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OZET
Hemen Hemen Kompleks Metalik Manifoldlarin Bir Caligmasi

HASHAN, Ayse Seray

Yiiksek Lisans Tezi, Geometri Anabilim Dali
Tez Damismani: Dog. Dr. Feyza Esra ERDOGAN
Eyliil 2024, [38] sayfa

Bu tez beg bolimden olusmaktadir. Birinci boliimde konunun tarihi
anlatis: ve cahigmalardan bahsedilmistir. Ikinci boliimde tez boyunca kullamlan
temel tamm ve teoremler ifade edildi. Uciincii boliimde, altin oran tammlamp,
Riemann manifoldu iizerindeki altin yapi1 ve ozellikleri ile birlikte ornekler
verildi. Dérdiincii boliimde metalik yapt ve metalik manifoldlar tanitildi.
Besinci boliim tezin orjinal kismini olugturmaktadir. Bu béliimde hemen he-
men kompleks metalik semi-Riemann manifoldlarin invaryant, semi-invaryant
hiperyiizeyleri tamimlanip, distribtisyonlarin integrallenebilirlik sartlari, total
umbilik semi-invaryant altmanifoldlar1 ve bu tipteki altmanifoldlarin dist-
riblisyonlarinin total geodezik foliasyon tanimlama sartlar: incelendi.

Anahtar sozciikler: Altin oran, metalik manifoldlar, Riemann manifoldlarda
altin yapi, semi-Riemann manifoldlarda hemen hemen kompleks metalik yapi, total

umbilik semi-invaryant altmanifold, total geodezik foliasyon






1X

ABSTRACT
A Study Of Almost Complex Metallic Manifolds
HASHAN, Ayse Seray

MSc. in Department of Mathematics
Supervisor: Assoc. Prof. Dr. Feyza Esra ERDOGAN
September 2024, [38 pages

This thesis consists of five chapters. In the first chapter, the historical
narrative of the subject and discussions on previous studies are provided.
The second chapter presents the fundamental definitions and theorems used
throughout the thesis. The third chapter defines the golden ratio and provides
examples along with its properties on Riemann manifolds. In the fourth
chapter, metallic structures and metallic manifolds are introduced. Chapter
five constitutes the original part of the thesis. In this chapter, the invariant
and semi-invariant hypersurfaces of complex metallic semi-Riemann manifolds
are defined, and the conditions for the integrability of distributions, the totally
umbilical semi-invariant submanifolds, and the conditions for defining totally

geodesic foliations of such submanifolds are examined.

Keywords: Golden ratio, metallic manifolds, golden structure in Riemann
manifolds, complex metallic structure, almost complex matallic structure in semi-
Riemann manifolds, almost complex metallic structure, total umbilical semi-

invariant submanifold, total geodesic foliation
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ONSOZ

Saygideger damgmanim Dog. Dr. Feyza Esra ERDOGAN ve saygideger
hocam Dog. Dr. Serife Nur BOZDAG ile birlikte yuriittigimiiz bu caligma,
"Hemen Hemen Kompleks Metalik Manifoldlarin Bir Caligmasi” baglhigini
tagimaktadir. Bu ¢alismada, hemen hemen kompleks metalik yapilarin semi-
Riemann manifoldarin1 derinlemesine inceledik. Tez konumuzu belirlerken
hedefimiz, bu alandaki mevcut galigmalara katki saglamak ve elde ettigimiz

sonuglar literatiire kazandirmaktir.

Caligmamizda ozellikle, hemen hemen kompleks metalik semi-Riemann
manifoldlarin semi-invaryant altmanifoldlarini, total umbilik olma sartlarini,
integrallenebilirlik durumlarini ve total geodezik olup olmama kogullarini
detayh bir gekilde ele aldik. Bu analizler, bu yapilarin matematiksel 6zelliklerini
derinlemesine anlamamiza ve gelecekteki arastirmalara 1sik tutacak bilgiler

sunmamiza yardimei oldu.

Bu caligma, metalik yapilar iizerine yapilan arastirmalarda yeni ufuklar
acmay1 ve alanin gelisimine katkida bulunmay1 amaclamaktadir. Incelemelerimizin,

matematik alaninda giiclendirecek degerli bilgiler sunacagina inaniyoruz.

IZMIR
12/09/2024

Ayse Seray HASHAN
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1 GIRIS

Tiirev ve integral hesabinin egrilerin geometrisine uygulanmasi ile bir-
likte, ytizeylerin diferansiyel geometrisi de ayni yaklagimla caligilmigtir. 1697
ve 1698 yillarinda Bernoulli kardegler yiizey iizerindeki jeodezikleri galigtilar.
Clairaut 1731 yilinda basilan kitabinda ytizey tizerindeki egrileri ¢aligmigtir.
1733 yilinda bu giin Clairaut teoremi olarak bilinen sonucunu ispatladi. 1728
ile 1732 tarihleri arasinda basilan makale serisinde Euler, yiizey tizerindeki je-
odezikleri ve Monge regle yiizeyleri bu donemde inceledi. Monge 'nin ogrencileri
de yiizeylerin diferansiyel geometrisine énemli katkilarda bulundular. Ornegin
Dupin, Monge’'nin ogrencilerinden biridir. Meusnier ve Lagrange da yiizeyler
izerine 6nemli ¢aligmalar yayinladilar. Ayrica minimal yiizeyler iizerine ilk
caligmalar Euler ve Meusnier tarafindan gerceklestirildi. Ancak ytizeyler
iizerine kapsamli ve sistematik caligmalar Gauss’a aittir. Gauss yiizeylerin
genel teorisi lizerine olan galismalarini ilk olarak 1825 yilinda sonrasinda ise
bu calismanin diizeltilmig versiyonunu 1827 yilinda yayinladi. Gauss oncesi
yiizey calismalarda yiizeyin daima Oklidyen 3-uzayda gomiilii halinde ve
buna baglh olarak belirlenen kavramlarla incelenmigtir. Gauss ise yiizeyin
incelenmesi i¢in ig¢sel bir kavram olan birinci temel formun yeterli oldugunu
gostermigtir. Boylece yiizeyin i¢sel geometrisinin kegfi Gauss’a aittir. Gauss'un
caligmalar1 birinci temel form, geodezik ve Gauss egriligi gibi diferansiyel ge-
ometrinin énemli kavramlarmin ilk tanimladigi kaynaklardir. Ornegin egriligin
invaryant oldugu 1822 yilina ait bir makalede ispatlanir. Yiizeyler iizerine
yapilan caligmalarin giintimiizde dahi Gauss'un galigmalar1 tizerine devam
ettigini soyleyebiliriz. Georg Friedrich Bernhard Riemann 10 Haziran 1854 de
Gottingenn Universitesinde akademik bir pozisyon alabilmek icin bir sunum
yapti. Bu sunumda aday sectigi ii¢ konuyu bir jiiri kargisinda savunuyordu.
Riemann’in sunacag ilk konu kompleks fonksiyonlar ve trigonometrik seriler
{izerine aragtirmalardi. Uciineil konunun basghg: ” Geometrinin temelleri tizerine
hipotezler” olarak belirlenmisti. Geleneksel olarak jiiri adaydan ilk konuyu

anlatmasini isterdi. Ama bu jiiride tiniversitenin en seckin iiyesi olan Carl



Friedrich Gauss ilk iki konuyu atlayarak adaymn ticlincii konuyu anlatmasini
istedi. Gauss’'un bunu yapmasinin nedeni, ti¢iincii konunun kendisinin de
ilgilendigi ve yaymlamadigi Oklidyen digi geometriler (paralellik aksiyomunu
saglamayan yeni geometriler) konusu ile ilgili olmasindan kaynaklaniyordu.
Fakat Riemann’in ii¢iincii konusunda sundugu arastirma ozel geometrilerle
(Okhd, hiperbolik veya digerleri) smirh kalmamakta, tanimladigi manifold
kavrami ile geometri icin yeni bir bakig acis1 sunmaktaydi. Riemann’in bu ¢igir
acicl yeni kavrami bugiin de uzayi tanimlarken kullanilan standart kavramdir
ve bu kavram gorelilik teorisi ve uzay-zamanin yapisinin anlagilmasina temel
olugturmaktadir. Riemann’in geometriye getirdigi bu yeni kavram, noktalarin
veya uzaylarin bir kolleksiyonu sgeklinde diigiiniilebilir. Bu kavrama bugiin
Riemann manifold kavrami karsilik gelmektedir. Riemann’in gelistirdigi bu yeni
bakig agisi, Einsteinin geligtirdigi gorelilik teorisinin uzay-zaman kavramina
temel olusturdu. Gergekten Einstein kiitlegekimi tanimlamak i¢in tensorel bir
ifade aradiginda, sonunda Riemann’'in tamimladigi metrik bagint1 veya bugiin

Riemann metrigi ad1 verilen kavrama ulagti, (Sahin, |2021)).

