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Bu tez esas olarak beş bölümden oluşmaktadır.

Birinci bölümde, tez konusu hakkında kapsamlı bilgiler sunulmuş ve bu

alanda yapılmış çalışmalara yer verilmiştir.

İkinci bölümde, tez boyunca kullanacağımız tanımlar, önermeler, yar-

dımcı özellikler ve teoremler ele alınmaktadır.

Üçüncü bölümde, p-Laplacian operatörlü singüler kesirli sınır değer

probleminin pozitif çözümleri, Avery-Peterson sabit nokta teoremi ile elde edil-

miştir. Ayrıca, elde edilen sonuçların uygulanabilirliğini göstermek amacıyla bir

örnek sunulmuştur.

Dördüncü bölümde, daha genel bir denklem tipine sahip olan p-Laplacian

operatörlü singüler ψ-Hilfer kesirli sınır değer probleminin çözümleri incelen-

miştir. İlk olarak, bu problemin tek bir çözüme sahip olduğu Banach Daraltan

Dönüşüm Prensibi kullanılarak gösterilmiştir. Ardından, elde edilen sonuçların

uygulanabilirliğini göstermek için iki örnek sunulmuştur. Daha sonra, ele alınan

bu problemin en az bir çözüme sahip olduğu Krasnolselskii sabit nokta teoremi

kullanılarak gösterilmiştir.

Son bölümde, elde edilen bulguların bir sonucu olarak çalışmanın tüm

sonuçları kapsamlı bir şekilde özetlenmiştir.

Anahtar sözcükler: Riemann-Liouville kesirli türev, ψ-Hilfer kesirli türev,

singüler,p-Laplacian, Avery- Peterson sabit nokta teoremi, Krasnoselskii sabit nokta

teoremi, Banach daraltan dönüşüm prensibi
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This thesis consists of five main chapters.

In the first chapter, comprehensive information about the thesis topic is

presented, along with a review of the existing literature in this field.

The second chapter deals with the definitions, propositions, auxiliary

properties, and theorems that will be used throughout the thesis.

The third chapter focuses on the positive solutions of the singular

fractional boundary value problem with p-Laplacian operator, obtained using

the Avery-Peterson fixed point theorem. Additionally, an example is provided

to demonstrate the applicability of the obtained results.

In the fourth chapter, the solutions of the singular ψ-Hilfer fractional

boundary value problem, which has a more general equation type, are

investigated. Firstly, it is shown that this problem has a unique solution using

the Banach contraction mapping principle. Then, two examples are presented

to illustrate the practical applicability of the obtained results. Subsequently,

the existence of at least one solution to this problem is demonstrated using the

Krasnolselskii fixed point theorem. The final chapter provides a comprehensive

summary of all the results obtained in this study.

Keywords: Riemann-Liouville fractional derivative, ψ-Hilfer fractional deri-

vative, singular, p-Laplacian, Avery-Peterson fixed point theorem, Krasnoselskii fixed
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Kesirli sınır değer problemleri üzerine çalışmalara, danışmanım Sayın

Doç. Dr. Nüket Aykut Hamal’ın yönlendirmesiyle başladım. Bu alanda yap-

tığım araştırmalar, kesirli sınır değer problemlerinin mühendislikte yapısal

analiz, ısı transferi, akışkanlar mekaniği, fizikte dalga yayılımı, ısı iletkenliği

ve epidemiyolojide hastalık yayılması gibi olayların modellenmesinde çeşitli

uygulama potansiyelleri olduğunu gösterdi. Bu çeşitlilik ve uygulama alanları,

bu alana olan ilgimi artırdı ve beni daha fazla çalışmaya teşvik etti.

Literatürde önemli bir yere sahip olan kesirli sınır değer problemleri

hakkında incelediğim makaleler ve okuduğum kitaplar, tez konumun şekillen-

mesinde bana büyük ölçüde rehberlik etti.

Yüksek lisans çalışmam boyunca, desteklerini hiçbir zaman esirgemeyen

ve engin bilgi ve deneyimlerini büyük bir özveriyle paylaşan danışmanım Sayın

Doç. Dr. Nüket Aykut Hamal ve Sayın Öğr. Gör. Dr. Ahmet Hamal’a en içten

teşekkürlerimi sunarım. Değerli rehberlikleri ve yardımları sayesinde tez yazma

sürecinde en büyük desteği onlardan aldım.

Bu tez, 123F242 proje numarası ile 1002-B Hızlı Destek Modülü kap-

samında Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

tarafından desteklenmiştir. Bu tezin gerçekleşmesini sağlayan TÜBİTAK’a

desteklerinden dolayı teşekkür ederim.
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1 GİRİŞ

Kesirli analiz, Leibniz’in 1695 yılında L’Hospital’e yazdığı bir mektupta

"Fonksiyonun n. türevi için n = 1/2 olsaydı sonuç ne olurdu?" sorusuyla

ortaya çıkmıştır. Leibniz ise "Bir gün faydalı sonuçların çıkarılacağı bariz

bir paradoks" şeklinde cevap vermiştir. Leibniz’in yanıtı, aradan geçen 300

yıl boyunca yapılan çalışmalara bakıldığında doğru çıkmıştır. Fourier, Euler,

Laplace, Liouville ve Riemann gibi birçok bilim insanı kesirli analiz ile

ilgili çalışmalar yapmıştır. Bununla birlikte, uygulamalı bilim alanlarında

karşılaşılan bazı problemler için kesirli türev tanımları yeterli değildir ve bu

da yeni kesirli türev tanımlarının ortaya çıkmasına neden olmuştur. Kesirli

türev tanımlarından en sık karşılaşılanlara örnek olarak; Riemann-Liouville

kesirli türev, Caputo kesirli türev, Grünwald-Letnikov kesirli türev, uyumlu

(conformable) kesirli türev, Beta türev ve Lokal M-türev verilebilir.

Bir modele kesirli mertebeden bir türevin dâhil edilmesi, önemli gerçek

parametrelerin göz ardı edilmesinden kaynaklanan yanlışlığı azaltmaktadır.

Kesirli türev operatörleri, klasik sistemlere kıyasla gerçek dünya problemlerinin

modellerinde daha büyük serbestlik derecesine olanak sağlamakta ve bu tür

problemler gerçek dünyadaki sistemlerin davranışlarını uygun şekilde ifade

etmektedir. Kesirli mertebeden türeve sahip denklemler tam sayılı mertebeden

denklemlere göre gerçeğe daha yakın sonuçlar verdiği için bilim ve teknolojinin

her alanında önemli bir yere sahiptir. Bu türevler, sadece teorik ve uygulamalı

matematik alanında değil, aynı zamanda fizik, kimya, mühendislik alanları

başta olmak üzere genetik, tıp, biyoloji, ekonomi ve istatistik gibi çeşitli

araştırma alanlarında da önemli bir rol oynamaktadır.

Gözenekli bir ortamdaki türbülanslı akış temel bir mekanik problemidir.

Bu tür problemleri incelemek için ilk defa Leibenson (1945), p-Laplacian

operatörlü diferansiyel denklemi tanıtmıştır. p-Laplacian operatörlü sınır değer

problemleri buzul bilimi (glaciology), doğrusal olmayan esneklik, popülas-

yon biyolojisi, zemin mekaniği ve Newtonsal olmayan mekanik gibi farklı

disiplinlerde uygulamalara sahiptir. Bu uygulamalarından dolayı, p-Laplacian



2

operatörlü kesirli sınır değer problemleri çok ilgi görmektedir.

Doğa bilimleri ve mühendislikte karşılaşılan birçok fiziksel olay genellikle

tekil (singüler) davranışlar sergilemektedir. Örneğin, akışkanlar mekaniğinde

bir sıvı, kırılma oluşturmak için şiddetli bir darbeye maruz kaldığında tekil

(singüler) noktalar bu kırılmayı takip etmektedir. Tekil (singüler) noktaya

sahip sınır değer problemleri gaz dinamikleri, kimyasal reaksiyonlar, nükleer

fizik, atomik hesaplamalar ve atomik yapıların çalışmaları gibi matematik ve

fizikte birçok problemin modellemesinde değerli bir araçtır.

p-Laplacian operatörünün ve tekilliğin (singülerliğin) önemlerinden do-

layı, p-Laplacian operatörlü ve singüler noktaya sahip sınır değer problemleri

sadece matematik alanında değil diğer bilim alanlarında da oldukça ilgi

görmektedir.

Son zamanlarda, p-Laplacian operatörünün ve tekilliğin (singülerliğin)

önemlerinden dolayı p-Laplacian operatörlü ve singüler sınır değer problemleri

ile ilgili bir çok önemli sonuç ortaya çıkmıştır. Bunlara örnek olarak Cabada

and Staněk (2012), Alsaedi et al. (2020), Liu et al. (2020), Jong et al. (2020),

Tudorache and Luca (2021a), Tudorache and Luca (2021b), Ahmad et al.

(2023), Zhao and Mao (2021), Caballero et al. (2023) ve Gu et al. (2023)

makaleleri verilebilir.

Ji (2018) de,
[
ϕp(D

α
0+κ(t))

]′
+ f(t,κ(t)) = 0, 0 < t < 1,

κ′(0) = 0, κ(1)− γκ(η) = 0,

p-Laplacian operatörlü singüler kesirli sınır değer problemi için pozitif çözüm-

lerin varlığını araştırmıştır. Burada, 1 < α ≤ 2, Dα
0+ Caputo kesirli türevi ve

f(t,κ), κ = 0 da singülerdir.

Guo et al. (2016) da,
cDα

0+κ(t) + f(t,κ(t),κ′(t)) = 0, 0 < t < 1,

κ(0) = κ′′(0) = 0, κ′(1) =
∞∑
i=1

µiκ(ζi),

Avery-Peterson sabit nokta teoremini kullanarak, singüler kesirli sınır değer

probelemi için pozitif çözümlerin varlığını araştırmıştır. Burada, 2 < α ≤ 3,
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µi ≥ 0, 0 < ζ1 < ζ2 < · · · < ζi−1 < ζi < · · · < 1 (i = 1, 2, · · · ), Dα
0+ Caputo

kesirli türevi ve f(t,κ, y), t = 0 noktasında singülerdir.

Henderson and Luca (2017) de,
Dα

0+κ(t) + λf(t,κ(t)) = 0, t ∈ (0, 1),

κ(0) = κ′(0) = · · · = κ(n−2)(0) = 0, Dp
0+κ(t)|t=1 =

k∑
i=1

µiD
q
0+κ(t)|t=ζi ,

singüler kesirli sınır değer probelemi için pozitif çözümlerin varlığını araştır-

mıştır. Burada α ∈ (n− 1, n], n ≥ 3, n ∈ N, i = 1, · · · , k (k ∈ N) için ζi ∈ R ,

0 < ζ1 < ζ2 < · · · < ζk < 1 ve f , t = 0 veya t = 1 noktasında singülerdir.

Tudorache and Luca (2021a) de,
Dα

0+κ(t) + λh(t)f(t,κ(t)) = 0, t ∈ (0, 1),

κ(0) = κ′(0) = · · · = κ(n−2)(0) = 0, Dβ0
0+κ(1) =

k∑
i=1

∫ 1

0

Dβi
0+κ(t)dHi(t),

singüler kesirli sınır değer probelemi için pozitif çözümlerin varlığını araştır-

mıştır. Burada α ∈ R, α ∈ (n − 1, n], n ≥ 3, n ∈ N, f(t,κ), κ = 0 ve h(t),

t = 0 noktasında singülerdir.

Üçüncü bölümde, yukarıdaki problemlerden motive olarak, p-Laplacian

operatörlü singüler kesirli sınır değer problemini ele alacağız:
[
ϕp
(
Dα

0+κ(t)
)]′

+ f(t,κ(t),κ′(t)) = 0, 0 < t < 1,

κ(0) = κ′(0) = 0, Dα−1
0+ κ(1) =

k−2∑
i=1

µiD
α−1
0+ κ(ζi).

(1.1)

Burada, Dα
0+ , α mertebeden standart Riemann-Liouville kesirli türevidir. α∈R,

2 < α ≤ 3 ve k∈N olmak üzere i = 1, 2, · · · , k − 2 için ζi∈R ve 0 < ζ1 < ζ2 <

· · · < ζk−2 < 1, ϕp(ς) = ς. |ς|p−2 (ς ∈ R\{0}), ϕp(0) = 0, p > 1, ϕ−1
p (ς) = ϕq(ς),

1
p
+ 1

q
= 1, f(t,κ, y) : (0, 1] × R+ × R+ → R+ fonksiyonu t = 0 noktasında

singülerdir.

Diğer taraftan, literatürde Riemann-Liouville ve Caputo kesirli türev-

lerinden daha genel kesirli türevler de mevcuttur. R. Hilfer, Hilfer (2000)

makalesinde, bu bilinen tanımlardan daha genel bir kesirli türev tanımı
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yapmıştır. f(t) fonksiyonunun α mertebeden ve β parametreli sol-yanlı Hilfer

kesirli türevi şu şekilde ifade edilir:

HDα,β
a+ = I

β(n−α),ψ
a+ DnI

(1−β)(n−α)
a+ f(t)

şeklinde tanımlanmıştır. Burada 0 ≤ β ≤ 1, n− 1 < α < n, D =
d

dt
ve Iγa+ , γ

mertebeden sol-yanlı Riemann-Liouville kesirli integralidir.

• β = 0 ise HDα,0
a+ = RLDα

a+f(t), t ∈ [a, b], f(t) fonksiyonunun sol-yanlı

Riemann-Liouville kesirli türevi elde edilir.

• β = 1 ise HDα,1
a+ = cDα

a+f(t), t ∈ [a, b], f(t) fonksiyonunun sol-yanlı

Caputo kesirli türevi elde edilir.

Burada RLDα
a+ , α mertebeden sol-yanlı Riemann-Liouville kesirli diferansiyel

operatörü, cDα
a+ , α mertebeden sol-yanlı Caputo kesirli diferansiyel opera-

törüdür. Hilfer kesirli türevin bazı özellikleri ve uygulamaları için Hilfer

(2000), Asawasamrit et al. (2018), Malahi et al. (2019), Wongcharoen et al.

(2020), Nuchpong et al. (2021), Cheng and Xu (2022) ve Meng et al. (2022)

makalelerine bakılabilir.

Kilbas et al. (1999) da, bir f(t) fonksiyonun α mertebeden sol-yanlı

ψ-Riemann-Liouville kesirli türevi: Iα,ψa+ , α mertebeden sol-yanlı ψ-Riemann-

Liouville kesirli integrali olmak üzere

Dα,ψ
a+ f(t) =

(
1

ψ′(t)

d

dt

)n
In−α,ψa+ f(t)

şeklinde tanımlanmıştır. Burada, n ∈ N, n − 1 < α < n, 0 ≤ β ≤ 1, f, ψ ∈

Cn([a, b]) ve ψ her t ∈ [a, b] için ψ′(t) ̸= 0 olacak şekilde artan bir fonksiyondur.

Almeida (2017) de, bir f(t) fonksiyonunun α mertebeden sol-yanlı ψ-

Caputo kesirli türevi:

CDα,ψ
a+ f(t) = In−α,ψa+

(
1

ψ′(t)

d

dt

)n
f(t)

şeklinde tanımlanmıştır. Burada, n ∈ N, n − 1 < α < n, 0 ≤ β ≤ 1,f, ψ ∈

Cn([a, b]) ve ψ her t ∈ [a, b] için ψ′(t) ̸= 0 olacak şekilde artan bir fonksiyondur.
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Bu yeni kesirli türevlerle ile ilgili çalışmalar için Jiang and Bai (2022) ve

Boulares et al. (2023) makalelerine bakılabilir.

