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türlü yasal sonucu kabul edeceğimi beyan ederim.
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ÖZET

Hemen Hemen Kompleks Metalik Manifoldların Bir Çalışması

HASHAN, Ayşe Seray

Yüksek Lisans Tezi, Geometri Anabilim Dalı

Tez Danışmanı: Doç. Dr. Feyza Esra ERDOĞAN

Eylül 2024, 38 sayfa

Bu tez beş bölümden oluşmaktadır. Birinci bölümde konunun tarihi

anlatısı ve çalışmalardan bahsedilmiştir. İkinci bölümde tez boyunca kullanılan

temel tanım ve teoremler ifade edildi. Üçüncü bölümde, altın oran tanımlanıp,

Riemann manifoldu üzerindeki altın yapı ve özellikleri ile birlikte örnekler

verildi. Dördüncü bölümde metalik yapı ve metalik manifoldlar tanıtıldı.

Beşinci bölüm tezin orjinal kısmını oluşturmaktadır. Bu bölümde hemen he-

men kompleks metalik semi-Riemann manifoldların invaryant, semi-invaryant

hiperyüzeyleri tanımlanıp, distribüsyonların integrallenebilirlik şartları, total

umbilik semi-invaryant altmanifoldları ve bu tipteki altmanifoldların dist-

ribüsyonlarının total geodezik foliasyon tanımlama şartları incelendi.

Anahtar sözcükler: Altın oran, metalik manifoldlar, Riemann manifoldlarda

altın yapı, semi-Riemann manifoldlarda hemen hemen kompleks metalik yapı, total

umbilik semi-invaryant altmanifold, total geodezik foliasyon
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ABSTRACT

A Study Of Almost Complex Metallic Manifolds

HASHAN, Ayşe Seray

MSc. in Department of Mathematics

Supervisor: Assoc. Prof. Dr. Feyza Esra ERDOĞAN

September 2024, 38 pages

This thesis consists of five chapters. In the first chapter, the historical

narrative of the subject and discussions on previous studies are provided.

The second chapter presents the fundamental definitions and theorems used

throughout the thesis. The third chapter defines the golden ratio and provides

examples along with its properties on Riemann manifolds. In the fourth

chapter, metallic structures and metallic manifolds are introduced. Chapter

five constitutes the original part of the thesis. In this chapter, the invariant

and semi-invariant hypersurfaces of complex metallic semi-Riemann manifolds

are defined, and the conditions for the integrability of distributions, the totally

umbilical semi-invariant submanifolds, and the conditions for defining totally

geodesic foliations of such submanifolds are examined.

Keywords: Golden ratio, metallic manifolds, golden structure in Riemann

manifolds, complex metallic structure, almost complex matallic structure in semi-

Riemann manifolds, almost complex metallic structure, total umbilical semi-

invariant submanifold, total geodesic foliation
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ÖNSÖZ

Saygıdeğer danışmanım Doç. Dr. Feyza Esra ERDOĞAN ve saygıdeğer

hocam Doç. Dr. Şerife Nur BOZDAĞ ile birlikte yürüttüğümüz bu çalışma,

”Hemen Hemen Kompleks Metalik Manifoldların Bir Çalışması” başlığını

taşımaktadır. Bu çalışmada, hemen hemen kompleks metalik yapıların semi-

Riemann manifoldarını derinlemesine inceledik. Tez konumuzu belirlerken

hedefimiz, bu alandaki mevcut çalışmalara katkı sağlamak ve elde ettiğimiz

sonuçları literatüre kazandırmaktır.

Çalışmamızda özellikle, hemen hemen kompleks metalik semi-Riemann

manifoldların semi-invaryant altmanifoldlarını, total umbilik olma şartlarını,

integrallenebilirlik durumlarını ve total geodezik olup olmama koşullarını

detaylı bir şekilde ele aldık. Bu analizler, bu yapıların matematiksel özelliklerini

derinlemesine anlamamıza ve gelecekteki araştırmalara ışık tutacak bilgiler

sunmamıza yardımcı oldu.

Bu çalışma, metalik yapılar üzerine yapılan araştırmalarda yeni ufuklar

açmayı ve alanın gelişimine katkıda bulunmayı amaçlamaktadır. İncelemelerimizin,

matematik alanında güçlendirecek değerli bilgiler sunacağına inanıyoruz.

İZMİR

12/09/2024

Ayşe Seray HASHAN
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SİMGELER VE KISALTMALAR DİZİNİ

Simgeler Açıklama

R Reel sayılar kümesi

M Manifold

M̂ Altmanifold

h M manifoldunun ikinci temel formu

Γ(TM) Vektör alanlarının kümesi

∇ Lineer konneksiyon

TpM p noktasındaki tanjant uzayı

χ(M) Vektör alanı kümesi

Φ Altın yapı

κ Ortalama eğrilik vektör alanı
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1 GİRİŞ

Türev ve integral hesabının eğrilerin geometrisine uygulanması ile bir-

likte, yüzeylerin diferansiyel geometrisi de aynı yaklaşımla çalışılmıştır. 1697

ve 1698 yıllarında Bernoulli kardeşler yüzey üzerindeki jeodezikleri çalıştılar.

Clairaut 1731 yılında basılan kitabında yüzey üzerindeki eğrileri çalışmıştır.

1733 yılında bu gün Clairaut teoremi olarak bilinen sonucunu ispatladı. 1728

ile 1732 tarihleri arasında basılan makale serisinde Euler, yüzey üzerindeki je-

odezikleri ve Monge regle yüzeyleri bu dönemde inceledi. Monge’nin öğrencileri

de yüzeylerin diferansiyel geometrisine önemli katkılarda bulundular. Örneğin

Dupin, Monge’nin öğrencilerinden biridir. Meusnier ve Lagrange da yüzeyler

üzerine önemli çalışmalar yayınladılar. Ayrıca minimal yüzeyler üzerine ilk

çalışmalar Euler ve Meusnier tarafından gerçekleştirildi. Ancak yüzeyler

üzerine kapsamlı ve sistematik çalışmalar Gauss’a aittir. Gauss yüzeylerin

genel teorisi üzerine olan çalışmalarını ilk olarak 1825 yılında sonrasında ise

bu çalışmanın düzeltilmiş versiyonunu 1827 yılında yayınladı. Gauss öncesi

yüzey çalışmalarında yüzeyin daima Öklidyen 3-uzayda gömülü halinde ve

buna bağlı olarak belirlenen kavramlarla incelenmiştir. Gauss ise yüzeyin

incelenmesi için içsel bir kavram olan birinci temel formun yeterli olduğunu

göstermiştir. Böylece yüzeyin içsel geometrisinin keşfi Gauss’a aittir. Gauss’un

çalışmaları birinci temel form, geodezik ve Gauss eğriliği gibi diferansiyel ge-

ometrinin önemli kavramlarının ilk tanımladığı kaynaklardır. Örneğin eğriliğin

invaryant olduğu 1822 yılına ait bir makalede ispatlanır. Yüzeyler üzerine

yapılan çalışmaların günümüzde dahi Gauss’un çalışmaları üzerine devam

ettiğini söyleyebiliriz. Georg Friedrich Bernhard Riemann 10 Haziran 1854 de

Göttingenn Üniversitesinde akademik bir pozisyon alabilmek için bir sunum

yaptı. Bu sunumda aday seçtiği üç konuyu bir jüri karşısında savunuyordu.

Riemann’ın sunacağı ilk konu kompleks fonksiyonlar ve trigonometrik seriler

üzerine araştırmalardı. Üçüncü konunun başlığı ”Geometrinin temelleri üzerine

hipotezler” olarak belirlenmişti. Geleneksel olarak jüri adaydan ilk konuyu

anlatmasını isterdi. Ama bu jüride üniversitenin en seçkin üyesi olan Carl
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Friedrich Gauss ilk iki konuyu atlayarak adayın üçüncü konuyu anlatmasını

istedi. Gauss’un bunu yapmasının nedeni, üçüncü konunun kendisinin de

ilgilendiği ve yayınlamadığı Öklidyen dışı geometriler (paralellik aksiyomunu

sağlamayan yeni geometriler) konusu ile ilgili olmasından kaynaklanıyordu.

Fakat Riemann’ın üçüncü konusunda sunduğu araştırma özel geometrilerle

(Öklid, hiperbolik veya diğerleri) sınırlı kalmamakta, tanımladığı manifold

kavramı ile geometri için yeni bir bakış açısı sunmaktaydı. Riemann’ın bu çığır

açıcı yeni kavramı bugün de uzayı tanımlarken kullanılan standart kavramdır

ve bu kavram görelilik teorisi ve uzay-zamanın yapısının anlaşılmasına temel

oluşturmaktadır. Riemann’ın geometriye getirdiği bu yeni kavram, noktaların

veya uzayların bir kolleksiyonu şeklinde düşünülebilir. Bu kavrama bugün

Riemann manifold kavramı karşılık gelmektedir. Riemann’ın geliştirdiği bu yeni

bakış açısı, Einstein’ın geliştirdiği görelilik teorisinin uzay-zaman kavramına

temel oluşturdu. Gerçekten Einstein kütleçekimi tanımlamak için tensörel bir

ifade aradığında, sonunda Riemann’ın tanımladığı metrik bağıntı veya bugün

Riemann metriği adı verilen kavrama ulaştı, (Şahin, 2021).

