢oziimii ve u¥ niimerik ¢6ziim olmak iizere,

EN = max |u(ty, x,,) — uk|

formiilli kullanilarak niimerik hesaplamalar bulundu. Bulunan bu niimerik sonuglar

asagidaki tabloda verilmistir.

Cizelge 4.1. Hata Analizi

=1 =1 Hata Analizi(€)
M N
N=M=10 0.309016994374947
N=M=25 0.125333233564304
N=M-=50 0.062790519529313
N =M =100, 0.042358660077758
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Sekil 1

Sekil 1. (4.1) probleminin 0 < t < 1, 0 < x < 1 aralig1 i¢cin tam ¢oziim grafigidir.

Sekil 2

2%
ST
2258088

Sekil 2. (4.1) probleminin 0 <t<1, 0<x<1 ile N=M =50 aralig1 igin
yaklasik ¢6ziim grafigidir.
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Sekil 3

T
ﬁ%mﬁ%
D

ﬁ::n
LAY
" L

R
e,
LY
o
TR
%

Sekil 3. (4.1) probleminin 0 <t <1, 0<x<1ile N=M =100 aralig1 i¢in
yaklagik ¢coziim grafigidir.

06 T T T T T T T
A mmmmn tgm ¢dzim
Poe =mmmn yaklagik ¢ozim
0.5 s 1
A3
*e
e
.0
*e
%
04 s, d
*
*
0
0
%
03 % 1
*4
"‘“
0.2 q
0.1F d
"
5555111....
ll..:::l:...
0 I I I I I I I I 1 LY

Sekil 4. (4.1) probleminin 0 <t < 1ile N = M = 100 aralig1 i¢in tam ve yaklasik

¢ozlim grafigidir.
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5. SONUCLAR ve ONERILER

5.1. Sonuclar

Bu c¢aligmada, eliptik kismi diferansiyel denklemin ¢oziimii sonlu fark semasi ve
cift Laplace metodu kullanilarak elde edildi. Bu problem i¢in uygulama alanlar1
giris kisminda verildi. Bu problem i¢in sonlu fark semalar1 kuruldu. Bu fark
semalari ile olusturulan metodunun karalilik kestirimleri gdsterildi. Bu problemin
yaklagik ¢oziimii i¢in bu metodunun kullanigh ve elverisli oldugu 6rnek problem
lizerinde gosterildi. Islem zorluklarindan dolay1 (4.1) érnegi Cift Laplace metodu
ancak iki adim i¢in uygulandi. Ancak (4.2) 6rneginde yakinsama sagladigindan
elde edilen ¢6ziim tam ¢oziime karsilik gelen ¢6ziim olarak bulundu. Matlab
programi kullanilarak bu 6rnek problemlerin tam ve yaklasik ¢oziimler igin

grafikler ¢izildi.

5.2. Oneriler

Laplace Doniisiim Kolokasyonu Metodu (LDKM) ile Residual Kuvvet serisi
metotlar1 eliptik kismi diferansiyel denklemlerin yaklasik ¢oziimlerini elde etmek

icin uygulanabilir.
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