Sousa and De Oliveira (2018) de, bir f(t) fonksiyonunun α mertebeden

ve β parametreli sol-yanlı ψ-Hilfer türevi

HDα,β;ψ
a+ f(t) = I

β(n−α),ψ
a+

(
1

ψ′(t)

d

dt

)n
I
(1−β)(n−α),ψ
a+ f(t) = I

(γ−α),ψ
a+ Dγ,ψ

a+ f(t)

(1.2)

şeklinde tanımlanmıştır. Burada, n ∈ N, n − 1 < α < n, 0 ≤ β ≤ 1, γ =

α + β(n− α), f, ψ ∈ Cn([a, b]) ve ψ her t ∈ [a, b] için ψ′(t) ̸= 0 olacak şekilde

artan bir fonksiyondur.

Bu türev yukarıda tanımlanan kesirli mertebeden türevlerin en genelidir.

Sol-yanlı ψ-Hilfer kesirli türev operatörü kullanılarak, α ve β parametrelerinin

limitleri alınarak ve uygun ψ fonksiyonu seçilerek kesirli türevlerin geniş bir

sınıfı elde edilebilir.

• (1.2) denkleminin her iki tarafının β → 1 için limiti alındığında

HDα,1;ψ
a+ f(t) = CDα,ψ

a+ f(t)

α mertebeden sol-yanlı ψ-Caputo kesirli türevi elde edilir.

• (1.2) denkleminin her iki tarafının β → 0 için limiti alındığında

HDα,0;ψ
a+ f(t) = Dα,ψ

a+ f(t)

α mertebeden sol-yanlı ψ-Riemann-Liouville kesirli türevi elde

edilir.

• ψ(t) = t olsun. Bu durumda, (1.2) denkleminin her iki tarafının β → 1

için limiti alındığında

HDα,1;t
a+ f(t) = CDα

a+f(t)

α mertebeden sol-yanlı Caputo kesirli türevi elde edilir.



6

• ψ(t) = t olsun. Bu durumda, (1.2) denkleminin her iki tarafının β → 0

için limiti alındığında

HDα,0;t
a+ f(t) = Dα

a+f(t)

α mertebeden sol-yanlı Riemann-Liouville kesirli türevi elde edilir.

Mevcut araştırmalarda, Riemann-Liouville ve Caputo kesirli türevlerin-

den daha genel olan, aşağıdaki gibi ψ-Caputo ve ψ-Hilfer kesirli türevlerini

içeren sınır değer problemleri yer almaktadır.

Wahash et al. (2020) de,
cDα;ψ

a+ = f(t,κ(t)), t ∈ (0, b], b > 0,

κ(0) = κ0,

bir diğer ψ fonksiyonuna göre sol genelleştirilmiş Caputo kesirli türevini içeren

singüler kesirli diferansiyel sınır değer problemini çalışmışlardır. Burada, 0 <

α ≤ 1, cDα;ψ
a+ ψ-Caputo kesirli türevi ve f : (0, b] × R → R fonksiyonu için

limt→0+f(t, .) = ∞ dur.

Sousa and De Oliveira (2018) de tanımlanan ve geniş bir kesirli türev

sınıfını kapsayan ψ-Hilfer kesirli türevi ile ilgili çalışmalar, son zamanlarda

literatürde yerlerini almaya başlamıştır. Bunlara örnek olarak, Abdelhedi

(2021), Norouzi and N’Guérékata (2021), Jajarmi et al. (2022) ve Sudsutad

et al. (2023) makaleleri verilebilir.

Ntouyas and Vivek (2021) de,
(HDα,β;ψ

a+ + kHDα−1,β;ψ
a+ )κ(t) = f(t,κ(t)), t ∈ [a, b],

κ(a) = 0, κ(b) =
l∑

j=1

ηjκ(ξj)

ψ-Hilfer kesirli sınır değer probleminin varlığı ve tekliği araştırılmıştır. Burada,

α ∈ (1, 2), β ∈ [0, 1], f : [a, b] × R → R sürekli bir fonksiyon, j = 1, 2, · · · , l

için ηj, k ∈ R ve a < ξ1 < ξ2 < · · · < ξl < b dir.
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Alsaedi et al. (2023) de,
(
ϕp

(
HDα,β;ψ

0+ κ(t)
))′

+ f(t,κ(t)) = 0, 0 < t < 1,

κ(0) = 0, HDα,β;ψ
0+ κ(0) = 0, κ(1) =

l∑
j=1

ηjI
φi;ψ
0+ κ(ζj), 0 < ζi < 1, ηi ∈ R,

p-Laplacian operatörlü ve ψ-Hilfer kesirli türev içeren lineer olmayan sınır değer

probleminin çözümünün varlığı ve tekliğini incelemişlerdir. Burada, α ∈ (1, 2],

β ∈ [0, 1] ve f : [0, 1]× R → R sürekli bir fonksiyondur.

Dördüncü bölümde, yukarıdaki problemlerden motive olarak, lineer

olmayan p-Laplacian operatörlü ve ψ-Hilfer kesirli türevini içeren singüler sınır

değer problemini ele alacağız:
HDα1,β1;ψ

a+

(
ϕp

(
HDα2,β2;ψ

a+ κ(t)
))

+ f(t,κ(t)) = 0, a < t < b,

HDα2,β2;ψ
a+ κ(a) = 0, κ(a) = 0, I2−γ2,ψa+ κ(b) =

l∑
j=1

ηjI
φj ,ψ

a+ κ(ξj)
(1.3)

Burada, HDα,β;ψ
a+ , α mertebeden ve β parametreli sol-yanlı ψ-Hilfer türevi ve

Iα,ψa+ , α mertebeden sol-yanlı ψ-Riemann-Liouville kesirli integralini göstermek-

tedir. n = 1, 2 için n − 1 < αn ≤ n, 0 ≤ βn ≤ 1, γn = αn + βn(n − αn).

j = 1, 2, ..., l (l ∈ N) için ηj ∈ R, a < ξ1 < ξ2 < · · · < ξl < b, φj > 0,

ϕp(ς) = ς. |ς|p−2 (ς ∈ R \ {0}), ϕp(0) = 0, p > 1, ϕ−1
p (ς) = ϕq(ς), 1

p
+ 1

q
= 1,

f : (a, b]× R → R sürekli bir fonksiyon ve limt→a+ f(t, .) = +∞ dur.
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2 TEMEL TEOREMLER VE TANIMLAR

Bu bölümde, tez boyunca kullanılacak olan bazı tanımlar, önermeler,

yardımcı özellikler ve teoremlerin ifadelerine yer verilecektir.

Tanım 2.0.1. X ve Y herhangi iki lineer uzay olmak üzere belirli bir T ile

X in bir alt kümesi A nın her x elemanına Y de tek bir y elemanı karşılık

geliyorsa T ye X den Y kümesine bir operatör denir. A kümesine de T nin

tanım bölgesi denir. T : A ⊂ X → Y ve T : x→ y veya y = Tx ile ifade edilir.

Özel olarak X = Y ise T ye X içinde bir operatör denir.

Tanım 2.0.2. (Deimling, 1985). (X, dX) metrik uzay olsun. Eğer S ⊂ X

kümesinin her dizisinden yakınsak bir alt dizi (bu dizinin limiti S kümesine

ait olmayabilir) seçilebiliyorsa S kümesine X içinde prekompakt küme denir.

Eğer bu dizinin yakınsadığı değer, S kümesinin içinde ise S kümesine kompakt

küme denir.

Tanım 2.0.3. (Deimling, 1985). (X, dX) ve (Y, dY ) metrik uzaylar ve T : D ⊂

X → Y bir operatör olsun. Eğer T operatörü D içindeki her sınırlı kümeyi

Y içindeki prekompakt kümeye dönüştürüyorsa T operatörüne D üzerinde

kompakt operatör denir.

Tanım 2.0.4. (X, dX) ve (Y, dY ) iki metrik uzay olarak verilsin ve T : D ⊂

X → Y bir operatör olsun. Eğer ϵ > 0 verildiğinde, her u0 ∈ D için

dX(u, u0) < δ ⇒ dY (Tu, Tu0) < ϵ olacak şekilde bir δ > 0 sayısı varsa, T

operatörü, u0 noktasında sürekli bir operatördür veya sadece sürekli bir operatör

olarak adlandırılır. T operatörü D nin her noktasında sürekli ise T operatörüne

D üzerinde sürekli bir operatör denir.

Teorem 2.0.5. (Deimling, 1985). (X, dX), (Y, dY ) metrik uzaylar, T : D ⊂

X → Y operatör ve x0 ∈ D olsun. x0 noktasına yakınsayan D içindeki

herhangi bir {xn} dizisi için Y içindeki {Txn} dizisi Tx0 noktasına yakınsıyor

ise T opearatörüne x0 noktasında dizisel sürekli operatör olarak adlandırılır.

T operatörü, D üzerindeki her noktada dizisel olarak sürekli olduğunda, T

operatörüne bir "dizisel sürekli operatör" denir.
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Teorem 2.0.6. (Deimling, 1985). (X, dX) ve (Y, dY ) metrik uzaylar olsun ve

T : D ⊂ X → Y bir operatör olsun. T operatörünün sürekli olması için gerekli

ve yeterli koşul, dizisel sürekli olmasıdır.

Teorem 2.0.7. (Deimling, 1985) (Tamamen Sürekli Operatör). (X, dX)

ve (Y, dY ) metrik uzaylar ve T : D ⊂ X → Y bir operatör olsun. Eğer T

operatörü D üzerinde hem sürekli hem de kompakt operatör ise T operatörüne

tamamen sürekli operatör denir.

Tanım 2.0.8. (Deimling, 1985). S, C[a, b] içinde bir küme olsun.

i) S kümesine ait fonksiyonlar, her κ ∈ S için ∥κ(t)∥ ≤ c olacak şekilde bir

c sayısı var ise "aynı dereceden sınırlı fonksiyonlar" olarak adlandırılır.

ii) ϵ > 0 verilsin. ∀t1, t2 ∈ [a, b] ve ∀κ ∈ S için ∥t1 − t2∥ < δ eşitsizliği

sağlandığında ∥κ(t1)− κ(t2)∥ < ϵ olacak şekilde bir δ > 0 bulunabiliyor

ise S kümesine ait fonksiyonlara "aynı dereceden sürekli fonksiyonlar"

denir.

Teorem 2.0.9. (Deimling, 1985) (Arzela-Ascoli Teoremi). Bir S ⊂ C[a, b]

kümesinin sürekli fonksiyonlar ailesinin prekompakt olması için gerekli ve

yeterli koşul S kümesine ait fonksiyonların hem aynı dereceden sınırlı hem

de aynı dereceden sürekli olmasıdır.

Tanım 2.0.10. (Guo and Lakshmikantham, 1989). (X, ∥.∥), Reel Banach

uzayı olsun. X nin aşağıdaki özellikleri sağlayan boştan farklı, kapalı, konveks

bir P alt kümesi koni olarak adlandırılır:

i) κ ∈ P ve λ ≤ 0 iken, λκ ∈ P ;

ii) κ ∈ P ve −κ ∈ P iken κ = 0.
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Tanım 2.0.11. (Rudin et al., 1964). Eğer β : P → [0,+∞) sürekli bir

dönüşüm olup her κ, y ∈ P ve t ∈ [0, 1] için aşağıdaki eşitsizliği sağlıyorsa

β(tκ + (1− t)y) ≥ tβ(κ) + (1− t)β(y)

o zaman β, X Reel Banach uzayının P konisi üzerinde sürekli ve negatif

olmayan konkav bir fonksiyoneldir.

Tanım 2.0.12. (Rudin et al., 1964). Eğer γ : P → [0,+∞) sürekli bir

dönüşüm olup her κ, y ∈ P ve t ∈ [0, 1] için aşağıdaki eşitsizliği sağlıyorsa

γ(tκ + (1− t)y) ≥ tγ(κ) + (1− t)γ(y)

o zaman γ, X Reel Banach uzayının P konisi üzerinde sürekli ve negatif

olmayan konveks bir fonksiyoneldir.

Tanım 2.0.13. (Kilbas et al., 1999). Ω = [a, b](−∞ < a < b < +∞), Reel

sayı ekseni üzerinde sonlu bir aralık, α > 0 ve n ∈ N olsun. [a, b] üzerinde,

κ ∈ Cn([a, b],R) fonksiyonunun α mertebeden Riemann-Liouville kesirli türevi

aşağıdaki gibi tanımlanır;

(Dα
a+κ) (t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− ς)n−α−1κ(ς)ds (t > a)

burada n = [α] + 1 ve [α], α reel sayısının tam kısmıdır.

Tanım 2.0.14. ((Kilbas et al., 1999)). Ω = [a, b](−∞ < a < b < +∞),

Reel sayı ekseni üzerinde sonlu bir aralık ve α > 0 olsun. [a, b] üzerinde, κ ∈

Cn([a, b],R) fonksiyonunun α mertebeden Riemann-Liouville kesirli integrali;

(Iαa+κ) (t) =
1

Γ(α)

∫ t

a

(t− ς)α−1κ(ς)ds (t > a)

ile tanımlanır. Burada Γ(·), (Euler) Gamma fonksiyonudur.
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Önerme 2.0.15. (Kilbas et al., 1999). α > 0, n ∈ N ve κ ∈ Cn([a, b],R)

olsun. Bu durumda

Dα
0+κ(t) = 0

kesirli diferansiyel denklemi, ci ∈ R, (i = 0, 1, · · · , n), için

κ(t) = c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n

şeklinde bir çözüme sahiptir. Burada n = [α] + 1 ve [α], α reel sayısının tam

kısmıdır.

Önerme 2.0.16. ((Kilbas et al., 1999)). α > 0, n ∈ N ve κ ∈ Cn([a, b],R)

olsun. Bu durumda bazı ci ∈ R, (i = 0, 1, · · · , n), için

Iα0+D
α
0+κ(t) = κ(t) + c1t

α−1 + c2t
α−2 + · · · cntα−n

dir. Burada n = [α] + 1 ve [α], α reel sayısının tam kısmıdır.

ψ ∈ Cn([a, b],R) ve ψ, her t ∈ [a, b] için ψ′(0) ̸= 0 koşulunu sağlayan

artan bir fonksiyondur. Bu tez kapsamında, kolaylık sağlamak amacıyla her

x, y ∈ [a, b] için ψy(x) = ψ(x)− ψ(y) olarak ifade edilecektir.

Tanım 2.0.17. (Kilbas et al., 1999). (a, b) (−∞ ≤ a < b ≤ ∞), R+

nın bir sonlu yada sonsuz açık aralığı ve α > 0 olsun. ψ(t), (a, b] üzerinde

artan ve pozitif monoton bir fonksiyon ve ψ′(t), (a, b) üzerinde sürekli bir

fonksiyon olsun. [a, b] üzerinde, diğer fonksiyon ψ’ye göre κ ∈ Cn([a, b],R)

fonksiyonunun α mertebeden ψ-Riemann-Liouville kesirli integrali;

Iα,ψa+ κ(t) =
1

Γ(α)

∫ t

a

ψ′(ς)ψα−1
ς (t)κ(ς)dς, t > a > 0,

ile tanımlanır. Burada Γ(·), (Euler) Gamma fonksiyonudur.