Altın oran,
1 +
√
5

2
ifadesiyle tanımlanan irrasyonel bir sayıdır. Bu oran,

antik çağlardan günümüze kadar matematikçiler, fizikçiler, filozoflar, sanatçılar

ve müzisyenlerin ilgisini çekmiştir. Yunanca’da ’kesmek’ anlamına gelen bir

kelimenin ilk harfi olan ϕ ile sembolize edilir ve yaklaşık değeri 1,61803... olarak

bilinir. Bu oran, altın ortalama, altın bölüm, altın kesit, ilahi (kutsal) oran,

Fibonacci sayısı ve Phidias ortalaması gibi farklı isimlerle de anılır. Özelliklerini

inceleyen matematikçi Phidias’ın adının ilk harfi olan ϕ ile de temsil edilse

de, genellikle π sembolü kullanılır. Ancak tezde ϕ kullanılmıştır. Altın oran

hakkında bilinen ilk eser, Luca Pacioli (1445-1519) tarafından yazılan ”İlahi

Oran” adlı kitaptır. Bu eser, 1509 yılında Leonardo da Vinci tarafından

resimlendirilmiştir, (Dunlop, 2011). Türk mimarisi ve sanatında da altın oran

örneklerine rastlanır. Mimar Sinan’ın pek çok eserinde, özellikle Süleymaniye

ve Selimiye Camileri’nin minarelerinde, altın oran kullanılmaktadır, (Salan,

2010). Daha sonra, Crasmareanu ve Hretcanu (2008), diferensiyellenebilir bir

manifold üzerinde, yapı polinomu Q(x) = x2 − x− 1 olan ve altın yapı olarak
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adlandırılan yeni bir polinom yapı tanımlayarak altın manifoldlar teorisinin

temelini atmışlardır. Altın yapının daha genel bir formu, C.E. Hretcanu ve M.

Crasmareanu’nun 2013 yılında yayınladıkları ”Riemann Manifoldlarda Metalik

Yapılar” adlı çalışma ile ortaya konmuştur.

Bu tezde, ikinci bölümde Riemann manifoldlarını tanımlamak için

gereken temel bilgiler sunulmuştur. Riemann manifoldlarının genel özellikleri

hakkında bilgiler verilmiştir. Üçüncü bölümde, Riemann manifoldları üzerin-

deki altın yapıların genel özellikleri ele alınmıştır. Dördüncü bölümde metalik

yapılar ve metalik manifoldlar tanıtılmıştır. Beşinci bölüm tezin orjinal kısmı

olarak, semi-Riemann manifoldları ve altmanifoldlar üzerindeki hemen hemen

kompleks metalik yapıların özellikleri ve koşulları incelenerek ispatlanmıştır.
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”Bu tezde kısalığın hatrı için hemen hemen kompleks metalik semi-

Riemann yerine HHKMSR kullanılacaktır.”

2 TEMEL KAVRAMLAR VE TANIMLAR

Bu bölümde, tezin anlaşılabilirliğini arttırmak için gereken temel kav-

ramlar ile bazı tanım ve teoremler sunulmuştur.

2.1 Temel Kavramlar

Tanım 2.1. (Şahin, 2021): X bir küme ve τ , X kümesinin altkümelerinin

bir ailesi olsun. Eğer aşağıdaki şartlar sağlanıyorsa (X, τ) ikilisine bir topoloji

adı verilir.

1. ∅ ∈ τ ve X ∈ τ

2. τ ailesinin keyfi sayıda birleşimi τ kümesine aittir; Ai ∈ τ ise ∪iAi ∈ τ .

3. τ ailesinin sonlu sayıda kesişimi τ kümesine aittir; Ai , i ∈ J , J sonlu

indis kümesi için, Ai ∈ τ ise ∩iAi ∈ τ .

X kümesinin her bir elemanına topolojik uzayın bir noktası ve X

kümesinin τ ailesine ait olan altkümelerine topolojik uzayın açıkları adı verilir.

x ∈ X noktasını içeren bir U açık altkümesinin her N üst kümesine x

noktasının komşuluğu denir.

Örnek 2.1. (Şahin, 2021): X bir küme olsun. Bu durumda τ = (X,∅) kümesi

X üzerinde bir topolojidir. Bu topolojiye aşikar topoloji denir. Bu topolojide

X uzayının açıkları sadece X ve ∅ dir.

Örnek 2.2. (Şahin, 2021): X bir küme olsun. Bu durumda X kümesinin

kuvvet kümesi olan ρ(X), X üzerinde bir topolojidir. X kümesinin her bir

altkümesi bu topoloji için bir açıktır.

Tanım 2.2. (Şahin, 2021): (X, τ) bir topolojik uzay olsun. B ⊆ τ olmak üzere,

(X, τ) topolojik uzayın her bir elemanı B altkümesinin elemanlarının birleşimi

ise B kümesine topolojik uzayın bazı adı verilir.
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Örnek 2.3. (Şahin, 2021): a, b ∈ Q olmak üzere (a,b) açık aralıkların kümesi

R üzerindeki topolojinin bazıdır.

Tanım 2.3. (Şahin, 2021): (X, τ) bir topolojik uzay olsun. Eğer bu topolojik

uzay sayılabilir baza sahip ise (X, τ) topolojik uzayına ikinci sayılabilirdir

denir.

Örnek 2.4. (Şahin, 2021): Kanonik topoloji ile birlikte Rn uzayı ikinci

sayılabilirdir.

Tanım 2.4. (Şahin, 2021): X boştan farklı bir küme ve d : X × X ↣ R bir

fonksiyon olsun. Eğer her x, y, z ∈ X için

1. x ̸= y için d(x, y) > 0,

2. d(x, y) = 0 ⇐⇒ x = y,

3. d(x, y) = d(y, x),

4. d(x, y) ≤ d(x, z) + d(z, y)

şartları sağlanıyorsa d fonksiyonuna X üzerinde bir metriktir denir.

X bir küme ve d de bu küme üzerinde bir metrik ise d metriği bu küme

üzerinde bir tek topoloji üretir. Böylece bir metrik uzay üzerinde topoloji

tanımlamak her zaman mümkündür.

Örnek 2.5. (Şahin, 2021): Son örnekte verilen kümede x, y ∈ Rm için

d(x, y) =

√√√√ m∑
i=1

(xi − yi)2

fonksiyonunu tanımlayalım. Kolayca görüleceği üzere d, Rm üzerinde bir metrik

tanımlar. Böylece Rm bir metrik uzaydır. Bu metrik uzay

Bx,r = y ∈ Rm | d(x, y) < r

açık yuvarı ile üretilen topolojiye sahiptir.

Şimdi manifold tanımında geçen Hausdorff uzay kavramını hatırlatalım.
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Tanım 2.5. (Lee, 2000): X bir topolojik uzay olmak üzere, X uzayının her

farklı x, y elemanları için bu noktaların ayrık birer komşuluğu varsa, topolojik

uzaya Hausdorff uzay denir.

Örnek 2.6. (Şahin, 2021): Her metrik uzay Hausdorff uzaydır. Yani (Rm, d)

Hausdorff uzaya örnek olarak metrik uzaylar verilebilir.

Tanım 2.6. (Şahin, 2021): (X, τ) ve (X
′
, τ

′
) iki topolojik uzay, f : X → X

′

bir fonksiyon olsun. Eğer X
′
her açık kümenin ters görüntüsü X bir açık küme

ise f fonksiyonuna süreklidir denir.

Bu tanıma denk olan aşağıdaki tanım da verilebilir.

Tanım 2.7. (Şahin, 2021): (X, τ) ve (X
′
, τ

′
) iki topolojik uzay f : X → X

′

bir fonksiyon ve x0 ∈ X olsun. f(x0) ∈ X
′
noktasının her N

′
komşuluğu için

f(N) ⊂ N
′
olacak şekilde x0 ∈ X noktasının bir N komşuluğu mevcut ise f

fonksiyonuna x0 noktasında süreklidir denir. Eğer f : X → X
′
her x0 ∈ X

noktasında sürekli ise f fonksiyonuna süreklidir denir.

Tanım 2.8. (Lee, 2000): f : X → X
′
bir fonksiyon olsun. Eğer f fonksiyonu

birebir, örten, sürekli ve tersi de sürekli ise f fonksiyonuna homeomorfizma

denir. Bu durumda X topolojik uzayı X
′
uzayına homeomorfiktir denir.

Tanım 2.9. (Şahin, 2021): M ikinci sayılabilir Hausdorff bir uzay olsun.

