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p-LAPLACIAN OPERATORLU SINGULER KESIRLI
DIFERANSIYEL DENKLEMLER ICIN POZITIF COZUMLERIN
VARLIGI UZERINE

ERKAN, Furkan

YUKSEK LISANS TEZI, Matematik Anabilim Dal
Tez Danigmani: Dog. Dr. Nitket AYKUT HAMAL

08/08/2024, [68] sayfa

Bu tez esas olarak beg boliimden olugmaktadir.

Birinci béliimde, tez konusu hakkinda kapsamli bilgiler sunulmus ve bu
alanda yapilmis caligmalara yer verilmistir.

Ikinci béliimde, tez boyunca kullanacagimiz tanimlar, dnermeler, yar-
dimc1 6zellikler ve teoremler ele alinmaktadir.

Uciincii boliimde, p-Laplacian operatorlii singiiler kesirli sinir deger
probleminin pozitif ¢éziimleri, Avery-Peterson sabit nokta teoremi ile elde edil-
mistir. Ayrica, elde edilen sonuglarin uygulanabilirligini gbstermek amaciyla bir
ornek sunulmustur.

Dordiincii béliimde, daha genel bir denklem tipine sahip olan p-Laplacian
operatorlii singiiler -Hilfer kesirli sinir deger probleminin ¢oziimleri incelen-
mistir. Ilk olarak, bu problemin tek bir ¢ziime sahip oldugu Banach Daraltan
Doniiglim Prensibi kullanilarak gosterilmigtir. Ardindan, elde edilen sonuglarin
uygulanabilirligini géstermek i¢in iki 6rnek sunulmustur. Daha sonra, ele alinan
bu problemin en az bir ¢éziime sahip oldugu Krasnolselskii sabit nokta teoremi
kullanilarak gosterilmistir.

Son béliimde, elde edilen bulgularin bir sonucu olarak ¢aligmanin tiim
sonuclar1 kapsamli bir sekilde 6zetlenmistir.

Anahtar so6zciikler: Riemann-Liouville kesirli tiirev, i-Hilfer kesirli tiirev,
singiiler,p-Laplacian, Avery- Peterson sabit nokta teoremi, Krasnoselskii sabit nokta

teoremi, Banach daraltan doniisiim prensibi
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ABSTRACT

ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR
SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS
WITH P-LAPLACIAN OPERATOR

ERKAN, Furkan

MSc Thesis in Department of Mathematics
Supervisor: Assoc. Prof. Dr. Nuket AYKUT HAMAL

08/08/2024, [68| pages

This thesis consists of five main chapters.

In the first chapter, comprehensive information about the thesis topic is
presented, along with a review of the existing literature in this field.

The second chapter deals with the definitions, propositions, auxiliary
properties, and theorems that will be used throughout the thesis.

The third chapter focuses on the positive solutions of the singular
fractional boundary value problem with p-Laplacian operator, obtained using
the Avery-Peterson fixed point theorem. Additionally, an example is provided
to demonstrate the applicability of the obtained results.

In the fourth chapter, the solutions of the singular w-Hilfer fractional
boundary value problem, which has a more general equation type, are
investigated. Firstly, it is shown that this problem has a unique solution using
the Banach contraction mapping principle. Then, two examples are presented
to illustrate the practical applicability of the obtained results. Subsequently,
the existence of at least one solution to this problem is demonstrated using the
Krasnolselskii fixed point theorem. The final chapter provides a comprehensive
summary of all the results obtained in this study.

Keywords: Riemann-Liouville fractional derivative, y-Hilfer fractional deri-
vative, singular, p-Laplacian, Avery-Peterson fixed point theorem, Krasnoselskii fixed

point theorem, Banach contraction mapping principle.
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ONSOzZ

Kesirli sinir deger problemleri iizerine g¢aligmalara, danigmanim Sayin
Dog¢. Dr. Niiket Aykut Hamal’in yonlendirmesiyle bagladim. Bu alanda yap-
tigim aragtirmalar, kesirli sinir deger problemlerinin miihendislikte yapisal
analiz, 1s1 transferi, akiskanlar mekanigi, fizikte dalga yayilimi, 1s1 iletkenligi
ve epidemiyolojide hastalik yayilmasi gibi olaylarin modellenmesinde ¢esitli
uygulama potansiyelleri oldugunu gosterdi. Bu ¢esitlilik ve uygulama alanlari,
bu alana olan ilgimi artird1 ve beni daha fazla ¢alismaya tesvik etti.

Literatiirde 6nemli bir yere sahip olan kesirli sinir deger problemleri
hakkinda inceledigim makaleler ve okudugum kitaplar, tez konumun sekillen-
mesinde bana biiyiik ol¢lide rehberlik etti.

Yiiksek lisans calismam boyunca, desteklerini hi¢cbir zaman esirgemeyen
ve engin bilgi ve deneyimlerini biiyiik bir 6zveriyle paylagan danigmanim Sayin
Doc. Dr. Niiket Aykut Hamal ve Sayin Ogr. Gér. Dr. Ahmet Hamal’a en icten
tesekkiirlerimi sunarim. Degerli rehberlikleri ve yardimlari sayesinde tez yazma
siirecinde en biiyiik destegi onlardan aldim.

Bu tez, 123F242 proje numarasi ile 1002-B Hizli Destek Modiilii kap-
saminda Tiirkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)
tarafindan desteklenmistir. Bu tezin gerceklesmesini saglayan TUBITAK’a

desteklerinden dolay1 tegekkiir ederim.

IZMIR
08/08/2024

Furkan Erkan
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1 GIRIS

Kesirli analiz, Leibniz’'in 1695 yilinda L’Hospital’e yazdig1 bir mektupta
"Fonksiyonun n. tiirevi igin n = 1/2 olsaydi sonu¢ ne olurdu?" sorusuyla
ortaya c¢ikmigtir. Leibniz ise "Bir giin faydali sonuglarin c¢ikarilacagi bariz
bir paradoks" geklinde cevap vermistir. Leibniz’in yaniti, aradan gecen 300
yil boyunca yapilan ¢aligmalara bakildiginda dogru ¢ikmistir. Fourier, Euler,
Laplace, Liouville ve Riemann gibi birgok bilim insani kesirli analiz ile
ilgili caligmalar yapmigtir. Bununla birlikte, uygulamali bilim alanlarinda
karsilagilan bazi problemler i¢in kesirli tiirev tanimlar: yeterli degildir ve bu
da yeni kesirli tiirev tamimlarinin ortaya c¢ikmasina neden olmustur. Kesirli
tiirev tanimlarindan en sik kargilagilanlara ornek olarak; Riemann-Liouville
kesirli tiirev, Caputo kesirli tiirev, Griinwald-Letnikov kesirli tiirev, uyumlu
(conformable) kesirli tiirev, Beta tiirev ve Lokal M-tiirev verilebilir.

Bir modele kesirli mertebeden bir tiirevin dahil edilmesi, énemli gercek
parametrelerin goz ardi edilmesinden kaynaklanan yanlighgi azaltmaktadir.
Kesirli tiirev operatorleri, klasik sistemlere kiyasla gercek diinya problemlerinin
modellerinde daha biiyiik serbestlik derecesine olanak saglamakta ve bu tiir
problemler gercek diinyadaki sistemlerin davraniglarini uygun sekilde ifade
etmektedir. Kesirli mertebeden tiireve sahip denklemler tam sayili mertebeden
denklemlere gore gercege daha yakin sonuclar verdigi i¢in bilim ve teknolojinin
her alaninda 6nemli bir yere sahiptir. Bu tiirevler, sadece teorik ve uygulamali
matematik alaninda degil, ayn1 zamanda fizik, kimya, miihendislik alanlari
bagta olmak {tizere genetik, tip, biyoloji, ekonomi ve istatistik gibi cegitli
aragtirma alanlarinda da 6nemli bir rol oynamaktadir.

Gozenekli bir ortamdaki tiirbiilansh akig temel bir mekanik problemidir.
Bu tiir problemleri incelemek i¢in ilk defa [Leibenson| (1945), p-Laplacian
operatorlii diferansiyel denklemi tanitmigtir. p-Laplacian operatorlii sinir deger
problemleri buzul bilimi (glaciology), dogrusal olmayan esneklik, popiilas-
yon biyolojisi, zemin mekanigi ve Newtonsal olmayan mekanik gibi farklh

disiplinlerde uygulamalara sahiptir. Bu uygulamalarindan dolayi, p-Laplacian



operatorlii kesirli sinir deger problemleri ¢ok ilgi gormektedir.

Doga bilimleri ve miihendislikte karsilagilan birgok fiziksel olay genellikle
tekil (singiiler) davramslar sergilemektedir. Ornegin, akigkanlar mekaniginde
bir sivi, kirilma olusturmak igin siddetli bir darbeye maruz kaldiginda tekil
(singiiler) noktalar bu kirilmay:1 takip etmektedir. Tekil (singiiler) noktaya
sahip simnir deger problemleri gaz dinamikleri, kimyasal reaksiyonlar, niikleer
fizik, atomik hesaplamalar ve atomik yapilarin ¢aligmalar1 gibi matematik ve
fizikte bir¢ok problemin modellemesinde degerli bir aragtir.

p-Laplacian operatoriiniin ve tekilligin (singiilerligin) 6nemlerinden do-
lay1, p-Laplacian operatorlii ve singiiler noktaya sahip siir deger problemleri
sadece matematik alaninda degil diger bilim alanlarinda da oldukca ilgi
gormektedir.

Son zamanlarda, p-Laplacian operatoriiniin ve tekilligin (singiilerligin)
onemlerinden dolay1 p-Laplacian operatorlii ve singiiler sinir deger problemleri
ile ilgili bir ¢ok 6nemli sonug ortaya ¢ikmigtir. Bunlara érnek olarak |Cabadal
and Stanek (2012), Alsaedi et al.| (2020)), Liu et al. (2020), |[Jong et al.| (2020),
Tudorache and Luca (2021a), Tudorache and Luca (2021b), Ahmad et al.
(2023), Zhao and Mao| (2021), Caballero et al. (2023) ve |Gu et al.| (2023)
makaleleri verilebilir.

Ji (2018) de,

[6p(Dge(t)] + F(t (1) =0, 0<t<1

#(0) =0, (1) —v(n) =0,
p-Laplacian operatorlii singiiler kesirli sinir deger problemi i¢in pozitif ¢oziim-
lerin varhgimi aragtirmigtir. Burada, 1 < o < 2, D, Caputo kesirli tiirevi ve

f(t, »), ¢ =0 da singiilerdir.
Guo et al. (2016)) da,

D2, se(t) + f(t,3(t), 5 (£) =0, 0<t<1,
#(0) = #"(0) =0, (1) = Zﬂi%((i)7

Avery-Peterson sabit nokta teoremini kullanarak, singiiler kesirli sinir deger

probelemi igin pozitif ¢ézlimlerin varhigini aragtirmigtir. Burada, 2 < a < 3,



P 20,0 <G << <G <G<--<1(=12---), D§ Caputo
kesirli tiirevi ve f(t, »,y), t = 0 noktasinda singiilerdir.

Henderson and Lucal (2017) de,

Dgs(t) + Af(t, () =0, te(0,1),
k

#(0) = 5/(0) = -+ = 5(0) =0, Djyse(t)lemr = Y _piDie s2(t) i,

i=1
singiiler kesirli sinir deger probelemi igin pozitif ¢oziimlerin varligini aragtir-
mugtir. Buradaa € (n—1,n],n >3, neNi=1,---  k(k€N)igin §; € R,
0<G <@G<---<(@<1lvef,t=0veyat=1noktasinda singiilerdir.
Tudorache and Lucal (2021a) de,

D&, s<(t) + Mi(t) f(t, (1) =0, t e (0,1),

#(0) = 3(0) = --- = 3D(0) = 0, D s(1) / Df: (1),

singiiler kesirli sinir deger probelemi i¢in pozitif ¢ézlimlerin varhigini aragtir-
migtir. Burada o« € R, o € (n — 1,n], n > 3, n € N, f(t, ), » = 0 ve h(t),
t = 0 noktasinda singiilerdir.

Uciincii boliimde, yukaridaki problemlerden motive olarak, p-Laplacian

operatorlii singiiler kesirli sinir deger problemini ele alacagiz:

[¢p (Do+%( ))}/ + f(t, %<t>, %l(t)) =0, 0<t<l,

(1.1)
#(0) = #(0) =0, Dgtse(1) = 3 D5 #(G).