Tanım 2.0.18. (Kilbas et al., 1999). ψ ∈ Cn([a, b]) olmak üzere ψ′(t) ̸= 0, α >

0 ve n ∈ N olsun. Diğer fonksiyon ψ’ye göre κ ∈ Cn([a, b],R) fonksiyonunun

α mertebeden ψ-Riemann-Liouville kesirli türevi aşağıdaki gibi tanımlanır;

Dα,ψ
a+ κ(t) =

(
1

ψ′(t)

d

dt

)n
In−α,ψa+ κ(t)

=
1

Γ(n− α)

(
1

ψ′(t)

d

dt

)n ∫ t

a

ψ′(ς)ψn−α−1
ς (t)κ(ς)dς,

burada n = [α] + 1 ve [α], α reel sayısının tam kısmıdır.
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Tanım 2.0.19. (Sousa and De Oliveira, 2018). n ∈ N, n − 1 < α < n,

0 ≤ β ≤ 1, κ, ψ ∈ Cn([a, b],R) ve ψ, her t ∈ [a, b] için ψ′(t) ̸= 0 olacak

şekilde artan bir fonksiyon olmak üzere h(t) fonksiyonun α mertebeden ve β

paremetreli sol yanlı ψ-Hilfer türevi ;

HDα,β;ψ
a+ κ(t) = I

β(n−α),ψ
a+

(
1

ψ′(t)

d

dt

)n
I
(1−β)(n−α),ψ
a+ κ(t) = I

(γ−α),ψ
a+ Dγ,ψ

a+ κ(t)

şeklinde tanımlıdır. Burada, n = [α] + 1, [α], α reel sayısının tam kısmıdır ve

γ = α + β(n− α).

Önerme 2.0.20. (Kilbas et al., 1999). α, β > 0 ve κ ∈ Cn([a, b],R) olmak

üzere

Iα,ψa+ Iβ,ψa+ κ(t) = Iα+ϱ,ψa+ κ(t), t > a.

dir.

Önerme 2.0.21. (Sousa and De Oliveira, 2018; Kilbas et al., 1999). α > 0,

ν > 0 ve t > a olmak üzere bir kuvvet fonksiyonunun, ψ kesirli integrali ve

türevi aşağıdaki şekilde verilir:

(i) Iα,ψa+ ψν−1
a (t) = Γ(ν)

Γ(ν+α)
ψν+α−1
a (t)

(ii) Dα,β;ψ
a+ ψν−1

a (t) = Γ(ν)
Γ(ν−α)ψ

ν−α−1
a (t), n− 1 < α < n, ν > n,

(iii) HDα,β;ψ
a+ ψν−1

a (t) = Γ(ν)
Γ(ν−α)ψ

ν−α−1
a (t), n− 1 < α < n, ν > n.

Önerme 2.0.22. (Sudsutad et al., 2021). m− 1 < α < m, n− 1 < ρ < n,

n,m ∈ N, n ≤ m, 0 ≤ β ≤ 1, α ≥ ρ+ β(n− ρ) ve κ ∈ Cn([a, b],R) olmak

üzere

HDρ,β;ψ
a+ Iα,ψa+ κ(t) = Iα−ρ,ψa+ κ(t)

dir.

Tanım 2.0.23. (Sousa and De Oliveira, 2018). n− 1 < α ≤ n, 0 ≤ β ≤ 1,

γ = α + β(n− α) ve κ ∈ Cn([a, b],R) olmak üzere her t ∈ [a, b] için

Iα,ψa+
HDα,β;ψ

a+ κ(t) = κ(t)−
n∑
k=1

ψγ−ka+ (t)

Γ(γ − k + 1)
κ[n−k]
ψ I

(1−β)(n−α),ψ
a+ κ(a),

dır. Burada κ[n]
ψ h(t) =

(
1

ψ′(t)
d
dt

)n
κ(t) dir.
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Önerme 2.0.24. (Liu et al., 2012). p-Laplacian operatörü aşağıdaki özelliklere

sahiptir:

(i) 1 < p < 2, κy > 0 ve |κ| , |y| ≥ m ≥ 0 ise

|φp(κ)− φp(y)| ≤ (p− 1)mp−2 |κ − y| .

(ii) p > 2 ve |κ| , |y| ≤M ise, o zaman

|φp(κ)− φp(y)| ≤ (p− 1)Mp−2 |κ − y| .
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3 p-LAPLACIAN OPERATÖRLÜ SİNGÜLER

KESİRLİ SINIR DEĞER PROBLEMİNİN

POZİTİF ÇÖZÜMLERİNİN VARLIĞI

Bu bölümde, p-Laplacian operatörlü tekil (singüler) kesirli sınır değer

problemi ele alınacak ve bu problem için en az üç pozitif çözümün varlığı elde

edilecektir.

3.1 Sınır Değer Probleminin Çözümü

Aşağıda verilen p-Laplacian operatörlü singüler kesirli sınır değer prob-

lemi ele alınsın.
[
ϕp
(
Dα

0+κ(t)
)]′

+ f(t,κ(t),κ′(t)) = 0, 0 < t < 1,

κ(0) = κ′(0) = 0, Dα−1
0+ κ(1) =

k−2∑
i=1

µiD
α−1
0+ κ(ζi).

(3.1)

Burada, Dα
0+ , α mertebeden standart Riemann-Liouville kesirli türevidir.

α∈R, 2 < α ≤ 3 ve m∈N olmak üzere i = 1, 2, · · · , k − 2 için ζi∈R ve 0 <

ζ1 < ζ2 < · · · < ζk−2 < 1, ϕp(ς) = ς. |ς|p−2 (ς ∈ R \ {0}), ϕp(0) = 0, p > 1,

ϕ−1
p (ς) = ϕq(ς), 1

p
+ 1

q
= 1, f(t,κ, y) : (0, 1]×R+ ×R+ → R+ fonksiyonu t = 0

noktasında singülerdir.

Aşağıdaki koşulların sağlandığı kabul edilsin:

(H1) k ∈ N olmak üzere i = 1, 2, · · · , k − 2 için µi > 0 ve
k−2∑
i=1

µi < 1,

(H2) f(t,κ, y) : (0, 1] × R+ × R+ → R+ sürekli ve tσ1f(t,κ, y) fonksiyonu

[0, 1] × R+ × R+ aralığında sürekli olacak şekilde 0 < σ1 < 1 koşulunu

sağlayan bir σ1 sabiti vardır.
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Önerme 3.1.1. h∈C[0, 1] ise
[ϕp(D

α
0+κ(t))]

′
+ h(t) = 0, 0 < t < 1,

κ(0) = κ′(0) = 0, Dα−1
0+ κ(1) =

k−2∑
i=1

µiD
α−1
0+ κ(ζi).

(3.2)

p-Laplacian operatörlü kesirli sınır değer probleminin çözümü

κ(t) =
tα−1

∆1

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς − tα−1

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

− 1

Γ(α)

∫ t

0

(t− ς)α−1ϕq

(∫ ς

0

h(⊺)d⊺

)
dς (3.3)

ile ifade edilir. Burada ∆1 = Γ(α)

(
1−

k−2∑
i=1

µi

)
dir.

Kanıt. (3.2) de verilen sınır değer probleminin çözümü, Önerme 2.0.16 yardımı

ile

κ(t) = c1t
α−1 + c2t

α−2 + c3t
α−3 − Iα0+

(
ϕq

(∫ t

0

h(ς)dς

))
= c1t

α−1 + c2t
α−2 + c3t

α−3 − 1

Γ(α)

∫ t

0

(t− ς)α−1

(
ϕq

(∫ ς

0

h(⊺)d⊺

))
dς

olarak elde edilir. Burada, c1, c2 ve c3 keyfi sabitlerdir. İlk olarak κ(0) =

κ′(0) = 0 koşulu kullanılarak, c2 = c3 = 0 olarak elde edilir. Buradan;

κ(t) = c1t
α−1 − 1

Γ(α)

∫ t

0

(t− ς)α−1ϕq

(∫ ς

0

h(⊺)d⊺

)
dς (3.4)

elde edilir. Şimdi, (3.4) de elde edilen κ(t) fonksiyonu için aşağıdaki eşitliklikler

elde edilir:

Dα−1
0+ κ(1) = c1Γ(α)−

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς, (3.5)

k−2∑
i=1

µiD
α−1
0+ κ(ζi) = c1Γ(α)

k−2∑
i=1

µi −
k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς. (3.6)

Şimdi, (3.5) ve (3.6) eşitliklerinden yararlanarak, (3.2)’de ele alınan sınır

değer probleminin sınır koşulu Dα−1
0+ κ(1) =

k−2∑
i=1

µiD
α−1
0+ κ(ζi) kullanılarak;

c1 =
1

∆1

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς − 1

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς
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elde edilir. Böylece, (3.2) de verilen sınır değer probleminin çözümü aşağıdaki

gibidir:

κ(t) =
tα−1

∆1

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς − tα−1

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

− 1

Γ(α)

∫ t

0

(t− ς)α−1ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

Önerme 3.1.2. (H1) ve (H2) sağlansın. Bu durumda, κ(t) fonksiyonu, negatif

olmayan ve azalmayan bir fonksiyondur.

Kanıt. İlk olarak κ(t) fonksiyonunun negatif olmayan bir fonksiyon olduğunu

gösterelim;

κ(t) =
tα−1

∆1

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς − tα−1

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

− 1

Γ(α)

∫ t

0

(t− ς)α−1ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

≥ tα−1

∆1

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς − tα−1

∆1

k−2∑
i=1

µi

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

− tα−1

Γ(α)

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

=
tα−1

∆1

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς − tα−1

∆1

k−2∑
i=1

µi

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

− tα−1

∆1

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς +

tα−1

∆1

k−2∑
i=1

µi

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

= 0

Bu da κ(t) fonksiyonunun negatif olmadığını gösterir.

Şimdi, κ(t) fonksiyonunun azalmayan bir fonksiyon olduğunu gösterelim;

κ′(t) =
(α− 1)tα−2

∆1

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

− (α− 1)tα−2

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

− (α− 1)

Γ(α)

∫ t

0

(t− ς)α−2ϕq

(∫ ς

0

h(⊺)d⊺

)
dς



17

≥ (α− 1)tα−2

∆1

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

− (α− 1)tα−2

∆1

k−2∑
i=1

µi

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

− (α− 1)tα−2

Γ(α)

∫ t

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

=
(α− 1)tα−2

∆1

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

− (α− 1)tα−2

∆1

k−2∑
i=1

µi

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

− (α− 1)tα−2

∆1

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

+
(α− 1)tα−2

∆1

k−2∑
i=1

µi

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

= 0

Bu da κ(t) fonksiyonunun azalmayan bir fonksiyon olduğunu gösterir. Böylece,

κ(t) fonksiyonu negatif olmayan ve azalmayan bir fonksiyondur.

E1 = C1[0, 1] Banach uzayı üzerinde;

∥κ∥ = max

{
max
t∈[0,1]

|κ(t)|, max
t∈[0,1]

|κ′(t)|
}

normunu ele alalım ve P konisi

P = {κ ∈ E1 : κ(t) ≥ 0,κ′(t) ≥ 0, t ∈ [0, 1]}

olmak üzere T1 : P → E1 operatörü

T1κ(t) =
tα−1

∆1

∫ 1

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς − tα−1

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

− 1

Γ(α)

∫ t

0

(t− ς)α−1ϕq

(∫ ς

0

h(⊺)d⊺

)
dς

olarak tanımlansın.
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Önerme 3.1.3. (H1) ve (H2) koşullarını sağlansın. O halde T1 : P → P

tamamen sürekli bir operatördür.

Kanıt. Her κ ∈ P için Önerme 3.1.2 den T1κ(t) operatörünün negatif olmayan

ve azalmayan olduğu açıktır. Bu da T1 : P → P olduğunu gösterir. Ayrıca

(H2) koşulundan, T1 : P → P operatörünün sürekli olduğu açıktır. Şimdi T1

operatörünün kompakt bir operatör olduğunu gösterelim.

Ω, P konisinin sınırlı bir alt kümesi olsun. (H2) koşulundan yararlanarak,

κ∈Ω ve ⊺ ∈ [0, 1] için ⊺σ1f(t,κ(⊺),κ′(⊺)) ≤ L olacak şekilde L > 0 reel sayısı

vardır öyle ki

(T1κ)(t) =
tα−1

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− tα−1

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− 1

Γ(α)

∫ t

0

(t− ς)α−1ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

≤ tα−1

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

≤ tα−1

∆1

∫ 1

0

ϕq

(∫ 1

0

L⊺−σ1d⊺

)
dς

≤ (α− 1)Lq−1

∆1(1− σ1)q−1

elde edilir. Benzer şekilde;

(T1κ)′(t) =
(α− 1)tα−2

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− (α− 1)tα−2

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− (α− 1)

Γ(α)

∫ t

0

(t− ς)α−2ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

≤ (α− 1)tα−2

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

≤ (α− 1)tα−2

∆1

∫ 1

0

ϕq

(∫ 1

0

L⊺−σ1d⊺

)
dς

≤ (α− 1)Lq−1

∆1(1− σ1)q−1
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elde edilir. Böylece;

∥T1κ∥ ≤ (α− 1)Lq−1

∆1(1− σ1)q−1

elde edilir. O halde T1(Ω) düzgün sınırlıdır. Şimdi T1(Ω) nın aynı dereceden

sürekli olduğunu gösterilsin:

Her κ ∈ Ω, t1, t2 ∈ [0, 1] ve t1 < t2 için

|T1κ(t2)− T1κ(t1)|

=

∣∣∣∣tα−1
2

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− 1

Γ(α)

∫ t2

0

(t2 − ς)α−1ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− tα−1
1

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− tα−1
1

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

+
1

Γ(α)

∫ t1

0

(t1 − ς)α−1ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

∣∣∣∣
≤
∣∣tα−1

2 − tα−1
1

∣∣ ( 1

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− 1

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

)

+
1

Γ(α)

∣∣∣∣∫ t2

0

(t2 − ς)α−1ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

−
∫ t1

0

(t1 − ς)α−1ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

∣∣∣∣
≤
(
tα−1
2 − tα−1

1

)( 1

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

)
+

1

Γ(α)

×
(∫ t1

0

(
(t2 − ς)α−1 − (t1 − ς)α−1

)
ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

+

∫ t2

t1

(t2 − ς)α−1ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

)
≤
(
tα−1
2 − tα−1

1

)( 1

∆1

∫ 1

0

ϕq

(∫ 1

0

L⊺−σ1d⊺

)
dς

)
+

1

Γ(α)

(∫ t1

0

(
(t2 − ς)α−1 − (t1 − ς)α−1

)
ϕq

(∫ 1

0

L⊺−σ1d⊺

)
dς

+

∫ t2

t1

(t2 − ς)α−1ϕq

(∫ 1

0

L⊺−σ1d⊺

)
dς

)
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≤ Lq−1

∆1(1− σ1)q−1

(
tα−1
2 − tα−1

1

)
+

Lq−1

Γ(α + 1)(1− σ1)q−1
(tα2 − tα1 )

≤ Lq−1

∆1(1− σ1)q−1
2 (t2 − t1) +

Lq−1

Γ(α)(1− σ1)q−1
(t2 − t1) → 0 (t2 → t1)

elde edilir. Benzer şekilde

|(T1κ)′(t2)− (T1κ)′(t1)|

=

∣∣∣∣(α− 1)tα−2
2

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− (α− 1)tα−2
2

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− 1

Γ(α− 1)

∫ t2

0

(t2 − ς)α−2ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− (α− 1)tα−2
1

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

+
(α− 1)tα−2

1

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

+
1

Γ(α− 1)

∫ t1

0

(t1 − ς)α−2ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

∣∣∣∣
≤
∣∣tα−2

2 − tα−2
1

∣∣
×
(
(α− 1)

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

−(α− 1)

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

)

+
1

Γ(α− 1)

∣∣∣∣∫ t2

0

(t2 − ς)α−2ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

−
∫ t1

0

(t1 − ς)α−2ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

∣∣∣∣
≤
(
tα−2
2 − tα−2

1

)((α− 1)

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

)
+

1

Γ(α− 1)

(∫ t1

0

(
(t2 − ς)α−2 − (t1 − ς)α−2

)
ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

+

∫ t2

t1

(t2 − ς)α−2ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

)
≤
(
tα−2
2 − tα−2

1

)((α− 1)

∆1

∫ 1

0

ϕq

(∫ 1

0

L⊺−σ1d⊺

)
dς

)
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+
1

Γ(α− 1)

(∫ t1

0

(
(t2 − ς)α−2 − (t1 − ς)α−2

)
ϕq

(∫ 1

0

L⊺−σ1d⊺

)
dς

+

∫ t2

t1

(t2 − ς)α−2ϕq

(∫ 1

0

L⊺−σ1d⊺

)
dς

)
≤ Lq−1(α− 1)

∆1(1− σ1)q−1

(
tα−2
2 − tα−2

1

)
+

Lq−1

Γ(α)(1− σ1)q−1

(
tα−1
2 − tα−1

1

)
≤ Lq−1

∆1(1− σ1)q−1
2 (t2 − t1) +

Lq−1

Γ(α)(1− σ1)q−1
2 (t2 − t1) → 0 (t2 → t1)

elde edilir.