Eğer her p ∈ M için; Rm deki bir açık kümeye homeomorfik olacak şekilde

p noktasının bir açık komşuluğu U , yani p noktasını içeren bir U ⊂ M açık

kümesi, W ⊂ Rm açık kümesi ve φ(U) : U → W homeomorfizması (birebir,

örten, sürekli ve tersi de sürekli) varsa M Hausdorff uzayına bir topolojik

manifold veya kısaca manifold denir. Bu durumda boy(Rm) = m olduğundan

manifoldun boyutu m olarak tanımlanır.

Yukarıdaki tanımda verilen homemorfizma φ : U → φ(U) ⊂ Rm ise

(U,φ) ikilisine bir harita denir. I bir indis kümesi olmak üzere (Ui, φi), i ∈ I

topluluğuna manifoldun atlası denir. M manifoldunun bütün noktalarının en

az bir haritada yer alması için bu açık kümelerin arakesitinin boştan farklı
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olması gerekir. φ bir homemorfizma olduğundan p ∈ U noktasının koordinatları

x = φ(p) ∈ Rm noktasının koordinatları olarak tanımlanabilir. Böylece φ

homeomorfizmasıM manifoldunun bir p noktasına (x1(p), ..., xm(p)) m− lisini

karşılık getirir. x1(p), ..., xm(p) sayılarına p noktasının komşuluğunda m− tane

bağımsız koordinatla verilen bir küme olarak da düşünülebilir.

Tanım 2.10. (Şahin, 2021):M , m− boyutlu manifold olsun. EğerM üzerinde

haritaların bir ailesi olan A = {(U,φ), (V, ψ), (W,ϕ), ...} kümesi aşağıdaki

şartları sağlıyorsa A koleksiyonuna M üzerinde r. mertebeden diferansiyelle-

nebilir yapı (veya atlas) adı verilir.

1. {U, V,W, ...} açık kümelerinin koleksiyonu M manifoldunun bir açık

örtüsüdür.

2. A daki herhangi iki harita r. mertebeden uyumludur.

3. A maksimaldir, yani eğer bir (φ̂, Û) haritası A daki bütün koordinat

atlasları ile uyumlu ise bu durumda (φ̂, Û) ∈ A dır.

Eğer bir M manifoldu üzerinde r. mertebeden diferansiyellenebilir bir

atlas varsa M manifolduna r. mertebeden diferansiyellenebilir manifold denir.

Diferansiyellenebilir yapının her bir haritasına M manifoldunun uyumlu

haritası adı verilir. Eğer atlas her mertebeden diferansiyellenbiliyorsa M

manifolduna C∞ manifold (veya kısaca diferansiyellenebilir manifold) adı

verilir. Burada belirtelim ki keyfi iki küme arasında diferansiyellenebilme

kavramı tanımlı değilken, manifold yapısı Rm uzayındaki diferansiyellenebilme

kavramı yardımı ile diferansiyellenebilmeye imkan vermektedir.

Tanım 2.11. (Şahin, 2021): M bir diferansiyellenebilir manifold ve f :

M → R bir fonksiyon olsun. Eğer her p ∈ M için f ◦ φ−1 : φ(U) → R

diferansiyellenebilir olacak şekilde bir (U,φ) haritası varsa f fonksiyonuna M

manifoldu üzerinde diferansiyellenebilirdir denir.

Yukarıdaki tanım, aşağıdaki tanım ele alınarak verilmiştir. Diferan-

siyellenebilir M manifoldu üzerinde bir (U,φ) haritası üzerinde f ◦ φ−1
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diferansiyellenebiliyorsa, bu durumda f , U ∩V ̸= 0 şartını sağlayan tüm (V, ψ)

haritaları üzerinde de diferansiyellenebilirdir.

Tanım 2.12. (Şahin, 2021): M bir diferansiyellenebilir manifold ve α :

(−ϵ, ϵ)→M diferansiyellenebilir eğri olsun. Kabul edelim ki α(0) = p ve D de

p noktasında diferansiyellenebilen fonksiyonların kümesi olsun. Bu durumda

D üzerinde

α
′
(0)f =

d(f ◦ α)
dt

|t=0, f ∈ D

ile tanımlı α
′
(0) fonksiyonuna t = 0 da α eğrisine teğet vektör adı verilir.

Manifoldun bir p noktasındaki tanjant vektör, α(0) = p olmak üzere t = 0

da α eğrisine teğet olan vektördür. Şimdi M manifoldu üzerinde bir (ϕ, U)

koordinat sistemi seçelim. Bu durumda f fonksiyonu ve α eğrisi bu koordinat

sisteminde

(ϕ ◦ α)(t) = (x1(t), ..., xn(t))

ve

(f ◦ ϕ−1)(q) = f(x1, ..., xn), q ∈ V = ϕ(u)

olarak ifade edilebilir. f fonksiyonunun α eğrisine kısıtlanması ile

α
′
(0)f =

d

dt
(f ◦ α) |t=0=

d

dt
f(x1(t), ..., xn(t)) |t=0=

n∑
i=1

x
′

i(0)(
∂f

∂xi
)

olur. Böylece

α
′
(0)f = (

n∑
i=1

x
′

i(0)(
∂

∂xi
) |0)f

elde edilir. Bu ifade her f için doğru olduğundan, α
′
(0) ifadesi (ϕ, U) koordinat

sisteminde

α
′
(0) =

n∑
i=1

x
′

i(0)(
∂

∂xi
) |0

olur. Bu ifade öncelikle gösterir ki α eğrisinin p noktasındaki tanjant vektörü yalnızca

eğrinin bu koordinat sistemindeki t türevine bağlıdır. M manifoldunun p

noktasındaki tanjant vektörlerinin kümesi TpM ile gösterilir. Fonksiyonlardaki

toplama ve skalerle çarpma işlemi ile birlikte bu küme bir vektör uzayı yapısına

sahip olur. Bu uzaya manifoldun p noktasındaki tanjant uzayı denir. Ayrıca bu
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ifade gösterir ki eğer bir koordinat sistemi seçilirse bu koordinat sistemi TpM

de (
(
∂

∂x1
)0, ..., (

∂

∂xn
)0

)
bazını belirler.

Tanım 2.13. (Şahin, 2021): M bir manifold ve manifold üzerindeki di-

feransiyellenebilir fonksiyonların kümesi C∞(M,R) olsun. Bu durumda her

f, g ∈ C∞(M,R) ve α, β ∈ R için,

1.Vp(αf + βg) = αVpf + βVpg

2.Vp(fg) = Vp(f)g + fVp(g)

şartlarını sağlayan Vp : C∞(M,R) → R dönüşümüne M manifoldunun p

noktasındaki tanjant vektörü denir.

Yukarıda tanımı verilen tanjant vektörlerin uzayı bir vektör uzayı

yapısına sahiptir. Tanjant uzayın boyutu manifoldun boyutuna eşittir. Bunun

nedeni esas olarak manifoldun bir p noktasındaki tanjant uzayı ile Öklidyen

uzayın izomorfik olmasıdır.

Tanım 2.14. (Lee, 2003): M bir manifold ve TpM , manifoldun p noktasındaki

tanjant uzayı olsun. Bu durumda her p ∈ M noktasına TpM uzayında bir

tanjant vektör karşılık getiren X diferansiyellenebilir dönüşümüne vektör alanı

denir. Böylece M manifoldu üzerinde bir vektör alanı

X :M → Up∈MTpM

diferansiyellenebilir dönüşümüdür. Burada vektör alanının diferansiyellenebilir

olması, her f ∈ C∞(M,R) için

Xf :M → R,

Xf(p) = Xp(f)

ile tanımlı fonksiyonun her mertebeden diferansiyellenebilir olmasıdır. Bir

vektör alanı tanjant vektörlerin topluluğudur. Başka bir ifade ile bir vektör
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alanı manifoldun bir p noktasında bir tanjant vektör verir. Vektör alanlarının

kümesi χ(M) ile gösterilir. Bir yerel koordinat sisteminde bir X vektör alanı

X =
∑

X i ∂

∂xi

şeklinde ifade edilebilir. Eğer g, h ∈ C∞(M,R) ve X, Y , M üzerindeki vektör

alanları ise keyfi p ∈M ve f ∈ C∞(M,R) için

(gX + hY )pf = g(p)Xpf + h(p)Ypf

tanımlanırsa X+Y ,M üzerinde yeni bir vektör alanıdır. Bu şekilde tanımlanan

toplama ve çarpma işlemleri ile birlikte χ(M), C∞(M,R) halkası üzerinde bir

modüldür.

Vektör alanlarına benzer olarak dual vektör alanları da tanımlanabilir.