Burada, Df,, o mertebeden standart Riemann-Liouville kesirli tiirevidir. a€R,

2 < a<3vekeN olmak iizere 1 =1,2,--- k—2icin ERve 0 < (1 < (5 <

< G2 <1, 0p() = 6 [o]P 77 (s € R\{0}), 6,(0) = 0, p > 1, 6,1 (s) = 6, (),

% + % =1, f(t,»,y) : (0,1] x RT x RT — RT fonksiyonu ¢ = 0 noktasinda
singiilerdir.

Diger taraftan, literatiirde Riemann-Liouville ve Caputo kesirli tiirev-

lerinden daha genel kesirli tiirevler de mevcuttur. R. Hilfer, Hilfer, (2000)

makalesinde, bu bilinen tanimlardan daha genel bir kesirli tiirev tanimi



yapmistir. f(¢) fonksiyonunun o mertebeden ve /3 parametreli sol-yanl Hilfer

kesirli tiirevi su sekilde ifade edilir:

HD:;'B _ [fin*a),wDn[(lgﬁ)(n*a)f(t)

a

d
seklinde tanimlanmigtir. Burada 0 < <1, n—1<a<n, D = T ve I, v

mertebeden sol-yanli Riemann-Liouville kesirli integralidir.

o f=0ise ” DZ;O = BLD2 f(t), t € [a,b], f(t) fonksiyonunun sol-yanh

Riemann-Liouville kesirli turevi elde edilir.

o 3 = 1ise "D%' = <D® f(t), t € [a,b], f(t) fonksiyonunun sol-yanl

Caputo kesirli tiirevi elde edilir.

Burada 4D | o mertebeden sol-yanli Riemann-Liouville kesirli diferansiyel
operatorii, “D%,, a mertebeden sol-yanli Caputo kesirli diferansiyel opera-
toriidir. Hilfer kesirli tiirevin bazi oOzellikleri ve uygulamalar1 icin Hilfer
(2000), |Asawasamrit et al. (2018]), |[Malahi et al.| (2019), Wongcharoen et al.
(2020), Nuchpong et al.| (2021), |Cheng and Xu| (2022) ve Meng et al. (2022)
makalelerine bakilabilir.

Kilbas et al.| (1999) da, bir f(¢) fonksiyonun « mertebeden sol-yanh

Y-Riemann-Liouville kesirli tiirevi: [gfp, a mertebeden sol-yanli -Riemann-

Liouville kesirli integrali olmak iizere

o) _ 1 d " n—o,y
D10 = () S0

seklinde tanimlanmigtir. Burada, n e NNn -1 <a<n, 0< 8 <1, f,Y €
C™(la,b]) ve i her t € [a,b] i¢in ¢’ (t) # 0 olacak sekilde artan bir fonksiyondur.
Almeidal (2017)) de, bir f(¢) fonksiyonunun a mertebeden sol-yanh -

Caputo kesirli tiirevi:

C na,y o n—oy 1 i "
D) = 12 () 0

seklinde tamimlanmigtir. Burada, n e N n—-1 < a <n, 0 < g < 1,f,¢ €
C™(la, b)) ve 1 her t € [a,b] i¢in ¢’ (t) # 0 olacak gekilde artan bir fonksiyondur.



Bu yeni kesirli tiirevlerle ile ilgili ¢galigmalar igin Jiang and Bai (2022) ve
Boulares et al.| (2023) makalelerine bakilabilir.
Sousa and De Oliveira| (2018) de, bir f(¢) fonksiyonunun « mertebeden

ve (8 parametreli sol-yanh t-Hilfer tiirevi

a,B; n—o 1 d " —B)(n—a «
HDaJ,rﬁ,wf(t) — ]fl(r )5 (w/(t) dt) ](g}r B)( )ﬂ/’f( ) ](’Y ¢D’Y Tﬁf( )
(1.2)

seklinde tanimlanmigtir. Burada, n e NN n—-1 <a<n, 0< <1, ~v =
a+ f(n—a), f,p € C*([a,b]) ve ¢ her t € [a,b] i¢in ¢'(t) # 0 olacak sekilde
artan bir fonksiyondur.

Bu tiirev yukarida tanimlanan kesirli mertebeden tiirevlerin en genelidir.
Sol-yanlh -Hilfer kesirli tiirev operatorii kullanilarak, o ve 8 parametrelerinin
limitleri alinarak ve uygun ¢ fonksiyonu secilerek kesirli tiirevlerin genis bir

siif1 elde edilebilir.

° denkleminin her iki tarafinin § — 1 i¢in limiti alindiginda
H D £(t) = O DY ()

a mertebeden sol-yanli 1-Caputo kesirli tiirevi elde edilir.

° denkleminin her iki tarafinin § — 0 i¢in limiti alindiginda
YD f(t) = DE F (1)

a mertebeden sol-yanli v-Riemann-Liouville kesirli tiirevi elde

edilir.

e (t) = t olsun. Bu durumda, (|1.2) denkleminin her iki tarafinm § — 1

i¢in limiti alindiginda
"D f(t) = CDE, f(1)

a mertebeden sol-yanli Caputo kesirli tiirevi elde edilir.



e ¢(t) =t olsun. Bu durumda, (|1.2)) denkleminin her iki tarafinin 5 — 0

i¢in limiti alindiginda
DR f(t) = DEL £ (2)
a mertebeden sol-yanli Riemann-Liouville kesirli tiirevi elde edilir.

Mevcut aragtirmalarda, Riemann-Liouville ve Caputo kesirli tiirevlerin-
den daha genel olan, asagidaki gibi y-Caputo ve w-Hilfer kesirli tiirevlerini
igeren sinir deger problemleri yer almaktadir.

Wahash et al.| (2020) de,

‘DY = f(t,%(t)), te(0,b], b>0,
#(0) = s,

bir diger ¢ fonksiyonuna gore sol genellegtirilmis Caputo kesirli tiirevini i¢eren
singiiler kesirli diferansiyel sinir deger problemini ¢aligmiglardir. Burada, 0 <
a <1, "’Dgfb y-Caputo kesirli tiirevi ve f : (0,b] x R — R fonksiyonu igin
lim; .o+ f(¢,.) = oo dur.

Sousa and De Oliveira| (2018) de tanimlanan ve genis bir kesirli tiirev
siifin1 kapsayan -Hilfer kesirli tiirevi ile ilgili ¢caligmalar, son zamanlarda
literatiirde yerlerini almaya baglamigtir. Bunlara o6rnek olarak, |Abdelhedi
(2021), Norouzi and N’Guérékata (2021)), |[Jajarmi et al. (2022)) ve Sudsutad
et al. (2023) makaleleri verilebilir.

Ntouyas and Vivek (2021)) de,

("D + KD )se(t) = f(t (1), ¢ € [a,b],

o) =0, s4(b) = > ()

1-Hilfer kesirli sinir deger probleminin varligi ve tekligi arastirilmigtir. Burada,
a € (1,2), p€[0,1], f: [a,b] x R — R siirekli bir fonksiyon, j = 1,2,--- 1

icinnj,keRvea <& <<+ <§ <bdir



Alsaedi et al.| (2023) de,

(0 (HDo“iﬁ;z”%(t)))#f(t ©(t) =0, 0<t<l,

#(0) =0, D 5(0) = anf% 0<( <1, neR,

p-Laplacian operatorlii ve v-Hilfer kesirli tiirev igeren lineer olmayan sinir deger
probleminin ¢6ziimiiniin varligi ve tekligini incelemiglerdir. Burada, o € (1, 2],
B €0,1] ve f:]0,1] x R — R siirekli bir fonksiyondur.

Dordiincii boliimde, yukaridaki problemlerden motive olarak, lineer
olmayan p-Laplacian operatorlii ve y-Hilfer kesirli tiirevini iceren singiiler sinir

deger problemini ele alacagiz:

D (g, (MDSP5()) ) + [t (1) =0, a<t<b,

(1.3)
HpDo2B2¥s0(a) =0, s(a) =0, 17725 Zm[*‘z (&

Burada, 7 Dgf nb’ «a mertebeden ve [ parametreli sol-yanlh -Hilfer tiirevi ve

Is‘ﬂj, a mertebeden sol-yanl ¢)-Riemann-Liouville kesirli integralini géstermek-
tedir. n = 1,2 igmn—1< a, <n,0< 6, <1, v = a, + Buln — ap).
j=12..,0(leNignn eR a <& <& <o <§<b g >0,
dp(s) = <. [s]" % (s € R\ {0}), 9,(0) = 0, p > 1, ¢,1(s) = ¢y(s), £+ 2 =1,

f:(a,b] x R — R siirekli bir fonksiyon ve lim; ,,+ f(t,.) = +o0o dur.



2 TEMEL TEOREMLER VE TANIMLAR

Bu bdéliimde, tez boyunca kullanilacak olan bazi tanmimlar, énermeler,

yardimci 6zellikler ve teoremlerin ifadelerine yer verilecektir.

Tanim 2.0.1. X ve Y herhangi ki lineer uzay olmak tizere belirli bir T ile
X in bir alt kimesi A man her x elemamina Y de tek bir y elemant karsilik
geliyorsa T ye X den Y kiimesine bir operator denir. A kiimesine de T nin
tanam bolgesi denir. T : AC X =Y veT : x — y veya y = Tx ile ifade edilir.
Ozel olarak X =Y ise T ye X icinde bir operatér denir.

Tanim 2.0.2. (Deimling, |1985). (X,dx) metrik uzay olsun. Eger S C X
kiimesinin her dizisinden yakinsak bir alt dizi (bu dizinin limiti S kimesine
ait olmayabilir) segilebiliyorsa S kiimesine X i¢inde prekompakt kiime denir.
Eger bu dizinin yakinsadigu deger, S kiimesinin i¢inde ise S kiimesine kompakt

kime denir.

Tanim 2.0.3. (Deimling, |1985). (X, dx) ve (Y, dy) metrik uzaylar ve T : D C
X — Y bir operator olsun. Eger T operatori D igindeki her simrl kiimeyi
Y i¢indeki prekompakt kiimeye dondistiriyorsa T operatérine D tizerinde

kompakt operator denir.

Tanim 2.0.4. (X,dx) ve (Y,dy) iki metrik uzay olarak verilsin ve T : D C
X — Y bir operator olsun. Eger ¢ > 0 wverildiginde, her ug € D ig¢in
dx(u,up) < 0 = dy(Tu,Tuy) < € olacak sekilde bir § > 0 sayst varsa, T
operatori, ug noktasinda stirekli bir operatordir veya sadece stirekli bir operator
olarak adlandvrilir. T operatori D nin her noktasinda sirekli ise T' operatériine

D fdizerinde strekli bir operator denir.

Teorem 2.0.5. (Deimling, 1985). (X,dx), (Y,dy) metrik uzaylar, T : D C
X — Y operator ve xy € D olsun. xo noktasina yakinsayan D i¢indek:
herhangi bir {x,} dizisi i¢in'Y i¢indeki {Tx,} dizisi Tz noktasina yakinsiyor
1se T opearatorine xo noktasinda dizisel stirekli operator olarak adlandirilur.
T operatori, D dizerindeki her noktada dizisel olarak siirekli oldugunda, T

operatoriine bir "dizisel strekli operator” denir.



Teorem 2.0.6. (Deimling, 1985). (X,dx) ve (Y, dy) metrik uzaylar olsun ve
T:D CX —Y biroperator olsun. T' operatoriniin stirekli olmast i¢in gerekl

ve yeterli kosul, dizisel stireklt olmasidar.

Teorem 2.0.7. (Deimling, 1985) (Tamamen Sirekli Operatér). (X, dx)
ve (Y,dy) metrik vzaylar ve T : D C X — Y bir operatér olsun. Eger T
operatori D tizerinde hem strekli hem de kompakt operator ise T operatoriine

tamamen stirekli operator denir.
Tanim 2.0.8. (Deimling, |1985). S, C|a,b] i¢inde bir kiime olsun.

i) S kiimesine ait fonksiyonlar, her s € S igin ||5(t)|| < ¢ olacak sekilde bir
¢ sayist var ise "aymi dereceden sinarly fonksiyonlar” olarak adlandurilur.
ii) € > 0 wverilsin. ¥Yty,ta € [a,b] ve V3x € S igin ||ty — ta|| < 0 esitsizligi
saglandiginda ||3¢(t1) — s(t2)|| < € olacak sekilde bir 6 > 0 bulunabiliyor

1se S kiimesine ait fonksiyonlara "ayni dereceden sirekli fonksiyonlar”

denir.

Teorem 2.0.9. (Deimling, |1985) (Arzela-Ascoli Teoremi). Bir S C Cla, b
kiimesinin strekli fonksiyonlar ailesinin prekompakt olmasi i¢in gerekli ve
yeterli kosul S kiimesine ait fonksiyonlarin hem ayni dereceden sinarly hem

de ayni dereceden strekli olmasuidur.