0 < a < 1 olacak şekilde [0, 1] üzerinde ta fonksiyonun düzgün sürekli-

liğinden ve Arzelá–Ascoli teoreminden T1 operatörünün tamamen sürekli bir

operatör olduğu sonucunu elde ederiz. İspat tamamlanmıştır.

3.2 Avery-Peterson Sabit Nokta Teoremi ve Uygulaması

Bu alt bölümde, (3.1) de verilen sınır değer probleminin en az üç

pozitif çözümünün varlığını göstermek için Avery-Peterson sabit nokta teoremi

kullanılacaktır. Daha sonrasında sonuçların uygulanabilirliğini göstermek için

bir örnek verilecektir.

P ,X Banach uzayında bir koni olsun. γ ve θ, P üzerinde negatif olmayan,

sürekli, konveks fonksiyoneller, ϕ, P üzerinde negatif olmayan, sürekli, konkav

bir fonksiyonel ve ψ, P üzerinde negatif olmayan, sürekli bir fonksiyonel olmak

üzere ϱ1, ϱ2, ϱ3 ve ϱ4 pozitif sayıları için aşağıdaki kümeler tanımlansın.

P (γ, ϱ4) = {κ ∈ P : γ(κ) < ϱ4} ,

P (γ,Φ, ϱ2, ϱ4) = {κ ∈ P : ϱ2 ≤ Φ(κ), γ(κ) ≤ ϱ4} ,

P (γ, θ,Φ, ϱ2, ϱ3, ϱ4) = {κ ∈ P : ϱ2 ≤ Φ(κ), θ(κ) ≤ ϱ3, γ(κ) ≤ ϱ4} ,

R(γ, ψ, ϱ1, ϱ4) = {κ ∈ P : ϱ1 ≤ ψ(κ), γ(κ) < ϱ4} .

(3.1) de verilen problemini incelemek için Avery ve Peterson’un aşağıdaki

sabit nokta teoremi kullanılacaktır.
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Teorem 3.2.1. ( Avery and Peterson (2001)) P , X Banach uzayında bir

koni olsun. 0 ≤ λ ≤ 1 için ψ(λx) ≤ λψ(κ) olacak şekilde γ ve θ, P

üzerinde negatif olmayan, sürekli, konveks fonksiyoneller, ϕ, P üzerinde negatif

olmayan, sürekli, konkav bir fonksiyonel ve ψ, P üzerinde negatif olmayan,

sürekli bir fonksiyonel olsun öyle ki bazı ϱ4 ve ω pozitif sayıları için her

κ ∈ P (γ, ϱ4) olacak şekilde

Φ(κ) ≤ ψ(κ) ve ∥κ∥ ≤ ωγ(κ)

dir. Varsayalım ki

T1 : P (γ, ϱ4) → P (γ, ϱ4)

tamamen sürekli bir operatör ve ϱ1 < ϱ2 olacak şekilde ϱ1, ϱ2, ϱ3 ve ϱ4 pozitif

sayıları var olsun öyle ki

(S1) κ ∈ P (γ, θ,Φ, ϱ2, ϱ3, ϱ4) için {κ ∈ P (γ, θ,Φ, ϱ2, ϱ3, ϱ4) : Φ(κ) > r} ≠ ∅

ve Φ(T1κ) ≥ ϱ2;

(S2) κ ∈ P (γ,Φ, ϱ2, ϱ4) ve θ(T1κ) > ϱ3 için Φ(T1κ) > ϱ4;

(S3) κ ∈ R(γ, ψ, ϱ1, ϱ4) with ψ(κ) = ϱ1 için 0 /∈ R(γ, ψ, ϱ1, ϱ4)

ve ψ(T1κ) < ϱ1.

koşulları sağlandığı takdirde T1 operatörünün, κ1,κ2,κ3 ∈ P (γ, ϱ4) olacak

şekilde en az üç sabit noktası vardır öyle ki

i = 1, 2, 3 için γ(κi) ≤ ϱ4

ve

ϱ2 < Φ(κ1), ϱ1 < ψ(κ2), γ(κ2) < ϱ2, ψ(κ3) < ϱ1

dir.

(3.1) de verilen sınır değer probleminin en az üç pozitif çözümünün

varlığını ispat etmek için P üzerinde Φ(κ) = min
t∈[ζk−2,1]

|κ(t)| konkav bir

fonksiyoneli, γ(κ) = max
t∈[0,1]

|κ′(t)| ve ψ(κ) = θ(κ) = max
t∈[0,1]

|κ(t)| konveks

fonksiyonellerini tanımlayalım.
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Teorem 3.2.2. Varsayalım ki ϱ1 < ϱ2, ϱ3 > max

{
1

ζα−1
k−2

, e1−
ζα−1
k−2
2

}
ϱ2 ve ϱ4 ≥

ϱ3 olacak şekilde ϱ1, ϱ2, ϱ3, ϱ4 pozitif sabitleri var olsun.

(H3) tσ1f(t,κ,κ′) ≤ (ϱ4ω1)
p−1, (t,κ,κ′) ∈ [0, 1]× [0, ϱ4]× [0, ϱ4];

(H4) f(t,κ,κ′) > (ϱ2ω2)
p−1, (t,κ,κ′) ∈ [0, 1]× [ϱ2, ϱ3]× [ϱ2, ϱ3];

(H5) tσ1f(t,κ,κ′) < (ϱ1ω1)
p−1, (t,κ,κ′) ∈ [0, 1]× [0, ϱ1]× [0, ϱ1].

Burada ω1 =
∆1(1− σ1)

q−1

(α− 1)
ve ω2 =

∆1q

ζα−1
k−2 − ζα+q−1

k−2

olmak üzere f

fonksiyonu yukarıdaki koşulları sağladığı takdirde (3.1) de verilen sınır değer

probleminin en az üç pozitif κ1,κ2 ve κ3 çözümü vardır öyle ki;

i = 1, 2, 3, için γ(κi) ≤ ϱ4,

ve

ϱ2 < Φ(κ1), ϱ1 < ψ(κ2), γ(κ2) < ϱ2, ψ(κ3) < ϱ1

dir

Kanıt. İlk olarak T1 : P (γ, ϱ4) → P (γ, ϱ4) olduğunu gösterelim:

(H3) koşulundan, κ ∈ P (γ, ϱ4) için,

γ(T1κ(t)) = max
t∈[0,1]

|(T1κ)′(t)|

=
(α− 1)

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− (α− 1)

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− (α− 1)

Γ(α)

∫ 1

0

(1− ς)α−2ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

≤ (α− 1)

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

≤ (α− 1)

∆1

∫ 1

0

ϕq

(∫ 1

0

(ϱ4ω1)
p−1⊺−σ1d⊺

)
dς

=
(α− 1)ϱ4ω1

∆1(1− σ1)q−1

= ϱ4
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elde edilir. Böylece T1 : P (γ, ϱ4) → P (γ, ϱ4) olduğu görülür.

Şimdi (S1), (S2) ve (S3) koşullarının sağlandığını gösterelim. Herhangi

bir κ ∈ P ve t ∈ [0, 1] için κ(t) = ϱ4e
t−0,5ζα−1

k−2 ele alınsın. Basit hesaplamalar

ile γ(κ) < ϱ3, ψ(κ) = θ(κ) < ϱ3 and Φ(κ) > ϱ4 olduğu açıktır. Buradan

{κ ∈ P (γ, θ,Φ, ϱ2, ϱ3, ϱ4) : Φ(κ) > ϱ2} ≠ ∅

olduğu elde edilir. (H4) koşulunu kullanarak,

Φ(T1κ(t)) = min
t∈[ζk−2,1]

|T1κ(t)| = |T1κ(ζk−2)|

=
ζα−1
k−2

∆1

∫ 1

0

ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

−
ζα−1
k−2

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− 1

Γ(α)

∫ ζk−2

0

(ζk−2 − s)α−1ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

≥
ζα−1
k−2

∆1

∫ 1

0

ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

−
ζα−1
k−2

∆1

k−2∑
i=1

µi

∫ ζk−2

0

ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

−
ζα−1
k−2

Γ(α)

∫ ζk−2

0

ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

=
ζα−1
k−2

∆1

∫ 1

ζk−2

ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

≥
ζα−1
k−2

∆1

∫ 1

ζk−2

ϕq

(∫ ς

0

(ω2ϱ2)
p−1d⊺

)
dς

≥
ζα−1
k−2

∆1

∫ 1

ζk−2

ϕq
(
(ω2ϱ2)

p−1ς
)
dς

=
ω2ϱ2(ζ

α−1
k−2 − ζα+q−1

k−2 )

∆1q

= ϱ2

elde edilir. Böylelikle (S1) koşulunun sağlandığı gösterilmiştir.
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Şimdi κ ∈ P (γ,Φ, ϱ2, ϱ4) ve θ(T1κ(t)) > ϱ3 olsun. T1κ ∈ P olduğunu

düşünelim,

θ(T1κ(t)) = max
t∈[0,1]

|T1κ(t)| = |T1κ(1)|

=
1

∆1

∫ 1

0

ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− 1

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− 1

Γ(α)

∫ 1

0

(1− ς)α−1ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

ve

Φ(T1κ(t)) = min
t∈[ζk−2,1]

|T1κ(t)| = |T1κ(ζk−2)|

=
ζα−1
k−2

∆1

∫ 1

0

ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

−
ζα−1
k−2

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

−
ζα−1
k−2

Γ(α)

∫ ζk−2

0

(1− s

ζk−2

)α−1ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

≥ ζα−1
k−2

(
1

∆1

∫ 1

0

ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− 1

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− 1

Γ(α)

∫ 1

0

(1− ς)α−1ϕq

(∫ ς

0

f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

)
= ζα−1

k−2 (θ(T1κ(t)))

≥ ζα−1
k−2 ϱ3

= ϱ2

Böylelikle (S2) koşulunun sağlandığı gösterilmiştir.

Şimdi (S3) koşulunun sağlandığını gösterelim. Varsayalım ki κ ∈ R(γ, ψ, ϱ1, ϱ4)

ve ψ(κ) = ϱ1 olsun. (H5) koşulunu kullanarak

ψ(T1κ(t)) = max
t∈[0,1]

|T1κ(t)| = |T1κ(1)|

=
1

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς
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− 1

∆1

k−2∑
i=1

µi

∫ ζi

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

− 1

Γ(α)

∫ 1

0

(1− ς)(α−1)ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

≤ 1

∆1

∫ 1

0

ϕq

(∫ ς

0

⊺−σ1⊺σ1f(⊺,κ(⊺),κ′(⊺))d⊺

)
dς

≤ 1

∆1

∫ 1

0

ϕq

(∫ ς

0

(ϱ1ω1)
p−1⊺−σ1d⊺

)
dς

=
(α− 1)ϱ1ω1

∆1(1− σ1)q−1

= ϱ1

elde edilir. Böylelikle (S3) koşulunun sağlandığı gösterilmiştir. Teorem 3.2.2

den, (3.1) de verilen sınır değer probleminin en az üç pozitif κ1, κ2 ve κ3

çözümüne sahip olduğunu elde ederiz öyle ki

i = 1, 2, 3, için γ(κi) ≤ ϱ4,

ve

ϱ2 < Φ(κ1), ϱ1 < ψ(κ2), γ(κ2) < ϱ2, ψ(κ3) < ϱ1

dir.

Örnek 3.2.1. Aşağıdaki sınır değeri problemini ele alalım
[
ϕp
(
Dα

0+κ(t)
)]′

+ f(t,κ(t),κ′(t)) = 0, 0 < t < 1,

κ(0) = κ′(0) = 0, Dα−1
0+ κ(1) =

k−2∑
i=1

µiD
α−1
0+ κ(ζi).

(3.7)

Burada
√
tf(t,κ, y), [0, 1] × R+ × R+ üzerinde sürekli bir fonksiyondur

ve (t,κ, y) ∈ (0, 1]× R+ × R+ için
√
tf(t,κ, y) ≤ 1500 olsun öyle ki

f(t,κ, y) =


1√
t
(eκ + ey), (t,κ, y) ∈ (0, 1]× [0, 3]× [0, 3],

50√
t
(e

√
κ + e

√
y), (t,κ, y) ∈ (0, 1]× [5, 17]× [5, 17],

1499√
t
, (t,κ, y) ∈ (0, 1]× [100,∞)× [100,∞)

dir. Burada α = 7
3
, p = 3, σ1 = 1

2
, k = 4, ζ1 = 1

3
, ζ2 = 2

3
, a1 = 1

2
ve a2 = 1

4

olsun. Ayrıca ϱ1 = 3, ϱ2 = 5, ϱ3 = 17, ϱ4 = 150 olsun. Basit hesaplamalar
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ile Teorem 3.2.2 de ki koşulların sağlandığı elde edilebilir. Böylelikle (3.7) de

verilen sınır değer probleminin en az üç pozitif κ1, κ2 ve κ3 çözümüne sahip

olduğunu elde ederiz öyle ki

i = 1, 2, 3 için γ(xi) ≤ 150

ve

5 < Φ(κ1), 3 < ψ(κ2), γ(κ2) < 5, ψκ3) < 3

dir.
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4 p-LAPLACİAN OPERATÖRLÜ SİNGÜLER

ψ-HİLFER KESİRLİ DİFERANSİYEL DENK-

LEMİN VARLIK VE TEKLİK SONUÇLARI

Bu bölümde, p-Laplacian operatörlü singüler ψ-Hilfer kesirli diferansiyel

denklemin çözümü elde edilmiştir ve daha sonra elde edilen bu çözüm için

uygun bir Green fonksiyonu elde edilmiştir.

4.1 Sınır Değer Probleminin Çözümü ve Green Fonksi-

yonu

Aşağıda verilen singüler ψ-Hilfer kesirli sınır değer problemi ele alınsın.
HDα1,β1;ψ

a+

(
ϕp

(
HDα2,β2;ψ

a+ κ(t)
))

+ f(t,κ(t)) = 0, a < t < b,

HDα2,β2;ψ
a+ κ(a) = 0, κ(a) = 0, I2−γ2,ψa+ κ(b) =

l∑
j=1

ηjI
φj ,ψ

a+ κ(ξj).
(4.1)

Burada, HDα,β;ψ
a+ , α mertebeden ve β parametreli sol-yanlı ψ-Hilfer

türevi ve Iα,ψa+ , α mertebeden sol-yanlı ψ-Riemann-Liouville kesirli integralini

göstermektedir. n = 1, 2 için n−1 < αn ≤ n, 0 ≤ βn ≤ 1, γn = αn+βn(n−αn).

j = 1, 2, ..., l (l ∈ N) için ηi ∈ R, a < ξ1 < ξ2 < · · · < ξl < b, φj > 0,

ϕp(ς) = ς.|ς|p−2(ς ∈ R \ {0}), ϕp(0) = 0, p > 1, ϕ−1
p (ς) = ϕq(ς), 1

p
+ 1

q
= 1,

f : (a, b]× R → R sürekli bir fonksiyon ve limt→a+ f(t, .) = +∞ dur.
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İlk olarak, (4.1) lineer olmayan sınır değer probleminden hareketle elde

edilen lineer sınır değer probleminin çözümü elde edilecektir.