M bir diferansiyellenebilir manifold ve p ∈M olsun. TpM vektör uzayına dual

olan uzayı T ∗
p (M) ile gösterelim. Böylece ωp ∈ T ∗

p (M) elemanı ωp : TpM → R

lineer dönüşümüdür. TpM vektör uzayının bir E1p, ..., Enp bazı verilmişse, bu

durumda T ∗
p (M) uzayının ωip(Ejp) = δji şartını sağlayan bir tek ω1p, ..., ωnp

bazı vardır. Böylece

ωp =
n∑

i=1

ωp(Eipωpi)

dir. T ∗
p (M) uzayının elemanlarına dual vektör denir. Dual vektörlerin uzayı

olan T ∗
p (M), fonksiyonlardaki toplama ve skalerle çarpma işlemine göre bir

vektör uzayı yapısına sahip olur. Bu uzaya kotanjant uzay veya dual uzay adı

verilir.

Manifold üzerinde vektör uzayı tanımladıktan sonraki adım iç çarpım uzayını

inşa etmektir. Bu durum uzunluk, açı ve benzeri kavramları tanımlamaya

olanak sağlar.

Tanım 2.15. (Yano & Kon, 1984): M bir diferansiyellenebilir manifold ve

keyfi p noktasındaki tanjant uzay TpM olsun. Eğer M manifoldunun her

tanjant uzayında bir iç çarpım var ve diferansiyellenebiliyorsa o zaman iç

çarpım fonksiyonuna Riemann metrik ve üzerinde Riemann metrik bulunan

manifolda da Riemann manifoldu adı verilir. Böylece Riemann metrik g,

g |p: TpM × TpM → R
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ile verilen bir bilineer fonksiyondur.

Örnek 2.7. (Şahin, 2021): E3 manifoldu üzerindeki iç çarpım ile birlikte bir

Riemann manifoldudur.

Örnek 2.8. (Şahin, 2021): M bir regüler yüzey olsun. Bu durumda E3

uzayındaki iç çarpımdan indirgenen yüzeyin birinci temel formu bir Riemann

metriğidir. Dolayısıyla her regüler yüzey ve onun birinci temel formunun

oluşturduğu ikili bir Riemann manifoldudur.
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3 ALTIN MANİFOLDLAR

Bu bölümde altın manifoldlar tanıtılıp temel özellikleri verilecektir.

3.1 Manifoldlar Üzerindeki Altın Yapılar

Tanım 3.1. (Crasmareanu & Hretcanu, 2008): M bir manifold ve Φ, M

manifoldunun p noktasında TpM tanjant uzayı üzerinde lineer endomorfizma

olsun. Eğer

Φ2 = Φ+ I (3.1)

ise Φ ye altın yapı ve (M,Φ) ikilisine altın manifold denir.

Önerme 3.1. (Crasmareanu & Hretcanu, 2008):M manifoldu üzerindeki altın

yapı, (Fn)n nin Fibonacci dizisi olduğu herhangi bir n tamsayısı için

Φn = FnΦ + Fn−1I (3.2)

ile ifade edilir. Bu durumda, (ϕ =
1 +
√
5

2
için)

Fn =
ϕ− (1− ϕ)n√

5
(3.3)

ve Binet formülü Fibonacci dizisinin açık ifadesini kullanarak (3.2) eşitliği

Φn =
ϕn − (1− ϕ)n√

5
Φ +

ϕn−1 − (1− ϕ)n−1

√
5

I (3.4)

olarak yazılır.

İspat. (3.2) ve (3.3) kullanılarak,

Φn =
ϕn − (1− ϕ)n√

5
Φ +

ϕn−1 − (1− ϕ)n−1

√
5

I

elde edilir.

Önerme 3.2. (Crasmareanu & Hretcanu, 2008): M bir manifold ve Φ, M

üzerinde altın yapı olsun.

1. Φ altın yapısının öz değerleri ϕ ve 1− ϕ altın oranıdır.
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2. Φ altın yapısı, ∀x ∈ M için TxM manifoldun tanjant uzayında bir

izomorfizmadır.

3. Φ tersinirdir ve tersi Φ
′
= Φ−1,

Φ
′2 = −Φ′

+ I (3.5)

eşitliğini sağlar.

İspat. (i) λ̃, X öz vektörüne uygun Φ altın yapısının özdeğeri olsun.

ϕX = λ̃X =⇒ ϕ2X = λ̃ϕX

olur.

ϕ2 = ϕ+ I

olduğundan

ϕX +X = λ̃ϕX =⇒ X = λ̃ϕX − ϕX,

elde edilir. Son eşitliğin her iki tarafına λ̃ uygularsak,

λ̃2ϕX − λ̃ϕX − ϕX = 0,

(λ̃2 − λ̃− 1)ϕX = 0

bulunur. X öz vektör olduğundan X ̸= 0 dır. Dolayısıyla,

λ̃2 − λ̃− 1 = 0

olur. Buradaki ikinci dereceden bir bilinmeyenli denklemin kökleri bulunduğunda

1±
√
5

2
= ϕ, 1− ϕ

elde edilir.

(ii) Φ altın yapı, ∀x ∈M olmak üzere,

Φ(x1) = Φ(x2) =⇒ x1 = x2

olduğunu gösterdiğimizde Φ altın yapısı, ∀x ∈M için TxM manifoldun tanjant

uzayında bir izomorfizma olduğu görülür. Gerçekten de

Φ(x1) = Φ(x2),
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(Φ(x1))
2 = (Φ(x2))

2,

Φ(x1) + x1 = Φ(x2) + x2,

Φ(x1) = Φ(x2),

x1 = x2

elde edilir.

(iii) Φ altın yapısı için Φ
′2Φ2 = (−Φ′

+ I)(Φ + I) ve Φ altın yapı olma şartı

göz önüne alınarak,

Φ
′2Φ2 = −Φ′

Φ + (−Φ′
I) + IΦ + I2,

= −Φ−1Φ + (−Φ−1I) + IΦ + I,

= −Φ

Φ
− I

Φ
+ Φ+ I,

=
−Φ− I + Φ2 + Φ

Φ
,

=
−Φ− I + Φ+ I + Φ

Φ

elde edilir. Buradan da,

Φ
′2Φ2 =

Φ

Φ
= I bulunarak Φ nin tersinin Φ

′
olduğu görülür.

Uyarı 3.1. (Crasmareanu & Hretcanu, 2008): Altın yapıların çift olarak

belirlenmesi önemli bir uyarıdır, yani Φ altın yapıysa Φ̃ = I − Φ de altın

yapıdır. Hemen hemen tanjant yapılar (T ve -T), hemen hemen kompleks

yapılar (F ve −F ), hemen hemen çarpım yapıları (P ve −P ) için bu durum

geçerlidir.

Aşağıdaki teorem altın yapı ile çarpım yapı arasındaki ilişkiyi verir:

Teorem 3.1. (Crasmareanu & Hretcanu, 2008): P hemen hemen çarpım

yapısı olmak üzere,

Φ =
1

2
(I +

√
5P ) (3.6)

bir altın yapıdır. Tersine, herhangi bir Φ altın yapı olmak üzere,

P =
1√
5
(2Φ− I) (3.7)

bir çarpım yapısı tanımlar.
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İspat. P hemen hemen çarpım yapısı olmak üzere,

Φ2 = (
1

2
(I +

√
5P ))2,

=
1

4
(I2 + 2

√
5IP + 5P 2),

=
1

4
(I + 2

√
5P + 5I),

=
1

4
(6I + 2

√
5P )

bulunur. Buradan,

Φ2 =
3

2
I +

√
5

2
P,

=
1

2
(I +

√
5P ) + I

= Φ+ I

elde edilir. Böylece Φ altın yapı olur. Tersine,

P =
1√
5
(2Φ− I)

olsun. Bu ifadeye P uygulanırsa,

(P )2 = (
1√
5
(2Φ− I))2,

=
1

5
(4Φ2 − 4Φ + I2)

elde edilir. Φ altın yapı olduğundan,

(P )2 =
1

5
(4(Φ + I)− 4Φ + I),

=
1

5
(4Φ + 4I − 4Φ + I),

=
1

5
(5I),

= I
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bulunur. Öyleyse, P hemen hemen çarpım yapısını sağlar.

Uyarı 3.2. (Crasmareanu & Hretcanu, 2008): Yukarıdaki Φ←→ P yazışmasında

Φ̃ = I − Φ←→ P̃ = −P

olur. Önceki yapı (3.6) dekine benzer olarak,

(I) M , T hemen hemen tanjant yapı ile verilsin.

Φt =
1

2
(I +

√
5T )

ifadesine (M,T ) üzerinde tanjant altın yapı adı verilir.

Φ2
t − Φt +

1

4
I = 0

eşitliği tanjant altın yapısıyla sağlanan denklemi vermektedir.

(II) (M,F ) hemen hemen kompleks bir manifold olsun.

Φc =
1

2
(I +

√
5F )

şeklinde tanımlanan Φc tensör alanı (M,F ) üzerinde kompleks altın yapı

olarak adlandırlır. Φc ile sağlanan polinom denklem

Φ2
c − Φc +

3

2
I = 0.

M = R2 alınırsa x1 =
1
2
+ 1

2
i
√
5, x2 = x̄1 =

1
2
− 1

2
i
√
5 çözümleriyle

x2 − x+ 3

2
= 0

denklemi elde edilir.