Altin oran, ifadesiyle tanimlanan irrasyonel bir sayidir. Bu oran,
antik ¢caglardan gliniimiize kadar matematikgiler, fizikciler, filozoflar, sanatcilar
ve miizisyenlerin ilgisini ¢ekmistir. Yunanca’'da ’kesmek’ anlamina gelen bir
kelimenin ilk harfi olan ¢ ile sembolize edilir ve yaklagik degeri 1,61803... olarak
bilinir. Bu oran, altin ortalama, altin boliim, altin kesit, ilahi (kutsal) oran,
Fibonacci sayist ve Phidias ortalamasi gibi farkli isimlerle de amhr. Ozelliklerini
inceleyen matematik¢i Phidias’in adinin ilk harfi olan ¢ ile de temsil edilse
de, genellikle m sembolii kullanilir. Ancak tezde ¢ kullanilmigtir. Altin oran
hakkinda bilinen ilk eser, Luca Pacioli (1445-1519) tarafindan yazilan ”Ilahi
Oran” adh kitaptir. Bu eser, 1509 yilinda Leonardo da Vinci tarafindan
resimlendirilmistir, (Dunlop), 2011). Tiirk mimarisi ve sanatinda da altin oran
orneklerine rastlanir. Mimar Sinan’in pek ¢ok eserinde, ozellikle Stileymaniye
ve Selimiye Camileri’'nin minarelerinde, altin oran kullamilmaktadir, (Salanl,
2010). Daha sonra, Crasmareanu ve Hretcanu (2008), diferensiyellenebilir bir

manifold {izerinde, yap1 polinomu Q(z) = 2 — x — 1 olan ve altin yap1 olarak



adlandirilan yeni bir polinom yapi tanimlayarak altin manifoldlar teorisinin
temelini atmiglardir. Altin yapinin daha genel bir formu, C.E. Hretcanu ve M.
Crasmareanu’nun 2013 yilinda yayinladiklar:1 ” Riemann Manifoldlarda Metalik

Yapilar” adli ¢alisma ile ortaya konmustur.

Bu tezde, ikinci boliimde Riemann manifoldlarini tanimlamak igin
gereken temel bilgiler sunulmugtur. Riemann manifoldlarinin genel 6zellikleri
hakkinda bilgiler verilmistir. U¢iincii béliimde, Riemann manifoldlar: tizerin-
deki altin yapilarin genel ozellikleri ele alinmigtir. Dérdiincii boliimde metalik
yapilar ve metalik manifoldlar tanitilmigtir. Beginci boltim tezin orjinal kismi
olarak, semi-Riemann manifoldlar: ve altmanifoldlar tizerindeki hemen hemen

kompleks metalik yapilarin 6zellikleri ve kogullar1 incelenerek ispatlanmaigtir.



"Bu tezde kisaligin hatri i¢in hemen hemen kompleks metalik semi-

Riemann yerine HHKMSR kullanilacaktir.”

2 TEMEL KAVRAMLAR VE TANIMLAR

Bu boliimde, tezin anlagilabilirligini arttirmak icin gereken temel kav-

ramlar ile bazi tanim ve teoremler sunulmustur.

2.1 Temel Kavramlar

Tanim 2.1. (Sahin, 2021): X bir kime ve T , X kimesinin altkimelerinin
bir ailesi olsun. Eger asaqidaki sartlar saglanyorsa (X, 1) ikilisine bir topoloji

ady verilir.

l.gerve X er
2. 7 ailesinin keyfi sayida birlesimi 7 kiimesine aittir; A; € 7 ise U;A; € 7 .

3. 7 ailesinin sonlu sayida kesigimi 7 kiimesine aittir; A; , ¢ € J, J sonlu

indis kiimesi icin, A; € 7 ise N;A; € T.

X kiimesinin her bir elemanina topolojik uzaymn bir noktast ve X
kiimesinin 7 ailesine ait olan altkiimelerine topolojik uzayin aciklari adi verilir.
xr € X noktasini iceren bir U agik altkiimesinin her N iist kiimesine x

noktasimin komsulugu denir.

Ornek 2.1. (Sahin, 2021): X bir kiime olsun. Bu durumda 7 = (X, @) kiimesi
X dzerinde bir topolojidir. Bu topolojiye asikar topoloji denir. Bu topolojide

X uwzayman a¢iklary sadece X ve @ dir.

Ornek 2.2. (Sahin|, 12021): X bir kiime olsun. Bu durumda X kimesinin
kuvvet kiimesi olan p(X), X dzerinde bir topolojidir. X kimesinin her bir

altkumesi bu topoloji i¢in bir aciktur.

Tanim 2.2. (Sahin, 2021): (X, 1) bir topolojik uzay olsun. B C T olmak 1izere,
(X, 7) topolojik uzayin her bir elemanty B altkimesinin elemanlarinin birlesimi

1se B kumesine topolojik uzaywn baze adu verilir.



Ornek 2.3. (Sahin, 2021): a,b € Q olmak tizere (a,b) agik araliklarn kimesi

R ‘zerindeki topolojinin bazidur.

Tanim 2.3. (Sahin|, |2021): (X, 1) bir topolojik uzay olsun. Eger bu topolojik
uzay sayabilir baza sahip ise (X, T) topolojik uzayna ikinci saylabilirdir

denir.

Ornek 2.4. (Sahin, 2021): Kanonik topoloji ile birlikte R™ uzay ikinci

saylabilirdir.

Tanim 2.4. (Sahin, |2021): X bostan farkl bir kiime ve d : X x X — R bir

fonksiyon olsun. Eger her x,y,z € X i¢in
1. x #y igin d(z,y) > 0,
2. d(z,y) =0 <= x =y,
8. d(z,y) = d(y,z),
4 d(z,y) < d(z,2) +d(z,y)

sartlary saglaniyorsa d fonksiyonuna X tzerinde bir metriktir denir.

X bir kiime ve d de bu kiime iizerinde bir metrik ise d metrigi bu kiime
iizerinde bir tek topoloji tiretir. Boylece bir metrik uzay tizerinde topoloji

tanimlamak her zaman mumkindiir.

Ornek 2.5. (Sahin, 2021): Son érnekte verilen kimede x,y € R™ i¢in

fonksiyonunu tanimlayalim. Kolayca gorilecegi tizere d, R™ tizerinde bir metrik

tanimlar. Boylece R™ bir metrik uzaydir. Bu metrik uzay
By, =y eR"|d(z,y) <r
actk yuvar: ile tretilen topolojiye sahiptir.

Simdi manifold taniminda gegen Hausdorff uzay kavramini hatirlatalim.