Önerme 4.1.1. h ∈ C([a, b],R) ve n = 1, 2 için n− 1 < αn ≤ n, 0 ≤ βn ≤ 1,

γn = αn + βn(n− αn) ise
HDα1,β1,ψ

a+

(
ϕp

(
HDα2,β2,ψ

a+ κ(t)
))

+ h(t) = 0, a < t < b,

HDα2,β2,ψ
a+ κ(a) = 0, κ(a) = 0, I2−γ2,ψa+ κ(b) =

l∑
j=1

ηjI
φj ,ψ

a+ κ(ξj)
(4.2)

p-Laplacian operatörlü ψ-Hilfer kesirli sınır değer probleminin çözümü

κ(t) =
ψγ2−1
a (t)

∆2Γ(γ2)Γ(2 + α2 − γ2)

×
∫ b

a

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

− ψγ2−1
a (t)

∆2Γ(γ2)

l∑
j=1

ηj
1

Γ(α2 + φj)

×
∫ ξi

a

ψα2+φj−1
ς (ξi) ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

− 1

Γ(α2)

∫ t

a

ψα2−1
ς (t)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

(4.3)

ile ifade edilir. Burada

∆2 = ψa(b)−
l∑

j=1

ηj
1

Γ(φj + γ2)
ψφj+γ2−1
a (ξj) ̸= 0

olduğu kabul edilmektedir.

Kanıt.
(
ϕp

(
HDα2,β2,ψ

a+ κ(t)
))

= ν(t) olsun. Burada (4.2) de verilen sınır değer

problemi, iki ayrı problem olarak ele alınabilir.
HDα1,β1,ψ

a+ v(t) + h(t) = 0,

ν(a) = 0

(4.4)

ve 
ϕp

(
HDα2,β2,ψ

a+ κ(t)
)
= ν(t),

κ(a) = 0, I2−γ2a+ κ(b) =
l∑

j=1

ηjI
φj

a+κ(ξj).
(4.5)
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(4.4) de verilen sınır değer probleminin çözümü aşağıdaki gibi elde edilir:

ν(t) = − 1

Γ(α1)

∫ t

a

ψα1−1
ς (t)h(ς)ψ′(ς)dς

Şimdi, (4.5) de verilen sınır değer probleminin çözümü, Önerme 2.0.19

yardımı ile

κ(t) = d1
ψγ2−2
a (t)

Γ(γ2 − 1)
+ d2

ψγ2−1
a (t)

Γ(γ2)
+

1

Γ(α2)

∫ t

a

ψα2−1
ς (t)ϕq(ν(ς))ψ

′(ς)dς (4.6)

olarak elde edilir. Burada d1 ve d2 keyfi sabitlerdir. İlk olarak, κ(a) = 0

koşulunu kullanarak d1 = 0 olarak elde edilir. Buradan;

κ(t) = d2
ψγ2−1
a (t)

Γ(γ2)
+

1

Γ(α2)

∫ t

a

ψα2−1
ς (t)ϕq(ν(ς))ψ

′(ς)dς (4.7)

elde edilir. Şimdi, (4.7) de elde edilen κ(t) fonksiyonu icin aşağıdaki eşitliklikler

elde edilir:

I2−γ2a+ κ(b) = ψa(b)d2 +
1

Γ(2 + α2 − γ2)

∫ b

a

ψ1+α2−γ2
ς (b)ϕq(ν(ς))ψ

′(ς)dς (4.8)

ve

l∑
j=1

ηjI
φj

a+κ(ξj) = d2

l∑
j=1

ηj
1

Γ(φj + γ2)
ψφj+γ2−1
a (ξj)

+
l∑

j=1

ηj
1

Γ(α2 + φj)

∫ ξj

a

ψα2+φj−1
ς (ξj)ϕq(ν(ς))ψ

′(ς)dς (4.9)

Şimdi, (4.8) ve (4.9) eşitliklerinden yararlanarak, (4.7) de ele alınan sınır

değer probleminin sınır koşulu I2−γ2κ(b) =
l∑

j=1

ηjI
φjκ(ξj) kullanılarak,

d2 =
1

∆2

l∑
j=1

ηj
1

Γ(α2 + φj)

∫ ξj

a

ψα2+φj−1
ς (ξj)ϕq(ν(ς))ψ

′(ς)dς

− 1

∆2Γ(2 + α2 − γ2)

∫ b

a

ψ1+α2−γ2
ς (b)ϕq(ν(ς))ψ

′(ς)dς

elde edilir.
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Böylece (4.2) de verilen sınır değer probleminin çözümü aşağıdaki gibidir:

κ(t) =
ψγ2−1
a (t)

∆2Γ(γ2)Γ(2 + α2 − γ2)

×
∫ b

a

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

− ψγ2−1
a (t)

∆2Γ(γ2)

l∑
j=1

ηj
1

Γ(α2 + φj)

×
∫ ξj

a

ψα2+φj−1
ς (ξj)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

− 1

Γ(α2)

∫ t

a

ψα2−1
ς (t)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς.

Önerme 4.1.2. (4.3) de gösterilen, (4.2) de ki problemin çözümü olan κ(t)

fonksiyonu aşağıdaki gibi yazılabilir:

κ(t) =
∫ b

a

G(t, ς)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς, t ∈ [a, b],

(4.10)

burada

G1(t, ς) =



ψγ2−1
a (t)ψ1+α2−γ2

ς (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)
− ψγ2−1

a (t)

∆2Γ(γ2)

l∑
j=1

ηj
ψ
α2+φj−1
ς (ξj)

Γ(α2 + φj)
−
ψα2−1
ς (t)

Γ(α2)
,

a ≤ ς ≤ t ≤ b, ς ≤ ξj,

ψγ2−1
a (t)ψ1+α2−γ2

ς (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)
−
ψα2−1
ς (t)

Γ(α2)
, a ≤ ξj ≤ ς ≤ t ≤ b,

ψγ2−1
a (t)ψ1+α2−γ2

ς (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)
− ψγ2−1

a (t)

∆2Γ(γ2)

l∑
j=1

ηj
ψ
α2+φj−1
ς (ξj)

Γ(α2 + φj)
,

a ≤ t ≤ ς ≤ ξj ≤ b,

ψγ2−1
a (t)ψ1+α2−γ2

ς (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)
, a ≤ t ≤ ς ≤ b, ξj ≤ ς,

(4.11)

dir.
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Kanıt. t ≤ ξi için;

κ(t) =
ψγ2−1
a (t)

∆Γ(γ2)Γ(2 + α2 − γ2)

×
[∫ t

a

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+

∫ ξi

t

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+

∫ b

ξi

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

]
− ψγ2−1

a (t)

∆Γ(γ2)

ȷ∑
i=1

ηi
1

Γ(α2 + φi)

×
[∫ t

a

ψα2+φi−1
ς (ξi)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+

∫ ξi

t

ψα2+φi−1
ς (ξi)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

]
− 1

Γ(α2)

∫ t

a

ψα2−1
ς (t)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

=

∫ t

a

[
ψγ2−1
a (t)ψ1+α2−γ2

ς (b)

∆Γ(γ2)Γ(2 + α2 − γ2)
− ψγ2−1

a (t)

∆Γ(γ2)

ȷ∑
i=1

ηi
ψα2+φi−1
ς (ξi)

Γ(α2 + φi)

−
ψα2−1
ς (t)

Γ(α2)

]
ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+

∫ ξi

t

[
ψγ2−1
a (t)ψ1+α2−γ2

ς (b)

∆Γ(γ2)Γ(2 + α2 − γ2)
− ψγ2−1

a (t)

∆Γ(γ2)

ȷ∑
i=1

ηi
ψα2+φi−1
ς (ξi)

Γ(α2 + φi)

]

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+

∫ b

ξi

ψγ2−1
a (t)ψ1+α2−γ2

ς (b)

∆Γ(γ2)Γ(2 + α2 − γ2)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

=

∫ b

a

G(t, ς)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)λ(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

ξi ≤ t için;

κ(t) =
ψγ2−1
a (t)

∆Γ(γ2)Γ(2 + α2 − γ2)

×
[∫ ξi

a

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+

∫ t

ξi

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς
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+

∫ b

t

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

]
− ψγ2−1

a (t)

∆Γ(γ2)

ȷ∑
i=1

ηi
1

Γ(α2 + φi)

×
∫ ξi

a

ψα2+φi−1
ς (ξi)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

− 1

Γ(α2)

[∫ ξi

a

ψα2−1
ς (t)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+

∫ t

ξi

ψα2−1
ς (t)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

]
=

∫ ξi

a

[
ψγ2−1
a (t)ψ1+α2−γ2

ς (b)

∆Γ(γ2)Γ(2 + α2 − γ2)
− ψγ2−1

a (t)

∆Γ(γ2)

ȷ∑
i=1

ηi
ψα2+φi−1
ς (ξi)

Γ(α2 + φi)

−
ψα2−1
ς (t)

Γ(α2)

]
ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+

∫ t

ξi

[
ψγ2−1
a (t)ψ1+α2−γ2

ς (b)

∆Γ(γ2)Γ(2 + α2 − γ2)
−
ψα2−1
ς (t)

Γ(α2)

]
ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+

∫ b

t

ψγ2−1
a (t)ψ1+α2−γ2

ς (b)

∆Γ(γ2)Γ(2 + α2 − γ2)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

=

∫ b

a

G(t, ς)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)λ(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

İspat tamamlanmıştır.

Önerme 4.1.3. (4.11) de verilen, G1(t, ς), Green fonksiyonu [a, b] × [a, b]

üzerinde sürekli bir fonksiyondur ve

G1(t, ς) ≤
ψα2
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

eşitsizliğini sağlar.
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Önerme 4.1.4. 𭟋 : (a, b] → R sürekli ve limt→a+𭟋(t) = ∞ olsun. 0 <

σ2 < α1 olmak üzere ψσ2a (t)𭟋(t) fonksiyonunun [a, b] üzerinde sürekli olduğunu

varsayalım. O halde,

H(t) =
1

Γ(α1)

∫ t

a

ψα1−1
ς (t)𭟋(ς)ψ′(ς)dς,

fonksiyonu [a, b] üzerinde süreklidir.

Kanıt. İspat üç duruma ayrılmıştır:

Durum 1. ψσ2a (t)𭟋(t), [a, b] aralığı üzerinde sürekli oldugundan ∀t ∈ [a, b] için

ψσ2a (t) |𭟋(t)| ≤ M olacak şekilde M > 0 vardır. t0 = a ve ∀t ∈ (a, b] olmak

üzere:

|H(t)−H(a)|

=

∣∣∣∣ 1

Γ(α1)

∫ t

a

ψα1−1
ς (t)ψ−σ2

a (ς)ψσ2a (ς)𭟋(ς)ψ′(ς)dς

∣∣∣∣
≤ 1

Γ(α1)

∫ t

a

ψα1−1
ς (t)ψ−σ2

a (ς)ψσ2a (ς) |𭟋(ς)|ψ′(ς)dς

≤ M

Γ(α1)

∫ t

a

ψα1−1
ς (t)ψ−σ2

a (ς)ψ′(ς)dς

=
M

Γ(α1)
ψα1−σ2
a (t)B(α1,−σ2 + 1)

=Mψα1−σ2
a (t)

Γ(−σ2 + 1)

Γ(α1 − σ2 + 1)
→ 0, (t→ a)

B beta fonksiyonu olmak üzere yukarıdaki eşitsizlik elde edilir.

Durum 2. t0 ∈ (a, b) ve ∀t ∈ (a, b] olmak üzere;

|H(t)−H(t0)|

=

∣∣∣∣ 1

Γ(α1)

∫ t

a

ψα1−1
ς (t)ψ−σ2

a (ς)ψσ2a (ς)𭟋(ς)ψ′(ς)dς

− 1

Γ(α1)

∫ t0

a

ψα1−1
ς (t0)ψ

−σ2
a (ς)ψσ2a (ς)𭟋(ς)ψ′(ς)dς

∣∣∣∣
=

∣∣∣∣ 1

Γ(α1)

∫ t0

a

ψα1−1
ς (t)ψ−σ2

a (ς)ψσ2a (ς)𭟋(ς)ψ′(ς)dς

+
1

Γ(α1)

∫ t

t0

ψα1−1
ς (t)ψ−σ2

a (ς)ψσ2a (ς)𭟋(ς)ψ′(ς)dς

− 1

Γ(α1)

∫ t0

a

ψα1−1
ς (t0)ψ

−σ2
a (ς)ψσ2a (ς)𭟋(ς)ψ′(ς)dς

∣∣∣∣
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=

∣∣∣∣ 1

Γ(α1)

∫ t0

a

(
ψα1−1
ς (t)− ψα1−1

ς (t0)
)
ψ−σ2
a (ς)ψσ2a (ς)𭟋(ς)ψ′(ς)dς

+
1

Γ(α1)

∫ t

t0

ψα1−1
ς (t)ψ−σ2

a (ς)ψσ2a (ς)𭟋(ς)ψ′(ς)dς

∣∣∣∣
≤ M

Γ(α1)

∫ t0

a

(
ψα1−1
ς (t)− ψα1−1

ς (t0)
)
ψ−σ2
a (ς)ψ′(ς)dς

+
M

Γ(α1)

∫ t

t0

ψα1−1
ς (t)ψ−σ2

a (ς)ψ′(ς)dς

=
M

Γ(α1)
ψα1−σ2
a (t)B(α1,−σ2 + 1)− M

Γ(α1)
ψα1−σ2
a (t0)B(α1,−σ2 + 1)

=Mψα1−σ2
a (t)

Γ(−σ2 + 1)

Γ(α1 − σ2 + 1)
−Mψα1−σ2

a (t0)
Γ(−σ2 + 1)

Γ(α1 − σ2 + 1)
→ 0, (t→ t0)

Durum 3. t0 ∈ (a, b] ve ∀t ∈ [a, t0) olmak üzere ispat Durum 2 dekine

benzerdir. Böylece ispat tamamlanmış olur.

E2 = C[a, b] Banach uzayı üzerinde

∥κ∥ = max
a≤t≤b

|κ(t)|

normu ele alınsın ve T2 operatörü,

(T2κ)(t) =
∫ b

a

G1(t, ς)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

olarak tanımlansın.
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Önerme 4.1.5. 0 < σ2 < α1, f : (a, b] × R → R sürekli bir fonksiyon ve

limt→a+ f(t, .) = +∞ olsun. Eğer ψσ2a (t)f(t,κ(t)) fonksiyonu [a, b]×R üzerinde

sürekli ise, o zaman T2 : E2 → E2 tamamen sürekli bir operatördür.

Kanıt. Önerme 4.1.3 ve Önerme 4.1.4 den T2 operatörünün sürekli olduğu

açıktır. Şimdi T2 operatörünün kompakt bir operatör olduğunu gösterelim.

Ω, E2 nin sınırlı bir alt kümesi olsun, Bu durumda, κ ∈ Ω ve ⊺ ∈ [a, b] için

ψσ2a (⊺) |f(t,κ(⊺))| ≤ M olacak şekilde M > 0 reel sayısı vardır. Önerme4.1.3

yardımıyla,

|(T2κ)(t)|

≤
∫ b

a

G1(t, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺,κ(⊺))|ψ′(⊺)d⊺

)
ψ′(ς)dς

≤
(

ψα2
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)
×
∫ b

a

ϕq

(
M

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

≤

(
ψ
α2+1+(α1−σ2)(q−1)
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)(
MΓ(−σ2 + 1)

Γ(α1 − σ2 + 1)

)q−1

elde edilir. O halde T (Ω) düzgün sınırlıdır. Şimdi T (Ω) nın aynı dereceden

sürekli olduğu gösterilsin.