Tanım 3.2. (Crasmareanu & Hretcanu, 2008): M bir manifold olsun.

ϕc =
1

2
+

√
5

2
i

kompleks sayısına kompleks altın oran adı verilir.
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Tanım 3.3. (Crasmareanu & Hretcanu, 2008): M bir manifold olmak üzere,

ϕu
c =

1√
6
+ i

√
5

6

kompleks sayısına birim kompleks altın oran adı verilir.

y2 −
√
6

3
y + 1 = 0

ise ϕu
c ile sağlanan denklemdir.

Tanım 3.4. (Çetinkaya, 2010): (M,F, g) bir hemen hemen Hermityen ma-

nifold olsun. M üzerinde Φ2
c = Φc − 3

2
I şartını sağlayan (1, 1) tipli Φc

tensör alanına M hemen hemen Hermityen manifoldu üzerinde bir altın yapı

denir. Burada χ(M), M üzerinde vektör alanlarının Lie cebiri olmak üzere

I : χ(M)→ χ(M) özdeşlik dönüşümüdür.

Tanım 3.5. (Çetinkaya, 2010): (M,F, g) bir hemen hemen Hermityen ma-

nifold ve Φc de M üzerinde bir kompleks altın yapı olsun. (g,Φc) ikilisine M

üzerinde bir altın Hermityen yapı denir. Üzerinde bir altın Hermityen yapı

bulunduran (M,F, g) hemen hemen Hermityen manifolduna bir hemen hemen

altın Hermityen manifold denir ve (M,F, g,Φc) ile gösterilir.

∀X, Y ∈ χ(M) için

g(ΦcX,ΦcY ) = g(
1

2
(I +

√
5F )X,

1

2
(I +

√
5F )Y ),

=
1

4
g(X +

√
5FX, Y +

√
5FY ),

=
1

4
(g(X, Y ) + g(X,

√
5FY ) + g(

√
5FX, Y ) + g(

√
5FX,

√
5FY )),

=
1

4
(g(X, Y ) +

√
5(g(X,FY ) + g(FX, Y )) + 5g(FX,FY ))

olur. Buradan

g(X,FY ) = g(FX,F 2Y ) = −g(FX, Y ) olduğu göz önüne alınırsa,

g(ΦcX,ΦcY ) = 3
2
g(X, Y ) bulunur. Ayrıca,

g(ΦcX,ΦcY ) =
3

2
g(X, Y ) =

3

2
g(FX,FY )

elde edilir.
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3.2 Altın Yapılar İle Üretilen Yeni Yapılar

Bu altbölümde altın yapı ile üretilen yeni yapılar tanımlanacaktır.

Tanım 3.6. (Crasmareanu & Hretcanu, 2008): F ve P , M manifoldunda iki

(1,1) tensör alanları olsun. (F, P, P ◦F ) üçlüsü sıradaki dört yapıyı oluşturur:

1. F 2 = P 2 = I ve P ◦ F − F ◦ P = 0; bu durumda J2 = I,

2. F 2 = P 2 = I ve P ◦ F + F ◦ P = 0; bu durumda J2 = −I,

3. F 2 = P 2 = −I ve P ◦ F − F ◦ P = 0; bu durumda J2 = I,

4. F 2 = P 2 = −I ve P ◦ F + F ◦ P = 0; bu durumda J2 = −I

sırasıyla, hemen hemen hiperçarpım (hhhç), hemen hemen kompleks biçarpım

(hhkbç), hemen hemen bikompleks çarpım (hhbkç) ve hemen hemen hiper-

kompleks (hhhk) olarak adlandırılır. (3.6) denkleminden sonra ΦF ,ΦP ,ΦJ yi

ilişkilendirebiliriz ve dolayısıyla,

√
5ΦJ = 2ΦPΦF − ΦP − ΦF − ϕI

ve (ΦF ,ΦP ,ΦJ) üçlüsünün,

1’) (hhhç) yapısı olması için gerek ve yeter şart ΦF ,ΦP altın yapı ve

ΦPΦF = ΦFΦP olmasıdır; bu durumda ΦJ altın yapıdır.

2’) (hhkbç) yapısı olması için gerek ve yeter şart ΦFΦP altın yapı ve

4(ΦPΦF +ΦFΦP ) = 2(ΦP +ΦF )− I olmasıdır; bu durumda ΦJ kompleks altın

yapıdır.

3’) (hhbkç) yapısı olması için gerek ve yeter şart ΦF ,ΦP kompleks altın

yapı ve ΦPΦF = ΦFΦP olmasıdır; bu durumda ΦJ altın yapıdır.

4’) (hhhk) yapısı olması için gerek ve yeter şart ΦF ,ΦP kompleks altın

yapı ve 4(ΦPΦF+ΦFΦP ) = 2(ΦP+ΦF )−I olmasıdır; bu durumda ΦJ kompleks

altın yapıdır.
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3.3 Altın Yapıların İntegrallenebilirliği ve Paralelliği

Bu alt bölümde hemen hemen kompleks manifoldların integrallenebi-

lirliğine benzer olarak altın yapıların integrallenebilirliği incelenecektir.

Hatırlatma 3.1. (Crasmareanu & Hretcanu, 2008): Φ altın yapının Nijenhius

tensörü

NΦ(X, Y ) = Φ2[X, Y ] + [ΦX,ΦY ]− Φ[ΦX, Y ]− Φ[X,ΦY ]

dir. ϕ ve 1−ϕ ye karşılık gelen tümleyen distribüsyonlar sırası ile R ve S olsun.

Karşılık gelen projeksiyonları r,s ile gösterilir. Bu durumda

r2 = r, s2 = s,

rs = sr = 0,

r + s = I

dır.

(3.6) ile hemen hemen çarpım yapısı kullanılırsa,

r =
1√
5
Φ− 1− ϕ√

5
I,

s = − 1√
5
Φ +

ϕ√
5
I

olur.

(i) NΦ = 0 ise Φ integrallenebilirdir; Φ yapısının integrallenebilir olması için

gerek ve yeter şart ilişkili (3.6) hemen hemen çarpım yapısı integrallenebilir

olmasıdır.

(ii) ∀X, Y ∈ M için s[rX, rY ] = 0 ise R distribüsyonu integrallenebilirdir ve

r[sX, sY ] = 0 ise S integrallenebilirdir.

Φr = rΦ = ϕr =
ϕ√
5
Φ +

1√
5
I,

Φs = sΦ = (1− ϕ)s = ϕ− 1√
5

Φ− 1√
5
I

buradan,

s[rX, rY ] =
1

5
sNΦ(rX, rY ),
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r[sX, sY ] =
1

5
rNΦ(sX, sY )

ifadesine ulaşılır.

Önerme 3.3. (Crasmareanu & Hretcanu, 2008): M bir manifold ve Φ, M

üzerinde altın yapı olsun. R distribüsyonunun integrallenebilir olması için gerek

ve yeter şart sNΦ(rX, rY ) = 0 dır ve S distribüsyonu integrallenebilir ise

rNΦ(sX, sY ) = 0 dır. Φ integrallenebilir ise R ve S distribüsyonlarının her

ikisi integrallenebilirdir.

Tanım 3.7. (Crasmareanu & Hretcanu, 2008): ∇, M üzerinde sabit lineer bir

konneksiyon olsun. (Φ,∇) çifti için

(i) Schouten konneksiyonu,

∇Sc
X Y = r(∇XrY ) + s(∇XsY ).

(ii) Vranceanu konneksiyonu,

∇V
XY = r(∇rXrY ) + s(∇sXsY ) + r[sX, rY ] + s[rX, sY ]

ile tanımlanır.

Önerme 3.4. (Crasmareanu & Hretcanu, 2008): M manifoldu üzerinde

r,s projektörleri ile birlikte Φ Schouten ve Vranceanu konneksiyonuna göre

paraleldir.

İspat. ∀X, Y ∈ χ(M),

(∇Sc
X r)Y = ∇Sc

X rY − r(∇Sc
X Y )

= r(∇XrY )− r(∇XrY ) = 0,

(∇V
Xr)Y = ∇V

XrY − r(∇V
XY )

= r(∇rXrY ) + r[sX, rY ]− r(∇rXrY )− r[sX, rY ]

= 0.

Benzer bağıntılar s için de geçerlidir. Diğer iddia ise benzer şekilde

ispatlanır.
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X ∈ χ(M) ve Y ∈ D, ∇XY ∈ D ise M üzerindeki D distribüsyonu ∇

lineer konneksiyonuna göre paralel olarak adlandırılır.

Önerme 3.5. (Crasmareanu & Hretcanu, 2008): M üzerinde R, S dist-

ribüsyonları her ∇ lineer konneksiyonu için Schouten ve Vranceanu konneksi-

yonuna göre paraleldir.