Tamim 2.0.10. (Guo and Lakshmikantham|, |1989). (X,||.||), Reel Banach
uzayr olsun. X nin asagidaks 6zellikleri saglayan bostan farkl, kapali, konveks

bir P alt kiimesi koni olarak adlandirilir:

i) w€ P ve A <0 iken, A\»x € P;

ii) » € P ve —s € P iken » = 0.
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Tanim 2.0.11. (Rudin et all 1964)). Eger § : P — [0,+00) sirekli bir

dondistim olup her s,y € P vet € [0,1] i¢in asaqidaki esitsizligi sagliyorsa

Bltse+ (1 —t)y) > tB(s) + (1 = 1)B(y)

o zaman [, X Reel Banach uzayinin P konisi tzerinde sirekli ve negatif

olmayan konkav bir fonksiyoneldir.

Tamim 2.0.12. (Rudin et al), |1904). Eger v : P — [0,400) strekli bir

dondigim olup her ¢,y € P ve t € [0,1] igin asaqudaki esitsizligi sagliyorsa

Y(tse + (1 —t)y) > ty(s) + (1 = t)v(y)

o zaman 7y, X Reel Banach uzayimin P konisi tzerinde strekli ve negatif

olmayan konveks bir fonksiyoneldir.

Tamm 2.0.13. (Kilbas et al., |1999). Q = [a,b](—00 < a < b < +00), Reel
sayr ekseni uzerinde sonlu bir aralik, « > 0 ve n € N olsun. [a,b] tzerinde,
» € C"([a,b],R) fonksiyonunun o mertebeden Riemann-Liouville kesirli tirevi

asaqrdaki gibi tanamlanar;

D5 (0 = rs () [0 0s 120

burada n = [o] + 1 ve [a], a reel saysiman tam kismadar.

Tanim 2.0.14. ((Kilbas et al), 1999)). Q = [a,b](—00 < a < b < +00),
Reel say ekseni tzerinde sonlu bir aralik ve a > 0 olsun. [a,b] tzerinde, » €

C™([a,b],R) fonksiyonunun o mertebeden Riemann-Liowville kesirli integrali;

1

(122 () = 75 / (t— )" Le(o)ds (¢ > a)

ile tansmlanar. Burada T'(+), (Euler) Gamma fonksiyonudur.
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Onerme 2.0.15. (Kilbas et al, 1999). a > 0, n € N ve s € C"([a,b],R)

olsun. Bu durumda
Dy »(t) =0
kesirli diferansiyel denklemi, ¢; € R, (i =0,1,--- ,n), i¢cin
() = ept® A ept® e gt

seklinde bir ¢ozime sahiptir. Burada n = [o] + 1 ve [a], a reel sayisinan tam

kismadar.

Onerme 2.0.16. ((Kilbas et al, [1999)). a > 0, n € N ve s € C"([a,b],R)

olsun. Bu durumda bazi ¢; € R, (i =0,1,--- ,n), i¢in
I8 DS 5e(t) = se(t) + ert® t + oot 2 - pt®™"
dir. Burada n = [a] + 1 ve [a], a reel sayisinin tam kismadar.

v € C"([a,b],R) ve 1, her t € [a,b] i¢in 1'(0) # 0 kosulunu saglayan
artan bir fonksiyondur. Bu tez kapsaminda, kolaylik saglamak amaciyla her
x,y € [a,b] i¢in ¢, (z) = ¥(x) — ¢P(y) olarak ifade edilecektir.

Tamim 2.0.17. (Kilbas et al), |1999). (a,b) (—o0 < a < b < o0), RT
nin bir sonlu yada sonsuz agik aralige ve o > 0 olsun. ¥(t), (a,b] tzerinde
artan ve pozitif monoton bir fonksiyon ve ¢'(t), (a,b) tzerinde sirekli bir
fonksiyon olsun. |a,b] tzerinde, diger fonksiyon ¢ ’ye gore » € C"([a,b],R)

fonksiyonunun o mertebeden - Riemann-Liouville kesirli integrali;

I‘w /w ()2 ' (t)»(s)ds, t>a>0,

ile tanimlanawr. Burada F(-), (Euler) Gamma fonksiyonudur.

Tanim 2.0.18. (Kilbas et al,|1999). ¢ € C"([a,b]) olmak tizere ' (t) # 0, a >
0 ve n € N olsun. Diger fonksiyon ¢ ’ye gire € C"([a,b],R) fonksiyonunun

a mertebeden - Riemann-Liouville kesirli tirevi asagidaki gibi tanimlanar;

1 d\" ..
DY se(t) = <¢’(t)%> 1'% ()

B F(nl— a) <¢f1(t)%>n/at YU (1) (q)ds,

burada n = [o] + 1 ve [a], a reel saysinan tam kismadar.
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Tanim 2.0.19. (Sousa and De Oliveira, |2018). n € N, n —1 < a < n,
0 <8 <1, ¢ € Ca,b],R) ve ¥, her t € [a,b] i¢in Y'(t) # 0 olacak

sekilde artan bir fonksiyon olmak itzere h(t) fonksiyonun o mertebeden ve (3

paremetreli sol yanly -Hilfer tirevi ;

o,B; n—a), 1 d\" —B)(n—a), —a),
H DSt () — [ w(w/_(t)%) [A-B-aw gy _ O vy

seklinde tanwmbidir. Burada, n = o] + 1, [a], a reel sayisinin tam kismadir ve

vy=a+p(n—a).

Onerme 2.0.20. (Kilbas et al., 1999). o, > 0 ve 3 € C"([a,b],R) olmak

uzere
ISP IP95e(t) = 149V 52(1), > a.

dir.

Onerme 2.0.21. (Sousa and De Oliveira, |2018; |Kilbas et al., |1999). a > 0,

v >0 vet > a olmak tzere bir kuvvet fonksiyonunun, 1 kesirli integrali ve

tirevi asaqidaki sekilde verilir:

. ('S v— I'(v V+oa—
(i) 15090 (t) = paygra=i(p)

(ii) DSFPyr=(t) = F(Fji)wg—a—l(t), n—1l<a<n, v>n,

(iii) "DEPP YN (b) = TN (), n—1<a<n, v>n.

Onerme 2.0.22. (Sudsutad et al, |2021). m —1 <o <m, n—1<p<n,

nmeN, n<m, 0<B<1, a>p+p(n—p) vesxecC(a,b],R) olmak

uzere
HDPEV IO 50(t) = 1077V 5(t)

dir.

Tanim 2.0.23. (Sousa and De Olveird, 2018). n—1<a<n, 0< <1,

v=a+ fB(n—a) ve x € C"([a,b],R) olmak tzere hert € [a,b] i¢in

« a,p; - 77Z)Z_k(t) n— — n—o
LIDEoelt) = ) = 3 gty e @)
k=1

dvr. Burada %Q[pn]h(t) = <%%>n%(t) dir.



13

Onerme 2.0.24. (Liu et all,|2012). p-Laplacian operatiri asaqidaki 6zelliklere
sahiptir:

(i) 1 <p<2, 3y>0wvel|x|,|lyl >m >0 ise
len(56) = p(W)] < (p = DmP ™ [5e — y|.
(i) p > 2 ve |x|,|y| < M ise, o zaman

|0p(3) — @p(y)| < (0 — 1)MP % 3¢ — y.
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3 p-LAPLACIAN OPERATORLU SINGULER
KESIRLI SINIR DEGER PROBLEMININ
POZITIF COZUMLERININ VARLIGI

Bu boliimde, p-Laplacian operatorli tekil (singiiler) kesirli sinir deger
problemi ele alinacak ve bu problem igin en az ii¢ pozitif ¢oziimiin varlig: elde

edilecektir.

3.1 Smir Deger Probleminin Coziimii

Asagida verilen p-Laplacian operatorlii singiiler kesirli sinir deger prob-

lemi ele alinsin.

(6, (D2, 52(t))] + f(t,5(8), 5(£) =0, 0<t<T1,
= (3.1)
#(0) = #(0) =0, D) = Y D #(G)

Burada, Df;, a mertebeden standart Riemann-Liouville kesirli tiirevidir.
a€R, 2 < a < 3 ve meN olmak ilizere + = 1,2,--- k — 2 i¢in (;€R ve 0 <
(<G < <Goa <1 gpls) = |s" % (s € R\{0}), ¢,(0) = 0, p > 1,
0y () = @4(s), 1+ 1 =1, f(t,5,9) : (0,1] x RT x RT — R fonksiyonu ¢ = 0

noktasinda singiilerdir.

Asagidaki kosullarin saglandigi kabul edilsin:

k—2
(H1) k € N olmak fizere i = 1,2, ,k — 2 igin p1; > 0 ve » p; <1,
=1

(Hy) f(t,s,y) : (0,1] x RT x RT — RT siirekli ve 7' f(¢, s, y) fonksiyonu
[0,1] x RT x Rt arahginda siirekli olacak gekilde 0 < o7 < 1 kogulunu

saglayan bir o sabiti vardir.
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Onerme 3.1.1. heC|0,1] ise

[6p(Dg ()] +h(t) =0, 0<t<1,

- (3.2)
#(0) = 5/(0) =0, Dgilsx(l) = ZNz‘DgII%(Q)-
i=1
p-Laplacian operatorlii kesirle sinwr deger probleminin ¢ozimii
o1 1 S o1 k-2 G S
»x(t) = — h(T)dT | ds — ,/ (/h d)dg
(1) Al/ocbq(/o (T)T) A1;M0¢q - him)dy
1 t ) S
- — t—CO‘_¢(/thT)d§ 3.3
| oo ([ (33

ile ifade edilir. Burada Ay = T'(«) (1 - Zm) dir.

Kanat. 1} de verilen smir deger probleminin ¢oziimii, Onerme [2.0.16| yardimi

ile

s(t) = ert™ et 2 + st — I <¢q (/ h(g)dq))
0
=1%o cpt® et — ﬁ/ﬂ (t—¢)>? <¢q </0g h(ﬂd]‘)) ds

olarak elde edilir. Burada, c;, ¢, ve c3 keyfi sabitlerdir. {lk olarak s(0) =

#'(0) = 0 kosulu kullamlarak, ¢ = ¢3 = 0 olarak elde edilir. Buradan;

sx(t) = ct* ! — ﬁ/ot (t—<)* o, (/Og h(T)dT) ds (3.4)

elde edilir. Simdi, (3.4) de elde edilen () fonksiyonu igin agagidaki esitliklikler
elde edilir:

D #(1) = al(e) — [ 4 ([ #erar) s (3.5)

ZuzDa () = el Zuz Zuz [Fo ([ mar)ac @)

Simdi, (3.5]) ve (3.6)) esitliklerinden yararlanarak, (3.2])’de ele alinan siir
k-2

deger probleminin simir kogulu Dy} Y(1) = Z,uiDg‘j '3¢(¢;) kullamlarak;
i=1

() LS ([ o)
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elde edilir. Boylece, (3.2) de verilen sinir deger probleminin ¢oziimii agagidaki
gibidir:

1 k=2

s(t) = tA/¢ (/0 W1 )dT> de— o Zu/ongs (/;hmdr) ds
-/ -, ( / ghde) s

[]

Onerme 3.1.2. (H,) ve (H) saglansin. Bu durumda, »(t) fonksiyonu, negatif

olmayan ve azalmayan bir fonksiyondur.

Kanat. 11k olarak #(t) fonksiyonunun negatif olmayan bir fonksiyon oldugunu
gosterelim;

1 k=2

05 [ (o) o [
ity ()

15 (o) ([ )

[ ([

([ o) ([ )

S () o [

=0

Bu da s(t) fonksiyonunun negatif olmadigini gosterir.

Simdi, s(t) fonksiyonunun azalmayan bir fonksiyon oldugunu gosterelim;

oy = =D / 4 ( / gh(T)dT) "

9 k=2

SR e[ rom)

i=1

_ (OE(_@)D/: (t — <) 2, (/Og h(T)dT> ds
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> %/Jd)q (/Ogh(T)dT) ds
—%gm/ol% </Ogh(T)dT> ds

=1

- %/ﬂt% (/Ogh(T)dT> ds
e o

/
s D o, ([ werver) a
/

Bu da s(t) fonksiyonunun azalmayan bir fonksiyon oldugunu gésterir. Boylece,

#(t) fonksiyonu negatif olmayan ve azalmayan bir fonksiyondur. O
E; = C'0,1] Banach uzay: iizerinde;

= '(¢
ol = {0, s 0

normunu ele alalim ve P konisi
P={xeFEy:x(t)>0(t)>0,te]0,1]}

olmak tizere T : P — E; operatorii

a—1 k=2

Tys(t) = tzll/ol &g (/Ogh(T)dT) ds — tAl Zu/oc &g (/Ogh(ﬂdT) ds

i=1

- ﬁ/ot (t—<)* o, (/0< h(T)dT) ds

olarak tamimlansin.
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Onerme 3.1.3. (H,) ve (H,) kosullaru saglansin. O halde Ty : P — P

tamamen strekls bir operatordiir.