Her κ ∈ Ω, t1, t2 ∈ [a, b] ve t1 < t2 için

|(T2κ)(t2)− (T2κ)(t1)|

≤
∣∣∣∣ (ψγ2−1

a (t2)− ψγ2−1
a (t1))

∆2Γ(γ2)Γ(2 + α2 − γ2)

(∫ b

a

ψ1+α2−γ2
ς (b)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−k

a (⊺)ψka(⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

−
l∑

i=1

ηi
1

Γ(α2 + φi)

∫ ξi

a

ψα2+φi−1
ς (ξi)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−k

a (⊺)ψka(⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

)∣∣∣∣
+

∣∣∣∣ 1

Γ(α2)

∫ t2

a

ψα2−1
ς (t2)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−k

a (⊺)ψka(⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς
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− 1

Γ(α2)

∫ t1

a

ψα2−1
ς (t1)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−k

a (⊺)ψka(⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

∣∣∣∣
≤ (ψγ2−1

a (t2)− ψγ2−1
a (t1))

∆2Γ(γ2)

(∫ b

a

ψ1+α2−γ2
ς (b)

Γ(2 + α2 − γ2)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−k

a (⊺)ψka(⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

+
1

Γ(α2)

∫ t1

a

(
ψα2−1
ς (t2)− ψα2−1

ς (t1)
)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−k

a (⊺)ψka(⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

+
1

Γ(α2)

∫ t2

t1

ψα2−1
ς (t2)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−k

a (⊺)ψka(⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ (ψγ2−1
a (t2)− ψγ2−1

a (t1))

∆2Γ(γ2)

(
Mψα1−k

a (b)Γ(−k + 1)

Γ(α1 − k + 1)

)q−1
ψ2+α2−γ2
a (b)

Γ(3 + α2 − γ2)

+
ψα2
a (t2)

Γ(α2 + 1)

(
Mψα1−k

a (b)Γ(−k + 1)

Γ(α1 − k + 1)

)q−1

− ψα2
a (t1)

Γ(α2 + 1)

(
Mψα1−k

a (b)Γ(−k + 1)

Γ(α1 − k + 1)

)q−1

→ 0, (t2 → t1)

Arzelá–Ascoli teoreminden T2 : E2 → E2 operatörü tamamen sürekli bir

operatördür.
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4.2 Banach Daraltan Dönüşüm Prensibi ve Uygulaması

Bu alt bölümde (4.1) de verilen p-Laplacian operatörlü tekil (singüler)

kesirli sınır değer probleminin, p nin durumlarına göre en az bir çözümünün

varlığı ve tekliği için gerekli koşullar Banach daraltan dönüşüm prensibi ile elde

edilecektir. Sonuçların uygulanabilirliğini göstermek için örnekler verilecektir.

Önerme 4.2.1. (Granas and Dugundji, 2003). (Banach Daraltan Dönü-

şüm Prensibi) X, bir Banach uzayı B nin boştan farklı, kapalı bir alt kümesi

olsun. O zaman herhangi bir T : X → X daraltan dönüşümü bir sabit noktaya

sahiptir.

Teorem 4.2.2. 1 < p < 2 olsun ve aşağıdaki koşullar sağlansın:

(H6) Negatif olmayan bir g ∈ L[a, b] fonksiyonu ve bir pozitif M sabiti vardır

öyleki: her (t,κ) ∈ [a, b]× R için ψσ2a (t) |f(t,κ)| ≤ g(t) ve

0 <
1

Γ(α1)

∫ b

a

ψα1−1
t (b)ψ−σ2

a (t)g(t)ψ′(t)dt ≤M.

(H7) Her t ∈ [a, b] ve κ, y ∈ R için

ψσ2a (t) |f(t,κ)− f(t, y)| ≤ z1 |κ − y|

ve

0 < z1 <
1

2
(
(q − 1)M q−2

(
ψ
α1+α2−σ2+1
a (b)
∆2Γ(2+α2−γ2)

)(
Γ(−σ2+1)

Γ(α1−σ2+1)

)) (4.12)

olacak şekilde bir z1 sabiti vardır.

Bu durumda, (4.1) de verilen kesirli mertebeden sınır değer problemi tek bir

çözüme sahiptir.

Kanıt. İlk olarak (H6) koşulundan,∣∣∣∣ 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

∣∣∣∣
≤ 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺,κ(⊺))|ψ′(⊺)d⊺

≤ 1

Γ(α1)

∫ b

a

ψα1−1
⊺ (b)ψ−σ2

a (⊺)g(⊺)ψ′(⊺)d⊺
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≤M

elde edilir. Daha sonra,

r1 ≥
(

ψα2+1
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)
M q−1

olacak şekilde Br1 = {κ ∈ C([a, b],R) : ∥κ∥ ≤ r1} yuvarı tanımlansın.

Şimdi Önerme 4.1.3 ve (H6) koşulu yardımıyla T2Br1 ⊂ Br1 olduğunu

gösterelim;

|(T2κ)(t)|

≤
∫ b

a

G1(t, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺,κ(⊺))|ψ′(⊺)d⊺

)
ψ′(ς)dς

≤
(

ψα2+1
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)
M q−1

≤ r1,

dir. O halde T2Br1 ⊂ Br1 dir.

Son olarak, T2 operatörünün daraltan bir dönüşüm olduğunu gösterelim.

Önerme2.0.21, Önerme 2.0.24, Önerme 4.1.3 ve (H7) koşulunu kullanarak, her

t ∈ [a, b] ve κ, y ∈ (C[a, b],R) için

|(T2κ)(t)− (T2y)(t)|

≤
∫ b

a

G1(t, ς)∣∣∣∣ϕq ( 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
−ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺, y(⊺))ψ′(⊺)d⊺

)∣∣∣∣ψ′(ς)dς

≤ (q − 1)M q−2

(
ψα2
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)
×
∫ b

a

∣∣∣∣ 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

− 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺, y(⊺))ψ′(⊺)d⊺

∣∣∣∣ψ′(ς)dς

≤ (q − 1)M q−2

(
ψα2
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)∫ b

a

(
1

Γ(α1)



40∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺,κ(⊺))− f(⊺, y(⊺))|ψ′(⊺)d⊺
)
ψ′(ς)dς

≤ (q − 1)M q−2

(
ψα2
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)
z1 ∥κ − y∥

×
∫ b

a

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ (q − 1)M q−2

(
ψα1+α2−σ2+1
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)(
Γ(−σ2 + 1)

Γ(α1 − σ2 + 1)

)
z1 ∥κ − y∥

≤ ∥κ − y∥
2

elde edilir. O halde T2 operatörü daraltan bir dönüşümdür.

Böylelikle Banach daraltan dönüşüm prensibine göre, (4.1) de ele alınan

kesirli sınır değer probleminin tek bir çözümü vardır.

Teorem 4.2.3. p > 2 olsun ve aşağıdaki koşullar sağlansın :

(H8) Her t ∈ [a, b] ve κ, y ∈ R için

f(t,κ) ≥ mψδ−σ2a (t) (4.13)

olacak şekilde δ < min

{
(α1 + σ2),

(α1 − σ2)(q − 1)

2− q

}
ve m > 0 sabitleri

vardır.

(H9) Her t ∈ [a, b] ve κ, y ∈ R için

ψσ2a (t) |f(t,κ)− f(t, y)| ≤ z2 |κ − y|

ve

0 < z2 <

(
mΓ(δ−σ2+1)

Γ(α1+δ−σ2+1)

)2−q
2
(
(q − 1)

(
ψ
(α1+δ−σ2)(q−2)+α1+α2−σ2+1
a (b)

∆2Γ(γ2)Γ(2+α2−γ2)

)(
Γ(−σ2+1)

Γ(α1−σ2+1)

)) (4.14)

olacak şekilde bir z2 sabiti vardır.

Bu durumda, (4.1) de verilen kesirli sınır değer probleminin tek bir çözümü

vardır.
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Kanıt. İlk olarak (H8) koşulundan,∣∣∣∣ 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

∣∣∣∣
≥ m

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψδ−σ2a (⊺)ψ′(⊺)d⊺

=
mΓ(δ − σ2 + 1)

Γ(α1 + δ − σ2 + 1)
ψα1+δ−σ2
a (ς)

elde edilir. Daha sonra,

r2 ≥ max

1− f0
z2

,
f0

(
ψ
α2+1+(α1−σ2)(q−1)
a (b)
∆2Γ(γ2)Γ(2+α2−γ2)

)(
Γ(−σ2+1)

Γ(α1−σ2+1)

)q−1

1− z2

(
ψ
α2+1+(α1−σ2)(q−1)
a (b)
∆2Γ(γ2)Γ(2+α2−γ2)

)(
Γ(−σ2+1)

Γ(α1−σ2+1)

)q−1


olacak şekilde Br2 = {κ ∈ C([a, b],R) : ∥κ∥ ≤ r2} yuvarı tanımlansın. Burada

f0 = max
t∈[a,b]

ψσ2a (t) |f(t, 0)| dır. Şimdi Önerme 4.1.3 ve (H8) koşulu yardımıyla

T2Br2 ⊂ Br2 olduğunu gösterelim:

|(T2κ)(t)|

≤
∫ b

a

G1(t, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺,κ(⊺))− f(⊺, 0)|ψ′(⊺)d⊺

+
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺, 0)|ψ′(⊺)d⊺

)
ψ′(ς)dς

≤

(
ψ
α2+1+(α1−σ2)(q−1)
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)(
Γ(−σ2 + 1)

Γ(α1 − σ2 + 1)

)q−1

(z2 ∥κ∥+ f0)
q−1

≤

(
ψ
α2+1+(α1−σ2)(q−1)
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)(
Γ(−σ2 + 1)

Γ(α1 − σ2 + 1)

)q−1

(z2r2 + f0)
q−1

≤

(
ψ
α2+1+(α1−σ2)(q−1)
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)(
Γ(−σ2 + 1)

Γ(α1 − σ2 + 1)

)q−1

(z2r2 + f0)

≤ r2

dir. O halde T2Br2 ⊂ Br2 dir.
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Son olarak, T2 operatörünün daraltan bir dönüşüm olduğunu gösterelim.

Önerme2.0.21, Önerme 2.0.24, Önerme 4.1.3 ve (H9) koşulu kullanılarak, her

t ∈ [a, b] ve κ, y ∈ (C[a, b],R) için

|(T2κ)(t)− (T2y)(t)|

≤
∫ b

a

G1(t, ς)∣∣∣∣ϕq ( 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
− ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺, y(⊺))ψ′(⊺)d⊺

)∣∣∣∣ψ′(ς)dς

≤ (q − 1)

(
mΓ(δ − σ2 + 1)

Γ(α1 + δ − σ2 + 1)

)q−2(
ψα2
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)
×
∫ b

a

ψ(α1+δ−σ2)(q−2)
a (ς)∣∣∣∣ 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

− 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺, y(⊺))ψ′(⊺)d⊺

∣∣∣∣ψ′(ς)dς

≤ (q − 1)

(
mΓ(δ − σ2 + 1)

Γ(α1 + δ − σ2 + 1)

)q−2(
ψα2
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)
×
∫ b

a

ψ(α1+δ−σ2)(q−2)
a (ς)

(
1

Γ(α1)∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺,κ(⊺))− f(⊺, y(⊺))|ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ (q − 1)

(
mΓ(δ − σ2 + 1)

Γ(α1 + δ − σ2 + 1)

)q−2(
ψα2
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)
z2 ∥κ − y∥

×
∫ b

a

ψ(α1+δ−σ2)(q−2)
a (ς)

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ (q − 1)

(
mΓ(δ − σ2 + 1)

Γ(α1 + δ − σ2 + 1)

)q−2(
Γ(−σ2 + 1)

Γ(α1 − σ2 + 1)

)(
ψα2
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)
× z2 ∥κ − y∥

∫ b

a

ψ(α1+δ−σ2)(q−2)+α1−σ2
a (ς)ψ′(ς)dς

≤ (q − 1)

(
mΓ(δ − σ2 + 1)

Γ(α1 + δ − σ2 + 1)

)q−2
(
ψ

(α1+δ−σ2)(q−2)+α1+α2−σ2+1
a (b)

∆2Γ(γ2)Γ(2 + α2 − γ2)

)

×
(

Γ(−σ2 + 1)

Γ(α1 − σ2 + 1)

)
z2 ∥κ − y∥

≤ ∥κ − y∥
2
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elde edilir. O halde T2 operatörü daraltan bir dönüşümdür.

Böylelikle Banach daraltan dönüşüm prensibine göre (4.1) de ele alınan

kesirli sınır değer probleminin tek bir çözümü vardır.

Teorem 4.2.4. p > 2 olsun ve aşağıdaki koşullar sağlansın:

(H10) Her (t,κ) ∈ [a, b]× R için

f(t,κ) ≤ −mψδ−σ2a (t) (4.15)

olacak şekilde δ < min

{
(α1 + σ2),

(α1 − σ2)(q − 1)

2− q

}
ve m > 0 sabitleri

vardır.

(H11) Her t ∈ [a, b] ve κ, y ∈ R için

ψσ2a (t) |f(t,κ)− f(t, y)| ≤ z3 |κ − y|

ve

0 < z3 <

(
mΓ(δ−σ2+1)

Γ(α1+δ−σ2+1)

)2−q
2
(
(q − 1)

(
ψ
(α1+δ−σ2)(q−2)+α1+α2−σ2+1
a (b)

∆2Γ(γ2)Γ(2+α2−γ2)

)(
Γ(−σ2+1)

Γ(α1−σ2+1)

)) (4.16)

olacak şekilde bir z3 sabiti vardır.

Bu durumda, (4.1) de verilen kesirli sınır değer probleminin tek bir çözümü

vardır.

Kanıt. Teorem 4.2.3 nin ispatına benzerdir.

Şimdi, elde edilen sonuçların uygulanabilirliğini göstermek için aşağıdaki

örnekleri verelim.

Örnek 4.2.1. Aşağıdaki kesirli sınır değer problemi ele alınsın:
HD

4
5
, 1
2
;ψ

a+

(
ϕ 3

2

(
HD

7
5
, 1
3
;ψ

0+ κ(t)
))

+ (1−t2)
1
5

20t

(
|κ|

|κ|+1
+ sin t

)
= 0, t ∈ [0, 1]

HD
7
5
, 1
3
;ψ

0+ κ(0) = 0, κ(0) = 0,

I
4
5
,ψ

0+ κ(1) = 1
2
I1,ψ0+ u(

2
5
) + 7

10
I2,ψ0+ u(

3
5
)

(4.17)

O halde, (4.17) da verilen kesirli sınır değer probleminin tek bir çözümü vardır.
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Kanıt. (4.17) da ki sınır değer problemi, (4.1) de verilen sınır değer probleminin

özel bir halidir. Burada a = 0, b = 1, α1 = 4
5
, α2 = 7

5
, β1 = 1

2
, β2 = 1

3
, p = 3

2

l = 2, η1 = 1
2
, η2 = 7

10
, φ1 = 1, φ2 = 2, ξ1 = 2

5
, ξ2 = 3

5
, ψ(t) = t2 +1, q = 3 > 2

ve

f(t,κ) =
(1− t2)

1
5

20t

(
|κ|

|κ|+ 1
+ sin t

)
dir. Ayrıca ψ

1
2
0 (t)f(t,κ), [0, 1] üzerinde süreklidir. g(t) = (1−t2)1/5

10
olsun. O

halde

0 <
1

Γ(α1

∫ b

a

ψα1−1
t (b)ψ−σ2

a (t)g(t)ψ′(t)dt = 0, 17179 =M

elde edilir. z1 = 1
20

olmak üzere

0 < z1 <
1

2
(
(q − 1)M q−2

(
ψ
α1+α2−σ2+1
a (b)
∆2Γ(2+α2−γ2)

)(
Γ(−σ2+1)

Γ(α1−σ2+1)

)) = 0.96828.

koşulu sağlanmış olur. Ayrıca (t,κ) ∈ [0, 1]× R için

ψσ2a (t)f(t,κ) ≤ g(t)

ve t ∈ [0, 1], κ, y ∈ R için

ψσ2a (t) |f(t,κ)− f(t, y)|

=

∣∣∣∣∣(1− t2)
1
5

20

(
|κ|

|κ|+ 1
+ sin t

)
− (1− t2)

1
5

20

(
|y|

|y|+ 1
+ sin t

)∣∣∣∣∣
≤ (1− t2)

1
5

20
|κ − y|

≤ z1 |κ − y|

olduğu kolayca görülebilir. O halde Teorem 4.2.2 ye göre (4.17) da verilen

kesirli sınır değer probleminin tek bir çözümü vardır.