İspat. X ∈ χ(M) ve Y ∈ R olsun.

sY = 0 ve rY = Y olduğundan

∇Sc
X Y = r(∇XY ) ∈ R,

∇V
XY = r(∇rXY ) + r[sX, Y ] ∈ R

olur. Benzer bağıntılar s için de geçerlidir.

3.4 Altın Riemann Metrikleri

Tanım 3.8. (Yano & Kon, 1984): M bir Riemann manifoldu ve P çarpım

yapısı olsun. Eğer,

g(PX,PY ) = g(X, Y ) (3.8)

ise g ile P uyumludur denir ve denk olarak

g(PX, Y ) = g(X,PY ) (3.9)

yazılır.

Tanım 3.9. (Crasmareanu & Hretcanu, 2008): M bir manifold ve Φ, M

üzerinde altın yapısı olsun. Eğer,

g(ΦX, Y ) = g(X,ΦY ) (3.10)

ise (g,Φ) ye altın Riemann yapısı ve (M, g,Φ) üçlüsü altın Riemann manifoldu

denir.

Sonuç 3.1. (Crasmareanu & Hretcanu, 2008): M bir altın Riemann manifold

olsun. Bu durumda,

(i) r,s projektörleri g-simetriktir.

g(rX, Y ) = g(X, rY ), (3.11)
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g(sX, Y ) = g(X, sY )

(ii) R, S distribüsyonları g-ortogonaldir.

g(rX, sY ) = 0. (3.12)

(iii) Altın yapısı NΦ−simetriktir.

İspat. � (i)

r =
1√
5
Φ− 1− ϕ√

5
,

Φ =
√
5r + (1− ϕ)I ve g(Φ(X), Y ) = g(X,Φ(Y )) eşitliklerinden,

g((
√
5r + (1− ϕ)I)(X), Y ) = g(X(

√
5r + (1− ϕ)I(Y )),

g(
√
5r(X), Y )+ g((1−ϕ)I(X), Y ) = g(X,

√
5r(Y ))+ g(X, (1−ϕ)I(Y )),

√
5g(r(X), Y ) + (1− ϕ)g(X, Y ) =

√
5g(X, r(Y )) + (1− ϕ)g(X, Y ),

g(rX, Y ) = g(X, rY ),

olur. Ayrıca s =
1√
5
Φ +

ϕ√
5
I için g(sX, Y ) = g(X, sY ) eşitliği benzer

şekilde gösterilir.

� (ii) R ve S distribüsyonları tümleyen distribüsyon olduğundan,

TxM = Rx ⊕ Sx

dir.M manifoldu üzerinde g metriği için (Rx)
⊥ = Sx ve (Sx)

⊥ = Rx olur.

Dolayısıyla,

g(r(X), s(X)) = 0

elde edilir.

� (iii) Φ altın yapısının Nijenhius tensörü,

NΦ(X, Y ) = Φ2([X, Y ]) + [Φ(X),Φ(Y )]− Φ([Φ(X), Y ])− Φ([X,Φ(Y )])

dir. O halde,

NΦ(Φ(X), Y ) = Φ2([Φ(X), Y ]) + [Φ2(X),Φ(Y )]− Φ([Φ2(X), Y ])− Φ([Φ(X),Φ(Y )]),

= Φ([Φ(X), Y ]) + [Φ(X), Y ] + [Φ(X),Φ(Y )] + [X,Φ(Y )]− Φ([Φ(X), Y ])

−Φ([X, Y ])− Φ([Φ(X),Φ(Y )]),
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NΦ(X,Φ(Y )) = Φ2([X,Φ(Y )]) + [Φ(X),Φ2(Y )]− Φ([Φ(X),Φ(Y )])

−Φ([(X),Φ2(Y )]),

= Φ([X,Φ(Y )]) + [X,Φ(Y )] + [Φ(X),Φ(Y )] + [Φ(X), Y ]

−Φ([Φ(X),Φ(Y )])− Φ([X,Φ(Y )])− Φ([X, Y ])

elde edilir. Dolayısıyla NΦ(ΦX, Y ) = NΦ(X,ΦY ) dir.

Önerme 3.6. (Crasmareanu & Hretcanu, 2008): Yerel çarpım altın Riemann

manifoldu üzerindeki Φ altın yapısı integrallenebilirdir.
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4 METALİK MANİFOLDLAR

Bu bölümde metalik yapı ve metalik manifoldlar tanıtılacaktır.

Tanım 4.1. p ve q iki pozitif tamsayı olsun.

x2 − px− q = 0

denkleminin pozitif çözümüne metalik oranlar ailesinin üyesi denilmektedir.

Çözüm kümesi ise

σp,q =
p+

√
p2 + 4q

2

ile gösterilir. Bu üyelere ayrıca (p, q)−metalik sayılar adı verilir.

Tanım 4.2. (Hretcanu & Crasmareanu, 2013): Bir M manifoldunda vektör

alanlarının Lie cebiri χ(M) üzerinde lineer endomorfizması J , p, q pozitif

tamsayılar ve I birim operatör olmak üzere

J2 = pJ + qI

olsun. Bu durumda (1, 1) mertebeli J tensör alanına metalik yapı adı verilir.

Eğer X, Y ∈ χ(M) için

g(JX, Y ) = g(X, JY )

ise Riemann metrik g ile J−uyumludur denir. Kolayca görülebilir ki

g(JX, JY ) = pg(X, JY ) + qg(X, Y )

dir.

Tanım 4.3. (Hretcanu & Crasmareanu, 2013): J metalik yapısıyla verilen

(M, g) Riemann manifoldu olsun. Eğer g ile J uyumlu ise (M,J, g) üçlüsüne

metalik Riemann manifoldu ve J dönüşümüne de metalik Riemann yapı denir.



25

Önerme 4.1. (Hretcanu & Crasmareanu, 2013): M bir manifold ve P , M

üzerinde hemen hemen çarpım yapı olsun. Bu durumda P , M üzerinde

J1 =
p

2
I + (

2σp,q − p
2

)P,

J2 =
p

2
I − (

2σp,q − p
2

)P

şeklinde verilen iki metalik yapı üretir. Tersine, M deki her metalik yapı J , M

manifoldu üzerinde

P = ±( 2

2σp,q − p
J − p

2σp,q − p
I)

şeklinde iki çarpım yapı üretir. Özellikle, P hemen hemen çarpım yapısı

Riemann yapısıysa, bu durumda J1 ve J2 metalik Riemann yapılardır.

Tanım 4.4. (Hretcanu & Crasmareanu, 2013): J metalik yapısı tensör alanıyla

verilen M̂ manifoldundaki bir M altmanifoldunda, her x ∈M için J(TxM) ⊂

TxM ise bu durumda J ye göre invaryanttır denir.
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5 HEMEN HEMEN KOMPLEKS METALİK

SEMİ-RİEMANN MANİFOLDLAR

Bu bölümde hemen hemen kompleks metalik semi-Riemann manifoldlar

tanıtılacaktır.

Tanım 5.1. (Etayo & Araceli & Santamaria, 2020): (M̂, ĝ) bir semi-Riemann

manifold olsun. M̂ üzerinde aşağıdaki koşulu sağlayan (1,1) tipinde Ĵ tensör

alanı varsa M̂ ye hemen hemen kompleks metalik semi-Riemann manifold

denir. Bu yapı denklemi

Ĵ2 = pĴ − 3

2
qI (5.1)

ile tanımlanır. Burada I, M̂ üzerinde birim dönüşümdür.

Tanım 5.2. (Crasmareanu & Hretcanu, 2008): ∀X, Y ∈ Γ(TM̂) için (M̂, ĝ)

semi-Riemann manifold ile verilen hemen hemen kompleks metalik yapı

üzerinde, aşağıdaki eşitlik sağlanıyor ise ĝ metriği Ĵ ile uyumludur denir.

ĝ(ĴX, Y ) = ĝ(X, ĴY ). (5.2)

Denklemde Y yerine ĴY yazarsak

ĝ(ĴX, ĴY ) = ĝ(X, Ĵ2Y ),

= ĝ

(
X, (pĴ − 3

2
q)Y

)
,

= ĝ(X, pĴY − 3

2
qY ),

= ĝ(X, pĴY )− ĝ(X, 3
2
qY ).

Buradan da,

ĝ(ĴX, ĴY ) = pĝ(X, ĴY )− 3

2
qĝ(X, Y ) (5.3)

eşitliğini elde ederiz.

Önerme 5.1. Ĵ , M̂ üzerinde hemen hemen kompleks metalik yapı ise,

J = ∓( 2

2Ca,b − a
Ĵ − 2a

2Ca,b − a
I)
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ifadesi M̂ üzerinde hemen hemen kompleks metalik yapıdır. Tersine J , M̂de

hemen hemen kompleks yapı ise

Ĵ =
a

2
∓ (

2Ca,b − a
2

J)

ifadesi M̂de hemen hemen kompleks metalik yapıdır, burada

Ca,b =
a+
√
a2 − 6b

2
dir.

Eğer aşağıda verilen NĴ Nijenhius tensörü sıfıra eşit ise hemen hemen

kompleks metalik yapı Ĵ integrallenebilirdir.