Tanim 2.5. (Lee, 2000): X bir topolojik uzay olmak tzere, X wzayimin her
farkl x,y elemanlar icin bu noktalarin ayrik birer komsulugu varsa, topolojik

uzaya Hausdorff uzay denir.

Ornek 2.6. (Sahin, |2021): Her metrik uzay Hausdorff uzaydur. Yani (R™, d)

Hausdorff uzaya ornek olarak metrik uzaylar verilebilir.

Tanim 2.6. (Sahin, |2021): (X,7) ve (X', 7) iki topolojik uzay, f: X — X'
bir fonksiyon olsun. Ejer X' her acik kiimenin ters gorintisi X bir agik kiime

ise f fonksiyonuna streklidir denir.
Bu tanima denk olan asagidaki tanim da verilebilir.

Tanmim 2.7. (Sahin, 2021): (X,7) ve (X', 7) iki topolojik uzay f : X — X'
bir fonksiyon ve xo € X olsun. f(xo) € X noktasimn her N komsulugu icin
f(N) C N’ olacak sekilde zo € X noktasimn bir N komsulugu mevcut ise f
fonksiyonuna o noktasinda sireklidir denir. Eger f : X — X' her xy € X

noktasinda strekli ise f fonksiyonuna sureklidir denir.

Tanim 2.8. (Led, 2000): f: X — X' bir fonksiyon olsun. Eger f fonksiyonu
birebir, orten, strekli ve tersi de strekli ise f fonksiyonuna homeomorfizma

denir. Bu durumda X topolojik uzayr X' uzayina homeomorfiktir denir.

Tanim 2.9. (Sahin|, |2021): M ikinci sayabilir Hausdorff bir uzay olsun.
Eger her p € M icin; R™ deki bir acik kiimeye homeomorfik olacak sekilde
p noktasinan bir acik komsulugu U, yant p noktasini iceren bir U C M ag¢ik
kimesi, W C R™ agik kiimesi ve o(U) : U — W homeomorfizmasu (birebir,
grten, sirekli ve tersi de strekli) varsa M Hausdorff uzayina bir topolojik
manifold veya kisaca manifold denir. Bu durumda boy(R™) = m oldugundan

manifoldun boyutu m olarak tanimlanar.

Yukaridaki tanimda verilen homemorfizma ¢ : U — o(U) C R™ ise
(U, ¢) ikilisine bir harita denir. I bir indis kiimesi olmak tizere (U;, p;),1 € 1
topluluguna manifoldun atlasi denir. M manifoldunun biitiin noktalarinin en

az bir haritada yer almasi i¢in bu agik kiimelerin arakesitinin bostan farkl



olmasi gerekir. ¢ bir homemorfizma oldugundan p € U noktasinin koordinatlari
r = ¢(p) € R™ noktasmin koordinatlar1 olarak tanimlanabilir. Boylece ¢
homeomorfizmasi M manifoldunun bir p noktasina (x1(p), ..., Z,n(p)) m— lisini
kargihik getirir. z1(p), ..., x,,(p) sayilarma p noktasimin komsulugunda m— tane

bagimsiz koordinatla verilen bir kiime olarak da diigiintilebilir.

Tanim 2.10. (Sahin, 2021): M, m— boyutlu manifold olsun. Eger M tizerinde
haritalarin bir ailesi olan A = {(U, @), (V ), (W, ), ...} kimesi asaqidaki
sartlar saghyorsa A koleksiyonuna M dzerinde r. mertebeden diferansiyelle-

nebilir yapr (veya atlas) adv verilir.

1. {U,V,W, ..} a¢ik kiimelerinin koleksiyonu M manifoldunun bir agik

ortusudir.

2. A daki herhangi ki harita r. mertebeden uyumludur.

A~

3. A maksimaldir, yani eger bir (p,U) haritast A daki bitin koordinat

A

atlaslary ile uyumlu ise bu durumda (p,U) € A dar.

Eger bir M manifoldu iizerinde r. mertebeden diferansiyellenebilir bir
atlas varsa M manifolduna r. mertebeden diferansiyellenebilir manifold denir.
Diferansiyellenebilir yapinin her bir haritasina M manifoldunun uyumlu
haritast adi verilir. Eger atlas her mertebeden diferansiyellenbiliyorsa M
manifolduna C* manifold (veya kisaca diferansiyellenebilir manifold) adi
verilir. Burada belirtelim ki keyfi iki kiime arasinda diferansiyellenebilme
kavrami tanimh degilken, manifold yapis1 R™ uzayindaki diferansiyellenebilme

kavrami yardimi ile diferansiyellenebilmeye imkan vermektedir.

Tanim 2.11. (Sahin, 2021): M bir diferansiyellenebilir manifold ve f :
M — R bir fonksiyon olsun. Eger her p € M i¢in fo o' : oU) = R
diferansiyellenebilir olacak sekilde bir (U, @) haritast varsa f fonksiyonuna M

manifoldu uzerinde diferansiyellenebilirdir denir.

Yukaridaki tanmim, asagidaki tamim ele alinarak verilmigtir. Diferan-

siyellenebilir M manifoldu tizerinde bir (U, ) haritasi tizerinde f o ¢!



diferansiyellenebiliyorsa, bu durumda f, UNV # 0 sartini saglayan tiim (V)

haritalar: tizerinde de diferansiyellenebilirdir.

Tanim 2.12. (Sahin|, 2021): M bir diferansiyellenebilir manifold ve o :
(—€,€) = M diferansiyellenebilir egri olsun. Kabul edelim ki a(0) = p ve D de
p noktasinda diferansiyellenebilen fonksiyonlarin kiimesi olsun. Bu durumda

D dzerinde
d(foa)

J(0)f ==

’t:Oa f € D

ile tanamh o (0) fonksiyonuna t = 0 da « egrisine teget vektor adv verilir.
Manifoldun bir p noktasindaki tanjant vektér, a(0) = p olmak tzere t = 0
da « egrisine teget olan vektordir. Simdi M manifoldu ‘zerinde bir (¢,U)
koordinat sistemi secelim. Bu durumda f fonksiyonu ve o egrisi bu koordinat

sisteminde
(¢ oa)(t) = (1(P), ..., zn(t))

(foo (@) = f(a1,- 7). g €V = (u)

olarak ifade edilebilir. f fonksiyonunun o egrisine kisitlanmasi ile

o/ (0)f = 57 00) o= S @(0), - a(t) o= Zl’ (32,

olur. Boylece

Z i 31:1 0)f

elde edilir. Bu ifade her f icin dogru oldugundan, o' (0) ifadesi (¢, U) koordinat

sisteminde

= >0,

olur. Bu ifade oncelikle gosterir ki o egrisinin p noktasindaki tanjant vektori yalnizca
egrinin bu koordinat sistemindeki t tirevine baghdir. M manifoldunun p
noktasindaki tanjant vektorlerinin kimest T,M ile gosterilir. Fonksiyonlardak:
toplama ve skalerle ¢arpma islemsi ile birlikte bu kime bir vektor uzayr yapisina

sahip olur. Bu uzaya manifoldun p noktasindaki tanjant uzayr denir. Ayrica bu



ifade gosterir ki eger bir koordinat sistemi segilirse bu koordinat sistemi T, M
de
0 0
—)0, ... 0
<(8x1) ’ ’(8xn) )

Tanim 2.13. (Sahin, |2021): M bir manifold ve manifold tzerindeki di-

bazin belirler.

feransiyellenebilir fonksiyonlarin kimesi C*°(M, R) olsun. Bu durumda her

fig € C®(M,R) ve o, B € R igin,
LVy(af +Bg) = aVyf + Bpg

2.Vo(fg9) = Vo(f)g + fVi(9)

sartlarim saglayan 'V, : C°(M,R) — R donisimine M manifoldunun p

noktasindaki tanjant vektori denir.