Kanat. Her s € P icin Onerme den T} () operatoriiniin negatif olmayan
ve azalmayan oldugu aciktir. Bu da 77 : P — P oldugunu gosterir. Ayrica
(H3) kosulundan, 7} : P — P operatoriiniin siirekli oldugu agiktir. Simdi 7}
operatoriiniin kompakt bir operator oldugunu gosterelim.

(2, P konisinin smirh bir alt kiimesi olsun. (H;) kogulundan yararlanarak,
#eQ ve T € [0,1] igin 77 f(t, 2(T), /' (T)) < L olacak sekilde L > 0 reel sayist
vardir 6yle ki

a—1

ta—l k=2 G S )
- ;M/O o (/0 77T f(T,%(T),%(T))dT) ds

1

N m/ot (t— <)o, (/0< T 777 f (1, 5(7), %’(T))dT> ds
tzll/ol g (/OnglT"lf(T, (1), %’(T))dT) ds
[ (o)

(a—1)L97!
- Al(l — O'l)q_l

IN

IN

elde edilir. Benzer gekilde;

1) = O [ ([ st ) e

ez i _Alfta_2 kzju/j ?q (/Og T 777 (7, 2(7), %’(T))dr) ds
(a—1)

T T / (=", ( | T, %'<T>>dT) e
= %/01 %q (/;T‘”T”lf(T, (1), %’(T))dT) ds

— 1)>2 1 1
<=t [, ( / LT“dT) dc
1 0 0

< (= 1)Lt
- Al(]_ — Ul)q_l
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elde edilir. Boylece;

(a— 1)Lt

T < - I
H I%H > Al(l _Ul)q—l

elde edilir. O halde T1(92) diizgiin smirhdir. Simdi 77(£2) nin ayni dereceden

siirekli oldugunu gosterilsin:

Her » € Q, t1,t, € [0,1] ve t; < t5 igin
| Tyse(ta) — Tase(ty)]
= ti_ll/ol g </O< TUnglf(Ta%(T)a%/(T))dT) ds
—_ ﬁ/ot (ta —5)* ', (/0< T 777 (1, 22(7), %’(T))éﬁ) ds

tzll/l &g (/g "1T"1f(T,%(T),%’(T))dT) ds

e [© ( © 4 : )
- 7 i e ) ) d d
Y Zlu/o o /0 T f (T, 5(1), 4 (1))dT | ds

b [ = ([T it <) d

(2 [ ([rrrnnieinas

-x Zu / " b ( | e s, %/(T))dT> d<>
+ ﬁ /;2 (ta = <)* 'y (/Og T 7T (T, (1), %/(T»dT) ds

[ = ot ([ o st o)

< (B -t (A%/Ol &g (/; T 777 (T, 5(7), %’(T))dT> dg) + ﬁ

x ( / (<t2—g>a*—<t1—<>a 1 6, ( / g f(7, (1), 5 (1))dT ) d

1
< (tg7h =10 (A_1 ; ( Ly~7dt dc)

ety ([ o e ([ e
RN



Lr! o L a_ o
SE ey ) e
L4 a1
S A0=o) -2(t t1)+f‘(a)(1—a) (ty—t1) =0 (t2 = t1)

elde edilir. Benzer sekilde

|(T150)'(t2) — (T13¢)' (t1)]
e _All)tg_ /0 g (/{: T 7T (T, (1), %’(T))dT) ds
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+ ﬁ (/Ot ((t2 = )" = (1 = )" *) 0y (/01 LTUldT) ds
+ /t ;2 (t2 — )" 29, < /O 1 LT‘“dT) d@)

LYo — 1) 2 2 Lt 1 1

S Moyt BT T H) P g e 20T
Lot Lot

< —n—2(ty — t

N T R A YO P

2(t2 —tl) — 0 (tg —)tl)

elde edilir.
0 < a < 1 olacak sekilde [0, 1] tizerinde t* fonksiyonun diizgiin siirekli-
liginden ve Arzeld—Ascoli teoreminden 77 operatoriiniin tamamen siirekli bir

operatdr oldugu sonucunu elde ederiz. Ispat tamamlanmistir. O

3.2 Avery-Peterson Sabit Nokta Teoremi ve Uygulamasi

Bu alt boliimde, (3.1) de verilen smir deger probleminin en az iig
pozitif ¢oziimiinlin varligini géstermek i¢in Avery-Peterson sabit nokta teoremi
kullanilacaktir. Daha sonrasinda sonuclarin uygulanabilirligini goéstermek igin

bir ornek verilecektir.

P, X Banach uzayinda bir koni olsun. 7 ve 6, P iizerinde negatif olmayan,
siirekli, konveks fonksiyoneller, ¢, P iizerinde negatif olmayan, siirekli, konkav
bir fonksiyonel ve v, P iizerinde negatif olmayan, siirekli bir fonksiyonel olmak

iizere 01, 02, 03 Ve 04 pozitif sayilari igin agagidaki kiimeler tanimlansin.

{ € P:7y(») < o4},

{x€ P:py < D(3),7v(5) < 04},

P(v, 04)

P(v, 9,00, 04) =
P(7,0,9,02,03,00) = {2 € P: 02 < P(5),0(5) < 03,7(5) < 04},

) =

R(v,%,01,04) = {3 € P: 01 <1(3),7(5) < 04} .

(3.1) de verilen problemini incelemek igin Avery ve Peterson’un agagidaki

sabit nokta teoremi kullanilacaktir.
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Teorem 3.2.1. (|Avery and Peterson (2001)) P, X Banach uzayinda bir
koni olsun. 0 < X < 1 dgin Y(Ax) < Mp(x) olacak sekilde v ve 6, P
tizerinde negatif olmayan, strekli, konveks fonksiyoneller, ¢, P iizerinde negatif
olmayan, strekli, konkav bir fonksiyonel ve 1, P tizerinde negatif olmayan,
stirekli bir fonksiyonel olsun dyle ki baz o4 ve w pozitif sayilary i¢in her

% € P(7, 04) olacak sekilde
P(s0) < (se) wve | < wy(x)

dir. Varsayalim ki

Tl . P(’Yu 94) — P(V? Q4>

tamamen stirekli bir operator ve o1 < 09 olacak sekilde 01, 02, 03 ve 04 pozitif

sayilary var olsun oyle ki

(S]) »x € P(’%Q? (pa 02, 03, Q4) Z§ZTL {% € P(’%ea @7 02, 03, Q4) : @(%) > T} 7& @
ve @(Tl%) Z 025

(S2) € P(v, @, 02, 04) ve 8(T13¢) > 03 icin (1) > p4;

(53) » € R(7,9, 01, 04) with ¢(3) = 01 i¢in 0 & R(7, 9, 01, 04)
ve Y(Tyx) < o1.

kosullary saglandige takdirde T) operatérinin, e, s, 3 € P(7,04) olacak

sekilde en az ¢ sabit noktasy vardur oyle ki
i=1,23 i¢in () < o
ve

02 < P(r1), 01 <V(r), (o) <02, V() <o

dir.

(3.1) de verilen sinir deger probleminin en az ii¢ pozitif ¢éziimiinin

varhgimi ispat etmek igin P iizerinde @(x) = [Icnin ]|%(t)| konkav bir
tel(r_o,1

fonksiyoneli, v(3¢) = trél[(a)ul(]]%’(t)] ve (%) = (%) = tem[aaﬁ\%(tﬂ konveks

fonksiyonellerini tanimlayalim.
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1 Ca:l

Teorem 3.2.2. Varsayalim ki 01 < 02, 03 > max {F,elly} 02 VE 04 >
k—2

03 olacak sekilde 01, 02, 03, 04 pozitif sabitleri var olsun.

(Hs) oV f(t, 3¢, 5¢) < (0aw1)P7Y, (L, 22, 5) € [0,1] x [0, 4] X [0, 04];
(Hy) f(t, 5, 5) > (Q2W2)p_17 (t,52,5) € [0,1] x [0, 03] % [02, 03);

(Hs) t71f(t, 3¢, %) < (orw1)P™ Y, (t, 52, 5¢) € [0,1] x [0, 01] X [0, 04].

A(1—o0q)0 ! A
Burada w, = & Ve Wy = a_l—lqaﬂ_l olmak tizere f
(@a—1) k—2 — Cp—2

fonksiyonu yukaridaki kosullary sagladigr takdirde de verilen sinwr deger

probleminin en az ¢ pozitif s¢1, 20 ve 33 ¢oziimi vardir oyle ki;
i=1,2,3, d¢in () < 04,
ve

00 < P(or1), 01 <Y(o22), Y(m) < 02, Y(323) < 0

dir

Kamat. 1k olarak T} : P(7, 04) — P(7, 04) oldugunu gosterelim:
(H3) kosulundan, s € P(v, p4) igin,

Y(Th2(t)) = max [(T1) ()]

t€[0,1]

S o ([ st <) e

k—

0= Z o ([ ot o )

a) /1 ) (/< UIT‘”f(T,%(T),%’(T))dT) ds
= (aAll)/Ol %a (/Og - olf(T7%(T)a%l(T))dT) ds

1) 1
<[ )

_ (O‘ - 1)Q4w1
Al(l — O'l)q_l

= 04
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elde edilir. Boylece T; : P(7v, 04) — P(7, 04) oldugu goriiliir.
Simdi (S1), (S2) ve (S3) kosullarmin saglandigini gosterelim. Herhangi
bir s € P ve t € [0,1] icin »(t) = 017052 ele almsin. Basit hesaplamalar

ile v(5) < p3,9(3¢) = 0(5) < p3 and () > p4 oldugu aciktir. Buradan
{x € P(7,0,9,00,03,04) : D(50) > 02} # 0
oldugu elde edilir. (H,) kogulunu kullanarak,

O(Tys(t)) = min |Ty2(t)| = |T12((r—2)|

te[(k 2,1]

B (L)

= k_ /Qqsq (/ Fn. (o), ) ) ds
—fé5/@2«k2—s (/’fn )0 )
S RIVRCEL T

(lej /%2¢q</tﬂn%ﬁ%%%ﬂﬁh)dc

C /CM (/fT, ), ))dT>d<
:fféﬂ%(éﬂnmm%mmﬂx
> i_fl/;? o (/0g (wm)”‘ldT) ds

a—1 1
= kA_Q / bq ((w202)P ') ds
1 J¢k—o

_ wr02(Cpy — G

Aqq

= 02

elde edilir. Boylelikle (S7) kogulunun saglandigi gosterilmigtir.
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Simdi 3 € P(v, @, 09, 04) ve 0(T15(t)) > p3 olsun. T3¢ € P oldugunu

diigtinelim,

O(T1(t)) = max |Tys(t)| = |T15(1)]

te(0,1]

-+ [ s ([ strtrr#ar ) ae

- Ail kéﬂ/oc o (/Og [, 5(7), %’(T))dT> ds

s [0t ([ str st en )

ve

b(T1x(t)) = min [Tys(t)] = [T15¢(Ce2))]

te[(k—%l]

= i:fl /01 q (/ng(ﬂ%(T)a%/(T))dT) ds

a—1 k=2

- IXf X;M/OC q (/ng(Taﬂ(T),%/(T))dT) de

s [ o ([ gt i
> Gy Ail/ol ¥ (/ng(T,%(T),%’(ﬂ)dT) ds

—Ail Zu / " b ( / (7). %'m)czr) ds

_ﬁ/ol (1-¢)* g, (/0< f(1, (1), %’(T))dT) dc)

= Giy (0(T1¢(1)))

-1
> C}?_z 03

292

Boylelikle (.S3) kogulunun saglandigr gosterilmigtir.
Simdi (S3) kogulunun saglandigini gosterelim. Varsayalim ki ¢ € R(y, v, 01, 04)
ve Y(») = o1 olsun. (Hjy) kosulunu kullanarak

P(Ty(t) = max [ Tase(t)| = |Ty(1))]

1 ! * —01 .01 /
- [ ( [ f(r,%m,%(de) de
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— A% Z m/og g (/(: T 717 f (T, (1), %’(T))dT) ds

-/ (1o, ([ 7o mar ) s
< Ail/ol o (/OgT_Ulef(L%(T)7%/(T))dT) ds
< %1/01 o (/Og (@1w1)p‘1T“”dT> ds
(