Örnek 4.2.2. Aşağıdaki kesirli sınır değer problemi ele alınsın:
HD

9
10
, 1
4
;ψ

a+

(
ϕ 12

5

(
HD

9
5
, 1
2
;ψ

0+ κ(t)
))

+ (t2+t+1)

20
√
t

(
|κ(t)|

|κ(t)|+1
+ 1
)
= 0, t ∈ [0, 1]

HD
9
5
, 1
2
;ψ

0+ κ(0) = 0, κ(0) = 0,

I
3
10
,ψ

0+ κ(1) = 1
5
I

2
5
,ψ

0+ u(2
9
)

(4.18)

O halde, (4.18) de verilen kesirli sınır değer problemininin tek bir çözümü

vardır.
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Kanıt. (4.18) de ki kesirli sınır değer problemi, (4.1) de verilen kesirli sınır

değer probleminin özel bir halidir. Burada a = 0, b = 1, α1 = 9
10

, α2 = 9
5
,

β1 =
1
4
, β2 = 1

2
, p = 12

5
l = 1, η1 = 1

5
, φ1 =

2
5
, ξ1 = 2

9
, ψ(t) = t2 ve

f(t,κ(t)) =
(t2 + t+ 1)

20
√
t

(
|κ(t)|

|κ(t)|+ 1
+ 1

)
,

dir. O zaman q = 12
7
< 2 dir. ψ

1
4
0 (t)f(t,κ) fonksiyonu [0, 1] üzerinde

süreklidir. m = 1
20

, δ = 11
10

ve z2 = 3
20

alınırsa

δ < min

{
(α1 + σ2),

(α1 − σ2)(q − 1)

2− q

}
=

23

20
,

ve

0 < z2 <

(
mΓ(δ−σ2+1)

Γ(α1+δ−σ2+1)

)2−q
2
(
(q − 1)

(
ψ
(α1+δ−σ2)(q−2)+α1+α2−σ2+1
a (b)

∆2Γ(γ2)Γ(2+α2−γ2)

)(
Γ(−σ2+1)

Γ(α1−σ2+1)

)) = 0, 40723

elde edilir. (t,κ) ∈ [0, 1]× R için

f(t,κ) ≥ mψδ−σ2a (t) =
1

20
t17/20

ve t ∈ [0, 1], κ, y ∈ R için

ψσ2a (t) |f(t,κ)− f(t, y)|

=

∣∣∣∣(t2 + t+ 1)

20

(
|κ|

|κ|+ 1
+ 1

)
− (t2 + t+ 1)

20

(
|y|

|y|+ 1
+ 1

)∣∣∣∣
≤ (t2 + t+ 1)

20
|κ − y|

≤ z2 |κ − y|

olduğu görülür. O halde Teorem 4.2.3 e göre (4.18) de verilen kesirli sınır değer

probleminin tek bir çözümü vardır.
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4.3 Krasnoselskii sabit nokta teoremi

Bu alt bölümde (4.1) de verilen p-Laplacian operatörlü tekil (singüler)

kesirli sınır değer probleminin, p nin durumlarına göre en az bir çözümünün

varlığı için gerekli koşullar Krasnoselskii sabit nokta teoremi ile elde edilecektir.

Bunun için ilk olarak, Önerme 4.1.1 de verilen κ(t) çözümü farklı bir şekilde

ifade edilecektir.

Önerme 4.3.1. h ∈ C([a, b],R) ve n = 1, 2 için n− 1 < αn ≤ n, 0 ≤ βn ≤ 1,

γn = αn + βn(n− αn) ise
HDα1,β1,ψ

a+

(
ϕp

(
HDα2,β2,ψ

a+ κ(t)
))

+ h(t) = 0, a < t < b,

HDα2,β2,ψ
a+ κ(a) = 0, κ(a) = 0, I2−γ2,ψa+ κ(b) =

l∑
j=1

ηjI
φj ,ψ

a+ κ(ξj)
(4.19)

p-Laplacian operatörlü ψ-Hilfer kesirli sınır değer probleminin çözümü

κ(t) =
ψγ2−1
a (t)

∆3Γ(2 + α2 − γ2)

×
∫ b

a

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

− ψγ2−1
a (t)

∆3

l∑
j=1

ηj
1

Γ(α2 + φj)

×
∫ ξj

a

ψα2+φj−1
ς (ξj)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

− 1

Γ(α2)

∫ t

a

ψα2−1
ς (t)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

(4.20)

ile ifade edilir. Burada

∆3 = Γ(γ2)

(
ψa(b)−

l∑
j=1

ηj
1

Γ(φj + γ2)
ψφj+γ2−1
a (ξj)

)
̸= 0

olduğu kabul edilmektedir.

Kanıt. İspat Önerme 4.1.1 ile benzerdir.
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Önerme 4.3.2. (4.20) de verilen, (4.19) de ki kesirli sınır değer probleminin

çözümü olan κ(t) fonksiyonu aşağıdaki gibi yazılabilir:

κ(t) =
∫ b

a

G2(t, ς)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)

)
ψ′(ς)dς, t ∈ [a, b],

(4.21)

burada

G2(t, ς) = g1(t, ς) +
ψγ2−1
a (t)

∆3

l∑
j=1

ηjg2(ξj, ς), (4.22)

ve

g1(t, ς) =



ψγ2−1
a (t)ψ1+α2−γ2

ς (b)
Γ(γ2)Γ(2 + α2 − γ2)ψa(b)

, a ≤ t ≤ ς ≤ b,

ψγ2−1
a (t)ψ1+α2−γ2

ς (b)
Γ(γ2)Γ(2 + α2 − γ2)ψa(b)

− ψα2−1
ς (t)
Γ(α2)

, a ≤ ς ≤ t ≤ b,

(4.23)

l∑
j=1

ηjg2(ξj, ς)

=
l∑

j=1

ηj



ψφj+γ2−1
a (ξj)ψ

1+α2−γ2
ς (b)

Γ(φj + γ2)Γ(2 + α2 − γ2)ψa(b)
, a ≤ ξj ≤ ς ≤ b,

ψφj+γ2−1
a (ξj)ψ

1+α2−γ2
ς (b)

Γ(φj + γ2)Γ(2 + α2 − γ2)ψa(b)
− ψα2+φj−1

ς (ξj)
Γ(α2 + φj)

, a ≤ ς ≤ ξj ≤ b

(4.24)

dir.

Kanıt.

κ(t) =
[∫ t

a

(
ψγ2−1
a (t)

Γ(γ2)Γ(2 + α2 − γ2)ψa(b)
ψ1+α2−γ2
ς (b)− 1

Γ(α2)
ψα2−1
ς (t)

)
ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+
ψγ2−1
a (t)

Γ(γ2)Γ(2 + α2 − γ2)ψa(b)

∫ b

t

ψ1+α2−γ2
ς (b)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

]
− ψγ2−1

a (t)

Γ(γ2)Γ(2 + α2 − γ2)ψa(b)

∫ b

a

ψ1+α2−γ2
ς (b)
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ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+
ψγ2−1
a (t)

∆3Γ(2 + α2 − γ2)

∫ b

a

ψ1+α2−γ2
ς (b)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

− ψγ2−1
a (t)

∆3

l∑
j=1

ηj
1

Γ(α2 + φj)

×
∫ ξj

a

ψα2+φj−1
s (ξj)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

=

[∫ t

a

(
ψγ2−1
a (t)

Γ(γ2)Γ(2 + α2 − γ2)ψa(b)
ψ1+α2−γ2
ς (b)− 1

Γ(α2)
ψα2−1
ς (t)

)
ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+
ψγ2−1
a (t)

Γ(γ2)Γ(2 + α2 − γ2)ψa(b)

×
∫ b

t

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

]
− ψγ2−1

a (t)

∆3Γ(2 + α2 − γ2)

×
∫ b

a

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+
ψγ2−1
a (t)

∆3Γ(2 + α2 − γ2)ψa(b)

l∑
j=1

ηj
1

Γ(φj + γ2)
ψφj+γ2−1
a (ξj)

×
∫ b

a

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+
ψγ2−1
a (t)

∆3Γ(2 + α2 − γ2)

×
∫ b

a

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

− ψγ2−1
a (t)

∆3

l∑
j=1

ηj
1

Γ(α2 + φj)

×
∫ ξj

a

ψα2+φj−1
s (ξj)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

=

[∫ t

a

(
ψγ2−1
a (t)

Γ(γ2)Γ(2 + α2 − γ2)ψa(b)
ψ1+α2−γ2
ς (b)− 1

Γ(α2)
ψα2−1
ς (t)

)
ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς
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+
ψγ2−1
a (t)

Γ(γ2)Γ(2 + α2 − γ2)ψa(b)

×
∫ b

t

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

]
+
ψγ2−1
a (t)

∆3

l∑
j=1

ηj

×

[
ψ
φj+γ2−1
a (ξj)

Γ(φj + γ2)Γ(2 + α2 − γ2)ψa(b)

×
∫ b

a

ψ1+α2−γ2
ς (b)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

− 1

Γ(α2 + φj)

∫ ξj

a

ψα2+φj−1
ς (ξj)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

]
=

[∫ t

a

(
ψγ2−1
a (t)

Γ(γ2)Γ(2 + α2 − γ2)ψa(b)
ψ1+α2−γ2
ς (b)− 1

Γ(α2)
ψα2−1
ς (t)

)
ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+
ψγ2−1
a (t)

Γ(γ2)Γ(2 + α2 − γ2)ψa(b)

∫ b

t

ψ1+α2−γ2
ς (b)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

]
+
ψγ2−1
a (t)

∆3

l∑
j=1

ηj

[∫ ξj

a

(
ψ
φj+γ2−1
a (ξj)

Γ(φj + γ2)Γ(2 + α2 − γ2)ψa(b)
ψ1+α2−γ2
ς (b)

−ψ
α2+φj−1
ς (ξj)

Γ(α2 + φj)

)
ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+
ψ
φj+γ2−1
a (ξj)

Γ(φj + γ2)Γ(2 + α2 − γ2)ψa(b)

∫ b

ξj

ψ1+α2−γ2
ς (b)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

]
=

∫ b

a

g1(t, ς)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς +

ψγ2−1
a (t)

∆3

×
l∑

j=1

ηj

∫ b

a

g2(ξj, ς)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

=

∫ b

a

G2(t, ς)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)h(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς
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Önerme 4.3.3. Sırasıyla, (4.23) ve (4.24) de verilen g1 ve g2 fonksiyonları

[a, b] × [a, b] üzerinde sürekli fonksiyonlardır ve her (t, ς) ∈ [a, b] × [a, b] için

aşağıdaki eşitsizlikler sağlanır:

g1(t, ς) ≤
ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)
,

l∑
j=1

ηjg2(ξj, ς) ≤
l∑

j=1

ηj
ψ
φj+α2−1
a (b)

Γ(φj + γ2)Γ(2 + α2 − γ2)
.

E2 = C[a, b] Banach uzayı üzerinde;

∥κ∥ = max
a≤t≤b

|κ(t)|

normunu ele alalım . T3 : E2 → E2 ve T4 : E2 → E2 operatörleri aşağıdaki gibi

tanımlansın:

(T3κ)(t) =
∫ b

a

g1(t, ς)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς,

(T4κ)(t) =
ψγ2−1
a (t)

∆3

l∑
j=1

ηj

×
∫ b

a

g2(ξj, ς)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς.

(4.1) kesirli sınır değer problemi bir çözüme sahiptir ancak ve ancak T3 + T4

bir sabit noktaya sahiptir.

Teorem 4.3.4. (Krasnoselskii’s sabit nokta teoremi) (Smart, 1974). Br,

X Banach uzayının sınırlı, kapalı, konveks ve boştan farklı bir alt kümesi A ve

B aşağıdaki koşulları sağlayan iki operatör olsun:

(i) x, y ∈ Br iken Aκ +By ∈ Br;

(ii) A kompakt ve süreklidir;

(iii) B daraltan bir dönüşümdür.

Bu durumda, z = Az +Bz olacak şekilde z ∈ Br vardır.
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Teorem 4.3.5. 1 < p < 2 ve aşağıdaki koşullar sağlansın:

(H7) Negatif olmayan bir g ∈ L[a, b] fonksiyonu ve bir M pozitif sabiti vardır

öyleki her (t,κ) ∈ [a, b]× R için ψσ2a (t) |f(t,κ)| ≤ g(t) ve

0 <
1

Γ(α1)

∫ b

a

ψα1−1
t (b)ψ−σ2

a (t)g(t)ψ′(t)dt ≤M.

(H8) Her t ∈ [a, b] ve κ, y ∈ R için

ψσ2a (t) |f(t,κ)− f(t, y)| ≤ z1 |κ − y|

ve

0 < z1 <
1

2
(
(q − 1)M q−2

(
ψ
α2−1
a (b)

Γ(γ2)Γ(2+α2−γ2)

)(
Γ(−σ2+1)

Γ(α1−σ2+1)

)) (4.25)

olacak şekilde bir z1 sabiti vardır.

Bu durumda, (4.1) de verilen kesirli mertebeden sınır değer probleminin

en az bir çözümü vardır.

Kanıt.

r3 ≥M q−1

(
ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)
+

1

∆3

l∑
j=1

ηj
ψ
φj+γ2+α2−2
a (b)

Γ(φj + γ2)Γ(2 + α2 − γ2)

)
.

olacak şekilde seçilen bir r3 için Br3 = {κ ∈ C([a, b],R) : ∥κ∥ ≤ r3} olsun.

Önerme 4.1.4 ve (H7) kullanılarak, her κ, y ∈ Br için aşağıdaki eşitsizlik

elde edilir:

|(T3κ)(t) + (T4y)(t)|

≤
∣∣∣∣∫ b

a

g1(t, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

∣∣∣∣
+

∣∣∣∣∣ψγ2−1
a (t)

∆3

l∑
j=1

ηj

∫ b

a

g2(ξj, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺, y(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

∣∣∣∣
≤
(

ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)

)



52

×
∫ b

a

ϕq

(
1

Γ(α1)

∫ b

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)g(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+
ψγ2−1
a (b)

∆3

l∑
j=1

ηj

×
∫ b

a

g2(ξj, ς)ϕq

(
1

Γ(α1)

∫ b

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)g(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

≤
(

ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)

)
M q−1

+
ψγ2−1
a (b)

∆3

l∑
j=1

ηj
ψ
φj+α2−1
a (b)

Γ(φj + γ2)Γ(2 + α2 − γ2)
M q−1

≤ r3

Böylece ∥T3κ + T4y∥ ≤ r3 elde edilir. Bu ise T3κ+T4y ∈ Br3 olduğunu gösterir.

Şimdi, T4 operatörünün tamamen sürekli olduğunu gösterelim. Önerme

2.0.24 ve Önerme 4.1.4 kullanılarak, T4 : E2 → E2 operatörünün sürekli

olduğu kolayca gösterilebilir. Şimdi T4 operatörünün tanım kümesinin sınırlı

alt kümelerinde kompakt olduğunu gösterelim.