Yukarida tanimi verilen tanjant vektorlerin uzayi bir vektor uzayi
yapisina sahiptir. Tanjant uzayin boyutu manifoldun boyutuna egittir. Bunun
nedeni esas olarak manifoldun bir p noktasindaki tanjant uzay: ile Oklidyen

uzayin izomorfik olmasidir.

Tanim 2.14. (Lee, |2005): M bir manifold ve T,M , manifoldun p noktasindaki
tanjant wzayr olsun. Bu durumda her p € M noktasina T,M uzayinda bir
tanjant vektor karsilik getiren X diferansiyellenebilir dontisumine vektor alana

denir. Boylece M manifoldu tizerinde bir vektor alana
XM = UpeuT,M

diferansiyellenebilir donisumudir. Burada vektor alanimin diferansiyellenebilir

olmasi, her f € C°(M, R) i¢in

Xf:M— R,

ile tanwmily fonksiyonun her mertebeden diferansiyellenebilir olmasidir. Bir

vektor alanmi tanjant vektorlerin toplulugudur. Baska bir ifade ile bir vektor
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alany manifoldun bir p noktasinda bir tanjant vektor verir. Vektor alanlarinin

kiimesi x(M) ile gosterilir. Bir yerel koordinat sisteminde bir X vektor alant

.0
X:ZX&Q

seklinde ifade edilebilir. Eger g,h € C*°(M,R) ve X,Y, M Jizerindeki vektir
alanlary ise keyfi p € M ve f € C®(M, R) i¢in

(9X + hy)pf = g(p)pr + h(p)Ypf

tanimlanirsa X+Y , M dizerinde yeni bir vektor alanidir. Bu sekilde tanimlanan
toplama ve carpma iglemleri ile birlikte x(M), C*(M, R) halkas iizerinde bir

moduldir.

Vektor alanlarina benzer olarak dual vektor alanlary da tanimlanabilir.
M bir diferansiyellenebilir manifold ve p € M olsun. T, M vektor uzayina dual
olan uzayr T;(M) ile gosterelim. Béylece w, € Ty(M) elemant wy, : T,M — R
lineer donisumidir. T,M vektor uzayimn bir Ey,, ..., By, baz verilmisse, bu
durumda Ty (M) uzayimn wi,(Ej,) = 67 sartim saglayan bir tek wip, ..., Wnp
bazy vardwr. Boylece .
Wp = pr(Eipri)
i=1
dir. Ty(M) uzaymn elemanlarma dual vektor denir. Dual vektorlerin uzay
olan T;(M), fonksiyonlardaki toplama ve skalerle ¢carpma islemine gore bir
vektor uzayr yapisina sahip olur. Bu uzaya kotanjant uzay veya dual uzay ade
verilir.
Manifold tizerinde vektor uzayr tamwmladiktan sonraki adim i¢ ¢arpim uzaying
msa etmektir. Bu durum uzunluk, a¢i ve benzeri kavramlar: tanimlamaya

olanak saglar.

Tanim 2.15. (Yano & Komn, 1984): M bir diferansiyellenebilir manifold ve
keyfi p noktasindaki tanjant uzay T,M olsun. Eger M manifoldunun her
tanjant uzayinda bir ¢ carpim var ve diferansiyellenebiliyorsa o zaman i¢
carpim fonksiyonuna Riemann metrik ve tuzerinde Riemann metrik bulunan

manifolda da Riemann manifoldu ady verilir. Boylece Riemann metrik g,

g lp: T,M xT,M — R
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ile verilen bir bilineer fonksiyondur.

Ornek 2.7. (Sahin, |2021): E3 manifoldu tizerindeki i¢ ¢carpim ile birlikte bir

Riemann manifoldudur.

Ornek 2.8. (Sahin|, |2021): M bir regiiler yiizey olsun. Bu durumda E?
uzaymdaki i¢ carpimdan indirgenen yizeyin birinci temel formu bir Riemann
metrigidir. Dolayisiyla her regiler yizey ve onun birinci temel formunun

olusturdugu ikili bir Riemann manifoldudur.
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3 ALTIN MANIFOLDLAR

Bu boliimde altin manifoldlar tanitilip temel 6zellikleri verilecektir.

3.1 Manifoldlar Uzerindeki Altin Yapilar

Tanim 3.1. (Crasmareanu & Hretcanu, 2008): M bir manifold ve ®, M
manifoldunun p noktasinda T,M tanjant uzay: tzerinde lineer endomorfizma

olsun. Eger

PP=0+ 1 (3.1)

ise ® ye altin yapr ve (M, ®) ikilisine altin manifold denir.

Onerme 3.1. (Crasmareanu & Hretcanu, 2008): M manifoldu tizerindeki altin

yapr, (F,)n nin Fibonacci dizisi oldugu herhangi bir n tamsayisy igin

" = F,® + F,_,I (3.2)
1
ile ifade edilir. Bu durumda, (¢ = +2\/5 igin)
¢—(1—-9)

F, = (3.3)

V5

ve Binet formiilu Fibonacci dizisinin a¢ik ifadesini kullanarak esitligi

G ) PR et et

(
o = o+ 1 3.4
Vi NG (3.4)
olarak yazilur.
Ispat. 1} ve } kullanilarak,
no__ _ n n—1 _ o n—1
) P it () L
V5 V5
elde edilir. n

Onerme 3.2. (Crasmareanu & Hretcanu, (2008): M bir manifold ve ®, M

tizerinde altin yapr olsun.

1. ® altin yaprsinin oz degerleri ¢ ve 1 — ¢ altin oranidr.
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2. @ altin yapsi, Yo € M i¢in T, M manifoldun tanjant uzayinda bir

izomorfizmadar.

3. & tersinirdir ve tersi ® = d~1,
2= +17 (3.5)
esitligini saglar.
Ispat. (i) A, X 6z vektoriine uygun ® altin yapisimn 6zdegeri olsun.
PX =AX = ¢*X = \oX

olur.

0P =¢+1

oldugundan

OX + X = MX = X = \oX — ¢X,
elde edilir. Son esitligin her iki tarafina A uygularsak,
NpX — XX — X =0,
AN =X—1)9pX =0
bulunur. X 06z vektor oldugundan X # 0 dir. Dolayisiyla,
NM—X-1=0

olur. Buradaki ikinci dereceden bir bilinmeyenli denklemin kokleri bulundugunda

1+

elde edilir.
(ii) @ altin yapi, Vo € M olmak iizere,

O(xq) = P(r2) = a1 =129

oldugunu gosterdigimizde ® altin yapisi, Vo € M icin T, M manifoldun tanjant

uzayinda bir izomorfizma oldugu gortiliir. Gercekten de

O(1) = O(22),



(I)(l‘l) +x = (I)($2) + Za,
(1) = P(2),
Tr1 = T9

elde edilir.
(iii) ® altin yapisi igin ®20? = (=@ 4 I)(® + I) ve ® altin yap1 olma sarti

goz oniine alinarak,

P2 = —P' D+ (—DI)+ 1D+ I

= 004 (=) + 1D+,
d I

= ————+®+1
o g et L

b -T+0*+ D

— . :

-0 —I4P+1+4+D

. d

elde edilir. Buradan da,

P2P? = i I bulunarak ® nin tersinin ® oldugu goriiliir.

Uyar1 3.1. (Crasmareanu & Hretcanu, 2008): Altin yapilarin ¢ift olarak
belirlenmesi énemli bir uyarider, yani ® altin yapwysa ® = I — @ de altn
yaprdur. Hemen hemen tanjant yapilar (T ve -T), hemen hemen kompleks
yapilar (F ve —F'), hemen hemen ¢arpvm yapilary (P ve —P) i¢in bu durum
gecerlidir.