_ e~ 1)o1w1
Al(l — Ul)q_l

=01

elde edilir. Boylelikle (S3) kogulunun saglandigi gosterilmisgtir. Teorem m
den, (3.1)) de verilen simir deger probleminin en az {i¢ pozitif s, 35 ve 3

¢Oziimiine sahip oldugunu elde ederiz 6yle ki
i=1,23, icn () < o4,
ve
02 < P(31), 01 <V(m), V(@) <02, V() <o
dir. O

Ornek 3.2.1. Asagidaki sinur degeri problemini ele alalim

Burada /tf(t, 5,y), [0,1] x Rt x R* dizerinde siirekli bir fonksiyondur
ve (t,52,y) € (0,1] x RT x RT id¢in \/tf(t, 32,5) < 1500 olsun dyle ki

;

%(e +eY), (t,,y) € (0,1] x [0,3] x [0, 3],
fltoey) = eV +ev¥),  (t,2,y) € (0,1] x [5,17] x [5,17),

\%, (t,22,y) € (0,1] x [100, 00) x [100, c0)
dz’r.Bumdaa-%p 3, 1:%,k:4,(’1:3,§2:§ :%veagz}l

olsun. Ayrica 01 = 3, o2 = 5, o3 = 17, o4 = 150 olsun. Basit hesaplamalar
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ile Tem"em de ki kosullarn saglandigu elde edilebilir. Boylelikle de
verilen sinar deger probleminin en az ¢ pozitif e, 2o ve 3 ¢oziimiine sahip

oldugunu elde ederiz dyle ki
i=1,2,3 igin  y(z;) <150
ve
5< @(sr), 3<tU(3r), () <bh, s3)<3

dir.
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4 p-LAPLACIAN OPERATORLU SINGULER
»-HILFER KESIRLI DIFERANSIYEL DENK-
LEMIN VARLIK VE TEKLIK SONUCLARI

Bu boéliimde, p-Laplacian operatorlii singiiler ¢-Hilfer kesirli diferansiyel
denklemin ¢oziimii elde edilmistir ve daha sonra elde edilen bu ¢oziim i¢in

uygun bir Green fonksiyonu elde edilmigtir.

4.1 Smmir Deger Probleminin Co6ziimii ve Green Fonksi-

yonu

Asagida verilen singiiler v-Hilfer kesirli sinir deger problemi ele alinsin.

1D (6, (1D (1)) ) + f(t (1) =0, a<t<b,
(4.1)
HDo2Ps(a) = 0, 3e(a) =0, I77V3 Zmlﬁ (€

Burada, HDZ‘;/B % o mertebeden ve B parametreli sol-yanh -Hilfer
tiirevi ve [g;w, a mertebeden sol-yanli y-Riemann-Liouville kesirli integralini
gostermektedir. n = 1,2iginn—1 < a,, <n,0< B, < 1,7, = a,+ 6 (n—ay).
j=12..,0(leNinneR a<§ <& <o <§<b p; >0,
Op(s) = <[s]P72(c € RAAO}), 6,(0) = 0, p > 1, ¢,1(c) = dy(<), 5 + 5 =1,

f:(a,b] x R — R siirekli bir fonksiyon ve lim, .+ f(t,.) = 400 dur.
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Ik olarak, (4.1) lineer olmayan smir deger probleminden hareketle elde

edilen lineer sinir deger probleminin ¢oziimii elde edilecektir.
Onerme 4.1.1. h € C([a,b],R) ven=1,2i¢cinn—1<a, <n, 0< B, <1,
Y = O + Brn(n — ay,) ise

Dot (g, (DS 5() ) + () =0, a<t<b,

(4.2)
MDY 5(a) = 0, se(a) =0, L7V s(b Zml*’i (€

p-Laplacian operatorli 1-Hilfer kesirli sinir deger probleminin ¢ozimii

Wz '(t)
Aol ()2 4 ag — 72)

< [ v (P(;I) [ s onmvaar) v

P2 (t)
AJ(%) : (042 + ¢;

a2 T )
/ g (e %( [ vronmw (T)dT> ¥/(6)ds
1

x(t) =

_r(;) / v (e, (F( 3 / gw“ LY mdr) ¥(S)ds
(4.3)

ile ifade edilir. Burada
Ay =, pjitr2—1(¢. 0
2 = Yq(b E UJF (05 + 72) ¢ (&) #

oldugu kabul edilmektedir.

Kanat. <gbp (H DZ?L”B 2’¢%(t)>> = v(t) olsun. Burada 1} de verilen simir deger

problemi, iki ayr1 problem olarak ele alinabilir.
HDOLOYy(t) + h(t) = 0,

v(a) =0

ve
oy (1D <t>) =)

Aa) =0, I zmm
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(4.4) de verilen simir deger probleminin ¢oziimii agagidaki gibi elde edilir:

v(t) = — 1 /tw?_l(t)h(cw’(c)dc

Simdi, (4.5) de verilen smir deger probleminin ¢oziimii, Onerme [2.0.19

yardimai ile

At) =t U g [ o, 0000 (00

olarak elde edilir. Burada d; ve do keyfi sabitlerdir. Ilk olarak, s(a) = 0

kogulunu kullanarak d; = 0 olarak elde edilir. Buradan;

G 1
M) (o)

elde edilir. Simdi, (4.7)) de elde edilen »(t) fonksiyonu icin agagidaki esitliklikler
elde edilir:

w(t) = dy /¢?*@%@@Wﬂq« (4.7)

I22725¢(b) = 1ba(b)da + T2+ 0142 — ) / YT (D) (v())Y (S)ds  (4.8)

ve

}jmﬁbf @}jmrw_wy¢%”r%@>
J

1 &

+ O azt+pi—1(¢. (< , Ode (4.9

ZWWmﬁwﬂlﬂk (€)0ar ()Y (s (49)

Simdi, (4.8) ve (4.9)) esitliklerinden yararlanarak, (4.7) de ele alinan siir
!

deger probleminin siir kogulu I2772¢(b) = anf #i3¢(&;) kullanlarak,
j=1

dy = ii ';/é P2 (E) g (v())1 (<)d
Q_Aszln]F(O@Jr%) o PR TERSE

1
Aol (2 + s — 72)

b
/ﬁwyﬂrﬂ%w¢4v«»w%0d<

elde edilir.
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Boylece (4.2)) de verilen sinir deger probleminin ¢oztimi agagidaki gibidir:

Rl
#(t) = AsT(72)D(2 + s — 72)
/ plrea( ¢q( / YL QBT (7)d )¢’<<>d<
P (1) « 1

AsT () & T + )

/ perterl (g, <z>q( / po ()d )w’@)dc
(t)oq (m/a P2 (Qh(T)Y T)dT> Y (s)ds.

]

Onerme 4.1.2. de gosterilen, de ki problemin ¢ozimi olan (t)
fonksiyonu asaqidaki gibi yazilabilir:

:Lﬂxuqm(ﬁgjlﬁﬁ1@%ﬁﬂ«ﬂﬁ)¢@m9 e o],

(4.10)
burada
(i) ) o~ NG v ()
Aol ()02 4+ az —72)  Aol'(72) j:177J F(Oéz + ©;) [(ag)
a<¢<t<bh <<,
Pz ()22 (D) Pe2t(t) ,
AL(aT@+az =)  Dlay) = (SHSc=ish
Gl (ta §) =

l

N O O N () " P (E)
Aol ()l (2 + s = 72)  Aol'(m2) 4 T Tzt @)

a<t<¢<¢§ <,

Y2—1 1+az—2
Ol DN
(Aol (2)1(2 + a2 — 72)

§ <g,

(4.11)

dir.
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Kanat. t <& icin;

)
() = AT (72)1(2 4+ ag — 72)

<[ [ o (i [ o Onmeoan) v
+ [ e, (s [ oo dT> ¥/(s)ds

v [ e (W [ v onmw

RO
AT(72) Z " as + o)

N——
=
~

S—

IS

A

| I

Y [ [ v, (% [ semmena ) /(6)ds
AT()l <2+a2 ) AL(w) & " Tlaz+ i)
+/
1
* AF(%) (2+ as —72)
V2 (b)

v
/ pertei(g) %( / Y1) dT) ¥(6) }
S (1 [ o
o (s | o5 OO (ar) v
( / P2 )w(c)dc
#(t) = AT(1)T(2 + a2 — 72)

~ g o5 <a>/ o NN ) v
_ / N O e () I () I O/ SR (3)

w 1<>w1+a2 2(0) e\ ]mww (&)

AT()P 2+ a2 —72)  Al() o Ilaz +¢i)

() J,

Ol ()
[ mz)q( / B ONT AN ()i ) (0
& <t igin;

{/ Pl ( ;1 /gt/f”_l (T (1)d )w’(c)dc

/ girea( asq( / gy )¢<<>d<
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[ s

)
AT (5 > 1"’r<a2+%>
/ gere(g) ¢q< /wml

1

) (2 (<)d<}

[(as) U v 1<>¢q( (m/ U OB (7 )dT)w )ds

+/& w0 (o [ Onm i) v

/‘fi
a

_yei(t)

P () et §
AT(R)T(2+ a2 —72)  Al(7) <

[ e
" /5 {AF(W)F@ +ay — ’72) as)
1

n¢?2+%_1(§')
" T(az + i)

L(a )}(Z’q( <1 )/ N OIS ()d7)¢()dg

" (m [ s onmn ) W(c)ds

M O L S ()

+
AF(W’z (24 ag —72)

< / P >w (s)ds

oo

Ispat tamamlanmistir.

Onerme 4.1.3. de verilen, G1(t,<), Green fonksiyonu |a,b] X

tizerinde strekli bir fonksiyondur ve

Ya*(b)

Gilt,) < Aol (72)1(2 + a

esitsizligini saglar.

—72)

]

[a, 0]
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Onerme 4.1.4. f : (a,b] — R sirekli ve limy_,+F (t) = 0o olsun. 0 <
o9 < ay olmak dizere Y3*(t)F (t) fonksiyonunun |a,b] dzerinde sirekli oldugunu

varsayalim. O halde,

1 t
H(t) = R (’ "(s)d
)= g7 | v OF @ s
fonksiyonu [a, b] tzerinde streklidir.

Kanat. Ispat tic duruma ayrilmistir:

Durum 1. ¥22(t)F (t), [a, b] araligs izerinde sirekli oldugundan Vt € [a, b] igin
Y22 (t) |F (t)] < M olacak sekilde M > 0 vardwr. to = a ve Vt € (a,b] olmak

H() - Ha)

= ‘F(;) /at SO P (VT (OF ()Y ()ds
<t [ o 000U 1O O
< Fa [ U OOV (s

—% @1=02() B(ar, =05 + 1)

F(—O'Q —f- ].)

- ngl_(m (t)F(Odl — 02 + 1)

-0, (t—a)

B beta fonksiyonu olmak tizere yukaridaki esitsizlik elde edilir.

Durum 2. ¢, € (a,b) ve Vt € (a,b] olmak tzere;

|H<> (to)]
/ B () (U () (' (6)ds

_ —F al / wgl_l(t())qﬁa_@(g)’(ﬁ? (§)F(§)¢,(C>d§
1 a1—1 o2 ,
- ‘F(al)/ VST ()Y, (U (S)F () (s)ds

1
(o)
1

_|_

/ B (s (U (O (' (6)de

/ B (o) (S () F () ()de

B F(Oél)
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= ‘P(;) / ' (V& (1) = ¥ () ¥ (U (O F ()Y (S)ds
b | RO v
< o [ e 0 = v ) v O
b [ s v
= %wg‘l_”(t)B(al, —oy+1) — %1&2‘1_”2 (to)B(ay, —o9 + 1)
_ Myeio (t)F(Fof:f2aji>1) _ My (tO)F(Fa(l_anji)n S0, (t—to)

Durum 3. ¢ty € (a,b] ve Vt € [a,ty) olmak iizere ispat Durum 2 dekine

benzerdir. Boylece ispat tamamlanmas olur.

E5 = C|a, b] Banach uzay: iizerinde
172l = max [5(2)]

a<t<b

normu ele alinsin ve 75 operatorii,

10 = [ G0, (ﬁ JRERICT %(T))¢/(T)dT> W (e)ds

olarak tamimlansin.
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Onerme 4.1.5. 0 < 0y < oy, f : (a,b] x R — R siirekli bir fonksiyon ve
lim; ..+ f(t,.) = +00 olsun. Eger )22(t) f(t, »(t)) fonksiyonu [a, b] xR dizerinde
stirekli ise, o zaman Ty : Ey — Ey tamamen stirekli bir operatordiir.
Kant. Onerme ve Onerme den T, operatoriiniin stirekli oldugu
aciktir. Simdi 75 operatoriiniin kompakt bir operator oldugunu gosterelim.