Ω ⊂ E sınırlı olsun. Önerme 2.0.24 ve (H7) kullanılarak, κ ∈ Ω, t ∈ [a, b]

için aşagıdaki eşitsizlik elde edilir:

|(T4κ)(t)|

≤ ψγ2−1
a (t)

∆3

l∑
j=1

ηj

∫ b

a

g2(ξj, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺,κ(⊺))|ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ ψγ2−1
a (b)

∆3

l∑
j=1

ηj

∫ b

a

g2(ξj, ς)

ϕq

(
1

Γ(α1)

∫ b

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)g(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ M q−1

∆3

l∑
j=1

ηj
ψ
φj+γ2+α2−2
a (b)

Γ(φj + γ2)Γ(2 + α2 − γ2)

Bu ise T4(Ω) ün sınırlı olması demektir. Şimdi de, T4(Ω) ün aynı dereceden

sürekli olduğunu gösterelim.
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Her t1, t2 ∈ [a, b], t1 < t2 ve κ ∈ Ω için:

|(T4κ)(t2)− (T4κ)(t1)|

≤

∣∣∣∣∣ψγ2−1
a (t2)

∆3

l∑
j=1

ηj

∫ b

a

g2(ξj, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

− ψγ2−1
a (t1)

∆3

l∑
j=1

ηj

∫ b

a

g2(ξj, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

∣∣∣∣
≤ (ψγ2−1

a (t2)− ψγ2−1
a (t1))

∆3

l∑
j=1

ηj

∫ b

a

g2(ξj, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺,κ(⊺))|ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ (ψγ2−1
a (t2)− ψγ2−1

a (t1))

∆3

l∑
j=1

ηj

∫ b

a

g2(ξj, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)g(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ (ψγ2−1
a (t2)− ψγ2−1

a (t1))M
q−1

∆3

l∑
j=1

ηj
ψ
φj+γ2+α2−2
a (b)

Γ(φj + γ2)Γ(2 + α2 − γ2)

elde edilir. t2 → t1 limit durumunda yukarıdaki eşitsizliğin sağ tarafı sıfıra

gittiğinden, Arzela-Ascoli teoreminden T4 : E2 → E2 operatörünün tamamen

sürekli bir operatör olduğu görülür.

Son olarak, T1 in daraltan bir dönüşüm olduğunu gösterelim. İlk olarak,

(H7) koşulundan, aşağıdaki eşitsizlik elde edilir:∣∣∣∣ 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

∣∣∣∣
≤ 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺,κ(⊺))|ψ′(⊺)d⊺

≤ 1

Γ(α1)

∫ b

a

ψα1−1
⊺ (b)ψ−σ2

a (⊺)g(⊺)ψ′(⊺)d⊺

≤M
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t ∈ [a, b] ve κ, y ∈ (C[a, b],R) için Önerme 2.0.21, Önerme 2.0.24,

Önerme 4.3.3 ve (H8) kullanılarak, aşağıdaki eşitsizlik elde edilir:

|(T3κ)(t)− (T3y)(t)|

≤
∫ b

a

g1(t, ς)∣∣∣∣ϕq ( 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

−ϕq
(

1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺, y(⊺))ψ′(⊺)d⊺

)∣∣∣∣ψ′(ς)dς

≤ (q − 1)M q−2

(
ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)

)
×
∫ b

a

∣∣∣∣ 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

− 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺, y(⊺))ψ′(⊺)d⊺

∣∣∣∣ψ′(ς)dς

≤ (q − 1)M q−2

(
ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)

)∫ b

a

(
1

Γ(α1)∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺,κ(⊺))− f(⊺, y(⊺))|ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ (q − 1)M q−2

(
ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)

)
z1 ∥κ − y∥

×
∫ b

a

(∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ (q − 1)M q−2

(
ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)

)(
Γ(−σ2 + 1)

Γ(α1 − σ2 + 1)

)
z1 ∥κ − y∥

≤ ∥κ − y∥
2

.

Bu ise T3 : E2 → E2 operatörünün daraltan bir dönüşüm olduğunu

gösterir.

Böylece, Krasnoselskii sabit nokta teoreminin koşulları sağlandığından,

(4.1) kesirli sınır değer probleminin en az bir çözümü vardır.
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Teorem 4.3.6. p > 2 olsun, (H7) ve aşağıdaki koşullar sağlansın:

(H9) Her (t,κ) ∈ [a, b]× R için

f(t,κ) ≥ mψδ−σ2a (t) (4.26)

olacak şekilde δ < min

{
(α1 + σ2),

(α1 − σ2)(q − 1)

2− q

}
ve m > 0 sabitleri

vardır.

(H10) Her t ∈ [a, b] ve κ, y ∈ R için

ψσ2a (t) |f(t,κ)− f(t, y)| ≤ z2 |κ − y|

ve

0 < z2 <

(
mΓ(δ−σ2+1)

Γ(α1+δ−σ2+1)

)2−q
2
(
(q − 1)

(
ψ
(α1+δ−σ2)(q−2)+α1+α2−σ2
a (b)

∆3Γ(γ2)Γ(2+α2−γ2)

)(
Γ(−σ2+1)

Γ(α1−σ2+1)

)) (4.27)

olacak şekilde bir z2 sabiti vardır.

Bu durumda, (4.1) de verilen kesirli sınır değer probleminin en az bir çözümü

vardır.

Kanıt.

r4 ≥M q−1

(
ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)
+

1

∆3

l∑
j=1

ηj
ψ
φj+γ2+α2−2
a (b)

Γ(φj + γ2)Γ(2 + α2 − γ2)

)
.

olacak şekilde Br4 = {κ ∈ C([a, b],R) : ∥κ∥ ≤ r4} yuvarı tanımlansın.

Önerme 4.1.4 ve (H7) kullanılarak, herhangi bir κ, y ∈ Br4 için aşağıdaki

eşitsizlik elde edilir:

|(T3κ)(t) + (T4y)(t)|

≤
∣∣∣∣∫ b

a

g1(t, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

∣∣∣∣
+

∣∣∣∣∣ψγ2−1
a (t)

∆3

l∑
j=1

ηj

∫ b

a

g2(ξj, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺, y(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

∣∣∣∣



56

≤
(

ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)

)
×
∫ b

a

ϕq

(
1

Γ(α1)

∫ b

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)g(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

+
ψγ2−1
a (b)

∆3

×
l∑

j=1

ηj

∫ b

a

g2(ξj, ς)ϕq

(
1

Γ(α1)

∫ b

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)g(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

≤
(

ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)

)
M q−1

+
ψγ2−1
a (b)

∆3

l∑
j=1

ηj
ψ
φj+α2−1
a (b)

Γ(φj + γ2)Γ(2 + α2 − γ2)
M q−1

≤ r4

Böylece ∥T3κ + T4y∥ ≤ r4 elde edilir. Bu ise T3κ+T4y ∈ Br4 olduğunu gösterir.

Şimdi, T4 operatörünün tamamen sürekli olduğunu gösterelim. Önerme

2.0.24 ve Önerme 4.1.4 kullanılarak , T4 : E2 → E2 operatörünün sürekli

olduğu kolayca gösterilebilir. Şimdi T4 operatörünün tanım kümesinin sınırlı

alt kümelerinde kompakt olduğunu gösterelim.

Ω ⊂ E2 sınırlı olsun. Önerme 2.0.24 ve (H7) kullanılarak, κ ∈ Ω, t ∈ [a, b]

için aşagıdaki eşitsizlik elde edilir:

|(T4κ)(t)|

≤ ψγ2−1
a (t)

∆3

l∑
j=1

ηj

∫ b

a

g2(ξj, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺,κ(⊺))|ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ ψγ2−1
a (b)

∆3

l∑
j=1

ηj

∫ b

a

g2(ξj, ς)

ϕq

(
1

Γ(α1)

∫ b

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)g(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ M q−1

∆3

l∑
j=1

ηj
ψ
φj+γ2+α2−2
a (b)

Γ(φj + γ2)Γ(2 + α2 − γ2)

Bu ise T4(Ω) in sınırlı olması demektir . Şimdi de, T4(Ω) in aynı dereceden

sürekli olduğunu gösterelim.
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t1, t2 ∈ [a, b], t1 < t2, ve κ ∈ Ω için aşağıdaki eşitsizlik elde edilir:

|(T4κ)(t2)− (T4κ)(t1)|

≤

∣∣∣∣∣ψγ2−1
a (t2)

∆3

l∑
j=1

ηj

∫ b

a

g2(ξj, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

− ψγ2−1
a (t1)

∆3

l∑
j=1

ηj

∫ b

a

g2(ξj, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

∣∣∣∣
≤ (ψγ2−1

a (t2)− ψγ2−1
a (t1))

∆3

l∑
j=1

ηj

∫ b

a

g2(ξj, ς)

ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺,κ(⊺))|ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ (ψγ2−1
a (t2)− ψγ2−1

a (t1))

∆3

×
l∑

j=1

ηj

∫ b

a

g2(ξj, ς)ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)g(⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ (ψγ2−1
a (t2)− ψγ2−1

a (t1))M
q−1

∆3

l∑
j=1

ηj
ψ
φj+γ2+α2−2
a (b)

Γ(φj + γ2)Γ(2 + α2 − γ2)

t2 → t1 limit durumunda yukarıdaki eşitsizliğin sağ tarafı sıfıra gittiğin-

den, Arzela-Ascoli teoreminden T4 : E2 → E2 operatörünün tamamen sürekli

bir operatör olduğu görülür.

Son olarak, T3 ün daraltan bir dönüşüm olduğunu gösterelim. İlk olarak,

(H9) ve Önerme 2.0.21 den aşağıdaki eşitsizlik elde edilir:∣∣∣∣ 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

∣∣∣∣
≥ m

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψδ−σ2a (⊺)ψ′(⊺)d⊺

=
mΓ(δ − σ2 + 1)

Γ(α1 + δ − σ2 + 1)
ψα1+δ−σ2
a (ς)

t ∈ [a, b] ve κ, y ∈ (C[a, b],R) için Önerme 2.0.21, Önerme 2.0.24, Önerme

4.3.3 ve (H10) hipotezinden, aşağıdaki eşitsizlik elde edilir:
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|(T3κ)(t)− (T3y)(t)|

≤
∫ b

a

g1(t, ς)∣∣∣∣ϕq ( 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

)
ψ′(ς)dς

− ϕq

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺, y(⊺))ψ′(⊺)d⊺

)∣∣∣∣ψ′(ς)dς

≤ (q − 1)

(
mΓ(δ − σ2 + 1)

Γ(α1 + δ − σ2 + 1)

)q−2(
ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)

)
×
∫ b

a

ψ(α1+δ−σ2)(q−2)
a (ς)∣∣∣∣ 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺,κ(⊺))ψ′(⊺)d⊺

− 1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺)f(⊺, y(⊺))ψ′(⊺)d⊺

∣∣∣∣ψ′(ς)dς

≤ (q − 1)

(
mΓ(δ − σ2 + 1)

Γ(α1 + δ − σ2 + 1)

)q−2(
ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)

)
×
∫ b

a

ψ(α1+δ−σ2)(q−2)
a (ς)

(
1

Γ(α1)∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψσ2a (⊺) |f(⊺,κ(⊺))− f(⊺, y(⊺))|ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ (q − 1)

(
mΓ(δ − σ2 + 1)

Γ(α1 + δ − σ2 + 1)

)q−2(
ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)

)
z2 ∥κ − y∥

×
∫ b

a

ψ(α1+δ−σ2)(q−2)
a (ς)

(
1

Γ(α1)

∫ ς

a

ψα1−1
⊺ (ς)ψ−σ2

a (⊺)ψ′(⊺)d⊺

)
ψ′(ς)dς

≤ (q − 1)

(
mΓ(δ − σ2 + 1)

Γ(α1 + δ − σ2 + 1)

)q−2(
Γ(−σ2 + 1)

Γ(α1 − σ2 + 1)

)
×
(

ψα2−1
a (b)

Γ(γ2)Γ(2 + α2 − γ2)

)
z2 ∥κ − y∥

∫ b

a

ψ(α1+δ−σ2)(q−2)+α1−σ2
a (ς)ψ′(ς)dς

≤ (q − 1)

(
mΓ(δ − σ2 + 1)

Γ(α1 + δ − σ2 + 1)

)q−2
(
ψ

(α1+δ−σ2)(q−2)+α1+α2−σ2
a (b)

∆3Γ(γ2)Γ(2 + α2 − γ2)

)

×
(

Γ(−σ2 + 1)

Γ(α1 − σ2 + 1)

)
z2 ∥κ − y∥

≤ ∥κ − y∥
2

.

Bu ise T3 : E2 → E2 operatörünün daraltan bir dönüşüm olduğunu

gösterir.
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Böylece, Krasnoselskii sabit nokta teoreminin koşulları sağlandığından,

(4.1) kesirli sınır değer probleminin en az bir çözümü vardır.

Teorem 4.3.7. p > 2 olsun, (H7) ve aşağıdaki koşullar sağlansın:

(H11) Her (t,κ) ∈ [a, b]× R için

f(t,κ) ≥ −mψδ−σ2a (t) (4.28)

olacak şekilde δ < min

{
(α1 + σ2),

(α1 − σ2)(q − 1)

2− q

}
ve m > 0 sabitleri

vardır.

.

(H12) Her t ∈ [a, b] ve κ, y ∈ R için

ψσ2a (t) |f(t,κ)− f(t, y)| ≤ z3 |κ − y|

ve

0 < z3 <

(
mΓ(δ−σ2+1)

Γ(α1+δ−σ2+1)

)2−q
2
(
(q − 1)

(
ψ
(α1+δ−σ2)(q−2)+α1+α2−σ2
a (b)

∆3Γ(γ2)Γ(2+α2−γ2)

)(
Γ(−σ2+1)

Γ(α1−σ2+1)

)) (4.29)

olacak şekilde bir z3 sabiti vardır.

Bu durumda, (4.1) de verilen kesirli sınır değer probleminin en az bir çözümü

vardır.

Kanıt. Teorem 4.3.6 nın ispatına benzerdir.
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5 SONUÇ

Bu tez çalışmasında, üçüncü bölümde p-Laplacian operatörlü singüler

kesirli sınır değer probleminin pozitif çözümlerinin varlığı Avery-Peterson sabit

nokta teoremi kullanılarak elde edilmiştir. Ayrıca, elde edilen sonuçların uygu-

lanabilirliğini göstermek amacıyla bir örnek verilmiştir. Bu bölümde incelenen

problem, SCI kapsamındaki Filomat dergisinde 2023 yılında yayımlanmıştır.

Sonrasında, dördüncü bölümde daha genel bir denklem tipine sahip olan,

lineer olmayan p-Laplacian operatörlü ve ψ-Hilfer kesirli türevi içeren tekil

(singüler) noktaya sahip sınır değer problemi ele alınmıştır. İlk olarak, bu

kesirli sınır değer probleminin çözümlerinin varlığını ve tekliğini göstermek

için Banach daraltma dönüşümü prensibi kullanılmıştır. Elde edilen sonuçların

geçerliliğini gösteren örnekler verilmiştir. İkinci olarak, kesirli sınır değer

probleminin çözümlerinin varlığını göstermek için Krasnoselskii sabit nokta

teoreminden yararlanılmıştır.

Ayrıca dördüncü bölümde ele alınan kesirli snır değer probleminde yer

alan ψ-Hilfer kesirli türevi, literatürde yer alan birçok kesirli türevin bir

genellemesidir. 2018 yılında tanımlanan ψ-Hilfer kesirli türevi içeren sınır değer

problemlerinin çözümlerinin varlığını ve tekliğini araştıran makaleler az sayıda-

dır. Aynı zamanda, bu tezde singüler kesirli snır değer problemi çalışılmıştır.

Bildiğimiz kadarıyla, literatürde p-Laplacian operatörlü ve singüler ψ-Hilfer

kesirli sınır değer problemi ile ilgili çalışma bulunmamaktadır. Bu tezde ele

aldığımız problem, p-Laplacian operatörlü ve singüler ψ-Hilfer kesirli sınır

değer probleminin çözümlerinin varlığını inceleyen ilk çalışma olma özelliğini

taşımaktadır. Bu çalışmanın elde ettiği sonuçlar, ileri araştırmalara ışık tutacak

ve bu alandaki bilimsel ilerlemeye katkıda bulunacaktır.
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