Asgagidaki teorem altin yapi ile carpim yapi arasindaki iligkiyi verir:

Teorem 3.1. (Crasmareanu & Hretcanu, |2008): P hemen hemen ¢arpim

yapist olmak tizere,

@ = (I +V5P) (3.6)

bir altin yaprdir. Tersine, herhangi bir ® altin yapr olmak vzere,

P=—(20—1) (3.7)

Sl

bir ¢carpim yapist tanimlar.
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Ispat. P hemen hemen carpim yapist olmak iizere,

®> = (Z(I++5P))?,

— N

12+ 2v/51P + 5P?),

(I +2V5P +51),

N N e

(61 +2V/5P)

bulunur. Buradan,

9 — 31, Vop
2’ T

1
§(I+\/5P)+I
= ®+ 1]

elde edilir. Boylece ® altin yap1 olur. Tersine,

P=—(20—1)

Sl

olsun. Bu ifadeye P uygulanirsa,

(PP = (20— 1),

ot

1
g(4<I>2 — 40 + I?)

elde edilir. ® altin yap1 oldugundan,

G I e

(P)? (4(®+ 1) — 4D + 1),

(4D + 4T — 4% + 1),

—~
Ut
~

SN—
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bulunur. Oyleyse, P hemen hemen carpim yapisin saglar.

]

Uyar1 3.2. (Crasmareanu & Hretcanu,|2008): Yukaridaki ® <— P yazigmasinda
b=I-0¢+— P=-P
olur. Onceki yapr (@ dekine benzer olarak,
(I) M, T hemen hemen tanjant yapi ile verilsin.
1

ifadesine (M, T) tizerinde tanjant altin yapi adi verilir.

1
c1>§—<1>t+11=0

esitligi tanjant altin yapisiyla saglanan denklemi vermektedir.

(II) (M, F) hemen hemen kompleks bir manifold olsun.
1
o= (I + V5F)

seklinde tanimlanan @, tensor alam (M, F') tizerinde kompleks altin yapi

olarak adlandirlir. @, ile saglanan polinom denklem

3

P2 —®.+ -1 =0.
C + 2
M =R? almsa 1 = 5 + 3iV5, 2o =47 = § — %z\/g coziimleriyle
3
2
_ °_0
x T+ 5

denklemi elde edilir.

Tanim 3.2. (Crasmareanu € Hretcanu, |2008): M bir manifold olsun.

1 V5.
be= gty

kompleks sayisina kompleks altin oran ady verilir.
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Tanim 3.3. (Crasmareanu & Hretcanu, |2008): M bir manifold olmak tizere,

Y
¢c_\/6+z\/g

kompleks sayisina birim kompleks altin oran ady verilir.

6
yQ—%_ijl:O

ise ¢¢ ile saglanan denklemdir.

Tanim 3.4. (Cetinkaya, |2010): (M, F,g) bir hemen hemen Hermityen ma-
nifold olsun. M tzerinde ®2 = ®, — 21 sartin saglayan (1,1) tipli @,
tensor alanina M hemen hemen Hermityen manifoldu tzerinde bir altin yap:
denir. Burada x (M), M dzerinde vektér alanlarmin Lie cebiri olmak zere

I:x(M)— x(M) ézdeslik dontsimidiir.

Tanim 3.5. (Cetinkaya, |2010): (M, F,g) bir hemen hemen Hermityen ma-
nifold ve ®, de M fzerinde bir kompleks altin yapr olsun. (g, ®.) ikilisine M
uzerinde bir altin Hermityen yapr denir. Uzerinde bir altin Hermityen yape
bulunduran (M, F, g) hemen hemen Hermityen manifolduna bir hemen hemen
altin. Hermityen manifold denir ve (M, F, g, ®.) ile gosterilir.

VX, Y € x(M) ig¢in

g(P.X, DY) = g(%([ +V5F)X, %(I +V5F)Y),

1
= Jo(X+ VBFX,Y +V5FY),

1

= (0(X.Y) +g(X, VBFY) + g(VBFX,Y) + g(VBF X, VBFY)),

_ i@(X’ Y) + V5(g(X, FY) + g(FX,Y)) + 5g(FX, FY))

olur. Buradan
g(X,FY) =g(FX,F?Y)=—g(FX,Y) olduju goz oniine alinirsa,
9(PX, DY) = 2g(X,Y) bulunur. Ayrica,

3 3
g(®.X,®.Y) = §g(X, Y)= §g(FX, FY)

elde edilir.
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3.2 Altin Yapilar Tle Uretilen Yeni Yapilar

Bu altboliimde altin yapi ile tiretilen yeni yapilar tanimlanacaktir.

Tanim 3.6. (Crasmareanu & Hretcanu, 2008): F ve P, M manifoldunda iki

(1,1) tensor alanlary olsun. (F, P, P o F) d¢lisi siradaki dort yapuye olugturur:

1. F?=P? =T ve PoF —FoP =0; bu durumda J* = I,
2. F?=P?=JvePoF+ FoP=0; bu durumda J* = —1I,
3. F?=P?=—-TwvePoF —FoP=0; bu durumda J* =1,

4. F?=P? = _—JTve PoF +FoP =0; bu durumda J?> = —1I

siraswyla, hemen hemen hipercarpim (hhhg), hemen hemen kompleks bicarpim
(hhkbg), hemen hemen bikompleks carpim (hhbk¢) ve hemen hemen hiper-
kompleks (hhhk) olarak adlandirmlur. (3.6) denkleminden sonra ®p, ®p, ; yi

wliskilendirebiliriz ve dolayisiyla,
V5D, = 20pbp — Op — Op — @1
ve (Pp, Op, D) d¢lisinin,

1°) (hhh¢) yapisi olmasy igin gerek ve yeter sart ®p, ®p altin yapr ve

Ppdr = Ppdp olmasidir; bu durumda ®; altin yapidar.

2’) (hhkbg) yapisi olmasu igin gerek ve yeter sart ®pPp altin yapr ve
A PpPr+ pPp) = 2(Pp+ Pr) — I olmasidur; bu durumda ®; kompleks altin
yaprdar.

3’) (hhbkg) yapisy olmasi igin gerek ve yeter sart ®p, ®p kompleks altin

yapr ve PpPp = ©pPp olmasidir; bu durumda @5 altin yaprdir.

4°) (hhhk) yapisi olmasi i¢in gerek ve yeter sart ®p, ®p kompleks altin
yapr ve 4(PpPp+PpPp) = 2(Pp+Pr)—1 olmasidir; bu durumda ®; kompleks
altin yaprdar.
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3.3 Altin Yapilarin integrallenebilirligi ve Paralelligi

Bu alt boliimde hemen hemen kompleks manifoldlarin integrallenebi-

lirligine benzer olarak altin yapilarin integrallenebilirligi incelenecektir.

Hatirlatma 3.1. (Crasmareanu & Hretcanu, |2008): ® altin yapinin Nijenhius

tensoru
Ne(X,Y) = QQ[X, Y]+ [®X,PY] — 9[PX, Y] — O[X, DY]

dir. ¢ ve 1 —¢ ye karsilik gelen tumleyen distribiisyonlar sirasi ile R ve S olsun.

Karsilik gelen projeksiyonlar: r,s ile gosterilir. Bu durumda

dar.

@ ile hemen hemen ¢carpim yapise kullanilirsa,

1 —
r:—@—1—¢[,
5 NG
1
s———@—i—il

olur.

(i) No = 0 ise ® integrallenebilirdir; ® yapisinin integrallenebilir olmast i¢in
gerek ve yeter sart iliskili (@ hemen hemen c¢arpym yapist integrallenebilir
olmasidar.

(1) VX, Y € M igin si[rX,rY] = 0 ise R distribiisyonu integrallenebilirdir ve
r[sX,sY]| =0 ise S integrallenebilirdir.