2, E5 nin sinirli bir alt kiimesi olsun, Bu durumda, > € Q ve T € [a, b] i¢in
V72 (T) | f(t, 2¢(T))] < M olacak sekilde M > 0 reel sayisi vardir. Onerm
yardimiyla,

|(To5) (1))

< /abca(t,c)

o (o [ o O e O A () ) o0

<(A2< >wa;(+>a2 >)

» / ( = [ <>w’<T>dT)w'<<>d<

< < ¢O¢2+1+(0¢1 az)(q 1) (b) > (MF( oy + 1) )q_l

AQF(’}Q) (2 + o — ’)/2) F(Ozl — 09 + 1)
elde edilir. O halde T'(2) diizgiin smirhdir. Simdi 7(©2) nin ayn1 dereceden
siirekli oldugu gosterilsin.

Her s € Q, t1,t5 € [a,b] ve t; < t3 igin
|[(To)(t2) — (Tose)(t )|
(ww 1( ) ¢W2 1 ( 1+ae— 72
V2) / l/)

t
2I'(72)(2 + g —
( () / vt Wfi(T)f(T,%(T))w’(T)dT) V' (s)ds

&
‘Z"m/ T

i1 a

( () / (O (TR (T (T, (T)W(T)dT) Wg)dg)

/ 4 (1)

( T(ay) / YY) (T (T, <T>>w'<r>dr) W(s)ds




37

1 t

as—1
- (1)
v / e (1)

( / v (M, <T>>w’<T>dT) W (s)ds
< (Y2~ JL(A)2F ;iw L (/ab Fzglia;272(:)2)
(r / v )f(T7%(T))¢/(T)dT) V(s)ds
1

+m/ﬂ (Ve (t2) — v (1))
4 (F(l ) / 55 QU UM T ) (i ) (9

1 / chl

- / uml( (D)) (it ) v )
L WP ) — v (1) ( My =+ (O (~k + 1))‘” )
Azr(%) oy —k+1) I3+ az —72)
Ye(ty) ((My@FOD(—k+ 1)\
+F(oz2—|—1) < [l —k+1) )
Ye(t) (My@FO)D(—k+1)\"
_F(a2+1)< Mlor — k1 1) ) =0, (2 =h)

Arzela—Ascoli teoreminden 15 : Fy — FE, operatorii tamamen siirekli bir

operatordiir. O
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4.2 Banach Daraltan Doniisiim Prensibi ve Uygulamasi

Bu alt boliimde (4.1 de verilen p-Laplacian operatorlii tekil (singiiler)
kesirli sinir deger probleminin, p nin durumlarina gére en az bir ¢dziimiiniin
varlig1 ve tekligi i¢in gerekli kogullar Banach daraltan doniigiim prensibi ile elde

edilecektir. Sonuglarin uygulanabilirligini gostermek icin 6rnekler verilecektir.

Onerme 4.2.1. (Granas and Dugundji, |2003). (Banach Daraltan Donii-
stim Prensibi) X, bir Banach uzayr B nin bostan farkl, kapaly bir alt kiimesi
olsun. O zaman herhangi bir T : X — X daraltan dontisimi bir sabit noktaya

sahiptir.
Teorem 4.2.2. 1 < p < 2 olsun ve asaqidaki kosullar saglansin:

(Hg) Negatif olmayan bir g € Lla,b] fonksiyonu ve bir pozitif M sabiti vardur
oyleki: her (t, ) € [a,b] X R i¢in ¥72(t) |f(t, )| < g(t) ve

0 L ’ =1 (p)eh—o2 () g ()Y (t)dt < M
<—F(1)/G¢t (0)hg (1) g()'(¢) 4
(H;) Hert € [a,b] ve s,y € R i¢in

b () 1f(E, 2) = [t y)| < 21 ] -yl

ve

1
Co (¢ B) | [ _D(=oat1)
2 ((q - 1)Mq 2 ( AQF(Z""QQ_'YQ) ) (F(a1—£27'2+1)>)

olacak sekilde bir z; sabiti vardar.

0<z < (4.12)

Bu durumda, de verilen kesirlt mertebeden simir deger problemi tek bir

coziime sahiptir.

Kanat. 1k olarak (Hg) kosulundan,

e ORI A (i

< ey | QRO AT ¥ ()

) /. S b, 2 (1)g(T)Y (1)dT
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<M
elde edilir. Daha sonra,

¢32+1( ) q—1
e (A2F(72)F(2 +ag — 72)) M

olacak sekilde B,, = {» € C([a,b],R) : ||| <7} yuvar: tamimlansin.
Simdi Onerme ve (Hg) kogulu yardimiyla T5B,, C B,, oldugunu

gosterelim;

|(To5) (1))

s/abcw )

¢q( o [ Onm e )|f(T7%(T))|¢/(T)dT) W(e)ds

«

Y (Azr(%;bfgzif 312 _72)) M

S 1,

dir. O halde 7, B,, C B,, dir.
Son olarak, T, operatoriiniin daraltan bir doniigiim oldugunu gosterelim.

Onermd?2.0.21}, Onerme [2.0.24 Onerme ve (H7) kogulunu kullanarak, her
t € [a,b] ve s¢,y € (Cla,b],R) igin

|(To50)(1) = (T2y)(1)]

< [

o (i [ o8 O e @A) (ar )

al) a

—4, (ﬁ /| w;“1<<>¢a02<r>sz<T>f<T,y<T>>w'<T>dT) W(<)de

aq

q—2 ¢32(b)
<@-nM (Aﬂ‘(%) ['(2+ay— 72))

y / ! / BN (1)U (1) F (1, (1) (T)dT
)2 (1) (T, y(T)Y' (T)dT

I(ay)
<(q¢- 1)Mq—2 ( AQF(%)?‘E’ZQ@Q - w) / b (r(;)

P'(s)ds
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PN (T (T )!f(T, (1) = (1 y(MI Y (T)dT) ¥/ (6)ds

va>(b
AQF( ) 2 —|— g —

<[ (r [ v <T>dT)w'<>

3 ¢a1+a2 02+1 ) ( —09 + 1) )
< (¢g—1)M7? 21 || —
<q- v (g e T (PER D ey

21 [l =yl

_ =l
- 2

elde edilir. O halde T5 operatorii daraltan bir doniigtimdiir.

Boylelikle Banach daraltan déniigiim prensibine gore, (4.1)) de ele alinan

kesirli sinir deger probleminin tek bir ¢oziimi vardir. O
Teorem 4.2.3. p > 2 olsun ve asaqidaki kosullar saglansin :
(Hs) Hert € [a,b] ve s,y € R i¢in

f(t,5¢) = mapy ™2 (1) (4.13)

(1 —09)(g—1)
2—q

olacak sekilde 6 < min {(a1 + 09), } ve m > 0 sabitleri

vardr.

(Hy) Hert € [a,b] ve s,y € R i¢in

WP () |f(t %) = f(t,y)] < 2[5 =y
ve
m(5—0pt1) )27
(a1 +d—02+1)
P12 (=2 o tan—oatl gy I'(—o2+1)
2 ((q - 1) < Aol (2)I(24+0a2—72) ) (F(O‘I_U2+1)>>

olacak sekilde bir zo sabiti vardar.

0< 29 <

(4.14)

Bu durumda, de verilen kesirle symar deger probleminin tek bir ¢ozimii

vardar.
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Kanat. 11k olarak (Hg) kosulundan,

1 a1—1 oo ,
‘F(al)/ VU (M () (1, 2(1))¢ (1)dT
” Tla )/ YN (1) (T)dT

. mF(6—02+1)
711(0[14—(5—0'2—'—1)

PO (q)

elde edilir. Daha sonra,
¢a2+1+(0‘1 02)(q— 1)(b) F(*0‘2+1) q—1
].— f() fO( AQF("{Q)F(Z"’QQ ’yg) ) <F(O¢1*G’2+1)>
29 ’1 ., <¢§2;1+(a1 02)<q71>(b)> ( F(i'QH) )q—l
o2l (72)l (242 —v2) T'(a1—0o2+1)
olacak sekilde B,, = {3 € C([a,b],R) : ||5]| < ry} yuvar: tanimlansin. Burada
fo = maxw‘”( )| £(¢,0)| dir. Simdi Onerme 4.1.3) ve (Hg) kosulu yardimiyla

t€lab
15,B,, C Br2 oldugunu gosterelim:

r9 2> max

|(Ta5) (1))

< [a

( @1/7”11 CHOVET) (1, 2(1) = F(1,0)[¢'(1)dT
T(ar) / U, (T (T )\f(LO)W(T)dT) W' ()ds

) a2+1+ o1 —02) (b) ( F(_U2 - 1) )q_1(22 H%“ + f0>q71
< A2P (72)T(2 + ag — 2) Clan — o2 +1)

< az1+(a1—02)(a- D(b) ( I'(—02+1) >q_1(z ry+ fo)

T\ Al ()T (2 + ag — ) Pla — o2 +1) a 0

< az1+(a1—02)(- 1)(5) ( I'(—02+1) >q_1(z 72+ fo)

T\ AT ()2 + ag — ) Pla — oz +1) a 0

dir. O halde Ty B,, C B,, dir.
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Son olarak, T, operatdriiniin daraltan bir doniigiim oldugunu gosterelim.

Onermd?2.0.21, Onerme [2.0.24] Onerme ve (Hyg) kosulu kullanilarak, her
t € la,b] ve s,y € (Cla, b],R) i¢in

(Ty22)(t) = (Tay)(0)
< [foes
%( [(ar) / SO Y (DY (T %<T>>¢'<T>dT)

oy [ o Qe )

<(g—-1) (le:(f 5__02(;31))(]_2 (Azr(yg);bg@m - w))

b
X/ w(a1+6—02)(q—2)(g>

Y'(<)ds

1 - B /
’r< / Gy TG (1) (1, (1)) (T)dT

"(¢)ds

T(an) / v DY) (T, (1)) (T)dT
ml(0—oy+1) \" 22 (b)
<(¢g—1) (F(Oq +6— 09+ 1)) (AQF(’YQ)F(2 + Qo — 72))

b
1
(a1+0—02)(q—2)
X { S
/a v ( ) (F(%)

/g YW (T (1) £ (1, 5(1)) — (1, 9(T)) w’(T)dT) W(s)ds

ml(6 — oy +1) \77 02 (b)
<@ (mn sromey) (mrmizta—m)

< " gl ) (e [ vt @vm @ mar ) v

<(¢-1) (FZI;(E 5__020?310” (p(rofl_?gji)n) (AQF(%);&((;Z@OQ - 72))

b
e =yl [ plm e e )

mr((s — 09 —|— 1) q-2 w(al+6_02)(q_2)+011+a2—02+1 (b)
<(g—1 a
> (q ) (F(Oﬂ +6— 09 + 1)) A2F<’)/2)F(2 + ay — ,.}/2)

o (LE22 D Yy
['(ag — o2+ 1)
_lx—ul
- 2
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elde edilir. O halde T5, operatdrii daraltan bir doniigtimdiir.
Boylelikle Banach daraltan doniigiim prensibine gore (4.1)) de ele alinan

kesirli sinir deger probleminin tek bir ¢oziimii vardir. O]
Teorem 4.2.4. p > 2 olsun ve asaqidaki kosullar saglansin:
(Hyp) Her (t,) € [a,b] x R i¢in

F(t,30) < —my~72(t) (4.15)

(g —o2)(g —1)
2—q

olacak sekilde 6 < min {(oq + 09), } ve m > 0 sabitler:

vardar.

(Hi1) Hert € [a,b] ve 7,y € R ig¢in

bat @)1 f(t, ) = f(t, y)| < 2|2 =y

ve

mI'(0—o2+1) 2-q
F(Oc1+6—o’2+1)

{1002 (a=Dtartaz—oatly P(—o2+1)
2l ) () (i)

olacak sekilde bir z3 sabiti vardar.

0< 25 < (4.16)

Bu durumda, de verilen kesirli sinir deger probleminin tek bir ¢ozimi

vardar.
Kamit. Teorem nin ispatina benzerdir. O

Simdi, elde edilen sonuglarin uygulanabilirligini gostermek i¢in asagidaki

ornekleri verelim.

Ornek 4.2.1. Asaqidaki kesirli sinaur deger problemi ele alinsin:

éé;@b L3 _2)5 “ :
Hps; (@ (HD05+3 %(z))) + 0=t (wlw 3 +s1nt> —0, teo,1]
D

7 1.
53YV50) =0, 2(0) =0, (4.17)

Iu(2) + BT u(?)