NĴ(X, Y ) = [ĴX, ĴY ]− Ĵ [ĴX, Y ]− Ĵ [X, ĴY ] + Ĵ2[X, Y ].

Tanım 5.3. M , (n+s) boyutlu HHKMSR manifoldu (M̂, Ĵ , ĝ) nin n-boyutlu

altmanifoldu olsun. Herhangi X ∈ Γ(TM̂) ve N ∈ Γ(TM⊥) için,

ĴX = SX + LX (5.4)

ĴN = BN+ CN (5.5)

ile ifade edelim. Burada S, L,B ve C projeksiyonlardır.

∇ ve ∇̂, M ve M̂ nin sırasıyla Levi-Civita konneksiyonları olsun. Herhangi

X, Y ∈ Γ(TN̂) için Gauss ve Weingarten formülleri aşağıdaki gibidir:

∇̂XY = ∇XY + h(X, Y ), (5.6)

∇̂XNi = −ANi
X +∇⊥

XN. (5.7)

Burada ANi
, ĝ(ANi

X, Y ) = h(X, Y ) ile verilen Ni yönündeki şekil operatörü ve

h ise ikinci temel formdur.

Lemma 5.1. (M̂, Ĵ , ĝ) HHKMSR manifold olsun. Herhangi X, Y, Z ∈ Γ(TM̂)

için,

ĝ((∇̂X Ĵ)Y, Z) = ĝ(Y, (∇̂X Ĵ)Z) (5.8)

dir.
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Önerme 5.2. M , (M̂, Ĵ , ĝ) nin (n+s) boyutlu HHKMSR manifoldunun n-

boyutlu altmanifoldu olsun. Herhangi X, Y, Z ∈ Γ(TM̂) için,

ĝ((∇Xh)Y, Z) = ĝ(Y, (∇Xh)Z) (5.9)

dir.

Tanım 5.4. (M̂, Ĵ , ĝ) HHKMSR manifoldu veM , M̂ de reel altmanifold olsun.

M , aşağıdaki koşulları sağlayan ortogonal distribüsyon (D,D⊥) içeriyorsa, M̂

nin semi-invaryant altmanifoldu olarak adlandırılır.

(i) TM = D ⊕D⊥ (5.10)

(ii) ĴDx = Dx (5.11)

∀x ∈M için D distribüsyonu invaryant,

(iii) ĴD⊥ ⊂ TxM
⊥ (5.12)

∀x ∈M için D⊥ distribüsyonu anti-invaryanttır.

Altmanifoldun tanjant demetini, ana manifoldun tanjant demetine tamamla-

yan bir distribüsyon vardır. Bu distribüsyonu µ ile gösterelim.

Önerme 5.3. M , (M̂, Ĵ , ĝ) HHKMSR manifoldunun semi-invaryant altmani-

foldu olsun. µ distribüsyonu Ĵ ye göre invaryant değildir.

İspat. V ∈ Γ(M), W ∈ Γ(ĴD⊥) ve X ∈ Γ(D) için,

ĝ(ĴV,W ) = ĝ(V, ĴW ) = 0,

ĝ(ĴV,X) = ĝ(V, ĴX) = 0

sonuçlarından,

Ĵ(µ) ∩ ĴD⊥ = 0

ve

Ĵ(µ) ∪D = 0

olursa ispat tamamlanır.

(5.1), (5.4) ve (5.5) kullanılarak,

ĴX = SX + LX,
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Ĵ2X = ĴSX + ĴLX,

(pĴ − 3

2
qI)X = ĴSX + ĴLX,

pĴX − 3

2
qIX = S(SX + LX) +B(LX) + C(LX),

p(SX + LX)− 3

2
qX = S2X + SLX +B(LX) + C(LX),

pSX + pLX − 3

2
qX = S2X + SLX +B(LX) + C(LX).

Teğet ve normal bileşenler ayrıştırılırsa;

S2X = pSX − 3

2
qX −B(LX)

ve

pLX = SLX + C(LX)

elde edilir. O halde S, D distribüsyonunda ve L de D⊥ distribüsyonunda

kompleks metalik yapı değildir.

Sonuç 5.1. M , HHKMSR manifold (M̂, Ĵ , ĝ) nin semi-invaryant altmanifoldu

olsun. O halde Tanım (5.3) de verilen S ve L projeksiyonları M üzerinde

hemen hemen kompleks metalik yapı değildir.

Teorem 5.1. M , HHKMSR manifold (M̂, Ĵ , ĝ) nin semi-invaryant altmani-

foldu olsun. D distribüsyonu integrallenebilir olması için gerek ve yeter şart

∀X, Y ∈ Γ(D), ∀Z ∈ Γ(D⊥),

h(X, ĴY ) = h(Y, ĴX) (5.13)

olmasıdır.

İspat. D distribüsyonu integrallenebilirdir ancak ve ancak [X, Y ] ∈ Γ(D)

olmasıdır.

X, Y ∈ Γ(D), Z ∈ Γ(D⊥) için Gauss denkleminde Y yerine ĴY alırsak,

∇̂X ĴY = ∇X ĴY + h(X, ĴY )

elde edilir. Distribüsyonun integrallenebilir olması için endomorfizmanın kon-

neksiyon altında sıfıra eşit olması gerekir. O halde

∇̂Ĵ = 0,
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(∇̂X Ĵ)Y = 0,

∇̂X ĴY − Ĵ∇̂XY = 0,

∇̂X ĴY = Ĵ∇̂XY

(5.4), (5.5), (5.6) denklemleri kullanılarak

∇X ĴY + h(X, ĴY ) = Ĵ∇XY + Ĵh(X, Y ),

= B∇XY + C∇XY + Sh(X, Y ) + Lh(X, Y )

elde edilir. Teğet ve normal bileşenleri eşitlersek;

h(X, ĴY ) = C∇XY + Lh(X, Y ),

C∇XY = h(X, ĴY )− Lh(X, Y )

elde edilir.

Benzer şekilde,

C∇YX = h(Y, ĴX)− Lh(Y,X)

olup eşitlikleri taraf tarafa çıkarırsak,

C∇XY − C∇YX = h(X, ĴY )− Lh(X, Y )− h(Y, ĴX) + Lh(Y,X),

C[X, Y ] = h(X, ĴY )− h(Y, ĴX),

ĝ(C[X, Y ], Z) = ĝ(h(X, ĴY )− h(Y, ĴX), Z),

h(X, ĴY )− h(Y, ĴX) = 0,

h(X, ĴY ) = h(Y, ĴX)

elde edilir ve ispat tamamlanır.

Lemma 5.2. M , HHKMSR manifold (M̂, Ĵ , ĝ) nin semi-invaryant altmani-

foldu olsun. O halde ∀X, Y ∈ Γ(D⊥), ∀Z ∈ Γ(TM) için aşağıdaki eşitlik

sağlanır

AĴXY = −AĴYX. (5.14)
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İspat. (5.6) ve (5.7) kullanılarak,

ĝ(AĴXY, Z) = ĝ(ĴX, h(Y, Z)),

= ĝ(ĴX, ∇̂ZY −∇ZY ),

= ĝ(ĴX, ∇̂ZY ),

= ĝ(X, Ĵ∇̂ZY ),

= ĝ(X, ∇̂Z ĴY ),

= ĝ(X,−AĴYZ +∇⊥
Z ĴY ),

= ĝ(X,−AĴYZ),

= ĝ(−AĴYX,Z)

olduğundan −AĴYX = AĴXY elde edilir.

Teorem 5.2. M , HHKMSR manifoldu (M̂, Ĵ , ĝ) nin semi-invaryant altma-

nifoldu olsun. D⊥ distribüsyonu integrallenebilirdir ancak ve ancak ∀X, Y ∈

Γ(D⊥) için

ĴAĴXY = pAĴXY (5.15)

eşitliğinin sağlanması ya da

ĴAĴXY − pAĴXY

ifadesinin D de bileşeni olmamasıdır.

İspat. D⊥ distribüsyonu integrallenebilirdir ancak ve ancak ∀X, Y ∈ Γ(D⊥)

için [X̂, Y ] ∈ Γ(D⊥) olmasıdır. Z ∈ Γ(D) için (5.3), (5.7) ve Lemma (5.2)

kullanılarak ve g, M üzerine ĝ den indirgenen metrik olmak üzere

ĝ([X, Y ], Z) = 0 ⇐⇒ 2p

3q
ĝ(Ĵ [X, Y ], Z)− 2

3q
ĝ(Ĵ [X, Y ], ĴZ) = 0,

= pĝ(∇̂XY − ∇̂YX, ĴZ)− ĝ(∇̂X ĴY − ∇̂Y ĴX, ĴZ) = 0,

= pĝ(−AĴYX + AĴXY, Z)− ĝ(−AĴYX + AĴXY, ĴZ) = 0,

= pg(−AĴYX + AĴXY, Z)− g(−ĴAĴYX + ĴAĴXY, Z) = 0,

= g(2pAĴXY, Z)− g(2ĴAĴXY, Z) = 0,

= g(2pAĴXY − 2ĴAĴXY, Z) = 0,
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olduğundan pAĴXY = ĴAĴXY elde edilir ya da ĴAĴXY − pAĴXY ifadesinin

D de bileşeni yoktur.