@r:r@:gbr:i@—l—if,

V5o Vb

@s:sq):(l—gb)s:qb—\;glq)—%

buradan,

1
sirX,rY] = gqu)(rX, rY),
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1
r[sX,sY]| = ngq)(sX, sY')
ifadesine ulasilor.

Onerme 3.3. (Crasmareanu & Hretcanu, |2008): M bir manifold ve ®, M
tzerinde altin yapr olsun. R distribiisyonunun integrallenebilir olmasi i¢in gerek
ve yeter sart sNg(rX,rY) = 0 dur ve S distribiisyonu integrallenebilir ise
rNo(sX,sY) = 0 dur. © integrallenebilir ise R ve S distribisyonlarinin her

1kist integrallenebilirdir.

Tanim 3.7. (Crasmareanu € Hretcanu, 2008): V, M izerinde sabit lineer bir
konneksiyon olsun. (®,V) ¢ifti i¢in

(i) Schouten konneksiyonu,

VY = r(VxrY) + s(VxsY).

(ii) Vranceanu konneksiyonu,
VYY =7r(V,xrY) + s(VexsY) +r[sX,7Y] + s[rX, sY]
ile tanamlanar.

Onerme 3.4. (Crasmareanu € Hretcanu, |2008): M manifoldu tzerinde
r,s projektorler: ile birlikte ® Schouten ve Vranceanu konneksiyonuna gore

paraleldir.
Ispat. VXY € x(M),

(Vicr)Y = V}q(CrY — T(VicY)
= r(VxrY)—r(VxrY) =0,
(VYr)Y = VirYy —r(VY)
= r(V,xrY) +r[sX,rY] —r(V,.xrY) — r[sX,rY]

= 0.

Benzer bagintilar s i¢in de gecerlidir. Diger iddia ise benzer sekilde

ispatlanir. O
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X e x(M)veY € D, VxY € D ise M iizerindeki D distribiisyonu V

lineer konneksiyonuna gore paralel olarak adlandirilir.

Onerme 3.5. (Crasmareanu & Hretcanu, (2008): M dizerinde R, S dist-
ribuisyonlar, her V lineer konneksiyonu i¢in Schouten ve Vranceanu konneksi-

yonuna gore paraleldir.

Ispat. X € x(M) ve Y € R olsun.
sY =0 verY =Y oldugundan
VY = 1(VyY) € R,

VYY =r(V,.xY)+r[sX, Y] €R

olur. Benzer bagmtilar s i¢in de gecerlidir. O]

3.4 Altin Riemann Metrikleri

Tanim 3.8. (Yano & Kon|, |1984): M bir Riemann manifoldu ve P ¢arpim
yapisy olsun. Eger,

g(PX,PY)=g(X,Y) (3.8)
1se g ile P uyumludur denir ve denk olarak

g(PX,Y)=g(X,PY) (3.9)
yazilar.

Tanim 3.9. (Crasmareanu & Hretcanu, [2008): M bir manifold ve ®, M

tzerinde altin yapist olsun. Eger,
g(@X,Y) = g(X, DY) (3.10)

ise (g, ®) ye altin Riemann yapisy ve (M, g, ®) d¢lisi altin Riemann manifoldu

denir.

Sonug 3.1. (Crasmareanu & Hretcanu, |2008): M bir altin Riemann manifold
olsun. Bu durumda,

(i) r,s projektorleri g-simetriktir.

g(rX,Y) =g(X,rY), (3.11)
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g(sX,Y)=g(X,sY)
(ii) R, S distribiisyonlar: g-ortogonaldir.
g(rX,sY)=0. (3.12)
(iii) Altin yapisi No—simetriktir.

Ispat. e (i) )
1 1-—

R

r

® =5+ (1 — @)1 ve g(®(X),Y) = g(X, ®(Y)) esitliklerinden,
g(Vor + (1= ¢))(X),Y) = g(X(V5r + (1 = ¢)I(V),
g(Vor(X),Y) + (1 = 9)[(X),Y) = g(X, V5r(Y)) + g(X, (1 = ) (V)
VBg(r(X),Y) + (1 = 9)g(X,Y) = V5g(X,r(Y)) + (1 = ¢)g(X,Y),
g(rX,Y) = g(X,rY),

1 ¢
olur. Ayrica s = —=® + —=1 icin g(sX,Y) = g(X, sY) esitligi benzer
y N ARV 9( ) = 9( ) esitlig

sekilde gosterilir.
e (ii) R ve S distribiisyonlar: tiimleyen distribiisyon oldugundan,
T.M=R,® S5,

dir. M manifoldu iizerinde g metrigi i¢in (R,)* = S, ve (S,)* = R, olur.
Dolayisiyla,

g(r(X),s(X)) =0
elde edilir.

e (iii) ® altin yapisinin Nijenhius tensori,
Na(X,Y) = *([X,Y]) + [2(X), 2(Y)] — 2([2(X),Y]) — ©([X, &(Y)])
dir. O halde,
No(®(X),Y) = @*([®(X),Y]) +[2*(X), 2(Y)] — 2([2*(X),Y]) — 2([2(X), 2(V)]),
= O([2(X),Y]) +[2(X), Y] + [2(X), &(Y)] + [X, B(Y)] — O([®(X), Y])
—o([X,Y]) - o([2(X), 2(Y)]),
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No(X,2(Y)) = @*([X, ®(Y)]) + [2(X), 2*(Y)] — &([®(X), 2(Y)])
—2([(X), 2*(Y))),
= O([X, o(Y)]) + [X, (V)] + [®(X), 2(Y)] + [2(X), Y]
—o([o(X), 2(Y)]) — @([X, o(Y)]) — @([X, Y])

Y

elde edilir. Dolayisiyla Ng(®X,Y) = N (X, ®Y) dir.
[

Onerme 3.6. (Crasmareanu & Hretcanu, |2008): Yerel ¢arpvm altin Riemann

manifoldu uzerindeki ® altin yapist integrallenebilirdir.
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4 METALIK MANIFOLDLAR

Bu boliimde metalik yap1 ve metalik manifoldlar tanitilacaktir.

Tanim 4.1. p ve q ki pozitif tamsayr olsun.
> —pr—q=0
denkleminin pozitif cozimine metalik oranlar ailesinin “yesi denilmektedir.

p+/p*+4q

O-p:q - 9

Cézim kimesi ise

ile gosterilir. Bu tyelere ayrica (p, q)—metalik sayilar ady verilir.

Tamim 4.2. (Hretcanu & Crasmareanu, 2015): Bir M manifoldunda vektor
alanlariman Lie cebiri x (M) dzerinde lineer endomorfizmast J, p,q pozitif

tamsayrlar ve I birim operator olmak tzere
J* =pJ+ql

olsun. Bu durumda (1,1) mertebeli J tensor alanina metalik yapr ade verilir.

Eger X, Y € x(M) igin
g(JX,)Y)=g(X,JY)
1se Riemann metrik g ile J—uyumludur denir. Kolayca gorilebilir ki
9(J X, JY) = pg(X, JY) + q9(X,Y)
dar.

Tanim 4.3. (Hretcanu & Crasmareanu, |2015): J metalik yapisiyla verilen
(M, g) Riemann manifoldu olsun. Eger g ile J uyumlu ise (M, J,g) tglisine

metalik Riemann manifoldu ve J donisimine de metalik Riemann yapr denir.
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Onerme 4.1. (Hretcanu & Crasmareanu, 2018): M bir manifold ve P, M
tzerinde hemen hemen carpim yapr olsun. Bu durumda P, M tizerinde

P 2004 — D
= =] —— P

P 20,4 — D
Jo==] — (—— P
2=l = (—5—)

seklinde verilen ki metalik yapa tretir. Tersine, M deki her metalik yapr J, M
manifoldu uzerinde

2
P =% J-—L 1
204 —p 20p4—p

seklinde ki ¢arpim yapr tretir. Ozellikle, P hemen hemen ¢arpim yapist

Riemann yapriswysa, bu durumda J, ve Jy metalik Riemann yapilardar.