O halde, da verilen kesirly sinwr deger probleminin tek bir ¢ozimaii vardar.
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Kanat. (4.17)) da ki sinir deger problemi, (4.1)) de verilen sinir deger probleminin
ozel bir halidir. Burada a =0, b =1, oy = %, oy = g, B = %, Bo = %, p= %
2
5

l=2m=3m=15v1=L¢:=2=26=2v{t)=t*+1,¢=3>2

ve
=2 [
t = t
Jt, %) 200 \Je[+1 oM
dir. Ayrica @Z)O%(t)f(t, »), [0,1] tizerinde siireklidir. g(t) = (1_1;)1/5 olsun. O
halde

1 ’ a;—1 —0o9 / _ _
0< Far / DT D) (1) g () (H)dt = 0,17179 = M

elde edilir. z; = 2—10 olmak tizere

1
0< 2z < = 0.96828.

_o [(pgrte2To2 gy I(—oa+1)
2 <(q — 1)Mq 2 ( S YO m— ) (r(al—fnﬂ)))

kosulu saglanmig olur. Ayrica (¢, ») € [0,1] x R i¢in

bar () f(t, >) < g(t)

vet €[0,1], s,y € R igin

() [t 2) = [(Ey)]

(L—13)5 (|5 : (L=13)5 [ |yl :
- t) - '
20\ 1 o™ 20 \g+1 ™

0= t2)s
- 20
< 21 |2~y

3¢ — 9|

oldugu kolayca gériilebilir. O halde Teorem [1.2.2 ye gore (£.17) da verilen

kesirli sinir deger probleminin tek bir ¢éziimi vardir. ]

Ornek 4.2.2. Asaqidaki kesirli sinar deger problemi ele alinsin:

(
i’l;w Q};w 2 5
DI (g (MDg7 5e(1)) ) + Gt (ks +1) =0, te0,1]
9 1.
HPeiz34(0) =0, 5(0) =0, (4.18)
15t 24
107" 5e(1) = 3137 u(3)

O halde, de verilen kesirli simir deger problemininin tek bir ¢ozimai

vardur.
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Kanat. (4.18]) de ki kesirli simir deger problemi, (4.1) de verilen kesirli sinir

deger probleminin 6zel bir halidir. Burada a = 0, b = 1, a; = 1%, g = %,
B1:i762:%7p:%l:17n1:%’¢1:§’£1:§’¢(t):t2ve
(2 +t+1) ( | 22(1)| )
t,x(t)) = +1],
sty = o (S
dir. O zaman ¢ = 1—72 < 2 dir. 9§ (t)f(¢t, 5) fonksiyonu [0, 1] {izerinde
stireklidir. m = 5, 6 = 11 ve 23 = & almrsa
. (oq —09)(q— 1) 23
0 < — =
m1n{(a1+02), 54 50"
ve
< mI(6—o2+1) )2(1
a1+d—o
0< 2 < i — 0,40723

qp((ft1+<5—f72)(q—2)+a1+112—f72+1(b) I(—0a+1)
2 ((q - 1) ( AT (12)T(2+a2—72) > (F(a1*02+1)>>
elde edilir. (¢, ) € [0, 1] x R i¢in

1
Flt,0) 2 mg=>(0) = oo™

vet € [0,1], s,y € R igin

V() |t 52) — f(t,y)]
@ +t+1) | | (> +t+1) |y
“ 2 (wm“)‘ 2 (|y|+1“>‘
<(t2+t+1)
- 20
< 2y |5 —y|

ERl

oldugu goriiliir. O halde Teorem e gore (4.18)) de verilen kesirli sinir deger

probleminin tek bir ¢oziimii vardir. ]
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4.3 Krasnoselskii sabit nokta teoremi

Bu alt boliimde de verilen p-Laplacian operatorlii tekil (singtiler)
kesirli sinir deger probleminin, p nin durumlarina gére en az bir ¢dziimiiniin
varligi i¢in gerekli kogullar Krasnoselskii sabit nokta teoremi ile elde edilecektir.
Bunun icin ilk olarak, Onerme 1| de verilen (t) ¢oziimii farkli bir gekilde
ifade edilecektir.

Onerme 4.3.1. h € C([a,b],R) ven=1,2d¢cinn—1<a, <n, 0< 3, <1,
Tn = Qp + Bu(n — ) ise

D (g, (MDY s(1)) ) + h(H) =0, a<t<b,

(4.19)
TD3 P 5e(a) =0, ) =0, L5 s(b Zml“’i (&

p-Laplacian operatorlii - Hilfer kesirli sinir deger probleminin ¢ozimii

Yo' (1)
Agr 2 + a9 — ’)/2)

[ o (F o [ e ) v
wﬂ i:

]:

#(t) =

aQ + SDJ)

< Jwgg+w1(£j)¢q<r(;) [ s onmwaarn) v

1o | eemwe (o [t onmmarn) viod
(4.20)

ile ifade edilir. Burada

Ay=T ( : meyﬂ WW(@)) #0

oldugu kabul edilmektedir.

Kanat. Ispat Onerme ile benzerdir. O



A7

Onerme 4.3.2. de verilen, de ki kesirli synar deger probleminin

¢oziimi olan »#(t) fonksiyonu asagidaki gibi yazilabilir:

m>(£aﬂ<¢( Q/wml ))W@&,tem%

(4.21)
burada
2— 1 l
Galtro) = 1lhro) W ngz §:9), (4.22)
ve
(R (YT (0)
T(12)T (2 + a2 — 72)1a(b)’ a<t<¢<b,
eh (4.23)
L O Ll (O W S )
\TTR Tas =) a®) ~ e @ 4Sestsh,

l
> nigal&05)
j=1

( 77/);"7"'72_1(5].),4[}2-&-@2—72 (b) |
(s +72)0(2 + a2 — 72)1a(b)’ a<§ <¢<b,

I
o,
-
j
S

A () Lt () B Vbl (3)
\ F(%’ + 72) (2 + g — 72)1h, (b) B T(as + QDj) , a<c<¢&<b

(4.24)
dir.

Kanat.

e U (F< Jfa;( )wa( >¢”a’" () — @wﬂm)
( /WI A (1)d )W(c)dc
+F(72)F(2¢4:20; ) oao /¢1+a2 (p)

q( T'(ay) /W1 L (T)d )w(g)dg}

_ vl Lbag e
F(VQ)F(Q—FOQ Vo) a (b / (2 (b)
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< / b )w(c)dc

+ w% 1 / wl—i—az Vz(b)
AgF(Q + 042

< / b )w(C)ck

et (@)
Ay

Ny
= F(a2 + ¢5)

- [/ (rm i >fyz>wa< >W2 0~ gt 0)

( / T )w’(g)dg

: /5 per <fa>¢q( (1 ) / e (R (T)dT> ¥(<)ds

W '(t)

02+ ay — 72)1/)(
/ PLIrerT2(b)g, o) / P >¢(<)d<}
Y2 (t)

Agr 2 + g — ’72)

< [ (i [ Onme ) v
v

+A3F(2+a2 o El; %Jw W?’*”‘l(ﬁj)
« [ e >¢q( o [ ) v
Ut
A T2+ as —72)
/ g ¢q( = [ onmuenn) v
a0
Az o 77JF(O@—HOJ-)
« | Y g, (e [ o O nar ) wis)as

- U (re ﬁa:(—) SRTENC ﬁ”lm 0~ gt 0)

( / i )w’(<)d<
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U (t)
L(72)T(2 + az —

Y2)1a(b)
X /t bwi*‘“ 72 ( / Y )w(c)dcl

+

sDj+'Y2*1(§J)

. L(p; +72)T(2 4 ag — 72)1a(b)

/ gresn( cbq( / gl )¢<<)d<
m / (3
o0 (s [ v ORI ) (0]

- V O W” 20~ e 0)
b, (ﬁ / QR (7 )dT) W(s)ds

wVQ 1( 14+ags— 2
+F(72)F(2+042 Y2)a(b / Ve ")

(L/a@b?l HOR(T)Y' (1) T)iﬂ(g)dg}

Q/,w 1( ) | &5 W1+V2—1(£j) T
Ay 2177] l/a ( L(pj +72)T(2 + a2 — 72)1a(D) vs ©)

J

az2+p;—
S ’ 1 a1 — 1
- [(ag + ¢5) ) ( / i ) vl

90]-"-72 1(5])

- F(SOJ +72)(2 4+ ag — 72)a(b )

(o i) v
(1)

/abgl(t <)¢q< oy )/ Y (T (T)dT> v(s)ds +

X Zm/ 92(&5, ( / P >¢(<)d<

= [[catton (i [ oo (T)dT) V()ds

a

w‘m ™ (0)




20

Onerme 4.3.3. Swaswla, (4.25) ve (4.24) de verilen g, ve go fonksiyonlar

[a,b] X [a,b] tzerinde siirekli fonksiyonlardur ve her (t,<) € [a,b] x [a,b] i¢in

asagqidaki esitsizlikler saglanir:

Ve (0)
91(9) < T ST @+ ap =)

l l ij—l—ag—l(b)
. Lg) < . a ]
;mm D DL CEw—

Jj=1

Ey = Cla, b] Banach uzay: iizerinde;

el = max |#(0)

normunu ele alahm . T3 : Es — Es ve Ty : Ey — F5 operatorleri agagidaki gibi

tamimlansin:

b S
Tt = [ n(t.500, (ﬁ [ oo, %<T>>w'<T>dT) H(o)ds,

(T = H 523,

< [ .00 (7 [ o st ) )i

(4.1)) kesirli siir deger problemi bir ¢6ziime sahiptir ancak ve ancak T3 + T

bir sabit noktaya sahiptir.

Teorem 4.3.4. (Krasnoselskii’s sabit nokta teoremsi) (Smart, |1974)). B,,
X Banach uzayimn stmrh, kapali, konveks ve bostan farkly bir alt kiimesi A ve
B asagqidaki kosullary saglayan iki operator olsun:

(i) x,y € B, iken A+ By € B,;

(i) A kompakt ve sireklidir;

(i1i) B daraltan bir déniisimdir.

Bu durumda, z = Az 4+ Bz olacak sekilde z € B, vardar.
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Teorem 4.3.5. 1 < p < 2 ve asaqidaki kosullar saglansin:

(H7) Negatif olmayan bir g € Lla,b] fonksiyonu ve bir M pozitif sabiti vardur
oyleki her (t, s) € [a,b] x R igin ¥72(t) | f(t, )| < g(t) ve

PO (g (Y (dt < M.

(Hs) Hert € |a,b] ve s,y € R igin

() [f (8, 2) = [t y)] < 21 |0 =y

ve

1
B o a2 () [(=02-+1)
2 ((q l)Mq <1"(72)F(2+OL2—72)> <F(a1—1272+1)>>

olacak sekilde bir z; sabiti vardar.

0<2z < (4.25)

Bu durumda, de verilen kesirli mertebeden simir deger probleminin

en az bir ¢ozimi vardor.

Kanat.

az—1 b 1 l a<pj+’vz+ot2—2 b
ry > M9 Yo~ (b) =S (0) '
L()l(2+az —72) Az st I'(pj +12)I(2+ a2 —12)

olacak sekilde segilen bir 73 igin B,, = {3 € C([a,b],R) : ||5]] < r3} olsun.
Onerme ve (Hy) kullanilarak, her s,y € B, i¢in agagidaki egitsizlik
elde edilir:

|(T550)(1) + (Tay) (¢)]

/abgl(ta€)

( <1 / R O (T (T %<T>>w'<r)dr) (o) ds

041)
l

277]/ 92(&5, )

J

( : /Wl N (M (T )f(T,y(T))@//(T)dT) V' (s)ds

<

721

: (F(’Yz)l:?b(j;@z ’72))
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<[ o (s [ ot mar ) ias

l

- wgz—jb) > n;
/ab92<§w ( / UE Y (T )g(T)w’(T)dT) Y (s)ds
= (F(Vz)li/]g; - _w) M
e UE o)

Ay o W [(g; +72)T(2 4 a2 —72)

<’I"3

Boylece || T3¢ + Tyy|| < r3 elde edilir. Buise T3+1,y € B,, oldugunu gosterir.
Simdi, T operatériiniin tamamen siirekli oldugunu gosterelim. Onerme
ve Onerme kullamilarak, T, : Ey — FE, operatoriiniin stirekli
oldugu kolayca gosterilebilir. Simdi 7} operatoriiniin tanim kiimesinin siirh
alt kiimelerinde kompakt oldugunu gosterelim.
Q C E smurh olsun. Onerme ve (H;) kullanilarak, s € Q, t € [a, b]
i¢in agagidaki esitsizlik elde edilir:

|[(Tue)(2)]
v2—1 ! b
< %Ag(t) ;m‘/a 92(&;,5)
bq (ﬁ/g V2N, (TS (1) | f (T, 2(T))] ¢’(T)dT) V'()ds
w’yz 1 Z / g2 5]7