Teorem 5.3. M , HHKMSR manifold (M̂, Ĵ , ĝ) nin semi-invaryant altmani-

foldu olsun. O zaman M total geodeziktir ancak ve ancak ∀X, Y ∈ Γ(TM)

için

Ch(X,SY )−LALYX+C∇⊥
XLY = ph(X,SY )+p∇⊥

XLY −
3

2
qh(X, Y ) (5.16)

olmasıdır.

İspat. Y ∈ Γ(TM) için,

Ĵ2Y = pĴY − 3q

2
Y,

∇̂X Ĵ2Y = p∇̂X ĴY − 3q

2
∇̂XY,

Ĵ∇̂X ĴY = p∇̂X(SY + LY )− 3q

2
(∇XY + h(X,Y )),

Ĵ∇̂X(SY + LY ) = p∇̂XSY + p∇̂XLY − 3q

2
∇XY − 3q

2
h(X,Y ), Ĵ∇XSY +Bh(X,SY ) + Ch(X,SY )

−SALY X − LALY X +B∇⊥
XLY + C∇⊥

XLY

 =

 p∇XSY + ph(X,SY )− pALY X

+p∇⊥
XLY − 3q

2 ∇XY − 3q
2 h(X,Y ).


Teğet ve normal bileşenleri ayrıştırılırsa,

Ch(X,SY )− LALYX + C∇⊥
XLY = ph(X,SY ) + p∇⊥

XLY −
3

2
qh(X, Y )

elde edilir. Böylece ispat tamamlanır.

Teorem 5.4. M , HHKMSR manifold (M̂, Ĵ) nin semi-invaryant altmanifoldu

olsun. O zaman D distribüsyonu total geodezik foliasyon tanımlar ancak ve

ancak

∀X ∈ Γ(D) ve Z ∈ Γ(D⊥) için,

ĴAĴZX = pAĴZX (5.17)

eşitliğinin sağlanması ya da

ĴAĴZX − pAĴZX

ifadesinin D de bileşeni olmamasıdır.
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İspat. ∀X, Y ∈ Γ(D) ve Z ∈ Γ(D⊥) için D distribüsyonu total geodezik

foliasyon tanımlar ancak ve ancak ĝ(∇̂XY, Z) = 0 denklemi sağlanmalıdır.

g, M üzerine ĝ den indirgenen metrik olmak üzere

ĝ(∇̂XY, Z) = 0 ⇐⇒ 2p

3q
ĝ(Ĵ∇̂XY, Z)−

2

3q
ĝ(Ĵ∇̂XY, ĴZ) = 0,

= pĝ(Ĵ∇̂XY, Z)− ĝ(Ĵ∇̂XY, ĴZ) = 0,

= −pĝ(Y, ∇̂X ĴZ) + ĝ(ĴY, ∇̂X ĴZ) = 0,

= −pĝ(Y, ∇̂X ĴZ) + ĝ(Y, Ĵ∇̂X ĴZ) = 0,

= −pg(Y,AĴZX +∇⊥
X ĴZ) + g(Y, ĴAĴZX + Ĵ∇⊥

X ĴZ) = 0,

= g(Y, ĴAĴZX − pAĴZX) = 0

ise ya ĴAĴZX−pAĴZX = 0 dır ya da ĴAĴZX−pAĴZX ifadesinin D de bileşeni

yoktur.

Teorem 5.5. M , HHKMSR manifold (M̂, Ĵ) nin semi-invaryant altmanifoldu

olsun. O zaman D⊥ distribüsyonu total geodezik foliasyon tanımlar ancak ve

ancak ∀X, Y ∈ Γ(D⊥) ve Z ∈ Γ(D) için

−pAĴYX + ĴAĴYX = 0 (5.18)

eşitliği sağlanır ya da −pAĴYX+ĴAĴYX ifadesinin D de bileşeni olmamasıdır.

İspat. ∀X, Y ∈ Γ(D⊥) ve Z ∈ Γ(D) için

ĝ(∇̂XY, Z) = 0 ⇐⇒ 2p

3q
ĝ(Ĵ∇̂XY, Z)−

2

3q
ĝ(Ĵ∇̂XY, ĴZ) = 0,

pĝ(Ĵ∇̂XY, Z)− ĝ(Ĵ∇̂XY, ĴZ) = 0,

ĝ(p∇̂X ĴY, Z)− ĝ(Ĵ∇̂XJY, Z) = 0,

g(−pAĴYX +∇⊥
X ĴY, Z)− g(−ĴAĴYX +∇⊥

X ĴY, Z) = 0,

g(−pAĴYX + ĴAĴYX,Z) = 0

olup,

−pAĴYX + ĴAĴYX ifadesi ya sıfıra eşittir ya da D de bileşeni yoktur.

Tanım 5.5. M , kompleks metalik semi-Riemann manifold (M̂, Ĵ , ĝ) nin

altmanifoldu olsun. M de κ ∈ Γ(TM⊥) olacak şekilde diferansiyellenebilir



34

vektör alanı var ise (M̂, Ĵ , ĝ) manifoldundaki M ye total umbilik denir öyle

ki ∀X, Y ∈ Γ(TM) için,

h(X, Y ) = κĝ(X, Y ). (5.19)

Burada κ, ortalama eğrilik vektör alanıdır.

Teorem 5.6. M , HHKMSR manifold (M̂, Ĵ , ĝ) nin total umbilik semi-

invaryant altmanifoldu olsun. O zaman D distribüsyonu daima integrallene-

bilirdir.

İspat. M total umbilik semi-invaryant altmanifoldu olsun.

∀X, Y ∈ Γ(D), Z ∈ Γ(D⊥) ve κ ∈ Γ(TM̂⊥) için,

ĝ([X, Y ], Z) =
2p

3q
ĝ([X, Y ], ĴZ)− 2

3q
ĝ(Ĵ [X, Y ], ĴZ),

3qĝ([X, Y ], Z) = 2pĝ(∇̂XY − ∇̂YX, ĴZ)− 2ĝ(∇̂X ĴY − ∇̂Y ĴX, ĴZ),

= 2g(p∇XY + ph(X, Y )− p∇YX − ph(Y,X)−∇X ĴY

−h(X, ĴY ) +∇Y ĴX + h(Y, ĴX), ĴZ),

= 2g(p∇XY − p∇YX −∇X ĴY +∇Y ĴX, ĴZ),

= 0.

O halde D distribüsyonu integrallenebilirdir.

Lemma 5.3. M , HHKMSR manifold (M̂, Ĵ , ĝ) nin total umbilik semi-

invaryant altmanifoldu olsun. O halde,

ĝ(Y, Z)ĝ(κ, ĴX) + ĝ(X,Z)ĝ(κ, ĴY ) = 0 (5.20)

dir.

İspat. X, Y ∈ Γ(D), Z ∈ Γ(D⊥) ve κ ∈ Γ(TM̂⊥) için,

ĝ(AĴXY, Z) = −ĝ(AĴYX,Z),

ĝ(h(Y, Z), ĴX) = −ĝ(h(X,Z), ĴY ),

ĝ(κĝ(Y, Z), ĴX) = −ĝ(κĝ(X,Z), ĴY ),

ĝ(Y, Z)ĝ(κ, ĴX) + ĝ(X,Z)ĝ(κ, ĴY ) = 0.
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Teorem 5.7. M , HHKMSR manifold (M̂, Ĵ , ĝ) nin total umbilik semi-

invaryant altmanifoldu olsun. O zaman D⊥ distribüsyonu daima integralle-

nebilirdir.

İspat. (5.19) ve (5.20) kullanılarak,

ĝ([X, Y ], Z) = ĝ(ĴAĴXY + pAĴXY, Z),

= ĝ(AĴXY, ĴZ) + pĝ(AĴXY, Z),

= ĝ(h(Y, ĴZ), ĴX) + pĝ(h(Y, Z), ĴX),

= ĝ(κĝ(Y, ĴZ), ĴX) + pĝ(κĝ(Y, Z), ĴX),

= ĝ(Y, ĴZ)ĝ(κ, ĴX) + pĝ(Y, Z)ĝ(κ, ĴX),

= ĝ(ĴY, Z)ĝ(κ, ĴX) + pĝ(Y, Z)ĝ(κ, ĴX),

= 0

olup daima integrallenebilirdir.
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Şahin, B., 2021, Diferansiyel Geometri. Palme Yayınevi. Ankara, Türkiye.

Yano, K. and Kon, M., 1984, Structure On Manifolds, World Scientific.



37
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olarak bu süreçte her zaman sabırla, ilgiyle, usanmadan yanımda olan eşim ve
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