Tanim 4.4. (Hretcanu & Crasmareanu, |2015): J metalik yapisi tensor alanwyla
verilen M manifoldundaki bir M altmanifoldunda, her x € M i¢in J(T,M) C

T.M ise bu durumda J ye gore invaryanttir denir.
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5 HEMEN HEMEN KOMPLEKS METALIK
SEMI-RIEMANN MANIFOLDLAR

Bu boliimde hemen hemen kompleks metalik semi-Riemann manifoldlar

tanitilacaktir.

Tanimm 5.1. (Etayo & Araceli & Santamarid, |2020): (M, §) bir semi-Riemann
manifold olsun. M izerinde asagidaki kosulu saglayan (1,1) tipinde J tensor
alamy varsa M ye hemen hemen kompleks metalik semi-Riemann manifold

denir. Bu yapr denklemi

. .3
ﬂ:pJ—§ﬂ (5.1)

ile tanwymlamir. Burada I, M iizerinde birim donusumdir.

Tanim 5.2. (Crasmareanu & Hretcanu, |2008): VX, Y € T(TM) igin (M, §)
semi-Riemann manifold ile verilen hemen hemen kompleks metalik yapt

tzerinde, asagqidaki esitlik saglanwyor ise g metrigi J ile uyumludur denir.

g(JX,)Y)=g(X,JY). (5.2)

GUIX,JY) = §(X,J?Y),
X . 3
= g(XJnJ—§®Y>7
R . 3
= 9(X,pJY — §CJY),

R 2 R 3

Buradan da,

esitligini elde ederiz.

Onerme 5.1. j, M iizerinde hemen hemen kompleks metalik yapu ise,

2 A 2a

J = J—
q:(QCaJ, —a 2Ca,b —a

1)
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ifadesi M dizerinde hemen hemen kompleks metalik yapidir. Tersine J, Mde

hemen hemen kompleks yap: ise

s a 2C,p —a
jo b (2

2 J)

ifadesi Mde hemen hemen kompleks metalik yapidir, burada

Eger asaquda wverilen N; Nijenhius tensori sifira esit ise hemen hemen
kompleks metalik yap: J integrallenebilirdur.
Ni(X,Y)=[JX,JY] = J[JX,Y] - J[X,JY] + J*[X,Y].

Tanim 5.3. M, (n+s) boyutlu HHKMSR manifoldu (M, J, g) nin n-boyutlu
altmanifoldu olsun. Herhangi X € T(TM) ve N € T(TM™*) igin,

JX = SX + LX (5.4)

JN = BN + CN (5.5)

ile ifade edelim. Burada S, L, B ve C' projeksiyonlardur.
V wve @, M wve M nin siraswyla Levi- Civita konneksiyonlary olsun. Herhangi

X, Y e (T N ) i¢in Gauss ve Weingarten formiilleri asagidaki gibidir:
VxY = VxY +h(X,Y), (5.6)

VxN; = —Ay, X + VN (5.7)
Burada Ay,, §(An, X,Y) = h(X,Y) ile verilen N; yoniindeki sekil operatori ve

h ise ikinci temel formdur.

Lemma 5.1. (M, J, §) HHKMSR manifold olsun. Herhangi X,Y,Z € T(TM)

¢mn,

W(Vx )Y, Z)=g(Y,(VxJ)Z) (5.8)

dir.
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Onerme 5.2. M, (M, J,§) nin (n+s) boyutlu HHKMSR manifoldunun n-
boyutlu altmanifoldu olsun. Herhangi X,Y, Z € F(TM) 1¢in,

9(Vxh)Y,Z) = g(Y,(Vxh)Z) (5.9)
dir.

Tanim 5.4. (M, J, g) HHKMSR manifoldu ve M, M de reel altmanifold olsun.
M, asagqidaki kosullar saglayan ortogonal distribiisyon (D, DY) iceriyorsa, M

nin semi-invaryant altmanifoldu olarak adlandurilor.
(i) TM=Da@D* (5.10)
(17) JD, =D, (5.11)
Vo € M i¢in D distribusyonu tnvaryant,
(iii)y  JD* c T,M* (5.12)

Vo € M icin D+ distribiisyonu anti-invaryanttur.
Altmanifoldun tanjant demetini, ana manifoldun tanjant demetine tamamla-

yan bir distribusyon vardir. Bu distribisyonu u ile gosterelim.

Onerme 5.3. M, (M, J,§) HHKMSR manifoldunun semi-invaryant altmani-

foldu olsun. p distribiisyonu J ye gore invaryant degildir.
Ispat. V e T(M), W € I'(JD'Y) ve X € T(D) icin,
JIV.W) = (V. JW) =0,
G(JV,X) =§(V,JX) =0
sonuclarindan,
J(w)NJDt =0

ve

~

J(p)UuD =0

olursa ispat tamamlanir.

(5.1), (5.4) ve (5.5) kullanilarak,

JX = SX + LX,
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J?X = JSX + JLX,
(pJ — gq])X = JSX + JLX,
pJX — ngX = S(SX + LX) + B(LX) + C(LX),
p(SX + LX) — qu = S?X + SLX + B(LX) + O(LX),
pSX +pLX — qu = S*X + SLX + B(LX) + C(LX).
Teget ve normal bilegenler ayrigtirilirsa;
S?X =pSX — ;qX — B(LX)
ve
pLX = SLX + C(LX)

elde edilir. O halde S, D distribiisyonunda ve L de D+ distribiisyonunda

kompleks metalik yapi degildir. O]

Sonug 5.1. M, HHKMSR manifold (M, J, g) nin semi-invaryant altmanifoldu
olsun. O halde Tanwm de verilen S wve L projeksiyonlar: M dizerinde

hemen hemen kompleks metalik yapr degildir.

Teorem 5.1. M, HHKMSR manifold (M, J,§) nin semi-invaryant altmani-
foldu olsun. D distribiisyonu integrallenebilir olmasi i¢in gerek ve yeter sart
VX,Y e (D), VZ € T'(D1),

WX, JY) = h(Y,JX) (5.13)

olmasidar.

Ispat. D distribiisyonu integrallenebilirdir ancak ve ancak [X,Y] € I'(D)

olmasidir.

X,Y e (D), Z € T(D*) icin Gauss denkleminde Y yerine .JY alrsak,
VxJY = VxJY 4+ h(X,JY)

elde edilir. Distriblisyonun integrallenebilir olmasi i¢in endomorfizmanin kon-

neksiyon altinda sifira esit olmasi gerekir. O halde

VJ =0,
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(VxJ)Y =0,
VxJY — JVxY =0,
VxJY = JVxY
(5.4), (5.5), (5.6) denklemleri kullanilarak

VxJY +h(X,JY) = JVxY + Jh(X,Y),

= BVxY +CVxY +Sh(X,Y)+ Lh(X,Y)
elde edilir. Teget ve normal bilegenleri esitlersek;
hMX,JY)=CVxY + Lh(X,Y),

CVxY = h(X,JY)— Lh(X,Y)

elde edilir.
Benzer sekilde,

CVyX = h(Y,JX) — Lh(Y, X)
olup esitlikleri taraf tarafa ¢ikarirsak,
CVxY —CVyX = h(X,JY) = Lh(X,Y) — h(Y, JX) + Lh(Y, X),
CIX,Y] = h(X,JY) = (Y, JX),
§(C1X,Y],2) = (WX, JY) = WY, JX), 2),
hX,JY)—h(Y,JX) =0,
WX, JY) = h(Y,JX)

elde edilir ve ispat tamamlanir.