¢, (ﬁ / wi”1<<>wa”2<r>g<T>w'<T>dT) W (6)ds
Ma-1 (fj+72+0¢2*2(b)

Ay = YTy +7T2 + a2 — 72)

| /\

<

Bu ise T4(€2) iin smurh olmasi demektir. Simdi de, 74(2) iin aynm dereceden

siirekli oldugunu gosterelim.
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Her t1,19 € [a,b], ty <ty ve x €€ icin:

[(Thse)(ta) — (Thse) ()]
S 1/132_1@2) an /b gz(fj,c)

1 a;—1 o2 / /
%(F(a) [ e @umimia %(T)W(T)dT)l/f(C)dC

—W i Zﬁj/ 92(&5,<)
6 (F(l [ o v @@ A i) v

)
< 0z~ Zm/ e
( / P QU (T () (T, <>>|w'<T>dT) ¥/(6)ds
< ) = i ' >>§l:n /b%’)
( / p (o) (W(T)dT) ¥(c)ds

o (WP () — 0 (b)) MO Xl: )
- A "T(j+712)T 2+ a2 —72)
elde edilir. t5 — t; limit durumunda yukaridaki esitsizligin sag tarafi sifira
gittiginden, Arzela-Ascoli teoreminden Ty : Es — FEs operatoriiniin tamamen
stirekli bir operator oldugu goriiliir.
Son olarak, 7} in daraltan bir déniisiim oldugunu gésterelim. Ilk olarak,

(H7) kogulundan, agagidaki esitsizlik elde edilir:

ARG A LA
< Fey | Qw0 @ ) o ()
< Fe | e @t (i
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t € [a,b] ve s,y € (Cla,b],R) igin Onerme | Onerme [2.0.24]
Onerme ve (Hg) kullamlarak, agsagidaki esitsizlik elde edilir:

|(Ts50)(t) — (Tsy)(1)]

/bgl(t <)

( /qwll T (T %ﬁDWﬁ%ﬁ)W@M§
( / PO (P (T (7 )f(r,y<r>>w’<T>dT) ¥/(6)ds
@‘1”ﬂ2( >§:;23/wﬂ
e [ @ )
1

al/VWIWﬁ# (T () (T y(T)Y (T)dT| ¥ (5)ds

)
q_lMH(r 1/}6;24:042 72)>/b(F(f111)
)

(/¢“1@¢”%)W%>Vﬁ,(» ﬁwﬁﬁWﬂﬂﬁ)W@Mc

< (g— 1M ¢”1 wllse— gl
F 2+Oé 2)

XL (/@w1%>w (ﬂ¢(ﬁh>%@ﬂ<
<= 907 (it oy ) (o 2 7) = e

Bu ise T3 : Ey — FE, operatoriiniin daraltan bir doniigiim oldugunu
gosterir.
Boylece, Krasnoselskii sabit nokta teoreminin kogullari saglandigindan,

(4.1)) kesirli simir deger probleminin en az bir ¢éziimii vardir. O
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Teorem 4.3.6. p > 2 olsun, (H7) ve asaqidaki kosullar saglansin:
(Hy) Her (t, ) € [a,b] X R i¢in

F(t,30) = myp~72(t) (4.26)

- -1
olacak sekilde 6 < min {(041 + 09), (o 202)(q ) } ve m > 0 sabitler:
—4q

vardar.

(Hyo) Hert € |a,b] ve s,y € R i¢in

bt @) f(t,50) = f(ty)] < 22| =y

ve

mI'(0—o2+1) 2=q
I'(a1+d—02+1)

¢(a1+5 02)(q—2)+a+ag— 72 (b) I(—o2+1)
2 ((q A 1) ( Azl(v2) T (24+az—72) (a1 —o2+1)

olacak sekilde bir zo sabiti vardar.

(4.27)

0< 2z <

Bu durumda, de verilen kesirli sitnir deger probleminin en az bir ¢ozimii

vardar.
Kanat.
az—1 b <P;+’Yz+042 2 b
Iy va (b) Z”ﬂ (b) .
F(72>F(2 + a9 — Ag F 90‘7 + ’}/2 (2 + g — 72)

olacak sekilde B,, = {sr € C([a,b],R) : ||| < ry} yuvar: tanimlansin.
Onerme ve (H7) kullamlarak, herhangi bir >,y € B,, i¢in asagidaki
esitsizlik elde edilir:

|(T550)(t) + (Tuy)(1)]

/bgl(t <)

( / PO T (DS (T (T %<T>>¢’<T>dT)w'<<)d<

W ! Z /92 &j>)
( NG / UYL (T (T )f(T,y(T))%Z/(T)dT) Y'(<)ds

<
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S(F( ﬁmg) )

<[ o (rs [ v e @ ) vieas

N wzzA :( )
x Zm / (690 (s [0 gt (i ) (0
A0 -
= (mg)m Tos— m) M
PR S S ()
Ag ‘= T(pj +72)T (24 az —72)
<ry

Boylece || T3¢ + Tyy|| < r4 elde edilir. Buise T3c+T,y € B,, oldugunu gosterir.
Simdi, 7y operatoriiniin tamamen siirekli oldugunu gosterelim. Onerme
ve Onerme kullanilarak , T, : Es — FE, operatoriiniin stirekli
oldugu kolayca gosterilebilir. Simdi 7T operatoriiniin tanim kiimesinin sinirh
alt kiimelerinde kompakt oldugunu gosterelim.
Q C E5 smurh olsun. Onermeve (H7) kullanilarak, >« € Q, t € [a, b]
icin agagidaki esitsizlik elde edilir:

() (1)
@Z)“/z 1 Z / 0 £j7 )
( e U (D (1 )\f(Ta%(T))W/(T)dT) W(6)ds

| /\

wwAS( )z;ﬁg/a 92(§J7 )

j=

( )/ e (T)Q(T)¢’(T)dT) W' (¢)ds

I'(a
_ Mq 1 Zl: <p]+72+042 Q(b)

—72)

Bu ise T4(€2) in smirli olmasi demektir . Simdi de, 74(£2) in ayni dereceden

siirekli oldugunu gosterelim.
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t1,ts € [a,b], 11 < ta, ve 5 € Q icin asagidaki esitsizlik elde edilir:
(Ti)(t2) — (T (1)
W { Zm/ 92(85.9)
( S [ s ez A ) os)ds
W il Zm/a 92(&5,<)

( F | O @@ T i ) (0

v2—1(¢ 21
NCaCET Zm/ e

" (ﬁ / g (s (1) () | (7 (1)) w'de) W(<)de

aq

< (W22 (t2) — 22 (th))
< =
y Zm / 02(65.9) (ﬁ | wl—l(c)w;m<T>g<T>¢'<T>dT) W(<)ds

< (’4032—1(1&2) - wgz—l(tl)) Ma—1 zl: | a‘Pj+'Y2+Oz2—2<b)
s As J F(QO] + ’YQ)F(Q + ag — ,-Y2>

j=1
to — t; limit durumunda yukaridaki esitsizligin sag tarafi sifira gittigin-
den, Arzela-Ascoli teoreminden T : Ey — FE, operatoriiniin tamamen siirekli
bir operator oldugu goriiliir.
Son olarak, T iin daraltan bir déniisiim oldugunu gosterelim. 1k olarak,

(Hy) ve Onerme [2.0.21] den asagidaki esitsizlik elde edilir:

‘ () /W1 HOW (TR (1) f (1, (1) (T)dT

> s [ or i @u e mar

o mr( — 03+ 1) a1 +5—o2
(CV1+(S—O’2+1)¢ (g)

t € [a,b] ve s,y € (Cla,b],R) icin Onerme [2.0.21, Onerme [2.0.24) Onerme
ve (Hjo) hipotezinden, agagidaki esitsizlik elde edilir:
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qsq( o / U5 U (D (D (1) () ) 61

( = [t e >f<T,y<T>>w'<T>dT) ¥/(6)ds

<o 1)( ;gff;f;:z))qQ(W;”E;;lifjw)

/ Qo (TS (T) F(T, 3T (T)dT

F<a1>/ 03NS (DU Dy (T)dr| ' ()ds

<lo-n) (Rlome DN (0 )

b 1
X/ w((lal—ké—og)(q—z)(g ( ( )

/gib?l‘l( )W, (1) (T) 1 £ (1, (1)) — f(T,y(T))I@//(T)dT) V' (s)ds
ml(§ —oy+1) \77 Yo 1(b)
<60 <a1+6—az+1>) (et e w)‘Zz””‘y”

) (s [ s o

g(q—l)( mr(6—02+1)))q (FP( o3+ 1) >

F(Oél—i-(S—O'Q‘i‘l (a1—02+1)

%?2_1(5) ) . ’ (a14+6—02)(g—2)+a1—0o2 /
(ot e = [ (€)' (<)de

mF((5 — 09+ 1) q—2 (a1+6—02)(q—2)+o1+az—0o2 (b)
<(g—1 a
- (q ) (F(Ozl + o — o2 + 1)) AgF(’}Q)F(Q + g — ")/2)

(R ) e

=l
- 2

Bu ise T3 : E; — FE5 operatoriiniin daraltan bir doniisiim oldugunu

gosterir.
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Boylece, Krasnoselskii sabit nokta teoreminin kogullar1 saglandigindan,

kesirli sinir deger probleminin en az bir ¢éziimii vardir. [
Teorem 4.3.7. p > 2 olsun, (H7) ve asaqidaki kosullar saglansin:
(Hy1) Her (t,) € [a,b] x R i¢in

flt,5¢) = —mapa ™2 (t) (4.28)

(g —09)(g—1)
2—q

olacak sekilde 6 < min {(a1 + 09), } ve m > 0 sabitleri

vardar.

(Hi3) Hert € [a,b] ve 2,y € R i¢in
b (B) | f(t, 2) = [t y)] < 23] =y

ve

mI'(§—o2+1) 2-q
F(a1+670'2+1)

¢((la1+6faz)(qf2>+a1+a2*f’2(b) I'(—o2+1)
2 <(q - 1) ( AsT(72)T(2+az2—72) ) (F(al_;"’l)))

olacak sekilde bir z3 sabiti vardar.

0<z3< (4.29)

Bu durumda, de verilen kesirli sinar deger probleminin en az bir ¢ozimi

vardar.

Kamnit. Teorem nin ispatina benzerdir. O
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5 SONUC

Bu tez caligmasinda, ii¢lincii boliimde p-Laplacian operatorlii singiiler
kesirli sinir deger probleminin pozitif ¢bziimlerinin varligi Avery-Peterson sabit
nokta teoremi kullanilarak elde edilmistir. Ayrica, elde edilen sonuglarin uygu-
lanabilirligini gostermek amaciyla bir 6rnek verilmigtir. Bu boéliimde incelenen
problem, SCI kapsamindaki Filomat dergisinde 2023 yilinda yayimlanmigtir.

Sonrasinda, dordiincii béliimde daha genel bir denklem tipine sahip olan,
lineer olmayan p-Laplacian operatorlii ve -Hilfer kesirli tiirevi igeren tekil
(singiiler) noktaya sahip smir deger problemi ele almmustir. Ik olarak, bu
kesirli sinir deger probleminin ¢ozlimlerinin varhigim ve tekligini gostermek
i¢in Banach daraltma doniigiimii prensibi kullanilmigtir. Elde edilen sonuglarin
gecerliligini gosteren ornekler verilmistir. Ikinci olarak, kesirli smir deger
probleminin ¢oziimlerinin varligin1 gostermek igin Krasnoselskii sabit nokta
teoreminden yararlanilmigtir.

Ayrica dordiincii boliimde ele alinan kesirli snir deger probleminde yer
alan t-Hilfer kesirli tiirevi, literatiirde yer alan birgok kesirli tiirevin bir
genellemesidir. 2018 yilinda tanimlanan ¢-Hilfer kesirli tiirevi iceren sinir deger
problemlerinin ¢éziimlerinin varhigini ve tekligini aragtiran makaleler az sayida-
dir. Ayni zamanda, bu tezde singiiler kesirli snir deger problemi ¢alisilmigtir.
Bildigimiz kadariyla, literatiirde p-Laplacian operatorlii ve singiiler v-Hilfer
kesirli siir deger problemi ile ilgili caligma bulunmamaktadir. Bu tezde ele
aldigimiz problem, p-Laplacian operatorlii ve singiiler -Hilfer kesirli sinir
deger probleminin ¢oziimlerinin varligini inceleyen ilk calisma olma 6zelligini
tagimaktadir. Bu calismanin elde ettigi sonuglar, ileri aragtirmalara 11k tutacak

ve bu alandaki bilimsel ilerlemeye katkida bulunacaktir.
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