]

Lemma 5.2. M, HHKMSR manifold (M, J, g) nin semi-invaryant altmani-
foldu olsun. O halde VX,Y € T'(D*), VZ € T'(TM) i¢in asagidaki esitlik

saglanar

A Y = —A; X, (5.14)
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Ispat. ve kullanilarak,

(A;Y,2) = §(JX,h(Y,Z)),

oldugundan —Aj;, X = A;.Y elde edilir. m

Teorem 5.2. M, HHKMSR manifoldu (M, J, g) nin semi-invaryant altma-
nifoldu olsun. D+ distribiisyonu integrallenebilirdir ancak ve ancak VX,Y €
[(D1) dgin

JA; Y =pA; Y (5.15)

esitliginin saglanmast ya da
jAjXY - ijXY
ifadesinin D de bileseni olmamasidar.

Ispat. D' distribiisyonu integrallenebilirdir ancak ve ancak VX,Y € I'(D4)
icin [X,Y] € T(D*) olmasidir. Z € I'(D) icin , ve Lemma
kullanilarak ve g, M iizerine g den indirgenen metrik olmak iizere
§XY)2) = 0 = Lo(IX.Y)2) = LalIIXY].JZ) o0

= pi(VxY —=VyX,JZ) = §(VxJY —=VyJX,JZ) =0,

= pi(—Ajy X + A Y, Z) — G(—A;y X + A3, Y, JZ) =0,

= pg(—Ap X +A;Y,Z) - 9(_jAjYX + jAjXYa Z) =0,

= g(2pA;Y,Z) — g(2JA;4Y, Z) =0,

= g(2pA; Y —2JA;,Y,Z) =0,



32

oldugundan pA;.Y = JA jxY elde edilir ya da JA ixY —pAj;Y ifadesinin
D de bilegeni yoktur. O

Teorem 5.3. M, HHKMSR manifold (M, J,§) nin semi-invaryant altmani-
foldu olsun. O zaman M total geodeziktir ancak ve ancak VX,Y € T'(TM)
1¢IN
3

Ch(X,SY)— LAy X +CVxLY = ph(X,SY)+pVxLY — S?X,Y) (5.16)
olmasidar.

Ispat. Y € T(TM) icin,

JY = ij—%qY,
VY = pOxdY - 9y,

IR 3 3
IVxJY = pVX(SY—i—LY)—Eq(VxY+h(X,Y))7

JVx(SY +LY) = pVxSY +pVyLY — gvxy - th(x, Y,
JVxSY + Bh(X,SY) 4+ Ch(X, SY) B pVxSY +ph(X,SY) — pAry X
~SAryX — LAry X + BV%LY + CV%LY +pV%LY — 8VY — Ah(X,Y).

Teget ve normal bilegenleri ayrigtirilirsa,
3
Ch(X,SY) — LAy X + CVxLY = ph(X,SY) + pVxLY — Sah(X,Y)

elde edilir. Boylece ispat tamamlanir.

]

Teorem 5.4. M, HHKMSR manifold (M, j) nin semi-invaryant altmanifoldu
olsun. O zaman D distribiisyonu total geodezik foliasyon tamimlar ancak ve
ancak

VX € (D) ve Z € T(D%) igin,

JA;, X =pA;, X (5.17)
esitliginin saglanmast ya da

JA;, X —pA;, X

ifadesinin D de bileseni olmamasidar.
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Ispat. VXY € T(D) ve Z € DI(D+) icin D distribiisyonu total geodezik
foliasyon tanimlar ancak ve ancak g(@ xY,Z) = 0 denklemi saglanmahdir.

g, M iizerine g den indirgenen metrik olmak tizere

A 2 an 2 n .
G(VxY,Z) = 0 < %@(JVXY, 7) = 5o (IVxY, J7) =0,

= pi(JVxY,2) = §(JVxY,JZ) =0,

= —pg(Y,VxJZ)+§(JY,VxJZ) =0,

= —pi(Y,VxJZ)+§(Y,IVxJZ) =0,

= —pg(Y,A;, X +V%JZ)+g(Y,JA;, X + JV%JZ) =0,

= g(V,JA;,X —pA;,X)=0
ise ya jAjZX—ijZX = 0 dir yada jAjZX—ijZX ifadesinin D de bilegeni
yoktur. O]

Teorem 5.5. M, HHKMSR manifold (M, j) nin semi-invaryant altmanifoldu
olsun. O zaman D+ distribiisyonu total geodezik foliasyon tanimlar ancak ve

ancak VX,Y € T'(D1) ve Z € T'(D) igin
—pAjy X +JA;y X =0 (5.18)
esitligi saglanar ya da —ijyX—i—jAjYX ifadesinin D de bileseni olmamasidar.
Ispat. YX,Y € I'(DF) ve Z € T(D) igin
s 2p ., o 2 . e .
q q
pg(INxY, Z) = §(JVxY, I Z)
I(pVxJY,Z) = §(IVxIY,Z) = 0,
)
)

9(—pA; X +V%JIY,Z) — g(=JA; X +VRJY,Z) = 0,
9(—pAj X + JA;X,Z) = 0
olup,
—pAj X + JA jyX ifadesi ya sifira esittir ya da D de bilegseni yoktur. m

Tanim 5.5. M, kompleks metalik semi-Riemann manifold (M, J, g) nin
altmanifoldu olsun. M de k € T(TM™*) olacak sekilde diferansiyellenebilir
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vektor alani var ise (M, j, g) manifoldundaki M ye total umbilik denir dyle
kivVX,Y e T(TM) igin,

MX,Y)=rg(X,Y). (5.19)
Burada k, ortalama egrilik vektor alanidar.

Teorem 5.6. M, HHKMSR manifold (M,j,g) nin total umbilik semi-
invaryant altmanifoldu olsun. O zaman D distribisyonu daima integrallene-
bilirdir.

Ispat. M total umbilik semi-invaryant altmanifoldu olsun.

VX,Y e (D), Z € T(D*) ve k € T(TM*1) igin,

§(X,Y],2) = i—i@([X,Y],JZ>—%g(ﬂx,ywz»

3¢9([X, Y], Z) = 2p§(VxY —VyX,JZ)—2§(VxJY —VyJX,JZ),
= 29(pVxY +ph(X,Y) — pVy X — ph(Y,X) = VxJY
—h(X,JY)+VyJX +h(Y,JX),JZ),
= 29(pVxY —pVy X —VxJY + VyJX, JZ),

O halde D distribiisyonu integrallenebilirdir. O]

~ A

Lemma 5.3. M, HHKMSR manifold (M, J,q§) nin total umbilik semi-

mvaryant altmanifoldu olsun. O halde,
9(Y, 2)g(k, JX) + §(X, Z)g(x, JY) = 0 (5.20)
dar.

Ispat. X,Y € (D), Z e T(DY) ve k € D(T M%) icin,
9(A;xY. Z) = —g(As X, Z),
9(MY, Z), JX) = —4(h(X, 2),JY),
9(kg(Y, 2), JX) = =4(kg(X, 2), JY),
(Y, Z2)q(k, JX) 9(X, Z)q(k, JY) =0. O]
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Teorem 5.7. M, HHKMSR manifold (M, j,g) nin total umbilik semi-
invaryant altmanifoldu olsun. O zaman D+ distribiisyonu daima integralle-

nebilirdir.

Ispat. 1} ve 1} kullanilarak,

J(X,Y),2) = §JA;Y +pAjxY, Z),
= 9(A5Y,J2) + pg(AsY, Z),
G(h(Y,J2), IX) +pg(h(Y, Z), T X),
§(kg(Y, I Z), JX) + pa(g(Y, Z), T X),
9, I Z2)g(r, TX) + pg(Y, Z)§(r, T X),
= 9JY. 2)j(r, JX) +pg(Y. 2)§(r, JX),
0

olup daima integrallenebilirdir. ]
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